WorldWideScience

Sample records for eukaryotic enzymes modifying

  1. Novel eukaryotic enzymes modifying cell-surface biopolymers

    Directory of Open Access Journals (Sweden)

    Aravind L

    2010-01-01

    Full Text Available Abstract Background Eukaryotic extracellular matrices such as proteoglycans, sclerotinized structures, mucus, external tests, capsules, cell walls and waxes contain highly modified proteins, glycans and other composite biopolymers. Using comparative genomics and sequence profile analysis we identify several novel enzymes that could be potentially involved in the modification of cell-surface glycans or glycoproteins. Results Using sequence analysis and conservation we define the acyltransferase domain prototyped by the fungal Cas1p proteins, identify its active site residues and unify them to the superfamily of classical 10TM acyltransferases (e.g. oatA. We also identify a novel family of esterases (prototyped by the previously uncharacterized N-terminal domain of Cas1p that have a similar fold as the SGNH/GDSL esterases but differ from them in their conservation pattern. Conclusions We posit that the combined action of the acyltransferase and esterase domain plays an important role in controlling the acylation levels of glycans and thereby regulates their physico-chemical properties such as hygroscopicity, resistance to enzymatic hydrolysis and physical strength. We present evidence that the action of these novel enzymes on glycans might play an important role in host-pathogen interaction of plants, fungi and metazoans. We present evidence that in plants (e.g. PMR5 and ESK1 the regulation of carbohydrate acylation by these acylesterases might also play an important role in regulation of transpiration and stress resistance. We also identify a subfamily of these esterases in metazoans (e.g. C7orf58, which are fused to an ATP-grasp amino acid ligase domain that is predicted to catalyze, in certain animals, modification of cell surface polymers by amino acid or peptides. Reviewers This article was reviewed by Gaspar Jekely and Frank Eisenhaber

  2. Enzymes from Higher Eukaryotes for Industrial Biocatalysis

    Directory of Open Access Journals (Sweden)

    Zhibin Liu

    2004-01-01

    Full Text Available The industrial production of fine chemicals, feed and food ingredients, pharmaceuticals, agrochemicals and their respective intermediates relies on an increasing application of biocatalysis, i.e. on enzyme or whole-cell catalyzed conversions of molecules. Simple procedures for discovery, cloning and over-expression as well as fast growth favour fungi, yeasts and especially bacteria as sources of biocatalysts. Higher eukaryotes also harbour an almost unlimited number of potential biocatalysts, although to date the limited supply of enzymes, the high heterogeneity of enzyme preparations and the hazard of infectious contaminants keep some interesting candidates out of reach for industrial bioprocesses. In the past only a few animal and plant enzymes from agricultural waste materials were employed in food processing. The use of bacterial expression strains or non-conventional yeasts for the heterologous production of efficient eukaryotic enzymes can overcome the bottleneck in enzyme supply and provide sufficient amounts of homogenous enzyme preparations for reliable and economically feasible applications at large scale. Ideal enzymatic processes represent an environmentally friendly, »near-to-completion« conversion of (mostly non-natural substrates to pure products. Recent developments demonstrate the commercial feasibility of large-scale biocatalytic processes employing enzymes from higher eukaryotes (e.g. plants, animals and also their usefulness in some small-scale industrial applications.

  3. Allosteric regulation of epigenetic modifying enzymes.

    Science.gov (United States)

    Zucconi, Beth E; Cole, Philip A

    2017-08-01

    Epigenetic enzymes including histone modifying enzymes are key regulators of gene expression in normal and disease processes. Many drug development strategies to target histone modifying enzymes have focused on ligands that bind to enzyme active sites, but allosteric pockets offer potentially attractive opportunities for therapeutic development. Recent biochemical studies have revealed roles for small molecule and peptide ligands binding outside of the active sites in modulating the catalytic activities of histone modifying enzymes. Here we highlight several examples of allosteric regulation of epigenetic enzymes and discuss the biological significance of these findings. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Probing Chromatin-modifying Enzymes with Chemical Tools

    KAUST Repository

    Fischle, Wolfgang

    2016-02-04

    Chromatin is the universal template of genetic information in all eukaryotic organisms. Chemical modifications of the DNA-packaging histone proteins and the DNA bases are crucial signaling events in directing the use and readout of eukaryotic genomes. The enzymes that install and remove these chromatin modifications as well as the proteins that bind these marks govern information that goes beyond the sequence of DNA. Therefore, these so-called epigenetic regulators are intensively studied and represent promising drug targets in modern medicine. We summarize and discuss recent advances in the field of chemical biology that have provided chromatin research with sophisticated tools for investigating the composition, activity, and target sites of chromatin modifying enzymes and reader proteins.

  5. 21 CFR 184.1287 - Enzyme-modified fats.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Enzyme-modified fats. 184.1287 Section 184.1287... Listing of Specific Substances Affirmed as GRAS § 184.1287 Enzyme-modified fats. (a) Enzyme-modified refined beef fat, enzyme-modified butterfat, and enzyme-modified steam-rendered chicken fat are prepared...

  6. ENZYME RESISTANCE OF GENETICALLY MODIFIED STARCH POTATOES

    Directory of Open Access Journals (Sweden)

    A. Sh. Mannapova

    2015-01-01

    Full Text Available Here in this article the justification of expediency of enzyme resistant starch use in therapeutic food products is presented . Enzyme resistant starch is capable to resist to enzymatic hydrolysis in a small intestine of a person, has a low glycemic index, leads to decrease of postprandial concentration of glucose, cholesterol, triglycerides in blood and insulin reaction, to improvement of sensitivity of all organism to insulin, to increase in sense of fulness and to reduction of adjournment of fats. Resistant starch makes bifidogenшс impact on microflora of a intestine of the person, leads to increase of a quantity of lactobacillus and bifidobacterium and to increased production of butyric acid in a large intestine. In this regard the enzyme resistant starch is an important component in food for prevention and curing of human diseases such as diabetes, obesity, colitis, a cancer of large and direct intestine. One method is specified by authors for imitation of starch digestion in a human body. This method is based on the definition of an enzyme resistance of starch in vitro by its hydrolysis to glucose with application of a glucoamylase and digestive enzyme preparation Pancreatin. This method is used in researches of an enzyme resistance of starch, of genetically modified potato, high amylose corn starch Hi-Maize 1043 and HYLON VII (National Starch Food Innovation, USA, amylopectin and amylose. It is shown that the enzyme resistance of the starch emitted from genetically modified potatoes conforms to the enzyme resistance of the high amylose corn starch “Hi-Maize 1043 and HYLON VII starch”, (National Starch Food Innovation, the USA relating to the II type of enzyme resistant starch. It is established that amylopectin doesn't have the enzyme resistant properties. The results of researches are presented. They allow us to make the following conclusion: amylose in comparison with amylopectin possesses higher enzyme resistance and gives to

  7. Peptide-modified surfaces for enzyme immobilization.

    Directory of Open Access Journals (Sweden)

    Jinglin Fu

    Full Text Available BACKGROUND: Chemistry and particularly enzymology at surfaces is a topic of rapidly growing interest, both in terms of its role in biological systems and its application in biocatalysis. Existing protein immobilization approaches, including noncovalent or covalent attachments to solid supports, have difficulties in controlling protein orientation, reducing nonspecific absorption and preventing protein denaturation. New strategies for enzyme immobilization are needed that allow the precise control over orientation and position and thereby provide optimized activity. METHODOLOGY/PRINCIPAL FINDINGS: A method is presented for utilizing peptide ligands to immobilize enzymes on surfaces with improved enzyme activity and stability. The appropriate peptide ligands have been rapidly selected from high-density arrays and when desirable, the peptide sequences were further optimized by single-point variant screening to enhance both the affinity and activity of the bound enzyme. For proof of concept, the peptides that bound to β-galactosidase and optimized its activity were covalently attached to surfaces for the purpose of capturing target enzymes. Compared to conventional methods, enzymes immobilized on peptide-modified surfaces exhibited higher specific activity and stability, as well as controlled protein orientation. CONCLUSIONS/SIGNIFICANCE: A simple method for immobilizing enzymes through specific interactions with peptides anchored on surfaces has been developed. This approach will be applicable to the immobilization of a wide variety of enzymes on surfaces with optimized orientation, location and performance, and provides a potential mechanism for the patterned self-assembly of multiple enzymes on surfaces.

  8. Modified kinetics of enzymes interacting with nanoparticles

    Science.gov (United States)

    Díaz, Sebastián. A.; Breger, Joyce C.; Malanoski, Anthony; Claussen, Jonathan C.; Walper, Scott A.; Ancona, Mario G.; Brown, Carl W.; Stewart, Michael H.; Oh, Eunkeu; Susumu, Kimihiro; Medintz, Igor L.

    2015-08-01

    Enzymes are important players in multiple applications, be it bioremediation, biosynthesis, or as reporters. The business of catalysis and inhibition of enzymes is a multibillion dollar industry and understanding the kinetics of commercial enzymes can have a large impact on how these systems are optimized. Recent advances in nanotechnology have opened up the field of nanoparticle (NP) and enzyme conjugates and two principal architectures for NP conjugate systems have been developed. In the first example the enzyme is bound to the NP in a persistent manner, here we find that key factors such as directed enzyme conjugation allow for enhanced kinetics. Through controlled comparative experiments we begin to tease out specific mechanisms that may account for the enhancement. The second system is based on dynamic interactions of the enzymes with the NP. The enzyme substrate is bound to the NP and the enzyme is free in solution. Here again we find that there are many variables , such as substrate positioning and NP selection, that modify the kinetics.

  9. The transferome of metabolic genes explored: analysis of the horizontal transfer of enzyme encoding genes in unicellular eukaryotes.

    Science.gov (United States)

    Whitaker, John W; McConkey, Glenn A; Westhead, David R

    2009-01-01

    Metabolic networks are responsible for many essential cellular processes, and exhibit a high level of evolutionary conservation from bacteria to eukaryotes. If genes encoding metabolic enzymes are horizontally transferred and are advantageous, they are likely to become fixed. Horizontal gene transfer (HGT) has played a key role in prokaryotic evolution and its importance in eukaryotes is increasingly evident. High levels of endosymbiotic gene transfer (EGT) accompanied the establishment of plastids and mitochondria, and more recent events have allowed further acquisition of bacterial genes. Here, we present the first comprehensive multi-species analysis of E/HGT of genes encoding metabolic enzymes from bacteria to unicellular eukaryotes. The phylogenetic trees of 2,257 metabolic enzymes were used to make E/HGT assertions in ten groups of unicellular eukaryotes, revealing the sources and metabolic processes of the transferred genes. Analyses revealed a preference for enzymes encoded by genes gained through horizontal and endosymbiotic transfers to be connected in the metabolic network. Enrichment in particular functional classes was particularly revealing: alongside plastid related processes and carbohydrate metabolism, this highlighted a number of pathways in eukaryotic parasites that are rich in enzymes encoded by transferred genes, and potentially key to pathogenicity. The plant parasites Phytophthora were discovered to have a potential pathway for lipopolysaccharide biosynthesis of E/HGT origin not seen before in eukaryotes outside the Plantae. The number of enzymes encoded by genes gained through E/HGT has been established, providing insight into functional gain during the evolution of unicellular eukaryotes. In eukaryotic parasites, genes encoding enzymes that have been gained through horizontal transfer may be attractive drug targets if they are part of processes not present in the host, or are significantly diverged from equivalent host enzymes.

  10. Furin is a chemokine-modifying enzyme

    DEFF Research Database (Denmark)

    Hensbergen, Paul J; Verzijl, Dennis; Balog, Crina I A

    2004-01-01

    Chemokines comprise a class of structurally related proteins that are involved in many aspects of leukocyte migration under basal and inflammatory conditions. In addition to the large number of genes, limited processing of these proteins by a variety of enzymes enhances the complexity of the total...... agonist activity on the virally encoded receptor ORF74 and the direct antibacterial activity of CXCL10 are fully retained. Hence, we have identified furin as a novel chemokine-modifying enzyme in vitro and most probably also in vivo, generating a C-terminally truncated CXCL10, which fully retains its...

  11. The P3 domain of eukaryotic RNases P/MRP: making a protein-rich RNA-based enzyme.

    Science.gov (United States)

    Perederina, Anna; Krasilnikov, Andrey S

    2010-01-01

    Nuclear Ribonuclease (RNase) P is a universal essential RNA-based enzyme made of a catalytic RNA component and a protein part; eukaryotic RNase P is closely related to a universal eukaryotic ribonucleoprotein RNase MRP. The protein part of the eukaryotic RNases P/MRP is dramatically more complex than that in bacterial and archaeal RNases P. The increase in the complexity of the protein part in eukaryotic RNases P/MRP was accompanied by the appearance of a novel structural element in the RNA component: an essential and phylogenetically conserved helix-loop-helix P3 RNA domain. The crystal structure of the P3 RNA domain in a complex with protein components Pop6 and Pop7 has been recently solved. Here we discuss the most salient structural features of the P3 domain as well as its possible role in the evolutionary transition to the protein-rich eukaryotic RNases P/MRP.

  12. Domain Organization in Candida glabrata THI6, a Bifunctional Enzyme Required for Thiamin Biosynthesis in Eukaryotes

    Energy Technology Data Exchange (ETDEWEB)

    Paul, Debamita; Chatterjee, Abhishek; Begley, Tadhg P.; Ealick, Steven E. (Cornell); (TAM)

    2010-11-15

    THI6 is a bifunctional enzyme found in the thiamin biosynthetic pathway in eukaryotes. The N-terminal domain of THI6 catalyzes the ligation of the thiamin thiazole and pyrimidine moieties to form thiamin phosphate, and the C-terminal domain catalyzes the phosphorylation of 4-methyl-5-hydroxyethylthiazole in a salvage pathway. In prokaryotes, thiamin phosphate synthase and 4-methyl-5-hydroxyethylthiazole kinase are separate gene products. Here we report the first crystal structure of a eukaryotic THI6 along with several complexes that characterize the active sites responsible for the two chemical reactions. THI6 from Candida glabrata is a homohexamer in which the six protomers form a cage-like structure. Each protomer is composed of two domains, which are structurally homologous to their monofunctional bacterial counterparts. Two loop regions not found in the bacterial enzymes provide interactions between the two domains. The structures of different protein-ligand complexes define the thiazole and ATP binding sites of the 4-methyl-5-hydroxyethylthiazole kinase domain and the thiazole phosphate and 4-amino-5-hydroxymethyl-2-methylpyrimidine pyrophosphate binding sites of the thiamin phosphate synthase domain. Our structural studies reveal that the active sites of the two domains are 40 {angstrom} apart and are not connected by an obvious channel. Biochemical studies show 4-methyl-5-hydroxyethylthiazole phosphate is a substrate for THI6; however, adenosine diphospho-5{beta}-ethyl-4-methylthiazole-2-carboxylic acid, the product of THI4, is not a substrate for THI6. This suggests that an unidentified enzyme is necessary to produce the substrate for THI6 from the THI4 product.

  13. Pyruvate formate lyase (PFL) and PFL activating enzyme in the chytrid fungus Neocallimastix frontalis: a free-radical enzyme system conserved across divergent eukaryotic lineages.

    Science.gov (United States)

    Gelius-Dietrich, Gabriel; Henze, Katrin

    2004-01-01

    Fermentative formate production involves the activity of pyruvate formate lyase, an oxygen-sensitive enzyme that employs a glycyl radical in its reaction mechanism. While common among anaerobic prokaryotes, this enzyme has so far been found in only two distantly related eukaryotic lineages, anaerobic chytridiomycetes and chlorophytes. Sequence comparisons of homologues from the chytridiomycetes Piromyces and Neocallimastix, the chlorophyte Chlamydomonas, and numerous prokaryotes suggest a single, eubacterial origin of eukaryotic pyruvate formate lyases. Pyruvate formate lyase activating enzyme introduces the glycyl radical into the pyruvate formate lyase protein chain. We discovered this enzyme, which had not previously been reported from eukaryotes, in the same two eukaryotic lineages and show that it shares a similar evolutionary history to pyruvate formate lyase. Sequences with high homology to pyruvate formate lyase activating enzyme were identified in the genomes of the anaerobic protozoan parasites Trichomonas vaginalis, Entamoeba histolytica, and Giardia intestinalis. While the occurrence of pyruvate formate lyase activating enzyme together with pyruvate formate lyase in fungi and chlorophytes was to be expected, the target protein of a glycyl radical enzyme-activating enzyme in these protozoa remains to be identified.

  14. The eukaryotic enzyme Bds1 is an alkyl but not an aryl sulfohydrolase.

    Science.gov (United States)

    Waddell, Grace L; Gilmer, Caroline R; Taylor, Nicholas G; Reveral, John Randolf S; Forconi, Marcello; Fox, Jennifer L

    2017-09-16

    The eukaryotic enzyme Bds1 in Saccharomyces cerevisiae is a metallo-β-lactamase-related enzyme evolutionarily originating from bacterial horizontal gene transfer that serves an unknown biological role. Previously, Bds1 was reported to be an alkyl and aryl sulfatase. However, we demonstrate here that Bds1 acts on primary alkyl sulfates (of 6-12 carbon atoms) but not the aryl sulfates p-nitrophenyl sulfate and p-nitrocatechol sulfate. The apparent catalytic rate constant for hydrolysis of the substrate 1-hexyl sulfate by Bds1 is over 100 times lower than that of the reaction catalyzed by its bacterial homolog SdsA1. We show that Bds1 shares a catalytic mechanism with SdsA1 in which the carbon atom of the sulfate ester is the subject of nucleophilic attack, rather than the sulfur atom, resulting in C-O bond lysis. In contrast to SdsA1 and another bacterial homolog with selectivity for secondary alkyl sulfates named Pisa1, Bds1 does not show any substantial activity towards secondary alkyl sulfates. Neither Bds1 nor SdsA1 have any significant activity towards a branched primary alkyl sulfate, primary and secondary steroid sulfates, or phosphate diesters. Therefore, the enzymes homologous to SdsA1 that have been identified and characterized thus far vary in their selectivity towards primary and secondary alkyl sulfates but do not exhibit aryl sulfatase activity. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Eukaryotic formylglycine-generating enzyme catalyses a monooxygenase type of reaction.

    Science.gov (United States)

    Peng, Jianhe; Alam, Sarfaraz; Radhakrishnan, Karthikeyan; Mariappan, Malaiyalam; Rudolph, Markus Georg; May, Caroline; Dierks, Thomas; von Figura, Kurt; Schmidt, Bernhard

    2015-09-01

    C α-formylglycine (FGly) is the catalytic residue of sulfatases in eukaryotes. It is generated by a unique post-translational modification catalysed by the FGly-generating enzyme (FGE) in the endoplasmic reticulum. FGE oxidizes a cysteine residue within the conserved CxPxR sequence motif of nascent sulfatase polypeptides to FGly. Here we show that this oxidation is strictly dependent on molecular oxygen (O2) and consumes 1 mol O2 per mol FGly formed. For maximal activity FGE requires an O2 concentration of 9% (105 μM). Sustained FGE activity further requires the presence of a thiol-based reductant such as DTT. FGly is also formed in the absence of DTT, but its formation ceases rapidly. Thus inactivated FGE accumulates in which the cysteine pair Cys336/Cys341 in the catalytic site is oxidized to form disulfide bridges between either Cys336 and Cys341 or Cys341 and the CxPxR cysteine of the sulfatase. These results strongly suggest that the Cys336/Cys341 pair is directly involved in the O2 -dependent conversion of the CxPxR cysteine to FGly. The available data characterize eukaryotic FGE as a monooxygenase, in which Cys336/Cys341 disulfide bridge formation donates the electrons required to reduce one oxygen atom of O2 to water while the other oxygen atom oxidizes the CxPxR cysteine to FGly. Regeneration of a reduced Cys336/Cys341 pair is accomplished in vivo by a yet unknown reductant of the endoplasmic reticulum or in vitro by DTT. Remarkably, this monooxygenase reaction utilizes O2 without involvement of any activating cofactor. © 2015 FEBS.

  16. 21 CFR 184.1063 - Enzyme-modified lecithin.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Enzyme-modified lecithin. 184.1063 Section 184.1063... Listing of Specific Substances Affirmed as GRAS § 184.1063 Enzyme-modified lecithin. (a) Enzyme-modified... accordance with § 184.1(b)(1), the ingredient is used in food with no limitation other than current good...

  17. Substrate Specificity Profiling of Histone-Modifying Enzymes by Peptide Microarray.

    Science.gov (United States)

    Cornett, E M; Dickson, B M; Vaughan, R M; Krishnan, S; Trievel, R C; Strahl, B D; Rothbart, S B

    2016-01-01

    The dynamic addition and removal of covalent posttranslational modifications (PTMs) on histone proteins serves as a major mechanism regulating chromatin-templated biological processes in eukaryotic genomes. Histone PTMs and their combinations function by directly altering the physical structure of chromatin and as rheostats for effector protein interactions. In this chapter, we detail microarray-based methods for analyzing the substrate specificity of lysine methyltransferase and demethylase enzymes on immobilized synthetic histone peptides. Consistent with the "histone code" hypothesis, we reveal a strong influence of adjacent and, surprisingly, distant histone PTMs on the ability of histone-modifying enzymes to methylate or demethylate their substrates. This platform will greatly facilitate future investigations into histone substrate specificity and mechanisms of PTM signaling that regulate the catalytic properties of histone-modifying enzymes. © 2016 Elsevier Inc. All rights reserved.

  18. A Bacterial Homolog of a Eukaryotic Inositol Phosphate Signaling Enzyme Mediates Cross-kingdom Dialog in the Mammalian Gut

    OpenAIRE

    Stentz, Régis; Osborne, Samantha; Horn, Nikki; Li, Arthur W.H.; Hautefort, Isabelle; Bongaerts, Roy; Rouyer, Marine; Bailey, Paul; Shears, Stephen B.; Hemmings, Andrew M.; Brearley, Charles A.; Carding, Simon R.

    2014-01-01

    Summary Dietary InsP6 can modulate eukaryotic cell proliferation and has complex nutritive consequences, but its metabolism in the mammalian gastrointestinal tract is poorly understood. Therefore, we performed phylogenetic analyses of the gastrointestinal microbiome in order to search for candidate InsP6 phosphatases. We determined that prominent gut bacteria express homologs of the mammalian InsP6 phosphatase (MINPP) and characterized the enzyme from Bacteroides thetaiotaomicron (BtMinpp). W...

  19. ENZYME RESISTANCE OF GENETICALLY MODIFIED STARCH POTATOES

    OpenAIRE

    A. Sh. Mannapova; Z. A. Kanarskaya; A. V. Kanarskii; G. P. Shuvaeva

    2015-01-01

    Here in this article the justification of expediency of enzyme resistant starch use in therapeutic food products is presented . Enzyme resistant starch is capable to resist to enzymatic hydrolysis in a small intestine of a person, has a low glycemic index, leads to decrease of postprandial concentration of glucose, cholesterol, triglycerides in blood and insulin reaction, to improvement of sensitivity of all organism to insulin, to increase in sense of fulness and to reduction of adjournment ...

  20. Rhamnogalacturonan I modifying enzymes: an update

    DEFF Research Database (Denmark)

    Silva, Ines R.; Jers, Carsten; Meyer, Anne S.

    2016-01-01

    been described to be produced by Aspergillus spp. and Bacillus subtilis and are categorized in glycosyl hydrolase families 28 and 105. The RGI lyases, EC 4.2.2.23–EC 4.2.2.24, have been isolated from different fungi and bacterial species and are categorized in polysaccharide lyase families 4 and 11......-joining phylogenetic trees. Some recently detected unique structural features and dependence of calcium for activity of some of these enzymes (notably the lyases) are discussed and newly published results regarding improvement of their thermostability by protein engineering are highlighted. Knowledge of these enzymes...

  1. Investigation of enzyme modified cheese production by two species ...

    African Journals Online (AJOL)

    ONOS

    2010-01-25

    Jan 25, 2010 ... Aspergillus oryzae and Aspergillus niger are two kinds of molds that were used in this study for production of enzyme modified cheese. The results showed that A. niger and A. oryzae have lipase enzyme activities of about 43.3 and 10 U/g (U = 1 μmol/min), respectively, while the proteolytic activity was 143 ...

  2. Structure effect on graphene-modified enzyme electrode glucose sensors.

    Science.gov (United States)

    Zhang, Xiaohui; Liao, Qingliao; Chu, Mingming; Liu, Shuo; Zhang, Yue

    2014-02-15

    Using structural characterizations and electrochemical measurements, we explored and investigated the effect of the structure of enzyme electrodes with glucose oxidase (GOD) that were modified by reduced graphene oxide (rGO) sheets. The rGO sheets with different defect density, layers, and oxygen concentrations were chosen to modify the enzyme electrode, and all the modified enzyme electrodes exhibited excellent electrocatalytic activities and performances towards glucose. The abundant defects in rGO induce easy absorption of GOD. At a low oxygen concentration, rGO sheets help to induce the direct electron transfer (DET) on the rGO-modified electrode, and at a higher oxygen concentration, the reduction of H2O2 occurred instead of DET on the surface of the rGO-modified electrode. When rGO modified the enzyme electrode under the working model of H2O2 reduction, an increase in the number of the oxygen functional groups could lead to an increase in the absorption of GOD, resulting in the improvement of the affinity and sensitivity of the biosensor. The rGO-modified enzyme electrode can provide faster response, higher sensitivity, and better affinity by optimizing and controlling the structure of graphene and its derivatives. © 2013 Elsevier B.V. All rights reserved.

  3. Crystal Structure of a Eukaryotic GEN1 Resolving Enzyme Bound to DNA.

    Science.gov (United States)

    Liu, Yijin; Freeman, Alasdair D J; Déclais, Anne-Cécile; Wilson, Timothy J; Gartner, Anton; Lilley, David M J

    2015-12-22

    We present the crystal structure of the junction-resolving enzyme GEN1 bound to DNA at 2.5 Å resolution. The structure of the GEN1 protein reveals it to have an elaborated FEN-XPG family fold that is modified for its role in four-way junction resolution. The functional unit in the crystal is a monomer of active GEN1 bound to the product of resolution cleavage, with an extensive DNA binding interface for both helical arms. Within the crystal lattice, a GEN1 dimer interface juxtaposes two products, whereby they can be reconnected into a four-way junction, the structure of which agrees with that determined in solution. The reconnection requires some opening of the DNA structure at the center, in agreement with permanganate probing and 2-aminopurine fluorescence. The structure shows that a relaxation of the DNA structure accompanies cleavage, suggesting how second-strand cleavage is accelerated to ensure productive resolution of the junction. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  4. Crystal Structure of a Eukaryotic GEN1 Resolving Enzyme Bound to DNA

    Directory of Open Access Journals (Sweden)

    Yijin Liu

    2015-12-01

    Full Text Available We present the crystal structure of the junction-resolving enzyme GEN1 bound to DNA at 2.5 Å resolution. The structure of the GEN1 protein reveals it to have an elaborated FEN-XPG family fold that is modified for its role in four-way junction resolution. The functional unit in the crystal is a monomer of active GEN1 bound to the product of resolution cleavage, with an extensive DNA binding interface for both helical arms. Within the crystal lattice, a GEN1 dimer interface juxtaposes two products, whereby they can be reconnected into a four-way junction, the structure of which agrees with that determined in solution. The reconnection requires some opening of the DNA structure at the center, in agreement with permanganate probing and 2-aminopurine fluorescence. The structure shows that a relaxation of the DNA structure accompanies cleavage, suggesting how second-strand cleavage is accelerated to ensure productive resolution of the junction.

  5. Global substrate specificity profiling of post-translational modifying enzymes.

    Science.gov (United States)

    Ivry, Sam L; Meyer, Nicole O; Winter, Michael B; Bohn, Markus F; Knudsen, Giselle M; O'Donoghue, Anthony J; Craik, Charles S

    2017-11-23

    Enzymes that modify the proteome, referred to as post-translational modifying (PTM) enzymes, are central regulators of cellular signaling. Determining the substrate specificity of PTM enzymes is a critical step in unraveling their biological functions both in normal physiological processes and in disease states. Advances in peptide chemistry over the last century have enabled the rapid generation of peptide libraries for querying substrate recognition by PTM enzymes. In this review, we highlight various peptide-based approaches for analysis of PTM enzyme substrate specificity. We focus on the application of these technologies to proteases but also discuss specific examples in which they have been used to uncover the substrate specificity of other types of PTM enzymes, such as kinases. In particular, we highlight our Multiplex Substrate Profiling by Mass Spectrometry (MSP-MS) assay, which uses a rationally designed, physicochemically diverse library of tetradecapeptides. We show how this method has been applied to PTM enzymes to uncover biological function, as well as guide substrate and inhibitor design. We also briefly discuss how this technique can be combined with other methods to gain a systems-level understanding of PTM enzyme regulation and function. This article is protected by copyright. All rights reserved. © 2017 The Protein Society.

  6. Investigation of enzyme modified cheese production by two species ...

    African Journals Online (AJOL)

    Aspergillus oryzae and Aspergillus niger are two kinds of molds that were used in this study for production of enzyme modified cheese. The results showed that A. niger and A. oryzae have lipase enzyme activities of about 43.3 and 10 U/g (U = 1 mol/min), respectively, while the proteolytic activity was 143 U/g for A. oryzea ...

  7. Investigation of enzyme modified cheese production by two species ...

    African Journals Online (AJOL)

    ONOS

    2010-01-25

    Jan 25, 2010 ... ingredient processes; such products are commonly referred to as enzyme modified cheese (EMC). EMCs have ... mixture of A. oryzea and A. niger can be used to produce EMC in much shorter ripening period and with better flavor. ... process is relatively unsophisticated as it is not opti- mized for any ...

  8. A Bacterial Homolog of a Eukaryotic Inositol Phosphate Signaling Enzyme Mediates Cross-kingdom Dialog in the Mammalian Gut

    Directory of Open Access Journals (Sweden)

    Régis Stentz

    2014-02-01

    Full Text Available Dietary InsP6 can modulate eukaryotic cell proliferation and has complex nutritive consequences, but its metabolism in the mammalian gastrointestinal tract is poorly understood. Therefore, we performed phylogenetic analyses of the gastrointestinal microbiome in order to search for candidate InsP6 phosphatases. We determined that prominent gut bacteria express homologs of the mammalian InsP6 phosphatase (MINPP and characterized the enzyme from Bacteroides thetaiotaomicron (BtMinpp. We show that BtMinpp has exceptionally high catalytic activity, which we rationalize on the basis of mutagenesis studies and by determining its crystal structure at 1.9 Å resolution. We demonstrate that BtMinpp is packaged inside outer membrane vesicles (OMVs protecting the enzyme from degradation by gastrointestinal proteases. Moreover, we uncover an example of cross-kingdom cell-to-cell signaling, showing that the BtMinpp-OMVs interact with intestinal epithelial cells to promote intracellular Ca2+ signaling. Our characterization of BtMinpp offers several directions for understanding how the microbiome serves human gastrointestinal physiology.

  9. A bacterial homolog of a eukaryotic inositol phosphate signaling enzyme mediates cross-kingdom dialog in the mammalian gut.

    Science.gov (United States)

    Stentz, Régis; Osborne, Samantha; Horn, Nikki; Li, Arthur W H; Hautefort, Isabelle; Bongaerts, Roy; Rouyer, Marine; Bailey, Paul; Shears, Stephen B; Hemmings, Andrew M; Brearley, Charles A; Carding, Simon R

    2014-02-27

    Dietary InsP6 can modulate eukaryotic cell proliferation and has complex nutritive consequences, but its metabolism in the mammalian gastrointestinal tract is poorly understood. Therefore, we performed phylogenetic analyses of the gastrointestinal microbiome in order to search for candidate InsP6 phosphatases. We determined that prominent gut bacteria express homologs of the mammalian InsP6 phosphatase (MINPP) and characterized the enzyme from Bacteroides thetaiotaomicron (BtMinpp). We show that BtMinpp has exceptionally high catalytic activity, which we rationalize on the basis of mutagenesis studies and by determining its crystal structure at 1.9 Å resolution. We demonstrate that BtMinpp is packaged inside outer membrane vesicles (OMVs) protecting the enzyme from degradation by gastrointestinal proteases. Moreover, we uncover an example of cross-kingdom cell-to-cell signaling, showing that the BtMinpp-OMVs interact with intestinal epithelial cells to promote intracellular Ca(2+) signaling. Our characterization of BtMinpp offers several directions for understanding how the microbiome serves human gastrointestinal physiology. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Thymidylate kinase of Mycobacterium tuberculosis: a chimera sharing properties common to eukaryotic and bacterial enzymes.

    Science.gov (United States)

    Munier-Lehmann, H; Chaffotte, A; Pochet, S; Labesse, G

    2001-06-01

    We have overexpressed in Escherichia coli the thymidylate kinase of Mycobacterium tuberculosis (TMPKmt). Biochemical and physico-chemical characterization of TMPKmt revealed distinct structural and catalytic features when compared to its counterpart from yeast (TMPKy) or E. coli (TMPKec). Denaturation of the dimeric TMPKmt by urea under equilibrium conditions was studied by intrinsic fluorescence and circular dichroism (CD) spectroscopy. It suggested a three-state unfolding mechanism with a monomeric intermediate. On the other hand, 3'-azido-3'-deoxythymidine monophosphate (AZT-MP), which is substrate for TMPKy and TMPKec acts as a potent competitive inhibitor for TMPKMT: We propose a structural model of TMPKmt in which the overall fold described in TMPKy and TMPKec is conserved and slight differences at the level of primary and 3D-structure explain strong variations in the phosphorylation rate of substrate analogs. According to the model, we synthesized dTMP analogs acting either as substrates or specific inhibitors of TMPKMT: This approach based on slight structural differences among similar proteins could be applied to other essential enzymes for the design of new species-specific antimicrobials.

  11. Expression of eukaryotic initiation factor 5A and hypusine forming enzymes in glioblastoma patient samples: implications for new targeted therapies.

    Directory of Open Access Journals (Sweden)

    Michael Preukschas

    Full Text Available Glioblastomas are highly aggressive brain tumors of adults with poor clinical outcome. Despite a broad range of new and more specific treatment strategies, therapy of glioblastomas remains challenging and tumors relapse in all cases. Recent work demonstrated that the posttranslational hypusine modification of the eukaryotic initiation factor 5A (eIF-5A is a crucial regulator of cell proliferation, differentiation and an important factor in tumor formation, progression and maintenance. Here we report that eIF-5A as well as the hypusine-forming enzymes deoxyhypusine synthase (DHS and deoxyhypusine hydroxylase (DOHH are highly overexpressed in glioblastoma patient samples. Importantly, targeting eIF-5A and its hypusine modification with GC7, a specific DHS-inhibitor, showed a strong antiproliferative effect in glioblastoma cell lines in vitro, while normal human astrocytes were not affected. Furthermore, we identified p53 dependent premature senescence, a permanent cell cycle arrest, as the primary outcome in U87-MG cells after treatment with GC7. Strikingly, combined treatment with clinically relevant alkylating agents and GC7 had an additive antiproliferative effect in glioblastoma cell lines. In addition, stable knockdown of eIF-5A and DHS by short hairpin RNA (shRNA could mimic the antiproliferative effects of GC7. These findings suggest that pharmacological inhibition of eIF-5A may represent a novel concept to treat glioblastomas and may help to substantially improve the clinical course of this tumor entity.

  12. beta-1,3-glucan modifying enzymes in Aspergillus fumigatus

    Directory of Open Access Journals (Sweden)

    Isabelle eMouyna

    2013-04-01

    Full Text Available In Aspergillus fumigatus like in other filamentous ascomycetes, beta-1,3-glucan constitutes a prominent cell wall component being responsible for rigidity of the cell wall structure. In filamentous fungi, softening of the cell wall is absolutely required during conidial germination and hyphal branching. Because of the central structure of beta(1-3glucans, it is expected that beta-1,3-glucanases play a major role in cell wall softening. Based on in silico and experimental data, this review gives an overview of beta-1,3-glucan modifying enzyme in A. fumigatus genome and their putative role during morphogenesis.

  13. Functional and phylogenetic evidence of a bacterial origin for the first enzyme in sphingolipid biosynthesis in a phylum of eukaryotic protozoan parasites.

    Science.gov (United States)

    Mina, John G; Thye, Julie K; Alqaisi, Amjed Q I; Bird, Louise E; Dods, Robert H; Grøftehauge, Morten K; Mosely, Jackie A; Pratt, Steven; Shams-Eldin, Hosam; Schwarz, Ralph T; Pohl, Ehmke; Denny, Paul W

    2017-07-21

    Toxoplasma gondii is an obligate, intracellular eukaryotic apicomplexan protozoan parasite that can cause fetal damage and abortion in both animals and humans. Sphingolipids are essential and ubiquitous components of eukaryotic membranes that are both synthesized and scavenged by the Apicomplexa. Here we report the identification, isolation, and analyses of the Toxoplasma serine palmitoyltransferase, an enzyme catalyzing the first and rate-limiting step in sphingolipid biosynthesis: the condensation of serine and palmitoyl-CoA. In all eukaryotes analyzed to date, serine palmitoyltransferase is a highly conserved heterodimeric enzyme complex. However, biochemical and structural analyses demonstrated the apicomplexan orthologue to be a functional, homodimeric serine palmitoyltransferase localized to the endoplasmic reticulum. Furthermore, phylogenetic studies indicated that it was evolutionarily related to the prokaryotic serine palmitoyltransferase, identified in the Sphingomonadaceae as a soluble homodimeric enzyme. Therefore this enzyme, conserved throughout the Apicomplexa, is likely to have been obtained via lateral gene transfer from a prokaryote. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. Soymilk-Cow's milk ACE-inhibiting enzyme modified cheese.

    Science.gov (United States)

    Ali, Barkat; Khan, Kiran Yasmin; Majeed, Hamid; Abid, Muhammad; Xu, Lei; Wu, Fengfeng; Xu, Xueming

    2017-12-15

    In present study, we developed and optimized soymilk-cow's milk enzyme-modified cheese with angiotensin-I converting enzyme inhibitory activity. Bioactive peptide production was found to be a multivariable-dependent process. Maximum bioactivity of hydrolysates was obtained with prolonged curd proteolysis at an increased enzyme concentration. This bioactive cheese paste was subsequently spray-dried under different drying conditions to determine the powder sorption isotherm properties. Higher drying temperatures resulted in cheese powder with weak thermal stability and lower browning indices. Experiments aimed at optimizing thermal stability and physical properties revealed that optimal conditions for producing cheese powder were an inlet air temperature of 150°C, a feeding rate of 10%, and an air flow rate of 600Lh-1. Moreover, in addition to flavour, the bioactive cheese powders produced from a combination of soymilk-cow's milk are of potential source and can be used in the dietary management of hypertension. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Alginate-modifying enzymes: Biological roles and biotechnological uses

    Directory of Open Access Journals (Sweden)

    Helga eErtesvåg

    2015-05-01

    Full Text Available Alginate denotes a group of industrially important 1-4-linked biopolymers composed of the C-5-epimers β-D-mannuronic acid (M and α-L-guluronic acid (G. The polysaccharide is manufactured from brown algae where it constitutes the main structural cell wall polymer. The physical properties of a given alginate molecule, e.g. gel-strength, water-binding capacity, viscosity and biocompatibility, are determined by polymer length, the relative amount and distribution of G residues and the acetyl content, all of which are controlled by alginate modifying enzymes. Alginate has also been isolated from some bacteria belonging to the genera Pseudomonas and Azotobacter, and bacterially synthesized alginate may be O-acetylated at O-2 and/or O-3. Initially, alginate is synthesized as polymannuronic acid, and some M residues are subsequently epimerized to G residues. In bacteria a mannuronan C-5-epimerase (AlgG and an alginate acetylase (AlgX are integral parts of the protein complex necessary for alginate polymerisation and export. All alginate-producing bacteria use periplasmic alginate lyases to remove alginate molecules aberrantly released to the periplasm. Alginate lyases are also produced by organisms that utilize alginate as carbon source. Most alginate-producing organisms encode more than one mannuronan C-5 epimerase, each introducing its specific pattern of G residues. Acetylation protects against further epimerization and from most alginate lyases. One enzyme with alginate deacetylase activity from Pseudomonas syringae has been reported. Functional and structural studies reveal that alginate lyases and epimerases have related enzyme mechanisms and catalytic sites. Alginate lyases are now utilized as tools for alginate characterization. Secreted epimerases have been shown to function well in vitro, and have been engineered further in order to obtain enzymes that can provide alginates with new and desired properties for use in medical and

  16. Phosphate-Modified Nucleotides for Monitoring Enzyme Activity.

    Science.gov (United States)

    Ermert, Susanne; Marx, Andreas; Hacker, Stephan M

    2017-04-01

    Nucleotides modified at the terminal phosphate position have been proven to be interesting entities to study the activity of a variety of different protein classes. In this chapter, we present various types of modifications that were attached as reporter molecules to the phosphate chain of nucleotides and briefly describe the chemical reactions that are frequently used to synthesize them. Furthermore, we discuss a variety of applications of these molecules. Kinase activity, for instance, was studied by transfer of a phosphate modified with a reporter group to the target proteins. This allows not only studying the activity of kinases, but also identifying their target proteins. Moreover, kinases can also be directly labeled with a reporter at a conserved lysine using acyl-phosphate probes. Another important application for phosphate-modified nucleotides is the study of RNA and DNA polymerases. In this context, single-molecule sequencing is made possible using detection in zero-mode waveguides, nanopores or by a Förster resonance energy transfer (FRET)-based mechanism between the polymerase and a fluorophore-labeled nucleotide. Additionally, fluorogenic nucleotides that utilize an intramolecular interaction between a fluorophore and the nucleobase or an intramolecular FRET effect have been successfully developed to study a variety of different enzymes. Finally, also some novel techniques applying electron paramagnetic resonance (EPR)-based detection of nucleotide cleavage or the detection of the cleavage of fluorophosphates are discussed. Taken together, nucleotides modified at the terminal phosphate position have been applied to study the activity of a large diversity of proteins and are valuable tools to enhance the knowledge of biological systems.

  17. In silico analysis of ubiquitin/ubiquitin-like modifiers and their conjugating enzymes in Entamoeba species.

    Science.gov (United States)

    Arya, Shweta; Sharma, Gaurav; Gupta, Preeti; Tiwari, Swati

    2012-07-01

    Covalent modification of proteins by ubiquitin (Ub) and ubiquitin-like modifiers (Ubls) regulates many cellular functions in eukaryotes. These modifications are likely to be associated with pathogenesis, growth, and development of many protozoan parasites but molecular details about this pathway are unavailable for most protozoa. This study presents an analysis of the Ub pathway in three members of the Entamoeba species. Using bioinformatics tools we have identified all Ub and Ubl genes along with their corresponding activating, conjugating, and ligating enzymes (E1, E2s, and E3s) in three Entamoeba species, Entamoeba histolytica, Entamoeba dispar, and Entamoeba invadens. Phylogenetic trees were established for the identified E2s and RING finger E3s using maximum-likelihood method to infer the relationship among these proteins. In silico co-domain analysis of RING finger E3s implicates these proteins in a variety of functions. Several known and putative regulatory motifs were identified in the upstream regions of RING finger domain containing E3 genes. All E2 and E3 genes were analyzed in genomic context in E. histolytica and E. dispar. Most E2s and E3s were in syntenic positions in the two genomes. Association of these genes with transposable elements (TEs) was compared between E. histolytica and E. dispar. A closer association was found between RING finger E3s with TEs in E. histolytica. In summary, our analyses suggests that the complexity of the Ub pathway in Entamoeba species is close to that observed in higher eukaryotes. This study provides important data for further understanding the role of Ub pathway in the biology of these organisms.

  18. 2009 Cellulosomes, Cellulases & Other Carbohydrate Modifying Enzymes GRC

    Energy Technology Data Exchange (ETDEWEB)

    Gilbert, Harry [Univ. of Newcastle, Callaghan, NSW (Australia)

    2009-07-26

    The 2009 Gordon Conference on Cellulosomes, Cellulases & Other Carbohydrate Modifying Enzymes will present cutting-edge research on the enzymatic degradation of cellulose and other plant cell wall polysaccharides. The Conference will feature a wide range of topics that includes the enzymology of plant structural degradation, regulation of the degradative apparatus, the mechanism of protein complex assembly, the genomics of cell wall degrading organisms, the structure of the substrate and the industrial application of the process particularly within the biofuel arena. Indeed the deployment of plant cell wall degrading enzymes in biofuel processes will be an important feature of the meeting. It should be emphasized that the 2009 Conference will be expanded to include, in addition to cellulase research, recent advances in other plant cell wall degrading enzymes, and contributions from people working on hemicellulases and pectinases will be particularly welcome. Invited speakers represent a variety of scientific disciplines, including biochemistry, structural biology, genetics and cell biology. The interplay between fundamental research and its industrial exploitation is a particularly important aspect of the meeting, reflecting the appointment of the chair and vice-chair from academia and industry, respectively. The meeting will provide opportunities for junior scientists and graduate students to present their work in poster format and exchange ideas with more established figures in the field. Indeed, some poster presenters will be selected for short talks. The collegial atmosphere of this Conference, with programmed discussion sessions as well as opportunities for informal gatherings in the afternoons and evenings, provides an avenue for scientists from different disciplines to brainstorm and promotes cross-disciplinary collaborations in the various research areas represented. The Conference is likely to be heavily subscribed so we would recommend that you submit

  19. Co-regulation of histone-modifying enzymes in cancer.

    Directory of Open Access Journals (Sweden)

    Abul B M M K Islam

    Full Text Available Cancer is characterized by aberrant patterns of expression of multiple genes. These major shifts in gene expression are believed to be due to not only genetic but also epigenetic changes. The epigenetic changes are communicated through chemical modifications, including histone modifications. However, it is unclear whether the binding of histone-modifying proteins to genomic regions and the placing of histone modifications efficiently discriminates corresponding genes from the rest of the genes in the human genome. We performed gene expression analysis of histone demethylases (HDMs and histone methyltransferases (HMTs, their target genes and genes with relevant histone modifications in normal and tumor tissues. Surprisingly, this analysis revealed the existence of correlations in the expression levels of different HDMs and HMTs. The observed HDM/HMT gene expression signature was specific to particular normal and cancer cell types and highly correlated with target gene expression and the expression of genes with histone modifications. Notably, we observed that trimethylation at lysine 4 and lysine 27 separated preferentially expressed and underexpressed genes, which was strikingly different in cancer cells compared to normal cells. We conclude that changes in coordinated regulation of enzymes executing histone modifications may underlie global epigenetic changes occurring in cancer.

  20. Effect of aminoglycoside concentration on reaction rates of aminoglycoside-modifying enzymes.

    OpenAIRE

    Bongaerts, G P; Vliegenthart, J S

    1988-01-01

    Reaction rates of several reference aminoglycoside-modifying enzymes were studied at various substrate concentrations. The resulting concentration-response curves showed wide variation in threshold concentration, in curve slope, in enzyme saturation, and in substrate inhibition. Together, the curves of a defined aminoglycoside panel yielded more specific information for each individual aminoglycoside-modifying enzyme tested than did conventional substrate profiles obtained at a single substra...

  1. Sensing based on the motion of enzyme-modified nanorods

    DEFF Research Database (Denmark)

    Bunea, Ada-Ioana; Pavel, Ileana-Alexandra; David, Sorin

    2015-01-01

    Asymmetric modification with an enzyme confers nanorods an enhanced diffusive motion that is dependent on the concentration of the enzyme substrate. In turn, such a motion opens the possibility of determining the concentration of the enzyme substrate by measuring the diffusion coefficient of nano...... media. Based on the obtained results we are confident that our motion-based approach to sensing can be developed to the point where different nanorods in a mixture simultaneously report on the concentration of different compounds with good temporal and spatial resolution....

  2. Modified TMV particles as beneficial scaffolds to present sensor enzymes

    Directory of Open Access Journals (Sweden)

    Claudia eKoch

    2015-12-01

    Full Text Available Tobacco mosaic virus (TMV is a robust nanotubular nucleoprotein scaffold increasingly employed for the high density presentation of functional molecules such as peptides, fluorescent dyes and antibodies. We report on its use as advantageous carrier for sensor enzymes. A TMV mutant with a cysteine residue exposed on every coat protein (CP subunit (TMVCys enabled the coupling of bifunctional maleimide-polyethylene glycol (PEG-biotin linkers (TMVCys/Bio. Its surface was equipped with two streptavidin [SA]-conjugated enzymes: glucose oxidase ([SA]-GOx and horseradish peroxidase ([SA]-HRP. At least 50 % of the CPs were decorated with a linker molecule, and all thereof with active enzymes. Upon use as adapter scaffolds in conventional 'high-binding' microtiter plates, TMV sticks allowed the immobilization of up to 45-fold higher catalytic activities than control samples with the same input of enzymes. Moreover, they increased storage stability and reusability in relation to enzymes applied directly to microtiter plate wells. The functionalized TMV adsorbed to solid supports showed a homogeneous distribution of the conjugated enzymes and structural integrity of the nanorods upon transmission electron and atomic force microscopy. The high surface-increase and steric accessibility of the viral scaffolds in combination with the biochemical environment provided by the plant viral coat may explain the beneficial effects. TMV can, thus, serve as a favorable multivalent nanoscale platform for the ordered presentation of bioactive proteins.

  3. Enzyme electrode studies of glucose oxidase modified with a redox mediator.

    Science.gov (United States)

    Bartlett, P N; Bradford, V Q; Whitaker, R G

    1991-01-01

    Glucose oxidase modified by the covalent attachment of ferrocenecarboxylic acid or ferrocene-acetic acid groups undergoes direct oxidation at metal electrodes. Studies of the comparative stability of the two modified enzymes on storage and on electrochemical cycling show that the material modified with ferroceneacetic acid is the more stable. Amperometric studies of enzyme electrodes based on these modified forms of glucose oxidase show that their application in practical biosensors is severely limited by the poor stability of the oxidized form of the covalently attached ferrocene mediator. A comparison of the results obtained with the native enzyme and with that modified with ferroceneacetic acid, for the oxidation of glucose, d-mannose, 2-deoxy-d-glucose, d-xylose and d-galactose, suggests that the modification procedure has little effect on the selectivity of the enzyme.

  4. An in vitro assay to study the recruitment and substrate specificity of chromatin modifying enzymes

    Directory of Open Access Journals (Sweden)

    Vermeulen Michiel

    2004-01-01

    Full Text Available Post-translational modifications of core histones play an important role in regulating fundamental biological processes such as DNA repair, transcription and replication. In this paper, we describe a novel assay that allows sequential targeting of distinct histone modifying enzymes to immobilized nucleosomal templates using recombinant chimeric targeting molecules. The assay can be used to study the histone substrate specificity of chromatin modifying enzymes as well as whether and how certain enzymes affect each other's histone modifying activities. As such the assay can help to understand how a certain histone code is established and interpreted.

  5. Early feeding to modify digestive enzyme activity in broiler chickens

    Directory of Open Access Journals (Sweden)

    Milagro León T.

    2014-09-01

    Full Text Available Objective. To evaluate the effect on digestive enzyme activity in broiler chickens by providing food in the first 48 hrs. after birth. Materials and methods. After incubating 300 fertile eggs from Hubbard breeding and immediately after hatching, the chicks were randomly assigned to treatments: fasting (from hatching to 48 hrs.; Hydrated Balanced Food (HBF from birth to 48 hrs.; commercial hydrating supplement (CHS from birth to 48 hrs. The diets were provided ad libitum. After 48 hrs. a commercial diet was fed. At birth and at 48 and 72 hrs. of age 30 chicks/treatment were sacrificed to determine the enzyme activity of maltase, sucrase, alkaline phosphatase, phytase, a-amylase, trypsin and lipase in samples of duodenal or pancreatic homogenate. Results. The supply of HBF or CHS during the first 48 hrs. of life increased the activity of maltase, sucrase and phytase in the first 3 days of life, with values between 1.2 and up to 4-fold compared to the control (p<0.05. Chickens that fasted for the first 48 hrs. had higher activity of the pancreatic enzymes a-amylase, trypsin, and lipase at 72 hrs. of life (p<0.05. Conclusions. The food supply in the first 48 hrs. after hatching increases the duodenal enzyme activity in the intestinal brush border during the first 3 days of age in broiler chickens.

  6. New finding of Giardia intestinalis (Eukaryote, Metamonad in Old World archaeological site using immunofluorescence and enzyme-linked immunosorbent assays

    Directory of Open Access Journals (Sweden)

    Matthieu Le Bailly

    2008-05-01

    Full Text Available In this study, nine organic sediment samples from a medieval archaeological site at Pineuilh, France, were examined for Giardia intestinalis using two commercially available immunological kits [enzyme-linked immuno sorbent and immunofluorescence (IFA assays]. Both techniques detected G. intestinalis in one sample, dated to 1,000 Anno Domini. This is the first time IFA was successfully used to detect protozoa in Old World archaeological samples. Such immunological techniques offer important perspectives concerning ancient protozoa detection and identification.

  7. Intein-modified enzymes, their production and industrial applications

    Science.gov (United States)

    Apgar, James; Lessard, Philip; Raab, Michael R.; Shen, Binzhang; Lazar, Gabor; de la Vega, Humberto

    2016-10-11

    A method of predicting an intein insertion site in a protein that will lead to a switching phenotype is provided. The method includes identifying a plurality of C/T/S sites within the protein; selecting from the plurality of C/T/S/ sites those that are ranked 0.75 or higher by a support vector machine, within ten angstroms of the active site of the protein, and at or near a loop-.beta.-sheet junction or a loop-.alpha.-helix junction. A method of controlling protein activity and hosts including proteins with controlled activity are also provided. Also, intein modified proteins and plants containing intein modified proteins are provided.

  8. Stretchable biofuel cell with enzyme-modified conductive textiles.

    Science.gov (United States)

    Ogawa, Yudai; Takai, Yuki; Kato, Yuto; Kai, Hiroyuki; Miyake, Takeo; Nishizawa, Matsuhiko

    2015-12-15

    A sheet-type, stretchable biofuel cell was developed by laminating three components: a bioanode textile for fructose oxidation, a hydrogel sheet containing fructose as fuel, and a gas-diffusion biocathode textile for oxygen reduction. The anode and cathode textiles were prepared by modifying carbon nanotube (CNT)-decorated stretchable textiles with fructose dehydrogenase (FDH) and bilirubin oxidase (BOD), respectively. Enzymatic reaction currents of anode and cathode textiles were stable for 30 cycles of 50% stretching, with initial loss of 20-30% in the first few cycles due to the partial breaking of the CNT network at the junction of textile fibers. The assembled laminate biofuel cell showed power of ~0.2 mW/cm(2) with 1.2 kΩ load, which was stable even at stretched, twisted, and wrapped forms. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Epigenetic control of MHC-II: interplay between CIITA and histone-modifying enzymes.

    Science.gov (United States)

    Zika, Eleni; Ting, Jenny P-Y

    2005-02-01

    Recent advances have shown the crucial role of histone-modifying enzymes in controlling gene activation and repression. This led to the 'histone code' hypothesis, which proposes that combinations of histone modifications work in concert to affect specific gene expression. Mounting evidence suggests that the class II transactivator modulates promoter accessibility by coordinating the recruitment of chromatin modifiers in a time-dependent fashion. MHC-II expression is exquisitely controlled by these highly specific, coordinated and dynamic interactions at the promoter.

  10. Solid-Phase Synthesis of Modified Peptides as Putative Inhibitors of Histone Modifying Enzymes

    DEFF Research Database (Denmark)

    Cohrt, Anders Emil O'Hanlon

    to be compatible with all 20 naturally occurring amino acids, and were furthermore feasible on several commonly used polymeric supports. By using dilute SnCl4 for N -Boc deprotection, and NaOH for the release of material from the solid support, N -modified peptides were cleanly obtained in excellent yields...

  11. Correspondence between radioactive and functional methods in the quality control of DNA restriction and modifying enzymes

    DEFF Research Database (Denmark)

    Trujillo, L E; Pupo, E; Miranda, F

    1996-01-01

    We evaluated the use of two radiolabeled lambda DNA/Hpa II substrates to detect 5'-->3', 3'-->5' single and double stranded DNA dependent exonuclease and phosphatase activities found as contaminants in restriction and modifying enzyme preparations. Looking for the meaning of the radioactive assay...

  12. Trojan horse strategies used by pathogens to influence the small ubiquitin-like modifier (SUMO) system of host eukaryotic cells.

    Science.gov (United States)

    Békés, Miklós; Drag, Marcin

    2012-01-01

    A remarkable feature of pathogenic organisms is their ability to utilize the cellular machinery of host cells to their advantage in facilitating their survival and propagation. Posttranslational modification of proteins offers a quick way to achieve changes in the localization, binding partners or functions of a target protein. It is no surprise then that pathogens have evolved multiple ways to interfere with host posttranslational modifications and hijack them for their own purposes. Recently, modification of proteins by small ubiquitin-like modifier has emerged as an important posttranslational modification regulating transcription, DNA repair and cell division, and literature has started to emerge documenting how it could be utilized by pathogenic bacteria and viruses during infection. In this brief review, we focus on the host small ubiquitin-like modifier (SUMO) system and how disease causing agents influence SUMO conjugation and deconjugation, highlighting the common theme of global hypoSUMOylation upon infection by pathogens. Copyright © 2012 S. Karger AG, Basel.

  13. Preparation of immobilized glucose oxidase wafer enzyme on calcium-bentonite modified by surfactant

    Science.gov (United States)

    Widi, R. K.; Trisulo, D. C.; Budhyantoro, A.; Chrisnasari, R.

    2017-07-01

    Wafer glucose oxidase (GOx) enzymes was produced by addition of PAH (Poly-Allyamine Hydrochloride) polymer into immobilized GOx enzyme on modified-Tetramethylammonium Hydroxide (TMAH) 5%-calsium-bentonite. The use of surfactant molecul (TMAH) is to modify the surface properties and pore size distribution of the Ca-bentonite. These properties are very important to ensure GOx molecules can be bound on the Ca-bentonit surface to be immobilized. The addition of the polymer (PAH) is expected to lead the substrates to be adsorbed onto the enzyme. In this study, wafer enzymes were made in various concentration ratio (Ca-bentonite : PAH) which are 1:0, 1:1, 1:2 and 1:3. The effect of PAH (Poly-Allyamine Hydrochloride) polymer added with various ratios of concentrations can be shown from the capacitance value on LCR meter and enzyme activity using DNS method. The addition of the polymer (PAH) showed effect on the activity of GOx, it can be shown from the decreasing of capacitance value by increasing of PAH concentration.

  14. High-Resolution Mapping of Modified DNA Nucleobases Using Excision Repair Enzymes.

    Science.gov (United States)

    Ransom, Monica; Bryan, D Suzi; Hesselberth, Jay R

    2018-01-01

    Modification of DNA nucleobases has a profound effect on genome function. We developed a method that maps the positions of the modified DNA nucleobases throughout genomic DNA. This method couples in vitro nucleobase excision with massively parallel DNA sequencing to determine the location of modified DNA nucleobases with single base precision. This protocol was used to map uracil incorporation and UV photodimers in DNA, and a modification of the protocol has been used to map sparse modification events in cells. The Excision-seq protocol is broadly applicable to a variety of base modifications for which an excision enzyme is available.

  15. [Genotypes of aminoglycoside-modifying enzyme and clinical study of high-level gentamycin resistant enterococcus].

    Science.gov (United States)

    Qu, Ting-ting; Zhang, Ying; Yu, Yun-song; Chen, Ya-gang; Wei, Ze-qing; Li, Lan-juan

    2006-01-01

    To determine the antibiotics resistance, aminoglycoside-modifying enzymes and homology of high-level gentamycin resistant enterococcus in clinical specimens. The high-level gentamicin resistant (HLGR) isolates were screened by the agar method and the resistance of 14 antimicrobial agents was determined by K-B method. The aminoglycoside-modifying enzyme genes were detected by polymerase chain reaction (PCR). Pulsed-field gel electrophoresis (PFGE) was used to analyze the homology of HLGR isolates. The ratio of HLGR was 64.2% (68/106). Among the HLGR,there were no isolates resistant to linezolid, vancomycin and tecoplanin, and Enterococcus faecium was more resistant to beta-lactam antibiotics and quinolone than Enterococcus faecalis. The positive rate of aac(6')-Ie-aph(2')-Ia was 92.6% and 3 isolates had the resistance gene mostly similar to aph(2')-Id. And among 51 HLGR isolates from the hospitalized patients, PFGE grouped 17 E. faecalis isolates into 4 clusters (A-D), and 33 E. faecium isolates into 8 clusters (A-H) with A cluster as predominant. HLGR has become the important antibiotic resistance bacteria which results in nosocomial infection; and aac(6')-Ie-aph(2')-Ia is the main aminoglycoside-modifying enzyme gene which causes HLGR.

  16. Enzyme

    Science.gov (United States)

    Enzymes are complex proteins that cause a specific chemical change in all parts of the body. For ... use them. Blood clotting is another example of enzymes at work. Enzymes are needed for all body ...

  17. Enzyme-modified starch as an oil delivery system for bake-only chicken nuggets.

    Science.gov (United States)

    Purcell, Sarah; Wang, Ya-Jane; Seo, Han-Seok

    2014-05-01

    This study investigated the effects of enzyme modification on starch as an effective oil delivery system for bake-only chicken nuggets. Various native starches were hydrolyzed by amyloglucosidase to a hydrolysis degree of 20% to 25% and plated with 50% (w/w, starch dry basis) with canola oil to create a starch-oil matrix. This matrix was then blended into a dry ingredient blend for batter and breader components. Nuggets were prepared by coated with predust, hydrated batter, and breader, and the coated nuggets were steam-baked until fully cooked and then frozen until texture and sensory analyses. The enzyme-modified starches showed a significant decrease in pasting viscosities for all starch types. For textural properties of nuggets, no clear relationship was found between peak force and starch source or amylose content. Sensory attributes related to fried foods (for example, crispness and mouth-coating) did not significantly differ between bake-only nuggets formulated using the enzyme-modified starches and the partially fried and baked ones. The present findings suggest that enzyme-modified starches can deliver sufficient quantity of oil to create sensory attributes similar to those of partially fried chicken nuggets. Further study is needed to optimize the coating formulation of bake-only chicken nugget to become close to the fried one in sensory aspects. The food industry has become increasingly focused on healthier items. Frying imparts several critical and desirable product functionalities, such as developing texture and color, and providing mouth-feel and flavor. The food industry has yet to duplicate all of the unique characteristics of fried chicken nuggets with a baking process. This study investigated the application of enzyme-modified starch as an oil delivery system in bake-only chicken nugget formulation in attempts to provide characteristics of fried items. This information is useful to improve the nutritional value of fried food by eliminating the

  18. D-glyceraldehyde-3-phosphate dehydrogenase. Properties of the enzyme modified at arginine residues.

    Science.gov (United States)

    Nagradova, N K; Schmalhausen, E V; Levashov, P A; Asryants, R A; Muronetz, V I

    1996-01-01

    Examination of the properties of Escherichia coli and rabbit muscle D-glyceraldehyde-3-phosphate dehydrogenase (GPDHs) modified by 2,3-butanedione has shown that both tetrameric enzymes are stabilized, on selective modification of arginine residues (probably Arg 231), in an asymmetric state with only two active centers capable of performing the dehydrogenase reaction. The functionally incompetent active centers can be alkylated by iodoacetate or iodoacetamide in the case of E. coli enzyme, but are inaccessible for these reagents in the case of rabbit muscle D-GPDH. These results are consistent with the idea that the two homologous enzymes share common principles of the protein design, but differ somewhat in their active centers geometries. Modification of the arginine procedures marked changes in the shape of the charge transfer complex spectrum in the region of 300-370 nm, suggestive of the alterations in the microenvironment of the nicotinamide ring of NAD(+), although the coenzyme binding characteristics remain largely unaltered. On arginine modification, the enzyme becomes insensitive to the effect of AMP on the kinetic parameters of p-nitrophenyl acetate hydrolysis reaction.

  19. dbHiMo: a web-based epigenomics platform for histone-modifying enzymes.

    Science.gov (United States)

    Choi, Jaeyoung; Kim, Ki-Tae; Huh, Aram; Kwon, Seomun; Hong, Changyoung; Asiegbu, Fred O; Jeon, Junhyun; Lee, Yong-Hwan

    2015-01-01

    Over the past two decades, epigenetics has evolved into a key concept for understanding regulation of gene expression. Among many epigenetic mechanisms, covalent modifications such as acetylation and methylation of lysine residues on core histones emerged as a major mechanism in epigenetic regulation. Here, we present the database for histone-modifying enzymes (dbHiMo; http://hme.riceblast.snu.ac.kr/) aimed at facilitating functional and comparative analysis of histone-modifying enzymes (HMEs). HMEs were identified by applying a search pipeline built upon profile hidden Markov model (HMM) to proteomes. The database incorporates 11,576 HMEs identified from 603 proteomes including 483 fungal, 32 plants and 51 metazoan species. The dbHiMo provides users with web-based personalized data browsing and analysis tools, supporting comparative and evolutionary genomics. With comprehensive data entries and associated web-based tools, our database will be a valuable resource for future epigenetics/epigenomics studies. © The Author(s) 2015. Published by Oxford University Press.

  20. Chemoselective small molecules that covalently modify one lysine in a non-enzyme protein in plasma

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Sungwook; Connelly, Stephen; Reixach, Natàlia; Wilson, Ian A.; Kelly, Jeffery W. (Scripps)

    2010-02-19

    A small molecule that could bind selectively to and then react chemoselectively with a non-enzyme protein in a complex biological fluid, such as blood, could have numerous practical applications. Herein, we report a family of designed stilbenes that selectively and covalently modify the prominent plasma protein transthyretin in preference to more than 4,000 other human plasma proteins. They react chemoselectively with only one of eight lysine {epsilon}-amino groups within transthyretin. The crystal structure confirms the expected binding orientation of the stilbene substructure and the anticipated conjugating amide bond. These covalent transthyretin kinetic stabilizers exhibit superior amyloid inhibition potency compared to their noncovalent counterparts, and they prevent cytotoxicity associated with amyloidogenesis. Though there are a few prodrugs that, upon metabolic activation, react with a cysteine residue inactivating a specific non-enzyme, we are unaware of designed small molecules that react with one lysine {epsilon}-amine within a specific non-enzyme protein in a complex biological fluid.

  1. The characterization of modified starch branching enzymes: toward the control of starch chain-length distributions.

    Science.gov (United States)

    Li, Cheng; Wu, Alex Chi; Go, Rob Marc; Malouf, Jacob; Turner, Mark S; Malde, Alpeshkumar K; Mark, Alan E; Gilbert, Robert G

    2015-01-01

    Starch is a complex branched glucose polymer whose branch molecular weight distribution (the chain-length distribution, CLD) influences nutritionally important properties such as digestion rate. Chain-stopping in starch biosynthesis is by starch branching enzyme (SBE). Site-directed mutagenesis was used to modify SBEIIa from Zea mays (mSBEIIa) to produce mutants, each differing in a single conserved amino-acid residue. Products at different times from in vitro branching were debranched and the time evolution of the CLD measured by size-exclusion chromatography. The results confirm that Tyr352, Glu513, and Ser349 are important for mSBEIIa activity while Arg456 is important for determining the position at which the linear glucan is cut. The mutant mSBEIIa enzymes have different activities and suggest the length of the transferred chain can be varied by mutation. The work shows analysis of the molecular weight distribution can yield information regarding the enzyme branching sites useful for development of plants yielding starch with improved functionality.

  2. The Characterization of Modified Starch Branching Enzymes: Toward the Control of Starch Chain-Length Distributions

    Science.gov (United States)

    Li, Cheng; Wu, Alex Chi; Go, Rob Marc; Malouf, Jacob; Turner, Mark S.; Malde, Alpeshkumar K.; Mark, Alan E.; Gilbert, Robert G.

    2015-01-01

    Starch is a complex branched glucose polymer whose branch molecular weight distribution (the chain-length distribution, CLD) influences nutritionally important properties such as digestion rate. Chain-stopping in starch biosynthesis is by starch branching enzyme (SBE). Site-directed mutagenesis was used to modify SBEIIa from Zea mays (mSBEIIa) to produce mutants, each differing in a single conserved amino-acid residue. Products at different times from in vitro branching were debranched and the time evolution of the CLD measured by size-exclusion chromatography. The results confirm that Tyr352, Glu513, and Ser349 are important for mSBEIIa activity while Arg456 is important for determining the position at which the linear glucan is cut. The mutant mSBEIIa enzymes have different activities and suggest the length of the transferred chain can be varied by mutation. The work shows analysis of the molecular weight distribution can yield information regarding the enzyme branching sites useful for development of plants yielding starch with improved functionality. PMID:25874689

  3. Ab Initio Quantum Mechanical/Molecular Mechanical Studies of Histone Modifying Enzymes

    Science.gov (United States)

    Zhang, Yingkai

    Histone proteins that form the nucleosome core are subject to a variety of post-translational transformations. These histone modifications make up the histone code which extends the information in the genetic code and is emerging as an essential mechanism to regulate gene expression. In spite of a current flurry of significant advances in experimental studies, there has been little theoretical understanding regarding how enzymes generate or remove these modifications. Very recently, we have made excellent progresses in investigating two such important histone-modifying enzyme families: zinc-dependent histone deacetylases (HDACs) and histone lysine methyltransferases (HKMTs). Our studies on a histonedeacetylase- like protein HDLP suggested a novel catalytic mechanism. The simulations on HKMT SET7/9 have characterized the histone lysine methylation reaction and elucidated the origin of enzyme catalysis. Our computational approaches centered on the pseudobond ab initio quantum mechanical/molecular mechanical (QM/MM) method, which allows for accurate modeling of the chemistry at the reaction active site while properly including the effects of the protein environment

  4. The characterization of modified starch branching enzymes: toward the control of starch chain-length distributions.

    Directory of Open Access Journals (Sweden)

    Cheng Li

    Full Text Available Starch is a complex branched glucose polymer whose branch molecular weight distribution (the chain-length distribution, CLD influences nutritionally important properties such as digestion rate. Chain-stopping in starch biosynthesis is by starch branching enzyme (SBE. Site-directed mutagenesis was used to modify SBEIIa from Zea mays (mSBEIIa to produce mutants, each differing in a single conserved amino-acid residue. Products at different times from in vitro branching were debranched and the time evolution of the CLD measured by size-exclusion chromatography. The results confirm that Tyr352, Glu513, and Ser349 are important for mSBEIIa activity while Arg456 is important for determining the position at which the linear glucan is cut. The mutant mSBEIIa enzymes have different activities and suggest the length of the transferred chain can be varied by mutation. The work shows analysis of the molecular weight distribution can yield information regarding the enzyme branching sites useful for development of plants yielding starch with improved functionality.

  5. Detection of glycoalkaloids using disposable biosensors based on genetically modified enzymes.

    Science.gov (United States)

    Espinoza, Michelle Arredondo; Istamboulie, Georges; Chira, Ana; Noguer, Thierry; Stoytcheva, Margarita; Marty, Jean-Louis

    2014-07-15

    In this work we present a rapid, selective, and highly sensitive detection of α-solanine and α-chaconine using cholinesterase-based sensors. The high sensitivity of the devices is brought by the use of a genetically modified acetylcholinesterase (AChE), combined with a one-step detection method based on the measurement of inhibition slope. The selectivity was obtained by using butyrylcholinesterase (BChE), an enzyme able to detect these two toxins with differential inhibition kinetics. The enzymes were immobilized via entrapment in PVA-AWP polymer directly on the working electrode surface. The analysis of the resulting inhibition slope was performed employing linear regression function included in Matlab. The high toxicity of α-chaconine compared to α-solanine due to a better affinity to the active site was proved. The inhibition of glycoalkaloids (GAs) mixture was performed over AChE enzyme wild-type AChE and BChE biosensors resulting in the detection of synergism effect. The developed method allows the detection of (GAs) at 50 ppb in potato matrix. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Functional screening of metagenome and genome libraries for detection of novel flavonoid-modifying enzymes.

    Science.gov (United States)

    Rabausch, U; Juergensen, J; Ilmberger, N; Böhnke, S; Fischer, S; Schubach, B; Schulte, M; Streit, W R

    2013-08-01

    The functional detection of novel enzymes other than hydrolases from metagenomes is limited since only a very few reliable screening procedures are available that allow the rapid screening of large clone libraries. For the discovery of flavonoid-modifying enzymes in genome and metagenome clone libraries, we have developed a new screening system based on high-performance thin-layer chromatography (HPTLC). This metagenome extract thin-layer chromatography analysis (META) allows the rapid detection of glycosyltransferase (GT) and also other flavonoid-modifying activities. The developed screening method is highly sensitive, and an amount of 4 ng of modified flavonoid molecules can be detected. This novel technology was validated against a control library of 1,920 fosmid clones generated from a single Bacillus cereus isolate and then used to analyze more than 38,000 clones derived from two different metagenomic preparations. Thereby we identified two novel UDP glycosyltransferase (UGT) genes. The metagenome-derived gtfC gene encoded a 52-kDa protein, and the deduced amino acid sequence was weakly similar to sequences of putative UGTs from Fibrisoma and Dyadobacter. GtfC mediated the transfer of different hexose moieties and exhibited high activities on flavones, flavonols, flavanones, and stilbenes and also accepted isoflavones and chalcones. From the control library we identified a novel macroside glycosyltransferase (MGT) with a calculated molecular mass of 46 kDa. The deduced amino acid sequence was highly similar to sequences of MGTs from Bacillus thuringiensis. Recombinant MgtB transferred the sugar residue from UDP-glucose effectively to flavones, flavonols, isoflavones, and flavanones. Moreover, MgtB exhibited high activity on larger flavonoid molecules such as tiliroside.

  7. Functional Screening of Metagenome and Genome Libraries for Detection of Novel Flavonoid-Modifying Enzymes

    Science.gov (United States)

    Rabausch, U.; Juergensen, J.; Ilmberger, N.; Böhnke, S.; Fischer, S.; Schubach, B.; Schulte, M.

    2013-01-01

    The functional detection of novel enzymes other than hydrolases from metagenomes is limited since only a very few reliable screening procedures are available that allow the rapid screening of large clone libraries. For the discovery of flavonoid-modifying enzymes in genome and metagenome clone libraries, we have developed a new screening system based on high-performance thin-layer chromatography (HPTLC). This metagenome extract thin-layer chromatography analysis (META) allows the rapid detection of glycosyltransferase (GT) and also other flavonoid-modifying activities. The developed screening method is highly sensitive, and an amount of 4 ng of modified flavonoid molecules can be detected. This novel technology was validated against a control library of 1,920 fosmid clones generated from a single Bacillus cereus isolate and then used to analyze more than 38,000 clones derived from two different metagenomic preparations. Thereby we identified two novel UDP glycosyltransferase (UGT) genes. The metagenome-derived gtfC gene encoded a 52-kDa protein, and the deduced amino acid sequence was weakly similar to sequences of putative UGTs from Fibrisoma and Dyadobacter. GtfC mediated the transfer of different hexose moieties and exhibited high activities on flavones, flavonols, flavanones, and stilbenes and also accepted isoflavones and chalcones. From the control library we identified a novel macroside glycosyltransferase (MGT) with a calculated molecular mass of 46 kDa. The deduced amino acid sequence was highly similar to sequences of MGTs from Bacillus thuringiensis. Recombinant MgtB transferred the sugar residue from UDP-glucose effectively to flavones, flavonols, isoflavones, and flavanones. Moreover, MgtB exhibited high activity on larger flavonoid molecules such as tiliroside. PMID:23686272

  8. Microstructural, textural, and sensory properties of whole-wheat noodle modified by enzymes and emulsifiers.

    Science.gov (United States)

    Niu, Meng; Hou, Gary G; Kindelspire, Julie; Krishnan, Padmanaban; Zhao, Siming

    2017-05-15

    With the utilization of enzymes including endoxylanase, glucose oxidase (GOX) and transglutaminase (TG), and emulsifiers comprising sodium stearoyl lactate (SSL) and soy lecithin, the microstructural, textural, and sensory properties of whole-wheat noodle (WWN) were modified. The development time and stability of whole-wheat dough (WWD) were enhanced by TG due to the formation of a more compact gluten network, and by SSL resulting from the enhanced gluten strength. Microstructure graphs by scanning electron microscopy (SEM) verified that TG and SSL promoted the connectivity of gluten network and the coverage of starch granules in WWN. TG increased the hardness and elasticity of cooked WWN, while two emulsifiers increased the noodle cohesiveness. Additionally, TG and SSL improved the sensory properties of noodle such as bite, springiness, and mouth-feel. The results suggest that TG and SSL are effective ingredients in enhancing the gluten strength of WWD and improving the qualities of WWN. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Effects of overexpression of PKAc genes on expressions of lignin-modifying enzymes by Pleurotus ostreatus.

    Science.gov (United States)

    Toyokawa, Chihana; Shobu, Misaki; Tsukamoto, Rie; Okamura, Saki; Honda, Yoichi; Kamitsuji, Hisatoshi; Izumitsu, Kousuke; Suzuki, Kazumi; Irie, Toshikazu

    2016-09-01

    We studied the role of genes encoding the cAMP-dependent protein kinase A catalytic subunit (PKAc) in the ligninolytic system in Pleurotus ostreatus. The wild-type P. ostreatus strain PC9 has two PKAc-encoding genes: PKAc1 and PKAc2 (protein ID 114122 and 85056). In the current study, PKAc1 and PKAc2 were fused with a β-tubulin promoter and introduced into strain PC9 to produce the overexpression strains PKAc1-97 and PKAc2-69. These strains showed significantly higher transcription levels of isozyme genes encoding lignin-modifying enzymes than strain PC9, but the specific gene expression patterns differed between the two recombinant strains. Both recombinants showed 2.05-2.10-fold faster degradation of beechwood lignin than strain PC9. These results indicate that PKAc plays an important role in inducing the wood degradation system in P. ostreatus.

  10. The citric acid-modified, enzyme-resistant dextrin from potato starch as a potential prebiotic.

    Science.gov (United States)

    Sliżewska, Katarzyna

    2013-01-01

    In the present study, enzyme-resistant dextrin, prepared by heating of potato starch in the presence of hydrochloric (0.1% dsb) and citric (0.1% dsb) acid at 130ºC for 3 h (CA-dextrin), was tested as a source of carbon for probiotic lactobacilli and bifidobacteria cultured with intestinal bacteria isolated from feces of three healthy 70-year old volunteers. The dynamics of growth of bacterial monocultures in broth containing citric acid (CA)-modified dextrin were estimated. It was also investigated whether lactobacilli and bifidobacteria cultured with intestinal bacteria in the presence of resistant dextrin would be able to dominate the intestinal isolates. Prebiotic fermentation of resistant dextrin was analyzed using prebiotic index (PI). In co-cultures of intestinal and probiotic bacteria, the environment was found to be dominated by the probiotic strains of Bifidobacterium and Lactobacillus, which is a beneficial effect.

  11. Characterization of fatty acid modifying enzyme activity in staphylococcal mastitis isolates and other bacteria

    Directory of Open Access Journals (Sweden)

    Lu Thea

    2012-06-01

    Full Text Available Abstract Background Fatty acid modifying enzyme (FAME has been shown to modify free fatty acids to alleviate their bactericidal effect by esterifying fatty acids to cholesterol or alcohols. Although it has been shown in previous studies that FAME is required for Staphylococcus aureus survival in skin abscesses, FAME is poorly studied compared to other virulence factors. FAME activity had also been detected in coagulase-negative staphylococci (CNS. However, FAME activity was only surveyed after a bacterial culture was grown for 24 h. Therefore if FAME activity was earlier in the growth phase, it would not have been detected by the assay and those strains would have been labeled as FAME negative. Results Fifty CNS bovine mastitis isolates and several S. aureus, Escherichia coli, and Streptococcus uberis strains were assayed for FAME activity over 24 h. FAME activity was detected in 54% of CNS and 80% S. aureus strains surveyed but none in E. coli or S. uberis. While some CNS strains produced FAME activity comparable to the lab strain of S. aureus, the pattern of FAME activity varied among strains and across species of staphylococci. All CNS that produced FAME activity also exhibited lipase activity. Lipase activity relative to colony forming units of these CNS decreased over the 24 h growth period. No relationship was observed between somatic cell count in the milk and FAME activity in CNS. Conclusions Some staphylococcal species surveyed produced FAME activity, but E. coli and S. uberis strains did not. All FAME producing CNS exhibited lipase activity which may indicate that both these enzymes work in concert to alter fatty acids in the bacterial environment.

  12. Identification of Genes Coding Aminoglycoside Modifying Enzymes in E. coli of UTI Patients in India

    Directory of Open Access Journals (Sweden)

    Abdul Rouf Mir

    2016-01-01

    Full Text Available This study is to probe the pattern of antibiotic resistance against aminoglycosides and its mechanism in E. coli obtained from patients from Chennai, India. Isolation and identification of pathogens were done on MacConkey agar. Antimicrobial sensitivity testing was done by disc diffusion test. The identification of genes encoding aminoglycoside modifying enzymes was done by Polymerase Chain Reaction (PCR. Out of 98 isolates, 71 (72.45% isolates were identified as E. coli and the remaining 27 (27.55% as other bacteria. Disc diffusion method results showed a resistance level of 72.15% for streptomycin, 73.4% for gentamicin, 63.26% for neomycin, 57.14% for tobramycin, 47.9% for netilmicin, and 8.16% for amikacin in E. coli. PCR screening showed the presence of four genes, namely, rrs, aacC2, aacA-aphD, and aphA3, in their plasmid DNA. The results point towards the novel mechanism of drug resistance in E. coli from UTI patients in India as they confirm the presence of genes encoding enzymes that cause resistance to aminoglycoside drugs. This could be an alarm for drug prescription to UTI patients.

  13. Highly sensitive glucose sensors based on enzyme-modified whole-graphene solution-gated transistors

    Science.gov (United States)

    Zhang, Meng; Liao, Caizhi; Mak, Chun Hin; You, Peng; Mak, Chee Leung; Yan, Feng

    2015-02-01

    Noninvasive glucose detections are convenient techniques for the diagnosis of diabetes mellitus, which require high performance glucose sensors. However, conventional electrochemical glucose sensors are not sensitive enough for these applications. Here, highly sensitive glucose sensors are successfully realized based on whole-graphene solution-gated transistors with the graphene gate electrodes modified with an enzyme glucose oxidase. The sensitivity of the devices is dramatically improved by co-modifying the graphene gates with Pt nanoparticles due to the enhanced electrocatalytic activity of the electrodes. The sensing mechanism is attributed to the reaction of H2O2 generated by the oxidation of glucose near the gate. The optimized glucose sensors show the detection limits down to 0.5 μM and good selectivity, which are sensitive enough for non-invasive glucose detections in body fluids. The devices show the transconductances two orders of magnitude higher than that of a conventional silicon field effect transistor, which is the main reason for their high sensitivity. Moreover, the devices can be conveniently fabricated with low cost. Therefore, the whole-graphene solution-gated transistors are a high-performance sensing platform for not only glucose detections but also many other types of biosensors that may find practical applications in the near future.

  14. Highly sensitive glucose sensors based on enzyme-modified whole-graphene solution-gated transistors.

    Science.gov (United States)

    Zhang, Meng; Liao, Caizhi; Mak, Chun Hin; You, Peng; Mak, Chee Leung; Yan, Feng

    2015-02-06

    Noninvasive glucose detections are convenient techniques for the diagnosis of diabetes mellitus, which require high performance glucose sensors. However, conventional electrochemical glucose sensors are not sensitive enough for these applications. Here, highly sensitive glucose sensors are successfully realized based on whole-graphene solution-gated transistors with the graphene gate electrodes modified with an enzyme glucose oxidase. The sensitivity of the devices is dramatically improved by co-modifying the graphene gates with Pt nanoparticles due to the enhanced electrocatalytic activity of the electrodes. The sensing mechanism is attributed to the reaction of H2O2 generated by the oxidation of glucose near the gate. The optimized glucose sensors show the detection limits down to 0.5 μM and good selectivity, which are sensitive enough for non-invasive glucose detections in body fluids. The devices show the transconductances two orders of magnitude higher than that of a conventional silicon field effect transistor, which is the main reason for their high sensitivity. Moreover, the devices can be conveniently fabricated with low cost. Therefore, the whole-graphene solution-gated transistors are a high-performance sensing platform for not only glucose detections but also many other types of biosensors that may find practical applications in the near future.

  15. Sensitising effects of genetically modified enzymes used in flavour, fragrance, detergence and pharmaceutical production: cross-sectional study.

    Science.gov (United States)

    Budnik, Lygia T; Scheer, Edwin; Burge, P Sherwood; Baur, Xaver

    2017-01-01

    The use of genetically engineered enzymes in the synthesis of flavourings, fragrances and other applications has increased tremendously. There is, however, a paucity of data on sensitisation and/or allergy to the finished products. We aimed to review the use of genetically modified enzymes and the enormous challenges in human biomonitoring studies with suitable assays of specific IgE to a variety of modified enzyme proteins in occupational settings and measure specific IgE to modified enzymes in exposed workers. Specific IgE antibodies against workplace-specific individual enzymes were measured by the specific fluorescence enzyme-labelled immunoassay in 813 exposed workers seen in cross-sectional surveys. Twenty-three per cent of all exposed workers showed type I sensitisation with IgE antibodies directed against respective workplace-specific enzymes. The highest sensitisation frequencies observed were for workers exposed enzymes derived from α-amylase (44%), followed by stainzyme (41%), pancreatinin (35%), savinase (31%), papain (31%), ovozyme (28%), phytase (16%), trypsin (15%) and lipase (4%). The highest individual antibody levels (up to 110 kU/L) were detected in workers exposed to phytase, xylanase and glucanase. In a subgroup comprising 134 workers, detailed clinical diagnostics confirmed work-related symptoms. There was a strong correlation (r=0.75, pgenetically engineered enzymes are potent allergens eliciting immediate-type sensitisation. Owing to lack of commercial diagnostic tests, few of those exposed receive regular surveillance including biomonitoring with relevant specific IgE assays. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  16. Eukaryotic DNA Replication Fork.

    Science.gov (United States)

    Burgers, Peter M J; Kunkel, Thomas A

    2017-06-20

    This review focuses on the biogenesis and composition of the eukaryotic DNA replication fork, with an emphasis on the enzymes that synthesize DNA and repair discontinuities on the lagging strand of the replication fork. Physical and genetic methodologies aimed at understanding these processes are discussed. The preponderance of evidence supports a model in which DNA polymerase ε (Pol ε) carries out the bulk of leading strand DNA synthesis at an undisturbed replication fork. DNA polymerases α and δ carry out the initiation of Okazaki fragment synthesis and its elongation and maturation, respectively. This review also discusses alternative proposals, including cellular processes during which alternative forks may be utilized, and new biochemical studies with purified proteins that are aimed at reconstituting leading and lagging strand DNA synthesis separately and as an integrated replication fork.

  17. Solution Structure of Archaeoglobus fulgidis Peptidyl-tRNA Hydrolase(Pth2) Provides Evidence for an Extensive Conserved Family of Pth2 Enzymes in Archaea, Bacteria and Eukaryotes.

    Energy Technology Data Exchange (ETDEWEB)

    Powers, Robert; Mirkovic, Nebojsa; Goldsmith-Fischman, Sharon; Acton, Thomas; Chiang, Yiwen; Huang, Yuanpeng; Ma, LiChung; Rajan, Paranji K.; Cort, John R.; Kennedy, Michael A.; Liu, Jinfeng; Rost, Burkhard; Honig, Barry; Murray, Diana; Montelione, Gaetano

    2005-11-01

    The solution structure of protein AF2095 from the thermophilic archaea Archaeglobus fulgidis, a 123-residue (13.6 kDa) protein, has been determined by NMR methods. The structure of AF2095 is comprised of four a-helices and a mixed b-sheet consisting of four parallel and anti-parallel b-strands, where the a-helices sandwich the b-sheet. Sequence and structural comparison of AF2095 with proteins from Homo sapiens, Methanocaldococcus jannaschii and Sulfolobus solfataricus, reveals that AF2095 is a peptidyl-tRNA hydrolase (Pth2). This structural comparison also identifies putative catalytic residues and a tRNA interaction region for AF2095. The structure of AF2095 is also similar to the structure of protein TA0108 from archaea Thermoplasma acidophilum, which is deposited in the Protein Database but not functionally annotated. The NMR structure of AF2095 has been further leveraged to obtain good quality structural models for 55 other proteins. Although earlier studies have proposed that the Pth2 protein family is restricted to archeal and eukaryotic organisms, the similarity of the AF2095 structure to human Pth2, the conservation of key active-site residues, and the good quality of the resulting homology models demonstrate a large family of homologous Pth2 proteins that are conserved in eukaryotic, archaeal and bacterial organisms, providing novel insights in the evolution of the Pth and Pth2 enzyme families.

  18. Structure-function analysis of human TYW2 enzyme required for the biosynthesis of a highly modified Wybutosine (yW base in phenylalanine-tRNA.

    Directory of Open Access Journals (Sweden)

    Virginia Rodriguez

    Full Text Available Posttranscriptional modifications are critical for structure and function of tRNAs. Wybutosine (yW and its derivatives are hyper-modified guanosines found at the position 37 of eukaryotic and archaeal tRNA(Phe. TYW2 is an enzyme that catalyzes α-amino-α-carboxypropyl transfer activity at the third step of yW biogenesis. Using complementation of a ΔTYW2 strain, we demonstrate here that human TYW2 (hTYW2 is active in yeast and can synthesize the yW of yeast tRNA(Phe. Structure-guided analysis identified several conserved residues in hTYW2 that interact with S-adenosyl-methionine (AdoMet, and mutation studies revealed that K225 and E265 are critical residues for the enzymatic activity. We previously reported that the human TYW2 is overexpressed in breast cancer. However, no difference in the tRNA(Phe modification status was observed in either normal mouse tissue or a mouse tumor model that overexpresses Tyw2, indicating that hTYW2 may have a role in tumorigenesis unrelated to yW biogenesis.

  19. Distribution of genes encoding aminoglycoside-modifying enzymes among clinical isolates of methicillin-resistant staphylococci

    Directory of Open Access Journals (Sweden)

    N Perumal

    2016-01-01

    Full Text Available The objective of this study was to determine the distribution of genes encoding aminoglycoside-modifying enzymes (AMEs and staphylococcal cassette chromosome mec (SCCmec elements among clinical isolates of methicillin-resistant staphylococci (MRS. Antibiotic susceptibility test was done using Kirby-Bauer disk diffusion method. The presence of SCCmec types and AME genes, namely, aac (6′-Ie-aph (2′′, aph (3′-IIIa and ant (4′-Ia was determined using two different multiplex polymerase chain reaction. The most encountered AME genes were aac (6′-Ie-aph (2′′ (55.4% followed by aph (3′-IIIa (32.3% and ant (4′-Ia gene (9%. SCCmec type I (34% was predominant in this study. In conclusion, the aac (6′-Ie-aph (2′′ was the most common AME gene and SCCmec type I was most predominant among the MRS isolates.

  20. Miniaturized flow system based on enzyme modified PMMA microreactor for amperometric determination of glucose.

    Science.gov (United States)

    Cerdeira Ferreira, Luís Marcos; da Costa, Eric Tavares; do Lago, Claudimir Lucio; Angnes, Lúcio

    2013-09-15

    This paper describes the development of a microfluidic system having as main component an enzymatic reactor constituted by a microchannel assembled in poly(methyl methacrylate) (PMMA) substrate connected to an amperometric detector. A CO2 laser engraving machine was used to make the channels, which in sequence were thermally sealed. The internal surfaces of the microchannels were chemically modified with polyethyleneimine (PEI), which showed good effectiveness for the immobilization of the glucose oxidase enzyme using glutaraldehyde as crosslinking agent, producing a very effective microreactor for the detection of glucose. The hydrogen peroxide generated by the enzymatic reaction was detected in an electrochemical flow cell localized outside of the reactor using a platinum disk as the working electrode. The proposed system was applied to the differential amperometric determination of glucose content in soft drinks showing good repeatability (DPR=1.72%, n=50), low detection limit (1.40×10(-6)molL(-1)), high sampling frequency (calculated as 345 samples h(-1)), and relatively good stability for long-term use. The results were in close agreement with those obtained by the classical spectrophotometric method utilized to quantify glucose in biological fluids. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Molecular detection of aminoglycoside-modifying enzyme genes in Acinetobacter baumannii clinical isolates.

    Science.gov (United States)

    Heidary, Mohsen; Salimi Chirani, Alireza; Khoshnood, Saeed; Eslami, Gita; Atyabi, Seyyed Mohammad; Nazem, Habibollah; Fazilati, Mohammad; Hashemi, Ali; Soleimani, Saleh

    2017-06-01

    Acinetobacter baumannii is a major opportunistic pathogen in healthcare settings worldwide. In Iran, there are only few reports on the prevalence of aminoglycoside resistance genes among A. baumannii isolates. The aim of this study was to investigate the existence of aminoglycoside-modifying enzyme (AME) genes from A. baumannii strains collected at a university teaching hospital in Iran. One hundred A. baumannii strains were collected between 2014 and 2015 from hospitalized patients at Loghman Hakim Hospital, Tehran, Iran. Antimicrobial susceptibility was determined by disk diffusion method according to the Clinical and Laboratory Standards Institute recommendations. The DNA was extracted using a kit obtained from Bioneer Co. (Korea) and was used as a template for polymerase chain reaction. The most active antimicrobial agent against these strains was colistin. The rate of extended-spectrum cephalosporin resistance was 97%. The aadA1, aadB, aac(6')-Ib, and aac(3)-IIa genes were found in 85%, 77%, 72%, and 68% of A. baumannii isolates, respectively. This study showed a high prevalence rate of AME genes in A. baumannii. This prevalence rate has explained that further aminoglycoside resistance genes may have role in the resistance of clinical isolates of A. baumannii. Therefore, control and treatment of serious infections caused by this opportunistic pathogen should be given more consideration.

  2. Preparation and properties of enzyme-modified cassava starch-zinc complexes.

    Science.gov (United States)

    Luo, Zhigang; Cheng, Weiwei; Chen, Haiming; Fu, Xiong; Peng, Xichun; Luo, Faxing; Nie, Lihong

    2013-05-15

    Starch-zinc complexes were synthesized by reaction of enzyme-modified starch with zinc acetate. The effect of reaction parameters such as hydrolysis rate, reaction temperature, reaction time, pH value, and concentration of zinc acetate on the zinc content and zinc conversion rate was studied. The zinc content and conversion rate of the product prepared under optimal conditions were 100.24 mg/g and 87.06%, respectively. The results of scanning electron microscopy (SEM) demonstrated that the obtained starch-zinc complexes displayed a porous appearance. The results of Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), and (13)C cross-polarization/magic-angle spinning nuclear magnetic resonance ((13)C CP/MAS NMR) showed that zinc was mainly coordinated to the oxygen atoms of the glucose unit 6-CH2OH. The formation of starch-zinc complexes was also indirectly confirmed by the results of conductivity measurements. Thermal properties of the complexes were influenced by the zincatation process. This study revealed that nonallergenic starch might be used effectively as a carrier of zinc for zinc supplementation purpose.

  3. Comparative genomics and evolution of eukaryotic phospholipidbiosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Lykidis, Athanasios

    2006-12-01

    Phospholipid biosynthetic enzymes produce diverse molecular structures and are often present in multiple forms encoded by different genes. This work utilizes comparative genomics and phylogenetics for exploring the distribution, structure and evolution of phospholipid biosynthetic genes and pathways in 26 eukaryotic genomes. Although the basic structure of the pathways was formed early in eukaryotic evolution, the emerging picture indicates that individual enzyme families followed unique evolutionary courses. For example, choline and ethanolamine kinases and cytidylyltransferases emerged in ancestral eukaryotes, whereas, multiple forms of the corresponding phosphatidyltransferases evolved mainly in a lineage specific manner. Furthermore, several unicellular eukaryotes maintain bacterial-type enzymes and reactions for the synthesis of phosphatidylglycerol and cardiolipin. Also, base-exchange phosphatidylserine synthases are widespread and ancestral enzymes. The multiplicity of phospholipid biosynthetic enzymes has been largely generated by gene expansion in a lineage specific manner. Thus, these observations suggest that phospholipid biosynthesis has been an actively evolving system. Finally, comparative genomic analysis indicates the existence of novel phosphatidyltransferases and provides a candidate for the uncharacterized eukaryotic phosphatidylglycerol phosphate phosphatase.

  4. Preparation and characterization of enzyme-modified konjac glucomannan/xanthan blend films.

    Science.gov (United States)

    Li, Qiujin; Qi, Wei; Su, Rongxin; He, Zhimin

    2009-01-01

    Enzyme-modified konjac glucomannan (KGM) and xanthan blend films have been prepared and characterized. Enzymatic hydrolysis of purified KGM by beta-mannanase yielded samples of various weight-average molecular weight (M(w)) that were determined by size-exclusion chromatography coupled with multi-angle laser light scattering (SEC-MALLS) and calculated using the established Mark-Houwink-Sakurada equation [eta] = 4.07 x 10(-4)M(w)(0.733). KGM degradation products were blended with xanthan for preparation of films that were used in orthogonal-designed experiments. These films were characterized in terms of their structures, thermal stability, crystallinities and mechanical properties. The results of Fourier transform infrared spectroscopy indicated that, after blending, there was strong intermolecular interaction caused by hydrogen bonds between xanthan and KGM hydrolysates. This phenomenon was more marked at lower M(w) of KGM. The thermal stability of the blend films determined by differential scanning calorimetry was higher with increasing KGM molecular weight. The degrees of crystallinity characterized by X-ray diffraction (XRD) decreased with the increasing content of non-degraded KGM. Mechanical properties of the polymer blends including the tensile strength and elongation rate were also correlated to M(w) of KGM. The tensile strength achieved a maximum at 10.25 MPa with KGM of M(w) = 4.25 x 10(5) and the elongation rate reached a maximum value of 89.5% with KGM of M(w) = 8.95 x 10(5). These results were directly attributed to intermolecular interactions between xanthan and KGM, and this synergistic behavior led to good physicochemical and mechanical performance of the blended films.

  5. Lignin-modifying enzymes of the white rot basidiomycete Ganoderma lucidum

    Energy Technology Data Exchange (ETDEWEB)

    D/Souza, T.M.; Merritt, C.S.; Reddy, C.A.

    1999-12-01

    Ganoderma lucidum, a white rot basidiomycete widely distributed worldwide, was studied for the production of the lignin-modifying enzymes laccase, manganese-dependent peroxidase (MnP), and lignin peroxidase (LiP). Laccase levels observed in high-nitrogen shaken cultures were much greater than those seen in low-nitrogen, malt extract, or wool-grown cultures and those reported for most other white rot fungi to date. Laccase production was readily seen in cultures grown with pine or poplar as the sole carbon and energy source. Cultures containing both pine and poplar showed 5- to 10-fold-higher levels of laccase than cultures containing pine or poplar alone. Since syringyl units are structural components important in poplar lignin and other hardwoods but much less so in pine lignin and other softwoods, pine cultures were supplemented with syringic acid, and this resulted in laccase levels comparable to those seen in pine-plus-poplar cultures. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of concentrated extracellular culture fluid from HM cultures showed two laccase activity bands, where as isoelectric focusing revealed five major laccase activity bands with estimated pIs of 3.0, 4.25, 4.5, and 5.1. Low levels of MnP activity were detected in poplar-grown cultures but not in cultures grown with pine, with pine plus syringic acid, or in HN medium. No LiP activity was seen in any of the media tested; however, probing the genomic DNA with the LiP cDNA (CLG4) from the white rot fungus Phanerochaete chrysosporium showed distinct hybridization bands suggesting the presence of lip-like sequences in G. lucidum.

  6. Studies on alkali-modified cassava starch - changes of structural and enzyme (. alpha. -amylase) susceptibility properties

    Energy Technology Data Exchange (ETDEWEB)

    Raja, K.C.M. (Regional Research Lab., Trivandrum (India). Fermentation Section)

    1992-04-01

    Properties of cassava starch could be modified by subjecting to alkali treatment under controlled experimental conditions. Modified starch samples showed lower amylose content and higher alkali number. Compared to untreated starch samples, alkali modified starches had higher {alpha}-amylase (Bacillus sp.) susceptibility. The properties could be advantageously made use of for preparing maltodextrins having DE 20-23. (orig.).

  7. Polyvinylferrocenium modified Pt electrode for the design of amperometric choline and acetylcholine enzyme electrodes.

    Science.gov (United States)

    Sen, S; Gülce, A; Gülce, H

    2004-05-15

    A simple method of enzyme immobilization was investigated, which is useful for development of enzyme electrodes based on polyvinylferrocenium perchlorate coated Pt electrode surface. Enzymes were incorporated into the polymer matrix via ion exchange process by immersing polyvinylferrocenium perchlorate coated Pt electrode in enzyme solution for several times. Choline and acetylcholine enzyme electrodes were developed by co-immobilizing choline oxidase and acetylcholinesterase in polyvinylferrocenium perchlorate matrix coated on a Pt electrode surface. The amperometric responses of the enzyme electrodes were measured at +0.70 V versus SCE, which was due to the electrooxidation of enzymatically produced H2O2. The effects of the thickness of the polymeric film, pH, temperature, substrate and enzyme concentrations on the response of the enzyme electrode were investigated. The optimum pH was found to be pH 7.4 at 25 degrees C. The steady-state current of these enzyme electrodes were reproducible within +/-5.0% of the relative error. Response time was found to be 30-50s and upper limit of the linear working portions was found to be 1.2mM choline and acetylcholine concentrations in which produced detectable currents were 1.0 x 10(-6)M substrate concentrations. The apparent Michaelis-Menten constant and the activation energy of this immobilized enzyme system were found to be 1.74 mM acetylcholine and 14.9 kJ mol(-1), respectively. The effects of interferents and stability of the enzyme electrodes were also investigated.

  8. Database mining and transcriptional analysis of genes encoding inulin-modifying enzymes of Aspergillus niger

    NARCIS (Netherlands)

    Yuan, X.L.; Goosen, C.; Kools, H.J.; Maarel, van der M.J.; Hondel, van den C.A.M.J.J.; Dijkhuizen, L.; Ram, A.F.

    2006-01-01

    As a soil fungus, Aspergillus niger can metabolize a wide variety of carbon sources, employing sets of enzymes able to degrade plant-derived polysaccharides. In this study the genome sequence of A. niger strain CBS 513.88 was surveyed, to analyse the gene/enzyme network involved in utilization of

  9. Cognitive enhancers (Nootropics). Part 3: drugs interacting with targets other than receptors or enzymes. Disease-modifying drugs. Update 2014.

    Science.gov (United States)

    Froestl, Wolfgang; Pfeifer, Andrea; Muhs, Andreas

    2014-01-01

    Scientists working in the field of Alzheimer's disease and, in particular, cognitive enhancers, are very productive. The review "Drugs interacting with Targets other than Receptors or Enzymes. Disease-modifying Drugs" was accepted in October 2012. In the last 20 months, new targets for the potential treatment of Alzheimer's disease were identified. Enormous progress was realized in the pharmacological characterization of natural products with cognitive enhancing properties. This review covers the evolution of research in this field through May 2014.

  10. Functionalization of PDMS modified and plasma activated two-component polyurethane coatings by surface attachment of enzymes

    Science.gov (United States)

    Kreider, Alexej; Richter, Katharina; Sell, Stephan; Fenske, Mandus; Tornow, Christian; Stenzel, Volkmar; Grunwald, Ingo

    2013-05-01

    This article describes a new strategy for coupling the enzyme horseradish peroxidase to a two-component polyurethane (2C-PUR) coating. A stable polymer conjugate was achieved by combining the enzyme and the 2C-PUR coating which was modified with poly(dimethylsiloxane) (PDMS), located at the surface. An atmospheric pressure plasma jet system was used to convert alkyl groups from the PDMS into polar silanol functionalities. This conversion was proven by X-ray photoelectron spectroscopy and dynamic contact angle measurements. In addition, the stability of the activated 2C-PUR surface containing silanol groups was determined by measuring the contact angle as a function of time. Compared to the non-modified 2C-PUR systems the one with PDMS displayed a higher stability over a time period over 28 h. In a silanization process the coating was treated with (3-aminopropyl) trimethoxysilane and the enzyme was subsequently immobilized to the coating via the cross linker glutaraldehyde to receive new biomimetic catalytic/enzymatic functions. The chemical immobilization (chemisorption) of the enzyme to the surface showed statistically significant higher biological activity as compared to references samples without using a cross linker (physisorption). The presented technique offers the opportunity to design new and smart multifunctional surface coatings which employ biomimetic capabilities.

  11. Functionalization of PDMS modified and plasma activated two-component polyurethane coatings by surface attachment of enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Kreider, Alexej; Richter, Katharina; Sell, Stephan; Fenske, Mandus; Tornow, Christian; Stenzel, Volkmar [Fraunhofer Institute for Manufacturing Technology and Advanced Materials - IFAM, Wiener Strasse 12, 28359 Bremen (Germany); Grunwald, Ingo, E-mail: ingo.grunwald@ifam.fraunhofer.de [Fraunhofer Institute for Manufacturing Technology and Advanced Materials - IFAM, Wiener Strasse 12, 28359 Bremen (Germany)

    2013-05-15

    This article describes a new strategy for coupling the enzyme horseradish peroxidase to a two-component polyurethane (2C-PUR) coating. A stable polymer conjugate was achieved by combining the enzyme and the 2C-PUR coating which was modified with poly(dimethylsiloxane) (PDMS), located at the surface. An atmospheric pressure plasma jet system was used to convert alkyl groups from the PDMS into polar silanol functionalities. This conversion was proven by X-ray photoelectron spectroscopy and dynamic contact angle measurements. In addition, the stability of the activated 2C-PUR surface containing silanol groups was determined by measuring the contact angle as a function of time. Compared to the non-modified 2C-PUR systems the one with PDMS displayed a higher stability over a time period over 28 h. In a silanization process the coating was treated with (3-aminopropyl) trimethoxysilane and the enzyme was subsequently immobilized to the coating via the cross linker glutaraldehyde to receive new biomimetic catalytic/enzymatic functions. The chemical immobilization (chemisorption) of the enzyme to the surface showed statistically significant higher biological activity as compared to references samples without using a cross linker (physisorption). The presented technique offers the opportunity to design new and smart multifunctional surface coatings which employ biomimetic capabilities.

  12. Inhibition and activation of enzymes. The effect of a modifier on the reaction rate and on kinetic parameters.

    Science.gov (United States)

    Fontes, R; Ribeiro, J M; Sillero, A

    2000-01-01

    A combined analysis of enzyme inhibition and activation is presented, based on a rapid equilibrium model assumption in which one molecule of enzyme binds one molecule of substrate (S) and/or one molecule of a modifier X. The modifier acts as activator (essential or non-essential), as inhibitor (total or partial), or has no effect on the reaction rate (v), depending on the values of the equilibrium constants, the rate constants of the limiting velocity steps, and the concentration of substrate ([S]). Different possibilities have been analyzed from an equation written to emphasize that v = f([X]) is, in general and at a fixed [S], a hyperbolic function. Formulas for Su (the value of [S], different from zero, at which v is unaffected by the modifier) and v(su) (v at that particular [S]) were deduced. In Lineweaver-Burk plots, the straight lines related to different [X] generally cross in a point (P) with coordinates (Su, v(su)). In certain cases, point P is located in the first quadrant which implies that X acts as activator, as inhibitor, or has no effect, depending on [S]. Furthermore, we discuss: (1) the apparent Vmax and Km displayed by the enzyme in different situations; (2) the degree of effect (inhibition or activation) observed at different concentrations of substrate and modifier; (3) the concept of Ke, a parameter that depends on the concentration of substrate and helps to evaluate the effect of the modifier: it equals the value of [X] at which the increase or decrease in the reaction rate is half of that achieved at saturating [X]. Equations were deduced for the general case and for particular situations, and used to obtain computer-drawn graphs that are presented and discussed. Formulas for apparent Vmax, Km and Ke have been written in a way making it evident that these parameters can be expressed as pondered means.

  13. [Subchronic toxicity test of genetically modified rice with double antisense starch-branching enzyme gene].

    Science.gov (United States)

    Li, Min; Piao, Jianhua; Yang, Xiaoguang

    2010-07-01

    To observe the sub-chronic toxic effects of the genetically modified rice with double antisense SBE gene. Based on gender and weight, weanling Wistar rats were randomly sorted into five groups: non-genetically modified rice group (group A), genetically modified rice group (group B), half genetically modified rice group (group C), quarter genetically modified rice group (group D) and AIN-93G normal diet group (group E). Indicators were the followings: body weight, food consumption, blood routine, blood biochemical test, organ weight, bone density and pathological examination of organs. At the middle of the experiment, the percentage of monocyte of female group B was less than that of group E (P 0.05), and no notable abnormity in the pathological examination of main organs (P > 0.05). There were no enough evidence to confirm the sub-chronic toxicity of genetically modified rice on rats.

  14. Immobilization of lipases on alkyl silane modified magnetic nanoparticles: effect of alkyl chain length on enzyme activity.

    Science.gov (United States)

    Wang, Jiqian; Meng, Gang; Tao, Kai; Feng, Min; Zhao, Xiubo; Li, Zhen; Xu, Hai; Xia, Daohong; Lu, Jian R

    2012-01-01

    Biocatalytic processes often require a full recycling of biocatalysts to optimize economic benefits and minimize waste disposal. Immobilization of biocatalysts onto particulate carriers has been widely explored as an option to meet these requirements. However, surface properties often affect the amount of biocatalysts immobilized, their bioactivity and stability, hampering their wide applications. The aim of this work is to explore how immobilization of lipases onto magnetite nanoparticles affects their biocatalytic performance under carefully controlled surface modification. Magnetite nanoparticles, prepared through a co-precipitation method, were coated with alkyl silanes of different alkyl chain lengths to modulate their surface hydrophobicity. Candida rugosa lipase was then directly immobilized onto the modified nanoparticles through hydrophobic interaction. Enzyme activity was assessed by catalytic hydrolysis of p-nitrophenyl acetate. The activity of immobilized lipases was found to increase with increasing chain length of the alkyl silane. Furthermore, the catalytic activities of lipases immobilized on trimethoxyl octadecyl silane (C18) modified Fe(3)O(4) were a factor of 2 or more than the values reported from other surface immobilized systems. After 7 recycles, the activities of the lipases immobilized on C18 modified nanoparticles retained 65%, indicating significant enhancement of stability as well through hydrophobic interaction. Lipase immobilized magnetic nanoparticles facilitated easy separation and recycling with high activity retaining. The activity of immobilized lipases increased with increasing alkyl chain length of the alkyl trimethoxy silanes used in the surface modification of magnetite nanoparticles. Lipase stability was also improved through hydrophobic interaction. Alkyl silane modified magnetite nanoparticles are thus highly attractive carriers for enzyme immobilization enabling efficient enzyme recovery and recycling.

  15. Immobilization of lipases on alkyl silane modified magnetic nanoparticles: effect of alkyl chain length on enzyme activity.

    Directory of Open Access Journals (Sweden)

    Jiqian Wang

    Full Text Available BACKGROUND: Biocatalytic processes often require a full recycling of biocatalysts to optimize economic benefits and minimize waste disposal. Immobilization of biocatalysts onto particulate carriers has been widely explored as an option to meet these requirements. However, surface properties often affect the amount of biocatalysts immobilized, their bioactivity and stability, hampering their wide applications. The aim of this work is to explore how immobilization of lipases onto magnetite nanoparticles affects their biocatalytic performance under carefully controlled surface modification. METHODOLOGY/PRINCIPAL FINDINGS: Magnetite nanoparticles, prepared through a co-precipitation method, were coated with alkyl silanes of different alkyl chain lengths to modulate their surface hydrophobicity. Candida rugosa lipase was then directly immobilized onto the modified nanoparticles through hydrophobic interaction. Enzyme activity was assessed by catalytic hydrolysis of p-nitrophenyl acetate. The activity of immobilized lipases was found to increase with increasing chain length of the alkyl silane. Furthermore, the catalytic activities of lipases immobilized on trimethoxyl octadecyl silane (C18 modified Fe(3O(4 were a factor of 2 or more than the values reported from other surface immobilized systems. After 7 recycles, the activities of the lipases immobilized on C18 modified nanoparticles retained 65%, indicating significant enhancement of stability as well through hydrophobic interaction. Lipase immobilized magnetic nanoparticles facilitated easy separation and recycling with high activity retaining. CONCLUSIONS/SIGNIFICANCE: The activity of immobilized lipases increased with increasing alkyl chain length of the alkyl trimethoxy silanes used in the surface modification of magnetite nanoparticles. Lipase stability was also improved through hydrophobic interaction. Alkyl silane modified magnetite nanoparticles are thus highly attractive carriers for

  16. Characterization of tetracycline modifying enzymes using a sensitive in vivo reporter system

    Directory of Open Access Journals (Sweden)

    Yu Zhou

    2010-09-01

    Full Text Available Abstract Background Increasing our understanding of antibiotic resistance mechanisms is critical. To enable progress in this area, methods to rapidly identify and characterize antibiotic resistance conferring enzymes are required. Results We have constructed a sensitive reporter system in Escherichia coli that can be used to detect and characterize the activity of enzymes that act upon the antibiotic, tetracycline and its derivatives. In this system, expression of the lux operon is regulated by the tetracycline repressor, TetR, which is expressed from the same plasmid under the control of an arabinose-inducible promoter. Addition of very low concentrations of tetracycline derivatives, well below growth inhibitory concentrations, resulted in luminescence production as a result of expression of the lux genes carried by the reporter plasmid. Introduction of another plasmid into this system expressing TetX, a tetracycline-inactivating enzyme, caused a marked loss in luminescence due to enzyme-mediated reduction in the intracellular Tc concentration. Data generated for the TetX enzyme using the reporter system could be effectively fit with the known Km and kcat values, demonstrating the usefulness of this system for quantitative analyses. Conclusion Since members of the TetR family of repressors regulate enzymes and pumps acting upon almost every known antibiotic and a wide range of other small molecules, reporter systems with the same design as presented here, but employing heterologous TetR-related proteins, could be developed to measure enzymatic activities against a wide range of antibiotics and other compounds. Thus, the assay described here has far-reaching applicability and could be adapted for high-throughput applications.

  17. Technological Implications of Modifying the Extent of Cell Wall-Proanthocyanidin Interactions Using Enzymes

    Directory of Open Access Journals (Sweden)

    Ana Belén Bautista-Ortín

    2016-01-01

    Full Text Available The transference and reactivity of proanthocyanidins is an important issue that affects the technological processing of some fruits, such as grapes and apples. These processes are affected by proanthocyanidins bound to cell wall polysaccharides, which are present in high concentrations during the processing of the fruits. Therefore, the effective extraction of proanthocyanidins from fruits to their juices or derived products will depend on the ability to manage these associations, and, in this respect, enzymes that degrade these polysaccharides could play an important role. The main objective of this work was to test the role of pure hydrolytic enzymes (polygalacturonase and cellulose and a commercial enzyme containing these two activities on the extent of proanthocyanidin-cell wall interactions. The results showed that the modification promoted by enzymes reduced the amount of proanthocyanidins adsorbed to cell walls since they contributed to the degradation and release of the cell wall polysaccharides, which diffused into the model solution. Some of these released polysaccharides also presented some reactivity towards the proanthocyanidins present in a model solution.

  18. Genetic polymorphism of metabolic enzymes modifies the risk of chronic solvent-induced encephalopathy

    NARCIS (Netherlands)

    Kezic, Sanja; Calkoen, Florentine; Wenker, Mira A. M.; Jacobs, John J. L.; Verberk, Maarten M.

    2006-01-01

    In the present study, we investigate whether genetic polymorphism in enzymes involved in the metabolism of organic solvents influences susceptibility to chronic solvent encephalopathy (CSE), which is one of the major effects of long-term exposure to organic solvents. Polymorphisms in the genes

  19. Enhancing saccharification of wheat straw by mixing enzymes from genetically-modified Trichoderma reesei and Aspergillus niger.

    Science.gov (United States)

    Jiang, Yanping; Duarte, Alexandra Vivas; van den Brink, Joost; Wiebenga, Ad; Zou, Gen; Wang, Chengshu; de Vries, Ronald P; Zhou, Zhihua; Benoit, Isabelle

    2016-01-01

    To increase the efficiency of enzymatic hydrolysis for plant biomass conversion into renewable biofuel and chemicals. By overexpressing the point mutation A824 V transcriptional activator Xyr1 in Trichoderma reesei, carboxymethyl cellulase, cellobiosidase and β-D-glucosidase activities of the best mutant were increased from 1.8 IU/ml, 0.1 IU/ml and 0.05 IU/ml to 4.8 IU/ml, 0.4 IU/ml and 0.3 IU/ml, respectively. The sugar yield of wheat straw saccharification by combining enzymes from this mutant and the Aspergillus niger genetically modified strain ΔcreA/xlnR c/araR c was improved up to 7.5 mg/ml, a 229 % increase compared to the combination of wild type strains. Mixing enzymes from T. reesei and A. niger combined with the genetic modification of transcription factors is a promising strategy to increase saccharification efficiency.

  20. Effect of modified atmosphere packaging (MAP) with low and superatmospheric oxygen on the quality and antioxidant enzyme system of golden needle mushrooms (Flammulina velutipes) during postharvest storage

    NARCIS (Netherlands)

    Wang, Cheng T.; Wang, Chang T.; Cao, Y.P.; Nout, M.J.R.; Sun, B.G.; Liu, L.

    2011-01-01

    To quantify the effect of oxygen concentrations on the quality and antioxidant enzyme system of stored golden needle mushroom, modified atmosphere packaging (MAP) with low and initial superatmospheric oxygen was applied during mushroom storage, and physiological changes associated with postharvest

  1. Modified enzyme-linked immunosorbent assay strategy using graphene oxide sheets and gold nanoparticles functionalized with different antibody types.

    Science.gov (United States)

    Lin, Hongjun; Liu, Yingfu; Huo, Jingrui; Zhang, Aihong; Pan, Yiting; Bai, Haihong; Jiao, Zhang; Fang, Tian; Wang, Xin; Cai, Yun; Wang, Qingming; Zhang, Yangjun; Qian, Xiaohong

    2013-07-02

    Gold nanoparticles (GNPs) and graphene oxide (GO) sheets are excellent nano carriers in many analytical methods. In this study, a modified enzyme-linked immunosorbent assay (ELISA) strategy was developed using antibody-functionalized GO sheets and GNPs. This modification significantly reduced the limit of detection (LOD) and cost greatly of this assay. The applicability of the method was demonstrated by detecting HSP70 in a human serum sample. This result suggests that the 3G-ELISA method is feasible to detect an antigen in a complex mixture, and the LOD is up to 64-fold and the cost is as low as one-tenth of the conventional ELISA method.

  2. Comparative investigation of two methods for Acetylcholinesterase enzyme immobilization on modified porous silicon

    Science.gov (United States)

    Khaldi, Khadidja; Sam, Sabrina; Lounas, Amel; Yaddaden, Chafiaa; Gabouze, Noure-Eddine

    2017-11-01

    In this work, Acetylcholinesterase enzyme (AChE) was immobilized on porous silicon (PSi) surface using two strategies. In the first method, acid chains were covalently grafted on the hydrogenated PSi by hydrosilylation reaction. The obtained acid-terminated surface was activated by a reaction with N-hydroxysuccinimide (NHS) in the presence of a peptide-coupling agent N-ethyl-N‧-(3-dimethylaminopropyl)-carbodiimide (EDC), and then reacted with the amino linker of the lysine residues AChE to anchor the enzyme by a covalent amide bond. In the second procedure, the PSi surface was first hydroxylated in piranha solution, followed by a silanization reaction with 3-aminopropyltriethoxysilane (APTES) to form amine-terminated surface. Finally, AChE was attached to the terminal amine groups by an aminolysis reaction with carboxylic acid groups of AChE in the presence of NHS/EDC mixture. Fourier transform infrared spectroscopy (FTIR) confirmed the efficiency of the surface modifications. The enzymatic activity of immobilized AChE was determined by means of a colorimetric test and was discussed according to the enzyme orientation on the surface which was revealed by contact angle measurements.

  3. Biosorption properties of citrus peel derived oligogalacturonides, enzyme-modified pectin and peel hydrolysis residues

    Science.gov (United States)

    Data is presented on the biosorption properties of modified pectins and pectin fragments using lead as a model cation. Samples tested for their sorption capacity are Narrow-Range Size-Classes of galacturonic acid oligomers, well characterized homogalacturonan demethylations series produced at pH 7....

  4. Autophagy in unicellular eukaryotes

    NARCIS (Netherlands)

    Kiel, J.A.K.W.

    2010-01-01

    Cells need a constant supply of precursors to enable the production of macromolecules to sustain growth and survival. Unlike metazoans, unicellular eukaryotes depend exclusively on the extracellular medium for this supply. When environmental nutrients become depleted, existing cytoplasmic components

  5. Structural disorder in eukaryotes.

    Directory of Open Access Journals (Sweden)

    Rita Pancsa

    Full Text Available Based on early bioinformatic studies on a handful of species, the frequency of structural disorder of proteins is generally thought to be much higher in eukaryotes than in prokaryotes. To refine this view, we present here a comparative prediction study and analysis of 194 fully described eukaryotic proteomes and 87 reference prokaryotes for structural disorder. We found that structural disorder does distinguish eukaryotes from prokaryotes, but its frequency spans a very wide range in the two superkingdoms that largely overlap. The number of disordered binding regions and different Pfam domain types also contribute to distinguish eukaryotes from prokaryotes. Unexpectedly, the highest levels--and highest variability--of predicted disorder is found in protists, i.e. single-celled eukaryotes, often surpassing more complex eukaryote organisms, plants and animals. This trend contrasts with that of the number of domain types, which increases rather monotonously toward more complex organisms. The level of structural disorder appears to be strongly correlated with lifestyle, because some obligate intracellular parasites and endosymbionts have the lowest levels, whereas host-changing parasites have the highest level of predicted disorder. We conclude that protists have been the evolutionary hot-bed of experimentation with structural disorder, in a period when structural disorder was actively invented and the major functional classes of disordered proteins established.

  6. Psychiatric and cognitive symptoms in Huntington's disease are modified by polymorphisms in catecholamine regulating enzyme genes

    DEFF Research Database (Denmark)

    Vinther-Jensen, T; Nielsen, Troels Tolstrup; Budtz-Jørgensen, E

    2016-01-01

    previously been shown in HD, and furthermore dopamine is thought to be implicated in cognition, behavioral and motor disturbances. A substantiated inverse correlation between motor onset and the elongated CAG repeat in the HTT has been established. This relation does not account for the full variability......Huntington's disease (HD) is an autosomal dominantly inherited neurodegenerative disorder characterized by motor, psychiatric, and cognitive manifestations. HD is caused by a CAG repeat expansion in the Huntingtin (HTT) gene but the exact pathogenesis remains unknown. Dopamine imbalance has...... of the motor onset, and efforts have been put into finding genetic modifiers of motor onset, however, mostly with unsuccessful outcome. In this study, we took an alternative approach focusing on symptom complexes and searched for modifiers of cognitive impairment and psychiatric symptoms in a well...

  7. Effects of calmodulin on expression of lignin-modifying enzymes in Pleurotus ostreatus.

    Science.gov (United States)

    Suetomi, Takashi; Sakamoto, Takaiku; Tokunaga, Yoshitaka; Kameyama, Toru; Honda, Yoichi; Kamitsuji, Hisatoshi; Kameshita, Isamu; Izumitsu, Kousuke; Suzuki, Kazumi; Irie, Toshikazu

    2015-05-01

    Previously, we suppressed the expression of genes encoding isozymes of lignin peroxidase (LiP) and manganese peroxidase (MnP) using a calmodulin (CaM) inhibitor, W7, in the white-rot fungus Phanerochaete chrysosporium; this suggested that CaM positively regulates their expression. Here, we studied the role of CaM in another white-rot fungus, Pleurotus ostreatus, which produces MnP and versatile peroxidase (VP), but not LiP. W7 upregulated Mn(2+)-dependent oxidation of guaiacol, suggesting that CaM negatively regulates the production of the enzymes. Suppression of CaM in P. ostreatus using RNAi also led to upregulation of enzyme activity, whereas overexpression of CaM in P. ostreatus caused downregulation. Real-time RT-PCR showed that MnP1-6 and VP3 levels in the CaM-knockdown strain were higher than those in the wild-type strain, while MnP-5 and -6 and VP1 and 2 levels in the CaM-overexpressing strain were lower than in the wild type. Moreover, we also found that another ligninolytic enzyme, laccase, which is not produced by P. chrysosporium, was negatively regulated by CaM in P. ostreatus similar to MnP and VP. Although overexpression of CaM did not reduce the ability of P. ostreatus to digest beech wood powder, the percentage of lignin remaining in the digest was slightly higher than in the wild-type strain digest.

  8. Resonance light-scattering spectrometric study of interaction between enzyme and MPA-modified CdTe nanoparticles

    Science.gov (United States)

    Li, Juan; Li, Minjie; Tang, Jieli; Li, Xiaozhou; Zhang, Hanqi; Zhang, Yihua

    2008-08-01

    This paper described a novel assay of enzyme based on the measurement of enhanced resonance light-scattering (RLS) signals resulting from the electrostatic and coordination interaction of functionalized CdTe nanoparticles with enzyme. The CdTe nanoparticles which were modified with 3-mercaptocarboxylic acid (MPA) have abundant carboxylic groups ( sbnd COOH). So the nanoparticles are water-soluble, stable and biocompatible. At pH 8.3 phosphate buffered saline (PBS), the RLS signals of functionalized nano-CdTe are greatly enhanced by bromelain and papain in the region of 220-800 nm characterized by the peak around 318-314 nm, respectively. The optimization conditions of the reaction were also examined and selected. Under the selected conditions, the enhanced RLS intensity is linearly proportional to the concentration of bromelain and papain. The liner range is (0.09-0.9) × 10 -6 mol/L for bromelain and (0.048-0.702) × 10 -6 mol/L for papain. The influences of some foreign substances were also examined. This method can be applied to the determination of enzyme.

  9. Histone-modifying enzymes, histone modifications and histone chaperones in nucleosome assembly: Lessons learned from Rtt109 histone acetyltransferases

    Science.gov (United States)

    Dahlin, Jayme L; Chen, Xiaoyue; Walters, Michael A.; Zhang, Zhiguo

    2015-01-01

    During DNA replication, nucleosomes ahead of replication forks are disassembled to accommodate replication machinery. Following DNA replication, nucleosomes are then reassembled onto replicated DNA using both parental and newly synthesized histones. This process, termed DNA replication-coupled nucleosome assembly (RCNA), is critical for maintaining genome integrity and for the propagation of epigenetic information, dysfunctions of which have been implicated in cancers and aging. In recent years, it has been shown that RCNA is carefully orchestrated by a series of histone modifications, histone chaperones and histone-modifying enzymes. Interestingly, many features of RCNA are also found in processes involving DNA replication-independent nucleosome assembly like histone exchange and gene transcription. In yeast, histone H3 lysine K56 acetylation (H3K56ac) is found in newly synthesized histone H3 and is critical for proper nucleosome assembly and for maintaining genomic stability. The histone acetyltransferase (HAT) regulator of Ty1 transposition 109 (Rtt109) is the sole enzyme responsible for H3K56ac in yeast. Much research has centered on this particular histone modification and histone-modifying enzyme. This Critical Review summarizes much of our current understanding of nucleosome assembly and highlights many important insights learned from studying Rtt109 HATs in fungi. We highlight some seminal features in nucleosome assembly conserved in mammalian systems and describe some of the lingering questions in the field. Further studying fungal and mammalian chromatin assembly may have important public health implications, including deeper understandings of human cancers and aging as well as the pursuit of novel anti-fungal therapies. PMID:25365782

  10. Electrochemical biosensor modified with dsDNA monolayer for restriction enzyme activity determination.

    Science.gov (United States)

    Zajda, Joanna; Górski, Łukasz; Malinowska, Elżbieta

    2016-06-01

    A simple and cost effective method for the determination of restriction endonuclease activity is presented. dsDNA immobilized at a gold electrode surface is used as the enzymatic substrate, and an external cationic redox probe is employed in voltammetric measurements for analytical signal generation. The assessment of enzyme activity is based on a decrease of a current signal derived from reduction of methylene blue which is present in the sample solution. For this reason, the covalent attachment of the label molecule is not required which significantly reduces costs of the analysis and simplifies the entire determination procedure. The influence of buffer components on utilized dsDNA/MCH monolayer stability and integrity is also verified. Electrochemical impedance spectroscopy measurements reveal that due to pinhole formation during enzyme activity measurement the presence of any surfactants should be avoided. Additionally, it is shown that the sensitivity of the electrochemical biosensor can be tuned by changing the restriction site location along the DNA length. Under optimal conditions the proposed biosensor exhibits a linear response toward PvuII activity within a range from 0.25 to 1.50 U/μL. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Experimental and theoretical aspects of glucose measurement using a microcantilever modified by enzyme-containing polyacrylamide.

    Science.gov (United States)

    Ji, Hai-Feng; Yan, Xiaodong; McShane, Michael J

    2005-12-01

    We report a glucose oxidase-containing polyacrylamide hydrogel-coated microcantilever sensor for the measurement of glucose. This enzymatic reaction of glucose results in swelling of the hydrogel due to formation of charged ions (gluconate molecules and protons). The microcantilever undergoes reversible and reproducible bending deflection upon exposure to solutions containing various glucose concentrations due to swelling or shrinking of the hydrogels. The microcantilever deflections increase when the glucose concentrations increase. A theoretical model has been built to correlate volume changes of the gel with microcantilever bending. The calculated data matched with the experimental results very well. Such hydrogel-coated microcantilevers could potentially be used to prepare microcantilever-based chemical and biological sensors when other enzymes are immobilized in the hydrogel.

  12. Carbon Nanotube Modified Screen Printed Electrodes: Pyranose Oxidase Immobilization Platform for Amperometric Enzyme Sensors

    Directory of Open Access Journals (Sweden)

    Dilek ODACI DEMIRKOL

    2017-03-01

    Full Text Available Here, a novel enzymatic biosensor was developed using multiwalled carbon nanotube including screen printed electrodes (MWCNT-SPE. Pyranose oxidase (PyOx was immobilized on the electrode surface by way of gelatin membrane and then cross-linked using glutaraldehyde. Glucose was detected at -0.7 V (vs. Ag/AgCl by watching consumed oxygen in enzymatic reaction after addition substrate. After optimization of pH and enzyme loading, the linearity was found in the range of 0.1–1.0 mM of glucose. After that, the effect of MCNT on the current was tested. Also the enzymatic biosensor including glucose oxidase instead of pyranose oxidase was prepared and the biosensor response followed for glucose. Furthermore, this system was tested for glucose analysis in soft drinks.

  13. Eukaryotic translation initiation factor 5A of wheat: Identification ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-05-18

    May 18, 2009 ... Regulation of senescence by eukaryotic translation initiation factor 5A: implications for plant growth and development. Trends Plant Sci. 9: 174-179. Zhou et al. 2117. Tome ME, Fiser SM, Payne CM, Gerner EW (1997). Excess putrescine accumulation inhibits the formation of modified eukaryotic initiation.

  14. Chemically modified nylons as supports for enzyme immobilization. Polyisonitrile-nylon

    Science.gov (United States)

    Goldstein, Leon; Freeman, Amihay; Sokolovsky, Mordechai

    1974-01-01

    Four-component condensations between amine, carboxyl, isocyanide and aldehyde lead to the formation of N-substituted amides (Ugi, 1962). The present paper describes the use of such condensations for the introduction of chemically reactive groups on to the polyamide backbone of nylon. Polyisonitrile-nylon was synthesized by partial hydrolysis of nylon-6 powder, followed by resealing of the newly formed −CO2... NH2− pairs via a four-component condensation, by using acetaldehyde and 1,6-di-isocyanohexane. Polyisonitrile-nylon could also be converted into a diazotizable arylamino derivative, polyaminoaryl-nylon, by a four-component condensation by using a bifunctional amine, pp′-diaminodiphenylmethane, in the presence of an aldehyde and a carboxylate compound. The versatility of four-component condensations involving the isocyanide functional group of polyisonitrile-nylon allowed coupling of proteins, in an aqueous medium at neutral pH, through either their amino or carboxyl groups. Trypsin and papain were bound to polyisonitrile-nylon through their amino groups by a four-component condensation by using acetaldehyde and acetate; conversely, succinyl-(3-carboxypropionyl-)trypsin, pepsin and papain were coupled through their carboxyl groups in the presence of acetaldehyde and an amine (Tris). Diazotized polyaminoaryl-nylon could be utilized for the immobilization of papain, via the tyrosine residues of the enzyme. PMID:4618475

  15. Microstructure and ultrastructure of high-amylose rice resistant starch granules modified by antisense RNA inhibition of starch branching enzyme.

    Science.gov (United States)

    Wei, Cunxu; Qin, Fengling; Zhu, Lijia; Zhou, Weidong; Chen, Yifang; Wang, Youping; Gu, Minghong; Liu, Qiaoquan

    2010-01-27

    A high-amylose transgenic rice line (TRS) modified by antisense RNA inhibition of starch branching enzymes revealed a resistant starch-rich quality. Compound starch granules in whole grains of the regular rice cultivar Teqing (TQ) were readily split during fracturing, whereas the starch granules in TRS were structurally intact and showed large voluminous, non-angular rounded bodies and elongated, filamentous structures tolerant of fracturing. In isolated preparation, TQ starch granules broke up into separate polygonal granules, whereas TRS starch granules kept their intactness. TRS starch granules consisted of packed smaller subgranules, some of which located at the periphery of starch granules were fused to each other with adjacent ones forming a thick band or wall encircling the entire circumference of the granules. TQ starch granules had a high concentration of amylose in the concentric hilum, whereas TRS starch granules showed a relatively even distribution of amylose with intense amylose in both hilum and band.

  16. An Electrochemical Enzyme Biosensor for 3-Hydroxybutyrate Detection Using Screen-Printed Electrodes Modified by Reduced Graphene Oxide and Thionine.

    Science.gov (United States)

    Martínez-García, Gonzalo; Pérez-Julián, Elena; Agüí, Lourdes; Cabré, Naomí; Joven, Jorge; Yáñez-Sedeño, Paloma; Pingarrón, José Manuel

    2017-11-11

    A biosensor for 3-hydroxybutyrate (3-HB) involving immobilization of the enzyme 3-hydroxybutyrate dehydrogenase onto a screen-printed carbon electrode modified with reduced graphene oxide (GO) and thionine (THI) is reported here. After addition of 3-hydroxybutyrate or the sample in the presence of NAD⁺ cofactor, the generated NADH could be detected amperometrically at 0.0 V vs. Ag pseudo reference electrode. Under the optimized experimental conditions, a calibration plot for 3-HB was constructed showing a wide linear range between 0.010 and 0.400 mM 3-HB which covers the clinically relevant levels for diluted serum samples. In addition, a limit of detection of 1.0 µM, much lower than that reported using other biosensors, was achieved. The analytical usefulness of the developed biosensor was demonstrated via application to spiked serum samples.

  17. A Disposable Organophosphorus Pesticides Enzyme Biosensor Based on Magnetic Composite Nano-Particles Modified Screen Printed Carbon Electrode

    Directory of Open Access Journals (Sweden)

    Weigang Wen

    2010-01-01

    Full Text Available A disposable organophosphorus pesticides (OPs enzyme biosensor based on magnetic composite nanoparticle-modified screen printed carbon electrodes (SPCE has been developed. Firstly, an acetylcholinesterase (AChE-coated Fe3O4/Au (GMP magnetic nanoparticulate (GMP-AChE was synthesized. Then, GMP-AChE was absorbed on the surface of a SPCE modified by carbon nanotubes (CNTs/nano-ZrO2/prussian blue (PB/Nafion (Nf composite membrane by an external magnetic field. Thus, the biosensor (SPCE|CNTs/ZrO2/PB/Nf|GMP-AChE for OPs was fabricated. The surface of the biosensor was characterized by scanning electron micrography (SEM and X-ray fluorescence spectrometery (XRFS and its electrochemical properties were studied by cyclic voltammetry (CV and differential pulse voltammetry (DPV. The degree of inhibition (A% of the AChE by OPs was determined by measuring the reduction current of the PB generated by the AChE-catalyzed hydrolysis of acetylthiocholine (ATCh. In pH = 7.5 KNO3 solution, the A was related linearly to the concentration of dimethoate in the range from 1.0 × 10-3–10 ng•mL-1 with a detection limit of 5.6 × 10-4 ng•mL-1. The recovery rates in Chinese cabbage exhibited a range of 88%–105%. The results were consistent with the standard gas chromatography (GC method. Compared with other enzyme biosensors the proposed biosensor exhibited high sensitivity, good selectivity with disposable, low consumption of sample. In particular its surface can be easily renewed by removal of the magnet. The convenient, fast and sensitive voltammetric measurement opens new opportunities for OPs analysis.

  18. The Angiotensin Converting Enzyme Insertion/Deletion Polymorphism Modifies Exercise-Induced Muscle Metabolism.

    Directory of Open Access Journals (Sweden)

    David Vaughan

    Full Text Available A silencer region (I-allele within intron 16 of the gene for the regulator of vascular perfusion, angiotensin-converting enzyme (ACE, is implicated in phenotypic variation of aerobic fitness and the development of type II diabetes. We hypothesised that the reportedly lower aerobic performance in non-carriers compared to carriers of the ACE I-allele, i.e. ACE-DD vs. ACE-ID/ACE-II genotype, is associated with alterations in activity-induced glucose metabolism and capillarisation in exercise muscle.Fifty-three, not-specifically trained Caucasian men carried out a one-legged bout of cycling exercise to exhaustion and/or participated in a marathon, the aim being to identify and validate genotype effects on exercise metabolism. Respiratory exchange ratio (RER, serum glucose and lipid concentration, glycogen, and metabolite content in vastus lateralis muscle based on ultra-performance lipid chromatography-mass spectrometry (UPLC-MS, were assessed before and after the cycling exercise in thirty-three participants. Serum metabolites were measured in forty subjects that completed the marathon. Genotype effects were assessed post-hoc.Cycling exercise reduced muscle glycogen concentration and this tended to be affected by the ACE I-allele (p = 0.09. The ACE-DD genotype showed a lower maximal RER and a selective increase in serum glucose concentration after exercise compared to ACE-ID and ACE-II genotypes (+24% vs. +2% and -3%, respectively. Major metabolites of mitochondrial metabolism (i.e. phosphoenol pyruvate, nicotinamide adenine dinucleotide phosphate, L-Aspartic acid, glutathione were selectively affected in vastus lateralis muscle by exercise in the ACE-DD genotype. Capillary-to-fibre ratio was 24%-lower in the ACE-DD genotype. Individuals with the ACE-DD genotype demonstrated an abnormal increase in serum glucose to 7.7 mM after the marathon.The observations imply a genetically modulated role for ACE in control of glucose import and oxidation in

  19. The Angiotensin Converting Enzyme Insertion/Deletion Polymorphism Modifies Exercise-Induced Muscle Metabolism.

    Science.gov (United States)

    Vaughan, David; Brogioli, Michael; Maier, Thomas; White, Andy; Waldron, Sarah; Rittweger, Jörn; Toigo, Marco; Wettstein, Jessica; Laczko, Endre; Flück, Martin

    2016-01-01

    A silencer region (I-allele) within intron 16 of the gene for the regulator of vascular perfusion, angiotensin-converting enzyme (ACE), is implicated in phenotypic variation of aerobic fitness and the development of type II diabetes. We hypothesised that the reportedly lower aerobic performance in non-carriers compared to carriers of the ACE I-allele, i.e. ACE-DD vs. ACE-ID/ACE-II genotype, is associated with alterations in activity-induced glucose metabolism and capillarisation in exercise muscle. Fifty-three, not-specifically trained Caucasian men carried out a one-legged bout of cycling exercise to exhaustion and/or participated in a marathon, the aim being to identify and validate genotype effects on exercise metabolism. Respiratory exchange ratio (RER), serum glucose and lipid concentration, glycogen, and metabolite content in vastus lateralis muscle based on ultra-performance lipid chromatography-mass spectrometry (UPLC-MS), were assessed before and after the cycling exercise in thirty-three participants. Serum metabolites were measured in forty subjects that completed the marathon. Genotype effects were assessed post-hoc. Cycling exercise reduced muscle glycogen concentration and this tended to be affected by the ACE I-allele (p = 0.09). The ACE-DD genotype showed a lower maximal RER and a selective increase in serum glucose concentration after exercise compared to ACE-ID and ACE-II genotypes (+24% vs. +2% and -3%, respectively). Major metabolites of mitochondrial metabolism (i.e. phosphoenol pyruvate, nicotinamide adenine dinucleotide phosphate, L-Aspartic acid, glutathione) were selectively affected in vastus lateralis muscle by exercise in the ACE-DD genotype. Capillary-to-fibre ratio was 24%-lower in the ACE-DD genotype. Individuals with the ACE-DD genotype demonstrated an abnormal increase in serum glucose to 7.7 mM after the marathon. The observations imply a genetically modulated role for ACE in control of glucose import and oxidation in working

  20. Chemical modification of poly(ethylene terephthalate) and immobilization of the selected enzymes on the modified film

    Energy Technology Data Exchange (ETDEWEB)

    Irena, Gancarz, E-mail: irena.gancarz@pwr.wroc.pl [Department of Chemistry, Wroclaw University of Technology, 50-370 Wroclaw (Poland); Jolanta, Bryjak; Karolina, Zynek [Department of Chemistry, Wroclaw University of Technology, 50-370 Wroclaw (Poland)

    2009-07-15

    Poly(ethylene terephthalate) (PET) film was modified by reaction with hydrazine (HD), ethylenediamine (EDA), 1,2-diaminopropane (1,2-DAP) and 1,3-diaminopropane (1,3-DAP). The maximal amount of amine functionalities introduced in the chosen conditions on the surface was found as 0.07, 3.35, 0.76 and 1.99 nmol cm{sup -2} for HD, EDA, 1,2-DAP and 1,3-DAP respectively. During the modification process etching of the sample and an increase of stiffness takes place. FTIR-ATR spectra prove that the surface chemistry after modification in amine solution is very complex. The lack of clear correlation between the surface tension and surface concentration of amine functionalities seems to confirm that. For immobilization purpose invertase, laccase and tyrosinase were used. The amount of covalently attached proteins at first increases with the increase of surface concentration of amine groups but after reaching a certain level of amine groups, decrease of the immobilization level was observed. All enzymes tested showed highest activity for a moderate level of aminolysis and this activity had the highest values for EDA-modified PET.

  1. Chemical modification of poly(ethylene terephthalate) and immobilization of the selected enzymes on the modified film

    Science.gov (United States)

    Irena, Gancarz; Jolanta, Bryjak; Karolina, Zynek

    2009-07-01

    Poly(ethylene terephthalate) (PET) film was modified by reaction with hydrazine (HD), ethylenediamine (EDA), 1,2-diaminopropane (1,2-DAP) and 1,3-diaminopropane (1,3-DAP). The maximal amount of amine functionalities introduced in the chosen conditions on the surface was found as 0.07, 3.35, 0.76 and 1.99 nmol cm -2 for HD, EDA, 1,2-DAP and 1,3-DAP respectively. During the modification process etching of the sample and an increase of stiffness takes place. FTIR-ATR spectra prove that the surface chemistry after modification in amine solution is very complex. The lack of clear correlation between the surface tension and surface concentration of amine functionalities seems to confirm that. For immobilization purpose invertase, laccase and tyrosinase were used. The amount of covalently attached proteins at first increases with the increase of surface concentration of amine groups but after reaching a certain level of amine groups, decrease of the immobilization level was observed. All enzymes tested showed highest activity for a moderate level of aminolysis and this activity had the highest values for EDA-modified PET.

  2. tRNA modifying enzymes, NSUN2 and METTL1, determine sensitivity to 5-fluorouracil in HeLa cells.

    Directory of Open Access Journals (Sweden)

    Mayumi Okamoto

    2014-09-01

    Full Text Available Nonessential tRNA modifications by methyltransferases are evolutionarily conserved and have been reported to stabilize mature tRNA molecules and prevent rapid tRNA decay (RTD. The tRNA modifying enzymes, NSUN2 and METTL1, are mammalian orthologs of yeast Trm4 and Trm8, which are required for protecting tRNA against RTD. A simultaneous overexpression of NSUN2 and METTL1 is widely observed among human cancers suggesting that targeting of both proteins provides a novel powerful strategy for cancer chemotherapy. Here, we show that combined knockdown of NSUN2 and METTL1 in HeLa cells drastically potentiate sensitivity of cells to 5-fluorouracil (5-FU whereas heat stress of cells revealed no effects. Since NSUN2 and METTL1 are phosphorylated by Aurora-B and Akt, respectively, and their tRNA modifying activities are suppressed by phosphorylation, overexpression of constitutively dephosphorylated forms of both methyltransferases is able to suppress 5-FU sensitivity. Thus, NSUN2 and METTL1 are implicated in 5-FU sensitivity in HeLa cells. Interfering with methylation of tRNAs might provide a promising rationale to improve 5-FU chemotherapy of cancer.

  3. Pasting and thermal properties of waxy corn starch modified by 1,4-α-glucan branching enzyme.

    Science.gov (United States)

    Ren, Junyan; Li, Yang; Li, Caiming; Gu, Zhengbiao; Cheng, Li; Hong, Yan; Li, Zhaofeng

    2017-04-01

    Waxy corn starch was modified with the 1,4-α-glucan branching enzyme (GBE) from Geobacillus thermoglucosidans STB02. Incubating waxy corn starch with GBE increased the number of α-1,6 branch points and reduced the average chain length. Enzymatic modification also decreased the breakdown and setback values of Brabender viscosity curves, indicating that the modified starch had higher paste stability. Preheating the starch at 65°C for 30min before incubation with GBE could promote enzymatic modification of starch. Linear regression was used to describe the relationships between starch structure and its pasting and thermal properties. The setback value showed a negative linear correlation with the α-1,6 branch point content (R2=0.9824) and a positive linear correlation with the average chain length (R2=0.8954). Meanwhile, the gelatinization enthalpy was also linearly correlated to the α-1,6 branch point content (R2=0.9326) and the average chain length (R2=0.8567). These insights provide a useful reference for food processors. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Comparative genomics of Eukaryotes

    NARCIS (Netherlands)

    Noort, Vera van

    2007-01-01

    This thesis focuses on developing comparative genomics methods in eukaryotes, with an emphasis on applications for gene function prediction and regulatory element detection. In the past, methods have been developed to predict functional associations between gene pairs in prokaryotes. The challenge

  5. Precambrian Skeletonized Microbial Eukaryotes

    Science.gov (United States)

    Lipps, Jere H.

    2017-04-01

    Skeletal heterotrophic eukaryotes are mostly absent from the Precambrian, although algal eukaryotes appear about 2.2 billion years ago. Tintinnids, radiolaria and foraminifera have molecular origins well back into the Precambrian yet no representatives of these groups are known with certainty in that time. These data infer times of the last common ancestors, not the appearance of true representatives of these groups which may well have diversified or not been preserved since those splits. Previous reports of these groups in the Precambrian are misinterpretations of other objects in the fossil record. Reported tintinnids at 1600 mya from China are metamorphic shards or mineral artifacts, the many specimens from 635-715 mya in Mongolia may be eukaryotes but they are not tintinnids, and the putative tintinnids at 580 mya in the Doushantou formation of China are diagenetic alterations of well-known acritarchs. The oldest supposed foraminiferan is Titanotheca from 550 to 565 mya rocks in South America and Africa is based on the occurrence of rutile in the tests and in a few modern agglutinated foraminifera, as well as the agglutinated tests. Neither of these nor the morphology are characteristic of foraminifera; hence these fossils remain as indeterminate microfossils. Platysolenites, an agglutinated tube identical to the modern foraminiferan Bathysiphon, occurs in the latest Neoproterozoic in Russia, Canada, and the USA (California). Some of the larger fossils occurring in typical Ediacaran (late Neoproterozoic) assemblages may be xenophyophorids (very large foraminifera), but the comparison is disputed and flawed. Radiolaria, on occasion, have been reported in the Precambrian, but the earliest known clearly identifiable ones are in the Cambrian. The only certain Precambrian heterotrophic skeletal eukaryotes (thecamoebians) occur in fresh-water rocks at about 750 mya. Skeletonized radiolaria and foraminifera appear sparsely in the Cambrian and radiate in the Ordovician

  6. Anaerobic energy metabolism in unicellular photosynthetic eukaryotes.

    Science.gov (United States)

    Atteia, Ariane; van Lis, Robert; Tielens, Aloysius G M; Martin, William F

    2013-02-01

    Anaerobic metabolic pathways allow unicellular organisms to tolerate or colonize anoxic environments. Over the past ten years, genome sequencing projects have brought a new light on the extent of anaerobic metabolism in eukaryotes. A surprising development has been that free-living unicellular algae capable of photoautotrophic lifestyle are, in terms of their enzymatic repertoire, among the best equipped eukaryotes known when it comes to anaerobic energy metabolism. Some of these algae are marine organisms, common in the oceans, others are more typically soil inhabitants. All these species are important from the ecological (O(2)/CO(2) budget), biotechnological, and evolutionary perspectives. In the unicellular algae surveyed here, mixed-acid type fermentations are widespread while anaerobic respiration, which is more typical of eukaryotic heterotrophs, appears to be rare. The presence of a core anaerobic metabolism among the algae provides insights into its evolutionary origin, which traces to the eukaryote common ancestor. The predicted fermentative enzymes often exhibit an amino acid extension at the N-terminus, suggesting that these proteins might be compartmentalized in the cell, likely in the chloroplast or the mitochondrion. The green algae Chlamydomonas reinhardtii and Chlorella NC64 have the most extended set of fermentative enzymes reported so far. Among the eukaryotes with secondary plastids, the diatom Thalassiosira pseudonana has the most pronounced anaerobic capabilities as yet. From the standpoints of genomic, transcriptomic, and biochemical studies, anaerobic energy metabolism in C. reinhardtii remains the best characterized among photosynthetic protists. This article is part of a Special Issue entitled: The evolutionary aspects of bioenergetic systems. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Molecular Beacon Enables Combination of Highly Processive and Highly Sensitive Rolling Circle Amplification Readouts for Detection of DNA-Modifying Enzymes

    DEFF Research Database (Denmark)

    Kristoffersen, Emil Laust; Gonzales, Maria; Stougaard, Magnus

    2015-01-01

    Here we present an optimized readout format for detection of the circularized products from a DNA-based sensor for measurement of DNA-modifying enzymes including DNA Topoisomerase I. The basic design of the DNA-sensor relies on the use of a substrate that can be circularized by the activity of DN...

  8. Anaplasma phagocytophilum increases the levels of histone modifying enzymes to inhibit cell apoptosis and facilitate pathogen infection in the tick vector Ixodes scapularis

    Czech Academy of Sciences Publication Activity Database

    Cabezas-Cruz, A.; Alberdi, P.; Ayllón, N.; Valdés, James J.; Pierce, R.; Villar, M.; de la Fuente, J.

    2016-01-01

    Roč. 11, č. 4 (2016), s. 303-319 ISSN 1559-2294 EU Projects: European Commission(XE) 278976 - ANTIGONE; European Commission(XE) 316304 - MODBIOLIN Institutional support: RVO:60077344 Keywords : Anaplasma * epigenetics * histone modifying enzyme * histone * pathogen * tick Subject RIV: GJ - Animal Vermins ; Diseases, Veterinary Medicine Impact factor: 4.394, year: 2016

  9. Cognitive enhancers (nootropics). Part 3: drugs interacting with targets other than receptors or enzymes. disease-modifying drugs.

    Science.gov (United States)

    Froestl, Wolfgang; Pfeifer, Andrea; Muhs, Andreas

    2013-01-01

    Cognitive enhancers (nootropics) are drugs to treat cognition deficits in patients suffering from Alzheimer's disease, schizophrenia, stroke, attention deficit hyperactivity disorder, or aging. Cognition refers to a capacity for information processing, applying knowledge, and changing preferences. It involves memory, attention, executive functions, perception, language, and psychomotor functions. The term nootropics was coined in 1972 when memory enhancing properties of piracetam were observed in clinical trials. In the meantime, hundreds of drugs have been evaluated in clinical trials or in preclinical experiments. To classify the compounds, a concept is proposed assigning drugs to 19 categories according to their mechanism(s) of action, in particular drugs interacting with receptors, enzymes, ion channels, nerve growth factors, re-uptake transporters, antioxidants, metal chelators, and disease modifying drugs, meaning small molecules, vaccines, and monoclonal antibodies interacting with amyloid-β and tau. For drugs, whose mechanism of action is not known, they are either classified according to structure, e.g., peptides, or their origin, e.g., natural products. The review covers the evolution of research in this field over the last 25 years.

  10. A CHROMATIN MODIFYING ENZYME, SDG8, IS REQUIRED FOR MORPHOLOGICAL, GENE EXPRESSION, AND EPIGENETIC RESPONSES TO MECHANICAL STIMULATION

    Directory of Open Access Journals (Sweden)

    Christopher Ian Cazzonelli

    2014-10-01

    Full Text Available Thigmomorphogenesis is viewed as being a response process of acclimation to short repetitive bursts of mechanical stimulation or touch. The underlying molecular mechanisms that coordinate changes in how touch signals lead to long-term morphological changes are enigmatic. Touch responsive gene expression is rapid and transient, and no transcription factor or DNA regulatory motif has been reported that could confer a genome wide mechanical stimulus. We report here on a chromatin modifying enzyme, SDG8/ASHH2, which can regulate the expression of many touch responsive genes identified in Arabidopsis. SDG8 is required for the permissive expression of touch induced genes; and the loss of function of sdg8 perturbs the maximum levels of induction on selected touch gene targets. SDG8 is required to maintain permissive H3K4 trimethylation marks surrounding the Arabidopsis touch-inducible gene TOUCH 3 (TCH3, which encodes a calmodulin-like protein (CML12. The gene neighbouring was also slightly down regulated, revealing a new target for SDG8 mediated chromatin modification. Finally, sdg8 mutants show perturbed morphological response to wind-agitated mechanical stimuli, implicating an epigenetic memory-forming process in the acclimation response of thigmomorphogenesis.

  11. Persistent overexpression of phosphoglycerate mutase, a glycolytic enzyme, modifies energy metabolism and reduces stress resistance of heart in mice.

    Directory of Open Access Journals (Sweden)

    Junji Okuda

    Full Text Available BACKGROUND: Heart failure is associated with changes in cardiac energy metabolism. Glucose metabolism in particular is thought to be important in the pathogenesis of heart failure. We examined the effects of persistent overexpression of phosphoglycerate mutase 2 (Pgam2, a glycolytic enzyme, on cardiac energy metabolism and function. METHODS AND RESULTS: Transgenic mice constitutively overexpressing Pgam2 in a heart-specific manner were generated, and cardiac energy metabolism and function were analyzed. Cardiac function at rest was normal. The uptake of analogs of glucose or fatty acids and the phosphocreatine/βATP ratio at rest were normal. A comprehensive metabolomic analysis revealed an increase in the levels of a few metabolites immediately upstream and downstream of Pgam2 in the glycolytic pathway, whereas the levels of metabolites in the initial few steps of glycolysis and lactate remained unchanged. The levels of metabolites in the tricarboxylic acid (TCA cycle were altered. The capacity for respiration by isolated mitochondria in vitro was decreased, and that for the generation of reactive oxygen species (ROS in vitro was increased. Impaired cardiac function was observed in response to dobutamine. Mice developed systolic dysfunction upon pressure overload. CONCLUSIONS: Constitutive overexpression of Pgam2 modified energy metabolism and reduced stress resistance of heart in mice.

  12. Endosymbiotic theories for eukaryote origin.

    Science.gov (United States)

    Martin, William F; Garg, Sriram; Zimorski, Verena

    2015-09-26

    For over 100 years, endosymbiotic theories have figured in thoughts about the differences between prokaryotic and eukaryotic cells. More than 20 different versions of endosymbiotic theory have been presented in the literature to explain the origin of eukaryotes and their mitochondria. Very few of those models account for eukaryotic anaerobes. The role of energy and the energetic constraints that prokaryotic cell organization placed on evolutionary innovation in cell history has recently come to bear on endosymbiotic theory. Only cells that possessed mitochondria had the bioenergetic means to attain eukaryotic cell complexity, which is why there are no true intermediates in the prokaryote-to-eukaryote transition. Current versions of endosymbiotic theory have it that the host was an archaeon (an archaebacterium), not a eukaryote. Hence the evolutionary history and biology of archaea increasingly comes to bear on eukaryotic origins, more than ever before. Here, we have compiled a survey of endosymbiotic theories for the origin of eukaryotes and mitochondria, and for the origin of the eukaryotic nucleus, summarizing the essentials of each and contrasting some of their predictions to the observations. A new aspect of endosymbiosis in eukaryote evolution comes into focus from these considerations: the host for the origin of plastids was a facultative anaerobe. © 2015 The Authors.

  13. Endosymbiotic theories for eukaryote origin

    Science.gov (United States)

    Martin, William F.; Garg, Sriram; Zimorski, Verena

    2015-01-01

    For over 100 years, endosymbiotic theories have figured in thoughts about the differences between prokaryotic and eukaryotic cells. More than 20 different versions of endosymbiotic theory have been presented in the literature to explain the origin of eukaryotes and their mitochondria. Very few of those models account for eukaryotic anaerobes. The role of energy and the energetic constraints that prokaryotic cell organization placed on evolutionary innovation in cell history has recently come to bear on endosymbiotic theory. Only cells that possessed mitochondria had the bioenergetic means to attain eukaryotic cell complexity, which is why there are no true intermediates in the prokaryote-to-eukaryote transition. Current versions of endosymbiotic theory have it that the host was an archaeon (an archaebacterium), not a eukaryote. Hence the evolutionary history and biology of archaea increasingly comes to bear on eukaryotic origins, more than ever before. Here, we have compiled a survey of endosymbiotic theories for the origin of eukaryotes and mitochondria, and for the origin of the eukaryotic nucleus, summarizing the essentials of each and contrasting some of their predictions to the observations. A new aspect of endosymbiosis in eukaryote evolution comes into focus from these considerations: the host for the origin of plastids was a facultative anaerobe. PMID:26323761

  14. Bio-hydrogen: immobilization of enzymes on electrodes modified by clayey nano-particles; Biohydrogene: immobilisation d'enzymes sur des electrodes modifiees par des nanoparticules argileuses

    Energy Technology Data Exchange (ETDEWEB)

    Lojou, E.; Giudici-Orticoni, M.T.; Bianco, P. [Centre National de la Recherche Scientifique (CNRS), Lab. de Bioenergetique et Ingenierie des Proteines, 13 - Marseille (France)

    2006-07-01

    In this work, has been studied the immobilization of enzymes inside micro-films constituted of clayey nano-particles and layer by layer nano-assembling of clayey nano-particles and enzyme. Natural clays have very great specific surface areas, very strong ions exchange capacities and a swelling lamellar structure particularly well adapted to the non denaturing adsorption of proteins and charged enzymes. In this study, the enzymes have been extracted of sulfate-reducing bacteria. The immobilization of this system in clayey films has been studied by micro-gravimetry/electrochemistry coupling and the catalytic activity towards the production and the consumption of hydrogen quantified. At first, the clay is deposited in layer of thickness of the micron on the gold or graphite electrode. When the hydrogenase is immobilized in the clayey film, the electro-enzymatic oxidation of hydrogen occurs inside the clayey structure. An electrode able to measure either the hydrogen consumption or its production on a wide pH range as thus been prepared, by co-immobilization of hydrogenase and of MV{sup 2+} in montmorillonite films. The catalytic efficiencies obtained by immobilization in the clayey matrix of the two physiological partners, cytochrome c3 and hydrogenase, are strongly improved. Then, this process has been still improved, and three cytochrome c3/clay bilayers have been superposed without loss of the enzymatic activity. (O.M.)

  15. A cobalt-containing eukaryotic nitrile hydratase.

    Science.gov (United States)

    Martinez, Salette; Yang, Xinhang; Bennett, Brian; Holz, Richard C

    2017-01-01

    Nitrile hydratase (NHase), an industrially important enzyme that catalyzes the hydration of nitriles to their corresponding amides, has only been characterized from prokaryotic microbes. The putative NHase from the eukaryotic unicellular choanoflagellate organism Monosiga brevicollis (MbNHase) was heterologously expressed in Escherichia coli. The resulting enzyme expressed as a single polypeptide with fused α- and β-subunits linked by a seventeen-histidine region. Size-exclusion chromatography indicated that MbNHase exists primarily as an (αβ)2 homodimer in solution, analogous to the α2β2 homotetramer architecture observed for prokaryotic NHases. The NHase enzyme contained its full complement of Co(III) and was fully functional without the co-expression of an activator protein or E. coli GroES/EL molecular chaperones. The homology model of MbNHase was developed identifying Cys400, Cys403, and Cys405 as active site ligands. The results presented here provide the first experimental data for a mature and active eukaryotic NHase with fused subunits. Since this new member of the NHase family is expressed from a single gene without the requirement of an activator protein, it represents an alternative biocatalyst for industrial syntheses of important amide compounds. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. The Modified Human DNA Repair Enzyme O6-Methylguanine-DNA Methyltransferase Is a Negative Regulator of Estrogen Receptor-Mediated Transcription upon Alkylation DNA Damage

    OpenAIRE

    Teo, Alvin K. C.; Oh, Hue Kian; Ali, Rahmen B.; Li, Benjamin F. L.

    2001-01-01

    Cell proliferation requires precise control to prevent mutations from replication of (unrepaired) damaged DNA in cells exposed spontaneously to mutagens. Here we show that the modified human DNA repair enzyme O6-methylguanine-DNA methyltransferase (R-MGMT), formed from the suicidal repair of the mutagenic O6-alkylguanine (6RG) lesions by MGMT in the cells exposed to alkylating carcinogens, functions in such control by preventing the estrogen receptor (ER) from transcription activation that me...

  17. Expanding the eukaryotic genetic code

    Science.gov (United States)

    Chin, Jason W.; Cropp, T. Ashton; Anderson, J. Christopher; Schultz, Peter G.

    2013-01-22

    This invention provides compositions and methods for producing translational components that expand the number of genetically encoded amino acids in eukaryotic cells. The components include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, orthogonal pairs of tRNAs/synthetases and unnatural amino acids. Proteins and methods of producing proteins with unnatural amino acids in eukaryotic cells are also provided.

  18. Expanding the eukaryotic genetic code

    Energy Technology Data Exchange (ETDEWEB)

    Chin, Jason W.; Cropp, T. Ashton; Anderson, J. Christopher; Schultz, Peter G.

    2017-02-28

    This invention provides compositions and methods for producing translational components that expand the number of genetically encoded amino acids in eukaryotic cells. The components include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, orthogonal pairs of tRNAs/synthetases and unnatural amino acids. Proteins and methods of producing proteins with unnatural amino acids in eukaryotic cells are also provided.

  19. Electrochemical Reduction of Carbon Dioxide to Methanol by Direct Injection of Electrons into Immobilized Enzymes on a Modified Electrode.

    Science.gov (United States)

    Schlager, Stefanie; Dumitru, Liviu Mihai; Haberbauer, Marianne; Fuchsbauer, Anita; Neugebauer, Helmut; Hiemetsberger, Daniela; Wagner, Annika; Portenkirchner, Engelbert; Sariciftci, Niyazi Serdar

    2016-03-21

    We present results for direct bio-electrocatalytic reduction of CO2 to C1 products using electrodes with immobilized enzymes. Enzymatic reduction reactions are well known from biological systems where CO2 is selectively reduced to formate, formaldehyde, or methanol at room temperature and ambient pressure. In the past, the use of such enzymatic reductions for CO2 was limited due to the necessity of a sacrificial co-enzyme, such as nicotinamide adenine dinucleotide (NADH), to supply electrons and the hydrogen equivalent. The method reported here in this paper operates without the co-enzyme NADH by directly injecting electrons from electrodes into immobilized enzymes. We demonstrate the immobilization of formate, formaldehyde, and alcohol dehydrogenases on one-and-the-same electrode for direct CO2 reduction. Carbon felt is used as working electrode material. An alginate-silicate hybrid gel matrix is used for the immobilization of the enzymes on the electrode. Generation of methanol is observed for the six-electron reduction with Faradaic efficiencies of around 10%. This method of immobilization of enzymes on electrodes offers the opportunity for electrochemical application of enzymatic electrodes to many reactions in which a substitution of the expensive sacrificial co-enzyme NADH is desired. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Endosymbiosis and Eukaryotic Cell Evolution.

    Science.gov (United States)

    Archibald, John M

    2015-10-05

    Understanding the evolution of eukaryotic cellular complexity is one of the grand challenges of modern biology. It has now been firmly established that mitochondria and plastids, the classical membrane-bound organelles of eukaryotic cells, evolved from bacteria by endosymbiosis. In the case of mitochondria, evidence points very clearly to an endosymbiont of α-proteobacterial ancestry. The precise nature of the host cell that partnered with this endosymbiont is, however, very much an open question. And while the host for the cyanobacterial progenitor of the plastid was undoubtedly a fully-fledged eukaryote, how - and how often - plastids moved from one eukaryote to another during algal diversification is vigorously debated. In this article I frame modern views on endosymbiotic theory in a historical context, highlighting the transformative role DNA sequencing played in solving early problems in eukaryotic cell evolution, and posing key unanswered questions emerging from the age of comparative genomics. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. The major aminoglycoside-modifying enzyme AAC(3)-II found in Escherichia coli determines a significant disparity in its resistance to gentamicin and amikacin in China.

    Science.gov (United States)

    Xiao, Yonghong; Hu, Yunjian

    2012-02-01

    The aim of this study was to investigate the prevalence of aminoglycoside-modifying enzymes in Escherichia coli in different areas of China and to explore the relationship between pandemic enzyme type and bacterial resistance to antimicrobial agents in China. Gentamicin- or etimicin-resistant clinical isolates of E. coli were collected from different areas of China, and the in vitro antibacterial activity of 11 aminoglycoside agents was determined using standard (Clinical and Laboratory Standards Institute) agar dilution methods. Twelve aminoglycoside-modifying enzyme genes were detected by PCR and confirmed by DNA sequencing. A total of 205 E. coli strains were collected from nine hospitals in seven cities. All strains were highly resistant to gentamicin or etimicin, whereas resistance to tobramycin, netilmicin, and kanamycin was slightly lower. However, less than 15% of isolates were resistant to amikacin and isepamicin. Of the gentamicin-resistant strains, 88.2% and 86.7% were sensitive to isepamicin and amikacin, respectively. Five aminoglycoside-modifying enzyme genes were detected in 191 strains, whereas the remaining 14 strains were negative. The most common gene type was aac(3)-II (162 strains), followed by aac(6')-I (50 strains), ant(3″)-I (28 strains), aph(3')-II (20 strains), and ant(2″)-I (20 strains). Ninety-five strains yielded aac(3)-II only, whereas the others contained two or three genes. The three main gene combinations were aac(6')-I/aac(3)-II (28 strains), aac(3)-II/ant(3″)-I (11 strains), and aac(3)-II/aac(6')-I (10 strains). Regional bacterial resistance and enzyme distribution were roughly similar, although minor differences were found in Guangzhou, Jinan, and Dalian, which were the sources of most of the amikacin- or isepamicin-resistant strains. Chinese clinical isolates of E. coli remain highly resistant to gentamicin and etimicin, but are susceptible to amikacin and isepamicin. The dominant type of aminoglycoside-modifying enzyme

  2. [Molecular identification of aminoglycoside-modifying enzymes among strains of Enterococcus spp. isolated in hospitals of the VIII Region of Chile].

    Science.gov (United States)

    Sepúlveda, Marcela A; Bello, Helia T; Domínguez, Mariana Y; Mella, Sergio M; Zemelman, Raúl Z; González, Gerardo R

    2007-05-01

    Infectious diseases produced by Enterococcus spp, must be treated with a synergistic combination between a penicillin and an aminoglycoside. High level resistance to aminoglycosides is a serious therapeutic problem, since it predicts the loss of synergistic activity of this antimicrobial combination. To investigate the presence of genes encoding aminoglycoside-modifying enzymes (AMEs) among strains of Enterococcus spp with high level of resistance to aminoglycosides. The genes encoding some of the AMEs were investigated among 305 aminoglycoside-resistant strains of Enterococcus spp isolated in hospitals of the VIII region of Chile, by dot blot hybridization and Polymerase Chain Reaction (PCS). High level resistance to some aminoglycosides was observed in 104 strains (34.1 %) and 93 of these harbored at least one of the genes encoding the investigated AMEs. Three genes were detected: aac(6)Ie-aph(2")Ia (14.8%) encoding for the enzyme AAC(6)Ie-APH(2")Ia (resistance to all aminoglycosides, except streptomycin); aph(3)IIIa (26%), and ant(6)la (28.5%) encoding for the phosphorylating enzymes APH(3)Ilia (resistance to kanamycin, amikacin and neomycin), and ANT(6)-la (resistance only to streptomycin), respectively. None of the strains harbored the gene ant (4) which encode for the enzyme ANT (4). The low frequency of strains harbouring the bifunctional enzyme (<15%), conferring an extended resistance profile to aminoglycosides, allows us to propose the empirical use of aminoglycoside-aminocyclitols, associated to a penicillin, in the treatment of serious infections produced by species of enterococci.

  3. Eukaryotic DNA Replicases

    KAUST Repository

    Zaher, Manal S.

    2014-11-21

    The current model of the eukaryotic DNA replication fork includes three replicative DNA polymerases, polymerase α/primase complex (Pol α), polymerase δ (Pol δ), and polymerase ε (Pol ε). The primase synthesizes 8–12 nucleotide RNA primers that are extended by the DNA polymerization activity of Pol α into 30–35 nucleotide RNA-DNA primers. Replication factor C (RFC) opens the polymerase clamp-like processivity factor, proliferating cell nuclear antigen (PCNA), and loads it onto the primer-template. Pol δ utilizes PCNA to mediate highly processive DNA synthesis, while Pol ε has intrinsic high processivity that is modestly stimulated by PCNA. Pol ε replicates the leading strand and Pol δ replicates the lagging strand in a division of labor that is not strict. The three polymerases are comprised of multiple subunits and share unifying features in their large catalytic and B subunits. The remaining subunits are evolutionarily not related and perform diverse functions. The catalytic subunits are members of family B, which are distinguished by their larger sizes due to inserts in their N- and C-terminal regions. The sizes of these inserts vary among the three polymerases, and their functions remain largely unknown. Strikingly, the quaternary structures of Pol α, Pol δ, and Pol ε are arranged similarly. The catalytic subunits adopt a globular structure that is linked via its conserved C-terminal region to the B subunit. The remaining subunits are linked to the catalytic and B subunits in a highly flexible manner.

  4. Cytokinesis in eukaryotes.

    Science.gov (United States)

    Guertin, David A; Trautmann, Susanne; McCollum, Dannel

    2002-06-01

    Cytokinesis is the final event of the cell division cycle, and its completion results in irreversible partition of a mother cell into two daughter cells. Cytokinesis was one of the first cell cycle events observed by simple cell biological techniques; however, molecular characterization of cytokinesis has been slowed by its particular resistance to in vitro biochemical approaches. In recent years, the use of genetic model organisms has greatly advanced our molecular understanding of cytokinesis. While the outcome of cytokinesis is conserved in all dividing organisms, the mechanism of division varies across the major eukaryotic kingdoms. Yeasts and animals, for instance, use a contractile ring that ingresses to the cell middle in order to divide, while plant cells build new cell wall outward to the cortex. As would be expected, there is considerable conservation of molecules involved in cytokinesis between yeast and animal cells, while at first glance, plant cells seem quite different. However, in recent years, it has become clear that some aspects of division are conserved between plant, yeast, and animal cells. In this review we discuss the major recent advances in defining cytokinesis, focusing on deciding where to divide, building the division apparatus, and dividing. In addition, we discuss the complex problem of coordinating the division cycle with the nuclear cycle, which has recently become an area of intense research. In conclusion, we discuss how certain cells have utilized cytokinesis to direct development.

  5. Enzyme detection by microfluidics

    DEFF Research Database (Denmark)

    2013-01-01

    Microfluidic-implemented methods of detecting an enzyme, in particular a DNA-modifying enzyme, are provided, as well as methods for detecting a cell, or a microorganism expressing said enzyme. The enzyme is detected by providing a nucleic acid substrate, which is specifically targeted by that enzyme......Microfluidic-implemented methods of detecting an enzyme, in particular a DNA-modifying enzyme, are provided, as well as methods for detecting a cell, or a microorganism expressing said enzyme. The enzyme is detected by providing a nucleic acid substrate, which is specifically targeted...

  6. Structure of branching enzyme- and amylomaltase modified starch produced from well-defined amylose to amylopectin substrates

    DEFF Research Database (Denmark)

    Sorndecha, Waraporn; Sagnelli, Domenico; Meier, Sebastian

    2016-01-01

    constituent in starch and the effect of amylose on enzyme catalysis was investigated using amylose-only barley starch (AO) and waxy maize starch (WX) in well-defined ratios. All products were analysed for amylopectin chain length distribution, α-1,6 glucosidic linkages content, molar mass distribution...... and digestibility by using rat intestinal α-glucosidases. For each enzyme treatment series, increased AO content resulted in a higher rate of α-1,6 glucosidic linkage formation but as an effect of the very low initial branching of the AO, the final content of α-1,6 glucosidic linkages was slightly lower as compared...

  7. The Eukaryotic Promoter Database (EPD)

    OpenAIRE

    Perier, R. C.; Praz, V; Junier, T; Bonnard, C.; Bucher, P

    2000-01-01

    The Eukaryotic Promoter Database (EPD) is an annotated non-redundant collection of eukaryotic POL II promoters for which the transcription start site has been determined experimentally. Access to promoter sequences is provided by pointers to positions in nucleotide sequence entries. The annotation part of an entry includes a description of the initiation site mapping data, exhaustive cross-references to the EMBL nucleotide sequence database, SWISS-PROT, TRANSFAC and other databases, as well a...

  8. Massive expansion of the calpain gene family in unicellular eukaryotes

    Directory of Open Access Journals (Sweden)

    Zhao Sen

    2012-09-01

    Full Text Available Abstract Background Calpains are Ca2+-dependent cysteine proteases that participate in a range of crucial cellular processes. Dysfunction of these enzymes may cause, for instance, life-threatening diseases in humans, the loss of sex determination in nematodes and embryo lethality in plants. Although the calpain family is well characterized in animal and plant model organisms, there is a great lack of knowledge about these genes in unicellular eukaryote species (i.e. protists. Here, we study the distribution and evolution of calpain genes in a wide range of eukaryote genomes from major branches in the tree of life. Results Our investigations reveal 24 types of protein domains that are combined with the calpain-specific catalytic domain CysPc. In total we identify 41 different calpain domain architectures, 28 of these domain combinations have not been previously described. Based on our phylogenetic inferences, we propose that at least four calpain variants were established in the early evolution of eukaryotes, most likely before the radiation of all the major supergroups of eukaryotes. Many domains associated with eukaryotic calpain genes can be found among eubacteria or archaebacteria but never in combination with the CysPc domain. Conclusions The analyses presented here show that ancient modules present in prokaryotes, and a few de novo eukaryote domains, have been assembled into many novel domain combinations along the evolutionary history of eukaryotes. Some of the new calpain genes show a narrow distribution in a few branches in the tree of life, likely representing lineage-specific innovations. Hence, the functionally important classical calpain genes found among humans and vertebrates make up only a tiny fraction of the calpain family. In fact, a massive expansion of the calpain family occurred by domain shuffling among unicellular eukaryotes and contributed to a wealth of functionally different genes.

  9. Endoplasmic reticulum stress inhibits collagen synthesis independent of collagen-modifying enzymes in different chondrocyte populations and dermal fibroblasts

    NARCIS (Netherlands)

    Vonk, Lucienne A.; Doulabi, Behrouz Zandieh; Huang, Chun-Ling; Helder, Marco N.; Everts, Vincent; Bank, Ruud A.

    Chondrocytes respond to glucose deprivation with a decreased collagen synthesis due to disruption of a proper functioning of the endoplasmic reticulum (ER): ER stress. Since the mechanisms involved in the decreased synthesis are unknown, we have investigated whether chaperones and collagen-modifying

  10. Endoplasmic reticulum stress inhibits collagen synthesis independent of collagen-modifying enzymes in different chondrocyte populations and dermal fibroblasts

    NARCIS (Netherlands)

    Vonk, L.A.; Doulabi, B.Z.; Huang, C.L.; Helder, M.N.; Everts, V.; Bank, R.A.

    2010-01-01

    Chondrocytes respond to glucose deprivation with a decreased collagen synthesis due to disruption of a proper functioning of the endoplasmic reticulum (ER): ER stress. Since the mechanisms involved in the decreased synthesis are unknown, we have investigated whether chaperones and collagen-modifying

  11. Lipid A structural modifications in extreme conditions and identification of unique modifying enzymes to define the Toll-like receptor 4 structure-activity relationship.

    Science.gov (United States)

    Scott, Alison J; Oyler, Benjamin L; Goodlett, David R; Ernst, Robert K

    2017-11-01

    Strategies utilizing Toll-like receptor 4 (TLR4) agonists for treatment of cancer, infectious diseases, and other targets report promising results. Potent TLR4 antagonists are also gaining attention as therapeutic leads. Though some principles for TLR4 modulation by lipid A have been described, a thorough understanding of the structure-activity relationship (SAR) is lacking. Only through a complete definition of lipid A-TLR4 SAR is it possible to predict TLR4 signaling effects of discrete lipid A structures, rendering them more pharmacologically relevant. A limited 'toolbox' of lipid A-modifying enzymes has been defined and is largely composed of enzymes from mesophile human and zoonotic pathogens. Expansion of this 'toolbox' will result from extending the search into lipid A biosynthesis and modification by bacteria living at the extremes. Here, we review the fundamentals of lipid A structure, advances in lipid A uses in TLR4 modulation, and the search for novel lipid A-modifying systems in extremophile bacteria. This article is part of a Special Issue entitled: Bacterial Lipids edited by Russell E. Bishop. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Molecular Identification of Aminoglycoside-Modifying Enzymes and Plasmid-Mediated Quinolone Resistance Genes among Klebsiella pneumoniae Clinical Isolates Recovered from Egyptian Patients

    Directory of Open Access Journals (Sweden)

    Mohamed F. El-Badawy

    2017-01-01

    Full Text Available Inappropriate use of antibiotics in clinical settings is thought to have led to the global emergence and spread of multidrug-resistant pathogens. The goal of this study was to investigate the prevalence of genes encoding aminoglycoside resistance and plasmid-mediated quinolone resistance among clinical isolates of Klebsiella pneumoniae. All K. pneumoniae isolates were phenotypically identified using API 20E and then confirmed genotypically through amplification of the specific K. pneumoniae phoE gene. All isolates were genotyped by the enterobacterial repetitive intergenic consensus polymerase chain reaction technique (ERIC-PCR. Antibiotic susceptibility testing was done by a modified Kirby-Bauer method and broth microdilution. All resistant or intermediate-resistant isolates to either gentamicin or amikacin were screened for 7 different genes encoding aminoglycoside-modifying enzymes (AMEs. In addition, all resistant or intermediate-resistant isolates to either ciprofloxacin or levofloxacin were screened for 5 genes encoding the quinolone resistance protein (Qnr, 1 gene encoding quinolone-modifying enzyme, and 3 genes encoding quinolone efflux pumps. Biotyping using API 20E revealed 13 different biotypes. Genotyping demonstrated that all isolates were related to 2 main phylogenetic groups. Susceptibility testing revealed that carbapenems and tigecycline were the most effective agents. Investigation of genes encoding AMEs revealed that acc(6′-Ib was the most prevalent, followed by acc(3′-II, aph(3′-IV, and ant(3′′-I. Examination of genes encoding Qnr proteins demonstrated that qnrB was the most prevalent, followed by qnrS, qnrD, and qnrC. It was found that 61%, 26%, and 12% of quinolone-resistant K. pneumoniae isolates harbored acc(6′-Ib-cr, oqxAB, and qebA, respectively. The current study demonstrated a high prevalence of aminoglycoside and quinolone resistance genes among clinical isolates of K. pneumoniae.

  13. Horizontal transfer of bacterial polyphosphate kinases to eukaryotes: implications for the ice age and land colonisation.

    Science.gov (United States)

    Whitehead, Michael P; Hooley, Paul; W Brown, Michael R

    2013-06-05

    Studies of online database(s) showed that convincing examples of eukaryote PPKs derived from bacteria type PPK1 and PPK2 enzymes are rare and currently confined to a few simple eukaryotes. These enzymes probably represent several separate horizontal transfer events. Retention of such sequences may be an advantage for tolerance to stresses such as desiccation or nutrient depletion for simple eukaryotes that lack more sophisticated adaptations available to multicellular organisms. We propose that the acquisition of encoding sequences for these enzymes by horizontal transfer enhanced the ability of early plants to colonise the land. The improved ability to sequester and release inorganic phosphate for carbon fixation by photosynthetic algae in the ocean may have accelerated or even triggered global glaciation events. There is some evidence for DNA sequences encoding PPKs in a wider range of eukaryotes, notably some invertebrates, though it is unclear that these represent functional genes.Polyphosphate (poly P) is found in all cells, carrying out a wide range of essential roles. Studied mainly in prokaryotes, the enzymes responsible for synthesis of poly P in eukaryotes (polyphosphate kinases PPKs) are not well understood. The best characterised enzyme from bacteria known to catalyse the formation of high molecular weight polyphosphate from ATP is PPK1 which shows some structural similarity to phospholipase D. A second bacterial PPK (PPK2) resembles thymidylate kinase. Recent reports have suggested a widespread distribution of these bacteria type enzymes in eukaryotes. On - line databases show evidence for the presence of genes encoding PPK1 in only a limited number of eukaryotes. These include the photosynthetic eukaryotes Ostreococcus tauri, O. lucimarinus, Porphyra yezoensis, Cyanidioschyzon merolae and the moss Physcomitrella patens, as well as the amoeboid symbiont Capsaspora owczarzaki and the non-photosynthetic eukaryotes Dictyostelium (3 species

  14. S-Adenosyl-S-carboxymethyl-l-homocysteine: a novel cofactor found in the putative tRNA-modifying enzyme CmoA

    Energy Technology Data Exchange (ETDEWEB)

    Byrne, Robert T.; Whelan, Fiona [University of York, Heslington YO10 5DD (United Kingdom); Aller, Pierre [Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE (United Kingdom); Bird, Louise E. [OPPF-UK, Research Complex at Harwell, R92 Rutherford Appleton Laboratory, Didcot, Oxfordshire OX11 0FA (United Kingdom); Oxford University, Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford OX3 7BN (United Kingdom); Dowle, Adam [University of York, Heslington YO10 5DD (United Kingdom); Lobley, Carina M. C. [Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE (United Kingdom); Reddivari, Yamini; Nettleship, Joanne E.; Owens, Raymond J. [OPPF-UK, Research Complex at Harwell, R92 Rutherford Appleton Laboratory, Didcot, Oxfordshire OX11 0FA (United Kingdom); Oxford University, Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford OX3 7BN (United Kingdom); Antson, Alfred A. [University of York, Heslington YO10 5DD (United Kingdom); Waterman, David G., E-mail: david.waterman@stfc.ac.uk [STFC, Rutherford Appleton Laboratory, Didcot, Oxfordshire OX11 0FA (United Kingdom); University of York, Heslington YO10 5DD (United Kingdom)

    2013-06-01

    The putative methyltransferase CmoA is involved in the nucleoside modification of transfer RNA. X-ray crystallography and mass spectrometry are used to show that it contains a novel SAM derivative, S-adenosyl-S-carboxymethyl-l-homocysteine, in which the donor methyl group is replaced by a carboxymethyl group. Uridine at position 34 of bacterial transfer RNAs is commonly modified to uridine-5-oxyacetic acid (cmo{sup 5}U) to increase the decoding capacity. The protein CmoA is involved in the formation of cmo{sup 5}U and was annotated as an S-adenosyl-l-methionine-dependent (SAM-dependent) methyltransferase on the basis of its sequence homology to other SAM-containing enzymes. However, both the crystal structure of Escherichia coli CmoA at 1.73 Å resolution and mass spectrometry demonstrate that it contains a novel cofactor, S-adenosyl-S-carboxymethyl-l-homocysteine (SCM-SAH), in which the donor methyl group is substituted by a carboxymethyl group. The carboxyl moiety forms a salt-bridge interaction with Arg199 that is conserved in a large group of CmoA-related proteins but is not conserved in other SAM-containing enzymes. This raises the possibility that a number of enzymes that have previously been annotated as SAM-dependent are in fact SCM-SAH-dependent. Indeed, inspection of electron density for one such enzyme with known X-ray structure, PDB entry http://scripts.iucr.org/cgi-bin/cr.cgi?rm, suggests that the active site contains SCM-SAH and not SAM.

  15. Sulfate assimilation in eukaryotes: fusions, relocations and lateral transfers

    Directory of Open Access Journals (Sweden)

    Durnford Dion G

    2008-02-01

    Full Text Available Abstract Background The sulfate assimilation pathway is present in photosynthetic organisms, fungi, and many bacteria, providing reduced sulfur for the synthesis of cysteine and methionine and a range of other metabolites. In photosynthetic eukaryotes sulfate is reduced in the plastids whereas in aplastidic eukaryotes the pathway is cytosolic. The only known exception is Euglena gracilis, where the pathway is localized in mitochondria. To obtain an insight into the evolution of the sulfate assimilation pathway in eukaryotes and relationships of the differently compartmentalized isoforms we determined the locations of the pathway in lineages for which this was unknown and performed detailed phylogenetic analyses of three enzymes involved in sulfate reduction: ATP sulfurylase (ATPS, adenosine 5'-phosphosulfate reductase (APR and sulfite reductase (SiR. Results The inheritance of ATPS, APR and the related 3'-phosphoadenosine 5'-phosphosulfate reductase (PAPR are remarkable, with multiple origins in the lineages that comprise the opisthokonts, different isoforms in chlorophytes and streptophytes, gene fusions with other enzymes of the pathway, evidence a eukaryote to prokaryote lateral gene transfer, changes in substrate specificity and two reversals of cellular location of host- and endosymbiont-originating enzymes. We also found that the ATPS and APR active in the mitochondria of Euglena were inherited from its secondary, green algal plastid. Conclusion Our results reveal a complex history for the enzymes of the sulfate assimilation pathway. Whilst they shed light on the origin of some characterised novelties, such as a recently described novel isoform of APR from Bryophytes and the origin of the pathway active in the mitochondria of Euglenids, the many distinct and novel isoforms identified here represent an excellent resource for detailed biochemical studies of the enzyme structure/function relationships.

  16. Prokaryotes versus Eukaryotes: Who is hosting whom?

    Directory of Open Access Journals (Sweden)

    Guillermo eTellez

    2014-10-01

    Full Text Available Microorganisms represent the largest component of biodiversity in our world. For millions of years, prokaryotic microorganisms have functioned as a major selective force shaping eukaryotic evolution. Microbes that live inside and on animals outnumber the animals’ actual somatic and germ cells by an estimated 10-fold. Collectively, the intestinal microbiome represents a ‘forgotten organ’, functioning as an organ inside another that can execute many physiological responsibilities. The nature of primitive eukaryotes was drastically changed due to the association with symbiotic prokaryotes facilitating mutual coevolution of host and microbe. Phytophagous insects have long been used to test theories of evolutionary diversification; moreover, the diversification of a number of phytophagous insect lineages has been linked to mutualisms with microbes. From termites and honey bees to ruminants and mammals, depending on novel biochemistries provided by the prokaryotic microbiome, the association helps to metabolize several nutrients that the host cannot digest and converting these into useful end products (such as short chain fatty acids, a process which has huge impact on the biology and homeostasis of metazoans. More importantly, in a direct and/or indirect way, the intestinal microbiota influences the assembly of gut-associated lymphoid tissue, helps to educate immune system, affects the integrity of the intestinal mucosal barrier, modulates proliferation and differentiation of its epithelial lineages, regulates angiogenesis, and modifies the activity of enteric as well as the central nervous system,. Despite these important effects, the mechanisms by which the gut microbial community influences the host’s biology remains almost entirely unknown. Our aim here is to encourage empirical inquiry into the relationship between mutualism and evolutionary diversification between prokaryotes and eukaryotes which encourage us to postulate: Who is

  17. Protein splicing and its evolution in eukaryotes

    Directory of Open Access Journals (Sweden)

    Starokadomskyy P. L.

    2010-02-01

    Full Text Available Inteins, or protein introns, are parts of protein sequences that are post-translationally excised, their flanking regions (exteins being spliced together. This process was called protein splicing. Originally inteins were found in prokaryotic or unicellular eukaryotic organisms. But the general principles of post-translation protein rearrangement are evolving yielding different post-translation modification of proteins in multicellular organisms. For clarity, these non-intein mediated events call either protein rearrangements or protein editing. The most intriguing example of protein editing is proteasome-mediated splicing of antigens in vertebrates that may play important role in antigen presentation. Other examples of protein rearrangements are maturation of Hg-proteins (critical receptors in embryogenesis as well as maturation of several metabolic enzymes. Despite a lack of experimental data we try to analyze some intriguing examples of protein splicing evolution.

  18. Modified Huo-Luo-Xiao-Ling Dan Suppresses Adjuvant Arthritis by Inhibiting Chemokines and Matrix-Degrading Enzymes

    Directory of Open Access Journals (Sweden)

    Siddaraju M. Nanjundaiah

    2012-01-01

    Full Text Available Rheumatoid arthritis (RA is a chronic inflammatory disease affecting the joints that can lead to deformities and disability. The prolonged use of conventionally used drugs is associated with severe adverse reactions. Therefore, safer and less expensive therapeutic products are continually being sought. Huo-Luo-Xiao-Ling dan (HLXL, a traditional Chinese herbal mixture, and its modified versions possess anti-arthritic activity. In this paper, we examined the influence of modified HLXL on two of the key mediators of arthritic inflammation and tissue damage, namely, chemokines and matrix-metalloproteinases (MMPs in the rat adjuvant-induced arthritis (AA model of RA. We treated arthritic Lewis rats with HLXL (2.3 g/kg by daily gavage beginning at the onset of AA. The control rats received the vehicle. At the peak phase of AA, rats were sacrificed and their draining lymph node cells (LNC and spleen adherent cells (SAC were tested. The HLXL-treated rats showed a significant reduction in the levels of chemokines (RANTES, MCP-1, MIP-1α, and GRO/KC, MMPs (MMP 2 and 9, as well as cytokines (IL-6 and IL-17 that induce them, compared to the control vehicle-treated rats. Thus, HLXL controls arthritis in part by suppressing the mediators of immune pathology, and it might offer a promising alternative/adjunct treatment for RA.

  19. [Methylation of adenine residues in DNA of eukaryotes].

    Science.gov (United States)

    Baniushin, B F

    2005-01-01

    Like in bacteria, DNA in these organisms is subjected to enzymatic modification (methylation) both at adenine and cytosine residues. There is an indirect evidence that adenine DNA methylation takes place also in animals. In plants m6A was detected in total, mitochondrial and nuclear DNAs; in plants one and the same gene (DRM2) can be methylated both at adenine and cytosine residues. ORF homologous to bacterial adenine DNA-methyltransferases are present in nuclear DNA of protozoa, yeasts, insects, nematodes, higher plants, vertebrates and other eukaryotes. Thus, adenine DNA-methyltransferases can be found in the various evolutionary distant eukaryotes. First N6-adenine DNA-methyltransferase (wadmtase) of higher eukaryotes was isolated from vacuolar fraction of vesicles obtained from aging wheat coleoptiles; in the presence of S-adenosyl-L-methionine this Mg2+ -, Ca2+ -dependent enzyme de novo methylates first adenine residue in TGATCA sequence in single- and double-stranded DNA but it prefers single-stranded DNA structures. Adenine DNA methylation in eukaryotes seems to be involved in regulation of both gene expression and DNA replication including replication of mitochondrial DNA. It can control persistence of foreign DNA in a cell and seems to be an element of R-M system in plants. Thus, in eukaryotic cell there are, at least, two different systems of the enzymatic DNA methylations (adenine and cytosine ones) and a special type of regulation of gene functioning based on the combinatory hierarchy of these interdependent genome modifications.

  20. Eukaryotic organisms in Proterozoic oceans.

    Science.gov (United States)

    Knoll, A H; Javaux, E J; Hewitt, D; Cohen, P

    2006-06-29

    The geological record of protists begins well before the Ediacaran and Cambrian diversification of animals, but the antiquity of that history, its reliability as a chronicle of evolution and the causal inferences that can be drawn from it remain subjects of debate. Well-preserved protists are known from a relatively small number of Proterozoic formations, but taphonomic considerations suggest that they capture at least broad aspects of early eukaryotic evolution. A modest diversity of problematic, possibly stem group protists occurs in ca 1800-1300 Myr old rocks. 1300-720 Myr fossils document the divergence of major eukaryotic clades, but only with the Ediacaran-Cambrian radiation of animals did diversity increase within most clades with fossilizable members. While taxonomic placement of many Proterozoic eukaryotes may be arguable, the presence of characters used for that placement is not. Focus on character evolution permits inferences about the innovations in cell biology and development that underpin the taxonomic and morphological diversification of eukaryotic organisms.

  1. Eukaryotic vs. cyanobacterial oxygenic photosynthesis

    OpenAIRE

    Schmelling, Nicolas

    2015-01-01

    Slides of my talk about the differences between eukaryotic and cyanobacterial oxygenic photosynthesis.  The talk is a more generell overview about the differences of the two systems. Slides and Figures are my own. For comments, questions and suggestions please contact me via twitter @derschmelling or via mail

  2. A symmetric supercapacitor/biofuel cell hybrid device based on enzyme-modified nanoporous gold: An autonomous pulse generator.

    Science.gov (United States)

    Xiao, Xinxin; Conghaile, Peter Ó; Leech, Dónal; Ludwig, Roland; Magner, Edmond

    2017-04-15

    The integration of supercapacitors with enzymatic biofuel cells (BFCs) can be used to prepare hybrid devices in order to harvest significantly higher power output. In this study, a supercapacitor/biofuel cell hybrid device was prepared by the immobilisation of redox enzymes with electrodeposited poly(3,4-ethylenedioxythiophene) (PEDOT) and the redox polymer [Os(2,2'-bipyridine)2(polyvinylimidazole)10Cl]+/2+(Os(bpy)2PVI) on dealloyed nanoporous gold. The thickness of the deposition layer can be easily controlled by tuning the deposition conditions. Once charged by the internal BFC, the device can be discharged as a supercapacitor at a current density of 2mAcm-2 providing a maximum power density of 608.8μWcm-2, an increase of a factor of 468 when compared to the power output from the BFC itself. The hybrid device exhibited good operational stability for 50 charge/discharge cycles and ca. 7h at a discharge current density of 0.2mAcm-2. The device could be used as a pulse generator, mimicking a cardiac pacemaker delivering pulses of 10μA for 0.5ms at a frequency of 0.2Hz. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Bioorthogonal proteomics of 15-hexadecynyloxyacetic acid chemical reporter reveals preferential targeting of fatty acid modified proteins and biosynthetic enzymes.

    Science.gov (United States)

    Yount, Jacob S; Charron, Guillaume; Hang, Howard C

    2012-01-15

    Chemical reporters are powerful tools for the detection and discovery of protein modifications following cellular labeling. The metabolism of alkyne- or azide-functionalized chemical reporters in cells can influence the efficiency and specificity of protein targeting. To evaluate the effect of degradation of chemical reporters of protein fatty acylation, we synthesized 15-hexadecynyloxyacetic acid (HDYOA), a reporter that was designed to be resistant to β-oxidation, and compared its ability to label palmitoylated proteins with an established reporter, 17-octadecynoic acid (ODYA). HDYOA was able to label known candidate S-palmitoylated proteins similarly to ODYA. Accordingly, bioorthogonal proteomic analysis demonstrated that 70% of proteins labeled with ODYA were also labeled with HDYOA. However, the proteins observed differentially in our proteomic studies suggested that a portion of ODYA protein labeling is a result of β-oxidation. In contrast, downstream enzymes involved in β-oxidation of fatty acids were not targeted by HDYOA. Since HDYOA can label S-palmitoylated proteins and is not utilized by downstream β-oxidation pathways, this fatty acid chemical reporter may be particularly useful for bioorthogonal proteomic studies in cell types metabolically skewed toward fatty acid breakdown. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Optimization of bioselective membrane of amperometric enzyme sensor on basis of glucose oxidase using NH2-modified multi-wall carbone nanotubes

    Directory of Open Access Journals (Sweden)

    Korpan Ya. I.

    2010-02-01

    Full Text Available Aim. To investigate a possibility of application of multi-wall carbone nanotubes modified with NH2-groups (MWCNT-NH2 for creation of sensitive elements of the amperometric biosensor based on immobilized oxidoreductases, in particular, glucose oxidase (GOD. To study electrochemical properties of the membranes obtained. Methods. Experiments were carried out with amperometric methods using the ìStat 200 device («DropSens», Spain. The enzymes were immobilised in glutaraldehyde vapour. Results. The method of formation of bioselective matrix based on immobilised GOD with MNP-NH2 on the surface of gold amperometric electrodes was optimised. Optimal working conditions of the biosensor developed were determined. Conclusion. MWCNT integration into a bioselective matrix improves the biosensor analytical characteristics which means: higher signal value, wider linear range of glucose analysis, and possibility of substrate determination in wide range of working potential.

  5. Effects of modified atmosphere packaging on ripening of 'Douradão' peach related to pectolytic enzymes activities and chilling injury symptoms

    Directory of Open Access Journals (Sweden)

    Ligia Regina Radomille de Santana

    2011-12-01

    Full Text Available The present study evaluated the effects of modified atmosphere packaging on inhibition of the development of chilling injury symptoms in 'Douradão' peach after cold storage and the possible involvement of cell wall enzymes. Fruits were harvested at the middle stadium of ripening, packed in polypropylene trays and placed inside low density polyethylene (LDPE bags (30, 50, 60 and 75 µm of thickness with active modified atmosphere (10 kPa CO2 + 1.5 kPa O2, balance N2. The following treatments were tested: Control: peaches held in nonwrapped trays; MA30: LDPE film - 30 µm; MA50: LDPE film - 50 µm; MA60: LDPE film - 60 µm and MA75: LDPE film - 75 µm. Fruits were kept at 1±1ºC and 90±5% relative humidity (RH for 28 days. After 14, 21 and 28 days, samples were withdrawn from MAP and kept in air at 25±1ºC and 90±5% RH for ripening. On the day of removal and after 4 days, peaches were evaluated for woolliness incidence, pectolytic enzymes activities. The respiratory rate and ethylene synthesis were monitored during 6 days of ripening. The results showed that MA50 and MA60 treatments had positive effect on the inhibition of the development of woolly texture and reduced pectin methylesterase activity on the ripe fruits, keeping good quality of 'Douradão' peach during 28 days of cold storage. The treatments Control, MA30 and MA75 showed higher woolliness incidence and did not present marketable conditions after 14 days of cold storage.

  6. Effect of xanthan/enzyme-modified guar gum mixtures on the stability of whey protein isolate stabilized fish oil-in-water emulsions.

    Science.gov (United States)

    Chityala, Pavan Kumar; Khouryieh, Hanna; Williams, Kevin; Conte, Eric

    2016-12-01

    The effect of xanthan gum (XG) and enzyme-modified guar (EMG) gum mixtures on the physicochemical properties and oxidative stability of 2wt% whey protein isolate (WPI) stabilized oil-in-water (O/W) emulsions containing 20%v/v fish oil was investigated. EMG was obtained by hydrolyzing native guar gum using α-galactosidase enzyme. At higher gum concentrations (0.2 and 0.3wt%), the viscosity of the emulsions containing XG/EMG gum mixtures was significantly higher (Pemulsions. Increasing concentrations (0-0.3wt%) of XG/EMG gum mixtures did not affect the droplet size of emulsions. Microstructure images revealed decreased flocculation at higher concentrations. Primary and secondary lipid oxidation measurements indicated a slower rate of oxidation in emulsions containing XG/EMG gum mixtures, compared to XG, guar (GG), and XG/GG gum mixtures. These results indicate that XG/EMG gum mixtures can be used in O/W emulsions to increase physical and oxidative stabilities of polyunsaturated fatty acids in foods. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Use and improvement of microbial redox enzymes for environmental purposes

    Directory of Open Access Journals (Sweden)

    Ballesteros Antonio

    2004-08-01

    Full Text Available Abstract Industrial development may result in the increase of environmental risks. The enzymatic transformation of polluting compounds to less toxic or even innocuous products is an alternative to their complete removal. In this regard, a number of different redox enzymes are able to transform a wide variety of toxic pollutants, such as polynuclear aromatic hydrocarbons, phenols, azo dyes, heavy metals, etc. Here, novel information on chromate reductases, enzymes that carry out the reduction of highly toxic Cr(VI to the less toxic insoluble Cr(III, is discussed. In addition, the properties and application of bacterial and eukaryotic proteins (lignin-modifying enzymes, peroxidases and cytochromes useful in environmental enzymology is also discussed.

  8. Lupinus albus Conglutin Gamma Modifies the Gene Expressions of Enzymes Involved in Glucose Hepatic Production In Vivo.

    Science.gov (United States)

    González-Santiago, Ana E; Vargas-Guerrero, Belinda; García-López, Pedro M; Martínez-Ayala, Alma L; Domínguez-Rosales, José A; Gurrola-Díaz, Carmen M

    2017-06-01

    Lupinus albus seeds contain conglutin gamma (Cγ) protein, which exerts a hypoglycemic effect and positively modifies proteins involved in glucose homeostasis. Cγ could potentially be used to manage patients with impaired glucose metabolism, but there remains a need to evaluate its effects on hepatic glucose production. The present study aimed to analyze G6pc, Fbp1, and Pck1 gene expressions in two experimental animal models of impaired glucose metabolism. We also evaluated hepatic and renal tissue integrity following Cγ treatment. To generate an insulin resistance model, male Wistar rats were provided 30% sucrose solution ad libitum for 20 weeks. To generate a type 2 diabetes model (STZ), five-day-old rats were intraperitoneally injected with streptozotocin (150 mg/kg). Each animal model was randomized into three subgroups that received the following oral treatments daily for one week: 0.9% w/v NaCl (vehicle; IR-Ctrl and STZ-Ctrl); metformin 300 mg/kg (IR-Met and STZ-Met); and Cγ 150 mg/kg (IR-Cγ and STZ-Cγ). Biochemical parameters were assessed pre- and post-treatment using colorimetric or enzymatic methods. We also performed histological analysis of hepatic and renal tissue. G6pc, Fbp1, and Pck1 gene expressions were quantified using real-time PCR. No histological changes were observed in any group. Post-treatment G6pc gene expression was decreased in the IR-Cγ and STZ-Cγ groups. Post-treatment Fbp1 and Pck1 gene expressions were reduced in the IR-Cγ group but increased in STZ-Cγ animals. Overall, these findings suggest that Cγ is involved in reducing hepatic glucose production, mainly through G6pc inhibition in impaired glucose metabolism disorders.

  9. Invader Assisted Enzyme-Linked Immunosorbent Assay for Colorimetric Detection of Disease Biomarkers Using Oligonucleotide Probe-Modified Gold Nanoparticles.

    Science.gov (United States)

    Song, Qinxin; Qi, Xiemin; Jia, Huning; He, Liang; Kumar, Shalen; Pitman, Janet L; Zou, Bingjie; Zhou, Guohua

    2016-04-01

    We successfully developed an invader assisted ELISA assay (iaELISA) for sensitive detection of disease biomarkers. The method includes three key steps as follows; biotinylated detection antibody was at first used to capture targeted antigen by sandwich ELISA. The biotinylated oligonucleotide was then attached to detection antibody via streptavidin. Finally, the cascade invader reactions were employed to amplify the biotinylated oligonucleotide specific to the antigen so that detection of the antigen was transformed into signal amplification of the antigen-specific DNA. To achieve colorimetric detection, oligonucleotide probe and modified gold nanoparticles (AuNPs) were coupled with the invader assay. Utilization of the hairpin probes in the invader reaction brought about free AuNPs, resulting in the positive read-out (red color). On the other hand, aggregation of the AuNPs occurred when the hairpin probes were not utilized in the reaction. This method was successfully used to detect as low as 2.4 x 10(-11) g/mL of HBsAg by both naked eye and spectrophotometer. This sensitivity was about 100 times higher than that of conventional ELISA method. The method was also used to assay 16 serum specimens from HBV-infected patients and 8 serum specimens from HBV-negative donors and results were in good agreement with those obtained from the conventional ELISA. As the invader assay is sensitive to one base sequence, a good specificity was also obtained by detecting other antigens like hepatitis A virus (HAV) and BSA. The method has therefore much potential for ultrasensitive and cost-effective detection of targeted proteins that have clinical importance.

  10. Eukaryotic transcriptomics in silico: Optimizing cDNA-AFLP efficiency

    Directory of Open Access Journals (Sweden)

    Wüst Christian

    2009-11-01

    Full Text Available Abstract Background Complementary-DNA based amplified fragment length polymorphism (cDNA-AFLP is a commonly used tool for assessing the genetic regulation of traits through the correlation of trait expression with cDNA expression profiles. In spite of the frequent application of this method, studies on the optimization of the cDNA-AFLP assay design are rare and have typically been taxonomically restricted. Here, we model cDNA-AFLPs on all 92 eukaryotic species for which cDNA pools are currently available, using all combinations of eight restriction enzymes standard in cDNA-AFLP screens. Results In silco simulations reveal that cDNA pool coverage is largely determined by the choice of individual restriction enzymes and that, through the choice of optimal enzyme combinations, coverage can be increased from Conclusion The insights gained from in silico screening of cDNA-AFLPs from a broad sampling of eukaryotes provide a set of guidelines that should help to substantially increase the efficiency of future cDNA-AFLP experiments in eukaryotes. In silico simulations also suggest a novel use of cDNA-AFLP screens to determine the number of transcripts expressed in a target tissue, an application that should be invaluable as next-generation sequencing technologies are adapted for differential display.

  11. Translation of Angiotensin-Converting Enzyme 2 upon Liver- and Lung-Targeted Delivery of Optimized Chemically Modified mRNA

    Directory of Open Access Journals (Sweden)

    Eva Schrom

    2017-06-01

    Full Text Available Changes in lifestyle and environmental conditions give rise to an increasing prevalence of liver and lung fibrosis, and both have a poor prognosis. Promising results have been reported for recombinant angiotensin-converting enzyme 2 (ACE2 protein administration in experimental liver and lung fibrosis. However, the full potential of ACE2 may be achieved by localized translation of a membrane-anchored form. For this purpose, we advanced the latest RNA technology for liver- and lung-targeted ACE2 translation. We demonstrated in vitro that transfection with ACE2 chemically modified messenger RNA (cmRNA leads to robust translation of fully matured, membrane-anchored ACE2 protein. In a second step, we designed eight modified ACE2 cmRNA sequences and identified a lead sequence for in vivo application. Finally, formulation of this ACE2 cmRNA in tailor-made lipidoid nanoparticles and in lipid nanoparticles led to liver- and lung-targeted translation of significant amounts of ACE2 protein, respectively. In summary, we provide evidence that RNA transcript therapy (RTT is a promising approach for ACE2-based treatment of liver and lung fibrosis to be tested in fibrotic disease models.

  12. Gonococcal attachment to eukaryotic cells

    Energy Technology Data Exchange (ETDEWEB)

    James, J.F.; Lammel, C.J.; Draper, D.L.; Brown, D.A.; Sweet, R.L.; Brooks, G.F.

    The attachment of Neisseria gonorrhoeae to eukaryotic cells grown in tissue culture was analyzed by use of light and electron microscopy and by labeling of the bacteria with (/sup 3/H)- and (/sup 14/C)adenine. Isogenic piliated and nonpiliated N. gonorrhoeae from opaque and transparent colonies were studied. The results of light microscopy studies showed that the gonococci attached to cells of human origin, including Flow 2000, HeLa 229, and HEp 2. Studies using radiolabeled gonococci gave comparable results. Piliated N. gonorrhoeae usually attached in larger numbers than nonpiliated organisms, and those from opaque colonies attached more often than isogenic variants from transparent colonies. Day-to-day variation in rate of attachment was observed. Scanning electron microscopy studies showed the gonococcal attachment to be specific for microvilli of the host cells. It is concluded that more N. gonorrhoeae from opaque colonies, as compared with isogenic variants from transparent colonies, attach to eukaryotic cells grown in tissue culture.

  13. Defensins: antifungal lessons from eukaryotes

    Directory of Open Access Journals (Sweden)

    Patrícia M. Silva

    2014-03-01

    Full Text Available Over the last years, antimicrobial peptides (AMPs have been the focus of intense research towards the finding of a viable alternative to current antifungal drugs. Defensins are one of the major families of AMPs and the most represented among all eukaryotic groups, providing an important first line of host defense against pathogenic microorganisms. Several of these cysteine-stabilized peptides present a relevant effect against fungi. Defensins are the AMPs with the broader distribution across all eukaryotic kingdoms, namely, Fungi, Plantæ and Animalia, and were recently shown to have an ancestor in a bacterial organism. As a part of the host defense, defensins act as an important vehicle of information between innate and adaptive immune system and have a role in immunomodulation. This multidimensionality represents a powerful host shield, hard for microorganisms to overcome using single approach resistance strategies. Pathogenic fungi resistance to conventional antimycotic drugs is becoming a major problem. Defensins, as other AMPs, have shown to be an effective alternative to the current antimycotic therapies, demonstrating potential as novel therapeutic agents or drug leads. In this review, we summarize the current knowledge on some eukaryotic defensins with antifungal action. An overview of the main targets in the fungal cell and the mechanism of action of these AMPs (namely, the selectivity for some fungal membrane components are presented. Additionally, recent works on antifungal defensins structure, activity and citotoxicity are also reviewed.

  14. The eukaryotic promoter database (EPD).

    Science.gov (United States)

    Périer, R C; Praz, V; Junier, T; Bonnard, C; Bucher, P

    2000-01-01

    The Eukaryotic Promoter Database (EPD) is an annotated non-redundant collection of eukaryotic POL II promoters for which the transcription start site has been determined experimentally. Access to promoter sequences is provided by pointers to positions in nucleotide sequence entries. The annotation part of an entry includes a description of the initiation site mapping data, exhaustive cross-references to the EMBL nucleotide sequence database, SWISS-PROT, TRANSFAC and other databases, as well as bibliographic references. EPD is structured in a way that facilitates dynamic extraction of biologically meaningful promoter subsets for comparative sequence analysis. WWW-based interfaces have been developed that enable the user to view EPD entries in different formats, to select and extract promoter sequences according to a variety of criteria, and to navigate to related databases exploiting different cross-references. The EPD web site also features yearly updated base frequency matrices for major eukaryotic promoter elements. EPD can be accessed at http://www.epd.isb-sib.ch

  15. The independent prokaryotic origins of eukaryotic fructose-1, 6-bisphosphatase and sedoheptulose-1, 7-bisphosphatase and the implications of their origins for the evolution of eukaryotic Calvin cycle

    Directory of Open Access Journals (Sweden)

    Jiang Yong-Hai

    2012-10-01

    Full Text Available Abstract Background In the Calvin cycle of eubacteria, the dephosphorylations of both fructose-1, 6-bisphosphate (FBP and sedoheptulose-1, 7-bisphosphate (SBP are catalyzed by the same bifunctional enzyme: fructose-1, 6-bisphosphatase/sedoheptulose-1, 7-bisphosphatase (F/SBPase, while in that of eukaryotic chloroplasts by two distinct enzymes: chloroplastic fructose-1, 6-bisphosphatase (FBPase and sedoheptulose-1, 7-bisphosphatase (SBPase, respectively. It was proposed that these two eukaryotic enzymes arose from the divergence of a common ancestral eubacterial bifunctional F/SBPase of mitochondrial origin. However, no specific affinity between SBPase and eubacterial FBPase or F/SBPase can be observed in the previous phylogenetic analyses, and it is hard to explain why SBPase and/or F/SBPase are/is absent from most extant nonphotosynthetic eukaryotes according to this scenario. Results Domain analysis indicated that eubacterial F/SBPase of two different resources contain distinct domains: proteobacterial F/SBPases contain typical FBPase domain, while cyanobacterial F/SBPases possess FBPase_glpX domain. Therefore, like prokaryotic FBPase, eubacterial F/SBPase can also be divided into two evolutionarily distant classes (Class I and II. Phylogenetic analysis based on a much larger taxonomic sampling than previous work revealed that all eukaryotic SBPase cluster together and form a close sister group to the clade of epsilon-proteobacterial Class I FBPase which are gluconeogenesis-specific enzymes, while all eukaryotic chloroplast FBPase group together with eukaryotic cytosolic FBPase and form another distinct clade which then groups with the Class I FBPase of diverse eubacteria. Motif analysis of these enzymes also supports these phylogenetic correlations. Conclusions There are two evolutionarily distant classes of eubacterial bifunctional F/SBPase. Eukaryotic FBPase and SBPase do not diverge from either of them but have two independent origins

  16. Molecular Insight into Substrate Recognition and Catalysis of Baeyer-Villiger Monooxygenase MtmOIV, the Key Frame-Modifying Enzyme in the Biosynthesis of Anticancer Agent Mithramycin

    Energy Technology Data Exchange (ETDEWEB)

    Bosserman, Mary A.; Downey, Theresa; Noinaj, Nicholas; Buchanan, Susan K.; Rohr, Jürgen [NIH; (Kentucky)

    2014-02-14

    Baeyer–Villiger monooxygenases (BVMOs) have been shown to play key roles for the biosynthesis of important natural products. MtmOIV, a homodimeric FAD- and NADPH-dependent BVMO, catalyzes the key frame-modifying steps of the mithramycin biosynthetic pathway, including an oxidative C–C bond cleavage, by converting its natural substrate premithramycin B into mithramycin DK, the immediate precursor of mithramycin. The drastically improved protein structure of MtmOIV along with the high-resolution structure of MtmOIV in complex with its natural substrate premithramycin B are reported here, revealing previously undetected key residues that are important for substrate recognition and catalysis. Kinetic analyses of selected mutants allowed us to probe the substrate binding pocket of MtmOIV and also to discover the putative NADPH binding site. This is the first substrate-bound structure of MtmOIV providing new insights into substrate recognition and catalysis, which paves the way for the future design of a tailored enzyme for the chemo-enzymatic preparation of novel mithramycin analogues.

  17. Site-specific inhibition of the small ubiquitin-like modifier (SUMO)-conjugating enzyme Ubc9 selectively impairs SUMO chain formation.

    Science.gov (United States)

    Wiechmann, Svenja; Gärtner, Anne; Kniss, Andreas; Stengl, Andreas; Behrends, Christian; Rogov, Vladimir V; Rodriguez, Manuel S; Dötsch, Volker; Müller, Stefan; Ernst, Andreas

    2017-09-15

    Posttranslational modifications by small ubiquitin-like modifiers (SUMOs) regulate many cellular processes, including genome integrity, gene expression, and ribosome biogenesis. The E2-conjugating enzyme Ubc9 catalyzes the conjugation of SUMOs to ϵ-amino groups of lysine residues in target proteins. Attachment of SUMO moieties to internal lysines in Ubc9 itself can further lead to the formation of polymeric SUMO chains. Mono- and poly-SUMOylations of target proteins provide docking sites for distinct adapter and effector proteins important for regulating discrete SUMO-regulated pathways. However, molecular tools to dissect pathways depending on either mono- or poly-SUMOylation are largely missing. Using a protein-engineering approach, we generated high-affinity SUMO2 variants by phage display that bind the back side binding site of Ubc9 and function as SUMO-based Ubc9 inhibitors (SUBINs). Importantly, we found that distinct SUBINs primarily inhibit poly-SUMO chain formation, whereas mono-SUMOylation was not impaired. Proof-of-principle experiments demonstrated that in a cellular context, SUBINs largely prevent heat shock-triggered poly-SUMOylation. Moreover, SUBINs abrogated arsenic-induced degradation of promyelocytic leukemia protein. We propose that the availability of the new chain-selective SUMO inhibitors reported here will enable a thorough investigation of poly-SUMO-mediated cellular processes, such as DNA damage responses and cell cycle progression. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. Multiplexed enzyme-free electrochemical immunosensor based on ZnO nanorods modified reduced graphene oxide-paper electrode and silver deposition-induced signal amplification strategy.

    Science.gov (United States)

    Sun, Guoqiang; Zhang, Lina; Zhang, Yan; Yang, Hongmei; Ma, Chao; Ge, Shenguang; Yan, Mei; Yu, Jinghua; Song, Xianrang

    2015-09-15

    Herein, an origami multiplexed enzyme-free electrochemical (EC) immunodevice is developed for the first time. Typically, ZnO nanorods (ZNRs) modified reduced graphene oxide (rGO)-paper electrode is used as a sensor platform, in which rGO improves the electronic transmission rate and ZNRs provide abundant sites for capture probes binding. Furthermore, by combining the large surface area of rGO and high catalytic activity of bovine serum protein (BSA)-stabilized silver nanoparticles (Ag@BSA) toward H2O2 reduction, rGO/Ag@BSA composites can be used as an excellent signal labels. The current signal is generated from the reduction of H2O2 and further amplified by a subsequent signal labels-promoted deposition of silver. Under optimal conditions, the proposed immunoassays exhibit excellent precision, high sensitivity and a wide linear range of 0.002-120 mIU mL(-1) for human chorionic gonadotropin, 0.001-110 ng mL(-1) for prostate-specific antigen, and 0.001-100 ng mL(-1) for carcinoembryonic antigen. The results for real sample analysis demonstrate that the newly constructed immunosensor arrays provide a simple and cost-effective method for clinical applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Detailed expression profile of all six Glypicans and their modifying enzyme Notum during chick embryogenesis and their role in dorsal-ventral patterning of the neural tube.

    Science.gov (United States)

    Saad, Kawakeb; Otto, Anthony; Theis, Susanne; Kennerley, Niki; Munsterberg, Andrea; Luke, Graham; Patel, Ketan

    2017-04-20

    Vertebrate development is orchestrated by secreted signalling molecules that regulate cell behaviour and cell fate decisions during early embryogenesis. The activity of key signalling molecules including members of Hedgehog, Bone Morphogenetic Proteins and Wnt families are regulated by Glypicans, a family of GPI linked polypeptides. Glypicans either promote or inhibit the action of signalling molecules and add a layer of complexity that needs to be understood in order to fully decipher the processes that regulate early vertebrate development. Here we present a detailed expression profile of all six Glypicans and their modifying enzyme Notum during chick embryogenesis. Our results strongly suggest that these proteins have many as yet undiscovered roles to play during early embryogenesis. Finally, we have taken an experimental approach to investigate their role during the patterning of a key embryonic structure - the neural tube. In particular, we show that over-expression of Notum leads to the dorsalisation of this structure. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. The Small Ubiquitin-like Modifier-Deconjugating Enzyme Sentrin-Specific Peptidase 1 Switches IFN Regulatory Factor 8 from a Repressor to an Activator during Macrophage Activation

    Science.gov (United States)

    Chang, Tsung-Hsien; Xu, Songxiao; Tailor, Prafullakumar; Kanno, Tomohiko; Ozato, Keiko

    2014-01-01

    Macrophages, when activated by IFN-γ and TLR signaling, elicit innate immune responses. IFN regulatory factor 8 (IRF8) is a transcription factor that facilitates macrophage activation and innate immunity. We show that, in resting macrophages, some IRF8 is conjugated to small ubiquitin-like modifiers (SUMO) 2/3 through the lysine residue 310. SUMO3-conjugated IRF8 failed to induce IL12p40 and other IRF8 target genes, consistent with SUMO-mediated transcriptional repression reported for other transcription factors. SUMO3-conjugated IRF8 showed reduced mobility in live nuclei and bound poorly to the IL12p40 gene. However, macrophage activation caused a sharp reduction in the amount of SUMOylated IRF8. This reduction coincided with the induction of a deSUMOylating enzyme, sentrin-specific peptidase 1 (SENP1), in activated macrophages. In transfection analysis, SENP1 removed SUMO3 from IRF8 and enhanced expression of IL12p40 and other target genes. Conversely, SENP1 knockdown repressed IRF8 target gene expression. In parallel with IRF8 deSUMOylation, macrophage activation led to the induction of proteins active in the SUMO pathway and caused a global shift in nuclear protein SUMOylation patterns. Together, the IRF8 SUMO conjugation/deconjugation switch is part of a larger transition in SUMO modifications that takes place upon macrophage activation, serving as a mechanism to trigger innate immune responses. PMID:22942423

  1. Lateral transfer of tetrahymanol-synthesizing genes has allowed multiple diverse eukaryote lineages to independently adapt to environments without oxygen

    Directory of Open Access Journals (Sweden)

    Takishita Kiyotaka

    2012-02-01

    Full Text Available Abstract Sterols are key components of eukaryotic cellular membranes that are synthesized by multi-enzyme pathways that require molecular oxygen. Because prokaryotes fundamentally lack sterols, it is unclear how the vast diversity of bacterivorous eukaryotes that inhabit hypoxic environments obtain, or synthesize, sterols. Here we show that tetrahymanol, a triterpenoid that does not require molecular oxygen for its biosynthesis, likely functions as a surrogate of sterol in eukaryotes inhabiting oxygen-poor environments. Genes encoding the tetrahymanol synthesizing enzyme squalene-tetrahymanol cyclase were found from several phylogenetically diverged eukaryotes that live in oxygen-poor environments and appear to have been laterally transferred among such eukaryotes. Reviewers This article was reviewed by Eric Bapteste and Eugene Koonin.

  2. Open questions on the origin of eukaryotes

    Science.gov (United States)

    López-García, Purificación; Moreira, David

    2015-01-01

    Despite recent progress, the origin of the eukaryotic cell remains enigmatic. It is now known that the last eukaryotic common ancestor was complex and that endosymbiosis played a crucial role in eukaryogenesis at least via the acquisition of the alphaproteobacterial ancestor of mitochondria. However, the nature of the mitochondrial host is controversial, although the recent discovery of an archaeal lineage phylogenetically close to eukaryotes reinforces models proposing archaea-derived hosts. We argue that, in addition to improved phylogenomic analyses with more comprehensive taxon sampling to pinpoint the closest prokaryotic relatives of eukaryotes, determining plausible mechanisms and selective forces at the origin of key eukaryotic features, such as the nucleus or the bacterial-like eukaryotic membrane system, is essential to constrain existing models. PMID:26455774

  3. Metabolic symbiosis at the origin of eukaryotes.

    Science.gov (United States)

    López-Garćia, P; Moreira, D

    1999-03-01

    Thirty years after Margulis revived the endosymbiosis theory for the origin of mitochondria and chloroplasts, two novel symbiosis hypotheses for the origin of eukaryotes have been put forward. Both propose that eukaryotes arose through metabolic symbiosis (syntrophy) between eubacteria and methanogenic Archaea. They also propose that this was mediated by interspecies hydrogen transfer and that, initially, mitochondria were anaerobic. These hypotheses explain the mosaic character of eukaryotes (i.e. an archaeal-like genetic machinery and a eubacterial-like metabolism), as well as distinct eukaryotic characteristics (which are proposed to be products of symbiosis). Combined data from comparative genomics, microbial ecology and the fossil record should help to test their validity.

  4. Glyceraldehyde-3-phosphate ferredoxin oxidoreductase (GAPOR) and nonphosphorylating glyceraldehyde-3-phosphate dehydrogenase (GAPN), key enzymes of the respective modified Embden-Meyerhof pathways in the hyperthermophilic crenarchaeota Pyrobaculum aerophilum and Aeropyrum pernix.

    Science.gov (United States)

    Reher, Matthias; Gebhard, Susanne; Schönheit, Peter

    2007-08-01

    The growth of Pyrobaculum aerophilum on yeast extract and nitrate was stimulated by the addition of maltose. Extracts of maltose/yeast extract/nitrate-grown cells contained all enzyme activities of a modified Embden-Meyerhof (EM) pathway, including ATP-dependent glucokinase, phosphoglucose isomerase, ATP-dependent 6-phosphofructokinase, fructose-1,6-phosphate aldolase, triose-phosphate isomerase, GAPOR, phosphoglycerate mutase, enolase and pyruvate kinase. The activity of GAPOR was stimulated about fourfold by maltose, indicating a role in sugar degradation. GAPOR was purified 200-fold to homogeneity and characterized as a 67 kDa monomeric, extremely thermostable protein. The enzyme showed high specificity for glyceraldehyde-3-phosphate and did not use glyceraldehyde, acetaldehyde or formaldehyde as substrates. By matrix-assisted laser desorption/ionization-time of flight analysis of the purified enzyme, ORF PA1029 was identified as a coding gene, gapor, in the sequenced genome of Pyrobaculum aerophilum. The data indicate that the (micro)aerophilic Pyrobaculum aerophilum contains a functional GAPOR as part of a modified EM pathway. Cells of the strictly aerobic crenarchaeon Aeropyrum pernix also contain enzyme activities of a modified EM pathway similar to that of Pyrobaculum aerophilum, except that a GAPN activity replaces GAPOR activity.

  5. A network of HSPG core proteins and HS modifying enzymes regulates netrin-dependent guidance of D-type motor neurons in Caenorhabditis elegans.

    Science.gov (United States)

    Gysi, Stephan; Rhiner, Christa; Flibotte, Stephane; Moerman, Donald G; Hengartner, Michael O

    2013-01-01

    Heparan sulfate proteoglycans (HSPGs) are proteins with long covalently attached sugar side chains of the heparan sulfate (HS) type. Depending on the cellular context HS chains carry multiple structural modifications such as sulfate residues or epimerized sugars allowing them to bind to a wide range of molecules. HSPGs have been found to play extremely diverse roles in animal development and were shown to interact with certain axon guidance molecules. In this study we describe the role of the Caenorhabditis elegans HSPG core proteins Syndecan (SDN-1) and Glypican (LON-2) and the HS modifying enzymes in the dorsal guidance of D-type motor axons, a process controlled mainly by the conserved axon guidance molecule UNC-6/Netrin. Our genetic analysis established the specific HS code relevant for this axon guidance event. Using two sensitized genetic backgrounds, we isolated novel components influencing D-type motor axon guidance with a link to HSPGs, as well as new alleles of several previously characterized axon guidance genes. Interestingly, the dorsal axon guidance defects induced by mutations in zfp-1 or lin-35 depended on the transgene oxIs12 used to visualize the D-type motor neurons. oxIs12 is a large multi-copy transgene that enlarges the X chromosome by approximately 20%. In a search for genes with a comparable phenotype we found that a mutation in the known dosage compensation gene dpy-21 showed similar axon guidance defects as zfp-1 or lin-35 mutants. Thus, derepression of genes on X, where many genes relevant for HS dependent axon guidance are located, might also influence axon guidance of D-type motor neurons.

  6. A network of HSPG core proteins and HS modifying enzymes regulates netrin-dependent guidance of D-type motor neurons in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Stephan Gysi

    Full Text Available Heparan sulfate proteoglycans (HSPGs are proteins with long covalently attached sugar side chains of the heparan sulfate (HS type. Depending on the cellular context HS chains carry multiple structural modifications such as sulfate residues or epimerized sugars allowing them to bind to a wide range of molecules. HSPGs have been found to play extremely diverse roles in animal development and were shown to interact with certain axon guidance molecules. In this study we describe the role of the Caenorhabditis elegans HSPG core proteins Syndecan (SDN-1 and Glypican (LON-2 and the HS modifying enzymes in the dorsal guidance of D-type motor axons, a process controlled mainly by the conserved axon guidance molecule UNC-6/Netrin. Our genetic analysis established the specific HS code relevant for this axon guidance event. Using two sensitized genetic backgrounds, we isolated novel components influencing D-type motor axon guidance with a link to HSPGs, as well as new alleles of several previously characterized axon guidance genes. Interestingly, the dorsal axon guidance defects induced by mutations in zfp-1 or lin-35 depended on the transgene oxIs12 used to visualize the D-type motor neurons. oxIs12 is a large multi-copy transgene that enlarges the X chromosome by approximately 20%. In a search for genes with a comparable phenotype we found that a mutation in the known dosage compensation gene dpy-21 showed similar axon guidance defects as zfp-1 or lin-35 mutants. Thus, derepression of genes on X, where many genes relevant for HS dependent axon guidance are located, might also influence axon guidance of D-type motor neurons.

  7. The type 2 dengue virus envelope protein interacts with small ubiquitin-like modifier-1 (SUMO-1) conjugating enzyme 9 (Ubc9).

    Science.gov (United States)

    Chiu, Mei-Wui; Shih, Hsiu-Ming; Yang, Tsung-Han; Yang, Yun-Liang

    2007-05-01

    Dengue viruses are mosquito-borne flaviviruses and may cause the life-threatening dengue hemorrhagic fever and dengue shock syndrome. Its envelope protein is responsible mainly for the virus attachment and entry to host cells. To identify the human cellular proteins interacting with the envelope protein of dengue virus serotype 2 inside host cells, we have performed a screening with the yeast-two-hybrid-based "Functional Yeast Array". Interestingly, the small ubiquitin-like modifier-1 conjugating enzyme 9 protein, modulating cellular processes such as those regulating signal transduction and cell growth, was one of the candidates interacting with the dengue virus envelope protein. With co-precipitation assay, we have demonstrated that it indeed could interact directly with the Ubc9 protein. Site-directed mutagenesis has demonstrated that Ubc9 might interact with the E protein via amino acid residues K51 and K241. Furthermore, immunofluorescence microscopy has shown that the DV2E-EGFP proteins tended to progress toward the nuclear membrane and co-localized with Flag-Ubc9 proteins around the nuclear membrane in the cytoplasmic side, and DV2E-EGFP also shifted the distribution of Flag-Ubc9 from evenly in the nucleus toward concentrating around the nuclear membrane in the nucleic side. In addition, over-expression of Ubc9 could reduce the plaque formation of the dengue virus in mammalian cells. This is the first report that DV envelope proteins can interact with the protein of sumoylation system and Ubc9 may involve in the host defense system to prevent virus propagation.

  8. A comparative study of Toxoplasma gondii seroprevalence in mink using a modified agglutination test, a Western blot, and enzyme-linked immunosorbent assays.

    Science.gov (United States)

    Gu, Yi; Wang, Zedong; Cai, Yufeng; Li, Xiaoxing; Wei, Feng; Shang, Limin; Li, Jiping; Liu, Quan

    2015-09-01

    Toxoplasma gondii can infect almost all warm-blooded animals, and many serological methods have been developed to detect T. gondii infection in a variety of animal species. In the present study, the seroprevalence of T. gondii infection in farmed mink in northeast China was determined using the modified agglutination test (MAT), a Western blot (WB), and 3 enzyme-linked immunosorbent assays (ELISAs) with protein A/G conjugate, using either of 2 recombinant dense granule antigens, GRA1 and GRA7, or Toxoplasma soluble antigens (TSA). There was no significant difference between the detection results of the GRA1-, GRA7-, and TSA-ELISAs and WB (McNemar chi-square, P > 0.05), but a significant difference was observed between MAT and WB (P < 0.05). A near perfect agreement (97.0%) was found between the GRA7-ELISA and WB (κ = 0.83), and a substantial agreement (92.4-93.1%) was observed in the TSA- and GRA1-ELISAs (κ = 0.68-0.73). The GRA7-ELISA showed the highest sensitivity and specificity, and the lowest false-positive and negative rates, while the MAT gave both a low sensitivity and frequent false positives in comparison to the WB. Receiver operating characteristic analysis revealed the largest area under curve of 0.85 (95% confidence interval: 0.74-0.96), and the highest relative sensitivity (72.7%) and specificity (99.0%) for a cutoff value of 0.19 in the GRA7-ELISA. These results indicate that the GRA7-ELISA is suitable for detection of T. gondii infection in mink and that MAT should be used with caution. © 2015 The Author(s).

  9. Ovotoxicants 4-vinylcyclohexene 1,2-monoepoxide and 4-vinylcyclohexene diepoxide disrupt redox status and modify different electrophile sensitive target enzymes and genes in Drosophila melanogaster

    Directory of Open Access Journals (Sweden)

    Amos O. Abolaji

    2015-08-01

    Full Text Available The compounds 4-vinylcyclohexene 1,2-monoepoxide (VCM and 4-Vinylcyclohexene diepoxide (VCD are the two downstream metabolites of 4-vinylcyclohexene (VCH, an ovotoxic agent in mammals. In addition, VCM and VCD may be found as by-products of VCH oxidation in the environment. Recently, we reported the involvement of oxidative stress in the toxicity of VCH in Drosophila melanogaster. However, it was not possible to determine the individual contributions of VCM and VCD in VCH toxicity. Hence, we investigated the toxicity of VCM and VCD (10–1000 µM in flies after 5 days of exposure via the diet. Our results indicated impairments in climbing behaviour and disruptions in antioxidant balance and redox status evidenced by an increase in DCFH oxidation, decreases in total thiol content and glutathione-S-transferase (GST activity in the flies exposed to VCM and VCD (p<0.05. These effects were accompanied by disruptions in the transcription of the genes encoding the proteins superoxide dismutase (SOD1, kelch-like erythroid-derived cap-n-collar (CNC homology (ECH-associated protein 1 (Keap-1, mitogen activated protein kinase 2 (MAPK-2, catalase, Cyp18a1, JAFRAC 1 (thioredoxin peroxidase 1 and thioredoxin reductase 1 (TrxR-1 (p<0.05. VCM and VCD inhibited acetylcholinesterase (AChE and delta aminolevulinic acid dehydratase (δ-ALA D activities in the flies (p<0.05. Indeed, here, we demonstrated that different target enzymes and genes were modified by the electrophiles VCM and VCD in the flies. Thus, D. melanogaster has provided further lessons on the toxicity of VCM and VCD which suggest that the reported toxicity of VCH may be mediated by its transformation to VCM and VCD.

  10. Horizontal gene transfer of a Chlamydial tRNA-guanine transglycosylase gene to eukaryotic microbes.

    Science.gov (United States)

    Manna, Sam; Harman, Ashley

    2016-01-01

    tRNA-guanine transglycosylases are found in all domains of life and mediate the base exchange of guanine with queuine in the anticodon loop of tRNAs. They can also regulate virulence in bacteria such as Shigella flexneri, which has prompted the development of drugs that inhibit the function of these enzymes. Here we report a group of tRNA-guanine transglycosylases in eukaryotic microbes (algae and protozoa) which are more similar to their bacterial counterparts than previously characterized eukaryotic tRNA-guanine transglycosylases. We provide evidence demonstrating that the genes encoding these enzymes were acquired by these eukaryotic lineages via horizontal gene transfer from the Chlamydiae group of bacteria. Given that the S. flexneri tRNA-guanine transglycosylase can be targeted by drugs, we propose that the bacterial-like tRNA-guanine transglycosylases could potentially be targeted in a similar fashion in pathogenic amoebae that possess these enzymes such as Acanthamoeba castellanii. This work also presents ancient prokaryote-to-eukaryote horizontal gene transfer events as an untapped resource of potential drug target identification in pathogenic eukaryotes. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Horizontal gene acquisitions by eukaryotes as drivers of adaptive evolution.

    Science.gov (United States)

    Schönknecht, Gerald; Weber, Andreas P M; Lercher, Martin J

    2014-01-01

    In contrast to vertical gene transfer from parent to offspring, horizontal (or lateral) gene transfer moves genetic information between different species. Bacteria and archaea often adapt through horizontal gene transfer. Recent analyses indicate that eukaryotic genomes, too, have acquired numerous genes via horizontal transfer from prokaryotes and other lineages. Based on this we raise the hypothesis that horizontally acquired genes may have contributed more to adaptive evolution of eukaryotes than previously assumed. Current candidate sets of horizontally acquired eukaryotic genes may just be the tip of an iceberg. We have recently shown that adaptation of the thermoacidophilic red alga Galdieria sulphuraria to its hot, acid, toxic-metal laden, volcanic environment was facilitated by the acquisition of numerous genes from extremophile bacteria and archaea. Other recently published examples of horizontal acquisitions involved in adaptation include ice-binding proteins in marine algae, enzymes for carotenoid biosynthesis in aphids, and genes involved in fungal metabolism. Editor's suggested further reading in BioEssays Jumping the fine LINE between species: Horizontal transfer of transposable elements in animals catalyses genome evolution Abstract. © 2014 WILEY Periodicals, Inc.

  12. Evolution of filamentous plant pathogens: gene exchange across eukaryotic kingdoms.

    Science.gov (United States)

    Richards, Thomas A; Dacks, Joel B; Jenkinson, Joanna M; Thornton, Christopher R; Talbot, Nicholas J

    2006-09-19

    Filamentous fungi and oomycetes are eukaryotic microorganisms that grow by producing networks of thread-like hyphae, which secrete enzymes to break down complex nutrients, such as wood and plant material, and recover the resulting simple sugars and amino acids by osmotrophy. These organisms are extremely similar in both appearance and lifestyle and include some of the most economically important plant pathogens . However, the morphological similarity of fungi and oomycetes is misleading because they represent some of the most distantly related eukaryote evolutionary groupings, and their shared osmotrophic growth habit is interpreted as being the result of convergent evolution . The fungi branch with the animals, whereas the oomycetes branch with photosynthetic algae as part of the Chromalveolata . In this report, we provide strong phylogenetic evidence that multiple horizontal gene transfers (HGT) have occurred from filamentous ascomycete fungi to the distantly related oomycetes. We also present evidence that a subset of the associated gene families was initially the product of prokaryote-to-fungi HGT. The predicted functions of the gene products associated with fungi-to-oomycete HGT suggest that this process has played a significant role in the evolution of the osmotrophic, filamentous lifestyle on two separate branches of the eukaryote tree.

  13. Nuclear shield: a multi-enzyme task-force for nucleus protection.

    Directory of Open Access Journals (Sweden)

    Raffaele Fabrini

    Full Text Available BACKGROUND: In eukaryotic cells the nuclear envelope isolates and protects DNA from molecules that could damage its structure or interfere with its processing. Moreover, selected protection enzymes and vitamins act as efficient guardians against toxic compounds both in the nucleoplasm and in the cytosol. The observation that a cytosolic detoxifying and antioxidant enzyme i.e. glutathione transferase is accumulated in the perinuclear region of the rat hepatocytes suggests that other unrecognized modalities of nuclear protection may exist. Here we show evidence for the existence of a safeguard enzyme machinery formed by an hyper-crowding of cationic enzymes and proteins encompassing the nuclear membrane and promoted by electrostatic interactions. METHODOLOGY/PRINCIPAL FINDINGS: Electron spectroscopic imaging, zeta potential measurements, isoelectrofocusing, comet assay and mass spectrometry have been used to characterize this surprising structure that is present in the cells of all rat tissues examined (liver, kidney, heart, lung and brain, and that behaves as a "nuclear shield". In hepatocytes, this hyper-crowding structure is about 300 nm thick, it is mainly formed by cationic enzymes and the local concentration of key protection enzymes, such as glutathione transferase, catalase and glutathione peroxidase is up to seven times higher than in the cytosol. The catalytic activity of these enzymes, when packed in the shield, is not modified and their relative concentrations vary remarkably in different tissues. Removal of this protective shield renders chromosomes more sensitive to damage by oxidative stress. Specific nuclear proteins anchored to the outer nuclear envelope are likely involved in the shield formation and stabilization. CONCLUSIONS/SIGNIFICANCE: The characterization of this previously unrecognized nuclear shield in different tissues opens a new interesting scenario for physiological and protection processes in eukaryotic cells

  14. Horizontal transfer of a eukaryotic plastid-targeted protein gene to cyanobacteria

    Directory of Open Access Journals (Sweden)

    Keeling Patrick J

    2007-06-01

    Full Text Available Abstract Background Horizontal or lateral transfer of genetic material between distantly related prokaryotes has been shown to play a major role in the evolution of bacterial and archaeal genomes, but exchange of genes between prokaryotes and eukaryotes is not as well understood. In particular, gene flow from eukaryotes to prokaryotes is rarely documented with strong support, which is unusual since prokaryotic genomes appear to readily accept foreign genes. Results Here, we show that abundant marine cyanobacteria in the related genera Synechococcus and Prochlorococcus acquired a key Calvin cycle/glycolytic enzyme from a eukaryote. Two non-homologous forms of fructose bisphosphate aldolase (FBA are characteristic of eukaryotes and prokaryotes respectively. However, a eukaryotic gene has been inserted immediately upstream of the ancestral prokaryotic gene in several strains (ecotypes of Synechococcus and Prochlorococcus. In one lineage this new gene has replaced the ancestral gene altogether. The eukaryotic gene is most closely related to the plastid-targeted FBA from red algae. This eukaryotic-type FBA once replaced the plastid/cyanobacterial type in photosynthetic eukaryotes, hinting at a possible functional advantage in Calvin cycle reactions. The strains that now possess this eukaryotic FBA are scattered across the tree of Synechococcus and Prochlorococcus, perhaps because the gene has been transferred multiple times among cyanobacteria, or more likely because it has been selectively retained only in certain lineages. Conclusion A gene for plastid-targeted FBA has been transferred from red algae to cyanobacteria, where it has inserted itself beside its non-homologous, functional analogue. Its current distribution in Prochlorococcus and Synechococcus is punctate, suggesting a complex history since its introduction to this group.

  15. The eukaryotic fossil record in deep time

    Science.gov (United States)

    Butterfield, N.

    2011-12-01

    Eukaryotic organisms are defining constituents of the Phanerozoic biosphere, but they also extend well back into the Proterozoic record, primarily in the form of microscopic body fossils. Criteria for identifying pre-Ediacaran eukaryotes include large cell size, morphologically complex cell walls and/or the recognition of diagnostically eukaryotic cell division patterns. The oldest unambiguous eukaryote currently on record is an acanthomorphic acritarch (Tappania) from the Palaeoproterozoic Semri Group of central India. Older candidate eukaryotes are difficult to distinguish from giant bacteria, prokaryotic colonies or diagenetic artefacts. In younger Meso- and Neoproterozoic strata, the challenge is to recognize particular grades and clades of eukaryotes, and to document their macro-evolutionary expression. Distinctive unicellular forms include mid-Neoproterozoic testate amoebae and phosphate biomineralizing 'scale-microfossils' comparable to an extant green alga. There is also a significant record of seaweeds, possible fungi and problematica from this interval, documenting multiple independent experiments in eukaryotic multicellularity. Taxonomically resolved forms include a bangiacean red alga and probable vaucheriacean chromalveolate algae from the late Mesoproterozoic, and populations of hydrodictyacean and siphonocladalean green algae of mid Neoproterozoic age. Despite this phylogenetic breadth, however, or arguments from molecular clocks, there is no convincing evidence for pre-Ediacaran metazoans or metaphytes. The conspicuously incomplete nature of the Proterozoic record makes it difficult to resolve larger-scale ecological and evolutionary patterns. Even so, both body fossils and biomarker data point to a pre-Ediacaran biosphere dominated overwhelming by prokaryotes. Contemporaneous eukaryotes appear to be limited to conspicuously shallow water environments, and exhibit fundamentally lower levels of morphological diversity and evolutionary turnover than

  16. Light-inducible genetic engineering and control of non-homologous end-joining in industrial eukaryotic microorganisms: LML 3.0 and OFN 1.0.

    Science.gov (United States)

    Zhang, Lei; Zhao, Xihua; Zhang, Guoxiu; Zhang, Jiajia; Wang, Xuedong; Zhang, Suping; Wang, Wei; Wei, Dongzhi

    2016-02-09

    Filamentous fungi play important roles in the production of plant cell-wall degrading enzymes. In recent years, homologous recombinant technologies have contributed significantly to improved enzymes production and system design of genetically manipulated strains. When introducing multiple gene deletions, we need a robust and convenient way to control selectable marker genes, especially when only a limited number of markers are available in filamentous fungi. Integration after transformation is predominantly nonhomologous in most fungi other than yeast. Fungal strains deficient in the non-homologous end-joining (NHEJ) pathway have limitations associated with gene function analyses despite they are excellent recipient strains for gene targets. We describe strategies and methods to address these challenges above and leverage the power of resilient NHEJ deficiency strains. We have established a foolproof light-inducible platform for one-step unmarked genetic modification in industrial eukaryotic microorganisms designated as 'LML 3.0', and an on-off control protocol of NHEJ pathway called 'OFN 1.0', using a synthetic light-switchable transactivation to control Cre recombinase-based excision and inversion. The methods provide a one-step strategy to sequentially modify genes without introducing selectable markers and NHEJ-deficiency. The strategies can be used to manipulate many biological processes in a wide range of eukaryotic cells.

  17. The human SUMF1 gene, required for posttranslational sulfatase modification, defines a new gene family which is conserved from pro- to eukaryotes.

    Science.gov (United States)

    Landgrebe, Jobst; Dierks, Thomas; Schmidt, Bernhard; von Figura, Kurt

    2003-10-16

    Recently, the human C(alpha)-formylglycine (FGly)-generating enzyme (FGE), whose deficiency causes the autosomal-recessively transmitted lysosomal storage disease multiple sulfatase deficiency (MSD), has been identified. In sulfatases, FGE posttranslationally converts a cysteine residue to FGly, which is part of the catalytic site and is essential for sulfatase activity. FGE is encoded by the sulfatase modifying factor 1 (SUMF1) gene, which defines a new gene family comprising orthologs from prokaryotes to higher eukaryotes. The genomes of E. coli, S. cerevisiae and C. elegans lack SUMF1, indicating a phylogenetic gap and the existence of an alternative FGly-generating system. The genomes of vertebrates including mouse, man and pufferfish contain a sulfatase modifying factor 2 (SUMF2) gene encoding an FGE paralog of unknown function. SUMF2 evolved from a single exon SUMF1 gene as found in diptera prior to divergent intron acquisition. In several prokaryotic genomes, the SUMF1 gene is cotranscribed with genes encoding sulfatases which require FGly modification. The FGE protein contains a single domain that is made up of three highly conserved subdomains spaced by nonconserved sequences of variable lengths. The similarity among the eukaryotic FGE orthologs varies between 72% and 100% for the three subdomains and is highest for the C-terminal subdomain, which is a hotspot for mutations in MSD patients.

  18. Characterization of unexplored amidohydrolase enzyme-pterin deaminase.

    Science.gov (United States)

    Jayaraman, Angayarkanni; Thandeeswaran, Murugesan; Priyadarsini, Ulaganathan; Sabarathinam, Shanmugam; Nawaz, K A Ayub; Palaniswamy, Muthusamy

    2016-06-01

    Pterin deaminase is an amidohydrolase enzyme hydrolyzing pteridines to form lumazine derivatives and ammonia. The enzyme captured the attention of scientists as early as 1959 and had been patented for its application as an anticancer agent. It is ubiquitously present in prokaryotes and has been reported in some eukaryotes such as honey bee, silkworm and rats. The enzyme has been observed to have a spectrum of substrates with the formation of respective lumazines. The role of the substrates of the enzyme in various metabolic pathways warrants a significant role in the biological activity of both prokaryotes and eukaryotes. Even though the functions of the enzyme have been explored in prokaryotes, their niche in the eukaryotic system is not clear. There is very few information on the structural and functional properties of the enzyme. This review has been congregated to emphasize the significance of pterin deaminase and analyzes the lacunae in understanding the biological characters of the enzyme.

  19. Viruses and viruslike particles of eukaryotic algae.

    OpenAIRE

    Van Etten, J L; Lane, L C; Meints, R H

    1991-01-01

    Until recently there was little interest or information on viruses and viruslike particles of eukaryotic algae. However, this situation is changing. In the past decade many large double-stranded DNA-containing viruses that infect two culturable, unicellular, eukaryotic green algae have been discovered. These viruses can be produced in large quantities, assayed by plaque formation, and analyzed by standard bacteriophage techniques. The viruses are structurally similar to animal iridoviruses, t...

  20. Metabolic Constraints on the Eukaryotic Transition

    Science.gov (United States)

    Wallace, Rodrick

    2009-04-01

    Mutualism, obligate mutualism, symbiosis, and the eukaryotic ‘fusion’ of Serial Endosymbiosis Theory represent progressively more rapid and less distorted real-time communication between biological structures instantiating information sources. Such progression in accurate information transmission requires, in turn, progressively greater channel capacity that, through the homology between information source uncertainty and free energy density, requires ever more energetic metabolism. The eukaryotic transition, according to this model, may have been entrained by an ecosystem resilience shift from anaerobic to aerobic metabolism.

  1. Transfer of DNA from Bacteria to Eukaryotes

    Directory of Open Access Journals (Sweden)

    Benoît Lacroix

    2016-07-01

    Full Text Available Historically, the members of the Agrobacterium genus have been considered the only bacterial species naturally able to transfer and integrate DNA into the genomes of their eukaryotic hosts. Yet, increasing evidence suggests that this ability to genetically transform eukaryotic host cells might be more widespread in the bacterial world. Indeed, analyses of accumulating genomic data reveal cases of horizontal gene transfer from bacteria to eukaryotes and suggest that it represents a significant force in adaptive evolution of eukaryotic species. Specifically, recent reports indicate that bacteria other than Agrobacterium, such as Bartonella henselae (a zoonotic pathogen, Rhizobium etli (a plant-symbiotic bacterium related to Agrobacterium, or even Escherichia coli, have the ability to genetically transform their host cells under laboratory conditions. This DNA transfer relies on type IV secretion systems (T4SSs, the molecular machines that transport macromolecules during conjugative plasmid transfer and also during transport of proteins and/or DNA to the eukaryotic recipient cells. In this review article, we explore the extent of possible transfer of genetic information from bacteria to eukaryotic cells as well as the evolutionary implications and potential applications of this transfer.

  2. Eukaryotic Ribonucleases P/MRP: the Crystal Structure of the P3 Domain

    Energy Technology Data Exchange (ETDEWEB)

    Perederina, A.; Esakova, O; Quan, C; Khanova, E; Krasilnikov, A

    2010-01-01

    Ribonuclease (RNase) P is a site-specific endoribonuclease found in all kingdoms of life. Typical RNase P consists of a catalytic RNA component and a protein moiety. In the eukaryotes, the RNase P lineage has split into two, giving rise to a closely related enzyme, RNase MRP, which has similar components but has evolved to have different specificities. The eukaryotic RNases P/MRP have acquired an essential helix-loop-helix protein-binding RNA domain P3 that has an important function in eukaryotic enzymes and distinguishes them from bacterial and archaeal RNases P. Here, we present a crystal structure of the P3 RNA domain from Saccharomyces cerevisiae RNase MRP in a complex with RNase P/MRP proteins Pop6 and Pop7 solved to 2.7 {angstrom}. The structure suggests similar structural organization of the P3 RNA domains in RNases P/MRP and possible functions of the P3 domains and proteins bound to them in the stabilization of the holoenzymes' structures as well as in interactions with substrates. It provides the first insight into the structural organization of the eukaryotic enzymes of the RNase P/MRP family.

  3. Eukaryotic ribonucleases P/MRP: the crystal structure of the P3 domain.

    Science.gov (United States)

    Perederina, Anna; Esakova, Olga; Quan, Chao; Khanova, Elena; Krasilnikov, Andrey S

    2010-02-17

    Ribonuclease (RNase) P is a site-specific endoribonuclease found in all kingdoms of life. Typical RNase P consists of a catalytic RNA component and a protein moiety. In the eukaryotes, the RNase P lineage has split into two, giving rise to a closely related enzyme, RNase MRP, which has similar components but has evolved to have different specificities. The eukaryotic RNases P/MRP have acquired an essential helix-loop-helix protein-binding RNA domain P3 that has an important function in eukaryotic enzymes and distinguishes them from bacterial and archaeal RNases P. Here, we present a crystal structure of the P3 RNA domain from Saccharomyces cerevisiae RNase MRP in a complex with RNase P/MRP proteins Pop6 and Pop7 solved to 2.7 A. The structure suggests similar structural organization of the P3 RNA domains in RNases P/MRP and possible functions of the P3 domains and proteins bound to them in the stabilization of the holoenzymes' structures as well as in interactions with substrates. It provides the first insight into the structural organization of the eukaryotic enzymes of the RNase P/MRP family.

  4. Snapshot of the eukaryotic gene expression in muskoxen rumen--a metatranscriptomic approach.

    Directory of Open Access Journals (Sweden)

    Meng Qi

    Full Text Available BACKGROUND: Herbivores rely on digestive tract lignocellulolytic microorganisms, including bacteria, fungi and protozoa, to derive energy and carbon from plant cell wall polysaccharides. Culture independent metagenomic studies have been used to reveal the genetic content of the bacterial species within gut microbiomes. However, the nature of the genes encoded by eukaryotic protozoa and fungi within these environments has not been explored using metagenomic or metatranscriptomic approaches. METHODOLOGY/PRINCIPAL FINDINGS: In this study, a metatranscriptomic approach was used to investigate the functional diversity of the eukaryotic microorganisms within the rumen of muskoxen (Ovibos moschatus, with a focus on plant cell wall degrading enzymes. Polyadenylated RNA (mRNA was sequenced on the Illumina Genome Analyzer II system and 2.8 gigabases of sequences were obtained and 59129 contigs assembled. Plant cell wall degrading enzyme modules including glycoside hydrolases, carbohydrate esterases and polysaccharide lyases were identified from over 2500 contigs. These included a number of glycoside hydrolase family 6 (GH6, GH48 and swollenin modules, which have rarely been described in previous gut metagenomic studies. CONCLUSIONS/SIGNIFICANCE: The muskoxen rumen metatranscriptome demonstrates a much higher percentage of cellulase enzyme discovery and an 8.7x higher rate of total carbohydrate active enzyme discovery per gigabase of sequence than previous rumen metagenomes. This study provides a snapshot of eukaryotic gene expression in the muskoxen rumen, and identifies a number of candidate genes coding for potentially valuable lignocellulolytic enzymes.

  5. A mitochondrial-like targeting signal on the hydrogenosomal malic enzyme from the anaerobic fungus Neocallimastix frontalis : Support for the hypothesis that hydrogenosomes are modified mitochondria

    NARCIS (Netherlands)

    van der Giezen, M; Rechinger, K.B; Svendsen, I; Durand, R; Fèvre, M; Embley, T.M; Prins, R.A

    The hydrogenosomal malic enzyme (ME) was purified from the anaerobic fungus Neocallimastix frontalis. Using reverse genetics, the corresponding cDNA was isolated and characterized. The deduced amino acid sequence of the ME showed high similarity to ME from metazoa, plants and protists. Putative

  6. Extracellular Processing of Molecular Gradients by Eukaryotic Cells Can Improve Gradient Detection Accuracy

    Science.gov (United States)

    Segota, Igor; Franck, Carl

    2017-12-01

    Eukaryotic cells sense molecular gradients by measuring spatial concentration variation through the difference in the number of occupied receptors to which molecules can bind. They also secrete enzymes that degrade these molecules, and it is presently not well understood how this affects the local gradient perceived by cells. Numerical and analytical results show that these enzymes can substantially increase the signal-to-noise ratio of the receptor difference and allow cells to respond to a much broader range of molecular concentrations and gradients than they would without these enzymes.

  7. Regulation of Escherichia coli glutamine synthetase. Evidence for the action of some feedback modifiers at the active site of the unadenylylated enzyme.

    Science.gov (United States)

    Dahlquist, F W; Purich, D L

    1975-05-06

    The interaction of unadenylylated form of Escherichia coli glutamine synthetase with several substrates and effectors has been examined by magnetic resonance techniques. These studies show that two manganese ions bind per enzyme subunit. From the dramatic line broadening observed in the alanine spectra in the presence of manganese and enzyme, it is concluded that the binding of alanine occurs at a site nearer one of the two manganese sites. Electron spin resonance (ESR) titration experiments suggest apparent dissociation constants of 20 and 120 muM for manganese to these sites in the presence of 1.0 mM magnesium ion. The manganese concentration dependence of the broadening of alanine suggests an affinity of 30 muM for the manganese closest to the alanine binding site. This suggests that alanine binds closer to the more tightly bound manganese ion. Glutamate appears to displace the alanine and also appears to bind close to the strongly bound manganese ion. It is proposed that alanine and glutamine bind competitively and in the same site. The binding of alanine and ATP is shown to thermodynamically interact such that the presence of one ligand increases the affinity of the enzyme for the other ligand. The presence of ATP dramatically sharpens the alanine line width when manganese and glutamine synthetase are present. Addition of ADP or phosphate alone has little effect on the alanine line width but the addition of both ADP and phosphate shows the same dramatic sharpening as the addition of ATP alone, suggesting an induced fit conformational change in the enzyme induced by ATP or by both ADP and phosphate. A binding scheme is proposed in which all feedback inhibitors of the enzyme bind in a competitive fashion with substrates.

  8. Atypical mitochondrial inheritance patterns in eukaryotes.

    Science.gov (United States)

    Breton, Sophie; Stewart, Donald T

    2015-10-01

    Mitochondrial DNA (mtDNA) is predominantly maternally inherited in eukaryotes. Diverse molecular mechanisms underlying the phenomenon of strict maternal inheritance (SMI) of mtDNA have been described, but the evolutionary forces responsible for its predominance in eukaryotes remain to be elucidated. Exceptions to SMI have been reported in diverse eukaryotic taxa, leading to the prediction that several distinct molecular mechanisms controlling mtDNA transmission are present among the eukaryotes. We propose that these mechanisms will be better understood by studying the deviations from the predominating pattern of SMI. This minireview summarizes studies on eukaryote species with unusual or rare mitochondrial inheritance patterns, i.e., other than the predominant SMI pattern, such as maternal inheritance of stable heteroplasmy, paternal leakage of mtDNA, biparental and strictly paternal inheritance, and doubly uniparental inheritance of mtDNA. The potential genes and mechanisms involved in controlling mitochondrial inheritance in these organisms are discussed. The linkage between mitochondrial inheritance and sex determination is also discussed, given that the atypical systems of mtDNA inheritance examined in this minireview are frequently found in organisms with uncommon sexual systems such as gynodioecy, monoecy, or andromonoecy. The potential of deviations from SMI for facilitating a better understanding of a number of fundamental questions in biology, such as the evolution of mtDNA inheritance, the coevolution of nuclear and mitochondrial genomes, and, perhaps, the role of mitochondria in sex determination, is considerable.

  9. Communities of microbial eukaryotes in the mammalian gut within the context of environmental eukaryotic diversity

    Energy Technology Data Exchange (ETDEWEB)

    Parfrey, Laura Wegener; Walters, William A.; Lauber, Christian L.; Clemente, Jose C.; Berg-Lyons, Donna; Teiling, Clotilde; Kodira, Chinnappa; Mohiuddin, Mohammed; Brunelle, Julie; Driscoll, Mark; Fierer, Noah; Gilbert, Jack A.; Knight, Rob

    2014-06-19

    Eukaryotic microbes (protists) residing in the vertebrate gut influence host health and disease, but their diversity and distribution in healthy hosts is poorly understood. Protists found in the gut are typically considered parasites, but many are commensal and some are beneficial. Further, the hygiene hypothesis predicts that association with our co-evolved microbial symbionts may be important to overall health. It is therefore imperative that we understand the normal diversity of our eukaryotic gut microbiota to test for such effects and avoid eliminating commensal organisms. We assembled a dataset of healthy individuals from two populations, one with traditional, agrarian lifestyles and a second with modern, westernized lifestyles, and characterized the human eukaryotic microbiota via high-throughput sequencing. To place the human gut microbiota within a broader context our dataset also includes gut samples from diverse mammals and samples from other aquatic and terrestrial environments. We curated the SILVA ribosomal database to reflect current knowledge of eukaryotic taxonomy and employ it as a phylogenetic framework to compare eukaryotic diversity across environment. We show that adults from the non-western population harbor a diverse community of protists, and diversity in the human gut is comparable to that in other mammals. However, the eukaryotic microbiota of the western population appears depauperate. The distribution of symbionts found in mammals reflects both host phylogeny and diet. Eukaryotic microbiota in the gut are less diverse and more patchily distributed than bacteria. More broadly, we show that eukaryotic communities in the gut are less diverse than in aquatic and terrestrial habitats, and few taxa are shared across habitat types, and diversity patterns of eukaryotes are correlated with those observed for bacteria. These results outline the distribution and diversity of microbial eukaryotic communities in the mammalian gut and across

  10. Mitochondrion-related organelles in eukaryotic protists.

    Science.gov (United States)

    Shiflett, April M; Johnson, Patricia J

    2010-01-01

    The discovery of mitochondrion-type genes in organisms thought to lack mitochondria led to the demonstration that hydrogenosomes share a common ancestry with mitochondria, as well as the discovery of mitosomes in multiple eukaryotic lineages. No examples of examined eukaryotes lacking a mitochondrion-related organelle exist, implying that the endosymbiont that gave rise to the mitochondrion was present in the first eukaryote. These organelles, known as hydrogenosomes, mitosomes, or mitochondrion-like organelles, are typically reduced, both structurally and biochemically, relative to classical mitochondria. However, despite their diversification and adaptation to different niches, all appear to play a role in Fe-S cluster assembly, as observed for mitochondria. Although evidence supports the use of common protein targeting mechanisms in the biogenesis of these diverse organelles, divergent features are also apparent. This review examines the metabolism and biogenesis of these organelles in divergent unicellular microbes, with a focus on parasitic protists.

  11. Pancreatic Enzymes

    Science.gov (United States)

    ... NOW HONOR/MEMORIAL GENERAL DONATION MONTHLY PURPLESTRIDE Pancreatic enzymes Home Facing Pancreatic Cancer Living with Pancreatic Cancer ... and see a registered dietitian. What are pancreatic enzymes? Pancreatic enzymes help break down fats, proteins and ...

  12. Pectic enzymes

    NARCIS (Netherlands)

    Benen, J.A.E.; Voragen, A.G.J.; Visser, J.

    2003-01-01

    The pectic enzymes comprise a diverse group of enzymes. They consist of main-chain depolymerases and esterases active on methyl- and acetylesters of galacturonosyl uronic acid residues. The depolymerizing enzymes comprise hydrolases as wel as lyases

  13. Reproduction, symbiosis, and the eukaryotic cell

    Science.gov (United States)

    Godfrey-Smith, Peter

    2015-01-01

    This paper develops a conceptual framework for addressing questions about reproduction, individuality, and the units of selection in symbiotic associations, with special attention to the origin of the eukaryotic cell. Three kinds of reproduction are distinguished, and a possible evolutionary sequence giving rise to a mitochondrion-containing eukaryotic cell from an endosymbiotic partnership is analyzed as a series of transitions between each of the three forms of reproduction. The sequence of changes seen in this “egalitarian” evolutionary transition is compared with those that apply in “fraternal” transitions, such as the evolution of multicellularity in animals. PMID:26286983

  14. Diffusion-limited phase separation in eukaryotic chemotaxis

    Science.gov (United States)

    Gamba, Andrea; de Candia, Antonio; Di Talia, Stefano; Coniglio, Antonio; Bussolino, Federico; Serini, Guido

    2005-01-01

    The ability of cells to sense spatial gradients of chemoattractant factors governs the development of complex eukaryotic organisms. Cells exposed to shallow chemoattractant gradients respond with strong accumulation of the enzyme phosphatidylinositol 3-kinase (PI3K) and its D3-phosphoinositide product (PIP3) on the plasma membrane side exposed to the highest chemoattractant concentration, whereas PIP3-degrading enzyme PTEN and its product PIP2 localize in a complementary pattern. Such an early symmetry-breaking event is a mandatory step for directed cell movement elicited by chemoattractants, but its physical origin is still mysterious. Here, we propose that directional sensing is the consequence of a phase-ordering process mediated by phosphoinositide diffusion and driven by the distribution of chemotactic signal. By studying a realistic reaction–diffusion lattice model that describes PI3K and PTEN enzymatic activity, recruitment to the plasma membrane, and diffusion of their phosphoinositide products, we show that the effective enzyme–enzyme interaction induced by catalysis and diffusion introduces an instability of the system toward phase separation for realistic values of physical parameters. In this framework, large reversible amplification of shallow chemotactic gradients, selective localization of chemical factors, macroscopic response timescales, and spontaneous polarization arise naturally. The model is robust with respect to order-of-magnitude variations of the parameters. PMID:16291809

  15. Challenges in Whole-Genome Annotation of Pyrosequenced Eukaryotic Genomes

    Energy Technology Data Exchange (ETDEWEB)

    Kuo, Alan; Grigoriev, Igor

    2009-04-17

    Pyrosequencing technologies such as 454/Roche and Solexa/Illumina vastly lower the cost of nucleotide sequencing compared to the traditional Sanger method, and thus promise to greatly expand the number of sequenced eukaryotic genomes. However, the new technologies also bring new challenges such as shorter reads and new kinds and higher rates of sequencing errors, which complicate genome assembly and gene prediction. At JGI we are deploying 454 technology for the sequencing and assembly of ever-larger eukaryotic genomes. Here we describe our first whole-genome annotation of a purely 454-sequenced fungal genome that is larger than a yeast (>30 Mbp). The pezizomycotine (filamentous ascomycote) Aspergillus carbonarius belongs to the Aspergillus section Nigri species complex, members of which are significant as platforms for bioenergy and bioindustrial technology, as members of soil microbial communities and players in the global carbon cycle, and as agricultural toxigens. Application of a modified version of the standard JGI Annotation Pipeline has so far predicted ~;;10k genes. ~;;12percent of these preliminary annotations suffer a potential frameshift error, which is somewhat higher than the ~;;9percent rate in the Sanger-sequenced and conventionally assembled and annotated genome of fellow Aspergillus section Nigri member A. niger. Also,>90percent of A. niger genes have potential homologs in the A. carbonarius preliminary annotation. Weconclude, and with further annotation and comparative analysis expect to confirm, that 454 sequencing strategies provide a promising substrate for annotation of modestly sized eukaryotic genomes. We will also present results of annotation of a number of other pyrosequenced fungal genomes of bioenergy interest.

  16. The surface science of enzymes

    DEFF Research Database (Denmark)

    Rod, Thomas Holm; Nørskov, Jens Kehlet

    2002-01-01

    One of the largest challenges to science in the coming years is to find the relation between enzyme structure and function. Can we predict which reactions an enzyme catalyzes from knowledge of its structure-or from its amino acid sequence? Can we use that knowledge to modify enzyme function......? To solve these problems we must understand in some detail how enzymes interact with reactants from its surroundings. These interactions take place at the surface of the enzyme and the question of enzyme function can be viewed as the surface science of enzymes. In this article we discuss how to describe...... catalysis by enzymes, and in particular the analogies between enzyme catalyzed reactions and surface catalyzed reactions. We do this by discussing two concrete examples of reactions catalyzed both in nature (by enzymes) and in industrial reactors (by inorganic materials), and show that although analogies...

  17. Production of L-malic acid with fixation of HCO3(-) by malic enzyme-catalyzed reaction based on regeneration of coenzyme on electrode modified by layer-by-layer self-assembly method.

    Science.gov (United States)

    Zheng, Haitao; Ohno, Yoko; Nakamori, Toshihiko; Suye, Shin-Ichiro

    2009-01-01

    Malic enzyme prepared and purified from Brevundimonas diminuta IFO13182 catalyzed the decarboxylation reaction of malate to pyruvate and CO2 using NAD+ as the coenzyme, and the reverse reaction was used in the present study for L-malic acid production with fixation of HCO3(-) as a model compound for carbon source. The L-malic acid production was based on electrochemical regeneration of NADH on a carbon plate electrode modified by layer-by-layer adsorption of polymer-bound mediator (Alginic acid bound viologen derivative, Alg-V), polymer-bound coenzyme (Alginic acid bound NAD+, Alg-NAD+), and lipoamide dehydrogenase (LipDH). Electrochemical reduction of immobilized NAD+ catalyzed by LipDH in a multilayer film was achieved, and the L-malic acid production with HCO3(-) fixation system with layer-by-layer immobilization of Alg-V/LipDH/Alg-NAD+/malic enzyme multilayer film on the electrode gave an L-malic acid production of nearly 11.9 mmol and an HCO3(-) fixation rate of nearly 47.4% in a buffer containing only KHCO3 and pyruvic acid potassium salt, using a cation exchange membrane. The total turnover number of NADH within 48 h was about 19,000, which suggests that efficient NADH regeneration and fast electron transfer were achieved within the multilayer film, and that the modified electrode is a potential method for the fixation of HCO3(-) without addition of free coenzyme.

  18. Interaction of triclosan with eukaryotic membrane lipids.

    Science.gov (United States)

    Lygre, Henning; Moe, Grete; Skålevik, Rita; Holmsen, Holm

    2003-06-01

    The possibility that triclosan and PVM/MA (polyvinylmethyl ether/maleic acid) copolymer, additives to dentrifrices, could interact with eukaryotic membrane lipids was studied by two methods: first, by determining the pressure/molecular area isotherms at 37 degrees C of glycerophospholipid monolayers, using the Langmuir technique; and second, by phase-transition parameters in liposomes of the same lipids, using differential scanning calorimetry (DSC). Triclosan interacted, in a concentration-independent manner, with monolayers of saturated phosphatidylcholines (PC; i.e. markers of the outer membrane leaflet of eukaryotic cells). Triclosan and PVM/MA copolymer mixtures were shown to clearly interact in a concentration-dependent manner with PC. Triclosan was found to interact with liposomes of saturated and unsaturated phosphatidylcholines and phosphatidylserines (PS; i.e. markers of the inner membrane leaflet of eukaryotic cells), and saturated ethanolamines (PE; i.e. markers of the inner membrane leaflet of eukaryotic cells), resulting in a decrease of the lipid melting temperature (Tm). PVM/MA copolymer changed the Tm of PS, PC, and PE in different manners. By adding PVM/MA or triclosan-PVM/MA copolymer mixtures to 1-stearoyl-2-oleoyl-sn-glycero-3-phosphoserine (SOPS) no lipid transitions were detected. A biphasic change of the PC transition temperature resulted when triclosan or triclosan PVM/MA copolymer mixtures were added, indicating domain formation and change of the lipid polymorphism.

  19. The Center for Eukaryotic Structural Genomics.

    Science.gov (United States)

    Markley, John L; Aceti, David J; Bingman, Craig A; Fox, Brian G; Frederick, Ronnie O; Makino, Shin-ichi; Nichols, Karl W; Phillips, George N; Primm, John G; Sahu, Sarata C; Vojtik, Frank C; Volkman, Brian F; Wrobel, Russell L; Zolnai, Zsolt

    2009-04-01

    The Center for Eukaryotic Structural Genomics (CESG) is a "specialized" or "technology development" center supported by the Protein Structure Initiative (PSI). CESG's mission is to develop improved methods for the high-throughput solution of structures from eukaryotic proteins, with a very strong weighting toward human proteins of biomedical relevance. During the first three years of PSI-2, CESG selected targets representing 601 proteins from Homo sapiens, 33 from mouse, 10 from rat, 139 from Galdieria sulphuraria, 35 from Arabidopsis thaliana, 96 from Cyanidioschyzon merolae, 80 from Plasmodium falciparum, 24 from yeast, and about 25 from other eukaryotes. Notably, 30% of all structures of human proteins solved by the PSI Centers were determined at CESG. Whereas eukaryotic proteins generally are considered to be much more challenging targets than prokaryotic proteins, the technology now in place at CESG yields success rates that are comparable to those of the large production centers that work primarily on prokaryotic proteins. We describe here the technological innovations that underlie CESG's platforms for bioinformatics and laboratory information management, target selection, protein production, and structure determination by X-ray crystallography or NMR spectroscopy.

  20. A versatile selection system for folding competent proteins using genetic complementation in a eukaryotic host

    DEFF Research Database (Denmark)

    Lyngsø, C.; Kjaerulff, S.; Muller, S.

    2010-01-01

    -control systems to retain misfolded proteins in the ER and redirect them for cytosolic degradation, thereby only allowing folded proteins to reach the cell surface. Accordingly, the folding potential of the tested protein determines the ability of autotrophic colony growth. This system was successfully......Recombinant expression of native or modified eukaryotic proteins is pivotal for structural and functional studies and for industrial and pharmaceutical production of proteins. However, it is often impeded by the lack of proper folding. Here, we present a stringent and broadly applicable eukaryotic...... in vivo selection system for folded proteins. It is based on genetic complementation of the Schizosaccharomyces pombe growth marker gene invertase fused C-terminally to a protein library. The fusion proteins are directed to the secretion system, utilizing the ability of the eukaryotic protein quality...

  1. Expression analysis of Ubc9, the single small ubiquitin-like modifier (SUMO) E2 conjugating enzyme, in normal and malignant tissues.

    Science.gov (United States)

    Moschos, Stergios J; Jukic, Drazen M; Athanassiou, Charalambos; Bhargava, Rohit; Dacic, Sanja; Wang, Xiaolei; Kuan, Shih-Fan; Fayewicz, Shelley L; Galambos, Csaba; Acquafondata, Marie; Dhir, Rajiv; Becker, Dorothea

    2010-09-01

    Unlike ubiquitination, which targets proteins for degradation, sumoylation modulates protein-protein interactions of target proteins. Although there are multiple E2 enzymes required for ubiquitination, there is only one E2-conjugating enzyme for sumoylation, which is Ubc9. In line with increasing evidence that sumoylation plays an important role in tumorigenesis, we recently demonstrated that Ubc9 is expressed at high levels in advanced melanomas and that blocking expression of Ubc9 sensitizes melanomas to the cytotoxic effects of chemotherapeutic drugs. To determine whether and to what extent Ubc9 is expressed in other malignancies and their normal tissue counterparts, we undertook a detailed analysis of colon, lung, prostate, and breast cancer tissue microarrays. The findings, presented here, document that in primary colon and prostate cancer, Ubc9 expression is increased compared with their normal tissue counterparts, whereas in metastatic breast, prostate, and lung cancer, it is decreased in comparison with their corresponding normal and primary adenocarcinoma tissues. We also provide evidence that Ubc9 expression correlates positively with Dukes' stage and negatively with the Gleason score as well as breast cancer grade and that Ubc9 expression is substantially higher in the luminal than in the nonluminal type of breast cancer. Copyright 2010 Elsevier Inc. All rights reserved.

  2. Kunstige Enzymer

    DEFF Research Database (Denmark)

    Bols, Mikael; Bjerre, Jeannette; Marinescu, Lavinia

    2007-01-01

    Enzymer har en enestående evne til at accelerere kemiske processer. Der forskes målrettet i at optimere enzymer baseret på cyclodextrin.......Enzymer har en enestående evne til at accelerere kemiske processer. Der forskes målrettet i at optimere enzymer baseret på cyclodextrin....

  3. Enzymes of inorganic polyphosphate metabolism.

    Science.gov (United States)

    Kulakovskaya, Tatyana; Kulaev, Igor

    2013-01-01

    Inorganic polyphosphate (PolyP) is a linear polymer containing a few to several hundred orthophosphate residues linked by energy-rich phosphoanhydride bonds. Investigation of PolyP-metabolizing enzymes is important for medicine, because PolyPs perform numerous functions in the cells. In human organism, PolyPs are involved in the regulation of Ca(2+) uptake in mitochondria, bone tissue development, and blood coagulation. The essentiality of polyphosphate kinases in the virulence of pathogenic bacteria is a basis for the discovery of new antibiotics. The properties of the major enzymes of PolyP metabolism, first of all polyphosphate kinases and exopolyphosphatases, are described in the review. The main differences between the enzymes of PolyP biosynthesis and utilization of prokaryotic and eukaryotic cells, as well as the multiple functions of some enzymes of PolyP metabolism, are considered.

  4. Rye bran modified with cell wall-degrading enzymes influences the kinetics of plant lignans but not of enterolignans in multicatheterized pigs

    DEFF Research Database (Denmark)

    Bolvig, Anne Katrine; Nørskov, Natalja; van Vliet, Sophie

    2017-01-01

    Background: Whole-grain intake is associated with a lower risk of chronic Western-style diseases, possibly brought about by the high concentration of phytochemicals, among them plant lignans (PLs), in the grains. Objective: We studied whether treatment of rye bran with cell wall–degrading enzymes...... rich in PLs and based on nontreated lignan-rich (LR) [lignan concentration: 20.2 mg dry matter (DM)/kg] or enzymatically treated lignan-rich (ENZLR, lignan concentration: 27.8 mg DM/kg) rye bran. Plasma concentrations of PLs and enterolignans were quantified with the use of targeted LC-tandem mass...... after intake of both the ENZLR and LR diets. Postprandially, consumption of ENZLR resulted in a 4-times-greater (P

  5. Footprinting analysis of interactions between the largest eukaryotic RNase P/MRP protein Pop1 and RNase P/MRP RNA components.

    Science.gov (United States)

    Fagerlund, Robert D; Perederina, Anna; Berezin, Igor; Krasilnikov, Andrey S

    2015-09-01

    Ribonuclease (RNase) P and RNase MRP are closely related catalytic ribonucleoproteins involved in the metabolism of a wide range of RNA molecules, including tRNA, rRNA, and some mRNAs. The catalytic RNA component of eukaryotic RNase P retains the core elements of the bacterial RNase P ribozyme; however, the peripheral RNA elements responsible for the stabilization of the global architecture are largely absent in the eukaryotic enzyme. At the same time, the protein makeup of eukaryotic RNase P is considerably more complex than that of the bacterial RNase P. RNase MRP, an essential and ubiquitous eukaryotic enzyme, has a structural organization resembling that of eukaryotic RNase P, and the two enzymes share most of their protein components. Here, we present the results of the analysis of interactions between the largest protein component of yeast RNases P/MRP, Pop1, and the RNA moieties of the enzymes, discuss structural implications of the results, and suggest that Pop1 plays the role of a scaffold for the stabilization of the global architecture of eukaryotic RNase P RNA, substituting for the network of RNA-RNA tertiary interactions that maintain the global RNA structure in bacterial RNase P. © 2015 Fagerlund et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  6. Footprinting analysis of interactions between the largest eukaryotic RNase P/MRP protein Pop1 and RNase P/MRP RNA components

    Science.gov (United States)

    Fagerlund, Robert D.; Perederina, Anna; Berezin, Igor; Krasilnikov, Andrey S.

    2015-01-01

    Ribonuclease (RNase) P and RNase MRP are closely related catalytic ribonucleoproteins involved in the metabolism of a wide range of RNA molecules, including tRNA, rRNA, and some mRNAs. The catalytic RNA component of eukaryotic RNase P retains the core elements of the bacterial RNase P ribozyme; however, the peripheral RNA elements responsible for the stabilization of the global architecture are largely absent in the eukaryotic enzyme. At the same time, the protein makeup of eukaryotic RNase P is considerably more complex than that of the bacterial RNase P. RNase MRP, an essential and ubiquitous eukaryotic enzyme, has a structural organization resembling that of eukaryotic RNase P, and the two enzymes share most of their protein components. Here, we present the results of the analysis of interactions between the largest protein component of yeast RNases P/MRP, Pop1, and the RNA moieties of the enzymes, discuss structural implications of the results, and suggest that Pop1 plays the role of a scaffold for the stabilization of the global architecture of eukaryotic RNase P RNA, substituting for the network of RNA–RNA tertiary interactions that maintain the global RNA structure in bacterial RNase P. PMID:26135751

  7. Development and Evaluation of a Modified Fourth-Generation Human Immunodeficiency Virus Enzyme Immunoassay for Cross-Sectional Incidence Estimation in Clade B Populations.

    Science.gov (United States)

    Kirkpatrick, Allison R; Patel, Eshan U; Celum, Connie L; Moore, Richard D; Blankson, Joel N; Mehta, Shruti H; Kirk, Gregory D; Margolick, Joseph B; Quinn, Thomas C; Eshleman, Susan H; Laeyendecker, Oliver

    2016-08-01

    Accurate methods for cross-sectional incidence estimation are needed for HIV surveillance and prevention research. We developed an avidity assay based on the fourth-generation Genetic Systems HIV Combo Ag/Ab EIA (Bio-Rad Combo assay) and evaluated its performance. The Bio-Rad Combo assay was modified incubating samples with and without 0.025 M diethylamine (DEA). The avidity index (AI) was calculated as the ratio of the DEA-treated to untreated result for a specific sample. We analyzed 2,140 samples from 808 individuals from the United States with known duration of HIV infection. The mean duration of recent infection (MDRI) and the false-recent rate (FRR, fraction of samples from individuals known to be infected >2 years misclassified as recent) were calculated for AI cutoffs of 20%-90% for the avidity assay alone and in combination with a viral load assay (VL, limit of detection 400 copies/ml). Factors associated with misclassification of samples collected ≥2 years after infections were also evaluated. The MDRI for the Bio-Rad Combo Avidity assay ranged from 50 days using an AI cutoff of 20% to 276 days using an AI cutoff of 90%; the FRR ranged from 0% to 9%. When samples with a VL 80%. In adjusted analysis, viral suppression and low CD4 cell count were significantly associated with misclassification among individuals infected >2 years. This modified Bio-Rad Combo Avidity assay may be a useful tool for cross-sectional HIV incidence estimation. Further research is needed to evaluate use of this assay in combination with other assays to accurately estimate population-level HIV incidence.

  8. An Entamoeba histolytica ADP-ribosyl transferase from the diphtheria toxin family modifies the bacterial elongation factor Tu.

    Science.gov (United States)

    Avila, Eva E; Rodriguez, Orlando I; Marquez, Jaqueline A; Berghuis, Albert M

    2016-06-01

    ADP-ribosyl transferases are enzymes involved in the post-translational modification of proteins; they participate in multiple physiological processes, pathogenesis and host-pathogen interactions. Several reports have characterized the functions of these enzymes in viruses, prokaryotes and higher eukaryotes, but few studies have reported ADP-ribosyl transferases in lower eukaryotes, such as parasites. The locus EHI_155600 from Entamoeba histolytica encodes a hypothetical protein that possesses a domain from the ADP-ribosylation superfamily; this protein belongs to the diphtheria toxin family according to a homology model using poly-ADP-ribosyl polymerase 12 (PARP12 or ARTD12) as a template. The recombinant protein expressed in Escherichia coli exhibited in vitro ADP-ribosylation activity that was dependent on the time and temperature. Unlabeled βNAD(+), but not ADP-ribose, competed in the enzymatic reaction using biotin-βNAD(+) as the ADP-ribose donor. The recombinant enzyme, denominated EhToxin-like, auto-ADP-ribosylated and modified an acceptor from E. coli that was identified by MS/MS as the elongation factor Tu (EF-Tu). To the best of our knowledge, this is the first report to identify an ADP-ribosyl transferase from the diphtheria toxin family in a protozoan parasite. The known toxins from this family (i.e., the diphtheria toxin, the Pseudomonas aeruginosa toxin Exo-A, and Cholix from Vibrio cholerae) modify eukaryotic elongation factor two (eEF-2), whereas the amoeba EhToxin-like modified EF-Tu, which is another elongation factor involved in protein synthesis in bacteria and mitochondria. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Towards New Antifolates Targeting Eukaryotic Opportunistic Infections

    Energy Technology Data Exchange (ETDEWEB)

    Liu, J.; Bolstad, D; Bolstad, E; Wright, D; Anderson, A

    2009-01-01

    Trimethoprim, an antifolate commonly prescribed in combination with sulfamethoxazole, potently inhibits several prokaryotic species of dihydrofolate reductase (DHFR). However, several eukaryotic pathogenic organisms are resistant to trimethoprim, preventing its effective use as a therapeutic for those infections. We have been building a program to reengineer trimethoprim to more potently and selectively inhibit eukaryotic species of DHFR as a viable strategy for new drug discovery targeting several opportunistic pathogens. We have developed a series of compounds that exhibit potent and selective inhibition of DHFR from the parasitic protozoa Cryptosporidium and Toxoplasma as well as the fungus Candida glabrata. A comparison of the structures of DHFR from the fungal species Candida glabrata and Pneumocystis suggests that the compounds may also potently inhibit Pneumocystis DHFR.

  10. Symbiosis and the origin of eukaryotic motility

    Science.gov (United States)

    Margulis, L.; Hinkle, G.

    1991-01-01

    Ongoing work to test the hypothesis of the origin of eukaryotic cell organelles by microbial symbioses is discussed. Because of the widespread acceptance of the serial endosymbiotic theory (SET) of the origin of plastids and mitochondria, the idea of the symbiotic origin of the centrioles and axonemes for spirochete bacteria motility symbiosis was tested. Intracellular microtubular systems are purported to derive from symbiotic associations between ancestral eukaryotic cells and motile bacteria. Four lines of approach to this problem are being pursued: (1) cloning the gene of a tubulin-like protein discovered in Spirocheata bajacaliforniesis; (2) seeking axoneme proteins in spirochets by antibody cross-reaction; (3) attempting to cultivate larger, free-living spirochetes; and (4) studying in detail spirochetes (e.g., Cristispira) symbiotic with marine animals. Other aspects of the investigation are presented.

  11. The Eukaryotic Promoter Database (EPD): recent developments.

    Science.gov (United States)

    Périer, R C; Junier, T; Bonnard, C; Bucher, P

    1999-01-01

    The Eukaryotic Promoter Database (EPD) is an annotated non-redundant collection of eukaryotic POL II promoters, for which the transcription start site has been determined experimentally. Access to promoter sequences is provided by pointers to positions in nucleotide sequence entries. The annotation part of an entry includes description of the initiation site mapping data, cross-references to other databases, and bibliographic references. EPD is structured in a way that facilitates dynamic extraction of biologically meaningful promoter subsets for comparative sequence analysis. Recent efforts have focused on exhaustive cross-referencing to the EMBL nucleotide sequence database, and on the improvement of the WWW-based user interfaces and data retrieval mechanisms. EPD can be accessed at http://www.epd.isb-sib.ch

  12. The Future of Multiplexed Eukaryotic Genome Engineering.

    Science.gov (United States)

    Thompson, David B; Aboulhouda, Soufiane; Hysolli, Eriona; Smith, Cory J; Wang, Stan; Castanon, Oscar; Church, George M

    2017-12-28

    Multiplex genome editing is the simultaneous introduction of multiple distinct modifications to a given genome. Though in its infancy, maturation of this field will facilitate powerful new biomedical research approaches and will enable a host of far-reaching biological engineering applications, including new therapeutic modalities and industrial applications, as well as "genome writing" and de-extinction efforts. In this Perspective, we focus on multiplex editing of large eukaryotic genomes. We describe the current state of multiplexed genome editing, the current limits of our ability to multiplex edits, and provide perspective on the many applications that fully realized multiplex editing technologies would enable in higher eukaryotic genomes. We offer a broad look at future directions, covering emergent CRISPR-based technologies, advances in intracellular delivery, and new DNA assembly approaches that may enable future genome editing on a massively multiplexed scale.

  13. Searching for the role of protein phosphatases in eukaryotic microorganisms

    Directory of Open Access Journals (Sweden)

    da-Silva A.M.

    1999-01-01

    Full Text Available Preference for specific protein substrates together with differential sensitivity to activators and inhibitors has allowed classification of serine/threonine protein phosphatases (PPs into four major types designated types 1, 2A, 2B and 2C (PP1, PP2A, PP2B and PP2C, respectively. Comparison of sequences within their catalytic domains has indicated that PP1, PP2A and PP2B are members of the same gene family named PPP. On the other hand, the type 2C enzyme does not share sequence homology with the PPP members and thus represents another gene family, known as PPM. In this report we briefly summarize some of our studies about the role of serine/threonine phosphatases in growth and differentiation of three different eukaryotic models: Blastocladiella emersonii, Neurospora crassa and Dictyostelium discoideum. Our observations suggest that PP2C is the major phosphatase responsible for dephosphorylation of amidotransferase, an enzyme that controls cell wall synthesis during Blastocladiella emersonii zoospore germination. We also report the existence of a novel acid- and thermo-stable protein purified from Neurospora crassa mycelia, which specifically inhibits the PP1 activity of this fungus and mammals. Finally, we comment on our recent results demonstrating that Dictyostelium discoideum expresses a gene that codes for PP1, although this activity has never been demonstrated biochemically in this organism.

  14. Release of hyaluronate from eukaryotic cells.

    OpenAIRE

    Prehm, P

    1990-01-01

    The mechanism of hyaluronate shedding from eukaryotic cell lines was analysed. All cell lines shed identical sizes of hyaluronate as were retained on the surface. They differed in the amount of hyaluronate synthesized and in the proportions of hyaluronate which were released and retained. A method was developed which could discriminate between shedding due to intramolecular degradation and that due to dissociation as intact macromolecules. This method was applied to B6 and SV3T3 cells in orde...

  15. Eukaryotic plankton diversity in the sunlit ocean

    OpenAIRE

    Vargas, Colomban de; Audic, Stéphane; Henry, Nicolas; Decelle, Johan; Mahé, Frédéric; Logares, Ramiro; Lara, Enrique; Berney, Cédric; Le Bescot, Noan; Probert, Ian; Carmichael, Margaux; Poulain, Julie; Romac, Sarah; Colin, Sébastien; Aury, Jean-Marc

    2015-01-01

    Marine plankton support global biological and geochemical processes. Surveys of their biodiversity have hitherto been geographically restricted and have not accounted for the full range of plankton size. We assessed eukaryotic diversity from 334 size-fractionated photic-zone plankton communities collected across tropical and temperate oceans during the circumglobal Tara Oceans expedition. We analyzed 18S ribosomal DNA sequences across the intermediate plankton-size spectrum from the smallest ...

  16. Two-step Mechanism for Modifier of Transcription 1 (Mot1) Enzyme-catalyzed Displacement of TATA-binding Protein (TBP) from DNA*

    Science.gov (United States)

    Moyle-Heyrman, Georgette; Viswanathan, Ramya; Widom, Jonathan; Auble, David T.

    2012-01-01

    The TATA box binding protein (TBP) is a central component of the transcription preinitiation complex, and its occupancy at a promoter is correlated with transcription levels. The TBP-promoter DNA complex contains sharply bent DNA and its interaction lifetime is limited by the ATP-dependent TBP displacement activity of the Snf2/Swi2 ATPase Mot1. Several mechanisms for Mot1 action have been proposed, but how it catalyzes TBP removal from DNA is unknown. To better understand the Mot1 mechanism, native gel electrophoresis and FRET were used to determine how Mot1 affects the trajectory of DNA in the TBP-DNA complex. Strikingly, in the absence of ATP, Mot1 acts to unbend DNA, whereas TBP remains closely associated with the DNA in a stable Mot1-TBP-DNA ternary complex. Interestingly, and in contrast to full-length Mot1, the isolated Mot1 ATPase domain binds DNA, and its affinity for DNA is nucleotide-dependent, suggesting parallels between the Mot1 mechanism and DNA translocation-based mechanisms of chromatin remodeling enzymes. Based on these findings, a model is presented for Mot1 that links a DNA conformational change with ATP-induced DNA translocation. PMID:22298788

  17. Two-step mechanism for modifier of transcription 1 (Mot1) enzyme-catalyzed displacement of TATA-binding protein (TBP) from DNA.

    Science.gov (United States)

    Moyle-Heyrman, Georgette; Viswanathan, Ramya; Widom, Jonathan; Auble, David T

    2012-03-16

    The TATA box binding protein (TBP) is a central component of the transcription preinitiation complex, and its occupancy at a promoter is correlated with transcription levels. The TBP-promoter DNA complex contains sharply bent DNA and its interaction lifetime is limited by the ATP-dependent TBP displacement activity of the Snf2/Swi2 ATPase Mot1. Several mechanisms for Mot1 action have been proposed, but how it catalyzes TBP removal from DNA is unknown. To better understand the Mot1 mechanism, native gel electrophoresis and FRET were used to determine how Mot1 affects the trajectory of DNA in the TBP-DNA complex. Strikingly, in the absence of ATP, Mot1 acts to unbend DNA, whereas TBP remains closely associated with the DNA in a stable Mot1-TBP-DNA ternary complex. Interestingly, and in contrast to full-length Mot1, the isolated Mot1 ATPase domain binds DNA, and its affinity for DNA is nucleotide-dependent, suggesting parallels between the Mot1 mechanism and DNA translocation-based mechanisms of chromatin remodeling enzymes. Based on these findings, a model is presented for Mot1 that links a DNA conformational change with ATP-induced DNA translocation.

  18. C-type starch from high-amylose rice resistant starch granules modified by antisense RNA inhibition of starch branching enzyme.

    Science.gov (United States)

    Wei, Cunxu; Xu, Bin; Qin, Fengling; Yu, Huaguang; Chen, Chong; Meng, Xianglen; Zhu, Lijia; Wang, Youping; Gu, Minghong; Liu, Qiaoquan

    2010-06-23

    High-amylose starch is a source of resistant starch (RS) which has a great benefit on human health. A transgenic rice line (TRS) enriched amylose and RS had been developed by antisense RNA inhibition of starch branching enzymes. In this study, the native starch granules were isolated from TRS grains as well as the wild type, and their crystalline type was carefully investigated before and after acid hydrolysis. In high-amylose TRS rice, the C-type starch, which might result from the combination of both A-type and B-type starch, was observed and subsequently confirmed by multiple physical techniques, including X-ray powder diffraction, solid-state nuclear magnetic resonance, and Fourier transform infrared. Moreover, the change of starch crystalline structure from C- to B-type during acid hydrolysis was also observed in this RS-rich rice. These data could add to our understanding of not only the polymorph structure of cereal starch but also why high-amylose starch is more resistant to digestion.

  19. Structure-based design of potent HIV-1 protease inhibitors with modified P1-biphenyl ligands: synthesis, biological evaluation, and enzyme-inhibitor X-ray structural studies.

    Science.gov (United States)

    Ghosh, Arun K; Yu, Xufen; Osswald, Heather L; Agniswamy, Johnson; Wang, Yuan-Fang; Amano, Masayuki; Weber, Irene T; Mitsuya, Hiroaki

    2015-07-09

    We report the design, synthesis, X-ray structural studies, and biological evaluation of a novel series of HIV-1 protease inhibitors. We designed a variety of functionalized biphenyl derivatives to make enhanced van der Waals interactions in the S1 subsite of HIV-1 protease. These biphenyl derivatives were conveniently synthesized using a Suzuki-Miyaura cross-coupling reaction as the key step. We examined the potential of these functionalized biphenyl-derived P1 ligands in combination with 3-(S)-tetrahydrofuranyl urethane and bis-tetrahydrofuranyl urethane as the P2 ligands. Inhibitor 21e, with a 2-methoxy-1,1'-biphenyl derivative as P1 ligand and bis-THF as the P2 ligand, displayed the most potent enzyme inhibitory and antiviral activity. This inhibitor also exhibited potent activity against a panel of multidrug-resistant HIV-1 variants. A high resolution X-ray crystal structure of related Boc-derivative 17a-bound HIV-1 protease provided important molecular insight into the ligand-binding site interactions of the biphenyl core in the S1 subsite of HIV-1 protease.

  20. The purification, crystallization and preliminary structural characterization of FAD-dependent monooxygenase PhzS, a phenazine-modifying enzyme from Pseudomonas aeruginosa

    Energy Technology Data Exchange (ETDEWEB)

    Gohain, Neelakshi [Max-Planck-Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund (Germany); Thomashow, Linda S. [Department of Plant Pathology, Washington State University, Pullman, Washington 99164-6430 (United States); USDA Agricultural Research Service, Root Disease and Biological Control Research Unit, Pullman, Washington 99164-6430 (United States); Mavrodi, Dmitri V. [Department of Plant Pathology, Washington State University, Pullman, Washington 99164-6430 (United States); Blankenfeldt, Wulf, E-mail: wulf.blankenfeldt@mpi-dortmund.mpg.de [Max-Planck-Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund (Germany)

    2006-10-01

    PhzS, an FAD-dependent monooxygenase that catalyzes a reaction involved in the biosynthesis of the virulence factor pyocyanin in P. aeruginosa, was cloned, overexpressed and crystallized. Data collection from native and seleno-l-methionine-labelled crystals is reported. The blue chloroform-soluble bacterial metabolite pyocyanin (1-hydroxy-5-methyl-phenazine) contributes to the survival and virulence of Pseudomonas aeruginosa, an important Gram-negative opportunistic pathogen of humans and animals. Little is known about the two enzymes, designated PhzM and PhzS, that function in the synthesis of pyocyanin from phenazine-1-carboxylic acid. In this study, the FAD-dependent monooxygenase PhzS was purified and crystallized from lithium sulfate/ammonium sulfate/sodium citrate pH 5.5. Native crystals belong to space group C2, with unit-cell parameters a = 144.2, b = 96.2, c = 71.7 Å, α = γ = 90, β = 110.5°. They contain two monomers of PhzS in the asymmetric unit and diffract to a resolution of 2.4 Å. Seleno-l-methionine-labelled PhzS also crystallizes in space group C2, but the unit-cell parameters change to a = 70.6, b = 76.2, c = 80.2 Å, α = γ = 90, β = 110.5° and the diffraction limit is 2.7 Å.

  1. Sphingolipid base modifying enzymes in sunflower (Helianthus annuus): cloning and characterization of a C4-hydroxylase gene and a new paralogous Δ8-desaturase gene.

    Science.gov (United States)

    Moreno-Pérez, Antonio J; Martínez-Force, Enrique; Garcés, Rafael; Salas, Joaquín J

    2011-05-15

    Sphingolipids are components of plant cell membranes that participate in the regulation of important physiological processes. Unlike their animal counterparts, plant sphingolipids are characterized by high levels of base C4-hydroxylation. Moreover, desaturation at the Δ8 position predominates over the Δ4 desaturation typically found in animal sphingolipids. These modifications are due to the action of C4-hydroxylases and Δ8-long chain base desaturases, and they are important for complex sphingolipids finally becoming functional. The long chain bases of sunflower sphingolipids have high levels of hydroxylated and unsaturated moieties. Here, a C4-long chain base hydroxylase was functionally characterized in sunflower plant, an enzyme that could complement the sur2Δ mutation when heterologously expressed in this yeast mutant deficient in hydroxylation. This hydroxylase was ubiquitously expressed in sunflower, with the highest levels found in the developing cotyledons. In addition, we identified a new Δ8-long base chain desaturase gene that displays strong homology to a previously reported desaturase gene. This desaturase was also expressed in yeast and was able to change the long chain base composition of the transformed host. We studied the expression of this desaturase and compared it with that of the other isoform described in sunflower. The desaturase form studied in this paper displayed higher expression levels in developing seeds. Copyright © 2010 Elsevier GmbH. All rights reserved.

  2. Arsenic and Antimony Transporters in Eukaryotes

    Science.gov (United States)

    Maciaszczyk-Dziubinska, Ewa; Wawrzycka, Donata; Wysocki, Robert

    2012-01-01

    Arsenic and antimony are toxic metalloids, naturally present in the environment and all organisms have developed pathways for their detoxification. The most effective metalloid tolerance systems in eukaryotes include downregulation of metalloid uptake, efflux out of the cell, and complexation with phytochelatin or glutathione followed by sequestration into the vacuole. Understanding of arsenic and antimony transport system is of high importance due to the increasing usage of arsenic-based drugs in the treatment of certain types of cancer and diseases caused by protozoan parasites as well as for the development of bio- and phytoremediation strategies for metalloid polluted areas. However, in contrast to prokaryotes, the knowledge about specific transporters of arsenic and antimony and the mechanisms of metalloid transport in eukaryotes has been very limited for a long time. Here, we review the recent advances in understanding of arsenic and antimony transport pathways in eukaryotes, including a dual role of aquaglyceroporins in uptake and efflux of metalloids, elucidation of arsenic transport mechanism by the yeast Acr3 transporter and its role in arsenic hyperaccumulation in ferns, identification of vacuolar transporters of arsenic-phytochelatin complexes in plants and forms of arsenic substrates recognized by mammalian ABC transporters. PMID:22489166

  3. Structure and function of eukaryotic chromosomes

    Energy Technology Data Exchange (ETDEWEB)

    Hennig, W.

    1987-01-01

    Contents: Introduction; Polytene Chromosomel Giant Chromosomes in Ciliates; The sp-I Genes in the Balbiani Rings of Chironomus Salivary Glands; The White Locus of Drosophila Melanogaster; The Genetic and Molecular Organization of the Dense Cluster of Functionally Related Vital Genes in the DOPA Decarboxylase Region of the Drosophila melanogaster Genome; Heat Shock Puffs and Response to Environmental Stress; The Y Chromosomal Lampbrush Loops of Drosophila; Contributions of Electron Microscopic Spreading Preparations (''Miller Spreads'') to the Analysis of Chromosome Structure; Replication of DNA in Eukaryotic Chromosomes; Gene Amplification in Dipteran Chromosomes; The Significance of Plant Transposable Elements in Biologically Relevant Processes; Arrangement of Chromosomes in Interphase Cell Nuclei; Heterochromatin and the Phenomenon of Chromosome Banding; Multiple Nonhistone Protein-DNA Complexes in Chromatin Regulate the Cell- and Stage-Specific Activity of an Eukaryotic Gene; Genetics of Sex Determination in Eukaryotes; Application of Basic Chromosome Research in Biotechnology and Medicine. This book presents an overview of various aspects of chromosome research.

  4. Arsenic and antimony transporters in eukaryotes.

    Science.gov (United States)

    Maciaszczyk-Dziubinska, Ewa; Wawrzycka, Donata; Wysocki, Robert

    2012-01-01

    Arsenic and antimony are toxic metalloids, naturally present in the environment and all organisms have developed pathways for their detoxification. The most effective metalloid tolerance systems in eukaryotes include downregulation of metalloid uptake, efflux out of the cell, and complexation with phytochelatin or glutathione followed by sequestration into the vacuole. Understanding of arsenic and antimony transport system is of high importance due to the increasing usage of arsenic-based drugs in the treatment of certain types of cancer and diseases caused by protozoan parasites as well as for the development of bio- and phytoremediation strategies for metalloid polluted areas. However, in contrast to prokaryotes, the knowledge about specific transporters of arsenic and antimony and the mechanisms of metalloid transport in eukaryotes has been very limited for a long time. Here, we review the recent advances in understanding of arsenic and antimony transport pathways in eukaryotes, including a dual role of aquaglyceroporins in uptake and efflux of metalloids, elucidation of arsenic transport mechanism by the yeast Acr3 transporter and its role in arsenic hyperaccumulation in ferns, identification of vacuolar transporters of arsenic-phytochelatin complexes in plants and forms of arsenic substrates recognized by mammalian ABC transporters.

  5. Subunit topology in the V type ATPase and related enzymes

    NARCIS (Netherlands)

    Chaban, Yuriy

    2005-01-01

    During the last decades impressive progress has been made in understanding of the catalytic mechanism of F-type ATP synthase, which is the key enzyme in the energy metabolism of eukaryotes and most bacteria. This enzyme catalyzes the final step in the process of oxidative phosphorylation in bacteria

  6. Enzyme assays

    OpenAIRE

    Bisswanger, Hans

    2014-01-01

    The essential requirements for enzyme assays are described and frequently occurring errors and pitfalls as well as their avoidance are discussed. The main factors, which must be considered for assaying enzymes, are temperature, pH, ionic strength and the proper concentrations of the essential components like substrates and enzymes. Standardization of these parameters would be desirable, but the diversity of the features of different enzymes prevents unification of assay conditions. Neverthele...

  7. Granule structure and distribution of allomorphs in C-type high-amylose rice starch granule modified by antisense RNA inhibition of starch branching enzyme.

    Science.gov (United States)

    Wei, Cunxu; Qin, Fengling; Zhou, Weidong; Yu, Huaguang; Xu, Bin; Chen, Chong; Zhu, Lijia; Wang, Youping; Gu, Minghong; Liu, Qiaoquan

    2010-11-24

    C-type starch, which is a combination of both A-type and B-type crystal starch, is usually found in legumes and rhizomes. We have developed a high-amylose transgenic line of rice (TRS) by antisense RNA inhibition of starch branching enzymes. The starch in the endosperm of this TRS was identified as typical C-type crystalline starch, but its fine granular structure and allomorph distribution remained unclear. In this study, we conducted morphological and spectroscopic studies on this TRS starch during acid hydrolysis to determine the distribution of A- and B-type allomorphs. The morphology of starch granules after various durations of acid hydrolysis was compared by optical microscopy, scanning electron microscopy, and transmission electron microscopy. The results showed that amorphous regions were located at the center part of TRS starch subgranules. During acid hydrolysis, starch was degraded from the interior of the subgranule to the outer surface, while the peripheral part of the subgranules and the surrounding band of the starch granule were highly resistant to acid hydrolysis. The spectroscopic changes detected by X-ray powder diffraction, 13C cross-polarization magic-angle spinning NMR, and attenuated total reflectance Fourier transform infrared showed that the A-type allomorph was hydrolyzed more rapidly than the B-type, and that the X-ray diffraction profile gradually changed from a native C-type to a CB-type with increasing hydrolysis time. Our results showed that, in TRS starch, the A-type allomorph was located around the amorphous region, and was surrounded by the B-type allomorph located in the peripheral region of the subgranules and the surrounding band of the starch granule. Thus, the positions of A- and B-type allomorphs in the TRS C-type starch granule differ markedly from those in C-type legume and rhizome starch.

  8. Population screening for glucose-6-phosphate dehydrogenase deficiencies in Isabel Province, Solomon Islands, using a modified enzyme assay on filter paper dried bloodspots

    Directory of Open Access Journals (Sweden)

    Landry Losi

    2010-08-01

    Full Text Available Abstract Background Glucose-6-phosphate dehydrogenase deficiency poses a significant impediment to primaquine use for the elimination of liver stage infection with Plasmodium vivax and for gametocyte clearance, because of the risk of life-threatening haemolytic anaemia that can occur in G6PD deficient patients. Although a range of methods for screening G6PD deficiency have been described, almost all require skilled personnel, expensive laboratory equipment, freshly collected blood, and are time consuming; factors that render them unsuitable for mass-screening purposes. Methods A published WST8/1-methoxy PMS method was adapted to assay G6PD activity in a 96-well format using dried blood spots, and used it to undertake population screening within a malaria survey undertaken in Isabel Province, Solomon Islands. The assay results were compared to a biochemical test and a recently marketed rapid diagnostic test. Results Comparative testing with biochemical and rapid diagnostic test indicated that results obtained by filter paper assay were accurate providing that blood spots were assayed within 5 days when stored at ambient temperature and 10 days when stored at 4 degrees. Screening of 8541 people from 41 villages in Isabel Province, Solomon Islands revealed the prevalence of G6PD deficiency as defined by enzyme activity Conclusions The assay enabled simple and quick semi-quantitative population screening in a malaria-endemic region. The study indicated a high prevalence of G6PD deficiency in Isabel Province and highlights the critical need to consider G6PD deficiency in the context of P. vivax malaria elimination strategies in Solomon Islands, particularly in light of the potential role of primaquine mass drug administration.

  9. Phylogenetic analysis of the core histone doublet and DNA topo II genes of Marseilleviridae: evidence of proto-eukaryotic provenance.

    Science.gov (United States)

    Erives, Albert J

    2017-11-28

    While the genomes of eukaryotes and Archaea both encode the histone-fold domain, only eukaryotes encode the core histone paralogs H2A, H2B, H3, and H4. With DNA, these core histones assemble into the nucleosomal octamer underlying eukaryotic chromatin. Importantly, core histones for H2A and H3 are maintained as neofunctionalized paralogs adapted for general bulk chromatin (canonical H2 and H3) or specialized chromatin (H2A.Z enriched at gene promoters and cenH3s enriched at centromeres). In this context, the identification of core histone-like "doublets" in the cytoplasmic replication factories of the Marseilleviridae (MV) is a novel finding with possible relevance to understanding the origin of eukaryotic chromatin. Here, we analyze and compare the core histone doublet genes from all known MV genomes as well as other MV genes relevant to the origin of the eukaryotic replisome. Using different phylogenetic approaches, we show that MV histone domains encode obligate H2B-H2A and H4-H3 dimers of possible proto-eukaryotic origin. MV core histone moieties form sister clades to each of the four eukaryotic clades of canonical and variant core histones. This suggests that MV core histone moieties diverged prior to eukaryotic neofunctionalizations associated with paired linear chromosomes and variant histone octamer assembly. We also show that MV genomes encode a proto-eukaryotic DNA topoisomerase II enzyme that forms a sister clade to eukaryotes. This is a relevant finding given that DNA topo II influences histone deposition and chromatin compaction and is the second most abundant nuclear protein after histones. The combined domain architecture and phylogenomic analyses presented here suggest that a primitive origin for MV histone genes is a more parsimonious explanation than horizontal gene transfers + gene fusions + sufficient divergence to eliminate relatedness to eukaryotic neofunctionalizations within the H2A and H3 clades without loss of relatedness to each of

  10. Tag single nucleotide polymorphisms of alcohol-metabolizing enzymes modify the risk of upper aerodigestive tract cancers: HapMap database analysis.

    Science.gov (United States)

    Chung, C-S; Lee, Y-C; Liou, J-M; Wang, C-P; Ko, J-Y; Lee, J-M; Wu, M-S; Wang, H-P

    2014-07-01

    Although alcohol is associated with higher upper aerodigestive tract (UADT) cancer risk, only a small fraction of alcoholics develop cancers. There is a lack of evidence proving the association of tag single nucleotide polymorphisms of alcohol-metabolizing enzymes with cancer risk. The aim of this study was to determine the association of these genetic polymorphisms with UADT cancer risk in a Chinese population. It was a hospital-based case-control candidate gene study. The databases of the International HapMap Project were searched for haplotype tag single nucleotide polymorphisms of the genes alcohol dehydrogenase (ADH)1B, ADH1C, and aldehyde dehydrogenase (ALDH)2. The genotyping was performed by the Sequenom MassARRAY system. Totally, 120 head and neck squamous cell carcinoma, 138 esophageal squamous cell carcinoma patients, and 276 age- and gender-matched subjects were enrolled between June 2008 and June 2010.Minor alleles of ADH1B (rs1229984) and ALDH2(rs671) were not only associated with the risk of UADT cancers (odds ratio [OR] [95% confidence interval, CI]: 3.53 [2.14-5.80] and 2.59 [1.79-3.75], respectively) but also potentiated the carcinogenic effects of alcohol (OR [95% CI]: 53.44 [25.21-113.29] and 70.08 [33.65-145.95], respectively). Similar effects were observed for head/neck and esophageal cancer subgroups. Multivariate logistic regression analysis identified four significant risk factors, including habitual use of cigarettes, alcohol, betel quid, and lower body mass index (P < 0.001). The haplotypes GAGC (OR 1.61, 95% CI 1.08-2.40, P = 0.018) and CCAATG (OR 1.69, 95% CI 1.24-2.30, P < 0.001) on chromosomes 4 and 12, respectively, were associated with higher cancer risk. These findings suggested that risk allele or haplotype carriers who consume alcohol and other carcinogens should be advised to undergo endoscopy screening. The information can be used to determine the degree of susceptibility of each subject and can be combined with other

  11. Telomere-associated endonuclease-deficient Penelope-like retroelements in diverse eukaryotes

    Science.gov (United States)

    Gladyshev, Eugene A.; Arkhipova, Irina R.

    2007-01-01

    The evolutionary origin of telomerases, enzymes that maintain the ends of linear chromosomes in most eukaryotes, is a subject of debate. Penelope-like elements (PLEs) are a recently described class of eukaryotic retroelements characterized by a GIY-YIG endonuclease domain and by a reverse transcriptase domain with similarity to telomerases and group II introns. Here we report that a subset of PLEs found in bdelloid rotifers, basidiomycete fungi, stramenopiles, and plants, representing four different eukaryotic kingdoms, lack the endonuclease domain and are located at telomeres. The 5′ truncated ends of these elements are telomere-oriented and typically capped by species-specific telomeric repeats. Most of them also carry several shorter stretches of telomeric repeats at or near their 3′ ends, which could facilitate utilization of the telomeric G-rich 3′ overhangs to prime reverse transcription. Many of these telomere-associated PLEs occupy a basal phylogenetic position close to the point of divergence from the telomerase-PLE common ancestor and may descend from the missing link between early eukaryotic retroelements and present-day telomerases. PMID:17483479

  12. Horizontal gene transfer in eukaryotes: The weak-link model

    Science.gov (United States)

    Huang, Jinling

    2013-01-01

    The significance of horizontal gene transfer (HGT) in eukaryotic evolution remains controversial. Although many eukaryotic genes are of bacterial origin, they are often interpreted as being derived from mitochondria or plastids. Because of their fixed gene pool and gene loss, however, mitochondria and plastids alone cannot adequately explain the presence of all, or even the majority, of bacterial genes in eukaryotes. Available data indicate that no insurmountable barrier to HGT exists, even in complex multicellular eukaryotes. In addition, the discovery of both recent and ancient HGT events in all major eukaryotic groups suggests that HGT has been a regular occurrence throughout the history of eukaryotic evolution. A model of HGT is proposed that suggests both unicellular and early developmental stages as likely entry points for foreign genes into multicellular eukaryotes. PMID:24037739

  13. Patterns of prokaryotic lateral gene transfers affecting parasitic microbial eukaryotes

    DEFF Research Database (Denmark)

    Alsmark, Cecilia; Foster, Peter G; Sicheritz-Pontén, Thomas

    2013-01-01

    BACKGROUND: The influence of lateral gene transfer on gene origins and biology in eukaryotes is poorly understood compared with those of prokaryotes. A number of independent investigations focusing on specific genes, individual genomes, or specific functional categories from various eukaryotes have...... indicated that lateral gene transfer does indeed affect eukaryotic genomes. However, the lack of common methodology and criteria in these studies makes it difficult to assess the general importance and influence of lateral gene transfer on eukaryotic genome evolution. RESULTS: We used a phylogenomic...... approach to systematically investigate lateral gene transfer affecting the proteomes of thirteen, mainly parasitic, microbial eukaryotes, representing four of the six eukaryotic super-groups. All of the genomes investigated have been significantly affected by prokaryote-to-eukaryote lateral gene transfers...

  14. Enzyme Informatics

    Science.gov (United States)

    Alderson, Rosanna G.; Ferrari, Luna De; Mavridis, Lazaros; McDonagh, James L.; Mitchell, John B. O.; Nath, Neetika

    2012-01-01

    Over the last 50 years, sequencing, structural biology and bioinformatics have completely revolutionised biomolecular science, with millions of sequences and tens of thousands of three dimensional structures becoming available. The bioinformatics of enzymes is well served by, mostly free, online databases. BRENDA describes the chemistry, substrate specificity, kinetics, preparation and biological sources of enzymes, while KEGG is valuable for understanding enzymes and metabolic pathways. EzCatDB, SFLD and MACiE are key repositories for data on the chemical mechanisms by which enzymes operate. At the current rate of genome sequencing and manual annotation, human curation will never finish the functional annotation of the ever-expanding list of known enzymes. Hence there is an increasing need for automated annotation, though it is not yet widespread for enzyme data. In contrast, functional ontologies such as the Gene Ontology already profit from automation. Despite our growing understanding of enzyme structure and dynamics, we are only beginning to be able to design novel enzymes. One can now begin to trace the functional evolution of enzymes using phylogenetics. The ability of enzymes to perform secondary functions, albeit relatively inefficiently, gives clues as to how enzyme function evolves. Substrate promiscuity in enzymes is one example of imperfect specificity in protein-ligand interactions. Similarly, most drugs bind to more than one protein target. This may sometimes result in helpful polypharmacology as a drug modulates plural targets, but also often leads to adverse side-effects. Many cheminformatics approaches can be used to model the interactions between druglike molecules and proteins in silico. We can even use quantum chemical techniques like DFT and QM/MM to compute the structural and energetic course of enzyme catalysed chemical reaction mechanisms, including a full description of bond making and breaking. PMID:23116471

  15. Expression of eukaryotic polypeptides in chloroplasts

    Science.gov (United States)

    Mayfield, Stephen P.

    2013-06-04

    The present invention relates to a gene expression system in eukaryotic and prokaryotic cells, preferably plant cells and intact plants. In particular, the invention relates to an expression system having a RB47 binding site upstream of a translation initiation site for regulation of translation mediated by binding of RB47 protein, a member of the poly(A) binding protein family. Regulation is further effected by RB60, a protein disulfide isomerase. The expression system is capable of functioning in the nuclear/cytoplasm of cells and in the chloroplast of plants. Translation regulation of a desired molecule is enhanced approximately 100 fold over that obtained without RB47 binding site activation.

  16. Design and chemical synthesis of eukaryotic chromosomes.

    Science.gov (United States)

    Xie, Ze-Xiong; Liu, Duo; Li, Bing-Zhi; Zhao, Meng; Zeng, Bo-Xuan; Wu, Yi; Shen, Yue; Lin, Tao; Yang, Ping; Dai, Junbiao; Cai, Yizhi; Yang, Huanming; Yuan, Ying-Jin

    2017-11-27

    Following the discovery of the DNA double helix structure and the advancement of genome sequencing, we have entered a promising stage with regard to genome writing. Recently, a milestone breakthrough was achieved in the chemical synthesis of designer yeast chromosomes. Here, we review the systematic approaches to the de novo synthesis of designer eukaryotic chromosomes, with an emphasis on technologies and methodologies that enable design, building, testing and debugging. The achievement of chemically synthesized genomes with customized genetic features offers an opportunity to rebuild genome organization, remold biological functions and promote life evolution, which will be of great benefit for application in medicine and industrial manufacturing.

  17. Discovery of PPi-type Phosphoenolpyruvate Carboxykinase Genes in Eukaryotes and Bacteria*

    Science.gov (United States)

    Chiba, Yoko; Kamikawa, Ryoma; Nakada-Tsukui, Kumiko; Saito-Nakano, Yumiko; Nozaki, Tomoyoshi

    2015-01-01

    Phosphoenolpyruvate carboxykinase (PEPCK) is one of the pivotal enzymes that regulates the carbon flow of the central metabolism by fixing CO2 to phosphoenolpyruvate (PEP) to produce oxaloacetate or vice versa. Whereas ATP- and GTP-type PEPCKs have been well studied, and their protein identities are established, inorganic pyrophosphate (PPi)-type PEPCK (PPi-PEPCK) is poorly characterized. Despite extensive enzymological studies, its protein identity and encoding gene remain unknown. In this study, PPi-PEPCK has been identified for the first time from a eukaryotic human parasite, Entamoeba histolytica, by conventional purification and mass spectrometric identification of the native enzyme, followed by demonstration of its enzymatic activity. A homolog of the amebic PPi-PEPCK from an anaerobic bacterium Propionibacterium freudenreichii subsp. shermanii also exhibited PPi-PEPCK activity. The primary structure of PPi-PEPCK has no similarity to the functional homologs ATP/GTP-PEPCKs and PEP carboxylase, strongly suggesting that PPi-PEPCK arose independently from the other functional homologues and very likely has unique catalytic sites. PPi-PEPCK homologs were found in a variety of bacteria and some eukaryotes but not in archaea. The molecular identification of this long forgotten enzyme shows us the diversity and functional redundancy of enzymes involved in the central metabolism and can help us to understand the central metabolism more deeply. PMID:26269598

  18. Discovery of PPi-type Phosphoenolpyruvate Carboxykinase Genes in Eukaryotes and Bacteria.

    Science.gov (United States)

    Chiba, Yoko; Kamikawa, Ryoma; Nakada-Tsukui, Kumiko; Saito-Nakano, Yumiko; Nozaki, Tomoyoshi

    2015-09-25

    Phosphoenolpyruvate carboxykinase (PEPCK) is one of the pivotal enzymes that regulates the carbon flow of the central metabolism by fixing CO2 to phosphoenolpyruvate (PEP) to produce oxaloacetate or vice versa. Whereas ATP- and GTP-type PEPCKs have been well studied, and their protein identities are established, inorganic pyrophosphate (PPi)-type PEPCK (PPi-PEPCK) is poorly characterized. Despite extensive enzymological studies, its protein identity and encoding gene remain unknown. In this study, PPi-PEPCK has been identified for the first time from a eukaryotic human parasite, Entamoeba histolytica, by conventional purification and mass spectrometric identification of the native enzyme, followed by demonstration of its enzymatic activity. A homolog of the amebic PPi-PEPCK from an anaerobic bacterium Propionibacterium freudenreichii subsp. shermanii also exhibited PPi-PEPCK activity. The primary structure of PPi-PEPCK has no similarity to the functional homologs ATP/GTP-PEPCKs and PEP carboxylase, strongly suggesting that PPi-PEPCK arose independently from the other functional homologues and very likely has unique catalytic sites. PPi-PEPCK homologs were found in a variety of bacteria and some eukaryotes but not in archaea. The molecular identification of this long forgotten enzyme shows us the diversity and functional redundancy of enzymes involved in the central metabolism and can help us to understand the central metabolism more deeply. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Enzyme Informatics

    OpenAIRE

    Alderson, Rosanna G.; De Ferrari, Luna; Mavridis, Lazaros; McDonagh, James L.; Mitchell, John B O; Nath, Neetika

    2012-01-01

    Over the last 50 years, sequencing, structural biology and bioinformatics have completely revolutionised biomolecular science, with millions of sequences and tens of thousands of three dimensional structures becoming available. The bioinformatics of enzymes is well served by, mostly free, online databases. BRENDA describes the chemistry, substrate specificity, kinetics, preparation and biological sources of enzymes, while KEGG is valuable for understanding enzymes and metabolic pathways. EzCa...

  20. Consistent mutational paths predict eukaryotic thermostability

    Directory of Open Access Journals (Sweden)

    van Noort Vera

    2013-01-01

    Full Text Available Abstract Background Proteomes of thermophilic prokaryotes have been instrumental in structural biology and successfully exploited in biotechnology, however many proteins required for eukaryotic cell function are absent from bacteria or archaea. With Chaetomium thermophilum, Thielavia terrestris and Thielavia heterothallica three genome sequences of thermophilic eukaryotes have been published. Results Studying the genomes and proteomes of these thermophilic fungi, we found common strategies of thermal adaptation across the different kingdoms of Life, including amino acid biases and a reduced genome size. A phylogenetics-guided comparison of thermophilic proteomes with those of other, mesophilic Sordariomycetes revealed consistent amino acid substitutions associated to thermophily that were also present in an independent lineage of thermophilic fungi. The most consistent pattern is the substitution of lysine by arginine, which we could find in almost all lineages but has not been extensively used in protein stability engineering. By exploiting mutational paths towards the thermophiles, we could predict particular amino acid residues in individual proteins that contribute to thermostability and validated some of them experimentally. By determining the three-dimensional structure of an exemplar protein from C. thermophilum (Arx1, we could also characterise the molecular consequences of some of these mutations. Conclusions The comparative analysis of these three genomes not only enhances our understanding of the evolution of thermophily, but also provides new ways to engineer protein stability.

  1. Eukaryotic and Prokaryotic Cytoskeletons: Structure and Mechanics

    Science.gov (United States)

    Gopinathan, Ajay

    2013-03-01

    The eukaryotic cytoskeleton is an assembly of filamentous proteins and a host of associated proteins that collectively serve functional needs ranging from spatial organization and transport to the production and transmission of forces. These systems can exhibit a wide variety of non-equilibrium, self-assembled phases depending on context and function. While much recent progress has been made in understanding the self-organization, rheology and nonlinear mechanical properties of such active systems, in this talk, we will concentrate on some emerging aspects of cytoskeletal physics that are promising. One such aspect is the influence of cytoskeletal network topology and its dynamics on both active and passive intracellular transport. Another aspect we will highlight is the interplay between chirality of filaments, their elasticity and their interactions with the membrane that can lead to novel conformational states with functional implications. Finally we will consider homologs of cytoskeletal proteins in bacteria, which are involved in templating cell growth, segregating genetic material and force production, which we will discuss with particular reference to contractile forces during cell division. These prokaryotic structures function in remarkably similar yet fascinatingly different ways from their eukaryotic counterparts and can enrich our understanding of cytoskeletal functioning as a whole.

  2. Quorum quenching enzymes.

    Science.gov (United States)

    Fetzner, Susanne

    2015-05-10

    Bacteria use cell-to-cell communication systems based on chemical signal molecules to coordinate their behavior within the population. These quorum sensing systems are potential targets for antivirulence therapies, because many bacterial pathogens control the expression of virulence factors via quorum sensing networks. Since biofilm maturation is also usually influenced by quorum sensing, quenching these systems may contribute to combat biofouling. One possibility to interfere with quorum sensing is signal inactivation by enzymatic degradation or modification. Such quorum quenching enzymes are wide-spread in the bacterial world and have also been found in eukaryotes. Lactonases and acylases that hydrolyze N-acyl homoserine lactone (AHL) signaling molecules have been investigated most intensively, however, different oxidoreductases active toward AHLs or 2-alkyl-4(1H)-quinolone signals as well as other signal-converting enzymes have been described. Several approaches have been assessed which aim at alleviating virulence, or biofilm formation, by reducing the signal concentration in the bacterial environment. These involve the application or stimulation of signal-degrading bacteria as biocontrol agents in the protection of crop plants against soft-rot disease, the use of signal-degrading bacteria as probiotics in aquaculture, and the immobilization or entrapment of quorum quenching enzymes or bacteria to control biofouling in membrane bioreactors. While most approaches to use quorum quenching as antivirulence strategy are still in the research phase, the growing number of organisms and enzymes known to interfere with quorum sensing opens up new perspectives for the development of innovative antibacterial strategies. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Guanine nucleotide binding to the Bateman domain mediates the allosteric inhibition of eukaryotic IMP dehydrogenases

    Science.gov (United States)

    Buey, Rubén M.; Ledesma-Amaro, Rodrigo; Velázquez-Campoy, Adrián; Balsera, Mónica; Chagoyen, Mónica; de Pereda, José M.; Revuelta, José L.

    2015-11-01

    Inosine-5'-monophosphate dehydrogenase (IMPDH) plays key roles in purine nucleotide metabolism and cell proliferation. Although IMPDH is a widely studied therapeutic target, there is limited information about its physiological regulation. Using Ashbya gossypii as a model, we describe the molecular mechanism and the structural basis for the allosteric regulation of IMPDH by guanine nucleotides. We report that GTP and GDP bind to the regulatory Bateman domain, inducing octamers with compromised catalytic activity. Our data suggest that eukaryotic and prokaryotic IMPDHs might have developed different regulatory mechanisms, with GTP/GDP inhibiting only eukaryotic IMPDHs. Interestingly, mutations associated with human retinopathies map into the guanine nucleotide-binding sites including a previously undescribed non-canonical site and disrupt allosteric inhibition. Together, our results shed light on the mechanisms of the allosteric regulation of enzymes mediated by Bateman domains and provide a molecular basis for certain retinopathies, opening the door to new therapeutic approaches.

  4. Update: Mechanisms underlying N6-methyladenosine modification of eukaryotic mRNA

    Science.gov (United States)

    Wang, Yang; Zhao, Jing Crystal

    2016-01-01

    Summary Eukaryotic messenger RNA (mRNA) undergoes chemical modification both at the 5′cap [1, 2] and internally [3–14]. Among internal modifications, m6A, by far the most abundant, is present in all eukaryotes examined, including mammals [3–6], flies [15], plants [16, 17] and yeast [18, 19]. m6A modification plays an essential role in diverse biological processes. Over the past few years, our knowledge relevant to establishment and function of this modification has grown rapidly. This review focuses on technologies that have facilitated m6A detection in mRNAs, identification of m6A methylation enzymes and binding proteins, and potential functions of the modification at the molecular level. Regarding m6A function at cellular or organismal levels or in disease, please refer to other recent reviews [20–23]. PMID:27793360

  5. Multiple Origins of Eukaryotic cox15 Suggest Horizontal Gene Transfer from Bacteria to Jakobid Mitochondrial DNA.

    Science.gov (United States)

    He, Ding; Fu, Cheng-Jie; Baldauf, Sandra L

    2016-01-01

    The most gene-rich and bacterial-like mitochondrial genomes known are those of Jakobida (Excavata). Of these, the most extreme example to date is the Andalucia godoyi mitochondrial DNA (mtDNA), including a cox15 gene encoding the respiratory enzyme heme A synthase (HAS), which is nuclear-encoded in nearly all other mitochondriate eukaryotes. Thus cox15 in eukaryotes appears to be a classic example of mitochondrion-to-nucleus (endosymbiotic) gene transfer, with A. godoyi uniquely retaining the ancestral state. However, our analyses reveal two highly distinct HAS types (encoded by cox15-1 and cox15-2 genes) and identify A. godoyi mitochondrial cox15-encoded HAS as type-1 and all other eukaryotic cox15-encoded HAS as type-2. Molecular phylogeny places the two HAS types in widely separated clades with eukaryotic type-2 HAS clustering with the bulk of α-proteobacteria (>670 sequences), whereas A. godoyi type-1 HAS clusters with an eclectic set of bacteria and archaea including two α-proteobacteria missing from the type-2 clade. This wide phylogenetic separation of the two HAS types is reinforced by unique features of their predicted protein structures. Meanwhile, RNA-sequencing and genomic analyses fail to detect either cox15 type in the nuclear genome of any jakobid including A. godoyi. This suggests that not only is cox15-1 a relatively recent acquisition unique to the Andalucia lineage but also the jakobid last common ancestor probably lacked both cox15 types. These results indicate that uptake of foreign genes by mtDNA is more taxonomically widespread than previously thought. They also caution against the assumption that all α-proteobacterial-like features of eukaryotes are ancient remnants of endosymbiosis. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. Growth control of the eukaryote cell: a systems biology study in yeast

    Directory of Open Access Journals (Sweden)

    Castrillo Juan I

    2007-04-01

    Full Text Available Abstract Background Cell growth underlies many key cellular and developmental processes, yet a limited number of studies have been carried out on cell-growth regulation. Comprehensive studies at the transcriptional, proteomic and metabolic levels under defined controlled conditions are currently lacking. Results Metabolic control analysis is being exploited in a systems biology study of the eukaryotic cell. Using chemostat culture, we have measured the impact of changes in flux (growth rate on the transcriptome, proteome, endometabolome and exometabolome of the yeast Saccharomyces cerevisiae. Each functional genomic level shows clear growth-rate-associated trends and discriminates between carbon-sufficient and carbon-limited conditions. Genes consistently and significantly upregulated with increasing growth rate are frequently essential and encode evolutionarily conserved proteins of known function that participate in many protein-protein interactions. In contrast, more unknown, and fewer essential, genes are downregulated with increasing growth rate; their protein products rarely interact with one another. A large proportion of yeast genes under positive growth-rate control share orthologs with other eukaryotes, including humans. Significantly, transcription of genes encoding components of the TOR complex (a major controller of eukaryotic cell growth is not subject to growth-rate regulation. Moreover, integrative studies reveal the extent and importance of post-transcriptional control, patterns of control of metabolic fluxes at the level of enzyme synthesis, and the relevance of specific enzymatic reactions in the control of metabolic fluxes during cell growth. Conclusion This work constitutes a first comprehensive systems biology study on growth-rate control in the eukaryotic cell. The results have direct implications for advanced studies on cell growth, in vivo regulation of metabolic fluxes for comprehensive metabolic engineering, and for

  7. From Agrobacterium to viral vectors: genome modification of plant cells by rare cutting restriction enzymes.

    Science.gov (United States)

    Marton, Ira; Honig, Arik; Omid, Ayelet; De Costa, Noam; Marhevka, Elena; Cohen, Barry; Zuker, Amir; Vainstein, Alexander

    2013-01-01

    Researchers and biotechnologists require methods to accurately modify the genome of higher eukaryotic cells. Such modifications include, but are not limited to, site-specific mutagenesis, site-specific insertion of foreign DNA, and replacement and deletion of native sequences. Accurate genome modifications in plant species have been rather limited, with only a handful of plant species and genes being modified through the use of early genome-editing techniques. The development of rare-cutting restriction enzymes as a tool for the induction of site-specific genomic double-strand breaks and their introduction as a reliable tool for genome modification in animals, animal cells and human cell lines have paved the way for the adaptation of rare-cutting restriction enzymes to genome editing in plant cells. Indeed, the number of plant species and genes which have been successfully edited using zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs) and engineered homing endonucleases is on the rise. In our review, we discuss the basics of rare-cutting restriction enzyme-mediated genome-editing technology with an emphasis on its application in plant species.

  8. The Genome of Naegleria gruberi Illuminates Early Eukaryotic Versatility

    Energy Technology Data Exchange (ETDEWEB)

    Fritz-Laylin, Lillian K.; Prochnik, Simon E.; Ginger, Michael L.; Dacks, Joel; Carpenter, Meredith L.; Field, Mark C.; Kuo, Alan; Paredez, Alex; Chapman, Jarrod; Pham, Jonathan; Shu, Shengqiang; Neupane, Rochak; Cipriano, Michael; Mancuso, Joel; Tu, Hank; Salamov, Asaf; Lindquist, Erika; Shapiro, Harris; Lucas, Susan; Grigoriev, Igor V.; Cande, W. Zacheus; Fulton, Chandler; Rokhsar, Daniel S.; Dawson, Scott C.

    2010-03-01

    Genome sequences of diverse free-living protists are essential for understanding eukaryotic evolution and molecular and cell biology. The free-living amoeboflagellate Naegleria gruberi belongs to a varied and ubiquitous protist clade (Heterolobosea) that diverged from other eukaryotic lineages over a billion years ago. Analysis of the 15,727 protein-coding genes encoded by Naegleria's 41 Mb nuclear genome indicates a capacity for both aerobic respiration and anaerobic metabolism with concomitant hydrogen production, with fundamental implications for the evolution of organelle metabolism. The Naegleria genome facilitates substantially broader phylogenomic comparisons of free-living eukaryotes than previously possible, allowing us to identify thousands of genes likely present in the pan-eukaryotic ancestor, with 40% likely eukaryotic inventions. Moreover, we construct a comprehensive catalog of amoeboid-motility genes. The Naegleria genome, analyzed in the context of other protists, reveals a remarkably complex ancestral eukaryote with a rich repertoire of cytoskeletal, sexual, signaling, and metabolic modules.

  9. Synthetic biology tools for bioprospecting of natural products in eukaryotes.

    Science.gov (United States)

    Unkles, Shiela E; Valiante, Vito; Mattern, Derek J; Brakhage, Axel A

    2014-04-24

    Filamentous fungi have the capacity to produce a battery of natural products of often unknown function, synthesized by complex metabolic pathways. Unfortunately, most of these pathways appear silent, many in intractable organisms, and their products consequently unidentified. One basic challenge is the difficulty of expressing a biosynthesis pathway for a complex natural product in a heterologous eukaryotic host. Here, we provide a proof-of concept solution to this challenge and describe how the entire penicillin biosynthesis pathway can be expressed in a heterologous host. The method takes advantage of a combination of improved yeast in vivo cloning technology, generation of polycistronic mRNA for the gene cluster under study, and an amenable and easily manipulated fungal host, i.e., Aspergillus nidulans. We achieve expression from a single promoter of the pathway genes to yield a large polycistronic mRNA by using viral 2A peptide sequences to direct successful cotranslational cleavage of pathway enzymes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Metatranscriptomics reveals the diversity of genes expressed by eukaryotes in forest soils.

    Directory of Open Access Journals (Sweden)

    Coralie Damon

    Full Text Available Eukaryotic organisms play essential roles in the biology and fertility of soils. For example the micro and mesofauna contribute to the fragmentation and homogenization of plant organic matter, while its hydrolysis is primarily performed by the fungi. To get a global picture of the activities carried out by soil eukaryotes we sequenced 2×10,000 cDNAs synthesized from polyadenylated mRNA directly extracted from soils sampled in beech (Fagus sylvatica and spruce (Picea abies forests. Taxonomic affiliation of both cDNAs and 18S rRNA sequences showed a dominance of sequences from fungi (up to 60% and metazoans while protists represented less than 12% of the 18S rRNA sequences. Sixty percent of cDNA sequences from beech forest soil and 52% from spruce forest soil had no homologs in the GenBank/EMBL/DDJB protein database. A Gene Ontology term was attributed to 39% and 31.5% of the spruce and beech soil sequences respectively. Altogether 2076 sequences were putative homologs to different enzyme classes participating to 129 KEGG pathways among which several were implicated in the utilisation of soil nutrients such as nitrogen (ammonium, amino acids, oligopeptides, sugars, phosphates and sulfate. Specific annotation of plant cell wall degrading enzymes identified enzymes active on major polymers (cellulose, hemicelluloses, pectin, lignin and glycoside hydrolases represented 0.5% (beech soil-0.8% (spruce soil of the cDNAs. Other sequences coding enzymes active on organic matter (extracellular proteases, lipases, a phytase, P450 monooxygenases were identified, thus underlining the biotechnological potential of eukaryotic metatranscriptomes. The phylogenetic affiliation of 12 full-length carbohydrate active enzymes showed that most of them were distantly related to sequences from known fungi. For example, a putative GH45 endocellulase was closely associated to molluscan sequences, while a GH7 cellobiohydrolase was closest to crustacean sequences, thus

  11. Bacterial proteins pinpoint a single eukaryotic root

    Czech Academy of Sciences Publication Activity Database

    Derelle, R.; Torruella, G.; Klimeš, V.; Brinkmann, H.; Kim, E.; Vlček, Čestmír; Lang, B.F.; Eliáš, M.

    2015-01-01

    Roč. 112, č. 7 (2015), E693-E699 ISSN 0027-8424 R&D Projects: GA ČR GA13-24983S Grant - others:GA MŠk(CZ) ED2.1.00/03.0100; Howard Hughes Medical Institute International Early Career Scientist Program(US) 55007424; Spanish Ministry of Economy and Competitiveness, European Molecular Biology Organization Young Investigator Program(ES) BFU2012-31329; Spanish Ministry of Economy and Competitiveness, "Centro de Excelencia Severo Ochoa" - European Regional Development Fund(ES) Sev-2012-0208, BES-2013-064004 Institutional support: RVO:68378050 Keywords : eukaryote phylogeny * phylogenomics * Opimoda * Diphoda * LECA Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 9.423, year: 2015

  12. Posttranscriptional mechanisms in controlling eukaryotic circadian rhythms.

    Science.gov (United States)

    Zhang, Lin; Weng, Wenya; Guo, Jinhu

    2011-05-20

    The circadian clock is essential in almost all living organisms to synchronise biochemical, metabolic, physiological and behavioural cycles to daily changing environmental factors. In a highly conserved fashion, the circadian clock is primarily controlled by multiple positive and negative molecular circuitries that control gene expression. More recently, research in Neurospora and other eukaryotes has uncovered the involvement of additional regulatory components that operate at the posttranslational level to fine tune the circadian system. Though it remains poorly understood, a growing body of evidence has shown that posttranscriptional regulation controls the expression of both circadian oscillator and output gene transcripts at a number of different steps. This regulation is crucial for driving and maintaining robust circadian rhythms. Here we review recent advances in circadian rhythm research at the RNA level. Copyright © 2011 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  13. DNA Mismatch Repair in Eukaryotes and Bacteria

    Directory of Open Access Journals (Sweden)

    Kenji Fukui

    2010-01-01

    Full Text Available DNA mismatch repair (MMR corrects mismatched base pairs mainly caused by DNA replication errors. The fundamental mechanisms and proteins involved in the early reactions of MMR are highly conserved in almost all organisms ranging from bacteria to human. The significance of this repair system is also indicated by the fact that defects in MMR cause human hereditary nonpolyposis colon cancers as well as sporadic tumors. To date, 2 types of MMRs are known: the human type and Escherichia coli type. The basic features of the former system are expected to be universal among the vast majority of organisms including most bacteria. Here, I review the molecular mechanisms of eukaryotic and bacterial MMR, emphasizing on the similarities between them.

  14. Arabinogalactan proteins have deep roots in eukaryotes

    DEFF Research Database (Denmark)

    Hervé, Cécile; Siméon, Amandine; Jam, Murielle

    2016-01-01

    Arabinogalactan proteins (AGPs) are highly glycosylated, hydroxyproline-rich proteins found at the cell surface of plants, where they play key roles in developmental processes. Brown algae are marine, multicellular, photosynthetic eukaryotes. They belong to the phylum Stramenopiles, which...... is unrelated to land plants and green algae (Chloroplastida). Brown algae share common evolutionary features with other multicellular organisms, including a carbohydrate-rich cell wall. They differ markedly from plants in their cell wall composition, and AGPs have not been reported in brown algae. Here we...... glycan epitopes in a range of brown algal cell wall extracts. We demonstrated that these chimeric AGP-like core proteins are developmentally regulated in embryos of the order Fucales and showed that AGP loss of function seriously impairs the course of early embryogenesis. Our findings shine a new light...

  15. Horizontal gene transfer in eukaryotic plant pathogens.

    Science.gov (United States)

    Soanes, Darren; Richards, Thomas A

    2014-01-01

    Gene transfer has been identified as a prevalent and pervasive phenomenon and an important source of genomic innovation in bacteria. The role of gene transfer in microbial eukaryotes seems to be of a reduced magnitude but in some cases can drive important evolutionary innovations, such as new functions that underpin the colonization of different niches. The aim of this review is to summarize published cases that support the hypothesis that horizontal gene transfer (HGT) has played a role in the evolution of phytopathogenic traits in fungi and oomycetes. Our survey of the literature identifies 46 proposed cases of transfer of genes that have a putative or experimentally demonstrable phytopathogenic function. When considering the life-cycle steps through which a pathogen must progress, the majority of the HGTs identified are associated with invading, degrading, and manipulating the host. Taken together, these data suggest HGT has played a role in shaping how fungi and oomycetes colonize plant hosts.

  16. How eukaryotic filamentous pathogens evade plant recognition.

    Science.gov (United States)

    Oliveira-Garcia, Ely; Valent, Barbara

    2015-08-01

    Plant pathogenic fungi and oomycetes employ sophisticated mechanisms for evading host recognition. After host penetration, many fungi and oomycetes establish a biotrophic interaction. It is assumed that different strategies employed by these pathogens to avoid triggering host defence responses, including establishment of biotrophic interfacial layers between the pathogen and host, masking of invading hyphae and active suppression of host defence mechanisms, are essential for a biotrophic parasitic lifestyle. During the infection process, filamentous plant pathogens secrete various effectors, which are hypothesized to be involved in facilitating effective host infection. Live-cell imaging of fungi and oomycetes secreting fluorescently labeled effector proteins as well as functional characterization of the components of biotrophic interfaces have led to the recent progress in understanding how eukaryotic filamentous pathogens evade plant recognition. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Soil eukaryotic functional diversity, a metatranscriptomic approach.

    Science.gov (United States)

    Bailly, Julie; Fraissinet-Tachet, Laurence; Verner, Marie-Christine; Debaud, Jean-Claude; Lemaire, Marc; Wésolowski-Louvel, Micheline; Marmeisse, Roland

    2007-11-01

    To appreciate the functional diversity of communities of soil eukaryotic micro-organisms we evaluated an experimental approach based on the construction and screening of a cDNA library using polyadenylated mRNA extracted from a forest soil. Such a library contains genes that are expressed by each of the different organisms forming the community and represents its metatranscriptome. The diversity of the organisms that contributed to this library was evaluated by sequencing a portion of the 18S rDNA gene amplified from either soil DNA or reverse-transcribed RNA. More than 70% of the sequences were from fungi and unicellular eukaryotes (protists) while the other most represented group was the metazoa. Calculation of richness estimators suggested that more than 180 species could be present in the soil samples studied. Sequencing of 119 cDNA identified genes with no homologues in databases (32%) and genes coding proteins involved in different biochemical and cellular processes. Surprisingly, the taxonomic distribution of the cDNA and of the 18S rDNA genes did not coincide, with a marked under-representation of the protists among the cDNA. Specific genes from such an environmental cDNA library could be isolated by expression in a heterologous microbial host, Saccharomyces cerevisiae. This is illustrated by the functional complementation of a histidine auxotrophic yeast mutant by two cDNA originating possibly from an ascomycete and a basidiomycete fungal species. Study of the metatranscriptome has the potential to uncover adaptations of whole microbial communities to local environmental conditions. It also gives access to an abundant source of genes of biotechnological interest.

  18. Eukaryotic protein production in designed storage organelles.

    Science.gov (United States)

    Torrent, Margarita; Llompart, Blanca; Lasserre-Ramassamy, Sabine; Llop-Tous, Immaculada; Bastida, Miriam; Marzabal, Pau; Westerholm-Parvinen, Ann; Saloheimo, Markku; Heifetz, Peter B; Ludevid, M Dolors

    2009-01-28

    Protein bodies (PBs) are natural endoplasmic reticulum (ER) or vacuole plant-derived organelles that stably accumulate large amounts of storage proteins in seeds. The proline-rich N-terminal domain derived from the maize storage protein gamma zein (Zera) is sufficient to induce PBs in non-seed tissues of Arabidopsis and tobacco. This Zera property opens up new routes for high-level accumulation of recombinant proteins by fusion of Zera with proteins of interest. In this work we extend the advantageous properties of plant seed PBs to recombinant protein production in useful non-plant eukaryotic hosts including cultured fungal, mammalian and insect cells. Various Zera fusions with fluorescent and therapeutic proteins accumulate in induced PB-like organelles in all eukaryotic systems tested: tobacco leaves, Trichoderma reesei, several mammalian cultured cells and Sf9 insect cells. This accumulation in membranous organelles insulates both recombinant protein and host from undesirable activities of either. Recombinant protein encapsulation in these PBs facilitates stable accumulation of proteins in a protected sub-cellular compartment which results in an enhancement of protein production without affecting the viability and development of stably transformed hosts. The induced PBs also retain the high-density properties of native seed PBs which facilitate the recovery and purification of the recombinant proteins they contain. The Zera sequence provides an efficient and universal means to produce recombinant proteins by accumulation in ER-derived organelles. The remarkable cross-kingdom conservation of PB formation and their biophysical properties should have broad application in the manufacture of non-secreted recombinant proteins and suggests the existence of universal ER pathways for protein insulation.

  19. Eukaryotic protein production in designed storage organelles

    Directory of Open Access Journals (Sweden)

    Saloheimo Markku

    2009-01-01

    Full Text Available Abstract Background Protein bodies (PBs are natural endoplasmic reticulum (ER or vacuole plant-derived organelles that stably accumulate large amounts of storage proteins in seeds. The proline-rich N-terminal domain derived from the maize storage protein γ zein (Zera is sufficient to induce PBs in non-seed tissues of Arabidopsis and tobacco. This Zera property opens up new routes for high-level accumulation of recombinant proteins by fusion of Zera with proteins of interest. In this work we extend the advantageous properties of plant seed PBs to recombinant protein production in useful non-plant eukaryotic hosts including cultured fungal, mammalian and insect cells. Results Various Zera fusions with fluorescent and therapeutic proteins accumulate in induced PB-like organelles in all eukaryotic systems tested: tobacco leaves, Trichoderma reesei, several mammalian cultured cells and Sf9 insect cells. This accumulation in membranous organelles insulates both recombinant protein and host from undesirable activities of either. Recombinant protein encapsulation in these PBs facilitates stable accumulation of proteins in a protected sub-cellular compartment which results in an enhancement of protein production without affecting the viability and development of stably transformed hosts. The induced PBs also retain the high-density properties of native seed PBs which facilitate the recovery and purification of the recombinant proteins they contain. Conclusion The Zera sequence provides an efficient and universal means to produce recombinant proteins by accumulation in ER-derived organelles. The remarkable cross-kingdom conservation of PB formation and their biophysical properties should have broad application in the manufacture of non-secreted recombinant proteins and suggests the existence of universal ER pathways for protein insulation.

  20. An Evolutionary Network of Genes Present in the Eukaryote Common Ancestor Polls Genomes on Eukaryotic and Mitochondrial Origin

    Science.gov (United States)

    Thiergart, Thorsten; Landan, Giddy; Schenk, Marc; Dagan, Tal; Martin, William F.

    2012-01-01

    To test the predictions of competing and mutually exclusive hypotheses for the origin of eukaryotes, we identified from a sample of 27 sequenced eukaryotic and 994 sequenced prokaryotic genomes 571 genes that were present in the eukaryote common ancestor and that have homologues among eubacterial and archaebacterial genomes. Maximum-likelihood trees identified the prokaryotic genomes that most frequently contained genes branching as the sister to the eukaryotic nuclear homologues. Among the archaebacteria, euryarchaeote genomes most frequently harbored the sister to the eukaryotic nuclear gene, whereas among eubacteria, the α-proteobacteria were most frequently represented within the sister group. Only 3 genes out of 571 gave a 3-domain tree. Homologues from α-proteobacterial genomes that branched as the sister to nuclear genes were found more frequently in genomes of facultatively anaerobic members of the rhiozobiales and rhodospirilliales than in obligate intracellular ricketttsial parasites. Following α-proteobacteria, the most frequent eubacterial sister lineages were γ-proteobacteria, δ-proteobacteria, and firmicutes, which were also the prokaryote genomes least frequently found as monophyletic groups in our trees. Although all 22 higher prokaryotic taxa sampled (crenarchaeotes, γ-proteobacteria, spirochaetes, chlamydias, etc.) harbor genes that branch as the sister to homologues present in the eukaryotic common ancestor, that is not evidence of 22 different prokaryotic cells participating at eukaryote origins because prokaryotic “lineages” have laterally acquired genes for more than 1.5 billion years since eukaryote origins. The data underscore the archaebacterial (host) nature of the eukaryotic informational genes and the eubacterial (mitochondrial) nature of eukaryotic energy metabolism. The network linking genes of the eukaryote ancestor to contemporary homologues distributed across prokaryotic genomes elucidates eukaryote gene origins in a

  1. Nitrogen fixation in eukaryotes – New models for symbiosis

    Directory of Open Access Journals (Sweden)

    Lockhart Peter

    2007-04-01

    Full Text Available Abstract Background Nitrogen, a component of many bio-molecules, is essential for growth and development of all organisms. Most nitrogen exists in the atmosphere, and utilisation of this source is important as a means of avoiding nitrogen starvation. However, the ability to fix atmospheric nitrogen via the nitrogenase enzyme complex is restricted to some bacteria. Eukaryotic organisms are only able to obtain fixed nitrogen through their symbiotic interactions with nitrogen-fixing prokaryotes. These symbioses involve a variety of host organisms, including animals, plants, fungi and protists. Results We have compared the morphological, physiological and molecular characteristics of nitrogen fixing symbiotic associations of bacteria and their diverse hosts. Special features of the interaction, e.g. vertical transmission of symbionts, grade of dependency of partners and physiological modifications have been considered in terms of extent of co-evolution and adaptation. Our findings are that, despite many adaptations enabling a beneficial partnership, most symbioses for molecular nitrogen fixation involve facultative interactions. However, some interactions, among them endosymbioses between cyanobacteria and diatoms, show characteristics that reveal a more obligate status of co-evolution. Conclusion Our review emphasises that molecular nitrogen fixation, a driving force for interactions and co-evolution of different species, is a widespread phenomenon involving many different organisms and ecosystems. The diverse grades of symbioses, ranging from loose associations to highly specific intracellular interactions, might themselves reflect the range of potential evolutionary fates for symbiotic partnerships. These include the extreme evolutionary modifications and adaptations that have accompanied the formation of organelles in eukaryotic cells: plastids and mitochondria. However, age and extensive adaptation of plastids and mitochondria complicate the

  2. The COG database: an updated version includes eukaryotes

    Directory of Open Access Journals (Sweden)

    Sverdlov Alexander V

    2003-09-01

    Full Text Available Abstract Background The availability of multiple, essentially complete genome sequences of prokaryotes and eukaryotes spurred both the demand and the opportunity for the construction of an evolutionary classification of genes from these genomes. Such a classification system based on orthologous relationships between genes appears to be a natural framework for comparative genomics and should facilitate both functional annotation of genomes and large-scale evolutionary studies. Results We describe here a major update of the previously developed system for delineation of Clusters of Orthologous Groups of proteins (COGs from the sequenced genomes of prokaryotes and unicellular eukaryotes and the construction of clusters of predicted orthologs for 7 eukaryotic genomes, which we named KOGs after eukaryotic orthologous groups. The COG collection currently consists of 138,458 proteins, which form 4873 COGs and comprise 75% of the 185,505 (predicted proteins encoded in 66 genomes of unicellular organisms. The eukaryotic orthologous groups (KOGs include proteins from 7 eukaryotic genomes: three animals (the nematode Caenorhabditis elegans, the fruit fly Drosophila melanogaster and Homo sapiens, one plant, Arabidopsis thaliana, two fungi (Saccharomyces cerevisiae and Schizosaccharomyces pombe, and the intracellular microsporidian parasite Encephalitozoon cuniculi. The current KOG set consists of 4852 clusters of orthologs, which include 59,838 proteins, or ~54% of the analyzed eukaryotic 110,655 gene products. Compared to the coverage of the prokaryotic genomes with COGs, a considerably smaller fraction of eukaryotic genes could be included into the KOGs; addition of new eukaryotic genomes is expected to result in substantial increase in the coverage of eukaryotic genomes with KOGs. Examination of the phyletic patterns of KOGs reveals a conserved core represented in all analyzed species and consisting of ~20% of the KOG set. This conserved portion of the

  3. Evolution of replicative DNA polymerases in archaea and their contributions to the eukaryotic replication machinery

    Directory of Open Access Journals (Sweden)

    Kira S Makarova

    2014-07-01

    Full Text Available The elaborate eukaryotic DNA replication machinery evolved from the archaeal ancestors that themselves show considerable complexity. Here we discuss the comparative genomic and phylogenetic analysis of the core replication enzymes, the DNA polymerases, in archaea and their relationships with the eukaryotic polymerases. In archaea, there are three groups of family B DNA polymerases, historically known as PolB1, PolB2 and PolB3. All three groups appear to descend from the last common ancestors of the extant archaea but their subsequent evolutionary trajectories seem to have been widely different. Although PolB3 is present in all archaea, with the exception of Thaumarchaeota, and appears to be directly involved in lagging strand replication, the evolution of this gene does not follow the archaeal phylogeny, conceivably due to multiple horizontal transfers and/or dramatic differences in evolutionary rates. In contrast, PolB1 is missing in Euryarchaeota but otherwise seems to have evolved vertically. The third archaeal group of family B polymerases, PolB2, includes primarily proteins in which the catalytic centers of the polymerase and exonuclease domains are disrupted and accordingly the enzymes appear to be inactivated. The members of the PolB2 group are scattered across archaea and might be involved in repair or regulation of replication along with inactivated members of the RadA family ATPases and an additional, uncharacterized protein that are encoded within the same predicted operon. In addition to the family B polymerases, all archaea, with the exception of the Crenarchaeota, encode enzymes of a distinct family D the origin of which is unclear. We examine multiple considerations that appear compatible with the possibility that family D polymerases are highly derived homologs of family B. The eukaryotic DNA polymerases show a highly complex relationship with their archaeal ancestors including contributions of proteins and domains from both the

  4. Structures to complement the archaeo-eukaryotic primases catalytic cycle description: What's next?

    Directory of Open Access Journals (Sweden)

    Julien Boudet

    2015-01-01

    Primase activity has been studied in the last decades but the detailed molecular steps explaining some unique features remain unclear. High-resolution structures of free and bound primases domains have brought significant insights in the understanding of the primase reaction cycle. Here, we give a short review of the structural work conducted in the field of archaeo-eukaryotic primases and we underline the missing “pictures” of the active forms of the enzyme which are of major interest. We organized our analysis with respect to the progression through the catalytic pathway.

  5. Data on Rad51 amino acid sequences from higher and lower eukaryotic model organisms and parasites.

    Science.gov (United States)

    Kelso, Andrew A; Goodson, Steven D; Temesvari, Lesly A; Sehorn, Michael G

    2017-02-01

    This paper contains data related to the research article titled "Characterization of the recombination activities of the Entamoeba histolytica Rad51 recombinase" (Kelso et al., in press) [1]. The known and putative amino acid sequence of Rad51, the central enzyme of homologous recombination, from nineteen different higher and lower eukaryotic organisms was analyzed. Here, we show amino acid conservation using a multiple sequence alignment, overall sequence identities using a percent identity matrix, and the evolutionary relationship between organisms using a neighbor-joining tree.

  6. Data on Rad51 amino acid sequences from higher and lower eukaryotic model organisms and parasites

    Directory of Open Access Journals (Sweden)

    Andrew A. Kelso

    2017-02-01

    Full Text Available This paper contains data related to the research article titled “Characterization of the recombination activities of the Entamoeba histolytica Rad51 recombinase” (Kelso et al., in press [1]. The known and putative amino acid sequence of Rad51, the central enzyme of homologous recombination, from nineteen different higher and lower eukaryotic organisms was analyzed. Here, we show amino acid conservation using a multiple sequence alignment, overall sequence identities using a percent identity matrix, and the evolutionary relationship between organisms using a neighbor-joining tree.

  7. Molecular paleontology and complexity in the last eukaryotic common ancestor.

    Science.gov (United States)

    Koumandou, V Lila; Wickstead, Bill; Ginger, Michael L; van der Giezen, Mark; Dacks, Joel B; Field, Mark C

    2013-01-01

    Eukaryogenesis, the origin of the eukaryotic cell, represents one of the fundamental evolutionary transitions in the history of life on earth. This event, which is estimated to have occurred over one billion years ago, remains rather poorly understood. While some well-validated examples of fossil microbial eukaryotes for this time frame have been described, these can provide only basic morphology and the molecular machinery present in these organisms has remained unknown. Complete and partial genomic information has begun to fill this gap, and is being used to trace proteins and cellular traits to their roots and to provide unprecedented levels of resolution of structures, metabolic pathways and capabilities of organisms at these earliest points within the eukaryotic lineage. This is essentially allowing a molecular paleontology. What has emerged from these studies is spectacular cellular complexity prior to expansion of the eukaryotic lineages. Multiple reconstructed cellular systems indicate a very sophisticated biology, which by implication arose following the initial eukaryogenesis event but prior to eukaryotic radiation and provides a challenge in terms of explaining how these early eukaryotes arose and in understanding how they lived. Here, we provide brief overviews of several cellular systems and the major emerging conclusions, together with predictions for subsequent directions in evolution leading to extant taxa. We also consider what these reconstructions suggest about the life styles and capabilities of these earliest eukaryotes and the period of evolution between the radiation of eukaryotes and the eukaryogenesis event itself.

  8. Causes and consequences of eukaryotization through mutualistic endosymbiosis and compartmentalization

    NARCIS (Netherlands)

    Hengeveld, R.; Fedonkin, M.A.

    2004-01-01

    This paper reviews and extends ideas of eukaryotization by endosymbiosis. These ideas are put within an historical context of processes that may have led up to eukaryotization and those that seem to have resulted from this process. Our starting point for considering the emergence and development of

  9. Morphological and ecological complexity in early eukaryotic ecosystems.

    Science.gov (United States)

    Javaux, E J; Knoll, A H; Walter, M R

    2001-07-05

    Molecular phylogeny and biogeochemistry indicate that eukaryotes differentiated early in Earth history. Sequence comparisons of small-subunit ribosomal RNA genes suggest a deep evolutionary divergence of Eukarya and Archaea; C27-C29 steranes (derived from sterols synthesized by eukaryotes) and strong depletion of 13C (a biogeochemical signature of methanogenic Archaea) in 2,700 Myr old kerogens independently place a minimum age on this split. Steranes, large spheroidal microfossils, and rare macrofossils of possible eukaryotic origin occur in Palaeoproterozoic rocks. Until now, however, evidence for morphological and taxonomic diversification within the domain has generally been restricted to very late Mesoproterozoic and Neoproterozoic successions. Here we show that the cytoskeletal and ecological prerequisites for eukaryotic diversification were already established in eukaryotic microorganisms fossilized nearly 1,500 Myr ago in shales of the early Mesoproterozoic Roper Group in northern Australia.

  10. Redox characteristics of the eukaryotic cytosol

    DEFF Research Database (Denmark)

    López-Mirabal, H Reynaldo; Winther, Jakob R

    2007-01-01

    organism, Saccharomyces cerevisiae, where the combination of genetic and biochemical approaches has brought us furthest in understanding the mechanisms underlying cellular redox regulation. It has been shown in yeast that, in addition to the enzyme glutathione reductase, other mechanisms may exist...

  11. Arylamine n-acetyltransferases in eukaryotic microorganisms

    Science.gov (United States)

    Microorganisms can survive highly toxic environments through numerous xenobiotic metabolizing enzymes, including arylamine N-acetyltransferases (NATs). NAT genes are present in bacteria, archaea, protists and fungi. In lower taxa of fungi, NAT genes are found in chytridiomycetes. In Dikarya, NAT gen...

  12. Deinococcus radiodurans pprI expression enhances the radioresistance of eukaryotes.

    Science.gov (United States)

    Wen, Ling; Yue, Ling; Shi, Yi; Ren, Lili; Chen, Tingting; Li, Na; Zhang, Shuyu; Yang, Wei; Yang, Zhanshan

    2016-03-29

    PprI accelerates radiation-induced DNA damage repair via regulating the expression of DNA repair genes and enhances antioxidative enzyme activity in Deinococcus radiodurans after radiation. The main aim of our study was to determine whether the expression of pprI gene could fulfil its DNA repair function in eukaryotes and enhance the radioresistance of eukaryotic organism or not. In this study, we constructed pEGFP-c1-pprI eukaryotic expression vector and established a human lung epithelial cell line BEAS-2B with stable integration of pprI gene. We found that pprIexpression enhanced radioresistance of BEAS-2B cells, decreased γ-H2AX foci formation and apoptosis in irradiated BEAS-2B cells and alleviated radiation induced G2/M arrest of BEAS-2B cells. Moreover, we transferred pEGFP-c1-pprI vector into muscle of BALB/c mice by in vivo electroporation and studied the protective effect of prokaryotic pprI gene in irradiated mice. We found that pprI expression alleviated acute radiation induced hematopoietic system, lung, small intestine and testis damage and increased survival rate of irradiated mice via regulating Rad51 expression in different organs. These findings suggest that prokaryotic pprI gene expression in mammalian cells could enhance radioresistance in vitro and in vivo.

  13. Energetics and genetics across the prokaryote-eukaryote divide

    Science.gov (United States)

    2011-01-01

    Background All complex life on Earth is eukaryotic. All eukaryotic cells share a common ancestor that arose just once in four billion years of evolution. Prokaryotes show no tendency to evolve greater morphological complexity, despite their metabolic virtuosity. Here I argue that the eukaryotic cell originated in a unique prokaryotic endosymbiosis, a singular event that transformed the selection pressures acting on both host and endosymbiont. Results The reductive evolution and specialisation of endosymbionts to mitochondria resulted in an extreme genomic asymmetry, in which the residual mitochondrial genomes enabled the expansion of bioenergetic membranes over several orders of magnitude, overcoming the energetic constraints on prokaryotic genome size, and permitting the host cell genome to expand (in principle) over 200,000-fold. This energetic transformation was permissive, not prescriptive; I suggest that the actual increase in early eukaryotic genome size was driven by a heavy early bombardment of genes and introns from the endosymbiont to the host cell, producing a high mutation rate. Unlike prokaryotes, with lower mutation rates and heavy selection pressure to lose genes, early eukaryotes without genome-size limitations could mask mutations by cell fusion and genome duplication, as in allopolyploidy, giving rise to a proto-sexual cell cycle. The side effect was that a large number of shared eukaryotic basal traits accumulated in the same population, a sexual eukaryotic common ancestor, radically different to any known prokaryote. Conclusions The combination of massive bioenergetic expansion, release from genome-size constraints, and high mutation rate favoured a protosexual cell cycle and the accumulation of eukaryotic traits. These factors explain the unique origin of eukaryotes, the absence of true evolutionary intermediates, and the evolution of sex in eukaryotes but not prokaryotes. Reviewers This article was reviewed by: Eugene Koonin, William Martin

  14. Genetically modified bacteriophages in applied microbiology.

    Science.gov (United States)

    Bárdy, P; Pantůček, R; Benešík, M; Doškař, J

    2016-09-01

    Bacteriophages represent a simple viral model of basic research with many possibilities for practical application. Due to their ability to infect and kill bacteria, their potential in the treatment of bacterial infection has been examined since their discovery. With advances in molecular biology and gene engineering, the phage application spectrum has been expanded to various medical and biotechnological fields. The construction of bacteriophages with an extended host range or longer viability in the mammalian bloodstream enhances their potential as an alternative to conventional antibiotic treatment. Insertion of active depolymerase genes to their genomes can enforce the biofilm disposal. They can also be engineered to transfer various compounds to the eukaryotic organisms and the bacterial culture, applicable for the vaccine, drug or gene delivery. Phage recombinant lytic enzymes can be applied as enzybiotics in medicine as well as in biotechnology for pathogen detection or programmed cell death in bacterial expression strains. Besides, modified bacteriophages with high specificity can be applied as bioprobes in detection tools to estimate the presence of pathogens in food industry, or utilized in the control of food-borne pathogens as part of the constructed phage-based biosorbents. © 2016 The Society for Applied Microbiology.

  15. Origins and evolution of viruses of eukaryotes: The ultimate modularity

    Energy Technology Data Exchange (ETDEWEB)

    Koonin, Eugene V., E-mail: koonin@ncbi.nlm.nih.gov [National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894 (United States); Dolja, Valerian V., E-mail: doljav@science.oregonstate.edu [Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331 (United States); Krupovic, Mart, E-mail: krupovic@pasteur.fr [Institut Pasteur, Unité Biologie Moléculaire du Gène chez les Extrêmophiles, Department of Microbiology, Paris 75015 (France)

    2015-05-15

    Viruses and other selfish genetic elements are dominant entities in the biosphere, with respect to both physical abundance and genetic diversity. Various selfish elements parasitize on all cellular life forms. The relative abundances of different classes of viruses are dramatically different between prokaryotes and eukaryotes. In prokaryotes, the great majority of viruses possess double-stranded (ds) DNA genomes, with a substantial minority of single-stranded (ss) DNA viruses and only limited presence of RNA viruses. In contrast, in eukaryotes, RNA viruses account for the majority of the virome diversity although ssDNA and dsDNA viruses are common as well. Phylogenomic analysis yields tangible clues for the origins of major classes of eukaryotic viruses and in particular their likely roots in prokaryotes. Specifically, the ancestral genome of positive-strand RNA viruses of eukaryotes might have been assembled de novo from genes derived from prokaryotic retroelements and bacteria although a primordial origin of this class of viruses cannot be ruled out. Different groups of double-stranded RNA viruses derive either from dsRNA bacteriophages or from positive-strand RNA viruses. The eukaryotic ssDNA viruses apparently evolved via a fusion of genes from prokaryotic rolling circle-replicating plasmids and positive-strand RNA viruses. Different families of eukaryotic dsDNA viruses appear to have originated from specific groups of bacteriophages on at least two independent occasions. Polintons, the largest known eukaryotic transposons, predicted to also form virus particles, most likely, were the evolutionary intermediates between bacterial tectiviruses and several groups of eukaryotic dsDNA viruses including the proposed order “Megavirales” that unites diverse families of large and giant viruses. Strikingly, evolution of all classes of eukaryotic viruses appears to have involved fusion between structural and replicative gene modules derived from different sources

  16. [Construction of eukaryotic expression plasmid for mouse myogenic regulatory factor MyoD gene].

    Science.gov (United States)

    Qin, R F; Gu, X M; Chen, J W

    2001-09-01

    To construct eukaryotic expression plasmid of mouse myogenic regulatory factor MyoD gene for further study on MyoD gene function in molecular regulatory mechanism in skeletal muscle repair. The plasmids PEMMBC2 beta 5 containing full cDNA length of MyoD inserted in EcoRI restriction site, were first propagated in Escherichia coli DH5a, then extracted and purified with the Wizard Plus Minipreps DNA Purification System (Promega, USA). The coding sequence of MyoD in PEMMBC2 beta 5 was confirmed by agarose gel electrophoresis and DNA sequence analysis. After plasmids PEMMBC2 beta 5 and plasmids pcDNA3-neo were prepared by digestion with EcoRI, the MyoD cDNA fragment was inserted into EcoRI site in pcDNA3-neo eukaryotic expression vector, and pcDNA3/MyoD was formed. The pcDNA3/MyoD, digested with restriction enzymes, was found to contain the MyoD cDNA sequence by agarose gel electrophoresis analysis. The extracted and purified PEMMBC2 beta 5 contained the correct nucleotide sequence for the full length of MyoD cDNA fragment. The MyoD cDNA fragment had been inserted into the eukaryotic expression plasmid pcDNA3-neo, which formed the pcDNA3/MyoD. The pcDNA3/MyoD, a eukaryotic expression plasmid, for MyoD is constructed successfully.

  17. Enzyme immunoassay

    DEFF Research Database (Denmark)

    Feldt-Rasmussen, B; Dinesen, B; Deckert, M

    1985-01-01

    An enzyme linked immunoadsorbent assay for urinary albumin using commercially available reagents is described. The assay range is 2.5-120 micrograms/l. When samples are analysed in two standard dilutions, the assayable albumin concentration range is 2.5-240 mg/l, covering the clinical range from...

  18. Food Enzymes

    Science.gov (United States)

    McBroom, Rachel; Oliver-Hoyo, Maria T.

    2007-01-01

    Many students view biology and chemistry as two unrelated, separate sciences; how these courses are generally taught in high schools may do little to change that impression. The study of enzymes provide a great opportunity for both biology and chemistry teachers to share with students the interdisciplinary nature of science. This article describes…

  19. Heterologous Expression of Toxins from Bacterial Toxin-Antitoxin Systems in Eukaryotic Cells: Strategies and Applications

    Directory of Open Access Journals (Sweden)

    Chew Chieng Yeo

    2016-02-01

    Full Text Available Toxin-antitoxin (TA systems are found in nearly all prokaryotic genomes and usually consist of a pair of co-transcribed genes, one of which encodes a stable toxin and the other, its cognate labile antitoxin. Certain environmental and physiological cues trigger the degradation of the antitoxin, causing activation of the toxin, leading either to the death or stasis of the host cell. TA systems have a variety of functions in the bacterial cell, including acting as mediators of programmed cell death, the induction of a dormant state known as persistence and the stable maintenance of plasmids and other mobile genetic elements. Some bacterial TA systems are functional when expressed in eukaryotic cells and this has led to several innovative applications, which are the subject of this review. Here, we look at how bacterial TA systems have been utilized for the genetic manipulation of yeasts and other eukaryotes, for the containment of genetically modified organisms, and for the engineering of high expression eukaryotic cell lines. We also examine how TA systems have been adopted as an important tool in developmental biology research for the ablation of specific cells and the potential for utility of TA systems in antiviral and anticancer gene therapies.

  20. Heterologous Expression of Toxins from Bacterial Toxin-Antitoxin Systems in Eukaryotic Cells: Strategies and Applications.

    Science.gov (United States)

    Yeo, Chew Chieng; Abu Bakar, Fauziah; Chan, Wai Ting; Espinosa, Manuel; Harikrishna, Jennifer Ann

    2016-02-19

    Toxin-antitoxin (TA) systems are found in nearly all prokaryotic genomes and usually consist of a pair of co-transcribed genes, one of which encodes a stable toxin and the other, its cognate labile antitoxin. Certain environmental and physiological cues trigger the degradation of the antitoxin, causing activation of the toxin, leading either to the death or stasis of the host cell. TA systems have a variety of functions in the bacterial cell, including acting as mediators of programmed cell death, the induction of a dormant state known as persistence and the stable maintenance of plasmids and other mobile genetic elements. Some bacterial TA systems are functional when expressed in eukaryotic cells and this has led to several innovative applications, which are the subject of this review. Here, we look at how bacterial TA systems have been utilized for the genetic manipulation of yeasts and other eukaryotes, for the containment of genetically modified organisms, and for the engineering of high expression eukaryotic cell lines. We also examine how TA systems have been adopted as an important tool in developmental biology research for the ablation of specific cells and the potential for utility of TA systems in antiviral and anticancer gene therapies.

  1. Solubilization of the plastidial lysophosphatidylcholine acyltransferase from Allium porrum leaves: towards plants devoid of eukaryotic plastid lipids?

    Science.gov (United States)

    Akermoun, M; Testet, E; Cassagne, C; Bessoule, J J

    2000-12-01

    To analyse the involvement of the plastidial lysophosphatidylcholine (lyso-PC) acyltransferase in the import of the extraplastidial lipid precursors required for eukaryotic plastid lipid synthesis, we plan to obtain transgenic plants. Since no sequence of lyso-PC acyltransferase is known, the purification of this enzyme has been undertaken to establish its sequence. First we determined the conditions allowing the solubilization of this membrane-bound enzyme. It is shown that by using CHAPS as a detergent, a lyso-PC acyltransferase activity is associated with the solubilized proteins.

  2. [Construction of Trim6 eukaryotic expression vector and its expression in HEK293 cells].

    Science.gov (United States)

    Sun, Da-Kang; An, Xin-Ye; Hu, Feng-Ai; Li, Cai-Yu; Zheng, Jing

    2011-09-01

    To construct the recombinant eukaryotic expression vector pcDNA3.1 (+)-Trim6, and observe its expression in HEK293T cells in vitro. The total RNA was isolated from HeLa cells. After amplification with reverse transcription polymerase chain reaction (RT-PCR), the target sequences were cloned into the pcDNA3.1(+). The recombinant vector was confirmed by restriction enzyme digestion, PCR and sequencing. Then it was transfected into HEK293T cells.After 24 hours, the Trim6 expression was detected by Western blot. The results of the restriction enzyme digestion, PCR and sequencing confirmed the vector was constructed successfully, and it can express Trim6 protein in HEK293T cells. The vector is constructed successfully, which establishes the foundation for future research on the effect of Trim6.

  3. The Origin of Sterol Biosynthesis: A Time-Point for the Evolution of Eukaryotes and the Presence of O2

    Science.gov (United States)

    Pearson, A.; Budin, M.; Brocks, J. J.

    2003-12-01

    The evolution of sterol biosynthesis is of critical interest to geoscientists as well as to evolutionary biologists. The first enzyme in the pathway, squalene monooxygenase (Sqmo), requires molecular oxygen (O2), suggesting that this process post-dates the evolution of Cyanobacteria. Additionally, the presence of steranes in ancient rocks marks the suggested time-point of eukaryogenesis(1). Sterol biosynthesis is viewed primarily as a eukaryotic process, and the frequency of its occurrence in bacteria long has been a subject of controversy. In this work, 19 protein gene sequences for Sqmo from eukaryotes were compared to all available complete and partial prokaryotic genomes. Twelve protein gene sequences representing oxidosqualene cyclase (Osc), the second enzyme of the sterol biosynthetic pathway, also were examined. The only unequivocal matches among the bacteria were the alpha-proteobacterium, Methylococcus capsulatus, in which sterol biosynthesis already is known, and the planctomycete, Gemmata obscuriglobus. The latter species contains the most abbreviated sterol pathway yet identified in any organism. Experiments show that the major sterols in Gemmata are lanosterol and its uncommon isomer, parkeol. In bacteria, the sterol biosynthesis genes occupy a contiguous coding region and may represent a single operon. Phylogenetic trees show that the sterol pathway in bacteria and eukaryotes has a common ancestry. Gemmata may retain the most ancient remnants of the pathway's origin, and it is likely that sterol biosynthesis in eukaryotes was acquired through gene transfer from bacteria. However, this work indicates that no known prokaryotes could produce the 24-ethyl steranes found in Archaean rocks(1). Therefore these compounds remain indicative of the presence of both eukaryotes and O2 at 2.7 Ga. 1. J. J. Brocks, G. A. Logan, R. Buick, R. E. Summons, (1999) Science 285, 1033-1036.

  4. HIV-1 Replication and the Cellular Eukaryotic Translation Apparatus

    Directory of Open Access Journals (Sweden)

    Santiago Guerrero

    2015-01-01

    Full Text Available Eukaryotic translation is a complex process composed of three main steps: initiation, elongation, and termination. During infections by RNA- and DNA-viruses, the eukaryotic translation machinery is used to assure optimal viral protein synthesis. Human immunodeficiency virus type I (HIV-1 uses several non-canonical pathways to translate its own proteins, such as leaky scanning, frameshifting, shunt, and cap-independent mechanisms. Moreover, HIV-1 modulates the host translation machinery by targeting key translation factors and overcomes different cellular obstacles that affect protein translation. In this review, we describe how HIV-1 proteins target several components of the eukaryotic translation machinery, which consequently improves viral translation and replication.

  5. Characterization of telomeres and telomerase from the single-celled eukaryote Giardia intestinalis.

    Science.gov (United States)

    Uzlíková, Magdalena; Fulnečková, Jana; Weisz, Filip; Sýkorová, Eva; Nohýnková, Eva; Tůmová, Pavla

    2017-01-01

    The ends of linear chromosomes, telomeres, are most commonly maintained by the enzyme telomerase. Our study presents the characteristics of telomeres and telomerase from the single-celled parasitic eukaryote Giardia intestinalis. Using fluorescence in situ hybridization, we localized telomeres during all stages of the trophozoite cell cycle and demonstrated differences in the observed number of telomeric foci, indicating telomere clustering. The length of Giardia telomeres was determined in different cell lines derived from WB clinical isolate using terminal restriction fragment analysis and ranged from 0.5 to 2.5kb; moreover, a BAL-31 digestion experiment did not reveal any long interstitial telomeric sequences in the genome. Despite the absence of the specific T motif in the telomerase catalytic subunit, the presence of an active telomerase enzyme synthesising telomeric repeats in Giardia was proved by a Telomere repeat amplification protocol assay, and its localization in nuclei was determined by the expression of recombinant GiTERT. Except for the Giardia-type TAGGG telomeric repeat, Giardia telomerase was proved to synthesize in vitro also other repeat variants, TAAGG and TAAGGG. In summary, despite its unusual characteristics, including a structurally divergent but active telomerase, unique terminal sequences and relatively short telomeres, the present data support the view that the chromosomal termini in Giardia are maintained in a conservative manner that is common to other eukaryotes. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Structure of the prolyl-tRNA synthetase from the eukaryotic pathogen Giardia lamblia

    Energy Technology Data Exchange (ETDEWEB)

    Larson, Eric T.; Kim, Jessica E.; Napuli, Alberto J.; Verlinde, Christophe L. M. J.; Fan, Erkang; Zucker, Frank H.; Van Voorhis, Wesley C.; Buckner, Frederick S.; Hol, Wim G. J.; Merritt, Ethan A., E-mail: merritt@u.washington.edu [Medical Structural Genomics of Pathogenic Protozoa, (United States); University of Washington, Seattle, WA 98195 (United States)

    2012-09-01

    The structure of Giardia prolyl-tRNA synthetase cocrystallized with proline and ATP shows evidence for half-of-the-sites activity, leading to a corresponding mixture of reaction substrates and product (prolyl-AMP) in the two active sites of the dimer. The genome of the human intestinal parasite Giardia lamblia contains only a single aminoacyl-tRNA synthetase gene for each amino acid. The Giardia prolyl-tRNA synthetase gene product was originally misidentified as a dual-specificity Pro/Cys enzyme, in part owing to its unexpectedly high off-target activation of cysteine, but is now believed to be a normal representative of the class of archaeal/eukaryotic prolyl-tRNA synthetases. The 2.2 Å resolution crystal structure of the G. lamblia enzyme presented here is thus the first structure determination of a prolyl-tRNA synthetase from a eukaryote. The relative occupancies of substrate (proline) and product (prolyl-AMP) in the active site are consistent with half-of-the-sites reactivity, as is the observed biphasic thermal denaturation curve for the protein in the presence of proline and MgATP. However, no corresponding induced asymmetry is evident in the structure of the protein. No thermal stabilization is observed in the presence of cysteine and ATP. The implied low affinity for the off-target activation product cysteinyl-AMP suggests that translational fidelity in Giardia is aided by the rapid release of misactivated cysteine.

  7. Diphthamide biosynthesis requires an organic radical generated by an iron-sulphur enzyme

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yang; Zhu, Xuling; Torelli, Andrew T; Lee, Michael; Dzikovski, Boris; Koralewski, Rachel M; Wang, Eileen; Freed, Jack; Krebs, Carsten; Ealick, Steve E; Lin, Hening [Cornell; (Penn)

    2010-08-30

    Archaeal and eukaryotic translation elongation factor 2 contain a unique post-translationally modified histidine residue called diphthamide, which is the target of diphtheria toxin. The biosynthesis of diphthamide was proposed to involve three steps, with the first being the formation of a C-C bond between the histidine residue and the 3-amino-3-carboxypropyl group of S-adenosyl-l-methionine (SAM). However, further details of the biosynthesis remain unknown. Here we present structural and biochemical evidence showing that the first step of diphthamide biosynthesis in the archaeon Pyrococcus horikoshii uses a novel iron-sulphur-cluster enzyme, Dph2. Dph2 is a homodimer and each of its monomers can bind a [4Fe-4S] cluster. Biochemical data suggest that unlike the enzymes in the radical SAM superfamily, Dph2 does not form the canonical 5'-deoxyadenosyl radical. Instead, it breaks the Cγ,Met-S bond of SAM and generates a 3-amino-3-carboxypropyl radical. Our results suggest that P. horikoshii Dph2 represents a previously unknown, SAM-dependent, [4Fe-4S]-containing enzyme that catalyses unprecedented chemistry.

  8. Enzyme Nanorings

    OpenAIRE

    Chou, Tsui-Fen; So, Christopher; White, Brian R.; Carlson, Jonathan C.T.; Sarikaya, Mehmet; Wagner, Carston

    2008-01-01

    We have demonstrated that nanostructures, and in particular nanorings incorporating a homodimeric enzyme, can be prepared by chemically induced self-assembly of dihydrofolate reductase (DHFR)-histidine triad nucleotide binding 1(Hint1) fusion proteins. The dimensions of the nanorings were found by static light scattering and atomic force microscopy studies to be dependent on the length and composition of the peptide linking the fusion proteins, ranging in size from 10 to 70 nm in diameter and...

  9. Potential of industrial biotechnology with cyanobacteria and eukaryotic microalgae.

    NARCIS (Netherlands)

    Wijffels, R.H.; Kruse, O.; Hellingwerf, K.J.

    2013-01-01

    Both cyanobacteria and eukaryotic microalgae are promising organisms for sustainable production of bulk products such as food, feed, materials, chemicals and fuels. In this review we will summarize the potential and current biotechnological developments. Cyanobacteria are promising host organisms

  10. Conservation and Variability of Meiosis Across the Eukaryotes.

    Science.gov (United States)

    Loidl, Josef

    2016-11-23

    Comparisons among a variety of eukaryotes have revealed considerable variability in the structures and processes involved in their meiosis. Nevertheless, conventional forms of meiosis occur in all major groups of eukaryotes, including early-branching protists. This finding confirms that meiosis originated in the common ancestor of all eukaryotes and suggests that primordial meiosis may have had many characteristics in common with conventional extant meiosis. However, it is possible that the synaptonemal complex and the delicate crossover control related to its presence were later acquisitions. Later still, modifications to meiotic processes occurred within different groups of eukaryotes. Better knowledge on the spectrum of derived and uncommon forms of meiosis will improve our understanding of many still mysterious aspects of the meiotic process and help to explain the evolutionary basis of functional adaptations to the meiotic program.

  11. Hydrodynamics Versus Intracellular Coupling in the Synchronization of Eukaryotic Flagella

    NARCIS (Netherlands)

    Quaranta, G.; Aubin, M.E.; Tam, D.S.W.

    2015-01-01

    The influence of hydrodynamic forces on eukaryotic flagella synchronization is investigated by triggering phase locking between a controlled external flow and the flagella of C. reinhardtii. Hydrodynamic forces required for synchronization are over an order of magnitude larger than hydrodynamic

  12. Endosymbiotic gene transfer from prokaryotic pangenomes: Inherited chimerism in eukaryotes.

    Science.gov (United States)

    Ku, Chuan; Nelson-Sathi, Shijulal; Roettger, Mayo; Garg, Sriram; Hazkani-Covo, Einat; Martin, William F

    2015-08-18

    Endosymbiotic theory in eukaryotic-cell evolution rests upon a foundation of three cornerstone partners--the plastid (a cyanobacterium), the mitochondrion (a proteobacterium), and its host (an archaeon)--and carries a corollary that, over time, the majority of genes once present in the organelle genomes were relinquished to the chromosomes of the host (endosymbiotic gene transfer). However, notwithstanding eukaryote-specific gene inventions, single-gene phylogenies have never traced eukaryotic genes to three single prokaryotic sources, an issue that hinges crucially upon factors influencing phylogenetic inference. In the age of genomes, single-gene trees, once used to test the predictions of endosymbiotic theory, now spawn new theories that stand to eventually replace endosymbiotic theory with descriptive, gene tree-based variants featuring supernumerary symbionts: prokaryotic partners distinct from the cornerstone trio and whose existence is inferred solely from single-gene trees. We reason that the endosymbiotic ancestors of mitochondria and chloroplasts brought into the eukaryotic--and plant and algal--lineage a genome-sized sample of genes from the proteobacterial and cyanobacterial pangenomes of their respective day and that, even if molecular phylogeny were artifact-free, sampling prokaryotic pangenomes through endosymbiotic gene transfer would lead to inherited chimerism. Recombination in prokaryotes (transduction, conjugation, transformation) differs from recombination in eukaryotes (sex). Prokaryotic recombination leads to pangenomes, and eukaryotic recombination leads to vertical inheritance. Viewed from the perspective of endosymbiotic theory, the critical transition at the eukaryote origin that allowed escape from Muller's ratchet--the origin of eukaryotic recombination, or sex--might have required surprisingly little evolutionary innovation.

  13. Nitrate storage and dissimilatory nitrate reduction by eukaryotic microbes

    OpenAIRE

    Anja eKamp; Signe eHøgslund; Nils eRisgaard-Petersen; Peter eStief

    2015-01-01

    The microbial nitrogen cycle is one of the most complex and environmentally important element cycles on Earth and has long been thought to be mediated exclusively by prokaryotic microbes. Rather recently, it was discovered that certain eukaryotic microbes are able to store nitrate intracellularly and use it for dissimilatory nitrate reduction in the absence of oxygen. The paradigm shift that this entailed is ecologically significant because the eukaryotes in question comprise global players l...

  14. Bio-molecular architects: a scaffold provided by the C-terminal domain of eukaryotic RNA polymerase II.

    Science.gov (United States)

    Zhang, Mengmeng; Gill, Gordon N; Zhang, Yan

    2010-01-01

    In eukaryotic cells, the transcription of genes is accurately orchestrated both spatially and temporally by the C-terminal domain of RNA polymerase II (CTD). The CTD provides a dynamic platform to recruit different regulators of the transcription apparatus. Different posttranslational modifications are precisely applied to specific sites of the CTD to coordinate transcription process. Regulators of the RNA polymerase II must identify specific sites in the CTD for cellular survival, metabolism, and development. Even though the CTD is disordered in the eukaryotic RNA polymerase II crystal structures due to its intrinsic flexibility, recent advances in the complex structural analysis of the CTD with its binding partners provide essential clues for understanding how selectivity is achieved for individual site recognition. The recent discoveries of the interactions between the CTD and histone modification enzymes disclose an important role of the CTD in epigenetic control of the eukaryotic gene expression. The intersection of the CTD code with the histone code discloses an intriguing yet complicated network for eukaryotic transcriptional regulation.

  15. Bio-molecular architects: a scaffold provided by the C-terminal domain of eukaryotic RNA polymerase II

    Directory of Open Access Journals (Sweden)

    Yan Zhang

    2010-08-01

    Full Text Available In eukaryotic cells, the transcription of genes is accurately orchestrated both spatially and temporally by the C-terminal domain of RNA polymerase II (CTD. The CTD provides a dynamic platform to recruit different regulators of the transcription apparatus. Different posttranslational modifications are precisely applied to specific sites of the CTD to coordinate transcription process. Regulators of the RNA polymerase II must identify specific sites in the CTD for cellular survival, metabolism, and development. Even though the CTD is disordered in the eukaryotic RNA polymerase II crystal structures due to its intrinsic flexibility, recent advances in the complex structural analysis of the CTD with its binding partners provide essential clues for understanding how selectivity is achieved for individual site recognition. The recent discoveries of the interactions between the CTD and histone modification enzymes disclose an important role of the CTD in epigenetic control of the eukaryotic gene expression. The intersection of the CTD code with the histone code discloses an intriguing yet complicated network for eukaryotic transcriptional regulation.

  16. On the Diversification of the Translation Apparatus across Eukaryotes

    Directory of Open Access Journals (Sweden)

    Greco Hernández

    2012-01-01

    Full Text Available Diversity is one of the most remarkable features of living organisms. Current assessments of eukaryote biodiversity reaches 1.5 million species, but the true figure could be several times that number. Diversity is ingrained in all stages and echelons of life, namely, the occupancy of ecological niches, behavioral patterns, body plans and organismal complexity, as well as metabolic needs and genetics. In this review, we will discuss that diversity also exists in a key biochemical process, translation, across eukaryotes. Translation is a fundamental process for all forms of life, and the basic components and mechanisms of translation in eukaryotes have been largely established upon the study of traditional, so-called model organisms. By using modern genome-wide, high-throughput technologies, recent studies of many nonmodel eukaryotes have unveiled a surprising diversity in the configuration of the translation apparatus across eukaryotes, showing that this apparatus is far from being evolutionarily static. For some of the components of this machinery, functional differences between different species have also been found. The recent research reviewed in this article highlights the molecular and functional diversification the translational machinery has undergone during eukaryotic evolution. A better understanding of all aspects of organismal diversity is key to a more profound knowledge of life.

  17. An Evolutionary Framework for Understanding the Origin of Eukaryotes

    Directory of Open Access Journals (Sweden)

    Neil W. Blackstone

    2016-04-01

    Full Text Available Two major obstacles hinder the application of evolutionary theory to the origin of eukaryotes. The first is more apparent than real—the endosymbiosis that led to the mitochondrion is often described as “non-Darwinian” because it deviates from the incremental evolution championed by the modern synthesis. Nevertheless, endosymbiosis can be accommodated by a multi-level generalization of evolutionary theory, which Darwin himself pioneered. The second obstacle is more serious—all of the major features of eukaryotes were likely present in the last eukaryotic common ancestor thus rendering comparative methods ineffective. In addition to a multi-level theory, the development of rigorous, sequence-based phylogenetic and comparative methods represents the greatest achievement of modern evolutionary theory. Nevertheless, the rapid evolution of major features in the eukaryotic stem group requires the consideration of an alternative framework. Such a framework, based on the contingent nature of these evolutionary events, is developed and illustrated with three examples: the putative intron proliferation leading to the nucleus and the cell cycle; conflict and cooperation in the origin of eukaryotic bioenergetics; and the inter-relationship between aerobic metabolism, sterol synthesis, membranes, and sex. The modern synthesis thus provides sufficient scope to develop an evolutionary framework to understand the origin of eukaryotes.

  18. An Evolutionary Framework for Understanding the Origin of Eukaryotes.

    Science.gov (United States)

    Blackstone, Neil W

    2016-04-27

    Two major obstacles hinder the application of evolutionary theory to the origin of eukaryotes. The first is more apparent than real-the endosymbiosis that led to the mitochondrion is often described as "non-Darwinian" because it deviates from the incremental evolution championed by the modern synthesis. Nevertheless, endosymbiosis can be accommodated by a multi-level generalization of evolutionary theory, which Darwin himself pioneered. The second obstacle is more serious-all of the major features of eukaryotes were likely present in the last eukaryotic common ancestor thus rendering comparative methods ineffective. In addition to a multi-level theory, the development of rigorous, sequence-based phylogenetic and comparative methods represents the greatest achievement of modern evolutionary theory. Nevertheless, the rapid evolution of major features in the eukaryotic stem group requires the consideration of an alternative framework. Such a framework, based on the contingent nature of these evolutionary events, is developed and illustrated with three examples: the putative intron proliferation leading to the nucleus and the cell cycle; conflict and cooperation in the origin of eukaryotic bioenergetics; and the inter-relationship between aerobic metabolism, sterol synthesis, membranes, and sex. The modern synthesis thus provides sufficient scope to develop an evolutionary framework to understand the origin of eukaryotes.

  19. Single Cell Genomics and Transcriptomics for Unicellular Eukaryotes

    Energy Technology Data Exchange (ETDEWEB)

    Ciobanu, Doina; Clum, Alicia; Singh, Vasanth; Salamov, Asaf; Han, James; Copeland, Alex; Grigoriev, Igor; James, Timothy; Singer, Steven; Woyke, Tanja; Malmstrom, Rex; Cheng, Jan-Fang

    2014-03-14

    Despite their small size, unicellular eukaryotes have complex genomes with a high degree of plasticity that allow them to adapt quickly to environmental changes. Unicellular eukaryotes live with prokaryotes and higher eukaryotes, frequently in symbiotic or parasitic niches. To this day their contribution to the dynamics of the environmental communities remains to be understood. Unfortunately, the vast majority of eukaryotic microorganisms are either uncultured or unculturable, making genome sequencing impossible using traditional approaches. We have developed an approach to isolate unicellular eukaryotes of interest from environmental samples, and to sequence and analyze their genomes and transcriptomes. We have tested our methods with six species: an uncharacterized protist from cellulose-enriched compost identified as Platyophrya, a close relative of P. vorax; the fungus Metschnikowia bicuspidate, a parasite of water flea Daphnia; the mycoparasitic fungi Piptocephalis cylindrospora, a parasite of Cokeromyces and Mucor; Caulochytrium protosteloides, a parasite of Sordaria; Rozella allomycis, a parasite of the water mold Allomyces; and the microalgae Chlamydomonas reinhardtii. Here, we present the four components of our approach: pre-sequencing methods, sequence analysis for single cell genome assembly, sequence analysis of single cell transcriptomes, and genome annotation. This technology has the potential to uncover the complexity of single cell eukaryotes and their role in the environmental samples.

  20. Ocean plankton. Eukaryotic plankton diversity in the sunlit ocean.

    Science.gov (United States)

    de Vargas, Colomban; Audic, Stéphane; Henry, Nicolas; Decelle, Johan; Mahé, Frédéric; Logares, Ramiro; Lara, Enrique; Berney, Cédric; Le Bescot, Noan; Probert, Ian; Carmichael, Margaux; Poulain, Julie; Romac, Sarah; Colin, Sébastien; Aury, Jean-Marc; Bittner, Lucie; Chaffron, Samuel; Dunthorn, Micah; Engelen, Stefan; Flegontova, Olga; Guidi, Lionel; Horák, Aleš; Jaillon, Olivier; Lima-Mendez, Gipsi; Lukeš, Julius; Malviya, Shruti; Morard, Raphael; Mulot, Matthieu; Scalco, Eleonora; Siano, Raffaele; Vincent, Flora; Zingone, Adriana; Dimier, Céline; Picheral, Marc; Searson, Sarah; Kandels-Lewis, Stefanie; Acinas, Silvia G; Bork, Peer; Bowler, Chris; Gorsky, Gabriel; Grimsley, Nigel; Hingamp, Pascal; Iudicone, Daniele; Not, Fabrice; Ogata, Hiroyuki; Pesant, Stephane; Raes, Jeroen; Sieracki, Michael E; Speich, Sabrina; Stemmann, Lars; Sunagawa, Shinichi; Weissenbach, Jean; Wincker, Patrick; Karsenti, Eric

    2015-05-22

    Marine plankton support global biological and geochemical processes. Surveys of their biodiversity have hitherto been geographically restricted and have not accounted for the full range of plankton size. We assessed eukaryotic diversity from 334 size-fractionated photic-zone plankton communities collected across tropical and temperate oceans during the circumglobal Tara Oceans expedition. We analyzed 18S ribosomal DNA sequences across the intermediate plankton-size spectrum from the smallest unicellular eukaryotes (protists, >0.8 micrometers) to small animals of a few millimeters. Eukaryotic ribosomal diversity saturated at ~150,000 operational taxonomic units, about one-third of which could not be assigned to known eukaryotic groups. Diversity emerged at all taxonomic levels, both within the groups comprising the ~11,200 cataloged morphospecies of eukaryotic plankton and among twice as many other deep-branching lineages of unappreciated importance in plankton ecology studies. Most eukaryotic plankton biodiversity belonged to heterotrophic protistan groups, particularly those known to be parasites or symbiotic hosts. Copyright © 2015, American Association for the Advancement of Science.

  1. An Evolutionary Framework for Understanding the Origin of Eukaryotes

    Science.gov (United States)

    Blackstone, Neil W.

    2016-01-01

    Two major obstacles hinder the application of evolutionary theory to the origin of eukaryotes. The first is more apparent than real—the endosymbiosis that led to the mitochondrion is often described as “non-Darwinian” because it deviates from the incremental evolution championed by the modern synthesis. Nevertheless, endosymbiosis can be accommodated by a multi-level generalization of evolutionary theory, which Darwin himself pioneered. The second obstacle is more serious—all of the major features of eukaryotes were likely present in the last eukaryotic common ancestor thus rendering comparative methods ineffective. In addition to a multi-level theory, the development of rigorous, sequence-based phylogenetic and comparative methods represents the greatest achievement of modern evolutionary theory. Nevertheless, the rapid evolution of major features in the eukaryotic stem group requires the consideration of an alternative framework. Such a framework, based on the contingent nature of these evolutionary events, is developed and illustrated with three examples: the putative intron proliferation leading to the nucleus and the cell cycle; conflict and cooperation in the origin of eukaryotic bioenergetics; and the inter-relationship between aerobic metabolism, sterol synthesis, membranes, and sex. The modern synthesis thus provides sufficient scope to develop an evolutionary framework to understand the origin of eukaryotes. PMID:27128953

  2. A statistical anomaly indicates symbiotic origins of eukaryotic membranes

    Science.gov (United States)

    Bansal, Suneyna; Mittal, Aditya

    2015-01-01

    Compositional analyses of nucleic acids and proteins have shed light on possible origins of living cells. In this work, rigorous compositional analyses of ∼5000 plasma membrane lipid constituents of 273 species in the three life domains (archaea, eubacteria, and eukaryotes) revealed a remarkable statistical paradox, indicating symbiotic origins of eukaryotic cells involving eubacteria. For lipids common to plasma membranes of the three domains, the number of carbon atoms in eubacteria was found to be similar to that in eukaryotes. However, mutually exclusive subsets of same data show exactly the opposite—the number of carbon atoms in lipids of eukaryotes was higher than in eubacteria. This statistical paradox, called Simpson's paradox, was absent for lipids in archaea and for lipids not common to plasma membranes of the three domains. This indicates the presence of interaction(s) and/or association(s) in lipids forming plasma membranes of eubacteria and eukaryotes but not for those in archaea. Further inspection of membrane lipid structures affecting physicochemical properties of plasma membranes provides the first evidence (to our knowledge) on the symbiotic origins of eukaryotic cells based on the “third front” (i.e., lipids) in addition to the growing compositional data from nucleic acids and proteins. PMID:25631820

  3. Wholly Rickettsia! Reconstructed Metabolic Profile of the Quintessential Bacterial Parasite of Eukaryotic Cells.

    Science.gov (United States)

    Driscoll, Timothy P; Verhoeve, Victoria I; Guillotte, Mark L; Lehman, Stephanie S; Rennoll, Sherri A; Beier-Sexton, Magda; Rahman, M Sayeedur; Azad, Abdu F; Gillespie, Joseph J

    2017-09-26

    Reductive genome evolution has purged many metabolic pathways from obligate intracellular Rickettsia (Alphaproteobacteria; Rickettsiaceae). While some aspects of host-dependent rickettsial metabolism have been characterized, the array of host-acquired metabolites and their cognate transporters remains unknown. This dearth of information has thwarted efforts to obtain an axenic Rickettsia culture, a major impediment to conventional genetic approaches. Using phylogenomics and computational pathway analysis, we reconstructed the Rickettsia metabolic and transport network, identifying 51 host-acquired metabolites (only 21 previously characterized) needed to compensate for degraded biosynthesis pathways. In the absence of glycolysis and the pentose phosphate pathway, cell envelope glycoconjugates are synthesized from three imported host sugars, with a range of additional host-acquired metabolites fueling the tricarboxylic acid cycle. Fatty acid and glycerophospholipid pathways also initiate from host precursors, and import of both isoprenes and terpenoids is required for the synthesis of ubiquinone and the lipid carrier of lipid I and O-antigen. Unlike metabolite-provisioning bacterial symbionts of arthropods, rickettsiae cannot synthesize B vitamins or most other cofactors, accentuating their parasitic nature. Six biosynthesis pathways contain holes (missing enzymes); similar patterns in taxonomically diverse bacteria suggest alternative enzymes that await discovery. A paucity of characterized and predicted transporters emphasizes the knowledge gap concerning how rickettsiae import host metabolites, some of which are large and not known to be transported by bacteria. Collectively, our reconstructed metabolic network offers clues to how rickettsiae hijack host metabolic pathways. This blueprint for growth determinants is an important step toward the design of axenic media to rescue rickettsiae from the eukaryotic cell.IMPORTANCE A hallmark of obligate intracellular

  4. Eukaryote-to-eukaryote gene transfer gives rise to genome mosaicism in euglenids

    Directory of Open Access Journals (Sweden)

    Weber Andreas PM

    2011-04-01

    Full Text Available Abstract Background Euglenophytes are a group of photosynthetic flagellates possessing a plastid derived from a green algal endosymbiont, which was incorporated into an ancestral host cell via secondary endosymbiosis. However, the impact of endosymbiosis on the euglenophyte nuclear genome is not fully understood due to its complex nature as a 'hybrid' of a non-photosynthetic host cell and a secondary endosymbiont. Results We analyzed an EST dataset of the model euglenophyte Euglena gracilis using a gene mining program designed to detect laterally transferred genes. We found E. gracilis genes showing affinity not only with green algae, from which the secondary plastid in euglenophytes evolved, but also red algae and/or secondary algae containing red algal-derived plastids. Phylogenetic analyses of these 'red lineage' genes suggest that E. gracilis acquired at least 14 genes via eukaryote-to-eukaryote lateral gene transfer from algal sources other than the green algal endosymbiont that gave rise to its current plastid. We constructed an EST library of the aplastidic euglenid Peranema trichophorum, which is a eukaryovorous relative of euglenophytes, and also identified 'red lineage' genes in its genome. Conclusions Our data show genome mosaicism in E. gracilis and P. trichophorum. One possible explanation for the presence of these genes in these organisms is that some or all of them were independently acquired by lateral gene transfer and contributed to the successful integration and functioning of the green algal endosymbiont as a secondary plastid. Alternative hypotheses include the presence of a phagocytosed alga as the single source of those genes, or a cryptic tertiary endosymbiont harboring secondary plastid of red algal origin, which the eukaryovorous ancestor of euglenophytes had acquired prior to the secondary endosymbiosis of a green alga.

  5. Comparative expression of wild-type and highly soluble mutant His103Leu of hydroxynitrile lyase from Manihot esculenta in prokaryotic and eukaryotic expression systems.

    Science.gov (United States)

    Dadashipour, Mohammad; Fukuta, Yasuhisa; Asano, Yasuhisa

    2011-05-01

    Low protein solubility and inclusion body formation represent big challenges in production of recombinant proteins in Escherichia coli. We have recently reported functional expression of hydroxynitrile lyase from Manihot esculenta, MeHNL, in E. coli with high in vivo solubility and activity using directed evolution. As a part of attempts to clarify the mechanism of this phenomenon, we have described the possibility of expression of the highly active and soluble mutant MeHNL-His103Leu as well as wild-type enzyme in several expression systems. Methylotrophic yeast Pichia pastoris, protozoan host Leishmania tarentolae and two cell-free translations, including an E. coli lysate (WakoPURE system) and wheat germ translation system were used to compare expression profiles of the genes. Two distinguishable protein expression patterns were observed in prokaryotic and eukaryotic-based systems. The wild-type and mutant enzyme showed high activity for both genes (up to 10 U/ml) in eukaryotic hosts P. pastoris and L. tarentolae, while those of E. coli exhibited about 1 and 15 U/ml, respectively. The different activity level in prokaryotic systems but the same level among the eukaryotic hosts indicate the phenomenon is specific to the E. coli system. Both the wild-type and mutant enzymes were functionally expressed in eukaryotic systems, probably using the folding assistants such as chaperones. Properties of expression systems used in this study were precisely compared, too. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. Electron cryomicroscopy observation of rotational states in a eukaryotic V-ATPase.

    Science.gov (United States)

    Zhao, Jianhua; Benlekbir, Samir; Rubinstein, John L

    2015-05-14

    Eukaryotic vacuolar H(+)-ATPases (V-ATPases) are rotary enzymes that use energy from hydrolysis of ATP to ADP to pump protons across membranes and control the pH of many intracellular compartments. ATP hydrolysis in the soluble catalytic region of the enzyme is coupled to proton translocation through the membrane-bound region by rotation of a central rotor subcomplex, with peripheral stalks preventing the entire membrane-bound region from turning with the rotor. The eukaryotic V-ATPase is the most complex rotary ATPase: it has three peripheral stalks, a hetero-oligomeric proton-conducting proteolipid ring, several subunits not found in other rotary ATPases, and is regulated by reversible dissociation of its catalytic and proton-conducting regions. Studies of ATP synthases, V-ATPases, and bacterial/archaeal V/A-ATPases have suggested that flexibility is necessary for the catalytic mechanism of rotary ATPases, but the structures of different rotational states have never been observed experimentally. Here we use electron cryomicroscopy to obtain structures for three rotational states of the V-ATPase from the yeast Saccharomyces cerevisiae. The resulting series of structures shows ten proteolipid subunits in the c-ring, setting the ATP:H(+) ratio for proton pumping by the V-ATPase at 3:10, and reveals long and highly tilted transmembrane α-helices in the a-subunit that interact with the c-ring. The three different maps reveal the conformational changes that occur to couple rotation in the symmetry-mismatched soluble catalytic region to the membrane-bound proton-translocating region. Almost all of the subunits of the enzyme undergo conformational changes during the transitions between these three rotational states. The structures of these states provide direct evidence that deformation during rotation enables the smooth transmission of power through rotary ATPases.

  7. Interactions between subunits of Saccharomyces cerevisiae RNase MRP support a conserved eukaryotic RNase P/MRP architecture.

    Science.gov (United States)

    Aspinall, Tanya V; Gordon, James M B; Bennett, Hayley J; Karahalios, Panagiotis; Bukowski, John-Paul; Walker, Scott C; Engelke, David R; Avis, Johanna M

    2007-01-01

    Ribonuclease MRP is an endonuclease, related to RNase P, which functions in eukaryotic pre-rRNA processing. In Saccharomyces cerevisiae, RNase MRP comprises an RNA subunit and ten proteins. To improve our understanding of subunit roles and enzyme architecture, we have examined protein-protein and protein-RNA interactions in vitro, complementing existing yeast two-hybrid data. In total, 31 direct protein-protein interactions were identified, each protein interacting with at least three others. Furthermore, seven proteins self-interact, four strongly, pointing to subunit multiplicity in the holoenzyme. Six protein subunits interact directly with MRP RNA and four with pre-rRNA. A comparative analysis with existing data for the yeast and human RNase P/MRP systems enables confident identification of Pop1p, Pop4p and Rpp1p as subunits that lie at the enzyme core, with probable addition of Pop5p and Pop3p. Rmp1p is confirmed as an integral subunit, presumably associating preferentially with RNase MRP, rather than RNase P, via interactions with Snm1p and MRP RNA. Snm1p and Rmp1p may act together to assist enzyme specificity, though roles in substrate binding are also indicated for Pop4p and Pop6p. The results provide further evidence of a conserved eukaryotic RNase P/MRP architecture and provide a strong basis for studies of enzyme assembly and subunit function.

  8. Conservation of functional domain structure in bicarbonate-regulated “soluble” adenylyl cyclases in bacteria and eukaryotes

    Science.gov (United States)

    Kobayashi, Mime; Buck, Jochen; Levin, Lonny R.

    2013-01-01

    Soluble adenylyl cyclase (sAC) is an evolutionarily conserved bicarbonate sensor. In mammals, it is responsible for bicarbonate-induced, cAMP-dependent processes in sperm required for fertilization and postulated to be involved in other bicarbonate- and carbon dioxide-dependent functions throughout the body. Among eukaryotes, sAC-like cyclases have been detected in mammals and in the fungi Dictyostelium; these enzymes display extensive similarity extending through two cyclase catalytic domains and a long carboxy terminal extension. sAC-like cyclases are also found in a number of bacterial phyla (Cyanobacteria, Actinobacteria, and Proteobacteria), but these enzymes generally possess only a single catalytic domain and little, if any, homology with the remainder of the mammalian protein. Database mining through a number of recently sequenced genomes identified sAC orthologues in additional metazoan phyla (Arthropoda and Chordata) and additional bacterial phyla (Chloroflexi). Interestingly, the Chloroflexi sAC-like cyclases, a family of three enzymes from the thermophilic eubacterium, Chloroflexus aurantiacus, are more similar to eukaryotic sAC-like cyclases (i.e., mammalian sAC and Dictyostelium SgcA) than they are to other bacterial adenylyl cyclases (ACs) (i.e., from Cyanobacteria). The Chloroflexus sAC-like cyclases each possess two cyclase catalytic domains and extensive similarity with mammalian enzymes through their carboxy termini. We cloned one of the Chloroflexus sAC-like cyclases and confirmed it to be stimulated by bicarbonate. These data extend the family of organisms possessing bicarbonate-responsive ACs to numerous phyla within the bacterial and eukaryotic kingdoms. PMID:15322879

  9. Expression of lignocellulolytic enzymes in Pichia pastoris

    Directory of Open Access Journals (Sweden)

    Mellitzer Andrea

    2012-05-01

    Full Text Available Abstract Background Sustainable utilization of plant biomass as renewable source for fuels and chemical building blocks requires a complex mixture of diverse enzymes, including hydrolases which comprise the largest class of lignocellulolytic enzymes. These enzymes need to be available in large amounts at a low price to allow sustainable and economic biotechnological processes. Over the past years Pichia pastoris has become an attractive host for the cost-efficient production and engineering of heterologous (eukaryotic proteins due to several advantages. Results In this paper codon optimized genes and synthetic alcohol oxidase 1 promoter variants were used to generate Pichia pastoris strains which individually expressed cellobiohydrolase 1, cellobiohydrolase 2 and beta-mannanase from Trichoderma reesei and xylanase A from Thermomyces lanuginosus. For three of these enzymes we could develop strains capable of secreting gram quantities of enzyme per liter in fed-batch cultivations. Additionally, we compared our achieved yields of secreted enzymes and the corresponding activities to literature data. Conclusion In our experiments we could clearly show the importance of gene optimization and strain characterization for successfully improving secretion levels. We also present a basic guideline how to correctly interpret the interplay of promoter strength and gene dosage for a successful improvement of the secretory production of lignocellulolytic enzymes in Pichia pastoris.

  10. Crystal Structure of a Legionella pneumophila Ecto -Triphosphate Diphosphohydrolase, A Structural and Functional Homolog of the Eukaryotic NTPDases

    Energy Technology Data Exchange (ETDEWEB)

    Vivian, Julian P.; Riedmaier, Patrice; Ge, Honghua; Le Nours, Jérôme; Sansom, Fiona M.; Wilce, Matthew C.J.; Byres, Emma; Dias, Manisha; Schmidberger, Jason W.; Cowan, Peter J.; d' Apice, Anthony J.F.; Hartland, Elizabeth L.; Rossjohn, Jamie; Beddoe, Travis (Monash); (Melbourne)

    2010-04-19

    Many pathogenic bacteria have sophisticated mechanisms to interfere with the mammalian immune response. These include the disruption of host extracellular ATP levels that, in humans, is tightly regulated by the nucleoside triphosphate diphosphohydrolase family (NTPDases). NTPDases are found almost exclusively in eukaryotes, the notable exception being their presence in some pathogenic prokaryotes. To address the function of bacterial NTPDases, we describe the structures of an NTPDase from the pathogen Legionella pneumophila (Lpg1905/Lp1NTPDase) in its apo state and in complex with the ATP analog AMPPNP and the subtype-specific NTPDase inhibitor ARL 67156. Lp1NTPDase is structurally and catalytically related to eukaryotic NTPDases and the structure provides a basis for NTPDase-specific inhibition. Furthermore, we demonstrate that the activity of Lp1NTPDase correlates directly with intracellular replication of Legionella within macrophages. Collectively, these findings provide insight into the mechanism of this enzyme and highlight its role in host-pathogen interactions.

  11. Evolution of DNA replication protein complexes in eukaryotes and Archaea.

    Directory of Open Access Journals (Sweden)

    Nicholas Chia

    Full Text Available BACKGROUND: The replication of DNA in Archaea and eukaryotes requires several ancillary complexes, including proliferating cell nuclear antigen (PCNA, replication factor C (RFC, and the minichromosome maintenance (MCM complex. Bacterial DNA replication utilizes comparable proteins, but these are distantly related phylogenetically to their archaeal and eukaryotic counterparts at best. METHODOLOGY/PRINCIPAL FINDINGS: While the structures of each of the complexes do not differ significantly between the archaeal and eukaryotic versions thereof, the evolutionary dynamic in the two cases does. The number of subunits in each complex is constant across all taxa. However, they vary subtly with regard to composition. In some taxa the subunits are all identical in sequence, while in others some are homologous rather than identical. In the case of eukaryotes, there is no phylogenetic variation in the makeup of each complex-all appear to derive from a common eukaryotic ancestor. This is not the case in Archaea, where the relationship between the subunits within each complex varies taxon-to-taxon. We have performed a detailed phylogenetic analysis of these relationships in order to better understand the gene duplications and divergences that gave rise to the homologous subunits in Archaea. CONCLUSION/SIGNIFICANCE: This domain level difference in evolution suggests that different forces have driven the evolution of DNA replication proteins in each of these two domains. In addition, the phylogenies of all three gene families support the distinctiveness of the proposed archaeal phylum Thaumarchaeota.

  12. Identification of Eukaryotic Open Reading Frames in Metagenomic cDNA Libraries Made from Environmental Samples†

    Science.gov (United States)

    Grant, Susan; Grant, William D.; Cowan, Don A.; Jones, Brian E.; Ma, Yanhe; Ventosa, Antonio; Heaphy, Shaun

    2006-01-01

    Here we describe the application of metagenomic technologies to construct cDNA libraries from RNA isolated from environmental samples. RNAlater (Ambion) was shown to stabilize RNA in environmental samples for periods of at least 3 months at −20°C. Protocols for library construction were established on total RNA extracted from Acanthamoeba polyphaga trophozoites. The methodology was then used on algal mats from geothermal hot springs in Tengchong county, Yunnan Province, People's Republic of China, and activated sludge from a sewage treatment plant in Leicestershire, United Kingdom. The Tenchong libraries were dominated by RNA from prokaryotes, reflecting the mainly prokaryote microbial composition. The majority of these clones resulted from rRNA; only a few appeared to be derived from mRNA. In contrast, many clones from the activated sludge library had significant similarity to eukaryote mRNA-encoded protein sequences. A library was also made using polyadenylated RNA isolated from total RNA from activated sludge; many more clones in this library were related to eukaryotic mRNA sequences and proteins. Open reading frames (ORFs) up to 378 amino acids in size could be identified. Some resembled known proteins over their full length, e.g., 36% match to cystatin, 49% match to ribosomal protein L32, 63% match to ribosomal protein S16, 70% to CPC2 protein. The methodology described here permits the polyadenylated transcriptome to be isolated from environmental samples with no knowledge of the identity of the microorganisms in the sample or the necessity to culture them. It has many uses, including the identification of novel eukaryotic ORFs encoding proteins and enzymes. PMID:16391035

  13. Interaction of tRNA with Eukaryotic Ribosome

    Directory of Open Access Journals (Sweden)

    Dmitri Graifer

    2015-03-01

    Full Text Available This paper is a review of currently available data concerning interactions of tRNAs with the eukaryotic ribosome at various stages of translation. These data include the results obtained by means of cryo-electron microscopy and X-ray crystallography applied to various model ribosomal complexes, site-directed cross-linking with the use of tRNA derivatives bearing chemically or photochemically reactive groups in the CCA-terminal fragment and chemical probing of 28S rRNA in the region of the peptidyl transferase center. Similarities and differences in the interactions of tRNAs with prokaryotic and eukaryotic ribosomes are discussed with concomitant consideration of the extent of resemblance between molecular mechanisms of translation in eukaryotes and bacteria.

  14. Nitrate storage and dissimilatory nitrate reduction by eukaryotic microbes

    DEFF Research Database (Denmark)

    Kamp, Anja; Høgslund, Signe; Risgaard-Petersen, Nils

    2015-01-01

    The microbial nitrogen cycle is one of the most complex and environmentally important element cycles on Earth and has long been thought to be mediated exclusively by prokaryotic microbes. Rather recently, it was discovered that certain eukaryotic microbes are able to store nitrate intracellularly...... and use it for dissimilatory nitrate reduction in the absence of oxygen. The paradigm shift that this entailed is ecologically significant because the eukaryotes in question comprise global players like diatoms, foraminifers, and fungi. This review article provides an unprecedented overview of nitrate...... storage and dissimilatory nitrate reduction by diverse marine eukaryotes placed into an eco-physiological context. The advantage of intracellular nitrate storage for anaerobic energy conservation in oxygen-depleted habitats is explained and the life style enabled by this metabolic trait is described...

  15. DNA mismatch repair and its many roles in eukaryotic cells

    DEFF Research Database (Denmark)

    Liu, Dekang; Keijzers, Guido; Rasmussen, Lene Juel

    2017-01-01

    in the clinic, and as a biomarker of cancer susceptibility in animal model systems. Prokaryotic MMR is well-characterized at the molecular and mechanistic level; however, MMR is considerably more complex in eukaryotic cells than in prokaryotic cells, and in recent years, it has become evident that MMR plays......DNA mismatch repair (MMR) is an important DNA repair pathway that plays critical roles in DNA replication fidelity, mutation avoidance and genome stability, all of which contribute significantly to the viability of cells and organisms. MMR is widely-used as a diagnostic biomarker for human cancers...... novel roles in eukaryotic cells, several of which are not yet well-defined or understood. Many MMR-deficient human cancer cells lack mutations in known human MMR genes, which strongly suggests that essential eukaryotic MMR components/cofactors remain unidentified and uncharacterized. Furthermore...

  16. Unraveling adaptation in eukaryotic pathways: lessons from protocells.

    Directory of Open Access Journals (Sweden)

    Giovanna De Palo

    2013-10-01

    Full Text Available Eukaryotic adaptation pathways operate within wide-ranging environmental conditions without stimulus saturation. Despite numerous differences in the adaptation mechanisms employed by bacteria and eukaryotes, all require energy consumption. Here, we present two minimal models showing that expenditure of energy by the cell is not essential for adaptation. Both models share important features with large eukaryotic cells: they employ small diffusible molecules and involve receptor subunits resembling highly conserved G-protein cascades. Analyzing the drawbacks of these models helps us understand the benefits of energy consumption, in terms of adjustability of response and adaptation times as well as separation of cell-external sensing and cell-internal signaling. Our work thus sheds new light on the evolution of adaptation mechanisms in complex systems.

  17. Unraveling adaptation in eukaryotic pathways: lessons from protocells.

    Science.gov (United States)

    De Palo, Giovanna; Endres, Robert G

    2013-10-01

    Eukaryotic adaptation pathways operate within wide-ranging environmental conditions without stimulus saturation. Despite numerous differences in the adaptation mechanisms employed by bacteria and eukaryotes, all require energy consumption. Here, we present two minimal models showing that expenditure of energy by the cell is not essential for adaptation. Both models share important features with large eukaryotic cells: they employ small diffusible molecules and involve receptor subunits resembling highly conserved G-protein cascades. Analyzing the drawbacks of these models helps us understand the benefits of energy consumption, in terms of adjustability of response and adaptation times as well as separation of cell-external sensing and cell-internal signaling. Our work thus sheds new light on the evolution of adaptation mechanisms in complex systems.

  18. Serial endosymbiosis or singular event at the origin of eukaryotes?

    Science.gov (United States)

    Lane, Nick

    2017-12-07

    'On the Origin of Mitosing Cells' heralded a new way of seeing cellular evolution, with symbiosis at its heart. Lynn Margulis (then Sagan) marshalled an impressive array of evidence for endosymbiosis, from cell biology to atmospheric chemistry and Earth history. Despite her emphasis on symbiosis, she saw plenty of evidence for gradualism in eukaryotic evolution, with multiple origins of mitosis and sex, repeated acquisitions of plastids, and putative evolutionary intermediates throughout the microbial world. Later on, Margulis maintained her view of multiple endosymbioses giving rise to other organelles such as hydrogenosomes, in keeping with the polyphyletic assumptions of the serial endosymbiosis theory. She stood at the threshold of the phylogenetic era, and anticipated its potential. Yet while predicting that the nucleotide sequences of genes would enable a detailed reconstruction of eukaryotic evolution, Margulis did not, and could not, imagine the radically different story that would eventually emerge from comparative genomics. The last eukaryotic common ancestor now seems to have been essentially a modern eukaryotic cell that had already evolved mitosis, meiotic sex, organelles and endomembrane systems. The long search for missing evolutionary intermediates has failed to turn up a single example, and those discussed by Margulis turn out to have evolved reductively from more complex ancestors. Strikingly, Margulis argued that all eukaryotes had mitochondria in her 1967 paper (a conclusion that she later disavowed). But she developed her ideas in the context of atmospheric oxygen and aerobic respiration, neither of which is consistent with more recent geological and phylogenetic findings. Instead, a modern synthesis of genomics and bioenergetics points to the endosymbiotic restructuring of eukaryotic genomes in relation to bioenergetic membranes as the singular event that permitted the evolution of morphological complexity. Copyright © 2017 Elsevier Ltd. All

  19. Modular architecture of eukaryotic RNase P and RNase MRP revealed by electron microscopy.

    Science.gov (United States)

    Hipp, Katharina; Galani, Kyriaki; Batisse, Claire; Prinz, Simone; Böttcher, Bettina

    2012-04-01

    Ribonuclease P (RNase P) and RNase MRP are closely related ribonucleoprotein enzymes, which process RNA substrates including tRNA precursors for RNase P and 5.8 S rRNA precursors, as well as some mRNAs, for RNase MRP. The structures of RNase P and RNase MRP have not yet been solved, so it is unclear how the proteins contribute to the structure of the complexes and how substrate specificity is determined. Using electron microscopy and image processing we show that eukaryotic RNase P and RNase MRP have a modular architecture, where proteins stabilize the RNA fold and contribute to cavities, channels and chambers between the modules. Such features are located at strategic positions for substrate recognition by shape and coordination of the cleaved-off sequence. These are also the sites of greatest difference between RNase P and RNase MRP, highlighting the importance of the adaptation of this region to the different substrates.

  20. EFSA CEF Panel (EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids), 2014. Scientific Opinion on lipase from a genetically modified strain of Aspergillus oryzae (strain NZYM-FL)

    DEFF Research Database (Denmark)

    Poulsen, Morten; Hallas-Møller, Torben; Binderup, Mona-Lise

    . The lipase is intended to be used in a number of food manufacturing processes, such as oils, fats and eggs processing. The dietary exposure was assessed on the basis of data retrieved from the EFSA Comprehensive European Food Consumption Database. The food enzyme did not induce gene mutations in bacteria nor...

  1. Use of Telomerase Enzyme in Diagnosis and Treatment

    Directory of Open Access Journals (Sweden)

    Figen Guzelgul,Kiymet Aksoy

    2011-04-01

    Full Text Available There are structures on the tip of eukaryotic chromosomes known as telomer. These non-translated repeat sequences participate in the stabilization of chromosomes. These structures shorten 10-12 bp in each replication. However, there is an enzyme which takes effect to prevent the shortening of chromosomes. This enzyme is found in germ cells, embriyonic stem cells, single celled eukaryotes and cancerous cells. Telomer has important roles on aging and cancer. In the last decade, medical sciences focus on the probability of use of telomerase enzyme retarding the aging course and inerease life expectancy. In addition, the presence of the enzyme in cancerous cells suggests the use of this enzyme for cancer diagnosis as a biomarker. The telomerase enzymes may also be used in cancer treatment. Studies on the prevention of ability of finite division of the cancer cells by the inactivation of the telomerase enzyme are promising. [Archives Medical Review Journal 2011; 20(2.000: 69-88

  2. Distinct gene number-genome size relationships for eukaryotes and non-eukaryotes: gene content estimation for dinoflagellate genomes.

    Directory of Open Access Journals (Sweden)

    Yubo Hou

    Full Text Available The ability to predict gene content is highly desirable for characterization of not-yet sequenced genomes like those of dinoflagellates. Using data from completely sequenced and annotated genomes from phylogenetically diverse lineages, we investigated the relationship between gene content and genome size using regression analyses. Distinct relationships between log(10-transformed protein-coding gene number (Y' versus log(10-transformed genome size (X', genome size in kbp were found for eukaryotes and non-eukaryotes. Eukaryotes best fit a logarithmic model, Y' = ln(-46.200+22.678X', whereas non-eukaryotes a linear model, Y' = 0.045+0.977X', both with high significance (p0.91. Total gene number shows similar trends in both groups to their respective protein coding regressions. The distinct correlations reflect lower and decreasing gene-coding percentages as genome size increases in eukaryotes (82%-1% compared to higher and relatively stable percentages in prokaryotes and viruses (97%-47%. The eukaryotic regression models project that the smallest dinoflagellate genome (3x10(6 kbp contains 38,188 protein-coding (40,086 total genes and the largest (245x10(6 kbp 87,688 protein-coding (92,013 total genes, corresponding to 1.8% and 0.05% gene-coding percentages. These estimates do not likely represent extraordinarily high functional diversity of the encoded proteome but rather highly redundant genomes as evidenced by high gene copy numbers documented for various dinoflagellate species.

  3. Efficient Production of γ-GABA Using Recombinant E. coli Expressing Glutamate Decarboxylase (GAD) Derived from Eukaryote Saccharomyces cerevisiae.

    Science.gov (United States)

    Xiong, Qiang; Xu, Zheng; Xu, Lu; Yao, Zhong; Li, Sha; Xu, Hong

    2017-12-01

    γ-Aminobutyric acid (γ-GABA) is a non-proteinogenic amino acid, which acts as a major regulator in the central nervous system. Glutamate decarboxylase (namely GAD, EC 4.1.1.15) is known to be an ideal enzyme for γ-GABA production using L-glutamic acid as substrate. In this study, we cloned and expressed GAD gene from eukaryote Saccharomyces cerevisiae (ScGAD) in E. coli BL21(DE3). This enzyme was further purified and its optimal reaction temperature and pH were 37 °C and pH 4.2, respectively. The cofactor of ScGAD was verified to be either pyridoxal 5'-phosphate (PLP) or pyridoxal hydrochloride. The optimal concentration of either cofactor was 50 mg/L. The optimal medium for E. coli-ScGAD cultivation and expression were 10 g/L lactose, 5 g/L glycerol, 20 g/L yeast extract, and 10 g/L sodium chloride, resulting in an activity of 55 U/mL medium, three times higher than that of using Luria-Bertani (LB) medium. The maximal concentration of γ-GABA was 245 g/L whereas L-glutamic acid was near completely converted. These findings provided us a good example for bio-production of γ-GABA using recombinant E. coli expressing a GAD enzyme derived from eukaryote.

  4. Modified cyanobacteria

    Science.gov (United States)

    Vermaas, Willem F J.

    2014-06-17

    Disclosed is a modified photoautotrophic bacterium comprising genes of interest that are modified in terms of their expression and/or coding region sequence, wherein modification of the genes of interest increases production of a desired product in the bacterium relative to the amount of the desired product production in a photoautotrophic bacterium that is not modified with respect to the genes of interest.

  5. Structural similarities and functional differences clarify evolutionary relationships between tRNA healing enzymes and the myelin enzyme CNPase.

    Science.gov (United States)

    Muruganandam, Gopinath; Raasakka, Arne; Myllykoski, Matti; Kursula, Inari; Kursula, Petri

    2017-05-16

    Eukaryotic tRNA splicing is an essential process in the transformation of a primary tRNA transcript into a mature functional tRNA molecule. 5'-phosphate ligation involves two steps: a healing reaction catalyzed by polynucleotide kinase (PNK) in association with cyclic phosphodiesterase (CPDase), and a sealing reaction catalyzed by an RNA ligase. The enzymes that catalyze tRNA healing in yeast and higher eukaryotes are homologous to the members of the 2H phosphoesterase superfamily, in particular to the vertebrate myelin enzyme 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNPase). We employed different biophysical and biochemical methods to elucidate the overall structural and functional features of the tRNA healing enzymes yeast Trl1 PNK/CPDase and lancelet PNK/CPDase and compared them with vertebrate CNPase. The yeast and the lancelet enzymes have cyclic phosphodiesterase and polynucleotide kinase activity, while vertebrate CNPase lacks PNK activity. In addition, we also show that the healing enzymes are structurally similar to the vertebrate CNPase by applying synchrotron radiation circular dichroism spectroscopy and small-angle X-ray scattering. We provide a structural analysis of the tRNA healing enzyme PNK and CPDase domains together. Our results support evolution of vertebrate CNPase from tRNA healing enzymes with a loss of function at its N-terminal PNK-like domain.

  6. Eu-Detect: An algorithm for detecting eukaryotic sequences in ...

    Indian Academy of Sciences (India)

    Plots depicting the classification accuracy of Eu-Detect with various combinations of. 'cumulative sequence count' (40K, 50K, 60K, 70K, 80K) and 'coverage threshold' (20%, 30%, 40%, 50%, 60%, 70%,. 80%). While blue bars represent Eu-Detect's average classification accuracy with eukaryotic data sets, red bars represent.

  7. The biology of eukaryotic promoter prediction - a review

    DEFF Research Database (Denmark)

    Pedersen, Anders Gorm; Baldi, Pierre; Chauvin, Yves

    1999-01-01

    Computational prediction of eukaryotic promoters from the nucleotide sequence is one of the most attractive problems in sequence analysis today, but it is also a very difficult one. Thus, current methods predict in the order of one promoter per kilobase in human DNA, while the average distance...

  8. An algorithm for detecting eukaryotic sequences in metagenomic ...

    Indian Academy of Sciences (India)

    Physical partitioning techniques are routinely employed (during sample preparation stage) for segregating the prokaryotic and eukaryotic fractions of metagenomic samples. In spite of these efforts, several metagenomic studies focusing on bacterial and archaeal populations have reported the presence of contaminating ...

  9. Eukaryotic checkpoints are absent in the cell division cycle of ...

    Indian Academy of Sciences (India)

    Fidelity in transmission of genetic characters is ensured by the faithful duplication of the genome, followed by equal segregation of the genetic material in the progeny. Thus, alternation of DNA duplication (S-phase) and chromosome segregation during the M-phase are hallmarks of most well studied eukaryotes. Several ...

  10. Potential of industrial biotechnology with cyanobacteria and eukaryotic microalgae

    NARCIS (Netherlands)

    Wijffels, R.H.; Kruse, O.; Hellingwerf, K.J.

    2013-01-01

    Both cyanobacteria and eukaryotic microalgae are promising organisms for sustainable production of bulk products such as food, feed, materials, chemicals and fuels. In this review we will summarize the potential and current biotechnological developments.Cyanobacteria are promising host organisms for

  11. Eu-Detect: An algorithm for detecting eukaryotic sequences in ...

    Indian Academy of Sciences (India)

    Physical partitioning techniques are routinely employed (during sample preparation stage) for segregating the prokaryotic and eukaryotic fractions of metagenomic samples. In spite of these efforts, several metagenomic studies focusing on bacterial and archaeal populations have reported the presence of contaminating ...

  12. Geminin: a major DNA replication safeguard in higher eukaryotes

    DEFF Research Database (Denmark)

    Melixetian, Marina; Helin, Kristian

    2004-01-01

    Eukaryotes have evolved multiple mechanisms to restrict DNA replication to once per cell cycle. These mechanisms prevent relicensing of origins of replication after initiation of DNA replication in S phase until the end of mitosis. Most of our knowledge of mechanisms controlling prereplication...

  13. Uncoupling of Sister Replisomes during Eukaryotic DNA Replication

    NARCIS (Netherlands)

    Yardimci, Hasan; Loveland, Anna B.; Habuchi, Satoshi; van Oijen, Antoine M.; Walter, Johannes C.

    2010-01-01

    The duplication of eukaryotic genomes involves the replication of DNA from multiple origins of replication. In S phase, two sister replisomes assemble at each active origin, and they replicate DNA in opposite directions. Little is known about the functional relationship between sister replisomes.

  14. Molecular typing of fecal eukaryotic microbiota of human infants and ...

    Indian Academy of Sciences (India)

    Keywords. 18S rRNA library; gastrointestinal tract; micro-eukaryotic diversity ... Insect Molecular Biology Unit, National Centre for Cell Science, Pune University Campus, Ganeshkhind, Pune 411 007, Maharashtra, India; Gastroenterology Unit, Department of P ediatrics, KEM Hospital, Rasta Peth, Pune 411 011, India ...

  15. Characterization of prokaryotic and eukaryotic promoters usinghidden Markov models

    DEFF Research Database (Denmark)

    Pedersen, Anders Gorm; Baldi, Pierre; Brunak, Søren

    1996-01-01

    In this paper we utilize hidden Markov models (HMMs) and information theory to analyze prokaryotic and eukaryotic promoters. We perform this analysis with special emphasis on the fact that promoters are divided into a number of different classes, depending on which polymerase-associated factors...

  16. Characterization of prokaryotic and eukaryotic promoters using hidden Markov models

    DEFF Research Database (Denmark)

    Pedersen, Anders Gorm; Baldi, P.; Chauvin, Y.

    1996-01-01

    In this paper we utilize hidden Markov models (HMMs) and information theory to analyze prokaryotic and eukaryotic promoters. We perform this analysis with special emphasis on the fact that promoters are divided into a number of different classes, depending on which polymerase-associated factors...

  17. The emerging roles of inositol pyrophosphates in eukaryotic cell ...

    Indian Academy of Sciences (India)

    These energy-rich small molecules are present in all eukaryotic cells, from yeast to mammals, and are involved in a wide range of cellular functions including apoptosis, vesicle trafficking, DNA repair, osmoregulation, phosphate homeostasis, insulin sensitivity, immune signalling, cell cycle regulation, and ribosome ...

  18. Intracellular amorphous carbonates uncover a new biomineralization process in eukaryotes.

    Science.gov (United States)

    Martignier, A; Pacton, M; Filella, M; Jaquet, J-M; Barja, F; Pollok, K; Langenhorst, F; Lavigne, S; Guagliardo, P; Kilburn, M R; Thomas, C; Martini, R; Ariztegui, D

    2017-03-01

    Until now, descriptions of intracellular biomineralization of amorphous inclusions involving alkaline-earth metal (AEM) carbonates other than calcium have been confined exclusively to cyanobacteria (Couradeau et al., 2012). Here, we report the first evidence of the presence of intracellular amorphous granules of AEM carbonates (calcium, strontium, and barium) in unicellular eukaryotes. These inclusions, which we have named micropearls, show concentric and oscillatory zoning on a nanometric scale. They are widespread in certain eukaryote phytoplankters of Lake Geneva (Switzerland) and represent a previously unknown type of non-skeletal biomineralization, revealing an unexpected pathway in the geochemical cycle of AEMs. We have identified Tetraselmis cf. cordiformis (Chlorophyta, Prasinophyceae) as being responsible for the formation of one micropearl type containing strontium ([Ca,Sr]CO3 ), which we also found in a cultured strain of Tetraselmis cordiformis. A different flagellated eukaryotic cell forms barium-rich micropearls [(Ca,Ba)CO3 ]. The strontium and barium concentrations of both micropearl types are extremely high compared with the undersaturated water of Lake Geneva (the Ba/Ca ratio of the micropearls is up to 800,000 times higher than in the water). This can only be explained by a high biological pre-concentration of these elements. The particular characteristics of the micropearls, along with the presence of organic sulfur-containing compounds-associated with and surrounding the micropearls-strongly suggest the existence of a yet-unreported intracellular biomineralization pathway in eukaryotic micro-organisms. © 2016 John Wiley & Sons Ltd.

  19. Monitoring disulfide bond formation in the eukaryotic cytosol

    DEFF Research Database (Denmark)

    Østergaard, Henrik; Tachibana, Christine; Winther, Jakob R.

    2004-01-01

    Glutathione is the most abundant low molecular weight thiol in the eukaryotic cytosol. The compartment-specific ratio and absolute concentrations of reduced and oxidized glutathione (GSH and GSSG, respectively) are, however, not easily determined. Here, we present a glutathione-specific green flu...

  20. Cloning of Glycerophosphocholine Acyltransferase (GPCAT) from Fungi and Plants: A NOVEL ENZYME IN PHOSPHATIDYLCHOLINE SYNTHESIS.

    Science.gov (United States)

    Głąb, Bartosz; Beganovic, Mirela; Anaokar, Sanket; Hao, Meng-Shu; Rasmusson, Allan G; Patton-Vogt, Jana; Banaś, Antoni; Stymne, Sten; Lager, Ida

    2016-11-25

    Glycero-3-phosphocholine (GPC), the product of the complete deacylation of phosphatidylcholine (PC), was long thought to not be a substrate for reacylation. However, it was recently shown that cell-free extracts from yeast and plants could acylate GPC with acyl groups from acyl-CoA. By screening enzyme activities of extracts derived from a yeast knock-out collection, we were able to identify and clone the yeast gene (GPC1) encoding the enzyme, named glycerophosphocholine acyltransferase (GPCAT). By homology search, we also identified and cloned GPCAT genes from three plant species. All enzymes utilize acyl-CoA to acylate GPC, forming lyso-PC, and they show broad acyl specificities in both yeast and plants. In addition to acyl-CoA, GPCAT efficiently utilizes LPC and lysophosphatidylethanolamine as acyl donors in the acylation of GPC. GPCAT homologues were found in the major eukaryotic organism groups but not in prokaryotes or chordates. The enzyme forms its own protein family and does not contain any of the acyl binding or lipase motifs that are present in other studied acyltransferases and transacylases. In vivo labeling studies confirm a role for Gpc1p in PC biosynthesis in yeast. It is postulated that GPCATs contribute to the maintenance of PC homeostasis and also have specific functions in acyl editing of PC (e.g. in transferring acyl groups modified at the sn-2 position of PC to the sn-1 position of this molecule in plant cells). © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Characterization of a bifunctional glyoxylate cycle enzyme, malate synthase/isocitrate lyase, of Euglena gracilis.

    Science.gov (United States)

    Nakazawa, Masami; Nishimura, Masaaki; Inoue, Kengo; Ueda, Mitsuhiro; Inui, Hiroshi; Nakano, Yoshihisa; Miyatake, Kazutaka

    2011-01-01

    The glyoxylate cycle is a modified form of the tricarboxylic acid cycle, which enables organisms to synthesize carbohydrates from C2 compounds. In the protozoan Euglena gracilis, the key enzyme activities of the glyoxylate cycle, isocitrate lyase (ICL) and malate synthase (MS), are conferred by a single bifunctional protein named glyoxylate cycle enzyme (Euglena gracilis glyoxylate cycle enzyme [EgGCE]). We analyzed the enzymatic properties of recombinant EgGCE to determine the functions of its different domains. The 62-kDa N-terminal domain of EgGCE was sufficient to provide the MS activity as expected from an analysis of the deduced amino acid sequence. In contrast, expression of the 67-kDa C-terminal domain of EgGCE failed to yield ICL activity even though this domain was structurally similar to ICL family enzymes. Analyses of truncation mutants suggested that the N-terminal residues of EgGCE are critical for both the ICL and MS activities. The ICL activity of EgGCE increased in the presence of micro-molar concentrations of acetyl-coenzyme A (CoA). Acetyl-CoA also increased the activity in a mutant type EgGCE with a mutation at the acetyl-CoA binding site in the MS domain of EgGCE. This suggests that acetyl-CoA regulates the ICL reaction by binding to a site other than the catalytic center of the MS reaction. © 2011 The Author(s). Journal of Eukaryotic Microbiology© 2011 International Society of Protistologists.

  2. Eukaryotic initiation factor 5A dephosphorylation is required for translational arrest in stationary phase cells.

    Science.gov (United States)

    Chung, Janete; Rocha, Antonio A; Tonelli, Renata R; Castilho, Beatriz A; Schenkman, Sergio

    2013-04-15

    The protein known as eIF5A (eukaryotic initiation factor 5A) has an elusive role in translation. It has a unique and essential hypusine modification at a conserved lysine residue in most eukaryotes. In addition, this protein is modified by phosphorylation with unknown functions. In the present study we show that a phosphorylated state of eIF5A predominates in exponentially growing Trypanosoma cruzi cells, and extensive dephosphorylation occurs in cells in stationary phase. Phosphorylation occurs mainly at Ser(2), as shown in yeast eIF5A. In addition, a novel phosphorylation site was identified at Tyr(21). In exponential cells, T. cruzi eIF5A is partially associated with polysomes, compatible with a proposed function as an elongation factor, and becomes relatively enriched in polysomal fractions in stationary phase. Overexpression of the wild-type eIF5A, or eIF5A with Ser(2) replaced by an aspartate residue, but not by alanine, increases the rate of cell proliferation and protein synthesis. However, the presence of an aspartate residue instead of Ser(2) is toxic for cells reaching the stationary phase, which show a less-pronounced protein synthesis arrest and a decreased amount of eIF5A in dense fractions of sucrose gradients. We conclude that eIF5A phosphorylation and dephosphorylation cycles regulate translation according to the growth conditions.

  3. Oxygen as a factor in eukaryote evolution - Some effects of low levels of oxygen on Saccharomyces cerevisiae

    Science.gov (United States)

    Jahnke, L.; Klein, H. P.

    1979-01-01

    A comparative study of the effects of varying levels of oxygen on some of the metabolic functions of the primitive eukaryote, Saccharomyces cerevisiae, has shown that these cells are responsive to very low levels of oxygen: the level of palmitoyl-Co A desaturase was greatly enhanced by only 0.03 vol % oxygen. Similarly, an acetyl-CoA synthetase associated predominantly with anaerobic growth was stimulated by as little as 0.1% oxygen, while an isoenzyme correlated with aerobic growth was maximally active at much higher oxygen levels (greater than 1%). Closely following this latter pattern were three mitochondrial enzymes that attained maximal activity only under atmospheric levels of oxygen.

  4. The Impact of Enzyme Orientation and Electrode Topology on the Catalytic Activity of Adsorbed Redox Enzymes

    Science.gov (United States)

    McMillan, Duncan G. G.; Marritt, Sophie J.; Kemp, Gemma L.; Gordon-Brown, Piers; Butt, Julea N.; Jeuken, Lars J. C.

    2014-01-01

    It is well established that the structural details of electrodes and their interaction with adsorbed enzyme influences the interfacial electron transfer rate. However, for nanostructured electrodes, it is likely that the structure also impacts on substrate flux near the adsorbed enzymes and thus catalytic activity. Furthermore, for enzymes converting macro-molecular substrates it is possible that the enzyme orientation determines the nature of interactions between the adsorbed enzyme and substrate and therefore catalytic rates. In essence the electrode may impede substrate access to the active site of the enzyme. We have tested these possibilities through studies of the catalytic performance of two enzymes adsorbed on topologically distinct electrode materials. Escherichia coli NrfA, a nitrite reductase, was adsorbed on mesoporous, nanocrystalline SnO2 electrodes. CymA from Shewanella oneidensis MR-1 reduces menaquinone-7 within 200 nm sized liposomes and this reaction was studied with the enzyme adsorbed on SAM modified ultra-flat gold electrodes. PMID:24634538

  5. Eukaryotic richness in the abyss: insights from pyrotag sequencing.

    Directory of Open Access Journals (Sweden)

    Jan Pawlowski

    Full Text Available BACKGROUND: The deep sea floor is considered one of the most diverse ecosystems on Earth. Recent environmental DNA surveys based on clone libraries of rRNA genes confirm this observation and reveal a high diversity of eukaryotes present in deep-sea sediment samples. However, environmental clone-library surveys yield only a modest number of sequences with which to evaluate the diversity of abyssal eukaryotes. METHODOLOGY/PRINCIPAL FINDINGS: Here, we examined the richness of eukaryotic DNA in deep Arctic and Southern Ocean samples using massively parallel sequencing of the 18S ribosomal RNA (rRNA V9 hypervariable region. In very small volumes of sediments, ranging from 0.35 to 0.7 g, we recovered up to 7,499 unique sequences per sample. By clustering sequences having up to 3 differences, we observed from 942 to 1756 Operational Taxonomic Units (OTUs per sample. Taxonomic analyses of these OTUs showed that DNA of all major groups of eukaryotes is represented at the deep-sea floor. The dinoflagellates, cercozoans, ciliates, and euglenozoans predominate, contributing to 17%, 16%, 10%, and 8% of all assigned OTUs, respectively. Interestingly, many sequences represent photosynthetic taxa or are similar to those reported from the environmental surveys of surface waters. Moreover, each sample contained from 31 to 71 different metazoan OTUs despite the small sample volume collected. This indicates that a significant faction of the eukaryotic DNA sequences likely do not belong to living organisms, but represent either free, extracellular DNA or remains and resting stages of planktonic species. CONCLUSIONS/SIGNIFICANCE: In view of our study, the deep-sea floor appears as a global DNA repository, which preserves genetic information about organisms living in the sediment, as well as in the water column above it. This information can be used for future monitoring of past and present environmental changes.

  6. Molecular Data are Transforming Hypotheses on the Origin and Diversification of Eukaryotes.

    Science.gov (United States)

    Tekle, Yonas I; Parfrey, Laura Wegener; Katz, Laura A

    2009-06-01

    The explosion of molecular data has transformed hypotheses on both the origin of eukaryotes and the structure of the eukaryotic tree of life. Early ideas about the evolution of eukaryotes arose through analyses of morphology by light microscopy and later electron microscopy. Though such studies have proven powerful at resolving more recent events, theories on origins and diversification of eukaryotic life have been substantially revised in light of analyses of molecular data including gene and, increasingly, whole genome sequences. By combining these approaches, progress has been made in elucidating both the origin and diversification of eukaryotes. Yet many aspects of the evolution of eukaryotic life remain to be illuminated.

  7. Construction and expression of eukaryotic expression vectors of full-length, amino-terminus and carboxyl-terminus Raf gene

    Directory of Open Access Journals (Sweden)

    Zhuomin WANG

    2008-06-01

    Full Text Available Background and objective Raf is a key molecule in the Ras-Raf-MEK-ERK signal transduction pathway and is highly activated in different human carcinomas. However, its biological functions and regulation mechanisms are still unclear. The aims of this study were to construct eukaryotic expression vectors with Raf full encoding region, truncated amino-terminus and carboxyl-terminus, respectively. Methods Eukaryotic expression vectors of pCMV-Tag2b-Raf-1, pCMV-Tag2b-N-Raf and pCMV-Tag2b-C-Raf were constructed by gene recombination technique and confirmed by restriction enzyme analysis and DNA sequencing. Furthermore, the expression of these fusion proteins was detected by western blot in transient transfected 293T cells. Results The sequences and open reading frames of these three vectors were completely consistent with experimental design. All target proteins can be detected in 293T cells. Conclusion Eukaryotic expression vectors of pCMV-Tag2b-Raf-1, pCMV-Tag2b-N-Raf and pCMV-Tag2b-C-Raf were successfully constructed and can be expressed in 293T cells.

  8. The evolution of glycogen and starch metabolism in eukaryotes gives molecular clues to understand the establishment of plastid endosymbiosis.

    Science.gov (United States)

    Ball, Steven; Colleoni, Christophe; Cenci, Ugo; Raj, Jenifer Nirmal; Tirtiaux, Catherine

    2011-03-01

    Solid semi-crystalline starch and hydrosoluble glycogen define two distinct physical states of the same type of storage polysaccharide. Appearance of semi-crystalline storage polysaccharides appears linked to the requirement of unicellular diazotrophic cyanobacteria to fuel nitrogenase and protect it from oxygen through respiration of vast amounts of stored carbon. Starch metabolism itself resulted from the merging of the bacterial and eukaryote pathways of storage polysaccharide metabolism after endosymbiosis of the plastid. This generated the three Archaeplastida lineages: the green algae and land plants (Chloroplastida), the red algae (Rhodophyceae), and the glaucophytes (Glaucophyta). Reconstruction of starch metabolism in the common ancestor of Archaeplastida suggests that polysaccharide synthesis was ancestrally cytosolic. In addition, the synthesis of cytosolic starch from the ADP-glucose exported from the cyanobacterial symbiont possibly defined the original metabolic flux by which the cyanobiont provided photosynthate to its host. Additional evidence supporting this scenario include the monophyletic origin of the major carbon translocators of the inner membrane of eukaryote plastids which are sisters to nucleotide-sugar transporters of the eukaryote endomembrane system. It also includes the extent of enzyme subfunctionalization that came as a consequence of the rewiring of this pathway to the chloroplasts in the green algae. Recent evidence suggests that, at the time of endosymbiosis, obligate intracellular energy parasites related to extant Chlamydia have donated important genes to the ancestral starch metabolism network.

  9. The phagotrophic origin of eukaryotes and phylogenetic classification of Protozoa.

    Science.gov (United States)

    Cavalier-Smith, T

    2002-03-01

    Eukaryotes and archaebacteria form the clade neomura and are sisters, as shown decisively by genes fragmented only in archaebacteria and by many sequence trees. This sisterhood refutes all theories that eukaryotes originated by merging an archaebacterium and an alpha-proteobacterium, which also fail to account for numerous features shared specifically by eukaryotes and actinobacteria. I revise the phagotrophy theory of eukaryote origins by arguing that the essentially autogenous origins of most eukaryotic cell properties (phagotrophy, endomembrane system including peroxisomes, cytoskeleton, nucleus, mitosis and sex) partially overlapped and were synergistic with the symbiogenetic origin of mitochondria from an alpha-proteobacterium. These radical innovations occurred in a derivative of the neomuran common ancestor, which itself had evolved immediately prior to the divergence of eukaryotes and archaebacteria by drastic alterations to its eubacterial ancestor, an actinobacterial posibacterium able to make sterols, by replacing murein peptidoglycan by N-linked glycoproteins and a multitude of other shared neomuran novelties. The conversion of the rigid neomuran wall into a flexible surface coat and the associated origin of phagotrophy were instrumental in the evolution of the endomembrane system, cytoskeleton, nuclear organization and division and sexual life-cycles. Cilia evolved not by symbiogenesis but by autogenous specialization of the cytoskeleton. I argue that the ancestral eukaryote was uniciliate with a single centriole (unikont) and a simple centrosomal cone of microtubules, as in the aerobic amoebozoan zooflagellate Phalansterium. I infer the root of the eukaryote tree at the divergence between opisthokonts (animals, Choanozoa, fungi) with a single posterior cilium and all other eukaryotes, designated 'anterokonts' because of the ancestral presence of an anterior cilium. Anterokonts comprise the Amoebozoa, which may be ancestrally unikont, and a vast

  10. The ARTT motif and a unified structural understanding of substraterecognition in ADP ribosylating bacterial toxins and eukaryotic ADPribosyltransferases

    Energy Technology Data Exchange (ETDEWEB)

    Han, S.; Tainer, J.A.

    2001-08-01

    ADP-ribosylation is a widely occurring and biologically critical covalent chemical modification process in pathogenic mechanisms, intracellular signaling systems, DNA repair, and cell division. The reaction is catalyzed by ADP-ribosyltransferases, which transfer the ADP-ribose moiety of NAD to a target protein with nicotinamide release. A family of bacterial toxins and eukaryotic enzymes has been termed the mono-ADP-ribosyltransferases, in distinction to the poly-ADP-ribosyltransferases, which catalyze the addition of multiple ADP-ribose groups to the carboxyl terminus of eukaryotic nucleoproteins. Despite the limited primary sequence homology among the different ADP-ribosyltransferases, a central cleft bearing NAD-binding pocket formed by the two perpendicular b-sheet core has been remarkably conserved between bacterial toxins and eukaryotic mono- and poly-ADP-ribosyltransferases. The majority of bacterial toxins and eukaryotic mono-ADP-ribosyltransferases are characterized by conserved His and catalytic Glu residues. In contrast, Diphtheria toxin, Pseudomonas exotoxin A, and eukaryotic poly-ADP-ribosyltransferases are characterized by conserved Arg and catalytic Glu residues. The NAD-binding core of a binary toxin and a C3-like toxin family identified an ARTT motif (ADP-ribosylating turn-turn motif) that is implicated in substrate specificity and recognition by structural and mutagenic studies. Here we apply structure-based sequence alignment and comparative structural analyses of all known structures of ADP-ribosyltransfeases to suggest that this ARTT motif is functionally important in many ADP-ribosylating enzymes that bear a NAD binding cleft as characterized by conserved Arg and catalytic Glu residues. Overall, structure-based sequence analysis reveals common core structures and conserved active sites of ADP-ribosyltransferases to support similar NAD binding mechanisms but differing mechanisms of target protein binding via sequence variations within the ARTT

  11. How Do Enzymes 'Meet' Nanoparticles and Nanomaterials?

    Science.gov (United States)

    Chen, Ming; Zeng, Guangming; Xu, Piao; Lai, Cui; Tang, Lin

    2017-11-01

    Enzymes are fundamental biological catalysts responsible for biological regulation and metabolism. The opportunity for enzymes to 'meet' nanoparticles and nanomaterials is rapidly increasing due to growing demands for applications in nanomaterial design, environmental monitoring, biochemical engineering, and biomedicine. Therefore, understanding the nature of nanomaterial-enzyme interactions is becoming important. Since 2014, enzymes have been used to modify, degrade, or make nanoparticles/nanomaterials, while numerous nanoparticles/nanomaterials have been used as materials for enzymatic immobilization and biosensors and as enzyme mimicry. Among the various nanoparticles and nanomaterials, metal nanoparticles and carbon nanomaterials have received extensive attention due to their fascinating properties. This review provides an overview about how enzymes meet nanoparticles and nanomaterials. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Characterizing the molecular architectures of chromatin-modifying complexes.

    Science.gov (United States)

    Setiaputra, Dheva T; Yip, Calvin K

    2017-11-01

    Eukaryotic cells package their genome in the form of a DNA-protein complex known as chromatin. This organization not only condenses the genome to fit within the confines of the nucleus, but also provides a platform for a cell to regulate accessibility to different gene sequences. The basic packaging element of chromatin is the nucleosome, which consists of 146 base pairs of DNA wrapped around histone proteins. One major means that a cell regulates chromatin structure is by depositing post-translational modifications on nucleosomal histone proteins, and thereby altering internucleosomal interactions and/or binding to different chromatin associated factors. These chromatin modifications are often catalyzed by multi-subunit enzyme complexes, whose large size, sophisticated composition, and inherent conformational flexibility pose significant technical challenges to their biochemical and structural characterization. Multiple structural approaches including nuclear magnetic resonance spectroscopy, X-ray crystallography, single-particle electron microscopy, and crosslinking coupled to mass spectrometry are often used synergistically to probe the overall architecture, subunit organization, and catalytic mechanisms of these macromolecular assemblies. In this review, we highlight several recent chromatin-modifying complexes studies that embodies this multipronged structural approach, and explore common themes amongst them. This article is part of a Special Issue entitled: Biophysics in Canada, edited by Lewis Kay, John Baenziger, Albert Berghuis and Peter Tieleman. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Elevated Liver Enzymes

    Science.gov (United States)

    Symptoms Elevated liver enzymes By Mayo Clinic Staff Elevated liver enzymes may indicate inflammation or damage to cells in the liver. Inflamed or ... than normal amounts of certain chemicals, including liver enzymes, into the bloodstream, which can result in elevated ...

  14. EFSA CEF Panel (EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids), 2014. Scientific Opinion on xylanase from a genetically modified strain of Aspergillus oryzae (strain NZYM-FB)

    DEFF Research Database (Denmark)

    Poulsen, Morten; Binderup, Mona-Lise; Hallas-Møller, Torben

    . The xylanase is intended to be used in a number of food manufacturing processes, such as starch processing, beverage alcohol (distilling), brewing, baking and other cereal based processes. The dietary exposure was assessed according to the Budget method. The food enzyme did not induce gene mutations...... in bacteria nor chromosome aberrations in human peripheral blood lymphocytes. Therefore, there is no concern with respect to genotoxicity. The systemic toxicity was assessed by means of a 90-day subchronic oral toxicity study in rodents. A No Observed Adverse Effect Level was derived, which compared...

  15. Computational identification of operon-like transcriptional loci in eukaryotes.

    Science.gov (United States)

    Nannapaneni, Kishore; Ben-Shahar, Yehuda; Keen, Henry L; Welsh, Michael J; Casavant, Thomas L; Scheetz, Todd E

    2013-07-01

    Operons are primarily a bacterial phenomenon, not commonly observed in eukaryotes. However, new research indicates that operons are found in higher organisms as well. There are instances of operons found in C. elegans, Drosophila melanogaster and other eukaryotic species. We developed a prototype using positional, structural and gene expression information to identify candidate operons. We focused our efforts on "trans-spliced" operons in which the pre-mRNA is trans-spliced into individual transcripts and subsequently translated, as widely observed in C. elegans and some instances in Drosophila. We identify several candidate operons in Drosophila melanogaster of which two have been subsequently molecularly validated. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Horizontal transfers of transposable elements in eukaryotes: The flying genes.

    Science.gov (United States)

    Panaud, Olivier

    2016-01-01

    Transposable elements (TEs) are the major components of eukaryotic genomes. Their propensity to densely populate and in some cases invade the genomes of plants and animals is in contradiction with the fact that transposition is strictly controlled by several molecular pathways acting at either transcriptional or post-transcriptional levels. Horizontal transfers, defined as the transmission of genetic material between sexually isolated species, have long been considered as rare phenomena. Here, we show that the horizontal transfers of transposable elements (HTTs) are very frequent in ecosystems. The exact mechanisms of such transfers are not well understood, but species involved in close biotic interactions, like parasitism, show a propensity to exchange genetic material horizontally. We propose that HTTs allow TEs to escape the silencing machinery of their host genome and may therefore be an important mechanism for their survival and their dissemination in eukaryotes. Copyright © 2016 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  17. Recognition of extremophilic archaeal viruses by eukaryotic cells

    DEFF Research Database (Denmark)

    Uldahl, Kristine Buch; Wu, Linping; Hall, Arnaldur

    2016-01-01

    Viruses from the third domain of life, Archaea, exhibit unusual features including extreme stability that allow their survival in harsh environments. In addition, these species have never been reported to integrate into human or any other eukaryotic genomes, and could thus serve for exploration...... of novel medical nanoplatforms. Here, we selected two archaeal viruses Sulfolobus monocaudavirus 1 (SMV1) and Sulfolobus spindle shaped virus 2 (SSV2) owing to their unique spindle shape, hyperthermostable and acid-resistant nature and studied their interaction with mammalian cells. Accordingly, we...... for selective cell targeting. On internalization, both viruses localize to the lysosomal compartments. Neither SMV1, nor SSV2 induced any detrimental effect on cell morphology, plasma membrane and mitochondrial functionality. This is the first study demonstrating recognition of archaeal viruses by eukaryotic...

  18. Anionic lipids and the maintenance of membrane electrostatics in eukaryotes.

    Science.gov (United States)

    Platre, Matthieu Pierre; Jaillais, Yvon

    2017-02-01

    A wide range of signaling processes occurs at the cell surface through the reversible association of proteins from the cytosol to the plasma membrane. Some low abundant lipids are enriched at the membrane of specific compartments and thereby contribute to the identity of cell organelles by acting as biochemical landmarks. Lipids also influence membrane biophysical properties, which emerge as an important feature in specifying cellular territories. Such parameters are crucial for signal transduction and include lipid packing, membrane curvature and electrostatics. In particular, membrane electrostatics specifies the identity of the plasma membrane inner leaflet. Membrane surface charges are carried by anionic phospholipids, however the exact nature of the lipid(s) that powers the plasma membrane electrostatic field varies among eukaryotes and has been hotly debated during the last decade. Herein, we discuss the role of anionic lipids in setting up plasma membrane electrostatics and we compare similarities and differences that were found in different eukaryotic cells.

  19. Kinetic model of DNA replication in eukaryotic organisms

    Science.gov (United States)

    Bechhoefer, John; Herrick, John; Bensimon, Aaron

    2001-03-01

    We introduce an analogy between DNA replication in eukaryotic organisms and crystal growth in one dimension. Drawing on models of crystallization kinetics developed in the 1930s to describe the freezing of metals, we formulate a kinetic model of DNA replication that quantitatively describes recent results on DNA replication in the in vitro system of Xenopus laevis prior to the mid-blastula transition. It allows one, for the first time, to determine the parameters governing the DNA replication program in a eukaryote on a genome-wide basis. In particular, we have determined the frequency of origin activation in time and space during the cell cycle. Although we focus on a specific stage of development, this model can easily be adapted to describe replication in many other organisms, including budding yeast.

  20. Regulated eukaryotic DNA replication origin firing with purified proteins.

    Science.gov (United States)

    Yeeles, Joseph T P; Deegan, Tom D; Janska, Agnieszka; Early, Anne; Diffley, John F X

    2015-03-26

    Eukaryotic cells initiate DNA replication from multiple origins, which must be tightly regulated to promote precise genome duplication in every cell cycle. To accomplish this, initiation is partitioned into two temporally discrete steps: a double hexameric minichromosome maintenance (MCM) complex is first loaded at replication origins during G1 phase, and then converted to the active CMG (Cdc45-MCM-GINS) helicase during S phase. Here we describe the reconstitution of budding yeast DNA replication initiation with 16 purified replication factors, made from 42 polypeptides. Origin-dependent initiation recapitulates regulation seen in vivo. Cyclin-dependent kinase (CDK) inhibits MCM loading by phosphorylating the origin recognition complex (ORC) and promotes CMG formation by phosphorylating Sld2 and Sld3. Dbf4-dependent kinase (DDK) promotes replication by phosphorylating MCM, and can act either before or after CDK. These experiments define the minimum complement of proteins, protein kinase substrates and co-factors required for regulated eukaryotic DNA replication.

  1. Silencing or knocking out eukaryotic gene expression by oligodeoxynucleotide decoys.

    Science.gov (United States)

    Cutroneo, Kenneth R; Ehrlich, H

    2006-01-01

    The elucidation of molecular and signaling pathways in eukaryotic cells is often achieved by targeting regulatory element(s) found in the promoter or the enhancer region of eukaryotic gene(s) using a double-stranded (ds) oligodeoxynucleotide (ODN) containing a specific cis-element. Our laboratory is focusing on dsODN decoys containing the TGF-beta element as a novel nonsteroidal antifibrotic for achieving normal wound healing. In the model systems discussed, there is either a specific gene possessing a specific cis-element or a cluster of genes with one gene containing the consensus cis-element. The rest of the genes in the cluster contain the cis-elements homologous to this consensus element, which allows for dsODN decoy regulation of a gene cluster at one time.

  2. Molecular Data are Transforming Hypotheses on the Origin and Diversification of Eukaryotes

    OpenAIRE

    Tekle, Yonas I.; Parfrey, Laura Wegener; Katz, Laura A.

    2009-01-01

    The explosion of molecular data has transformed hypotheses on both the origin of eukaryotes and the structure of the eukaryotic tree of life. Early ideas about the evolution of eukaryotes arose through analyses of morphology by light microscopy and later electron microscopy. Though such studies have proven powerful at resolving more recent events, theories on origins and diversification of eukaryotic life have been substantially revised in light of analyses of molecular data including gene an...

  3. Biological Influence of Deuterium on Procariotic and Eukaryotic Cells

    OpenAIRE

    Oleg Mosin; Ignat Ignatov

    2014-01-01

    Biologic influence of deuterium (D) on cells of various taxonomic groups of prokaryotic and eukaryotic microorganisms realizing methylotrophic, chemoheterotrophic, photo-organotrophic, and photosynthetic ways of assimilation of carbon substrates are investigated at growth on media with heavy water (D2О). The method of step by step adaptation technique of cells to D2О was developed, consisting in plating of cells on 2 % agarose nutrient media containing increasing gradient of concentration of ...

  4. Starting the protein synthesis machine: eukaryotic translation initiation.

    Science.gov (United States)

    Preiss, Thomas; W Hentze, Matthias

    2003-12-01

    The final assembly of the protein synthesis machinery occurs during translation initiation. This delicate process involves both ends of eukaryotic messenger RNAs as well as multiple sequential protein-RNA and protein-protein interactions. As is expected from its critical position in the gene expression pathway between the transcriptome and the proteome, translation initiation is a selective and highly regulated process. This synopsis summarises the current status of the field and identifies intriguing open questions. Copyright 2003 Wiley Periodicals, Inc.

  5. Hydrodynamics Versus Intracellular Coupling in the Synchronization of Eukaryotic Flagella.

    Science.gov (United States)

    Quaranta, Greta; Aubin-Tam, Marie-Eve; Tam, Daniel

    2015-12-04

    The influence of hydrodynamic forces on eukaryotic flagella synchronization is investigated by triggering phase locking between a controlled external flow and the flagella of C. reinhardtii. Hydrodynamic forces required for synchronization are over an order of magnitude larger than hydrodynamic forces experienced in physiological conditions. Our results suggest that synchronization is due instead to coupling through cell internal fibers connecting the flagella. This conclusion is confirmed by observations of the vfl3 mutant, with impaired mechanical connection between the flagella.

  6. An Evolutionary Framework for Understanding the Origin of Eukaryotes

    OpenAIRE

    Neil W Blackstone

    2016-01-01

    Two major obstacles hinder the application of evolutionary theory to the origin of eukaryotes. The first is more apparent than real—the endosymbiosis that led to the mitochondrion is often described as “non-Darwinian” because it deviates from the incremental evolution championed by the modern synthesis. Nevertheless, endosymbiosis can be accommodated by a multi-level generalization of evolutionary theory, which Darwin himself pioneered. The second obstacle is more serious—all of the major fea...

  7. Function of prokaryotic and eukaryotic ABC proteins in lipid transport.

    Science.gov (United States)

    Pohl, Antje; Devaux, Philippe F; Herrmann, Andreas

    2005-03-21

    ATP binding cassette (ABC) proteins of both eukaryotic and prokaryotic origins are implicated in the transport of lipids. In humans, members of the ABC protein families A, B, C, D and G are mutated in a number of lipid transport and metabolism disorders, such as Tangier disease, Stargardt syndrome, progressive familial intrahepatic cholestasis, pseudoxanthoma elasticum, adrenoleukodystrophy or sitosterolemia. Studies employing transfection, overexpression, reconstitution, deletion and inhibition indicate the transbilayer transport of endogenous lipids and their analogs by some of these proteins, modulating lipid transbilayer asymmetry. Other proteins appear to be involved in the exposure of specific lipids on the exoplasmic leaflet, allowing their uptake by acceptors and further transport to specific sites. Additionally, lipid transport by ABC proteins is currently being studied in non-human eukaryotes, e.g. in sea urchin, trypanosomatides, arabidopsis and yeast, as well as in prokaryotes such as Escherichia coli and Lactococcus lactis. Here, we review current information about the (putative) role of both pro- and eukaryotic ABC proteins in the various phenomena associated with lipid transport. Besides providing a better understanding of phenomena like lipid metabolism, circulation, multidrug resistance, hormonal processes, fertilization, vision and signalling, studies on pro- and eukaryotic ABC proteins might eventually enable us to put a name on some of the proteins mediating transbilayer lipid transport in various membranes of cells and organelles. It must be emphasized, however, that there are still many uncertainties concerning the functions and mechanisms of ABC proteins interacting with lipids. In particular, further purification and reconstitution experiments with an unambiguous role of ATP hydrolysis are needed to demonstrate a clear involvement of ABC proteins in lipid transbilayer asymmetry.

  8. Non-coding RNAs: the architects of eukaryotic complexity.

    Science.gov (United States)

    Mattick, J S

    2001-11-01

    Around 98% of all transcriptional output in humans is non-coding RNA. RNA-mediated gene regulation is widespread in higher eukaryotes and complex genetic phenomena like RNA interference, co-suppression, transgene silencing, imprinting, methylation, and possibly position-effect variegation and transvection, all involve intersecting pathways based on or connected to RNA signaling. I suggest that the central dogma is incomplete, and that intronic and other non-coding RNAs have evolved to comprise a second tier of gene expression in eukaryotes, which enables the integration and networking of complex suites of gene activity. Although proteins are the fundamental effectors of cellular function, the basis of eukaryotic complexity and phenotypic variation may lie primarily in a control architecture composed of a highly parallel system of trans-acting RNAs that relay state information required for the coordination and modulation of gene expression, via chromatin remodeling, RNA-DNA, RNA-RNA and RNA-protein interactions. This system has interesting and perhaps informative analogies with small world networks and dataflow computing.

  9. Evolution of networks and sequences in eukaryotic cell cycle control.

    Science.gov (United States)

    Cross, Frederick R; Buchler, Nicolas E; Skotheim, Jan M

    2011-12-27

    The molecular networks regulating the G1-S transition in budding yeast and mammals are strikingly similar in network structure. However, many of the individual proteins performing similar network roles appear to have unrelated amino acid sequences, suggesting either extremely rapid sequence evolution, or true polyphyly of proteins carrying out identical network roles. A yeast/mammal comparison suggests that network topology, and its associated dynamic properties, rather than regulatory proteins themselves may be the most important elements conserved through evolution. However, recent deep phylogenetic studies show that fungal and animal lineages are relatively closely related in the opisthokont branch of eukaryotes. The presence in plants of cell cycle regulators such as Rb, E2F and cyclins A and D, that appear lost in yeast, suggests cell cycle control in the last common ancestor of the eukaryotes was implemented with this set of regulatory proteins. Forward genetics in non-opisthokonts, such as plants or their green algal relatives, will provide direct information on cell cycle control in these organisms, and may elucidate the potentially more complex cell cycle control network of the last common eukaryotic ancestor.

  10. diArk – a resource for eukaryotic genome research

    Directory of Open Access Journals (Sweden)

    Kollmar Martin

    2007-04-01

    Full Text Available Abstract Background The number of completed eukaryotic genome sequences and cDNA projects has increased exponentially in the past few years although most of them have not been published yet. In addition, many microarray analyses yielded thousands of sequenced EST and cDNA clones. For the researcher interested in single gene analyses (from a phylogenetic, a structural biology or other perspective it is therefore important to have up-to-date knowledge about the various resources providing primary data. Description The database is built around 3 central tables: species, sequencing projects and publications. The species table contains commonly and alternatively used scientific names, common names and the complete taxonomic information. For projects the sequence type and links to species project web-sites and species homepages are stored. All publications are linked to projects. The web-interface provides comprehensive search modules with detailed options and three different views of the selected data. We have especially focused on developing an elaborate taxonomic tree search tool that allows the user to instantaneously identify e.g. the closest relative to the organism of interest. Conclusion We have developed a database, called diArk, to store, organize, and present the most relevant information about completed genome projects and EST/cDNA data from eukaryotes. Currently, diArk provides information about 415 eukaryotes, 823 sequencing projects, and 248 publications.

  11. Chromatin—a global buffer for eukaryotic gene control

    Directory of Open Access Journals (Sweden)

    Yuri M. Moshkin

    2015-09-01

    Full Text Available Most of eukaryotic DNA is embedded into nucleosome arrays formed by DNA wrapped around a core histone octamer. Nucleosome is a fundamental repeating unit of chromatin guarding access to the genetic information. Here, I will discuss two facets of nucleosome in eukaryotic gene control. On the one hand, nucleosome acts as a regulatory unit, which controls gene switches through a set of post-translational modifications occurring on histone tails. On the other hand, global configuration of nucleosome arrays with respect to nucleosome positioning, spacing and turnover acts as a tuning parameter for all genomic functions. A “histone code” hypothesis extents the Jacob-Monod model for eukaryotic gene control; however, when considering factors capable of reconfiguring entire nucleosome array, such as ATP-dependent chromatin remodelers, this model becomes limited. Global changes in nucleosome arrays will be sensed by every gene, yet the transcriptional responses might be specific and appear as gene targeted events. What determines such specificity is unclear, but it’s likely to depend on initial gene settings, such as availability of transcription factors, and on configuration of new nucleosome array state.

  12. Eukaryotic Penelope-Like Retroelements Encode Hammerhead Ribozyme Motifs

    Science.gov (United States)

    Cervera, Amelia; De la Peña, Marcos

    2014-01-01

    Small self-cleaving RNAs, such as the paradigmatic Hammerhead ribozyme (HHR), have been recently found widespread in DNA genomes across all kingdoms of life. In this work, we found that new HHR variants are preserved in the ancient family of Penelope-like elements (PLEs), a group of eukaryotic retrotransposons regarded as exceptional for encoding telomerase-like retrotranscriptases and spliceosomal introns. Our bioinformatic analysis revealed not only the presence of minimalist HHRs in the two flanking repeats of PLEs but also their massive and widespread occurrence in metazoan genomes. The architecture of these ribozymes indicates that they may work as dimers, although their low self-cleavage activity in vitro suggests the requirement of other factors in vivo. In plants, however, PLEs show canonical HHRs, whereas fungi and protist PLEs encode ribozyme variants with a stable active conformation as monomers. Overall, our data confirm the connection of self-cleaving RNAs with eukaryotic retroelements and unveil these motifs as a significant fraction of the encoded information in eukaryotic genomes. PMID:25135949

  13. Mechanisms and regulation of DNA replication initiation in eukaryotes.

    Science.gov (United States)

    Parker, Matthew W; Botchan, Michael R; Berger, James M

    2017-04-01

    Cellular DNA replication is initiated through the action of multiprotein complexes that recognize replication start sites in the chromosome (termed origins) and facilitate duplex DNA melting within these regions. In a typical cell cycle, initiation occurs only once per origin and each round of replication is tightly coupled to cell division. To avoid aberrant origin firing and re-replication, eukaryotes tightly regulate two events in the initiation process: loading of the replicative helicase, MCM2-7, onto chromatin by the origin recognition complex (ORC), and subsequent activation of the helicase by its incorporation into a complex known as the CMG. Recent work has begun to reveal the details of an orchestrated and sequential exchange of initiation factors on DNA that give rise to a replication-competent complex, the replisome. Here, we review the molecular mechanisms that underpin eukaryotic DNA replication initiation - from selecting replication start sites to replicative helicase loading and activation - and describe how these events are often distinctly regulated across different eukaryotic model organisms.

  14. The first eukaryote cell: an unfinished history of contestation.

    Science.gov (United States)

    O'Malley, Maureen A

    2010-09-01

    The eukaryote cell is one of the most radical innovations in the history of life, and the circumstances of its emergence are still deeply contested. This paper will outline the recent history of attempts to reveal these origins, with special attention to the argumentative strategies used to support claims about the first eukaryote cell. I will focus on two general models of eukaryogenesis: the phagotrophy model and the syntrophy model. As their labels indicate, they are based on claims about metabolic relationships. The first foregrounds the ability to consume other organisms; the second the ability to enter into symbiotic metabolic arrangements. More importantly, however, the first model argues for the autogenous or self-generated origins of the eukaryote cell, and the second for its exogenous or externally generated origins. Framing cell evolution this way leads each model to assert different priorities in regard to cell-biological versus molecular evidence, cellular versus environmental influences, plausibility versus evolutionary probability, and irreducibility versus the continuity of cell types. My examination of these issues will conclude with broader reflections on the implications of eukaryogenesis studies for a philosophical understanding of scientific contestation. Copyright © 2010 Elsevier Ltd. All rights reserved.

  15. Modified Gravity

    Science.gov (United States)

    Schmidt, Fabian

    2013-08-01

    These lectures provide a brief introduction into modified gravity theories, i.e. theories that deviate from General Relativity. We focus on theories that satisfy the Einstein Equivalence Principle, which are characterized by a single metric governing the motions of bodies and dynamics of fields. Further, we emphasize models that have received interest in the cosmological context, and which modify gravity on large scales.

  16. Functional divergence and convergent evolution in the plastid-targeted glyceraldehyde-3-phosphate dehydrogenases of diverse eukaryotic algae.

    Directory of Open Access Journals (Sweden)

    Daniel Gaston

    Full Text Available BACKGROUND: Glyceraldehyde-3-phosphate dehydrogenase (GAPDH is a key enzyme of the glycolytic pathway, reversibly catalyzing the sixth step of glycolysis and concurrently reducing the coenzyme NAD(+ to NADH. In photosynthetic organisms a GAPDH paralog (Gap2 in Cyanobacteria, GapA in most photosynthetic eukaryotes functions in the Calvin cycle, performing the reverse of the glycolytic reaction and using the coenzyme NADPH preferentially. In a number of photosynthetic eukaryotes that acquired their plastid by the secondary endosymbiosis of a eukaryotic red alga (Alveolates, haptophytes, cryptomonads and stramenopiles GapA has been apparently replaced with a paralog of the host's own cytosolic GAPDH (GapC1. Plastid GapC1 and GapA therefore represent two independent cases of functional divergence and adaptations to the Calvin cycle entailing a shift in subcellular targeting and a shift in binding preference from NAD(+ to NADPH. METHODS: We used the programs FunDi, GroupSim, and Difference Evolutionary-Trace to detect sites involved in the functional divergence of these two groups of GAPDH sequences and to identify potential cases of convergent evolution in the Calvin-cycle adapted GapA and GapC1 families. Sites identified as being functionally divergent by all or some of these programs were then investigated with respect to their possible roles in the structure and function of both glycolytic and plastid-targeted GAPDH isoforms. CONCLUSIONS: In this work we found substantial evidence for convergent evolution in GapA/B and GapC1. In many cases sites in GAPDHs of these groups converged on identical amino acid residues in specific positions of the protein known to play a role in the function and regulation of plastid-functioning enzymes relative to their cytosolic counterparts. In addition, we demonstrate that bioinformatic software like FunDi are important tools for the generation of meaningful biological hypotheses that can then be tested with direct

  17. Functional divergence and convergent evolution in the plastid-targeted glyceraldehyde-3-phosphate dehydrogenases of diverse eukaryotic algae.

    Science.gov (United States)

    Gaston, Daniel; Roger, Andrew J

    2013-01-01

    Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a key enzyme of the glycolytic pathway, reversibly catalyzing the sixth step of glycolysis and concurrently reducing the coenzyme NAD(+) to NADH. In photosynthetic organisms a GAPDH paralog (Gap2 in Cyanobacteria, GapA in most photosynthetic eukaryotes) functions in the Calvin cycle, performing the reverse of the glycolytic reaction and using the coenzyme NADPH preferentially. In a number of photosynthetic eukaryotes that acquired their plastid by the secondary endosymbiosis of a eukaryotic red alga (Alveolates, haptophytes, cryptomonads and stramenopiles) GapA has been apparently replaced with a paralog of the host's own cytosolic GAPDH (GapC1). Plastid GapC1 and GapA therefore represent two independent cases of functional divergence and adaptations to the Calvin cycle entailing a shift in subcellular targeting and a shift in binding preference from NAD(+) to NADPH. We used the programs FunDi, GroupSim, and Difference Evolutionary-Trace to detect sites involved in the functional divergence of these two groups of GAPDH sequences and to identify potential cases of convergent evolution in the Calvin-cycle adapted GapA and GapC1 families. Sites identified as being functionally divergent by all or some of these programs were then investigated with respect to their possible roles in the structure and function of both glycolytic and plastid-targeted GAPDH isoforms. In this work we found substantial evidence for convergent evolution in GapA/B and GapC1. In many cases sites in GAPDHs of these groups converged on identical amino acid residues in specific positions of the protein known to play a role in the function and regulation of plastid-functioning enzymes relative to their cytosolic counterparts. In addition, we demonstrate that bioinformatic software like FunDi are important tools for the generation of meaningful biological hypotheses that can then be tested with direct experimental techniques.

  18. Enzyme activity assay of glycoprotein enzymes based on a boronate affinity molecularly imprinted 96-well microplate.

    Science.gov (United States)

    Bi, Xiaodong; Liu, Zhen

    2014-12-16

    Enzyme activity assay is an important method in clinical diagnostics. However, conventional enzyme activity assay suffers from apparent interference from the sample matrix. Herein, we present a new format of enzyme activity assay that can effectively eliminate the effects of the sample matrix. The key is a 96-well microplate modified with molecularly imprinted polymer (MIP) prepared according to a newly proposed method called boronate affinity-based oriented surface imprinting. Alkaline phosphatase (ALP), a glycoprotein enzyme that has been routinely used as an indicator for several diseases in clinical tests, was taken as a representative target enzyme. The prepared MIP exhibited strong affinity toward the template enzyme (with a dissociation constant of 10(-10) M) as well as superb tolerance for interference. Thus, the enzyme molecules in a complicated sample matrix could be specifically captured and cleaned up for enzyme activity assay, which eliminated the interference from the sample matrix. On the other hand, because the boronate affinity MIP could well retain the enzymatic activity of glycoprotein enzymes, the enzyme captured by the MIP was directly used for activity assay. Thus, additional assay time and possible enzyme or activity loss due to an enzyme release step required by other methods were avoided. Assay of ALP in human serum was successfully demonstrated, suggesting a promising prospect of the proposed method in real-world applications.

  19. Origin of phagotrophic eukaryotes as social cheaters in microbial biofilms

    Directory of Open Access Journals (Sweden)

    Jékely Gáspár

    2007-01-01

    Full Text Available Abstract Background The origin of eukaryotic cells was one of the most dramatic evolutionary transitions in the history of life. It is generally assumed that eukaryotes evolved later then prokaryotes by the transformation or fusion of prokaryotic lineages. However, as yet there is no consensus regarding the nature of the prokaryotic group(s ancestral to eukaryotes. Regardless of this, a hardly debatable fundamental novel characteristic of the last eukaryotic common ancestor was the ability to exploit prokaryotic biomass by the ingestion of entire cells, i.e. phagocytosis. The recent advances in our understanding of the social life of prokaryotes may help to explain the origin of this form of total exploitation. Presentation of the hypothesis Here I propose that eukaryotic cells originated in a social environment, a differentiated microbial mat or biofilm that was maintained by the cooperative action of its members. Cooperation was costly (e.g. the production of developmental signals or an extracellular matrix but yielded benefits that increased the overall fitness of the social group. I propose that eukaryotes originated as selfish cheaters that enjoyed the benefits of social aggregation but did not contribute to it themselves. The cheaters later evolved into predators that lysed other cells and eventually became professional phagotrophs. During several cycles of social aggregation and dispersal the number of cheaters was contained by a chicken game situation, i.e. reproductive success of cheaters was high when they were in low abundance but was reduced when they were over-represented. Radical changes in cell structure, including the loss of the rigid prokaryotic cell wall and the development of endomembranes, allowed the protoeukaryotes to avoid cheater control and to exploit nutrients more efficiently. Cellular changes were buffered by both the social benefits and the protective physico-chemical milieu of the interior of biofilms. Symbiosis

  20. Ubiquitin-Like Proteasome System Represents a Eukaryotic-Like Pathway for Targeted Proteolysis in Archaea

    Directory of Open Access Journals (Sweden)

    Xian Fu

    2016-05-01

    Full Text Available The molecular mechanisms of targeted proteolysis in archaea are poorly understood, yet they may have deep evolutionary roots shared with the ubiquitin-proteasome system of eukaryotic cells. Here, we demonstrate in archaea that TBP2, a TATA-binding protein (TBP modified by ubiquitin-like isopeptide bonds, is phosphorylated and targeted for degradation by proteasomes. Rapid turnover of TBP2 required the functions of UbaA (the E1/MoeB/ThiF homolog of archaea, AAA ATPases (Cdc48/p97 and Rpt types, a type 2 JAB1/MPN/MOV34 metalloenzyme (JAMM/MPN+ homolog (JAMM2, and 20S proteasomes. The ubiquitin-like protein modifier small archaeal modifier protein 2 (SAMP2 stimulated the degradation of TBP2, but SAMP2 itself was not degraded. Analysis of the TBP2 fractions that were not modified by ubiquitin-like linkages revealed that TBP2 had multiple N termini, including Met1-Ser2, Ser2, and Met1-Ser2(p [where (p represents phosphorylation]. The evidence suggested that the Met1-Ser2(p form accumulated in cells that were unable to degrade TBP2. We propose a model in archaea in which the attachment of ubiquitin-like tags can target proteins for degradation by proteasomes and be controlled by N-terminal degrons. In support of a proteolytic mechanism that is energy dependent and recycles the ubiquitin-like protein tags, we find that a network of AAA ATPases and a JAMM/MPN+ metalloprotease are required, in addition to 20S proteasomes, for controlled intracellular proteolysis.

  1. Fundamentals of enzyme kinetics.

    Science.gov (United States)

    Seibert, Eleanore; Tracy, Timothy S

    2014-01-01

    This chapter provides a general introduction to the kinetics of enzyme-catalyzed reactions, with a focus on drug-metabolizing enzymes. A prerequisite to understanding enzyme kinetics is having a clear grasp of the meanings of "enzyme" and "catalysis." Catalysts are reagents that can increase the rate of a chemical reaction without being consumed in the reaction. Enzymes are proteins that form a subset of catalysts. These concepts are further explored below.

  2. Industrial enzyme applications.

    Science.gov (United States)

    Kirk, Ole; Borchert, Torben Vedel; Fuglsang, Claus Crone

    2002-08-01

    The effective catalytic properties of enzymes have already promoted their introduction into several industrial products and processes. Recent developments in biotechnology, particularly in areas such as protein engineering and directed evolution, have provided important tools for the efficient development of new enzymes. This has resulted in the development of enzymes with improved properties for established technical applications and in the production of new enzymes tailor-made for entirely new areas of application where enzymes have not previously been used.

  3. An overview of endosymbiotic models for the origins of eukaryotes, their ATP-producing organelles (mitochondria and hydrogenosomes), and their heterotrophic lifestyle.

    Science.gov (United States)

    Martin, W; Hoffmeister, M; Rotte, C; Henze, K

    2001-11-01

    The evolutionary processes underlying the differentness of prokaryotic and eukaryotic cells and the origin of the latter's organelles are still poorly understood. For about 100 years, the principle of endosymbiosis has figured into thoughts as to how these processes might have occurred. A number of models that have been discussed in the literature and that are designed to explain this difference are summarized. The evolutionary histories of the enzymes of anaerobic energy metabolism (oxygen-independent ATP synthesis) in the three basic types of heterotrophic eukaryotes those that lack organelles of ATP synthesis, those that possess mitochondria and those that possess hydrogenosomes--play an important role in this issue. Traditional endosymbiotic models generally do not address the origin of the heterotrophic lifestyle and anaerobic energy metabolism in eukaryotes. Rather they take it as a given, a direct inheritance from the host that acquired mitochondria. Traditional models are contrasted to an alternative endosymbiotic model (the hydrogen hypothesis), which addresses the origin of heterotrophy and the origin of compartmentalized energy metabolism in eukaryotes.

  4. Origin and evolution of the self-organizing cytoskeleton in the network of eukaryotic organelles.

    Science.gov (United States)

    Jékely, Gáspár

    2014-09-02

    The eukaryotic cytoskeleton evolved from prokaryotic cytomotive filaments. Prokaryotic filament systems show bewildering structural and dynamic complexity and, in many aspects, prefigure the self-organizing properties of the eukaryotic cytoskeleton. Here, the dynamic properties of the prokaryotic and eukaryotic cytoskeleton are compared, and how these relate to function and evolution of organellar networks is discussed. The evolution of new aspects of filament dynamics in eukaryotes, including severing and branching, and the advent of molecular motors converted the eukaryotic cytoskeleton into a self-organizing "active gel," the dynamics of which can only be described with computational models. Advances in modeling and comparative genomics hold promise of a better understanding of the evolution of the self-organizing cytoskeleton in early eukaryotes, and its role in the evolution of novel eukaryotic functions, such as amoeboid motility, mitosis, and ciliary swimming. Copyright © 2014 Cold Spring Harbor Laboratory Press; all rights reserved.

  5. ATP Production in Chlamydomonas reinhardtii Flagella by Glycolytic Enzymes

    DEFF Research Database (Denmark)

    Mitchell, Beth F; Pedersen, Lotte B; Feely, Michael

    2005-01-01

    Eukaryotic cilia and flagella are long, thin organelles, and diffusion from the cytoplasm may not be able to support the high ATP concentrations needed for dynein motor activity. We discovered enzyme activities in the Chlamydomonas reinhardtii flagellum that catalyze three steps of the lower half...

  6. Diversity of eukaryotic DNA replication origins revealed by genome-wide analysis of chromatin structure.

    Directory of Open Access Journals (Sweden)

    Nicolas M Berbenetz

    2010-09-01

    Full Text Available Eukaryotic DNA replication origins differ both in their efficiency and in the characteristic time during S phase when they become active. The biological basis for these differences remains unknown, but they could be a consequence of chromatin structure. The availability of genome-wide maps of nucleosome positions has led to an explosion of information about how nucleosomes are assembled at transcription start sites, but no similar maps exist for DNA replication origins. Here we combine high-resolution genome-wide nucleosome maps with comprehensive annotations of DNA replication origins to identify patterns of nucleosome occupancy at eukaryotic replication origins. On average, replication origins contain a nucleosome depleted region centered next to the ACS element, flanked on both sides by arrays of well-positioned nucleosomes. Our analysis identified DNA sequence properties that correlate with nucleosome occupancy at replication origins genome-wide and that are correlated with the nucleosome-depleted region. Clustering analysis of all annotated replication origins revealed a surprising diversity of nucleosome occupancy patterns. We provide evidence that the origin recognition complex, which binds to the origin, acts as a barrier element to position and phase nucleosomes on both sides of the origin. Finally, analysis of chromatin reconstituted in vitro reveals that origins are inherently nucleosome depleted. Together our data provide a comprehensive, genome-wide view of chromatin structure at replication origins and suggest a model of nucleosome positioning at replication origins in which the underlying sequence occludes nucleosomes to permit binding of the origin recognition complex, which then (likely in concert with nucleosome modifiers and remodelers positions nucleosomes adjacent to the origin to promote replication origin function.

  7. Insights into the Initiation of Eukaryotic DNA Replication.

    Science.gov (United States)

    Bruck, Irina; Perez-Arnaiz, Patricia; Colbert, Max K; Kaplan, Daniel L

    2015-01-01

    The initiation of DNA replication is a highly regulated event in eukaryotic cells to ensure that the entire genome is copied once and only once during S phase. The primary target of cellular regulation of eukaryotic DNA replication initiation is the assembly and activation of the replication fork helicase, the 11-subunit assembly that unwinds DNA at a replication fork. The replication fork helicase, called CMG for Cdc45-Mcm2-7, and GINS, assembles in S phase from the constituent Cdc45, Mcm2-7, and GINS proteins. The assembly and activation of the CMG replication fork helicase during S phase is governed by 2 S-phase specific kinases, CDK and DDK. CDK stimulates the interaction between Sld2, Sld3, and Dpb11, 3 initiation factors that are each required for the initiation of DNA replication. DDK, on the other hand, phosphorylates the Mcm2, Mcm4, and Mcm6 subunits of the Mcm2-7 complex. Sld3 recruits Cdc45 to Mcm2-7 in a manner that depends on DDK, and recent work suggests that Sld3 binds directly to Mcm2-7 and also to single-stranded DNA. Furthermore, recent work demonstrates that Sld3 and its human homolog Treslin substantially stimulate DDK phosphorylation of Mcm2. These data suggest that the initiation factor Sld3/Treslin coordinates the assembly and activation of the eukaryotic replication fork helicase by recruiting Cdc45 to Mcm2-7, stimulating DDK phosphorylation of Mcm2, and binding directly to single-stranded DNA as the origin is melted.

  8. Oceanographic structure drives the assembly processes of microbial eukaryotic communities

    Science.gov (United States)

    Monier, Adam; Comte, Jérôme; Babin, Marcel; Forest, Alexandre; Matsuoka, Atsushi; Lovejoy, Connie

    2015-01-01

    Arctic Ocean microbial eukaryote phytoplankton form subsurface chlorophyll maximum (SCM), where much of the annual summer production occurs. This SCM is particularly persistent in the Western Arctic Ocean, which is strongly salinity stratified. The recent loss of multiyear sea ice and increased particulate-rich river discharge in the Arctic Ocean results in a greater volume of fresher water that may displace nutrient-rich saltier waters to deeper depths and decrease light penetration in areas affected by river discharge. Here, we surveyed microbial eukaryotic assemblages in the surface waters, and within and below the SCM. In most samples, we detected the pronounced SCM that usually occurs at the interface of the upper mixed layer and Pacific Summer Water (PSW). Poorly developed SCM was seen under two conditions, one above PSW and associated with a downwelling eddy, and the second in a region influenced by the Mackenzie River plume. Four phylogenetically distinct communities were identified: surface, pronounced SCM, weak SCM and a deeper community just below the SCM. Distance–decay relationships and phylogenetic structure suggested distinct ecological processes operating within these communities. In the pronounced SCM, picophytoplanktons were prevalent and community assembly was attributed to water mass history. In contrast, environmental filtering impacted the composition of the weak SCM communities, where heterotrophic Picozoa were more numerous. These results imply that displacement of Pacific waters to greater depth and increased terrigenous input may act as a control on SCM development and result in lower net summer primary production with a more heterotroph dominated eukaryotic microbial community. PMID:25325383

  9. Exploitation of eukaryotic subcellular targeting mechanisms by bacterial effectors.

    Science.gov (United States)

    Hicks, Stuart W; Galán, Jorge E

    2013-05-01

    Several bacterial species have evolved specialized secretion systems to deliver bacterial effector proteins into eukaryotic cells. These effectors have the capacity to modulate host cell pathways in order to promote bacterial survival and replication. The spatial and temporal context in which the effectors exert their biochemical activities is crucial for their function. To fully understand effector function in the context of infection, we need to understand the mechanisms that lead to the precise subcellular localization of effectors following their delivery into host cells. Recent studies have shown that bacterial effectors exploit host cell machinery to accurately target their biochemical activities within the host cell.

  10. Septins and the lateral compartmentalization of eukaryotic membranes.

    Science.gov (United States)

    Caudron, Fabrice; Barral, Yves

    2009-04-01

    Eukaryotic cells from neurons and epithelial cells to unicellular fungi frequently rely on cellular appendages such as axons, dendritic spines, cilia, and buds for their biology. The emergence and differentiation of these appendages depend on the formation of lateral diffusion barriers at their bases to insulate their membranes from the rest of the cell. Here, we review recent progress regarding the molecular mechanisms and functions of such barriers. This overview underlines the importance and conservation of septin-dependent diffusion barriers, which coordinately compartmentalize both plasmatic and internal membranes. We discuss their role in memory establishment and the control of cellular aging.

  11. Eukaryotic cells and their cell bodies: Cell Theory revised.

    Science.gov (United States)

    Baluska, Frantisek; Volkmann, Dieter; Barlow, Peter W

    2004-07-01

    Cell Theory, also known as cell doctrine, states that all eukaryotic organisms are composed of cells, and that cells are the smallest independent units of life. This Cell Theory has been influential in shaping the biological sciences ever since, in 1838/1839, the botanist Matthias Schleiden and the zoologist Theodore Schwann stated the principle that cells represent the elements from which all plant and animal tissues are constructed. Some 20 years later, in a famous aphorism Omnis cellula e cellula, Rudolf Virchow annunciated that all cells arise only from pre-existing cells. General acceptance of Cell Theory was finally possible only when the cellular nature of brain tissues was confirmed at the end of the 20th century. Cell Theory then rapidly turned into a more dogmatic cell doctrine, and in this form survives up to the present day. In its current version, however, the generalized Cell Theory developed for both animals and plants is unable to accommodate the supracellular nature of higher plants, which is founded upon a super-symplasm of interconnected cells into which is woven apoplasm, symplasm and super-apoplasm. Furthermore, there are numerous examples of multinucleate coenocytes and syncytia found throughout the eukaryote superkingdom posing serious problems for the current version of Cell Theory. To cope with these problems, we here review data which conform to the original proposal of Daniel Mazia that the eukaryotic cell is composed of an elemental Cell Body whose structure is smaller than the cell and which is endowed with all the basic attributes of a living entity. A complement to the Cell Body is the Cell Periphery Apparatus, which consists of the plasma membrane associated with other periphery structures. Importantly, boundary structures of the Cell Periphery Apparatus, although capable of some self-assembly, are largely produced and maintained by Cell Body activities and can be produced from it de novo. These boundary structures serve not only as

  12. Rationales and Approaches for Studying Metabolism in Eukaryotic Microalgae

    Directory of Open Access Journals (Sweden)

    Daniel Veyel

    2014-04-01

    Full Text Available The generation of efficient production strains is essential for the use of eukaryotic microalgae for biofuel production. Systems biology approaches including metabolite profiling on promising microalgal strains, will provide a better understanding of their metabolic networks, which is crucial for metabolic engineering efforts. Chlamydomonas reinhardtii represents a suited model system for this purpose. We give an overview to genetically amenable microalgal strains with the potential for biofuel production and provide a critical review of currently used protocols for metabolite profiling on Chlamydomonas. We provide our own experimental data to underpin the validity of the conclusions drawn.

  13. The role of eukaryotic translation initiation factor 6 in tumors

    OpenAIRE

    Zhu, Wei; Li, Gui Xian; Chen, Hong Lang; Liu, Xing Yan

    2017-01-01

    Eukaryotic translation initiation factor 6 (eIF6) affects the maturation of 60S ribosomal subunits. Found in yeast and mammalian cells, eIF6 is primarily located in the cytoplasm of mammalian cells. Emerging evidence has demonstrated that the dysregulated expression of eIF6 is important in several types of human cancer, including head and neck carcinoma, colorectal cancer, non-small cell lung cancer and ovarian serous adenocarcinoma. However, the molecular mechanisms by which eIF6 functions d...

  14. Automatic generation of gene finders for eukaryotic species

    DEFF Research Database (Denmark)

    Terkelsen, Kasper Munch; Krogh, A.

    2006-01-01

    Background The number of sequenced eukaryotic genomes is rapidly increasing. This means that over time it will be hard to keep supplying customised gene finders for each genome. This calls for procedures to automatically generate species-specific gene finders and to re-train them as the quantity...... length distributions. The performance of each individual gene predictor on each individual genome is comparable to the best of the manually optimised species-specific gene finders. It is shown that species-specific gene finders are superior to gene finders trained on other species....

  15. Localization of checkpoint and repair proteins in eukaryotes

    DEFF Research Database (Denmark)

    Lisby, Michael; Rothstein, Rodney

    2005-01-01

    In eukaryotes, the cellular response to DNA damage depends on the type of DNA structure being recognized by the checkpoint and repair machinery. DNA ends and single-stranded DNA are hallmarks of double-strand breaks and replication stress. These two structures are recognized by distinct sets...... is largely controlled by a network of protein-protein interactions, with the Mre11 complex initiating assembly at DNA ends and replication protein A directing recruitment to single-stranded DNA. This review summarizes current knowledge on the cellular organization of DSB repair and checkpoint proteins...... focusing on budding yeast and mammalian cells....

  16. Micro-Eukaryotic Diversity in Hypolithons from Miers Valley, Antarctica

    Directory of Open Access Journals (Sweden)

    Don A. Cowan

    2013-02-01

    Full Text Available The discovery of extensive and complex hypolithic communities in both cold and hot deserts has raised many questions regarding their ecology, biodiversity and relevance in terms of regional productivity. However, most hypolithic research has focused on the bacterial elements of the community. This study represents the first investigation of micro-eukaryotic communities in all three hypolith types. Here we show that Antarctic hypoliths support extensive populations of novel uncharacterized bryophyta, fungi and protists and suggest that well known producer-decomposer-predator interactions may create the necessary conditions for hypolithic productivity in Antarctic deserts.

  17. Structure of Mth11/Mth Rpp29, an essential protein subunit of archaeal and eukaryotic RNase P.

    Science.gov (United States)

    Boomershine, William P; McElroy, Craig A; Tsai, Hsin-Yue; Wilson, Ross C; Gopalan, Venkat; Foster, Mark P

    2003-12-23

    We have determined the solution structure of Mth11 (Mth Rpp29), an essential subunit of the RNase P enzyme from the archaebacterium Methanothermobacter thermoautotrophicus (Mth). RNase P is a ubiquitous ribonucleoprotein enzyme primarily responsible for cleaving the 5' leader sequence during maturation of tRNAs in all three domains of life. In eubacteria, this enzyme is made up of two subunits: a large RNA ( approximately 120 kDa) responsible for mediating catalysis, and a small protein cofactor ( approximately 15 kDa) that modulates substrate recognition and is required for efficient in vivo catalysis. In contrast, multiple proteins are associated with eukaryotic and archaeal RNase P, and these proteins exhibit no recognizable homology to the conserved bacterial protein subunit. In reconstitution experiments with recombinantly expressed and purified protein subunits, we found that Mth Rpp29, a homolog of the Rpp29 protein subunit from eukaryotic RNase P, is an essential protein component of the archaeal holoenzyme. Consistent with its role in mediating protein-RNA interactions, we report that Mth Rpp29 is a member of the oligonucleotide/oligosaccharide binding fold family. In addition to a structured beta-barrel core, it possesses unstructured N- and C-terminal extensions bearing several highly conserved amino acid residues. To identify possible RNA contacts in the protein-RNA complex, we examined the interaction of the 11-kDa protein with the full 100-kDa Mth RNA subunit by using NMR chemical shift perturbation. Our findings represent a critical step toward a structural model of the RNase P holoenzyme from archaebacteria and higher organisms.

  18. Ciliary contact interactions dominate surface scattering of swimming eukaryotes.

    Science.gov (United States)

    Kantsler, Vasily; Dunkel, Jörn; Polin, Marco; Goldstein, Raymond E

    2013-01-22

    Interactions between swimming cells and surfaces are essential to many microbiological processes, from bacterial biofilm formation to human fertilization. However, despite their fundamental importance, relatively little is known about the physical mechanisms that govern the scattering of flagellated or ciliated cells from solid surfaces. A more detailed understanding of these interactions promises not only new biological insights into structure and dynamics of flagella and cilia but may also lead to new microfluidic techniques for controlling cell motility and microbial locomotion, with potential applications ranging from diagnostic tools to therapeutic protein synthesis and photosynthetic biofuel production. Due to fundamental differences in physiology and swimming strategies, it is an open question of whether microfluidic transport and rectification schemes that have recently been demonstrated for pusher-type microswimmers such as bacteria and sperm cells, can be transferred to puller-type algae and other motile eukaryotes, because it is not known whether long-range hydrodynamic or short-range mechanical forces dominate the surface interactions of these microorganisms. Here, using high-speed microscopic imaging, we present direct experimental evidence that the surface scattering of both mammalian sperm cells and unicellular green algae is primarily governed by direct ciliary contact interactions. Building on this insight, we predict and experimentally verify the existence of optimal microfluidic ratchets that maximize rectification of initially uniform Chlamydomonas reinhardtii suspensions. Because mechano-elastic properties of cilia are conserved across eukaryotic species, we expect that our results apply to a wide range of swimming microorganisms.

  19. Biosynthesis of selenocysteine on its tRNA in eukaryotes.

    Directory of Open Access Journals (Sweden)

    Xue-Ming Xu

    2007-01-01

    Full Text Available Selenocysteine (Sec is cotranslationally inserted into protein in response to UGA codons and is the 21st amino acid in the genetic code. However, the means by which Sec is synthesized in eukaryotes is not known. Herein, comparative genomics and experimental analyses revealed that the mammalian Sec synthase (SecS is the previously identified pyridoxal phosphate-containing protein known as the soluble liver antigen. SecS required selenophosphate and O-phosphoseryl-tRNA([Ser]Sec as substrates to generate selenocysteyl-tRNA([Ser]Sec. Moreover, it was found that Sec was synthesized on the tRNA scaffold from selenide, ATP, and serine using tRNA([Ser]Sec, seryl-tRNA synthetase, O-phosphoseryl-tRNA([Ser]Sec kinase, selenophosphate synthetase, and SecS. By identifying the pathway of Sec biosynthesis in mammals, this study not only functionally characterized SecS but also assigned the function of the O-phosphoseryl-tRNA([Ser]Sec kinase. In addition, we found that selenophosphate synthetase 2 could synthesize monoselenophosphate in vitro but selenophosphate synthetase 1 could not. Conservation of the overall pathway of Sec biosynthesis suggests that this pathway is also active in other eukaryotes and archaea that synthesize selenoproteins.

  20. A possible mechanism for exonuclease 1-independent eukaryotic mismatch repair

    Science.gov (United States)

    Kadyrov, Farid A.; Genschel, Jochen; Fang, Yanan; Penland, Elisabeth; Edelmann, Winfried; Modrich, Paul

    2009-01-01

    Mismatch repair contributes to genetic stability, and inactivation of the mammalian pathway leads to tumor development. Mismatch correction occurs by an excision-repair mechanism and has been shown to depend on the 5′ to 3′ hydrolytic activity exonuclease 1 (Exo1) in eukaryotic cells. However, genetic and biochemical studies have indicated that one or more Exo1-independent modes of mismatch repair also exist. We have analyzed repair of nicked circular heteroduplex DNA in extracts of Exo1-deficient mouse embryo fibroblast cells. Exo1-independent repair under these conditions is MutLα-dependent and requires functional integrity of the MutLα endonuclease metal-binding motif. In contrast to the Exo1-dependent reaction, we have been unable to detect a gapped excision intermediate in Exo1-deficient extracts when repair DNA synthesis is blocked. A possible explanation for this finding has been provided by analysis of a purified system comprised of MutSα, MutLα, replication factor C, proliferating cell nuclear antigen, replication protein A, and DNA polymerase δ that supports Exo1-independent repair in vitro. Repair in this system depends on MutLα incision of the nicked heteroduplex strand and dNTP-dependent synthesis-driven displacement of a DNA segment spanning the mismatch. Such a mechanism may account, at least in part, for the Exo1-independent repair that occurs in eukaryotic cells, and hence the modest cancer predisposition of Exo1-deficient mammalian cells. PMID:19420220

  1. MicroRNAs: The Mega Regulators in Eukaryotic Genomes

    Directory of Open Access Journals (Sweden)

    Iftekhar Ahmed Baloch

    2013-09-01

    Full Text Available MicroRNAs (miRNAs are endogenous, small, noncoding RNAs of 18-25 nucleotide (nt in length that negatively regulate their complementary messenger RNAs (mRNAs at the transcriptional and posttranscriptional level in many eukaryotic organisms. By affecting the gene regulation, miRNAs are likely to be concerned with most biological processes. Majority of the miRNA genes are found in intergenic regions or in anti-sense orientation to genes and have their own miRNA gene promoter and regulatory units. In contrast to their name and size, the miRNAs perform mega functions in eukaryotic organisms. They perform important functions in plants and animals during growth, organogenesis, transgene suppression, signaling pathway, environmental stresses, disease development and defense against the invading viruses. miRNAs are evolutionarily conserved from species to species within the same kingdom. However, there is a controversy among scientists about their conservation from animals to plants. Their conserved nature becomes an important logical tool for homologous discovery of miRNAs in other species. This review is aimed at describing some basic concepts regarding biogenesis and functions of miRNAs.

  2. Peroxicretion: a novel secretion pathway in the eukaryotic cell

    Directory of Open Access Journals (Sweden)

    Luesken Francisca A

    2009-05-01

    Full Text Available Abstract Background Enzyme production in microbial cells has been limited to secreted enzymes or intracellular enzymes followed by expensive down stream processing. Extracellular enzymes consists mainly of hydrolases while intracellular enzymes exhibit a much broader diversity. If these intracellular enzymes could be secreted by the cell the potential of industrial applications of enzymes would be enlarged. Therefore a novel secretion pathway for intracellular proteins was developed, using peroxisomes as secretion vesicles. Results Peroxisomes were decorated with a Golgi derived v-SNARE using a peroxisomal membrane protein as an anchor. This allowed the peroxisomes to fuse with the plasma membrane. Intracellular proteins were transported into the peroxisomes by adding a peroxisomal import signal (SKL tag. The proteins which were imported in the peroxisomes, were released into the extra-cellular space through this artificial secretion pathway which was designated peroxicretion. This concept was supported by electron microscopy studies. Conclusion Our results demonstrate that it is possible to reroute the intracellular trafficking of vesicles by changing the localisation of SNARE molecules, this approach can be used in in vivo biological studies to clarify the different control mechanisms regulating intracellular membrane trafficking. In addition we demonstrate peroxicretion of a diverse set of intracellular proteins. Therefore, we anticipate that the concept of peroxicretion may revolutionize the production of intracellular proteins from fungi and other microbial cells, as well as from mammalian cells.

  3. Arabidopsis ALIX is required for the endosomal localization of the deubiquitinating enzyme AMSH3.

    Science.gov (United States)

    Kalinowska, Kamila; Nagel, Marie-Kristin; Goodman, Kaija; Cuyas, Laura; Anzenberger, Franziska; Alkofer, Angela; Paz-Ares, Javier; Braun, Pascal; Rubio, Vicente; Otegui, Marisa S; Isono, Erika

    2015-10-06

    Ubiquitination is a signal for various cellular processes, including for endocytic degradation of plasma membrane cargos. Ubiquitinating as well as deubiquitinating enzymes (DUBs) can regulate these processes by modifying the ubiquitination status of target protein. Although accumulating evidence points to the important regulatory role of DUBs, the molecular basis of their regulation is still not well understood. Associated molecule with the SH3 domain of signal transduction adaptor molecule (STAM) (AMSH) is a conserved metalloprotease DUB in eukaryotes. AMSH proteins interact with components of the endosomal sorting complex required for transport (ESCRT) and are implicated in intracellular trafficking. To investigate how the function of AMSH is regulated at the cellular level, we carried out an interaction screen for the Arabidopsis AMSH proteins and identified the Arabidopsis homolog of apoptosis-linked gene-2 interacting protein X (ALIX) as a protein interacting with AMSH3 in vitro and in vivo. Analysis of alix knockout mutants in Arabidopsis showed that ALIX is essential for plant growth and development and that ALIX is important for the biogenesis of the vacuole and multivesicular bodies (MVBs). Cell biological analysis revealed that ALIX and AMSH3 colocalize on late endosomes. Although ALIX did not stimulate AMSH3 activity in vitro, in the absence of ALIX, AMSH3 localization on endosomes was abolished. Taken together, our data indicate that ALIX could function as an important regulator for AMSH3 function at the late endosomes.

  4. Bacterial Enzymes and Antibiotic Resistance- Oral Presentation

    Energy Technology Data Exchange (ETDEWEB)

    Maltz, Lauren [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2015-08-25

    By using protein crystallography and X-ray diffraction, structures of bacterial enzymes were solved to gain a better understanding of how enzymatic modification acts as an antibacterial resistance mechanism. Aminoglycoside phosphotransferases (APHs) are one of three aminoglycoside modifying enzymes that confer resistance to the aminoglycoside antibiotics via enzymatic modification, rendering many drugs obsolete. Specifically, the APH(2”) family vary in their substrate specificities and also in their preference for the phosphate donor (ADP versus GDP). By solving the structures of members of the APH(2”) family of enzymes, we can see how domain movements are important to their substrate specificity. Our structure of the ternary complex of APH(2”)-IIIa with GDP and kanamycin, when compared to the known structures of APH(2”)-IVa, reveals that there are real physical differences between these two enzymes, a structural finding that explains why the two enzymes differ in their preferences for certain aminoglycosides. Another important group of bacterial resistance enzymes are the Class D β-lactamases. Oxacillinase carbapenemases (OXAs) are part of this enzyme class and have begun to confer resistance to ‘last resort’ drugs, most notably carbapenems. Our structure of OXA-143 shows that the conformational flexibility of a conserved hydrophobic residue in the active site (Val130) serves to control the entry of a transient water molecule responsible for a key step in the enzyme’s mechanism. Our results provide insight into the structural mechanisms of these two different enzymes.

  5. Enzyme inhibition by iminosugars

    DEFF Research Database (Denmark)

    López, Óscar; Qing, Feng-Ling; Pedersen, Christian Marcus

    2013-01-01

    Imino- and azasugar glycosidase inhibitors display pH dependant inhibition reflecting that both the inhibitor and the enzyme active site have groups that change protonation state with pH. With the enzyme having two acidic groups and the inhibitor one basic group, enzyme-inhibitor complexes...

  6. The last eukaryotic common ancestor (LECA): acquisition of cytoskeletal motility from aerotolerant spirochetes in the Proterozoic Eon.

    Science.gov (United States)

    Margulis, Lynn; Chapman, Michael; Guerrero, Ricardo; Hall, John

    2006-08-29

    We develop a symbiogenetic concept of the origin of eukaryotic intracellular motility systems from anaerobic but aerotolerant spirochetes in sulfide-rich environments. The last eukaryotic common ancestors (LECAs) have extant archaeprotist descendants: motile nucleated cells with Embden-Meyerhof glycolysis and substrate-level phosphorylation that lack the alpha-proteobacterial symbiont that became the mitochondrion. Swimming and regulated O(2)-tolerance via sulfide oxidation already had been acquired by sulfidogenic wall-less archaebacteria (thermoplasmas) after aerotolerant cytoplasmic-tubule-containing spirochetes (eubacteria) attached to them. Increasing stability of sulfide-oxidizing/sulfur-reducing consortia analogous to extant sulfur syntrophies (Thiodendron) led to fusion. The eubacteria-archaebacteria symbiosis became permanent as the nucleus evolved by prokaryotic recombination with membrane hypertrophy, analogous to Gemmata obscuriglobus and other delta-proteobacteria with membrane-bounded nucleoids. Histone-coated DNA, protein-synthetic RNAs, amino-acylating, and other enzymes were contributed by the sulfidogen whereas most intracellular motility derives from the spirochete. From this redox syntrophy in anoxic and microoxic Proterozoic habitats LECA evolved. The nucleus originated by recombination of eu- and archaebacterial DNA that remained attached to eubacterial motility structures and became the microtubular cytoskeleton, including the mitotic apparatus. Direct LECA descendants include free-living archaeprotists in anoxic environments: archamoebae, metamonads, parabasalids, and some mammalian symbionts with mitosomes. LECA later acquired the fully aerobic Krebs cycle-oxidative phosphorylation-mitochondrial metabolism by integration of the protomitochondrion, a third alpha-proteobacterial symbiont from which the ancestors to most protoctists, all fungi, plants, and animals evolved. Secondarily anaerobic eukaryotes descended from LECA after integration

  7. A novel pathway of direct methane production and emission by eukaryotes including plants, animals and fungi: An overview

    Science.gov (United States)

    Liu, Jiangong; Chen, Huai; Zhu, Qiuan; Shen, Yan; Wang, Xue; Wang, Meng; Peng, Changhui

    2015-08-01

    Methane (CH4) is a powerful greenhouse gas with a global warming potential 28 times that of carbon dioxide (CO2). CH4 is responsible for approximately 20% of the Earth's warming since pre-industrial times. Knowledge of the sources of CH4 is crucial due to the recent substantial interannual variability of growth rates and uncertainties regarding individual sources. The prevailing paradigm is that methanogenesis carried out by methanogenic archaea occurs primarily under strictly anaerobic conditions. However, in the past decade, studies have confirmed direct CH4 release from three important kingdoms of eukaryotes-Plantae, Animalia and Fungi-even in the presence of oxygen. This novel CH4 production pathway has been aptly termed ;aerobic CH4 production; to distinguish it from the well-known anaerobic CH4 production pathway, which involves catalytic activity by methanogenic archaeal enzymes. In this review, we collated recent experimental evidence from the published literature and documented this novel pathway of direct CH4 production and emission by eukaryotes. The mechanisms involved in this pathway may be related to protective strategies of eukaryotes in response to changing environmental stresses, with CH4 a by-product or end-product during or at the end of the process(es) that originates from organic methyl-type compounds. Based on the existing, albeit uncertain estimates, plants seem to contribute less to the global CH4 budget (3-24%) compared to previous estimates (10-37%). We still lack estimates of CH4 emissions by animals and fungi. Overall, there is an urgent need to identify the precursors for this novel CH4 source and improve our understanding of the mechanisms of direct CH4 production and the impacts of environmental stresses. An estimate of this new CH4 source, which was not considered as a CH4 source by the Intergovernmental Panel on Climate Change (IPCC) (2013), could be useful for better quantitation of the global CH4 budget.

  8. Traced on the Timeline: Discovery of Acetylcholine and the Components of the Human Cholinergic System in a Primitive Unicellular Eukaryote Acanthamoeba spp.

    Science.gov (United States)

    Baig, Abdul Mannan; Rana, Zohaib; Tariq, Sumayya; Lalani, Salima; Ahmad, H R

    2017-11-13

    Acetylcholine (ACh) is the neurotransmitter of cholinergic signal transduction that affects the target cells via muscarinic (mAChR) and nicotinic (nAChR) cholinergic receptors embedded in the cell membrane. Of the cholinergic receptors that bind to ACh, the mAChRs execute several cognitive and metabolic functions in the human central nervous system (CNS). Very little is known about the origins and autocrine/paracrine roles of the ACh in primitive life forms. With the recent report of the evidence of an ACh binding mAChR1 like receptor in Acanthamoeba spp., it was tempting to investigate the origin and functional roles of cholinergic G-Protein coupled receptors (GPCRs) in the biology of eukaryotes. We inferred the presence of ACh, its synthetic, degradation system, and a signal transduction pathway in an approximately ∼2.0 billion year old primitive eukaryotic cell Acanthamoeba castellanii. Bioinformatics analysis, ligand binding prediction, and docking methods were used to establish the origins of enzymes involved in the synthesis and degradation of ACh. Notably, we provide evidence of the presence of ACh in A. castellanii by colorimetric analysis, which to date is the only report of its presence in this primitive unicellular eukaryote. We show the evidence for the presence of homology of evolutionary conserved key enzymes of the cholinergic system like choline acetyltransferase (ChAT) and acetylcholinesterase (AChE) in A. castellanii spp., which were found to be near identical to their human counterparts. Tracing the origin, functions of ACh, and primeval mAChRs in primitive eukaryotic cells has the potential of uncovering covert cholinergic pathways that can be extended to humans in order to understand the states of cholinergic deficiency in neurodegenerative diseases (ND).

  9. CRISPR-Mediated Base Editing Enables Efficient Disruption of Eukaryotic Genes through Induction of STOP Codons.

    Science.gov (United States)

    Billon, Pierre; Bryant, Eric E; Joseph, Sarah A; Nambiar, Tarun S; Hayward, Samuel B; Rothstein, Rodney; Ciccia, Alberto

    2017-09-21

    Standard CRISPR-mediated gene disruption strategies rely on Cas9-induced DNA double-strand breaks (DSBs). Here, we show that CRISPR-dependent base editing efficiently inactivates genes by precisely converting four codons (CAA, CAG, CGA, and TGG) into STOP codons without DSB formation. To facilitate gene inactivation by induction of STOP codons (iSTOP), we provide access to a database of over 3.4 million single guide RNAs (sgRNAs) for iSTOP (sgSTOPs) targeting 97%-99% of genes in eight eukaryotic species, and we describe a restriction fragment length polymorphism (RFLP) assay that allows the rapid detection of iSTOP-mediated editing in cell populations and clones. To simplify the selection of sgSTOPs, our resource includes annotations for off-target propensity, percentage of isoforms targeted, prediction of nonsense-mediated decay, and restriction enzymes for RFLP analysis. Additionally, our database includes sgSTOPs that could be employed to precisely model over 32,000 cancer-associated nonsense mutations. Altogether, this work provides a comprehensive resource for DSB-free gene disruption by iSTOP. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. ATLs and BTLs, plant-specific and general eukaryotic structurally-related E3 ubiquitin ligases.

    Science.gov (United States)

    Guzmán, Plinio

    2014-02-01

    Major components of the ubiquitin proteasome system are the enzymes that operate on the transfer of ubiquitin to selected target substrate, known as ubiquitin ligases. The RING finger is a domain that is present in key classes of ubiquitin ligases. This domain coordinates the interaction with a suitable E2 conjugase and the transfer of ubiquitin from the E2 to protein targets. Additional domains coupled to the same polypeptide are important for modulating the function of these ubiquitin ligases. Plants contain several types of E3 ubiquitin ligases that in many cases have expanded as multigene families. Some families are specific to the plant lineage, whereas others may have a common ancestor among plants and other eukaryotic lineages. Arabidopsis Tóxicos en Levadura (ATLs) and BCA2 zinc finger ATLs (BTLs) are two families of ubiquitin ligases that share some common structural features. These are intronless genes that encode a highly related RING finger domain, and yet during evolutionary history, their mode of gene expansion and function is rather different. In each of these two families, the co-occurrence of transmembrane helices or C2/C2 (BZF finger) domains with a selected variation on the RING finger has been subjected to strong selection pressure in order to preserve their unique domain architectures during evolution. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  11. Membrane vesicle release in bacteria, eukaryotes, and archaea: a conserved yet underappreciated aspect of microbial life.

    Science.gov (United States)

    Deatherage, Brooke L; Cookson, Brad T

    2012-06-01

    Interaction of microbes with their environment depends on features of the dynamic microbial surface throughout cell growth and division. Surface modifications, whether used to acquire nutrients, defend against other microbes, or resist the pressures of a host immune system, facilitate adaptation to unique surroundings. The release of bioactive membrane vesicles (MVs) from the cell surface is conserved across microbial life, in bacteria, archaea, fungi, and parasites. MV production occurs not only in vitro but also in vivo during infection, underscoring the influence of these surface organelles in microbial physiology and pathogenesis through delivery of enzymes, toxins, communication signals, and antigens recognized by the innate and adaptive immune systems. Derived from a variety of organisms that span kingdoms of life and called by several names (membrane vesicles, outer membrane vesicles [OMVs], exosomes, shedding microvesicles, etc.), the conserved functions and mechanistic strategies of MV release are similar, including the use of ESCRT proteins and ESCRT protein homologues to facilitate these processes in archaea and eukaryotic microbes. Although forms of MV release by different organisms share similar visual, mechanistic, and functional features, there has been little comparison across microbial life. This underappreciated conservation of vesicle release, and the resulting functional impact throughout the tree of life, explored in this review, stresses the importance of vesicle-mediated processes throughout biology.

  12. Amino acids biosynthesis and nitrogen assimilation pathways: a great genomic deletion during eukaryotes evolution

    Science.gov (United States)

    2011-01-01

    Background Besides being building blocks for proteins, amino acids are also key metabolic intermediates in living cells. Surprisingly a variety of organisms are incapable of synthesizing some of them, thus named Essential Amino Acids (EAAs). How certain ancestral organisms successfully competed for survival after losing key genes involved in amino acids anabolism remains an open question. Comparative genomics searches on current protein databases including sequences from both complete and incomplete genomes among diverse taxonomic groups help us to understand amino acids auxotrophy distribution. Results Here, we applied a methodology based on clustering of homologous genes to seed sequences from autotrophic organisms Saccharomyces cerevisiae (yeast) and Arabidopsis thaliana (plant). Thus we depict evidences of presence/absence of EAA biosynthetic and nitrogen assimilation enzymes at phyla level. Results show broad loss of the phenotype of EAAs biosynthesis in several groups of eukaryotes, followed by multiple secondary gene losses. A subsequent inability for nitrogen assimilation is observed in derived metazoans. Conclusions A Great Deletion model is proposed here as a broad phenomenon generating the phenotype of amino acids essentiality followed, in metazoans, by organic nitrogen dependency. This phenomenon is probably associated to a relaxed selective pressure conferred by heterotrophy and, taking advantage of available homologous clustering tools, a complete and updated picture of it is provided. PMID:22369087

  13. Insights into the red algae and eukaryotic evolution from the genome of Porphyra umbilicalis (Bangiophyceae, Rhodophyta).

    Science.gov (United States)

    Brawley, Susan H; Blouin, Nicolas A; Ficko-Blean, Elizabeth; Wheeler, Glen L; Lohr, Martin; Goodson, Holly V; Jenkins, Jerry W; Blaby-Haas, Crysten E; Helliwell, Katherine E; Chan, Cheong Xin; Marriage, Tara N; Bhattacharya, Debashish; Klein, Anita S; Badis, Yacine; Brodie, Juliet; Cao, Yuanyu; Collén, Jonas; Dittami, Simon M; Gachon, Claire M M; Green, Beverley R; Karpowicz, Steven J; Kim, Jay W; Kudahl, Ulrich Johan; Lin, Senjie; Michel, Gurvan; Mittag, Maria; Olson, Bradley J S C; Pangilinan, Jasmyn L; Peng, Yi; Qiu, Huan; Shu, Shengqiang; Singer, John T; Smith, Alison G; Sprecher, Brittany N; Wagner, Volker; Wang, Wenfei; Wang, Zhi-Yong; Yan, Juying; Yarish, Charles; Zäuner-Riek, Simone; Zhuang, Yunyun; Zou, Yong; Lindquist, Erika A; Grimwood, Jane; Barry, Kerrie W; Rokhsar, Daniel S; Schmutz, Jeremy; Stiller, John W; Grossman, Arthur R; Prochnik, Simon E

    2017-08-01

    Porphyra umbilicalis (laver) belongs to an ancient group of red algae (Bangiophyceae), is harvested for human food, and thrives in the harsh conditions of the upper intertidal zone. Here we present the 87.7-Mbp haploid Porphyra genome (65.8% G + C content, 13,125 gene loci) and elucidate traits that inform our understanding of the biology of red algae as one of the few multicellular eukaryotic lineages. Novel features of the Porphyra genome shared by other red algae relate to the cytoskeleton, calcium signaling, the cell cycle, and stress-tolerance mechanisms including photoprotection. Cytoskeletal motor proteins in Porphyra are restricted to a small set of kinesins that appear to be the only universal cytoskeletal motors within the red algae. Dynein motors are absent, and most red algae, including Porphyra, lack myosin. This surprisingly minimal cytoskeleton offers a potential explanation for why red algal cells and multicellular structures are more limited in size than in most multicellular lineages. Additional discoveries further relating to the stress tolerance of bangiophytes include ancestral enzymes for sulfation of the hydrophilic galactan-rich cell wall, evidence for mannan synthesis that originated before the divergence of green and red algae, and a high capacity for nutrient uptake. Our analyses provide a comprehensive understanding of the red algae, which are both commercially important and have played a major role in the evolution of other algal groups through secondary endosymbioses.

  14. Transport and detoxification systems for transition metals, heavy metals and metalloids in eukaryotic and prokaryotic microbes.

    Science.gov (United States)

    Rosen, Barry P

    2002-11-01

    Transition metals, heavy metals and metalloids are usually toxic in excess, but a number of transition metals are essential trace elements. In all cells there are mechanisms for metal ion homeostasis that frequently involve a balance between uptake and efflux systems. This review will briefly describe ATP-coupled resistance pumps. ZntA and CadA are bacterial P-type ATPases that confers resistance to Zn(II), Cd(II) and Pb(II). Homologous copper pumps include the Menkes and Wilson disease proteins and CopA, an Escherichia coli pump that confers resistance to Cu(I). For resistance to arsenicals and antimonials there are several different families of transporters. In E. coli the ArsAB ATPase is a novel system that confers resistance to As(III) and Sb(III). Eukaryotic arsenic resistance transporters include Acr3p and Ycf1p of Saccharomyces cerevisiae. These systems provide resistance to arsenite [As(III)]. Arsenate [As(V)] detoxification involves reduction of As(V) to As(III), a process catalyzed by arsenate reductase enzymes. There are three families of arsenate reductases, two found in bacterial systems and a third identified in S. cerevisiae.

  15. Eukaryotic translation initiation factor 5A2 promotes metabolic reprogramming in hepatocellular carcinoma cells.

    Science.gov (United States)

    Cao, Ting-Ting; Lin, Shu-Hai; Fu, Li; Tang, Zhi; Che, Chi-Ming; Zhang, Li-Yi; Ming, Xiao-Yan; Liu, Teng-Fei; Tang, Xu-Ming; Tan, Bin-Bin; Xiang, Di; Li, Feng; Chan, On-Yee; Xie, Dan; Cai, Zongwei; Guan, Xin-Yuan

    2017-01-01

    Reprogramming of intracellular metabolism is common in liver cancer cells. Understanding the mechanisms of cell metabolic reprogramming may present a new basis for liver cancer treatment. In our previous study, we reported that a novel oncogene eukaryotic translation initiation factor 5A2 (EIF5A2) promotes tumorigenesis under hypoxic condition. Here, we aim to investigate the role of EIF5A2 in cell metabolic reprogramming during hepatocellular carcinoma (HCC) development. In this study, we reported that the messenger RNA (mRNA) level of EIF5A2 was upregulated in 59 of 105 (56.2%) HCC clinical samples (P = 0.015), and EIF5A2 overexpression was significantly associated with shorter survival time of patients with HCC (P = 0.021). Ectopic expression of EIF5A2 in HCC cell lines significantly promoted cell growth and accelerated glucose utilization and lipogenesis rates. The high rates of glucose uptake and lactate secretion conferred by EIF5A2 revealed an abnormal activity of aerobic glycolysis in HCC cells. Several key enzymes involved in glycolysis including glucose transporter type 1 and 2, hexokinase 2, phosphofructokinase liver type, glyceraldehyde 3-phosphate dehydrogenase, pyruvate kinase M2 isoform, phosphoglycerate mutase 1 and lactate dehydrogenase A were upregulated by overexpression of EIF5A2. Moreover, EIF5A2 showed positive correlations with FASN and ACSS2, two key enzymes involved in the fatty acid de novo biosynthetic pathway, at both protein and mRNA levels in HCC. These results indicated that EIF5A2 may regulate fatty acid de novo biosynthesis by increasing the uptake of acetate. In conclusion, our findings demonstrate that EIF5A2 has a critical role in HCC cell metabolic reprogramming and may serve as a prominent novel therapeutic target for liver cancer treatment. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Cross-species complementation of bacterial- and eukaryotic-type cardiolipin synthases

    Directory of Open Access Journals (Sweden)

    Petra Gottier

    2017-11-01

    Full Text Available The glycerophospholipid cardiolipin is a unique constituent of bacterial and mitochondrial membranes. It is involved in forming and stabilizing high molecular mass membrane protein complexes and in maintaining membrane architecture. Absence of cardiolipin leads to reduced efficiency of the electron transport chain, decreased membrane potential, and, ultimately, impaired respiratory metabolism. For the protozoan parasite Trypanosoma brucei cardiolipin synthesis is essential for survival, indicating that the enzymes involved in cardiolipin production represent potential drug targets. T. brucei cardiolipin synthase (TbCLS is unique as it belongs to the family of phospholipases D (PLD, harboring a prokaryotic-type cardiolipin synthase (CLS active site domain. In contrast, most other eukaryotic CLS, including the yeast ortholog ScCrd1, are members of the CDP-alcohol phosphatidyl­ transferase family. To study if these mechanistically distinct CLS enzymes are able to catalyze cardiolipin production in a cell that normally expresses a different type of CLS, we expressed TbCLS and ScCrd1 in CLS-deficient yeast and trypanosome strains, respectively. Our results show that TbCLS complemented cardiolipin production in CRD1 knockout yeast and partly restored wild-type colony forming capability under stress conditions. Remarkably, CL remodeling appeared to be impaired in the transgenic construct, suggesting that CL production and remodeling are tightly coupled processes that may require a clustering of the involved proteins into specific CL-synthesizing domains. In contrast, no complementation was observed by heterologous expression of ScCrd1 in conditional TbCLS knockout trypanosomes, despite proper mitochondrial targeting of the protein.

  17. Network dynamics of eukaryotic LTR retroelements beyond phylogenetic trees

    Science.gov (United States)

    Llorens, Carlos; Muñoz-Pomer, Alfonso; Bernad, Lucia; Botella, Hector; Moya, Andrés

    2009-01-01

    Background Sequencing projects have allowed diverse retroviruses and LTR retrotransposons from different eukaryotic organisms to be characterized. It is known that retroviruses and other retro-transcribing viruses evolve from LTR retrotransposons and that this whole system clusters into five families: Ty3/Gypsy, Retroviridae, Ty1/Copia, Bel/Pao and Caulimoviridae. Phylogenetic analyses usually show that these split into multiple distinct lineages but what is yet to be understood is how deep evolution occurred in this system. Results We combined phylogenetic and graph analyses to investigate the history of LTR retroelements both as a tree and as a network. We used 268 non-redundant LTR retroelements, many of them introduced for the first time in this work, to elucidate all possible LTR retroelement phylogenetic patterns. These were superimposed over the tree of eukaryotes to investigate the dynamics of the system, at distinct evolutionary times. Next, we investigated phenotypic features such as duplication and variability of amino acid motifs, and several differences in genomic ORF organization. Using this information we characterized eight reticulate evolution markers to construct phenotypic network models. Conclusion The evolutionary history of LTR retroelements can be traced as a time-evolving network that depends on phylogenetic patterns, epigenetic host-factors and phenotypic plasticity. The Ty1/Copia and the Ty3/Gypsy families represent the oldest patterns in this network that we found mimics eukaryotic macroevolution. The emergence of the Bel/Pao, Retroviridae and Caulimoviridae families in this network can be related with distinct inflations of the Ty3/Gypsy family, at distinct evolutionary times. This suggests that Ty3/Gypsy ancestors diversified much more than their Ty1/Copia counterparts, at distinct geological eras. Consistent with the principle of preferential attachment, the connectivities among phenotypic markers, taken as network

  18. Network dynamics of eukaryotic LTR retroelements beyond phylogenetic trees.

    Science.gov (United States)

    Llorens, Carlos; Muñoz-Pomer, Alfonso; Bernad, Lucia; Botella, Hector; Moya, Andrés

    2009-11-02

    Sequencing projects have allowed diverse retroviruses and LTR retrotransposons from different eukaryotic organisms to be characterized. It is known that retroviruses and other retro-transcribing viruses evolve from LTR retrotransposons and that this whole system clusters into five families: Ty3/Gypsy, Retroviridae, Ty1/Copia, Bel/Pao and Caulimoviridae. Phylogenetic analyses usually show that these split into multiple distinct lineages but what is yet to be understood is how deep evolution occurred in this system. We combined phylogenetic and graph analyses to investigate the history of LTR retroelements both as a tree and as a network. We used 268 non-redundant LTR retroelements, many of them introduced for the first time in this work, to elucidate all possible LTR retroelement phylogenetic patterns. These were superimposed over the tree of eukaryotes to investigate the dynamics of the system, at distinct evolutionary times. Next, we investigated phenotypic features such as duplication and variability of amino acid motifs, and several differences in genomic ORF organization. Using this information we characterized eight reticulate evolution markers to construct phenotypic network models. The evolutionary history of LTR retroelements can be traced as a time-evolving network that depends on phylogenetic patterns, epigenetic host-factors and phenotypic plasticity. The Ty1/Copia and the Ty3/Gypsy families represent the oldest patterns in this network that we found mimics eukaryotic macroevolution. The emergence of the Bel/Pao, Retroviridae and Caulimoviridae families in this network can be related with distinct inflations of the Ty3/Gypsy family, at distinct evolutionary times. This suggests that Ty3/Gypsy ancestors diversified much more than their Ty1/Copia counterparts, at distinct geological eras. Consistent with the principle of preferential attachment, the connectivities among phenotypic markers, taken as network-represented combinations, are power

  19. Network dynamics of eukaryotic LTR retroelements beyond phylogenetic trees

    Directory of Open Access Journals (Sweden)

    Bernad Lucia

    2009-11-01

    Full Text Available Abstract Background Sequencing projects have allowed diverse retroviruses and LTR retrotransposons from different eukaryotic organisms to be characterized. It is known that retroviruses and other retro-transcribing viruses evolve from LTR retrotransposons and that this whole system clusters into five families: Ty3/Gypsy, Retroviridae, Ty1/Copia, Bel/Pao and Caulimoviridae. Phylogenetic analyses usually show that these split into multiple distinct lineages but what is yet to be understood is how deep evolution occurred in this system. Results We combined phylogenetic and graph analyses to investigate the history of LTR retroelements both as a tree and as a network. We used 268 non-redundant LTR retroelements, many of them introduced for the first time in this work, to elucidate all possible LTR retroelement phylogenetic patterns. These were superimposed over the tree of eukaryotes to investigate the dynamics of the system, at distinct evolutionary times. Next, we investigated phenotypic features such as duplication and variability of amino acid motifs, and several differences in genomic ORF organization. Using this information we characterized eight reticulate evolution markers to construct phenotypic network models. Conclusion The evolutionary history of LTR retroelements can be traced as a time-evolving network that depends on phylogenetic patterns, epigenetic host-factors and phenotypic plasticity. The Ty1/Copia and the Ty3/Gypsy families represent the oldest patterns in this network that we found mimics eukaryotic macroevolution. The emergence of the Bel/Pao, Retroviridae and Caulimoviridae families in this network can be related with distinct inflations of the Ty3/Gypsy family, at distinct evolutionary times. This suggests that Ty3/Gypsy ancestors diversified much more than their Ty1/Copia counterparts, at distinct geological eras. Consistent with the principle of preferential attachment, the connectivities among phenotypic markers, taken as

  20. What can we infer about the origin of sex in early eukaryotes?

    OpenAIRE

    Speijer, Dave

    2016-01-01

    Current analysis shows that the last eukaryotic common ancestor (LECA) was capable of full meiotic sex. The original eukaryotic life cycle can probably be described as clonal, interrupted by episodic sex triggered by external or internal stressors. The cycle could have started in a highly flexible form, with the interruption of either diploid or haploid clonal growth determined by stress signals only. Eukaryotic sex most likely evolved in response to a high mutation rate, arising from the upt...

  1. Novel Features of Eukaryotic Photosystem II Revealed by Its Crystal Structure Analysis from a Red Alga*

    OpenAIRE

    Ago, Hideo; Adachi, Hideyuki; Umena, Yasufumi; Tashiro, Takayoshi; Kawakami, Keisuke; Kamiya, Nobuo; Tian, Lirong; Han, Guangye; Kuang, Tingyun; Liu, Zheyi; Wang, Fangjun; Zou, Hanfa; Enami, Isao; Miyano, Masashi; Shen, Jian-Ren

    2016-01-01

    Photosystem II (PSII) catalyzes light-induced water splitting, leading to the evolution of molecular oxygen indispensible for life on the earth. The crystal structure of PSII from cyanobacteria has been solved at an atomic level, but the structure of eukaryotic PSII has not been analyzed. Because eukaryotic PSII possesses additional subunits not found in cyanobacterial PSII, it is important to solve the structure of eukaryotic PSII to elucidate their detailed functions, as well as evolutionar...

  2. Protein prenylation: enzymes, therapeutics, and biotechnology applications.

    Science.gov (United States)

    Palsuledesai, Charuta C; Distefano, Mark D

    2015-01-16

    Protein prenylation is a ubiquitous covalent post-translational modification found in all eukaryotic cells, comprising attachment of either a farnesyl or a geranylgeranyl isoprenoid. It is essential for the proper cellular activity of numerous proteins, including Ras family GTPases and heterotrimeric G-proteins. Inhibition of prenylation has been extensively investigated to suppress the activity of oncogenic Ras proteins to achieve antitumor activity. Here, we review the biochemistry of the prenyltransferase enzymes and numerous isoprenoid analogs synthesized to investigate various aspects of prenylation and prenyltransferases. We also give an account of the current status of prenyltransferase inhibitors as potential therapeutics against several diseases including cancers, progeria, aging, parasitic diseases, and bacterial and viral infections. Finally, we discuss recent progress in utilizing protein prenylation for site-specific protein labeling for various biotechnology applications.

  3. L-Homoserylaminoethanol, a novel dipeptide alcohol inhibitor of eukaryotic DNA polymerase from a plant cultured cells, Nicotina tabacum L.

    Science.gov (United States)

    Kuriyama, Isoko; Asano, Naoki; Kato, Ikuo; Oshige, Masahiko; Sugino, Akio; Kadota, Yasuhiro; Kuchitsu, Kazuyuki; Yoshida, Hiromi; Sakaguchi, Kengo; Mizushina, Yoshiyuki

    2004-03-01

    We found a novel inhibitor specific to eukaryotic DNA polymerase epsilon(pol epsilon) from plant cultured cells, Nicotina tabacum L. The compound (compound 1) was a dipeptide alcohol, L-homoserylaminoethanol. The 50% inhibition of pol epsilon activity by the compound was 43.6 microg/mL, and it had almost no effect on the activities of the other eukaryotic DNA polymerases such as alpha, beta, gamma and delta, prokaryotic DNA polymerases, nor DNA metabolic enzymes such as human telomerase, human immunodeficiency virus type 1 reverse transcriptase, T7 RNA polymerase, human DNA topoisomerase I and II, T4 polynucleotide kinase and bovine deoxyribonuclease I. Kinetic studies showed that inhibition of pol epsilon by the compound was non-competitive with respect to both template-primer DNA and nucleotide substrate. We succeeded in chemically synthesizing the stereoisomers, L-homoserylaminoethanol and D-homoserylaminoethanol, and found both were effective to the same extent. The IC(50) values of L- and D-homoserylaminoethanols for pol epsilon were 42.0 and 41.5 microg/mL, respectively. This represents the second discovery of a pol epsilon-specific inhibitor, and the first report on a water-soluble peptide-like compound as the inhibitor, which is required in biochemical studies of pol epsilon.

  4. An Interactive Exercise To Learn Eukaryotic Cell Structure and Organelle Function.

    Science.gov (United States)

    Klionsky, Daniel J.; Tomashek, John J.

    1999-01-01

    Describes a cooperative, interactive problem-solving exercise for studying eukaryotic cell structure and function. Highlights the dynamic aspects of movement through the cell. Contains 15 references. (WRM)

  5. Distinct type I and type II toxin-antitoxin modules control Salmonella lifestyle inside eukaryotic cells

    National Research Council Canada - National Science Library

    Lobato-Márquez, Damián; Moreno-Córdoba, Inmaculada; Figueroa, Virginia; Díaz-Orejas, Ramón; García-del Portillo, Francisco

    2015-01-01

    .... Using the intracellular bacterial pathogen Salmonella enterica serovar Typhimurium as a model, here we show that a selected group of TA modules impact bacterial fitness inside eukaryotic cells...

  6. Saccharomyces cerevisiae: a versatile eukaryotic system in virology

    Directory of Open Access Journals (Sweden)

    Breinig Tanja

    2007-10-01

    Full Text Available Abstract The yeast Saccharomyces cerevisiae is a well-established model system for understanding fundamental cellular processes relevant to higher eukaryotic organisms. Less known is its value for virus research, an area in which Saccharomyces cerevisiae has proven to be very fruitful as well. The present review will discuss the main achievements of yeast-based studies in basic and applied virus research. These include the analysis of the function of individual proteins from important pathogenic viruses, the elucidation of key processes in viral replication through the development of systems that allow the replication of higher eukayotic viruses in yeast, and the use of yeast in antiviral drug development and vaccine production.

  7. A general strategy to construct small molecule biosensors in eukaryotes.

    Science.gov (United States)

    Feng, Justin; Jester, Benjamin W; Tinberg, Christine E; Mandell, Daniel J; Antunes, Mauricio S; Chari, Raj; Morey, Kevin J; Rios, Xavier; Medford, June I; Church, George M; Fields, Stanley; Baker, David

    2015-12-29

    Biosensors for small molecules can be used in applications that range from metabolic engineering to orthogonal control of transcription. Here, we produce biosensors based on a ligand-binding domain (LBD) by using a method that, in principle, can be applied to any target molecule. The LBD is fused to either a fluorescent protein or a transcriptional activator and is destabilized by mutation such that the fusion accumulates only in cells containing the target ligand. We illustrate the power of this method by developing biosensors for digoxin and progesterone. Addition of ligand to yeast, mammalian, or plant cells expressing a biosensor activates transcription with a dynamic range of up to ~100-fold. We use the biosensors to improve the biotransformation of pregnenolone to progesterone in yeast and to regulate CRISPR activity in mammalian cells. This work provides a general methodology to develop biosensors for a broad range of molecules in eukaryotes.

  8. Unicellular cyanobacterium symbiotic with a single-celled eukaryotic alga.

    Science.gov (United States)

    Thompson, Anne W; Foster, Rachel A; Krupke, Andreas; Carter, Brandon J; Musat, Niculina; Vaulot, Daniel; Kuypers, Marcel M M; Zehr, Jonathan P

    2012-09-21

    Symbioses between nitrogen (N)(2)-fixing prokaryotes and photosynthetic eukaryotes are important for nitrogen acquisition in N-limited environments. Recently, a widely distributed planktonic uncultured nitrogen-fixing cyanobacterium (UCYN-A) was found to have unprecedented genome reduction, including the lack of oxygen-evolving photosystem II and the tricarboxylic acid cycle, which suggested partnership in a symbiosis. We showed that UCYN-A has a symbiotic association with a unicellular prymnesiophyte, closely related to calcifying taxa present in the fossil record. The partnership is mutualistic, because the prymnesiophyte receives fixed N in exchange for transferring fixed carbon to UCYN-A. This unusual partnership between a cyanobacterium and a unicellular alga is a model for symbiosis and is analogous to plastid and organismal evolution, and if calcifying, may have important implications for past and present oceanic N(2) fixation.

  9. Substrate protein recognition mechanism of archaeal and eukaryotic chaperonins.

    Science.gov (United States)

    Shrestha, Pooja; Jayasinghe, Manori; Stan, George

    2009-03-01

    Chaperonins are double ring-shaped biological nanomachines that assist protein folding. Spectacular conformational changes take place within each chaperonin ring using energy derived from ATP hydrolysis. These changes result in transitions from the open to the closed ring. Substrate proteins bind to the open ring and are encapsulated within the closed ring cavity. We focus on the substrate protein recognition mechanism of archaeal and eukaryotic chaperonins. We predict substrate protein binding sites using structural and bioinformatic analyses of functional states during the chaperonin cycle. Based on large changes in solvent accessible surface area and contact maps we glean the functional role of chaperonin amino acids. During the transition between open to closed chaperonin ring, the largest change in accessible surface area of amino acids is found in helical protrusion and two helices located at the cavity opening. Our calculations suggest that the helical protrusion and two helices constitute the substrate protein binding site.

  10. Pi sensing and signalling: from prokaryotic to eukaryotic cells.

    Science.gov (United States)

    Qi, Wanjun; Baldwin, Stephen A; Muench, Stephen P; Baker, Alison

    2016-06-15

    Phosphorus is one of the most important macronutrients and is indispensable for all organisms as a critical structural component as well as participating in intracellular signalling and energy metabolism. Sensing and signalling of phosphate (Pi) has been extensively studied and is well understood in single-cellular organisms like bacteria (Escherichia coli) and Saccharomyces cerevisiae In comparison, the mechanism of Pi regulation in plants is less well understood despite recent advances in this area. In most soils the available Pi limits crop yield, therefore a clearer understanding of the molecular basis underlying Pi sensing and signalling is of great importance for the development of plants with improved Pi use efficiency. This mini-review compares some of the main Pi regulation pathways in prokaryotic and eukaryotic cells and identifies similarities and differences among different organisms, as well as providing some insight into future research. © 2016 The Author(s). published by Portland Press Limited on behalf of the Biochemical Society.

  11. Ancient photosynthetic eukaryote biofilms in an Atacama Desert coastal cave

    Science.gov (United States)

    Azua-Bustos, A.; Gonzalez-Silva, C.; Mancilla, R.A.; Salas, L.; Palma, R.E.; Wynne, J.J.; McKay, C.P.; Vicuna, R.

    2009-01-01

    Caves offer a stable and protected environment from harsh and changing outside prevailing conditions. Hence, they represent an interesting habitat for studying life in extreme environments. Here, we report the presence of a member of the ancient eukaryote red algae Cyanidium group in a coastal cave of the hyperarid Atacama Desert. This microorganism was found to form a seemingly monospecific biofilm growing under extremely low photon flux levels. Our work suggests that this species, Cyanidium sp. Atacama, is a new member of a recently proposed novel monophyletic lineage of mesophilic "cave" Cyanidium sp., distinct from the remaining three other lineages which are all thermo-acidophilic. The cave described in this work may represent an evolutionary island for life in the midst of the Atacama Desert. ?? Springer Science + Business Media, LLC 2009.

  12. Structure of a eukaryotic SWEET transporter in a homotrimeric complex.

    Science.gov (United States)

    Tao, Yuyong; Cheung, Lily S; Li, Shuo; Eom, Joon-Seob; Chen, Li-Qing; Xu, Yan; Perry, Kay; Frommer, Wolf B; Feng, Liang

    2015-11-12

    Eukaryotes rely on efficient distribution of energy and carbon skeletons between organs in the form of sugars. Glucose in animals and sucrose in plants serve as the dominant distribution forms. Cellular sugar uptake and release require vesicular and/or plasma membrane transport proteins. Humans and plants use proteins from three superfamilies for sugar translocation: the major facilitator superfamily (MFS), the sodium solute symporter family (SSF; only in the animal kingdom), and SWEETs. SWEETs carry mono- and disaccharides across vacuolar or plasma membranes. Plant SWEETs play key roles in sugar translocation between compartments, cells, and organs, notably in nectar secretion, phloem loading for long distance translocation, pollen nutrition, and seed filling. Plant SWEETs cause pathogen susceptibility possibly by sugar leakage from infected cells. The vacuolar Arabidopsis thaliana AtSWEET2 sequesters sugars in root vacuoles; loss-of-function mutants show increased susceptibility to Pythium infection. Here we show that its orthologue, the vacuolar glucose transporter OsSWEET2b from rice (Oryza sativa), consists of an asymmetrical pair of triple-helix bundles, connected by an inversion linker transmembrane helix (TM4) to create the translocation pathway. Structural and biochemical analyses show OsSWEET2b in an apparent inward (cytosolic) open state forming homomeric trimers. TM4 tightly interacts with the first triple-helix bundle within a protomer and mediates key contacts among protomers. Structure-guided mutagenesis of the close paralogue SWEET1 from Arabidopsis identified key residues in substrate translocation and protomer crosstalk. Insights into the structure-function relationship of SWEETs are valuable for understanding the transport mechanism of eukaryotic SWEETs and may be useful for engineering sugar flux.

  13. Cryoconite pans on Snowball Earth: supraglacial oases for Cryogenian eukaryotes?

    Science.gov (United States)

    Hoffman, P F

    2016-11-01

    Geochemical, paleomagnetic, and geochronological data increasingly support the Snowball Earth hypothesis for Cryogenian glaciations. Yet, the fossil record reveals no clear-cut evolutionary bottleneck. Climate models and the modern cryobiosphere offer insights on this paradox. Recent modeling implies that Snowball continents never lacked ice-free areas. Wind-blown dust from these areas plus volcanic ash were trapped by snow on ice sheets and sea ice. At a Snowball onset, sea ice was too thin to flow and ablative ice was too cold for dust retention. After a few millenia, sea ice reached 100 s of meters in thickness and began to flow as a 'sea glacier' toward an equatorial ablation zone. At first, dust advected to the ablative surface was recycled by winds, but as the surface warmed with rising CO2 , dust aka cryoconite began to accumulate. As a sea glacier has no terminus, cryoconite saturated the surface. It absorbed solar radiation, supported cyanobacterial growth, and sank to an equilibrium depth forming holes and decameter-scale pans of meltwater. As meltwater production rose, drainages developed, connecting pans to moulins, where meltwater was flushed into the subglacial ocean. Flushing cleansed the surface, creating a stabilizing feedback. If the dust flux rose, cryoconite was removed; if the dust flux waned, cryoconite accumulated. In addition to cyanobacteria, modern cryoconite holes are inhabited by green algae, fungi, protists, and certain metazoans. On Snowball Earth, cryoconite pans provided stable interconnected habitats for eukaryotes tolerant of fresh to brackish cold water on an ablation surface 60 million km2 in area. Flushing and burial of organic matter was a potential source of atmospheric oxygen. Dominance of green algae among Ediacaran eukaryotic primary producers is a possible legacy of Cryogenian cryoconite pans, but a schizohaline ocean-supraglacial freshwater and subglacial brine-may have exerted selective stress on early metazoans, or

  14. Structural and evolutionary divergence of eukaryotic protein kinases in Apicomplexa

    Directory of Open Access Journals (Sweden)

    Talevich Eric

    2011-11-01

    Full Text Available Abstract Background The Apicomplexa constitute an evolutionarily divergent phylum of protozoan pathogens responsible for widespread parasitic diseases such as malaria and toxoplasmosis. Many cellular functions in these medically important organisms are controlled by protein kinases, which have emerged as promising drug targets for parasitic diseases. However, an incomplete understanding of how apicomplexan kinases structurally and mechanistically differ from their host counterparts has hindered drug development efforts to target parasite kinases. Results We used the wealth of sequence data recently made available for 15 apicomplexan species to identify the kinome of each species and quantify the evolutionary constraints imposed on each family of apicomplexan kinases. Our analysis revealed lineage-specific adaptations in selected families, namely cyclin-dependent kinase (CDK, calcium-dependent protein kinase (CDPK and CLK/LAMMER, which have been identified as important in the pathogenesis of these organisms. Bayesian analysis of selective constraints imposed on these families identified the sequence and structural features that most distinguish apicomplexan protein kinases from their homologs in model organisms and other eukaryotes. In particular, in a subfamily of CDKs orthologous to Plasmodium falciparum crk-5, the activation loop contains a novel PTxC motif which is absent from all CDKs outside Apicomplexa. Our analysis also suggests a convergent mode of regulation in a subset of apicomplexan CDPKs and mammalian MAPKs involving a commonly conserved arginine in the αC helix. In all recognized apicomplexan CLKs, we find a set of co-conserved residues involved in substrate recognition and docking that are distinct from metazoan CLKs. Conclusions We pinpoint key conserved residues that can be predicted to mediate functional differences from eukaryotic homologs in three identified kinase families. We discuss the structural, functional and

  15. The language of methylation in genomics of eukaryotes.

    Science.gov (United States)

    Volpe, P

    2005-05-01

    Background studies have shown that 6-methylaminopurine (m6A) and 5-methylcytosine (m5C), detected in DNA, are products of its post-synthetic modification. At variance with bacterial genomes exhibiting both, eukaryotic genomes essentially carry only m5C in m5CpG doublets. This served to establish that, although a slight extra-S phase asymmetric methylation occurs de novo on 5'-CpC-3'/3'GpG-5', 5'-CpT-3'/3'-GpA-5', and 5'-CpA-3'/3'-GpT-5' dinucleotide pairs, a heavy methylation during S involves Okazaki fragments and thus semiconservatively newly made chains to guarantee genetic maintenance of -CH3 patterns in symmetrically dimethylated 5'-m5CpG-3'/3'-Gpm5C-5' dinucleotide pairs. On the other hand, whilst inverse correlation was observed between bulk DNA methylation, in S, and bulk RNA transcription, in G1 and G2, probes of methylated DNA helped to discover the presence of coding (exon) and uncoding (intron) sequences in the eukaryotic gene. These achievements led to the search for a language that genes regulated by methylation should have in common. Such a deciphering, initially providing restriction minimaps of hypermethylatable promoters and introns vs. hypomethylable exons, became feasible when bisulfite methodology allowed the direct sequencing of m5C. It emerged that, while in lymphocytes, where the transglutaminase gene (hTGc) is inactive, the promoter shows two fully methylated CpG-rich domains at 5 and one fully unmethylated CpG-rich domain at 3' (including the site +1 and a 5'-UTR), in HUVEC cells, where hTGc is active, in the first CpG-rich domain of its promoter four CpGs lack -CH3: a result suggesting new hypotheses on the mechanism of transcription, particularly in connection with radio-induced DNA demethylation.

  16. Microbial Enzymes: Tools for Biotechnological Processes

    Directory of Open Access Journals (Sweden)

    Jose L. Adrio

    2014-01-01

    Full Text Available Microbial enzymes are of great importance in the development of industrial bioprocesses. Current applications are focused on many different markets including pulp and paper, leather, detergents and textiles, pharmaceuticals, chemical, food and beverages, biofuels, animal feed and personal care, among others. Today there is a need for new, improved or/and more versatile enzymes in order to develop more novel, sustainable and economically competitive production processes. Microbial diversity and modern molecular techniques, such as metagenomics and genomics, are being used to discover new microbial enzymes whose catalytic properties can be improved/modified by different strategies based on rational, semi-rational and random directed evolution. Most industrial enzymes are recombinant forms produced in bacteria and fungi.

  17. Mechanistic insights into the regulation of metabolic enzymes by acetylation

    Science.gov (United States)

    2012-01-01

    The activity of metabolic enzymes is controlled by three principle levels: the amount of enzyme, the catalytic activity, and the accessibility of substrates. Reversible lysine acetylation is emerging as a major regulatory mechanism in metabolism that is involved in all three levels of controlling metabolic enzymes and is altered frequently in human diseases. Acetylation rivals other common posttranslational modifications in cell regulation not only in the number of substrates it modifies, but also the variety of regulatory mechanisms it facilitates. PMID:22826120

  18. Bacterial eukaryotic type serine-threonine protein kinases: from structural biology to targeted anti-infective drug design.

    Science.gov (United States)

    Danilenko, Valery N; Osolodkin, Dmitry I; Lakatosh, Sergey A; Preobrazhenskaya, Maria N; Shtil, Alexander A

    2011-01-01

    Signaling through protein kinases is an evolutionary conserved, widespread language of biological regulation. The eukaryotic type serine-threonine protein kinases (STPKs) found in normal human microbiote and in pathogenic bacteria play a key role in regulation of microbial survival, virulence and pathogenicity. Therefore, down-regulation of bacterial STPKs emerges as an attractive approach to cure infections. In this review we focused on actinobacterial STPKs to demonstrate that these enzymes can be used for crystal structure studies, modeling of 3D structure, construction of test systems and design of novel chemical libraries of low molecule as weight inhibitors. In particular, the prototypic pharmacological antagonists of Mycobacterium tuberculosis STPKs are perspective for development of a novel generation of drugs to combat the socially important disease. These inhibitors may modulate both actinobacterial and host STPKs and trigger programmed death of pathogenic bacteria.

  19. Construction of rat beta defensin-2 eukaryotic expression vector and expression in the transfected rat corneal epithelial cell

    Directory of Open Access Journals (Sweden)

    Jing Dan

    2017-03-01

    Full Text Available AIM: To construct a recombinant eukaryotic expression vector of rat beta defensin-2(rBD-2, transfect it into the rat corneal epithelial cells with lipofection, determine the expression of target gene in the transfected cells, and discuss the potentiality of recombinant plasmid expressed in corneal epithelial cells, hoping to provide an experimental foundation for further study on the antimicrobial activity of rBD-2 in vitro and in vivo and to assess the probability of defensins as a new application for infectious corneal diseases in the future. METHODS: The synthetic rBD-2 DNA fragment was inserted between the XhoI and BamHI restriction enzyme cutting sites of eukaryotic expression vector pIRES2-ZsGreen1 to construct the recombinant plasmid pIRES2-ZsGreen1-rBD-2, then transformed it into E.coli DH5α, positive clones were screened by kanamycin and identified with restriction endonucleases and sequencing analysis. Transfection into the rat corneal epithelial cells was performed by lipofection. Then the experiment was divided into three groups: rat corneal epithelial cell was transfected with the recombinant plasmid pIRES2- ZsGreen1-rBD-2, rat corneal epithelial cell was transfected with the empty plasmid pIRES2-ZsGreen1 and the non-transfected group. The inverted fluorescence microscope was used to observe the transfection process. At last, the level of rBD-2 mRNA expressed in the transfected cells and the control groups are compared by the real-time fluoresence relative quantitative PCR. RESULTS: The recombinant eukaryotic expression vector of pIRES2-ZsGreen1-rBD-2 was successfully constructed. The level of rBD-2 mRNA in transfected cells was significantly higher than that in control groups through the real-time fluorescence relative quantitative PCR. CONCLUSION: The recombinant eukaryotic expression vector pIRES2-ZsGreen1-rBD-2 could be transfected into rat corneal epithelial cells, and exogenous rBD-2 gene could be transcripted into mRNA in

  20. Phosphatidylethanolamine Is a Key Regulator of Membrane Fluidity in Eukaryotic Cells*

    Science.gov (United States)

    Dawaliby, Rosie; Trubbia, Cataldo; Delporte, Cédric; Noyon, Caroline; Ruysschaert, Jean-Marie; Van Antwerpen, Pierre; Govaerts, Cédric

    2016-01-01

    Adequate membrane fluidity is required for a variety of key cellular processes and in particular for proper function of membrane proteins. In most eukaryotic cells, membrane fluidity is known to be regulated by fatty acid desaturation and cholesterol, although some cells, such as insect cells, are almost devoid of sterol synthesis. We show here that insect and mammalian cells present similar microviscosity at their respective physiological temperature. To investigate how both sterols and phospholipids control fluidity homeostasis, we quantified the lipidic composition of insect SF9 and mammalian HEK 293T cells under normal or sterol-modified condition. As expected, insect cells show minimal sterols compared with mammalian cells. A major difference is also observed in phospholipid content as the ratio of phosphatidylethanolamine (PE) to phosphatidylcholine (PC) is inverted (4 times higher in SF9 cells). In vitro studies in liposomes confirm that both cholesterol and PE can increase rigidity of the bilayer, suggesting that both can be used by cells to maintain membrane fluidity. We then show that exogenously increasing the cholesterol amount in SF9 membranes leads to a significant decrease in PE:PC ratio whereas decreasing cholesterol in HEK 293T cells using statin treatment leads to an increase in the PE:PC ratio. In all cases, the membrane fluidity is maintained, indicating that both cell types combine regulation by sterols and phospholipids to control proper membrane fluidity. PMID:26663081

  1. Eukaryotic expression system Pichia pastoris affects the lipase catalytic properties: a monolayer study.

    Directory of Open Access Journals (Sweden)

    Madiha Bou Ali

    Full Text Available Recombinant DNA methods are being widely used to express proteins in both prokaryotic and eukaryotic cells for both fundamental and applied research purposes. Expressed protein must be well characterized to be sure that it retains the same properties as the native one, especially when expressed protein will be used in the pharmaceutical field. In this aim, interfacial and kinetic properties of native, untagged recombinant and tagged recombinant forms of a pancreatic lipase were compared using the monomolecular film technique. Turkey pancreatic lipase (TPL was chosen as model. A kinetic study on the dependence of the stereoselectivity of these three forms on the surface pressure was performed using three dicaprin isomers spread in the form of monomolecular films at the air-water interface. The heterologous expression and the N-His-tag extension were found to modify the pressure preference and decrease the catalytic hydrolysis rate of three dicaprin isomers. Besides, the heterologous expression was found to change the TPL regioselectivity without affecting its stereospecificity contrary to the N-tag extension which retained that regioselectivity and changed the stereospecificity at high surface pressures. The study of parameters, termed Recombinant expression Effects on Catalysis (REC, N-Tag Effects on Catalysis (TEC, and N-Tag and Recombinant expression Effects on Catalysis (TREC showed that the heterologous expression effects on the catalytic properties of the TPL were more deleterious than the presence of an N-terminal tag extension.

  2. RNase MRP and the RNA processing cascade in the eukaryotic ancestor.

    Science.gov (United States)

    Woodhams, Michael D; Stadler, Peter F; Penny, David; Collins, Lesley J

    2007-02-08

    Within eukaryotes there is a complex cascade of RNA-based macromolecules that process other RNA molecules, especially mRNA, tRNA and rRNA. An example is RNase MRP processing ribosomal RNA (rRNA) in ribosome biogenesis. One hypothesis is that this complexity was present early in eukaryotic evolution; an alternative is that an initial simpler network later gained complexity by gene duplication in lineages that led to animals, fungi and plants. Recently there has been a rapid increase in support for the complexity-early theory because the vast majority of these RNA-processing reactions are found throughout eukaryotes, and thus were likely to be present in the last common ancestor of living eukaryotes, herein called the Eukaryotic Ancestor. We present an overview of the RNA processing cascade in the Eukaryotic Ancestor and investigate in particular, RNase MRP which was previously thought to have evolved later in eukaryotes due to its apparent limited distribution in fungi and animals and plants. Recent publications, as well as our own genomic searches, find previously unknown RNase MRP RNAs, indicating that RNase MRP has a wide distribution in eukaryotes. Combining secondary structure and promoter region analysis of RNAs for RNase MRP, along with analysis of the target substrate (rRNA), allows us to discuss this distribution in the light of eukaryotic evolution. We conclude that RNase MRP can now be placed in the RNA-processing cascade of the Eukaryotic Ancestor, highlighting the complexity of RNA-processing in early eukaryotes. Promoter analyses of MRP-RNA suggest that regulation of the critical processes of rRNA cleavage can vary, showing that even these key cellular processes (for which we expect high conservation) show some species-specific variability. We present our consensus MRP-RNA secondary structure as a useful model for further searches.

  3. Bacterial enzymes involved in lignin degradation.

    Science.gov (United States)

    de Gonzalo, Gonzalo; Colpa, Dana I; Habib, Mohamed H M; Fraaije, Marco W

    2016-10-20

    Lignin forms a large part of plant biomass. It is a highly heterogeneous polymer of 4-hydroxyphenylpropanoid units and is embedded within polysaccharide polymers forming lignocellulose. Lignin provides strength and rigidity to plants and is rather resilient towards degradation. To improve the (bio)processing of lignocellulosic feedstocks, more effective degradation methods of lignin are in demand. Nature has found ways to fully degrade lignin through the production of dedicated ligninolytic enzyme systems. While such enzymes have been well thoroughly studied for ligninolytic fungi, only in recent years biochemical studies on bacterial enzymes capable of lignin modification have intensified. This has revealed several types of enzymes available to bacteria that enable them to act on lignin. Two major classes of bacterial lignin-modifying enzymes are DyP-type peroxidases and laccases. Yet, recently also several other bacterial enzymes have been discovered that seem to play a role in lignin modifications. In the present review, we provide an overview of recent advances in the identification and use of bacterial enzymes acting on lignin or lignin-derived products. Copyright © 2016 The Author(s). Published by Elsevier B.V. All rights reserved.

  4. Enzymes and muscle diseases

    Directory of Open Access Journals (Sweden)

    M. Plebani

    2011-09-01

    Full Text Available Skeletal muscle disorders may result in release of muscle enzymes into the circulation and give increased serum enzyme activity. A variety of enzymes routinely determined in the clinical laboratory may be elevated, but creatine kinase is the enzyme present in the highest concentration in muscle, and in every variety of muscle disease is the serum enzyme which shows the greatest incidence and degree of elevation. Aspartate aminotransferase is the enzyme associated most significantly with inflammation. A diagnostic algorithm based on the combined measurement of creatine kinase, aspartate aminotransferase and aldolase has been found to discriminate muscular distrophies from polymyositis and other myopathies. This combination of laboratory tests has diagnostic application and thus allows the clinician to better select patients who need to have a skeletal muscle biopsy as a diagnostic procedure.

  5. Enzymes for improved biomass conversion

    Science.gov (United States)

    Brunecky, Roman; Himmel, Michael E.

    2016-02-02

    Disclosed herein are enzymes and combinations of the enzymes useful for the hydrolysis of cellulose and the conversion of biomass. Methods of degrading cellulose and biomass using enzymes and cocktails of enzymes are also disclosed.

  6. Shared Sulfur Mobilization Routes for tRNA Thiolation and Molybdenum Cofactor Biosynthesis in Prokaryotes and Eukaryotes

    Directory of Open Access Journals (Sweden)

    Silke Leimkühler

    2017-01-01

    Full Text Available Modifications of transfer RNA (tRNA have been shown to play critical roles in the biogenesis, metabolism, structural stability and function of RNA molecules, and the specific modifications of nucleobases with sulfur atoms in tRNA are present in pro- and eukaryotes. Here, especially the thiomodifications xm5s2U at the wobble position 34 in tRNAs for Lys, Gln and Glu, were suggested to have an important role during the translation process by ensuring accurate deciphering of the genetic code and by stabilization of the tRNA structure. The trafficking and delivery of sulfur nucleosides is a complex process carried out by sulfur relay systems involving numerous proteins, which not only deliver sulfur to the specific tRNAs but also to other sulfur-containing molecules including iron–sulfur clusters, thiamin, biotin, lipoic acid and molybdopterin (MPT. Among the biosynthesis of these sulfur-containing molecules, the biosynthesis of the molybdenum cofactor (Moco and the synthesis of thio-modified tRNAs in particular show a surprising link by sharing protein components for sulfur mobilization in pro- and eukaryotes.

  7. Profiling the orphan enzymes

    Science.gov (United States)

    2014-01-01

    The emergence of Next Generation Sequencing generates an incredible amount of sequence and great potential for new enzyme discovery. Despite this huge amount of data and the profusion of bioinformatic methods for function prediction, a large part of known enzyme activities is still lacking an associated protein sequence. These particular activities are called “orphan enzymes”. The present review proposes an update of previous surveys on orphan enzymes by mining the current content of public databases. While the percentage of orphan enzyme activities has decreased from 38% to 22% in ten years, there are still more than 1,000 orphans among the 5,000 entries of the Enzyme Commission (EC) classification. Taking into account all the reactions present in metabolic databases, this proportion dramatically increases to reach nearly 50% of orphans and many of them are not associated to a known pathway. We extended our survey to “local orphan enzymes” that are activities which have no representative sequence in a given clade, but have at least one in organisms belonging to other clades. We observe an important bias in Archaea and find that in general more than 30% of the EC activities have incomplete sequence information in at least one superkingdom. To estimate if candidate proteins for local orphans could be retrieved by homology search, we applied a simple strategy based on the PRIAM software and noticed that candidates may be proposed for an important fraction of local orphan enzymes. Finally, by studying relation between protein domains and catalyzed activities, it appears that newly discovered enzymes are mostly associated with already known enzyme domains. Thus, the exploration of the promiscuity and the multifunctional aspect of known enzyme families may solve part of the orphan enzyme issue. We conclude this review with a presentation of recent initiatives in finding proteins for orphan enzymes and in extending the enzyme world by the discovery of new

  8. Enzymes in animal nutrition

    OpenAIRE

    Scientific Committee on Animal Nutrition

    2011-01-01

    This report brings overview of endogenous as well as exogenous enzymes and their role and importance in animal nutrition. Enzymes for animal nutrition have been systematically developed since 1980´s. Phytase, xylanase and β-glucanase are used in poultry-rising, pig breeding, aquaculture and begin to push to the ruminant nutrition. Phytase increase availability of P, Ca, Zn, digestibility of proteins and fats. Its positive effect on the environment is well described – enzymes decrease the cont...

  9. Enzyme catalysed tandem reactions

    OpenAIRE

    Oroz-Guinea, Isabel; García-Junceda, Eduardo

    2013-01-01

    To transfer to the laboratory, the excellent efficiency shown by enzymes in Nature, biocatalysis, had to mimic several synthetic strategies used by the living organisms. Biosynthetic pathways are examples of tandem catalysis and may be assimilated in the biocatalysis field for the use of isolated multi-enzyme systems in the homogeneous phase. The concurrent action of several enzymes that work sequentially presents extraordinary advantages from the synthetic point of view, since it permits a r...

  10. Phosphorylation of mycobacterial phosphodiesterase by eukaryotic-type Ser/Thr kinase controls its two distinct and mutually exclusive functionalities.

    Science.gov (United States)

    Malhotra, Neha; Karthikeyan, Subramanian; Chakraborti, Pradip K

    2017-10-20

    Phosphorylation-mediated negative feedback regulation of cAMP levels by phosphodiesterase is well-established in eukaryotic cells. However, such a mechanism remains unexplored in prokaryotes. We report here the involvement of eukaryotic-type Ser/Thr kinases, particularly PknA in trans-phosphorylating phosphodiesterase from Mycobacterium tuberculosis (mPDE), that resulted in decreased enzyme turnover rate compared with its unphosphorylated counterpart. To elucidate the role of mPDE phosphorylation in hydrolyzing cellular cAMP, we utilized a phosphodiesterase knock-out Escherichia coli strain, ΔcpdA, where interference of endogenous eukaryotic-type Ser/Thr kinases could be excluded. Interestingly, the mPDE-complemented ΔcpdA strain showed enhanced cAMP levels in the presence of PknA, and this effect was antagonized by PknA-K42N, a kinase-dead variant. Structural analysis of mPDE revealed that four Ser/Thr residues (Ser-20, Thr-22, Thr-182, and Thr-240) were close to the active site, indicating their possible role in phosphorylation-mediated alteration in enzymatic activity. Mutation of these residues one at a time to alanine or a combination of all four (mPDE-4A) affected catalytic activity of mPDE. Moreover, mPDE-4A protein in kinase assays exhibited reduction in its phosphorylation compared with mPDE. In consonance, phosphoproteins obtained after co-expression of PknA with mPDE/S20A/T240A/4A displayed decreased phospho-signal intensities in immunoblotting with anti-phosphoserine/phosphothreonine antibodies. Furthermore, unlike mPDE, phospho-ablated mPDE-T309A protein exhibited impaired cell wall localization in Mycobacterium smegmatis, whereas mPDE-4A behaved similarly as wild type. Taken together, our findings establish mutually exclusive dual functionality of mPDE upon PknA-mediated phosphorylation, where Ser-20/Thr-240 influence enzyme activity and Thr-309 endorses its cell wall localization. © 2017 by The American Society for Biochemistry and Molecular

  11. Food and feed enzymes.

    Science.gov (United States)

    Fraatz, Marco Alexander; Rühl, Martin; Zorn, Holger

    2014-01-01

    Humans have benefited from the unique catalytic properties of enzymes, in particular for food production, for thousands of years. Prominent examples include the production of fermented alcoholic beverages, such as beer and wine, as well as bakery and dairy products. The chapter reviews the historic background of the development of modern enzyme technology and provides an overview of the industrial food and feed enzymes currently available on the world market. The chapter highlights enzyme applications for the improvement of resource efficiency, the biopreservation of food, and the treatment of food intolerances. Further topics address the improvement of food safety and food quality.

  12. A second pathway to degrade pyrimidine nucleic acid precursors in eukaryotes

    DEFF Research Database (Denmark)

    Andersen, Gorm; Bjornberg, Olof; Polakova, Silvia

    2008-01-01

    Pyrimidine bases are the central precursors for RNA and DNA, and their intracellular pools are determined by de novo, salvage and catabolic pathways. In eukaryotes, degradation of uracil has been believed to proceed only via the reduction to dihydrouracil. Using a yeast model, Saccharomyces kluyv...... of the eukaryotic or prokaryotic genes involved in pyrimidine degradation described to date....

  13. Eelgrass Leaf Surface Microbiomes Are Locally Variable and Highly Correlated with Epibiotic Eukaryotes

    Directory of Open Access Journals (Sweden)

    Mia M. Bengtsson

    2017-07-01

    Full Text Available Eelgrass (Zostera marina is a marine foundation species essential for coastal ecosystem services around the northern hemisphere. Like all macroscopic organisms, it possesses a microbiome (here defined as an associated prokaryotic community which may play critical roles in modulating the interaction of eelgrass with its environment. For example, its leaf surface microbiome could inhibit or attract eukaryotic epibionts which may overgrow the eelgrass leading to reduced primary productivity and subsequent eelgrass meadow decline. We used amplicon sequencing of the 16S and 18S rRNA genes of prokaryotes and eukaryotes to assess the leaf surface microbiome (prokaryotes as well as eukaryotic epibionts in- and outside lagoons on the German Baltic Sea coast. Prokaryote microbiomes varied substantially both between sites inside lagoons and between open coastal and lagoon sites. Water depth, leaf area and biofilm chlorophyll a concentration explained a large amount of variation in both prokaryotic and eukaryotic community composition. The prokaryotic microbiome and eukaryotic epibiont communities were highly correlated, and network analysis revealed disproportionate co-occurrence between a limited number of eukaryotic taxa and several bacterial taxa. This suggests that eelgrass leaf surfaces are home to a mosaic of microbiomes of several epibiotic eukaryotes, in addition to the microbiome of the eelgrass itself. Our findings thereby underline that eukaryotic diversity should be taken into account in order to explain prokaryotic microbiome assembly and dynamics in aquatic environments.

  14. Distribution of eukaryotic plankton in the English Channel and the North Sea in summer

    NARCIS (Netherlands)

    Masquelier, S.; Foulon, E.; Jouenne, F.; Ferréol, M.; Brussaard, C.P.D.; Vaulot, D.

    2011-01-01

    The distribution of eukaryotic plankton was investigated in the English Channel and the North Sea during the MICROVIR cruise in summer 2007. The size distribution of autotrophic, heterotrophic eukaryotes and species composition was analyzed with a focus on two major divisions, Haptophyta and

  15. Putative SF2 helicases of the early-branching eukaryote Giardia lamblia are involved in antigenic variation and parasite differentiation into cysts.

    Science.gov (United States)

    Gargantini, Pablo R; Serradell, Marianela C; Torri, Alessandro; Lujan, Hugo D

    2012-11-28

    Regulation of surface antigenic variation in Giardia lamblia is controlled post-transcriptionally by an RNA-interference (RNAi) pathway that includes a Dicer-like bidentate RNase III (gDicer). This enzyme, however, lacks the RNA helicase domain present in Dicer enzymes from higher eukaryotes. The participation of several RNA helicases in practically all organisms in which RNAi was studied suggests that RNA helicases are potentially involved in antigenic variation, as well as during Giardia differentiation into cysts. An extensive in silico analysis of the Giardia genome identified 32 putative Super Family 2 RNA helicases that contain almost all the conserved RNA helicase motifs. Phylogenetic studies and sequence analysis separated them into 22 DEAD-box, 6 DEAH-box and 4 Ski2p-box RNA helicases, some of which are homologs of well-characterized helicases from higher organisms. No Giardia putative helicase was found to have significant homology to the RNA helicase domain of Dicer enzymes. Additionally a series of up- and down-regulated putative RNA helicases were found during encystation and antigenic variation by qPCR experiments. Finally, we were able to recognize 14 additional putative helicases from three different families (RecQ family, Swi2/Snf2 and Rad3 family) that could be considered DNA helicases. This is the first comprehensive analysis of the Super Family 2 helicases from the human intestinal parasite G. lamblia. The relative and variable expression of particular RNA helicases during both antigenic variation and encystation agrees with the proposed participation of these enzymes during both adaptive processes. The putatives RNA and DNA helicases identified in this early-branching eukaryote provide initial information regarding the biological role of these enzymes in cell adaptation and differentiation.

  16. Putative SF2 helicases of the early-branching eukaryote Giardia lamblia are involved in antigenic variation and parasite differentiation into cysts

    Science.gov (United States)

    2012-01-01

    Background Regulation of surface antigenic variation in Giardia lamblia is controlled post-transcriptionally by an RNA-interference (RNAi) pathway that includes a Dicer-like bidentate RNase III (gDicer). This enzyme, however, lacks the RNA helicase domain present in Dicer enzymes from higher eukaryotes. The participation of several RNA helicases in practically all organisms in which RNAi was studied suggests that RNA helicases are potentially involved in antigenic variation, as well as during Giardia differentiation into cysts. Results An extensive in silico analysis of the Giardia genome identified 32 putative Super Family 2 RNA helicases that contain almost all the conserved RNA helicase motifs. Phylogenetic studies and sequence analysis separated them into 22 DEAD-box, 6 DEAH-box and 4 Ski2p-box RNA helicases, some of which are homologs of well-characterized helicases from higher organisms. No Giardia putative helicase was found to have significant homology to the RNA helicase domain of Dicer enzymes. Additionally a series of up- and down-regulated putative RNA helicases were found during encystation and antigenic variation by qPCR experiments. Finally, we were able to recognize 14 additional putative helicases from three different families (RecQ family, Swi2/Snf2 and Rad3 family) that could be considered DNA helicases. Conclusions This is the first comprehensive analysis of the Super Family 2 helicases from the human intestinal parasite G. lamblia. The relative and variable expression of particular RNA helicases during both antigenic variation and encystation agrees with the proposed participation of these enzymes during both adaptive processes. The putatives RNA and DNA helicases identified in this early-branching eukaryote provide initial information regarding the biological role of these enzymes in cell adaptation and differentiation. PMID:23190735

  17. Phylogenetic analysis of ferlin genes reveals ancient eukaryotic origins

    Directory of Open Access Journals (Sweden)

    Lek Monkol

    2010-07-01

    Full Text Available Abstract Background The ferlin gene family possesses a rare and identifying feature consisting of multiple tandem C2 domains and a C-terminal transmembrane domain. Much currently remains unknown about the fundamental function of this gene family, however, mutations in its two most well-characterised members, dysferlin and otoferlin, have been implicated in human disease. The availability of genome sequences from a wide range of species makes it possible to explore the evolution of the ferlin family, providing contextual insight into characteristic features that define the ferlin gene family in its present form in humans. Results Ferlin genes were detected from all species of representative phyla, with two ferlin subgroups partitioned within the ferlin phylogenetic tree based on the presence or absence of a DysF domain. Invertebrates generally possessed two ferlin genes (one with DysF and one without, with six ferlin genes in most vertebrates (three DysF, three non-DysF. Expansion of the ferlin gene family is evident between the divergence of lamprey (jawless vertebrates and shark (cartilaginous fish. Common to almost all ferlins is an N-terminal C2-FerI-C2 sandwich, a FerB motif, and two C-terminal C2 domains (C2E and C2F adjacent to the transmembrane domain. Preservation of these structural elements throughout eukaryotic evolution suggests a fundamental role of these motifs for ferlin function. In contrast, DysF, C2DE, and FerA are optional, giving rise to subtle differences in domain topologies of ferlin genes. Despite conservation of multiple C2 domains in all ferlins, the C-terminal C2 domains (C2E and C2F displayed higher sequence conservation and greater conservation of putative calcium binding residues across paralogs and orthologs. Interestingly, the two most studied non-mammalian ferlins (Fer-1 and Misfire in model organisms C. elegans and D. melanogaster, present as outgroups in the phylogenetic analysis, with results suggesting

  18. Horizontal DNA transfer from bacteria to eukaryotes and a lesson from experimental transfers.

    Science.gov (United States)

    Suzuki, Katsunori; Moriguchi, Kazuki; Yamamoto, Shinji

    2015-12-01

    Horizontal gene transfer (HGT) is widespread among bacteria and plays a key role in genome dynamics. HGT is much less common in eukaryotes, but is being reported with increasing frequency in eukaryotes. The mechanism as to how eukaryotes acquired genes from distantly related organisms remains obscure yet. This paper cites examples of bacteria-derived genes found in eukaryotic organisms, and then describes experimental DNA transports to eukaryotes by bacterial type 4 secretion systems in optimized conditions. The mechanisms of the latter are efficient, quite reproducible in vitro and predictable, and thereby would provide insight into natural HGT and to the development of new research tools. Copyright © 2015 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  19. Heavy metal whole-cell biosensors using eukaryotic microorganisms: an updated critical review.

    Directory of Open Access Journals (Sweden)

    Juan-Carlos eGutierrez

    2015-02-01

    Full Text Available This review analyzes the advantages and disadvantages of using eukaryotic microorganisms to design whole-cell biosensors (WCBs for monitoring environmental heavy metal pollution in soil or aquatic habitats. Basic considerations for designing an eukaryotic WCB are also shown. A comparative analysis of the promoter genes used to design whole-cell biosensors is carried out, and the sensitivity and reproducibility of the main reporter genes used is also reviewed. Three main eukaryotic taxonomic groups are considered: yeasts, microalgae and ciliated protozoa. Models that have been widely analyzed as potential WCBs are the Saccharomyces cerevisiae model among yeasts, the Tetrahymena thermophila model for ciliates and Chlamydomonas model for microalgae. The advantages and disadvantages of each microbial group are discussed, and a ranking of sensitivity to the same type of metal pollutant from reported eukaryotic WCBs is also shown. General conclusions and possible future developments of eukaryotic WCBs are reported.

  20. Symbiosis as the way of eukaryotic life: The dependent co ...

    Indian Academy of Sciences (India)

    2014-03-15

    Mar 15, 2014 ... 1Department of Biology, Swarthmore College, Swarthmore, Pennsylvania 19081, USA. 2Biotechnology ... Molecular analyses of symbiotic relationships are challenging our biological definitions of individuality and supplanting them with a ...... weed glycans with carbohydrate-active enzyme updates from ex-.

  1. The other face of restriction: modification-dependent enzymes.

    Science.gov (United States)

    Loenen, Wil A M; Raleigh, Elisabeth A

    2014-01-01

    The 1952 observation of host-induced non-hereditary variation in bacteriophages by Salvador Luria and Mary Human led to the discovery in the 1960s of modifying enzymes that glucosylate hydroxymethylcytosine in T-even phages and of genes encoding corresponding host activities that restrict non-glucosylated phage DNA: rglA and rglB (restricts glucoseless phage). In the 1980's, appreciation of the biological scope of these activities was dramatically expanded with the demonstration that plant and animal DNA was also sensitive to restriction in cloning experiments. The rgl genes were renamed mcrA and mcrBC (modified cytosine restriction). The new class of modification-dependent restriction enzymes was named Type IV, as distinct from the familiar modification-blocked Types I-III. A third Escherichia coli enzyme, mrr (modified DNA rejection and restriction) recognizes both methylcytosine and methyladenine. In recent years, the universe of modification-dependent enzymes has expanded greatly. Technical advances allow use of Type IV enzymes to study epigenetic mechanisms in mammals and plants. Type IV enzymes recognize modified DNA with low sequence selectivity and have emerged many times independently during evolution. Here, we review biochemical and structural data on these proteins, the resurgent interest in Type IV enzymes as tools for epigenetic research and the evolutionary pressures on these systems.

  2. Enzymes of yeast polyphosphate metabolism: structure, enzymology and biological roles.

    Science.gov (United States)

    Gerasimaitė, Rūta; Mayer, Andreas

    2016-02-01

    Inorganic polyphosphate (polyP) is found in all living organisms. The known polyP functions in eukaryotes range from osmoregulation and virulence in parasitic protozoa to modulating blood coagulation, inflammation, bone mineralization and cellular signalling in mammals. However mechanisms of regulation and even the identity of involved proteins in many cases remain obscure. Most of the insights obtained so far stem from studies in the yeast Saccharomyces cerevisiae. Here, we provide a short overview of the properties and functions of known yeast polyP metabolism enzymes and discuss future directions for polyP research. © 2016 Authors; published by Portland Press Limited.

  3. Enzyme catalysed production of phospholipids with modified fatty acid profile

    DEFF Research Database (Denmark)

    Vikbjerg, Anders Falk

    2006-01-01

    Phospholipider har stor anvendelse i levnedsmiddel-, kosmetik-, og farmaceutiske produkter for blandt andet deres emulgerende egenskaber samt evne til at danne liposomer. Interessen for at ændre på phospholipidernes struktur er stigende. Strukturændringer resulterer i ændret funktionalitet. Ved u...

  4. Colorimetric detection of cholesterol based on enzyme modified gold nanoparticles.

    Science.gov (United States)

    Nirala, Narsingh R; Saxena, Preeti S; Srivastava, Anchal

    2018-02-05

    We develop a simple colorimetric method for determination of free cholesterol in aqueous solution based on functionalized gold nanoparticles with cholesterol oxidase. Functionalized gold nanoparticles interact with free cholesterol to produce H2O2 in proportion to the level of cholesterol visually is being detected. The quenching in optical properties and agglomeration of functionalized gold nanoparticles play a key role in cholesterol sensing due to the electron accepting property of H2O2. While the lower ranges of cholesterol (lower detection limit i.e. 0.2mg/dL) can be effectively detected using fluorescence study, the absorption study attests evident visual color change which becomes effective for detection of higher ranges of cholesterol (lower detection limit i.e. 19mg/dL). The shades of red gradually change to blue/purple as the level of cholesterol detected (as evident at 100mg/dL) using unaided eye without the use of expensive instruments. The potential of the proposed method to be applied in the field is shown by the proposed cholesterol measuring color wheel. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Biotechnological potential of insect fatty acid-modifying enzymes

    Czech Academy of Sciences Publication Activity Database

    Tupec, Michal; Buček, Aleš; Valterová, Irena; Pichová, Iva

    2017-01-01

    Roč. 72, 9/10 (2017), s. 387-403 ISSN 0939-5075 R&D Projects: GA ČR GA15-06569S; GA MŠk LD15102; GA MŠk LO1302 Institutional support: RVO:61388963 Keywords : fatty acyl desaturases * fatty acyl reductases * lipases * pheromones Subject RIV: CE - Biochemistry Impact factor: 0.835, year: 2016 https://www.degruyter.com/view/j/znc.2017.72.issue-9-10/znc-2017-0031/znc-2017-0031. xml

  6. Occurrence of aminoglycoside-modifying enzymes genes (aac(6 ...

    African Journals Online (AJOL)

    tions, and infections in cystic fibrosis patients2-4. This pathogen has been involved in several nosocomial in- fections such as bacteremia, urinary tract infections and endocarditis5. Treatment options for established. Pseudomonal infections are always a difficult task due to its problematic multidrug resistance traits6. Antibi-.

  7. Colorimetric detection of cholesterol based on enzyme modified gold nanoparticles

    Science.gov (United States)

    Nirala, Narsingh R.; Saxena, Preeti S.; Srivastava, Anchal

    2018-02-01

    We develop a simple colorimetric method for determination of free cholesterol in aqueous solution based on functionalized gold nanoparticles with cholesterol oxidase. Functionalized gold nanoparticles interact with free cholesterol to produce H2O2 in proportion to the level of cholesterol visually is being detected. The quenching in optical properties and agglomeration of functionalized gold nanoparticles play a key role in cholesterol sensing due to the electron accepting property of H2O2. While the lower ranges of cholesterol (lower detection limit i.e. 0.2 mg/dL) can be effectively detected using fluorescence study, the absorption study attests evident visual color change which becomes effective for detection of higher ranges of cholesterol (lower detection limit i.e. 19 mg/dL). The shades of red gradually change to blue/purple as the level of cholesterol detected (as evident at 100 mg/dL) using unaided eye without the use of expensive instruments. The potential of the proposed method to be applied in the field is shown by the proposed cholesterol measuring color wheel.

  8. Enzymes in Fermented Fish.

    Science.gov (United States)

    Giyatmi; Irianto, H E

    Fermented fish products are very popular particularly in Southeast Asian countries. These products have unique characteristics, especially in terms of aroma, flavor, and texture developing during fermentation process. Proteolytic enzymes have a main role in hydrolyzing protein into simpler compounds. Fermentation process of fish relies both on naturally occurring enzymes (in the muscle or the intestinal tract) as well as bacteria. Fermented fish products processed using the whole fish show a different characteristic compared to those prepared from headed and gutted fish. Endogenous enzymes like trypsin, chymotrypsin, elastase, and aminopeptidase are the most involved in the fermentation process. Muscle tissue enzymes like cathepsins, peptidases, transaminases, amidases, amino acid decarboxylases, glutamic dehydrogenases, and related enzymes may also play a role in fish fermentation. Due to the decreased bacterial number during fermentation, contribution of microbial enzymes to proteolysis may be expected prior to salting of fish. Commercial enzymes are supplemented during processing for specific purposes, such as quality improvement and process acceleration. In the case of fish sauce, efforts to accelerate fermentation process and to improve product quality have been studied by addition of enzymes such as papain, bromelain, trypsin, pepsin, and chymotrypsin. © 2017 Elsevier Inc. All rights reserved.

  9. Amperometric enzyme electrodes

    OpenAIRE

    Calvo,E.J.; Danilowicz, C.

    1997-01-01

    Recent advances on amperometric enzyme electrodes are reviewed with particular emphasis on biosensors based on Glucose Oxidase and Horseradish Peroxidase. Redox mediation by artificial soluble and polymer attached redox mediators is discussed in terms of recent theoretical developments and experimental verification. The dependence of the amperometric response on substrate and mediator concentration, enzyme concentration, electrode potential and film thickness are analyzed. Possible applicatio...

  10. Enzyme Vs. Extremozyme -32 ...

    Indian Academy of Sciences (India)

    industries, while Taq polymerase T 4 lysozyme, ribonuclease and malate dehydrogenase are enzymes used in research laboratories. A major limitation of most enzymes used in the industries/ research .... pol 1 , (8) Small domain of Klentaq 1 and (C) Superimposed cluster of aromatic residues in K1entaq1. (thick lines) ...

  11. Next generation chemical proteomic tools for rapid enzyme profiling.

    Science.gov (United States)

    Uttamchandani, Mahesh; Lu, Candy H S; Yao, Shao Q

    2009-08-18

    Sequencing of the human genome provided a wealth of information about the genomic blueprint of a cell. But genes do not tell the entire story of life and living processes; identifying the roles of enzymes and mapping out their interactions is also crucial. Enzymes catalyze virtually every cellular process and metabolic exchange. They not only are instrumental in sustaining life but also are required for its regulation and diversification. Diseases such as cancer can be caused by minor changes in enzyme activities. In addition, the unique enzymes of pathogenic organisms are ripe targets for combating infections. Consequently, nearly one-third of all current drug targets are enzymes. An estimated 18-29% of eukaryotic genes encode enzymes, but only a limited proportion of enzymes have thus far been characterized. Therefore, little is understood about the physiological roles, substrate specificity, and downstream targets of the vast majority of these important proteins. A key step toward the biological characterization of enzymes, as well as their adoption as drug targets, is the development of global solutions that bridge the gap in understanding these proteins and their interactions. We herein present technological advances that facilitate the study of enzymes and their properties in a high-throughput manner. Over the years, our group has introduced and developed a variety of such enabling platforms for many classes of enzymes, including kinases, phosphatases, and proteases. For each of these different types of enzymes, specific design considerations are required to develop the appropriate chemical tools to characterize each class. These tools include activity-based probes and chemical compound libraries, which are rapidly assembled using efficient combinatorial synthesis or "click chemistry" strategies. The resulting molecular assortments may then be screened against the target enzymes in high-throughput using microplates or microarrays. These techniques offer

  12. Mcm10: A Dynamic Scaffold at Eukaryotic Replication Forks

    Directory of Open Access Journals (Sweden)

    Ryan M. Baxley

    2017-02-01

    Full Text Available To complete the duplication of large genomes efficiently, mechanisms have evolved that coordinate DNA unwinding with DNA synthesis and provide quality control measures prior to cell division. Minichromosome maintenance protein 10 (Mcm10 is a conserved component of the eukaryotic replisome that contributes to this process in multiple ways. Mcm10 promotes the initiation of DNA replication through direct interactions with the cell division cycle 45 (Cdc45-minichromosome maintenance complex proteins 2-7 (Mcm2-7-go-ichi-ni-san GINS complex proteins, as well as single- and double-stranded DNA. After origin firing, Mcm10 controls replication fork stability to support elongation, primarily facilitating Okazaki fragment synthesis through recruitment of DNA polymerase-α and proliferating cell nuclear antigen. Based on its multivalent properties, Mcm10 serves as an essential scaffold to promote DNA replication and guard against replication stress. Under pathological conditions, Mcm10 is often dysregulated. Genetic amplification and/or overexpression of MCM10 are common in cancer, and can serve as a strong prognostic marker of poor survival. These findings are compatible with a heightened requirement for Mcm10 in transformed cells to overcome limitations for DNA replication dictated by altered cell cycle control. In this review, we highlight advances in our understanding of when, where and how Mcm10 functions within the replisome to protect against barriers that cause incomplete replication.

  13. The evolutionary dynamics of operon distributions in eukaryote genomes.

    Science.gov (United States)

    Cutter, Asher D; Agrawal, Aneil F

    2010-06-01

    Genes in nematode and ascidian genomes frequently occur in operons--multiple genes sharing a common promoter to generate a polycistronic primary transcript--and such genes comprise 15-20% of the coding genome for Caenorhabditis elegans and Ciona intestinalis. Recent work in nematodes has demonstrated that the identity of genes within operons is highly conserved among species and that the unifying feature of genes within operons is that they are expressed in germline tissue. However, it is generally unknown what processes are responsible for generating the distribution of operon sizes across the genome, which are composed of up to eight genes per operon. Here we investigate several models for operon evolution to better understand their abundance, distribution of sizes, and evolutionary dynamics over time. We find that birth-death models of operon evolution reasonably describe the relative abundance of operons of different sizes in the C. elegans and Ciona genomes and generate predictions about the number of monocistronic, nonoperon genes that likely participate in the birth-death process. This theory, and applications to C. elegans and Ciona, motivates several new and testable hypotheses about eukaryote operon evolution.

  14. Cosmopolitanism of microbial eukaryotes in the global deep seas.

    Science.gov (United States)

    Creer, Simon; Sinniger, Frederic

    2012-03-01

    Deep sea environments cover more than 65% of the earth's surface and fulfil a range of ecosystem functions, yet they are also amongst the least known habitats on earth. Whilst the discovery of key geological processes, combined with technological developments, has focused interest onto geologically active areas such as hydrothermal vents, most abyssal biodiversity remains to be discovered (Danovaro et al. 2010). However, as for terrestrial reservoirs of biodiversity, the world's largest biome is under threat from anthropogenic activities ranging from environmental change to the exploitation of minerals and rare-earth elements (Kato et al. 2011). It is therefore important to understand the magnitude, nature and composition of deep sea biological communities to inform us of levels of local adaptation, functionality and resilience with respect to future environmental perturbation. In this issue of Molecular Ecology, Bik et al. utilize 454 Roche metagenetic environmental sequencing to assess microbial metazoan community composition and phylogenetic identity across deep sea depth gradients and between ocean basins. The analyses suggest that although the majority of microbial eukaryotic taxa are regionally restricted, a small percentage might maintain cosmopolitan deep sea distributions, and an even smaller fraction appear to be eurybathic (live across depth gradients). © 2012 Blackwell Publishing Ltd.

  15. Crystal structures of two eukaryotic nucleases involved in RNA metabolism

    DEFF Research Database (Denmark)

    Jonstrup, Anette Thyssen; Midtgaard, Søren Fuglsang; Van, Lan Bich

    as well as the controlled turnover of these in response to changing surrounding conditions is of vital importance to ensure optimal fitness of a cell. Central to both these processes is the degradation of RNA, either as a means of decreasing the level of particular RNAs or as a way to get rid of aberrant...... form the 3'-end of mRNA, is normally the first and also rate-limiting step in cellular mRNA degradation and therefore a key process in the control of eukaryotic mRNA turnover. Since Ccr4p is believed to be the main deadenylase the precise role of Pop2p in the complex is less clear. Nevertheless, Pop2p....... In the nucleus Rrp6p associates with the exosome and participates in the degradation of improperly processed precursor mRNAs and trimming of stable RNAs. The crystal structure of S. cerevisiae Rrp6p presented here displays a conserved DEDD nuclease core with a flanking HRDC domain believed to be involved in RNA...

  16. A biobrick library for cloning custom eukaryotic plasmids.

    Science.gov (United States)

    Constante, Marco; Grünberg, Raik; Isalan, Mark

    2011-01-01

    Researchers often require customised variations of plasmids that are not commercially available. Here we demonstrate the applicability and versatility of standard synthetic biological parts (biobricks) to build custom plasmids. For this purpose we have built a collection of 52 parts that include multiple cloning sites (MCS) and common protein tags, protein reporters and selection markers, amongst others. Importantly, most of the parts are designed in a format to allow fusions that maintain the reading frame. We illustrate the collection by building several model contructs, including concatemers of protein binding-site motifs, and a variety of plasmids for eukaryotic stable cloning and chromosomal insertion. For example, in 3 biobrick iterations, we make a cerulean-reporter plasmid for cloning fluorescent protein fusions. Furthermore, we use the collection to implement a recombinase-mediated DNA insertion (RMDI), allowing chromosomal site-directed exchange of genes. By making one recipient stable cell line, many standardised cell lines can subsequently be generated, by fluorescent fusion-gene exchange. We propose that this biobrick collection may be distributed peer-to-peer as a stand-alone library, in addition to its distribution through the Registry of Standard Biological Parts (http://partsregistry.org/).

  17. A biobrick library for cloning custom eukaryotic plasmids.

    Directory of Open Access Journals (Sweden)

    Marco Constante

    Full Text Available Researchers often require customised variations of plasmids that are not commercially available. Here we demonstrate the applicability and versatility of standard synthetic biological parts (biobricks to build custom plasmids. For this purpose we have built a collection of 52 parts that include multiple cloning sites (MCS and common protein tags, protein reporters and selection markers, amongst others. Importantly, most of the parts are designed in a format to allow fusions that maintain the reading frame. We illustrate the collection by building several model contructs, including concatemers of protein binding-site motifs, and a variety of plasmids for eukaryotic stable cloning and chromosomal insertion. For example, in 3 biobrick iterations, we make a cerulean-reporter plasmid for cloning fluorescent protein fusions. Furthermore, we use the collection to implement a recombinase-mediated DNA insertion (RMDI, allowing chromosomal site-directed exchange of genes. By making one recipient stable cell line, many standardised cell lines can subsequently be generated, by fluorescent fusion-gene exchange. We propose that this biobrick collection may be distributed peer-to-peer as a stand-alone library, in addition to its distribution through the Registry of Standard Biological Parts (http://partsregistry.org/.

  18. Eukaryotic LYR Proteins Interact with Mitochondrial Protein Complexes

    Directory of Open Access Journals (Sweden)

    Heike Angerer

    2015-02-01

    Full Text Available In eukaryotic cells, mitochondria host ancient essential bioenergetic and biosynthetic pathways. LYR (leucine/tyrosine/arginine motif proteins (LYRMs of the Complex1_LYR-like superfamily interact with protein complexes of bacterial origin. Many LYR proteins function as extra subunits (LYRM3 and LYRM6 or novel assembly factors (LYRM7, LYRM8, ACN9 and FMC1 of the oxidative phosphorylation (OXPHOS core complexes. Structural insights into complex I accessory subunits LYRM6 and LYRM3 have been provided by analyses of EM and X-ray structures of complex I from bovine and the yeast Yarrowia lipolytica, respectively. Combined structural and biochemical studies revealed that LYRM6 resides at the matrix arm close to the ubiquinone reduction site. For LYRM3, a position at the distal proton-pumping membrane arm facing the matrix space is suggested. Both LYRMs are supposed to anchor an acyl-carrier protein (ACPM independently to complex I. The function of this duplicated protein interaction of ACPM with respiratory complex I is still unknown. Analysis of protein-protein interaction screens, genetic analyses and predicted multi-domain LYRMs offer further clues on an interaction network and adaptor-like function of LYR proteins in mitochondria.

  19. A conserved mechanism for extracellular signaling in eukaryotes and prokaryotes.

    Science.gov (United States)

    Gallio, Marco; Sturgill, Gwen; Rather, Philip; Kylsten, Per

    2002-09-17

    Epidermal growth factor receptor (EGFr) is a key mediator of cell communication during animal development and homeostasis. In Drosophila, the signaling event is commonly regulated by the polytopic membrane protein Rhomboid (RHO), which mediates the proteolytic activation of EGFr ligands, allowing the secretion of the active signal. Until very recently, the biochemical function of RHO had remained elusive. It is now believed that Drosophila RHO is the founder member of a previously undescribed family of serine proteases, and that it could be directly responsible for the unusual, intramembranous cleavage of EGFr ligands. Here we show that the function of RHO is conserved in Gram-negative bacteria. AarA, a Providencia stuartii RHO-related protein, is active in Drosophila on the fly EGFr ligands. Vice versa, Drosophila RHO-1 can effectively rescue the bacterium's ability to produce or release the signal that activates density-dependent gene regulation (or quorum sensing). This study provides the first evidence that prokaryotic and eukaryotic RHOs could have a conserved role in cell communication and that their biochemical properties could be more similar than previously anticipated.

  20. Specificity and evolvability in eukaryotic protein interaction networks.

    Directory of Open Access Journals (Sweden)

    Pedro Beltrao

    2007-02-01

    Full Text Available Progress in uncovering the protein interaction networks of several species has led to questions of what underlying principles might govern their organization. Few studies have tried to determine the impact of protein interaction network evolution on the observed physiological differences between species. Using comparative genomics and structural information, we show here that eukaryotic species have rewired their interactomes at a fast rate of approximately 10(-5 interactions changed per protein pair, per million years of divergence. For Homo sapiens this corresponds to 10(3 interactions changed per million years. Additionally we find that the specificity of binding strongly determines the interaction turnover and that different biological processes show significantly different link dynamics. In particular, human proteins involved in immune response, transport, and establishment of localization show signs of positive selection for change of interactions. Our analysis suggests that a small degree of molecular divergence can give rise to important changes at the network level. We propose that the power law distribution observed in protein interaction networks could be partly explained by the cell's requirement for different degrees of protein binding specificity.