WorldWideScience

Sample records for eukaryotic genes derived

  1. Patterns of prokaryotic lateral gene transfers affecting parasitic microbial eukaryotes

    DEFF Research Database (Denmark)

    Alsmark, Cecilia; Foster, Peter G; Sicheritz-Pontén, Thomas

    2013-01-01

    BACKGROUND: The influence of lateral gene transfer on gene origins and biology in eukaryotes is poorly understood compared with those of prokaryotes. A number of independent investigations focusing on specific genes, individual genomes, or specific functional categories from various eukaryotes have...... approach to systematically investigate lateral gene transfer affecting the proteomes of thirteen, mainly parasitic, microbial eukaryotes, representing four of the six eukaryotic super-groups. All of the genomes investigated have been significantly affected by prokaryote-to-eukaryote lateral gene transfers...... indicated that lateral gene transfer does indeed affect eukaryotic genomes. However, the lack of common methodology and criteria in these studies makes it difficult to assess the general importance and influence of lateral gene transfer on eukaryotic genome evolution. RESULTS: We used a phylogenomic...

  2. Massive expansion of the calpain gene family in unicellular eukaryotes

    Directory of Open Access Journals (Sweden)

    Zhao Sen

    2012-09-01

    Full Text Available Abstract Background Calpains are Ca2+-dependent cysteine proteases that participate in a range of crucial cellular processes. Dysfunction of these enzymes may cause, for instance, life-threatening diseases in humans, the loss of sex determination in nematodes and embryo lethality in plants. Although the calpain family is well characterized in animal and plant model organisms, there is a great lack of knowledge about these genes in unicellular eukaryote species (i.e. protists. Here, we study the distribution and evolution of calpain genes in a wide range of eukaryote genomes from major branches in the tree of life. Results Our investigations reveal 24 types of protein domains that are combined with the calpain-specific catalytic domain CysPc. In total we identify 41 different calpain domain architectures, 28 of these domain combinations have not been previously described. Based on our phylogenetic inferences, we propose that at least four calpain variants were established in the early evolution of eukaryotes, most likely before the radiation of all the major supergroups of eukaryotes. Many domains associated with eukaryotic calpain genes can be found among eubacteria or archaebacteria but never in combination with the CysPc domain. Conclusions The analyses presented here show that ancient modules present in prokaryotes, and a few de novo eukaryote domains, have been assembled into many novel domain combinations along the evolutionary history of eukaryotes. Some of the new calpain genes show a narrow distribution in a few branches in the tree of life, likely representing lineage-specific innovations. Hence, the functionally important classical calpain genes found among humans and vertebrates make up only a tiny fraction of the calpain family. In fact, a massive expansion of the calpain family occurred by domain shuffling among unicellular eukaryotes and contributed to a wealth of functionally different genes.

  3. Massive expansion of the calpain gene family in unicellular eukaryotes.

    Science.gov (United States)

    Zhao, Sen; Liang, Zhe; Demko, Viktor; Wilson, Robert; Johansen, Wenche; Olsen, Odd-Arne; Shalchian-Tabrizi, Kamran

    2012-09-29

    Calpains are Ca2+-dependent cysteine proteases that participate in a range of crucial cellular processes. Dysfunction of these enzymes may cause, for instance, life-threatening diseases in humans, the loss of sex determination in nematodes and embryo lethality in plants. Although the calpain family is well characterized in animal and plant model organisms, there is a great lack of knowledge about these genes in unicellular eukaryote species (i.e. protists). Here, we study the distribution and evolution of calpain genes in a wide range of eukaryote genomes from major branches in the tree of life. Our investigations reveal 24 types of protein domains that are combined with the calpain-specific catalytic domain CysPc. In total we identify 41 different calpain domain architectures, 28 of these domain combinations have not been previously described. Based on our phylogenetic inferences, we propose that at least four calpain variants were established in the early evolution of eukaryotes, most likely before the radiation of all the major supergroups of eukaryotes. Many domains associated with eukaryotic calpain genes can be found among eubacteria or archaebacteria but never in combination with the CysPc domain. The analyses presented here show that ancient modules present in prokaryotes, and a few de novo eukaryote domains, have been assembled into many novel domain combinations along the evolutionary history of eukaryotes. Some of the new calpain genes show a narrow distribution in a few branches in the tree of life, likely representing lineage-specific innovations. Hence, the functionally important classical calpain genes found among humans and vertebrates make up only a tiny fraction of the calpain family. In fact, a massive expansion of the calpain family occurred by domain shuffling among unicellular eukaryotes and contributed to a wealth of functionally different genes.

  4. Distinct gene number-genome size relationships for eukaryotes and non-eukaryotes: gene content estimation for dinoflagellate genomes.

    Directory of Open Access Journals (Sweden)

    Yubo Hou

    Full Text Available The ability to predict gene content is highly desirable for characterization of not-yet sequenced genomes like those of dinoflagellates. Using data from completely sequenced and annotated genomes from phylogenetically diverse lineages, we investigated the relationship between gene content and genome size using regression analyses. Distinct relationships between log(10-transformed protein-coding gene number (Y' versus log(10-transformed genome size (X', genome size in kbp were found for eukaryotes and non-eukaryotes. Eukaryotes best fit a logarithmic model, Y' = ln(-46.200+22.678X', whereas non-eukaryotes a linear model, Y' = 0.045+0.977X', both with high significance (p0.91. Total gene number shows similar trends in both groups to their respective protein coding regressions. The distinct correlations reflect lower and decreasing gene-coding percentages as genome size increases in eukaryotes (82%-1% compared to higher and relatively stable percentages in prokaryotes and viruses (97%-47%. The eukaryotic regression models project that the smallest dinoflagellate genome (3x10(6 kbp contains 38,188 protein-coding (40,086 total genes and the largest (245x10(6 kbp 87,688 protein-coding (92,013 total genes, corresponding to 1.8% and 0.05% gene-coding percentages. These estimates do not likely represent extraordinarily high functional diversity of the encoded proteome but rather highly redundant genomes as evidenced by high gene copy numbers documented for various dinoflagellate species.

  5. Noise minimization in eukaryotic gene expression.

    Directory of Open Access Journals (Sweden)

    Hunter B Fraser

    2004-06-01

    Full Text Available All organisms have elaborate mechanisms to control rates of protein production. However, protein production is also subject to stochastic fluctuations, or "noise." Several recent studies in Saccharomyces cerevisiae and Escherichia coli have investigated the relationship between transcription and translation rates and stochastic fluctuations in protein levels, or more generally, how such randomness is a function of intrinsic and extrinsic factors. However, the fundamental question of whether stochasticity in protein expression is generally biologically relevant has not been addressed, and it remains unknown whether random noise in the protein production rate of most genes significantly affects the fitness of any organism. We propose that organisms should be particularly sensitive to variation in the protein levels of two classes of genes: genes whose deletion is lethal to the organism and genes that encode subunits of multiprotein complexes. Using an experimentally verified model of stochastic gene expression in S. cerevisiae, we estimate the noise in protein production for nearly every yeast gene, and confirm our prediction that the production of essential and complex-forming proteins involves lower levels of noise than does the production of most other genes. Our results support the hypothesis that noise in gene expression is a biologically important variable, is generally detrimental to organismal fitness, and is subject to natural selection.

  6. Noise minimization in eukaryotic gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Fraser, Hunter B.; Hirsh, Aaron E.; Giaever, Guri; Kumm, Jochen; Eisen, Michael B.

    2004-01-15

    All organisms have elaborate mechanisms to control rates of protein production. However, protein production is also subject to stochastic fluctuations, or noise. Several recent studies in Saccharomyces cerevisiae and Escherichia coli have investigated the relationship between transcription and translation rates and stochastic fluctuations in protein levels, or more generally, how such randomness is a function of intrinsic and extrinsic factors. However, the fundamental question of whether stochasticity in protein expression is generally biologically relevant has not been addressed, and it remains unknown whether random noise in the protein production rate of most genes significantly affects the fitness of any organism. We propose that organisms should be particularly sensitive to variation in the protein levels of two classes of genes: genes whose deletion is lethal to the organism and genes that encode subunits of multiprotein complexes. Using an experimentally verified model of stochastic gene expression in S. cerevisiae, we estimate the noise in protein production for nearly every yeast gene, and confirm our prediction that the production of essential and complex-forming proteins involves lower levels of noise than does the production of most other genes. Our results support the hypothesis that noise in gene expression is a biologically important variable, is generally detrimental to organismal fitness, and is subject to natural selection.

  7. Noise minimization in eukaryotic gene expression

    International Nuclear Information System (INIS)

    Fraser, Hunter B.; Hirsh, Aaron E.; Giaever, Guri; Kumm, Jochen; Eisen, Michael B.

    2004-01-01

    All organisms have elaborate mechanisms to control rates of protein production. However, protein production is also subject to stochastic fluctuations, or noise. Several recent studies in Saccharomyces cerevisiae and Escherichia coli have investigated the relationship between transcription and translation rates and stochastic fluctuations in protein levels, or more generally, how such randomness is a function of intrinsic and extrinsic factors. However, the fundamental question of whether stochasticity in protein expression is generally biologically relevant has not been addressed, and it remains unknown whether random noise in the protein production rate of most genes significantly affects the fitness of any organism. We propose that organisms should be particularly sensitive to variation in the protein levels of two classes of genes: genes whose deletion is lethal to the organism and genes that encode subunits of multiprotein complexes. Using an experimentally verified model of stochastic gene expression in S. cerevisiae, we estimate the noise in protein production for nearly every yeast gene, and confirm our prediction that the production of essential and complex-forming proteins involves lower levels of noise than does the production of most other genes. Our results support the hypothesis that noise in gene expression is a biologically important variable, is generally detrimental to organismal fitness, and is subject to natural selection

  8. Gene name ambiguity of eukaryotic nomenclatures.

    Science.gov (United States)

    Chen, Lifeng; Liu, Hongfang; Friedman, Carol

    2005-01-15

    With more and more scientific literature published online, the effective management and reuse of this knowledge has become problematic. Natural language processing (NLP) may be a potential solution by extracting, structuring and organizing biomedical information in online literature in a timely manner. One essential task is to recognize and identify genomic entities in text. 'Recognition' can be accomplished using pattern matching and machine learning. But for 'identification' these techniques are not adequate. In order to identify genomic entities, NLP needs a comprehensive resource that specifies and classifies genomic entities as they occur in text and that associates them with normalized terms and also unique identifiers so that the extracted entities are well defined. Online organism databases are an excellent resource to create such a lexical resource. However, gene name ambiguity is a serious problem because it affects the appropriate identification of gene entities. In this paper, we explore the extent of the problem and suggest ways to address it. We obtained gene information from 21 organisms and quantified naming ambiguities within species, across species, with English words and with medical terms. When the case (of letters) was retained, official symbols displayed negligible intra-species ambiguity (0.02%) and modest ambiguities with general English words (0.57%) and medical terms (1.01%). In contrast, the across-species ambiguity was high (14.20%). The inclusion of gene synonyms increased intra-species ambiguity substantially and full names contributed greatly to gene-medical-term ambiguity. A comprehensive lexical resource that covers gene information for the 21 organisms was then created and used to identify gene names by using a straightforward string matching program to process 45,000 abstracts associated with the mouse model organism while ignoring case and gene names that were also English words. We found that 85.1% of correctly retrieved mouse

  9. Patterns of intron gain and conservation in eukaryotic genes

    Directory of Open Access Journals (Sweden)

    Wolf Yuri I

    2007-10-01

    Full Text Available Abstract Background: The presence of introns in protein-coding genes is a universal feature of eukaryotic genome organization, and the genes of multicellular eukaryotes, typically, contain multiple introns, a substantial fraction of which share position in distant taxa, such as plants and animals. Depending on the methods and data sets used, researchers have reached opposite conclusions on the causes of the high fraction of shared introns in orthologous genes from distant eukaryotes. Some studies conclude that shared intron positions reflect, almost entirely, a remarkable evolutionary conservation, whereas others attribute it to parallel gain of introns. To resolve these contradictions, it is crucial to analyze the evolution of introns by using a model that minimally relies on arbitrary assumptions. Results: We developed a probabilistic model of evolution that allows for variability of intron gain and loss rates over branches of the phylogenetic tree, individual genes, and individual sites. Applying this model to an extended set of conserved eukaryotic genes, we find that parallel gain, on average, accounts for only ~8% of the shared intron positions. However, the distribution of parallel gains over the phylogenetic tree of eukaryotes is highly non-uniform. There are, practically, no parallel gains in closely related lineages, whereas for distant lineages, such as animals and plants, parallel gains appear to contribute up to 20% of the shared intron positions. In accord with these findings, we estimated that ancestral introns have a high probability to be retained in extant genomes, and conversely, that a substantial fraction of extant introns have retained their positions since the early stages of eukaryotic evolution. In addition, the density of sites that are available for intron insertion is estimated to be, approximately, one in seven basepairs. Conclusion: We obtained robust estimates of the contribution of parallel gain to the observed

  10. Gene Transfer in Eukaryotic Cells Using Activated Dendrimers

    Science.gov (United States)

    Dennig, Jörg

    Gene transfer into eukaryotic cells plays an important role in cell biology. Over the last 30 years a number of transfection methods have been developed to mediate gene transfer into eukaryotic cells. Classical methods include co-precipitation of DNA with calcium phosphate, charge-dependent precipitation of DNA with DEAE-dextran, electroporation of nucleic acids, and formation of transfection complexes between DNA and cationic liposomes. Gene transfer technologies based on activated PAMAM-dendrimers provide another class of transfection reagents. PAMAM-dendrimers are highly branched, spherical molecules. Activation of newly synthesized dendrimers involves hydrolytic removal of some of the branches, and results in a molecule with a higher degree of flexibility. Activated dendrimers assemble DNA into compact structures via charge interactions. Activated dendrimer - DNA complexes bind to the cell membrane of eukaryotic cells, and are transported into the cell by non-specific endocytosis. A structural model of the activated dendrimer - DNA complex and a potential mechanism for its uptake into cells will be discussed.

  11. Automatic generation of gene finders for eukaryotic species

    DEFF Research Database (Denmark)

    Terkelsen, Kasper Munch; Krogh, A.

    2006-01-01

    and quality of reliable gene annotation grows. Results We present a procedure, Agene, that automatically generates a species-specific gene predictor from a set of reliable mRNA sequences and a genome. We apply a Hidden Markov model (HMM) that implements explicit length distribution modelling for all gene......Background The number of sequenced eukaryotic genomes is rapidly increasing. This means that over time it will be hard to keep supplying customised gene finders for each genome. This calls for procedures to automatically generate species-specific gene finders and to re-train them as the quantity...... structure blocks using acyclic discrete phase type distributions. The state structure of the each HMM is generated dynamically from an array of sub-models to include only gene features represented in the training set. Conclusion Acyclic discrete phase type distributions are well suited to model sequence...

  12. Evolution of glutamate dehydrogenase genes: evidence for lateral gene transfer within and between prokaryotes and eukaryotes

    Directory of Open Access Journals (Sweden)

    Roger Andrew J

    2003-06-01

    Full Text Available Abstract Background Lateral gene transfer can introduce genes with novel functions into genomes or replace genes with functionally similar orthologs or paralogs. Here we present a study of the occurrence of the latter gene replacement phenomenon in the four gene families encoding different classes of glutamate dehydrogenase (GDH, to evaluate and compare the patterns and rates of lateral gene transfer (LGT in prokaryotes and eukaryotes. Results We extend the taxon sampling of gdh genes with nine new eukaryotic sequences and examine the phylogenetic distribution pattern of the various GDH classes in combination with maximum likelihood phylogenetic analyses. The distribution pattern analyses indicate that LGT has played a significant role in the evolution of the four gdh gene families. Indeed, a number of gene transfer events are identified by phylogenetic analyses, including numerous prokaryotic intra-domain transfers, some prokaryotic inter-domain transfers and several inter-domain transfers between prokaryotes and microbial eukaryotes (protists. Conclusion LGT has apparently affected eukaryotes and prokaryotes to a similar extent within the gdh gene families. In the absence of indications that the evolution of the gdh gene families is radically different from other families, these results suggest that gene transfer might be an important evolutionary mechanism in microbial eukaryote genome evolution.

  13. Eukaryotic snoRNAs: a paradigm for gene expression flexibility.

    Science.gov (United States)

    Dieci, Giorgio; Preti, Milena; Montanini, Barbara

    2009-08-01

    Small nucleolar RNAs (snoRNAs) are one of the most ancient and numerous families of non-protein-coding RNAs (ncRNAs). The main function of snoRNAs - to guide site-specific rRNA modification - is the same in Archaea and all eukaryotic lineages. In contrast, as revealed by recent genomic and RNomic studies, their genomic organization and expression strategies are the most varied. Seemingly snoRNA coding units have adopted, in the course of evolution, all the possible ways of being transcribed, thus providing a unique paradigm of gene expression flexibility. By focusing on representative fungal, plant and animal genomes, we review here all the documented types of snoRNA gene organization and expression, and we provide a comprehensive account of snoRNA expressional freedom by precisely estimating the frequency, in each genome, of each type of genomic organization. We finally discuss the relevance of snoRNA genomic studies for our general understanding of ncRNA family evolution and expression in eukaryotes.

  14. Phylogenetic analysis of ferlin genes reveals ancient eukaryotic origins

    Directory of Open Access Journals (Sweden)

    Lek Monkol

    2010-07-01

    Full Text Available Abstract Background The ferlin gene family possesses a rare and identifying feature consisting of multiple tandem C2 domains and a C-terminal transmembrane domain. Much currently remains unknown about the fundamental function of this gene family, however, mutations in its two most well-characterised members, dysferlin and otoferlin, have been implicated in human disease. The availability of genome sequences from a wide range of species makes it possible to explore the evolution of the ferlin family, providing contextual insight into characteristic features that define the ferlin gene family in its present form in humans. Results Ferlin genes were detected from all species of representative phyla, with two ferlin subgroups partitioned within the ferlin phylogenetic tree based on the presence or absence of a DysF domain. Invertebrates generally possessed two ferlin genes (one with DysF and one without, with six ferlin genes in most vertebrates (three DysF, three non-DysF. Expansion of the ferlin gene family is evident between the divergence of lamprey (jawless vertebrates and shark (cartilaginous fish. Common to almost all ferlins is an N-terminal C2-FerI-C2 sandwich, a FerB motif, and two C-terminal C2 domains (C2E and C2F adjacent to the transmembrane domain. Preservation of these structural elements throughout eukaryotic evolution suggests a fundamental role of these motifs for ferlin function. In contrast, DysF, C2DE, and FerA are optional, giving rise to subtle differences in domain topologies of ferlin genes. Despite conservation of multiple C2 domains in all ferlins, the C-terminal C2 domains (C2E and C2F displayed higher sequence conservation and greater conservation of putative calcium binding residues across paralogs and orthologs. Interestingly, the two most studied non-mammalian ferlins (Fer-1 and Misfire in model organisms C. elegans and D. melanogaster, present as outgroups in the phylogenetic analysis, with results suggesting

  15. Snapshot of the Eukaryotic Gene Expression in Muskoxen Rumen—A Metatranscriptomic Approach

    Science.gov (United States)

    O'Toole, Nicholas; Barboza, Perry S.; Ungerfeld, Emilio; Leigh, Mary Beth; Selinger, L. Brent; Butler, Greg; Tsang, Adrian; McAllister, Tim A.; Forster, Robert J.

    2011-01-01

    Background Herbivores rely on digestive tract lignocellulolytic microorganisms, including bacteria, fungi and protozoa, to derive energy and carbon from plant cell wall polysaccharides. Culture independent metagenomic studies have been used to reveal the genetic content of the bacterial species within gut microbiomes. However, the nature of the genes encoded by eukaryotic protozoa and fungi within these environments has not been explored using metagenomic or metatranscriptomic approaches. Methodology/Principal Findings In this study, a metatranscriptomic approach was used to investigate the functional diversity of the eukaryotic microorganisms within the rumen of muskoxen (Ovibos moschatus), with a focus on plant cell wall degrading enzymes. Polyadenylated RNA (mRNA) was sequenced on the Illumina Genome Analyzer II system and 2.8 gigabases of sequences were obtained and 59129 contigs assembled. Plant cell wall degrading enzyme modules including glycoside hydrolases, carbohydrate esterases and polysaccharide lyases were identified from over 2500 contigs. These included a number of glycoside hydrolase family 6 (GH6), GH48 and swollenin modules, which have rarely been described in previous gut metagenomic studies. Conclusions/Significance The muskoxen rumen metatranscriptome demonstrates a much higher percentage of cellulase enzyme discovery and an 8.7x higher rate of total carbohydrate active enzyme discovery per gigabase of sequence than previous rumen metagenomes. This study provides a snapshot of eukaryotic gene expression in the muskoxen rumen, and identifies a number of candidate genes coding for potentially valuable lignocellulolytic enzymes. PMID:21655220

  16. Snapshot of the eukaryotic gene expression in muskoxen rumen--a metatranscriptomic approach.

    Directory of Open Access Journals (Sweden)

    Meng Qi

    Full Text Available BACKGROUND: Herbivores rely on digestive tract lignocellulolytic microorganisms, including bacteria, fungi and protozoa, to derive energy and carbon from plant cell wall polysaccharides. Culture independent metagenomic studies have been used to reveal the genetic content of the bacterial species within gut microbiomes. However, the nature of the genes encoded by eukaryotic protozoa and fungi within these environments has not been explored using metagenomic or metatranscriptomic approaches. METHODOLOGY/PRINCIPAL FINDINGS: In this study, a metatranscriptomic approach was used to investigate the functional diversity of the eukaryotic microorganisms within the rumen of muskoxen (Ovibos moschatus, with a focus on plant cell wall degrading enzymes. Polyadenylated RNA (mRNA was sequenced on the Illumina Genome Analyzer II system and 2.8 gigabases of sequences were obtained and 59129 contigs assembled. Plant cell wall degrading enzyme modules including glycoside hydrolases, carbohydrate esterases and polysaccharide lyases were identified from over 2500 contigs. These included a number of glycoside hydrolase family 6 (GH6, GH48 and swollenin modules, which have rarely been described in previous gut metagenomic studies. CONCLUSIONS/SIGNIFICANCE: The muskoxen rumen metatranscriptome demonstrates a much higher percentage of cellulase enzyme discovery and an 8.7x higher rate of total carbohydrate active enzyme discovery per gigabase of sequence than previous rumen metagenomes. This study provides a snapshot of eukaryotic gene expression in the muskoxen rumen, and identifies a number of candidate genes coding for potentially valuable lignocellulolytic enzymes.

  17. Automated Eukaryotic Gene Structure Annotation Using EVidenceModeler and the Program to Assemble Spliced Alignments

    Energy Technology Data Exchange (ETDEWEB)

    Haas, B J; Salzberg, S L; Zhu, W; Pertea, M; Allen, J E; Orvis, J; White, O; Buell, C R; Wortman, J R

    2007-12-10

    EVidenceModeler (EVM) is presented as an automated eukaryotic gene structure annotation tool that reports eukaryotic gene structures as a weighted consensus of all available evidence. EVM, when combined with the Program to Assemble Spliced Alignments (PASA), yields a comprehensive, configurable annotation system that predicts protein-coding genes and alternatively spliced isoforms. Our experiments on both rice and human genome sequences demonstrate that EVM produces automated gene structure annotation approaching the quality of manual curation.

  18. Horizontal transfer of a eukaryotic plastid-targeted protein gene to cyanobacteria

    Directory of Open Access Journals (Sweden)

    Keeling Patrick J

    2007-06-01

    Full Text Available Abstract Background Horizontal or lateral transfer of genetic material between distantly related prokaryotes has been shown to play a major role in the evolution of bacterial and archaeal genomes, but exchange of genes between prokaryotes and eukaryotes is not as well understood. In particular, gene flow from eukaryotes to prokaryotes is rarely documented with strong support, which is unusual since prokaryotic genomes appear to readily accept foreign genes. Results Here, we show that abundant marine cyanobacteria in the related genera Synechococcus and Prochlorococcus acquired a key Calvin cycle/glycolytic enzyme from a eukaryote. Two non-homologous forms of fructose bisphosphate aldolase (FBA are characteristic of eukaryotes and prokaryotes respectively. However, a eukaryotic gene has been inserted immediately upstream of the ancestral prokaryotic gene in several strains (ecotypes of Synechococcus and Prochlorococcus. In one lineage this new gene has replaced the ancestral gene altogether. The eukaryotic gene is most closely related to the plastid-targeted FBA from red algae. This eukaryotic-type FBA once replaced the plastid/cyanobacterial type in photosynthetic eukaryotes, hinting at a possible functional advantage in Calvin cycle reactions. The strains that now possess this eukaryotic FBA are scattered across the tree of Synechococcus and Prochlorococcus, perhaps because the gene has been transferred multiple times among cyanobacteria, or more likely because it has been selectively retained only in certain lineages. Conclusion A gene for plastid-targeted FBA has been transferred from red algae to cyanobacteria, where it has inserted itself beside its non-homologous, functional analogue. Its current distribution in Prochlorococcus and Synechococcus is punctate, suggesting a complex history since its introduction to this group.

  19. Selfish operons: the evolutionary impact of gene clustering in prokaryotes and eukaryotes.

    Science.gov (United States)

    Lawrence, J

    1999-12-01

    The Selfish Operon Model postulates that the organization of bacterial genes into operons is beneficial to the constituent genes in that proximity allows horizontal cotransfer of all genes required for a selectable phenotype; eukaryotic operons formed for very different reasons. Horizontal transfer of selfish operons most probably promotes bacterial diversification.

  20. Beyond Agrobacterium-Mediated Transformation: Horizontal Gene Transfer from Bacteria to Eukaryotes.

    Science.gov (United States)

    Lacroix, Benoît; Citovsky, Vitaly

    2018-03-03

    Besides the massive gene transfer from organelles to the nuclear genomes, which occurred during the early evolution of eukaryote lineages, the importance of horizontal gene transfer (HGT) in eukaryotes remains controversial. Yet, increasing amounts of genomic data reveal many cases of bacterium-to-eukaryote HGT that likely represent a significant force in adaptive evolution of eukaryotic species. However, DNA transfer involved in genetic transformation of plants by Agrobacterium species has traditionally been considered as the unique example of natural DNA transfer and integration into eukaryotic genomes. Recent discoveries indicate that the repertoire of donor bacterial species and of recipient eukaryotic hosts potentially are much wider than previously thought, including donor bacterial species, such as plant symbiotic nitrogen-fixing bacteria (e.g., Rhizobium etli) and animal bacterial pathogens (e.g., Bartonella henselae, Helicobacter pylori), and recipient species from virtually all eukaryotic clades. Here, we review the molecular pathways and potential mechanisms of these trans-kingdom HGT events and discuss their utilization in biotechnology and research.

  1. Horizontal gene transfer of an entire metabolic pathway between a eukaryotic alga and its DNA virus

    Science.gov (United States)

    Monier, Adam; Pagarete, António; de Vargas, Colomban; Allen, Michael J.; Read, Betsy; Claverie, Jean-Michel; Ogata, Hiroyuki

    2009-01-01

    Interactions between viruses and phytoplankton, the main primary producers in the oceans, affect global biogeochemical cycles and climate. Recent studies are increasingly revealing possible cases of gene transfers between cyanobacteria and phages, which might have played significant roles in the evolution of cyanobacteria/phage systems. However, little has been documented about the occurrence of horizontal gene transfer in eukaryotic phytoplankton/virus systems. Here we report phylogenetic evidence for the transfer of seven genes involved in the sphingolipid biosynthesis pathway between the cosmopolitan eukaryotic microalga Emiliania huxleyi and its large DNA virus EhV. PCR assays indicate that these genes are prevalent in E. huxleyi and EhV strains isolated from different geographic locations. Patterns of protein and gene sequence conservation support that these genes are functional in both E. huxleyi and EhV. This is the first clear case of horizontal gene transfer of multiple functionally linked enzymes in a eukaryotic phytoplankton–virus system. We examine arguments for the possible direction of the gene transfer. The virus-to-host direction suggests the existence of ancient viruses that controlled the complex metabolic pathway in order to infect primitive eukaryotic cells. In contrast, the host-to-virus direction suggests that the serial acquisition of genes involved in the same metabolic pathway might have been a strategy for the ancestor of EhVs to stay ahead of their closest relatives in the great evolutionary race for survival. PMID:19451591

  2. Lateral gene transfer between prokaryotes and multicellular eukaryotes: ongoing and significant?

    NARCIS (Netherlands)

    Ros, V.I.D.; Hurst, G.D.D.

    2009-01-01

    The expansion of genome sequencing projects has produced accumulating evidence for lateral transfer of genes between prokaryotic and eukaryotic genomes. However, it remains controversial whether these genes are of functional importance in their recipient host. Nikoh and Nakabachi, in a recent paper

  3. Expression of the lysostaphin gene of Staphylococcus simulans in a eukaryotic system.

    OpenAIRE

    Williamson, C M; Bramley, A J; Lax, A J

    1994-01-01

    The lysostaphin gene of Staphylococcus simulans was cloned into Escherichia coli. The 5' end of the gene was modified to include a eukaryotic start codon, the Kozak expression start site consensus sequence, and an enzyme site to facilitate manipulation of the gene. Transcription of the modified gene in vitro yielded an RNA transcript which, when added to a rabbit reticulocyte cell-free translation system, directed the synthesis of several products. The largest product, migrating at approximat...

  4. Biosurfactant gene clusters in eukaryotes: regulation and biotechnological potential.

    Science.gov (United States)

    Roelants, Sophie L K W; De Maeseneire, Sofie L; Ciesielska, Katarzyna; Van Bogaert, Inge N A; Soetaert, Wim

    2014-04-01

    Biosurfactants (BSs) are a class of secondary metabolites representing a wide variety of structures that can be produced from renewable feedstock by a wide variety of micro-organisms. They have (potential) applications in the medical world, personal care sector, mining processes, food industry, cosmetics, crop protection, pharmaceuticals, bio-remediation, household detergents, paper and pulp industry, textiles, paint industries, etc. Especially glycolipid BSs like sophorolipids (SLs), rhamnolipids (RLs), mannosylerythritol lipids (MELs) and cellobioselipids (CBLs) have been described to provide significant opportunities to (partially) replace chemical surfactants. The major two factors currently limiting the penetration of BSs into the market are firstly the limited structural variety and secondly the rather high production price linked with the productivity. One of the keys to resolve the above mentioned bottlenecks can be found in the genetic engineering of natural producers. This could not only result in more efficient (economical) recombinant producers, but also in a diversification of the spectrum of available BSs as such resolving both limiting factors at once. Unraveling the genetics behind the biosynthesis of these interesting biological compounds is indispensable for the tinkering, fine tuning and rearrangement of these biological pathways with the aim of obtaining higher yields and a more extensive structural variety. Therefore, this review focuses on recent developments in the investigation of the biosynthesis, genetics and regulation of some important members of the family of the eukaryotic glycolipid BSs (MELs, CBLs and SLs). Moreover, recent biotechnological achievements and the industrial potential of engineered strains are discussed.

  5. Conservation of gene co-regulation in prokaryotes and eukaryotes.

    NARCIS (Netherlands)

    Snel, B.; Bork, P.; Huynen, M.A.

    2002-01-01

    We raise some issues in detecting the conservation (or absence thereof) of co-regulation using gene order; how we think the variations in the cellular network in various species can be studied; and how to determine and interpret the higher order structure in networks of functional relations.

  6. Inversions and the dynamics of eukaryotic gene order.

    NARCIS (Netherlands)

    Huynen, M.A.; Snel, B.; Bork, P.

    2001-01-01

    Comparisons of the gene order in closely related genomes reveal a major role for inversions in the genome shuffling process. In contrast to prokaryotes, where the inversions are predominantly large, half of the inversions between Saccharomyces cerevisiae and Candida albicans appear to be small,

  7. Efficient Production of γ-GABA Using Recombinant E. coli Expressing Glutamate Decarboxylase (GAD) Derived from Eukaryote Saccharomyces cerevisiae.

    Science.gov (United States)

    Xiong, Qiang; Xu, Zheng; Xu, Lu; Yao, Zhong; Li, Sha; Xu, Hong

    2017-12-01

    γ-Aminobutyric acid (γ-GABA) is a non-proteinogenic amino acid, which acts as a major regulator in the central nervous system. Glutamate decarboxylase (namely GAD, EC 4.1.1.15) is known to be an ideal enzyme for γ-GABA production using L-glutamic acid as substrate. In this study, we cloned and expressed GAD gene from eukaryote Saccharomyces cerevisiae (ScGAD) in E. coli BL21(DE3). This enzyme was further purified and its optimal reaction temperature and pH were 37 °C and pH 4.2, respectively. The cofactor of ScGAD was verified to be either pyridoxal 5'-phosphate (PLP) or pyridoxal hydrochloride. The optimal concentration of either cofactor was 50 mg/L. The optimal medium for E. coli-ScGAD cultivation and expression were 10 g/L lactose, 5 g/L glycerol, 20 g/L yeast extract, and 10 g/L sodium chloride, resulting in an activity of 55 U/mL medium, three times higher than that of using Luria-Bertani (LB) medium. The maximal concentration of γ-GABA was 245 g/L whereas L-glutamic acid was near completely converted. These findings provided us a good example for bio-production of γ-GABA using recombinant E. coli expressing a GAD enzyme derived from eukaryote.

  8. A study of eukaryotic response mechanisms to atmospheric pressure cold plasma by using Saccharomyces cerevisiae single gene mutants

    International Nuclear Information System (INIS)

    Feng Hongqing; Wang Ruixue; Sun Peng; Wu Haiyan; Liu Qi; Li Fangting; Fang Jing; Zhang Jue; Zhu Weidong

    2010-01-01

    The mechanisms of eukaryotic cell response to cold plasma are studied. A series of single gene mutants of eukaryotic model organism Saccharomyces cerevisiae are used to compare their sensitivity to plasma treatment with the wild type. We examined 12 mutants in the oxidative stress pathway and the cell cycle pathway, in which 8 are found to be hypersensitive to plasma processing. The mutated genes' roles in the two pathways are analyzed to understand the biological response mechanisms of plasma treatment. The results demonstrate that genes from both pathways are needed for the eukaryotic cells to survive the complex plasma treatment.

  9. Microsatellites in the Eukaryotic DNA Mismatch Repair Genes as Modulators of Evolutionary Mutation Rate

    Science.gov (United States)

    Chang, Dong Kyung; Metzgar, David; Wills, Christopher; Boland, C. Richard

    2003-01-01

    All "minor" components of the human DNA mismatch repair (MMR) system-MSH3, MSH6, PMS2, and the recently discovered MLH3-contain mononucleotide microsatellites in their coding sequences. This intriguing finding contrasts with the situation found in the major components of the DNA MMR system-MSH2 and MLH1-and, in fact, most human genes. Although eukaryotic genomes are rich in microsatellites, non-triplet microsatellites are rare in coding regions. The recurring presence of exonal mononucleotide repeat sequences within a single family of human genes would therefore be considered exceptional.

  10. [Construction and functional identification of eukaryotic expression vector carrying Sprague-Dawley rat MSX-2 gene].

    Science.gov (United States)

    Yang, Xian-Xian; Zhang, Mei; Yan, Zhao-Wen; Zhang, Ru-Hong; Mu, Xiong-Zheng

    2008-01-01

    To construct a high effective eukaryotic expressing plasmid PcDNA 3.1-MSX-2 encoding Sprague-Dawley rat MSX-2 gene for the further study of MSX-2 gene function. The full length SD rat MSX-2 gene was amplified by PCR, and the full length DNA was inserted in the PMD1 8-T vector. It was isolated by restriction enzyme digest with BamHI and Xhol, then ligated into the cloning site of the PcDNA3.1 expression plasmid. The positive recombinant was identified by PCR analysis, restriction endonudease analysis and sequence analysis. Expression of RNA and protein was detected by RT-PCR and Western blot analysis in PcDNA3.1-MSX-2 transfected HEK293 cells. Sequence analysis and restriction endonudease analysis of PcDNA3.1-MSX-2 demonstrated that the position and size of MSX-2 cDNA insertion were consistent with the design. RT-PCR and Western blot analysis showed specific expression of mRNA and protein of MSX-2 in the transfected HEK293 cells. The high effective eukaryotic expression plasmid PcDNA3.1-MSX-2 encoding Sprague-Dawley Rat MSX-2 gene which is related to craniofacial development can be successfully reconstructed. It may serve as the basis for the further study of MSX-2 gene function.

  11. Phylogenetic analysis of the core histone doublet and DNA topo II genes of Marseilleviridae: evidence of proto-eukaryotic provenance.

    Science.gov (United States)

    Erives, Albert J

    2017-11-28

    While the genomes of eukaryotes and Archaea both encode the histone-fold domain, only eukaryotes encode the core histone paralogs H2A, H2B, H3, and H4. With DNA, these core histones assemble into the nucleosomal octamer underlying eukaryotic chromatin. Importantly, core histones for H2A and H3 are maintained as neofunctionalized paralogs adapted for general bulk chromatin (canonical H2 and H3) or specialized chromatin (H2A.Z enriched at gene promoters and cenH3s enriched at centromeres). In this context, the identification of core histone-like "doublets" in the cytoplasmic replication factories of the Marseilleviridae (MV) is a novel finding with possible relevance to understanding the origin of eukaryotic chromatin. Here, we analyze and compare the core histone doublet genes from all known MV genomes as well as other MV genes relevant to the origin of the eukaryotic replisome. Using different phylogenetic approaches, we show that MV histone domains encode obligate H2B-H2A and H4-H3 dimers of possible proto-eukaryotic origin. MV core histone moieties form sister clades to each of the four eukaryotic clades of canonical and variant core histones. This suggests that MV core histone moieties diverged prior to eukaryotic neofunctionalizations associated with paired linear chromosomes and variant histone octamer assembly. We also show that MV genomes encode a proto-eukaryotic DNA topoisomerase II enzyme that forms a sister clade to eukaryotes. This is a relevant finding given that DNA topo II influences histone deposition and chromatin compaction and is the second most abundant nuclear protein after histones. The combined domain architecture and phylogenomic analyses presented here suggest that a primitive origin for MV histone genes is a more parsimonious explanation than horizontal gene transfers + gene fusions + sufficient divergence to eliminate relatedness to eukaryotic neofunctionalizations within the H2A and H3 clades without loss of relatedness to each of

  12. Distinct Trajectories of Massive Recent Gene Gains and Losses in Populations of a Microbial Eukaryotic Pathogen.

    Science.gov (United States)

    Hartmann, Fanny E; Croll, Daniel

    2017-11-01

    Differences in gene content are a significant source of variability within species and have an impact on phenotypic traits. However, little is known about the mechanisms responsible for the most recent gene gains and losses. We screened the genomes of 123 worldwide isolates of the major pathogen of wheat Zymoseptoria tritici for robust evidence of gene copy number variation. Based on orthology relationships in three closely related fungi, we identified 599 gene gains and 1,024 gene losses that have not yet reached fixation within the focal species. Our analyses of gene gains and losses segregating in populations showed that gene copy number variation arose preferentially in subtelomeres and in proximity to transposable elements. Recently lost genes were enriched in virulence factors and secondary metabolite gene clusters. In contrast, recently gained genes encoded mostly secreted protein lacking a conserved domain. We analyzed the frequency spectrum at loci segregating a gene presence-absence polymorphism in four worldwide populations. Recent gene losses showed a significant excess in low-frequency variants compared with genome-wide single nucleotide polymorphism, which is indicative of strong negative selection against gene losses. Recent gene gains were either under weak negative selection or neutral. We found evidence for strong divergent selection among populations at individual loci segregating a gene presence-absence polymorphism. Hence, gene gains and losses likely contributed to local adaptation. Our study shows that microbial eukaryotes harbor extensive copy number variation within populations and that functional differences among recently gained and lost genes led to distinct evolutionary trajectories. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  13. Evolutionary Inference across Eukaryotes Identifies Specific Pressures Favoring Mitochondrial Gene Retention.

    Science.gov (United States)

    Johnston, Iain G; Williams, Ben P

    2016-02-24

    Since their endosymbiotic origin, mitochondria have lost most of their genes. Although many selective mechanisms underlying the evolution of mitochondrial genomes have been proposed, a data-driven exploration of these hypotheses is lacking, and a quantitatively supported consensus remains absent. We developed HyperTraPS, a methodology coupling stochastic modeling with Bayesian inference, to identify the ordering of evolutionary events and suggest their causes. Using 2015 complete mitochondrial genomes, we inferred evolutionary trajectories of mtDNA gene loss across the eukaryotic tree of life. We find that proteins comprising the structural cores of the electron transport chain are preferentially encoded within mitochondrial genomes across eukaryotes. A combination of high GC content and high protein hydrophobicity is required to explain patterns of mtDNA gene retention; a model that accounts for these selective pressures can also predict the success of artificial gene transfer experiments in vivo. This work provides a general method for data-driven inference of the ordering of evolutionary and progressive events, here identifying the distinct features shaping mitochondrial genomes of present-day species. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Patterns of Transcript Abundance of Eukaryotic Biogeochemically-Relevant Genes in the Amazon River Plume.

    Directory of Open Access Journals (Sweden)

    Brian L Zielinski

    Full Text Available The Amazon River has the largest discharge of all rivers on Earth, and its complex plume system fuels a wide array of biogeochemical processes, across a large area of the western tropical North Atlantic. The plume thus stimulates microbial processes affecting carbon sequestration and nutrient cycles at a global scale. Chromosomal gene expression patterns of the 2.0 to 156 μm size-fraction eukaryotic microbial community were investigated in the Amazon River Plume, generating a robust dataset (more than 100 million mRNA sequences that depicts the metabolic capabilities and interactions among the eukaryotic microbes. Combining classical oceanographic field measurements with metatranscriptomics yielded characterization of the hydrographic conditions simultaneous with a quantification of transcriptional activity and identity of the community. We highlight the patterns of eukaryotic gene expression for 31 biogeochemically significant gene targets hypothesized to be valuable within forecasting models. An advantage to this targeted approach is that the database of reference sequences used to identify the target genes was selectively constructed and highly curated optimizing taxonomic coverage, throughput, and the accuracy of annotations. A coastal diatom bloom highly expressed nitrate transporters and carbonic anhydrase presumably to support high growth rates and enhance uptake of low levels of dissolved nitrate and CO2. Diatom-diazotroph association (DDA: diatoms with nitrogen fixing symbionts blooms were common when surface salinity was mesohaline and dissolved nitrate concentrations were below detection, and hence did not show evidence of nitrate utilization, suggesting they relied on ammonium transporters to aquire recently fixed nitrogen. These DDA blooms in the outer plume had rapid turnover of the photosystem D1 protein presumably caused by photodegradation under increased light penetration in clearer waters, and increased expression of silicon

  15. Lateral transfer of tetrahymanol-synthesizing genes has allowed multiple diverse eukaryote lineages to independently adapt to environments without oxygen

    Directory of Open Access Journals (Sweden)

    Takishita Kiyotaka

    2012-02-01

    Full Text Available Abstract Sterols are key components of eukaryotic cellular membranes that are synthesized by multi-enzyme pathways that require molecular oxygen. Because prokaryotes fundamentally lack sterols, it is unclear how the vast diversity of bacterivorous eukaryotes that inhabit hypoxic environments obtain, or synthesize, sterols. Here we show that tetrahymanol, a triterpenoid that does not require molecular oxygen for its biosynthesis, likely functions as a surrogate of sterol in eukaryotes inhabiting oxygen-poor environments. Genes encoding the tetrahymanol synthesizing enzyme squalene-tetrahymanol cyclase were found from several phylogenetically diverged eukaryotes that live in oxygen-poor environments and appear to have been laterally transferred among such eukaryotes. Reviewers This article was reviewed by Eric Bapteste and Eugene Koonin.

  16. The cauliflower Orange gene enhances petiole elongation by suppressing expression of eukaryotic release factor 1.

    Science.gov (United States)

    Zhou, Xiangjun; Sun, Tian-Hu; Wang, Ning; Ling, Hong-Qing; Lu, Shan; Li, Li

    2011-04-01

    The cauliflower (Brassica oleracea var. botrytis) Orange (Or) gene affects plant growth and development in addition to conferring β-carotene accumulation. This study was undertaken to investigate the molecular basis for the effects of the Or gene mutation in on plant growth. The OR protein was found to interact with cauliflower and Arabidopsis eukaryotic release factor 1-2 (eRF1-2), a member of the eRF1 family, by yeast two-hybrid analysis and by bimolecular fluorescence complementation (BiFC) assay. Concomitantly, the Or mutant showed reduced expression of the BoeRF1 family genes. Transgenic cauliflower plants with suppressed expression of BoeRF1-2 and BoeRF1-3 were generated by RNA interference. Like the Or mutant, the BoeRF1 RNAi lines showed increased elongation of the leaf petiole. This long-petiole phenotype was largely caused by enhanced cell elongation, which resulted from increased cell length and elevated expression of genes involved in cell-wall loosening. These findings demonstrate that the cauliflower Or gene controls petiole elongation by suppressing the expression of eRF1 genes, and provide new insights into the molecular mechanism of leaf petiole regulation. © 2010 The Authors. New Phytologist © 2010 New Phytologist Trust.

  17. Metatranscriptomics reveals the diversity of genes expressed by eukaryotes in forest soils.

    Directory of Open Access Journals (Sweden)

    Coralie Damon

    Full Text Available Eukaryotic organisms play essential roles in the biology and fertility of soils. For example the micro and mesofauna contribute to the fragmentation and homogenization of plant organic matter, while its hydrolysis is primarily performed by the fungi. To get a global picture of the activities carried out by soil eukaryotes we sequenced 2×10,000 cDNAs synthesized from polyadenylated mRNA directly extracted from soils sampled in beech (Fagus sylvatica and spruce (Picea abies forests. Taxonomic affiliation of both cDNAs and 18S rRNA sequences showed a dominance of sequences from fungi (up to 60% and metazoans while protists represented less than 12% of the 18S rRNA sequences. Sixty percent of cDNA sequences from beech forest soil and 52% from spruce forest soil had no homologs in the GenBank/EMBL/DDJB protein database. A Gene Ontology term was attributed to 39% and 31.5% of the spruce and beech soil sequences respectively. Altogether 2076 sequences were putative homologs to different enzyme classes participating to 129 KEGG pathways among which several were implicated in the utilisation of soil nutrients such as nitrogen (ammonium, amino acids, oligopeptides, sugars, phosphates and sulfate. Specific annotation of plant cell wall degrading enzymes identified enzymes active on major polymers (cellulose, hemicelluloses, pectin, lignin and glycoside hydrolases represented 0.5% (beech soil-0.8% (spruce soil of the cDNAs. Other sequences coding enzymes active on organic matter (extracellular proteases, lipases, a phytase, P450 monooxygenases were identified, thus underlining the biotechnological potential of eukaryotic metatranscriptomes. The phylogenetic affiliation of 12 full-length carbohydrate active enzymes showed that most of them were distantly related to sequences from known fungi. For example, a putative GH45 endocellulase was closely associated to molluscan sequences, while a GH7 cellobiohydrolase was closest to crustacean sequences, thus

  18. Functional and evolutionary analysis of alternatively spliced genes is consistent with an early eukaryotic origin of alternative splicing

    Directory of Open Access Journals (Sweden)

    Penny David

    2007-10-01

    Full Text Available Abstract Background Alternative splicing has been reported in various eukaryotic groups including plants, apicomplexans, diatoms, amoebae, animals and fungi. However, whether widespread alternative splicing has evolved independently in the different eukaryotic groups or was inherited from their last common ancestor, and may therefore predate multicellularity, is still unknown. To better understand the origin and evolution of alternative splicing and its usage in diverse organisms, we studied alternative splicing in 12 eukaryotic species, comparing rates of alternative splicing across genes of different functional classes, cellular locations, intron/exon structures and evolutionary origins. Results For each species, we find that genes from most functional categories are alternatively spliced. Ancient genes (shared between animals, fungi and plants show high levels of alternative splicing. Genes with products expressed in the nucleus or plasma membrane are generally more alternatively spliced while those expressed in extracellular location show less alternative splicing. We find a clear correspondence between incidence of alternative splicing and intron number per gene both within and between genomes. In general, we find several similarities in patterns of alternative splicing across these diverse eukaryotes. Conclusion Along with previous studies indicating intron-rich genes with weak intron boundary consensus and complex spliceosomes in ancestral organisms, our results suggest that at least a simple form of alternative splicing may already have been present in the unicellular ancestor of plants, fungi and animals. A role for alternative splicing in the evolution of multicellularity then would largely have arisen by co-opting the preexisting process.

  19. Evidence that the intra-amoebal Legionella drancourtii acquired a sterol reductase gene from eukaryotes

    Directory of Open Access Journals (Sweden)

    Fournier Pierre-Edouard

    2009-03-01

    Full Text Available Abstract Background Free-living amoebae serve as a natural reservoir for some bacteria that have evolved into «amoeba-resistant» bacteria. Among these, some are strictly intra-amoebal, such as Candidatus "Protochlamydia amoebophila" (Candidatus "P. amoebophila", whose genomic sequence is available. We sequenced the genome of Legionella drancourtii (L. drancourtii, another recently described intra-amoebal bacterium. By comparing these two genomes with those of their closely related species, we were able to study the genetic characteristics specific to their amoebal lifestyle. Findings We identified a sterol delta-7 reductase-encoding gene common to these two bacteria and absent in their relatives. This gene encodes an enzyme which catalyses the last step of cholesterol biosynthesis in eukaryotes, and is probably functional within L. drancourtii since it is transcribed. The phylogenetic analysis of this protein suggests that it was acquired horizontally by a few bacteria from viridiplantae. This gene was also found in the Acanthamoeba polyphaga Mimivirus genome, a virus that grows in amoebae and possesses the largest viral genome known to date. Conclusion L. drancourtii acquired a sterol delta-7 reductase-encoding gene of viridiplantae origin. The most parsimonious hypothesis is that this gene was initially acquired by a Chlamydiales ancestor parasite of plants. Subsequently, its descendents transmitted this gene in amoebae to other intra-amoebal microorganisms, including L. drancourtii and Coxiella burnetii. The role of the sterol delta-7 reductase in prokaryotes is as yet unknown but we speculate that it is involved in host cholesterol parasitism.

  20. AS3MT-mediated tolerance to arsenic evolved by multiple independent horizontal gene transfers from bacteria to eukaryotes

    DEFF Research Database (Denmark)

    Palmgren, Michael; Engström, Karin; Hallström, Björn M.

    2017-01-01

    the evolutionary origin of AS3MT and assessed the ability of different genotypes to produce methylated arsenic metabolites. Phylogenetic analysis suggests that multiple, independent horizontal gene transfers between different bacteria, and from bacteria to eukaryotes, increased tolerance to environmental arsenic...

  1. EuGI: a novel resource for studying genomic islands to facilitate horizontal gene transfer detection in eukaryotes.

    Science.gov (United States)

    Clasen, Frederick Johannes; Pierneef, Rian Ewald; Slippers, Bernard; Reva, Oleg

    2018-05-03

    Genomic islands (GIs) are inserts of foreign DNA that have potentially arisen through horizontal gene transfer (HGT). There are evidences that GIs can contribute significantly to the evolution of prokaryotes. The acquisition of GIs through HGT in eukaryotes has, however, been largely unexplored. In this study, the previously developed GI prediction tool, SeqWord Gene Island Sniffer (SWGIS), is modified to predict GIs in eukaryotic chromosomes. Artificial simulations are used to estimate ratios of predicting false positive and false negative GIs by inserting GIs into different test chromosomes and performing the SWGIS v2.0 algorithm. Using SWGIS v2.0, GIs are then identified in 36 fungal, 22 protozoan and 8 invertebrate genomes. SWGIS v2.0 predicts GIs in large eukaryotic chromosomes based on the atypical nucleotide composition of these regions. Averages for predicting false negative and false positive GIs were 20.1% and 11.01% respectively. A total of 10,550 GIs were identified in 66 eukaryotic species with 5299 of these GIs coding for at least one functional protein. The EuGI web-resource, freely accessible at http://eugi.bi.up.ac.za , was developed that allows browsing the database created from identified GIs and genes within GIs through an interactive and visual interface. SWGIS v2.0 along with the EuGI database, which houses GIs identified in 66 different eukaryotic species, and the EuGI web-resource, provide the first comprehensive resource for studying HGT in eukaryotes.

  2. Convergent evolution of gene networks by single-gene duplications in higher eukaryotes.

    Science.gov (United States)

    Amoutzias, Gregory D; Robertson, David L; Oliver, Stephen G; Bornberg-Bauer, Erich

    2004-03-01

    By combining phylogenetic, proteomic and structural information, we have elucidated the evolutionary driving forces for the gene-regulatory interaction networks of basic helix-loop-helix transcription factors. We infer that recurrent events of single-gene duplication and domain rearrangement repeatedly gave rise to distinct networks with almost identical hub-based topologies, and multiple activators and repressors. We thus provide the first empirical evidence for scale-free protein networks emerging through single-gene duplications, the dominant importance of molecular modularity in the bottom-up construction of complex biological entities, and the convergent evolution of networks.

  3. Convergent evolution of gene networks by single-gene duplications in higher eukaryotes

    OpenAIRE

    Amoutzias, Gregory D; Robertson, David L; Oliver, Stephen G; Bornberg-Bauer, Erich

    2004-01-01

    By combining phylogenetic, proteomic and structural information, we have elucidated the evolutionary driving forces for the gene-regulatory interaction networks of basic helix–loop–helix transcription factors. We infer that recurrent events of single-gene duplication and domain rearrangement repeatedly gave rise to distinct networks with almost identical hub-based topologies, and multiple activators and repressors. We thus provide the first empirical evidence for scale-free protein networks e...

  4. SITEX 2.0: Projections of protein functional sites on eukaryotic genes. Extension with orthologous genes.

    Science.gov (United States)

    Medvedeva, Irina V; Demenkov, Pavel S; Ivanisenko, Vladimir A

    2017-04-01

    Functional sites define the diversity of protein functions and are the central object of research of the structural and functional organization of proteins. The mechanisms underlying protein functional sites emergence and their variability during evolution are distinguished by duplication, shuffling, insertion and deletion of the exons in genes. The study of the correlation between a site structure and exon structure serves as the basis for the in-depth understanding of sites organization. In this regard, the development of programming resources that allow the realization of the mutual projection of exon structure of genes and primary and tertiary structures of encoded proteins is still the actual problem. Previously, we developed the SitEx system that provides information about protein and gene sequences with mapped exon borders and protein functional sites amino acid positions. The database included information on proteins with known 3D structure. However, data with respect to orthologs was not available. Therefore, we added the projection of sites positions to the exon structures of orthologs in SitEx 2.0. We implemented a search through database using site conservation variability and site discontinuity through exon structure. Inclusion of the information on orthologs allowed to expand the possibilities of SitEx usage for solving problems regarding the analysis of the structural and functional organization of proteins. Database URL: http://www-bionet.sscc.ru/sitex/ .

  5. topIb, a phylogenetic hallmark gene of Thaumarchaeota encodes a functional eukaryote-like topoisomerase IB.

    Science.gov (United States)

    Dahmane, Narimane; Gadelle, Danièle; Delmas, Stéphane; Criscuolo, Alexis; Eberhard, Stephan; Desnoues, Nicole; Collin, Sylvie; Zhang, Hongliang; Pommier, Yves; Forterre, Patrick; Sezonov, Guennadi

    2016-04-07

    Type IB DNA topoisomerases can eliminate torsional stresses produced during replication and transcription. These enzymes are found in all eukaryotes and a short version is present in some bacteria and viruses. Among prokaryotes, the long eukaryotic version is only observed in archaea of the phylum Thaumarchaeota. However, the activities and the roles of these topoisomerases have remained an open question. Here, we demonstrate that all available thaumarchaeal genomes contain a topoisomerase IB gene that defines a monophyletic group closely related to the eukaryotic enzymes. We show that the topIB gene is expressed in the model thaumarchaeon Nitrososphaera viennensis and we purified the recombinant enzyme from the uncultivated thaumarchaeon Candidatus Caldiarchaeum subterraneum. This enzyme is active in vitro at high temperature, making it the first thermophilic topoisomerase IB characterized so far. We have compared this archaeal type IB enzyme to its human mitochondrial and nuclear counterparts. The archaeal enzyme relaxes both negatively and positively supercoiled DNA like the eukaryotic enzymes. However, its pattern of DNA cleavage specificity is different and it is resistant to camptothecins (CPTs) and non-CPT Top1 inhibitors, LMP744 and lamellarin D. This newly described thermostable topoisomerases IB should be a promising new model for evolutionary, mechanistic and structural studies. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  6. Functional and evolutionary analysis of alternatively spliced genes is consistent with an early eukaryotic origin of alternative splicing

    DEFF Research Database (Denmark)

    Irimia, Manuel; Rukov, Jakob Lewin; Penny, David

    2007-01-01

    , and may therefore predate multicellularity, is still unknown. To better understand the origin and evolution of alternative splicing and its usage in diverse organisms, we studied alternative splicing in 12 eukaryotic species, comparing rates of alternative splicing across genes of different functional......, we find several similarities in patterns of alternative splicing across these diverse eukaryotes. CONCLUSION: Along with previous studies indicating intron-rich genes with weak intron boundary consensus and complex spliceosomes in ancestral organisms, our results suggest that at least a simple form...... of alternative splicing may already have been present in the unicellular ancestor of plants, fungi and animals. A role for alternative splicing in the evolution of multicellularity then would largely have arisen by co-opting the preexisting process....

  7. Construction and expression of eukaryotic expression vectors of full-length, amino-terminus and carboxyl-terminus Raf gene

    Directory of Open Access Journals (Sweden)

    Zhuomin WANG

    2008-06-01

    Full Text Available Background and objective Raf is a key molecule in the Ras-Raf-MEK-ERK signal transduction pathway and is highly activated in different human carcinomas. However, its biological functions and regulation mechanisms are still unclear. The aims of this study were to construct eukaryotic expression vectors with Raf full encoding region, truncated amino-terminus and carboxyl-terminus, respectively. Methods Eukaryotic expression vectors of pCMV-Tag2b-Raf-1, pCMV-Tag2b-N-Raf and pCMV-Tag2b-C-Raf were constructed by gene recombination technique and confirmed by restriction enzyme analysis and DNA sequencing. Furthermore, the expression of these fusion proteins was detected by western blot in transient transfected 293T cells. Results The sequences and open reading frames of these three vectors were completely consistent with experimental design. All target proteins can be detected in 293T cells. Conclusion Eukaryotic expression vectors of pCMV-Tag2b-Raf-1, pCMV-Tag2b-N-Raf and pCMV-Tag2b-C-Raf were successfully constructed and can be expressed in 293T cells.

  8. Deriving Trading Rules Using Gene Expression Programming

    Directory of Open Access Journals (Sweden)

    Adrian VISOIU

    2011-01-01

    Full Text Available This paper presents how buy and sell trading rules are generated using gene expression programming with special setup. Market concepts are presented and market analysis is discussed with emphasis on technical analysis and quantitative methods. The use of genetic algorithms in deriving trading rules is presented. Gene expression programming is applied in a form where multiple types of operators and operands are used. This gives birth to multiple gene contexts and references between genes in order to keep the linear structure of the gene expression programming chromosome. The setup of multiple gene contexts is presented. The case study shows how to use the proposed gene setup to derive trading rules encoded by Boolean expressions, using a dataset with the reference exchange rates between the Euro and the Romanian leu. The conclusions highlight the positive results obtained in deriving useful trading rules.

  9. A metagenome for lacustrine Cladophora (Cladophorales) reveals remarkable diversity of eukaryotic epibionts and genes relevant to materials cycling.

    Science.gov (United States)

    Graham, Linda E; Knack, Jennifer J; Graham, Melissa E; Graham, James M; Zulkifly, Shahrizim

    2015-06-01

    Periphyton dominated by the cellulose-rich filamentous green alga Cladophora forms conspicuous growths along rocky marine and freshwater shorelines worldwide, providing habitat for diverse epibionts. Bacterial epibionts have been inferred to display diverse functions of biogeochemical significance: N-fixation and other redox reactions, phosphorus accumulation, and organic degradation. Here, we report taxonomic diversity of eukaryotic and prokaryotic epibionts and diversity of genes associated with materials cycling in a Cladophora metagenome sampled from Lake Mendota, Dane Co., WI, USA, during the growing season of 2012. A total of 1,060 distinct 16S, 173 18S, and 351 28S rRNA operational taxonomic units, from which >220 genera or species of bacteria (~60), protists (~80), fungi (6), and microscopic metazoa (~80), were distinguished with the use of reference databases. We inferred the presence of several algal taxa generally associated with marine systems and detected Jaoa, a freshwater periphytic ulvophyte previously thought endemic to China. We identified six distinct nifH gene sequences marking nitrogen fixation, >25 bacterial and eukaryotic cellulases relevant to sedimentary C-cycling and technological applications, and genes encoding enzymes in aerobic and anaerobic pathways for vitamin B12 biosynthesis. These results emphasize the importance of Cladophora in providing habitat for microscopic metazoa, fungi, protists, and bacteria that are often inconspicuous, yet play important roles in ecosystem biogeochemistry. © 2015 Phycological Society of America.

  10. [Construction of the eukaryotic recombinant vector and expression of the outer membrane protein LipL32 gene from Leptospira serovar Lai].

    Science.gov (United States)

    Huang, Bi; Bao, Lang; Zhong, Qi; Shang, Zheng-ling; Zhang, Hui-dong; Zhang, Ying

    2008-02-01

    To construct the eukaryotic experssion vector of LipL32 gene from Leptospira serovar Lai and express the recombinant plasmid in COS-7 cell. The LipL32 gene was amplified from Leptospira strain 017 genomic DNA by PCR and cloned into pcDNA3.1, through restriction nuclease enzyme digestion. Then the recombinant plasmid was transformed into E.coli DH5alpha. After identified by nuclease digestion, PCR and sequencing analysis, the recombinant vector was transfected into COS-7 cell with lipsome. The expression of the target gene was detected by RT-PCR and Western blot. The eukaryotic experssion vector pcDNA3.1-LipL32 was successfully constructed and stably expressed in COS-7 cell. The eukaryotic recombinant vector of outer membrane protein LipL32 gene from Leptospira serovar Lai can be expressed in mammalian cell, which provides an experimental basis for the application of the Leptospira DNA vaccine.

  11. Origins and evolution of viruses of eukaryotes: The ultimate modularity

    International Nuclear Information System (INIS)

    Koonin, Eugene V.; Dolja, Valerian V.; Krupovic, Mart

    2015-01-01

    Viruses and other selfish genetic elements are dominant entities in the biosphere, with respect to both physical abundance and genetic diversity. Various selfish elements parasitize on all cellular life forms. The relative abundances of different classes of viruses are dramatically different between prokaryotes and eukaryotes. In prokaryotes, the great majority of viruses possess double-stranded (ds) DNA genomes, with a substantial minority of single-stranded (ss) DNA viruses and only limited presence of RNA viruses. In contrast, in eukaryotes, RNA viruses account for the majority of the virome diversity although ssDNA and dsDNA viruses are common as well. Phylogenomic analysis yields tangible clues for the origins of major classes of eukaryotic viruses and in particular their likely roots in prokaryotes. Specifically, the ancestral genome of positive-strand RNA viruses of eukaryotes might have been assembled de novo from genes derived from prokaryotic retroelements and bacteria although a primordial origin of this class of viruses cannot be ruled out. Different groups of double-stranded RNA viruses derive either from dsRNA bacteriophages or from positive-strand RNA viruses. The eukaryotic ssDNA viruses apparently evolved via a fusion of genes from prokaryotic rolling circle-replicating plasmids and positive-strand RNA viruses. Different families of eukaryotic dsDNA viruses appear to have originated from specific groups of bacteriophages on at least two independent occasions. Polintons, the largest known eukaryotic transposons, predicted to also form virus particles, most likely, were the evolutionary intermediates between bacterial tectiviruses and several groups of eukaryotic dsDNA viruses including the proposed order “Megavirales” that unites diverse families of large and giant viruses. Strikingly, evolution of all classes of eukaryotic viruses appears to have involved fusion between structural and replicative gene modules derived from different sources

  12. Origins and evolution of viruses of eukaryotes: The ultimate modularity

    Energy Technology Data Exchange (ETDEWEB)

    Koonin, Eugene V., E-mail: koonin@ncbi.nlm.nih.gov [National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894 (United States); Dolja, Valerian V., E-mail: doljav@science.oregonstate.edu [Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331 (United States); Krupovic, Mart, E-mail: krupovic@pasteur.fr [Institut Pasteur, Unité Biologie Moléculaire du Gène chez les Extrêmophiles, Department of Microbiology, Paris 75015 (France)

    2015-05-15

    Viruses and other selfish genetic elements are dominant entities in the biosphere, with respect to both physical abundance and genetic diversity. Various selfish elements parasitize on all cellular life forms. The relative abundances of different classes of viruses are dramatically different between prokaryotes and eukaryotes. In prokaryotes, the great majority of viruses possess double-stranded (ds) DNA genomes, with a substantial minority of single-stranded (ss) DNA viruses and only limited presence of RNA viruses. In contrast, in eukaryotes, RNA viruses account for the majority of the virome diversity although ssDNA and dsDNA viruses are common as well. Phylogenomic analysis yields tangible clues for the origins of major classes of eukaryotic viruses and in particular their likely roots in prokaryotes. Specifically, the ancestral genome of positive-strand RNA viruses of eukaryotes might have been assembled de novo from genes derived from prokaryotic retroelements and bacteria although a primordial origin of this class of viruses cannot be ruled out. Different groups of double-stranded RNA viruses derive either from dsRNA bacteriophages or from positive-strand RNA viruses. The eukaryotic ssDNA viruses apparently evolved via a fusion of genes from prokaryotic rolling circle-replicating plasmids and positive-strand RNA viruses. Different families of eukaryotic dsDNA viruses appear to have originated from specific groups of bacteriophages on at least two independent occasions. Polintons, the largest known eukaryotic transposons, predicted to also form virus particles, most likely, were the evolutionary intermediates between bacterial tectiviruses and several groups of eukaryotic dsDNA viruses including the proposed order “Megavirales” that unites diverse families of large and giant viruses. Strikingly, evolution of all classes of eukaryotic viruses appears to have involved fusion between structural and replicative gene modules derived from different sources

  13. Comparative Genomics of Eukaryotes.

    NARCIS (Netherlands)

    Noort, V. van

    2007-01-01

    This thesis focuses on developing comparative genomics methods in eukaryotes, with an emphasis on applications for gene function prediction and regulatory element detection. In the past, methods have been developed to predict functional associations between gene pairs in prokaryotes. The challenge

  14. Gene co-regulation is highly conserved in the evolution of eukaryotes and prokaryotes.

    NARCIS (Netherlands)

    Snel, B.; Noort, V. van; Huynen, M.A.

    2004-01-01

    Differences between species have been suggested to largely reside in the network of connections among the genes. Nevertheless, the rate at which these connections evolve has not been properly quantified. Here, we measure the extent to which co-regulation between pairs of genes is conserved over

  15. Eukaryotic genomes may exhibit up to 10 generic classes of gene promoters

    Directory of Open Access Journals (Sweden)

    Gagniuc Paul

    2012-09-01

    Full Text Available Abstract Background The main function of gene promoters appears to be the integration of different gene products in their biological pathways in order to maintain homeostasis. Generally, promoters have been classified in two major classes, namely TATA and CpG. Nevertheless, many genes using the same combinatorial formation of transcription factors have different gene expression patterns. Accordingly, we tried to ask ourselves some fundamental questions: Why certain genes have an overall predisposition for higher gene expression levels than others? What causes such a predisposition? Is there a structural relationship of these sequences in different tissues? Is there a strong phylogenetic relationship between promoters of closely related species? Results In order to gain valuable insights into different promoter regions, we obtained a series of image-based patterns which allowed us to identify 10 generic classes of promoters. A comprehensive analysis was undertaken for promoter sequences from Arabidopsis thaliana, Drosophila melanogaster, Homo sapiens and Oryza sativa, and a more extensive analysis of tissue-specific promoters in humans. We observed a clear preference for these species to use certain classes of promoters for specific biological processes. Moreover, in humans, we found that different tissues use distinct classes of promoters, reflecting an emerging promoter network. Depending on the tissue type, comparisons made between these classes of promoters reveal a complementarity between their patterns whereas some other classes of promoters have been observed to occur in competition. Furthermore, we also noticed the existence of some transitional states between these classes of promoters that may explain certain evolutionary mechanisms, which suggest a possible predisposition for specific levels of gene expression and perhaps for a different number of factors responsible for triggering gene expression. Our conclusions are based on

  16. Morphological and ecological complexity in early eukaryotic ecosystems.

    Science.gov (United States)

    Javaux, E J; Knoll, A H; Walter, M R

    2001-07-05

    Molecular phylogeny and biogeochemistry indicate that eukaryotes differentiated early in Earth history. Sequence comparisons of small-subunit ribosomal RNA genes suggest a deep evolutionary divergence of Eukarya and Archaea; C27-C29 steranes (derived from sterols synthesized by eukaryotes) and strong depletion of 13C (a biogeochemical signature of methanogenic Archaea) in 2,700 Myr old kerogens independently place a minimum age on this split. Steranes, large spheroidal microfossils, and rare macrofossils of possible eukaryotic origin occur in Palaeoproterozoic rocks. Until now, however, evidence for morphological and taxonomic diversification within the domain has generally been restricted to very late Mesoproterozoic and Neoproterozoic successions. Here we show that the cytoskeletal and ecological prerequisites for eukaryotic diversification were already established in eukaryotic microorganisms fossilized nearly 1,500 Myr ago in shales of the early Mesoproterozoic Roper Group in northern Australia.

  17. Plastid 16S rRNA gene diversity among eukaryotic picophytoplankton sorted by flow cytometry from the South Pacific Ocean.

    Directory of Open Access Journals (Sweden)

    Xiao Li Shi

    Full Text Available The genetic diversity of photosynthetic picoeukaryotes was investigated in the South East Pacific Ocean. Genetic libraries of the plastid 16S rRNA gene were constructed on picoeukaryote populations sorted by flow cytometry, using two different primer sets, OXY107F/OXY1313R commonly used to amplify oxygenic organisms, and PLA491F/OXY1313R, biased towards plastids of marine algae. Surprisingly, the two sets revealed quite different photosynthetic picoeukaryote diversity patterns, which were moreover different from what we previously reported using the 18S rRNA nuclear gene as a marker. The first 16S primer set revealed many sequences related to Pelagophyceae and Dictyochophyceae, the second 16S primer set was heavily biased toward Prymnesiophyceae, while 18S sequences were dominated by Prasinophyceae, Chrysophyceae and Haptophyta. Primer mismatches with major algal lineages is probably one reason behind this discrepancy. However, other reasons, such as DNA accessibility or gene copy numbers, may be also critical. Based on plastid 16S rRNA gene sequences, the structure of photosynthetic picoeukaryotes varied along the BIOSOPE transect vertically and horizontally. In oligotrophic regions, Pelagophyceae, Chrysophyceae, and Prymnesiophyceae dominated. Pelagophyceae were prevalent at the DCM depth and Chrysophyceae at the surface. In mesotrophic regions Pelagophyceae were still important but Chlorophyta contribution increased. Phylogenetic analysis revealed a new clade of Prasinophyceae (clade 16S-IX, which seems to be restricted to hyper-oligotrophic stations. Our data suggest that a single gene marker, even as widely used as 18S rRNA, provides a biased view of eukaryotic communities and that the use of several markers is necessary to obtain a complete image.

  18. Structural and dynamic characterization of eukaryotic gene regulatory protein domains in solution

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Andrew Loyd [Univ. of California, Berkeley, CA (United States). Dept. of Chemistry

    1996-05-01

    Solution NMR was primarily used to characterize structure and dynamics in two different eukaryotic protein systems: the δ-Al-ε activation domain from c-jun and the Drosophila RNA-binding protein Sex-lethal. The second system is the Drosophila Sex-lethal (Sxl) protein, an RNA-binding protein which is the ``master switch`` in sex determination. Sxl contains two adjacent RNA-binding domains (RBDs) of the RNP consensus-type. The NMR spectrum of the second RBD (Sxl-RBD2) was assigned using multidimensional heteronuclear NMR, and an intermediate-resolution family of structures was calculated from primarily NOE distance restraints. The overall fold was determined to be similar to other RBDs: a βαβ-βαβ pattern of secondary structure, with the two helices packed against a 4-stranded anti-parallel β-sheet. In addition 15N T1, T2, and 15N/1H NOE relaxation measurements were carried out to characterize the backbone dynamics of Sxl-RBD2 in solution. RNA corresponding to the polypyrimidine tract of transformer pre-mRNA was generated and titrated into 3 different Sxl-RBD protein constructs. Combining Sxl-RBD1+2 (bht RBDs) with this RNA formed a specific, high affinity protein/RNA complex that is amenable to further NMR characterization. The backbone 1H, 13C, and 15N resonances of Sxl-RBD1+2 were assigned using a triple-resonance approach, and 15N relaxation experiments were carried out to characterize the backbone dynamics of this complex. The changes in chemical shift in Sxl-RBD1+2 upon binding RNA are observed using Sxl-RBD2 as a substitute for unbound Sxl-RBD1+2. This allowed the binding interface to be qualitatively mapped for the second domain.

  19. Evolutionary inference across eukaryotes identifies specific pressures favoring mitochondrial gene retention

    OpenAIRE

    Williams, Ben; Johnston, Iain

    2016-01-01

    Since their endosymbiotic origin, mitochondria have lost most of their genes. Although many selective mechanisms underlying the evolution of mitochondrial genomes have been proposed, a data-driven exploration of these hypotheses is lacking, and a quantitatively supported consensus remains absent. We developed HyperTraPS, a methodology coupling stochastic modelling with Bayesian inference, to identify the ordering of evolutionary events and suggest their causes. Using 2015 complete mitochondri...

  20. Construction of a recombinant eukaryotic human ZHX1 gene expression plasmid and the role of ZHX1 in hepatocellular carcinoma.

    Science.gov (United States)

    Wang, Jianping; Liu, Dejie; Liang, Xiaohong; Gao, Lifen; Yue, Xuetian; Yang, Yang; Ma, Chunhong; Liu, Jun

    2013-11-01

    The zinc-fingers and homeoboxes protein 1 (ZHX1) consists of 873 amino acid residues, is localized in the cell nucleus and appears to act as a transcriptional repressor. Previous studies have shown that ZHX1 interacts with nuclear factor Y subunit α (NF-YA), DNA methyltransferases (DNMT) 3B and ZHX2, all of which are involved in tumorigenesis. However, the exact role of ZHX1 in tumorigenesis remains unknown. The aim of the current study was to construct a recombinant eukaryotic expression plasmid containing the human ZHX1 (hZHX1) gene and to investigate the biological activities of ZHX1 in hepatocellular carcinoma (HCC). Reverse transcription-polymerase chain reaction (RT‑PCR) was used to amplify the N- and C-terminal fragments (ZHX1‑N and ZHX1‑C, respectively) of the hZHX1 gene. The two PCR fragments were cloned into the pEASY-T1 vector and subcloned into the pcDNA3 plasmid to generate a recombinant pcDNA3‑ZHX1 plasmid. Following identification by enzyme digestion and DNA sequencing, the recombinant pcDNA3‑ZHX1 plasmid was transfected into SMMC-7721 cells. The level of ZHX1 expression was detected by RT-PCR and western blot analysis. Cell growth curve assays were used to evaluate the effect of ZHX1 on cell proliferation. Moreover, the differential expression of ZHX1 between cancer and adjacent cirrhotic liver tissue was investigated by quantitative PCR (qPCR). Enzyme digestion and DNA sequencing confirmed the successful construction of the recombinant plasmid, pcDNA3‑ZHX1. qPCR and western blot analysis demonstrated that ZHX1 was efficiently expressed in SMMC-7721 cells and overexpression of ZHX1 may inhibit the proliferation of SMMC-7721 cells. In addition, reduced ZHX1 expression is widespread among cancer tissues from HCC patients. In conclusion, a recombinant eukaryotic expression plasmid, pcDNA3‑ZHX1, was successfully constructed. In addition, the current results indicate that a low expression of ZHX1 may be responsible for hepatocarcinogenesis.

  1. [Construction of eukaryotic recombinant vector and expression in COS7 cell of LipL32-HlyX fusion gene from Leptospira serovar Lai].

    Science.gov (United States)

    Huang, Bi; Bao, Lang; Zhong, Qi; Zhang, Huidong; Zhang, Ying

    2009-04-01

    This study was conducted to construct eukaryotic recombinant vector of LipL32-HlyX fusion gene from Leptospira serovar Lai and express it in mammalian cell. Both of LipL32 gene and HlyX gene were amplified from Leptospira strain O17 genomic DNA by PCR. Then with the two genes as template, LipL32-HlyX fusion gene was obtained by SOE PCR (gene splicing by overlap extension PCR). The fusion gene was then cloned into pcDNA3.1 by restriction nuclease digestion. Having been transformed into E. coli DH5alpha, the recombiant plasmid was identified by restriction nuclease digestion, PCR analysis and sequencing. The recombinant plasmid was then transfected into COS7 cell whose expression was detected by RT-PCR and Western blotting analysis. RT-PCR amplified a fragment about 2000 bp and Western blotting analysis found a specific band about 75 KD which was consistent with the expected fusion protein size. In conclusion, the successful construction of eukaryotic recombinant vector containing LipL32-HlyX fusion gene and the effective expression in mammalian have laid a foundation for the application of Leptospira DNA vaccine.

  2. Herpes simplex virus type 1 (HSV-1)-derived recombinant vectors for gene transfer and gene therapy.

    Science.gov (United States)

    Marconi, Peggy; Fraefel, Cornel; Epstein, Alberto L

    2015-01-01

    Herpes simplex virus type 1 (HSV-1 ) is a human pathogen whose lifestyle is based on a long-term dual interaction with the infected host, being able to establish both lytic and latent infections. The virus genome is a 153-kilobase pair (kbp) double-stranded DNA molecule encoding more than 80 genes. The interest of HSV-1 as gene transfer vector stems from its ability to infect many different cell types, both quiescent and proliferating cells, the very high packaging capacity of the virus capsid, the outstanding neurotropic adaptations that this virus has evolved, and the fact that it never integrates into the cellular chromosomes, thus avoiding the risk of insertional mutagenesis. Two types of vectors can be derived from HSV-1, recombinant vectors and amplicon vectors, and different methodologies have been developed to prepare large stocks of each type of vector. This chapter summarizes the approach most commonly used to prepare recombinant HSV-1 vectors through homologous recombination, either in eukaryotic cells or in bacteria.

  3. Comparative Genomic Analysis Reveals a Diverse Repertoire of Genes Involved in Prokaryote-Eukaryote Interactions within the Pseudovibrio Genus.

    Science.gov (United States)

    Romano, Stefano; Fernàndez-Guerra, Antonio; Reen, F Jerry; Glöckner, Frank O; Crowley, Susan P; O'Sullivan, Orla; Cotter, Paul D; Adams, Claire; Dobson, Alan D W; O'Gara, Fergal

    2016-01-01

    Strains of the Pseudovibrio genus have been detected worldwide, mainly as part of bacterial communities associated with marine invertebrates, particularly sponges. This recurrent association has been considered as an indication of a symbiotic relationship between these microbes and their host. Until recently, the availability of only two genomes, belonging to closely related strains, has limited the knowledge on the genomic and physiological features of the genus to a single phylogenetic lineage. Here we present 10 newly sequenced genomes of Pseudovibrio strains isolated from marine sponges from the west coast of Ireland, and including the other two publicly available genomes we performed an extensive comparative genomic analysis. Homogeneity was apparent in terms of both the orthologous genes and the metabolic features shared amongst the 12 strains. At the genomic level, a key physiological difference observed amongst the isolates was the presence only in strain P. axinellae AD2 of genes encoding proteins involved in assimilatory nitrate reduction, which was then proved experimentally. We then focused on studying those systems known to be involved in the interactions with eukaryotic and prokaryotic cells. This analysis revealed that the genus harbors a large diversity of toxin-like proteins, secretion systems and their potential effectors. Their distribution in the genus was not always consistent with the phylogenetic relationship of the strains. Finally, our analyses identified new genomic islands encoding potential toxin-immunity systems, previously unknown in the genus. Our analyses shed new light on the Pseudovibrio genus, indicating a large diversity of both metabolic features and systems for interacting with the host. The diversity in both distribution and abundance of these systems amongst the strains underlines how metabolically and phylogenetically similar bacteria may use different strategies to interact with the host and find a niche within its

  4. [Expression of mutation type GJA8 gene and wild type GJA8 gene of a congenital inherited nuclear cataract family in eukaryotic cells].

    Science.gov (United States)

    Zheng, Jian-qiu; Liu, Ping; Wang, Jian-wen; Liu, Jian-ju

    2010-04-20

    To clone the sequence of mutation type GJA8 gene (mGJA8) and wild type GJA8 gene (wGJA8) of a congenital inherited nuclear cataract family and study their expression in eukaryotic cell lines in vitro. The mGJA8 and wGJA8 were amplified from this family's DNA and healthy people's DNA by PCR respectively. The mGJA8 and wGJA8 were recombined with plasmid pEGFP-N1 respectively. The accuracy of pEGFP-N1-GJA8 was confirmed by restriction enzyme digestion and DNA sequencing. Finally pEGFP-N1- mGJA8 and pEGFP-N1- wGJA8 and GFP protein were transfected into COS7 cells by lipofectin. The expression of pEGFP-N1-GJA8 and GFP fusion protein were to observe under fluorescence microscope, and to detect by Western-blotting and immunohistochemical staining. The mGJA8 and wGJA8 were cloned successfully. With restricting enzyme digestion analysis and DNA sequencing, recombinant plasmid pEGFP-N1-mGJA8 and pEGFP-N1-wGJA8 were constructed correctly and their GFP fusions were expressed in transfected COS7 cells. The expression of pEGFP-N1-mGJA8 and pEGFP-N1-wGJA8 fusion protein were observed under fluorescence microscope, and detected by Western-blotting and immunohistochemical staining successfully. The mGJA8 gene and wGJA8 gene are cloned successfully, and pEGFP-N1-mGJA8 and pEGFP-N1-mGJA8 fusion protein can be expressed in COS7 cells, which establish the foundation for further studying the mechanism of this congenital inherited nuclear cataract family.

  5. PhytoREF: a reference database of the plastidial 16S rRNA gene of photosynthetic eukaryotes with curated taxonomy.

    Science.gov (United States)

    Decelle, Johan; Romac, Sarah; Stern, Rowena F; Bendif, El Mahdi; Zingone, Adriana; Audic, Stéphane; Guiry, Michael D; Guillou, Laure; Tessier, Désiré; Le Gall, Florence; Gourvil, Priscillia; Dos Santos, Adriana L; Probert, Ian; Vaulot, Daniel; de Vargas, Colomban; Christen, Richard

    2015-11-01

    Photosynthetic eukaryotes have a critical role as the main producers in most ecosystems of the biosphere. The ongoing environmental metabarcoding revolution opens the perspective for holistic ecosystems biological studies of these organisms, in particular the unicellular microalgae that often lack distinctive morphological characters and have complex life cycles. To interpret environmental sequences, metabarcoding necessarily relies on taxonomically curated databases containing reference sequences of the targeted gene (or barcode) from identified organisms. To date, no such reference framework exists for photosynthetic eukaryotes. In this study, we built the PhytoREF database that contains 6490 plastidial 16S rDNA reference sequences that originate from a large diversity of eukaryotes representing all known major photosynthetic lineages. We compiled 3333 amplicon sequences available from public databases and 879 sequences extracted from plastidial genomes, and generated 411 novel sequences from cultured marine microalgal strains belonging to different eukaryotic lineages. A total of 1867 environmental Sanger 16S rDNA sequences were also included in the database. Stringent quality filtering and a phylogeny-based taxonomic classification were applied for each 16S rDNA sequence. The database mainly focuses on marine microalgae, but sequences from land plants (representing half of the PhytoREF sequences) and freshwater taxa were also included to broaden the applicability of PhytoREF to different aquatic and terrestrial habitats. PhytoREF, accessible via a web interface (http://phytoref.fr), is a new resource in molecular ecology to foster the discovery, assessment and monitoring of the diversity of photosynthetic eukaryotes using high-throughput sequencing. © 2015 John Wiley & Sons Ltd.

  6. Symbiosis and the origin of eukaryotic motility

    Science.gov (United States)

    Margulis, L.; Hinkle, G.

    1991-01-01

    Ongoing work to test the hypothesis of the origin of eukaryotic cell organelles by microbial symbioses is discussed. Because of the widespread acceptance of the serial endosymbiotic theory (SET) of the origin of plastids and mitochondria, the idea of the symbiotic origin of the centrioles and axonemes for spirochete bacteria motility symbiosis was tested. Intracellular microtubular systems are purported to derive from symbiotic associations between ancestral eukaryotic cells and motile bacteria. Four lines of approach to this problem are being pursued: (1) cloning the gene of a tubulin-like protein discovered in Spirocheata bajacaliforniesis; (2) seeking axoneme proteins in spirochets by antibody cross-reaction; (3) attempting to cultivate larger, free-living spirochetes; and (4) studying in detail spirochetes (e.g., Cristispira) symbiotic with marine animals. Other aspects of the investigation are presented.

  7. Eukaryotic elongation factor 1-beta interacts with the 5' untranslated region of the M gene of Nipah virus to promote mRNA translation.

    Science.gov (United States)

    Uchida, Shotaro; Sato, Hiroki; Yoneda, Misako; Kai, Chieko

    2016-09-01

    Nipah virus belongs to the genus Henipavirus in the family Paramyxoviridae, and its RNA genome is larger than those of other paramyxoviruses because it has long untranslated regions (UTRs) in each gene. However, the functions of these UTRs are not fully understood. In this study, we investigated the functions of the 5' UTRs and found that the 5' UTR of the M gene upregulated the translation of a reporter gene. Using an RNA pull-down assay, we showed that eukaryotic elongation factor 1-beta (EEF1B2) interacts with nucleotides 81-100 of the M 5' UTR and specifically enhances its translation efficiency. Our results suggest that the M 5' UTR promotes the production of M protein and viral budding by recruiting EEF1B2.

  8. Evolution of DNA replication protein complexes in eukaryotes and Archaea.

    Directory of Open Access Journals (Sweden)

    Nicholas Chia

    Full Text Available BACKGROUND: The replication of DNA in Archaea and eukaryotes requires several ancillary complexes, including proliferating cell nuclear antigen (PCNA, replication factor C (RFC, and the minichromosome maintenance (MCM complex. Bacterial DNA replication utilizes comparable proteins, but these are distantly related phylogenetically to their archaeal and eukaryotic counterparts at best. METHODOLOGY/PRINCIPAL FINDINGS: While the structures of each of the complexes do not differ significantly between the archaeal and eukaryotic versions thereof, the evolutionary dynamic in the two cases does. The number of subunits in each complex is constant across all taxa. However, they vary subtly with regard to composition. In some taxa the subunits are all identical in sequence, while in others some are homologous rather than identical. In the case of eukaryotes, there is no phylogenetic variation in the makeup of each complex-all appear to derive from a common eukaryotic ancestor. This is not the case in Archaea, where the relationship between the subunits within each complex varies taxon-to-taxon. We have performed a detailed phylogenetic analysis of these relationships in order to better understand the gene duplications and divergences that gave rise to the homologous subunits in Archaea. CONCLUSION/SIGNIFICANCE: This domain level difference in evolution suggests that different forces have driven the evolution of DNA replication proteins in each of these two domains. In addition, the phylogenies of all three gene families support the distinctiveness of the proposed archaeal phylum Thaumarchaeota.

  9. Overexpression of a eukaryotic glutathione reductase gene from Brassica campestris improved resistance to oxidative stress in Escherichia coli

    International Nuclear Information System (INIS)

    Yoon, Ho-Sung; Lee, In-Ae; Lee, Hyoshin; Lee, Byung-Hyun; Jo, Jinki

    2005-01-01

    Glutathione reductase (GR) plays an essential role in a cell's defense against reactive oxygen metabolites by sustaining the reduced status of an important antioxidant glutathione. We constructed a recombinant plasmid based on the expression vector pET-18a that overexpresses a eukaryotic GR from Brassica campestris (BcGR) in Escherichia coli. For comparative analyses, E. coli GR (EcGR) was also subcloned in the same manner. The transformed E. coli with the recombinant constructs accumulated a high level of GR transcripts upon IPTG induction. Also, Western blot analysis showed overproduction of the BcGR protein in a soluble fraction of the transformed E. coli extract. When treated with oxidative stress generating reagents such as paraquat, salicylic acid, and cadmium, the BcGR overproducing E. coli exhibited a higher level of growth and survival rate than the control E. coli strain, but it was not as high as the E. coli strain transformed with the inducible EcGR. The translated amino acid sequences of BcGR and EcGR share 37.3% identity but all the functionally known important residues are conserved. It appears that eukaryotic BcGR functions in a prokaryotic system by providing protection against oxidative damages in E. coli

  10. Eukaryotic translation initiation factor 2B-beta (eIF2Bβ), a new class of plant virus resistance gene.

    Science.gov (United States)

    Shopan, Jannat; Mou, Haipeng; Zhang, Lili; Zhang, Changtong; Ma, Weiwei; Walsh, John A; Hu, Zhongyuan; Yang, Jinghua; Zhang, Mingfang

    2017-06-01

    Recessive resistances to plant viruses in the Potyvirus genus have been found to be based on mutations in the plant eukaryotic translation initiation factors, eIF4E and eIF4G or their isoforms. Here we report that natural, monogenic recessive resistance to the Potyvirus Turnip mosaic virus (TuMV) has been found in a number of mustard (Brassica juncea) accessions. Bulked segregant analysis and sequencing of resistant and susceptible plant lines indicated the resistance is controlled by a single recessive gene, recessive TuMV resistance 03 (retr03), an allele of the eukaryotic translation initiation factor 2B-beta (eIF2Bβ). Silencing of eIF2Bβ in a TuMV-susceptible mustard plant line and expression of eIF2Bβ from a TuMV-susceptible line in a TuMV-resistant mustard plant line confirmed the new resistance mechanism. A functional copy of a specific allele of eIF2Bβ is required for efficient TuMV infection. eIF2Bβ represents a new class of virus resistance gene conferring resistance to any pathogen. eIF2B acts as a guanine nucleotide exchange factor (GEF) for its GTP-binding protein partner eIF2 via interaction with eIF2·GTP at an early step in translation initiation. Further genotyping indicated that a single non-synonymous substitution (A120G) in the N-terminal region of eIF2Bβ was responsible for the TuMV resistance. A reproducible marker has been developed, facilitating marker-assisted selection for TuMV resistance in B. juncea. Our findings provide a new target for seeking natural resistance to potyviruses and new opportunities for the control of potyviruses using genome editing techniques targeted on eIF2Bβ. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  11. Mutation of a Nicotiana tabacum L. eukaryotic translation-initiation factor gene reduces susceptibility to a resistance-breaking strain of Potato Virus Y.

    Science.gov (United States)

    Takakura, Yoshimitsu; Udagawa, Hisashi; Shinjo, Akira; Koga, Kazuharu

    2018-04-06

    Eukaryotic translation-initiation factors eIF4E and eIF(iso)4E in plants play key roles in infection by potyviruses and other plant RNA viruses. Mutations in the genes encoding these factors reduce susceptibility to the viruses, and are the basis of several recessive virus-resistance genes widely used in plant breeding. Because virus variants occasionally break such resistance, the molecular basis for this process must be elucidated. Although deletion mutants of eIF4E1-S of tobacco (Nicotiana tabacum L.) resist Potato virus Y (PVY; the type member of the genus Potyvirus), resistance-breaking strains of PVY threaten tobacco production worldwide. Here, we used RNA interference technology to knock down tobacco eIF4E2-S and eIF4E2-T genes or eIF(iso)4E-S and eIF(iso)4E-T genes. Transgenic plants with reduced transcript levels of both eIF(iso)4E-S and eIF(iso)4E-T showed reduced susceptibility to a resistance-breaking PVY strain with a K105E mutation in the viral genome-associated protein (VPg). By screening a population of chemically-induced mutants of eIF(iso)4E-S and eIF(iso)4E-T, we showed that plants with a nonsense mutation in eIF(iso)4E-T, but not eIF(iso)4E-S, showed reduced susceptibility to the resistance-breaking PVY strain. In a yeast two-hybrid assay, VPg of the resistance-breaking strain, but not wild-type PVY, physically interacted with the eIF(iso)4E-T protein. Thus, eIF4E1-S is required for infection by PVY, but eIF(iso)4E-T is required for infection by the resistance-breaking strain. Our study provides the first evidence for the involvement of a host eukaryotic translation-initiation factor in the infection cycle of a resistance-breaking virus strain. The eIF(iso)4E-T mutants will be useful in tobacco breeding to introduce resistance against resistance-breaking PVY strains. This article is protected by copyright. All rights reserved. © 2018 BSPP and John Wiley & Sons Ltd.

  12. CpLEA5, the Late Embryogenesis Abundant Protein Gene from Chimonanthus praecox, Possesses Low Temperature and Osmotic Resistances in Prokaryote and Eukaryotes

    Directory of Open Access Journals (Sweden)

    Yiling Liu

    2015-11-01

    Full Text Available Plants synthesize and accumulate a series of stress-resistance proteins to protect normal physiological activities under adverse conditions. Chimonanthus praecox which blooms in freezing weather accumulates late embryogenesis abundant proteins (LEAs in flowers, but C. praecox LEAs are little reported. Here, we report a group of five LEA genes of C. praecox (CpLEA5, KT727031. Prokaryotic-expressed CpLEA5 was employed in Escherichia coli to investigate bioactivities and membrane permeability at low-temperature. In comparison with the vacant strains, CpLEA5-containing strains survived in a 20% higher rate; and the degree of cell membrane damage in CpLEA5-containing strains was 55% of that of the vacant strains according to a conductivity test, revealing the low-temperature resistance of CpLEA5 in bacteria. CpLEA5 was also expressed in Pichia pastoris. Interestingly, besides low-temperature resistance, CpLEA5 conferred high resistance to salt and alkali in CpLEA5 overexpressing yeast. The CpLEA5 gene was transferred into Arabidopsis thaliana to also demonstrate CpLEA5 actions in plants. As expected, the transgenic lines were more resistant against low-temperature and drought while compared with the wild type. Taken together, CpLEA5-conferred resistances to several conditions in prokaryote and eukaryotes could have great value as a genetic technology to enhance osmotic stress and low-temperature tolerance.

  13. A New Class of SINEs with snRNA Gene-Derived Heads.

    Science.gov (United States)

    Kojima, Kenji K

    2015-05-27

    Eukaryotic genomes are colonized by various transposons including short interspersed elements (SINEs). The 5' region (head) of the majority of SINEs is derived from one of the three types of RNA genes--7SL RNA, transfer RNA (tRNA), or 5S ribosomal RNA (rRNA)--and the internal promoter inside the head promotes the transcription of the entire SINEs. Here I report a new group of SINEs whose heads originate from either the U1 or U2 small nuclear RNA gene. These SINEs, named SINEU, are distributed among crocodilians and classified into three families. The structures of the SINEU-1 subfamilies indicate the recurrent addition of a U1- or U2-derived sequence onto the 5' end of SINEU-1 elements. SINEU-1 and SINEU-3 are ancient and shared among alligators, crocodiles, and gharials, while SINEU-2 is absent in the alligator genome. SINEU-2 is the only SINE family that was active after the split of crocodiles and gharials. All SINEU families, especially SINEU-3, are preferentially inserted into a family of Mariner DNA transposon, Mariner-N4_AMi. A group of Tx1 non-long terminal repeat retrotransposons designated Tx1-Mar also show target preference for Mariner-N4_AMi, indicating that SINEU was mobilized by Tx1-Mar. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  14. Genetic control of chromosome instability in Aspergillus nidulans as a means for gene amplification in eukaryotic microorganisms

    International Nuclear Information System (INIS)

    Parag, Y.; Roper, J.A.

    1975-01-01

    A haploid strain of Aspergillus nidulans carrying I-II duplication homozygous for the leaky mutation adE20 shows improved growth on minimal medium. The duplication, though more stable than disomics, still shows instability. Several methods were used for detecting genetic control of improved stability. a) visual selection, using a duplicated strain which is very unstable due to UV sensitivity, (adE20, biAl/dp yA2; uvsB). One stable strain showed a deletion (or a lethal mutation) distal to biA on the segment at the original position (on chromosome I). This deletion reduces crossing-over frequency detween the two homologous segments. As the deletion of the non-translated segment (yellow sectors) must be preceded by crossing-over, the above reduces the frequency of yellow sectors. A deletion of the translocated segment (green sectors) results in non-viability due to the deletion, and such sectors do not appear. The net result is a stable duplication involving only 12 C.O. units carrying the gene in concern. b) Suppressors of UV sensitivity (su-uvsB) were attempted using the above uvs duplicated strain. Phenotypic revertants were easily obtained, but all were back mutations at the uvsB locus. c) Mutations for UV resistance higher than that of the wild type were not obtained, in spite of the strong selective pressure inserted. d) Recombination deficient mutations (rec), six altogether, all uvs + , did not have any effect on stability. (orig.) [de

  15. Association assessment of platelet derived growth factor B gene ...

    African Journals Online (AJOL)

    Background: Coronary artery disease (CAD) is the most frequent cause of morbidity and mortality in the world and it is known as a multifactorial disorder which is influenced by both genetic and environmental factors. Based on different assays, the platelet derived growth factor B (PDGF-B) gene is shown to be amongst the ...

  16. Autophagy in unicellular eukaryotes

    NARCIS (Netherlands)

    Kiel, J.A.K.W.

    2010-01-01

    Cells need a constant supply of precursors to enable the production of macromolecules to sustain growth and survival. Unlike metazoans, unicellular eukaryotes depend exclusively on the extracellular medium for this supply. When environmental nutrients become depleted, existing cytoplasmic components

  17. The Genome of Naegleria gruberi Illuminates Early Eukaryotic Versatility

    Energy Technology Data Exchange (ETDEWEB)

    Fritz-Laylin, Lillian K.; Prochnik, Simon E.; Ginger, Michael L.; Dacks, Joel; Carpenter, Meredith L.; Field, Mark C.; Kuo, Alan; Paredez, Alex; Chapman, Jarrod; Pham, Jonathan; Shu, Shengqiang; Neupane, Rochak; Cipriano, Michael; Mancuso, Joel; Tu, Hank; Salamov, Asaf; Lindquist, Erika; Shapiro, Harris; Lucas, Susan; Grigoriev, Igor V.; Cande, W. Zacheus; Fulton, Chandler; Rokhsar, Daniel S.; Dawson, Scott C.

    2010-03-01

    Genome sequences of diverse free-living protists are essential for understanding eukaryotic evolution and molecular and cell biology. The free-living amoeboflagellate Naegleria gruberi belongs to a varied and ubiquitous protist clade (Heterolobosea) that diverged from other eukaryotic lineages over a billion years ago. Analysis of the 15,727 protein-coding genes encoded by Naegleria's 41 Mb nuclear genome indicates a capacity for both aerobic respiration and anaerobic metabolism with concomitant hydrogen production, with fundamental implications for the evolution of organelle metabolism. The Naegleria genome facilitates substantially broader phylogenomic comparisons of free-living eukaryotes than previously possible, allowing us to identify thousands of genes likely present in the pan-eukaryotic ancestor, with 40% likely eukaryotic inventions. Moreover, we construct a comprehensive catalog of amoeboid-motility genes. The Naegleria genome, analyzed in the context of other protists, reveals a remarkably complex ancestral eukaryote with a rich repertoire of cytoskeletal, sexual, signaling, and metabolic modules.

  18. Arginine deiminase pathway enzymes: evolutionary history in metamonads and other eukaryotes.

    Science.gov (United States)

    Novák, Lukáš; Zubáčová, Zuzana; Karnkowska, Anna; Kolisko, Martin; Hroudová, Miluše; Stairs, Courtney W; Simpson, Alastair G B; Keeling, Patrick J; Roger, Andrew J; Čepička, Ivan; Hampl, Vladimír

    2016-10-06

    Multiple prokaryotic lineages use the arginine deiminase (ADI) pathway for anaerobic energy production by arginine degradation. The distribution of this pathway among eukaryotes has been thought to be very limited, with only two specialized groups living in low oxygen environments (Parabasalia and Diplomonadida) known to possess the complete set of all three enzymes. We have performed an extensive survey of available sequence data in order to map the distribution of these enzymes among eukaryotes and to reconstruct their phylogenies. We have found genes for the complete pathway in almost all examined representatives of Metamonada, the anaerobic protist group that includes parabasalids and diplomonads. Phylogenetic analyses indicate the presence of the complete pathway in the last common ancestor of metamonads and heterologous transformation experiments suggest its cytosolic localization in the metamonad ancestor. Outside Metamonada, the complete pathway occurs rarely, nevertheless, it was found in representatives of most major eukaryotic clades. Phylogenetic relationships of complete pathways are consistent with the presence of the Archaea-derived ADI pathway in the last common ancestor of all eukaryotes, although other evolutionary scenarios remain possible. The presence of the incomplete set of enzymes is relatively common among eukaryotes and it may be related to the fact that these enzymes are involved in other cellular processes, such as the ornithine-urea cycle. Single protein phylogenies suggest that the evolutionary history of all three enzymes has been shaped by frequent gene losses and horizontal transfers, which may sometimes be connected with their diverse roles in cellular metabolism.

  19. Comparative genomics and evolution of eukaryotic phospholipidbiosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Lykidis, Athanasios

    2006-12-01

    Phospholipid biosynthetic enzymes produce diverse molecular structures and are often present in multiple forms encoded by different genes. This work utilizes comparative genomics and phylogenetics for exploring the distribution, structure and evolution of phospholipid biosynthetic genes and pathways in 26 eukaryotic genomes. Although the basic structure of the pathways was formed early in eukaryotic evolution, the emerging picture indicates that individual enzyme families followed unique evolutionary courses. For example, choline and ethanolamine kinases and cytidylyltransferases emerged in ancestral eukaryotes, whereas, multiple forms of the corresponding phosphatidyltransferases evolved mainly in a lineage specific manner. Furthermore, several unicellular eukaryotes maintain bacterial-type enzymes and reactions for the synthesis of phosphatidylglycerol and cardiolipin. Also, base-exchange phosphatidylserine synthases are widespread and ancestral enzymes. The multiplicity of phospholipid biosynthetic enzymes has been largely generated by gene expansion in a lineage specific manner. Thus, these observations suggest that phospholipid biosynthesis has been an actively evolving system. Finally, comparative genomic analysis indicates the existence of novel phosphatidyltransferases and provides a candidate for the uncharacterized eukaryotic phosphatidylglycerol phosphate phosphatase.

  20. Transfer of DNA from Bacteria to Eukaryotes

    Directory of Open Access Journals (Sweden)

    Benoît Lacroix

    2016-07-01

    Full Text Available Historically, the members of the Agrobacterium genus have been considered the only bacterial species naturally able to transfer and integrate DNA into the genomes of their eukaryotic hosts. Yet, increasing evidence suggests that this ability to genetically transform eukaryotic host cells might be more widespread in the bacterial world. Indeed, analyses of accumulating genomic data reveal cases of horizontal gene transfer from bacteria to eukaryotes and suggest that it represents a significant force in adaptive evolution of eukaryotic species. Specifically, recent reports indicate that bacteria other than Agrobacterium, such as Bartonella henselae (a zoonotic pathogen, Rhizobium etli (a plant-symbiotic bacterium related to Agrobacterium, or even Escherichia coli, have the ability to genetically transform their host cells under laboratory conditions. This DNA transfer relies on type IV secretion systems (T4SSs, the molecular machines that transport macromolecules during conjugative plasmid transfer and also during transport of proteins and/or DNA to the eukaryotic recipient cells. In this review article, we explore the extent of possible transfer of genetic information from bacteria to eukaryotic cells as well as the evolutionary implications and potential applications of this transfer.

  1. HIV-derived vectors for gene therapy targeting dendritic cells.

    Science.gov (United States)

    Rossetti, Maura; Cavarelli, Mariangela; Gregori, Silvia; Scarlatti, Gabriella

    2013-01-01

    Human immunodeficiency virus type 1 (HIV-1)-derived lentiviral vectors (LV) have the potential to mediate stable therapeutic gene transfer. However, similarly to other viral vectors, their benefit is compromised by the induction of an immune response toward transgene-expressing cells that closely mimics antiviral immunity. LV share with the parental HIV the ability to activate dendritic cells (DC), while lack the peculiar ability of subverting DC functions, which is responsible for HIV immune escape. Understanding the interaction between LV and DC, with plasmacytoid and myeloid DC playing fundamental and distinct roles, has paved the way to novel approaches aimed at regulating transgene-specific immune responses. Thanks to the ability to target either DC subsets LV might be a powerful tool to induce immunity (i.e., gene therapy of cancer), cell death (i.e., in HIV/AIDS infection), or tolerance (i.e., gene therapy strategies for monogenic diseases). In this chapter, similarities and differences between the LV-mediated and HIV-mediated induction of immune responses, with specific focus on their interactions with DC, are discussed.

  2. Eukaryotic Cell Panorama

    Science.gov (United States)

    Goodsell, David S.

    2011-01-01

    Diverse biological data may be used to create illustrations of molecules in their cellular context. This report describes the scientific results that support an illustration of a eukaryotic cell, enlarged by one million times to show the distribution and arrangement of macromolecules. The panoramic cross section includes eight panels that extend…

  3. Eukaryotic cell flattening

    Science.gov (United States)

    Bae, Albert; Westendorf, Christian; Erlenkamper, Christoph; Galland, Edouard; Franck, Carl; Bodenschatz, Eberhard; Beta, Carsten

    2010-03-01

    Eukaryotic cell flattening is valuable for improving microscopic observations, ranging from bright field to total internal reflection fluorescence microscopy. In this talk, we will discuss traditional overlay techniques, and more modern, microfluidic based flattening, which provides a greater level of control. We demonstrate these techniques on the social amoebae Dictyostelium discoideum, comparing the advantages and disadvantages of each method.

  4. A case study for effects of operational taxonomic units from intracellular endoparasites and ciliates on the eukaryotic phylogeny: phylogenetic position of the haptophyta in analyses of multiple slowly evolving genes.

    Directory of Open Access Journals (Sweden)

    Hisayoshi Nozaki

    Full Text Available Recent multigene phylogenetic analyses have contributed much to our understanding of eukaryotic phylogeny. However, the phylogenetic positions of various lineages within the eukaryotes have remained unresolved or in conflict between different phylogenetic studies. These phylogenetic ambiguities might have resulted from mixtures or integration from various factors including limited taxon sampling, missing data in the alignment, saturations of rapidly evolving genes, mixed analyses of short- and long-branched operational taxonomic units (OTUs, intracellular endoparasite and ciliate OTUs with unusual substitution etc. In order to evaluate the effects from intracellular endoparasite and ciliate OTUs co-analyzed on the eukaryotic phylogeny and simplify the results, we here used two different sets of data matrices of multiple slowly evolving genes with small amounts of missing data and examined the phylogenetic position of the secondary photosynthetic chromalveolates Haptophyta, one of the most abundant groups of oceanic phytoplankton and significant primary producers. In both sets, a robust sister relationship between Haptophyta and SAR (stramenopiles, alveolates, rhizarians, or SA [stramenopiles and alveolates] was resolved when intracellular endoparasite/ciliate OTUs were excluded, but not in their presence. Based on comparisons of character optimizations on a fixed tree (with a clade composed of haptophytes and SAR or SA, disruption of the monophyly between haptophytes and SAR (or SA in the presence of intracellular endoparasite/ciliate OTUs can be considered to be a result of multiple evolutionary reversals of character positions that supported the synapomorphy of the haptophyte and SAR (or SA clade in the absence of intracellular endoparasite/ciliate OTUs.

  5. [Eukaryotic expression of Leptospira interrogans lipL32/1-ompL1/1 fusion gene encoding genus-specific protein antigens and the immunoreactivity of expression products].

    Science.gov (United States)

    Yan, Jie; Zhao, Shou-feng; Mao, Ya-fei; Ruan, Ping; Luo, Yi-hui; Li, Shu-ping; Li, Li-wei

    2005-01-01

    To construct the eukaryotic expression system of L.interrogans lipL32/1-ompL1/1 fusion gene and to identify the immunoreactivity of expression products. PCR with linking primer was used to construct the fusion gene lipL32/1-ompL1/1. The P.pastoris eukaryotic expression system of the fusion gene, pPIC9K-lipL32/1-ompL1/1-P. pastorisGS115, was constructed after the fusion gene was cloned and sequenced. Colony with phenotype His(+)Mut(+) was isolated by using MD and MM plates and His(+) Mut(+) transformant with high resistance to G418 was screened out by using YPD plate. Using lysate of His(+) Mut(+) colony with high copies of the target gene digested with yeast lyase as the template and 5'AOX1 and 3'AOX1 as the primers, the target fusion gene in chromosome DNA of the constructed P. pastoris engineering strain was detected by PCR. Methanol in BMMY medium was used to induce the target recombinant protein rLipL32/1-rOmpL1/1 expression. rLipL32/1-rOmpL1/1 in the medium supernatant was extracted by using ammonium sulfate precipitation and Ni-NTA affinity chromatography. Output and immunoreactivity of rLipL32/1-rOmpL1/1 were measured by SDS-PAGE and Western blot methods, respectively. Amplification fragments of the obtained fusion gene lipL32/1-ompL1/1 was 1794 bp in size. The homogeneity of nucleotide and putative amino acid sequences of the fusion gene were as high as 99.94 % and 100 %, respectively, compared with the sequences of original lipL32/1 and ompL1/1 genotypes. The constructed eukaryotic expression system was able to secrete rLipL32/1-rOmpL1/1 with an output of 10 % of the total proteins in the supernatant, which located the expected position after SDS-PAGE. The rabbit anti-rLipL32/1 and anti-rOmpL1/1 sera could combine the expressed rLipL32/1-rOmpL1/1. An eukaryotic expression system with high efficiency in P.pastoris of L.interrogans lipL32/1-ompL1/1 fusion gene was successfully constructed in this study. The expressed fusion protein shows specific

  6. Atypical mitochondrial inheritance patterns in eukaryotes.

    Science.gov (United States)

    Breton, Sophie; Stewart, Donald T

    2015-10-01

    Mitochondrial DNA (mtDNA) is predominantly maternally inherited in eukaryotes. Diverse molecular mechanisms underlying the phenomenon of strict maternal inheritance (SMI) of mtDNA have been described, but the evolutionary forces responsible for its predominance in eukaryotes remain to be elucidated. Exceptions to SMI have been reported in diverse eukaryotic taxa, leading to the prediction that several distinct molecular mechanisms controlling mtDNA transmission are present among the eukaryotes. We propose that these mechanisms will be better understood by studying the deviations from the predominating pattern of SMI. This minireview summarizes studies on eukaryote species with unusual or rare mitochondrial inheritance patterns, i.e., other than the predominant SMI pattern, such as maternal inheritance of stable heteroplasmy, paternal leakage of mtDNA, biparental and strictly paternal inheritance, and doubly uniparental inheritance of mtDNA. The potential genes and mechanisms involved in controlling mitochondrial inheritance in these organisms are discussed. The linkage between mitochondrial inheritance and sex determination is also discussed, given that the atypical systems of mtDNA inheritance examined in this minireview are frequently found in organisms with uncommon sexual systems such as gynodioecy, monoecy, or andromonoecy. The potential of deviations from SMI for facilitating a better understanding of a number of fundamental questions in biology, such as the evolution of mtDNA inheritance, the coevolution of nuclear and mitochondrial genomes, and, perhaps, the role of mitochondria in sex determination, is considerable.

  7. The COG database: an updated version includes eukaryotes

    Directory of Open Access Journals (Sweden)

    Sverdlov Alexander V

    2003-09-01

    Full Text Available Abstract Background The availability of multiple, essentially complete genome sequences of prokaryotes and eukaryotes spurred both the demand and the opportunity for the construction of an evolutionary classification of genes from these genomes. Such a classification system based on orthologous relationships between genes appears to be a natural framework for comparative genomics and should facilitate both functional annotation of genomes and large-scale evolutionary studies. Results We describe here a major update of the previously developed system for delineation of Clusters of Orthologous Groups of proteins (COGs from the sequenced genomes of prokaryotes and unicellular eukaryotes and the construction of clusters of predicted orthologs for 7 eukaryotic genomes, which we named KOGs after eukaryotic orthologous groups. The COG collection currently consists of 138,458 proteins, which form 4873 COGs and comprise 75% of the 185,505 (predicted proteins encoded in 66 genomes of unicellular organisms. The eukaryotic orthologous groups (KOGs include proteins from 7 eukaryotic genomes: three animals (the nematode Caenorhabditis elegans, the fruit fly Drosophila melanogaster and Homo sapiens, one plant, Arabidopsis thaliana, two fungi (Saccharomyces cerevisiae and Schizosaccharomyces pombe, and the intracellular microsporidian parasite Encephalitozoon cuniculi. The current KOG set consists of 4852 clusters of orthologs, which include 59,838 proteins, or ~54% of the analyzed eukaryotic 110,655 gene products. Compared to the coverage of the prokaryotic genomes with COGs, a considerably smaller fraction of eukaryotic genes could be included into the KOGs; addition of new eukaryotic genomes is expected to result in substantial increase in the coverage of eukaryotic genomes with KOGs. Examination of the phyletic patterns of KOGs reveals a conserved core represented in all analyzed species and consisting of ~20% of the KOG set. This conserved portion of the

  8. The small molecule '1-(4-biphenylylcarbonyl)-4-(5-bromo-2-methoxybenzyl) piperazine oxalate' and its derivatives regulate global protein synthesis by inactivating eukaryotic translation initiation factor 2-alpha.

    Science.gov (United States)

    Hong, Mi-Na; Nam, Ky-Youb; Kim, Kyung Kon; Kim, So-Young; Kim, InKi

    2016-05-01

    By environmental stresses, cells can initiate a signaling pathway in which eukaryotic translation initiation factor 2-alpha (eIF2-α) is involved to regulate the response. Phosphorylation of eIF2-α results in the reduction of overall protein neogenesis, which allows cells to conserve resources and to reprogram energy usage for effective stress control. To investigate the role of eIF2-α in cell stress responses, we conducted a viability-based compound screen under endoplasmic reticulum (ER) stress condition, and identified 1-(4-biphenylylcarbonyl)-4-(5-bromo-2-methoxybenzyl) piperazine oxalate (AMC-01) and its derivatives as eIF2-α-inactivating chemical. Molecular characterization of this signaling pathway revealed that AMC-01 induced inactivation of eIF2-α by phosphorylating serine residue 51 in a dose- and time-dependent manner, while the negative control compounds did not affect eIF2-α phosphorylation. In contrast with ER stress induction by thapsigargin, phosphorylation of eIF2-α persisted for the duration of incubation with AMC-01. By pathway analysis, AMC-01 clearly induced the activation of protein kinase RNA-activated (PKR) kinase and nuclear factor-κB (NF-κB), whereas it did not modulate the activity of PERK or heme-regulated inhibitor (HRI). Finally, we could detect a lower protein translation rate in cells incubated with AMC-01, establishing AMC-01 as a potent chemical probe that can regulate eIF2-α activity. We suggest from these data that AMC-01 and its derivative compounds can be used as chemical probes in future studies of the role of eIF2-α in protein synthesis-related cell physiology.

  9. Eukaryotic DNA Replication Fork.

    Science.gov (United States)

    Burgers, Peter M J; Kunkel, Thomas A

    2017-06-20

    This review focuses on the biogenesis and composition of the eukaryotic DNA replication fork, with an emphasis on the enzymes that synthesize DNA and repair discontinuities on the lagging strand of the replication fork. Physical and genetic methodologies aimed at understanding these processes are discussed. The preponderance of evidence supports a model in which DNA polymerase ε (Pol ε) carries out the bulk of leading strand DNA synthesis at an undisturbed replication fork. DNA polymerases α and δ carry out the initiation of Okazaki fragment synthesis and its elongation and maturation, respectively. This review also discusses alternative proposals, including cellular processes during which alternative forks may be utilized, and new biochemical studies with purified proteins that are aimed at reconstituting leading and lagging strand DNA synthesis separately and as an integrated replication fork.

  10. Transfer RNA Derived Small RNAs Targeting Defense Responsive Genes Are Induced during Phytophthora capsici Infection in Black Pepper (Piper nigrum L.).

    Science.gov (United States)

    Asha, Srinivasan; Soniya, Eppurath V

    2016-01-01

    Small RNAs derived from transfer RNAs were recently assigned as potential gene regulatory candidates for various stress responses in eukaryotes. In this study, we report on the cloning and identification of tRNA derived small RNAs from black pepper plants in response to the infection of the quick wilt pathogen, Phytophthora capsici. 5'tRFs cloned from black pepper were validated as highly expressed during P. capsici infection. A high-throughput systematic analysis of the small RNAome (sRNAome) revealed the predominance of 5'tRFs in the infected leaf and root. The abundance of 5'tRFs in the sRNAome and the defense responsive genes as their potential targets indicated their regulatory role during stress response in black pepper. The 5'Ala(CGC) tRF mediated cleavage was experimentally mapped at the tRF binding sites on the mRNA targets of Non-expresser of pathogenesis related protein (NPR1), which was down-regulated during pathogen infection. Comparative sRNAome further demonstrated sequence conservation of 5'Ala tRFs across the angiosperm plant groups, and many important genes in the defense response were identified in silico as their potential targets. Our findings uncovered the diversity, differential expression and stress responsive functional role of tRNA-derived small RNAs during Phytophthora infection in black pepper.

  11. [Selection and construction of cell line stably expressing survivin gene in lower level through eukaryotic plasmid vector of shRNA].

    Science.gov (United States)

    Wang, Wen-Xia; Sun, Shan-Zhen; Song, Ying

    2008-06-01

    To construct a short hairpin RNA(shRNA) interference expression plasmid vector of survivin gene, transfect tongue squamous cell carcinoma line Tca8113 which expressed survivin gene in a high level, and choose the cells whose survivin gene were suppressed significantly. Two pairs of oligonucleotide sequences specific for survivin gene were designed and synthesized, and cloned into pSilencer-2.1U6-neo plasmid. The recombinant plasmids (named PS1 and PS2) were amplified in Ecoli. DH5alpha was identified by restriction digestion, PCR and sequencing. The vectors were transfected into Tca8113 cells with lipofectamine 2000. After selection with G418, the stable cell clones were attained. Survivn expression was assayed with real-time quantitative PCR and Western blotting. SAS8.0 software package was used for Student t test. Two vectors were constructed successfully and stable cell clones with PS1 or PS2 plasmid were obtained. As compared with those of control, survivin expression of transfected cell with PS1 or PS2 in mRNA level was significantly suppressed (P<0.05). In protein level, only those of transfected cell with PS2 was significantly suppressed (P<0.01). The shRNA interference expression plasmid vectors of survivin gene are successfully constructed, and Tca8113 cells which express survivin gene in a stable lower level are attained, which enable us to carry out further research on gene therapy of oral squamous cell carcinoma. Supported by National Natural Science Foundation of China (Grant No.30572056).

  12. AUG is the only initiation codon in eukaryotes

    Energy Technology Data Exchange (ETDEWEB)

    Sherman, F; McKnight, G; Stewart, J W

    1980-01-01

    An analysis of mutants of the yeast Saccharomyces cerevisiae indicates that AUG is the sole codon capable of initiating translation of iso-1-cytochrome c. This result with yeast and the sequence results of numerous eukaryotic genes indicate that AUG is the only initiation codon in eukaryotes; in contrast, results with Escherichia colia and bacteriophages indicate that both AUG and GUG are initiation codons in prokaryotes. The difference can be explained by the lack of the t/sup 6/ A hypermodified nucleoside (N-(9-(..beta..-D-ribofuranosyl)purin-6-ylcarbamoyl)threonine) in prokaryotic initiator tRNA and its presence in eukaryotic initiator tRNA.

  13. Construction of Eukaryotic Expression Vector with mBD1-mBD3 Fusion Genes and Exploring Its Activity against Influenza A Virus

    Directory of Open Access Journals (Sweden)

    Wanyi Li

    2014-03-01

    Full Text Available Influenza (flu pandemics have exhibited a great threat to human health throughout history. With the emergence of drug-resistant strains of influenza A virus (IAV, it is necessary to look for new agents for treatment and transmission prevention of the flu. Defensins are small (2–6 kDa cationic peptides known for their broad-spectrum antimicrobial activity. Beta-defensins (β-defensins are mainly produced by barrier epithelial cells and play an important role in attacking microbe invasion by epithelium. In this study, we focused on the anti-influenza A virus activity of mouse β-defensin 1 (mBD1 and β defensin-3 (mBD3 by synthesizing their fusion peptide with standard recombinant methods. The eukaryotic expression vectors pcDNA3.1(+/mBD1-mBD3 were constructed successfully by overlap-PCR and transfected into Madin-Darby canine kidney (MDCK cells. The MDCK cells transfected by pcDNA3.1(+/mBD1-mBD3 were obtained by G418 screening, and the mBD1-mBD3 stable expression pattern was confirmed in MDCK cells by RT-PCR and immunofluorescence assay. The acquired stable transfected MDCK cells were infected with IAV (A/PR/8/34, H1N1, 0.1 MOI subsequently and the virus titers in cell culture supernatants were analyzed by TCID50 72 h later. The TCID50 titer of the experimental group was clearly lower than that of the control group (p < 0.001. Furthermore, BALB/C mice were injected with liposome-encapsulated pcDNA3.1(+/mBD1-mBD3 through muscle and then challenged with the A/PR/8/34 virus. Results showed the survival rate of 100% and lung index inhibitory rate of 32.6% in pcDNA3.1(+/mBD1-mBD3group; the TCID50 titer of lung homogenates was clearly lower than that of the control group (p < 0.001. This study demonstrates that mBD1-mBD3 expressed by the recombinant plasmid pcDNA3.1(+/mBD1-mBD3 could inhibit influenza A virus replication both in vitro and in vivo. These observations suggested that the recombinant mBD1-mBD3 might be developed into an agent for

  14. Association assessment of platelet derived growth factor B gene ...

    African Journals Online (AJOL)

    Shayesteh Rezayani

    2017-04-21

    Apr 21, 2017 ... susceptibility and environmental risk factors and their interactions. [1] and starts .... Germany) as internal control, and 30 lM of each specific primer. (Eurofins .... thank the Arya Tina Gene company for recruiting study subjects.

  15. Eukaryotic DNA Replicases

    KAUST Repository

    Zaher, Manal S.; Oke, Muse; Hamdan, Samir

    2014-01-01

    The current model of the eukaryotic DNA replication fork includes three replicative DNA polymerases, polymerase α/primase complex (Pol α), polymerase δ (Pol δ), and polymerase ε (Pol ε). The primase synthesizes 8–12 nucleotide RNA primers that are extended by the DNA polymerization activity of Pol α into 30–35 nucleotide RNA-DNA primers. Replication factor C (RFC) opens the polymerase clamp-like processivity factor, proliferating cell nuclear antigen (PCNA), and loads it onto the primer-template. Pol δ utilizes PCNA to mediate highly processive DNA synthesis, while Pol ε has intrinsic high processivity that is modestly stimulated by PCNA. Pol ε replicates the leading strand and Pol δ replicates the lagging strand in a division of labor that is not strict. The three polymerases are comprised of multiple subunits and share unifying features in their large catalytic and B subunits. The remaining subunits are evolutionarily not related and perform diverse functions. The catalytic subunits are members of family B, which are distinguished by their larger sizes due to inserts in their N- and C-terminal regions. The sizes of these inserts vary among the three polymerases, and their functions remain largely unknown. Strikingly, the quaternary structures of Pol α, Pol δ, and Pol ε are arranged similarly. The catalytic subunits adopt a globular structure that is linked via its conserved C-terminal region to the B subunit. The remaining subunits are linked to the catalytic and B subunits in a highly flexible manner.

  16. Eukaryotic DNA Replicases

    KAUST Repository

    Zaher, Manal S.

    2014-11-21

    The current model of the eukaryotic DNA replication fork includes three replicative DNA polymerases, polymerase α/primase complex (Pol α), polymerase δ (Pol δ), and polymerase ε (Pol ε). The primase synthesizes 8–12 nucleotide RNA primers that are extended by the DNA polymerization activity of Pol α into 30–35 nucleotide RNA-DNA primers. Replication factor C (RFC) opens the polymerase clamp-like processivity factor, proliferating cell nuclear antigen (PCNA), and loads it onto the primer-template. Pol δ utilizes PCNA to mediate highly processive DNA synthesis, while Pol ε has intrinsic high processivity that is modestly stimulated by PCNA. Pol ε replicates the leading strand and Pol δ replicates the lagging strand in a division of labor that is not strict. The three polymerases are comprised of multiple subunits and share unifying features in their large catalytic and B subunits. The remaining subunits are evolutionarily not related and perform diverse functions. The catalytic subunits are members of family B, which are distinguished by their larger sizes due to inserts in their N- and C-terminal regions. The sizes of these inserts vary among the three polymerases, and their functions remain largely unknown. Strikingly, the quaternary structures of Pol α, Pol δ, and Pol ε are arranged similarly. The catalytic subunits adopt a globular structure that is linked via its conserved C-terminal region to the B subunit. The remaining subunits are linked to the catalytic and B subunits in a highly flexible manner.

  17. Inorganic phosphate uptake in unicellular eukaryotes.

    Science.gov (United States)

    Dick, Claudia F; Dos-Santos, André L A; Meyer-Fernandes, José R

    2014-07-01

    Inorganic phosphate (Pi) is an essential nutrient for all organisms. The route of Pi utilization begins with Pi transport across the plasma membrane. Here, we analyzed the gene sequences and compared the biochemical profiles, including kinetic and modulator parameters, of Pi transporters in unicellular eukaryotes. The objective of this review is to evaluate the recent findings regarding Pi uptake mechanisms in microorganisms, such as the fungi Neurospora crassa and Saccharomyces cerevisiae and the parasite protozoans Trypanosoma cruzi, Trypanosoma rangeli, Leishmania infantum and Plasmodium falciparum. Pi uptake is the key step of Pi homeostasis and in the subsequent signaling event in eukaryotic microorganisms. Biochemical and structural studies are important for clarifying mechanisms of Pi homeostasis, as well as Pi sensor and downstream pathways, and raise possibilities for future studies in this field. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Adenovirus-derived vectors for prostate cancer gene therapy

    Czech Academy of Sciences Publication Activity Database

    de Vrij, J.; Willemsen, R. A.; Lindholm, L.; Hoeben, R. C.; Bangma, Ch. H.; Barber, Ch.; Behr, J.-P.; Briggs, S.; Carlisle, R.; Cheng, W.-S.; Dautzenberg, I. J. C.; de Ridder, C.; Dzojic, H.; Erbacher, P.; Essand, M.; Fisher, K.; Frazier, A.; Georgopoulos, L. J.; Jennings, I.; Kochanek, S.; Koppers-Lalic, D.; Kraaij, R.; Kreppel, F.; Magnusson, M.; Maitland, N.; Neuberg, P.; Nugent, R.; Ogris, M.; Remy, J.-S.; Scaife, M.; Schenk, E.; Schooten, E.; Seymour, L.; Slade, M.; Szyjanowicz, P.; Totterman, T.; Uil, T. G.; Ulbrich, Karel; van der Weel, L.; van Weerden, W.; Wagner, E.; Zuber, G.

    2010-01-01

    Roč. 21, č. 7 (2010), s. 795-805 ISSN 1043-0342 EU Projects: European Commission(XE) 512087 - GIANT Keywords : adenovirus * gene delivery * prostate cancer Subject RIV: CD - Macromolecular Chemistry Impact factor: 4.829, year: 2010

  19. Congenital diaphragmatic hernia candidate genes derived from embryonic transcriptomes

    DEFF Research Database (Denmark)

    Russell, Meaghan K; Longoni, Mauro; Wells, Julie

    2012-01-01

    Congenital diaphragmatic hernia (CDH) is a common (1 in 3,000 live births) major congenital malformation that results in significant morbidity and mortality. The discovery of CDH loci using standard genetic approaches has been hindered by its genetic heterogeneity. We hypothesized that gene...

  20. Potential of industrial biotechnology with cyanobacteria and eukaryotic microalgae.

    Science.gov (United States)

    Wijffels, René H; Kruse, Olaf; Hellingwerf, Klaas J

    2013-06-01

    Both cyanobacteria and eukaryotic microalgae are promising organisms for sustainable production of bulk products such as food, feed, materials, chemicals and fuels. In this review we will summarize the potential and current biotechnological developments. Cyanobacteria are promising host organisms for the production of small molecules that can be secreted such as ethanol, butanol, fatty acids and other organic acids. Eukaryotic microalgae are interesting for products for which cellular storage is important such as proteins, lipids, starch and alkanes. For the development of new and promising lines of production, strains of both cyanobacteria and eukaryotic microalgae have to be improved. Transformation systems have been much better developed in cyanobacteria. However, several products would be preferably produced with eukaryotic microalgae. In the case of cyanobacteria a synthetic-systems biology approach has a great potential to exploit cyanobacteria as cell factories. For eukaryotic microalgae transformation systems need to be further developed. A promising strategy is transformation of heterologous (prokaryotic and eukaryotic) genes in established eukaryotic hosts such as Chlamydomonas reinhardtii. Experimental outdoor pilots under containment for the production of genetically modified cyanobacteria and microalgae are in progress. For full scale production risks of release of genetically modified organisms need to be assessed. Copyright © 2013. Published by Elsevier Ltd.

  1. A eukaryotic-acquired gene by a biotrophic phytopathogen allows prolonged survival on the host by counteracting the shut-down of plant photosynthesis

    KAUST Repository

    Garavaglia, Betiana S.

    2010-01-28

    Xanthomonas citri pv. citri, the bacteria responsible for citrus canker posses a biological active plant natriuretic peptide (PNP)-like protein, not present in any other bacteria. PNPs are a class of extracellular, systemically mobile peptides that elicit a number of plant responses important in homeostasis and growth. Previously, we showed that a Xanthomonas citri pv. citri mutant lacking the PNP-like protein XacPNP produced more necrotic lesions in citrus leaves than wild type infections and suggested a role for XacPNP in the regulation of host homeostasis. Here we have analyzed the proteome modifications observed in citrus leaves infected with the wild type and XacPNP deletion mutant bacteria. While both of them cause downregulation of enzymes related to photosynthesis as well as chloroplastic ribosomal proteins, proteins related to defense responses are up-regulated. However, leaves infiltrated with the XacPNP deletion mutant show a more pronounced decrease in photosynthetic proteins while no reduction in defense related proteins as compared to the wild-type pathogen. This suggests that XacPNP serves the pathogen to maintain host photosynthetic efficiency during pathogenesis. The results from the proteomics analyses are consistent with our chlorophyll fluorescence data and transcript analyses of defense genes that show a more marked reduction in photosynthesis in the mutant but no difference in the induction of genes diagnostic for biotic-stress responses. We therefore conclude that XacPNP counteracts the shut-down of host photosynthesis during infection and in that way maintains the tissue in better conditions, suggesting that the pathogen has adapted a host gene to modify its natural host and render it a better reservoir for prolonged bacterial survival and thus for further colonization. 2010 Garavaglia et al.

  2. A eukaryotic-acquired gene by a biotrophic phytopathogen allows prolonged survival on the host by counteracting the shut-down of plant photosynthesis.

    Science.gov (United States)

    Garavaglia, Betiana S; Thomas, Ludivine; Gottig, Natalia; Dunger, Germán; Garofalo, Cecilia G; Daurelio, Lucas D; Ndimba, Bongani; Orellano, Elena G; Gehring, Chris; Ottado, Jorgelina

    2010-01-28

    Xanthomonas citri pv. citri, the bacteria responsible for citrus canker posses a biological active plant natriuretic peptide (PNP)-like protein, not present in any other bacteria. PNPs are a class of extracellular, systemically mobile peptides that elicit a number of plant responses important in homeostasis and growth. Previously, we showed that a Xanthomonas citri pv. citri mutant lacking the PNP-like protein XacPNP produced more necrotic lesions in citrus leaves than wild type infections and suggested a role for XacPNP in the regulation of host homeostasis. Here we have analyzed the proteome modifications observed in citrus leaves infected with the wild type and XacPNP deletion mutant bacteria. While both of them cause down-regulation of enzymes related to photosynthesis as well as chloroplastic ribosomal proteins, proteins related to defense responses are up-regulated. However, leaves infiltrated with the XacPNP deletion mutant show a more pronounced decrease in photosynthetic proteins while no reduction in defense related proteins as compared to the wild-type pathogen. This suggests that XacPNP serves the pathogen to maintain host photosynthetic efficiency during pathogenesis. The results from the proteomics analyses are consistent with our chlorophyll fluorescence data and transcript analyses of defense genes that show a more marked reduction in photosynthesis in the mutant but no difference in the induction of genes diagnostic for biotic-stress responses. We therefore conclude that XacPNP counteracts the shut-down of host photosynthesis during infection and in that way maintains the tissue in better conditions, suggesting that the pathogen has adapted a host gene to modify its natural host and render it a better reservoir for prolonged bacterial survival and thus for further colonization.

  3. A eukaryotic-acquired gene by a biotrophic phytopathogen allows prolonged survival on the host by counteracting the shut-down of plant photosynthesis.

    Directory of Open Access Journals (Sweden)

    Betiana S Garavaglia

    Full Text Available Xanthomonas citri pv. citri, the bacteria responsible for citrus canker posses a biological active plant natriuretic peptide (PNP-like protein, not present in any other bacteria. PNPs are a class of extracellular, systemically mobile peptides that elicit a number of plant responses important in homeostasis and growth. Previously, we showed that a Xanthomonas citri pv. citri mutant lacking the PNP-like protein XacPNP produced more necrotic lesions in citrus leaves than wild type infections and suggested a role for XacPNP in the regulation of host homeostasis. Here we have analyzed the proteome modifications observed in citrus leaves infected with the wild type and XacPNP deletion mutant bacteria. While both of them cause down-regulation of enzymes related to photosynthesis as well as chloroplastic ribosomal proteins, proteins related to defense responses are up-regulated. However, leaves infiltrated with the XacPNP deletion mutant show a more pronounced decrease in photosynthetic proteins while no reduction in defense related proteins as compared to the wild-type pathogen. This suggests that XacPNP serves the pathogen to maintain host photosynthetic efficiency during pathogenesis. The results from the proteomics analyses are consistent with our chlorophyll fluorescence data and transcript analyses of defense genes that show a more marked reduction in photosynthesis in the mutant but no difference in the induction of genes diagnostic for biotic-stress responses. We therefore conclude that XacPNP counteracts the shut-down of host photosynthesis during infection and in that way maintains the tissue in better conditions, suggesting that the pathogen has adapted a host gene to modify its natural host and render it a better reservoir for prolonged bacterial survival and thus for further colonization.

  4. A eukaryotic-acquired gene by a biotrophic phytopathogen allows prolonged survival on the host by counteracting the shut-down of plant photosynthesis

    KAUST Repository

    Garavaglia, Betiana S.; Thomas, Ludivine; Gottig, Natalia; Dunger, Germá n; Garofalo, Cecilia G.; Daurelio, Lucas D.; Ndimba, Bongani; Orellano, Elena G.; Gehring, Christoph A; Ottado, Jorgelina

    2010-01-01

    Xanthomonas citri pv. citri, the bacteria responsible for citrus canker posses a biological active plant natriuretic peptide (PNP)-like protein, not present in any other bacteria. PNPs are a class of extracellular, systemically mobile peptides that elicit a number of plant responses important in homeostasis and growth. Previously, we showed that a Xanthomonas citri pv. citri mutant lacking the PNP-like protein XacPNP produced more necrotic lesions in citrus leaves than wild type infections and suggested a role for XacPNP in the regulation of host homeostasis. Here we have analyzed the proteome modifications observed in citrus leaves infected with the wild type and XacPNP deletion mutant bacteria. While both of them cause downregulation of enzymes related to photosynthesis as well as chloroplastic ribosomal proteins, proteins related to defense responses are up-regulated. However, leaves infiltrated with the XacPNP deletion mutant show a more pronounced decrease in photosynthetic proteins while no reduction in defense related proteins as compared to the wild-type pathogen. This suggests that XacPNP serves the pathogen to maintain host photosynthetic efficiency during pathogenesis. The results from the proteomics analyses are consistent with our chlorophyll fluorescence data and transcript analyses of defense genes that show a more marked reduction in photosynthesis in the mutant but no difference in the induction of genes diagnostic for biotic-stress responses. We therefore conclude that XacPNP counteracts the shut-down of host photosynthesis during infection and in that way maintains the tissue in better conditions, suggesting that the pathogen has adapted a host gene to modify its natural host and render it a better reservoir for prolonged bacterial survival and thus for further colonization. 2010 Garavaglia et al.

  5. DNA mismatch repair and its many roles in eukaryotic cells

    DEFF Research Database (Denmark)

    Liu, Dekang; Keijzers, Guido; Rasmussen, Lene Juel

    2017-01-01

    in the clinic, and as a biomarker of cancer susceptibility in animal model systems. Prokaryotic MMR is well-characterized at the molecular and mechanistic level; however, MMR is considerably more complex in eukaryotic cells than in prokaryotic cells, and in recent years, it has become evident that MMR plays...... novel roles in eukaryotic cells, several of which are not yet well-defined or understood. Many MMR-deficient human cancer cells lack mutations in known human MMR genes, which strongly suggests that essential eukaryotic MMR components/cofactors remain unidentified and uncharacterized. Furthermore......, the mechanism by which the eukaryotic MMR machinery discriminates between the parental (template) and the daughter (nascent) DNA strand is incompletely understood and how cells choose between the EXO1-dependent and the EXO1–independent subpathways of MMR is not known. This review summarizes recent literature...

  6. Conservation and Variability of Meiosis Across the Eukaryotes.

    Science.gov (United States)

    Loidl, Josef

    2016-11-23

    Comparisons among a variety of eukaryotes have revealed considerable variability in the structures and processes involved in their meiosis. Nevertheless, conventional forms of meiosis occur in all major groups of eukaryotes, including early-branching protists. This finding confirms that meiosis originated in the common ancestor of all eukaryotes and suggests that primordial meiosis may have had many characteristics in common with conventional extant meiosis. However, it is possible that the synaptonemal complex and the delicate crossover control related to its presence were later acquisitions. Later still, modifications to meiotic processes occurred within different groups of eukaryotes. Better knowledge on the spectrum of derived and uncommon forms of meiosis will improve our understanding of many still mysterious aspects of the meiotic process and help to explain the evolutionary basis of functional adaptations to the meiotic program.

  7. Archaeal “Dark Matter” and the Origin of Eukaryotes

    Science.gov (United States)

    Williams, Tom A.; Embley, T. Martin

    2014-01-01

    Current hypotheses about the history of cellular life are mainly based on analyses of cultivated organisms, but these represent only a small fraction of extant biodiversity. The sequencing of new environmental lineages therefore provides an opportunity to test, revise, or reject existing ideas about the tree of life and the origin of eukaryotes. According to the textbook three domains hypothesis, the eukaryotes emerge as the sister group to a monophyletic Archaea. However, recent analyses incorporating better phylogenetic models and an improved sampling of the archaeal domain have generally supported the competing eocyte hypothesis, in which core genes of eukaryotic cells originated from within the Archaea, with important implications for eukaryogenesis. Given this trend, it was surprising that a recent analysis incorporating new genomes from uncultivated Archaea recovered a strongly supported three domains tree. Here, we show that this result was due in part to the use of a poorly fitting phylogenetic model and also to the inclusion by an automated pipeline of genes of putative bacterial origin rather than nucleocytosolic versions for some of the eukaryotes analyzed. When these issues were resolved, analyses including the new archaeal lineages placed core eukaryotic genes within the Archaea. These results are consistent with a number of recent studies in which improved archaeal sampling and better phylogenetic models agree in supporting the eocyte tree over the three domains hypothesis. PMID:24532674

  8. Analysis of mammary specific gene locus regulation in differentiated cells derived by somatic cell fusion

    International Nuclear Information System (INIS)

    Robinson, Claire; Kolb, Andreas F.

    2009-01-01

    The transcriptional regulation of a gene is best analysed in the context of its normal chromatin surroundings. However, most somatic cells, in contrast to embryonic stem cells, are refractory to accurate modification by homologous recombination. We show here that it is possible to introduce precise genomic modifications in ES cells and to analyse the phenotypic consequences in differentiated cells by using a combination of gene targeting, site-specific recombination and somatic cell fusion. To provide a proof of principle, we have analysed the regulation of the casein gene locus in mammary gland cells derived from modified murine ES cells by somatic cell fusion. A β-galactosidase reporter gene was inserted in place of the β-casein gene and the modified ES cells, which do not express the reporter gene, were fused with the mouse mammary gland cell line HC11. The resulting cell clones expressed the β-galactosidase gene to a similar extent and with similar hormone responsiveness as the endogenous gene. However, a reporter gene under the control of a minimal β-casein promoter (encompassing the two consensus STAT5 binding sites which mediate the hormone response of the casein genes) was unable to replicate expression levels or hormone responsiveness of the endogenous gene when inserted into the same site of the casein locus. As expected, these results implicate sequences other than the STAT5 sites in the regulation of the β-casein gene

  9. The Roles and Evolutionary Patterns of Intronless Genes in Deuterostomes

    Directory of Open Access Journals (Sweden)

    Ming Zou

    2011-01-01

    Full Text Available Genes without introns are a characteristic feature of prokaryotes, but there are still a number of intronless genes in eukaryotes. To study these eukaryotic genes that have prokaryotic architecture could help to understand the evolutionary patterns of related genes and genomes. Our analyses revealed a number of intronless genes that reside in 6 deuterostomes (sea urchin, sea squirt, zebrafish, chicken, platypus, and human. We also determined the conservation for each intronless gene in archaea, bacteria, fungi, plants, metazoans, and other eukaryotes. Proportions of intronless genes that are inherited from the common ancestor of archaea, bacteria, and eukaryotes in these species were consistent with their phylogenetic positions, with more proportions of ancient intronless genes residing in more primitive species. In these species, intronless genes belong to different cellular roles and gene ontology (GO categories, and some of these functions are very basic. Part of intronless genes is derived from other intronless genes or multiexon genes in each species. In conclusion, we showed that a varying number and proportion of intronless genes reside in these 6 deuterostomes, and some of them function importantly. These genes are good candidates for subsequent functional and evolutionary analyses specifically.

  10. Eukaryotic transcription factors

    DEFF Research Database (Denmark)

    Staby, Lasse; O'Shea, Charlotte; Willemoës, Martin

    2017-01-01

    Gene-specific transcription factors (TFs) are key regulatory components of signaling pathways, controlling, for example, cell growth, development, and stress responses. Their biological functions are determined by their molecular structures, as exemplified by their structured DNA-binding domains...... regions with function-related, short sequence motifs and molecular recognition features with structural propensities. This review focuses on molecular aspects of TFs, which represent paradigms of ID-related features. Through specific examples, we review how the ID-associated flexibility of TFs enables....... It is furthermore emphasized how classic biochemical concepts like allostery, conformational selection, induced fit, and feedback regulation are undergoing a revival with the appreciation of ID. The review also describes the most recent advances based on computational simulations of ID-based interaction mechanisms...

  11. Compositional patterns in the genomes of unicellular eukaryotes.

    Science.gov (United States)

    Costantini, Maria; Alvarez-Valin, Fernando; Costantini, Susan; Cammarano, Rosalia; Bernardi, Giorgio

    2013-11-05

    The genomes of multicellular eukaryotes are compartmentalized in mosaics of isochores, large and fairly homogeneous stretches of DNA that belong to a small number of families characterized by different average GC levels, by different gene concentration (that increase with GC), different chromatin structures, different replication timing in the cell cycle, and other different properties. A question raised by these basic results concerns how far back in evolution the compartmentalized organization of the eukaryotic genomes arose. In the present work we approached this problem by studying the compositional organization of the genomes from the unicellular eukaryotes for which full sequences are available, the sample used being representative. The average GC levels of the genomes from unicellular eukaryotes cover an extremely wide range (19%-60% GC) and the compositional patterns of individual genomes are extremely different but all genomes tested show a compositional compartmentalization. The average GC range of the genomes of unicellular eukaryotes is very broad (as broad as that of prokaryotes) and individual compositional patterns cover a very broad range from very narrow to very complex. Both features are not surprising for organisms that are very far from each other both in terms of phylogenetic distances and of environmental life conditions. Most importantly, all genomes tested, a representative sample of all supergroups of unicellular eukaryotes, are compositionally compartmentalized, a major difference with prokaryotes.

  12. Derivation of a triple mosaic adenovirus for cancer gene therapy.

    Directory of Open Access Journals (Sweden)

    Yizhe Tang

    2009-12-01

    Full Text Available A safe and efficacious cancer medicine is necessary due to the increasing population of cancer patients whose particular diseases cannot be cured by the currently available treatment. Adenoviral (Ad vectors represent a promising therapeutic medicine for human cancer therapy. However, several improvements are needed in order for Ad vectors to be effective cancer therapeutics, which include, but are not limited to, improvement of cellular uptake, enhanced cancer cell killing activity, and the capability of vector visualization and tracking once injected into the patients. To this end, we attempted to develop an Ad as a multifunctional platform incorporating targeting, imaging, and therapeutic motifs. In this study, we explored the utility of this proposed platform by generating an Ad vector containing the poly-lysine (pK, the herpes simplex virus type 1 (HSV-1 thymidine kinase (TK, and the monomeric red fluorescent protein (mRFP1 as targeting, tumor cell killing, and imaging motifs, respectively. Our study herein demonstrates the generation of the triple mosaic Ad vector with pK, HSV-1 TK, and mRFP1 at the carboxyl termini of Ad minor capsid protein IX (pIX. In addition, the functionalities of pK, HSV-1 TK, and mRFP1 proteins on the Ad vector were retained as confirmed by corresponding functional assays, indicating the potential multifunctional application of this new Ad vector for cancer gene therapy. The validation of the triple mosaic Ad vectors also argues for the ability of pIX modification as a base for the development of multifunctional Ad vectors.

  13. Glycoprotein is enough for sindbis virus-derived DNA vector to express heterogenous genes

    Directory of Open Access Journals (Sweden)

    Fu Juanjuan

    2011-07-01

    Full Text Available Abstract To investigate the necessity and potential application of structural genes for expressing heterogenous genes from Sindbis virus-derived vector, the DNA-based expression vector pVaXJ was constructed by placing the recombinant genome of sindbis-like virus XJ-160 under the control of the human cytomegalovirus (CMV promoter of the plasmid pVAX1, in which viral structural genes were replaced by a polylinker cassette to allow for insertion of heterologous genes. The defect helper plasmids pVaE or pVaC were developed by cloning the gene of glycoprotein E3E26KE1 or capsid protein of XJ-160 virus into pVAX1, respectively. The report gene cassette pVaXJ-EGFP or pV-Gluc expressing enhanced green fluorescence protein (EGFP or Gaussia luciferase (G.luc were constructed by cloning EGFP or G.luc gene into pVaXJ. EGFP or G.luc was expressed in the BHK-21 cells co-transfected with report gene cassettes and pVaE at levels that were comparable to those produced by report gene cassettes, pVaC and pVaE and were much higher than the levels produced by report gene cassette and pVaC, suggesting that glycoprotein is enough for Sindbis virus-derived DNA vector to express heterogenous genes in host cells. The method of gene expression from Sindbis virus-based DNA vector only co-transfected with envelop E gene increase the conveniency and the utility of alphavirus-based vector systems in general.

  14. Ex-Vivo Gene Therapy Using Lentiviral Mediated Gene Transfer Into Umbilical Cord Blood Derived Stem Cells

    Directory of Open Access Journals (Sweden)

    Hanieh Jalali

    2016-02-01

    Full Text Available Background Introduction of therapeutic genes into the injured site of nervous system can be achieved using transplantation of cellular vehicles containing desired gene. To transfer exogenous genes into the cellular vehicles, lentiviral vectors are one of interested vectors because of advantages such high transduction efficiency of dividing and non-dividing cells. Unrestricted somatic stem cells are subclasses of umbilical cord blood derived stem cells which are appreciate candidates to use as cellular vehicles for ex vivo gene therapy of nervous system. Objectives In current study we investigated the effect of lentiviral vector transduction on the neuronal related features of unrestricted somatic stem cells to indicate the probable and unwanted changes related to transduction procedure. Materials and Methods In this experimental study, lentiviral vector containing green fluorescent protein (GFP were transduced into unrestricted somatic stem cells and its effect was investigated with using MTT assay, qPCR and immunohistochemistry techniques. For statistical comparison of real time PCR results, REST software (2009, Qiagen was used. Results Obtained results showed lentiviral vector transduction did not have cytotoxic effects on unrestricted somatic stem cells and did not change neuronal differentiation capacity of them as well the expression of some neuronal related genes and preserved them in multilineage situation. Conclusions In conclusion, we suggested that lentiviral vectors could be proper vectors to transfer therapeutic gene into unrestricted somatic stem cells to provide a cellular vehicle for ex vivo gene therapy of nervous system disorders.

  15. Design and application of cationic amphiphilic β-cyclodextrin derivatives as gene delivery vectors

    Science.gov (United States)

    Wan, Ning; Huan, Meng-Lei; Ma, Xi-Xi; Jing, Zi-Wei; Zhang, Ya-Xuan; Li, Chen; Zhou, Si-Yuan; Zhang, Bang-Le

    2017-11-01

    The nano self-assembly profiles of amphiphilic gene delivery vectors could improve the density of local cationic head groups to promote their DNA condensation capability and enhance the interaction between cell membrane and hydrophobic tails, thus increasing cellular uptake and gene transfection. In this paper, two series of cationic amphiphilic β-cyclodextrin (β-CD) derivatives were designed and synthesized by using 6-mono-OTs-β-CD (1) as the precursor to construct amphiphilic gene vectors with different building blocks in a selective and controlled manner. The effect of different type and degree of cationic head groups on transfection and the endocytic mechanism of β-CD derivatives/DNA nanocomplexes were also investigated. The results demonstrated that the designed β-cyclodextrin derivatives were able to compact DNA to form stable nanocomplexes and exhibited low cytotoxicity. Among them, PEI-1 with PEI head group showed enhanced transfection activity, significantly higher than commercially available agent PEI25000 especially in the presence of serum, showing potential application prospects in clinical trials. Moreover, the endocytic uptake mechanism involved in the gene transfection of PEI-1 was mainly through caveolae-mediated endocytosis, which could avoid the lysosomal degradation of loaded gene, and had great importance for improving gene transfection activity.

  16. Transcriptome-Derived Tetranucleotide Microsatellites and Their Associated Genes from the Giant Panda (Ailuropoda melanoleuca).

    Science.gov (United States)

    Song, Xuhao; Shen, Fujun; Huang, Jie; Huang, Yan; Du, Lianming; Wang, Chengdong; Fan, Zhenxin; Hou, Rong; Yue, Bisong; Zhang, Xiuyue

    2016-09-01

    Recently, an increasing number of microsatellites or simple sequence repeats (SSRs) have been found and characterized from transcriptomes. Such SSRs can be employed as putative functional markers to easily tag corresponding genes, which play an important role in biomedical studies and genetic analysis. However, the transcriptome-derived SSRs for giant panda (Ailuropoda melanoleuca) are not yet available. In this work, we identified and characterized 20 tetranucleotide microsatellite loci from a transcript database generated from the blood of giant panda. Furthermore, we assigned their predicted transcriptome locations: 16 loci were assigned to untranslated regions (UTRs) and 4 loci were assigned to coding regions (CDSs). Gene identities of 14 transcripts contained corresponding microsatellites were determined, which provide useful information to study the potential contribution of SSRs to gene regulation in giant panda. The polymorphic information content (PIC) values ranged from 0.293 to 0.789 with an average of 0.603 for the 16 UTRs-derived SSRs. Interestingly, 4 CDS-derived microsatellites developed in our study were also polymorphic, and the instability of these 4 CDS-derived SSRs was further validated by re-genotyping and sequencing. The genes containing these 4 CDS-derived SSRs were embedded with various types of repeat motifs. The interaction of all the length-changing SSRs might provide a way against coding region frameshift caused by microsatellite instability. We hope these newly gene-associated biomarkers will pave the way for genetic and biomedical studies for giant panda in the future. In sum, this set of transcriptome-derived markers complements the genetic resources available for giant panda. © The American Genetic Association. 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  17. Characterization of prokaryotic and eukaryotic promoters usinghidden Markov models

    DEFF Research Database (Denmark)

    Pedersen, Anders Gorm; Baldi, Pierre; Brunak, Søren

    1996-01-01

    In this paper we utilize hidden Markov models (HMMs) and information theory to analyze prokaryotic and eukaryotic promoters. We perform this analysis with special emphasis on the fact that promoters are divided into a number of different classes, depending on which polymerase-associated factors...... that bind to them. We find that HMMs trained on such subclasses of Escherichia coli promoters (specifically, the so-called sigma-70 and sigma-54 classes) give an excellent classification of unknown promoters with respect to sigma-class. HMMs trained on eukaryotic sequences from human genes also model nicely...

  18. Characterization of prokaryotic and eukaryotic promoters using hidden Markov models

    DEFF Research Database (Denmark)

    Pedersen, Anders Gorm; Baldi, P.; Chauvin, Y.

    1996-01-01

    In this paper we utilize hidden Markov models (HMMs) and information theory to analyze prokaryotic and eukaryotic promoters. We perform this analysis with special emphasis on the fact that promoters are divided into a number of different classes, depending on which polymerase-associated factors...... that bind to them. We find that HMMs trained on such subclasses of Escherichia coli promoters (specifically, the so-called sigma 70 and sigma 54 classes) give an excellent classification of unknown promoters with respect to sigma-class. HMMs trained on eukaryotic sequences from human genes also model nicely...

  19. Genetic control of eosinophilia in mice: gene(s) expressed in bone marrow-derived cells control high responsiveness

    International Nuclear Information System (INIS)

    Vadas, M.A.

    1982-01-01

    A heterogeneity in the capacity of strains of mice to mount eosinophilia is described. BALB/c and C3H are eosinophil high responder strains (EO-HR) and CBA and A/J are eosinophil low responder strains (EO-LR), judged by the response of blood eosinophils to Ascaris suum, and the response of blood, bone marrow, and spleen eosinophils to keyhole limpet hemocyanin given 2 days after 150 mg/kg cyclophosphamide. Some of the gene(s) for high responsiveness appear to be dominant because (EO-HR x EO-LR)F 1 mice were intermediate to high responders. This gene is expressed in bone marrow-derived cells because radiation chimeras of the type EO-HR→F 1 were high responders and EO-LR→F 1 were low responders. This description of a genetic control of eosinophilia in mice may be useful in understanding the role of this cell in parasite immunity and allergy

  20. Development of a gene silencing DNA vector derived from a broad host range geminivirus

    Directory of Open Access Journals (Sweden)

    Hancock Leandria C

    2009-07-01

    Full Text Available Abstract Background Gene silencing is proving to be a powerful tool for genetic, developmental, and physiological analyses. The use of viral induced gene silencing (VIGS offers advantages to transgenic approaches as it can be potentially applied to non-model systems for which transgenic techniques are not readily available. However, many VIGS vectors are derived from Gemini viruses that have limited host ranges. We present a new, unipartite vector that is derived from a curtovirus that has a broad host range and will be amenable to use in many non-model systems. Results The construction of a gene silencing vector derived from the geminivirus Beet curly top virus (BCTV, named pWSRi, is reported. Two versions of the vector have been developed to allow application by biolistic techniques or by agro-infiltration. We demonstrate its ability to silence nuclear genes including ribulose bisphosphate carboxylase small subunit (rbcS, transketolase, the sulfur allele of magnesium chelatase (ChlI, and two homeotic transcription factors in spinach or tomato by generating gene-specific knock-down phenotypes. Onset of phenotypes occurred 3 to 12 weeks post-inoculation, depending on the target gene, in organs that developed after the application. The vector lacks movement genes and we found no evidence for significant spread from the site of inoculation. However, viral amplification in inoculated tissue was detected and is necessary for systemic silencing, suggesting that signals generated from active viral replicons are efficiently transported within the plant. Conclusion The unique properties of the pWSRi vector, the ability to silence genes in meristem tissue, the separation of virus and silencing phenotypes, and the broad natural host range of BCTV, suggest that it will have wide utility.

  1. RNA Export through the NPC in Eukaryotes.

    Science.gov (United States)

    Okamura, Masumi; Inose, Haruko; Masuda, Seiji

    2015-03-20

    In eukaryotic cells, RNAs are transcribed in the nucleus and exported to the cytoplasm through the nuclear pore complex. The RNA molecules that are exported from the nucleus into the cytoplasm include messenger RNAs (mRNAs), ribosomal RNAs (rRNAs), transfer RNAs (tRNAs), small nuclear RNAs (snRNAs), micro RNAs (miRNAs), and viral mRNAs. Each RNA is transported by a specific nuclear export receptor. It is believed that most of the mRNAs are exported by Nxf1 (Mex67 in yeast), whereas rRNAs, snRNAs, and a certain subset of mRNAs are exported in a Crm1/Xpo1-dependent manner. tRNAs and miRNAs are exported by Xpot and Xpo5. However, multiple export receptors are involved in the export of some RNAs, such as 60S ribosomal subunit. In addition to these export receptors, some adapter proteins are required to export RNAs. The RNA export system of eukaryotic cells is also used by several types of RNA virus that depend on the machineries of the host cell in the nucleus for replication of their genome, therefore this review describes the RNA export system of two representative viruses. We also discuss the NPC anchoring-dependent mRNA export factors that directly recruit specific genes to the NPC.

  2. Identification of specific gene expression profiles in fibroblasts derived from middle ear cholesteatoma.

    Science.gov (United States)

    Yoshikawa, Mamoru; Kojima, Hiromi; Wada, Kota; Tsukidate, Toshiharu; Okada, Naoko; Saito, Hirohisa; Moriyama, Hiroshi

    2006-07-01

    To investigate the role of fibroblasts in the pathogenesis of cholesteatoma. Tissue specimens were obtained from our patients. Middle ear cholesteatoma-derived fibroblasts (MECFs) and postauricular skin-derived fibroblasts (SFs) as controls were then cultured for a few weeks. These fibroblasts were stimulated with interleukin (IL) 1alpha and/or IL-1beta before gene expression assays. We used the human genome U133A probe array (GeneChip) and real-time polymerase chain reaction to examine and compare the gene expression profiles of the MECFs and SFs. Six patients who had undergone tympanoplasty. The IL-1alpha-regulated genes were classified into 4 distinct clusters on the basis of profiles differentially regulated by SF and MECF using a hierarchical clustering analysis. The messenger RNA expressions of LARC (liver and activation-regulated chemokine), GMCSF (granulocyte-macrophage colony-stimulating factor), epiregulin, ICAM1 (intercellular adhesion molecule 1), and TGFA (transforming growth factor alpha) were more strongly up-regulated by IL-1alpha and/or IL-1beta in MECF than in SF, suggesting that these fibroblasts derived from different tissues retained their typical gene expression profiles. Fibroblasts may play a role in hyperkeratosis of middle ear cholesteatoma by releasing molecules involved in inflammation and epidermal growth. These fibroblasts may retain tissue-specific characteristics presumably controlled by epigenetic mechanisms.

  3. Gonococcal attachment to eukaryotic cells

    International Nuclear Information System (INIS)

    James, J.F.; Lammel, C.J.; Draper, D.L.; Brown, D.A.; Sweet, R.L.; Brooks, G.F.

    1983-01-01

    The attachment of Neisseria gonorrhoeae to eukaryotic cells grown in tissue culture was analyzed by use of light and electron microscopy and by labeling of the bacteria with [ 3 H]- and [ 14 C]adenine. Isogenic piliated and nonpiliated N. gonorrhoeae from opaque and transparent colonies were studied. The results of light microscopy studies showed that the gonococci attached to cells of human origin, including Flow 2000, HeLa 229, and HEp 2. Studies using radiolabeled gonococci gave comparable results. Piliated N. gonorrhoeae usually attached in larger numbers than nonpiliated organisms, and those from opaque colonies attached more often than isogenic variants from transparent colonies. Day-to-day variation in rate of attachment was observed. Scanning electron microscopy studies showed the gonococcal attachment to be specific for microvilli of the host cells. It is concluded that more N. gonorrhoeae from opaque colonies, as compared with isogenic variants from transparent colonies, attach to eukaryotic cells grown in tissue culture

  4. Defensins: antifungal lessons from eukaryotes

    Directory of Open Access Journals (Sweden)

    Patrícia M. Silva

    2014-03-01

    Full Text Available Over the last years, antimicrobial peptides (AMPs have been the focus of intense research towards the finding of a viable alternative to current antifungal drugs. Defensins are one of the major families of AMPs and the most represented among all eukaryotic groups, providing an important first line of host defense against pathogenic microorganisms. Several of these cysteine-stabilized peptides present a relevant effect against fungi. Defensins are the AMPs with the broader distribution across all eukaryotic kingdoms, namely, Fungi, Plantæ and Animalia, and were recently shown to have an ancestor in a bacterial organism. As a part of the host defense, defensins act as an important vehicle of information between innate and adaptive immune system and have a role in immunomodulation. This multidimensionality represents a powerful host shield, hard for microorganisms to overcome using single approach resistance strategies. Pathogenic fungi resistance to conventional antimycotic drugs is becoming a major problem. Defensins, as other AMPs, have shown to be an effective alternative to the current antimycotic therapies, demonstrating potential as novel therapeutic agents or drug leads. In this review, we summarize the current knowledge on some eukaryotic defensins with antifungal action. An overview of the main targets in the fungal cell and the mechanism of action of these AMPs (namely, the selectivity for some fungal membrane components are presented. Additionally, recent works on antifungal defensins structure, activity and citotoxicity are also reviewed.

  5. Interaction of tRNA with Eukaryotic Ribosome

    Directory of Open Access Journals (Sweden)

    Dmitri Graifer

    2015-03-01

    Full Text Available This paper is a review of currently available data concerning interactions of tRNAs with the eukaryotic ribosome at various stages of translation. These data include the results obtained by means of cryo-electron microscopy and X-ray crystallography applied to various model ribosomal complexes, site-directed cross-linking with the use of tRNA derivatives bearing chemically or photochemically reactive groups in the CCA-terminal fragment and chemical probing of 28S rRNA in the region of the peptidyl transferase center. Similarities and differences in the interactions of tRNAs with prokaryotic and eukaryotic ribosomes are discussed with concomitant consideration of the extent of resemblance between molecular mechanisms of translation in eukaryotes and bacteria.

  6. Differential reconstructed gene interaction networks for deriving toxicity threshold in chemical risk assessment.

    Science.gov (United States)

    Yang, Yi; Maxwell, Andrew; Zhang, Xiaowei; Wang, Nan; Perkins, Edward J; Zhang, Chaoyang; Gong, Ping

    2013-01-01

    Pathway alterations reflected as changes in gene expression regulation and gene interaction can result from cellular exposure to toxicants. Such information is often used to elucidate toxicological modes of action. From a risk assessment perspective, alterations in biological pathways are a rich resource for setting toxicant thresholds, which may be more sensitive and mechanism-informed than traditional toxicity endpoints. Here we developed a novel differential networks (DNs) approach to connect pathway perturbation with toxicity threshold setting. Our DNs approach consists of 6 steps: time-series gene expression data collection, identification of altered genes, gene interaction network reconstruction, differential edge inference, mapping of genes with differential edges to pathways, and establishment of causal relationships between chemical concentration and perturbed pathways. A one-sample Gaussian process model and a linear regression model were used to identify genes that exhibited significant profile changes across an entire time course and between treatments, respectively. Interaction networks of differentially expressed (DE) genes were reconstructed for different treatments using a state space model and then compared to infer differential edges/interactions. DE genes possessing differential edges were mapped to biological pathways in databases such as KEGG pathways. Using the DNs approach, we analyzed a time-series Escherichia coli live cell gene expression dataset consisting of 4 treatments (control, 10, 100, 1000 mg/L naphthenic acids, NAs) and 18 time points. Through comparison of reconstructed networks and construction of differential networks, 80 genes were identified as DE genes with a significant number of differential edges, and 22 KEGG pathways were altered in a concentration-dependent manner. Some of these pathways were perturbed to a degree as high as 70% even at the lowest exposure concentration, implying a high sensitivity of our DNs approach

  7. Protein N-myristoylation in Escherichia coli: Reconstitution of a eukaryotic protein modification in bacteria

    International Nuclear Information System (INIS)

    Duronio, R.J.; Jackson-Machelski, E.; Heuckeroth, R.O.; Gordon, J.I.; Olins, P.O.; Devine, C.S.; Yonemoto, W.; Slice, L.W.; Taylor, S.S.

    1990-01-01

    Protein N-myristoylation refers to the covalent attachment of a myristoyl group (C14:0), via amide linkage, to the NH 2 -terminal glycine residue of certain cellular and viral proteins. Myristoyl-CoA:protein N-myristoyltransferase (NMT) catalyzes this cotranslational modification. The authors have developed a system for studying the substrate requirements and biological effects of protein N-myristoylation as well as NMT structure-activity relationships. Expression of the yeast NMT1 gene in Escherichia coli, a bacterium that has no endogenous NMT activity, results in production of the intact 53-kDa NMT polypeptide as well as a truncated polypeptide derived from proteolytic removal of its NH 2 -terminal 39 amino acids. By using a dual plasmid system, N-myristoylation of a mammalian protein was reconstituted in E. coli by simultaneous expression of the yeast NMT1 gene and a murine cDNA encoding the catalytic (C) subunit of cAMP-dependent protein kinase (PK-A). A major advantage of the bacterial system over eukaryotic systems is the absence of endogenous NMT and substrates, providing a more straightforward way of preparing myristoylated, analog-substituted, and nonmyristoylated forms of a given protein for comparison of their structural and functional properties. The experimental system may prove useful for recapitulating other eukaryotic protein modifications in E. coli so that structure-activity relationships of modifying enzymes and their substrates can be more readily assessed

  8. Drug-loaded nanoparticles induce gene expression in human pluripotent stem cell derivatives

    Science.gov (United States)

    Gajbhiye, Virendra; Escalante, Leah; Chen, Guojun; Laperle, Alex; Zheng, Qifeng; Steyer, Benjamin; Gong, Shaoqin; Saha, Krishanu

    2013-12-01

    Tissue engineering and advanced manufacturing of human stem cells requires a suite of tools to control gene expression spatiotemporally in culture. Inducible gene expression systems offer cell-extrinsic control, typically through addition of small molecules, but small molecule inducers typically contain few functional groups for further chemical modification. Doxycycline (DXC), a potent small molecule inducer of tetracycline (Tet) transgene systems, was conjugated to a hyperbranched dendritic polymer (Boltorn H40) and subsequently reacted with polyethylene glycol (PEG). The resulting PEG-H40-DXC nanoparticle exhibited pH-sensitive drug release behavior and successfully controlled gene expression in stem-cell-derived fibroblasts with a Tet-On system. While free DXC inhibited fibroblast proliferation and matrix metalloproteinase (MMP) activity, PEG-H40-DXC nanoparticles maintained higher fibroblast proliferation levels and MMP activity. The results demonstrate that the PEG-H40-DXC nanoparticle system provides an effective tool to controlling gene expression in human stem cell derivatives.Tissue engineering and advanced manufacturing of human stem cells requires a suite of tools to control gene expression spatiotemporally in culture. Inducible gene expression systems offer cell-extrinsic control, typically through addition of small molecules, but small molecule inducers typically contain few functional groups for further chemical modification. Doxycycline (DXC), a potent small molecule inducer of tetracycline (Tet) transgene systems, was conjugated to a hyperbranched dendritic polymer (Boltorn H40) and subsequently reacted with polyethylene glycol (PEG). The resulting PEG-H40-DXC nanoparticle exhibited pH-sensitive drug release behavior and successfully controlled gene expression in stem-cell-derived fibroblasts with a Tet-On system. While free DXC inhibited fibroblast proliferation and matrix metalloproteinase (MMP) activity, PEG-H40-DXC nanoparticles maintained

  9. Tissue-specific regulation of mouse MicroRNA genes in endoderm-derived tissues

    OpenAIRE

    Gao, Yan; Schug, Jonathan; McKenna, Lindsay B.; Le Lay, John; Kaestner, Klaus H.; Greenbaum, Linda E.

    2010-01-01

    MicroRNAs fine-tune the activity of hundreds of protein-coding genes. The identification of tissue-specific microRNAs and their promoters has been constrained by the limited sensitivity of prior microRNA quantification methods. Here, we determine the entire microRNAome of three endoderm-derived tissues, liver, jejunum and pancreas, using ultra-high throughput sequencing. Although many microRNA genes are expressed at comparable levels, 162 microRNAs exhibited striking tissue-specificity. After...

  10. Functions and structures of eukaryotic recombination proteins

    International Nuclear Information System (INIS)

    Ogawa, Tomoko

    1994-01-01

    We have found that Rad51 and RecA Proteins form strikingly similar structures together with dsDNA and ATP. Their right handed helical nucleoprotein filaments extend the B-form DNA double helixes to 1.5 times in length and wind the helix. The similarity and uniqueness of their structures must reflect functional homologies between these proteins. Therefore, it is highly probable that similar recombination proteins are present in various organisms of different evolutional states. We have succeeded to clone RAD51 genes from human, mouse, chicken and fission yeast genes, and found that the homologues are widely distributed in eukaryotes. The HsRad51 and MmRad51 or ChRad51 proteins consist of 339 amino acids differing only by 4 or 12 amino acids, respectively, and highly homologous to both yeast proteins, but less so to Dmcl. All of these proteins are homologous to the region from residues 33 to 240 of RecA which was named ''homologous core. The homologous core is likely to be responsible for functions common for all of them, such as the formation of helical nucleoprotein filament that is considered to be involved in homologous pairing in the recombination reaction. The mouse gene is transcribed at a high level in thymus, spleen, testis, and ovary, at lower level in brain and at a further lower level in some other tissues. It is transcribed efficiently in recombination active tissues. A clear functional difference of Rad51 homologues from RecA was suggested by the failure of heterologous genes to complement the deficiency of Scrad51 mutants. This failure seems to reflect the absence of a compatible partner, such as ScRad52 protein in the case of ScRad51 protein, between different species. Thus, these discoveries play a role of the starting point to understand the fundamental gene targeting in mammalian cells and in gene therapy. (J.P.N.)

  11. Gene expression analysis to identify molecular correlates of pre- and post-conditioning derived neuroprotection.

    Science.gov (United States)

    Prasad, Shiv S; Russell, Marsha; Nowakowska, Margeryta; Williams, Andrew; Yauk, Carole

    2012-06-01

    Mild ischaemic exposures before or after severe injurious ischaemia that elicit neuroprotective responses are referred to as preconditioning and post-conditioning. The corresponding molecular mechanisms of neuroprotection are not completely understood. Identification of the genes and associated pathways of corresponding neuroprotection would provide insight into neuronal survival, potential therapeutic approaches and assessments of therapies for stroke. The objectives of this study were to use global gene expression approach to infer the molecular mechanisms in pre- and post-conditioning-derived neuroprotection in cortical neurons following oxygen and glucose deprivation (OGD) in vitro and then to apply these findings to predict corresponding functional pathways. To this end, microarray analysis was applied to rat cortical neurons with or without the pre- and post-conditioning treatments at 3-h post-reperfusion, and differentially expressed transcripts were subjected to statistical, hierarchical clustering and pathway analyses. The expression patterns of 3,431 genes altered under all conditions of ischaemia (with and without pre- or post-conditioning). We identified 1,595 genes that were commonly regulated within both the pre- and post-conditioning treatments. Cluster analysis revealed that transcription profiles clustered tightly within controls, non-conditioned OGD and neuroprotected groups. Two clusters defining neuroprotective conditions associated with up- and downregulated genes were evident. The five most upregulated genes within the neuroprotective clusters were Tagln, Nes, Ptrf, Vim and Adamts9, and the five most downregulated genes were Slc7a3, Bex1, Brunol4, Nrxn3 and Cpne4. Pathway analysis revealed that the intracellular and second messenger signalling pathways in addition to cell death were predominantly associated with downregulated pre- and post-conditioning associated genes, suggesting that modulation of cell death and signal transduction pathways

  12. Study of recombinant proteins derived from Ser-2 gene of Bombyx mori

    OpenAIRE

    STAŠKOVÁ, Tereza

    2012-01-01

    Four different variants of recombinant proteins derived from Bombyx mori Ser-2 gene were expressed in bacteria. The ability of these proteins to coat hydrofobic surfaces and to support growth of various types of adherent cells in vitro were examined. It was shown that these proteins support cell adhesion and proliferation, and could be used as coating agents to realize surfaces suitable for growth of vertebrate and insect cells.

  13. Beta-cell lines derived from transgenic mice expressing a hybrid insulin gene-oncogene

    DEFF Research Database (Denmark)

    Efrat, S; Linde, S; Kofod, Hans

    1988-01-01

    Three pancreatic beta-cell lines have been established from insulinomas derived from transgenic mice carrying a hybrid insulin-promoted simian virus 40 tumor antigen gene. The beta tumor cell (beta TC) lines maintain the features of differentiated beta cells for about 50 passages in culture. The ...... both to immortalize a rare cell type and to provide a selection for the maintenance of its differentiated phenotype....

  14. Liver cell-derived microparticles activate hedgehog signaling and alter gene expression in hepatic endothelial cells.

    Science.gov (United States)

    Witek, Rafal P; Yang, Liu; Liu, Renshui; Jung, Youngmi; Omenetti, Alessia; Syn, Wing-Kin; Choi, Steve S; Cheong, Yeiwon; Fearing, Caitlin M; Agboola, Kolade M; Chen, Wei; Diehl, Anna Mae

    2009-01-01

    Angiogenesis contributes to vascular remodeling during cirrhosis. In cirrhotic livers, cholangiocytes, and myofibroblastic hepatic stellate cells (MF-HSC) produce Hedgehog (Hh) ligands. During embryogenesis Hh ligands are released from ligand-producing cells in microparticles and activate Hh signaling in endothelial cells. We studied whether adult liver cell-derived microparticles contain Hh ligands that alter hepatic sinusoidal endothelial cells (SEC). MF-HSC and cholangiocytes were exposed to platelet-derived growth factor to induce Hh ligands; microparticles were isolated from medium, analyzed by transmission electron microscopy and immunoblots, and applied to Hh-reporter-containing cells. Microparticles were obtained from serum and bile of rats after bile duct ligation (BDL) or sham surgery and applied to normal primary liver SEC with or without cyclopamine, an Hh signaling inhibitor. Effects on SEC gene expression were evaluated by quantitative reverse-transcription polymerase chain reaction and immunoblotting. Hh target gene expression and SEC activation markers were compared in primary SEC and in liver sections from healthy and BDL rats. Platelet-derived growth factor-treated MF-HSC and cholangiocytes released exosome-enriched microparticles containing biologically-active Hh ligands. BDL increased release of Hh-containing exosome-enriched microparticles into plasma and bile. Transmission electron microscopy and immunoblots revealed similarities among microparticles from all sources; all microparticles induced similar Hh-dependent changes in SEC gene expression. SEC from healthy livers did not express Hh target genes or activation markers, but both were up-regulated in SEC after BDL. Hh-containing exosome-enriched microparticles released from liver cells alter hepatic SEC gene expression, suggesting a novel mechanism for cirrhotic vasculopathy.

  15. Elucidating the composition and conservation of the autophagy pathway in photosynthetic eukaryotes

    Science.gov (United States)

    Shemi, Adva; Ben-Dor, Shifra; Vardi, Assaf

    2015-01-01

    Aquatic photosynthetic eukaryotes represent highly diverse groups (green, red, and chromalveolate algae) derived from multiple endosymbiosis events, covering a wide spectrum of the tree of life. They are responsible for about 50% of the global photosynthesis and serve as the foundation for oceanic and fresh water food webs. Although the ecophysiology and molecular ecology of some algal species are extensively studied, some basic aspects of algal cell biology are still underexplored. The recent wealth of genomic resources from algae has opened new frontiers to decipher the role of cell signaling pathways and their function in an ecological and biotechnological context. Here, we took a bioinformatic approach to explore the distribution and conservation of TOR and autophagy-related (ATG) proteins (Atg in yeast) in diverse algal groups. Our genomic analysis demonstrates conservation of TOR and ATG proteins in green algae. In contrast, in all 5 available red algal genomes, we could not detect the sequences that encode for any of the 17 core ATG proteins examined, albeit TOR and its interacting proteins are conserved. This intriguing data suggests that the autophagy pathway is not conserved in red algae as it is in the entire eukaryote domain. In contrast, chromalveolates, despite being derived from the red-plastid lineage, retain and express ATG genes, which raises a fundamental question regarding the acquisition of ATG genes during algal evolution. Among chromalveolates, Emiliania huxleyi (Haptophyta), a bloom-forming coccolithophore, possesses the most complete set of ATG genes, and may serve as a model organism to study autophagy in marine protists with great ecological significance. PMID:25915714

  16. On the Archaeal Origins of Eukaryotes and the Challenges of Inferring Phenotype from Genotype.

    Science.gov (United States)

    Dey, Gautam; Thattai, Mukund; Baum, Buzz

    2016-07-01

    If eukaryotes arose through a merger between archaea and bacteria, what did the first true eukaryotic cell look like? A major step toward an answer came with the discovery of Lokiarchaeum, an archaeon whose genome encodes small GTPases related to those used by eukaryotes to regulate membrane traffic. Although 'Loki' cells have yet to be seen, their existence has prompted the suggestion that the archaeal ancestor of eukaryotes engulfed the future mitochondrion by phagocytosis. We propose instead that the archaeal ancestor was a relatively simple cell, and that eukaryotic cellular organization arose as the result of a gradual transfer of bacterial genes and membranes driven by an ever-closer symbiotic partnership between a bacterium and an archaeon. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  17. Cell culture density affects the stemness gene expression of adipose tissue-derived mesenchymal stem cells.

    Science.gov (United States)

    Kim, Dae Seong; Lee, Myoung Woo; Lee, Tae-Hee; Sung, Ki Woong; Koo, Hong Hoe; Yoo, Keon Hee

    2017-03-01

    The results of clinical trials using mesenchymal stem cells (MSCs) are controversial due to the heterogeneity of human MSCs and differences in culture conditions. In this regard, it is important to identify gene expression patterns according to culture conditions, and to determine how the cells are expanded and when they should be clinically used. In the current study, stemness gene expression was investigated in adipose tissue-derived MSCs (AT-MSCs) harvested following culture at different densities. AT-MSCs were plated at a density of 200 or 5,000 cells/cm 2 . After 7 days of culture, stemness gene expression was examined by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) analysis. The proliferation rate of AT-MSCs harvested at a low density (~50% confluent) was higher than that of AT-MSCs harvested at a high density (~90% confluent). Although there were differences in the expression levels of stemness gene, such as octamer-binding transcription factor 4, nanog homeobox ( Nanog ), SRY-box 2, Kruppel like factor 4, v-myc avian myelocytomatosis viral oncogene homolog ( c-Myc ), and lin-28 homolog A, in the AT-MSCs obtained from different donors, RT-qPCR analysis demonstrated differential gene expression patterns according to the cell culture density. Expression levels of stemness genes, particularly Nanog and c-Myc , were upregulated in AT-MSCs harvested at a low density (~50% confluent) in comparison to AT-MSCs from the same donor harvested at a high density (~90% confluent). These results imply that culture conditions, such as the cell density at harvesting, modulate the stemness gene expression and proliferation of MSCs.

  18. DNER, an epigenetically modulated gene, regulates glioblastoma-derived neurosphere cell differentiation and tumor propagation.

    Science.gov (United States)

    Sun, Peng; Xia, Shuli; Lal, Bachchu; Eberhart, Charles G; Quinones-Hinojosa, Alfredo; Maciaczyk, Jarek; Matsui, William; Dimeco, Francesco; Piccirillo, Sara M; Vescovi, Angelo L; Laterra, John

    2009-07-01

    Neurospheres derived from glioblastoma (GBM) and other solid malignancies contain neoplastic stem-like cells that efficiently propagate tumor growth and resist cytotoxic therapeutics. The primary objective of this study was to use histone-modifying agents to elucidate mechanisms by which the phenotype and tumor-promoting capacity of GBM-derived neoplastic stem-like cells are regulated. Using established GBM-derived neurosphere lines and low passage primary GBM-derived neurospheres, we show that histone deacetylase (HDAC) inhibitors inhibit growth, induce differentiation, and induce apoptosis of neoplastic neurosphere cells. A specific gene product induced by HDAC inhibition, Delta/Notch-like epidermal growth factor-related receptor (DNER), inhibited the growth of GBM-derived neurospheres, induced their differentiation in vivo and in vitro, and inhibited their engraftment and growth as tumor xenografts. The differentiating and tumor suppressive effects of DNER, a noncanonical Notch ligand, contrast with the previously established tumor-promoting effects of canonical Notch signaling in brain cancer stem-like cells. Our findings are the first to implicate noncanonical Notch signaling in the regulation of neoplastic stem-like cells and suggest novel neoplastic stem cell targeting treatment strategies for GBM and potentially other solid malignancies.

  19. RNase MRP and the RNA processing cascade in the eukaryotic ancestor.

    Science.gov (United States)

    Woodhams, Michael D; Stadler, Peter F; Penny, David; Collins, Lesley J

    2007-02-08

    Within eukaryotes there is a complex cascade of RNA-based macromolecules that process other RNA molecules, especially mRNA, tRNA and rRNA. An example is RNase MRP processing ribosomal RNA (rRNA) in ribosome biogenesis. One hypothesis is that this complexity was present early in eukaryotic evolution; an alternative is that an initial simpler network later gained complexity by gene duplication in lineages that led to animals, fungi and plants. Recently there has been a rapid increase in support for the complexity-early theory because the vast majority of these RNA-processing reactions are found throughout eukaryotes, and thus were likely to be present in the last common ancestor of living eukaryotes, herein called the Eukaryotic Ancestor. We present an overview of the RNA processing cascade in the Eukaryotic Ancestor and investigate in particular, RNase MRP which was previously thought to have evolved later in eukaryotes due to its apparent limited distribution in fungi and animals and plants. Recent publications, as well as our own genomic searches, find previously unknown RNase MRP RNAs, indicating that RNase MRP has a wide distribution in eukaryotes. Combining secondary structure and promoter region analysis of RNAs for RNase MRP, along with analysis of the target substrate (rRNA), allows us to discuss this distribution in the light of eukaryotic evolution. We conclude that RNase MRP can now be placed in the RNA-processing cascade of the Eukaryotic Ancestor, highlighting the complexity of RNA-processing in early eukaryotes. Promoter analyses of MRP-RNA suggest that regulation of the critical processes of rRNA cleavage can vary, showing that even these key cellular processes (for which we expect high conservation) show some species-specific variability. We present our consensus MRP-RNA secondary structure as a useful model for further searches.

  20. An efficient nonviral gene-delivery vector based on hyperbranched cationic glycogen derivatives

    Directory of Open Access Journals (Sweden)

    Liang X

    2014-01-01

    Full Text Available Xuan Liang,1,* Xianyue Ren,2,* Zhenzhen Liu,1 Yingliang Liu,1 Jue Wang,2 Jingnan Wang,2 Li-Ming Zhang,1 David YB Deng,2 Daping Quan,1 Liqun Yang1 1Institute of Polymer Science, School of Chemistry and Chemical Engineering, Key Laboratory of Designed Synthesis and Application of Polymer Material, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-Sen University, Guangzhou, People's Republic of China; 2Research Center of Translational Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China *Both these authors contributed equally to this work Background: The purpose of this study was to synthesize and evaluate hyperbranched cationic glycogen derivatives as an efficient nonviral gene-delivery vector. Methods: A series of hyperbranched cationic glycogen derivatives conjugated with 3-(dimethylamino-1-propylamine (DMAPA-Glyp and 1-(2-aminoethyl piperazine (AEPZ-Glyp residues were synthesized and characterized by Fourier-transform infrared and hydrogen-1 nuclear magnetic resonance spectroscopy. Their buffer capacity was assessed by acid–base titration in aqueous NaCl solution. Plasmid deoxyribonucleic acid (pDNA condensation ability and protection against DNase I degradation of the glycogen derivatives were assessed using agarose gel electrophoresis. The zeta potentials and particle sizes of the glycogen derivative/pDNA complexes were measured, and the images of the complexes were observed using atomic force microscopy. Blood compatibility and cytotoxicity were evaluated by hemolysis assay and MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide assay, respectively. pDNA transfection efficiency mediated by the cationic glycogen derivatives was evaluated by flow cytometry and fluorescence microscopy in the 293T (human embryonic kidney and the CNE2 (human nasopharyngeal carcinoma cell lines. In vivo delivery of pDNA in model animals (Sprague Dawley

  1. Eelgrass Leaf Surface Microbiomes Are Locally Variable and Highly Correlated with Epibiotic Eukaryotes

    Directory of Open Access Journals (Sweden)

    Mia M. Bengtsson

    2017-07-01

    Full Text Available Eelgrass (Zostera marina is a marine foundation species essential for coastal ecosystem services around the northern hemisphere. Like all macroscopic organisms, it possesses a microbiome (here defined as an associated prokaryotic community which may play critical roles in modulating the interaction of eelgrass with its environment. For example, its leaf surface microbiome could inhibit or attract eukaryotic epibionts which may overgrow the eelgrass leading to reduced primary productivity and subsequent eelgrass meadow decline. We used amplicon sequencing of the 16S and 18S rRNA genes of prokaryotes and eukaryotes to assess the leaf surface microbiome (prokaryotes as well as eukaryotic epibionts in- and outside lagoons on the German Baltic Sea coast. Prokaryote microbiomes varied substantially both between sites inside lagoons and between open coastal and lagoon sites. Water depth, leaf area and biofilm chlorophyll a concentration explained a large amount of variation in both prokaryotic and eukaryotic community composition. The prokaryotic microbiome and eukaryotic epibiont communities were highly correlated, and network analysis revealed disproportionate co-occurrence between a limited number of eukaryotic taxa and several bacterial taxa. This suggests that eelgrass leaf surfaces are home to a mosaic of microbiomes of several epibiotic eukaryotes, in addition to the microbiome of the eelgrass itself. Our findings thereby underline that eukaryotic diversity should be taken into account in order to explain prokaryotic microbiome assembly and dynamics in aquatic environments.

  2. EGR3 Immediate Early Gene and the Brain-Derived Neurotrophic Factor in Bipolar Disorder

    Directory of Open Access Journals (Sweden)

    Bianca Pfaffenseller

    2018-02-01

    Full Text Available Bipolar disorder (BD is a severe psychiatric illness with a consistent genetic influence, involving complex interactions between numerous genes and environmental factors. Immediate early genes (IEGs are activated in the brain in response to environmental stimuli, such as stress. The potential to translate environmental stimuli into long-term changes in brain has led to increased interest in a potential role for these genes influencing risk for psychiatric disorders. Our recent finding using network-based approach has shown that the regulatory unit of early growth response gene 3 (EGR3 of IEGs family was robustly repressed in postmortem prefrontal cortex of BD patients. As a central transcription factor, EGR3 regulates an array of target genes that mediate critical neurobiological processes such as synaptic plasticity, memory and cognition. Considering that EGR3 expression is induced by brain-derived neurotrophic factor (BDNF that has been consistently related to BD pathophysiology, we suggest a link between BDNF and EGR3 and their potential role in BD. A growing body of data from our group and others has shown that peripheral BDNF levels are reduced during mood episodes and also with illness progression. In this same vein, BDNF has been proposed as an important growth factor in the impaired cellular resilience related to BD. Taken together with the fact that EGR3 regulates the expression of the neurotrophin receptor p75NTR and may also indirectly induce BDNF expression, here we propose a feed-forward gene regulatory network involving EGR3 and BDNF and its potential role in BD.

  3. The Impact of the Brain-Derived Neurotrophic Factor Gene on Trauma and Spatial Processing

    Directory of Open Access Journals (Sweden)

    Jessica K. Miller

    2017-11-01

    Full Text Available The influence of genes and the environment on the development of Post-Traumatic Stress Disorder (PTSD continues to motivate neuropsychological research, with one consistent focus being the Brain-Derived Neurotrophic Factor (BDNF gene, given its impact on the integrity of the hippocampal memory system. Research into human navigation also considers the BDNF gene in relation to hippocampal dependent spatial processing. This speculative paper brings together trauma and spatial processing for the first time and presents exploratory research into their interactions with BDNF. We propose that quantifying the impact of BDNF on trauma and spatial processing is critical and may well explain individual differences in clinical trauma treatment outcomes and in navigation performance. Research has already shown that the BDNF gene influences PTSD severity and prevalence as well as navigation behaviour. However, more data are required to demonstrate the precise hippocampal dependent processing mechanisms behind these influences in different populations and environmental conditions. This paper provides insight from recent studies and calls for further research into the relationship between allocentric processing, trauma processing and BDNF. We argue that research into these neural mechanisms could transform PTSD clinical practice and professional support for individuals in trauma-exposing occupations such as emergency response, law enforcement and the military.

  4. The Impact of the Brain-Derived Neurotrophic Factor Gene on Trauma and Spatial Processing.

    Science.gov (United States)

    Miller, Jessica K; McDougall, Siné; Thomas, Sarah; Wiener, Jan

    2017-11-27

    The influence of genes and the environment on the development of Post-Traumatic Stress Disorder (PTSD) continues to motivate neuropsychological research, with one consistent focus being the Brain-Derived Neurotrophic Factor (BDNF) gene, given its impact on the integrity of the hippocampal memory system. Research into human navigation also considers the BDNF gene in relation to hippocampal dependent spatial processing. This speculative paper brings together trauma and spatial processing for the first time and presents exploratory research into their interactions with BDNF. We propose that quantifying the impact of BDNF on trauma and spatial processing is critical and may well explain individual differences in clinical trauma treatment outcomes and in navigation performance. Research has already shown that the BDNF gene influences PTSD severity and prevalence as well as navigation behaviour. However, more data are required to demonstrate the precise hippocampal dependent processing mechanisms behind these influences in different populations and environmental conditions. This paper provides insight from recent studies and calls for further research into the relationship between allocentric processing, trauma processing and BDNF. We argue that research into these neural mechanisms could transform PTSD clinical practice and professional support for individuals in trauma-exposing occupations such as emergency response, law enforcement and the military.

  5. HCMV Displays a Unique Transcriptome of Immunomodulatory Genes in Primary Monocyte-Derived Cell Types.

    Directory of Open Access Journals (Sweden)

    Ellen Van Damme

    Full Text Available Human cytomegalovirus (HCMV is a betaherpesvirus which rarely presents problems in healthy individuals, yet may result in severe morbidity in immunocompromised patients and in immune-naïve neonates. HCMV has a large 235 kb genome with a coding capacity of at least 165 open reading frames (ORFs. This large genome allows complex gene regulation resulting in different sets of transcripts during lytic and latent infection. While latent virus mainly resides within monocytes and CD34+ progenitor cells, reactivation to lytic infection is driven by differentiation towards terminally differentiated myeloid dendritic cells and macrophages. Consequently, it has been suggested that macrophages and dendritic cells contribute to viral spread in vivo. Thus far only limited knowledge is available on the expression of HCMV genes in terminally differentiated myeloid primary cells and whether or not the virus exhibits a different set of lytic genes in primary cells compared with lytic infection in NHDF fibroblasts. To address these questions, we used Illumina next generation sequencing to determine the HCMV transcriptome in macrophages and dendritic cells during lytic infection and compared it to the transcriptome in NHDF fibroblasts. Here, we demonstrate unique expression profiles in macrophages and dendritic cells which significantly differ from the transcriptome in fibroblasts mainly by modulating the expression of viral transcripts involved in immune modulation, cell tropism and viral spread. In a head to head comparison between macrophages and dendritic cells, we observed that factors involved in viral spread and virion composition are differentially regulated suggesting that the plasticity of the virion facilitates the infection of surrounding cells. Taken together, this study provides the full transcript expression analysis of lytic HCMV genes in monocyte-derived type 1 and type 2 macrophages as well as in monocyte-derived dendritic cells. Thereby

  6. The prognostic value of temporal in vitro and in vivo derived hypoxia gene-expression signatures in breast cancer

    International Nuclear Information System (INIS)

    Starmans, Maud H.W.; Chu, Kenneth C.; Haider, Syed; Nguyen, Francis; Seigneuric, Renaud; Magagnin, Michael G.; Koritzinsky, Marianne; Kasprzyk, Arek; Boutros, Paul C.; Wouters, Bradly G.

    2012-01-01

    Background and purpose: Recent data suggest that in vitro and in vivo derived hypoxia gene-expression signatures have prognostic power in breast and possibly other cancers. However, both tumour hypoxia and the biological adaptation to this stress are highly dynamic. Assessment of time-dependent gene-expression changes in response to hypoxia may thus provide additional biological insights and assist in predicting the impact of hypoxia on patient prognosis. Materials and methods: Transcriptome profiling was performed for three cell lines derived from diverse tumour-types after hypoxic exposure at eight time-points, which include a normoxic time-point. Time-dependent sets of co-regulated genes were identified from these data. Subsequently, gene ontology (GO) and pathway analyses were performed. The prognostic power of these novel signatures was assessed in parallel with previous in vitro and in vivo derived hypoxia signatures in a large breast cancer microarray meta-dataset (n = 2312). Results: We identified seven recurrent temporal and two general hypoxia signatures. GO and pathway analyses revealed regulation of both common and unique underlying biological processes within these signatures. None of the new or previously published in vitro signatures consisting of hypoxia-induced genes were prognostic in the large breast cancer dataset. In contrast, signatures of repressed genes, as well as the in vivo derived signatures of hypoxia-induced genes showed clear prognostic power. Conclusions: Only a subset of hypoxia-induced genes in vitro demonstrates prognostic value when evaluated in a large clinical dataset. Despite clear evidence of temporal patterns of gene-expression in vitro, the subset of prognostic hypoxia regulated genes cannot be identified based on temporal pattern alone. In vivo derived signatures appear to identify the prognostic hypoxia induced genes. The prognostic value of hypoxia-repressed genes is likely a surrogate for the known importance of

  7. Identification of valid endogenous control genes for determining gene expression in C6 glioma cell line treated with conditioned medium from adipose-derived stem cell.

    Science.gov (United States)

    Iser, I C; de Campos, R P; Bertoni, A P S; Wink, M R

    2015-10-01

    There is growing evidence that mesenchymal stem cells (MSCs) can be important players in the tumor microenvironment. They can affect the glioma progression through the modulation of different genes. This modulation can be evaluated through a very useful model, treating the tumor cells with MSC-conditioned medium. However, for an accurate and reliable gene expression analysis, normalization of gene expression data against reference genes is a prerequisite. We performed a systematic review in an attempt to find a reference gene to use when analyzing gene expression in C6 glioma cells lines. Considering that we were not able to find a reference gene originated by an appropriate validation, in this study we evaluated candidate genes to be used as reference gene in C6 cells under different treatments with adipose-derived stem cells conditioned medium (CM-ADSCs). β-actin (ACTB); glyceraldehyde-3-phosphate dehydrogenase (GAPDH); hypoxanthine-guanine phosphoribosyltransferase I (HPRT-1); TATA box binding protein (TBP) and beta-2-microglobulin (B2M) were evaluated by real-time reverse transcription PCR (RT-qPCR). The mean Cq, the maximum fold change (MFC) and NormFinder software were used for reference gene evaluation and selection. The GAPDH and ACTB genes have been the most widely used reference genes to normalize among the different investigated genes in our review, however, controversially these genes underwent a substantial variability among the genes evaluated in the present work. Individually, TBP gene was more stable when compared with other genes analyzed and the combination of TBP and HPRT-1 was even more stable. These results evidence the importance of appropriate validation of reference genes before performing qPCR experiments. Besides, our data will contribute with researchers that work analyzing the role of ADSCs in glioma microenvironment through gene expression. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  8. Phylogenetic analysis of P5 P-type ATPases, a eukaryotic lineage of secretory pathway pumps

    DEFF Research Database (Denmark)

    Møller, Annette; Asp, Torben; Holm, Preben Bach

    2008-01-01

    prokaryotic genome. Based on a protein alignment we could group the P5 ATPases into two subfamilies, P5A and P5B that, based on the number of negative charges in conserved trans-membrane segment 4, are likely to have different ion specificities. P5A ATPases are present in all eukaryotic genomes sequenced so......Eukaryotes encompass a remarkable variety of organisms and unresolved lineages. Different phylogenetic analyses have lead to conflicting conclusions as to the origin and associations between lineages and species. In this work, we investigated evolutionary relationship of a family of cation pumps...... exclusive for the secretory pathway of eukaryotes by combining the identification of lineage-specific genes with phylogenetic evolution of common genes. Sequences of P5 ATPases, which are regarded to be cation pumps in the endoplasmic reticulum (ER), were identified in all eukaryotic lineages but not in any...

  9. Angiogenic Gene Signature Derived from Subtype Specific Cell Models Segregate Proneural and Mesenchymal Glioblastoma

    Directory of Open Access Journals (Sweden)

    Aman Sharma

    2017-07-01

    Full Text Available Intertumoral molecular heterogeneity in glioblastoma identifies four major subtypes based on expression of molecular markers. Among them, the two clinically interrelated subtypes, proneural and mesenchymal, are the most aggressive with proneural liable for conversion to mesenchymal upon therapy. Using two patient-derived novel primary cell culture models (MTA10 and KW10, we developed a minimal but unique four-gene signature comprising genes vascular endothelial growth factor A (VEGF-A, vascular endothelial growth factor B (VEGF-B and angiopoietin 1 (ANG1, angiopoietin 2 (ANG2 that effectively segregated the proneural (MTA10 and mesenchymal (KW10 glioblastoma subtypes. The cell culture preclassified as mesenchymal showed elevated expression of genes VEGF-A, VEGF-B and ANG1, ANG2 as compared to the other cell culture model that mimicked the proneural subtype. The differentially expressed genes in these two cell culture models were confirmed by us using TCGA and Verhaak databases and we refer to it as a minimal multigene signature (MMS. We validated this MMS on human glioblastoma tissue sections with the use of immunohistochemistry on preclassified (YKL-40 high or mesenchymal glioblastoma and OLIG2 high or proneural glioblastoma tumor samples (n = 30. MMS segregated mesenchymal and proneural subtypes with 83% efficiency using a simple histopathology scoring approach (p = 0.008 for ANG2 and p = 0.01 for ANG1. Furthermore, MMS expression negatively correlated with patient survival. Importantly, MMS staining demonstrated spatiotemporal heterogeneity within each subclass, adding further complexity to subtype identification in glioblastoma. In conclusion, we report a novel and simple sequencing-independent histopathology-based biomarker signature comprising genes VEGF-A, VEGF-B and ANG1, ANG2 for subtyping of proneural and mesenchymal glioblastoma.

  10. Gene expression analysis in lymphoblasts derived from patients with autism spectrum disorder

    Directory of Open Access Journals (Sweden)

    Yasuda Yuka

    2011-05-01

    Full Text Available Abstract Background The autism spectrum disorders (ASDs are complex neurodevelopmental disorders that result in severe and pervasive impairment in the development of reciprocal social interaction and verbal and nonverbal communication skills. In addition, individuals with ASD have stereotypical behavior, interests and activities. Rare mutations of some genes, such as neuroligin (NLGN 3/4, neurexin (NRXN 1, SHANK3, MeCP2 and NHE9, have been reported to be associated with ASD. In the present study, we investigated whether alterations in mRNA expression levels of these genes could be found in lymphoblastoid cell lines derived from patients with ASD. Methods We measured mRNA expression levels of NLGN3/4, NRXN1, SHANK3, MeCP2, NHE9 and AKT1 in lymphoblastoid cells from 35 patients with ASD and 35 healthy controls, as well as from 45 patients with schizophrenia and 45 healthy controls, using real-time quantitative reverse transcriptase polymerase chain reaction assays. Results The mRNA expression levels of NLGN3 and SHANK3 normalized by β-actin or TBP were significantly decreased in the individuals with ASD compared to controls, whereas no difference was found in the mRNA expression level of MeCP2, NHE9 or AKT1. However, normalized NLGN3 and SHANK3 gene expression levels were not altered in patients with schizophrenia, and expression levels of NLGN4 and NRXN1 mRNA were not quantitatively measurable in lymphoblastoid cells. Conclusions Our results provide evidence that the NLGN3 and SHANK3 genes may be differentially expressed in lymphoblastoid cell lines from individuals with ASD compared to those from controls. These findings suggest the possibility that decreased mRNA expression levels of these genes might be involved in the pathophysiology of ASD in a substantial population of ASD patients.

  11. Characterization of human adipose-derived stem cells and expression of chondrogenic genes during induction of cartilage differentiation.

    Science.gov (United States)

    Hamid, Adila A; Idrus, Ruszymah Bt Hj; Saim, Aminuddin Bin; Sathappan, Somasumdaram; Chua, Kien-Hui

    2012-01-01

    Understanding the changes in chondrogenic gene expression that are involved in the differentiation of human adipose-derived stem cells to chondrogenic cells is important prior to using this approach for cartilage repair. The aims of the study were to characterize human adipose-derived stem cells and to examine chondrogenic gene expression after one, two, and three weeks of induction. Human adipose-derived stem cells at passage 4 were evaluated by flow cytometry to examine the expression of surface markers. These adipose-derived stem cells were tested for adipogenic and osteogenic differentiation capacity. Ribonucleic acid was extracted from the cells for quantitative polymerase chain reaction analysis to determine the expression levels of chondrogenic genes after chondrogenic induction. Human adipose-derived stem cells were strongly positive for the mesenchymal markers CD90, CD73, CD44, CD9, and histocompatibility antigen and successfully differentiated into adipogenic and osteogenic lineages. The human adipose-derived stem cells aggregated and formed a dense matrix after chondrogenic induction. The expression of chondrogenic genes (collagen type II, aggrecan core protein, collagen type XI, COMP, and ELASTIN) was significantly higher after the first week of induction. However, a significantly elevated expression of collagen type X was observed after three weeks of chondrogenic induction. Human adipose-derived stem cells retain stem cell characteristics after expansion in culture to passage 4 and serve as a feasible source of cells for cartilage regeneration. Chondrogenesis in human adipose-derived stem cells was most prominent after one week of chondrogenic induction.

  12. Gene targeting and cloning in pigs using fetal liver derived cells.

    Science.gov (United States)

    Waghmare, Sanjeev K; Estrada, Jose; Reyes, Luz; Li, Ping; Ivary, Bess; Sidner, Richard A; Burlak, Chris; Tector, A Joseph

    2011-12-01

    Since there are no pig embryonic stem cells, pig genetic engineering is done in fetal fibroblasts that remain totipotent for only 3 to 5 wk. Nuclear donor cells that remain totipotent for longer periods of time would facilitate complicated genetic engineering in pigs. The goal of this study was to test the feasibility of using fetal liver-derived cells (FLDC) to perform gene targeting, and create a genetic knockout pig. FLDC were isolated and processed using a human liver stem cell protocol. Single copy α-1,3-galactosyl transferase knockout (GTKO) FLDCs were created using electroporation and neomycin resistant colonies were screened using PCR. Homozygous GTKO cells were created through loss of heterozygosity mutations in single GTKO FLDCs. Double GTKO FLDCs were used in somatic cell nuclear transfer (SCNT) to create GTKO pigs. FLDCs grew for more than 80 population doublings, maintaining normal karyotype. Gene targeting and loss of heterozygosity mutations produced homozygous GTKO FLDCs. FLDCs used in SCNT gave rise to homozygous GTKO pigs. FDLCs can be used in gene targeting and SCNT to produce genetically modified pigs. The increased life span in culture compared to fetal fibroblasts may facilitate genetic engineering in the pig. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. Gene Transfer of Brain-derived Neurotrophic Factor (BDNF) Prevents Neurodegeneration Triggered by FXN Deficiency.

    Science.gov (United States)

    Katsu-Jiménez, Yurika; Loría, Frida; Corona, Juan Carlos; Díaz-Nido, Javier

    2016-05-01

    Friedreich's ataxia is a predominantly neurodegenerative disease caused by recessive mutations that produce a deficiency of frataxin (FXN). Here, we have used a herpesviral amplicon vector carrying a gene encoding for brain-derived neurotrophic factor (BDNF) to drive its overexpression in neuronal cells and test for its effect on FXN-deficient neurons both in culture and in the mouse cerebellum in vivo. Gene transfer of BDNF to primary cultures of mouse neurons prevents the apoptosis which is triggered by the knockdown of FXN gene expression. This neuroprotective effect of BDNF is also observed in vivo in a viral vector-based knockdown mouse cerebellar model. The injection of a lentiviral vector carrying a minigene encoding for a FXN-specific short hairpin ribonucleic acid (shRNA) into the mouse cerebellar cortex triggers a FXN deficit which is accompanied by significant apoptosis of granule neurons as well as loss of calbindin in Purkinje cells. These pathological changes are accompanied by a loss of motor coordination of mice as assayed by the rota-rod test. Coinjection of a herpesviral vector encoding for BDNF efficiently prevents both the development of cerebellar neuropathology and the ataxic phenotype. These data demonstrate the potential therapeutic usefulness of neurotrophins like BDNF to protect FXN-deficient neurons from degeneration.

  14. Water soluble cationic dextran derivatives containing poly(amidoamine) dendrons for efficient gene delivery.

    Science.gov (United States)

    Mai, Kaijin; Zhang, Shanshan; Liang, Bing; Gao, Cong; Du, Wenjun; Zhang, Li-Ming

    2015-06-05

    To develop new dextran derivatives for efficient gene delivery, the conjugation of poly(amidoamine) dendrons onto biocompatible dextran was carried out by a Cu(I)-catalyzed azide-alkyne cycloaddition, as confirmed by FTIR and (1)H NMR analyses. For resultant dextran conjugates with various generations of poly(amidoamine) dendrons, their buffering capacity and in vitro cytotoxicity were evaluated by acid-base titration and MTT tests, respectively. In particular, their physicochemical characteristics for the complexation with plasmid DNA were investigated by the combined analyses from agarose gel electrophoresis, zeta potential, particle size, transmission electron microscopy and fluorescence emission spectra. Moreover, their complexes with plasmid DNA were studied with respect to their transfection efficiency in human embryonic kidney (HEK293) cell lines. In the case of a higher generation of poly(amidoamine) dendrons, such a dextran conjugate was found to have much lower cytotoxicity and better gene delivery capability when compared to branched polyethylenimine (bPEI, 25kDa), a commonly used gene vector. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. The homeobox gene Hex regulates hepatocyte differentiation from embryonic stem cell-derived endoderm.

    Science.gov (United States)

    Kubo, Atsushi; Kim, Yon Hui; Irion, Stefan; Kasuda, Shogo; Takeuchi, Mitsuaki; Ohashi, Kazuo; Iwano, Masayuki; Dohi, Yoshiko; Saito, Yoshihiko; Snodgrass, Ralph; Keller, Gordon

    2010-02-01

    We investigated the role of the hematopoietically expressed homeobox (Hex) in the differentiation and development of hepatocytes within embryonic stem cell (ESC)-derived embryoid bodies (EBs). Analyses of hepatic endoderm derived from Hex(-/-) EBs revealed a dramatic reduction in the levels of albumin (Alb) and alpha-fetoprotein (Afp) expression. In contrast, stage-specific forced expression of Hex in EBs from wild-type ESCs led to the up-regulation of Alb and Afp expression and secretion of Alb and transferrin. These inductive effects were restricted to c-kit(+) endoderm-enriched EB-derived populations, suggesting that Hex functions at the level of hepatic specification of endoderm in this model. Microarray analysis revealed that Hex regulated the expression of a broad spectrum of hepatocyte-related genes, including fibrinogens, apolipoproteins, and cytochromes. When added to the endoderm-induced EBs, bone morphogenetic protein 4 acted synergistically with Hex in the induction of expression of Alb, Afp, carbamoyl phosphate synthetase, transcription factor 1, and CCAAT/enhancer binding protein alpha. These findings indicate that Hex plays a pivotal role during induction of liver development from endoderm in this in vitro model and suggest that this strategy may provide important insight into the generation of functional hepatocytes from ESCs.

  16. Evolutionary origins, molecular cloning and expression of carotenoid hydroxylases in eukaryotic photosynthetic algae

    Science.gov (United States)

    2013-01-01

    Background Xanthophylls, oxygenated derivatives of carotenes, play critical roles in photosynthetic apparatus of cyanobacteria, algae, and higher plants. Although the xanthophylls biosynthetic pathway of algae is largely unknown, it is of particular interest because they have a very complicated evolutionary history. Carotenoid hydroxylase (CHY) is an important protein that plays essential roles in xanthophylls biosynthesis. With the availability of 18 sequenced algal genomes, we performed a comprehensive comparative analysis of chy genes and explored their distribution, structure, evolution, origins, and expression. Results Overall 60 putative chy genes were identified and classified into two major subfamilies (bch and cyp97) according to their domain structures. Genes in the bch subfamily were found in 10 green algae and 1 red alga, but absent in other algae. In the phylogenetic tree, bch genes of green algae and higher plants share a common ancestor and are of non-cyanobacterial origin, whereas that of red algae is of cyanobacteria. The homologs of cyp97a/c genes were widespread only in green algae, while cyp97b paralogs were seen in most of algae. Phylogenetic analysis on cyp97 genes supported the hypothesis that cyp97b is an ancient gene originated before the formation of extant algal groups. The cyp97a gene is more closely related to cyp97c in evolution than to cyp97b. The two cyp97 genes were isolated from the green alga Haematococcus pluvialis, and transcriptional expression profiles of chy genes were observed under high light stress of different wavelength. Conclusions Green algae received a β-xanthophylls biosynthetic pathway from host organisms. Although red algae inherited the pathway from cyanobacteria during primary endosymbiosis, it remains unclear in Chromalveolates. The α-xanthophylls biosynthetic pathway is a common feature in green algae and higher plants. The origination of cyp97a/c is most likely due to gene duplication before divergence of

  17. Evolutionary origins, molecular cloning and expression of carotenoid hydroxylases in eukaryotic photosynthetic algae.

    Science.gov (United States)

    Cui, Hongli; Yu, Xiaona; Wang, Yan; Cui, Yulin; Li, Xueqin; Liu, Zhaopu; Qin, Song

    2013-07-08

    Xanthophylls, oxygenated derivatives of carotenes, play critical roles in photosynthetic apparatus of cyanobacteria, algae, and higher plants. Although the xanthophylls biosynthetic pathway of algae is largely unknown, it is of particular interest because they have a very complicated evolutionary history. Carotenoid hydroxylase (CHY) is an important protein that plays essential roles in xanthophylls biosynthesis. With the availability of 18 sequenced algal genomes, we performed a comprehensive comparative analysis of chy genes and explored their distribution, structure, evolution, origins, and expression. Overall 60 putative chy genes were identified and classified into two major subfamilies (bch and cyp97) according to their domain structures. Genes in the bch subfamily were found in 10 green algae and 1 red alga, but absent in other algae. In the phylogenetic tree, bch genes of green algae and higher plants share a common ancestor and are of non-cyanobacterial origin, whereas that of red algae is of cyanobacteria. The homologs of cyp97a/c genes were widespread only in green algae, while cyp97b paralogs were seen in most of algae. Phylogenetic analysis on cyp97 genes supported the hypothesis that cyp97b is an ancient gene originated before the formation of extant algal groups. The cyp97a gene is more closely related to cyp97c in evolution than to cyp97b. The two cyp97 genes were isolated from the green alga Haematococcus pluvialis, and transcriptional expression profiles of chy genes were observed under high light stress of different wavelength. Green algae received a β-xanthophylls biosynthetic pathway from host organisms. Although red algae inherited the pathway from cyanobacteria during primary endosymbiosis, it remains unclear in Chromalveolates. The α-xanthophylls biosynthetic pathway is a common feature in green algae and higher plants. The origination of cyp97a/c is most likely due to gene duplication before divergence of green algae and higher plants

  18. Benzylglucosinolate Derived Isothiocyanate from Tropaeolum majus Reduces Gluconeogenic Gene and Protein Expression in Human Cells.

    Directory of Open Access Journals (Sweden)

    Valentina Guzmán-Pérez

    Full Text Available Nasturtium (Tropaeolum majus L. contains high concentrations of benzylglcosinolate. We found that a hydrolysis product of benzyl glucosinolate-the benzyl isothiocyanate (BITC-modulates the intracellular localization of the transcription factor Forkhead box O 1 (FOXO1. FoxO transcription factors can antagonize insulin effects and trigger a variety of cellular processes involved in tumor suppression, longevity, development and metabolism. The current study evaluated the ability of BITC-extracted as intact glucosinolate from nasturtium and hydrolyzed with myrosinase-to modulate i the insulin-signaling pathway, ii the intracellular localization of FOXO1 and, iii the expression of proteins involved in gluconeogenesis, antioxidant response and detoxification. Stably transfected human osteosarcoma cells (U-2 OS with constitutive expression of FOXO1 protein labeled with GFP (green fluorescent protein were used to evaluate the effect of BITC on FOXO1. Human hepatoma HepG2 cell cultures were selected to evaluate the effect on gluconeogenic, antioxidant and detoxification genes and protein expression. BITC reduced the phosphorylation of protein kinase B (AKT/PKB and FOXO1; promoted FOXO1 translocation from cytoplasm into the nucleus antagonizing the insulin effect; was able to down-regulate the gene and protein expression of gluconeogenic enzymes; and induced the gene expression of antioxidant and detoxification enzymes. Knockdown analyses with specific siRNAs showed that the expression of gluconeogenic genes was dependent on nuclear factor (erythroid derived-like2 (NRF2 and independent of FOXO1, AKT and NAD-dependent deacetylase sirtuin-1 (SIRT1. The current study provides evidence that BITC might have a role in type 2 diabetes T2D by reducing hepatic glucose production and increasing antioxidant resistance.

  19. How natural a kind is "eukaryote?".

    Science.gov (United States)

    Doolittle, W Ford

    2014-06-02

    Systematics balances uneasily between realism and nominalism, uncommitted as to whether biological taxa are discoveries or inventions. If the former, they might be taken as natural kinds. I briefly review some philosophers' concepts of natural kinds and then argue that several of these apply well enough to "eukaryote." Although there are some sticky issues around genomic chimerism and when eukaryotes first appeared, if we allow for degrees in the naturalness of kinds, existing eukaryotes rank highly, higher than prokaryotes. Most biologists feel this intuitively: All I attempt to do here is provide some conceptual justification. Copyright © 2014 Cold Spring Harbor Laboratory Press; all rights reserved.

  20. A fungal phylogeny based on 42 complete genomes derived from supertree and combined gene analysis

    Directory of Open Access Journals (Sweden)

    Stajich Jason E

    2006-11-01

    Full Text Available Abstract Background To date, most fungal phylogenies have been derived from single gene comparisons, or from concatenated alignments of a small number of genes. The increase in fungal genome sequencing presents an opportunity to reconstruct evolutionary events using entire genomes. As a tool for future comparative, phylogenomic and phylogenetic studies, we used both supertrees and concatenated alignments to infer relationships between 42 species of fungi for which complete genome sequences are available. Results A dataset of 345,829 genes was extracted from 42 publicly available fungal genomes. Supertree methods were employed to derive phylogenies from 4,805 single gene families. We found that the average consensus supertree method may suffer from long-branch attraction artifacts, while matrix representation with parsimony (MRP appears to be immune from these. A genome phylogeny was also reconstructed from a concatenated alignment of 153 universally distributed orthologs. Our MRP supertree and concatenated phylogeny are highly congruent. Within the Ascomycota, the sub-phyla Pezizomycotina and Saccharomycotina were resolved. Both phylogenies infer that the Leotiomycetes are the closest sister group to the Sordariomycetes. There is some ambiguity regarding the placement of Stagonospora nodurum, the sole member of the class Dothideomycetes present in the dataset. Within the Saccharomycotina, a monophyletic clade containing organisms that translate CTG as serine instead of leucine is evident. There is also strong support for two groups within the CTG clade, one containing the fully sexual species Candida lusitaniae, Candida guilliermondii and Debaryomyces hansenii, and the second group containing Candida albicans, Candida dubliniensis, Candida tropicalis, Candida parapsilosis and Lodderomyces elongisporus. The second major clade within the Saccharomycotina contains species whose genomes have undergone a whole genome duplication (WGD, and their close

  1. Allergy assessment of foods or ingredients derived from biotechnology, gene-modified organisms, or novel foods

    DEFF Research Database (Denmark)

    Poulsen, Lars K.

    2004-01-01

    E (IgE) cross-reactions to known allergens, digestability studies of the proteins in simulated gastric and/or intestinal fluids, and animal studies. These steps are discussed and five examples of risk evaluation of GMOs or novel foods are presented. These include ice-structuring protein derived from......The introduction of novel proteins into foods carries a risk of eliciting allergic reactions in individuals sensitive to the introduced protein and a risk of sensitizing susceptible individuals. No single predictive test exists to perform a hazard assessment in relation to allergenic properties...... of newly expressed proteins in gene-modified organisms (GMOs). Instead, performance of a weighted risk analysis based on the decision tree approach has been suggested. The individual steps of this analysis comprise sequence homology to known allergens, specific or targeted serum screens for immunoglobulin...

  2. Arabinogalactan proteins have deep roots in eukaryotes

    DEFF Research Database (Denmark)

    Hervé, Cécile; Siméon, Amandine; Jam, Murielle

    2016-01-01

    Arabinogalactan proteins (AGPs) are highly glycosylated, hydroxyproline-rich proteins found at the cell surface of plants, where they play key roles in developmental processes. Brown algae are marine, multicellular, photosynthetic eukaryotes. They belong to the phylum Stramenopiles, which...

  3. Effects of impurities in biodiesel-derived glycerol on growth and expression of heavy metal ion homeostasis genes and gene products in Pseudomonas putida LS46.

    Science.gov (United States)

    Fu, Jilagamazhi; Sharma, Parveen; Spicer, Vic; Krokhin, Oleg V; Zhang, Xiangli; Fristensky, Brian; Wilkins, John A; Cicek, Nazim; Sparling, Richard; Levin, David B

    2015-07-01

    Biodiesel production-derived waste glycerol (WG) was previously investigated as potential carbon source for medium chain length polyhydroxyalkanoate (mcl-PHA) production by Pseudomonas putida LS46. In this study, we evaluated the effect of impurities in the WG on P. putida LS46 physiology during exponential growth and corresponding changes in transcription and protein expression profiles compared with cells grown on pure, reagent grade glycerol. High concentration of metal ions, such as Na(+), and numbers of heavy metals ion, such as copper, ion, zinc, were detected in biodiesel-derived WG. Omics analysis from the corresponding cultures suggested altered expression of genes involved in transport and metabolism of ammonia and heavy metal ions. Expression of three groups of heavy metal homeostasis genes was significantly changed (mostly upregulated) in WG cultures and included the following: copper-responded cluster 1 and 2 genes, primarily containing cusABC; two copies of copAB and heavy metal translocating P-type ATPase; Fur-regulated, TonB-dependent siderophore receptor; and several cobalt/zinc/cadmium transporters. Expression of these genes suggests regulation of intracellular concentrations of heavy metals during growth on biodiesel-derived glycerol. Finally, a number of genes involved in adapting to, or metabolizing free fatty acids and other nonheavy metal contaminants, such as Na(+), were also upregulated in P. putida LS46 grown on biodiesel-derived glycerol.

  4. diArk – a resource for eukaryotic genome research

    Directory of Open Access Journals (Sweden)

    Kollmar Martin

    2007-04-01

    Full Text Available Abstract Background The number of completed eukaryotic genome sequences and cDNA projects has increased exponentially in the past few years although most of them have not been published yet. In addition, many microarray analyses yielded thousands of sequenced EST and cDNA clones. For the researcher interested in single gene analyses (from a phylogenetic, a structural biology or other perspective it is therefore important to have up-to-date knowledge about the various resources providing primary data. Description The database is built around 3 central tables: species, sequencing projects and publications. The species table contains commonly and alternatively used scientific names, common names and the complete taxonomic information. For projects the sequence type and links to species project web-sites and species homepages are stored. All publications are linked to projects. The web-interface provides comprehensive search modules with detailed options and three different views of the selected data. We have especially focused on developing an elaborate taxonomic tree search tool that allows the user to instantaneously identify e.g. the closest relative to the organism of interest. Conclusion We have developed a database, called diArk, to store, organize, and present the most relevant information about completed genome projects and EST/cDNA data from eukaryotes. Currently, diArk provides information about 415 eukaryotes, 823 sequencing projects, and 248 publications.

  5. Biotransformation of arsenic by a Yellowstone thermoacidophilic eukaryotic alga.

    Science.gov (United States)

    Qin, Jie; Lehr, Corinne R; Yuan, Chungang; Le, X Chris; McDermott, Timothy R; Rosen, Barry P

    2009-03-31

    Arsenic is the most common toxic substance in the environment, ranking first on the Superfund list of hazardous substances. It is introduced primarily from geochemical sources and is acted on biologically, creating an arsenic biogeocycle. Geothermal environments are known for their elevated arsenic content and thus provide an excellent setting in which to study microbial redox transformations of arsenic. To date, most studies of microbial communities in geothermal environments have focused on Bacteria and Archaea, with little attention to eukaryotic microorganisms. Here, we show the potential of an extremophilic eukaryotic alga of the order Cyanidiales to influence arsenic cycling at elevated temperatures. Cyanidioschyzon sp. isolate 5508 oxidized arsenite [As(III)] to arsenate [As(V)], reduced As(V) to As(III), and methylated As(III) to form trimethylarsine oxide (TMAO) and dimethylarsenate [DMAs(V)]. Two arsenic methyltransferase genes, CmarsM7 and CmarsM8, were cloned from this organism and demonstrated to confer resistance to As(III) in an arsenite hypersensitive strain of Escherichia coli. The 2 recombinant CmArsMs were purified and shown to transform As(III) into monomethylarsenite, DMAs(V), TMAO, and trimethylarsine gas, with a T(opt) of 60-70 degrees C. These studies illustrate the importance of eukaryotic microorganisms to the biogeochemical cycling of arsenic in geothermal systems, offer a molecular explanation for how these algae tolerate arsenic in their environment, and provide the characterization of algal methyltransferases.

  6. Identification of Heading Date Six (Hd6 Gene Derived from Rice Mutant Varieties

    Directory of Open Access Journals (Sweden)

    Aryanti Aryanti

    2017-04-01

    Full Text Available Genes which were associated with flowering time to indicate the early maturity is known as heading date (Hd. Heading date six (Hd6 gene was identified from rice mutant varieties were Atomita 2, Atomita 3, Atomita 4, Bestari, Cilosari, Diah Suci, Sidenuk, Kahayan, Mayang, Meraoke, Mira-1, Pandan Putri, Superwin, Suluttan Unsrat 1, Suluttan Unsrat 2, Winongo, Woyla, Yuwono, while the rice var. Nipponbare was used as a positive control. All of rice mutant varieties derived from mutation induction by the dose of 0.2 kGy. The aim of this experiment was to find out the data base of mutant varieties which could be used as parent material with earlier maturity trait genetically. To obtain the DNA of plants, young leaves of each variety were extracted by liquid nitrogen, and then lysis and extracted by Kit Plant Genomic DNA. The amplification of DNA with 7 primers of Hd6 conducted of 40 cycles by PCR and were continues to separated by 1 % agarose. The results were shown that the rice Mira-1 and Bestari varieties obtained from mutation of Cisantana highly different from one to another on 7 primers of Hd6 used. Mayang variety from mutation of cross breeding between Cilosari and IR64, Pandan putri from Pandan wangi and Woyla from mutation of cross breeding from Atomita 2 and IR64 were highly different with those of their parents. Identification of Hd6 gene on Sidenuk variety was shown the same bands pattern with Nipponbare as control positive toward all primers used, this variety would be better for earlier maturity parent material compared to others. The information could be useful for breeding programs aiming to develop early maturing widely adaptive and high yielding rice cultivars.

  7. Despite differential gene expression profiles pediatric MDS derived mesenchymal stromal cells display functionality in vitro.

    Science.gov (United States)

    Calkoen, F G J; Vervat, C; van Pel, M; de Haas, V; Vijfhuizen, L S; Eising, E; Kroes, W G M; 't Hoen, P A C; van den Heuvel-Eibrink, M M; Egeler, R M; van Tol, M J D; Ball, L M

    2015-03-01

    Pediatric myelodysplastic syndrome (MDS) is a heterogeneous disease covering a spectrum ranging from aplasia (RCC) to myeloproliferation (RAEB(t)). In adult-type MDS there is increasing evidence for abnormal function of the bone-marrow microenvironment. Here, we extensively studied the mesenchymal stromal cells (MSCs) derived from children with MDS. MSCs were expanded from the bone-marrow of 17 MDS patients (RCC: n=10 and advanced MDS: n=7) and pediatric controls (n=10). No differences were observed with respect to phenotype, differentiation capacity, immunomodulatory capacity or hematopoietic support. mRNA expression analysis by Deep-SAGE revealed increased IL-6 expression in RCC- and RAEB(t)-MDS. RCC-MDS MSC expressed increased levels of DKK3, a protein associated with decreased apoptosis. RAEB(t)-MDS revealed increased CRLF1 and decreased DAPK1 expressions. This pattern has been associated with transformation in hematopoietic malignancies. Genes reported to be differentially expressed in adult MDS-MSC did not differ between MSC of pediatric MDS and controls. An altered mRNA expression profile, associated with cell survival and malignant transformation, of MSC derived from children with MDS strengthens the hypothesis that the micro-environment is of importance in this disease. Our data support the understanding that pediatric and adult MDS are two different diseases. Further evaluation of the pathways involved might reveal additional therapy targets. Copyright © 2015. Published by Elsevier B.V.

  8. Are genetic variants in the platelet-derived growth factor [beta] gene associated with chronic pancreatitis?

    Science.gov (United States)

    Muddana, Venkata; Park, James; Lamb, Janette; Yadav, Dhiraj; Papachristou, Georgios I; Hawes, Robert H; Brand, Randall; Slivka, Adam; Whitcomb, David C

    2010-11-01

    Platelet-derived growth factor [beta] (PDGF-[beta]) is a major signal in proliferation and matrix synthesis through activated pancreatic stellate cells, leading to fibrosis of the pancreas. Recurrent acute pancreatitis (RAP) seems to predispose to chronic pancreatitis (CP) in some patients but not others. We tested the hypothesis that 2 known PDGF-[beta] polymorphisms are associated with progression from RAP to CP. We also tested the hypothesis that PDGF-[beta] polymorphisms in combination with environmental risk factors such as alcohol and smoking are associated with CP. Three hundred eighty-two patients with CP (n = 176) and RAP (n = 206) and 251 controls were evaluated. Platelet-derived growth factor [beta] polymorphisms +286 A/G (rs#1800818) seen in 5'-UTR and +1135 A/C (rs#1800817) in first intron were genotyped using single-nucleotide polymorphism polymerase chain reaction approach and confirmed by DNA sequencing. The genotypic frequencies for PDGF-[beta] polymorphisms in positions +286 and +1135 were found to be similar in controls and patients with RAP and CP. There was no difference in genotypic frequencies among RAP, CP, and controls in subjects in the alcohol and smoking subgroups. Known variations in the PDGF-[beta] gene do not have a significant effect on promoting or preventing fibrogenesis in pancreatitis. Further evaluation of this important pathway is warranted.

  9. A second pathway to degrade pyrimidine nucleic acid precursors in eukaryotes

    DEFF Research Database (Denmark)

    Andersen, Gorm; Bjornberg, Olof; Polakova, Silvia

    2008-01-01

    Pyrimidine bases are the central precursors for RNA and DNA, and their intracellular pools are determined by de novo, salvage and catabolic pathways. In eukaryotes, degradation of uracil has been believed to proceed only via the reduction to dihydrouracil. Using a yeast model, Saccharomyces kluyv...... of the eukaryotic or prokaryotic genes involved in pyrimidine degradation described to date.......Pyrimidine bases are the central precursors for RNA and DNA, and their intracellular pools are determined by de novo, salvage and catabolic pathways. In eukaryotes, degradation of uracil has been believed to proceed only via the reduction to dihydrouracil. Using a yeast model, Saccharomyces......, respectively. The gene products of URC1 and URC4 are highly conserved proteins with so far unknown functions and they are present in a variety of prokaryotes and fungi. In bacteria and in some fungi, URC1 and URC4 are linked on the genome together with the gene for uracil phosphoribosyltransferase (URC6). Urc1...

  10. Enzymes involved in organellar DNA replication in photosynthetic eukaryotes.

    Science.gov (United States)

    Moriyama, Takashi; Sato, Naoki

    2014-01-01

    Plastids and mitochondria possess their own genomes. Although the replication mechanisms of these organellar genomes remain unclear in photosynthetic eukaryotes, several organelle-localized enzymes related to genome replication, including DNA polymerase, DNA primase, DNA helicase, DNA topoisomerase, single-stranded DNA maintenance protein, DNA ligase, primer removal enzyme, and several DNA recombination-related enzymes, have been identified. In the reference Eudicot plant Arabidopsis thaliana, the replication-related enzymes of plastids and mitochondria are similar because many of them are dual targeted to both organelles, whereas in the red alga Cyanidioschyzon merolae, plastids and mitochondria contain different replication machinery components. The enzymes involved in organellar genome replication in green plants and red algae were derived from different origins, including proteobacterial, cyanobacterial, and eukaryotic lineages. In the present review, we summarize the available data for enzymes related to organellar genome replication in green plants and red algae. In addition, based on the type and distribution of replication enzymes in photosynthetic eukaryotes, we discuss the transitional history of replication enzymes in the organelles of plants.

  11. Challenges in Whole-Genome Annotation of Pyrosequenced Eukaryotic Genomes

    Energy Technology Data Exchange (ETDEWEB)

    Kuo, Alan; Grigoriev, Igor

    2009-04-17

    Pyrosequencing technologies such as 454/Roche and Solexa/Illumina vastly lower the cost of nucleotide sequencing compared to the traditional Sanger method, and thus promise to greatly expand the number of sequenced eukaryotic genomes. However, the new technologies also bring new challenges such as shorter reads and new kinds and higher rates of sequencing errors, which complicate genome assembly and gene prediction. At JGI we are deploying 454 technology for the sequencing and assembly of ever-larger eukaryotic genomes. Here we describe our first whole-genome annotation of a purely 454-sequenced fungal genome that is larger than a yeast (>30 Mbp). The pezizomycotine (filamentous ascomycote) Aspergillus carbonarius belongs to the Aspergillus section Nigri species complex, members of which are significant as platforms for bioenergy and bioindustrial technology, as members of soil microbial communities and players in the global carbon cycle, and as agricultural toxigens. Application of a modified version of the standard JGI Annotation Pipeline has so far predicted ~;;10k genes. ~;;12percent of these preliminary annotations suffer a potential frameshift error, which is somewhat higher than the ~;;9percent rate in the Sanger-sequenced and conventionally assembled and annotated genome of fellow Aspergillus section Nigri member A. niger. Also,>90percent of A. niger genes have potential homologs in the A. carbonarius preliminary annotation. Weconclude, and with further annotation and comparative analysis expect to confirm, that 454 sequencing strategies provide a promising substrate for annotation of modestly sized eukaryotic genomes. We will also present results of annotation of a number of other pyrosequenced fungal genomes of bioenergy interest.

  12. Quantitative gene expression profiling of CD45(+) and CD45(-) skeletal muscle-derived side population cells

    DEFF Research Database (Denmark)

    Andersen, Ditte Caroline; Kristiansen, Gitte Qvistgaard; Jensen, Line

    2011-01-01

    transcripts associated with endothelial cells, Notch signaling and myogenic precursors. By comparing the mRNA signatures of mSPs with those of adipose tissue-derived SP populations, a common endothelial component seemed to reside in both muscle and fat-derived SPCD45(-) entities. However, each SP subset......The skeletal muscle-derived side population (mSP) which highly excludes Hoechst 33342 is composed of CD45(+) and CD45(-) subpopulations; yet, rareness of mSP cells in general has complicated extensive quantitative analysis of gene expression profiles in primarily isolated mSP cells. Here, we...... describe the isolation of adult mouse normal skeletal muscle residing SPCD45(+) and SPCD45(-) cells from a parent mononuclear muscle-derived cell (MDC) population. Relative quantitative real time PCR (RT-PCR) of 64 genes revealed that mSPCD45(-) compared with mSPCD45(+) was enriched for cells expressing...

  13. Transcriptome-wide survey of mouse CNS-derived cells reveals monoallelic expression within novel gene families.

    Directory of Open Access Journals (Sweden)

    Sierra M Li

    Full Text Available Monoallelic expression is an integral component of regulation of a number of essential genes and gene families. To probe for allele-specific expression in cells of CNS origin, we used next-generation sequencing (RNA-seq to analyze four clonal neural stem cell (NSC lines derived from Mus musculus C57BL/6 (B6×Mus musculus molossinus (JF1 adult female mice. We established a JF1 cSNP library, then ascertained transcriptome-wide expression from B6 vs. JF1 alleles in the NSC lines. Validating the assay, we found that 262 of 268 X-linked genes evaluable in at least one cell line showed monoallelic expression (at least 85% expression of the predominant allele, p-value<0.05. For autosomal genes 170 of 7,198 genes (2.4% of the total showed monoallelic expression in at least 2 evaluable cell lines. The group included eight known imprinted genes with the expected pattern of allele-specific expression. Among the other autosomal genes with monoallelic expression were five members of the glutathione transferase gene superfamily, which processes xenobiotic compounds as well as carcinogens and cancer therapeutic agents. Monoallelic expression within this superfamily thus may play a functional role in the response to diverse and potentially lethal exogenous factors, as is the case for the immunoglobulin and olfactory receptor superfamilies. Other genes and gene families showing monoallelic expression include the annexin gene family and the Thy1 gene, both linked to inflammation and cancer, as well as genes linked to alcohol dependence (Gabrg1 and epilepsy (Kcnma1. The annotated set of genes will provide a resource for investigation of mechanisms underlying certain cases of these and other major disorders.

  14. Comparative radiobiology of genetic loci of eukaryots as the basis of the general theory of mutations

    International Nuclear Information System (INIS)

    Aleksandrov, I.D.

    1983-01-01

    One of the fundamental problems of modern molecular cellular radiobiology is to reveal general and peculiar processes of the formation of gene mutations and chromosome aberrations in each stage of their formation in the irradiated genome of the higher eukaryots. The solution of the problems depends on the development of research within the framework of comparative radiobiology of genetic loci of the higher eukaryots that makes it possible to study quantitative regularities in the formation of gene (point) mutations and chromosome aberrations in one object and in the same experiment

  15. Transcription factor IID in the Archaea: sequences in the Thermococcus celer genome would encode a product closely related to the TATA-binding protein of eukaryotes

    Science.gov (United States)

    Marsh, T. L.; Reich, C. I.; Whitelock, R. B.; Olsen, G. J.; Woese, C. R. (Principal Investigator)

    1994-01-01

    The first step in transcription initiation in eukaryotes is mediated by the TATA-binding protein, a subunit of the transcription factor IID complex. We have cloned and sequenced the gene for a presumptive homolog of this eukaryotic protein from Thermococcus celer, a member of the Archaea (formerly archaebacteria). The protein encoded by the archaeal gene is a tandem repeat of a conserved domain, corresponding to the repeated domain in its eukaryotic counterparts. Molecular phylogenetic analyses of the two halves of the repeat are consistent with the duplication occurring before the divergence of the archael and eukaryotic domains. In conjunction with previous observations of similarity in RNA polymerase subunit composition and sequences and the finding of a transcription factor IIB-like sequence in Pyrococcus woesei (a relative of T. celer) it appears that major features of the eukaryotic transcription apparatus were well-established before the origin of eukaryotic cellular organization. The divergence between the two halves of the archael protein is less than that between the halves of the individual eukaryotic sequences, indicating that the average rate of sequence change in the archael protein has been less than in its eukaryotic counterparts. To the extent that this lower rate applies to the genome as a whole, a clearer picture of the early genes (and gene families) that gave rise to present-day genomes is more apt to emerge from the study of sequences from the Archaea than from the corresponding sequences from eukaryotes.

  16. Over-expression of brain-derived neurotrophic factor in mesenchymal stem cells transfected with recombinant lentivirus BDNF gene.

    Science.gov (United States)

    Zhang, X; Zhu, J; Zhang, K; Liu, T; Zhang, Z

    2016-12-30

    This study was aimed at investigating the expression of brain-derived neurotrophic factor (BDNF) in mesenchymal stem cells (MSCs) modified with recombinant lentivirus bearing BDNF gene. Lentivirus vectors bearing BDNF gene were constructed. MSCs were isolated from rats and cultured. The lentiviral vectors containing BDNF gene were transfected into the MSCs, and BDNF gene and protein expressions were monitored with enhanced green fluorescent protein (EGFP). RT-PCR and Western blot were used to measure gene and protein expressions, respectibvely in MSCs, MSCs-EGFP and MSCs-EGFP-BDNF groups. Green fluorescence assay confirmed successful transfection of BDNF gene recombinant lentivirus into MSCs. RT-PCR and Western blot revealed that BDNF gene and protein expressions in the MSCs-EGFP-BDNF group were significantly higher than that in MSCs group and MSCs-EGFP group. There were no statistically significant differences in gene expression between MSCs and MSCs-EGFP groups. MSCs can over-express BDNF when transfected with recombinant lentivirus bearing BDNF gene.

  17. Characterization of human adipose-derived stem cells and expression of chondrogenic genes during induction of cartilage differentiation

    Directory of Open Access Journals (Sweden)

    Adila A Hamid

    2012-01-01

    Full Text Available OBJECTIVES: Understanding the changes in chondrogenic gene expression that are involved in the differentiation of human adipose-derived stem cells to chondrogenic cells is important prior to using this approach for cartilage repair. The aims of the study were to characterize human adipose-derived stem cells and to examine chondrogenic gene expression after one, two, and three weeks of induction. MATERIALS AND METHODS: Human adipose-derived stem cells at passage 4 were evaluated by flow cytometry to examine the expression of surface markers. These adipose-derived stem cells were tested for adipogenic and osteogenic differentiation capacity. Ribonucleic acid was extracted from the cells for quantitative polymerase chain reaction analysis to determine the expression levels of chondrogenic genes after chondrogenic induction. RESULTS: Human adipose-derived stem cells were strongly positive for the mesenchymal markers CD90, CD73, CD44, CD9, and histocompatibility antigen and successfully differentiated into adipogenic and osteogenic lineages. The human adipose-derived stem cells aggregated and formed a dense matrix after chondrogenic induction. The expression of chondrogenic genes (collagen type II, aggrecan core protein, collagen type XI, COMP, and ELASTIN was significantly higher after the first week of induction. However, a significantly elevated expression of collagen type X was observed after three weeks of chondrogenic induction. CONCLUSION: Human adipose-derived stem cells retain stem cell characteristics after expansion in culture to passage 4 and serve as a feasible source of cells for cartilage regeneration. Chondrogenesis in human adiposederived stem cells was most prominent after one week of chondrogenic induction.

  18. Communities of microbial eukaryotes in the mammalian gut within the context of environmental eukaryotic diversity

    Energy Technology Data Exchange (ETDEWEB)

    Parfrey, Laura Wegener; Walters, William A.; Lauber, Christian L.; Clemente, Jose C.; Berg-Lyons, Donna; Teiling, Clotilde; Kodira, Chinnappa; Mohiuddin, Mohammed; Brunelle, Julie; Driscoll, Mark; Fierer, Noah; Gilbert, Jack A.; Knight, Rob

    2014-06-19

    Eukaryotic microbes (protists) residing in the vertebrate gut influence host health and disease, but their diversity and distribution in healthy hosts is poorly understood. Protists found in the gut are typically considered parasites, but many are commensal and some are beneficial. Further, the hygiene hypothesis predicts that association with our co-evolved microbial symbionts may be important to overall health. It is therefore imperative that we understand the normal diversity of our eukaryotic gut microbiota to test for such effects and avoid eliminating commensal organisms. We assembled a dataset of healthy individuals from two populations, one with traditional, agrarian lifestyles and a second with modern, westernized lifestyles, and characterized the human eukaryotic microbiota via high-throughput sequencing. To place the human gut microbiota within a broader context our dataset also includes gut samples from diverse mammals and samples from other aquatic and terrestrial environments. We curated the SILVA ribosomal database to reflect current knowledge of eukaryotic taxonomy and employ it as a phylogenetic framework to compare eukaryotic diversity across environment. We show that adults from the non-western population harbor a diverse community of protists, and diversity in the human gut is comparable to that in other mammals. However, the eukaryotic microbiota of the western population appears depauperate. The distribution of symbionts found in mammals reflects both host phylogeny and diet. Eukaryotic microbiota in the gut are less diverse and more patchily distributed than bacteria. More broadly, we show that eukaryotic communities in the gut are less diverse than in aquatic and terrestrial habitats, and few taxa are shared across habitat types, and diversity patterns of eukaryotes are correlated with those observed for bacteria. These results outline the distribution and diversity of microbial eukaryotic communities in the mammalian gut and across

  19. Metabolic profiles of prokaryotic and eukaryotic communities in deep-sea sponge Neamphius huxleyi indicated by metagenomics

    Science.gov (United States)

    Li, Zhi-Yong; Wang, Yue-Zhu; He, Li-Ming; Zheng, Hua-Jun

    2014-01-01

    The whole metabolism of a sponge holobiont and the respective contributions of prokaryotic and eukaryotic symbionts and their associations with the sponge host remain largely unclear. Meanwhile, compared with shallow water sponges, deep-sea sponges are rarely understood. Here we report the metagenomic exploration of deep-sea sponge Neamphius huxleyi at the whole community level. Metagenomic data showed phylogenetically diverse prokaryotes and eukaryotes in Neamphius huxleyi. MEGAN and gene enrichment analyses indicated different metabolic potentials of prokaryotic symbionts from eukaryotic symbionts, especially in nitrogen and carbon metabolisms, and their molecular interactions with the sponge host. These results supported the hypothesis that prokaryotic and eukaryotic symbionts have different ecological roles and relationships with sponge host. Moreover, vigorous denitrification, and CO2 fixation by chemoautotrophic prokaryotes were suggested for this deep-sea sponge. The study provided novel insights into the respective potentials of prokaryotic and eukaryotic symbionts and their associations with deep-sea sponge Neamphius huxleyi. PMID:24463735

  20. Metabolic profiles of prokaryotic and eukaryotic communities in deep-sea sponge Neamphius huxleyi [corrected]. indicated by metagenomics.

    Science.gov (United States)

    Li, Zhi-Yong; Wang, Yue-Zhu; He, Li-Ming; Zheng, Hua-Jun

    2014-01-27

    The whole metabolism of a sponge holobiont and the respective contributions of prokaryotic and eukaryotic symbionts and their associations with the sponge host remain largely unclear. Meanwhile, compared with shallow water sponges, deep-sea sponges are rarely understood. Here we report the metagenomic exploration of deep-sea sponge Neamphius huxleyi [corrected] . at the whole community level. Metagenomic data showed phylogenetically diverse prokaryotes and eukaryotes in Neamphius huxleyi [corrected]. MEGAN and gene enrichment analyses indicated different metabolic potentials of prokaryotic symbionts from eukaryotic symbionts, especially in nitrogen and carbon metabolisms, and their molecular interactions with the sponge host. These results supported the hypothesis that prokaryotic and eukaryotic symbionts have different ecological roles and relationships with sponge host. Moreover, vigorous denitrification, and CO2 fixation by chemoautotrophic prokaryotes were suggested for this deep-sea sponge. The study provided novel insights into the respective potentials of prokaryotic and eukaryotic symbionts and their associations with deep-sea sponge Neamphius huxleyi [corrected].

  1. Metabolic profiles of prokaryotic and eukaryotic communities in deep-sea sponge Lamellomorpha sp. indicated by metagenomics

    Science.gov (United States)

    Li, Zhi-Yong; Wang, Yue-Zhu; He, Li-Ming; Zheng, Hua-Jun

    2014-01-01

    The whole metabolism of a sponge holobiont and the respective contributions of prokaryotic and eukaryotic symbionts and their associations with the sponge host remain largely unclear. Meanwhile, compared with shallow water sponges, deep-sea sponges are rarely understood. Here we report the metagenomic exploration of deep-sea sponge Lamellomorpha sp. at the whole community level. Metagenomic data showed phylogenetically diverse prokaryotes and eukaryotes in Lamellomorpha sp.. MEGAN and gene enrichment analyses indicated different metabolic potentials of prokaryotic symbionts from eukaryotic symbionts, especially in nitrogen and carbon metabolisms, and their molecular interactions with the sponge host. These results supported the hypothesis that prokaryotic and eukaryotic symbionts have different ecological roles and relationships with sponge host. Moreover, vigorous denitrification, and CO2 fixation by chemoautotrophic prokaryotes were suggested for this deep-sea sponge. The study provided novel insights into the respective potentials of prokaryotic and eukaryotic symbionts and their associations with deep-sea sponge Lamellomorpha sp..

  2. Eukaryotes first: how could that be?

    Science.gov (United States)

    Mariscal, Carlos; Doolittle, W Ford

    2015-09-26

    In the half century since the formulation of the prokaryote : eukaryote dichotomy, many authors have proposed that the former evolved from something resembling the latter, in defiance of common (and possibly common sense) views. In such 'eukaryotes first' (EF) scenarios, the last universal common ancestor is imagined to have possessed significantly many of the complex characteristics of contemporary eukaryotes, as relics of an earlier 'progenotic' period or RNA world. Bacteria and Archaea thus must have lost these complex features secondarily, through 'streamlining'. If the canonical three-domain tree in which Archaea and Eukarya are sisters is accepted, EF entails that Bacteria and Archaea are convergently prokaryotic. We ask what this means and how it might be tested. © 2015 The Author(s).

  3. Transformation of Cowpea Vigna unguiculata Cells with an Antibiotic Resistance Gene Using a Ti-Plasmid-Derived Vector

    NARCIS (Netherlands)

    Hille, Jacques; Goldbach, Rob

    1986-01-01

    A chimaeric antibiotic resistance gene was transferred to cowpea (Vigna unguiculata), a member of the legume family. This transfer was established by inoculating cowpea leaf discs with an Agrobacterium tumefaciens strain harboring a Ti-plasmid-derived vector that contained two copies of a chimaeric

  4. Reproduction, symbiosis, and the eukaryotic cell

    Science.gov (United States)

    Godfrey-Smith, Peter

    2015-01-01

    This paper develops a conceptual framework for addressing questions about reproduction, individuality, and the units of selection in symbiotic associations, with special attention to the origin of the eukaryotic cell. Three kinds of reproduction are distinguished, and a possible evolutionary sequence giving rise to a mitochondrion-containing eukaryotic cell from an endosymbiotic partnership is analyzed as a series of transitions between each of the three forms of reproduction. The sequence of changes seen in this “egalitarian” evolutionary transition is compared with those that apply in “fraternal” transitions, such as the evolution of multicellularity in animals. PMID:26286983

  5. The small RNA content of human sperm reveals pseudogene-derived piRNAs complementary to protein-coding genes

    DEFF Research Database (Denmark)

    Pantano, Lorena; Jodar, Meritxell; Bak, Mads

    2015-01-01

    -specific genes. The most abundant class of small noncoding RNAs in sperm are PIWI-interacting RNAs (piRNAs). Surprisingly, we found that human sperm cells contain piRNAs processed from pseudogenes. Clusters of piRNAs from human testes contain pseudogenes transcribed in the antisense strand and processed...... into small RNAs. Several human protein-coding genes contain antisense predicted targets of pseudogene-derived piRNAs in the male germline and these piRNAs are still found in mature sperm. Our study provides the most extensive data set and annotation of human sperm small RNAs to date and is a resource...... for further functional studies on the roles of sperm small RNAs. In addition, we propose that some of the pseudogene-derived human piRNAs may regulate expression of their parent gene in the male germline....

  6. Introns Protect Eukaryotic Genomes from Transcription-Associated Genetic Instability.

    Science.gov (United States)

    Bonnet, Amandine; Grosso, Ana R; Elkaoutari, Abdessamad; Coleno, Emeline; Presle, Adrien; Sridhara, Sreerama C; Janbon, Guilhem; Géli, Vincent; de Almeida, Sérgio F; Palancade, Benoit

    2017-08-17

    Transcription is a source of genetic instability that can notably result from the formation of genotoxic DNA:RNA hybrids, or R-loops, between the nascent mRNA and its template. Here we report an unexpected function for introns in counteracting R-loop accumulation in eukaryotic genomes. Deletion of endogenous introns increases R-loop formation, while insertion of an intron into an intronless gene suppresses R-loop accumulation and its deleterious impact on transcription and recombination in yeast. Recruitment of the spliceosome onto the mRNA, but not splicing per se, is shown to be critical to attenuate R-loop formation and transcription-associated genetic instability. Genome-wide analyses in a number of distant species differing in their intron content, including human, further revealed that intron-containing genes and the intron-richest genomes are best protected against R-loop accumulation and subsequent genetic instability. Our results thereby provide a possible rationale for the conservation of introns throughout the eukaryotic lineage. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. TGIF1 Gene Silencing in Tendon-Derived Stem Cells Improves the Tendon-to-Bone Insertion Site Regeneration

    Directory of Open Access Journals (Sweden)

    Liyang Chen

    2015-11-01

    Full Text Available Background/Aims: The slow healing process of tendon-to-bone junctions can be accelerated via implanted tendon-derived stem cells (TDSCs with silenced transforming growth interacting factor 1 (TGIF1 gene. Tendon-to-bone insertion site is the special form of connective tissues derivatives of common connective progenitors, where TGF-β plays bidirectional effects (chondrogenic or fibrogenic through different signaling pathways at different stages. A recent study revealed that TGF-β directly induces the chondrogenic gene Sox9. However, TGIF1 represses the expression of the cartilage master Sox9 gene and changes its expression rate against the fibrogenesis gene Scleraxis (Scx. Methods: TGIF1 siRNA was transduced or TGIF1 was over-expressed in tendon-derived stem cells. Following suprapinatus tendon repair, rats were either treated with transduced TDSCs or nontransduced TDSCs. Histologic examination and Western blot were performed in both groups. Results: In this study, the silencing of TGIF1 significantly upregulated the chondrogenic genes and markers. Similarly, TGIF1 inhibited TDSC differentiation into cartilage via interactions with TGF-β-activated Smad2 and suppressed the phosphorylation of Smad2. The area of fibrocartilage at the tendon-bone interface was significantly increased in the TGIF1 (- group compared with the control and TGIF1-overexpressing groups in the early stages of the animal model. The interface between the tendon and bone showed a increase of new bone and fibrocartilage in the TGIF1 (- group at 4 weeks. Fibrovascular scar tissue was observed in the TGIF1-overexpressing group and the fibrin glue only group. Low levels of fibrocartilage and fibrovascular scar tissue were found in the TDSCs group. Conclusion: Collectively, this study shows that the tendon-derived stem cell modified with TGIF1 gene silencing has promising effects on tendon-to-bone healing which can be further explored as a therapeutic tool in regenerative medicine.

  8. Horizontal gene transfer in chromalveolates

    Directory of Open Access Journals (Sweden)

    Bhattacharya Debashish

    2007-09-01

    Full Text Available Abstract Background Horizontal gene transfer (HGT, the non-genealogical transfer of genetic material between different organisms, is considered a potentially important mechanism of genome evolution in eukaryotes. Using phylogenomic analyses of expressed sequence tag (EST data generated from a clonal cell line of a free living dinoflagellate alga Karenia brevis, we investigated the impact of HGT on genome evolution in unicellular chromalveolate protists. Results We identified 16 proteins that have originated in chromalveolates through ancient HGTs before the divergence of the genera Karenia and Karlodinium and one protein that was derived through a more recent HGT. Detailed analysis of the phylogeny and distribution of identified proteins demonstrates that eight have resulted from independent HGTs in several eukaryotic lineages. Conclusion Recurring intra- and interdomain gene exchange provides an important source of genetic novelty not only in parasitic taxa as previously demonstrated but as we show here, also in free-living protists. Investigating the tempo and mode of evolution of horizontally transferred genes in protists will therefore advance our understanding of mechanisms of adaptation in eukaryotes.

  9. Repair of DNA DSB in higher eukaryotes

    International Nuclear Information System (INIS)

    Wang, H.; Perrault, A.R.; Takeda, Y.; Iliakis, G.

    2003-01-01

    Cells of higher eukaryotes process within minutes double strand breaks (DSBs) in their genome using a NHEJ apparatus that engages DNA-PKcs, Ku, DNA ligase IV, XRCC4, and other as of yet unidentified factors. Although chemical inhibition, or mutation, in any of these factors delays processing, cells ultimately remove the majority of DNA DSBs using an alternative pathway operating with slower kinetics. This alternative pathway is active in mutants deficient in genes of the RAD52 epistasis group. We proposed, therefore, that it reflects an alternative form of NHEJ that operates as a backup (B-NHEJ) to the DNA-PK- dependent (D-NHEJ) pathway, rather than homology directed repair of DSBs. We studied the role of Ku and DNA-PKcs in the coordination of these pathways using as a model end joining of restriction endonuclease linearized plasmid DNA in whole cell extracts. Efficient error-free endjoining observed in such in-vitro reactions is strongly inhibited by anti-Ku antibodies. The inhibition requires DNA-PKcs, despite that fact that Ku efficiently binds DNA ends in the presence of antibodies, or in the absence of DNA-PKcs. Strong inhibition of DNA endjoining is also mediated by wortmannin, an inhibitor of DNA-PKcs, in the presence but not in the absence of Ku, and this inhibition can be rescued by pre-incubating the reaction with double stranded oligonucleotides. The results are compatible with a role of Ku in directing endjoining to a DNA-PK dependent pathway, mediated by efficient end binding and productive interactions with DNA-PKcs. On the other hand, efficient end joining is observed in extracts of cells lacking DNA-PKcs, as well as in Ku-depleted extracts sugggesting the operation of alternative pathways. Extracts depleted of Ku and DNA-PKcs rejoin blunt ends, as well as homologous ends with 3' or 5' protruding single strands with similar efficiency, but addition of Ku suppresses joining of blunt ends and homologous ends with 3' overhangs. We propose that the

  10. Proton-pumping rhodopsins are abundantly expressed by microbial eukaryotes in a high-Arctic fjord.

    Science.gov (United States)

    Vader, Anna; Laughinghouse, Haywood D; Griffiths, Colin; Jakobsen, Kjetill S; Gabrielsen, Tove M

    2018-02-01

    Proton-pumping rhodopsins provide an alternative pathway to photosynthesis by which solar energy can enter the marine food web. Rhodopsin genes are widely found in marine bacteria, also in the Arctic, and were recently reported from several eukaryotic lineages. So far, little is known about rhodopsin expression in Arctic eukaryotes. In this study, we used metatranscriptomics and 18S rDNA tag sequencing to examine the mid-summer function and composition of marine protists (size 0.45-10 µm) in the high-Arctic Billefjorden (Spitsbergen), especially focussing on the expression of microbial proton-pumping rhodopsins. Rhodopsin transcripts were highly abundant, at a level similar to that of genes involved in photosynthesis. Phylogenetic analyses placed the environmental rhodopsins within disparate eukaryotic lineages, including dinoflagellates, stramenopiles, haptophytes and cryptophytes. Sequence comparison indicated the presence of several functional types, including xanthorhodopsins and a eukaryotic clade of proteorhodopsin. Transcripts belonging to the proteorhodopsin clade were also abundant in published metatranscriptomes from other oceanic regions, suggesting a global distribution. The diversity and abundance of rhodopsins show that these light-driven proton pumps play an important role in Arctic microbial eukaryotes. Understanding this role is imperative to predicting the future of the Arctic marine ecosystem faced by a changing light climate due to diminishing sea-ice. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  11. Personalized Medicine: Cell and Gene Therapy Based on Patient-Specific iPSC-Derived Retinal Pigment Epithelium Cells.

    Science.gov (United States)

    Li, Yao; Chan, Lawrence; Nguyen, Huy V; Tsang, Stephen H

    2016-01-01

    Interest in generating human induced pluripotent stem (iPS) cells for stem cell modeling of diseases has overtaken that of patient-specific human embryonic stem cells due to the ethical, technical, and political concerns associated with the latter. In ophthalmology, researchers are currently using iPS cells to explore various applications, including: (1) modeling of retinal diseases using patient-specific iPS cells; (2) autologous transplantation of differentiated retinal cells that undergo gene correction at the iPS cell stage via gene editing tools (e.g., CRISPR/Cas9, TALENs and ZFNs); and (3) autologous transplantation of patient-specific iPS-derived retinal cells treated with gene therapy. In this review, we will discuss the uses of patient-specific iPS cells for differentiating into retinal pigment epithelium (RPE) cells, uncovering disease pathophysiology, and developing new treatments such as gene therapy and cell replacement therapy via autologous transplantation.

  12. Epigenetic regulation of gene expression in porcine epiblast, hypoblast, trophectoderm and epiblast-derived neural progenitor cells

    DEFF Research Database (Denmark)

    Gao, Yu; Jammes, Helen; Rasmussen, Mikkel Aabech

    2011-01-01

    in this process. In this study, we investigated the relationship between DNA methylation and expression of pluripotency-associated genes (OCT4, NANOG and SOX2), a trophectoderm (TE)-specific gene (ELF5), and genes associated with neural differentiation (SOX2 and VIMENTIN) in porcine Day 10 (E10) epiblast......, hypoblast, and TE as well as in epiblast-derived neural progenitor cells (NPCs). We found that OCT4, NANOG, and SOX2 were highly expressed in the epiblast and hypoblast, while VIMENTIN was only highly expressed in the epiblast. Moreover, low expression of OCT4, NANOG, SOX2 and VIMENTIN was noted in the TE....... Most CpG sites of OCT4, NANOG, SOX2 and VIMENTIN displayed low methylation levels in the epiblast and hypoblast and, strikingly, also in the TE. Hence, the expression patterns of these genes were not directly related to levels of DNA methylation in the TE in contrast to the situation in the mouse...

  13. The origin of the eukaryotic cell

    Science.gov (United States)

    Hartman, H.

    1984-01-01

    The endosymbiotic hypothesis for the origin of the eukaryotic cell has been applied to the origin of the mitochondria and chloroplasts. However as has been pointed out by Mereschowsky in 1905, it should also be applied to the nucleus as well. If the nucleus, mitochondria and chloroplasts are endosymbionts, then it is likely that the organism that did the engulfing was not a DNA-based organism. In fact, it is useful to postulate that this organism was a primitive RNA-based organism. This hypothesis would explain the preponderance of RNA viruses found in eukaryotic cells. The centriole and basal body do not have a double membrane or DNA. Like all MTOCs (microtubule organising centres), they have a structural or morphic RNA implicated in their formation. This would argue for their origin in the early RNA-based organism rather than in an endosymbiotic event involving bacteria. Finally, the eukaryotic cell uses RNA in ways quite unlike bacteria, thus pointing to a greater emphasis of RNA in both control and structure in the cell. The origin of the eukaryotic cell may tell us why it rather than its prokaryotic relative evolved into the metazoans who are reading this paper.

  14. Eukaryotic acquisition of a bacterial operon

    Science.gov (United States)

    The yeast Saccharomyces cerevisiae is one of the champions of basic biomedical research due to its compact eukaryotic genome and ease of experimental manipulation. Despite these immense strengths, its impact on understanding the genetic basis of natural phenotypic variation has been limited by strai...

  15. Effect of Emdogain enamel matrix derivative and BMP-2 on the gene expression and mineralized nodule formation of alveolar bone proper-derived stem/progenitor cells.

    Science.gov (United States)

    Fawzy El-Sayed, Karim M; Dörfer, Christof; Ungefroren, Hendrick; Kassem, Neemat; Wiltfang, Jörg; Paris, Sebastian

    2014-07-01

    The objective of this study was to evaluate the effect of Emdogain (Enamel Matrix Derivative, EMD) and Bone Morphogenetic Protein-2 (BMP-2), either solely or in combination, on the gene expression and mineralized nodule formation of alveolar bone proper-derived stem/progenitor cells. Stem/progenitor cells were isolated from human alveolar bone proper, magnetically sorted using STRO-1 antibodies, characterized flowcytometrically for their surface markers' expression, and examined for colony formation and multilineage differentiation potential. Subsequently, cells were treated over three weeks with 100 μg/ml Emdogain (EMD-Group), or 100 ng/ml BMP-2 (BMP-Group), or a combination of 100 ng/ml BMP-2 and 100 μg/ml Emdogain (BMP/EMD-Group). Unstimulated stem/progenitor cells (MACS(+)-Group) and osteoblasts (OB-Group) served as controls. Osteogenic gene expression was analyzed using RTq-PCR after 1, 2 and 3 weeks (N = 3/group). Mineralized nodule formation was evaluated by Alizarin-Red staining. BMP and EMD up-regulated the osteogenic gene expression. The BMP Group showed significantly higher expression of Collagen-I, III, and V, Alkaline phosphatase and Osteonectin compared to MACS(+)- and OB-Group (p < 0.05; Two-way ANOVA/Bonferroni) with no mineralized nodule formation. Under in-vitro conditions, Emdogain and BMP-2 up-regulate the osteogenic gene expression of stem/progenitor cells. The combination of BMP-2 and Emdogain showed no additive effect and would not be recommended for a combined clinical stimulation. Copyright © 2013 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  16. Phenotyping of VIGS-mediated gene silencing in rice using a vector derived from a DNA virus.

    Science.gov (United States)

    Kant, Ravi; Dasgupta, Indranil

    2017-07-01

    Target genes in rice can be optimally silenced if inserted in antisense or hairpin orientation in the RTBV-derived VIGS vector and plants grown at 28 °C and 80% humidity after inoculation. Virus induced gene silencing (VIGS) is a method used to transiently silence genes in dicot as well as monocot plants. For the important monocot species rice, the Rice tungro bacilliform virus (RTBV)-derived VIGS system (RTBV-VIGS), which uses agroinoculation to initiate silencing, has not been standardized for optimal use. Here, using RTBV-VIGS, three sets of conditions were tested to achieve optimal silencing of the rice marker gene phytoene desaturase (pds). The effect of orientation of the insert in the RTBV-VIGS plasmid (sense, antisense and hairpin) on the silencing of the target gene was then evaluated using rice magnesium chelatase subunit H (chlH). Finally, the rice Xa21 gene, conferring resistance against bacterial leaf blight disease (BLB) was silenced using RTBV-VIGS system. In each case, real-time PCR-based assessment indicated approximately 40-80% fall in the accumulation levels of the transcripts of pds, chlH and Xa21. In the case of pds, the appearance of white streaks in the emerging leaves, and for chlH, chlorophyll levels and F v /F m ratio were assessed as phenotypes for silencing. For Xa21, the resistance levels to BLB were assessed by measuring the lesion length and the percent diseased areas of leaves, following challenge inoculation with Xanthomonas oryzae. In each case, the RTBV-MVIGS system gave rise to a discernible phenotype indicating the silencing of the respective target gene using condition III (temperature 28 °C, humidity 80% and 1 mM MES and 20 µM acetosyringone in secondary agrobacterium culture), which revealed the robustness of this gene silencing system for rice.

  17. A versatile selection system for folding competent proteins using genetic complementation in a eukaryotic host

    DEFF Research Database (Denmark)

    Lyngsø, C.; Kjaerulff, S.; Muller, S.

    2010-01-01

    in vivo selection system for folded proteins. It is based on genetic complementation of the Schizosaccharomyces pombe growth marker gene invertase fused C-terminally to a protein library. The fusion proteins are directed to the secretion system, utilizing the ability of the eukaryotic protein quality...

  18. Anaerobic energy metabolism in unicellular photosynthetic eukaryotes.

    Science.gov (United States)

    Atteia, Ariane; van Lis, Robert; Tielens, Aloysius G M; Martin, William F

    2013-02-01

    Anaerobic metabolic pathways allow unicellular organisms to tolerate or colonize anoxic environments. Over the past ten years, genome sequencing projects have brought a new light on the extent of anaerobic metabolism in eukaryotes. A surprising development has been that free-living unicellular algae capable of photoautotrophic lifestyle are, in terms of their enzymatic repertoire, among the best equipped eukaryotes known when it comes to anaerobic energy metabolism. Some of these algae are marine organisms, common in the oceans, others are more typically soil inhabitants. All these species are important from the ecological (O(2)/CO(2) budget), biotechnological, and evolutionary perspectives. In the unicellular algae surveyed here, mixed-acid type fermentations are widespread while anaerobic respiration, which is more typical of eukaryotic heterotrophs, appears to be rare. The presence of a core anaerobic metabolism among the algae provides insights into its evolutionary origin, which traces to the eukaryote common ancestor. The predicted fermentative enzymes often exhibit an amino acid extension at the N-terminus, suggesting that these proteins might be compartmentalized in the cell, likely in the chloroplast or the mitochondrion. The green algae Chlamydomonas reinhardtii and Chlorella NC64 have the most extended set of fermentative enzymes reported so far. Among the eukaryotes with secondary plastids, the diatom Thalassiosira pseudonana has the most pronounced anaerobic capabilities as yet. From the standpoints of genomic, transcriptomic, and biochemical studies, anaerobic energy metabolism in C. reinhardtii remains the best characterized among photosynthetic protists. This article is part of a Special Issue entitled: The evolutionary aspects of bioenergetic systems. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Ancestral and derived attributes of the dlx gene repertoire, cluster structure and expression patterns in an African cichlid fish

    Directory of Open Access Journals (Sweden)

    Renz Adina J

    2011-01-01

    Full Text Available Abstract Background Cichlid fishes have undergone rapid, expansive evolutionary radiations that are manifested in the diversification of their trophic morphologies, tooth patterning and coloration. Understanding the molecular mechanisms that underlie the cichlids' unique patterns of evolution requires a thorough examination of genes that pattern the neural crest, from which these diverse phenotypes are derived. Among those genes, the homeobox-containing Dlx gene family is of particular interest since it is involved in the patterning of the brain, jaws and teeth. Results In this study, we characterized the dlx genes of an African cichlid fish, Astatotilapia burtoni, to provide a baseline to later allow cross-species comparison within Cichlidae. We identified seven dlx paralogs (dlx1a, -2a, -4a, -3b, -4b, -5a and -6a, whose orthologies were validated with molecular phylogenetic trees. The intergenic regions of three dlx gene clusters (dlx1a-2a, dlx3b-4b, and dlx5a-6a were amplified with long PCR. Intensive cross-species comparison revealed a number of conserved non-coding elements (CNEs that are shared with other percomorph fishes. This analysis highlighted additional lineage-specific gains/losses of CNEs in different teleost fish lineages and a novel CNE that had previously not been identified. Our gene expression analyses revealed overlapping but distinct expression of dlx orthologs in the developing brain and pharyngeal arches. Notably, four of the seven A. burtoni dlx genes, dlx2a, dlx3b, dlx4a and dlx5a, were expressed in the developing pharyngeal teeth. Conclusion This comparative study of the dlx genes of A. burtoni has deepened our knowledge of the diversity of the Dlx gene family, in terms of gene repertoire, expression patterns and non-coding elements. We have identified possible cichlid lineage-specific changes, including losses of a subset of dlx expression domains in the pharyngeal teeth, which will be the targets of future functional

  20. New inter-correlated genes targeted by diatom-derived polyunsaturated aldehydes in the sea urchin Paracentrotus lividus.

    Science.gov (United States)

    Ruocco, Nadia; Maria Fedele, Anna; Costantini, Susan; Romano, Giovanna; Ianora, Adrianna; Costantini, Maria

    2017-08-01

    The marine environment is continually subjected to the action of stressors (including natural toxins), which represent a constant danger for benthic communities. In the present work using network analysis we identified ten genes on the basis of associated functions (FOXA, FoxG, GFI-1, nodal, JNK, OneCut/Hnf6, TAK1, tcf4, TCF7, VEGF) in the sea urchin Paracentrotus lividus, having key roles in different processes, such as embryonic development and asymmetry, cell fate specification, cell differentiation and morphogenesis, and skeletogenesis. These genes are correlated with three HUB genes, Foxo, Jun and HIF1A. Real Time qPCR revealed that during sea urchin embryonic development the expression levels of these genes were modulated by three diatom-derived polyunsaturated aldehydes (PUAs), decadienal, heptadienal and octadienal. Our findings show how changes in gene expression levels may be used as an early indicator of stressful conditions in the marine environment. The identification of key genes and the molecular pathways in which they are involved represents a fundamental tool in understanding how marine organisms try to afford protection against toxicants, to avoid deleterious consequences and irreversible damages. The genes identified in this work as targets for PUAs can be considered as possible biomarkers to detect exposure to different environmental pollutants. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  1. [Structure and evolution of the eukaryotic FANCJ-like proteins].

    Science.gov (United States)

    Wuhe, Jike; Zefeng, Wu; Sanhong, Fan; Xuguang, Xi

    2015-02-01

    The FANCJ-like protein family is a class of ATP-dependent helicases that can catalytically unwind duplex DNA along the 5'-3' direction. It is involved in the processes of DNA damage repair, homologous recombination and G-quadruplex DNA unwinding, and plays a critical role in maintaining genome integrity. In this study, we systemically analyzed FNACJ-like proteins from 47 eukaryotic species and discussed their sequences diversity, origin and evolution, motif organization patterns and spatial structure differences. Four members of FNACJ-like proteins, including XPD, CHL1, RTEL1 and FANCJ, were found in eukaryotes, but some of them were seriously deficient in most fungi and some insects. For example, the Zygomycota fungi lost RTEL1, Basidiomycota and Ascomycota fungi lost RTEL1 and FANCJ, and Diptera insect lost FANCJ. FANCJ-like proteins contain canonical motor domains HD1 and HD2, and the HD1 domain further integrates with three unique domains Fe-S, Arch and Extra-D. Fe-S and Arch domains are relatively conservative in all members of the family, but the Extra-D domain is lost in XPD and differs from one another in rest members. There are 7, 10 and 2 specific motifs found from the three unique domains respectively, while 5 and 12 specific motifs are found from HD1 and HD2 domains except the conserved motifs reported previously. By analyzing the arrangement pattern of these specific motifs, we found that RTEL1 and FANCJ are more closer and share two specific motifs Vb2 and Vc in HD2 domain, which are likely related with their G-quadruplex DNA unwinding activity. The evidence of evolution showed that FACNJ-like proteins were originated from a helicase, which has a HD1 domain inserted by extra Fe-S domain and Arch domain. By three continuous gene duplication events and followed specialization, eukaryotes finally possessed the current four members of FANCJ-like proteins.

  2. A Functional, Genome-wide Evaluation of Liposensitive Yeast Identifies the “ARE2 Required for Viability” (ARV1) Gene Product as a Major Component of Eukaryotic Fatty Acid Resistance*

    Science.gov (United States)

    Ruggles, Kelly V.; Garbarino, Jeanne; Liu, Ying; Moon, James; Schneider, Kerry; Henneberry, Annette; Billheimer, Jeff; Millar, John S.; Marchadier, Dawn; Valasek, Mark A.; Joblin-Mills, Aidan; Gulati, Sonia; Munkacsi, Andrew B.; Repa, Joyce J.; Rader, Dan; Sturley, Stephen L.

    2014-01-01

    The toxic subcellular accumulation of lipids predisposes several human metabolic syndromes, including obesity, type 2 diabetes, and some forms of neurodegeneration. To identify pathways that prevent lipid-induced cell death, we performed a genome-wide fatty acid sensitivity screen in Saccharomyces cerevisiae. We identified 167 yeast mutants as sensitive to 0.5 mm palmitoleate, 45% of which define pathways that were conserved in humans. 63 lesions also impacted the status of the lipid droplet; however, this was not correlated to the degree of fatty acid sensitivity. The most liposensitive yeast strain arose due to deletion of the “ARE2 required for viability” (ARV1) gene, encoding an evolutionarily conserved, potential lipid transporter that localizes to the endoplasmic reticulum membrane. Down-regulation of mammalian ARV1 in MIN6 pancreatic β-cells or HEK293 cells resulted in decreased neutral lipid synthesis, increased fatty acid sensitivity, and lipoapoptosis. Conversely, elevated expression of human ARV1 in HEK293 cells or mouse liver significantly increased triglyceride mass and lipid droplet number. The ARV1-induced hepatic triglyceride accumulation was accompanied by up-regulation of DGAT1, a triglyceride synthesis gene, and the fatty acid transporter, CD36. Furthermore, ARV1 was identified as a transcriptional of the protein peroxisome proliferator-activated receptor α (PPARα), a key regulator of lipid homeostasis whose transcriptional targets include DGAT1 and CD36. These results implicate ARV1 as a protective factor in lipotoxic diseases due to modulation of fatty acid metabolism. In conclusion, a lipotoxicity-based genetic screen in a model microorganism has identified 75 human genes that may play key roles in neutral lipid metabolism and disease. PMID:24273168

  3. A functional, genome-wide evaluation of liposensitive yeast identifies the "ARE2 required for viability" (ARV1) gene product as a major component of eukaryotic fatty acid resistance.

    Science.gov (United States)

    Ruggles, Kelly V; Garbarino, Jeanne; Liu, Ying; Moon, James; Schneider, Kerry; Henneberry, Annette; Billheimer, Jeff; Millar, John S; Marchadier, Dawn; Valasek, Mark A; Joblin-Mills, Aidan; Gulati, Sonia; Munkacsi, Andrew B; Repa, Joyce J; Rader, Dan; Sturley, Stephen L

    2014-02-14

    The toxic subcellular accumulation of lipids predisposes several human metabolic syndromes, including obesity, type 2 diabetes, and some forms of neurodegeneration. To identify pathways that prevent lipid-induced cell death, we performed a genome-wide fatty acid sensitivity screen in Saccharomyces cerevisiae. We identified 167 yeast mutants as sensitive to 0.5 mm palmitoleate, 45% of which define pathways that were conserved in humans. 63 lesions also impacted the status of the lipid droplet; however, this was not correlated to the degree of fatty acid sensitivity. The most liposensitive yeast strain arose due to deletion of the "ARE2 required for viability" (ARV1) gene, encoding an evolutionarily conserved, potential lipid transporter that localizes to the endoplasmic reticulum membrane. Down-regulation of mammalian ARV1 in MIN6 pancreatic β-cells or HEK293 cells resulted in decreased neutral lipid synthesis, increased fatty acid sensitivity, and lipoapoptosis. Conversely, elevated expression of human ARV1 in HEK293 cells or mouse liver significantly increased triglyceride mass and lipid droplet number. The ARV1-induced hepatic triglyceride accumulation was accompanied by up-regulation of DGAT1, a triglyceride synthesis gene, and the fatty acid transporter, CD36. Furthermore, ARV1 was identified as a transcriptional of the protein peroxisome proliferator-activated receptor α (PPARα), a key regulator of lipid homeostasis whose transcriptional targets include DGAT1 and CD36. These results implicate ARV1 as a protective factor in lipotoxic diseases due to modulation of fatty acid metabolism. In conclusion, a lipotoxicity-based genetic screen in a model microorganism has identified 75 human genes that may play key roles in neutral lipid metabolism and disease.

  4. Production of artemisinin and its derivatives in hairy roots of Artemisia dubia induced by rolA gene transformation

    International Nuclear Information System (INIS)

    Amanullah, M.; Mirza, B.; Zia, M.

    2016-01-01

    Artemisinin and its derivatives are phytochemical constituents of genus Artemisia. Demand of these plant secondary metabolitesis increasing due to their immense therapeutic significance. Besides their established antimalarial role, recent studies have also disclosed their anticancer potentials. It has made imperative to develop new and efficient sources of these compounds. Inherent synthetic challenges give biological sources preference over chemical synthesis of artemisinin and its derivatives. Therefore, genetic improvement of plants and, rather less preferentially, microbes is focus of current research to gain increase productivity of these valuable drugs. This study has analyzed A. dubiaas potential source of artemisinin and its derivatives. Transformation of Artemisia dubia was carried out using A. tumefaciens strain LBA 4404 containing rolA gene constructed on pRB 29. Healthy and acclimatizable transgenic plants were produced using optimized concentrations of BAP and NAA. Previously acclimatized rol ABC transgenic plants were also In vitro regenerated for comparative analysis of artemisinin and its derivatives. PCR amplification of rolA gene was done to confirm the integration of T-DNA in transgenic plants.TLC analysis was performed to evaluate comparative production of artemisinin and derivatives in rolA and rol ABC transgenic A. dubia. It revealed that rolA transgenic plants contain comparable amounts of these metabolites. Both type of transgenic plants manifested the enhancement of other uncharacterized compounds as well. Besides systematic optimization of In vitro regenerative protocol for Artemisia dubia, relative regeneration ability of rol transgenic and controlplants was also assessed at four regenerative stages. It was observed that unlike control, rol transgenic plants showed best root induction only on combination of auxins and cytokines. It was concluded that rol genes transformation of plants is an efficient tool to enhance their secondary

  5. Positive selection for unpreferred codon usage in eukaryotic genomes

    Directory of Open Access Journals (Sweden)

    Galagan James E

    2007-07-01

    Full Text Available Abstract Background Natural selection has traditionally been understood as a force responsible for pushing genes to states of higher translational efficiency, whereas lower translational efficiency has been explained by neutral mutation and genetic drift. We looked for evidence of directional selection resulting in increased unpreferred codon usage (and presumably reduced translational efficiency in three divergent clusters of eukaryotic genomes using a simple optimal-codon-based metric (Kp/Ku. Results Here we show that for some genes natural selection is indeed responsible for causing accelerated unpreferred codon substitution, and document the scope of this selection. In Cryptococcus and to a lesser extent Drosophila, we find many genes showing a statistically significant signal of selection for unpreferred codon usage in one or more lineages. We did not find evidence for this type of selection in Saccharomyces. The signal of positive selection observed from unpreferred synonymous codon substitutions is coincident in Cryptococcus and Drosophila with the distribution of upstream open reading frames (uORFs, another genic feature known to reduce translational efficiency. Functional enrichment analysis of genes exhibiting low Kp/Ku ratios reveals that genes in regulatory roles are particularly subject to this type of selection. Conclusion Through genome-wide scans, we find recent selection for unpreferred codon usage at approximately 1% of genetic loci in a Cryptococcus and several genes in Drosophila. Unpreferred codons can impede translation efficiency, and we find that genes with translation-impeding uORFs are enriched for this selection signal. We find that regulatory genes are particularly likely to be subject to selection for unpreferred codon usage. Given that expression noise can propagate through regulatory cascades, and that low translational efficiency can reduce expression noise, this finding supports the hypothesis that translational

  6. Lipid Phases Eye View to Lipofection. Cationic Phosphatidylcholine Derivatives as Efficient DNA Carriers for Gene Delivery

    OpenAIRE

    Rumiana Koynova

    2008-01-01

    Efficient delivery of genetic material to cells is needed for tasks of utmost importance in laboratory and clinic, such as gene transfection and gene silencing. Synthetic cationic lipids can be used as delivery vehicles for nucleic acids and are now considered the most promising non-viral gene carriers. They form complexes (lipoplexes) with the polyanionic nucleic acids. A critical obstacle for clinical application of the lipid-mediated DNA delivery (lipofection) is its unsatisfactory efficie...

  7. Complementary Information Derived from CRISPR Cas9 Mediated Gene Deletion and Suppression. | Office of Cancer Genomics

    Science.gov (United States)

    CRISPR-Cas9 provides the means to perform genome editing and facilitates loss-of-function screens. However, we and others demonstrated that expression of the Cas9 endonuclease induces a gene-independent response that correlates with the number of target sequences in the genome. An alternative approach to suppressing gene expression is to block transcription using a catalytically inactive Cas9 (dCas9). Here we directly compare genome editing by CRISPR-Cas9 (cutting, CRISPRc) and gene suppression using KRAB-dCas9 (CRISPRi) in loss-of-function screens to identify cell essential genes.

  8. Neural differentiation potential of human bone marrow-derived mesenchymal stromal cells: misleading marker gene expression

    Directory of Open Access Journals (Sweden)

    Montzka Katrin

    2009-03-01

    Full Text Available Abstract Background In contrast to pluripotent embryonic stem cells, adult stem cells have been considered to be multipotent, being somewhat more restricted in their differentiation capacity and only giving rise to cell types related to their tissue of origin. Several studies, however, have reported that bone marrow-derived mesenchymal stromal cells (MSCs are capable of transdifferentiating to neural cell types, effectively crossing normal lineage restriction boundaries. Such reports have been based on the detection of neural-related proteins by the differentiated MSCs. In order to assess the potential of human adult MSCs to undergo true differentiation to a neural lineage and to determine the degree of homogeneity between donor samples, we have used RT-PCR and immunocytochemistry to investigate the basal expression of a range of neural related mRNAs and proteins in populations of non-differentiated MSCs obtained from 4 donors. Results The expression analysis revealed that several of the commonly used marker genes from other studies like nestin, Enolase2 and microtubule associated protein 1b (MAP1b are already expressed by undifferentiated human MSCs. Furthermore, mRNA for some of the neural-related transcription factors, e.g. Engrailed-1 and Nurr1 were also strongly expressed. However, several other neural-related mRNAs (e.g. DRD2, enolase2, NFL and MBP could be identified, but not in all donor samples. Similarly, synaptic vesicle-related mRNA, STX1A could only be detected in 2 of the 4 undifferentiated donor hMSC samples. More significantly, each donor sample revealed a unique expression pattern, demonstrating a significant variation of marker expression. Conclusion The present study highlights the existence of an inter-donor variability of expression of neural-related markers in human MSC samples that has not previously been described. This donor-related heterogeneity might influence the reproducibility of transdifferentiation protocols as

  9. Matrix metalloproteinase-12 gene regulation by a PPAR alpha agonist in human monocyte-derived macrophages

    International Nuclear Information System (INIS)

    Souissi, Imen Jguirim; Billiet, Ludivine; Cuaz-Perolin, Clarisse; Slimane, Mohamed-Naceur; Rouis, Mustapha

    2008-01-01

    MMP-12, a macrophage-specific matrix metalloproteinase with large substrate specificity, has been reported to be highly expressed in mice, rabbits and human atherosclerotic lesions. Increased MMP-12 from inflammatory macrophages is associated with several degenerative diseases such as atherosclerosis. In this manuscript, we show that IL-1β, a proinflammatory cytokine found in atherosclerotic plaques, increases both mRNA and protein levels of MMP-12 in human monocyte-derived macrophages (HMDM). Since peroxisome proliferator-activated receptors (PPARs), such as PPARα and PPARγ, are expressed in macrophages and because PPAR activation exerts an anti-inflammatory effect on vascular cells, we have investigated the effect of PPARα and γ isoforms on MMP-12 regulation in HMDM. Our results show that MMP-12 expression (mRNA and protein) is down regulated in IL-1β-treated macrophages only in the presence of a specific PPARα agonist, GW647, in a dose-dependent manner. In contrast, this inhibitory effect was abolished in IL-1β-stimulated peritoneal macrophages isolated from PPARα -/- mice and treated with the PPARα agonist, GW647. Moreover, reporter gene transfection experiments using different MMP-12 promoter constructs showed a reduction of the promoter activities by ∼ 50% in IL-1β-stimulated PPARα-pre-treated cells. However, MMP-12 promoter analysis did not reveal the presence of a PPRE response element. The IL-1β effect is known to be mediated through the AP-1 binding site. Mutation of the AP-1 site, located at - 81 in the MMP-12 promoter region relative to the transcription start site, followed by transfection analysis, gel shift and ChIP experiments revealed that the inhibitory effect was the consequence of the protein-protein interaction between GW 647-activated PPARα and c-Fos or c-Jun transcription factors, leading to inhibition of their binding to the AP-1 motif. These studies suggest that PPARα agonists may be used therapeutically, not only for lipid

  10. Characterization of an eukaryotic peptide deformylase from Plasmodium falciparum.

    Science.gov (United States)

    Bracchi-Ricard, V; Nguyen, K T; Zhou, Y; Rajagopalan, P T; Chakrabarti, D; Pei, D

    2001-12-15

    Ribosomal protein synthesis in eubacteria and eukaryotic organelles initiates with an N-formylmethionyl-tRNA(i), resulting in N-terminal formylation of all nascent polypeptides. Peptide deformylase (PDF) catalyzes the subsequent removal of the N-terminal formyl group from the majority of bacterial proteins. Until recently, PDF has been thought as an enzyme unique to the bacterial kingdom. Searches of the genomic DNA databases identified several genes that encode proteins of high sequence homology to bacterial PDF from eukaryotic organisms. The cDNA encoding Plasmodium falciparum PDF (PfPDF) has been cloned and overexpressed in Escherichia coli. The recombinant protein is catalytically active in deformylating N-formylated peptides, shares many of the properties of bacterial PDF, and is inhibited by specific PDF inhibitors. Western blot analysis indicated expression of mature PfPDF in trophozoite, schizont, and segmenter stages of intraerythrocytic development. These results provide strong evidence that a functional PDF is present in P. falciparum. In addition, PDF inhibitors inhibited the growth of P. falciparum in the intraerythrocytic culture. (c)2001 Elsevier Science.

  11. Genome-wide analysis of gene expression during adipogenesis in human adipose-derived stromal cells reveals novel patterns of gene expression during adipocyte differentiation

    Directory of Open Access Journals (Sweden)

    Melvin Anyasi Ambele

    2016-05-01

    Full Text Available We have undertaken an in-depth transcriptome analysis of adipogenesis in human adipose-derived stromal cells (ASCs induced to differentiate into adipocytes in vitro. Gene expression was assessed on days 1, 7, 14 and 21 post-induction and genes differentially expressed numbered 128, 218, 253 and 240 respectively. Up-regulated genes were associated with blood vessel development, leukocyte migration, as well as tumor growth, invasion and metastasis. They also shared common pathways with certain obesity-related pathophysiological conditions. Down-regulated genes were enriched for immune response processes. KLF15, LMO3, FOXO1 and ZBTB16 transcription factors were up-regulated throughout the differentiation process. CEBPA, PPARG, ZNF117, MLXIPL, MMP3 and RORB were up-regulated only on days 14 and 21, which coincide with the maturation of adipocytes and could possibly serve as candidates for controlling fat accumulation and the size of mature adipocytes. In summary, we have identified genes that were up-regulated only on days 1 and 7 or days 14 and 21 that could serve as potential early and late-stage differentiation markers.

  12. Platelet-derived growth factor (PDGF) B-chain gene expression by activated blood monocytes precedes the expression of the PDGF A-chain gene

    International Nuclear Information System (INIS)

    Martinet, Y.; Jaffe, H.A.; Yamauchi, K.; Betsholtz, C.; Westermark, B.; Heldin, C.H.; Crystal, R.G.

    1987-01-01

    When activated, normal human blood monocytes are known to express the c-sis proto-oncogene coding for PDGF B-chain. Since normal human platelet PDGF molecules are dimers of A and B chains and platelets and monocytes are derived from the same marrow precursors, activated blood monocytes were simultaneously evaluated for their expression of PDGF A and B chain genes. Human blood monocytes were purified by adherence, cultured with or without activation by lipopolysaccharide and poly(A)+ RNA evaluated using Northern analysis and 32 P-labeled A-chain and B-chain (human c-sis) probes. Unstimulated blood monocytes did not express either A-chain or B-chain genes. In contrast, activated monocytes expressed a 4.2 kb mRNA B-chain transcript at 4 hr, but the B-chain mRNA levels declined significantly over the next 18 hr. In comparison, activated monocytes expressed very little A-chain mRNA at 4 hr, but at 12 hr 1.9, 2.3, and 2.8 kb transcripts were observed and persisted through 24 hr. Thus, activation of blood monocytes is followed by PDGF B-chain gene expression preceding PDGF A-chain gene expression, suggesting a difference in the regulation of the expression of the genes for these two chains by these cells

  13. Quantitative gene expression profiling of CD45+ and CD45- skeletal muscle-derived side population cells

    DEFF Research Database (Denmark)

    Ditte Caroline Andersen, Ditte Caroline; Kristiansen, Gitte Qvist; Jensen, Line

    2012-01-01

    The skeletal muscle-derived side population (mSP) which highly excludes Hoechst 33342 is composed of CD45(+) and CD45(-) subpopulations; yet, rareness of mSP cells in general has complicated extensive quantitative analysis of gene expression profiles in primarily isolated mSP cells. Here, we desc...... a satellite cell subpopulation) remain in the mSPCD45(-) fraction, and we show that these cells express high levels of many of the known myogenic precursor/stem cell related markers, including Pax7 and Myf5.......The skeletal muscle-derived side population (mSP) which highly excludes Hoechst 33342 is composed of CD45(+) and CD45(-) subpopulations; yet, rareness of mSP cells in general has complicated extensive quantitative analysis of gene expression profiles in primarily isolated mSP cells. Here, we...... describe the isolation of adult mouse normal skeletal muscle residing SPCD45(+) and SPCD45(-) cells from a parent mononuclear muscle-derived cell (MDC) population. Relative quantitative real time PCR (RT-PCR) of 64 genes revealed that mSPCD45(-) compared with mSPCD45(+) was enriched for cells expressing...

  14. Insights into the diversity of eukaryotes in acid mine drainage biofilm communities.

    Science.gov (United States)

    Baker, Brett J; Tyson, Gene W; Goosherst, Lindsey; Banfield, Jillian F

    2009-04-01

    Microscopic eukaryotes are known to have important ecosystem functions, but their diversity in most environments remains vastly unexplored. Here we analyzed an 18S rRNA gene library from a subsurface iron- and sulfur-oxidizing microbial community growing in highly acidic (pH morphological characterization. Results revealed that the populations vary significantly with the habitat and no group is ubiquitous. Surprisingly, many of the eukaryotic lineages (with the exception of the APC) are closely related to neutrophiles, suggesting that they recently adapted to this extreme environment. Molecular analyses presented here confirm that the number of eukaryotic species associated with the acid mine drainage (AMD) communities is low. This finding is consistent with previous results showing a limited diversity of archaea, bacteria, and viruses in AMD environments and suggests that the environmental pressures and interplay between the members of these communities limit species diversity at all trophic levels.

  15. Towards New Antifolates Targeting Eukaryotic Opportunistic Infections

    Energy Technology Data Exchange (ETDEWEB)

    Liu, J.; Bolstad, D; Bolstad, E; Wright, D; Anderson, A

    2009-01-01

    Trimethoprim, an antifolate commonly prescribed in combination with sulfamethoxazole, potently inhibits several prokaryotic species of dihydrofolate reductase (DHFR). However, several eukaryotic pathogenic organisms are resistant to trimethoprim, preventing its effective use as a therapeutic for those infections. We have been building a program to reengineer trimethoprim to more potently and selectively inhibit eukaryotic species of DHFR as a viable strategy for new drug discovery targeting several opportunistic pathogens. We have developed a series of compounds that exhibit potent and selective inhibition of DHFR from the parasitic protozoa Cryptosporidium and Toxoplasma as well as the fungus Candida glabrata. A comparison of the structures of DHFR from the fungal species Candida glabrata and Pneumocystis suggests that the compounds may also potently inhibit Pneumocystis DHFR.

  16. Gene Expression Profile Reveals Abnormalities of Multiple Signaling Pathways in Mesenchymal Stem Cell Derived from Patients with Systemic Lupus Erythematosus

    Directory of Open Access Journals (Sweden)

    Yu Tang

    2012-01-01

    Full Text Available We aimed to compare bone-marrow-derived mesenchymal stem cells (BMMSCs between systemic lupus erythematosus (SLE and normal controls by means of cDNA microarray, immunohistochemistry, immunofluorescence, and immunoblotting. Our results showed there were a total of 1, 905 genes which were differentially expressed by BMMSCs derived from SLE patients, of which, 652 genes were upregulated and 1, 253 were downregulated. Gene ontology (GO analysis showed that the majority of these genes were related to cell cycle and protein binding. Pathway analysis exhibited that differentially regulated signal pathways involved actin cytoskeleton, focal adhesion, tight junction, and TGF-β pathway. The high protein level of BMP-5 and low expression of Id-1 indicated that there might be dysregulation in BMP/TGF-β signaling pathway. The expression of Id-1 in SLE BMMSCs was reversely correlated with serum TNF-α levels. The protein level of cyclin E decreased in the cell cycling regulation pathway. Moreover, the MAPK signaling pathway was activated in BMMSCs from SLE patients via phosphorylation of ERK1/2 and SAPK/JNK. The actin distribution pattern of BMMSCs from SLE patients was also found disordered. Our results suggested that there were distinguished differences of BMMSCs between SLE patients and normal controls.

  17. Tools to covisualize and coanalyze proteomic data with genomes and transcriptomes: validation of genes and alternative mRNA splicing

    DEFF Research Database (Denmark)

    Pang, Chi; Tay, Aidan; Aya, Carlos

    2014-01-01

    contigs, along with RNA-seq reads. This is done in the Integrated Genome Viewer (IGV). A Results Analyzer reports the precise base position where LC-MS/MS-derived peptides cover genes or gene isoforms, on the chromosomes or contigs where this occurs. In prokaryotes, the PG Nexus pipeline facilitates...... the validation of genes, where annotation or gene prediction is available, or the discovery of genes using a "virtual protein"-based unbiased approach. We illustrate this with a comprehensive proteogenomics analysis of two strains of Campylobacter concisus . For higher eukaryotes, the PG Nexus facilitates gene...

  18. Genetic exchange in eukaryotes through horizontal transfer: connected by the mobilome.

    Science.gov (United States)

    Wallau, Gabriel Luz; Vieira, Cristina; Loreto, Élgion Lúcio Silva

    2018-01-01

    All living species contain genetic information that was once shared by their common ancestor. DNA is being inherited through generations by vertical transmission (VT) from parents to offspring and from ancestor to descendant species. This process was considered the sole pathway by which biological entities exchange inheritable information. However, Horizontal Transfer (HT), the exchange of genetic information by other means than parents to offspring, was discovered in prokaryotes along with strong evidence showing that it is a very important process by which prokaryotes acquire new genes. For some time now, it has been a scientific consensus that HT events were rare and non-relevant for evolution of eukaryotic species, but there is growing evidence supporting that HT is an important and frequent phenomenon in eukaryotes as well. Here, we will discuss the latest findings regarding HT among eukaryotes, mainly HT of transposons (HTT), establishing HTT once and for all as an important phenomenon that should be taken into consideration to fully understand eukaryotes genome evolution. In addition, we will discuss the latest development methods to detect such events in a broader scale and highlight the new approaches which should be pursued by researchers to fill the knowledge gaps regarding HTT among eukaryotes.

  19. Diversity of Eukaryotic Translational Initiation Factor eIF4E in Protists.

    Science.gov (United States)

    Jagus, Rosemary; Bachvaroff, Tsvetan R; Joshi, Bhavesh; Place, Allen R

    2012-01-01

    The greatest diversity of eukaryotic species is within the microbial eukaryotes, the protists, with plants and fungi/metazoa representing just two of the estimated seventy five lineages of eukaryotes. Protists are a diverse group characterized by unusual genome features and a wide range of genome sizes from 8.2 Mb in the apicomplexan parasite Babesia bovis to 112,000-220,050 Mb in the dinoflagellate Prorocentrum micans. Protists possess numerous cellular, molecular and biochemical traits not observed in "text-book" model organisms. These features challenge some of the concepts and assumptions about the regulation of gene expression in eukaryotes. Like multicellular eukaryotes, many protists encode multiple eIF4Es, but few functional studies have been undertaken except in parasitic species. An earlier phylogenetic analysis of protist eIF4Es indicated that they cannot be grouped within the three classes that describe eIF4E family members from multicellular organisms. Many more protist sequences are now available from which three clades can be recognized that are distinct from the plant/fungi/metazoan classes. Understanding of the protist eIF4Es will be facilitated as more sequences become available particularly for the under-represented opisthokonts and amoebozoa. Similarly, a better understanding of eIF4Es within each clade will develop as more functional studies of protist eIF4Es are completed.

  20. Enzymes from Higher Eukaryotes for Industrial Biocatalysis

    Directory of Open Access Journals (Sweden)

    Zhibin Liu

    2004-01-01

    Full Text Available The industrial production of fine chemicals, feed and food ingredients, pharmaceuticals, agrochemicals and their respective intermediates relies on an increasing application of biocatalysis, i.e. on enzyme or whole-cell catalyzed conversions of molecules. Simple procedures for discovery, cloning and over-expression as well as fast growth favour fungi, yeasts and especially bacteria as sources of biocatalysts. Higher eukaryotes also harbour an almost unlimited number of potential biocatalysts, although to date the limited supply of enzymes, the high heterogeneity of enzyme preparations and the hazard of infectious contaminants keep some interesting candidates out of reach for industrial bioprocesses. In the past only a few animal and plant enzymes from agricultural waste materials were employed in food processing. The use of bacterial expression strains or non-conventional yeasts for the heterologous production of efficient eukaryotic enzymes can overcome the bottleneck in enzyme supply and provide sufficient amounts of homogenous enzyme preparations for reliable and economically feasible applications at large scale. Ideal enzymatic processes represent an environmentally friendly, »near-to-completion« conversion of (mostly non-natural substrates to pure products. Recent developments demonstrate the commercial feasibility of large-scale biocatalytic processes employing enzymes from higher eukaryotes (e.g. plants, animals and also their usefulness in some small-scale industrial applications.

  1. Arsenic and Antimony Transporters in Eukaryotes

    Directory of Open Access Journals (Sweden)

    Ewa Maciaszczyk-Dziubinska

    2012-03-01

    Full Text Available Arsenic and antimony are toxic metalloids, naturally present in the environment and all organisms have developed pathways for their detoxification. The most effective metalloid tolerance systems in eukaryotes include downregulation of metalloid uptake, efflux out of the cell, and complexation with phytochelatin or glutathione followed by sequestration into the vacuole. Understanding of arsenic and antimony transport system is of high importance due to the increasing usage of arsenic-based drugs in the treatment of certain types of cancer and diseases caused by protozoan parasites as well as for the development of bio- and phytoremediation strategies for metalloid polluted areas. However, in contrast to prokaryotes, the knowledge about specific transporters of arsenic and antimony and the mechanisms of metalloid transport in eukaryotes has been very limited for a long time. Here, we review the recent advances in understanding of arsenic and antimony transport pathways in eukaryotes, including a dual role of aquaglyceroporins in uptake and efflux of metalloids, elucidation of arsenic transport mechanism by the yeast Acr3 transporter and its role in arsenic hyperaccumulation in ferns, identification of vacuolar transporters of arsenic-phytochelatin complexes in plants and forms of arsenic substrates recognized by mammalian ABC transporters.

  2. Arsenic and Antimony Transporters in Eukaryotes

    Science.gov (United States)

    Maciaszczyk-Dziubinska, Ewa; Wawrzycka, Donata; Wysocki, Robert

    2012-01-01

    Arsenic and antimony are toxic metalloids, naturally present in the environment and all organisms have developed pathways for their detoxification. The most effective metalloid tolerance systems in eukaryotes include downregulation of metalloid uptake, efflux out of the cell, and complexation with phytochelatin or glutathione followed by sequestration into the vacuole. Understanding of arsenic and antimony transport system is of high importance due to the increasing usage of arsenic-based drugs in the treatment of certain types of cancer and diseases caused by protozoan parasites as well as for the development of bio- and phytoremediation strategies for metalloid polluted areas. However, in contrast to prokaryotes, the knowledge about specific transporters of arsenic and antimony and the mechanisms of metalloid transport in eukaryotes has been very limited for a long time. Here, we review the recent advances in understanding of arsenic and antimony transport pathways in eukaryotes, including a dual role of aquaglyceroporins in uptake and efflux of metalloids, elucidation of arsenic transport mechanism by the yeast Acr3 transporter and its role in arsenic hyperaccumulation in ferns, identification of vacuolar transporters of arsenic-phytochelatin complexes in plants and forms of arsenic substrates recognized by mammalian ABC transporters. PMID:22489166

  3. Identification of stable reference genes for quantitative PCR in cells derived from chicken lymphoid organs.

    Science.gov (United States)

    Borowska, D; Rothwell, L; Bailey, R A; Watson, K; Kaiser, P

    2016-02-01

    Quantitative polymerase chain reaction (qPCR) is a powerful technique for quantification of gene expression, especially genes involved in immune responses. Although qPCR is a very efficient and sensitive tool, variations in the enzymatic efficiency, quality of RNA and the presence of inhibitors can lead to errors. Therefore, qPCR needs to be normalised to obtain reliable results and allow comparison. The most common approach is to use reference genes as internal controls in qPCR analyses. In this study, expression of seven genes, including β-actin (ACTB), β-2-microglobulin (B2M), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), β-glucuronidase (GUSB), TATA box binding protein (TBP), α-tubulin (TUBAT) and 28S ribosomal RNA (r28S), was determined in cells isolated from chicken lymphoid tissues and stimulated with three different mitogens. The stability of the genes was measured using geNorm, NormFinder and BestKeeper software. The results from both geNorm and NormFinder were that the three most stably expressed genes in this panel were TBP, GAPDH and r28S. BestKeeper did not generate clear answers because of the highly heterogeneous sample set. Based on these data we will include TBP in future qPCR normalisation. The study shows the importance of appropriate reference gene normalisation in other tissues before qPCR analysis. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Susceptibilities to DNA Structural Transitions within Eukaryotic Genomes

    Science.gov (United States)

    Zhabinskaya, Dina; Benham, Craig; Madden, Sally

    2012-02-01

    We analyze the competitive transitions to alternate secondary DNA structures in a negatively supercoiled DNA molecule of kilobase length and specified base sequence. We use statistical mechanics to calculate the competition among all regions within the sequence that are susceptible to transitions to alternate structures. We use an approximate numerical method since the calculation of an exact partition function is numerically cumbersome for DNA molecules of lengths longer than hundreds of base pairs. This method yields accurate results in reasonable computational times. We implement algorithms that calculate the competition between transitions to denatured states and to Z-form DNA. We analyze these transitions near the transcription start sites (TSS) of a set of eukaryotic genes. We find an enhancement of Z-forming regions upstream of the TSS and a depletion of denatured regions around the start sites. We confirm that these finding are statistically significant by comparing our results to a set of randomized genes with preserved base composition at each position relative to the gene start sites. When we study the correlation of these transitions in orthologous mouse and human genes we find a clear evolutionary conservation of both types of transitions around the TSS.

  5. Differential reconstructed gene interaction networks for deriving toxicity threshold in chemical risk assessment

    OpenAIRE

    Yang, Yi; Maxwell, Andrew; Zhang, Xiaowei; Wang, Nan; Perkins, Edward J; Zhang, Chaoyang; Gong, Ping

    2013-01-01

    Background Pathway alterations reflected as changes in gene expression regulation and gene interaction can result from cellular exposure to toxicants. Such information is often used to elucidate toxicological modes of action. From a risk assessment perspective, alterations in biological pathways are a rich resource for setting toxicant thresholds, which may be more sensitive and mechanism-informed than traditional toxicity endpoints. Here we developed a novel differential networks (DNs) appro...

  6. Nucleosome mediated crosstalk between transcription factors at eukaryotic enhancers

    International Nuclear Information System (INIS)

    Teif, Vladimir B; Rippe, Karsten

    2011-01-01

    A recent study of transcription regulation in Drosophila embryonic development revealed a complex non-monotonic dependence of gene expression on the distance between binding sites of repressor and activator proteins at the corresponding enhancer cis-regulatory modules (Fakhouri et al 2010 Mol. Syst. Biol. 6 341). The repressor efficiency was high at small separations, low around 30 bp, reached a maximum at 50–60 bp, and decreased at larger distances to the activator binding sites. Here, we propose a straightforward explanation for the distance dependence of repressor activity by considering the effect of the presence of a nucleosome. Using a method that considers partial unwrapping of nucleosomal DNA from the histone octamer core, we calculated the dependence of activator binding on the repressor–activator distance and found a quantitative agreement with the distance dependence reported for the Drosophila enhancer element. In addition, the proposed model offers explanations for other distance-dependent effects at eukaryotic enhancers. (communication)

  7. Transcriptional profiling of MEF2-regulated genes in human neural progenitor cells derived from embryonic stem cells

    Directory of Open Access Journals (Sweden)

    Shing Fai Chan

    2015-03-01

    Full Text Available The myocyte enhancer factor 2 (MEF2 family of transcription factors is highly expressed in the brain and constitutes a key determinant of neuronal survival, differentiation, and synaptic plasticity. However, genome-wide transcriptional profiling of MEF2-regulated genes has not yet been fully elucidated, particularly at the neural stem cell stage. Here we report the results of microarray analysis comparing mRNAs isolated from human neural progenitor/stem cells (hNPCs derived from embryonic stem cells expressing a control vector versus progenitors expressing a constitutively-active form of MEF2 (MEF2CA, which increases MEF2 activity. Microarray experiments were performed using the Illumina Human HT-12 V4.0 expression beadchip (GEO#: GSE57184. By comparing vector-control cells to MEF2CA cells, microarray analysis identified 1880 unique genes that were differentially expressed. Among these genes, 1121 genes were up-regulated and 759 genes were down-regulated. Our results provide a valuable resource for identifying transcriptional targets of MEF2 in hNPCs.

  8. Improved gene expression in resting macrophages using an oligopeptide derived from Vpr of human immunodeficiency virus type-1

    International Nuclear Information System (INIS)

    Mizoguchi, Izuru; Ooe, Yoshihiro; Hoshino, Shigeki; Shimura, Mari; Kasahara, Tadashi; Kano, Shigeyuki; Ohta, Toshiko; Takaku, Fumimaro; Nakayama, Yasuhide; Ishizaka, Yukihito

    2005-01-01

    Vpr, an accessory gene product of human immunodeficiency virus type-1, is thought to transport a viral DNA from the cytoplasm to the nucleus in resting macrophages. Previously, we reported that a peptide encompassing amino acids 52-78 of Vpr (C45D18) promotes the nuclear trafficking of recombinant proteins that are conjugated with C45D18. Here, we present evidence that C45D18, when conjugated with a six-branched cationic polymer of poly(N,N-dimethylaminopropylacrylamide)-block-oligo(4-aminostyrene) (SV: star vector), facilitates gene expression in resting macrophages. Although there was no difference between SV alone and C45D18-SV with respect to gene transduction into growing cells, C45D18-SV resulted in more than 40-fold greater expression of the exogenous gene upon transduction into chemically differentiated macrophages and human quiescent monocyte-derived macrophages. The data suggest that C45D18 contributes to improving the ability of a non-viral vector to transduce macrophages with exogenous genes and we discuss its further application

  9. An evolutionary conserved region (ECR in the human dopamine receptor D4 gene supports reporter gene expression in primary cultures derived from the rat cortex

    Directory of Open Access Journals (Sweden)

    Haddley Kate

    2011-05-01

    Full Text Available Abstract Background Detecting functional variants contributing to diversity of behaviour is crucial for dissecting genetics of complex behaviours. At a molecular level, characterisation of variation in exons has been studied as they are easily identified in the current genome annotation although the functional consequences are less well understood; however, it has been difficult to prioritise regions of non-coding DNA in which genetic variation could also have significant functional consequences. Comparison of multiple vertebrate genomes has allowed the identification of non-coding evolutionary conserved regions (ECRs, in which the degree of conservation can be comparable with exonic regions suggesting functional significance. Results We identified ECRs at the dopamine receptor D4 gene locus, an important gene for human behaviours. The most conserved non-coding ECR (D4ECR1 supported high reporter gene expression in primary cultures derived from neonate rat frontal cortex. Computer aided analysis of the sequence of the D4ECR1 indicated the potential transcription factors that could modulate its function. D4ECR1 contained multiple consensus sequences for binding the transcription factor Sp1, a factor previously implicated in DRD4 expression. Co-transfection experiments demonstrated that overexpression of Sp1 significantly decreased the activity of the D4ECR1 in vitro. Conclusion Bioinformatic analysis complemented by functional analysis of the DRD4 gene locus has identified a a strong enhancer that functions in neurons and b a transcription factor that may modulate the function of that enhancer.

  10. The powdery mildew resistance gene Pm8 derived from rye is suppressed by its wheat ortholog Pm3.

    Science.gov (United States)

    Hurni, Severine; Brunner, Susanne; Stirnweis, Daniel; Herren, Gerhard; Peditto, David; McIntosh, Robert A; Keller, Beat

    2014-09-01

    The powdery mildew resistance gene Pm8 derived from rye is located on a 1BL.1RS chromosome translocation in wheat. However, some wheat lines with this translocation do not show resistance to isolates of the wheat powdery mildew pathogen avirulent to Pm8 due to an unknown genetically dominant suppression mechanism. Here we show that lines with suppressed Pm8 activity contain an intact and expressed Pm8 gene. Therefore, the absence of Pm8 function in certain 1BL.1RS-containing wheat lines is not the result of gene loss or mutation but is based on suppression. The wheat gene Pm3, an ortholog of rye Pm8, suppressed Pm8-mediated powdery mildew resistance in lines containing Pm8 in a transient single-cell expression assay. This result was further confirmed in transgenic lines with combined Pm8 and Pm3 transgenes. Expression analysis revealed that suppression is not the result of gene silencing, either in wheat 1BL.1RS translocation lines carrying Pm8 or in transgenic genotypes with both Pm8 and Pm3 alleles. In addition, a similar abundance of the PM8 and PM3 proteins in single or double homozygous transgenic lines suggested that a post-translational mechanism is involved in suppression of Pm8. Co-expression of Pm8 and Pm3 genes in Nicotiana benthamiana leaves followed by co-immunoprecipitation analysis showed that the two proteins interact. Therefore, the formation of a heteromeric protein complex might result in inefficient or absent signal transmission for the defense reaction. These data provide a molecular explanation for the suppression of resistance genes in certain genetic backgrounds and suggest ways to circumvent it in future plant breeding. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.

  11. Evaluation of MYBPC3 trans-Splicing and Gene Replacement as Therapeutic Options in Human iPSC-Derived Cardiomyocytes

    Directory of Open Access Journals (Sweden)

    Maksymilian Prondzynski

    2017-06-01

    Full Text Available Gene therapy is a promising option for severe forms of genetic diseases. We previously provided evidence for the feasibility of trans-splicing, exon skipping, and gene replacement in a mouse model of hypertrophic cardiomyopathy (HCM carrying a mutation in MYBPC3, encoding cardiac myosin-binding protein C (cMyBP-C. Here we used human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs from an HCM patient carrying a heterozygous c.1358-1359insC MYBPC3 mutation and from a healthy donor. HCM hiPSC-CMs exhibited ∼50% lower MYBPC3 mRNA and cMyBP-C protein levels than control, no truncated cMyBP-C, larger cell size, and altered gene expression, thus reproducing human HCM features. We evaluated RNA trans-splicing and gene replacement after transducing hiPSC-CMs with adeno-associated virus. trans-splicing with 5′ or 3′ pre-trans-splicing molecules represented ∼1% of total MYBPC3 transcripts in healthy hiPSC-CMs. In contrast, gene replacement with the full-length MYBPC3 cDNA resulted in ∼2.5-fold higher MYBPC3 mRNA levels in HCM and control hiPSC-CMs. This restored the cMyBP-C level to 81% of the control level, suppressed hypertrophy, and partially restored gene expression to control level in HCM cells. This study provides evidence for (1 the feasibility of trans-splicing, although with low efficiency, and (2 efficient gene replacement in hiPSC-CMs with a MYBPC3 mutation.

  12. Catechol-O-Methyltransferase (COMT) Gene (Val158Met) and Brain-Derived Neurotropic Factor (BDNF) (Val66Met) Genes Polymorphism in Schizophrenia: A Case-Control Study

    OpenAIRE

    Saravani, Ramin; Galavi, Hamid Reza; Lotfian Sargazi, Marzieh

    2017-01-01

    Objective: Several studies have shown that some polymorphisms of genes encoding catechol-O-methyltransferase (COMT), the key enzyme in degrading dopamine, and norepinephrine and the human brain-derived neurotropic factor (BDNF), a nerve growth factor, are strong candidates for risk of schizophrenia (SCZ). In the present study, we aimed at examining the effects of COMT Val158Met (G>A) and BDNF Val66Met (G>A) polymorphisms on SCZ risk in a sample of Iranian population. Method: This case- contro...

  13. Gene Correction Reverses Ciliopathy and Photoreceptor Loss in iPSC-Derived Retinal Organoids from Retinitis Pigmentosa Patients

    Directory of Open Access Journals (Sweden)

    Wen-Li Deng

    2018-04-01

    Full Text Available Summary: Retinitis pigmentosa (RP is an irreversible, inherited retinopathy in which early-onset nyctalopia is observed. Despite the genetic heterogeneity of RP, RPGR mutations are the most common causes of this disease. Here, we generated induced pluripotent stem cells (iPSCs from three RP patients with different frameshift mutations in the RPGR gene, which were then differentiated into retinal pigment epithelium (RPE cells and well-structured retinal organoids possessing electrophysiological properties. We observed significant defects in photoreceptor in terms of morphology, localization, transcriptional profiling, and electrophysiological activity. Furthermore, shorted cilium was found in patient iPSCs, RPE cells, and three-dimensional retinal organoids. CRISPR-Cas9-mediated correction of RPGR mutation rescued photoreceptor structure and electrophysiological property, reversed the observed ciliopathy, and restored gene expression to a level in accordance with that in the control using transcriptome-based analysis. This study recapitulated the pathogenesis of RPGR using patient-specific organoids and achieved targeted gene therapy of RPGR mutations in a dish as proof-of-concept evidence. : Jin and colleagues demonstrate that patient-specific iPSC-derived 3D retinae can recapitulate disease progress of retinitis pigmentosa through presenting defects in photoreceptor morphology, gene profile, and electrophysiology, as well as the defective ciliogenesis in iPSCs, iPSC-RPE, and 3D retinae. CRISPR/Cas9-mediated gene correction can rescue not only photoreceptor structure and electrophysiological property but also observed ciliopathy. Keywords: RPGR, photoreceptor, electrophysiology, retinitis pigmentosa, patient-derived iPSCs, retinal organoid, RPE cells, cilium, ciliopathy, disease modeling

  14. Mapping and characterization of the new adult plant leaf rust resistance gene Lr77 derived from Santa Fe winter wheat.

    Science.gov (United States)

    Kolmer, James A; Su, Zhenqi; Bernardo, Amy; Bai, Guihua; Chao, Shiaoman

    2018-04-25

    A new gene for adult plant leaf rust resistance in wheat was mapped to chromosome 3BL. This gene was designated as Lr77. 'Santa Fe' is a hard red winter cultivar that has had long-lasting resistance to the leaf rust fungus, Puccinia triticina. The objective of this study was to determine the chromosome location of the adult plant leaf rust resistance in Santa Fe wheat. A partial backcross line of 'Thatcher' (Tc) wheat with adult plant leaf rust resistance derived from Santa Fe was crossed with Thatcher to develop a Thatcher//Tc*2/Santa Fe F 6 recombinant inbred line (RIL) population. The RIL population and parental lines were evaluated for segregation of leaf rust resistance in three field plot tests and in an adult plant greenhouse test. A genetic map of the RIL population was constructed using 90,000 single-nucleotide polymorphism (SNP) markers with the Illumina Infinium iSelect 90K wheat bead array. A significant quantitative trait locus for reduction of leaf rust severity in all four tests was found on chromosome 3BL that segregated as a single adult plant resistance gene. The RILs with the allele from the resistant parent for SNP marker IWB10344 had lower leaf rust severity and a moderately resistant to moderately susceptible response compared to the susceptible RILs and Thatcher. The gene derived from Santa Fe on chromosome 3BL was designated as Lr77. Kompetitive allele-specific polymerase chain reaction assay markers linked to Lr77 on 3BL should be useful for selection of wheat germplasm with this gene.

  15. The small RNA content of human sperm reveals pseudogene-derived piRNAs complementary to protein-coding genes

    Science.gov (United States)

    Pantano, Lorena; Jodar, Meritxell; Bak, Mads; Ballescà, Josep Lluís; Tommerup, Niels; Oliva, Rafael; Vavouri, Tanya

    2015-01-01

    At the end of mammalian sperm development, sperm cells expel most of their cytoplasm and dispose of the majority of their RNA. Yet, hundreds of RNA molecules remain in mature sperm. The biological significance of the vast majority of these molecules is unclear. To better understand the processes that generate sperm small RNAs and what roles they may have, we sequenced and characterized the small RNA content of sperm samples from two human fertile individuals. We detected 182 microRNAs, some of which are highly abundant. The most abundant microRNA in sperm is miR-1246 with predicted targets among sperm-specific genes. The most abundant class of small noncoding RNAs in sperm are PIWI-interacting RNAs (piRNAs). Surprisingly, we found that human sperm cells contain piRNAs processed from pseudogenes. Clusters of piRNAs from human testes contain pseudogenes transcribed in the antisense strand and processed into small RNAs. Several human protein-coding genes contain antisense predicted targets of pseudogene-derived piRNAs in the male germline and these piRNAs are still found in mature sperm. Our study provides the most extensive data set and annotation of human sperm small RNAs to date and is a resource for further functional studies on the roles of sperm small RNAs. In addition, we propose that some of the pseudogene-derived human piRNAs may regulate expression of their parent gene in the male germline. PMID:25904136

  16. A Tumor Suppressor Gene Product, Platelet-Derived Growth Factor Receptor-Like Protein Controls Chondrocyte Proliferation and Differentiation.

    Science.gov (United States)

    Kawata, Kazumi; Kubota, Satoshi; Eguchi, Takanori; Aoyama, Eriko; Moritani, Norifumi H; Oka, Morihiko; Kawaki, Harumi; Takigawa, Masaharu

    2017-11-01

    The platelet-derived growth factor receptor-like (PDGFRL) gene is regarded as a tumor suppressor gene. However, nothing is known about the molecular function of PDGFRL. In this study, we initially clarified its function in chondrocytes. Among all cell lines examined, the PDGFRL mRNA level was the highest in chondrocytic HCS-2/8 cells. Interestingly, the proliferation of chondrocytic HCS-2/8 cells was promoted by PDGFRL overexpression, whereas that of the breast cancer-derived MDA-MB-231 cells was inhibited. Of note, in PDGFRL-overexpressing HCS-2/8 cells, the expression of chondrocyte differentiation marker genes, SOX9, ACAN, COL2A1, COL10A1, and ALP, was decreased. Moreover, we confirmed the expression of PDGFRL mRNA in normal cartilage tissue and chondrocytes. Eventually, the expression of PDGFRL mRNA in condrocytes except in the case of hypertrophic chondrocytes was demonstrated in vivo and in vitro. These findings suggest that PDGFRL plays the different roles, depending upon cell types. Particularly, in chondrocytes, PDGFRL may play a new and important role which is distinct from the function previously reported. J. Cell. Biochem. 118: 4033-4044, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  17. Genome-wide analyses and functional classification of proline repeat-rich proteins: potential role of eIF5A in eukaryotic evolution.

    Directory of Open Access Journals (Sweden)

    Ajeet Mandal

    Full Text Available The eukaryotic translation factor, eIF5A has been recently reported as a sequence-specific elongation factor that facilitates peptide bond formation at consecutive prolines in Saccharomyces cerevisiae, as its ortholog elongation factor P (EF-P does in bacteria. We have searched the genome databases of 35 representative organisms from six kingdoms of life for PPP (Pro-Pro-Pro and/or PPG (Pro-Pro-Gly-encoding genes whose expression is expected to depend on eIF5A. We have made detailed analyses of proteome data of 5 selected species, Escherichia coli, Saccharomyces cerevisiae, Drosophila melanogaster, Mus musculus and Homo sapiens. The PPP and PPG motifs are low in the prokaryotic proteomes. However, their frequencies markedly increase with the biological complexity of eukaryotic organisms, and are higher in newly derived proteins than in those orthologous proteins commonly shared in all species. Ontology classifications of S. cerevisiae and human genes encoding the highest level of polyprolines reveal their strong association with several specific biological processes, including actin/cytoskeletal associated functions, RNA splicing/turnover, DNA binding/transcription and cell signaling. Previously reported phenotypic defects in actin polarity and mRNA decay of eIF5A mutant strains are consistent with the proposed role for eIF5A in the translation of the polyproline-containing proteins. Of all the amino acid tandem repeats (≥3 amino acids, only the proline repeat frequency correlates with functional complexity of the five organisms examined. Taken together, these findings suggest the importance of proline repeat-rich proteins and a potential role for eIF5A and its hypusine modification pathway in the course of eukaryotic evolution.

  18. Safety assessment considerations for food and feed derived from plants with genetic modifications that modulate endogenous gene expression and pathways.

    Science.gov (United States)

    Kier, Larry D; Petrick, Jay S

    2008-08-01

    The current globally recognized comparative food and feed safety assessment paradigm for biotechnology-derived crops is a robust and comprehensive approach for evaluating the safety of both the inserted gene product and the resulting crop. Incorporating many basic concepts from food safety, toxicology, nutrition, molecular biology, and plant breeding, this approach has been used effectively by scientists and regulatory agencies for 10-15 years. Current and future challenges in agriculture include the need for improved yields, tolerance to biotic and abiotic stresses, and improved nutrition. The next generation of biotechnology-derived crops may utilize regulatory proteins, such as transcription factors that modulate gene expression and/or endogenous plant pathways. In this review, we discuss the applicability of the current safety assessment paradigm to biotechnology-derived crops developed using modifications involving regulatory proteins. The growing literature describing the molecular biology underlying plant domestication and conventional breeding demonstrates the naturally occurring genetic variation found in plants, including significant variation in the classes, expression, and activity of regulatory proteins. Specific examples of plant modifications involving insertion or altered expression of regulatory proteins are discussed as illustrative case studies supporting the conclusion that the current comparative safety assessment process is appropriate for these types of biotechnology-developed crops.

  19. Eukaryotic resistance to fluoride toxicity mediated by a widespread family of fluoride export proteins.

    Science.gov (United States)

    Li, Sanshu; Smith, Kathryn D; Davis, Jared H; Gordon, Patricia B; Breaker, Ronald R; Strobel, Scott A

    2013-11-19

    Fluorine is an abundant element and is toxic to organisms from bacteria to humans, but the mechanisms by which eukaryotes resist fluoride toxicity are unknown. The Escherichia coli gene crcB was recently shown to be regulated by a fluoride-responsive riboswitch, implicating it in fluoride response. There are >8,000 crcB homologs across all domains of life, indicating that it has an important role in biology. Here we demonstrate that eukaryotic homologs [renamed FEX (fluoride exporter)] function in fluoride export. FEX KOs in three eukaryotic model organisms, Neurospora crassa, Saccharomyces cerevisiae, and Candida albicans, are highly sensitized to fluoride (>200-fold) but not to other halides. Some of these KO strains are unable to grow in fluoride concentrations found in tap water. Using the radioactive isotope of fluoride, (18)F, we developed an assay to measure the intracellular fluoride concentration and show that the FEX deletion strains accumulate fluoride in excess of the external concentration, providing direct evidence of FEX function in fluoride efflux. In addition, they are more sensitive to lower pH in the presence of fluoride. These results demonstrate that eukaryotic FEX genes encode a previously unrecognized class of fluoride exporter necessary for survival in standard environmental conditions.

  20. Comparative genome analysis of PHB gene family reveals deep evolutionary origins and diverse gene function.

    Science.gov (United States)

    Di, Chao; Xu, Wenying; Su, Zhen; Yuan, Joshua S

    2010-10-07

    PHB (Prohibitin) gene family is involved in a variety of functions important for different biological processes. PHB genes are ubiquitously present in divergent species from prokaryotes to eukaryotes. Human PHB genes have been found to be associated with various diseases. Recent studies by our group and others have shown diverse function of PHB genes in plants for development, senescence, defence, and others. Despite the importance of the PHB gene family, no comprehensive gene family analysis has been carried to evaluate the relatedness of PHB genes across different species. In order to better guide the gene function analysis and understand the evolution of the PHB gene family, we therefore carried out the comparative genome analysis of the PHB genes across different kingdoms. The relatedness, motif distribution, and intron/exon distribution all indicated that PHB genes is a relatively conserved gene family. The PHB genes can be classified into 5 classes and each class have a very deep evolutionary origin. The PHB genes within the class maintained the same motif patterns during the evolution. With Arabidopsis as the model species, we found that PHB gene intron/exon structure and domains are also conserved during the evolution. Despite being a conserved gene family, various gene duplication events led to the expansion of the PHB genes. Both segmental and tandem gene duplication were involved in Arabidopsis PHB gene family expansion. However, segmental duplication is predominant in Arabidopsis. Moreover, most of the duplicated genes experienced neofunctionalization. The results highlighted that PHB genes might be involved in important functions so that the duplicated genes are under the evolutionary pressure to derive new function. PHB gene family is a conserved gene family and accounts for diverse but important biological functions based on the similar molecular mechanisms. The highly diverse biological function indicated that more research needs to be carried out

  1. Prokaryotes versus Eukaryotes: Who is hosting whom?

    Directory of Open Access Journals (Sweden)

    Guillermo eTellez

    2014-10-01

    Full Text Available Microorganisms represent the largest component of biodiversity in our world. For millions of years, prokaryotic microorganisms have functioned as a major selective force shaping eukaryotic evolution. Microbes that live inside and on animals outnumber the animals’ actual somatic and germ cells by an estimated 10-fold. Collectively, the intestinal microbiome represents a ‘forgotten organ’, functioning as an organ inside another that can execute many physiological responsibilities. The nature of primitive eukaryotes was drastically changed due to the association with symbiotic prokaryotes facilitating mutual coevolution of host and microbe. Phytophagous insects have long been used to test theories of evolutionary diversification; moreover, the diversification of a number of phytophagous insect lineages has been linked to mutualisms with microbes. From termites and honey bees to ruminants and mammals, depending on novel biochemistries provided by the prokaryotic microbiome, the association helps to metabolize several nutrients that the host cannot digest and converting these into useful end products (such as short chain fatty acids, a process which has huge impact on the biology and homeostasis of metazoans. More importantly, in a direct and/or indirect way, the intestinal microbiota influences the assembly of gut-associated lymphoid tissue, helps to educate immune system, affects the integrity of the intestinal mucosal barrier, modulates proliferation and differentiation of its epithelial lineages, regulates angiogenesis, and modifies the activity of enteric as well as the central nervous system,. Despite these important effects, the mechanisms by which the gut microbial community influences the host’s biology remains almost entirely unknown. Our aim here is to encourage empirical inquiry into the relationship between mutualism and evolutionary diversification between prokaryotes and eukaryotes which encourage us to postulate: Who is

  2. Mitochondrial uncoupling proteins in unicellular eukaryotes.

    Science.gov (United States)

    Jarmuszkiewicz, Wieslawa; Woyda-Ploszczyca, Andrzej; Antos-Krzeminska, Nina; Sluse, Francis E

    2010-01-01

    Uncoupling proteins (UCPs) are members of the mitochondrial anion carrier protein family that are present in the mitochondrial inner membrane and mediate free fatty acid (FFA)-activated, purine nucleotide (PN)-inhibited proton conductance. Since 1999, the presence of UCPs has been demonstrated in some non-photosynthesising unicellular eukaryotes, including amoeboid and parasite protists, as well as in non-fermentative yeast and filamentous fungi. In the mitochondria of these organisms, UCP activity is revealed upon FFA-induced, PN-inhibited stimulation of resting respiration and a decrease in membrane potential, which are accompanied by a decrease in membranous ubiquinone (Q) reduction level. UCPs in unicellular eukaryotes are able to divert energy from oxidative phosphorylation and thus compete for a proton electrochemical gradient with ATP synthase. Our recent work indicates that membranous Q is a metabolic sensor that might utilise its redox state to release the PN inhibition of UCP-mediated mitochondrial uncoupling under conditions of phosphorylation and resting respiration. The action of reduced Q (QH2) could allow higher or complete activation of UCP. As this regulatory feature was demonstrated for microorganism UCPs (A. castellanii UCP), plant and mammalian UCP1 analogues, and UCP1 in brown adipose tissue, the process could involve all UCPs. Here, we discuss the functional connection and physiological role of UCP and alternative oxidase, two main energy-dissipating systems in the plant-type mitochondrial respiratory chain of unicellular eukaryotes, including the control of cellular energy balance as well as preventive action against the production of reactive oxygen species. Copyright © 2009 Elsevier B.V. All rights reserved.

  3. Genome-wide identification of Bcl11b gene targets reveals role in brain-derived neurotrophic factor signaling.

    Directory of Open Access Journals (Sweden)

    Bin Tang

    Full Text Available B-cell leukemia/lymphoma 11B (Bcl11b is a transcription factor showing predominant expression in the striatum. To date, there are no known gene targets of Bcl11b in the nervous system. Here, we define targets for Bcl11b in striatal cells by performing chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq in combination with genome-wide expression profiling. Transcriptome-wide analysis revealed that 694 genes were significantly altered in striatal cells over-expressing Bcl11b, including genes showing striatal-enriched expression similar to Bcl11b. ChIP-seq analysis demonstrated that Bcl11b bound a mixture of coding and non-coding sequences that were within 10 kb of the transcription start site of an annotated gene. Integrating all ChIP-seq hits with the microarray expression data, 248 direct targets of Bcl11b were identified. Functional analysis on the integrated gene target list identified several zinc-finger encoding genes as Bcl11b targets, and further revealed a significant association of Bcl11b to brain-derived neurotrophic factor/neurotrophin signaling. Analysis of ChIP-seq binding regions revealed significant consensus DNA binding motifs for Bcl11b. These data implicate Bcl11b as a novel regulator of the BDNF signaling pathway, which is disrupted in many neurological disorders. Specific targeting of the Bcl11b-DNA interaction could represent a novel therapeutic approach to lowering BDNF signaling specifically in striatal cells.

  4. Clues to pathogenesis of spondyloarthropathy derived from synovial fluid mononuclear cell gene expression profiles

    NARCIS (Netherlands)

    Gu, Jieruo; Rihl, Markus; Märker-Hermann, Elisabeth; Baeten, Dominique; Kuipers, Jens G.; Song, Yeong Wook; Maksymowych, Walter P.; Burgos-Vargas, Ruben; Veys, Eric M.; de Keyser, Filip; Deister, Helmuth; Xiong, Momiao; Huang, Feng; Tsai, Wen Chan; Yu, David Tak Yan

    2002-01-01

    OBJECTIVE: To use gene expression profiles of spondyloarthropathy (SpA) synovial fluid mononuclear cells (SFMC) to determine if there are transcripts that support the unfolded protein response (UPR) hypothesis, and to identify which cytokines/chemokines are being expressed and which cell fractions

  5. Gene expression pattern of functional neuronal cells derived from human bone marrow mesenchymal stromal cells

    Directory of Open Access Journals (Sweden)

    Bron Dominique

    2008-04-01

    Full Text Available Abstract Background Neuronal tissue has limited potential to self-renew or repair after neurological diseases. Cellular therapies using stem cells are promising approaches for the treatment of neurological diseases. However, the clinical use of embryonic stem cells or foetal tissues is limited by ethical considerations and other scientific problems. Thus, bone marrow mesenchymal stomal cells (BM-MSC could represent an alternative source of stem cells for cell replacement therapies. Indeed, many studies have demonstrated that MSC can give rise to neuronal cells as well as many tissue-specific cell phenotypes. Methods BM-MSC were differentiated in neuron-like cells under specific induction (NPBM + cAMP + IBMX + NGF + Insulin. By day ten, differentiated cells presented an expression profile of real neurons. Functionality of these differentiated cells was evaluated by calcium influx through glutamate receptor AMPA3. Results Using microarray analysis, we compared gene expression profile of these different samples, before and after neurogenic differentiation. Among the 1943 genes differentially expressed, genes down-regulated are involved in osteogenesis, chondrogenesis, adipogenesis, myogenesis and extracellular matrix component (tuftelin, AGC1, FADS3, tropomyosin, fibronectin, ECM2, HAPLN1, vimentin. Interestingly, genes implicated in neurogenesis are increased. Most of them are involved in the synaptic transmission and long term potentialisation as cortactin, CASK, SYNCRIP, SYNTL4 and STX1. Other genes are involved in neurite outgrowth, early neuronal cell development, neuropeptide signaling/synthesis and neuronal receptor (FK506, ARHGAP6, CDKRAP2, PMCH, GFPT2, GRIA3, MCT6, BDNF, PENK, amphiregulin, neurofilament 3, Epha4, synaptotagmin. Using real time RT-PCR, we confirmed the expression of selected neuronal genes: NEGR1, GRIA3 (AMPA3, NEF3, PENK and Epha4. Functionality of these neuron-like cells was demonstrated by Ca2+ influx through glutamate

  6. Lipid-mediated glial cell line-derived neurotrophic factor gene transfer to cultured porcine ventral mesencephalic tissue

    DEFF Research Database (Denmark)

    Bauer, Matthias; Meyer, Morten; Brevig, Thomas

    2002-01-01

    Transplantation of dopaminergic ventral mesencephalic (VM) tissue into the basal ganglia of patients with Parkinson's disease (PD) shows at best moderate symptomatic relief in some of the treated cases. Experimental animal studies and clinical trials with allogenic and xenogenic pig-derived VM...... tissue grafts to PD patients indicate that one reason for the poor outcome of neural transplantation is the low survival and differentiation of grafted dopaminergic neurons. To improve dopaminergic cell survival through a gene-therapeutic approach we have established and report here results of lipid-mediated...... numbers of tyrosine hydroxylase-positive neurons in the cultured VM tissue. We conclude that lipid-mediated gene transfer employed on embryonic pig VM explant cultures is a safe and effective method to improve survival of dopaminergic neurons and may become a valuable tool to improve allo...

  7. Adipogenic differentiation and EGFP gene transfection of amniotic fluid-derived stem cells from goat fetus at terminal gestational age.

    Science.gov (United States)

    He, Xiao-Ying; Zheng, Yue-Mao; Qiu, Shuang; Qi, Ying-Pei; Zhang, Yong

    2011-08-01

    The aims of this study were to determine whether stem cells could be isolated from amniotic fluid of goat fetus at terminal gestational age and to determine if these stem cells could differentiate into adipogenic cells and be transfected with a reporter gene, EGFP (enhanced green fluorescent protein). The stem cells were isolated from amniotic fluid of goat fetus at terminal gestational age, induced to differentiate into adipogenic cells in vitro and transfected with the EGFP gene using lipofection. Markers associated with undifferentiated AFS (amniotic fluid-derived stem) cells were tested by RT (reverse transcription)-PCR. The results demonstrated that AFS cells could be isolated from amniotic fluid of goat fetus at terminal gestational age and could differentiate into adipogenic cells. The EGFP gene was transfected into AFS cells successfully. EGFP gene transfection efficiency of the three groups of transgenic AFS cells were 26.0, 29.9 and 30.5%, respectively. Both transgenic and wild-type AFS cells could express Hes1 (hairy and enhancer of split 1), Oct4 (octamer-binding protein 4) and Nanog.

  8. Robust heat-inducible gene expression by two endogenous hsp70-derived promoters in transgenic Aedes aegypti

    Science.gov (United States)

    Carpenetti, Tiffany L. G.; Aryan, Azadeh; Myles, Kevin M.; Adelman, Zach N.

    2011-01-01

    Aedes aegypti is an important vector of the viruses that cause dengue fever, dengue hemorrhagic fever, and yellow fever. Reverse genetic approaches to the study of gene function in this mosquito have been limited by the lack of a robust inducible promoter to allow precise temporal control over a protein-encoding or hairpin RNA transgene. Likewise, investigations into the molecular and biochemical basis of vector competence would benefit from the ability to activate an anti-pathogen molecule at specific times during infection. We have characterized the ability of genomic sequences derived from two Ae. aegypti hsp70 genes to drive heat-inducible expression of a reporter in both transient and germline transformation contexts. AaHsp70-luciferase transcripts accumulated specifically after heat shock, and displayed a pattern of rapid induction and decay similar to endogenous AaHsp70 genes. Luciferase expression in transgenic Ae. aegypti increased by ∼25-50 fold in whole adults by four hours after heat-shock, with significant activity (∼20 fold) remaining at 24 hr. Heat-induced expression was even more dramatic in midgut tissues, with one strain showing a ∼2500-fold increase in luciferase activity. The AaHsp70 promoters described could be valuable for gene function studies as well as for the precise timing of the expression of anti-pathogen molecules. PMID:22142225

  9. Effect of SMAD7 gene overexpression on TGF-β1-induced profibrotic responses in fibroblasts derived from Peyronie's plaque

    Directory of Open Access Journals (Sweden)

    Min Ji Choi

    2015-06-01

    Full Text Available Transforming growth factor-β1 (TGF-β1 has been identified as one of the most important fibrogenic cytokines associated with Peyronie's disease (PD. The mothers against decapentaplegic homolog 7 (SMAD7 is an inhibitory Smad protein that blocks TGF-β signaling pathway. The aim of this study was to examine the anti-fibrotic effect of the SMAD7 gene in primary fibroblasts derived from human PD plaques. PD fibroblasts were pretreated with the SMAD7 gene and then stimulated with TGF-β1. Treated fibroblasts were used for Western blotting, fluorescent immunocytochemistry, hydroxyproline determination, and terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling assays. Overexpression of the SMAD7 gene inhibited TGF-β1-induced phosphorylation and nuclear translocation of SMAD2 and SMAD3, transdifferentiation of fibroblasts into myofibroblasts, and quashed TGF-β1-induced production of extracellular matrix protein and hydroxyproline. Overexpression of the SMAD7 gene decreased the expression of cyclin D1 (a positive cell cycle regulator and induced the expression of poly (ADP-ribose polymerase 1, which is known to terminate Smad-mediated transcription, in PD fibroblasts. These findings suggest that the blocking of the TGF-β pathway by use of SMAD7 may be a promising therapeutic strategy for the treatment of PD.

  10. Multi-species sequence comparison reveals conservation of ghrelin gene-derived splice variants encoding a truncated ghrelin peptide.

    Science.gov (United States)

    Seim, Inge; Jeffery, Penny L; Thomas, Patrick B; Walpole, Carina M; Maugham, Michelle; Fung, Jenny N T; Yap, Pei-Yi; O'Keeffe, Angela J; Lai, John; Whiteside, Eliza J; Herington, Adrian C; Chopin, Lisa K

    2016-06-01

    The peptide hormone ghrelin is a potent orexigen produced predominantly in the stomach. It has a number of other biological actions, including roles in appetite stimulation, energy balance, the stimulation of growth hormone release and the regulation of cell proliferation. Recently, several ghrelin gene splice variants have been described. Here, we attempted to identify conserved alternative splicing of the ghrelin gene by cross-species sequence comparisons. We identified a novel human exon 2-deleted variant and provide preliminary evidence that this splice variant and in1-ghrelin encode a C-terminally truncated form of the ghrelin peptide, termed minighrelin. These variants are expressed in humans and mice, demonstrating conservation of alternative splicing spanning 90 million years. Minighrelin appears to have similar actions to full-length ghrelin, as treatment with exogenous minighrelin peptide stimulates appetite and feeding in mice. Forced expression of the exon 2-deleted preproghrelin variant mirrors the effect of the canonical preproghrelin, stimulating cell proliferation and migration in the PC3 prostate cancer cell line. This is the first study to characterise an exon 2-deleted preproghrelin variant and to demonstrate sequence conservation of ghrelin gene-derived splice variants that encode a truncated ghrelin peptide. This adds further impetus for studies into the alternative splicing of the ghrelin gene and the function of novel ghrelin peptides in vertebrates.

  11. GENE ACTION AND HERITABILITY ESTIMATES OF QUANTITATIVE CHARACTERS AMONG LINES DERIVED FROM VARIETAL CROSSES OF SOYBEAN

    Directory of Open Access Journals (Sweden)

    Lukman Hakim

    2017-09-01

    Full Text Available The knowledge of genetic action, heritability and genetic variability is useful and permits plant breeder to design efficient breeding strategies in soybean.  The objectives of this study were to determine gene action, genetic variability, heritability and genetic advance of quantitative characters that could be realized through selection of segregation progenies. The F1 population and F2 progenies of six crosses among five soybean varieties were evaluated at Muneng Experimental Station, East Java during the dry season of 2014.  The lines were planted in a randomized block design with four replications.  The seeds of each F1 and F2 progenies and parents were planted in four rows of 3 m long, 40 cm x 20 cm plant spacing, one plant per hill. The result showed that pod number per plant, seed yield, plant yield and harvest index were found to be predominantly controlled by additive gene effects.  Seed size was also controlled by additive gene effects, with small seed dominant to large seed size.  Plant height was found to be controlled by both additive and nonadditive gene effects.  Similarly, days to maturity was due mainly to additive and nonadditive gene effects, with earliness dominant to lateness.  Days to maturity had the highest heritability estimates of 49.3%, followed by seed size (47.0%, harvest index (45.8%, and pod number per plant (45.5%.  Therefore, they could be used in the selection of a high yielding soybean genotype in the F3 generation. 

  12. Diverse and Abundant Secondary Metabolism Biosynthetic Gene Clusters in the Genomes of Marine Sponge Derived Streptomyces spp. Isolates

    Directory of Open Access Journals (Sweden)

    Stephen A. Jackson

    2018-02-01

    Full Text Available The genus Streptomyces produces secondary metabolic compounds that are rich in biological activity. Many of these compounds are genetically encoded by large secondary metabolism biosynthetic gene clusters (smBGCs such as polyketide synthases (PKS and non-ribosomal peptide synthetases (NRPS which are modular and can be highly repetitive. Due to the repeats, these gene clusters can be difficult to resolve using short read next generation datasets and are often quite poorly predicted using standard approaches. We have sequenced the genomes of 13 Streptomyces spp. strains isolated from shallow water and deep-sea sponges that display antimicrobial activities against a number of clinically relevant bacterial and yeast species. Draft genomes have been assembled and smBGCs have been identified using the antiSMASH (antibiotics and Secondary Metabolite Analysis Shell web platform. We have compared the smBGCs amongst strains in the search for novel sequences conferring the potential to produce novel bioactive secondary metabolites. The strains in this study recruit to four distinct clades within the genus Streptomyces. The marine strains host abundant smBGCs which encode polyketides, NRPS, siderophores, bacteriocins and lantipeptides. The deep-sea strains appear to be enriched with gene clusters encoding NRPS. Marine adaptations are evident in the sponge-derived strains which are enriched for genes involved in the biosynthesis and transport of compatible solutes and for heat-shock proteins. Streptomyces spp. from marine environments are a promising source of novel bioactive secondary metabolites as the abundance and diversity of smBGCs show high degrees of novelty. Sponge derived Streptomyces spp. isolates appear to display genomic adaptations to marine living when compared to terrestrial strains.

  13. Identification of the second mutation of BADH2 gene derived from rice mutant lines induced by gamma rays

    International Nuclear Information System (INIS)

    I Ishak

    2016-01-01

    The BADH2 gene acts as suppressor of 2-acetyl-1-pyrolline (2AP) biosynthesis in plants. 2AP is the volatile compound which provides fragrance in rice. Biosynthesis of 2AP occurs when BADH2 loses its function as suppressor gene. Aromatic rice cultivars naturally incur mutation of BADH2 gene at 8 bp. In this experiment, aromatic mutant rice lines derived from irradiation of Sintanur cultivar by gamma rays with dose of 100 Gy were studied in molecular level. These mutant lines were characterized at the M10 plantgeneration under the assumption that genetically these aromatic mutant rice lines were homozygotic. Several primers related to aroma in rice have been used for polymerase chain reaction (PCR) in a thermal cycler instrument. Gel electrophoreses were carried out using 1.5% agarose in TAE buffer. DNA fragments at 254 bp and 355 bp (base pair) were taken and amplified by primer for nucleotide sequencing of these fragments. Molecular identification and characterization after electrophoresis showed that the mutant line from AR1020 can be differentiated from AR.1080 at 254 bp. Nucleotide sequence data from of these DNA fragments showed that point mutations (deletions and substitutions) occurred at the BADH2 gene in exon 7; those are called second mutation and were caused by gamma rays effects. The Sintanur variety was used as check cultivar and its DNA sequence was compared to that of the AR.1020 mutant line. The results from both DNA sequences (from cv. Sintanur and AR.1020) derived from fragments at 254 bp show that point mutations occurred within exon 7 and earlier stop codon occurred in the AR.1020 mutant rice line. Further, the use of EA primer in PCR resulted in detection of deletion and substitution of nucleotides in the AR.1020 mutant line. (author)

  14. Engineering a palette of eukaryotic chromoproteins for bacterial synthetic biology.

    Science.gov (United States)

    Liljeruhm, Josefine; Funk, Saskia K; Tietscher, Sandra; Edlund, Anders D; Jamal, Sabri; Wistrand-Yuen, Pikkei; Dyrhage, Karl; Gynnå, Arvid; Ivermark, Katarina; Lövgren, Jessica; Törnblom, Viktor; Virtanen, Anders; Lundin, Erik R; Wistrand-Yuen, Erik; Forster, Anthony C

    2018-01-01

    Coral reefs are colored by eukaryotic chromoproteins (CPs) that are homologous to green fluorescent protein. CPs differ from fluorescent proteins (FPs) by intensely absorbing visible light to give strong colors in ambient light. This endows CPs with certain advantages over FPs, such as instrument-free detection uncomplicated by ultra-violet light damage or background fluorescence, efficient Förster resonance energy transfer (FRET) quenching, and photoacoustic imaging. Thus, CPs have found utility as genetic markers and in teaching, and are attractive for potential cell biosensor applications in the field. Most near-term applications of CPs require expression in a different domain of life: bacteria. However, it is unclear which of the eukaryotic CP genes might be suitable and how best to assay them. Here, taking advantage of codon optimization programs in 12 cases, we engineered 14 CP sequences (meffRed, eforRed, asPink, spisPink, scOrange, fwYellow, amilGFP, amajLime, cjBlue, meffBlue, aeBlue, amilCP, tsPurple and gfasPurple) into a palette of Escherichia coli BioBrick plasmids. BioBricks comply with synthetic biology's most widely used, simplified, cloning standard. Differences in color intensities, maturation times and fitness costs of expression were compared under the same conditions, and visible readout of gene expression was quantitated. A surprisingly large variation in cellular fitness costs was found, resulting in loss of color in some overnight liquid cultures of certain high-copy-plasmid-borne CPs, and cautioning the use of multiple CPs as markers in competition assays. We solved these two problems by integrating pairs of these genes into the chromosome and by engineering versions of the same CP with very different colors. Availability of 14 engineered CP genes compared in E. coli , together with chromosomal mutants suitable for competition assays, should simplify and expand CP study and applications. There was no single plasmid-borne CP that combined

  15. Initiation of translation in bacteria by a structured eukaryotic IRES RNA.

    Science.gov (United States)

    Colussi, Timothy M; Costantino, David A; Zhu, Jianyu; Donohue, John Paul; Korostelev, Andrei A; Jaafar, Zane A; Plank, Terra-Dawn M; Noller, Harry F; Kieft, Jeffrey S

    2015-03-05

    The central dogma of gene expression (DNA to RNA to protein) is universal, but in different domains of life there are fundamental mechanistic differences within this pathway. For example, the canonical molecular signals used to initiate protein synthesis in bacteria and eukaryotes are mutually exclusive. However, the core structures and conformational dynamics of ribosomes that are responsible for the translation steps that take place after initiation are ancient and conserved across the domains of life. We wanted to explore whether an undiscovered RNA-based signal might be able to use these conserved features, bypassing mechanisms specific to each domain of life, and initiate protein synthesis in both bacteria and eukaryotes. Although structured internal ribosome entry site (IRES) RNAs can manipulate ribosomes to initiate translation in eukaryotic cells, an analogous RNA structure-based mechanism has not been observed in bacteria. Here we report our discovery that a eukaryotic viral IRES can initiate translation in live bacteria. We solved the crystal structure of this IRES bound to a bacterial ribosome to 3.8 Å resolution, revealing that despite differences between bacterial and eukaryotic ribosomes this IRES binds directly to both and occupies the space normally used by transfer RNAs. Initiation in both bacteria and eukaryotes depends on the structure of the IRES RNA, but in bacteria this RNA uses a different mechanism that includes a form of ribosome repositioning after initial recruitment. This IRES RNA bridges billions of years of evolutionary divergence and provides an example of an RNA structure-based translation initiation signal capable of operating in two domains of life.

  16. The reduced kinome of Ostreococcus tauri: core eukaryotic signalling components in a tractable model species.

    Science.gov (United States)

    Hindle, Matthew M; Martin, Sarah F; Noordally, Zeenat B; van Ooijen, Gerben; Barrios-Llerena, Martin E; Simpson, T Ian; Le Bihan, Thierry; Millar, Andrew J

    2014-08-02

    The current knowledge of eukaryote signalling originates from phenotypically diverse organisms. There is a pressing need to identify conserved signalling components among eukaryotes, which will lead to the transfer of knowledge across kingdoms. Two useful properties of a eukaryote model for signalling are (1) reduced signalling complexity, and (2) conservation of signalling components. The alga Ostreococcus tauri is described as the smallest free-living eukaryote. With less than 8,000 genes, it represents a highly constrained genomic palette. Our survey revealed 133 protein kinases and 34 protein phosphatases (1.7% and 0.4% of the proteome). We conducted phosphoproteomic experiments and constructed domain structures and phylogenies for the catalytic protein-kinases. For each of the major kinases families we review the completeness and divergence of O. tauri representatives in comparison to the well-studied kinomes of the laboratory models Arabidopsis thaliana and Saccharomyces cerevisiae, and of Homo sapiens. Many kinase clades in O. tauri were reduced to a single member, in preference to the loss of family diversity, whereas TKL and ABC1 clades were expanded. We also identified kinases that have been lost in A. thaliana but retained in O. tauri. For three, contrasting eukaryotic pathways - TOR, MAPK, and the circadian clock - we established the subset of conserved components and demonstrate conserved sites of substrate phosphorylation and kinase motifs. We conclude that O. tauri satisfies our two central requirements. Several of its kinases are more closely related to H. sapiens orthologs than S. cerevisiae is to H. sapiens. The greatly reduced kinome of O. tauri is therefore a suitable model for signalling in free-living eukaryotes.

  17. Convergent use of RhoGAP toxins by eukaryotic parasites and bacterial pathogens.

    Directory of Open Access Journals (Sweden)

    Dominique Colinet

    2007-12-01

    Full Text Available Inactivation of host Rho GTPases is a widespread strategy employed by bacterial pathogens to manipulate mammalian cellular functions and avoid immune defenses. Some bacterial toxins mimic eukaryotic Rho GTPase-activating proteins (GAPs to inactivate mammalian GTPases, probably as a result of evolutionary convergence. An intriguing question remains whether eukaryotic pathogens or parasites may use endogenous GAPs as immune-suppressive toxins to target the same key genes as bacterial pathogens. Interestingly, a RhoGAP domain-containing protein, LbGAP, was recently characterized from the parasitoid wasp Leptopilina boulardi, and shown to protect parasitoid eggs from the immune response of Drosophila host larvae. We demonstrate here that LbGAP has structural characteristics of eukaryotic RhoGAPs but that it acts similarly to bacterial RhoGAP toxins in mammals. First, we show by immunocytochemistry that LbGAP enters Drosophila immune cells, plasmatocytes and lamellocytes, and that morphological changes in lamellocytes are correlated with the quantity of LbGAP they contain. Demonstration that LbGAP displays a GAP activity and specifically interacts with the active, GTP-bound form of the two Drosophila Rho GTPases Rac1 and Rac2, both required for successful encapsulation of Leptopilina eggs, was then achieved using biochemical tests, yeast two-hybrid analysis, and GST pull-down assays. In addition, we show that the overall structure of LbGAP is similar to that of eukaryotic RhoGAP domains, and we identify distinct residues involved in its interaction with Rac GTPases. Altogether, these results show that eukaryotic parasites can use endogenous RhoGAPs as virulence factors and that despite their differences in sequence and structure, eukaryotic and bacterial RhoGAP toxins are similarly used to target the same immune pathways in insects and mammals.

  18. Despite differential gene expression profiles pediatric MDS derived mesenchymal stromal cells display functionality in vitro

    Directory of Open Access Journals (Sweden)

    F.G.J. Calkoen

    2015-03-01

    An altered mRNA expression profile, associated with cell survival and malignant transformation, of MSC derived from children with MDS strengthens the hypothesis that the micro-environment is of importance in this disease. Our data support the understanding that pediatric and adult MDS are two different diseases. Further evaluation of the pathways involved might reveal additional therapy targets.

  19. AUTOLOGOUS Marrow-Derived Stem Cell-Seeded Gene-Supplemented Collagen Scaffolds for Spinal Cord Regeneration as a Treatment for Paralysis

    National Research Council Canada - National Science Library

    Spector, Myron

    2006-01-01

    .... Moreover, the authors will be investigating the effects of incorporating genes from nerve growth factors into the collagen scaffolds and seeding the scaffolds with marrow-derived mesenchymal stem cells...

  20. Pigment epithelial-derived factor gene loaded novel COOH-PEG-PLGA-COOH nanoparticles promoted tumor suppression by systemic administration

    Directory of Open Access Journals (Sweden)

    Yu T

    2016-02-01

    Full Text Available Ting Yu,1,* Bei Xu,1,* Lili He,2 Shan Xia,3 Yan Chen,1 Jun Zeng,1 Yongmei Liu,1 Shuangzhi Li,1 Xiaoyue Tan,4 Ke Ren,1 Shaohua Yao,1 Xiangrong Song1 1State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, 2College of Chemistry and Environment Protection Engineering, Southwest University for Nationalities, 3Central Laboratory, Science Education Department, Chengdu Normal University, Chengdu, Sichuan, 4Department of Pathology/Collaborative Innovation Center of Biotherapy, Medical School of Nankai University, Tianjin, People’s Republic of China *These authors contributed equally to this work Abstract: Anti-angiogenesis has been proposed as an effective therapeutic strategy for cancer treatment. Pigment epithelium-derived factor (PEDF is one of the most powerful endogenous anti-angiogenic reagents discovered to date and PEDF gene therapy has been recognized as a promising treatment option for various tumors. There is an urgent need to develop a safe and valid vector for its systemic delivery. Herein, a novel gene delivery system based on the newly synthesized copolymer COOH-PEG-PLGA-COOH (CPPC was developed in this study, which was probably capable of overcoming the disadvantages of viral vectors and cationic lipids/polymers-based nonviral carriers. PEDF gene loaded CPPC nanoparticles (D-NPs were fabricated by a modified double-emulsion water-in-oil-in-water (W/O/W solvent evaporation method. D-NPs with uniform spherical shape had relatively high drug loading (~1.6%, probably because the introduced carboxyl group in poly (D,L-lactide-co-glycolide terminal enhanced the interaction of copolymer with the PEDF gene complexes. An excellent in vitro antitumor effect was found in both C26 and A549 cells treated by D-NPs, in which PEDF levels were dramatically elevated due to the successful transfection of PEDF gene. D-NPs also showed a strong inhibitory effect on

  1. Inhibition of Super-Enhancer Activity in Autoinflammatory Site-Derived T Cells Reduces Disease-Associated Gene Expression.

    Science.gov (United States)

    Peeters, Janneke G C; Vervoort, Stephin J; Tan, Sander C; Mijnheer, Gerdien; de Roock, Sytze; Vastert, Sebastiaan J; Nieuwenhuis, Edward E S; van Wijk, Femke; Prakken, Berent J; Creyghton, Menno P; Coffer, Paul J; Mokry, Michal; van Loosdregt, Jorg

    2015-09-29

    The underlying molecular mechanisms for many autoimmune diseases are poorly understood. Juvenile idiopathic arthritis (JIA) is an exceptionally well-suited model for studying autoimmune diseases due to its early onset and the possibility to analyze cells derived from the site of inflammation. Epigenetic profiling, utilizing primary JIA patient-derived cells, can contribute to the understanding of autoimmune diseases. With H3K27ac chromatin immunoprecipitation, we identified a disease-specific, inflammation-associated, typical enhancer and super-enhancer signature in JIA patient synovial-fluid-derived CD4(+) memory/effector T cells. RNA sequencing of autoinflammatory site-derived patient T cells revealed that BET inhibition, utilizing JQ1, inhibited immune-related super-enhancers and preferentially reduced disease-associated gene expression, including cytokine-related processes. Altogether, these results demonstrate the potential use of enhancer profiling to identify disease mediators and provide evidence for BET inhibition as a possible therapeutic approach for the treatment of autoimmune diseases. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  2. Inhibition of Super-Enhancer Activity in Autoinflammatory Site-Derived T Cells Reduces Disease-Associated Gene Expression

    Directory of Open Access Journals (Sweden)

    Janneke G.C. Peeters

    2015-09-01

    Full Text Available The underlying molecular mechanisms for many autoimmune diseases are poorly understood. Juvenile idiopathic arthritis (JIA is an exceptionally well-suited model for studying autoimmune diseases due to its early onset and the possibility to analyze cells derived from the site of inflammation. Epigenetic profiling, utilizing primary JIA patient-derived cells, can contribute to the understanding of autoimmune diseases. With H3K27ac chromatin immunoprecipitation, we identified a disease-specific, inflammation-associated, typical enhancer and super-enhancer signature in JIA patient synovial-fluid-derived CD4+ memory/effector T cells. RNA sequencing of autoinflammatory site-derived patient T cells revealed that BET inhibition, utilizing JQ1, inhibited immune-related super-enhancers and preferentially reduced disease-associated gene expression, including cytokine-related processes. Altogether, these results demonstrate the potential use of enhancer profiling to identify disease mediators and provide evidence for BET inhibition as a possible therapeutic approach for the treatment of autoimmune diseases.

  3. Consistent mutational paths predict eukaryotic thermostability

    Directory of Open Access Journals (Sweden)

    van Noort Vera

    2013-01-01

    Full Text Available Abstract Background Proteomes of thermophilic prokaryotes have been instrumental in structural biology and successfully exploited in biotechnology, however many proteins required for eukaryotic cell function are absent from bacteria or archaea. With Chaetomium thermophilum, Thielavia terrestris and Thielavia heterothallica three genome sequences of thermophilic eukaryotes have been published. Results Studying the genomes and proteomes of these thermophilic fungi, we found common strategies of thermal adaptation across the different kingdoms of Life, including amino acid biases and a reduced genome size. A phylogenetics-guided comparison of thermophilic proteomes with those of other, mesophilic Sordariomycetes revealed consistent amino acid substitutions associated to thermophily that were also present in an independent lineage of thermophilic fungi. The most consistent pattern is the substitution of lysine by arginine, which we could find in almost all lineages but has not been extensively used in protein stability engineering. By exploiting mutational paths towards the thermophiles, we could predict particular amino acid residues in individual proteins that contribute to thermostability and validated some of them experimentally. By determining the three-dimensional structure of an exemplar protein from C. thermophilum (Arx1, we could also characterise the molecular consequences of some of these mutations. Conclusions The comparative analysis of these three genomes not only enhances our understanding of the evolution of thermophily, but also provides new ways to engineer protein stability.

  4. Strong eukaryotic IRESs have weak secondary structure.

    Directory of Open Access Journals (Sweden)

    Xuhua Xia

    Full Text Available BACKGROUND: The objective of this work was to investigate the hypothesis that eukaryotic Internal Ribosome Entry Sites (IRES lack secondary structure and to examine the generality of the hypothesis. METHODOLOGY/PRINCIPAL FINDINGS: IRESs of the yeast and the fruit fly are located in the 5'UTR immediately upstream of the initiation codon. The minimum folding energy (MFE of 60 nt RNA segments immediately upstream of the initiation codons was calculated as a proxy of secondary structure stability. MFE of the reverse complements of these 60 nt segments was also calculated. The relationship between MFE and empirically determined IRES activity was investigated to test the hypothesis that strong IRES activity is associated with weak secondary structure. We show that IRES activity in the yeast and the fruit fly correlates strongly with the structural stability, with highest IRES activity found in RNA segments that exhibit the weakest secondary structure. CONCLUSIONS: We found that a subset of eukaryotic IRESs exhibits very low secondary structure in the 5'-UTR sequences immediately upstream of the initiation codon. The consistency in results between the yeast and the fruit fly suggests a possible shared mechanism of cap-independent translation initiation that relies on an unstructured RNA segment.

  5. Prevalence of Antibiotic Resistance Genes among Human Gut-Derived Bifidobacteria.

    Science.gov (United States)

    Duranti, Sabrina; Lugli, Gabriele Andrea; Mancabelli, Leonardo; Turroni, Francesca; Milani, Christian; Mangifesta, Marta; Ferrario, Chiara; Anzalone, Rosaria; Viappiani, Alice; van Sinderen, Douwe; Ventura, Marco

    2017-02-01

    The microbiota of the human gastrointestinal tract (GIT) may regularly be exposed to antibiotics, which are used to prevent and treat infectious diseases caused by bacteria and fungi. Bacterial communities of the gut retain a reservoir of antibiotic resistance (AR) genes, and antibiotic therapy thus positively selects for those microorganisms that harbor such genetic features, causing microbiota modulation. During the first months following birth, bifidobacteria represent some of the most dominant components of the human gut microbiota, although little is known about their AR gene complement (or resistome). In the current study, we assessed the resistome of the Bifidobacterium genus based on phenotypic and genotypic data of members that represent all currently recognized bifidobacterial (sub)species. Moreover, a comparison between the bifidobacterial resistome and gut metagenome data sets from adults and infants shows that the bifidobacterial community present at the first week following birth possesses a reduced AR arsenal compared to that present in the infant bifidobacterial population in subsequent weeks of the first year of life. Our findings reinforce the concept that the early infant gut microbiota is more susceptible to disturbances by antibiotic treatment than the gut microbiota developed at a later life stage. The spread of resistance to antibiotics among bacterial communities has represented a major concern since their discovery in the last century. The risk of genetic transfer of resistance genes between microorganisms has been extensively investigated due to its relevance to human health. In contrast, there is only limited information available on antibiotic resistance among human gut commensal microorganisms such as bifidobacteria, which are widely exploited by the food industry as health-promoting microorganisms or probiotic ingredients. In the current study, we explored the occurrence of antibiotic resistance genes in the genomes of bifidobacteria

  6. A unique mosaic Turner syndrome patient with androgen receptor gene derived marker chromosome.

    Science.gov (United States)

    Kalkan, Rasime; Özdağ, Nermin; Bundak, Rüveyde; Çirakoğlu, Ayşe; Serakinci, Nedime

    2016-01-01

    Patients with Turner syndrome are generally characterized by having short stature with no secondary sexual characteristics. Some abnormalities, such as webbed neck, renal malformations (>50%) and cardiac defects (10%) are less common. The intelligence of these patients is considered normal. Non-mosaic monosomy X is observed in approximately 45% of postnatal patients with Turner syndrome and the rest of the patients have structural abnormalities or mosaicism involving 46,X,i(Xq), 45,X/46,XX, 45,X and other variants. The phenotype of 45,X/46,X,+mar individuals varies by the genetic continent and degree of the mosaicism. The gene content of the marker chromosome is the most important when correlating the phenotype with the genotype. Here we present an 11-year-old female who was referred for evaluation of her short stature and learning disabilities. Conventional cytogenetic investigation showed a mosaic 45,X/46,X,+mar karyotype. Fluorescence in situ hybridization showed that the marker chromosome originated from the X chromosome within the androgen receptor (AR) and X-inactive specific transcript (XIST) genes. Therefore, it is possible that aberrant activation of the marker chromosome, compromising the AR and XIST genes, may modify the Turner syndrome phenotype.

  7. Plant-Derived Transcription Factors for Orthologous Regulation of Gene Expression in the Yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Naseri, Gita; Balazadeh, Salma; Machens, Fabian; Kamranfar, Iman; Messerschmidt, Katrin; Mueller-Roeber, Bernd

    2017-09-15

    Control of gene expression by transcription factors (TFs) is central in many synthetic biology projects for which a tailored expression of one or multiple genes is often needed. As TFs from evolutionary distant organisms are unlikely to affect gene expression in a host of choice, they represent excellent candidates for establishing orthogonal control systems. To establish orthogonal regulators for use in yeast (Saccharomyces cerevisiae), we chose TFs from the plant Arabidopsis thaliana. We established a library of 106 different combinations of chromosomally integrated TFs, activation domains (yeast GAL4 AD, herpes simplex virus VP64, and plant EDLL) and synthetic promoters harboring cognate cis-regulatory motifs driving a yEGFP reporter. Transcriptional output of the different driver/reporter combinations varied over a wide spectrum, with EDLL being a considerably stronger transcription activation domain in yeast than the GAL4 activation domain, in particular when fused to Arabidopsis NAC TFs. Notably, the strength of several NAC-EDLL fusions exceeded that of the strong yeast TDH3 promoter by 6- to 10-fold. We furthermore show that plant TFs can be used to build regulatory systems encoded by centromeric or episomal plasmids. Our library of TF-DNA binding site combinations offers an excellent tool for diverse synthetic biology applications in yeast.

  8. (ROP2) gene of Toxoplasma gondii in eukaryotic cell

    African Journals Online (AJOL)

    STORAGESEVER

    2008-12-17

    Dec 17, 2008 ... responsible for animal and human toxoplasmosis. In ... body and has also epitope for B-cell and produces IgA,. IgM and IgG (Saavedra et al., ... DNA extraction products were detected in 0.8% agarose gel and photographed.

  9. An efficient annotation and gene-expression derivation tool for Illumina Solexa datasets.

    Science.gov (United States)

    Hosseini, Parsa; Tremblay, Arianne; Matthews, Benjamin F; Alkharouf, Nadim W

    2010-07-02

    The data produced by an Illumina flow cell with all eight lanes occupied, produces well over a terabyte worth of images with gigabytes of reads following sequence alignment. The ability to translate such reads into meaningful annotation is therefore of great concern and importance. Very easily, one can get flooded with such a great volume of textual, unannotated data irrespective of read quality or size. CASAVA, a optional analysis tool for Illumina sequencing experiments, enables the ability to understand INDEL detection, SNP information, and allele calling. To not only extract from such analysis, a measure of gene expression in the form of tag-counts, but furthermore to annotate such reads is therefore of significant value. We developed TASE (Tag counting and Analysis of Solexa Experiments), a rapid tag-counting and annotation software tool specifically designed for Illumina CASAVA sequencing datasets. Developed in Java and deployed using jTDS JDBC driver and a SQL Server backend, TASE provides an extremely fast means of calculating gene expression through tag-counts while annotating sequenced reads with the gene's presumed function, from any given CASAVA-build. Such a build is generated for both DNA and RNA sequencing. Analysis is broken into two distinct components: DNA sequence or read concatenation, followed by tag-counting and annotation. The end result produces output containing the homology-based functional annotation and respective gene expression measure signifying how many times sequenced reads were found within the genomic ranges of functional annotations. TASE is a powerful tool to facilitate the process of annotating a given Illumina Solexa sequencing dataset. Our results indicate that both homology-based annotation and tag-count analysis are achieved in very efficient times, providing researchers to delve deep in a given CASAVA-build and maximize information extraction from a sequencing dataset. TASE is specially designed to translate sequence data

  10. Discovery of Antibiotics-derived Polymers for Gene Delivery using Combinatorial Synthesis and Cheminformatics Modeling

    Science.gov (United States)

    Potta, Thrimoorthy; Zhen, Zhuo; Grandhi, Taraka Sai Pavan; Christensen, Matthew D.; Ramos, James; Breneman, Curt M.; Rege, Kaushal

    2014-01-01

    We describe the combinatorial synthesis and cheminformatics modeling of aminoglycoside antibiotics-derived polymers for transgene delivery and expression. Fifty-six polymers were synthesized by polymerizing aminoglycosides with diglycidyl ether cross-linkers. Parallel screening resulted in identification of several lead polymers that resulted in high transgene expression levels in cells. The role of polymer physicochemical properties in determining efficacy of transgene expression was investigated using Quantitative Structure-Activity Relationship (QSAR) cheminformatics models based on Support Vector Regression (SVR) and ‘building block’ polymer structures. The QSAR model exhibited high predictive ability, and investigation of descriptors in the model, using molecular visualization and correlation plots, indicated that physicochemical attributes related to both, aminoglycosides and diglycidyl ethers facilitated transgene expression. This work synergistically combines combinatorial synthesis and parallel screening with cheminformatics-based QSAR models for discovery and physicochemical elucidation of effective antibiotics-derived polymers for transgene delivery in medicine and biotechnology. PMID:24331709

  11. Plant plasma membrane-bound staphylococcal-like DNases as a novel class of eukaryotic nucleases

    Directory of Open Access Journals (Sweden)

    Leśniewicz Krzysztof

    2012-10-01

    Full Text Available Abstract Background The activity of degradative nucleases responsible for genomic DNA digestion has been observed in all kingdoms of life. It is believed that the main function of DNA degradation occurring during plant programmed cell death is redistribution of nucleic acid derived products such as nitrogen, phosphorus and nucleotide bases. Plant degradative nucleases that have been studied so far belong mainly to the S1-type family and were identified in cellular compartments containing nucleic acids or in the organelles where they are stored before final application. However, the explanation of how degraded DNA components are exported from the dying cells for further reutilization remains open. Results Bioinformatic and experimental data presented in this paper indicate that two Arabidopsis staphylococcal-like nucleases, named CAN1 and CAN2, are anchored to the cell membrane via N-terminal myristoylation and palmitoylation modifications. Both proteins possess a unique hybrid structure in their catalytic domain consisting of staphylococcal nuclease-like and tRNA synthetase anticodon binding-like motifs. They are neutral, Ca2+-dependent nucleaces showing a different specificity toward the ssDNA, dsDNA and RNA substrates. A study of microarray experiments and endogenous nuclease activity revealed that expression of CAN1 gene correlates with different forms of programmed cell death, while the CAN2 gene is constitutively expressed. Conclusions In this paper we present evidence showing that two plant staphylococcal-like nucleases belong to a new, as yet unidentified class of eukaryotic nucleases, characterized by unique plasma membrane localization. The identification of this class of nucleases indicates that plant cells possess additional, so far uncharacterized, mechanisms responsible for DNA and RNA degradation. The potential functions of these nucleases in relation to their unique intracellular location are discussed.

  12. Comparison of Gene Expression in Human Embryonic Stem Cells, hESC-Derived Mesenchymal Stem Cells and Human Mesenchymal Stem Cells

    OpenAIRE

    Romain Barbet; Isabelle Peiffer; Antoinette Hatzfeld; Pierre Charbord; Jacques A. Hatzfeld

    2011-01-01

    We present a strategy to identify developmental/differentiation and plasma membrane marker genes of the most primitive human Mesenchymal Stem Cells (hMSCs). Using sensitive and quantitative TaqMan Low Density Arrays (TLDA) methodology, we compared the expression of 381 genes in human Embryonic Stem Cells (hESCs), hESC-derived MSCs ...

  13. The cartilage-derived, C-type lectin (CLECSF1): structure of the gene and chromosomal location.

    Science.gov (United States)

    Neame, P J; Tapp, H; Grimm, D R

    1999-09-03

    Cartilage is a tissue that is primarily extracellular matrix, the bulk of which consists of proteoglycan aggregates constrained within a collagen framework. Candidate components that organize the extracellular assembly of the matrix consist of collagens, proteoglycans and multimeric glycoproteins. We describe the human gene structure of a potential organizing factor, a cartilage-derived member of the C-type lectin superfamily (CLECSF1; C-type lectin superfamily) related to the serum protein, tetranectin. We show by Northern analysis that this protein is restricted to cartilage and locate the gene on chromosome 16q23. We have characterized 10.9 kb of sequence upstream of the first exon. Similarly to human tetranectin, there are three exons. The residues that are conserved between CLECSF1 and tetranectin suggest that the cartilage-derived protein forms a trimeric structure similar to that of tetranectin, with three N-terminal alpha-helical domains aggregating through hydrophobic faces. The globular, C-terminal domain that has been shown to bind carbohydrate in some members of the family and plasminogen in tetranectin, is likely to have a similar overall structure to that of tetranectin.

  14. Three distinct modes of intron dynamics in the evolution of eukaryotes.

    Science.gov (United States)

    Carmel, Liran; Wolf, Yuri I; Rogozin, Igor B; Koonin, Eugene V

    2007-07-01

    Several contrasting scenarios have been proposed for the origin and evolution of spliceosomal introns, a hallmark of eukaryotic genes. A comprehensive probabilistic model to obtain a definitive reconstruction of intron evolution was developed and applied to 391 sets of conserved genes from 19 eukaryotic species. It is inferred that a relatively high intron density was reached early, i.e., the last common ancestor of eukaryotes contained >2.15 introns/kilobase, and the last common ancestor of multicellular life forms harbored approximately 3.4 introns/kilobase, a greater intron density than in most of the extant fungi and in some animals. The rates of intron gain and intron loss appear to have been dropping during the last approximately 1.3 billion years, with the decline in the gain rate being much steeper. Eukaryotic lineages exhibit three distinct modes of evolution of the intron-exon structure. The primary, balanced mode, apparently, operates in all lineages. In this mode, intron gain and loss are strongly and positively correlated, in contrast to previous reports on inverse correlation between these processes. The second mode involves an elevated rate of intron loss and is prevalent in several lineages, such as fungi and insects. The third mode, characterized by elevated rate of intron gain, is seen only in deep branches of the tree, indicating that bursts of intron invasion occurred at key points in eukaryotic evolution, such as the origin of animals. Intron dynamics could depend on multiple mechanisms, and in the balanced mode, gain and loss of introns might share common mechanistic features.

  15. The Persistent Contributions of RNA to Eukaryotic Gen(om)e Architecture and Cellular Function

    Science.gov (United States)

    Brosius, Jürgen

    2014-01-01

    Currently, the best scenario for earliest forms of life is based on RNA molecules as they have the proven ability to catalyze enzymatic reactions and harbor genetic information. Evolutionary principles valid today become apparent in such models already. Furthermore, many features of eukaryotic genome architecture might have their origins in an RNA or RNA/protein (RNP) world, including the onset of a further transition, when DNA replaced RNA as the genetic bookkeeper of the cell. Chromosome maintenance, splicing, and regulatory function via RNA may be deeply rooted in the RNA/RNP worlds. Mostly in eukaryotes, conversion from RNA to DNA is still ongoing, which greatly impacts the plasticity of extant genomes. Raw material for novel genes encoding protein or RNA, or parts of genes including regulatory elements that selection can act on, continues to enter the evolutionary lottery. PMID:25081515

  16. Competition between virus-derived and endogenous small RNAs regulates gene expression in Caenorhabditis elegans.

    Science.gov (United States)

    Sarkies, Peter; Ashe, Alyson; Le Pen, Jérémie; McKie, Mikel A; Miska, Eric A

    2013-08-01

    Positive-strand RNA viruses encompass more than one-third of known virus genera and include many medically and agriculturally relevant human, animal, and plant pathogens. The nematode Caenorhabditis elegans and its natural pathogen, the positive-strand RNA virus Orsay, have recently emerged as a new animal model to understand the mechanisms and evolution of innate immune responses. In particular, the RNA interference (RNAi) pathway is required for C. elegans resistance to viral infection. Here we report the first genome-wide analyses of gene expression upon viral infection in C. elegans. Using the laboratory strain N2, we identify a novel C. elegans innate immune response specific to viral infection. A subset of these changes is driven by the RNAi response to the virus, which redirects the Argonaute protein RDE-1 from its endogenous small RNA cofactors, leading to loss of repression of endogenous RDE-1 targets. Additionally, we show that a C. elegans wild isolate, JU1580, has a distinct gene expression signature in response to viral infection. This is associated with a reduction in microRNA (miRNA) levels and an up-regulation of their target genes. Intriguingly, alterations in miRNA levels upon JU1580 infection are associated with a transformation of the antiviral transcriptional response into an antibacterial-like response. Together our data support a model whereby antiviral RNAi competes with endogenous small RNA pathways, causing widespread transcriptional changes. This provides an elegant mechanism for C. elegans to orchestrate its antiviral response, which may have significance for the relationship between small RNA pathways and immune regulation in other organisms.

  17. Gene Transfer Properties and Structural Modeling of Human Stem Cell-derived AAV

    OpenAIRE

    Smith, Laura J; Ul-Hasan, Taihra; Carvaines, Sarah K; Van Vliet, Kim; Yang, Ethel; Wong, Kamehameha K; Agbandje-McKenna, Mavis; Chatterjee, Saswati

    2014-01-01

    Adeno-associated virus (AAV) vectors are proving to be remarkably successful for in vivo gene delivery. Based upon reports of abundant AAV in the human marrow, we tested CD34+ hematopoietic stem cells for the presence of natural AAV. Here, we report for the first time, the presence of novel AAV variants in healthy CD34+ human peripheral blood stem cells. The majority of healthy peripheral blood stem cell donors were found to harbor AAV in their CD34+ cells. Every AAV isolated from CD34+ cells...

  18. Recently-Derived Variants of Brain-Size Genes "ASPM", "MCPH1", "CDK5RAP" and "BRCA1" Not Associated with General Cognition, Reading or Language

    Science.gov (United States)

    Bates, Timothy C.; Luciano, Michelle; Lind, Penelope A.; Wright, Margaret J.; Montgomery, Grant W.; Martin, Nicholas G.

    2008-01-01

    Derived changes in genes associated with primary microcephaly (MCPH) have been suggested to be "currently sweeping to fixation" i.e., increasing in frequency in most populations, with the likely outcome that the derived allele will completely displace the ancestral allele over time. Possible causes for this sweep include effects on human reasoning…

  19. Pigment epithelial-derived factor gene loaded novel COOH-PEG-PLGA-COOH nanoparticles promoted tumor suppression by systemic administration.

    Science.gov (United States)

    Yu, Ting; Xu, Bei; He, Lili; Xia, Shan; Chen, Yan; Zeng, Jun; Liu, Yongmei; Li, Shuangzhi; Tan, Xiaoyue; Ren, Ke; Yao, Shaohua; Song, Xiangrong

    2016-01-01

    Anti-angiogenesis has been proposed as an effective therapeutic strategy for cancer treatment. Pigment epithelium-derived factor (PEDF) is one of the most powerful endogenous anti-angiogenic reagents discovered to date and PEDF gene therapy has been recognized as a promising treatment option for various tumors. There is an urgent need to develop a safe and valid vector for its systemic delivery. Herein, a novel gene delivery system based on the newly synthesized copolymer COOH-PEG-PLGA-COOH (CPPC) was developed in this study, which was probably capable of overcoming the disadvantages of viral vectors and cationic lipids/polymers-based nonviral carriers. PEDF gene loaded CPPC nanoparticles (D-NPs) were fabricated by a modified double-emulsion water-in-oil-in-water (W/O/W) solvent evaporation method. D-NPs with uniform spherical shape had relatively high drug loading (~1.6%), probably because the introduced carboxyl group in poly (D,L-lactide-co-glycolide) terminal enhanced the interaction of copolymer with the PEDF gene complexes. An excellent in vitro antitumor effect was found in both C26 and A549 cells treated by D-NPs, in which PEDF levels were dramatically elevated due to the successful transfection of PEDF gene. D-NPs also showed a strong inhibitory effect on proliferation of human umbilical vein endothelial cells in vitro and inhibited the tumor-induced angiogenesis in vivo by an alginate-encapsulated tumor cell assay. Further in vivo antitumor investigation, carried out in a C26 subcutaneous tumor model by intravenous injection, demonstrated that D-NPs could achieve a significant antitumor activity with sharply reduced microvessel density and significantly promoted tumor cell apoptosis. Additionally, the in vitro hemolysis analysis and in vivo serological and biochemical analysis revealed that D-NPs had no obvious toxicity. All the data indicated that the novel CPPC nanoparticles were ideal vectors for the systemic delivery of PEDF gene and might be widely

  20. Intermediary metabolism in protists: a sequence-based view of facultative anaerobic metabolism in evolutionarily diverse eukaryotes.

    Science.gov (United States)

    Ginger, Michael L; Fritz-Laylin, Lillian K; Fulton, Chandler; Cande, W Zacheus; Dawson, Scott C

    2010-12-01

    Protists account for the bulk of eukaryotic diversity. Through studies of gene and especially genome sequences the molecular basis for this diversity can be determined. Evident from genome sequencing are examples of versatile metabolism that go far beyond the canonical pathways described for eukaryotes in textbooks. In the last 2-3 years, genome sequencing and transcript profiling has unveiled several examples of heterotrophic and phototrophic protists that are unexpectedly well-equipped for ATP production using a facultative anaerobic metabolism, including some protists that can (Chlamydomonas reinhardtii) or are predicted (Naegleria gruberi, Acanthamoeba castellanii, Amoebidium parasiticum) to produce H(2) in their metabolism. It is possible that some enzymes of anaerobic metabolism were acquired and distributed among eukaryotes by lateral transfer, but it is also likely that the common ancestor of eukaryotes already had far more metabolic versatility than was widely thought a few years ago. The discussion of core energy metabolism in unicellular eukaryotes is the subject of this review. Since genomic sequencing has so far only touched the surface of protist diversity, it is anticipated that sequences of additional protists may reveal an even wider range of metabolic capabilities, while simultaneously enriching our understanding of the early evolution of eukaryotes. Copyright © 2010 Elsevier GmbH. All rights reserved.

  1. Differential Regulation of Gene Expression of Alveolar Epithelial Cell Markers in Human Lung Adenocarcinoma-Derived A549 Clones

    Directory of Open Access Journals (Sweden)

    Hiroshi Kondo

    2015-01-01

    Full Text Available Stem cell therapy appears to be promising for restoring damaged or irreparable lung tissue. However, establishing a simple and reproducible protocol for preparing lung progenitor populations is difficult because the molecular basis for alveolar epithelial cell differentiation is not fully understood. We investigated an in vitro system to analyze the regulatory mechanisms of alveolus-specific gene expression using a human alveolar epithelial type II (ATII cell line, A549. After cloning A549 subpopulations, each clone was classified into five groups according to cell morphology and marker gene expression. Two clones (B7 and H12 were further analyzed. Under serum-free culture conditions, surfactant protein C (SPC, an ATII marker, was upregulated in both H12 and B7. Aquaporin 5 (AQP5, an ATI marker, was upregulated in H12 and significantly induced in B7. When the RAS/MAPK pathway was inhibited, SPC and thyroid transcription factor-1 (TTF-1 expression levels were enhanced. After treatment with dexamethasone (DEX, 8-bromoadenosine 3′5′-cyclic monophosphate (8-Br-cAMP, 3-isobutyl-1-methylxanthine (IBMX, and keratinocyte growth factor (KGF, surfactant protein B and TTF-1 expression levels were enhanced. We found that A549-derived clones have plasticity in gene expression of alveolar epithelial differentiation markers and could be useful in studying ATII maintenance and differentiation.

  2. Mammalian-specific genomic functions: Newly acquired traits generated by genomic imprinting and LTR retrotransposon-derived genes in mammals.

    Science.gov (United States)

    Kaneko-Ishino, Tomoko; Ishino, Fumitoshi

    2015-01-01

    Mammals, including human beings, have evolved a unique viviparous reproductive system and a highly developed central nervous system. How did these unique characteristics emerge in mammalian evolution, and what kinds of changes did occur in the mammalian genomes as evolution proceeded? A key conceptual term in approaching these issues is "mammalian-specific genomic functions", a concept covering both mammalian-specific epigenetics and genetics. Genomic imprinting and LTR retrotransposon-derived genes are reviewed as the representative, mammalian-specific genomic functions that are essential not only for the current mammalian developmental system, but also mammalian evolution itself. First, the essential roles of genomic imprinting in mammalian development, especially related to viviparous reproduction via placental function, as well as the emergence of genomic imprinting in mammalian evolution, are discussed. Second, we introduce the novel concept of "mammalian-specific traits generated by mammalian-specific genes from LTR retrotransposons", based on the finding that LTR retrotransposons served as a critical driving force in the mammalian evolution via generating mammalian-specific genes.

  3. Eukaryotic resistance to fluoride toxicity mediated by a widespread family of fluoride export proteins

    OpenAIRE

    Li, Sanshu; Smith, Kathryn D.; Davis, Jared H.; Gordon, Patricia B.; Breaker, Ronald R.; Strobel, Scott A.

    2013-01-01

    Although fluoride is plentiful in the environment and is commonly used at high concentrations in oral hygiene products, little has been known about how biological systems overcome the toxic effects of this anion. We demonstrate that a protein called FEX in many fungi is essential for cell survival in the presence of high fluoride concentrations. The protein is required for the rapid expulsion of cytoplasmic fluoride, indicating that many eukaryotic species that carry FEX genes likely avoid fl...

  4. Microbial eukaryote diversity in the marine oxygen minimum zone off northern Chile

    OpenAIRE

    Parris, Darren J.; Ganesh, Sangita; Edgcomb, Virginia P.; Stewart, Frank J.; DeLong, Edward

    2014-01-01

    Molecular surveys are revealing diverse eukaryotic assemblages in oxygen-limited ocean waters. These communities may play pivotal ecological roles through autotrophy, feeding, and a wide range of symbiotic associations with prokaryotes. We used 18S rRNA gene sequencing to provide the first snapshot of pelagic microeukaryotic community structure in two cellular size fractions (0.2-1.6 µm, >1.6 µm) from seven depths through the anoxic oxygen minimum zone (OMZ) off northern Chile. Sequencing ...

  5. Studies on Expression of IGF-II Gene in Deciduas Derived from Medical Abortion Patients

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Objective To determine the effect of insulin-like growth factor-Ⅱ (IGF-Ⅱ ) upon the maintenance of decidua in early pregnancy and its relationship with progesterone, as well as its role in medical abortion. Materials & Methods Decidua tissue was obtained from 28 women who undergoing surgical abortion and 39 for medical abortion respectively at 5~7 weeks of gestation. The extracted total RNA was reversely transcripted and amplified by PCR with spe cific primers (IGF-Ⅱ and β-actin). The products were semi-quantitated by MIAS 300 system and qualitatively analyzed by southern blotting. Results The expression of IGF-Ⅱ gene in decidua from surgical abortion was signif icantly higher than that from medical abortion (P<0.05). The average IGF-Ⅱ gene transcription values were 1. 54±0.79 and 0.72±0.39 respectively. The results of southern blotting proved qualitatively that the RT-PCR products were IGF-Ⅱ cDNA. Conclusion IGF-Ⅱ plays a role in the maintenance of decidua in early pregnancy. It may act as a mediator of progestin. It's also involved in the molecular mechanism of mifepristone.

  6. The occurrence and significance of V gene mutations in B cell-derived human malignancy.

    Science.gov (United States)

    Stevenson, F K; Sahota, S S; Ottensmeier, C H; Zhu, D; Forconi, F; Hamblin, T J

    2001-01-01

    The classification of B cell tumors has relevance for refining and improving clinical strategies. However, consensus has been difficult to establish, and although a scheme is now available, objective criteria are desirable. Genetic technology will underpin and extend current knowledge, and it is certain to reveal further subdivisions of current tumor categories. The Ig variable region genes of B cell tumors present a considerable asset for this area of investigation. The unique sequences carried in neoplastic B cells are easily isolated and sequenced. In addition to acting as clone-specific markers of each tumor, they indicate where the cell has come from and track its history following transformation. There is emerging clinical value in knowing whether the cell of origin has encountered antigen and has moved from the naive compartment to the germinal center, where somatic mutation is activated. This is amply illustrated by the subdivision of chronic lymphocytic leukemia into two subsets, unmutated or mutated, each with very different prognosis. Other tumors may be subdivided in a similar way. Microarray technology is developing rapidly to probe gene expression and to further divide tumor categories. All these genetic analyses will provide objective data to enhance both our understanding of B cell tumors and our ability to treat them.

  7. X-linked gene expression in the Virginia opossum: differences between the paternally derived Gpd and Pgk-A loci

    Energy Technology Data Exchange (ETDEWEB)

    Samollow, P.B.; Ford, A.L.; VandeBerg, J.L.

    1987-01-01

    Expression of X-linked glucose-6-phosphate dehydrogenase (G6PD) and phosphoglycerate kinase-A (PGK-A) in the Virginia opossum (Didelphis virginiana) was studied electrophoretically in animals from natural populations and those produced through controlled laboratory crosses. Blood from most of the wild animals exhibited a common single-banded phenotype for both enzymes. Rare variant animals, regardless of sex, exhibited single-banded phenotypes different in mobility from the common mobility class of the respective enzyme. The laboratory crosses confirmed the allelic basis for the common and rare phenotypes. Transmission of PGK-A phenotypes followed the pattern of determinate (nonrandom) inactivation of the paternally derived Pgk-A allele, and transmission of G6PD also was consistent with this pattern. A survey of tissue-specific expression of G6PD phenotypes of heterozygous females revealed, in almost all tissues, three-banded patterns skewed in favor of the allele that was expressed in blood cells. Three-banded patterns were never observed in males or in putatively homozygous females. These patterns suggest simultaneous, but unequal, expression of the maternally and paternally derived Gpd alleles within individual cells. The absence of such partial expression was noted in a parallel survey of females heterozygous at the Pgd-A locus. Thus, it appears that Gpd and Pgk-A are X-linked in D. virginiana and subject to preferential paternal allele inactivation, but that dosage compensation may not be complete for all paternally derived X-linked genes.

  8. Avian leukosis virus is a versatile eukaryotic platform for polypeptide display

    International Nuclear Information System (INIS)

    Khare, Pranay D.; Russell, Stephen J.; Federspiel, Mark J.

    2003-01-01

    Display technology refers to methods of generating libraries of modularly coded biomolecules and screening them for particular properties. Retroviruses are good candidates to be a eukaryotic viral platform for the display of polypeptides synthesized in eukaryotic cells. Here we demonstrate that avian leukosis virus (ALV) provides an ideal platform for display of nonviral polyaeptides expressed in a eukaryotic cell substrate. Different sizes of polypeptides were genetically fused to the extreme N-terminus of the ALV envelope glycoprotein in an ALV infectious clone containing an alkaline phosphatase reporter gene. The chimeric envelope glycoproteins were efficiently incorporated into virions and were stably displayed on the surface of the virions through multiple virus replication cycles. The foreign polypeptides did not interfere with the attachment and entry functions of the underlying ALV envelope glycoproteins. The displayed polypeptides were fully functional and could efficiently mediate attachment of the recombinant viruses to their respective cognate receptors. This study demonstrates that ALV is an ideal display platform for the generation and selection of libraries of polypeptides where there is a need for expression, folding, and posttranslational modification in the endoplasmic reticulum of eukaryotic cells

  9. Distribution and Diversity of Microbial Eukaryotes in Bathypelagic Waters of the South China Sea.

    Science.gov (United States)

    Xu, Dapeng; Jiao, Nianzhi; Ren, Rui; Warren, Alan

    2017-05-01

    Little is known about the biodiversity of microbial eukaryotes in the South China Sea, especially in waters at bathyal depths. Here, we employed SSU rDNA gene sequencing to reveal the diversity and community structure across depth and distance gradients in the South China Sea. Vertically, the highest alpha diversity was found at 75-m depth. The communities of microbial eukaryotes were clustered into shallow-, middle-, and deep-water groups according to the depth from which they were collected, indicating a depth-related diversity and distribution pattern. Rhizaria sequences dominated the microeukaryote community and occurred in all samples except those from less than 50-m deep, being most abundant near the sea floor where they contributed ca. 64-97% and 40-74% of the total sequences and OTUs recovered, respectively. A large portion of rhizarian OTUs has neither a nearest named neighbor nor a nearest neighbor in the GenBank database which indicated the presence of new phylotypes in the South China Sea. Given their overwhelming abundance and richness, further phylogenetic analysis of rhizarians were performed and three new genetic clusters were revealed containing sequences retrieved from the deep waters of the South China Sea. Our results shed light on the diversity and community structure of microbial eukaryotes in this not yet fully explored area. © 2016 The Author(s) Journal of Eukaryotic Microbiology © 2016 International Society of Protistologists.

  10. EuMicroSatdb: A database for microsatellites in the sequenced genomes of eukaryotes

    Directory of Open Access Journals (Sweden)

    Grover Atul

    2007-07-01

    Full Text Available Abstract Background Microsatellites have immense utility as molecular markers in different fields like genome characterization and mapping, phylogeny and evolutionary biology. Existing microsatellite databases are of limited utility for experimental and computational biologists with regard to their content and information output. EuMicroSatdb (Eukaryotic MicroSatellite database http://ipu.ac.in/usbt/EuMicroSatdb.htm is a web based relational database for easy and efficient positional mining of microsatellites from sequenced eukaryotic genomes. Description A user friendly web interface has been developed for microsatellite data retrieval using Active Server Pages (ASP. The backend database codes for data extraction and assembly have been written using Perl based scripts and C++. Precise need based microsatellites data retrieval is possible using different input parameters like microsatellite type (simple perfect or compound perfect, repeat unit length (mono- to hexa-nucleotide, repeat number, microsatellite length and chromosomal location in the genome. Furthermore, information about clustering of different microsatellites in the genome can also be retrieved. Finally, to facilitate primer designing for PCR amplification of any desired microsatellite locus, 200 bp upstream and downstream sequences are provided. Conclusion The database allows easy systematic retrieval of comprehensive information about simple and compound microsatellites, microsatellite clusters and their locus coordinates in 31 sequenced eukaryotic genomes. The information content of the database is useful in different areas of research like gene tagging, genome mapping, population genetics, germplasm characterization and in understanding microsatellite dynamics in eukaryotic genomes.

  11. Ultrastructural diversity between centrioles of eukaryotes.

    Science.gov (United States)

    Gupta, Akshari; Kitagawa, Daiju

    2018-02-16

    Several decades of centriole research have revealed the beautiful symmetry present in these microtubule-based organelles, which are required to form centrosomes, cilia, and flagella in many eukaryotes. Centriole architecture is largely conserved across most organisms, however, individual centriolar features such as the central cartwheel or microtubule walls exhibit considerable variability when examined with finer resolution. Here, we review the ultrastructural characteristics of centrioles in commonly studied organisms, highlighting the subtle and not-so-subtle differences between specific structural components of these centrioles. Additionally, we survey some non-canonical centriole structures that have been discovered in various species, from the coaxial bicentrioles of protists and lower land plants to the giant irregular centrioles of the fungus gnat Sciara. Finally, we speculate on the functional significance of these differences between centrioles, and the contribution of individual structural elements such as the cartwheel or microtubules towards the stability of centrioles.Centriole structure, cartwheel, triplet microtubules, SAS-6, centrosome.

  12. Protein splicing and its evolution in eukaryotes

    Directory of Open Access Journals (Sweden)

    Starokadomskyy P. L.

    2010-02-01

    Full Text Available Inteins, or protein introns, are parts of protein sequences that are post-translationally excised, their flanking regions (exteins being spliced together. This process was called protein splicing. Originally inteins were found in prokaryotic or unicellular eukaryotic organisms. But the general principles of post-translation protein rearrangement are evolving yielding different post-translation modification of proteins in multicellular organisms. For clarity, these non-intein mediated events call either protein rearrangements or protein editing. The most intriguing example of protein editing is proteasome-mediated splicing of antigens in vertebrates that may play important role in antigen presentation. Other examples of protein rearrangements are maturation of Hg-proteins (critical receptors in embryogenesis as well as maturation of several metabolic enzymes. Despite a lack of experimental data we try to analyze some intriguing examples of protein splicing evolution.

  13. Redox characteristics of the eukaryotic cytosol

    DEFF Research Database (Denmark)

    López-Mirabal, H Reynaldo; Winther, Jakob R

    2007-01-01

    The eukaryotic cytoplasm has long been regarded as a cellular compartment in which the reduced state of protein cysteines is largely favored. Under normal conditions, the cytosolic low-molecular weight redox buffer, comprising primarily of glutathione, is highly reducing and reactive oxygen species...... (ROS) and glutathionylated proteins are maintained at very low levels. In the present review, recent progress in the understanding of the cytosolic thiol-disulfide redox metabolism and novel analytical approaches to studying cytosolic redox properties are discussed. We will focus on the yeast model...... organism, Saccharomyces cerevisiae, where the combination of genetic and biochemical approaches has brought us furthest in understanding the mechanisms underlying cellular redox regulation. It has been shown in yeast that, in addition to the enzyme glutathione reductase, other mechanisms may exist...

  14. Bacterial proteins pinpoint a single eukaryotic root

    Czech Academy of Sciences Publication Activity Database

    Derelle, R.; Torruella, G.; Klimeš, V.; Brinkmann, H.; Kim, E.; Vlček, Čestmír; Lang, B.F.; Eliáš, M.

    2015-01-01

    Roč. 112, č. 7 (2015), E693-E699 ISSN 0027-8424 R&D Projects: GA ČR GA13-24983S Grant - others:GA MŠk(CZ) ED2.1.00/03.0100; Howard Hughes Medical Institute International Early Career Scientist Program(US) 55007424; Spanish Ministry of Economy and Competitiveness, European Molecular Biology Organization Young Investigator Program(ES) BFU2012-31329; Spanish Ministry of Economy and Competitiveness, "Centro de Excelencia Severo Ochoa" - European Regional Development Fund(ES) Sev-2012-0208, BES-2013-064004 Institutional support: RVO:68378050 Keywords : eukaryote phylogeny * phylogenomics * Opimoda * Diphoda * LECA Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 9.423, year: 2015

  15. EUPAN enables pan-genome studies of a large number of eukaryotic genomes.

    Science.gov (United States)

    Hu, Zhiqiang; Sun, Chen; Lu, Kuang-Chen; Chu, Xixia; Zhao, Yue; Lu, Jinyuan; Shi, Jianxin; Wei, Chaochun

    2017-08-01

    Pan-genome analyses are routinely carried out for bacteria to interpret the within-species gene presence/absence variations (PAVs). However, pan-genome analyses are rare for eukaryotes due to the large sizes and higher complexities of their genomes. Here we proposed EUPAN, a eukaryotic pan-genome analysis toolkit, enabling automatic large-scale eukaryotic pan-genome analyses and detection of gene PAVs at a relatively low sequencing depth. In the previous studies, we demonstrated the effectiveness and high accuracy of EUPAN in the pan-genome analysis of 453 rice genomes, in which we also revealed widespread gene PAVs among individual rice genomes. Moreover, EUPAN can be directly applied to the current re-sequencing projects primarily focusing on single nucleotide polymorphisms. EUPAN is implemented in Perl, R and C ++. It is supported under Linux and preferred for a computer cluster with LSF and SLURM job scheduling system. EUPAN together with its standard operating procedure (SOP) is freely available for non-commercial use (CC BY-NC 4.0) at http://cgm.sjtu.edu.cn/eupan/index.html . ccwei@sjtu.edu.cn or jianxin.shi@sjtu.edu.cn. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  16. 5S rRNA gene arrangements in protists: a case of nonadaptive evolution.

    Science.gov (United States)

    Drouin, Guy; Tsang, Corey

    2012-06-01

    Given their high copy number and high level of expression, one might expect that both the sequence and organization of eukaryotic ribosomal RNA genes would be conserved during evolution. Although the organization of 18S, 5.8S and 28S ribosomal RNA genes is indeed relatively well conserved, that of 5S rRNA genes is much more variable. Here, we review the different types of 5S rRNA gene arrangements which have been observed in protists. This includes linkages to the other ribosomal RNA genes as well as linkages to ubiquitin, splice-leader, snRNA and tRNA genes. Mapping these linkages to independently derived phylogenies shows that these diverse linkages have repeatedly been gained and lost during evolution. This argues against such linkages being the primitive condition not only in protists but also in other eukaryote species. Because the only characteristic the diverse genes with which 5S rRNA genes are found linked with is that they are tandemly repeated, these arrangements are unlikely to provide any selective advantage. Rather, the observed high variability in 5S rRNA genes arrangements is likely the result of the fact that 5S rRNA genes contain internal promoters, that these genes are often transposed by diverse recombination mechanisms and that these new gene arrangements are rapidly homogenized by unequal crossingovers and/or by gene conversions events in species with short generation times and frequent founder events.

  17. Phylogenetic and Genomic Analyses Resolve the Origin of Important Plant Genes Derived from Transposable Elements.

    Science.gov (United States)

    Joly-Lopez, Zoé; Hoen, Douglas R; Blanchette, Mathieu; Bureau, Thomas E

    2016-08-01

    Once perceived as merely selfish, transposable elements (TEs) are now recognized as potent agents of adaptation. One way TEs contribute to evolution is through TE exaptation, a process whereby TEs, which persist by replicating in the genome, transform into novel host genes, which persist by conferring phenotypic benefits. Known exapted TEs (ETEs) contribute diverse and vital functions, and may facilitate punctuated equilibrium, yet little is known about this process. To better understand TE exaptation, we designed an approach to resolve the phylogenetic context and timing of exaptation events and subsequent patterns of ETE diversification. Starting with known ETEs, we search in diverse genomes for basal ETEs and closely related TEs, carefully curate the numerous candidate sequences, and infer detailed phylogenies. To distinguish TEs from ETEs, we also weigh several key genomic characteristics including repetitiveness, terminal repeats, pseudogenic features, and conserved domains. Applying this approach to the well-characterized plant ETEs MUG and FHY3, we show that each group is paraphyletic and we argue that this pattern demonstrates that each originated in not one but multiple exaptation events. These exaptations and subsequent ETE diversification occurred throughout angiosperm evolution including the crown group expansion, the angiosperm radiation, and the primitive evolution of angiosperms. In addition, we detect evidence of several putative novel ETE families. Our findings support the hypothesis that TE exaptation generates novel genes more frequently than is currently thought, often coinciding with key periods of evolution. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  18. How and why DNA barcodes underestimate the diversity of microbial eukaryotes.

    Directory of Open Access Journals (Sweden)

    Gwenael Piganeau

    Full Text Available BACKGROUND: Because many picoplanktonic eukaryotic species cannot currently be maintained in culture, direct sequencing of PCR-amplified 18S ribosomal gene DNA fragments from filtered sea-water has been successfully used to investigate the astounding diversity of these organisms. The recognition of many novel planktonic organisms is thus based solely on their 18S rDNA sequence. However, a species delimited by its 18S rDNA sequence might contain many cryptic species, which are highly differentiated in their protein coding sequences. PRINCIPAL FINDINGS: Here, we investigate the issue of species identification from one gene to the whole genome sequence. Using 52 whole genome DNA sequences, we estimated the global genetic divergence in protein coding genes between organisms from different lineages and compared this to their ribosomal gene sequence divergences. We show that this relationship between proteome divergence and 18S divergence is lineage dependent. Unicellular lineages have especially low 18S divergences relative to their protein sequence divergences, suggesting that 18S ribosomal genes are too conservative to assess planktonic eukaryotic diversity. We provide an explanation for this lineage dependency, which suggests that most species with large effective population sizes will show far less divergence in 18S than protein coding sequences. CONCLUSIONS: There is therefore a trade-off between using genes that are easy to amplify in all species, but which by their nature are highly conserved and underestimate the true number of species, and using genes that give a better description of the number of species, but which are more difficult to amplify. We have shown that this trade-off differs between unicellular and multicellular organisms as a likely consequence of differences in effective population sizes. We anticipate that biodiversity of microbial eukaryotic species is underestimated and that numerous "cryptic species" will become

  19. Novel cancer gene variants and gene fusions of triple-negative breast cancers (TNBCs) reveal their molecular diversity conserved in the patient-derived xenograft (PDX) model.

    Science.gov (United States)

    Jung, Jaeyun; Jang, Kiwon; Ju, Jung Min; Lee, Eunji; Lee, Jong Won; Kim, Hee Jung; Kim, Jisun; Lee, Sae Byul; Ko, Beom Seok; Son, Byung Ho; Lee, Hee Jin; Gong, Gyungyup; Ahn, Sei Yeon; Choi, Jung Kyoon; Singh, Shree Ram; Chang, Suhwan

    2018-04-20

    Despite the improved 5-year survival rate of breast cancer, triple-negative breast cancer (TNBC) remains a challenge due to lack of effective targeted therapy and higher recurrence and metastasis than other subtypes. To identify novel druggable targets and to understand its unique biology, we tried to implement 24 patient-derived xenografts (PDXs) of TNBC. The overall success rate of PDX implantation was 45%, much higher than estrogen receptor (ER)-positive cases. Immunohistochemical analysis revealed conserved ER/PR/Her2 negativity (with two exceptions) between the original and PDX tumors. Genomic analysis of 10 primary tumor-PDX pairs with Ion AmpliSeq CCP revealed high degree of variant conservation (85.0% to 96.9%) between primary and PDXs. Further analysis showed 44 rare variants with a predicted high impact in 36 genes including Trp53, Pten, Notch1, and Col1a1. Among them, we confirmed frequent Notch1 variant. Furthermore, RNA-seq analysis of 24 PDXs revealed 594 gene fusions, of which 163 were in-frame, including AZGP1-GJC3 and NF1-AARSD1. Finally, western blot analysis of oncogenic signaling proteins supporting molecular diversity of TNBC PDXs. Overall, our report provides a molecular basis for the usefulness of the TNBC PDX model in preclinical study. Copyright © 2018. Published by Elsevier B.V.

  20. Structural similarities between prokaryotic and eukaryotic 5S ribosomal RNAs

    International Nuclear Information System (INIS)

    Welfle, H.; Boehm, S.; Damaschun, G.; Fabian, H.; Gast, K.; Misselwitz, R.; Mueller, J.J.; Zirwer, D.; Filimonov, V.V.; Venyaminov, S.Yu.; Zalkova, T.N.

    1986-01-01

    5S RNAs from rat liver and E. coli have been studied by diffuse X-ray and dynamic light scattering and by infrared and Raman spectroscopy. Identical structures at a resolution of 1 nm can be deduced from the comparison of the experimental X-ray scattering curves and electron distance distribution functions and from the agreement of the shape parameters. A flat shape model with a compact central region and two protruding arms was derived. Double helical stems are eleven-fold helices with a mean base pair distance of 0.28 nm. The number of base pairs (26 GC, 9 AU for E. coli; 27 GC, 9 AU for rat liver) and the degree of base stacking are the same within the experimental error. A very high regularity in the ribophosphate backbone is indicated for both 5S RNAs. The observed structural similarity and the consensus secondary structure pattern derived from comparative sequence analyses suggest the conclusion that prokaryotic and eukaryotic 5S RNAs are in general very similar with respect to their fundamental structural features. (author)

  1. Expression of WNT genes in cervical cancer-derived cells: Implication of WNT7A in cell proliferation and migration

    International Nuclear Information System (INIS)

    Ramos-Solano, Moisés; Meza-Canales, Ivan D.; Torres-Reyes, Luis A.; Alvarez-Zavala, Monserrat

    2015-01-01

    According to the multifactorial model of cervical cancer (CC) causation, it is now recognized that other modifications, in addition to Human papillomavirus (HPV) infection, are necessary for the development of this neoplasia. Among these, it has been proposed that a dysregulation of the WNT pathway might favor malignant progression of HPV-immortalized keratinocytes. The aim of this study was to identify components of the WNT pathway differentially expressed in CC vs. non-tumorigenic, but immortalized human keratinocytes. Interestingly, WNT7A expression was found strongly downregulated in cell lines and biopsies derived from CC. Restoration of WNT7A in CC-derived cell lines using a lentiviral gene delivery system or after adding a recombinant human protein decreases cell proliferation. Likewise, WNT7A silencing in non-tumorigenic cells markedly accelerates proliferation. Decreased WNT7A expression was due to hypermethylation at particular CpG sites. To our knowledge, this is the first study reporting reduced WNT7A levels in CC-derived cells and that ectopic WNT7A restoration negatively affects cell proliferation and migration. - Highlights: • WNT7A is expressed in normal keratinocytes or cervical cells without lesion. • WNT7A is significantly reduced in cervical cancer-derived cells. • Restoration of WNT7A expression in HeLa decreases proliferation and cell migration. • Silencing of WNT7A in HaCaT induces an increased proliferation and migration rate. • Decreased WNT7A expression in this model is due to hypermethylation

  2. Expression of WNT genes in cervical cancer-derived cells: Implication of WNT7A in cell proliferation and migration

    Energy Technology Data Exchange (ETDEWEB)

    Ramos-Solano, Moisés, E-mail: mrsolano84@gmail.com [División de Inmunología, Centro de Investigación Biomédica de Occidente (CIBO)-Instituto Mexicano del Seguro Social (IMSS), Guadalajara, Jalisco (Mexico); Programa de Doctorado en Ciencias Biomédica, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara, Guadalajara, Jalisco (Mexico); Meza-Canales, Ivan D., E-mail: imezacanales@ice.mpg.de [Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, 07745 Jena (Germany); Torres-Reyes, Luis A., E-mail: torres_reyes_88@hotmail.com [División de Inmunología, Centro de Investigación Biomédica de Occidente (CIBO)-Instituto Mexicano del Seguro Social (IMSS), Guadalajara, Jalisco (Mexico); Programa de Doctorado en Ciencias Biomédica, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara, Guadalajara, Jalisco (Mexico); Alvarez-Zavala, Monserrat, E-mail: monse_belan@hotmail.com [División de Inmunología, Centro de Investigación Biomédica de Occidente (CIBO)-Instituto Mexicano del Seguro Social (IMSS), Guadalajara, Jalisco (Mexico); Programa de Doctorado en Ciencias Biomédica, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara, Guadalajara, Jalisco (Mexico); and others

    2015-07-01

    According to the multifactorial model of cervical cancer (CC) causation, it is now recognized that other modifications, in addition to Human papillomavirus (HPV) infection, are necessary for the development of this neoplasia. Among these, it has been proposed that a dysregulation of the WNT pathway might favor malignant progression of HPV-immortalized keratinocytes. The aim of this study was to identify components of the WNT pathway differentially expressed in CC vs. non-tumorigenic, but immortalized human keratinocytes. Interestingly, WNT7A expression was found strongly downregulated in cell lines and biopsies derived from CC. Restoration of WNT7A in CC-derived cell lines using a lentiviral gene delivery system or after adding a recombinant human protein decreases cell proliferation. Likewise, WNT7A silencing in non-tumorigenic cells markedly accelerates proliferation. Decreased WNT7A expression was due to hypermethylation at particular CpG sites. To our knowledge, this is the first study reporting reduced WNT7A levels in CC-derived cells and that ectopic WNT7A restoration negatively affects cell proliferation and migration. - Highlights: • WNT7A is expressed in normal keratinocytes or cervical cells without lesion. • WNT7A is significantly reduced in cervical cancer-derived cells. • Restoration of WNT7A expression in HeLa decreases proliferation and cell migration. • Silencing of WNT7A in HaCaT induces an increased proliferation and migration rate. • Decreased WNT7A expression in this model is due to hypermethylation.

  3. Erythroid Kruppel-like factor (EKLF) is recruited to the γ-globin gene promoter as a co-activator and is required for γ-globin gene induction by short-chain fatty acid derivatives

    Science.gov (United States)

    Perrine, Susan P.; Mankidy, Rishikesh; Boosalis, Michael S.; Bieker, James J.; Faller, Douglas V.

    2011-01-01

    Objectives The erythroid Kruppel-like factor (EKLF) is an essential transcription factor for β-type globin gene switching, and specifically activates transcription of the adult β-globin gene promoter. We sought to determine if EKLF is also required for activation of the γ-globin gene by short-chain fatty acid (SCFA) derivatives, which are now entering clinical trials. Methods The functional and physical interaction of EKLF and co-regulatory molecules with the endogenous human globin gene promoters was studied in primary human erythroid progenitors and cell lines, using chromatin immunoprecipitation (ChIP) assays and genetic manipulation of the levels of EKLF and co-regulators. Results and conclusions Knockdown of EKLF prevents SCFA-induced expression of the γ-globin promoter in a stably expressed μLCRβprRlucAγprFluc cassette, and prevents induction of the endogenous γ-globin gene in primary human erythroid progenitors. EKLF is actively recruited to endogenous γ-globin gene promoters after exposure of primary human erythroid progenitors, and murine hematopoietic cell lines, to SCFA derivatives. The core ATPase BRG1 subunit of the human SWI/WNF complex, a ubiquitous multimeric complex that regulates gene expression by remodeling nucleosomal structure, is also required for γ-globin gene induction by SCFA derivatives. BRG1 is actively recruited to the endogenous γ-globin promoter of primary human erythroid progenitors by exposure to SCFA derivatives, and this recruitment is dependent upon the presence of EKLF. These findings demonstrate that EKLF, and the co-activator BRG1, previously demonstrated to be required for definitive or adult erythropoietic patterns of globin gene expression, are co-opted by SCFA derivatives to activate the fetal globin genes. PMID:19220418

  4. Signatures derived from increase in SHARPIN gene copy number are associated with poor prognosis in patients with breast cancer

    Directory of Open Access Journals (Sweden)

    Diane Ojo

    2017-12-01

    Full Text Available We report three signatures produced from SHARPIN gene copy number increase (GCN-Increase and their effects on patients with breast cancer (BC. In the Metabric dataset (n = 2059, cBioPortal, SHARPIN GCN-Increase occurs preferentially or mutual exclusively with mutations in TP53, PIK3CA, and CDH1. These genomic alterations constitute a signature (SigMut that significantly correlates with reductions in overall survival (OS in BC patients (n = 1980; p = 1.081e−6. Additionally, SHARPIN GCN-Increase is associated with 4220 differentially expressed genes (DEGs. These DEGs are enriched in activation of the pathways regulating cell cycle progression, RNA transport, ribosome biosynthesis, DNA replication, and in downregulation of the pathways related to extracellular matrix. These DEGs are thus likely to facilitate the proliferation and metastasis of BC cells. Additionally, through forward (FWD and backward (BWD stepwise variate selections among the top 160 downregulated and top 200 upregulated DEGs using the Cox regression model, a 6-gene (SigFWD and a 50-gene (SigBWD signature were derived. Both signatures robustly associate with decreases in OS in BC patients within the Curtis (n = 1980; p = 6.16e−11 for SigFWD; p = 1.06e−10, for SigBWD and TCGA cohort (n = 817; p = 4.53e−4 for SigFWD and p = 0.00525 for SigBWD. After adjusting for known clinical factors, SigMut (HR 1.21, p = 0.0297, SigBWD (HR 1.25, p = 0.0263, and likely SigFWD (HR 1.17, p = 0.062 remain independent risk factors of BC deaths. Furthermore, the proportion of patients positive for these signatures is significantly increased in ER−, Her2-enriched, basal-like, and claudin-low BCs compared to ER+ and luminal BCs. Collectively, these SHARPIN GCN-Increase-derived signatures may have clinical applications in management of patients with BC.

  5. Molecular cloning of the human eosinophil-derived neurotoxin: A member of the ribonuclease gene family

    International Nuclear Information System (INIS)

    Rosenberg, H.F.; Tenen, D.G.; Ackerman, S.J.

    1989-01-01

    The authors have isolated a 725-base-pair cDNA clone for human eosinophil-derived neurotoxin (EDN). EDN is a distinct cationic protein of the eosinophil's large specific granule known primarily for its ability to induce ataxia, paralysis, and central nervous system cellular degeneration in experimental animals (Gordon phenomenon). The open reading frame encodes a 134-amino acid mature polypeptide with a molecular mass of 15.5 kDa and a 27-residue amino-terminal hydrophobic leader sequence. The sequence of the mature polypeptide is identical to that reported for human urinary ribonuclease, and to the amino-terminal sequence of human liver ribonuclease; the cDNA encodes a tryptophan in position 7. Both EDN and the related granule protein, eosinophil cationic protein, have ribonucleolytic activity; sequence similarities among EDN, eosinophil cationic protein, ribonucleases from liver, urine, and pancreas, and angiogenin define a ribonuclease multigene family. mRNA encoding EDN was detected in uninduced HL-60 cells and was up-regulated in cells induced toward eosinophilic differentiation with B-cell growth factor 2/interleukin 5 and toward neutrophilic differentiation with dimethyl sulfoxide. EDN mRNA was detected in mature neutrophils even though EDN-like neurotoxic activity is not found neutrophil extracts. These results suggest that neutrophils contain a protein that is closely related or identical to EDN

  6. The relevance of gene transfer to the safety of food and feed derived from genetically modified (GM) plants

    DEFF Research Database (Denmark)

    van den Eede, G.; Aarts, H. J.; Buhk, H. J.

    2004-01-01

    In 2000, the thematic network ENTRANSFOOD was launched to assess four different topics that are all related to the testing or assessment of food containing or produced from genetically modified organisms (GMOs). Each of the topics was linked to a European Commission (EC)-funded large shared cost...... action (see http://www.entransfood.com). Since the exchange of genetic information through horizontal (lateral) gene transfer (HGT) might play a more important role, in quantity and quality, than hitherto imagined, a working group dealing with HGT in the context of food and feed safety was established....... This working group was linked to the GMOBILITY project (GMOBILITY, 2003) and the results of the deliberations are laid down in this review paper. HGT is reviewed in relation to the potential risks of consuming food or feed derived from transgenic crops. First, the mechanisms for obtaining transgenic crops...

  7. DNA to DNA transcription might exist in eukaryotic cells

    OpenAIRE

    Li, Gao-De

    2016-01-01

    Till now, in biological sciences, the term, transcription, mainly refers to DNA to RNA transcription. But our recently published experimental findings obtained from Plasmodium falciparum strongly suggest the existence of DNA to DNA transcription in the genome of eukaryotic cells, which could shed some light on the functions of certain noncoding DNA in the human and other eukaryotic genomes.

  8. MetWAMer: eukaryotic translation initiation site prediction

    Directory of Open Access Journals (Sweden)

    Brendel Volker

    2008-09-01

    Full Text Available Abstract Background Translation initiation site (TIS identification is an important aspect of the gene annotation process, requisite for the accurate delineation of protein sequences from transcript data. We have developed the MetWAMer package for TIS prediction in eukaryotic open reading frames of non-viral origin. MetWAMer can be used as a stand-alone, third-party tool for post-processing gene structure annotations generated by external computational programs and/or pipelines, or directly integrated into gene structure prediction software implementations. Results MetWAMer currently implements five distinct methods for TIS prediction, the most accurate of which is a routine that combines weighted, signal-based translation initiation site scores and the contrast in coding potential of sequences flanking TISs using a perceptron. Also, our program implements clustering capabilities through use of the k-medoids algorithm, thereby enabling cluster-specific TIS parameter utilization. In practice, our static weight array matrix-based indexing method for parameter set lookup can be used with good results in data sets exhibiting moderate levels of 5'-complete coverage. Conclusion We demonstrate that improvements in statistically-based models for TIS prediction can be achieved by taking the class of each potential start-methionine into account pending certain testing conditions, and that our perceptron-based model is suitable for the TIS identification task. MetWAMer represents a well-documented, extensible, and freely available software system that can be readily re-trained for differing target applications and/or extended with existing and novel TIS prediction methods, to support further research efforts in this area.

  9. Chondrogenesis of synovium-derived mesenchymal stem cells in gene-transferred co-culture system.

    Science.gov (United States)

    Varshney, Rohan R; Zhou, Ruijie; Hao, Jinghua; Yeo, Suan Siong; Chooi, Wai Hon; Fan, Jiabing; Wang, Dong-An

    2010-09-01

    A co-culture strategy has been developed in this study wherein rabbit synovial mesenchymal stem cells (SMSCs) are co-cultured with growth factor (GF) transfected articular chondrocytes. Toward this end, both SMSCs and early passage rabbit articular chondrocytes that had been adenovirally transduced with transforming growth factor-beta 3 (TGF-beta3) gene were separately encapsulated in alginate beads and co-cultured in the same pool of chondrogenic medium. The chondrocytes act as transfected companion cells (TCCs) providing GF supply to induce chondrogenic differentiation of SMSCs that play the role of therapeutic progenitor cells (TPCs). Against the same TCC based TGF-beta3 release profile, the co-culture was started at different time points (Day 0, Day 10 and Day 20) but made to last for identical periods of exposure (30 days) so that the exposure conditions could be optimized in terms of initiation and duration. Transfection of TCCs prevents the stem cell based TPCs from undergoing the invasive procedure. It also prevents unpredictable complications in the TPCs caused by long-term constitutive over-expression of a GF. The adenovirally transfected TCCs exhibit a transient GF expression which results in a timely termination of GF supply to the TPCs. The TCC-sourced transgenic TGF-beta3 successfully induced chondrogenesis in the TPCs. Real-time PCR results show enhanced expression of cartilage markers and immuno/histochemical staining for Glycosaminoglycans (GAG) and Collagen II also shows abundant extracellular matrix (ECM) production and chondrogenic morphogenesis in the co-cultured TPCs. These results confirm the efficacy of directing stem cell differentiation towards chondrogenesis and cartilage tissue formation by co-culturing them with GF transfected chondrocytes.

  10. Microbial eukaryote plankton communities of high-mountain lakes from three continents exhibit strong biogeographic patterns.

    Science.gov (United States)

    Filker, Sabine; Sommaruga, Ruben; Vila, Irma; Stoeck, Thorsten

    2016-05-01

    Microbial eukaryotes hold a key role in aquatic ecosystem functioning. Yet, their diversity in freshwater lakes, particularly in high-mountain lakes, is relatively unknown compared with the marine environment. Low nutrient availability, low water temperature and high ultraviolet radiation make most high-mountain lakes extremely challenging habitats for life and require specific molecular and physiological adaptations. We therefore expected that these ecosystems support a plankton diversity that differs notably from other freshwater lakes. In addition, we hypothesized that the communities under study exhibit geographic structuring. Our rationale was that geographic dispersal of small-sized eukaryotes in high-mountain lakes over continental distances seems difficult. We analysed hypervariable V4 fragments of the SSU rRNA gene to compare the genetic microbial eukaryote diversity in high-mountain lakes located in the European Alps, the Chilean Altiplano and the Ethiopian Bale Mountains. Microbial eukaryotes were not globally distributed corroborating patterns found for bacteria, multicellular animals and plants. Instead, the plankton community composition emerged as a highly specific fingerprint of a geographic region even on higher taxonomic levels. The intraregional heterogeneity of the investigated lakes was mirrored in shifts in microbial eukaryote community structure, which, however, was much less pronounced compared with interregional beta-diversity. Statistical analyses revealed that on a regional scale, environmental factors are strong predictors for plankton community structures in high-mountain lakes. While on long-distance scales (>10 000 km), isolation by distance is the most plausible scenario, on intermediate scales (up to 6000 km), both contemporary environmental factors and historical contingencies interact to shift plankton community structures. © 2016 John Wiley & Sons Ltd.

  11. Critical analysis of eukaryotic phylogeny: a case study based on the HSP70 family.

    Science.gov (United States)

    Germot, A; Philippe, H

    1999-01-01

    Trichomonads, together with diplomonads and microsporidia, emerge at the base of the eukaryotic tree, on the basis of the small subunit rRNA phylogeny. However, phylogenies based on protein sequences such as tubulin are markedly different with these protists emerging much later. We have investigated 70 kDa heat-shock protein (HSP70), which could be a reliable phylogenetic marker. In eukaryotes, HSP70s are found in cytosol, endoplasmic reticulum, and organelles (mitochondria and chloroplasts). In Trichomonas vaginalis we identified nine different HSP70-encoding genes and sequenced three nearly complete cDNAs corresponding to cytosolic, endoplasmic reticulum, and mitochondrial-type HSP70. Phylogenies of eukaryotes were reconstructed using the classical methods while varying the number of species and characters considered. Almost all the undoubtedly monophyletic groups, defined by ultrastructural characters, were recovered. However, due to the long branch attraction phenomenon, the evolutionary rates were the main factor determining the position of species, even with the use of a close outgroup, which is an important advantage of HSP70 with respect to many other markers. Numerous variable sites are peculiar to Trichomonas and probably generated the artefactual placement of this species at the base of the eukaryotes or as the sister group of fast-evolving species. The inter-phyla relationships were not well supported and were sensitive to the reconstruction method, the number of species; and the quantity of information used. This lack of resolution could be explained by the very rapid diversification of eukaryotes, likely after the mitochondrial endosymbiosis.

  12. Expression profile analysis of aorta-gonad-mesonephros region-derived stromal cells reveals genes that regulate hematopoiesis

    International Nuclear Information System (INIS)

    Nagao, Kenji; Ohta, Takayuki; Hinohara, Atsushi; Tahara, Tomoyuki; Hagiwara, Tetsuya; Maeda, Yoshitake; Yoneya, Takashi; Sohma, Yoshiaki; Heike, Toshio; Nakahata, Tatsutoshi; Inagaki, Yoshimasa; Nishikawa, Mitsuo

    2008-01-01

    The aorta-gonad-mesonephros (AGM) region is involved in the generation and maintenance of the first definitive hematopoietic stem cells (HSCs). A mouse AGM-derived cell line, AGM-S3, was shown to support the development of HSCs. To elucidate the molecular mechanisms regulating early hematopoiesis, we obtained subclones from AGM-S3, one of which was hematopoiesis supportive (S3-A9) and the other one of which was non-supportive (S3-A7), and we analyzed their gene expression profiles by gene chip analysis. In the present study, we found that Glypican-1 (GPC1) was highly expressed in the supportive subclone AGM-S3-A9. Over-expression of GPC1 in non-supportive cells led to the proliferation of progenitor cells in human cord blood when cocultured with the transfected-stromal cells. Thus, GPC1 may have an important role in the establishment of a microenvironment that supports early events in hematopoiesis

  13. hTERT gene immortalized human adipose-derived stem cells and its multiple differentiations: a preliminary investigation.

    Science.gov (United States)

    Wang, L; Song, K; Qu, X; Wang, H; Zhu, H; Xu, X; Zhang, M; Tang, Y; Yang, X

    2013-03-01

    Human adipose-derived adult stem cells (hADSCs) can express human telomerase reverse transcriptase phenotypes under an appropriate culture condition. Because adipose tissue is abundant and easily accessible, hADSCs offer a promising source of stem cells for tissue engineering application and other cell-based therapies. However, the shortage of cells number and the difficulty to proliferate, known as the "Hayflick limit" in vitro, limit their further clinical application. Here, hADSCs were transfected with human telomerase reverse transcriptase (hTERT) gene by the lentiviral vector to prolong the lifespan of stem cells and even immortalize them. Following to this, the cellular properties and functionalities of the transfected cell lines were assayed. The results demonstrated that hADSCs had been successfully transfected with hTERT gene (hTERT-ADSCs). Then, hTERT-ADSCs were initially selected by G418 and subsequently expanded over 20 passages in vitro. Moreover, the qualitative and quantitative differentiation criteria for 20 passages of hTERT-ADSCs also demonstrated that hTERT-ADSCs could differentiate into osteogenesis, chondrogenesis, and adipogenesis phenotypes in lineage-specific differentiation media. These findings confirmed that this transfection could prolong the lifespan of hADSCs.

  14. Extract of mouse embryonic stem cells induces the expression of pluripotency genes in human adipose tissue-derived stem cells.

    Science.gov (United States)

    Salehi, Paria Motamen; Foroutan, Tahereh; Javeri, Arash; Taha, Masoumeh Fakhr

    2017-11-01

    In some previous studies, the extract of embryonic carcinoma cells (ECCs) and embryonic stem cells (ESCs) have been used to reprogram somatic cells to more dedifferentiated state. The aim of this study was to investigate the effect of mouse ESCs extract on the expression of some pluripotency markers in human adipose tissue-derived stem cells (ADSCs). Human ADSCs were isolated from subcutaneous abdominal adipose tissue and characterized by flow cytometric analysis for the expression of some mesenchymal stem cell markers and adipogenic and osteogenic differentiation. Frequent freeze-thaw technique was used to prepare cytoplasmic extract of ESCs. Plasma membranes of the ADSCs were reversibly permeabilized by streptolysin-O (SLO). Then the permeabilized ADSCs were incubated with the ESC extract and cultured in resealing medium. After reprogramming, the expression of some pluripotency genes was evaluated by RT-PCR and quantitative real-time PCR (qPCR) analyses. Third-passaged ADSCs showed a fibroblast-like morphology and expressed mesenchymal stem cell markers. They also showed adipogenic and osteogenic differentiation potential. QPCR analysis revealed a significant upregulation in the expression of some pluripotency genes including OCT4 , SOX2 , NANOG , REX1 and ESG1 in the reprogrammed ADSCs compared to the control group. These findings showed that mouse ESC extract can be used to induce reprogramming of human ADSCs. In fact, this method is applicable for reprogramming of human adult stem cells to a more pluripotent sate and may have a potential in regenerative medicine.

  15. DNA methylation profiles of the brain-derived neurotrophic factor (BDNF gene as a potent diagnostic biomarker in major depression.

    Directory of Open Access Journals (Sweden)

    Manabu Fuchikami

    Full Text Available Major depression, because of its recurring and life-threatening nature, is one of the top 10 diseases for global disease burden. Major depression is still diagnosed on the basis of clinical symptoms in patients. The search for specific biological markers is of great importance to advance the method of diagnosis for depression. We examined the methylation profile of 2 CpG islands (I and IV at the promoters of the brain-derived neurotrophic factor (BDNF gene, which is well known to be involved in the pathophysiology of depression. We analyzed genomic DNA from peripheral blood of 20 Japanese patients with major depression and 18 healthy controls to identify an appropriate epigenetic biomarker to aid in the establishment of an objective system for the diagnosis of depression. Methylation rates at each CpG unit was measured using a MassArray® system (SEQUENOM, and 2-dimensional hierarchical clustering analyses were undertaken to determine the validity of these methylation profiles as a diagnostic biomarker. Analyses of the dendrogram from methylation profiles of CpG I, but not IV, demonstrated that classification of healthy controls and patients at the first branch completely matched the clinical diagnosis. Despite the small number of subjects, our results indicate that classification based on the DNA methylation profiles of CpG I of the BDNF gene may be a valuable diagnostic biomarker for major depression.

  16. Evidence of associations between brain-derived neurotrophic factor (BDNF serum levels and gene polymorphisms with tinnitus

    Directory of Open Access Journals (Sweden)

    Aysun Coskunoglu

    2017-01-01

    Full Text Available Background: Brain-derived neurotrophic factor (BDNF gene polymorphisms are associated with abnormalities in regulation of BDNF secretion. Studies also linked BDNF polymorphisms with changes in brainstem auditory-evoked response test results. Furthermore, BDNF levels are reduced in tinnitus, psychiatric disorders, depression, dysthymic disorder that may be associated with stress, conversion disorder, and suicide attempts due to crises of life. For this purpose, we investigated whether there is any role of BDNF changes in the pathophysiology of tinnitus. Materials and Methods: In this study, we examined the possible effects of BDNF variants in individuals diagnosed with tinnitus for more than 3 months. Fifty-two tinnitus subjects between the ages of 18 and 55, and 42 years healthy control subjects in the same age group, who were free of any otorhinolaryngology and systemic disease, were selected for examination. The intensity of tinnitus and depression was measured using the tinnitus handicap inventory, and the differential diagnosis of psychiatric diagnoses made using the Structured Clinical Interview for Fourth Edition of Mental Disorders. BDNF gene polymorphism was analyzed in the genomic deoxyribonucleic acid (DNA samples extracted from the venous blood, and the serum levels of BDNF were measured. One-way analysis of variance and Chi-squared tests were applied. Results: Serum BDNF level was found lower in the tinnitus patients than controls, and it appeared that there is no correlation between BDNF gene polymorphism and tinnitus. Conclusions: This study suggests neurotrophic factors such as BDNF may have a role in tinnitus etiology. Future studies with larger sample size may be required to further confirm our results.

  17. A functional brain-derived neurotrophic factor (BDNF) gene variant increases the risk of moderate-to-severe allergic rhinitis.

    Science.gov (United States)

    Jin, Peng; Andiappan, Anand Kumar; Quek, Jia Min; Lee, Bernett; Au, Bijin; Sio, Yang Yie; Irwanto, Astrid; Schurmann, Claudia; Grabe, Hans Jörgen; Suri, Bani Kaur; Matta, Sri Anusha; Westra, Harm-Jan; Franke, Lude; Esko, Tonu; Sun, Liangdan; Zhang, Xuejun; Liu, Hong; Zhang, Furen; Larbi, Anis; Xu, Xin; Poidinger, Michael; Liu, Jianjun; Chew, Fook Tim; Rotzschke, Olaf; Shi, Li; Wang, De Yun

    2015-06-01

    Brain-derived neurotrophic factor (BDNF) is a secretory protein that has been implicated in the pathogenesis of allergic rhinitis (AR), atopic asthma, and eczema, but it is currently unknown whether BDNF polymorphisms influence susceptibility to moderate-to-severe AR. We sought to identify disease associations and the functional effect of BDNF genetic variants in patients with moderate-to-severe AR. Tagging single nucleotide polymorphisms (SNPs) spanning the BDNF gene were selected from the human HapMap Han Chinese from Beijing (CHB) data set, and associations with moderate-to-severe AR were assessed in 2 independent cohorts of Chinese patients (2216 from Shandong province and 1239 living in Singapore). The functional effects of the BDNF genetic variants were determined by using both in vitro and ex vivo assays. The tagging SNP rs10767664 was significantly associated with the risk of moderate-to-severe AR in both Singapore Chinese (P = .0017; odds ratio, 1.324) and Shandong Chinese populations (P = .039; odds ratio, 1.180). The coding nonsynonymous SNP rs6265 was in perfect linkage with rs10767664 and conferred increased BDNF protein secretion by a human cell line in vitro. Subjects bearing the AA genotype of rs10767664 exhibited increased risk of moderate-to-severe AR and displayed increased BDNF protein and total IgE levels in plasma. Using a large-scale expression quantitative trait locus study, we demonstrated that BDNF SNPs are significantly associated with altered BDNF concentrations in peripheral blood. A common genetic variant of the BDNF gene is associated with increased risk of moderate-to-severe AR, and the AA genotype is associated with increased BDNF mRNA levels in peripheral blood. Together, these data indicate that functional BDNF gene variants increase the risk of moderate-to-severe AR. Copyright © 2015 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  18. Evidence of associations between brain-derived neurotrophic factor (BDNF) serum levels and gene polymorphisms with tinnitus.

    Science.gov (United States)

    Coskunoglu, Aysun; Orenay-Boyacioglu, Seda; Deveci, Artuner; Bayam, Mustafa; Onur, Ece; Onan, Arzu; Cam, Fethi S

    2017-01-01

    Brain-derived neurotrophic factor (BDNF) gene polymorphisms are associated with abnormalities in regulation of BDNF secretion. Studies also linked BDNF polymorphisms with changes in brainstem auditory-evoked response test results. Furthermore, BDNF levels are reduced in tinnitus, psychiatric disorders, depression, dysthymic disorder that may be associated with stress, conversion disorder, and suicide attempts due to crises of life. For this purpose, we investigated whether there is any role of BDNF changes in the pathophysiology of tinnitus. In this study, we examined the possible effects of BDNF variants in individuals diagnosed with tinnitus for more than 3 months. Fifty-two tinnitus subjects between the ages of 18 and 55, and 42 years healthy control subjects in the same age group, who were free of any otorhinolaryngology and systemic disease, were selected for examination. The intensity of tinnitus and depression was measured using the tinnitus handicap inventory, and the differential diagnosis of psychiatric diagnoses made using the Structured Clinical Interview for Fourth Edition of Mental Disorders. BDNF gene polymorphism was analyzed in the genomic deoxyribonucleic acid (DNA) samples extracted from the venous blood, and the serum levels of BDNF were measured. One-way analysis of variance and Chi-squared tests were applied. Serum BDNF level was found lower in the tinnitus patients than controls, and it appeared that there is no correlation between BDNF gene polymorphism and tinnitus. This study suggests neurotrophic factors such as BDNF may have a role in tinnitus etiology. Future studies with larger sample size may be required to further confirm our results.

  19. Effect of calcitonin gene-related peptide on the neurogenesis of rat adipose-derived stem cells in vitro.

    Directory of Open Access Journals (Sweden)

    Qin Yang

    Full Text Available Calcitonin gene-related peptide (CGRP promotes neuron recruitment and neurogenic activity. However, no evidence suggests that CGRP affects the ability of stem cells to differentiate toward neurogenesis. In this study, we genetically modified rat adipose-derived stem cells (ADSCs with the CGRP gene (CGRP-ADSCs and subsequently cultured in complete neural-induced medium. The formation of neurospheres, cellular morphology, and proliferative capacity of ADSCs were observed. In addition, the expression of the anti-apoptotic protein Bcl-2 and special markers of neural cells, such as Nestin, MAP2, RIP and GFAP, were evaluated using Western blot and immunocytochemistry analysis. The CGRP-ADSCs displayed a greater proliferation than un-transduced (ADSCs and Vector-transduced (Vector-ADSCs ADSCs (p<0.05, and lower rates of apoptosis, associated with the incremental expression of Bcl-2, were also observed for CGRP-ADSCs. Moreover, upon neural induction, CGRP-ADSCs formed markedly more and larger neurospheres and showed round cell bodies with more branching extensions contacted with neighboring cells widely. Furthermore, the expression levels of Nestin, MAP2, and RIP in CGRP-ADSCs were markedly increased, resulting in higher levels than the other groups (p<0.05; however, GFAP was distinctly undetectable until day 7, when slight GFAP expression was detected among all groups. Wnt signals, primarily Wnt 3a, Wnt 5a and β-catenin, regulate the neural differentiation of ADSCs, and CGRP gene expression apparently depends on canonical Wnt signals to promote the neurogenesis of ADSCs. Consequently, ADSCs genetically modified with CGRP exhibit stronger potential for differentiation and neurogenesis in vitro, potentially reflecting the usefulness of ADSCs as seed cells in therapeutic strategies for spinal cord injury.

  20. Genetic analysis of vitreous endosperms derived from homozygotic plants for opaque-2 gene in maize (Zea mays L.)

    International Nuclear Information System (INIS)

    Prioli, A.J.; Barbosa, H.M.; Sant'Anna, R.

    1980-01-01

    From experiments in which opaque-2 maize seeds were treated with gamma rays and ethil methanesulfonate, and their respective untreated controls, seeds with hard, vitreous endosperms were obtained. Some of these were completely vitreous, with no evidence of opaque endosperm tissue. Others had very small and few (one to three) areas of opaque tissue. Plants derived from completely vitreous endosperm seeds were self pollinated and crossed to an opaque-2 inbred. The segregation of vitreous to opaque seeds indicated that the normal allele at the opaque-2 locus was responsible for the vitreousity of the endosperm. Lysine content of the vitreous endosperm was comparable to that of normal endosperms. Plants derived from vitreous seeds with few and tiny spots of opaque tissue produced, upon selfing or crossing to the opaque-2 inbred, only opaque-2 seeds. It is concluded that: (a) induced mutation may not be an effective tool to obtain vitreous opaque-2 endosperm with high lysine content; and, (b) there are unknown genetic systems which severely modify the expression of the opaque-2 gene. (Author) [pt

  1. Longitudinal Claudin Gene Expression Analyses in Canine Mammary Tissues and Thereof Derived Primary Cultures and Cell Lines

    Directory of Open Access Journals (Sweden)

    Susanne C. Hammer

    2016-09-01

    Full Text Available Human and canine mammary tumours show partial claudin expression deregulations. Further, claudins have been used for directed therapeutic approaches. However, the development of claudin targeting approaches requires stable claudin expressing cell lines. This study reports the establishment and characterisation of canine mammary tissue derived cell lines, analysing longitudinally the claudin-1, -3, -4 and -7 expressions in original tissue samples, primary cultures and developed cell lines. Primary cultures were derived from 17 canine mammary tissues: healthy, lobular hyperplasia, simple adenoma, complex adenoma, simple tubular carcinoma, complex carcinoma, carcinoma arising in a benign mixed tumour and benign mixed tissue. Cultivation was performed, if possible, until passage 30. Claudin mRNA and protein expressions were analysed by PCR, QuantiGene Plex Assay, immunocytochemistry and immunofluorescence. Further, cytokeratin expression was analysed immunocytochemically. Cultivation resulted in 11 established cell lines, eight showing epithelial character. In five of the early passages the claudin expressions decreased compared to the original tissues. In general, claudin expressions were diminished during cultivation. Three cell lines kept longitudinally claudin, as well as epithelial marker expressions, representing valuable tools for the development of claudin targeted anti-tumour therapies.

  2. Dissecting the Contributions of Cooperating Gene Mutations to Cancer Phenotypes and Drug Responses with Patient-Derived iPSCs

    Directory of Open Access Journals (Sweden)

    Chan-Jung Chang

    2018-05-01

    Full Text Available Summary: Connecting specific cancer genotypes with phenotypes and drug responses constitutes the central premise of precision oncology but is hindered by the genetic complexity and heterogeneity of primary cancer cells. Here, we use patient-derived induced pluripotent stem cells (iPSCs and CRISPR/Cas9 genome editing to dissect the individual contributions of two recurrent genetic lesions, the splicing factor SRSF2 P95L mutation and the chromosome 7q deletion, to the development of myeloid malignancy. Using a comprehensive panel of isogenic iPSCs—with none, one, or both genetic lesions—we characterize their relative phenotypic contributions and identify drug sensitivities specific to each one through a candidate drug approach and an unbiased large-scale small-molecule screen. To facilitate drug testing and discovery, we also derive SRSF2-mutant and isogenic normal expandable hematopoietic progenitor cells. We thus describe here an approach to dissect the individual effects of two cooperating mutations to clinically relevant features of malignant diseases. : Papapetrou and colleagues develop a comprehensive panel of isogenic iPSC lines with SRSF2 P95L mutation and chr7q deletion. They use these cells to identify cellular phenotypes contributed by each genetic lesion and therapeutic vulnerabilities specific to each one and develop expandable hematopoietic progenitor cell lines to facilitate drug discovery. Keywords: induced pluripotent stem cells, myelodysplastic syndrome, CRISPR/Cas9, gene editing, mutational cooperation, splicing factor mutations, spliceosomal mutations, SRSF2, chr7q deletion

  3. Human iPSC-Derived Cerebellar Neurons from a Patient with Ataxia-Telangiectasia Reveal Disrupted Gene Regulatory Networks

    Directory of Open Access Journals (Sweden)

    Sam P. Nayler

    2017-10-01

    Full Text Available Ataxia-telangiectasia (A-T is a rare genetic disorder caused by loss of function of the ataxia-telangiectasia-mutated kinase and is characterized by a predisposition to cancer, pulmonary disease, immune deficiency and progressive degeneration of the cerebellum. As animal models do not faithfully recapitulate the neurological aspects, it remains unclear whether cerebellar degeneration is a neurodevelopmental or neurodegenerative phenotype. To address the necessity for a human model, we first assessed a previously published protocol for the ability to generate cerebellar neuronal cells, finding it gave rise to a population of precursors highly enriched for markers of the early hindbrain such as EN1 and GBX2, and later more mature cerebellar markers including PTF1α, MATH1, HOXB4, ZIC3, PAX6, and TUJ1. RNA sequencing was used to classify differentiated cerebellar neurons generated from integration-free A-T and control induced pluripotent stem cells. Comparison of RNA sequencing data with datasets from the Allen Brain Atlas reveals in vitro-derived cerebellar neurons are transcriptionally similar to discrete regions of the human cerebellum, and most closely resemble the cerebellum at 22 weeks post-conception. We show that patient-derived cerebellar neurons exhibit disrupted gene regulatory networks associated with synaptic vesicle dynamics and oxidative stress, offering the first molecular insights into early cerebellar pathogenesis of ataxia-telangiectasia.

  4. Bacterial Signaling Nucleotides Inhibit Yeast Cell Growth by Impacting Mitochondrial and Other Specifically Eukaryotic Functions.

    Science.gov (United States)

    Hesketh, Andy; Vergnano, Marta; Wan, Chris; Oliver, Stephen G

    2017-07-25

    We have engineered Saccharomyces cerevisiae to inducibly synthesize the prokaryotic signaling nucleotides cyclic di-GMP (cdiGMP), cdiAMP, and ppGpp in order to characterize the range of effects these nucleotides exert on eukaryotic cell function during bacterial pathogenesis. Synthetic genetic array (SGA) and transcriptome analyses indicated that, while these compounds elicit some common reactions in yeast, there are also complex and distinctive responses to each of the three nucleotides. All three are capable of inhibiting eukaryotic cell growth, with the guanine nucleotides exhibiting stronger effects than cdiAMP. Mutations compromising mitochondrial function and chromatin remodeling show negative epistatic interactions with all three nucleotides. In contrast, certain mutations that cause defects in chromatin modification and ribosomal protein function show positive epistasis, alleviating growth inhibition by at least two of the three nucleotides. Uniquely, cdiGMP is lethal both to cells growing by respiration on acetate and to obligately fermentative petite mutants. cdiGMP is also synthetically lethal with the ribonucleotide reductase (RNR) inhibitor hydroxyurea. Heterologous expression of the human ppGpp hydrolase Mesh1p prevented the accumulation of ppGpp in the engineered yeast and restored cell growth. Extensive in vivo interactions between bacterial signaling molecules and eukaryotic gene function occur, resulting in outcomes ranging from growth inhibition to death. cdiGMP functions through a mechanism that must be compensated by unhindered RNR activity or by functionally competent mitochondria. Mesh1p may be required for abrogating the damaging effects of ppGpp in human cells subjected to bacterial infection. IMPORTANCE During infections, pathogenic bacteria can release nucleotides into the cells of their eukaryotic hosts. These nucleotides are recognized as signals that contribute to the initiation of defensive immune responses that help the infected

  5. Comparing BMD-derived genotoxic potency estimations across variants of the transgenic rodent gene mutation assay.

    Science.gov (United States)

    Wills, John W; Johnson, George E; Battaion, Hannah L; Slob, Wout; White, Paul A

    2017-12-01

    There is growing interest in quantitative analysis of in vivo genetic toxicity dose-response data, and use of point-of-departure (PoD) metrics such as the benchmark dose (BMD) for human health risk assessment (HHRA). Currently, multiple transgenic rodent (TGR) assay variants, employing different rodent strains and reporter transgenes, are used for the assessment of chemically-induced genotoxic effects in vivo. However, regulatory issues arise when different PoD values (e.g., lower BMD confidence intervals or BMDLs) are obtained for the same compound across different TGR assay variants. This study therefore employed the BMD approach to examine the ability of different TGR variants to yield comparable genotoxic potency estimates. Review of over 2000 dose-response datasets identified suitably-matched dose-response data for three compounds (ethyl methanesulfonate or EMS, N-ethyl-N-nitrosourea or ENU, and dimethylnitrosamine or DMN) across four commonly-used murine TGR variants (Muta™Mouse lacZ, Muta™Mouse cII, gpt delta and BigBlue® lacI). Dose-response analyses provided no conclusive evidence that TGR variant choice significantly influences the derived genotoxic potency estimate. This conclusion was reliant upon taking into account the importance of comparing BMD confidence intervals as opposed to directly comparing PoD values (e.g., comparing BMDLs). Comparisons with earlier works suggested that with respect to potency determination, tissue choice is potentially more important than choice of TGR assay variant. Scoring multiple tissues selected on the basis of supporting toxicokinetic information is therefore recommended. Finally, we used typical within-group variances to estimate preliminary endpoint-specific benchmark response (BMR) values across several TGR variants/tissues. We discuss why such values are required for routine use of genetic toxicity PoDs for HHRA. Environ. Mol. Mutagen. 58:632-643, 2017. © 2017 Her Majesty the Queen in Right of Canada

  6. Influence of Solar Radiation and Biotic Interactions on Bacterial and Eukaryotic Communities Associated with Sewage Decomposition in Ambient Water - Poster

    Science.gov (United States)

    Sewage and ambient water both consist of a highly complex array of bacteria and eukaryotic microbes. When these communities are mixed, the persistence of sewage-derived pathogens in environmental waters can represent a significant public health concern. Solar radiation and biotic...

  7. Influence of solar radiation and biotic interactions on bacterial and eukaryotic communities associated with sewage decomposition in ambient water

    Science.gov (United States)

    Sewage and ambient water both consist of a highly complex array of bacteria and eukaryotic microbes. When these communities are mixed, the persistence of sewage-derived pathogens in environmental waters can represent a significant public health concern. Solar radiation and biot...

  8. Visualizing Patterns of Marine Eukaryotic Diversity from Metabarcoding Data Using QIIME.

    Science.gov (United States)

    Leray, Matthieu; Knowlton, Nancy

    2016-01-01

    PCR amplification followed by deep sequencing of homologous gene regions is increasingly used to characterize the diversity and taxonomic composition of marine eukaryotic communities. This approach may generate millions of sequences for hundreds of samples simultaneously. Therefore, tools that researchers can use to visualize complex patterns of diversity for these massive datasets are essential. Efforts by microbiologists to understand the Earth and human microbiomes using high-throughput sequencing of the 16S rRNA gene has led to the development of several user-friendly, open-source software packages that can be similarly used to analyze eukaryotic datasets. Quantitative Insights Into Microbial Ecology (QIIME) offers some of the most helpful data visualization tools. Here, we describe functionalities to import OTU tables generated with any molecular marker (e.g., 18S, COI, ITS) and associated metadata into QIIME. We then present a range of analytical tools implemented within QIIME that can be used to obtain insights about patterns of alpha and beta diversity for marine eukaryotes.

  9. GenColors-based comparative genome databases for small eukaryotic genomes.

    Science.gov (United States)

    Felder, Marius; Romualdi, Alessandro; Petzold, Andreas; Platzer, Matthias; Sühnel, Jürgen; Glöckner, Gernot

    2013-01-01

    Many sequence data repositories can give a quick and easily accessible overview on genomes and their annotations. Less widespread is the possibility to compare related genomes with each other in a common database environment. We have previously described the GenColors database system (http://gencolors.fli-leibniz.de) and its applications to a number of bacterial genomes such as Borrelia, Legionella, Leptospira and Treponema. This system has an emphasis on genome comparison. It combines data from related genomes and provides the user with an extensive set of visualization and analysis tools. Eukaryote genomes are normally larger than prokaryote genomes and thus pose additional challenges for such a system. We have, therefore, adapted GenColors to also handle larger datasets of small eukaryotic genomes and to display eukaryotic gene structures. Further recent developments include whole genome views, genome list options and, for bacterial genome browsers, the display of horizontal gene transfer predictions. Two new GenColors-based databases for two fungal species (http://fgb.fli-leibniz.de) and for four social amoebas (http://sacgb.fli-leibniz.de) were set up. Both new resources open up a single entry point for related genomes for the amoebozoa and fungal research communities and other interested users. Comparative genomics approaches are greatly facilitated by these resources.

  10. Heterologous Expression of Toxins from Bacterial Toxin-Antitoxin Systems in Eukaryotic Cells: Strategies and Applications

    Directory of Open Access Journals (Sweden)

    Chew Chieng Yeo

    2016-02-01

    Full Text Available Toxin-antitoxin (TA systems are found in nearly all prokaryotic genomes and usually consist of a pair of co-transcribed genes, one of which encodes a stable toxin and the other, its cognate labile antitoxin. Certain environmental and physiological cues trigger the degradation of the antitoxin, causing activation of the toxin, leading either to the death or stasis of the host cell. TA systems have a variety of functions in the bacterial cell, including acting as mediators of programmed cell death, the induction of a dormant state known as persistence and the stable maintenance of plasmids and other mobile genetic elements. Some bacterial TA systems are functional when expressed in eukaryotic cells and this has led to several innovative applications, which are the subject of this review. Here, we look at how bacterial TA systems have been utilized for the genetic manipulation of yeasts and other eukaryotes, for the containment of genetically modified organisms, and for the engineering of high expression eukaryotic cell lines. We also examine how TA systems have been adopted as an important tool in developmental biology research for the ablation of specific cells and the potential for utility of TA systems in antiviral and anticancer gene therapies.

  11. Heterologous Expression of Toxins from Bacterial Toxin-Antitoxin Systems in Eukaryotic Cells: Strategies and Applications

    Science.gov (United States)

    Yeo, Chew Chieng; Abu Bakar, Fauziah; Chan, Wai Ting; Espinosa, Manuel; Harikrishna, Jennifer Ann

    2016-01-01

    Toxin-antitoxin (TA) systems are found in nearly all prokaryotic genomes and usually consist of a pair of co-transcribed genes, one of which encodes a stable toxin and the other, its cognate labile antitoxin. Certain environmental and physiological cues trigger the degradation of the antitoxin, causing activation of the toxin, leading either to the death or stasis of the host cell. TA systems have a variety of functions in the bacterial cell, including acting as mediators of programmed cell death, the induction of a dormant state known as persistence and the stable maintenance of plasmids and other mobile genetic elements. Some bacterial TA systems are functional when expressed in eukaryotic cells and this has led to several innovative applications, which are the subject of this review. Here, we look at how bacterial TA systems have been utilized for the genetic manipulation of yeasts and other eukaryotes, for the containment of genetically modified organisms, and for the engineering of high expression eukaryotic cell lines. We also examine how TA systems have been adopted as an important tool in developmental biology research for the ablation of specific cells and the potential for utility of TA systems in antiviral and anticancer gene therapies. PMID:26907343

  12. Genomic impact of eukaryotic transposable elements.

    Science.gov (United States)

    Arkhipova, Irina R; Batzer, Mark A; Brosius, Juergen; Feschotte, Cédric; Moran, John V; Schmitz, Jürgen; Jurka, Jerzy

    2012-11-21

    The third international conference on the genomic impact of eukaryotic transposable elements (TEs) was held 24 to 28 February 2012 at the Asilomar Conference Center, Pacific Grove, CA, USA. Sponsored in part by the National Institutes of Health grant 5 P41 LM006252, the goal of the conference was to bring together researchers from around the world who study the impact and mechanisms of TEs using multiple computational and experimental approaches. The meeting drew close to 170 attendees and included invited floor presentations on the biology of TEs and their genomic impact, as well as numerous talks contributed by young scientists. The workshop talks were devoted to computational analysis of TEs with additional time for discussion of unresolved issues. Also, there was ample opportunity for poster presentations and informal evening discussions. The success of the meeting reflects the important role of Repbase in comparative genomic studies, and emphasizes the need for close interactions between experimental and computational biologists in the years to come.

  13. Genomic impact of eukaryotic transposable elements

    Directory of Open Access Journals (Sweden)

    Arkhipova Irina R

    2012-11-01

    Full Text Available Abstract The third international conference on the genomic impact of eukaryotic transposable elements (TEs was held 24 to 28 February 2012 at the Asilomar Conference Center, Pacific Grove, CA, USA. Sponsored in part by the National Institutes of Health grant 5 P41 LM006252, the goal of the conference was to bring together researchers from around the world who study the impact and mechanisms of TEs using multiple computational and experimental approaches. The meeting drew close to 170 attendees and included invited floor presentations on the biology of TEs and their genomic impact, as well as numerous talks contributed by young scientists. The workshop talks were devoted to computational analysis of TEs with additional time for discussion of unresolved issues. Also, there was ample opportunity for poster presentations and informal evening discussions. The success of the meeting reflects the important role of Repbase in comparative genomic studies, and emphasizes the need for close interactions between experimental and computational biologists in the years to come.

  14. Do lipids shape the eukaryotic cell cycle?

    Science.gov (United States)

    Furse, Samuel; Shearman, Gemma C

    2018-01-01

    Successful passage through the cell cycle presents a number of structural challenges to the cell. Inceptive studies carried out in the last five years have produced clear evidence of modulations in the lipid profile (sometimes referred to as the lipidome) of eukaryotes as a function of the cell cycle. This mounting body of evidence indicates that lipids play key roles in the structural transformations seen across the cycle. The accumulation of this evidence coincides with a revolution in our understanding of how lipid composition regulates a plethora of biological processes ranging from protein activity through to cellular signalling and membrane compartmentalisation. In this review, we discuss evidence from biological, chemical and physical studies of the lipid fraction across the cell cycle that demonstrate that lipids are well-developed cellular components at the heart of the biological machinery responsible for managing progress through the cell cycle. Furthermore, we discuss the mechanisms by which this careful control is exercised. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  15. Classification and Lineage Tracing of SH2 Domains Throughout Eukaryotes.

    Science.gov (United States)

    Liu, Bernard A

    2017-01-01

    Today there exists a rapidly expanding number of sequenced genomes. Cataloging protein interaction domains such as the Src Homology 2 (SH2) domain across these various genomes can be accomplished with ease due to existing algorithms and predictions models. An evolutionary analysis of SH2 domains provides a step towards understanding how SH2 proteins integrated with existing signaling networks to position phosphotyrosine signaling as a crucial driver of robust cellular communication networks in metazoans. However organizing and tracing SH2 domain across organisms and understanding their evolutionary trajectory remains a challenge. This chapter describes several methodologies towards analyzing the evolutionary trajectory of SH2 domains including a global SH2 domain classification system, which facilitates annotation of new SH2 sequences essential for tracing the lineage of SH2 domains throughout eukaryote evolution. This classification utilizes a combination of sequence homology, protein domain architecture and the boundary positions between introns and exons within the SH2 domain or genes encoding these domains. Discrete SH2 families can then be traced across various genomes to provide insight into its origins. Furthermore, additional methods for examining potential mechanisms for divergence of SH2 domains from structural changes to alterations in the protein domain content and genome duplication will be discussed. Therefore a better understanding of SH2 domain evolution may enhance our insight into the emergence of phosphotyrosine signaling and the expansion of protein interaction domains.

  16. GFFview: A Web Server for Parsing and Visualizing Annotation Information of Eukaryotic Genome.

    Science.gov (United States)

    Deng, Feilong; Chen, Shi-Yi; Wu, Zhou-Lin; Hu, Yongsong; Jia, Xianbo; Lai, Song-Jia

    2017-10-01

    Owing to wide application of RNA sequencing (RNA-seq) technology, more and more eukaryotic genomes have been extensively annotated, such as the gene structure, alternative splicing, and noncoding loci. Annotation information of genome is prevalently stored as plain text in General Feature Format (GFF), which could be hundreds or thousands Mb in size. Therefore, it is a challenge for manipulating GFF file for biologists who have no bioinformatic skill. In this study, we provide a web server (GFFview) for parsing the annotation information of eukaryotic genome and then generating statistical description of six indices for visualization. GFFview is very useful for investigating quality and difference of the de novo assembled transcriptome in RNA-seq studies.

  17. The Big Bang of picorna-like virus evolution antedates the radiation of eukaryotic supergroups.

    Science.gov (United States)

    Koonin, Eugene V; Wolf, Yuri I; Nagasaki, Keizo; Dolja, Valerian V

    2008-12-01

    The recent discovery of RNA viruses in diverse unicellular eukaryotes and developments in evolutionary genomics have provided the means for addressing the origin of eukaryotic RNA viruses. The phylogenetic analyses of RNA polymerases and helicases presented in this Analysis article reveal close evolutionary relationships between RNA viruses infecting hosts from the Chromalveolate and Excavate supergroups and distinct families of picorna-like viruses of plants and animals. Thus, diversification of picorna-like viruses probably occurred in a 'Big Bang' concomitant with key events of eukaryogenesis. The origins of the conserved genes of picorna-like viruses are traced to likely ancestors including bacterial group II retroelements, the family of HtrA proteases and DNA bacteriophages.

  18. Pituitary adenylyl cyclase activating polypeptide inhibits gli1 gene expression and proliferation in primary medulloblastoma derived tumorsphere cultures

    Directory of Open Access Journals (Sweden)

    Dong Hongmei

    2010-12-01

    Full Text Available Abstract Background Hedgehog (HH signaling is critical for the expansion of granule neuron precursors (GNPs within the external granular layer (EGL during cerebellar development. Aberrant HH signaling within GNPs is thought to give rise to medulloblastoma (MB - the most commonly-observed form of malignant pediatric brain tumor. Evidence in both invertebrates and vertebrates indicates that cyclic AMP-dependent protein kinase A (PKA antagonizes HH signalling. Receptors specific for the neuropeptide pituitary adenylyl cyclase activating polypeptide (PACAP, gene name ADCYAP1 are expressed in GNPs. PACAP has been shown to protect GNPs from apoptosis in vitro, and to interact with HH signaling to regulate GNP proliferation. PACAP/ptch1 double mutant mice exhibit an increased incidence of MB compared to ptch1 mice, indicating that PACAP may regulate HH pathway-mediated MB pathogenesis. Methods Primary MB tumorsphere cultures were prepared from thirteen ptch1+/-/p53+/- double mutant mice and treated with the smoothened (SMO agonist purmorphamine, the SMO antagonist SANT-1, the neuropeptide PACAP, the PKA activator forskolin, and the PKA inhibitor H89. Gene expression of gli1 and [3H]-thymidine incorporation were assessed to determine drug effects on HH pathway activity and proliferation, respectively. PKA activity was determined in cell extracts by Western blotting using a phospho-PKA substrate antibody. Results Primary tumor cells cultured for 1-week under serum-free conditions grew as tumorspheres and were found to express PAC1 receptor transcripts. Gli1 gene expression was significantly reduced by SANT-1, PACAP and forskolin, but was unaffected by purmorphamine. The attenuation of gli1 gene expression by PACAP was reversed by the PKA inhibitor H89, which also blocked PKA activation. Treatment of tumorsphere cultures with PACAP, forskolin, and SANT-1 for 24 or 48 hours reduced proliferation. Conclusions Primary tumorspheres derived from ptch1+/-/p53

  19. Pituitary adenylyl cyclase activating polypeptide inhibits gli1 gene expression and proliferation in primary medulloblastoma derived tumorsphere cultures

    International Nuclear Information System (INIS)

    Cohen, Joseph R; Resnick, Daniel Z; Niewiadomski, Pawel; Dong, Hongmei; Liau, Linda M; Waschek, James A

    2010-01-01

    Hedgehog (HH) signaling is critical for the expansion of granule neuron precursors (GNPs) within the external granular layer (EGL) during cerebellar development. Aberrant HH signaling within GNPs is thought to give rise to medulloblastoma (MB) - the most commonly-observed form of malignant pediatric brain tumor. Evidence in both invertebrates and vertebrates indicates that cyclic AMP-dependent protein kinase A (PKA) antagonizes HH signalling. Receptors specific for the neuropeptide pituitary adenylyl cyclase activating polypeptide (PACAP, gene name ADCYAP1) are expressed in GNPs. PACAP has been shown to protect GNPs from apoptosis in vitro, and to interact with HH signaling to regulate GNP proliferation. PACAP/ptch1 double mutant mice exhibit an increased incidence of MB compared to ptch1 mice, indicating that PACAP may regulate HH pathway-mediated MB pathogenesis. Primary MB tumorsphere cultures were prepared from thirteen ptch1 +/- /p53 +/- double mutant mice and treated with the smoothened (SMO) agonist purmorphamine, the SMO antagonist SANT-1, the neuropeptide PACAP, the PKA activator forskolin, and the PKA inhibitor H89. Gene expression of gli1 and [ 3 H]-thymidine incorporation were assessed to determine drug effects on HH pathway activity and proliferation, respectively. PKA activity was determined in cell extracts by Western blotting using a phospho-PKA substrate antibody. Primary tumor cells cultured for 1-week under serum-free conditions grew as tumorspheres and were found to express PAC1 receptor transcripts. Gli1 gene expression was significantly reduced by SANT-1, PACAP and forskolin, but was unaffected by purmorphamine. The attenuation of gli1 gene expression by PACAP was reversed by the PKA inhibitor H89, which also blocked PKA activation. Treatment of tumorsphere cultures with PACAP, forskolin, and SANT-1 for 24 or 48 hours reduced proliferation. Primary tumorspheres derived from ptch1 +/- /p53 +/- mice exhibit constitutive HH pathway activity

  20. Six subgroups and extensive recent duplications characterize the evolution of the eukaryotic tubulin protein family.

    Science.gov (United States)

    Findeisen, Peggy; Mühlhausen, Stefanie; Dempewolf, Silke; Hertzog, Jonny; Zietlow, Alexander; Carlomagno, Teresa; Kollmar, Martin

    2014-08-27

    Tubulins belong to the most abundant proteins in eukaryotes providing the backbone for many cellular substructures like the mitotic and meiotic spindles, the intracellular cytoskeletal network, and the axonemes of cilia and flagella. Homologs have even been reported for archaea and bacteria. However, a taxonomically broad and whole-genome-based analysis of the tubulin protein family has never been performed, and thus, the number of subfamilies, their taxonomic distribution, and the exact grouping of the supposed archaeal and bacterial homologs are unknown. Here, we present the analysis of 3,524 tubulins from 504 species. The tubulins formed six major subfamilies, α to ζ. Species of all major kingdoms of the eukaryotes encode members of these subfamilies implying that they must have already been present in the last common eukaryotic ancestor. The proposed archaeal homologs grouped together with the bacterial TubZ proteins as sister clade to the FtsZ proteins indicating that tubulins are unique to eukaryotes. Most species contained α- and/or β-tubulin gene duplicates resulting from recent branch- and species-specific duplication events. This shows that tubulins cannot be used for constructing species phylogenies without resolving their ortholog-paralog relationships. The many gene duplicates and also the independent loss of the δ-, ε-, or ζ-tubulins, which have been shown to be part of the triplet microtubules in basal bodies, suggest that tubulins can functionally substitute each other. © The Author(s) 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  1. Sequence analysis of RNase MRP RNA reveals its origination from eukaryotic RNase P RNA

    Science.gov (United States)

    Zhu, Yanglong; Stribinskis, Vilius; Ramos, Kenneth S.; Li, Yong

    2006-01-01

    RNase MRP is a eukaryote-specific endoribonuclease that generates RNA primers for mitochondrial DNA replication and processes precursor rRNA. RNase P is a ubiquitous endoribonuclease that cleaves precursor tRNA transcripts to produce their mature 5′ termini. We found extensive sequence homology of catalytic domains and specificity domains between their RNA subunits in many organisms. In Candida glabrata, the internal loop of helix P3 is 100% conserved between MRP and P RNAs. The helix P8 of MRP RNA from microsporidia Encephalitozoon cuniculi is identical to that of P RNA. Sequence homology can be widely spread over the whole molecule of MRP RNA and P RNA, such as those from Dictyostelium discoideum. These conserved nucleotides between the MRP and P RNAs strongly support the hypothesis that the MRP RNA is derived from the P RNA molecule in early eukaryote evolution. PMID:16540690

  2. Deciphering DNA replication dynamics in eukaryotic cell populations in relation with their averaged chromatin conformations

    Science.gov (United States)

    Goldar, A.; Arneodo, A.; Audit, B.; Argoul, F.; Rappailles, A.; Guilbaud, G.; Petryk, N.; Kahli, M.; Hyrien, O.

    2016-03-01

    We propose a non-local model of DNA replication that takes into account the observed uncertainty on the position and time of replication initiation in eukaryote cell populations. By picturing replication initiation as a two-state system and considering all possible transition configurations, and by taking into account the chromatin’s fractal dimension, we derive an analytical expression for the rate of replication initiation. This model predicts with no free parameter the temporal profiles of initiation rate, replication fork density and fraction of replicated DNA, in quantitative agreement with corresponding experimental data from both S. cerevisiae and human cells and provides a quantitative estimate of initiation site redundancy. This study shows that, to a large extent, the program that regulates the dynamics of eukaryotic DNA replication is a collective phenomenon that emerges from the stochastic nature of replication origins initiation.

  3. Genome-reconstruction for eukaryotes from complex natural microbial communities.

    Science.gov (United States)

    West, Patrick T; Probst, Alexander J; Grigoriev, Igor V; Thomas, Brian C; Banfield, Jillian F

    2018-04-01

    Microbial eukaryotes are integral components of natural microbial communities, and their inclusion is critical for many ecosystem studies, yet the majority of published metagenome analyses ignore eukaryotes. In order to include eukaryotes in environmental studies, we propose a method to recover eukaryotic genomes from complex metagenomic samples. A key step for genome recovery is separation of eukaryotic and prokaryotic fragments. We developed a k -mer-based strategy, EukRep, for eukaryotic sequence identification and applied it to environmental samples to show that it enables genome recovery, genome completeness evaluation, and prediction of metabolic potential. We used this approach to test the effect of addition of organic carbon on a geyser-associated microbial community and detected a substantial change of the community metabolism, with selection against almost all candidate phyla bacteria and archaea and for eukaryotes. Near complete genomes were reconstructed for three fungi placed within the Eurotiomycetes and an arthropod. While carbon fixation and sulfur oxidation were important functions in the geyser community prior to carbon addition, the organic carbon-impacted community showed enrichment for secreted proteases, secreted lipases, cellulose targeting CAZymes, and methanol oxidation. We demonstrate the broader utility of EukRep by reconstructing and evaluating relatively high-quality fungal, protist, and rotifer genomes from complex environmental samples. This approach opens the way for cultivation-independent analyses of whole microbial communities. © 2018 West et al.; Published by Cold Spring Harbor Laboratory Press.

  4. An SVD-based comparison of nine whole eukaryotic genomes supports a coelomate rather than ecdysozoan lineage

    Directory of Open Access Journals (Sweden)

    Stuart Gary W

    2004-12-01

    Full Text Available Abstract Background Eukaryotic whole genome sequences are accumulating at an impressive rate. Effective methods for comparing multiple whole eukaryotic genomes on a large scale are needed. Most attempted solutions involve the production of large scale alignments, and many of these require a high stringency pre-screen for putative orthologs in order to reduce the effective size of the dataset and provide a reasonably high but unknown fraction of correctly aligned homologous sites for comparison. As an alternative, highly efficient methods that do not require the pre-alignment of operationally defined orthologs are also being explored. Results A non-alignment method based on the Singular Value Decomposition (SVD was used to compare the predicted protein complement of nine whole eukaryotic genomes ranging from yeast to man. This analysis resulted in the simultaneous identification and definition of a large number of well conserved motifs and gene families, and produced a species tree supporting one of two conflicting hypotheses of metazoan relationships. Conclusions Our SVD-based analysis of the entire protein complement of nine whole eukaryotic genomes suggests that highly conserved motifs and gene families can be identified and effectively compared in a single coherent definition space for the easy extraction of gene and species trees. While this occurs without the explicit definition of orthologs or homologous sites, the analysis can provide a basis for these definitions.

  5. Different polyamine pathways from bacteria have replaced eukaryotic spermidine biosynthesis in ciliates Tetrahymena thermophila and Paramecium tetaurelia.

    Science.gov (United States)

    Li, Bin; Kim, Sok Ho; Zhang, Yang; Hanfrey, Colin C; Elliott, Katherine A; Ealick, Steven E; Michael, Anthony J

    2015-09-01

    The polyamine spermidine is absolutely required for growth and cell proliferation in eukaryotes, due to its role in post-translational modification of essential translation elongation factor eIF5A, mediated by deoxyhypusine synthase. We have found that free-living ciliates Tetrahymena and Paramecium lost the eukaryotic genes encoding spermidine biosynthesis: S-adenosylmethionine decarboxylase (AdoMetDC) and spermidine synthase (SpdSyn). In Tetrahymena, they were replaced by a gene encoding a fusion protein of bacterial AdoMetDC and SpdSyn, present as three copies. In Paramecium, a bacterial homospermidine synthase replaced the eukaryotic genes. Individual AdoMetDC-SpdSyn fusion protein paralogues from Tetrahymena exhibit undetectable AdoMetDC activity; however, when two paralogous fusion proteins are mixed, AdoMetDC activity is restored and spermidine is synthesized. Structural modelling indicates a functional active site is reconstituted by sharing critical residues from two defective protomers across the heteromer interface. Paramecium was found to accumulate homospermidine, suggesting it replaces spermidine for growth. To test this concept, a budding yeast spermidine auxotrophic strain was found to grow almost normally with homospermidine instead of spermidine. Biosynthesis of spermidine analogue aminopropylcadaverine, but not exogenously provided norspermidine, correlated with some growth. Finally, we found that diverse single-celled eukaryotic parasites and multicellular metazoan Schistosoma worms have lost the spermidine biosynthetic pathway but retain deoxyhypusine synthase. © 2015 John Wiley & Sons Ltd.

  6. Eukaryotic plankton diversity in the sunlit ocean

    Czech Academy of Sciences Publication Activity Database

    de Vargas, C.; Audic, S.; Henry, N.; Decelle, J.; Mahé, F.; Logares, R.; Lara, E.; Berney, C.; Le Bescot, N.; Probert, I.; Carmichael, M.; Poulain, J.; Romac, S.; Colin, S.; Aury, J.-M.; Bittner, L.; Chaffron, S.; Dunthorn, M.; Engelen, S.; Flegontova, Olga; Guidi, L.; Horák, Aleš; Jaillon, O.; Lima-Mendez, G.; Lukeš, Julius

    2015-01-01

    Roč. 348, č. 6237 (2015), UNSP 1261605 ISSN 0036-8075 Institutional support: RVO:60077344 Keywords : ribosomal RNA gene * protistan diversity * extreme diversity Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 34.661, year: 2015

  7. HIV-1 Replication and the Cellular Eukaryotic Translation Apparatus

    Directory of Open Access Journals (Sweden)

    Santiago Guerrero

    2015-01-01

    Full Text Available Eukaryotic translation is a complex process composed of three main steps: initiation, elongation, and termination. During infections by RNA- and DNA-viruses, the eukaryotic translation machinery is used to assure optimal viral protein synthesis. Human immunodeficiency virus type I (HIV-1 uses several non-canonical pathways to translate its own proteins, such as leaky scanning, frameshifting, shunt, and cap-independent mechanisms. Moreover, HIV-1 modulates the host translation machinery by targeting key translation factors and overcomes different cellular obstacles that affect protein translation. In this review, we describe how HIV-1 proteins target several components of the eukaryotic translation machinery, which consequently improves viral translation and replication.

  8. David and Goliath: chemical perturbation of eukaryotes by bacteria.

    Science.gov (United States)

    Ho, Louis K; Nodwell, Justin R

    2016-03-01

    Environmental microbes produce biologically active small molecules that have been mined extensively as antibiotics and a smaller number of drugs that act on eukaryotic cells. It is known that there are additional bioactives to be discovered from this source. While the discovery of new antibiotics is challenged by the frequent discovery of known compounds, we contend that the eukaryote-active compounds may be less saturated. Indeed, despite there being far fewer eukaryotic-active natural products these molecules interact with a far richer diversity of molecular and cellular targets.

  9. Revealing less derived nature of cartilaginous fish genomes with their evolutionary time scale inferred with nuclear genes.

    Directory of Open Access Journals (Sweden)

    Adina J Renz

    Full Text Available Cartilaginous fishes, divided into Holocephali (chimaeras and Elasmoblanchii (sharks, rays and skates, occupy a key phylogenetic position among extant vertebrates in reconstructing their evolutionary processes. Their accurate evolutionary time scale is indispensable for better understanding of the relationship between phenotypic and molecular evolution of cartilaginous fishes. However, our current knowledge on the time scale of cartilaginous fish evolution largely relies on estimates using mitochondrial DNA sequences. In this study, making the best use of the still partial, but large-scale sequencing data of cartilaginous fish species, we estimate the divergence times between the major cartilaginous fish lineages employing nuclear genes. By rigorous orthology assessment based on available genomic and transcriptomic sequence resources for cartilaginous fishes, we selected 20 protein-coding genes in the nuclear genome, spanning 2973 amino acid residues. Our analysis based on the Bayesian inference resulted in the mean divergence time of 421 Ma, the late Silurian, for the Holocephali-Elasmobranchii split, and 306 Ma, the late Carboniferous, for the split between sharks and rays/skates. By applying these results and other documented divergence times, we measured the relative evolutionary rate of the Hox A cluster sequences in the cartilaginous fish lineages, which resulted in a lower substitution rate with a factor of at least 2.4 in comparison to tetrapod lineages. The obtained time scale enables mapping phenotypic and molecular changes in a quantitative framework. It is of great interest to corroborate the less derived nature of cartilaginous fish at the molecular level as a genome-wide phenomenon.

  10. Fasting-induced G0/G1 switch gene 2 and FGF21 expression in the liver are under regulation of adipose tissue derived fatty acids

    Science.gov (United States)

    Jaeger, Doris; Schoiswohl, Gabriele; Hofer, Peter; Schreiber, Renate; Schweiger, Martina; Eichmann, Thomas O.; Pollak, Nina M.; Poecher, Nadja; Grabner, Gernot F.; Zierler, Kathrin A.; Eder, Sandra; Kolb, Dagmar; Radner, Franz P.W.; Preiss-Landl, Karina; Lass, Achim; Zechner, Rudolf; Kershaw, Erin E.; Haemmerle, Guenter

    2015-01-01

    Background & Aims Adipose tissue (AT)-derived fatty acids (FAs) are utilized for hepatic triacylglycerol (TG) generation upon fasting. However, their potential impact as signaling molecules is not established. Herein we examined the role of exogenous AT-derived FAs in the regulation of hepatic gene expression by investigating mice with a defect in AT-derived FA supply to the liver. Methods Plasma FA levels, tissue TG hydrolytic activities and lipid content were determined in mice lacking the lipase co-activator comparative gene identification-58 (CGI-58) selectively in AT (CGI-58-ATko) applying standard protocols. Hepatic expression of lipases, FA oxidative genes, transcription factors, ER stress markers, hormones and cytokines were determined by qRT-PCR, Western blotting and ELISA. Results Impaired AT-derived FA supply upon fasting of CGI-58-ATko mice causes a marked defect in liver PPARα-signaling and nuclear CREBH translocation. This severely reduced the expression of respective target genes such as the ATGL inhibitor G0/G1 switch gene-2 (G0S2) and the endocrine metabolic regulator FGF21. These changes could be reversed by lipid administration and raising plasma FA levels. Impaired AT-lipolysis failed to induce hepatic G0S2 expression in fasted CGI-58-ATko mice leading to enhanced ATGL-mediated TG-breakdown strongly reducing hepatic TG deposition. On high fat diet, impaired AT-lipolysis counteracts hepatic TG accumulation and liver stress linked to improved systemic insulin sensitivity. Conclusions AT-derived FAs are a critical regulator of hepatic fasting gene expression required for the induction of G0S2-expression in the liver to control hepatic TG-breakdown. Interfering with AT-lipolysis or hepatic G0S2 expression represents an effective strategy for the treatment of hepatic steatosis. PMID:25733154

  11. Novel core promoter elements and a cognate transcription factor in the divergent unicellular eukaryote Trichomonas vaginalis.

    Science.gov (United States)

    Smith, Alias J; Chudnovsky, Lorissa; Simoes-Barbosa, Augusto; Delgadillo-Correa, Maria G; Jonsson, Zophonias O; Wohlschlegel, James A; Johnson, Patricia J

    2011-04-01

    A highly conserved DNA initiator (Inr) element has been the only core promoter element described in the divergent unicellular eukaryote Trichomonas vaginalis, although genome analyses reveal that only ∼75% of protein-coding genes appear to contain an Inr. In search of another core promoter element(s), a nonredundant database containing 5' untranslated regions of expressed T. vaginalis genes was searched for overrepresented DNA motifs and known eukaryotic core promoter elements. In addition to identifying the Inr, two elements that lack sequence similarity to the known protein-coding gene core promoter, motif 3 (M3) and motif 5 (M5), were identified. Mutational and functional analyses demonstrate that both are novel core promoter elements. M3 [(A/G/T)(A/G)C(G/C)G(T/C)T(T/A/G)] resembles a Myb recognition element (MRE) and is bound specifically by a unique protein with a Myb-like DNA binding domain. The M5 element (CCTTT) overlaps the transcription start site and replaces the Inr as an alternative, gene-specific initiator element. Transcription specifically initiates at the second cytosine within M5, in contrast to characteristic initiation by RNA polymerase II at an adenosine. In promoters that combine M3 with either M5 or Inr, transcription initiation is regulated by the M3 motif.

  12. Novel Core Promoter Elements and a Cognate Transcription Factor in the Divergent Unicellular Eukaryote Trichomonas vaginalis▿

    Science.gov (United States)

    Smith, Alias J.; Chudnovsky, Lorissa; Simoes-Barbosa, Augusto; Delgadillo-Correa, Maria G.; Jonsson, Zophonias O.; Wohlschlegel, James A.; Johnson, Patricia J.

    2011-01-01

    A highly conserved DNA initiator (Inr) element has been the only core promoter element described in the divergent unicellular eukaryote Trichomonas vaginalis, although genome analyses reveal that only ∼75% of protein-coding genes appear to contain an Inr. In search of another core promoter element(s), a nonredundant database containing 5′ untranslated regions of expressed T. vaginalis genes was searched for overrepresented DNA motifs and known eukaryotic core promoter elements. In addition to identifying the Inr, two elements that lack sequence similarity to the known protein-coding gene core promoter, motif 3 (M3) and motif 5 (M5), were identified. Mutational and functional analyses demonstrate that both are novel core promoter elements. M3 [(A/G/T)(A/G)C(G/C)G(T/C)T(T/A/G)] resembles a Myb recognition element (MRE) and is bound specifically by a unique protein with a Myb-like DNA binding domain. The M5 element (CCTTT) overlaps the transcription start site and replaces the Inr as an alternative, gene-specific initiator element. Transcription specifically initiates at the second cytosine within M5, in contrast to characteristic initiation by RNA polymerase II at an adenosine. In promoters that combine M3 with either M5 or Inr, transcription initiation is regulated by the M3 motif. PMID:21245378

  13. Potential of industrial biotechnology with cyanobacteria and eukaryotic microalgae.

    NARCIS (Netherlands)

    Wijffels, R.H.; Kruse, O.; Hellingwerf, K.J.

    2013-01-01

    Both cyanobacteria and eukaryotic microalgae are promising organisms for sustainable production of bulk products such as food, feed, materials, chemicals and fuels. In this review we will summarize the potential and current biotechnological developments. Cyanobacteria are promising host organisms

  14. Nitrate storage and dissimilatory nitrate reduction by eukaryotic microbes

    DEFF Research Database (Denmark)

    Kamp, Anja; Høgslund, Signe; Risgaard-Petersen, Nils

    2015-01-01

    The microbial nitrogen cycle is one of the most complex and environmentally important element cycles on Earth and has long been thought to be mediated exclusively by prokaryotic microbes. Rather recently, it was discovered that certain eukaryotic microbes are able to store nitrate intracellularly......, suggesting that eukaryotes may rival prokaryotes in terms of dissimilatory nitrate reduction. Finally, this review article sketches some evolutionary perspectives of eukaryotic nitrate metabolism and identifies open questions that need to be addressed in future investigations....... and use it for dissimilatory nitrate reduction in the absence of oxygen. The paradigm shift that this entailed is ecologically significant because the eukaryotes in question comprise global players like diatoms, foraminifers, and fungi. This review article provides an unprecedented overview of nitrate...

  15. Characterization of progenitor cells derived from torn human rotator cuff tendons by gene expression patterns of chondrogenesis, osteogenesis, and adipogenesis.

    Science.gov (United States)

    Nagura, Issei; Kokubu, Takeshi; Mifune, Yutaka; Inui, Atsuyuki; Takase, Fumiaki; Ueda, Yasuhiro; Kataoka, Takeshi; Kurosaka, Masahiro

    2016-03-31

    It is important to regenerate the tendon-to-bone interface after rotator cuff repair to prevent re-tears. The cells from torn human rotator cuff were targeted, and their capacity for multilineage differentiation was investigated. The edges of the rotator cuff were harvested during arthroscopic rotator cuff repair from nine patients, minced into pieces, and cultured on dishes. Adherent cells were cultured, phenotypically characterized. Then expandability, differentiation potential and gene expression were analyzed. Flow cytometry revealed that the mesenchymal stem cells (MSC)-related markers CD29, CD44, CD105, and CD166 were positive. However, CD14, CD34, and CD45 were negative. On RT-PCR analyses, the cells showed osteogenic, adipogenic, and chondrogenic potential after 3 weeks of culture under the respective differentiation conditions. In addition, SOX9, type II collagen, and type X collagen expression patterns during chondrogenesis were similar to those of endochondral ossification at the enthesis. The cells derived from torn human rotator cuff are multipotent mesenchymal stem cells with the ability to undergo multilineage differentiation, suggesting that MSCs form this tissue could be regenerative capacity for potential self-repair.

  16. Interleukin-1β-induced autophagy-related gene 5 regulates proliferation of embryonic stem cell-derived odontoblastic cells.

    Directory of Open Access Journals (Sweden)

    Nobuaki Ozeki

    Full Text Available We previously established a method for the differentiation of induced pluripotent stem cells and embryonic stem cells into α2 integrin-positive odontoblast-like cells. We also reported that Wnt5 in response to interleukin (IL-1β induces matrix metalloproteinase (MMP-3-regulated cell proliferation in these cells. Our findings suggest that MMP-3 plays a potentially unique physiological role in the generation of odontoblast-like cells under an inflammatory state. Here, we examined whether up-regulation of autophagy-related gene (Atg 5 by IL-1β was mediated by Wnt5 signaling, thus leading to increased proliferation of odontoblast-like cells. IL-1β increased the mRNA and protein levels of Atg5, microtubule-associated protein 1 light chain (LC3, a mammalian homolog of yeast Atg8 and Atg12. Treatment with siRNAs against Atg5, but not LC3 and Atg12, suppressed the IL-1β-induced increase in MMP-3 expression and cell proliferation. Our siRNA analyses combined with western blot analysis revealed a unique sequential cascade involving Atg5, Wnt5a and MMP-3, which resulted in the potent increase in odontoblastic cell proliferation. These results demonstrate the unique involvement of Atg5 in IL-1β-induced proliferation of embryonic stem cell-derived odontoblast-like cells.

  17. The brain-derived neurotrophic factor (BDNF) gene Val66Met polymorphism affects memory performance in older adults.

    Science.gov (United States)

    Azeredo, Lucas A de; De Nardi, Tatiana; Levandowski, Mateus L; Tractenberg, Saulo G; Kommers-Molina, Julia; Wieck, Andrea; Irigaray, Tatiana Q; Silva, Irênio G da; Grassi-Oliveira, Rodrigo

    2017-01-01

    Memory impairment is an important contributor to the reduction in quality of life experienced by older adults, and genetic risk factors seem to contribute to variance in age-related cognitive decline. Brain-derived neurotrophic factor (BDNF) is an important nerve growth factor linked with development and neural plasticity. The Val66Met polymorphism in the BDNF gene has been associated with impaired episodic memory in adults, but whether this functional variant plays a role in cognitive aging remains unclear. The purpose of this study was to investigate the effects of the BDNF Val66Met polymorphism on memory performance in a sample of elderly adults. Eighty-seven subjects aged > 55 years were recruited using a community-based convenience sampling strategy in Porto Alegre, Brazil. The logical memory subset of the Wechsler Memory Scale-Revised was used to assess immediate verbal recall (IVR), delayed verbal recall (DVR), and memory retention rate. BDNF Met allele carriers had lower DVR scores (p = 0.004) and a decline in memory retention (p = 0.017) when compared to Val/Val homozygotes. However, we found no significant differences in IVR between the two groups (p = 0.088). These results support the hypothesis of the BDNF Val66Met polymorphism as a risk factor associated with cognitive impairment, corroborating previous findings in young and older adults.

  18. Brain derived neurotrophic factor gene (BDNF) and personality traits: the modifying effect of season of birth and sex.

    Science.gov (United States)

    Kazantseva, A; Gaysina, D; Kutlumbetova, Yu; Kanzafarova, R; Malykh, S; Lobaskova, M; Khusnutdinova, E

    2015-01-02

    Personality traits are complex phenotypes influenced by interactions of multiple genetic variants of small effect and environmental factors. It has been suggested that the brain derived neurotrophic factor gene (BDNF) is involved in personality traits. Season of birth (SOB) has also been shown to affect personality traits due to its influences on brain development during prenatal and early postnatal periods. The present study aimed to investigate the effects of BDNF on personality traits; and the modifying effects of SOB and sex on associations between BDNF and personality traits. A sample of 1018 young adults (68% women; age range 17-25years) of Caucasian origin from the Russian Federation was assessed on personality traits (Novelty Seeking, Harm Avoidance, Reward Dependence, Persistence, Self-directedness, Cooperativeness, Self-transcendence) with the Temperament and Character Inventory-125 (TCI-125). Associations between personality traits and 12 BDNF SNPs were tested using linear regression models. The present study demonstrated the effect of rs11030102 on Persistence in females only (PFDR=0.043; r(2)=1.3%). There were significant interaction effects between Val66Met (rs6265) and SOB (PFDR=0.048, r(2)=1.4%), and between rs2030323 and SOB (PFDR=0.042, r(2)=1.3%), on Harm Avoidance. Our findings provide evidence for the modifying effect of SOB on the association between BDNF and Harm Avoidance, and for the modifying effect of sex on the association between BDNF and Persistence. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. The brain-derived neurotrophic factor (BDNF gene Val66Met polymorphism affects memory performance in older adults

    Directory of Open Access Journals (Sweden)

    Lucas A. de Azeredo

    Full Text Available Objective: Memory impairment is an important contributor to the reduction in quality of life experienced by older adults, and genetic risk factors seem to contribute to variance in age-related cognitive decline. Brain-derived neurotrophic factor (BDNF is an important nerve growth factor linked with development and neural plasticity. The Val66Met polymorphism in the BDNF gene has been associated with impaired episodic memory in adults, but whether this functional variant plays a role in cognitive aging remains unclear. The purpose of this study was to investigate the effects of the BDNF Val66Met polymorphism on memory performance in a sample of elderly adults. Methods: Eighty-seven subjects aged > 55 years were recruited using a community-based convenience sampling strategy in Porto Alegre, Brazil. The logical memory subset of the Wechsler Memory Scale-Revised was used to assess immediate verbal recall (IVR, delayed verbal recall (DVR, and memory retention rate. Results: BDNF Met allele carriers had lower DVR scores (p = 0.004 and a decline in memory retention (p = 0.017 when compared to Val/Val homozygotes. However, we found no significant differences in IVR between the two groups (p = 0.088. Conclusion: These results support the hypothesis of the BDNF Val66Met polymorphism as a risk factor associated with cognitive impairment, corroborating previous findings in young and older adults.

  20. Genetic variation of viral protein 1 genes of field strains of waterfowl parvoviruses and their attenuated derivatives.

    Science.gov (United States)

    Tsai, Hsiang-Jung; Tseng, Chun-hsien; Chang, Poa-chun; Mei, Kai; Wang, Shih-Chi

    2004-09-01

    To understand the genetic variations between the field strains of waterfowl parvoviruses and their attenuated derivatives, we analyzed the complete nucleotide sequences of the viral protein 1 (VP1) genes of nine field strains and two vaccine strains of waterfowl parvoviruses. Sequence comparison of the VP1 proteins showed that these viruses could be divided into goose parvovirus (GPV) related and Muscovy duck parvovirus (MDPV) related groups. The amino acid difference between GPV- and MDPV-related groups ranged from 13.1% to 15.8%, and the most variable region resided in the N terminus of VP2. The vaccine strains of GPV and MDPV exhibited only 1.2% and 0.3% difference in amino acid when compared with their parental field strains, and most of these differences resided in residues 497-575 of VP1, suggesting that these residues might be important for the attenuation of GPV and MDPV. When the GPV strains isolated in 1982 (the strain 82-0308) and in 2001 (the strain 01-1001) were compared, only 0.3% difference in amino acid was found, while MDPV strains isolated in 1990 (the strain 90-0219) and 1997 (the strain 97-0104) showed only 0.4% difference in amino acid. The result indicates that the genome of waterfowl parvovirus had remained highly stable in the field.

  1. Safety assessment of food and feed from biotechnology-derived crops employing RNA-mediated gene regulation to achieve desired traits: a scientific review.

    Science.gov (United States)

    Petrick, Jay S; Brower-Toland, Brent; Jackson, Aimee L; Kier, Larry D

    2013-07-01

    Gene expression can be modulated in plants to produce desired traits through agricultural biotechnology. Currently, biotechnology-derived crops are compared to their conventional counterparts, with safety assessments conducted on the genetic modification and the intended and unintended differences. This review proposes that this comparative safety assessment paradigm is appropriate for plants modified to express mediators of RNA-mediated gene regulation, including RNA interference (RNAi), a gene suppression mechanism that naturally occurs in plants and animals. The molecular mediators of RNAi, including long double-stranded RNAs (dsRNA), small interfering RNAs (siRNA), and microRNAs (miRNA), occur naturally in foods; therefore, there is an extensive history of safe consumption. Systemic exposure following consumption of plants containing dsRNAs that mediate RNAi is limited in higher organisms by extensive degradation of ingested nucleic acids and by biological barriers to uptake and efficacy of exogenous nucleic acids. A number of mammalian RNAi studies support the concept that a large margin of safety will exist for any small fraction of RNAs that might be absorbed following consumption of foods from biotechnology-derived plants that employ RNA-mediated gene regulation. Food and feed derived from these crops utilizing RNA-based mechanisms is therefore expected to be as safe as food and feed derived through conventional plant breeding. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Bacteriophage T5 encodes a homolog of the eukaryotic transcription coactivator PC4 implicated in recombination-dependent DNA replication.

    Science.gov (United States)

    Steigemann, Birthe; Schulz, Annina; Werten, Sebastiaan

    2013-11-15

    The RNA polymerase II cofactor PC4 globally regulates transcription of protein-encoding genes through interactions with unwinding DNA, the basal transcription machinery and transcription activators. Here, we report the surprising identification of PC4 homologs in all sequenced representatives of the T5 family of bacteriophages, as well as in an archaeon and seven phyla of eubacteria. We have solved the crystal structure of the full-length T5 protein at 1.9Å, revealing a striking resemblance to the characteristic single-stranded DNA (ssDNA)-binding core domain of PC4. Intriguing novel structural features include a potential regulatory region at the N-terminus and a C-terminal extension of the homodimerisation interface. The genome organisation of T5-related bacteriophages points at involvement of the PC4 homolog in recombination-dependent DNA replication, strongly suggesting that the protein corresponds to the hitherto elusive replicative ssDNA-binding protein of the T5 family. Our findings imply that PC4-like factors intervene in multiple unwinding-related processes by acting as versatile modifiers of nucleic acid conformation and raise the possibility that the eukaryotic transcription coactivator derives from ancestral DNA replication, recombination and repair factors. © 2013.

  3. Structure and Mechanism of a Eukaryotic FMN Adenylyltransferase

    OpenAIRE

    Huerta, Carlos; Borek, Dominika; Machius, Mischa; Grishin, Nick V.; Zhang, Hong

    2009-01-01

    Flavin mononucleotide adenylyltransferase (FMNAT) catalyzes the formation of the essential flavocoenzyme FAD and plays an important role in flavocoenzyme homeostasis regulation. By sequence comparison, bacterial and eukaryotic FMNAT enzymes belong to two different protein superfamilies and apparently utilize different set of active site residues to accomplish the same chemistry. Here we report the first structural characterization of a eukaryotic FMNAT from a pathogenic yeast Candida glabrata...

  4. Gene expression profiling of the host response to HIV-1 B, C, or A/E infection in monocyte-derived dendritic cells

    International Nuclear Information System (INIS)

    Solis, Mayra; Wilkinson, Peter; Romieu, Raphaelle; Hernandez, Eduardo; Wainberg, Mark A.; Hiscott, John

    2006-01-01

    Dendritic cells (DC) are among the first targets of human immunodeficiency virus type-1 (HIV-1) infection and in turn play a crucial role in viral transmission to T cells and in the regulation of the immune response. The major group of HIV-1 has diversified genetically based on variation in env sequences and comprise at least 11 subtypes. Because little is known about the host response elicited against different HIV-1 clade isolates in vivo, we sought to use gene expression profiling to identify genes regulated by HIV-1 subtypes B, C, and A/E upon de novo infection of primary immature monocyte-derived DC (iMDDCs). A total of 3700 immune-related genes were subjected to a significance analysis of microarrays (SAM); 656 genes were selected as significant and were further divided into 8 functional categories. Regardless of the time of infection, 20% of the genes affected by HIV-1 were involved in signal transduction, followed by 14% of the genes identified as transcription-related genes, and 7% were classified as playing a role in cell proliferation and cell cycle. Furthermore, 7% of the genes were immune response genes. By 72 h postinfection, genes upregulated by subtype B included the inhibitor of the matrix metalloproteinase TIMP2 and the heat shock protein 40 homolog (Hsp40) DNAJB1, whereas the IFN inducible gene STAT1, the MAPK1/ERK2 kinase regulator ST5, and the chemokine CXCL3 and SHC1 genes were induced by subtypes C and A/E. These analyses distinguish a temporally regulated host response to de novo HIV-1 infection in primary dendritic cells

  5. Death of a dogma: eukaryotic mRNAs can code for more than one protein.

    Science.gov (United States)

    Mouilleron, Hélène; Delcourt, Vivian; Roucou, Xavier

    2016-01-08

    mRNAs carry the genetic information that is translated by ribosomes. The traditional view of a mature eukaryotic mRNA is a molecule with three main regions, the 5' UTR, the protein coding open reading frame (ORF) or coding sequence (CDS), and the 3' UTR. This concept assumes that ribosomes translate one ORF only, generally the longest one, and produce one protein. As a result, in the early days of genomics and bioinformatics, one CDS was associated with each protein-coding gene. This fundamental concept of a single CDS is being challenged by increasing experimental evidence indicating that annotated proteins are not the only proteins translated from mRNAs. In particular, mass spectrometry (MS)-based proteomics and ribosome profiling have detected productive translation of alternative open reading frames. In several cases, the alternative and annotated proteins interact. Thus, the expression of two or more proteins translated from the same mRNA may offer a mechanism to ensure the co-expression of proteins which have functional interactions. Translational mechanisms already described in eukaryotic cells indicate that the cellular machinery is able to translate different CDSs from a single viral or cellular mRNA. In addition to summarizing data showing that the protein coding potential of eukaryotic mRNAs has been underestimated, this review aims to challenge the single translated CDS dogma. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  6. Unexpected Importance of Potential Parasites in the Composition of the Freshwater Small-Eukaryote Community▿

    Science.gov (United States)

    Lepère, Cécile; Domaizon, Isabelle; Debroas, Didier

    2008-01-01

    The diversity of small eukaryotes (0.2 to 5 μm) in a mesotrophic lake (Lake Bourget) was investigated using 18S rRNA gene library construction and fluorescent in situ hybridization coupled with tyramide signal amplification (TSA-FISH). Samples collected from the epilimnion on two dates were used to extend a data set previously obtained using similar approaches for lakes with a range of trophic types. A high level of diversity was recorded for this system with intermediate trophic status, and the main sequences from Lake Bourget were affiliated with ciliates (maximum, 19% of the operational taxonomic units [OTUs]), cryptophytes (33%), stramenopiles (13.2%), and cercozoa (9%). Although the comparison of TSA-FISH results and clone libraries suggested that the level of Chlorophyceae may have been underestimated using PCR with 18S rRNA primers, heterotrophic organisms dominated the small-eukaryote assemblage. We found that a large fraction of the sequences belonged to potential parasites of freshwater phytoplankton, including sequences affiliated with fungi and Perkinsozoa. On average, these sequences represented 30% of the OTUs (40% of the clones) obtained for each of two dates for Lake Bourget. Our results provide information on lacustrine small-eukaryote diversity and structure, adding to the phylogenetic data available for lakes with various trophic types. PMID:18359836

  7. On the Diversification of the Translation Apparatus across Eukaryotes

    Directory of Open Access Journals (Sweden)

    Greco Hernández

    2012-01-01

    Full Text Available Diversity is one of the most remarkable features of living organisms. Current assessments of eukaryote biodiversity reaches 1.5 million species, but the true figure could be several times that number. Diversity is ingrained in all stages and echelons of life, namely, the occupancy of ecological niches, behavioral patterns, body plans and organismal complexity, as well as metabolic needs and genetics. In this review, we will discuss that diversity also exists in a key biochemical process, translation, across eukaryotes. Translation is a fundamental process for all forms of life, and the basic components and mechanisms of translation in eukaryotes have been largely established upon the study of traditional, so-called model organisms. By using modern genome-wide, high-throughput technologies, recent studies of many nonmodel eukaryotes have unveiled a surprising diversity in the configuration of the translation apparatus across eukaryotes, showing that this apparatus is far from being evolutionarily static. For some of the components of this machinery, functional differences between different species have also been found. The recent research reviewed in this article highlights the molecular and functional diversification the translational machinery has undergone during eukaryotic evolution. A better understanding of all aspects of organismal diversity is key to a more profound knowledge of life.

  8. Single Cell Genomics and Transcriptomics for Unicellular Eukaryotes

    Energy Technology Data Exchange (ETDEWEB)

    Ciobanu, Doina; Clum, Alicia; Singh, Vasanth; Salamov, Asaf; Han, James; Copeland, Alex; Grigoriev, Igor; James, Timothy; Singer, Steven; Woyke, Tanja; Malmstrom, Rex; Cheng, Jan-Fang

    2014-03-14

    Despite their small size, unicellular eukaryotes have complex genomes with a high degree of plasticity that allow them to adapt quickly to environmental changes. Unicellular eukaryotes live with prokaryotes and higher eukaryotes, frequently in symbiotic or parasitic niches. To this day their contribution to the dynamics of the environmental communities remains to be understood. Unfortunately, the vast majority of eukaryotic microorganisms are either uncultured or unculturable, making genome sequencing impossible using traditional approaches. We have developed an approach to isolate unicellular eukaryotes of interest from environmental samples, and to sequence and analyze their genomes and transcriptomes. We have tested our methods with six species: an uncharacterized protist from cellulose-enriched compost identified as Platyophrya, a close relative of P. vorax; the fungus Metschnikowia bicuspidate, a parasite of water flea Daphnia; the mycoparasitic fungi Piptocephalis cylindrospora, a parasite of Cokeromyces and Mucor; Caulochytrium protosteloides, a parasite of Sordaria; Rozella allomycis, a parasite of the water mold Allomyces; and the microalgae Chlamydomonas reinhardtii. Here, we present the four components of our approach: pre-sequencing methods, sequence analysis for single cell genome assembly, sequence analysis of single cell transcriptomes, and genome annotation. This technology has the potential to uncover the complexity of single cell eukaryotes and their role in the environmental samples.

  9. An Evolutionary Framework for Understanding the Origin of Eukaryotes

    Directory of Open Access Journals (Sweden)

    Neil W. Blackstone

    2016-04-01

    Full Text Available Two major obstacles hinder the application of evolutionary theory to the origin of eukaryotes. The first is more apparent than real—the endosymbiosis that led to the mitochondrion is often described as “non-Darwinian” because it deviates from the incremental evolution championed by the modern synthesis. Nevertheless, endosymbiosis can be accommodated by a multi-level generalization of evolutionary theory, which Darwin himself pioneered. The second obstacle is more serious—all of the major features of eukaryotes were likely present in the last eukaryotic common ancestor thus rendering comparative methods ineffective. In addition to a multi-level theory, the development of rigorous, sequence-based phylogenetic and comparative methods represents the greatest achievement of modern evolutionary theory. Nevertheless, the rapid evolution of major features in the eukaryotic stem group requires the consideration of an alternative framework. Such a framework, based on the contingent nature of these evolutionary events, is developed and illustrated with three examples: the putative intron proliferation leading to the nucleus and the cell cycle; conflict and cooperation in the origin of eukaryotic bioenergetics; and the inter-relationship between aerobic metabolism, sterol synthesis, membranes, and sex. The modern synthesis thus provides sufficient scope to develop an evolutionary framework to understand the origin of eukaryotes.

  10. Tracking the rise of eukaryotes to ecological dominance with zinc isotopes.

    Science.gov (United States)

    Isson, Terry T; Love, Gordon D; Dupont, Christopher L; Reinhard, Christopher T; Zumberge, Alex J; Asael, Dan; Gueguen, Bleuenn; McCrow, John; Gill, Ben C; Owens, Jeremy; Rainbird, Robert H; Rooney, Alan D; Zhao, Ming-Yu; Stueeken, Eva E; Konhauser, Kurt O; John, Seth G; Lyons, Timothy W; Planavsky, Noah J

    2018-06-05

    The biogeochemical cycling of zinc (Zn) is intimately coupled with organic carbon in the ocean. Based on an extensive new sedimentary Zn isotope record across Earth's history, we provide evidence for a fundamental shift in the marine Zn cycle ~800 million years ago. We discuss a wide range of potential drivers for this transition and propose that, within available constraints, a restructuring of marine ecosystems is the most parsimonious explanation for this shift. Using a global isotope mass balance approach, we show that a change in the organic Zn/C ratio is required to account for observed Zn isotope trends through time. Given the higher affinity of eukaryotes for Zn relative to prokaryotes, we suggest that a shift toward a more eukaryote-rich ecosystem could have provided a means of more efficiently sequestering organic-derived Zn. Despite the much earlier appearance of eukaryotes in the microfossil record (~1700 to 1600 million years ago), our data suggest a delayed rise to ecological prominence during the Neoproterozoic, consistent with the currently accepted organic biomarker records. © 2018 John Wiley & Sons Ltd.

  11. Expressions of the low density lipoprotein receptor and 3-hydroxy-3-methylglutaryl coenzyme A reductase genes are stimulated by recombinant platelet-derived growth factor isomers

    International Nuclear Information System (INIS)

    Roth, M.; Emmons, L.R.; Perruchoud, A.; Block, L.H.

    1991-01-01

    The plausible role that platelet-derived growth factor (PDGF) has in the localized pathophysiological changes that occur in the arterial wall during development of atherosclerotic lesions led the authors to investigate the influence of recombinant (r)PDGF isomers -AA, -AB, and -BB on the expression of low density lipoprotein receptor (LDL-R) and 3-hydroxy-3-methylglutaryl coenzyme A (HMG0CoA) reductase [(S)-mevalonate:NAD + oxidoreductase (CoA-acylating), EC 1.1.1.88] genes. In addition, they clarified the role of protein kinase C (PKC) in expression of the two genes in human skin fibroblasts and vascular smooth muscle cells. The various rPDGF isoforms are distinct in their ability to activate transcription of both genes: (i) both rPDGF-AA and -BB stimulate transcription of the LDL-R gene; in contrast, rPDGF-BB but not -AA, activates transcription of the HMG-CoA reductase gene; (ii) all recombinant isoforms of PDGF activate transcription of the c-fos gene; (iii) while rPDGF-dependent transcription of the lDL-R gene occurs independently of PKC, transcription of the HMG-CoA reductase gene appears to involve the action of that enzyme

  12. Cytogenetic analysis and mapping of leaf rust resistance in Aegilops speltoides Tausch derived bread wheat line Selection2427 carrying putative gametocidal gene(s).

    Science.gov (United States)

    Niranjana, M; Vinod; Sharma, J B; Mallick, Niharika; Tomar, S M S; Jha, S K

    2017-12-01

    Leaf rust (Puccinia triticina) is a major biotic stress affecting wheat yields worldwide. Host-plant resistance is the best method for controlling leaf rust. Aegilops speltoides is a good source of resistance against wheat rusts. To date, five Lr genes, Lr28, Lr35, Lr36, Lr47, and Lr51, have been transferred from Ae. speltoides to bread wheat. In Selection2427, a bread wheat introgresed line with Ae. speltoides as the donor parent, a dominant gene for leaf rust resistance was mapped to the long arm of chromosome 3B (LrS2427). None of the Lr genes introgressed from Ae. speltoides have been mapped to chromosome 3B. Since none of the designated seedling leaf rust resistance genes have been located on chromosome 3B, LrS2427 seems to be a novel gene. Selection2427 showed a unique property typical of gametocidal genes, that when crossed to other bread wheat cultivars, the F 1 showed partial pollen sterility and poor seed setting, whilst Selection2427 showed reasonable male and female fertility. Accidental co-transfer of gametocidal genes with LrS2427 may have occurred in Selection2427. Though LrS2427 did not show any segregation distortion and assorted independently of putative gametocidal gene(s), its utilization will be difficult due to the selfish behavior of gametocidal genes.

  13. Microarray analysis of gene expression profiles of Schistosoma japonicum derived from less-susceptible host water buffalo and susceptible host goat.

    Directory of Open Access Journals (Sweden)

    Jianmei Yang

    Full Text Available BACKGROUND: Water buffalo and goats are natural hosts for S. japonicum in endemic areas of China. The susceptibility of these two hosts to schistosome infection is different, as water buffalo are less conducive to S. japonicum growth and development. To identify genes that may affect schistosome development and survival, we compared gene expression profiles of schistosomes derived from these two natural hosts using high-throughput microarray technology. RESULTS: The worm recovery rate was lower and the length and width of worms from water buffalo were smaller compared to those from goats following S. japonicum infection for 7 weeks. Besides obvious morphological difference between the schistosomes derived from the two hosts, differences were also observed by scanning and transmission electron microscopy. Microarray analysis showed differentially expressed gene patterns for parasites from the two hosts, which revealed that genes related to lipid and nucleotide metabolism, as well as protein folding, sorting, and degradation were upregulated, while others associated with signal transduction, endocrine function, development, immune function, endocytosis, and amino acid/carbohydrate/glycan metabolism were downregulated in schistosomes from water buffalo. KEGG pathway analysis deduced that the differentially expressed genes mainly involved lipid metabolism, the MAPK and ErbB signaling pathways, progesterone-mediated oocyte maturation, dorso-ventral axis formation, reproduction, and endocytosis, etc. CONCLUSION: The microarray gene analysis in schistosomes derived from water buffalo and goats provide a useful platform to disclose differences determining S. japonicum host compatibility to better understand the interplay between natural hosts and parasites, and identify schistosome target genes associated with susceptibility to screen vaccine candidates.

  14. Discovery and introgression of the wild sunflower-derived novel downy mildew resistance gene Pl 19 in confection sunflower (Helianthus annuus L.).

    Science.gov (United States)

    Zhang, Z W; Ma, G J; Zhao, J; Markell, S G; Qi, L L

    2017-01-01

    A new downy mildew resistance gene, Pl 19 , was identified from wild Helianthus annuus accession PI 435414, introduced to confection sunflower, and genetically mapped to linkage group 4 of the sunflower genome. Wild Helianthus annuus accession PI 435414 exhibited resistance to downy mildew, which is one of the most destructive diseases to sunflower production globally. Evaluation of the 140 BC 1 F 2:3 families derived from the cross of CMS CONFSCLB1 and PI 435414 against Plasmopara halstedii race 734 revealed that a single dominant gene controls downy mildew resistance in the population. Bulked segregant analysis conducted in the BC 1 F 2 population with 860 simple sequence repeat (SSR) markers indicated that the resistance derived from wild H. annuus was associated with SSR markers located on linkage group (LG) 4 of the sunflower genome. To map and tag this resistance locus, designated Pl 19 , 140 BC 1 F 2 individuals were used to construct a linkage map of the gene region. Two SSR markers, ORS963 and HT298, were linked to Pl 19 within a distance of 4.7 cM. After screening 27 additional single nucleotide polymorphism (SNP) markers previously mapped to this region, two flanking SNP markers, NSA_003564 and NSA_006089, were identified as surrounding the Pl 19 gene at a distance of 0.6 cM from each side. Genetic analysis indicated that Pl 19 is different from Pl 17 , which had previously been mapped to LG4, but is closely linked to Pl 17 . This new gene is highly effective against the most predominant and virulent races of P. halstedii currently identified in North America and is the first downy mildew resistance gene that has been transferred to confection sunflower. The selected resistant germplasm derived from homozygous BC 2 F 3 progeny provides a novel gene for use in confection sunflower breeding programs.

  15. Characterization and Evolution of the Cell Cycle-Associated Mob Domain-Containing Proteins in Eukaryotes

    Directory of Open Access Journals (Sweden)

    Nicola Vitulo

    2007-01-01

    Full Text Available The MOB family includes a group of cell cycle-associated proteins highly conserved throughout eukaryotes, whose founding members are implicated in mitotic exit and co-ordination of cell cycle progression with cell polarity and morphogenesis. Here we report the characterization and evolution of the MOB domain-containing proteins as inferred from the 43 eukaryotic genomes so far sequenced. We show that genes for Mob-like proteins are present in at least 41 of these genomes, confi rming the universal distribution of this protein family and suggesting its prominent biological function. The phylogenetic analysis reveals fi ve distinct MOB domain classes, showing a progressive expansion of this family from unicellular to multicellular organisms, reaching the highest number in mammals. Plant Mob genes appear to have evolved from a single ancestor, most likely after the loss of one or more genes during the early stage of Viridiplantae evolutionary history. Three of the Mob classes are widespread among most of the analyzed organisms. The possible biological and molecular function of Mob proteins and their role in conserved signaling pathways related to cell proliferation, cell death and cell polarity are also presented and critically discussed.

  16. Gene therapy with brain-derived neurotrophic factor as a protection: retinal ganglion cells in a rat glaucoma model.

    Science.gov (United States)

    Martin, Keith R G; Quigley, Harry A; Zack, Donald J; Levkovitch-Verbin, Hana; Kielczewski, Jennifer; Valenta, Danielle; Baumrind, Lisa; Pease, Mary Ellen; Klein, Ronald L; Hauswirth, William W

    2003-10-01

    To develop a modified adenoassociated viral (AAV) vector capable of efficient transfection of retinal ganglion cells (RGCs) and to test the hypothesis that use of this vector to express brain-derived neurotrophic factor (BDNF) could be protective in experimental glaucoma. Ninety-three rats received one unilateral, intravitreal injection of either normal saline (n = 30), AAV-BDNF-woodchuck hepatitis posttranscriptional regulatory element (WPRE; n = 30), or AAV-green fluorescent protein (GFP)-WPRE (n = 33). Two weeks later, experimental glaucoma was induced in the injected eye by laser application to the trabecular meshwork. Survival of RGCs was estimated by counting axons in optic nerve cross sections after 4 weeks of glaucoma. Transgene expression was assessed by immunohistochemistry, Western blot analysis, and direct visualization of GFP. The density of GFP-positive cells in retinal wholemounts was 1,828 +/- 299 cells/mm(2) (72,273 +/- 11,814 cells/retina). Exposure to elevated intraocular pressure was similar in all groups. Four weeks after initial laser treatment, axon loss was 52.3% +/- 27.1% in the saline-treated group (n = 25) and 52.3% +/- 24.2% in the AAV-GFP-WPRE group (n = 30), but only 32.3% +/- 23.0% in the AAV-BDNF-WPRE group (n = 27). Survival in AAV-BDNF-WPRE animals increased markedly and the difference was significant compared with those receiving either AAV-GFP-WPRE (P = 0.002, t-test) or saline (P = 0.006, t-test). Overexpression of the BDNF gene protects RGC as estimated by axon counts in a rat glaucoma model, further supporting the potential feasibility of neurotrophic therapy as a complement to the lowering of IOP in the treatment of glaucoma.

  17. Catechol-O-Methyltransferase (COMT) Gene (Val158Met) and Brain-Derived Neurotropic Factor (BDNF) (Val66Met) Genes Polymorphism in Schizophrenia: A Case-Control Study.

    Science.gov (United States)

    Saravani, Ramin; Galavi, Hamid Reza; Lotfian Sargazi, Marzieh

    2017-10-01

    Objective: Several studies have shown that some polymorphisms of genes encoding catechol-O-methyltransferase (COMT), the key enzyme in degrading dopamine, and norepinephrine and the human brain-derived neurotropic factor (BDNF), a nerve growth factor, are strong candidates for risk of schizophrenia (SCZ). In the present study, we aimed at examining the effects of COMT Val158Met (G>A) and BDNF Val66Met (G>A) polymorphisms on SCZ risk in a sample of Iranian population. Method: This case- control study included 92 SCZ patients and 92 healthy controls (HCs). Genotyping of both variants (COMT Val158Met (G>A) and BDNF Val66Met (G>A)) were conducted using Amplification Refractory Mutation System-Polymerase Chain Reaction (ARMS-PCR). Results: The findings revealed that the COMT Val158Met (G>A) polymorphism was not associated with the risk/protective of SCZ in all models (OR=0.630, 95%CI=0.299-1.326, P=0.224, GA vs. GG, OR=1.416, 95%CI=0.719-2.793, P=0.314, AA vs. GG, OR=1.00, 95%CI=0.56-1.79, P=1.00 GA+AA vs. GG, OR=1.667, 95%CI=0.885-3.125, P=0.11, AA vs. GG+GA, OR=1.247, 95%CI=0.825-1.885, P=0.343, A vs. G,). However, BDNF Val66Met (G>A) variant increased the risk of SCZ (OR = 2.008 95%CI = 1.008-4.00, P = 0.047, GA vs. GG, OR = 3.876 95%CI = 1.001-14.925, P = 0.049. AA vs. GG, OR = 2.272. 95%CI = 1.204-4.347, P = 0.011, GA+AA vs. GG, OR = 2.22 95%CI = 1.29-3.82. P = 0.005, A vs. G). Conclusion: The results did not support an association between COMT Val158Met (G>A) variant and risk/protective of SCZ. Moreover, it was found that BDNF Val66Met (G>A) polymorphism may increase the risk of SCZ development. Further studies and different ethnicities are recommended to confirm the findings.

  18. Genome-wide computational identification of microRNAs and their targets in the deep-branching eukaryote Giardia lamblia.

    Science.gov (United States)

    Zhang, Yan-Qiong; Chen, Dong-Liang; Tian, Hai-Feng; Zhang, Bao-Hong; Wen, Jian-Fan

    2009-10-01

    Using a combined computational program, we identified 50 potential microRNAs (miRNAs) in Giardia lamblia, one of the most primitive unicellular eukaryotes. These miRNAs are unique to G. lamblia and no homologues have been found in other organisms; miRNAs, currently known in other species, were not found in G. lamblia. This suggests that miRNA biogenesis and miRNA-mediated gene regulation pathway may evolve independently, especially in evolutionarily distant lineages. A majority (43) of the predicted miRNAs are located at one single locus; however, some miRNAs have two or more copies in the genome. Among the 58 miRNA genes, 28 are located in the intergenic regions whereas 30 are present in the anti-sense strands of the protein-coding sequences. Five predicted miRNAs are expressed in G. lamblia trophozoite cells evidenced by expressed sequence tags or RT-PCR. Thirty-seven identified miRNAs may target 50 protein-coding genes, including seven variant-specific surface proteins (VSPs). Our findings provide a clue that miRNA-mediated gene regulation may exist in the early stage of eukaryotic evolution, suggesting that it is an important regulation system ubiquitous in eukaryotes.

  19. Signal, Uncertainty, and Conflict in Phylogenomic Data for a Diverse Lineage of Microbial Eukaryotes (Diatoms, Bacillariophyta)

    Science.gov (United States)

    Parks, Matthew B; Wickett, Norman J; Alverson, Andrew J

    2018-01-01

    Abstract Diatoms (Bacillariophyta) are a species-rich group of eukaryotic microbes diverse in morphology, ecology, and metabolism. Previous reconstructions of the diatom phylogeny based on one or a few genes have resulted in inconsistent resolution or low support for critical nodes. We applied phylogenetic paralog pruning techniques to a data set of 94 diatom genomes and transcriptomes to infer perennially difficult species relationships, using concatenation and summary-coalescent methods to reconstruct species trees from data sets spanning a wide range of thresholds for taxon and column occupancy in gene alignments. Conflicts between gene and species trees decreased with both increasing taxon occupancy and bootstrap cutoffs applied to gene trees. Concordance between gene and species trees was lowest for short internodes and increased logarithmically with increasing edge length, suggesting that incomplete lineage sorting disproportionately affects species tree inference at short internodes, which are a common feature of the diatom phylogeny. Although species tree topologies were largely consistent across many data treatments, concatenation methods appeared to outperform summary-coalescent methods for sparse alignments. Our results underscore that approaches to species-tree inference based on few loci are likely to be misled by unrepresentative sampling of gene histories, particularly in lineages that may have diversified rapidly. In addition, phylogenomic studies of diatoms, and potentially other hyperdiverse groups, should maximize the number of gene trees with high taxon occupancy, though there is clearly a limit to how many of these genes will be available. PMID:29040712

  20. Quantitative high-throughput gene expression profiling of human striatal development to screen stem cell–derived medium spiny neurons

    Directory of Open Access Journals (Sweden)

    Marco Straccia

    Full Text Available A systematic characterization of the spatio-temporal gene expression during human neurodevelopment is essential to understand brain function in both physiological and pathological conditions. In recent years, stem cell technology has provided an in vitro tool to recapitulate human development, permitting also the generation of human models for many diseases. The correct differentiation of human pluripotent stem cell (hPSC into specific cell types should be evaluated by comparison with specific cells/tissue profiles from the equivalent adult in vivo organ. Here, we define by a quantitative high-throughput gene expression analysis the subset of specific genes of the whole ganglionic eminence (WGE and adult human striatum. Our results demonstrate that not only the number of specific genes is crucial but also their relative expression levels between brain areas. We next used these gene profiles to characterize the differentiation of hPSCs. Our findings demonstrate a temporal progression of gene expression during striatal differentiation of hPSCs from a WGE toward an adult striatum identity. Present results establish a gene expression profile to qualitatively and quantitatively evaluate the telencephalic hPSC-derived progenitors eventually used for transplantation and mature striatal neurons for disease modeling and drug-screening.

  1. Exposure to nickel, chromium, or cadmium causes distinct changes in the gene expression patterns of a rat liver derived cell line.

    Directory of Open Access Journals (Sweden)

    Matthew G Permenter

    Full Text Available Many heavy metals, including nickel (Ni, cadmium (Cd, and chromium (Cr are toxic industrial chemicals with an exposure risk in both occupational and environmental settings that may cause harmful outcomes. While these substances are known to produce adverse health effects leading to disease or health problems, the detailed mechanisms remain unclear. To elucidate the processes involved in the toxicity of nickel, cadmium, and chromium at the molecular level and to perform a comparative analysis, H4-II-E-C3 rat liver-derived cell lines were treated with soluble salts of each metal using concentrations derived from viability assays, and gene expression patterns were determined with DNA microarrays. We identified both common and unique biological responses to exposure to the three metals. Nickel, cadmium, chromium all induced oxidative stress with both similar and unique genes and pathways responding to this stress. Although all three metals are known to be genotoxic, evidence for DNA damage in our study only exists in response to chromium. Nickel induced a hypoxic response as well as inducing genes involved in chromatin structure, perhaps by replacing iron in key proteins. Cadmium distinctly perturbed genes related to endoplasmic reticulum stress and invoked the unfolded protein response leading to apoptosis. With these studies, we have completed the first gene expression comparative analysis of nickel, cadmium, and chromium in H4-II-E-C3 cells.

  2. A Eukaryote without a Mitochondrial Organelle

    Czech Academy of Sciences Publication Activity Database

    Karnkowska, A.; Vacek, V.; Zubáčová, Z.; Treitli, S.C.; Petrzelkova, R.; Eme, L.; Novák, L.; Žárský, V.; Barlow, L.D.; Herman, E.K.; Soukal, P.; Hroudová, Miluše; Doležal, P.; Stairs, C.W.; Roger, A. J.; Eliaš, M.; Dacks, J.B.; Vlček, Čestmír; Hampl, V.

    2016-01-01

    Roč. 26, č. 10 (2016), s. 1274-1284 ISSN 0960-9822 R&D Projects: GA MŠk(CZ) LQ1604; GA MŠk(CZ) ED1.1.00/02.0109; GA ČR GAP506/12/1010 Institutional support: RVO:68378050 Keywords : arginine dihydrolase pathway * tail-anchored proteins * fe-s cluster * trichomonas-vaginalis * entamoeba-histolytica * giardia-intestinalis * tritrichomonas-fetus * genome annotation * energy-metabolism * gene-transfer Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Developmental biology Impact factor: 8.851, year: 2016

  3. Eukaryotic systematics: a user's guide for cell biologists and parasitologists.

    Science.gov (United States)

    Walker, Giselle; Dorrell, Richard G; Schlacht, Alexander; Dacks, Joel B

    2011-11-01

    Single-celled parasites like Entamoeba, Trypanosoma, Phytophthora and Plasmodium wreak untold havoc on human habitat and health. Understanding the position of the various protistan pathogens in the larger context of eukaryotic diversity informs our study of how these parasites operate on a cellular level, as well as how they have evolved. Here, we review the literature that has brought our understanding of eukaryotic relationships from an idea of parasites as primitive cells to a crystallized view of diversity that encompasses 6 major divisions, or supergroups, of eukaryotes. We provide an updated taxonomic scheme (for 2011), based on extensive genomic, ultrastructural and phylogenetic evidence, with three differing levels of taxonomic detail for ease of referencing and accessibility (see supplementary material at Cambridge Journals On-line). Two of the most pressing issues in cellular evolution, the root of the eukaryotic tree and the evolution of photosynthesis in complex algae, are also discussed along with ideas about what the new generation of genome sequencing technologies may contribute to the field of eukaryotic systematics. We hope that, armed with this user's guide, cell biologists and parasitologists will be encouraged about taking an increasingly evolutionary point of view in the battle against parasites representing real dangers to our livelihoods and lives.

  4. Gene

    Data.gov (United States)

    U.S. Department of Health & Human Services — Gene integrates information from a wide range of species. A record may include nomenclature, Reference Sequences (RefSeqs), maps, pathways, variations, phenotypes,...

  5. Effects of Lactobacillus reuteri-derived biosurfactant on the gene expression profile of essential adhesion genes (gtfB, gtfC and ftf of Streptococcus mutans

    Directory of Open Access Journals (Sweden)

    Rasoul Salehi

    2014-01-01

    Full Text Available Background: Streptococci are the main causative agents in plaque formation and mutans streptococci are the principle etiological agent of dental plaque and caries. The process of biofilm formation is a step-wise process, starting with adhesion of planktonic cells to the surfaces. It is now a well known fact that expression of glucosyltransferases (gtfs and fructosyltransferase (ftf genes play a critical role in the initial adhesion of Streptococcus mutans to the tooth surface, which results in the formation of dental plaques and consequently caries and other periodontal diseases. Materials and Methods: In the present study, we have determined the effect of biosurfactants purified from Lactobacillus reuteri (DSM20016 culture on gene expression profile of gftB/C and fft of S. mutans (ATCC35668 using quantitative real-time polymerase chain reaction. Results: The application of biosurfactant caused considerable down-regulation of the expression of all three genes under study. The reduction in gene expression was statistically very significant (P > 0.0001 for all three genes. Conclusions: Inhibition of these genes by the extracted L. reuteri biosurfactant shows the emergence of a powerful alternative to the presently practicing alternatives. In view of the importance of these gene products for S. mutans attachment to the tooth surface, which is the initial important step in biofilm production and dental caries, we believe that the biosurfactant prepared in this study could be considered as a step ahead in dental caries prevention.

  6. Genome-wide analysis of eukaryote thaumatin-like proteins (TLPs with an emphasis on poplar

    Directory of Open Access Journals (Sweden)

    Duplessis Sébastien

    2011-02-01

    Full Text Available Abstract Background Plant inducible immunity includes the accumulation of a set of defense proteins during infection called pathogenesis-related (PR proteins, which are grouped into families termed PR-1 to PR-17. The PR-5 family is composed of thaumatin-like proteins (TLPs, which are responsive to biotic and abiotic stress and are widely studied in plants. TLPs were also recently discovered in fungi and animals. In the poplar genome, TLPs are over-represented compared with annual species and their transcripts strongly accumulate during stress conditions. Results Our analysis of the poplar TLP family suggests that the expansion of this gene family was followed by diversification, as differences in expression patterns and predicted properties correlate with phylogeny. In particular, we identified a clade of poplar TLPs that cluster to a single 350 kb locus of chromosome I and that are up-regulated by poplar leaf rust infection. A wider phylogenetic analysis of eukaryote TLPs - including plant, animal and fungi sequences - shows that TLP gene content and diversity increased markedly during land plant evolution. Mapping the reported functions of characterized TLPs to the eukaryote phylogenetic tree showed that antifungal or glycan-lytic properties are widespread across eukaryote phylogeny, suggesting that these properties are shared by most TLPs and are likely associated with the presence of a conserved acidic cleft in their 3D structure. Also, we established an exhaustive catalog of TLPs with atypical architectures such as small-TLPs, TLP-kinases and small-TLP-kinases, which have potentially developed alternative functions (such as putative receptor kinases for pathogen sensing and signaling. Conclusion Our study, based on the most recent plant genome sequences, provides evidence for TLP gene family diversification during land plant evolution. We have shown that the diverse functions described for TLPs are not restricted to specific clades but seem

  7. Bioinformatic analysis of patient-derived ASPS gene expressions and ASPL-TFE3 fusion transcript levels identify potential therapeutic targets.

    Directory of Open Access Journals (Sweden)

    David G Covell

    Full Text Available Gene expression data, collected from ASPS tumors of seven different patients and from one immortalized ASPS cell line (ASPS-1, was analyzed jointly with patient ASPL-TFE3 (t(X;17(p11;q25 fusion transcript data to identify disease-specific pathways and their component genes. Data analysis of the pooled patient and ASPS-1 gene expression data, using conventional clustering methods, revealed a relatively small set of pathways and genes characterizing the biology of ASPS. These results could be largely recapitulated using only the gene expression data collected from patient tumor samples. The concordance between expression measures derived from ASPS-1 and both pooled and individual patient tumor data provided a rationale for extending the analysis to include patient ASPL-TFE3 fusion transcript data. A novel linear model was exploited to link gene expressions to fusion transcript data and used to identify a small set of ASPS-specific pathways and their gene expression. Cellular pathways that appear aberrantly regulated in response to the t(X;17(p11;q25 translocation include the cell cycle and cell adhesion. The identification of pathways and gene subsets characteristic of ASPS support current therapeutic strategies that target the FLT1 and MET, while also proposing additional targeting of genes found in pathways involved in the cell cycle (CHK1, cell adhesion (ARHGD1A, cell division (CDC6, control of meiosis (RAD51L3 and mitosis (BIRC5, and chemokine-related protein tyrosine kinase activity (CCL4.

  8. Intermittency as a universal characteristic of the complete chromosome DNA sequences of eukaryotes: From protozoa to human genomes

    Science.gov (United States)

    Rybalko, S.; Larionov, S.; Poptsova, M.; Loskutov, A.

    2011-10-01

    Large-scale dynamical properties of complete chromosome DNA sequences of eukaryotes are considered. Using the proposed deterministic models with intermittency and symbolic dynamics we describe a wide spectrum of large-scale patterns inherent in these sequences, such as segmental duplications, tandem repeats, and other complex sequence structures. It is shown that the recently discovered gene number balance on the strands is not of a random nature, and certain subsystems of a complete chromosome DNA sequence exhibit the properties of deterministic chaos.

  9. Unicellular eukaryotes as models in cell and molecular biology: critical appraisal of their past and future value.

    Science.gov (United States)

    Simon, Martin; Plattner, Helmut

    2014-01-01

    Unicellular eukaryotes have been appreciated as model systems for the analysis of crucial questions in cell and molecular biology. This includes Dictyostelium (chemotaxis, amoeboid movement, phagocytosis), Tetrahymena (telomere structure, telomerase function), Paramecium (variant surface antigens, exocytosis, phagocytosis cycle) or both ciliates (ciliary beat regulation, surface pattern formation), Chlamydomonas (flagellar biogenesis and beat), and yeast (S. cerevisiae) for innumerable aspects. Nowadays many problems may be tackled with "higher" eukaryotic/metazoan cells for which full genomic information as well as domain databases, etc., were available long before protozoa. Established molecular tools, commercial antibodies, and established pharmacology are additional advantages available for higher eukaryotic cells. Moreover, an increasing number of inherited genetic disturbances in humans have become elucidated and can serve as new models. Among lower eukaryotes, yeast will remain a standard model because of its peculiarities, including its reduced genome and availability in the haploid form. But do protists still have a future as models? This touches not only the basic understanding of biology but also practical aspects of research, such as fund raising. As we try to scrutinize, due to specific advantages some protozoa should and will remain favorable models for analyzing novel genes or specific aspects of cell structure and function. Outstanding examples are epigenetic phenomena-a field of rising interest. © 2014 Elsevier Inc. All rights reserved.

  10. ITSoneDB: a comprehensive collection of eukaryotic ribosomal RNA Internal Transcribed Spacer 1 (ITS1) sequences.

    Science.gov (United States)

    Santamaria, Monica; Fosso, Bruno; Licciulli, Flavio; Balech, Bachir; Larini, Ilaria; Grillo, Giorgio; De Caro, Giorgio; Liuni, Sabino; Pesole, Graziano

    2018-01-04

    A holistic understanding of environmental communities is the new challenge of metagenomics. Accordingly, the amplicon-based or metabarcoding approach, largely applied to investigate bacterial microbiomes, is moving to the eukaryotic world too. Indeed, the analysis of metabarcoding data may provide a comprehensive assessment of both bacterial and eukaryotic composition in a variety of environments, including human body. In this respect, whereas hypervariable regions of the 16S rRNA are the de facto standard barcode for bacteria, the Internal Transcribed Spacer 1 (ITS1) of ribosomal RNA gene cluster has shown a high potential in discriminating eukaryotes at deep taxonomic levels. As metabarcoding data analysis rely on the availability of a well-curated barcode reference resource, a comprehensive collection of ITS1 sequences supplied with robust taxonomies, is highly needed. To address this issue, we created ITSoneDB (available at http://itsonedb.cloud.ba.infn.it/) which in its current version hosts 985 240 ITS1 sequences spanning over 134 000 eukaryotic species. Each ITS1 is mapped on the NCBI reference taxonomy with its start and end positions precisely annotated. ITSoneDB has been developed in agreement to the FAIR guidelines by enabling the users to query and download its content through a simple web-interface and access relevant metadata by cross-linking to European Nucleotide Archive. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  11. Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes.

    Science.gov (United States)

    Riechmann, J L; Heard, J; Martin, G; Reuber, L; Jiang, C; Keddie, J; Adam, L; Pineda, O; Ratcliffe, O J; Samaha, R R; Creelman, R; Pilgrim, M; Broun, P; Zhang, J Z; Ghandehari, D; Sherman, B K; Yu, G

    2000-12-15

    The completion of the Arabidopsis thaliana genome sequence allows a comparative analysis of transcriptional regulators across the three eukaryotic kingdoms. Arabidopsis dedicates over 5% of its genome to code for more than 1500 transcription factors, about 45% of which are from families specific to plants. Arabidopsis transcription factors that belong to families common to all eukaryotes do not share significant similarity with those of the other kingdoms beyond the conserved DNA binding domains, many of which have been arranged in combinations specific to each lineage. The genome-wide comparison reveals the evolutionary generation of diversity in the regulation of transcription.

  12. Eukaryotic ribosome display with in situ DNA recovery.

    Science.gov (United States)

    He, Mingyue; Edwards, Bryan M; Kastelic, Damjana; Taussig, Michael J

    2012-01-01

    Ribosome display is a cell-free display technology for in vitro selection and optimisation of proteins from large diversified libraries. It operates through the formation of stable protein-ribosome-mRNA (PRM) complexes and selection of ligand-binding proteins, followed by DNA recovery from the selected genetic information. Both prokaryotic and eukaryotic ribosome display systems have been developed. In this chapter, we describe the eukaryotic rabbit reticulocyte method in which a distinct in situ single-primer RT-PCR procedure is used to recover DNA from the selected PRM complexes without the need for prior disruption of the ribosome.

  13. Eukaryotic tRNAs fingerprint invertebrates vis-à-vis vertebrates.

    Science.gov (United States)

    Mitra, Sanga; Das, Pijush; Samadder, Arpa; Das, Smarajit; Betai, Rupal; Chakrabarti, Jayprokas

    2015-01-01

    During translation, aminoacyl-tRNA synthetases recognize the identities of the tRNAs to charge them with their respective amino acids. The conserved identities of 58,244 eukaryotic tRNAs of 24 invertebrates and 45 vertebrates in genomic tRNA database were analyzed and their novel features extracted. The internal promoter sequences, namely, A-Box and B-Box, were investigated and evidence gathered that the intervention of optional nucleotides at 17a and 17b correlated with the optimal length of the A-Box. The presence of canonical transcription terminator sequences at the immediate vicinity of tRNA genes was ventured. Even though non-canonical introns had been reported in red alga, green alga, and nucleomorph so far, fairly motivating evidence of their existence emerged in tRNA genes of other eukaryotes. Non-canonical introns were seen to interfere with the internal promoters in two cases, questioning their transcription fidelity. In a first of its kind, phylogenetic constructs based on tRNA molecules delineated and built the trees of the vast and diverse invertebrates and vertebrates. Finally, two tRNA models representing the invertebrates and the vertebrates were drawn, by isolating the dominant consensus in the positional fluctuations of nucleotide compositions.

  14. The genome of the polar eukaryotic microalga Coccomyxa subellipsoidea reveals traits of cold adaptation

    Energy Technology Data Exchange (ETDEWEB)

    Blanc, Guillaume; Agarkova, Irina; Grimwood, Jane; Kuo, Alan; Brueggeman, Andrew; Dunigan, David D.; Gurnon, James; Ladunga, Istvan; Lindquist, Erika; Lucas, Susan; Pangilinan, Jasmyn; Proschold, Thomas; Salamov, Asaf; Schmutz, Jeremy; Weeks, Donald; Tamada, Takashi; Lomsadze, Alexandre; Borodovsky, Mark; Claverie, Jean-Michel; Grigoriev, Igor V.; Van Etten, James L.

    2012-02-13

    Background Little is known about the mechanisms of adaptation of life to the extreme environmental conditions encountered in polar regions. Here we present the genome sequence of a unicellular green alga from the division chlorophyta, Coccomyxa subellipsoidea C-169, which we will hereafter refer to as C-169. This is the first eukaryotic microorganism from a polar environment to have its genome sequenced. Results The 48.8 Mb genome contained in 20 chromosomes exhibits significant synteny conservation with the chromosomes of its relatives Chlorella variabilis and Chlamydomonas reinhardtii. The order of the genes is highly reshuffled within synteny blocks, suggesting that intra-chromosomal rearrangements were more prevalent than inter-chromosomal rearrangements. Remarkably, Zepp retrotransposons occur in clusters of nested elements with strictly one cluster per chromosome probably residing at the centromere. Several protein families overrepresented in C. subellipsoidae include proteins involved in lipid metabolism, transporters, cellulose synthases and short alcohol dehydrogenases. Conversely, C-169 lacks proteins that exist in all other sequenced chlorophytes, including components of the glycosyl phosphatidyl inositol anchoring system, pyruvate phosphate dikinase and the photosystem 1 reaction center subunit N (PsaN). Conclusions We suggest that some of these gene losses and gains could have contributed to adaptation to low temperatures. Comparison of these genomic features with the adaptive strategies of psychrophilic microbes suggests that prokaryotes and eukaryotes followed comparable evolutionary routes to adapt to cold environments.

  15. Structure of the prolyl-tRNA synthetase from the eukaryotic pathogen Giardia lamblia

    Energy Technology Data Exchange (ETDEWEB)

    Larson, Eric T.; Kim, Jessica E.; Napuli, Alberto J.; Verlinde, Christophe L. M. J.; Fan, Erkang; Zucker, Frank H.; Van Voorhis, Wesley C.; Buckner, Frederick S.; Hol, Wim G. J.; Merritt, Ethan A., E-mail: merritt@u.washington.edu [Medical Structural Genomics of Pathogenic Protozoa, (United States); University of Washington, Seattle, WA 98195 (United States)

    2012-09-01

    The structure of Giardia prolyl-tRNA synthetase cocrystallized with proline and ATP shows evidence for half-of-the-sites activity, leading to a corresponding mixture of reaction substrates and product (prolyl-AMP) in the two active sites of the dimer. The genome of the human intestinal parasite Giardia lamblia contains only a single aminoacyl-tRNA synthetase gene for each amino acid. The Giardia prolyl-tRNA synthetase gene product was originally misidentified as a dual-specificity Pro/Cys enzyme, in part owing to its unexpectedly high off-target activation of cysteine, but is now believed to be a normal representative of the class of archaeal/eukaryotic prolyl-tRNA synthetases. The 2.2 Å resolution crystal structure of the G. lamblia enzyme presented here is thus the first structure determination of a prolyl-tRNA synthetase from a eukaryote. The relative occupancies of substrate (proline) and product (prolyl-AMP) in the active site are consistent with half-of-the-sites reactivity, as is the observed biphasic thermal denaturation curve for the protein in the presence of proline and MgATP. However, no corresponding induced asymmetry is evident in the structure of the protein. No thermal stabilization is observed in the presence of cysteine and ATP. The implied low affinity for the off-target activation product cysteinyl-AMP suggests that translational fidelity in Giardia is aided by the rapid release of misactivated cysteine.

  16. Influence of Light and Temperature on Gene Expression Leading to Accumulation of Specific Flavonol Glycosides and Hydroxycinnamic Acid Derivatives in Kale (Brassica oleracea var. sabellica).

    Science.gov (United States)

    Neugart, Susanne; Krumbein, Angelika; Zrenner, Rita

    2016-01-01

    Light intensity and temperature are very important signals for the regulation of plant growth and development. Plants subjected to less favorable light or temperature conditions often respond with accumulation of secondary metabolites. Some of these metabolites have been identified as bioactive compounds, considered to exert positive effects on human health when consumed regularly. In order to test a typical range of growth parameters for the winter crop Brassica oleracea var. sabellica, plants were grown either at 400 μmol m(-2) s(-1) or 100 μmol m(-2) s(-1) at 10°C, or at 400 μmol m(-2) s(-1) with 5 or 15°C. The higher light intensity overall increased flavonol content of leaves, favoring the main quercetin glycosides, a caffeic acid monoacylated kaempferol triglycoside, and disinapoyl-gentiobiose. The higher temperature mainly increased the hydroxycinnamic acid derivative disinapoyl-gentiobiose, while at lower temperature synthesis is in favor of very complex sinapic acid acylated flavonol tetraglycosides such as kaempferol-3-O-sinapoyl-sophoroside-7-O-diglucoside. A global analysis of light and temperature dependent alterations of gene expression in B. oleracea var. sabellica leaves was performed with the most comprehensive Brassica microarray. When compared to the light experiment much less genes were differentially expressed in kale leaves grown at 5 or 15°C. A structured evaluation of differentially expressed genes revealed the expected enrichment in the functional categories of e.g. protein degradation at different light intensities or phytohormone metabolism at different temperature. Genes of the secondary metabolism namely phenylpropanoids are significantly enriched with both treatments. Thus, the genome of B. oleracea was screened for predicted genes putatively involved in the biosynthesis of flavonoids and hydroxycinnamic acid derivatives. All identified B. oleracea genes were analyzed for their most specific 60-mer oligonucleotides present on the

  17. Expression and developmental control of platelet-derived growth factor A-chain and B-chain/Sis genes in rat aortic smooth muscle cells

    International Nuclear Information System (INIS)

    Majesky, M.W.; Benditt, E.P.; Schwartz, S.M.

    1988-01-01

    Cultured arterial smooth muscle cells (SMC) can produce platelet-derived growth factor (PDGF)-like molecules. This property raises the possibility that SMC-derived PDGFs function as autocrine/paracrine regulators in the formation and maintenance of the artery wall. In this study the authors have asked if levels of mRNAs directing synthesis of PDFG are modulated in aortic SMC during postnatal development. The authors report here that genes encoding PDGF A- and B-chain precursors are expressed at similar low levels in intact aortas from newborn and adult rats. Marked differences in regulation of transcript abundance of these genes were revealed when aortic SMC were grown in cell culture. PDGF B-chain transcripts accumulated in passaged newborn rat SMC but not adult rat SMC, whereas PDGF A-chain RNA was found in comparable amounts in SMC from both age groups. Similarly, SMC from newborn rats secreted at least 60-fold more PDGF-like activity into conditioned medium than did adult rat SMC. These results show that PDGF A- and B-chain genes are transcribed in the normal rat aorta and provide evidence for age-related change in the control of PDGF B-chain gene expression in aortic SMC. Independent regulation of transcript levels in cultured SMC leaves open the possibility that PDGFs of different composition (AA, AB, BB) play different roles in normal function of the artery wall

  18. Real-time polymerase chain reaction assay for endogenous reference gene for specific detection and quantification of common wheat-derived DNA (Triticum aestivum L.).

    Science.gov (United States)

    Vautrin, Sonia; Zhang, David

    2007-01-01

    A species-specific endogenous reference gene system was developed for polymerase chain reaction (PCR)-based analysis in common wheat (Triticum aestivum L.) by targeting the ALMT1 gene, an aluminium-activated malate transporter. The primers and probe were elaborated for real-time PCR-based qualitative and quantitative assay. The size of amplified product is 95 base pairs. The specificity was assessed on 17 monocot and dicot plant species. The established real-time PCR assay amplified only T. aestivum-derived DNA; no amplification occurred on other phylogenetically related species, including durum wheat (T. durum). The robustness of the system was tested on the DNA of 15 common wheat cultivars using 20 000 genomic copies per PCR the mean cycle threshold (Ct) values of 24.02 +/- 0.251 were obtained. The absolute limits of detection and quantification of the real-time PCR assay were estimated to 2 and 20 haploid genome copies of common wheat, respectively. The linearity was experimentally validated on 2-fold serial dilutions of DNA from 650 to 20 000 haploid genome copies. All these results show that the real-time PCR assay developed on the ALMT1 gene is suitable to be used as an endogenous reference gene for PCR-based specific detection and quantification of T. aestivum-derived DNA in various applications, in particular for the detection and quantification of genetically modified materials in common wheat.

  19. Integrative analysis of genes and miRNA alterations in human embryonic stem cells-derived neural cells after exposure to silver nanoparticles.

    Science.gov (United States)

    Oh, Jung-Hwa; Son, Mi-Young; Choi, Mi-Sun; Kim, Soojin; Choi, A-Young; Lee, Hyang-Ae; Kim, Ki-Suk; Kim, Janghwan; Song, Chang Woo; Yoon, Seokjoo

    2016-05-15

    Given the rapid growth of engineered and customer products made of silver nanoparticles (Ag NPs), understanding their biological and toxicological effects on humans is critically important. The molecular developmental neurotoxic effects associated with exposure to Ag NPs were analyzed at the physiological and molecular levels, using an alternative cell model: human embryonic stem cell (hESC)-derived neural stem/progenitor cells (NPCs). In this study, the cytotoxic effects of Ag NPs (10-200μg/ml) were examined in these hESC-derived NPCs, which have a capacity for neurogenesis in vitro, at 6 and 24h. The results showed that Ag NPs evoked significant toxicity in hESC-derived NPCs at 24h in a dose-dependent manner. In addition, Ag NPs induced cell cycle arrest and apoptosis following a significant increase in oxidative stress in these cells. To further clarify the molecular mechanisms of the toxicological effects of Ag NPs at the transcriptional and post-transcriptional levels, the global expression profiles of genes and miRNAs were analyzed in hESC-derived NPCs after Ag NP exposure. The results showed that Ag NPs induced oxidative stress and dysfunctional neurogenesis at the molecular level in hESC-derived NPCs. Based on this hESC-derived neural cell model, these findings have increased our understanding of the molecular events underlying developmental neurotoxicity induced by Ag NPs in humans. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Concerted transcription of auxin and carbohydrate homeostasis-related genes underlies improved adventitious rooting of microcuttings derived from far-red treated Eucalyptus globulus Labill mother plants.

    Science.gov (United States)

    Ruedell, Carolina Michels; de Almeida, Márcia Rodrigues; Fett-Neto, Arthur Germano

    2015-12-01

    Economically important plant species, such as Eucalyptus globulus, are often rooting recalcitrant. We have previously shown that far-red light enrichment applied to E. globulus donor-plants improved microcutting rooting competence and increased rooting zone/shoot carbohydrate ratio. To better understand this developmental response, the relative expression profiles of genes involved in auxin signaling (ARF6, ARF8, AGO1), biosynthesis (YUC3) and transport (AUX1, PIN1, PIN2); sucrose cleavage (SUS1, CWINV1), transport (SUC5), hexose phosphorylation (HXK1, FLN1) and starch biosynthesis (SS3) were quantified during adventitious rooting of E. globulus microcuttings derived from donor plants exposed to far-red or white light. Expression of auxin transport-related genes increased in the first days of root induction. Far-red enrichment of donor plants induced ARF6, ARF8 and AGO1 in microcuttings. The first two gene products could activate GH3 and other rooting related genes, whereas AGO1 deregulation of the repressor ARF17 may relief rooting inhibition. Increased sink strength at the basal stem with sucrose unloading in root tissue mediated by SUC and subsequent hydrolysis by SUS1 were also supported by gene expression profile. Fructose phosphorylation and starch biosynthesis could also contribute to proper carbon allocation at the site of rooting, as evidenced by increased expression of related genes. These data are in good agreement with increased contents of hexoses and starch at the cutting base severed from far-red exposed donor plants. To sum up, pathways integrating auxin and carbohydrate metabolism were activated in microcuttings derived from donor plants exposed to far red light enrichment, thereby improving rooting response in E. globulus. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  1. Gene expression profiling of peripheral blood mononuclear cells (PBMC) from Mycobacterium bovis infected cattle after in vitro antigenic stimulation with purified protein derivative of tuberculin (PPD).

    Science.gov (United States)

    Meade, Kieran G; Gormley, Eamonn; Park, Stephen D E; Fitzsimons, Tara; Rosa, Guilherme J M; Costello, Eamon; Keane, Joseph; Coussens, Paul M; MacHugh, David E

    2006-09-15

    Microarray analysis of messenger RNA (mRNA) abundance was used to investigate the gene expression program of peripheral blood mononuclear cells (PBMC) from cattle infected with Mycobacterium bovis, the causative agent of bovine tuberculosis. An immunospecific bovine microarray platform (BOTL-4) with spot features representing 1336 genes was used for transcriptional profiling of PBMC from six M. bovis-infected cattle stimulated in vitro with bovine purified protein derivative of tuberculin (PPD-bovine). Cells were harvested at four time points (3 h, 6 h, 12 h and 24 h post-stimulation) and a split-plot design with pooled samples was used for the microarray experiment to compare gene expression between PPD-bovine stimulated PBMC and unstimulated controls for each time point. Statistical analyses of these data revealed 224 genes (approximately 17% of transcripts on the array) differentially expressed between stimulated and unstimulated PBMC across the 24 h time course (PPPD-bovine across the 24 h time course. However, perturbation of the PBMC transcriptome was most apparent at time points 3 h and 12 h post-stimulation, with 81 and 84 genes differentially expressed, respectively. In addition, a more stringent statistical threshold (PPPD-bovine-, PPD-avian- and Concanavalin A (ConA) stimulated PBMC, including the interferon-gamma gene (IFNG), which was upregulated in PBMC stimulated with PPD-bovine (40-fold), PPD-avian (10-fold) and ConA (8-fold) after in vitro culture for 12 h. The pattern of expression of these genes in PPD-bovine stimulated PBMC provides the first description of an M. bovis-specific signature of infection that may provide insights into the molecular basis of the host response to infection. Although the present study was carried out with mixed PBMC cell populations, it will guide future studies to dissect immune cell-specific gene expression patterns in response to M. bovis infection.

  2. Homozygous deletion of the α- and β1-interferon genes in human leukemia and derived cell lines

    International Nuclear Information System (INIS)

    Diaz, M.O.; Ziemin, S.; Le Beau, M.M.; Pitha, P.; Smith, S.D.; Chilcote, R.R.; Rowley, J.D.

    1988-01-01

    The loss of bands p21-22 from one chromosome 9 homologue as a consequence of a deletion of the short arm [del(9p)], unbalanced translocation, or monosomy 9 is frequently observed in the malignant cells of patients with lymphoid neoplasias, including acute lymphoblastic leukemia and non-Hodgkin lymphoma. The α- and β 1 -interferon genes have been assigned to this chromosome region (9p21-22). The authors now present evidence of the homozygous deletion of the interferon genes in neoplastic hematopoietic cell lines and primary leukemia cells in the presence or absence of chromosomal deletions that are detectable at the level of the light microscope. In these cell lines, the deletion of the interferon genes is accompanied by a deficiency of 5'-methylthioadenosine phosphorylase, an enzyme of purine metabolism. These homozygous deletions may be associated with the loss of a tumor-suppressor gene that is involved in the development of these neoplasias. The relevant genes may be either the interferon genes themselves or a gene that has a tumor-suppressor function and is closely linked to them

  3. Decreased expression level of BER genes in Alzheimer's disease patients is not derivative of their DNA methylation status.

    Science.gov (United States)

    Sliwinska, Agnieszka; Sitarek, Przemysław; Toma, Monika; Czarny, Piotr; Synowiec, Ewelina; Krupa, Renata; Wigner, Paulina; Bialek, Katarzyna; Kwiatkowski, Dominik; Korycinska, Anna; Majsterek, Ireneusz; Szemraj, Janusz; Galecki, Piotr; Sliwinski, Tomasz

    2017-10-03

    Neurodegeneration in Alzheimer's disease can be caused by accumulation of oxidative DNA damage resulting from altered expression of genes involved in the base excision repair system (BER). Promoter methylation can affect the profile of BER genes expression. Decreased expression of BER genes was observed in the brains of AD patients. The aim of our study was to compare the expression and methylation profiles of six genes coding for proteins involved in BER, namely: hOGG1, APE1, MUTYH, NEIL1, PARP1 and XRCC1, in the peripheral blood cells of AD patients and healthy volunteers. The study consisted of 100 persons diagnosed with Alzheimer's disease according to DSM-IV criteria, and 110 healthy volunteers. DNA and total RNA were isolated from venous blood cells. Promoter methylation profiles were obtained by High Resolution Melting (HRM) analysis of bisulfide converted DNA samples. Real-time PCR with TaqMan probes was employed for gene expression analysis. APE1, hOGG1, MUTYH, PARP1 and NEIL1 were significantly (pgenes. The methylation status of promoters is not associated with downregulation of BER genes. Our results show that downregulation of BER genes detected in peripheral blood samples could reflect the changes occurring in the brain of patients with AD, and may be a useful biomarker of this disease. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Integrative analysis of genes and miRNA alterations in human embryonic stem cells-derived neural cells after exposure to silver nanoparticles

    International Nuclear Information System (INIS)

    Oh, Jung-Hwa; Son, Mi-Young; Choi, Mi-Sun; Kim, Soojin; Choi, A-young; Lee, Hyang-Ae; Kim, Ki-Suk; Kim, Janghwan; Song, Chang Woo; Yoon, Seokjoo

    2016-01-01

    Given the rapid growth of engineered and customer products made of silver nanoparticles (Ag NPs), understanding their biological and toxicological effects on humans is critically important. The molecular developmental neurotoxic effects associated with exposure to Ag NPs were analyzed at the physiological and molecular levels, using an alternative cell model: human embryonic stem cell (hESC)-derived neural stem/progenitor cells (NPCs). In this study, the cytotoxic effects of Ag NPs (10–200 μg/ml) were examined in these hESC-derived NPCs, which have a capacity for neurogenesis in vitro, at 6 and 24 h. The results showed that Ag NPs evoked significant toxicity in hESC-derived NPCs at 24 h in a dose-dependent manner. In addition, Ag NPs induced cell cycle arrest and apoptosis following a significant increase in oxidative stress in these cells. To further clarify the molecular mechanisms of the toxicological effects of Ag NPs at the transcriptional and post-transcriptional levels, the global expression profiles of genes and miRNAs were analyzed in hESC-derived NPCs after Ag NP exposure. The results showed that Ag NPs induced oxidative stress and dysfunctional neurogenesis at the molecular level in hESC-derived NPCs. Based on this hESC-derived neural cell model, these findings have increased our understanding of the molecular events underlying developmental neurotoxicity induced by Ag NPs in humans. - Highlights: • This system served as a suitable model for developmental neurotoxicity testing. • Ag NPs induce the apoptosis in human neural cells by ROS generation. • Genes for development of neurons were dysregulated in response to Ag NPs. • Molecular events during early developmental neurotoxicity were proposed.

  5. Integrative analysis of genes and miRNA alterations in human embryonic stem cells-derived neural cells after exposure to silver nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Jung-Hwa [Korea Institute of Toxicology (KIT), Daejeon 34114 (Korea, Republic of); Department of human and environmental toxicology, University of Science & Technology, Daejeon 34113 (Korea, Republic of); Son, Mi-Young [Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahangno, Yuseong-gu, Daejeon 34141 (Korea, Republic of); Department of functional genomics, University of Science & Technology, 217 Gajungro, Yuseong-gu, Daejeon 34113 (Korea, Republic of); Choi, Mi-Sun; Kim, Soojin; Choi, A-young [Korea Institute of Toxicology (KIT), Daejeon 34114 (Korea, Republic of); Lee, Hyang-Ae; Kim, Ki-Suk [Korea Institute of Toxicology (KIT), Daejeon 34114 (Korea, Republic of); Department of human and environmental toxicology, University of Science & Technology, Daejeon 34113 (Korea, Republic of); Kim, Janghwan [Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahangno, Yuseong-gu, Daejeon 34141 (Korea, Republic of); Department of functional genomics, University of Science & Technology, 217 Gajungro, Yuseong-gu, Daejeon 34113 (Korea, Republic of); Song, Chang Woo, E-mail: cwsong@kitox.re.kr [Korea Institute of Toxicology (KIT), Daejeon 34114 (Korea, Republic of); Department of human and environmental toxicology, University of Science & Technology, Daejeon 34113 (Korea, Republic of); Yoon, Seokjoo, E-mail: sjyoon@kitox.re.kr [Korea Institute of Toxicology (KIT), Daejeon 34114 (Korea, Republic of); Department of human and environmental toxicology, University of Science & Technology, Daejeon 34113 (Korea, Republic of)

    2016-05-15

    Given the rapid growth of engineered and customer products made of silver nanoparticles (Ag NPs), understanding their biological and toxicological effects on humans is critically important. The molecular developmental neurotoxic effects associated with exposure to Ag NPs were analyzed at the physiological and molecular levels, using an alternative cell model: human embryonic stem cell (hESC)-derived neural stem/progenitor cells (NPCs). In this study, the cytotoxic effects of Ag NPs (10–200 μg/ml) were examined in these hESC-derived NPCs, which have a capacity for neurogenesis in vitro, at 6 and 24 h. The results showed that Ag NPs evoked significant toxicity in hESC-derived NPCs at 24 h in a dose-dependent manner. In addition, Ag NPs induced cell cycle arrest and apoptosis following a significant increase in oxidative stress in these cells. To further clarify the molecular mechanisms of the toxicological effects of Ag NPs at the transcriptional and post-transcriptional levels, the global expression profiles of genes and miRNAs were analyzed in hESC-derived NPCs after Ag NP exposure. The results showed that Ag NPs induced oxidative stress and dysfunctional neurogenesis at the molecular level in hESC-derived NPCs. Based on this hESC-derived neural cell model, these findings have increased our understanding of the molecular events underlying developmental neurotoxicity induced by Ag NPs in humans. - Highlights: • This system served as a suitable model for developmental neurotoxicity testing. • Ag NPs induce the apoptosis in human neural cells by ROS generation. • Genes for development of neurons were dysregulated in response to Ag NPs. • Molecular events during early developmental neurotoxicity were proposed.

  6. Esophageal cancer related gene-4 is a choroid plexus-derived injury response gene: evidence for a biphasic response in early and late brain injury.

    Directory of Open Access Journals (Sweden)

    Sonia Podvin

    Full Text Available By virtue of its ability to regulate the composition of cerebrospinal fluid (CSF, the choroid plexus (CP is ideally suited to instigate a rapid response to traumatic brain injury (TBI by producing growth regulatory proteins. For example, Esophageal Cancer Related Gene-4 (Ecrg4 is a tumor suppressor gene that encodes a hormone-like peptide called augurin that is present in large concentrations in CP epithelia (CPe. Because augurin is thought to regulate senescence, neuroprogenitor cell growth and differentiation in the CNS, we evaluated the kinetics of Ecrg4 expression and augurin immunoreactivity in CPe after CNS injury. Adult rats were injured with a penetrating cortical lesion and alterations in augurin immunoreactivity were examined by immunohistochemistry. Ecrg4 gene expression was characterized by in situ hybridization. Cell surface augurin was identified histologically by confocal microscopy and biochemically by sub-cellular fractionation. Both Ecrg4 gene expression and augurin protein levels were decreased 24-72 hrs post-injury but restored to uninjured levels by day 7 post-injury. Protein staining in the supraoptic nucleus of the hypothalamus, used as a control brain region, did not show a decrease of auguin immunoreactivity. Ecrg4 gene expression localized to CPe cells, and augurin protein to the CPe ventricular face. Extracellular cell surface tethering of 14 kDa augurin was confirmed by cell surface fractionation of primary human CPe cells in vitro while a 6-8 kDa fragment of augurin was detected in conditioned media, indicating release from the cell surface by proteolytic processing. In rat CSF however, 14 kDa augurin was detected. We hypothesize the initial release and proteolytic processing of augurin participates in the activation phase of injury while sustained Ecrg4 down-regulation is dysinhibitory during the proliferative phase. Accordingly, augurin would play a constitutive inhibitory function in normal CNS while down

  7. Functional 5' UTR mRNA structures in eukaryotic translation regulation and how to find them.

    Science.gov (United States)

    Leppek, Kathrin; Das, Rhiju; Barna, Maria

    2018-03-01

    RNA molecules can fold into intricate shapes that can provide an additional layer of control of gene expression beyond that of their sequence. In this Review, we discuss the current mechanistic understanding of structures in 5' untranslated regions (UTRs) of eukaryotic mRNAs and the emerging methodologies used to explore them. These structures may regulate cap-dependent translation initiation through helicase-mediated remodelling of RNA structures and higher-order RNA interactions, as well as cap-independent translation initiation through internal ribosome entry sites (IRESs), mRNA modifications and other specialized translation pathways. We discuss known 5' UTR RNA structures and how new structure probing technologies coupled with prospective validation, particularly compensatory mutagenesis, are likely to identify classes of structured RNA elements that shape post-transcriptional control of gene expression and the development of multicellular organisms.

  8. Heat degradation of eukaryotic and bacterial DNA: an experimental model for paleomicrobiology

    Directory of Open Access Journals (Sweden)

    Nguyen-Hieu Tung

    2012-09-01

    Full Text Available Abstract Background Theoretical models suggest that DNA degradation would sharply limit the PCR-based detection of both eukaryotic and prokaryotic DNA within ancient specimens. However, the relative extent of decay of eukaryote and prokaryote DNA over time is a matter of debate. In this study, the murine macrophage cell line J774, alone or infected with Mycobacterium smegmatis bacteria, were killed after exposure to 90°C dry heat for intervals ranging from 1 to 48 h in order to compare eukaryotic cells, extracellular bacteria and intracellular bacteria. The sizes of the resulting mycobacterial rpoB and murine rpb2 homologous gene fragments were then determined by real-time PCR and fluorescent probing. Findings The cycle threshold (Ct values of PCR-amplified DNA fragments from J774 cells and the M. smegmatis negative controls (without heat exposure varied from 26–33 for the J774 rpb2 gene fragments and from 24–29 for M. smegmatis rpoB fragments. After 90°C dry heat incubation for up to 48 h, the Ct values of test samples increased relative to those of the controls for each amplicon size. For each dry heat exposure time, the Ct values of the 146-149-bp fragments were lower than those of 746-747-bp fragments. During the 4- to 24-h dry heat incubation, the non-infected J774 cell DNA was degraded into 597-bp rpb2 fragments. After 48 h, however, only 450-bp rpb2 fragments of both non-infected and infected J774 cells could be amplified. In contrast, the 746-bp rpoB fragments of M. smegmatis DNA could be amplified after the 48-h dry heat exposure in all experiments. Infected and non-infected J774 cell DNA was degraded more rapidly than M. smegmatis DNA after dry heat exposure (ANOVA test, p  Conclusion In this study, mycobacterial DNA was more resistant to dry-heat stress than eukaryotic DNA. Therefore, the detection of large, experimental, ancient mycobacterial DNA fragments is a suitable approach for paleomicrobiological studies.

  9. Expression of the genes dual oxidase 2, lipocalin 2 and regenerating islet-derived 1 alpha in Crohn's disease

    DEFF Research Database (Denmark)

    Csillag, C.; Nielsen, O.H.; Vainer, Ben

    2007-01-01

    colonoscopically from 33 CD patients and from 17 control subjects. All controls and 10 CD patients were medication-free at the time of colonoscopy. The Human Genome U133 Plus 2.0 GeneChip Array was used for gene profiling. Hybridization data were analysed with dChip software. Results were confirmed by real......-time reverse transcriptase polymerase chain reaction (RT-PCR). Protein product expression of selected genes was assessed by immunohistochemistry using the Envision+ visualization technique. RESULTS: The expression profile was not homogeneous with the statistical cut-point settings applied. In comparison......, fold change 3.9), codes for a mitogenic protein; this could not be confirmed by RT-PCR. Medication-free patients had no differentially expressed genes as compared with controls. Immunohistochemistry indicated that these proteins were produced by epithelial cells (REG1A, LCN2) and leucocytes (DUOX2...

  10. An algorithm for detecting eukaryotic sequences in metagenomic ...

    Indian Academy of Sciences (India)

    species but also from accidental contamination from the genome of eukaryotic host cells. The latter scenario generally occurs in the case of host-associated metagenomes, e.g. microbes living in human gut. In such cases, one needs to identify and remove contaminating host DNA sequences, since the latter sequences will ...

  11. Potential of industrial biotechnology with cyanobacteria and eukaryotic microalgae

    NARCIS (Netherlands)

    Wijffels, R.H.; Kruse, O.; Hellingwerf, K.J.

    2013-01-01

    Both cyanobacteria and eukaryotic microalgae are promising organisms for sustainable production of bulk products such as food, feed, materials, chemicals and fuels. In this review we will summarize the potential and current biotechnological developments.Cyanobacteria are promising host organisms for

  12. A Synthetic Biology Framework for Programming Eukaryotic Transcription Functions

    Science.gov (United States)

    Khalil, Ahmad S.; Lu, Timothy K.; Bashor, Caleb J.; Ramirez, Cherie L.; Pyenson, Nora C.; Joung, J. Keith; Collins, James J.

    2013-01-01

    SUMMARY Eukaryotic transcription factors (TFs) perform complex and combinatorial functions within transcriptional networks. Here, we present a synthetic framework for systematically constructing eukaryotic transcription functions using artificial zinc fingers, modular DNA-binding domains found within many eukaryotic TFs. Utilizing this platform, we construct a library of orthogonal synthetic transcription factors (sTFs) and use these to wire synthetic transcriptional circuits in yeast. We engineer complex functions, such as tunable output strength and transcriptional cooperativity, by rationally adjusting a decomposed set of key component properties, e.g., DNA specificity, affinity, promoter design, protein-protein interactions. We show that subtle perturbations to these properties can transform an individual sTF between distinct roles (activator, cooperative factor, inhibitory factor) within a transcriptional complex, thus drastically altering the signal processing behavior of multi-input systems. This platform provides new genetic components for synthetic biology and enables bottom-up approaches to understanding the design principles of eukaryotic transcriptional complexes and networks. PMID:22863014

  13. Geminin: a major DNA replication safeguard in higher eukaryotes

    DEFF Research Database (Denmark)

    Melixetian, Marina; Helin, Kristian

    2004-01-01

    Eukaryotes have evolved multiple mechanisms to restrict DNA replication to once per cell cycle. These mechanisms prevent relicensing of origins of replication after initiation of DNA replication in S phase until the end of mitosis. Most of our knowledge of mechanisms controlling prereplication...

  14. Eu-Detect: An algorithm for detecting eukaryotic sequences in ...

    Indian Academy of Sciences (India)

    Supplementary figure 1. Plots depicting the classification accuracy of Eu-Detect with various combinations of. 'cumulative sequence count' (40K, 50K, 60K, 70K, 80K) and 'coverage threshold' (20%, 30%, 40%, 50%, 60%, 70%,. 80%). While blue bars represent Eu-Detect's average classification accuracy with eukaryotic ...

  15. Uncoupling of Sister Replisomes during Eukaryotic DNA Replication

    NARCIS (Netherlands)

    Yardimci, Hasan; Loveland, Anna B.; Habuchi, Satoshi; van Oijen, Antoine M.; Walter, Johannes C.

    2010-01-01

    The duplication of eukaryotic genomes involves the replication of DNA from multiple origins of replication. In S phase, two sister replisomes assemble at each active origin, and they replicate DNA in opposite directions. Little is known about the functional relationship between sister replisomes.

  16. Topological variation in single-gene phylogenetic trees

    OpenAIRE

    Castresana, Jose

    2007-01-01

    A recent large-scale phylogenomic study has shown the great degree of topological variation that can be found among eukaryotic phylogenetic trees constructed from single genes, highlighting the problems that can be associated with gene sampling in phylogenetic studies.

  17. De Novo Assembly and Genome Analyses of the Marine-Derived Scopulariopsis brevicaulis Strain LF580 Unravels Life-Style Traits and Anticancerous Scopularide Biosynthetic Gene Cluster.

    Science.gov (United States)

    Kumar, Abhishek; Henrissat, Bernard; Arvas, Mikko; Syed, Muhammad Fahad; Thieme, Nils; Benz, J Philipp; Sørensen, Jens Laurids; Record, Eric; Pöggeler, Stefanie; Kempken, Frank

    2015-01-01

    The marine-derived Scopulariopsis brevicaulis strain LF580 produces scopularides A and B, which have anticancerous properties. We carried out genome sequencing using three next-generation DNA sequencing methods. De novo hybrid assembly yielded 621 scaffolds with a total size of 32.2 Mb and 16298 putative gene models. We identified a large non-ribosomal peptide synthetase gene (nrps1) and supporting pks2 gene in the same biosynthetic gene cluster. This cluster and the genes within the cluster are functionally active as confirmed by RNA-Seq. Characterization of carbohydrate-active enzymes and major facilitator superfamily (MFS)-type transporters lead to postulate S. brevicaulis originated from a soil fungus, which came into contact with the marine sponge Tethya aurantium. This marine sponge seems to provide shelter to this fungus and micro-environment suitable for its survival in the ocean. This study also builds the platform for further investigations of the role of life-style and secondary metabolites from S. brevicaulis.

  18. Uniting sex and eukaryote origins in an emerging oxygenic world.

    Science.gov (United States)

    Gross, Jeferson; Bhattacharya, Debashish

    2010-08-23

    Theories about eukaryote origins (eukaryogenesis) need to provide unified explanations for the emergence of diverse complex features that define this lineage. Models that propose a prokaryote-to-eukaryote transition are gridlocked between the opposing "phagocytosis first" and "mitochondria as seed" paradigms, neither of which fully explain the origins of eukaryote cell complexity. Sex (outcrossing with meiosis) is an example of an elaborate trait not yet satisfactorily addressed in theories about eukaryogenesis. The ancestral nature of meiosis and its dependence on eukaryote cell biology suggest that the emergence of sex and eukaryogenesis were simultaneous and synergic and may be explained by a common selective pressure. We propose that a local rise in oxygen levels, due to cyanobacterial photosynthesis in ancient Archean microenvironments, was highly toxic to the surrounding biota. This selective pressure drove the transformation of an archaeal (archaebacterial) lineage into the first eukaryotes. Key is that oxygen might have acted in synergy with environmental stresses such as ultraviolet (UV) radiation and/or desiccation that resulted in the accumulation of reactive oxygen species (ROS). The emergence of eukaryote features such as the endomembrane system and acquisition of the mitochondrion are posited as strategies to cope with a metabolic crisis in the cell plasma membrane and the accumulation of ROS, respectively. Selective pressure for efficient repair of ROS/UV-damaged DNA drove the evolution of sex, which required cell-cell fusions, cytoskeleton-mediated chromosome movement, and emergence of the nuclear envelope. Our model implies that evolution of sex and eukaryogenesis were inseparable processes. Several types of data can be used to test our hypothesis. These include paleontological predictions, simulation of ancient oxygenic microenvironments, and cell biological experiments with Archaea exposed to ROS and UV stresses. Studies of archaeal conjugation

  19. Tumor tropism of intravenously injected human-induced pluripotent stem cell-derived neural stem cells and their gene therapy application in a metastatic breast cancer model.

    Science.gov (United States)

    Yang, Jing; Lam, Dang Hoang; Goh, Sally Sallee; Lee, Esther Xingwei; Zhao, Ying; Tay, Felix Chang; Chen, Can; Du, Shouhui; Balasundaram, Ghayathri; Shahbazi, Mohammad; Tham, Chee Kian; Ng, Wai Hoe; Toh, Han Chong; Wang, Shu

    2012-05-01

    Human pluripotent stem cells can serve as an accessible and reliable source for the generation of functional human cells for medical therapies. In this study, we used a conventional lentiviral transduction method to derive human-induced pluripotent stem (iPS) cells from primary human fibroblasts and then generated neural stem cells (NSCs) from the iPS cells. Using a dual-color whole-body imaging technology, we demonstrated that after tail vein injection, these human NSCs displayed a robust migratory capacity outside the central nervous system in both immunodeficient and immunocompetent mice and homed in on established orthotopic 4T1 mouse mammary tumors. To investigate whether the iPS cell-derived NSCs can be used as a cellular delivery vehicle for cancer gene therapy, the cells were transduced with a baculoviral vector containing the herpes simplex virus thymidine kinase suicide gene and injected through tail vein into 4T1 tumor-bearing mice. The transduced NSCs were effective in inhibiting the growth of the orthotopic 4T1 breast tumor and the metastatic spread of the cancer cells in the presence of ganciclovir, leading to prolonged survival of the tumor-bearing mice. The use of iPS cell-derived NSCs for cancer gene therapy bypasses the sensitive ethical issue surrounding the use of cells derived from human fetal tissues or human embryonic stem cells. This approach may also help to overcome problems associated with allogeneic transplantation of other types of human NSCs. Copyright © 2012 AlphaMed Press.

  20. Gene expression profiling for human iPS-derived motor neurons from sporadic ALS patients reveals a strong association between mitochondrial functions and neurodegeneration

    Science.gov (United States)

    Alves, Chrystian J.; Dariolli, Rafael; Jorge, Frederico M.; Monteiro, Matheus R.; Maximino, Jessica R.; Martins, Roberto S.; Strauss, Bryan E.; Krieger, José E.; Callegaro, Dagoberto; Chadi, Gerson

    2015-01-01

    Amyotrophic Lateral Sclerosis (ALS) is a fatal neurodegenerative disease that leads to widespread motor neuron death, general palsy and respiratory failure. The most prevalent sporadic ALS form is not genetically inherited. Attempts to translate therapeutic strategies have failed because the described mechanisms of disease are based on animal models carrying specific gene mutations and thus do not address sporadic ALS. In order to achieve a better approach to study the human disease, human induced pluripotent stem cell (hiPSC)-differentiated motor neurons were obtained from motor nerve fibroblasts of sporadic ALS and non-ALS subjects using the STEMCCA Cre-Excisable Constitutive Polycistronic Lentivirus system and submitted to microarray analyses using a whole human genome platform. DAVID analyses of differentially expressed genes identified molecular function and biological process-related genes through Gene Ontology. REVIGO highlighted the related functions mRNA and DNA binding, GTP binding, transcription (co)-repressor activity, lipoprotein receptor binding, synapse organization, intracellular transport, mitotic cell cycle and cell death. KEGG showed pathways associated with Parkinson's disease and oxidative phosphorylation, highlighting iron homeostasis, neurotrophic functions, endosomal trafficking and ERK signaling. The analysis of most dysregulated genes and those representative of the majority of categorized genes indicates a strong association between mitochondrial function and cellular processes possibly related to motor neuron degeneration. In conclusion, iPSC-derived motor neurons from motor nerve fibroblasts of sporadic ALS patients may recapitulate key mechanisms of neurodegeneration and may offer an opportunity for translational investigation of sporadic ALS. Large gene profiling of differentiated motor neurons from sporadic ALS patients highlights mitochondrial participation in the establishment of autonomous mechanisms associated with sporadic ALS

  1. A set of ligation-independent in vitro translation vectors for eukaryotic protein production

    Directory of Open Access Journals (Sweden)

    Endo Yaeta

    2008-03-01

    Full Text Available Abstract Background The last decade has brought the renaissance of protein studies and accelerated the development of high-throughput methods in all aspects of proteomics. Presently, most protein synthesis systems exploit the capacity of living cells to translate proteins, but their application is limited by several factors. A more flexible alternative protein production method is the cell-free in vitro protein translation. Currently available in vitro translation systems are suitable for high-throughput robotic protein production, fulfilling the requirements of proteomics studies. Wheat germ extract based in vitro translation system is likely the most promising method, since numerous eukaryotic proteins can be cost-efficiently synthesized in their native folded form. Although currently available vectors for wheat embryo in vitro translation systems ensure high productivity, they do not meet the requirements of state-of-the-art proteomics. Target genes have to be inserted using restriction endonucleases and the plasmids do not encode cleavable affinity purification tags. Results We designed four ligation independent cloning (LIC vectors for wheat germ extract based in vitro protein translation. In these constructs, the RNA transcription is driven by T7 or SP6 phage polymerase and two TEV protease cleavable affinity tags can be added to aid protein purification. To evaluate our improved vectors, a plant mitogen activated protein kinase was cloned in all four constructs. Purification of this eukaryotic protein kinase demonstrated that all constructs functioned as intended: insertion of PCR fragment by LIC worked efficiently, affinity purification of translated proteins by GST-Sepharose or MagneHis particles resulted in high purity kinase, and the affinity tags could efficiently be removed under different reaction conditions. Furthermore, high in vitro kinase activity testified of proper folding of the purified protein. Conclusion Four newly

  2. How MCM loading and spreading specify eukaryotic DNA replication initiation sites [version 1; referees: 4 approved

    Directory of Open Access Journals (Sweden)

    Olivier Hyrien

    2016-08-01

    Full Text Available DNA replication origins strikingly differ between eukaryotic species and cell types. Origins are localized and can be highly efficient in budding yeast, are randomly located in early fly and frog embryos, which do not transcribe their genomes, and are clustered in broad (10-100 kb non-transcribed zones, frequently abutting transcribed genes, in mammalian cells. Nonetheless, in all cases, origins are established during the G1-phase of the cell cycle by the loading of double hexamers of the Mcm 2-7 proteins (MCM DHs, the core of the replicative helicase. MCM DH activation in S-phase leads to origin unwinding, polymerase recruitment, and initiation of bidirectional DNA synthesis. Although MCM DHs are initially loaded at sites defined by the binding of the origin recognition complex (ORC, they ultimately bind chromatin in much greater numbers than ORC and only a fraction are activated in any one S-phase. Data suggest that the multiplicity and functional redundancy of MCM DHs provide robustness to the replication process and affect replication time and that MCM DHs can slide along the DNA and spread over large distances around the ORC. Recent studies further show that MCM DHs are displaced along the DNA by collision with transcription complexes but remain functional for initiation after displacement. Therefore, eukaryotic DNA replication relies on intrinsically mobile and flexible origins, a strategy fundamentally different from bacteria but conserved from yeast to human. These properties of MCM DHs likely contribute to the establishment of broad, intergenic replication initiation zones in higher eukaryotes.

  3. How MCM loading and spreading specify eukaryotic DNA replication initiation sites.

    Science.gov (United States)

    Hyrien, Olivier

    2016-01-01

    DNA replication origins strikingly differ between eukaryotic species and cell types. Origins are localized and can be highly efficient in budding yeast, are randomly located in early fly and frog embryos, which do not transcribe their genomes, and are clustered in broad (10-100 kb) non-transcribed zones, frequently abutting transcribed genes, in mammalian cells. Nonetheless, in all cases, origins are established during the G1-phase of the cell cycle by the loading of double hexamers of the Mcm 2-7 proteins (MCM DHs), the core of the replicative helicase. MCM DH activation in S-phase leads to origin unwinding, polymerase recruitment, and initiation of bidirectional DNA synthesis. Although MCM DHs are initially loaded at sites defined by the binding of the origin recognition complex (ORC), they ultimately bind chromatin in much greater numbers than ORC and only a fraction are activated in any one S-phase. Data suggest that the multiplicity and functional redundancy of MCM DHs provide robustness to the replication process and affect replication time and that MCM DHs can slide along the DNA and spread over large distances around the ORC. Recent studies further show that MCM DHs are displaced along the DNA by collision with transcription complexes but remain functional for initiation after displacement. Therefore, eukaryotic DNA replication relies on intrinsically mobile and flexible origins, a strategy fundamentally different from bacteria but conserved from yeast to human. These properties of MCM DHs likely contribute to the establishment of broad, intergenic replication initiation zones in higher eukaryotes.

  4. Bacterial Signaling Nucleotides Inhibit Yeast Cell Growth by Impacting Mitochondrial and Other Specifically Eukaryotic Functions

    Directory of Open Access Journals (Sweden)

    Andy Hesketh

    2017-07-01

    Full Text Available We have engineered Saccharomyces cerevisiae to inducibly synthesize the prokaryotic signaling nucleotides cyclic di-GMP (cdiGMP, cdiAMP, and ppGpp in order to characterize the range of effects these nucleotides exert on eukaryotic cell function during bacterial pathogenesis. Synthetic genetic array (SGA and transcriptome analyses indicated that, while these compounds elicit some common reactions in yeast, there are also complex and distinctive responses to each of the three nucleotides. All three are capable of inhibiting eukaryotic cell growth, with the guanine nucleotides exhibiting stronger effects than cdiAMP. Mutations compromising mitochondrial function and chromatin remodeling show negative epistatic interactions with all three nucleotides. In contrast, certain mutations that cause defects in chromatin modification and ribosomal protein function show positive epistasis, alleviating growth inhibition by at least two of the three nucleotides. Uniquely, cdiGMP is lethal both to cells growing by respiration on acetate and to obligately fermentative petite mutants. cdiGMP is also synthetically lethal with the ribonucleotide reductase (RNR inhibitor hydroxyurea. Heterologous expression of the human ppGpp hydrolase Mesh1p prevented the accumulation of ppGpp in the engineered yeast and restored cell growth. Extensive in vivo interactions between bacterial signaling molecules and eukaryotic gene function occur, resulting in outcomes ranging from growth inhibition to death. cdiGMP functions through a mechanism that must be compensated by unhindered RNR activity or by functionally competent mitochondria. Mesh1p may be required for abrogating the damaging effects of ppGpp in human cells subjected to bacterial infection.

  5. Identification of eukaryotic open reading frames in metagenomic cDNA libraries made from environmental samples.

    Science.gov (United States)

    Grant, Susan; Grant, William D; Cowan, Don A; Jones, Brian E; Ma, Yanhe; Ventosa, Antonio; Heaphy, Shaun

    2006-01-01

    Here we describe the application of metagenomic technologies to construct cDNA libraries from RNA isolated from environmental samples. RNAlater (Ambion) was shown to stabilize RNA in environmental samples for periods of at least 3 months at -20 degrees C. Protocols for library construction were established on total RNA extracted from Acanthamoeba polyphaga trophozoites. The methodology was then used on algal mats from geothermal hot springs in Tengchong county, Yunnan Province, People's Republic of China, and activated sludge from a sewage treatment plant in Leicestershire, United Kingdom. The Tenchong libraries were dominated by RNA from prokaryotes, reflecting the mainly prokaryote microbial composition. The majority of these clones resulted from rRNA; only a few appeared to be derived from mRNA. In contrast, many clones from the activated sludge library had significant similarity to eukaryote mRNA-encoded protein sequences. A library was also made using polyadenylated RNA isolated from total RNA from activated sludge; many more clones in this library were related to eukaryotic mRNA sequences and proteins. Open reading frames (ORFs) up to 378 amino acids in size could be identified. Some resembled known proteins over their full length, e.g., 36% match to cystatin, 49% match to ribosomal protein L32, 63% match to ribosomal protein S16, 70% to CPC2 protein. The methodology described here permits the polyadenylated transcriptome to be isolated from environmental samples with no knowledge of the identity of the microorganisms in the sample or the necessity to culture them. It has many uses, including the identification of novel eukaryotic ORFs encoding proteins and enzymes.

  6. A small and efficient dimerization/packaging signal of rat VL30 RNA and its use in murine leukemia virus-VL30-derived vectors for gene transfer.

    Science.gov (United States)

    Torrent, C; Gabus, C; Darlix, J L

    1994-02-01

    Retroviral genomes consist of two identical RNA molecules associated at their 5' ends by the dimer linkage structure located in the packaging element (Psi or E) necessary for RNA dimerization in vitro and packaging in vivo. In murine leukemia virus (MLV)-derived vectors designed for gene transfer, the Psi + sequence of 600 nucleotides directs the packaging of recombinant RNAs into MLV virions produced by helper cells. By using in vitro RNA dimerization as a screening system, a sequence of rat VL30 RNA located next to the 5' end of the Harvey mouse sarcoma virus genome and as small as 67 nucleotides was found to form stable dimeric RNA. In addition, a purine-rich sequence located at the 5' end of this VL30 RNA seems to be critical for RNA dimerization. When this VL30 element was extended by 107 nucleotides at its 3' end and inserted into an MLV-derived vector lacking MLV Psi +, it directed the efficient encapsidation of recombinant RNAs into MLV virions. Because this VL30 packaging signal is smaller and more efficient in packaging recombinant RNAs than the MLV Psi + and does not contain gag or glyco-gag coding sequences, its use in MLV-derived vectors should render even more unlikely recombinations which could generate replication-competent viruses. Therefore, utilization of the rat VL30 packaging sequence should improve the biological safety of MLV vectors for human gene transfer.

  7. Effect of baculovirus infection on the mRNA and protein levels of the Spodoptera frugiperda eukaryotic initiation factor 4E

    NARCIS (Netherlands)

    Oers, van M.M.; Veken, van der L.T.J.N.; Vlak, J.M.; Thomas, A.A.M.

    2001-01-01

    The cDNA sequence of eukaryotic translation initiation factor eIF4E was derived from a Spodoptera frugiperda cDNA library. Eight tryptophan residues, typical for eIF4E, are strictly conserved in the encoded 210 amino acid protein. A polyclonal antiserum detected a 26 kDa protein in lepidopteran cell

  8. Gene expression patterns related to osteogenic differentiation of bone marrow-derived mesenchymal stem cells during ex vivo expansion.

    Science.gov (United States)

    Granchi, Donatella; Ochoa, Gorka; Leonardi, Elisa; Devescovi, Valentina; Baglìo, Serena Rubina; Osaba, Lourdes; Baldini, Nicola; Ciapetti, Gabriela

    2010-06-01

    Bone marrow is commonly used as a source of adult multipotent mesenchymal stem cells (MSCs), defined for their ability to differentiate in vitro into multiple lineages. The ex vivo-expanded MSCs are currently being evaluated as a strategy for the restoration of function in damaged skeletal tissue, both in cell therapy and tissue engineering applications. The aim of this study was to define gene expression patterns underlying the differentiation of MSCs into mature osteoblasts during the expansion in vitro, and to explore a variety of cell functions that cannot be easily evaluated using morphological, cytochemical, and biochemical assays. Cell cultures were obtained from bone marrow samples of six individuals undergoing total hip replacement, and a large-scale transcriptome analysis, using Affymetrix HG-U133A Plus 2.0 array (Affymetrix((R)), Santa Clara, CA), was performed at the occurrence of specific events, including the appearance of MSC surface markers, formation of colonies, and deposition of mineral nodules. We focused our attention on 213 differentially upregulated genes, some belonging to well-known pathways and some having one or more Gene Ontology annotations related to bone cell biology, including angiogenesis, bone-related genes, cell communication, development and morphogenesis, transforming growth factor-beta signaling, and Wnt signaling. Twenty-nine genes, whose role in bone cell pathophysiology has not been described yet, were found. In conclusion, gene expression patterns that characterize the early, intermediate, and late phases of the osteogenic differentiation process of ex vivo-expanded MSCs were defined. These signatures represent a useful tool to monitor the osteogenic process, and to analyze a broad spectrum of functions of MSCs cultured on scaffolds, especially when the constructs are conceived for releasing growth factors or other signals to promote bone regeneration.

  9. Chloroplast DNA sequence of the green alga Oedogonium cardiacum (Chlorophyceae: Unique genome architecture, derived characters shared with the Chaetophorales and novel genes acquired through horizontal transfer

    Directory of Open Access Journals (Sweden)

    Lemieux Claude

    2008-06-01

    Full Text Available Abstract Background To gain insight into the branching order of the five main lineages currently recognized in the green algal class Chlorophyceae and to expand our understanding of chloroplast genome evolution, we have undertaken the sequencing of chloroplast DNA (cpDNA from representative taxa. The complete cpDNA sequences previously reported for Chlamydomonas (Chlamydomonadales, Scenedesmus (Sphaeropleales, and Stigeoclonium (Chaetophorales revealed tremendous variability in their architecture, the retention of only few ancestral gene clusters, and derived clusters shared by Chlamydomonas and Scenedesmus. Unexpectedly, our recent phylogenies inferred from these cpDNAs and the partial sequences of three other chlorophycean cpDNAs disclosed two major clades, one uniting the Chlamydomonadales and Sphaeropleales (CS clade and the other uniting the Oedogoniales, Chaetophorales and Chaetopeltidales (OCC clade. Although molecular signatures provided strong support for this dichotomy and for the branching of the Oedogoniales as the earliest-diverging lineage of the OCC clade, more data are required to validate these phylogenies. We describe here the complete cpDNA sequence of Oedogonium cardiacum (Oedogoniales. Results Like its three chlorophycean homologues, the 196,547-bp Oedogonium chloroplast genome displays a distinctive architecture. This genome is one of the most compact among photosynthetic chlorophytes. It has an atypical quadripartite structure, is intron-rich (17 group I and 4 group II introns, and displays 99 different conserved genes and four long open reading frames (ORFs, three of which are clustered in the spacious inverted repeat of 35,493 bp. Intriguingly, two of these ORFs (int and dpoB revealed high similarities to genes not usually found in cpDNA. At the gene content and gene order levels, the Oedogonium genome most closely resembles its Stigeoclonium counterpart. Characters shared by these chlorophyceans but missing in members

  10. IL-1RA gene-transfected bone marrow-derived mesenchymal stem cells in APA microcapsules could alleviate rheumatoid arthritis.

    Science.gov (United States)

    Hu, Jianhua; Li, Hongjian; Chi, Guanhao; Yang, Zhao; Zhao, Yi; Liu, Wei; Zhang, Chao

    2015-01-01

    In order to investigate the encapsulation of interleukin 1 receptor antagonist (IL-RA) gene-modified mesenchymal stem cells (MSCs) in alginate-poly-L-lysine (APA) microcapsules for the persistent delivery of interleukin 1 receptor antagonist (IL-RA) to treat Rheumatoid arthritis (RA). We transfect mesenchymal stem cells with IL-RA gene, and quantify the IL-RA proteins released from the encapsulated cells followed by microencapsulation of recombinant mesenchymal stem cells, and thus observe the permeability of APA microcapsules and evaluate clinical effects after induction and treatment of collagen-induced arthritis (CIA). The concentration of IL-RA in the supernatant was determined by IL-RA ELISA kit by run in technical triplicates using samples from three separate mice. Encapsulated IL-RA gene-transfected cells were capable of constitutive delivery of IL-RA proteins for at least 30 days. Moreover, the APA microcapsules could inhibit the permeation of fluorescein isothiocyanate-conjuncted immunoglobulin G. Also, it has been found that the APA microcapsules can significantly attenuate collagen induced arthritis after delivering of APA microcapsules to rats. Our results demonstrated that the nonautologous IL-RA gene-transfected stem cells are of potential utility for RA therapy.

  11. Murine bone marrow-derived mesenchymal stem cells as vehicles for interleukin-12 gene delivery into Ewing sarcoma tumors.

    Science.gov (United States)

    Duan, Xiaoping; Guan, Hui; Cao, Ying; Kleinerman, Eugenie S

    2009-01-01

    This study evaluated the therapeutic efficacy of interleukin 12 (IL-12) gene therapy in Ewing sarcoma and whether murine mesenchymal stem cells (MSCs) could serve as vehicles for IL-12 gene delivery. MSCs were isolated from murine bone marrow cells. Cells were phenotyped using flow cytometry. Cultured MSCs differentiated into osteocytes and adipocytes using the appropriate media. Freshly isolated MSCs were transfected with adenoviral vectors containing either the beta-galactosidase (Ad:beta-gal) or the IL-12 (Ad:IL-12) gene. Expression of IL-12 was confirmed using reverse transcription polymerase chain reaction. Mice with TC71 Ewing sarcoma tumors were then treated intravenously with MSCs transfected with Ad:beta-gal or Ad:IL-12. Tumors were measured and analyzed by immunohistochemical analysis for expression of IL-12 protein. Expression of both p35 and p40 IL-12 subunits was demonstrated in MSCs transfected in vitro with Ad:IL-12. IL-12 expression was seen in tumors from mice treated with MSCs transfected with Ad:IL-12. Tumor growth was also significantly inhibited compared with that in mice treated with MSCs transfected with Ad:beta-gal. MSCs can be transfected with the IL-12 gene. These transfected cells localize to tumors after intravenous injection and induce local IL-12 protein production and the regression of established tumors. Copyright (c) 2008 American Cancer Society.

  12. Cationic niosomes an effective gene carrier composed of novel spermine-derivative cationic lipids: effect of central core structures.

    Science.gov (United States)

    Opanasopit, Praneet; Leksantikul, Lalita; Niyomtham, Nattisa; Rojanarata, Theerasak; Ngawhirunpat, Tanasait; Yingyongnarongkul, Boon-Ek

    2017-05-01

    Cationic niosomes formulated from Span 20, cholesterol (Chol) and novel spermine-based cationic lipids of multiple central core structures (di(oxyethyl)amino, di(oxyethyl)amino carboxy, 3-amino-1,2-dioxypropyl and 2-amino-1,3-dioxypropyl) were successfully prepared for improving transfection efficiency in vitro. The niosomes composed of spermine cationic lipid with central core structure of di(oxyethyl)amino revealed the highest gene transfection efficiency. To investigate the factors affecting gene transfection and cell viability including differences in the central core structures of cationic lipids, the composition of vesicles, molar ratio of cationic lipids in formulations and the weight ratio of niosomes to DNA. Cationic niosomes composed of nonionic surfactants (Span20), cholesterol and spermine-based cationic lipids of multiple central core structures were formulated. Gene transfection and cell viability were evaluated on a human cervical carcinoma cell line (HeLa cells) using pDNA encoding green fluorescent protein (pEGFP-C2). The morphology, size and charge were also characterized. High transfection efficiency was obtained from cationic niosomes composed of Span20:Chol:cationic lipid at the molar ratio of 2.5:2.5:0.5 mM. Cationic lipids with di(oxyethyl)amino as a central core structure exhibited highest transfection efficiency. In addition, there was also no serum effect on transfection efficiency. These novel cationic niosomes may constitute a good alternative carrier for gene transfection.

  13. Re-evaluating the green versus red signal in eukaryotes with secondary plastid of red algal origin

    KAUST Repository

    Burki, Fabien

    2012-05-16

    The transition from endosymbiont to organelle in eukaryotic cells involves the transfer of significant numbers of genes to the host genomes, a process known as endosymbiotic gene transfer (EGT). In the case of plastid organelles, EGTs have been shown to leave a footprint in the nuclear genome that can be indicative of ancient photosynthetic activity in present-day plastid-lacking organisms, or even hint at the existence of cryptic plastids. Here,we evaluated the impact of EGTon eukaryote genomes by reanalyzing the recently published EST dataset for Chromera velia, an interesting test case of a photosynthetic alga closely related to apicomplexan parasites. Previously, 513 genes were reported to originate from red and green algae in a 1:1 ratio. In contrast, by manually inspecting newly generated trees indicating putative algal ancestry, we recovered only 51 genes congruent with EGT, of which 23 and 9 were of red and green algal origin, respectively,whereas 19 were ambiguous regarding the algal provenance.Our approach also uncovered 109 genes that branched within a monocot angiosperm clade, most likely representing a contamination. We emphasize the lack of congruence and the subjectivity resulting from independent phylogenomic screens for EGT, which appear to call for extreme caution when drawing conclusions for major evolutionary events. 2012 The Author(s).

  14. Fine mapping of a quantitative resistance gene for gray leaf spot of maize (Zea mays L.) derived from teosinte (Z. mays ssp. parviglumis).

    Science.gov (United States)

    Zhang, Xinye; Yang, Qin; Rucker, Elizabeth; Thomason, Wade; Balint-Kurti, Peter

    2017-06-01

    In this study we mapped the QTL Qgls8 for gray leaf spot (GLS) resistance in maize to a ~130 kb region on chromosome 8 including five predicted genes. In previous work, using near isogenic line (NIL) populations in which segments of the teosinte (Zea mays ssp. parviglumis) genome had been introgressed into the background of the maize line B73, we had identified a QTL on chromosome 8, here called Qgls8, for gray leaf spot (GLS) resistance. We identified alternate teosinte alleles at this QTL, one conferring increased GLS resistance and one increased susceptibility relative to the B73 allele. Using segregating populations derived from NIL parents carrying these contrasting alleles, we were able to delimit the QTL region to a ~130 kb (based on the B73 genome) which encompassed five predicted genes.

  15. Influence of vascular endothelial growth factor stimulation and serum deprivation on gene activation patterns of human adipose tissue-derived stromal cells

    DEFF Research Database (Denmark)

    Tratwal, Josefine; Mathiasen, Anders Bruun; Juhl, Morten

    2015-01-01

    INTRODUCTION: Stimulation of mesenchymal stromal cells and adipose tissue-derived stromal cells (ASCs) with vascular endothelial growth factor (VEGF) has been used in multiple animal studies and clinical trials for regenerative purposes. VEGF stimulation is believed to promote angiogenesis and VEGF...... stimulation is usually performed under serum deprivation. Potential regenerative molecular mechanisms are numerous and the role of contributing factors is uncertain. The aim of the current study was to investigate the effect of in vitro serum deprivation and VEGF stimulation on gene expression patterns...... of ASCs. METHODS: Gene expressions of ASCs cultured in complete medium, ASCs cultured in serum-deprived medium and ASCs stimulated with VEGF in serum-deprived medium were compared. ASC characteristics according to criteria set by the International Society of Cellular Therapy were confirmed by flow...

  16. DNA-mediated gene transfer into human diploid fibroblasts derived from normal and ataxia-telangiectasia donors: parameters for DNA transfer and properties of DNA transformants

    International Nuclear Information System (INIS)

    Debenham, P.G.; Webb, M.B.T.; Masson, W.K.; Cox, R.

    1984-01-01

    An investigation was made of the feasibility of DNA-mediated gene transfer into human diploid fibroblasts derived from patients with the radiation sensitive syndrome ataxia-telangiectasia (A-T) and from a normal donor. Although they are markedly different in their growth characteristics, both normal and A-T strains give similar frequencies for DNA transfer in a model system using the recombinant plasmid pSV2-gpt. pSV2-gpt DNA transformants arise with a frequency between 10 -5 and 10 -4 per viable cell. Analysis of such transformants, although possible, is severely handicapped by the limited clonal life span of diploid human cells. Despite these problems it may be concluded that diploid human fibroblasts are competent recipients for DNA-mediated gene transfer and the putative repair deficiency of A-T does not markedly effect the efficiency of this process. (author)

  17. Characterization of Chondrogenic Gene Expression and Cartilage Phenotype Differentiation in Human Breast Adipose-Derived Stem Cells Promoted by Ginsenoside Rg1 In Vitro

    Directory of Open Access Journals (Sweden)

    Fang-Tian Xu

    2015-11-01

    Full Text Available Background/Aims: Investigating and understanding chondrogenic gene expression during the differentiation of human breast adipose-derived stem cells (HBASCs into chondrogenic cells is a prerequisite for the application of this approach for cartilage repair and regeneration. In this study, we aim to characterize HBASCs and to examine chondrogenic gene expression in chondrogenic inductive culture medium containing ginsenoside Rg1. Methods: Human breast adipose-derived stem cells at passage 3 were evaluated based on specific cell markers and their multilineage differentiation capacity. Cultured HBASCs were treated either with basic chondrogenic inductive conditioned medium alone (group A, control or with basic chondrogenic inductive medium plus 10 µg/ml (group B, 50 µg/ml (group C, or 100µg/ml ginsenoside Rg1 (group D. Cell proliferation was assessed using the CCK-8 assay for a period of 9 days. Two weeks after induction, the expression of chondrogenic genes (collagen type II, collagen type XI, ACP, COMP and ELASTIN was determined using real-time PCR in all groups. Results: The different concentrations of ginsenoside Rg1 that were added to the basic chondrogenic inductive culture medium promoted the proliferation of HBASCs at earlier stages (groups B, C, and D but resulted in chondrogenic phenotype differentiation and higher mRNA expression of collagen type II (CO-II, collagen type XI (CO-XI, acid phosphatase (ACP, cartilage oligomeric matrix protein (COMP and ELASTIN compared with the control (group A at later stages. The results reveal an obvious positive dose-effect relationship between ginsenoside Rg1 and the proliferation and chondrogenic phenotype differentiation of HBASCs in vitro. Conclusions: Human breast adipose-derived stem cells retain stem cell characteristics after expansion in culture through passage 3 and serve as a feasible source of cells for cartilage regeneration in vitro. Chondrogenesis in HBASCs was found to be prominent

  18. Genetic analysis of the Gdh and Bg genes of animal-derived Giardia duodenalis isolates in Northeastern China and evaluation of zoonotic transmission potential.

    Directory of Open Access Journals (Sweden)

    Aiqin Liu

    Full Text Available BACKGROUND: Giardia duodenalis is a common intestinal parasite that infects humans and many other mammals, mainly distributing in some areas with poor sanitation. The proportion of the human giardiasis burden attributable to G. duodenalis of animal origin differs in different geographical areas. In Mainland China, genetic data of the gdh and bg genes of G. duodenalis from animals are only limited in dogs and cats. The aim of the study was to provide information on the genetic characterizations of animal-derived G. duodenalis isolates (from rabbits, sheep and cattle at both loci in Heilongjiang Province, Northeastern China, and to assess the potential for zoonotic transmission. METHODOLOGY/PRINCIPAL FINDINGS: 61 G. duodenalis isolates from animal feces (dairy and beef cattle, sheep and rabbits in Heilongjiang Province were characterized at the gdh and bg loci in the present study. The gdh and bg gene sequences of sheep-derived G. duodenalis assemblage AI, and the gdh sequences of rabbit-derived G. duodenalis assemblage B had 100% similarity with those from humans, respectively. Novel subtypes of G. duodenalis were identified, with one and seven subtypes for assemblages A and E at the gdh locus, and two and three subtypes for assemblages B and E at the bg locus, respectively. Three pairs of the same bg sequences of assemblage E were observed in sheep and cattle. CONCLUSIONS/SIGNIFICANCE: This is the first description of genetic characterizations of the gdh and bg genes of G. duodenalis from rabbits, sheep and cattle in Mainland China. Homology analysis of assemblages AI and B implied the possibility of zoonotic transmission. The novel subtypes of assemblages of G. duodenalis may represent the endemic genetic characteristics of G. duodenalis in Heilongjiang Province, China.

  19. Comparison of Gene Expression in Human Embryonic Stem Cells, hESC-Derived Mesenchymal Stem Cells and Human Mesenchymal Stem Cells.

    Science.gov (United States)

    Barbet, Romain; Peiffer, Isabelle; Hatzfeld, Antoinette; Charbord, Pierre; Hatzfeld, Jacques A

    2011-01-01

    We present a strategy to identify developmental/differentiation and plasma membrane marker genes of the most primitive human Mesenchymal Stem Cells (hMSCs). Using sensitive and quantitative TaqMan Low Density Arrays (TLDA) methodology, we compared the expression of 381 genes in human Embryonic Stem Cells (hESCs), hESC-derived MSCs (hES-MSCs), and hMSCs. Analysis of differentiation genes indicated that hES-MSCs express the sarcomeric muscle lineage in addition to the classical mesenchymal lineages, suggesting they are more primitive than hMSCs. Transcript analysis of membrane antigens suggests that IL1R1(low), BMPR1B(low), FLT4(low), LRRC32(low), and CD34 may be good candidates for the detection and isolation of the most primitive hMSCs. The expression in hMSCs of cytokine genes, such as IL6, IL8, or FLT3LG, without expression of the corresponding receptor, suggests a role for these cytokines in the paracrine control of stem cell niches. Our database may be shared with other laboratories in order to explore the considerable clinical potential of hES-MSCs, which appear to represent an intermediate developmental stage between hESCs and hMSCs.

  20. The effect of estrogen on the expression of cartilage-specific genes in the chondrogenesis process of adipose-derived stem cells

    Directory of Open Access Journals (Sweden)

    Farzaneh Sadeghi

    2015-01-01

    Full Text Available Background: During adolescence, sex hormones play an important role in regulating proliferation, differentiation, maturation, and the scheduled death of chondrocytes. Although some studies have reported the regulatory role of estrogen in the development and progression of cartilage, some of the mechanisms still remain unclear, including the role of estrogen in the expression of cartilage-specific genes in chondrogenesis process, which we cover in this study. Materials and Methods: In the present study, we used adipose-derived stem cells (ADSCs to differentiate into cartilage. Differentiated cartilage cells were used in the control (without estrogen E2 in the culture medium and experimental (with estrogen in the culture medium groups to evaluate the expression of type II collagen and aggrecan as chondrogenic genes markers, with -real-time polymerase chain reaction technique. Results: Our results indicated that estrogen leads to inhibition of type II collagen gene expression and reduction of aggrecan gene expression. Conclusion: Therefore, estrogen probably has negative effects on chondrogenesis process of ADSCs.

  1. Egg ovotransferrin-derived ACE inhibitory peptide IRW increases ACE2 but decreases proinflammatory genes expression in mesenteric artery of spontaneously hypertensive rats.

    Science.gov (United States)

    Majumder, Kaustav; Liang, Guanxiang; Chen, Yanhong; Guan, LeLuo; Davidge, Sandra T; Wu, Jianping

    2015-09-01

    Egg ovotransferrin-derived angiotensin converting enzyme (ACE) inhibitory peptide IRW was previously shown to reduce blood pressure in spontaneously hypertensive rats through reduced vascular inflammation and increased nitric oxide-mediated vasorelaxation. The main objective of the present study was to investigate the molecular mechanism of this peptide through transcriptome analysis by RNAseq technique. Total RNA was extracted from kidney and mesenteric arteries; the RNAseq libraries (from untreated and IRW-treated groups) were constructed and subjected to sequence using HiSeq 2000 system (Illumina) system. A total of 12 764 and 13 352 genes were detected in kidney and mesenteric arteries, respectively. The differentially expressed (DE) genes between untreated and IRW-treated groups were identified and the functional analysis through ingenuity pathway analysis revealed a greater role of DE genes identified from mesenteric arteries than that of kidney in modulating various cardiovascular functions. Subsequent qPCR analysis further confirmed that IRW significantly increased the expression of ACE-2, ABCB-1, IRF-8, and CDH-1 while significantly decreased the expression ICAM-1 and VCAM-1 in mesenteric arteries. Our research showed for the first time that ACE inhibitory peptide IRW could contribute to its antihypertensive activity through increased ACE2 and decreased proinflammatory genes expression. © 2015 The Authors. Molecular Nutrition & Food Research published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Whole-exome sequencing and an iPSC-derived cardiomyocyte model provides a powerful platform for gene discovery in left ventricular hypertrophy

    Directory of Open Access Journals (Sweden)

    Degui eZhi

    2012-05-01

    Full Text Available Rationale: Left ventricular hypertrophy (LVH is a heritable predictor of cardiovascular disease, particularly in blacks. Objective: Determine the feasibility of combining evidence from two distinct but complimentary experimental approaches to identify novel genetic predictors of increased LV mass . Methods: Whole exome sequencing (WES was conducted in 7 African American sibling trios ascertained on high average familial LV mass indexed to height (LVMHT. WES identified 31,426 missense or nonsense mutations (MS/NS which were examined for association with LVMHT using linear mixed models adjusted for age, sex, body weight, and family relationship. To functionally assess WES findings, human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CM were stimulated to induce hypertrophy; mRNA sequencing was used to determine expression differences associated with hypertrophy onset. Results: After correction for multiple testing, 295 MS/NS variants in 265 genes were associated with LVMHT. We identified 44 of 265 WES genes differentially expressed (P<0.05 in hypertrophied cells. To further prioritize these 44 candidates, 7 supportive statistical and annotation-based criteria were used to evaluate the relevance of these genes. Five genes, HLA-B, HTT, MTSS1, SLC5A12, THBS1, were each supported by 3 criteria. THBS1 encodes an adhesive glycoprotein that promotes matrix preservation in pressure-overload LVH and harbors conserved and predicted damaging variants. Conclusions: Combining evidence from cutting-edge genetic and cellular experiments can enable identification of novel LVH risk loci.

  3. Hypothesis: Gene-rich plastid genomes in red algae may be an outcome of nuclear genome reduction.

    Science.gov (United States)

    Qiu, Huan; Lee, Jun Mo; Yoon, Hwan Su; Bhattacharya, Debashish

    2017-06-01

    Red algae (Rhodophyta) putatively diverged from the eukaryote tree of life >1.2 billion years ago and are the source of plastids in the ecologically important diatoms, haptophytes, and dinoflagellates. In general, red algae contain the largest plastid gene inventory among all such organelles derived from primary, secondary, or additional rounds of endosymbiosis. In contrast, their nuclear gene inventory is reduced when compared to their putative sister lineage, the Viridiplantae, and other photosynthetic lineages. The latter is thought to have resulted from a phase of genome reduction that occurred in the stem lineage of Rhodophyta. A recent comparative analysis of a taxonomically broad collection of red algal and Viridiplantae plastid genomes demonstrates that the red algal ancestor encoded ~1.5× more plastid genes than Viridiplantae. This difference is primarily explained by more extensive endosymbiotic gene transfer (EGT) in the stem lineage of Viridiplantae, when compared to red algae. We postulate that limited EGT in Rhodophytes resulted from the countervailing force of ancient, and likely recurrent, nuclear genome reduction. In other words, the propensity for nuclear gene loss led to the retention of red algal plastid genes that would otherwise have undergone intracellular gene transfer to the nucleus. This hypothesis recognizes the primacy of nuclear genome evolution over that of plastids, which have no inherent control of their gene inventory and can change dramatically (e.g., secondarily non-photosynthetic eukaryotes, dinoflagellates) in response to selection acting on the host lineage. © 2017 Phycological Society of America.

  4. Complex multicellular functions at a unicellular eukaryote level: Learning, memory, and immunity.

    Science.gov (United States)

    Csaba, György

    2017-06-01

    According to experimental data, eukaryote unicellulars are able to learn, have immunity and memory. Learning is carried out in a very primitive form, and the memory is not neural but an epigenetic one. However, this epigenetic memory, which is well justified by the presence and manifestation of hormonal imprinting, is strong and permanent in the life of cell and also in its progenies. This memory is epigenetically executed by the alteration and fixation of methylation pattern of genes without changes in base sequences. The immunity of unicellulars is based on self/non-self discrimination, which leads to the destruction of non-self invaders and utilization of them as nourishment (by phagocytosis). The tools of learning, memory, and immunity of unicellulars are uniformly found in plasma membrane receptors, which formed under the effect of dynamic receptor pattern generation, suggested by Koch et al., and this is the basis of hormonal imprinting, by which the encounter between a chemical substance and the cell is specifically memorized. The receptors and imprinting are also used in the later steps of evolution up to mammals (including man) in each mentioned functions. This means that learning, memory, and immunity can be deduced to a unicellular eukaryote level.

  5. Polyglutamine repeats are associated to specific sequence biases that are conserved among eukaryotes.

    Directory of Open Access Journals (Sweden)

    Matteo Ramazzotti

    Full Text Available Nine human neurodegenerative diseases, including Huntington's disease and several spinocerebellar ataxia, are associated to the aggregation of proteins comprising an extended tract of consecutive glutamine residues (polyQs once it exceeds a certain length threshold. This event is believed to be the consequence of the expansion of polyCAG codons during the replication process. This is in apparent contradiction with the fact that many polyQs-containing proteins remain soluble and are encoded by invariant genes in a number of eukaryotes. The latter suggests that polyQs expansion and/or aggregation might be counter-selected through a genetic and/or protein context. To identify this context, we designed a software that scrutinize entire proteomes in search for imperfect polyQs. The nature of residues flanking the polyQs and that of residues other than Gln within polyQs (insertions were assessed. We discovered strong amino acid residue biases robustly associated to polyQs in the 15 eukaryotic proteomes we examined, with an over-representation of Pro, Leu and His and an under-representation of Asp, Cys and Gly amino acid residues. These biases are conserved amongst unrelated proteins and are independent of specific functional classes. Our findings suggest that specific residues have been co-selected with polyQs during evolution. We discuss the possible selective pressures responsible of the observed biases.

  6. [Eukaryotic Expression and Immunogenic Research of Recombination Ebola Virus Membrane Protein Gp-Fc].

    Science.gov (United States)

    Zhang, Xiaoguang; Yang, Ren; Wang, Jiao; Wang, Xuan; Hou, Mieling; An, Lina; Zhu, Ying; Cao, Yuxi; Zeng, Yi

    2016-01-01

    We used 293 cells to express the recombinant membrane protein of the Ebola virus. Then, the immunogenicity of the recombinant protein was studied by immunized BALB/c mice. According to the codon use frequency of humans, the gene encoding the extracellular domain of the Ebola virus membrane protein was optimized, synthesized, and inserted into the eukaryotic expression plasmid pXG-Fc to construct the human IgG Fc and Ebola GP fusion protein expression plasmid pXG-modGP-Fc. To achieve expression, the fusion protein expression vector was transfected into high-density 293 cells using transient transfection technology. The recombinant protein was purified by protein A affinity chromatography. BALB/c mice were immunized with the purified fusion protein, and serum antibody titers evaluated by an indirect enzyme-linked immunosorbent assay (ELISA). Purification and analyses of the protein revealed that the eukaryotic expression vector could express the recombinant protein GP-Fc effectively, and that the recombinant protein in the supernatant of the cell culture was present as a dimer. After immunization with the purified recombinant protein, a high titer of antigen-specific IgG could be detected in the serum of immunized mice by indirect ELISA, showing that the recombinant protein had good immunogenicity. These data suggest that we obtained a recombinant protein with good immunogenicity. Our study is the basis for development of a vaccine against the Ebola virus and for screening of monoclonal antibodies.

  7. Extracellular DNA amplicon sequencing reveals high levels of benthic eukaryotic diversity in the central Red Sea

    KAUST Repository

    Pearman, John K.

    2015-11-01

    The present study aims to characterize the benthic eukaryotic biodiversity patterns at a coarse taxonomic level in three areas of the central Red Sea (a lagoon, an offshore area in Thuwal and a shallow coastal area near Jeddah) based on extracellular DNA. High-throughput amplicon sequencing targeting the V9 region of the 18S rRNA gene was undertaken for 32 sediment samples. High levels of alpha-diversity were detected with 16,089 operational taxonomic units (OTUs) being identified. The majority of the OTUs were assigned to Metazoa (29.2%), Alveolata (22.4%) and Stramenopiles (17.8%). Stramenopiles (Diatomea) and Alveolata (Ciliophora) were frequent in a lagoon and in shallower coastal stations, whereas metazoans (Arthropoda: Maxillopoda) were dominant in deeper offshore stations. Only 24.6% of total OTUs were shared among all areas. Beta-diversity was generally lower between the lagoon and Jeddah (nearshore) than between either of those and the offshore area, suggesting a nearshore–offshore biodiversity gradient. The current approach allowed for a broad-range of benthic eukaryotic biodiversity to be analysed with significantly less labour than would be required by other traditional taxonomic approaches. Our findings suggest that next generation sequencing techniques have the potential to provide a fast and standardised screening of benthic biodiversity at large spatial and temporal scales.

  8. The important role of von Willebrand factor in platelet-derived FVIII gene therapy for murine hemophilia A in the presence of inhibitory antibodies.

    Science.gov (United States)

    Shi, Q; Schroeder, J A; Kuether, E L; Montgomery, R R

    2015-07-01

    Our previous studies have demonstrated that targeting FVIII expression to platelets results in FVIII storage together with von Willebrand factor (VWF) in platelet α-granules and that platelet-derived FVIII (2bF8) corrects the murine hemophilia A phenotype even in the presence of high-titer anti-FVIII inhibitory antibodies (inhibitors). To explore how VWF has an impact on platelet gene therapy for hemophilia A with inhibitors. 2bF8 transgenic mice in the FVIII(-/-) background (2bF8(tg+/-) F8(-/-) ) with varying VWF phenotypes were used in this study. Animals were analyzed by VWF ELISA, FVIII activity assay, Bethesda assay and tail clip survival test. Only 18% of 2bF8(tg+/-) F8(-/-) VWF(-/-) animals, in which VWF was deficient, survived the tail clip challenge with inhibitor titers of 3-8000 BU mL(-1) . In contrast, 82% of 2bF8(tg+/-) F8(-/-) VWF(+/+) mice, which had normal VWF levels, survived tail clipping with inhibitor titers of 10-50,000 BU mL(-1) . All 2bF8(tg+/-) F8(-/-) VWF(-/-) mice without inhibitors survived tail clipping and no VWF(-/-) F8(-/-) mice survived this challenge. Because VWF is synthesized by endothelial cells and megakaryocytes and is distributed in both plasma and platelets in peripheral blood, we further investigated the effect of each compartment of VWF on platelet-FVIII gene therapy for hemophilia A with inhibitors. In the presence of inhibitors, 42% of animals survived tail clipping in the group with plasma-VWF and 50% survived in the platelet-VWF group. VWF is essential for platelet gene therapy for hemophilia A with inhibitors. Both platelet-VWF and plasma-VWF are required for optimal platelet-derived FVIII gene therapy for hemophilia A in the presence of inhibitors. © 2015 International Society on Thrombosis and Haemostasis.

  9. Comparative analysis of signature genes in PRRSV-infected porcine monocyte-derived cells at differential activation statuses

    Science.gov (United States)

    Activation statuses of monocytic cells are critically important for antiviral immunity. Devastating viruses like porcine reproductive and respiratory syndrome virus (PRRSV) are capable of directly infecting these cells, subverting host immunity. Monocyte-derived DCs (mDCs) are major target cells in ...

  10. Molecular cloning and functional characterization of the human platelet-derived growth factor alpha receptor gene promoter

    NARCIS (Netherlands)

    Afink, G. B.; Nistér, M.; Stassen, B. H.; Joosten, P. H.; Rademakers, P. J.; Bongcam-Rudloff, E.; van Zoelen, E. J.; Mosselman, S.

    1995-01-01

    Expression of the platelet-derived growth factor alpha receptor (PDGF alpha R) is strictly regulated during mammalian development and tumorigenesis. The molecular mechanisms involved in the specific regulation of PDGF alpha R expression are unknown, but transcriptional regulation of the PDGF alpha R

  11. Inhibition of Super-Enhancer Activity in Autoinflammatory Site-Derived T Cells Reduces Disease-Associated Gene Expression

    NARCIS (Netherlands)

    Peeters, Janneke G C; Vervoort, Stephin J; Tan, Sander C; Mijnheer, Gerdien; de Roock, Sytze; Vastert, Sebastiaan J.; Nieuwenhuis, Edward E S; van Wijk, Femke; Prakken, Berent J; Creyghton, Menno P; Coffer, Paul J; Mokry, Michal; van Loosdregt, Jorg

    2015-01-01

    The underlying molecular mechanisms for many autoimmune diseases are poorly understood. Juvenile idiopathic arthritis (JIA) is an exceptionally well-suited model for studying autoimmune diseases due to its early onset and the possibility to analyze cells derived from the site of inflammation.

  12. Epigenetic status of H19/IGF2 and SNRPN imprinted genes in aborted and successfully derived embryonic stem cell lines in non-human primates

    Directory of Open Access Journals (Sweden)

    Florence Wianny

    2016-05-01

    Full Text Available The imprinted genes of primate embryonic stem cells (ESCs often show altered DNA methylation. It is unknown whether these alterations emerge while deriving the ESCs. Here we studied the methylation patterns of two differentially methylated regions (DMRs, SNRPN and H19/IGF2 DMRs, during the derivation of monkey ESCs. We show that the SNRPN DMR is characteristically methylated at maternal alleles, whereas the H19/IGF2 DMR is globally highly methylated, with unusual methylation on the maternal alleles. These methylation patterns remain stable from the early stages of ESC derivation to late passages of monkey ESCs and following differentiation. Importantly, the methylation status of H19/IGF2 DMR and the expression levels of IGF2, H19, and DNMT3B mRNAs in early embryo-derived cells were correlated with their capacity to generate genuine ESC lines. Thus, we propose that these markers could be useful to predict the outcomes of establishing an ESC line in primates.

  13. Metabarcoding of benthic eukaryote communities predicts the ecological condition of estuaries

    International Nuclear Information System (INIS)

    Chariton, Anthony A.; Stephenson, Sarah; Morgan, Matthew J.; Steven, Andrew D.L.; Colloff, Matthew J.; Court, Leon N.; Hardy, Christopher M.

    2015-01-01

    DNA-derived measurements of biological composition have the potential to produce data covering all of life, and provide a tantalizing proposition for researchers and managers. We used metabarcoding to compare benthic eukaryote composition from five estuaries of varying condition. In contrast to traditional studies, we found biotic richness was greatest in the most disturbed estuary, with this being due to the large volume of extraneous material (i.e. run-off from aquaculture, agriculture and other catchment activities) being deposited in the system. In addition, we found strong correlations between composition and a number of environmental variables, including nutrients, pH and turbidity. A wide range of taxa responded to these environmental gradients, providing new insights into their sensitivities to natural and anthropogenic stressors. Metabarcoding has the capacity to bolster current monitoring techniques, enabling the decisions regarding ecological condition to be based on a more holistic view of biodiversity. - Highlights: • We used metabarcoding to examine the benthic eukaryote composition of five estuaries. • Biotic richness (based on MOTUs) was greater in the most impacted estuary. • Similarities among estuaries reflected their environmental condition. • Composition was strongly correlated with nutrients, turbidity and pH. • Metabarcoding can provide fast, comprehensive and ecologically informative data. - Using metabarcoding we were able discriminate benthos from five estuaries, and identify those taxa which responded negatively and positivity to the key environmental stressors

  14. Anionic lipids and the maintenance of membrane electrostatics in eukaryotes.

    Science.gov (United States)

    Platre, Matthieu Pierre; Jaillais, Yvon

    2017-02-01

    A wide range of signaling processes occurs at the cell surface through the reversible association of proteins from the cytosol to the plasma membrane. Some low abundant lipids are enriched at the membrane of specific compartments and thereby contribute to the identity of cell organelles by acting as biochemical landmarks. Lipids also influence membrane biophysical properties, which emerge as an important feature in specifying cellular territories. Such parameters are crucial for signal transduction and include lipid packing, membrane curvature and electrostatics. In particular, membrane electrostatics specifies the identity of the plasma membrane inner leaflet. Membrane surface charges are carried by anionic phospholipids, however the exact nature of the lipid(s) that powers the plasma membrane electrostatic field varies among eukaryotes and has been hotly debated during the last decade. Herein, we discuss the role of anionic lipids in setting up plasma membrane electrostatics and we compare similarities and differences that were found in different eukaryotic cells.

  15. Regulated eukaryotic DNA replication origin firing with purified proteins.

    Science.gov (United States)

    Yeeles, Joseph T P; Deegan, Tom D; Janska, Agnieszka; Early, Anne; Diffley, John F X

    2015-03-26

    Eukaryotic cells initiate DNA replication from multiple origins, which must be tightly regulated to promote precise genome duplication in every cell cycle. To accomplish this, initiation is partitioned into two temporally discrete steps: a double hexameric minichromosome maintenance (MCM) complex is first loaded at replication origins during G1 phase, and then converted to the active CMG (Cdc45-MCM-GINS) helicase during S phase. Here we describe the reconstitution of budding yeast DNA replication initiation with 16 purified replication factors, made from 42 polypeptides. Origin-dependent initiation recapitulates regulation seen in vivo. Cyclin-dependent kinase (CDK) inhibits MCM loading by phosphorylating the origin recognition complex (ORC) and promotes CMG formation by phosphorylating Sld2 and Sld3. Dbf4-dependent kinase (DDK) promotes replication by phosphorylating MCM, and can act either before or after CDK. These experiments define the minimum complement of proteins, protein kinase substrates and co-factors required for regulated eukaryotic DNA replication.

  16. The MCM Helicase Motor of the Eukaryotic Replisome.

    Science.gov (United States)

    Abid Ali, Ferdos; Costa, Alessandro

    2016-05-08

    The MCM motor of the CMG helicase powers ahead of the eukaryotic replication machinery to unwind DNA, in a process that requires ATP hydrolysis. The reconstitution of DNA replication in vitro has established the succession of events that lead to replication origin activation by the MCM and recent studies have started to elucidate the structural basis of duplex DNA unwinding. Despite the exciting progress, how the MCM translocates on DNA remains a matter of debate. Copyright © 2016. Published by Elsevier Ltd.

  17. Biological Influence of Deuterium on Procariotic and Eukaryotic Cells

    OpenAIRE

    Oleg Mosin; Ignat Ignatov

    2014-01-01

    Biologic influence of deuterium (D) on cells of various taxonomic groups of prokaryotic and eukaryotic microorganisms realizing methylotrophic, chemoheterotrophic, photo-organotrophic, and photosynthetic ways of assimilation of carbon substrates are investigated at growth on media with heavy water (D2О). The method of step by step adaptation technique of cells to D2О was developed, consisting in plating of cells on 2 % agarose nutrient media containing increasing gradient of concentration of ...

  18. An Evolutionary Framework for Understanding the Origin of Eukaryotes

    OpenAIRE

    Neil W. Blackstone

    2016-01-01

    Two major obstacles hinder the application of evolutionary theory to the origin of eukaryotes. The first is more apparent than real?the endosymbiosis that led to the mitochondrion is often described as ?non-Darwinian? because it deviates from the incremental evolution championed by the modern synthesis. Nevertheless, endosymbiosis can be accommodated by a multi-level generalization of evolutionary theory, which Darwin himself pioneered. The second obstacle is more serious?all of the major fea...

  19. Gram-Negative Bacterial Sensors for Eukaryotic Signal Molecules

    Directory of Open Access Journals (Sweden)

    Olivier Lesouhaitier

    2009-09-01

    Full Text Available Ample evidence exists showing that eukaryotic signal molecules synthesized and released by the host can activate the virulence of opportunistic pathogens. The sensitivity of prokaryotes to host signal molecules requires the presence of bacterial sensors. These prokaryotic sensors, or receptors, have a double function: stereospecific recognition in a complex environment and transduction of the message in order to initiate bacterial physiological modifications. As messengers are generally unable to freely cross the bacterial membrane, they require either the presence of sensors anchored in the membrane or transporters allowing direct recognition inside the bacterial cytoplasm. Since the discovery of quorum sensing, it was established that the production of virulence factors by bacteria is tightly growth-phase regulated. It is now obvious that expression of bacterial virulence is also controlled by detection of the eukaryotic messengers released in the micro-environment as endocrine or neuro-endocrine modulators. In the presence of host physiological stress many eukaryotic factors are released and detected by Gram-negative bacteria which in return rapidly adapt their physiology. For instance, Pseudomonas aeruginosa can bind elements of the host immune system such as interferon-γ and dynorphin and then through quorum sensing circuitry enhance its virulence. Escherichia coli sensitivity to the neurohormones of the catecholamines family