WorldWideScience

Sample records for euglena

  1. Biophysics of Euglena phototaxis

    Science.gov (United States)

    Tsang, Alan Cheng Hou; Riedel-Kruse, Ingmar H.

    Phototactic microorganisms usually respond to light stimuli via phototaxis to optimize the process of photosynthesis and avoid photodamage by excessive amount of light. Unicellular phototactic microorganisms such as Euglena gracilis only possesses a single photoreceptor, which highly limits its access to the light in three-dimensional world. However, experiments demonstrated that Euglena responds to light stimuli sensitively and exhibits phototaxis quickly, and it's not well understood how it performs so efficiently. We propose a mathematical model of Euglena's phototaxis that couples the dynamics of Euglena and its phototactic response. This model shows that Euglena exhibits wobbling path under weak ambient light, which is consistent to experimental observation. We show that this wobbling motion can enhance the sensitivity of photoreceptor to signals of small light intensity and provide an efficient mechanism for Euglena to sample light in different directions. We further investigate the optimization of Euglena's phototaxis using different performance metrics, including reorientation time, energy consumption, and swimming efficiency. We characterize the tradeoff among these performance metrics and the best strategy for phototaxis.

  2. Evolutionary Origin of Euglena.

    Science.gov (United States)

    Zakryś, Bożena; Milanowski, Rafał; Karnkowska, Anna

    2017-01-01

    Euglenids (Excavata, Discoba, Euglenozoa, Euglenida) is a group of free-living, single-celled flagellates living in the aquatic environments. The uniting and unique morphological feature of euglenids is the presence of a cell covering called the pellicle. The morphology and organization of the pellicle correlate well with the mode of nutrition and cell movement. Euglenids exhibit diverse modes of nutrition, including phagotrophy and photosynthesis. Photosynthetic species (Euglenophyceae) constitute a single subclade within euglenids. Their plastids embedded by three membranes arose as the result of a secondary endosymbiosis between phagotrophic eukaryovorous euglenid and the Pyramimonas-related green alga. Within photosynthetic euglenids three evolutionary lineages can be distinguished. The most basal lineage is formed by one mixotrophic species, Rapaza viridis. Other photosynthetic euglenids are split into two groups: predominantly marine Eutreptiales and freshwater Euglenales. Euglenales are divided into two families: Phacaceae, comprising three monophyletic genera (Discoplastis, Lepocinclis, Phacus) and Euglenaceae with seven monophyletic genera (Euglenaformis, Euglenaria, Colacium, Cryptoglena, Strombomonas, Trachelomonas, Monomorphina) and polyphyletic genus Euglena. For 150 years researchers have been studying Euglena based solely on morphological features what resulted in hundreds of descriptions of new taxa and many artificial intra-generic classification systems. In spite of the progress towards defining Euglena, it still remains polyphyletic and morphologically almost undistinguishable from members of the recently described genus Euglenaria; members of both genera have cells undergoing metaboly (dynamic changes in cell shape), large chloroplasts with pyrenoids and monomorphic paramylon grains. Model organisms Euglena gracilis Klebs, the species of choice for addressing fundamental questions in eukaryotic biochemistry, cell and molecular biology, is a

  3. Euglena Transcript Processing.

    Science.gov (United States)

    McWatters, David C; Russell, Anthony G

    2017-01-01

    RNA transcript processing is an important stage in the gene expression pathway of all organisms and is subject to various mechanisms of control that influence the final levels of gene products. RNA processing involves events such as nuclease-mediated cleavage, removal of intervening sequences referred to as introns and modifications to RNA structure (nucleoside modification and editing). In Euglena, RNA transcript processing was initially examined in chloroplasts because of historical interest in the secondary endosymbiotic origin of this organelle in this organism. More recent efforts to examine mitochondrial genome structure and RNA maturation have been stimulated by the discovery of unusual processing pathways in other Euglenozoans such as kinetoplastids and diplonemids. Eukaryotes containing large genomes are now known to typically contain large collections of introns and regulatory RNAs involved in RNA processing events, and Euglena gracilis in particular has a relatively large genome for a protist. Studies examining the structure of nuclear genes and the mechanisms involved in nuclear RNA processing have revealed that indeed Euglena contains large numbers of introns in the limited set of genes so far examined and also possesses large numbers of specific classes of regulatory and processing RNAs, such as small nucleolar RNAs (snoRNAs). Most interestingly, these studies have also revealed that Euglena possesses novel processing pathways generating highly fragmented cytosolic ribosomal RNAs and subunits and non-conventional intron classes removed by unknown splicing mechanisms. This unexpected diversity in RNA processing pathways emphasizes the importance of identifying the components involved in these processing mechanisms and their evolutionary emergence in Euglena species.

  4. Photomovement in Euglena.

    Science.gov (United States)

    Häder, Donat-P; Iseki, Mineo

    2017-01-01

    Motile microorganisms such as the green Euglena gracilis use a number of external stimuli to orient in their environment. They respond to light with photophobic responses, photokinesis and phototaxis, all of which can result in accumulations of the organisms in suitable habitats. The light responses operate synergistically with gravitaxis, aerotaxis and other responses. Originally the microscopically obvious stigma was thought to be the photoreceptor, but later the paraxonemal body (PAB, paraflagellar body) has been identified as the light responsive organelle, located in the trailing flagellum inside the reservoir. The stigma can aid in light direction perception by shading the PAB periodically when the cell rotates helically in lateral light, but stigmaless mutants can also orient with respect to the light direction, and negative phototaxis does not need the presence of the stigma. The PAB is composed of dichroically oriented chromoproteins which is reflected in a pronounced polarotaxis in polarized light. There was a long debate about the potential photoreceptor molecule in Euglena, including carotenoids, flavins and rhodopsins. This discussion was terminated by the unambiguous proof that the photoreceptor is a 400 kDa photoactivated adenylyl cyclase (PAC) which consists of two α- and two β-subunits each. Each subunit possesses two BLUF (Blue Light receptor Using FAD) domains binding FAD, which harvest the light energy, and two adenylyl cyclases, which produce cAMP from ATP. The cAMP has been found to activate one of the five protein kinase s found in Euglena (PK.4). This enzyme in turn is thought to phosphorylate proteins inside the flagellum which result in a change in the flagellar beating pattern and thus a course correction of the cell. The involvements of PAC and protein kinase have been confirmed by RNA interference (RNAi). PAC is responsible for step-up photophobic responses as well as positive and negative phototaxis, but not for the step

  5. Gravitaxis in Euglena.

    Science.gov (United States)

    Häder, Donat-P; Hemmersbach, Ruth

    2017-01-01

    Motile microorganisms utilize a number of responses to external stimuli including light, temperature, chemicals as well as magnetic and electric fields. Gravity is a major clue to select a niche in their environment. Positive gravitaxis leads an organism down into the water column and negative gravitaxis brings it to the surface. In Euglena the precision of gravitaxis is regulated by an internal rhythm entrained by the daily light/dark cycle. This and the cooperation with phototaxis bring the cells into an optimal position in the water column. In the past a passive orientation based on a buoy mechanism has been proposed for Euglena gracilis, but now it has been proven that this flagellate possesses a physiological gravireceptor and an active orientation. Numerous experiments in space using satellites, rockets and shuttles as well as in parabolic flights have been conducted as well as in functional weightlessness (simulated microgravity) on ground-based facilities such as clinostats to characterize the gravitaxis of Euglena. The threshold for gravity perception was determined and physiological, biochemical and molecular components of the signal transduction chain have been identified. In contrast to higher plants, some algae and ciliates, Euglena does not possess sedimenting statoliths to detect the direction of the gravity vector of the Earth. The gravireceptors were found to be mechano-sensitive Ca2+-conducting ion channels thought to be located at the front end of the cell underneath the trailing flagellum. When activated by gravity-induced pressure due to sedimentation of the whole cell body, they allow a passive influx of calcium along a previously established ion gradient. The entering calcium binds to a specific calmodulin (CaM.2) which in turn activates an adenylyl cyclase producing cAMP from ATP. This cAMP is believed to activate a specific protein kinase A (PK.4), which is postulated to phosphorylate proteins inside the flagellum resulting in a bending and

  6. The Mitochondrion of Euglena gracilis.

    Science.gov (United States)

    Zimorski, Verena; Rauch, Cessa; van Hellemond, Jaap J; Tielens, Aloysius G M; Martin, William F

    2017-01-01

    In the presence of oxygen, Euglena gracilis mitochondria function much like mammalian mitochondria. Under anaerobiosis, E. gracilis mitochondria perform a malonyl-CoA independent synthesis of fatty acids leading to accumulation of wax esters, which serve as the sink for electrons stemming from glycolytic ATP synthesis and pyruvate oxidation. Some components (enzymes and cofactors) of Euglena's anaerobic energy metabolism are found among the anaerobic mitochondria of invertebrates, others are found among hydrogenosomes, the H2-producing anaerobic mitochondria of protists.

  7. Localized structure of Euglena bioconvection

    Science.gov (United States)

    Iima, Makoto; Shoji, Erika; Awazu, Akinori; Nishimori, Hiraku; Izumi, Shunsuke; Hiroshima University Collaboration

    2013-11-01

    Bioconvection of a suspension of Euglena gracilis, a photosensitive flagellate whose body length is approximately 50 micrometers, was experimentally studied. Under strong light intensity, Euglena has a negative phototaxis; they tend to go away from the light source. When the bright illumination is given from the bottom, a large scale spatio-temporal pattern is generated as a result of interaction between Euglena and surrounding flow. Recently, localized convection pattern had been reported, however, the generation process and interaction of the localized convection cells has not been analyzed. We performed experimental study to understand the localization mechanism, in particular, the onset of bioconvection and lateral localization behavior due to phototaxis. Experiments started from different initial condition suggests a bistability near the onset of the convection as binary fluid convection that also shows localized convection cells. Dynamics of localized convections cells, which is similar to the binary fluid convection case although the basic equations are not the same, is also reported.

  8. Peroxidative Activity in Euglena gracilis1

    Science.gov (United States)

    Brown, Richard H.; Collins, Neville; Merrett, Michael J.

    1975-01-01

    Cell-free homogenates of Euglena gracilis contain very low levels of catalase activity as compared to higher plants and some other algae. Purified Euglena cytochrome c acts catalytically as a peroxidase. The observed catalytic activity of cytochrome c in extracts from heterotrophically grown cells was more than enough to account for the observed rates of hydrogen peroxide destruction. The peroxidative activity of Euglena cytochrome c was completely inhibited by 20 mm 3-amino-1,2,4-triazole. PMID:16659224

  9. C2 metabolism in Euglena.

    Science.gov (United States)

    Nakazawa, Masami

    2017-01-01

    Euglenoids are able to assimilate fatty acids and alcohols with various carbon-chain lengths, and ethanol is known to be one of the best carbon sources to support the growth of Euglena gracilis. Ethanol is first oxidized to acetate by the sequential reactions of alcohol dehydrogenase and acetaldehyde dehydrogenase in the mitochondria, and then converted to acetyl coenzyme A (acetyl-CoA). Acetyl-CoA is metabolized through the glyoxylate cycle which is a modified tricarboxylic acid (TCA) cycle in which isocitrate lyase (ICL) and malate synthase (MS) function to bypass the two decarboxylation steps of the TCA cycle, enabling the net synthesis of carbohydrates from C2 compounds. ICL and MS form a unique bifunctional enzyme localized in Euglena mitochondria, not in glyoxysome as in other eukaryotes. The unique glyoxylate and glycolate metabolism during photorespiration is also discussed in this chapter.

  10. Large-Scale Cultivation of Euglena.

    Science.gov (United States)

    Suzuki, Kengo

    2017-01-01

    From the middle of the twentieth century, microalgae have been exploited as a candidate biomass source of food and other products. One such candidate source is the fast-proliferating microalga Euglena gracilis. The commercial cultivation of E. gracilis began in 2007, after the success of its outdoor mass cultivation and improvement of the harvesting and drying methods suitable for Euglena cells. The commercialization of Euglena production is based on the strategy of "5Fs of Biomass," which refers to the development and production of commercial products including food, fiber, feed, fertilizer, and fuel from biomass." Although room for improvement remains in the productivity of Euglena biomass, the product with the highest value-food-is already profitable. By enhancing the productivity of its biomass, other Euglena products, including fiber, feed, fertilizer, and fuel, can be commercialized. Breeding and recombinant DNA technology studies are being conducted to accomplish more extensive application of Euglena. In addition, the search for a better place for outdoor mass cultivation of Euglena is ongoing.

  11. Notes on Methods of the Microscopic Examination of Euglena

    OpenAIRE

    斎藤, 実

    1989-01-01

    This paper deals with techniques for the light microscopic examination of Euglena cells. It also gives information on some methods of collecting samples from fresh or brackish waters and procedures for cultivating Euglena cells.

  12. Exploring the Glycans of Euglena gracilis

    Directory of Open Access Journals (Sweden)

    Ellis C. O’Neill

    2017-12-01

    Full Text Available Euglena gracilis is an alga of great biotechnological interest and extensive metabolic capacity, able to make high levels of bioactive compounds, such as polyunsaturated fatty acids, vitamins and β-glucan. Previous work has shown that Euglena expresses a wide range of carbohydrate-active enzymes, suggesting an unexpectedly high capacity for the synthesis of complex carbohydrates for a single-celled organism. Here, we present an analysis of some of the carbohydrates synthesised by Euglena gracilis. Analysis of the sugar nucleotide pool showed that there are the substrates necessary for synthesis of complex polysaccharides, including the unusual sugar galactofuranose. Lectin- and antibody-based profiling of whole cells and extracted carbohydrates revealed a complex galactan, xylan and aminosugar based surface. Protein N-glycan profiling, however, indicated that just simple high mannose-type glycans are present and that they are partially modified with putative aminoethylphosphonate moieties. Together, these data indicate that Euglena possesses a complex glycan surface, unrelated to plant cell walls, while its protein glycosylation is simple. Taken together, these findings suggest that Euglena gracilis may lend itself to the production of pharmaceutical glycoproteins.

  13. Exploring the Glycans of Euglena gracilis.

    Science.gov (United States)

    O'Neill, Ellis C; Kuhaudomlarp, Sakonwan; Rejzek, Martin; Fangel, Jonatan U; Alagesan, Kathirvel; Kolarich, Daniel; Willats, William G T; Field, Robert A

    2017-12-15

    Euglena gracilis is an alga of great biotechnological interest and extensive metabolic capacity, able to make high levels of bioactive compounds, such as polyunsaturated fatty acids, vitamins and β-glucan. Previous work has shown that Euglena expresses a wide range of carbohydrate-active enzymes, suggesting an unexpectedly high capacity for the synthesis of complex carbohydrates for a single-celled organism. Here, we present an analysis of some of the carbohydrates synthesised by Euglena gracilis. Analysis of the sugar nucleotide pool showed that there are the substrates necessary for synthesis of complex polysaccharides, including the unusual sugar galactofuranose. Lectin- and antibody-based profiling of whole cells and extracted carbohydrates revealed a complex galactan, xylan and aminosugar based surface. Protein N-glycan profiling, however, indicated that just simple high mannose-type glycans are present and that they are partially modified with putative aminoethylphosphonate moieties. Together, these data indicate that Euglena possesses a complex glycan surface, unrelated to plant cell walls, while its protein glycosylation is simple. Taken together, these findings suggest that Euglena gracilis may lend itself to the production of pharmaceutical glycoproteins.

  14. Biochemistry and Physiology of Vitamins in Euglena.

    Science.gov (United States)

    Watanabe, Fumio; Yoshimura, Kazuya; Shigeoka, Shigeru

    2017-01-01

    Euglena gracilis Z requires vitamins B1 and B12 for growth. It takes up and accumulates large amounts of these exogenous vitamins through energy-dependent active transport systems. Except for these essential vitamins, E. gracilis Z has the ability to synthesize all human vitamins. Euglena synthesizes high levels of antioxidant vitamins such as vitamins C and E, and, thus, are used as nutritional supplements for humans and domestic animals. Methods to effectively produce vitamins in Euglena have been investigated.Previous biochemical studies indicated that E. gracilis Z contains several vitamin-related novel synthetic enzymes and metabolic pathways which suggests that it is a highly suitable organism for elucidating the physiological functions of vitamins in comparative biochemistry and biological evolution. E. gracilis Z has an unusual biosynthetic pathway for vitamin C, a hybrid of the pathways found in animals and plants. This chapter presents up-to-date information on the biochemistry and physiological functions of vitamins in this organism.

  15. Ultrastructure of five Euglena species positioned in the subdivision Serpentes.

    Science.gov (United States)

    Kusel-Fetzmann, Elsa; Weidinger, Marieluise

    2008-11-01

    Within the genus Euglena, the subgroup "Serpentes" is characterised by species with long, slim cell bodies, which move without flagellum by snake-like locomotion in the detritus or in the mud, or swim freely in the water with a flagellum. Two major groups can be distinguished. The first is centred around the species Euglena satelles, with Euglena carterae, Euglena adhaerens and others, and is characterised by a straight-ended anterior part of the cell without a protruding flagellum. The second group is centred around the species Euglena deses, with its varieties, and Euglena ehrenbergii, and is characterised by a lateral canal opening at the anterior end with one flagellum protruding sideways. The representatives of the whole Serpentes group have various (15-30) large chloroplasts containing characteristic naked pyrenoids. The exception is Euglena ehrenbergii, which possesses innumerable small chloroplasts without pyrenoids. To better characterise this whole subgroup, to better taxonomically distinguish between the diverse species and to provide a basis for further molecular-genetic analysis of the phylogeny of and relationship between the Euglena species, we used transmission and scanning electron microscopy to investigate the five selected species. One important distinguishing feature among the species is the form of the pellicle. It can differ in thickness or cross-sectional shape (e.g. A-, M-or plateau-like shape) and can have various arrangements of microtubules and endoplasmic reticulum mucus vesicles. We show that the group is more heterogeneous than expected and that some species have very individual features that poorly fit into a common Serpentes group, particularly the above-mentioned Euglena ehrenbergii. Euglena carterae, formerly named Euglena deses var. carterae, with its typical straight-ended canal opening, does not fit into the Euglena deses varieties, as has already been confirmed by molecular genetic methods.

  16. Protein Targeting to the Plastid of Euglena.

    Science.gov (United States)

    Durnford, Dion G; Schwartzbach, Steven D

    2017-01-01

    The lateral transfer of photosynthesis between kingdoms through endosymbiosis is among the most spectacular examples of evolutionary innovation. Euglena, which acquired a chloroplast indirectly through an endosymbiosis with a green alga, represents such an example. As with other endosymbiont-derived plastids from eukaryotes, there are additional membranes that surround the organelle, of which Euglena has three. Thus, photosynthetic genes that were transferred from the endosymbiont to the host nucleus and whose proteins are required in the new plastid, are now faced with targeting and plastid import challenges. Early immunoelectron microscopy data suggested that the light-harvesting complexes, photosynthetic proteins in the thylakoid membrane, are post-translationally targeted to the plastid via the Golgi apparatus, an unexpected discovery at the time. Proteins targeted to the Euglena plastid have complex, bipartite presequences that direct them into the endomembrane system, through the Golgi apparatus and ultimately on to the plastid, presumably via transport vesicles. From transcriptome sequencing, dozens of plastid-targeted proteins were identified, leading to the identification of two different presequence structures. Both have an amino terminal signal peptide followed by a transit peptide for plastid import, but only one of the two classes of presequences has a third domain-the stop transfer sequence. This discovery implied two different transport mechanisms; one where the protein was fully inserted into the lumen of the ER and another where the protein remains attached to, but effectively outside, the endomembrane system. In this review, we will discuss the biochemical and bioinformatic evidence for plastid targeting, discuss the evolution of the targeting system, and ultimately provide a working model for the targeting and import of proteins into the plastid of Euglena.

  17. Phosphate Uptake by Phosphate-Starved Euglena

    Science.gov (United States)

    BLUM, J. J.

    1966-01-01

    Phosphate-deprived Euglena acquire the ability to rapidly in-corporate added phosphate and, also, synthesize an induced acid phosphatase localized in the pellicle. The phosphate uptake system is saturated at low concentrations of phosphate and is inhibited by dinitrophenol, by low temperature, by K+, Li+, and Na+ ions, and competitively by arsenate. The orthophosphate incorporated into the cell is rapidly converted into organic forms but enough remains unesterified to suggest that the uptake is an active transport process. The data do not rule out the possibility that the induced phosphatase is involved in the transport process. PMID:5924104

  18. Ultrasonic and spectroscopic studies on photoactivation of euglena

    Science.gov (United States)

    Saito, Mitsunori; Morita, Shin

    2006-12-01

    We studied the effect of the irradiation wavelength on the activity of photosynthetic euglena. The ultrasonic manipulation technique was used for both the activity evaluation and the movement restriction in the spectral measurements. Euglenas that had been preserved in darkness became inactive, and accordingly most of them were trapped by the ultrasonic standing wave (0.8mW/mm2). However, when they were exposed to light of 500 or 700nm wavelength (0.13W/m2), they became active enough to escape from the trapping. By contrast, irradiation at 550, 600, or 650nm wavelength had no effect on their activity. Spectroscopic measurements, which used to be difficult for locomotive microorganisms, were conducted successfully by trapping euglena at a node of the ultrasonic standing wave. The absorption bands were observed at around 500 or 700nm, which corresponded to the irradiation wavelengths that activated euglena.

  19. Activities of various cobalamins for Euglena gracilis with reference to vitamin B12 assay with Euglena

    Science.gov (United States)

    Adams, J. F.; McEwan, Fiona

    1971-01-01

    Coenzyme B12 and methylcobalamin in water are less active in promoting growth of Euglena gracilis Z strain than the same concentrations of cyanocobalamin and hydroxocobalamin which are equally active. When bound to human serum or human liver homogenate, however, the activities of these four cobalamins do not differ significantly with one exception. The results suggest that the Euglena assay using cyanocobalamin standards is not satisfactory for quantitation of coenzyme B12 and methylcobalamin in water but acceptable when coenzyme B12 and methylcobalamin are bound to serum or liver. Sulphitocobalamin in water is as active as cyanocobalamin and hydroxocobalamin but nitritocobalamin is less active. Factor B, the monocarboxylic acids of cyanocobalamin and hydroxocobalamin, and the dicarboxylic acid of cyanocobalamin in water were inactive. PMID:5572999

  20. Biosynthesis of silver nanoparticles using Euglena gracilis, Euglena intermedia and their extract.

    Science.gov (United States)

    Li, Yong; Tang, Xiaoling; Song, Wenshuang; Zhu, Lina; Liu, Xingang; Yan, Xiaomin; Jin, Chengzhi; Ren, Qingguang

    2015-02-01

    Extracellular and intracellular biosynthesis of silver nanoparticles (AgNPs) by Euglena gracilis (EG) strain and Euglena intermedia (EI) strain are reported in this study. The obtained nanoparticles showed an absorption peak approximates 420 nm in the UV-visible spectrum, corresponding to the plasmon resonance of AgNPs. According to the result of inductively coupled plasma-atomic emission spectrometer, the intakes of silver ions by EI and EG are roughly equal. The transmission electron microscope (TEM) analysis of the successful in vivo and in vitro synthesised AgNPs indicated the sizes, ranging from 6 to 24 nm and 15 to 60 nm in diameter, respectively, and a spherical-shaped polydispersal of the particles. The successful formation of AgNPs has been confirmed by energy dispersive X-ray analysis connected to the TEM. The Fourier transform infrared spectroscopy measurements reveal the presence of bioactive functional groups such as amines are found to be the capping and stabilising agents of nanoparticles. To our knowledge, this is the first report where two kinds of Euglena microalga were used as the potential source for in vivo and in vitro biosynthesis of AgNPs.

  1. Identification and functional analysis of peroxiredoxin isoforms in Euglena gracilis.

    Science.gov (United States)

    Tamaki, Shun; Maruta, Takanori; Sawa, Yoshihiro; Shigeoka, Shigeru; Ishikawa, Takahiro

    2014-01-01

    Euglena gracilis lacks catalase and contains ascorbate peroxidase (APX) which is localized exclusively in the cytosol. Other enzymes that scavenge reactive oxygen species (ROS) in Euglena have not yet been identified; therefore, ROS metabolism, especially in organelles, remains unclear in Euglena. The full-length cDNAs of four Euglena peroxiredoxins (EgPrxs) were isolated in this study. EgPrx1 and -4 were predicted to be localized in the cytosol, and EgPrx2 and -3 in plastids and mitochondria, respectively. The catalytic efficiencies of recombinant EgPrxs were similar to those of plant thiol-peroxidases, but were markedly lower than those of APX from Euglena. However, transcript levels of EgPrx1, -2, and -3 were markedly higher than those of APX. The growth rate of Euglena cells, in which the expression of EgPrx1 and -4 was suppressed by gene silencing, was markedly reduced under normal conditions, indicating physiological significance of Prx proteins.

  2. Selection and characterization of Euglena anabaena var. minor as a new candidate Euglena species for industrial application.

    Science.gov (United States)

    Suzuki, Kengo; Mitra, Sharbanee; Iwata, Osamu; Ishikawa, Takahiro; Kato, Sueo; Yamada, Koji

    2015-01-01

    Euglena gracilis is a microalgae used as a model organism. Recently, mass cultivation of this species has been achieved for industrial applications. The genus Euglena includes more than 200 species that share common useful features, but the potential industrial applications of other Euglena species have not been evaluated. Thus, we conducted a pilot screening study to identify other species that proliferate at a sufficiently rapid rate to be used for mass cultivation; we found that Euglena anabaena var. minor had a rapid growth rate. In addition, its cells accumulated more than 40% weight of carbohydrate, most of which is considered to be a euglenoid specific type of beta-1-3-glucan, paramylon. Carbohydrate is stored in E. anabaena var. minor cells during normal culture, whereas E. gracilis requires nitrogen limitation to facilitate paramylon accumulation. These results suggest the potential industrial application of E. anabaena var. minor.

  3. Genetic variability of Euglena agilis (Euglenophyceae

    Directory of Open Access Journals (Sweden)

    Bożena Zakryś

    2011-01-01

    Full Text Available The results of the internal transcribed spacer (ITS2 of extrachromosomal rDNA and the chloroplast SSU rDNA sequence analysis presented here confirmed elevated genetic polymorphism revealed earlier by RFLP and RAPD for seven clones of the cosmopolitan species - Euglena agilis Carter. High diversity among these clonal strains was not reflected by morphological criteria, with the exception of the only one character - the ability of the cell in its non-motile dividing states (palmella to produce mucus and form a slimy envelope. Evolutionary adaptation as formation of slimy envelope may be attributed to different survival strategy of the species by which it adapts to life in a highly variable environment.

  4. Studies of Chloroplast Development in Euglena

    Science.gov (United States)

    Hill, Helene Z.; Epstein, H. T.; Schiff, Jerome A.

    1966-01-01

    Photoreactivation (PR) of green colony-forming ability in Euglena is pH-insensitive from pH 6.0 to 8.0 and temperature-sensitive with a maximum rate at 35°C. There is no PR at 0°C. The rate of PR varies with the growth stage of the cells; PR of exponential phase cells is slower than that of stationary phase cells. The reciprocity rule holds for PR over a 6-fold range of intensity. The shape of PR curves is a function of the UV dose; there appears to be a progressive increase in multiplicity until a limiting multiplicity is reached as indicated by the fact that curves for high doses are superposable. Dark-grown and light-grown cells give the same PR response for comparable UV doses. UV inactivation of cells which have been treated with UV and then with PR light shows that, if the PR dose is sufficiently large, the same UV-inactivation curve is obtained as for nonpretreated control cells. Doses of PR lower than the saturating dose produce UV-inactivation curves, the ultimate slopes of which are parallel to the slope of the control curve, but which show reduced multiplicity. The multiplicity of these curves increases with increasing PR dose. The UV inactivation of green colony-forming ability in Euglena is completely photoreactivable at the doses studied, in contrast with the UV inactivation of colony-forming ability, which occurs at considerably higher UV doses and behaves like most other photoreactivable systems, showing a photoreactivable sector of 0.32. PMID:5960139

  5. Biochemistry and Physiology of Reactive Oxygen Species in Euglena.

    Science.gov (United States)

    Ishikawa, Takahiro; Tamaki, Shun; Maruta, Takanori; Shigeoka, Shigeru

    2017-01-01

    Reactive oxygen species (ROS) such as superoxide and hydrogen peroxide are by-products of various metabolic processes in aerobic organisms including Euglena. Chloroplasts and mitochondria are the main sites of ROS generation by photosynthesis and respiration, respectively, through the active electron transport chain. An efficient antioxidant network is required to maintain intracellular ROS pools at optimal conditions for redox homeostasis. A comparison with the networks of plants and animals revealed that Euglena has acquired some aspects of ROS metabolic process. Euglena lacks catalase and a typical selenocysteine containing animal-type glutathione peroxidase for hydrogen peroxide scavenging, but contains enzymes involved in ascorbate-glutathione cycle solely in the cytosol. Ascorbate peroxidase in Euglena, which plays a central role in the ascorbate-glutathione cycle, forms a unique intra-molecular dimer structure that is related to the recognition of peroxides. We recently identified peroxiredoxin and NADPH-dependent thioredoxin reductase isoforms in cellular compartments including chloroplasts and mitochondria, indicating the physiological significance of the thioredoxin system in metabolism of ROS. Besides glutathione, Euglena contains the unusual thiol compound trypanothione, an unusual form of glutathione involving two molecules of glutathione joined by a spermidine linker, which has been identified in pathogenic protists such as Trypanosomatida and Schizopyrenida. Furthermore, in contrast to plants, photosynthesis by Euglena is not susceptible to hydrogen peroxide because of resistance of the Calvin cycle enzymes fructose-1,6-bisphosphatse, NADP+-glyceraldehyde-3-phosphatase, sedoheptulose-1,7-bisphosphatase, and phosphoribulokinase to hydrogen peroxide. Consequently, these characteristics of Euglena appear to exemplify a strategy for survival and adaptation to various environmental conditions during the evolutionary process of euglenoids.

  6. STUDIES ON CHLOROPLAST DEVELOPMENT AND REPLICATION IN EUGLENA

    Science.gov (United States)

    Carell, Edgar F.

    1969-01-01

    When Euglena gracilis is grown under vitamin B12 deficiency conditions, the amount of protein and of chlorophyll per cell increase with decrease of B12 in the medium and consequently in the cell. The increase in cell protein is proportional to and precedes an increase in the number of chloroplasts per cell. This replication of the chloroplasts under deficiency conditions is not accompanied by nuclear or cell division. It is concluded that chloroplast replication in Euglena gracilis is independent of nuclear and cellular replication, at least under B12 deficiency conditions. We established a graph of the growth of Euglena under different concentrations of vitamin B12 added to the growth medium, which permitted us to calculate that at least 22,000 molecules of vitamin B12 per cell are required to give normal growth. PMID:5783865

  7. Bezinkingsplankton in een waterbloei van Euglena pisciformis Kleba

    NARCIS (Netherlands)

    Schroevers, P.J.

    1968-01-01

    Op 5 april 1965 werd door de Visserij-Inspectie te Utrecht gemonsterd in de Bergse Plas, gemeente Rotterdam, naar aanleiding van een vissterfte, die in deze plas geconstateerd was. Het water was zeer groen van kleur, Bij nader onderzoek bleek sprake te zijn van een bloei van Euglena pisciformis

  8. Analysis of the gravitaxis signal transduction chain in Euglena gracilis

    Science.gov (United States)

    Nasir, Adeel

    Abstract Euglena gracilis is a photosynthetic, eukaryotic flagellate. It can adapt autotrophic and heterotrophic mode of growth and respond to different stimuli, this makes it an organism of choice for different research disciplines. It swims to reach a suitable niche by employing different stimuli such as oxygen, light, gravity and different chemicals. Among these stimuli light and gravity are the most important. Phototaxis (locomotion under light stimulus) and gravitaxis (locomotion under gravity stimulus) synergistically help cells to attain an optimal niche in the environment. However, in the complete absence of light or under scarcity of detectable light, cells can totally depend on gravity to find its swimming path. Therefore gravity has certain advantages over other stimuli.Unlike phototatic signal transduction chain of Euglena gracilis no clear primary gravity receptor has been identified in Euglena cells so far. However, there are some convincing evidence that TRP like channels act as a primary gravity receptor in Euglena gracilis.Use of different inhibitors gave rise to the involvement of protein kinase and calmodulin proteins in signal transduction chain of Euglena gracilis. Recently, specific calmodulin (Calmodulin 2) and protein kinase (PKA) have been identified as potential candidates of gravitactic signal transduction chain. Further characterization and investigation of these candidates was required. Therefore a combination of biochemical and genetic techniques was employed to localize proteins in cells and also to find interacting partners. For localization studies, specific antibodies were raised and characterized. Specificity of antibodies was validated by knockdown mutants, Invitro-translated proteins and heterologously expressed proteins. Cell fractionation studies, involving separation of the cell body and flagella for western blot analysis and confocal immunofluorescence studies were performed for subcellular localization. In order to find

  9. Two-dimensional optical feedback control of Euglena confined in closed-type microfluidic channels.

    Science.gov (United States)

    Ozasa, Kazunari; Lee, Jeesoo; Song, Simon; Hara, Masahiko; Maeda, Mizuo

    2011-06-07

    We examined two-dimensional (2D) optical feedback control of phototaxis flagellate Euglena cells confined in closed-type microfluidic channels (microaquariums), and demonstrated that the 2D optical feedback enables the control of the density and position of Euglena cells in microaquariums externally, flexibly, and dynamically. Using three types of feedback algorithms, the density of Euglena cells in a specified area can be controlled arbitrarily and dynamically, and more than 70% of the cells can be concentrated into a specified area. Separation of photo-sensitive/insensitive Euglena cells was also demonstrated. Moreover, Euglena-based neuro-computing has been achieved, where 16 imaginary neurons were defined as Euglena-activity levels in 16 individual areas in microaquariums. The study proves that 2D optical feedback control of photoreactive flagellate microbes is promising for microbial biology studies as well as applications such as microbe-based particle transportation in microfluidic channels or separation of photo-sensitive/insensitive microbes.

  10. Effect of antimicrobial agents on the Euglena method of serum vitamin B12 assay

    Science.gov (United States)

    Lie, J. T.; Ungar, Berta; Cowling, D. C.

    1969-01-01

    Antimicrobial agents in the serum may affect the results of the Euglena method of serum vitamin B12 assay. Sulphonamides suppress the growth of Euglena in concentrations attainable in the serum during treatment; streptomycin, chlortetracycline, erythromycin, kanamycin, and nitrofurantoin bleach Euglena but only when present in concentrations far exceeding the normal peak therapeutic blood levels. False low results of serum vitamin B12 assay due to inhibitory and/or bleaching substances in the serum can be readily detected by microscopy of the assay cultures and Euglena cell counts. PMID:5364439

  11. [Gamma-radiation action on cells of algae Euglena gracilis].

    Science.gov (United States)

    Glinkova, E; Zhuchkina, N I; Koltovoĭ, N A; Koltovaia, N A

    2012-01-01

    Considering the potentials of algae Euglena to constitute a part of biological systems of human life support, effects of low radiation doses on algal cells and radiosensitivity dependence on their genotype were studied. In experiments with gamma-irradiation (60Co) of Euglena gracilis, the highest radioresistance was demonstrated by strain Z. OFL; the chloroplasts lacking Z-derived strain showed hypersensitivity to radiation. E. bacillaris and derived chlorophyll-lacking strains W3 and W10 had intermediate radiosensitivity. Irradiation with the doses of up to 10 Gy produced a hormetic effect in the stock strains. Cells death was observed only after irradiation by doses above 100 Gy. The stimulating effect was exerted both on radioresistance and growth rate. Dyes made possible rapid evaluation of the proportion of living and dead cells. Comparison of two survival tests showed that the classic medium inoculation overestimates cell deaths as it disregards the living non-proliferating cells.

  12. Protein synthesis in cadmium- and pentachlorophenol-tolerant Euglena gracilis

    Energy Technology Data Exchange (ETDEWEB)

    Barque, J.P.; Abahamid, A.; Chacun, H. [Laboratoire de Metabolism Cellulaire et Xenobiotiques, Chatenay-Malabry (France)] [and others

    1995-07-01

    This work is a preliminary characterization of two adapted Euglena gracilis cell lines, one to cadmium and the other to pentachlorophenol. Growth curve analysis indicate that tolerance to one pollutant did not protect against the second pollutant. These suggest that metabolic pathways that are induced by one pollutant are specific for this pollutant. This specificity is detectable at the level of gene expression. 16 refs., 6 figs.

  13. Sterols in Microalgae: Euglena gracilis and Selenastrum sp.

    OpenAIRE

    Zhang, Yangyang

    2017-01-01

    The literature review introduced the chemistry of sterols and presented the sterols found in microalgae, and placed emphasis on the analytical methods used for studying sterols in microalgae. A brief discussion about application of microalgae-derived sterols was also included. The aim of this work was to learn about the sterol compositions in microalgae: Euglena gracilis and Selenastrum sp.. The common analytical methods of sterols are not suitable when applied to microalgae. Traditional...

  14. The localization of glycollate-pathway enzymes in Euglena.

    Science.gov (United States)

    Collins, N; Merrett, M J

    1975-01-01

    Isolation of organelles from broken-cell suspensions of phototrophically grown Euglena gracilis Klebs was achieved by isopycnic centrifugation on sucrose gradients. 2. Equilibrium densities of 1.23g/cm3 for peroxisome-like particles, 1.22g/cm3 for mitochondria and 1.17g/cm3 for chloroplasts were recorded. 3. The enzymes glycollate dehydrogenase, glutamate-glyoxylate aminotransferase, serineglyoxylate aminotransferase, aspartate-alpha-oxoglutarate aminotransferase, hydroxy pyruvate reductase and malate dehydrogenase were present in peroxisome-like particles. 4. Unlike higher plants glycollate dehydrogenase and glutamate-glyoxylate aminotransferase were present in the mitochondria of Euglena. 5. Rates of glycollate and D-lactate oxidation were additive in the mitochondria, and, although glycollate dehydrogenase was inhibited by cyanide, D-lactate dehydrogenase activity was unaffected. 6. Glycollate oxidation was linked to O2 uptake in mitochondria but not in peroxisome-like particles. This glycollate-dependent O2 uptake was inhibited by antimycin A or cyanide. 7. The physiological significance of glycollate metabolism in Euglena mitochondria is discussed, with special reference to its role in photorespiration in algae. PMID:1156408

  15. Occurrence of L-Ascorbic Acid in Euglena gracilis z

    OpenAIRE

    SHIGEOKA, Shigeru; NAKANO, Yoshihisa; KITAOKA, Shozaburo

    1980-01-01

    Euglena gracilis synthesizes L-ascorbic acid. The content of total L-ascorbic acid in the cells grown photoautotrophically for 9 days in the stationary phase was 4.01 μmole/10^9 cells, corresponding to 4.25 mg per g dry weight. The oxidized form, dehydro-L-ascorbic acid was about 20% of total L-ascorbic acid. Illumination influenced the acid content markedly. From the present data, formation and physiological roles of L-ascorbic acid seem to be strongly affected by illumination.

  16. Simulation of Neurocomputing Based on Photophobic Reactions of Euglena: Toward Microbe-Based Neural Network Computing

    Science.gov (United States)

    Ozasa, Kazunari; Aono, Masashi; Maeda, Mizuo; Hara, Masahiko

    In order to develop an adaptive computing system, we investigate microscopic optical feedback to a group of microbes (Euglena gracilis in this study) with a neural network algorithm, expecting that the unique characteristics of microbes, especially their strategies to survive/adapt against unfavorable environmental stimuli, will explicitly determine the temporal evolution of the microbe-based feedback system. The photophobic reactions of Euglena are extracted from experiments, and built in the Monte-Carlo simulation of a microbe-based neurocomputing. The simulation revealed a good performance of Euglena-based neurocomputing. Dynamic transition among the solutions is discussed from the viewpoint of feedback instability.

  17. A numerical model of localized convection cells of Euglena suspensions

    Science.gov (United States)

    Iima, Makoto; Shoji, Erika; Yamaguchi, Takayuki

    2014-11-01

    Suspension of Euglena gracilis shows localized convection cells when it is illuminated form below with strong light intensity. Experiments in an annular container shows that there are two elementary localized structures. One consists of a pair of convection cells and a single region where number density of Euglena is high. The other consists a localized traveling wave. Based on the measurements of the flux of number density, we propose a model of bioconvection incorporating lateral phototaxis effect proportional to the light intensity gradient. Using pseudo spectral method, we performed numerical simulation of this model. We succeed in reproducing one of the localized structures, a convection pair with single region of high number density. Also, when the aspect ratio is large, there are a parameter region where the localized structure and conductive state are both stable, which is suggested by experiments. Spatial distribution of the number density implies that the accumulation of microorganism due to the convective flow causes such bistability. CREST(PJ74100011) and KAKENHI(26400396).

  18. Glucan synthase-like 2 is indispensable for paramylon synthesis in Euglena gracilis.

    Science.gov (United States)

    Tanaka, Yuji; Ogawa, Takahisa; Maruta, Takanori; Yoshida, Yuta; Arakawa, Kazuharu; Ishikawa, Takahiro

    2017-05-01

    The phytoflagellate Euglena gracilis produces a large amount of paramylon (PM), a conglomerate of liner β-1,3-glucan chains, as a storage polysaccharide. PM is synthesized from uridine diphosphate-glucose, but its mechanism of formation is largely unknown. Two enzymes, glucan synthase-like (EgGSL) 1 and EgGSL2 were previously identified as candidates for PM synthesis in a Euglena transcriptome analysis. Here, we performed a reverse genetic analysis on these enzymes. Knockdown of EgGSL2, but not EgGSL1, significantly inhibits PM accumulation in Euglena cells. Additionally, β-1,3-glucan synthesis is detected in a PM-associated membrane fraction extracted from Euglena cells. Our findings indicate that EgGSL2 is the predominant enzyme for PM biosynthesis. © 2017 Federation of European Biochemical Societies.

  19. Experimental Study on the Euglena gracilis for Micro-Transportation using a Phototatic Control

    Science.gov (United States)

    Kim, Jihoon; Nguyen, Vu Dat; Byun, Doyoung

    2012-11-01

    Recently, there has been growing interests in micro or nano-scale biological organisms for the micro-robotics to develop actively controlled micro or nano-level machines. The Euglena gracilis is a genus of unicellular protists, whose body size ranges from 30 to 70 μm. The Euglena gracilis contains an eyespot, a primitive organelle that filters sunlight into the light-detecting, photo-sensitive structures. It actively swims at the base of the flagellum. In this study, we investigated the controllability of Euglena gracilis for transporting a structure attaching itself. When a LED light is detected, the Euglena gracilis accordingly adjust its position to enhance photosynthesis. Using the phototactic control, we achieved the efficient transportation of a micro-structure. Partially funded by the Basic Science Research Program through the National Research Foundation of Korea(NRF, 2011-0016461) and the Industrial Core Technology Development Project through the Ministry of Knowledge and Commerce.

  20. An intact plastid genome is essential for the survival of colorless Euglena longa but not Euglena gracilis.

    Science.gov (United States)

    Hadariová, Lucia; Vesteg, Matej; Birčák, Erik; Schwartzbach, Steven D; Krajčovič, Juraj

    2017-05-01

    Euglena gracilis growth with antibacterial agents leads to bleaching, permanent plastid gene loss. Colorless Euglena (Astasia) longa resembles a bleached E. gracilis. To evaluate the role of bleaching in E. longa evolution, the effect of streptomycin, a plastid protein synthesis inhibitor, and ofloxacin, a plastid DNA gyrase inhibitor, on E. gracilis and E. longa growth and plastid DNA content were compared. E. gracilis growth was unaffected by streptomycin and ofloxacin. Quantitative PCR analyses revealed a time dependent loss of plastid genes in E. gracilis demonstrating that bleaching agents produce plastid gene deletions without affecting cell growth. Streptomycin and ofloxacin inhibited E. longa growth indicating that it requires plastid genes to survive. This suggests that evolutionary divergence of E. longa from E. gracilis was triggered by the loss of a cytoplasmic metabolic activity also occurring in the plastid. Plastid metabolism has become obligatory for E. longa cell growth. A process termed "intermittent bleaching", short term exposure to subsaturating concentrations of reversible bleaching agents followed by growth in the absence of a bleaching agent, is proposed as the molecular mechanism for E. longa plastid genome reduction. Various non-photosynthetic lineages could have independently arisen from their photosynthetic ancestors via a similar process.

  1. Study of the behavior of Euglena viridis, Euglena gracilis and Lepadella patella cultured in all-glass microaquarium.

    Science.gov (United States)

    Podwin, Agnieszka; Kubicki, Wojciech; Dziuban, Jan A

    2017-09-01

    In the paper, the microaquarium fabricated in a form of entirely glass lab-on-a-chip for culturing and microscale study of microorganisms has been presented. A new approach towards cellular studies that brings a significant improvement over commonly utilized - polymer-based solutions has been shown. For the first time, all-borosilicate glass chip was applied for the culturing of the selected microorganisms and enabled notable population growth and behaviorism investigation. The chip fabrication method in comparison to typical glass chip technology was notably simplified, including quick patterning and low temperature bonding in 80 °C. In the studies, both a single-cell (Euglena gracilis and Euglena viridis) and multi-cell microorganisms (Lepadella patella) were cultured in the microaquarium. Behaviorism of the selected microorganisms was investigated by supplying various proportions of carbon dioxide, nitrogen and air into the chip. Tests included studies of microorganisms chemotaxis, viability (mostly based on photosynthesis process) and coexistence in the lab-on-a-chip environment. The experiments confirmed that the developed chip is a tool that fits the requirements for the culturing and behavioral studies of microorganisms and constitute ground-works to propel its further application in broadly defined cellular study field.

  2. Motion of Euglena gracilis: Active fluctuations and velocity distribution

    Science.gov (United States)

    Romanczuk, P.; Romensky, M.; Scholz, D.; Lobaskin, V.; Schimansky-Geier, L.

    2015-07-01

    We study the velocity distribution of unicellular swimming algae Euglena gracilis using optical microscopy and active Brownian particle theory. To characterize a peculiar feature of the experimentally observed distribution at small velocities we use the concept of active fluctuations, which was recently proposed for the description of stochastically self-propelled particles [Romanczuk, P. and Schimansky-Geier, L., Phys. Rev. Lett. 106, 230601 (2011)]. In this concept, the fluctuating forces arise due to internal random performance of the propulsive motor. The fluctuating forces are directed in parallel to the heading direction, in which the propulsion acts. In the theory, we introduce the active motion via the depot model [Schweitzer, et al., Phys. Rev. Lett. 80(23), 5044 (1998)]. We demonstrate that the theoretical predictions based on the depot model with active fluctuations are consistent with the experimentally observed velocity distributions. In addition to the model with additive active noise, we obtain theoretical results for a constant propulsion with multiplicative noise.

  3. Gravitaxis of Euglena gracilis depends only partially on passive buoyancy

    Science.gov (United States)

    Richter, Peter R.; Schuster, Martin; Lebert, Michael; Streb, Christine; Häder, Donat-Peter

    In darkness, the unicellular freshwater flagellate Euglena gracilis shows a pronounced negative gravitactic behavior, and the cells swim actively upward in the water column. Up to now it was unclear whether this behavior is based on a passive (physical) alignment mechanism (e.g., buoyancy due to a fore-aft asymmetry of the cell body) or on an active physiological mechanism. A sounding rocket experiment was performed in which the effect of sub-1g-accelerations (0.05, 0.08, 0.12, and 0.2g) on untreated living cells and immobilized (fixation with liquid nitrogen) cells was observed. By means of computerized image analysis the angles of the cells long axis with respect to the acceleration vector were analyzed in order to calculate and compare the reorientation kinetics of the immobilized cells versus that of the controls. In both groups, the reorientation kinetics depended on the dose, but the reorientation of the living cells was about five times faster than that of the immobilized cells. This indicates that in young cells gravitaxis can be explained by a physical mechanism only to a small extend. In older cultures, in which the cells often have a drop shaped cell body, the physical reorientation is considerably faster, and a more pronounced influence of passive alignment caused by fore/aft asymmetry (drag-gravity model) can not be excluded. In addition to these results, Euglena gracilis cells seem to respond very sensitively to small accelerations when they are applied after a longer microgravity period. The data indicate that gravitactic orientation occurred at an acceleration as low as 0.05g.

  4. Oral administration of Euglena gracilis Z and its carbohydrate storage substance provides survival protection against influenza virus infection in mice.

    Science.gov (United States)

    Nakashima, Ayaka; Suzuki, Kengo; Asayama, Yuta; Konno, Makoto; Saito, Keita; Yamazaki, Noriyuki; Takimoto, Hiroaki

    2017-12-09

    Euglena gracilis Z is a micro-algae that is used as a food or nutritional supplement. Paramylon, the carbohydrate storage substance of Euglena gracilis Z has β-1, 3-glucan structure. Euglena gracilis Z and paramylon are reported to affect the immune system. In this study, we investigated the protective effects of Euglena gracilis Z and paramylon against influenza virus infection in mice. Euglena gracilis Z and paramylon were administered to mice as a 2% dietary mixture ad libitum. At 2 weeks after initiation of dietary administration, mice were infected intranasally with influenza virus A/PR/8/34 (H1N1). Survival rate was monitored 10 days after infection. In addition, we performed virus titer and cytokine profiles in the lung. High survival rates were observed for Euglena gracilis Z and paramylon-treated groups compared to the control group. Significantly lower virus titer in the lung was observed in the Euglena gracilis Z and paramylon-treated groups compared to the control group from day 1 after infection. Higher amount of IL-1β, IL-6, IL-12 (p70), IFN-γ, and IL-10 was observed in the paramylon groups compared to the control group. Our data therefore reveals a novel immunoregulatory role of the Euglena gracilis Z and paramylon which provides protection against influenza virus infection. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  5. The Chloroplast Genome of Euglena mutabilis-Cluster Arrangement, Intron Analysis, and Intrageneric Trends.

    Science.gov (United States)

    Dabbagh, Nadja; Preisfeld, Angelika

    2017-01-01

    A comparative analysis of the chloroplast genome of Euglena mutabilis underlined a high diversity in the evolution of plastids in euglenids. Gene clusters in more derived Euglenales increased in complexity with only a few, but remarkable changes in the genus Euglena. Euglena mutabilis differed from other Euglena species in a mirror-inverted arrangement of 12 from 15 identified clusters, making it very likely that the emergence at the base of the genus Euglena, which has been considered a long branch artifact, is truly a probable position. This was corroborated by many similarities in gene arrangement and orientation with Strombomonas and Monomorphina, rendering the genome organization of E. mutabilis in certain clusters as plesiomorphic feature. By RNA analysis exact exon-intron boundaries and the type of the 77 introns identified were mostly determined unambiguously. A detailed intron study of psbC pointed at two important issues: First, the number of introns varied even between species, and no trend from few to many introns could be observed. Second, mat1 was localized in Eutreptiales exclusively in intron 1, and mat2 was not identified. With the emergence of Euglenaceae in most species, a new intron containing mat2 inserted in front of the previous intron 1 and thereby became intron 2 with mat1. © 2016 The Author(s) Journal of Eukaryotic Microbiology © 2016 International Society of Protistologists.

  6. The effect of Euglena viridis on immune response of rohu, Labeo rohita (Ham.).

    Science.gov (United States)

    Das, Basanta Kumar; Pradhan, Jyotirmayee; Sahu, Swagatika

    2009-06-01

    The study evaluated the effect of dietary doses of Euglena viridis on the immune response and disease resistance of Labeo rohita fingerlings against infection with the bacterial pathogen Aeromonas hydrophila. L. rohita fingerlings were fed with diet containing 0 (Control), 0.1 g, 0.5 g, 1.0 g Euglena powder kg(-1) dry diet for 90 days. Biochemical (serum total protein, albumin, globulin, albumin:globulin ratio), haematological (WBC, RBC, haemoglobin content) and immunological (superoxide anion production, lysozyme, serum bactericidal activity) parameters of fish were examined after 30, 60 and 90 days of feeding. Fish were challenged with A. hydrophila 90 days post-feeding and mortalities were recorded over 10 days post-infection. The results demonstrate that fish fed with Euglena showed increased levels of superoxide anion production, lysozyme, serum bactericidal activity, serum protein and albumin (P Euglena kg(-1) dry diet showed the highest percentage survival (75%). These results indicate that Euglena stimulates the immunity and makes L. rohita more resistant to A. hydrophila infection.

  7. Photo and Nutritional Regulation of Euglena Organelle Development.

    Science.gov (United States)

    Schwartzbach, Steven D

    2017-01-01

    Euglena can use light and CO2, photosynthesis, as well as a large variety of organic molecules as the sole source of carbon and energy for growth. Light induces the enzymes, in this case an entire organelle, the chloroplast, that is required to use CO2 as the sole source of carbon and energy for growth. Ethanol, but not malate, inhibits the photoinduction of chloroplast enzymes and induces the synthesis of the glyoxylate cycle enzymes that comprise the unique metabolic pathway leading to two carbon, ethanol and acetate, assimilation. In resting, carbon starved cells, light mobilizes the degradation of the storage carbohydrate paramylum and transiently induces the mitochondrial proteins required for the aerobic metabolism of paramylum to provide the carbon and energy required for chloroplast development. Other mitochondrial proteins are degraded upon light exposure providing the amino acids required for the synthesis of light induced proteins. Changes in protein levels are due to increased and decreased rates of synthesis rather than changes in degradation rates. Changes in protein synthesis rates occur in the absence of a concomitant increase in the levels of mRNAs encoding these proteins indicative of photo and metabolic control at the translational rather than the transcriptional level. The fraction of mRNA encoding a light induced protein such as the light harvesting chlorophyll a/b binding protein of photosystem II, (LHCPII) associated with polysomes in the dark is similar to the fraction associated with polysomes in the light indicative of photoregulation at the level of translational elongation. Ethanol, a carbon source whose assimilation requires carbon source specific enzymes, the glyoxylate cycle enzymes, represses the synthesis of chloroplast enzymes uniquely required to use light and CO2 as the sole source of carbon and energy for growth. The catabolite sensitivity of chloroplast development provides a mechanism to prioritize carbon source utilization

  8. The effect of rapamycin on biodiesel-producing protist Euglena gracilis.

    Science.gov (United States)

    Mukaida, Shiho; Ogawa, Takumi; Ohishi, Kazuko; Tanizawa, Yasuhiro; Ohta, Daisaku; Arita, Masanori

    2016-06-01

    Rapamycin induces autophagy with lipid remodeling in yeast and mammalian cells. To investigate the lipid biosynthesis of Euglena gracilis, rapamycin was supplemented in comparison with two model algae, Chlamydomonas reinhardtii and Cyanidioschyzon merolae. In Euglena, rapamycin induced the reduction of chlorophylls and the accumulation of neutral lipids without deterring its cell proliferation. Its lipidomic profile revealed that the fatty acid composition did not alter by supplementing rapamycin. In Chlamydomonas, however, rapamycin induced serious growth inhibition as reported elsewhere. With a lower concentration of rapamycin, the alga accumulated neutral lipids without reducing chlorophylls. In Cyanidioschyzon, rapamycin did not increase neutral lipids but reduced its chlorophyll content. We also tested fatty acid elongase inhibitors such as pyroxasulfone or flufenacet in Euglena with no significant change in its neutral lipid contents. In summary, controlled supplementation of rapamycin can increase the yield of neutral lipids while the scheme is not always applicable for other algal species.

  9. In vivo absorption spectra of the two stable states of the Euglena photoreceptor photocycle.

    Science.gov (United States)

    Barsanti, Laura; Coltelli, Primo; Evangelista, Valtere; Passarelli, Vincenzo; Frassanito, Anna Maria; Vesentini, Nicoletta; Santoro, Fabrizio; Gualtieri, Paolo

    2009-01-01

    Euglena gracilis possesses a simple but sophisticated light detecting system, consisting of an eyespot formed by carotenoids globules and a photoreceptor. The photoreceptor of Euglena is characterized by optical bistability, with two stable states. In order to provide important and discriminating information on the series of structural changes that Euglena photoreceptive protein(s) undergoes inside the photoreceptor in response to light, we measured the in vivo absorption spectra of the two stable states A and B of photoreceptor photocycle. Data were collected using two different devices, i.e. a microspectrophotometer and a digital microscope. Our results show that the photocycle and the absorption spectra of the photoreceptor possess strong spectroscopic similarities with a rhodopsin-like protein. Moreover, the analysis of the absorption spectra of the two stable states of the photoreceptor and the absorption spectrum of the eyespot suggests an intriguing hypothesis for the orientation of microalgae toward light.

  10. The Sites of Transcription and Translation for Euglena Chloroplastic Aminoacyl-tRNA Synthetases

    Science.gov (United States)

    Hecker, L. I.; Egan, J.; Reynolds, R. J.; Nix, C. E.; Schiff, J. A.; Barnett, W. Edgar

    1974-01-01

    We find that cycloheximide completely blocks the light-induced apearance of Euglena chloroplastic aminoacyl-tRNA synthetases in dark-grown cells of Euglena gracilis var. bacillaris. Streptomycin, on the other hand, has no effect on the light-induction of these organellar enzymes. These observations, together with the finding that an aplastidic mutant (strain W3BUL, which has neither significant plastid structure nor detectable chloroplast DNA) contains low levels of the chloroplastic synthetases, indicate that the chloroplastic synthetases are transcriptional products of nuclear genes and are translated on cytoplasmic ribosomes prior to compartmentalization within the chloroplasts. PMID:4525469

  11. Amino Acid Composition of Bulk Protein of Euglena Grown in Waste Water

    Science.gov (United States)

    Kott, Yehuda; Wachs, A. M.

    1964-01-01

    The amino acid content of bulk protein in a sewage-grown Euglena sp. was examined. Concentrations of the essential amino acids, threonine, histidine, tryptophan, and valine, were similar to those found in other algae. The concentration of alanine was much higher. Methionine was not found at all, proline only in traces, and other amino acids at low concentrations. These results indicate that the amino acid content of bulk protein of the species of Euglena studied resembles that of plants far more closely than that of animals. PMID:14199015

  12. Different growth response of Euglena gracilis to Hg, Cd, Cr and Ni compounds

    Energy Technology Data Exchange (ETDEWEB)

    Gajdosova, J. [Institute of Preventive and Clinical Medicine, Limbova 14, Bratislava (Slovakia); Reichrtova, E. [Institute of Preventive and Clinical Medicine, Limbova 14, Bratislava (Slovakia)

    1996-03-01

    The toxicity of inorganic mercury, nickel, chromium and cadmium on the unicellular photosynthetic flagellate Euglena gracilis, strain Z (E.g.) has been tested. Under the conditions used each metal impaired the growth rate of E.g., and had a very strong effect on cell motility. The degree of cytotoxicity and motility decreased from mercury iodide to cadmium chloride to cadmium nitrate to potassium dichromate to nickel sulfate. No mutagenic effects of the metals investigated have been observed. Adverse effects of metal compounds can be tested on the eukaryotic species of Euglena gracilis used as an intermediate model system between bacterial and animal model. (orig.). With 2 figs.

  13. Interaction of localized convection cells in the bioconvection of Euglena gracilis

    Science.gov (United States)

    Iima, Makoto; Yamaguchi, Takayuki

    2016-11-01

    Euglena gracilis is a unicellular flagellated photosynthetic alga. The suspension of Euglena has behavioral responses to light, which causes a macroscopic localized bioconvection pattern when illuminated from below. One of the fundamental structures of this is a pair of convection cells, and high cell density region exists in the middle of the pair. Experimental studies show various types of interaction in the localized convection cells; bound state, collision, etc. We performed numerical simulation of a hydrodynamic model of this system, and show results of the interactions. Long-range interaction due to the conservation of cell number and merging process of two localized structures will be discussed. KAKENHI.

  14. AMINO ACID COMPOSITION OF BULK PROTEIN OF EUGLENA GROWN IN WASTE WATER.

    Science.gov (United States)

    KOTT, Y; WACHS, A M

    1964-07-01

    The amino acid content of bulk protein in a sewage-grown Euglena sp. was examined. Concentrations of the essential amino acids, threonine, histidine, tryptophan, and valine, were similar to those found in other algae. The concentration of alanine was much higher. Methionine was not found at all, proline only in traces, and other amino acids at low concentrations. These results indicate that the amino acid content of bulk protein of the species of Euglena studied resembles that of plants far more closely than that of animals.

  15. Unexpectedly Streamlined Mitochondrial Genome of the Euglenozoan Euglena gracilis.

    Science.gov (United States)

    Dobáková, Eva; Flegontov, Pavel; Skalický, Tomáš; Lukeš, Julius

    2015-11-20

    In this study, we describe the mitochondrial genome of the excavate flagellate Euglena gracilis. Its gene complement is reduced as compared with the well-studied sister groups Diplonemea and Kinetoplastea. We have identified seven protein-coding genes: Three subunits of respiratory complex I (nad1, nad4, and nad5), one subunit of complex III (cob), and three subunits of complex IV (cox1, cox2, and a highly divergent cox3). Moreover, fragments of ribosomal RNA genes have also been identified. Genes encoding subunits of complex V, ribosomal proteins and tRNAs were missing, and are likely located in the nuclear genome. Although mitochondrial genomes of diplonemids and kinetoplastids possess the most complex RNA processing machineries known, including trans-splicing and editing of the uridine insertion/deletion type, respectively, our transcriptomic data suggest their total absence in E. gracilis. This finding supports a scenario in which the complex mitochondrial processing machineries of both sister groups evolved relatively late in evolution from a streamlined genome and transcriptome of their common predecessor. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  16. Stability of localized bioconvection patterns of Euglena suspensions

    Science.gov (United States)

    Iima, Makoto; Yamaguchi, Takayuki

    2015-11-01

    Suspension of Euglena gracilis forms localized convection cells when it is illuminated form below with strong light intensity. Two elementary localized structures are known. One consists of a single region of high number density of the microorganism sandwiched with a pair of convection cells (bioconvection unit) and the other is a localized traveling wave. Measurements of the flux of the number density suggests that the photomovement due to light gradient plays an important role in generating localized convection cells. We proposed a hydrodynamic model incorporating the effect, and succeed in reproducing bioconvection unit, which can be characterized as steady solutions of the proposed model. Bifurcation structure of the solutions are analyzed. The bistable region due to the subcritical bifurcation from trivial state and folding of branch due the saddle-node bifurcation is observed. The stability analysis in the bistable region revealed that the most unstable mode represents a sweep of number density to the central part and reducing the size of the convection cells, which leads the unstable solution to the stable steady solution representing bioconvection unit. KAKENHI (26400396).

  17. Generalized receptor law governs phototaxis in the phytoplankton Euglena gracilis.

    Science.gov (United States)

    Giometto, Andrea; Altermatt, Florian; Maritan, Amos; Stocker, Roman; Rinaldo, Andrea

    2015-06-02

    Phototaxis, the process through which motile organisms direct their swimming toward or away from light, is implicated in key ecological phenomena (including algal blooms and diel vertical migration) that shape the distribution, diversity, and productivity of phytoplankton and thus energy transfer to higher trophic levels in aquatic ecosystems. Phototaxis also finds important applications in biofuel reactors and microbiopropellers and is argued to serve as a benchmark for the study of biological invasions in heterogeneous environments owing to the ease of generating stochastic light fields. Despite its ecological and technological relevance, an experimentally tested, general theoretical model of phototaxis seems unavailable to date. Here, we present accurate measurements of the behavior of the alga Euglena gracilis when exposed to controlled light fields. Analysis of E. gracilis' phototactic accumulation dynamics over a broad range of light intensities proves that the classic Keller-Segel mathematical framework for taxis provides an accurate description of both positive and negative phototaxis only when phototactic sensitivity is modeled by a generalized "receptor law," a specific nonlinear response function to light intensity that drives algae toward beneficial light conditions and away from harmful ones. The proposed phototactic model captures the temporal dynamics of both cells' accumulation toward light sources and their dispersion upon light cessation. The model could thus be of use in integrating models of vertical phytoplankton migrations in marine and freshwater ecosystems, and in the design of bioreactors.

  18. PHYLOGENY AND SYSTEMATICS OF EUGLENA (EUGLENACEAE) SPECIES WITH AXIAL, STELLATE CHLOROPLASTS BASED ON MORPHOLOGICAL AND MOLECULAR DATA-NEW TAXA, EMENDED DIAGNOSES, AND EPITYPIFICATIONS(1).

    Science.gov (United States)

    Kosmala, Sylwia; Karnkowska-Ishikawa, Anna; Milanowski, Rafał; Kwiatowski, Jan; Zakryś, Bożena

    2009-04-01

    Morphological and molecular studies, as well as original literature reexamination, necessitate establishment of five Euglena species with a single axial, stellate chloroplast [Euglena viridis (O. F. Müller) Ehrenberg 1830, Euglena pseudoviridis Chadefaud 1937, Euglena stellata Mainx 1926, Euglena pseudostellata sp. nov., and Euglena cantabrica Pringsheim 1956], three species with two chloroplasts (Euglena geniculata Dujardin ex Schmitz 1884, Euglena chadefaudii Bourrelly 1951, and Euglena pseudochadefaudii sp. nov.), and one species with three chloroplasts (Euglena tristella Chu 1946). The primary morphological features, allowing distinction of the considered species are the presence and the shape of mucocysts, as well as the number of chloroplasts. Spherical mucocysts occur in E. cantabrica and E. geniculata, while spindle-shaped mucocysts are present in E. stellata, E. pseudostellata, E. chadefaudii, E. pseudochadefaudii, and E. tristella. No mucocysts are observed in E. viridis and E. pseudoviridis. Two new species (E. pseudochadefaudii sp. nov. and E. pseudostellata sp. nov.) differ from the respective species, E. chadefaudii and E. stellata, only at the molecular level. Molecular signatures and characteristic sequences are designated for nine distinguished species. Emended diagnoses for all and delimitation of epitypes for seven species (except E. viridis and E. tristella) are proposed. © 2009 Phycological Society of America.

  19. Characterization of methylmalonyl-CoA mutase involved in the propionate photoassimilation of Euglena gracilis Z.

    Science.gov (United States)

    Miyamoto, Emi; Tanioka, Yuri; Nishizawa-Yokoi, Ayako; Yabuta, Yukinori; Ohnishi, Kouhei; Misono, Haruo; Shigeoka, Shigeru; Nakano, Yoshihisa; Watanabe, Fumio

    2010-06-01

    Significant accumulation of the methylmalonyl-CoA mutase apoenzyme was observed in the photosynthetic flagellate Euglena gracilis Z at the end of the logarithmic growth phase. The apoenzyme was converted to a holoenzyme by incubation for 4 h at 4 degrees C with 10 microM 5'-deoxyadenosylcobalamin, and then, the holoenzyme was purified to homogeneity and characterized. The apparent molecular mass of the enzyme was calculated to be 149.0 kDa +/- 5.0 kDa using Superdex 200 gel filtration. SDS-polyacrylamide gel electrophoresis of the purified enzyme yielded a single protein band with an apparent molecular mass of 75.0 kDa +/- 3.0 kDa, indicating that the Euglena enzyme is composed of two identical subunits. The purified enzyme contained one mole of prosthetic 5'-deoxyadenosylcobalamin per mole of the enzyme subunit. Moreover, we cloned the full-length cDNA of the Euglena enzyme. The cDNA clone contained an open reading frame encoding a protein of 717 amino acids with a calculated molecular mass of 78.3 kDa, preceded by a putative mitochondrial targeting signal consisting of nine amino acid residues. Furthermore, we studied some properties and physiological function of the Euglena enzyme.

  20. Speciation of bioaccumulated uranium(VI) by Euglena mutabilis cells obtained by laser fluorescence spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Brockmann, Sina; Bernhard, Gert [Technical Univ. Dresden (Germany). Radiochemistry; Helmholtz-Zentrum Dresden-Rossendorf (HZDR) e.V., Dresden (Germany). Inst. of Resource Ecology; Arnold, Thuro [Helmholtz-Zentrum Dresden-Rossendorf (HZDR) e.V., Dresden (Germany). Inst. of Resource Ecology

    2014-07-01

    The ability of Euglena mutabilis cells - a unicellular protozoan with a flexible pellicle, which is typically found in acid mine drainage (AMD) environments - to bioaccumulate uranium under acid conditions was studied in batch sorption experiments at pH 3 and 4 using Na{sub 2}SO{sub 4} and NaClO{sub 4} as background media. It was found that axenic cultures of Euglena mutabilis Schmitz were able to bioaccumulate in 5 days 94.9 to 99.2% of uranium from a 1 x 10{sup -5} mol/L uranium solution in perchlorate medium and 95.1 to 95.9% in sodium sulfate medium, respectively. The speciation of uranium in solution and uranium bioaccumulated by Euglena mutabilis cells, were studied by laser induced fluorescence spectroscopy (LIFS). The LIFS investigations showed that the uranium speciation in the NaClO{sub 4} systems was dominated by free uranyl(VI) species and that the UO{sub 2}SO{sub 4} species was dominating in the Na{sub 2}SO{sub 4} medium. Fluorescence spectra of the bioaccumulated uranium revealed that aqueous uranium binds to carboxylic and/or (organo)phosphate groups located on the euglenid pellicle or inside the Euglena mutabilis cells. Reduced uranium immobilization rates of 0.93-1.43 mg uranium per g Euglena mutabilis biomass were observed in similar experiments, using sterile filtrated AMD waters containing, 4.4 x 10{sup -5} mol/L uranium. These lower rates were attributed to competition with other cations for available sorption sites. Additional LIFS measurements, however, showed that the speciation of the bioaccumulated uranium by the Euglena mutabilis cells was found to be identical with the uranium speciation found in the bioaccumulation experiments carried out in Na{sub 2}SO{sub 4} and NaClO{sub 4} media. The results indicate that Euglena mutabilis has the potential to immobilize aqueous uranium under acid condition and thus may be used in future as promising agent for immobilizing uranium in low pH waste water environments. (orig.)

  1. Euglena gracilis ascorbate peroxidase forms an intramolecular dimeric structure: its unique molecular characterization.

    Science.gov (United States)

    Ishikawa, Takahiro; Tajima, Naoko; Nishikawa, Hitoshi; Gao, Yongshun; Rapolu, Madhusudhan; Shibata, Hitoshi; Sawa, Yoshihiro; Shigeoka, Shigeru

    2010-02-09

    Euglena gracilis lacks a catalase and contains a single APX (ascorbate peroxidase) and enzymes related to the redox cycle of ascorbate in the cytosol. In the present study, a full-length cDNA clone encoding the Euglena APX was isolated and found to contain an open reading frame encoding a protein of 649 amino acids with a calculated molecular mass of 70.5 kDa. Interestingly, the enzyme consisted of two entirely homologous catalytic domains, designated APX-N and APX-C, and an 102 amino acid extension in the N-terminal region, which had a typical class II signal proposed for plastid targeting in Euglena. A computer-assisted analysis indicated a novel protein structure with an intramolecular dimeric structure. The analysis of cell fractionation showed that the APX protein is distributed in the cytosol, but not the plastids, suggesting that Euglena APX becomes mature in the cytosol after processing of the precursor. The kinetics of the recombinant mature FL (full-length)-APX and the APX-N and APX-C domains with ascorbate and H2O2 were almost the same as that of the native enzyme. However, the substrate specificity of the mature FL-APX and the native enzyme was different from that of APX-N and APX-C. The mature FL-APX, but not the truncated forms, could reduce alkyl hydroperoxides, suggesting that the dimeric structure is correlated with substrate recognition. In Euglena cells transfected with double-stranded RNA, the silencing of APX expression resulted in a significant increase in the cellular level of H2O2, indicating the physiological importance of APX to the metabolism of H2O2.

  2. Characterization of oxidative phosphorylation enzymes in Euglena gracilis and its white mutant strain W(gm)ZOflL.

    Science.gov (United States)

    Krnáčová, Katarína; Rýdlová, Ivana; Vinarčíková, Michaela; Krajčovič, Juraj; Vesteg, Matej; Horváth, Anton

    2015-03-12

    The enzymes involved in Euglena oxidative phosphorylation (OXPHOS) were characterized in this study. We have demonstrated that Euglena gracilis strain Z and its stable bleached non-photosynthetic mutant strain WgmZOflL both possess fully functional OXPHOS apparatus as well as pathways requiring terminal alternative oxidase(s) and alternative mitochondrial NADH-dehydrogenase(s). Light (or dark) and plastid (non)functionality seem to have little effect on oxygen consumption, the activities of the enzymes involved in OXPHOS and the action of respiration inhibitors in Euglena. This study also demonstrates biochemical properties of complex III (cytochrome c reductase) in Euglena. Copyright © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  3. Evidence for the late origin of introns in chloroplast genes from an evolutionary analysis of the genus Euglena.

    Science.gov (United States)

    Thompson, M D; Copertino, D W; Thompson, E; Favreau, M R; Hallick, R B

    1995-01-01

    The origin of present day introns is a subject of spirited debate. Any intron evolution theory must account for not only nuclear spliceosomal introns but also their antecedents. The evolution of group II introns is fundamental to this debate, since group II introns are the proposed progenitors of nuclear spliceosomal introns and are found in ancient genes from modern organisms. We have studied the evolution of chloroplast introns and twintrons (introns within introns) in the genus Euglena. Our hypothesis is that Euglena chloroplast introns arose late in the evolution of this lineage and that twintrons were formed by the insertion of one or more introns into existing introns. In the present study we find that 22 out of 26 introns surveyed in six different photosynthesis-related genes from the plastid DNA of Euglena gracilis are not present in one or more basally branching Euglena spp. These results are supportive of a late origin for Euglena chloroplast group II introns. The psbT gene in Euglena viridis, a basally branching Euglena species, contains a single intron in the identical position to a psbT twintron from E.gracilis, a derived species. The E.viridis intron, when compared with 99 other Euglena group II introns, is most similar to the external intron of the E.gracilis psbT twintron. Based on these data, the addition of introns to the ancestral psbT intron in the common ancester of E.viridis and E.gracilis gave rise to the psbT twintron in E.gracilis. Images PMID:8532514

  4. Oral administration of green algae, Euglena gracilis, inhibits hyperglycemia in OLETF rats, a model of spontaneous type 2 diabetes.

    Science.gov (United States)

    Shimada, Ryoko; Fujita, Miho; Yuasa, Masahiro; Sawamura, Hiromi; Watanabe, Toshiaki; Nakashima, Ayaka; Suzuki, Kengo

    2016-11-09

    In the present study, the effects of Euglena and paramylon on hyperglycemia were examined in Otsuka Long-Evans Tokushima fatty (OLETF; type 2 diabetes mellitus model) rats. OLETF rats were fed an AIN-93 M diet containing cellulose, Euglena, or paramylon for 10 weeks. Long-Evans Tokushima Otsuka (LETO) rats were used as nondiabetic controls. An oral glucose-tolerance test (OGTT) was performed at 0 and 10 weeks. OLETF control rats were obese because of bulimia and showed abdominal fat accumulation and hyperglycemia. Euglena supplementation improved hyperglycemia and decreased food intake, body weight gain, and abdominal fat. However, there were no changes in the paramylon-supplemented group compared to the OLETF control group. Triglyceride concentrations in the serum and liver were lower in Euglena-supplemented rats than in OLETF control rats. There was a correlation between hepatic triglyceride concentration and the area under the curve (AUC) of OGTT at 10 weeks. This suggests that the improvement in glycemic control in the Euglena-supplemented group may depend on substances other than paramylon present in Euglena.

  5. Physiological characterization of gravitaxis in Euglena gracilis and Astasia longa studied on sounding rocket flights

    Science.gov (United States)

    Richter, P. R.; Lebert, M.; Tahedl, H.; Häder, D.-P.

    Euglena gracilis is a photosynthetic, unicellular flagellate found in eutrophic freshwater habitats. The organisms control their vertical position in the water column using gravi- and phototaxis. Recent experiments demonstrated that negative gravitaxis cannot be explained by passive buoyancy but by an active physiological mechanism. During space experiments, the threshold of gravitaxis was determined to be between 0.08 and 0.12 x g. A strong correlation between the applied acceleration and the intracellular cAMP and Ca2+ was observed. The results support the hypothesis, that the cell body of Euglena, which is denser than the surrounding medium exerts a pressure onto the lower membrane and activates mechanosensitive Ca2+ channels. Changes in the membrane potential and the cAMP concentration are most likely subsequent elements in a signal transduction chain, which results in reorientation strokes of the flagellum.

  6. A small portion of plastid transcripts is polyadenylated in the flagellate Euglena gracilis.

    Science.gov (United States)

    Záhonová, Kristína; Hadariová, Lucia; Vacula, Rostislav; Yurchenko, Vyacheslav; Eliáš, Marek; Krajčovič, Juraj; Vesteg, Matej

    2014-03-03

    Euglena gracilis possesses secondary plastids of green algal origin. In this study, E. gracilis expressed sequence tags (ESTs) derived from polyA-selected mRNA were searched and several ESTs corresponding to plastid genes were found. PCR experiments failed to detect SL sequence at the 5'-end of any of these transcripts, suggesting plastid origin of these polyadenylated molecules. Quantitative PCR experiments confirmed that polyadenylation of transcripts occurs in the Euglena plastids. Such transcripts have been previously observed in primary plastids of plants and algae as low-abundance intermediates of transcript degradation. Our results suggest that a similar mechanism exists in secondary plastids. Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  7. Cellular Fe-hydroxides and heavy metal sorption in Euglena sp. (algae): implications for biomineralization

    Energy Technology Data Exchange (ETDEWEB)

    Mann, H.; Beveridge, T.O. Fyfe, W.S.; Tazaki, K.

    1985-01-01

    STEM imagery and electron diffraction patterns of Euglena sp. reveal pronounced intra and cellular-membrane aggregates of Fe-hydroxides (some lepidocrocite), in natural communities from tailings waters, Elliott Lake, Ontario. Pure isolates of Euglena sp. contain 40-70% Fe by dry weight and in addition average Al 28,000 ppm, Sr 150, Ba 40, Zn 150, Mn 250, Ni 120, Pb 1600, Th 70, Cu 200 and U 180. In tailings waters, Fe solute concentrations average 560 ppm and U 50 ppb. Concentration factors for Fe, Ba, Zn, Mn, Ti, V, Ni, Pb, Cr, Ag, Co and Cu in algae referenced to average world river waters are greater than or equal to 10/sup 6/. These results endorse the premise that microorganisms mediate transfer of many solutes between the hydrosphere and sedimentary regime.

  8. A polychromatic action spectrum for the inhibition of motility in the flagellate Euglena gracilis

    Energy Technology Data Exchange (ETDEWEB)

    Gerber, S.; Biggs, A.; Haeder, D.P. [Inst. fuer Botanik und Pharmaceutische Biologie, Friedrich-Alexander-Universitaet, Erlangen (Germany)

    1996-12-31

    In the present study the effects of simulated solar radiation modified by different cut-off filters on the motility of the flagellate Euglena gracilis are investigated and presented in the form of a polychromatic action spectrum. The greatest effectiveness is in the UV-B range of spectrum, but significant sensitivity was found also in the UV-A and the visible range. (author). 24 refs, 5 figs, 1 tab.

  9. A New Type of a Multifunctional β-Oxidation Enzyme in Euglena

    Science.gov (United States)

    Winkler, Uwe; Säftel, Werner; Stabenau, Helmut

    2003-01-01

    The biochemical and molecular properties of the β-oxidation enzymes from algae have not been investigated yet. The present study provides such data for the phylogenetically old alga Euglena (Euglena gracilis). A novel multifunctional β-oxidation complex was purified to homogeneity by ammonium sulfate precipitation, density gradient centrifugation, and ion-exchange chromatography. Monospecific antibodies used in immunocytochemical experiments revealed that the enzyme is located in mitochondria. The enzyme complex is composed of 3-hydroxyacyl-coenzyme A (-CoA) dehydrogenase, 2-enoyl-CoA hydratase, thiolase, and epimerase activities. The purified enzyme exhibits a native molecular mass of about 460 kD, consisting of 45.5-, 44.5-, 34-, and 32-kD subunits. Subunits dissociated from the complete complex revealed that the hydratase and the thiolase functions are located on the large subunits, whereas two dehydrogenase functions are located on the two smaller subunits. Epimerase activity was only measurable in the complete enzyme complex. From the use of stereoisomers and sequence data, it was concluded that the 2-enoyl-CoA hydratase catalyzes the formation of l-hydroxyacyl CoA isomers and that both of the different 3-hydroxyacyl-CoA dehydrogenase functions on the 32- and 34-kD subunits are specific to l-isomers as substrates, respectively. All of these data suggest that the Euglena enzyme belongs to the family of β-oxidation enzymes that degrade acyl-CoAs via l-isomers and that it is composed of subunits comparable with subunits of monofunctional β-oxidation enzymes. It is concluded that the Euglena enzyme phylogenetically developed from monospecific enzymes in archeons by non-covalent combination of subunits and presents an additional line for the evolutionary development of multifunctional β-oxidation enzymes. PMID:12586899

  10. Water quality bioassay using selected protozoa. I. [Paramecium candatum; Amoeba proteus; Euglena gracilis

    Energy Technology Data Exchange (ETDEWEB)

    Mills, W.L.

    1976-01-01

    The suitability of certain species of protozoa as indicators of water quality has been determined. Experiments were conducted under laboratory conditions to standardize a bioassay procedure for water quality using either Paramecium caudatum, Amoeba proteus, or Euglena gracilis as the indicator organism. The bioassay, which consists of exposing the organisms to a known concentration of pollutant under laboratory conditions, followed by microscopic observation to establish the time of death, affords a reliable, convenient and inexpensive way to monitor for water quality.

  11. Euglena gracilis paramylon activates human lymphocytes by upregulating pro-inflammatory factors.

    Science.gov (United States)

    Russo, Rossella; Barsanti, Laura; Evangelista, Valter; Frassanito, Anna M; Longo, Vincenzo; Pucci, Laura; Penno, Giuseppe; Gualtieri, Paolo

    2017-03-01

    The aim of this study was to verify the activation details and products of human lymphomonocytes, stimulated by different β-glucans, that is Euglena paramylon, MacroGard®, and lipopolysaccharide. We investigated the gene expression of inflammation-related cytokines and mediators, transactivation of relevant transcription factors, and phagocytosis role in cell-glucan interactions, by means of RT-PCR, immunocytochemistry, and colorimetric assay. Our results show that sonicated and alkalized paramylon upregulates pro-inflammatory factors (NO, TNF-α, IL-6, and COX-2) in lymphomonocytes. A clear demonstration of this upregulation is the increased transactivation of NF-kB visualized by immunofluorescence microscopy. Phagocytosis assay showed that internalization is not a mandatory step for signaling cascade to be triggered, since immune activity is not present in the lymphomonocytes that have internalized paramylon granules and particulate MacroGard®. Moreover, the response of Euglena β-glucan-activated lymphomonocytes is much greater than that induced by commercially used β-glucans such as MacroGard®. Our in vitro results indicate that linear fibrous Euglena β-glucan, obtained by sonication and alkaline treatment can act as safe and effective coadjutant of the innate immune system response.

  12. Gas/liquid sensing via chemotaxis of Euglena cells confined in an isolated micro-aquarium.

    Science.gov (United States)

    Ozasa, Kazunari; Lee, Jeesoo; Song, Simon; Hara, Masahiko; Maeda, Mizuo

    2013-10-21

    We demonstrate on-chip gas/liquid sensing by using the chemotaxis of live bacteria (Euglena gracilis) confined in an isolated micro-aquarium, and gas/liquid permeation through porous polydimethylsiloxane (PDMS). The sensing chip consisted of one closed micro-aquarium and two separated bypass microchannels along the perimeter of the micro-aquarium. Test gas/liquid and reference samples were introduced into the two individual microchannels separately, and the gas/liquid permeated through the PDMS walls and dissolved in the micro-aquarium water, resulting in a chemical concentration gradient in the micro-aquarium. By employing the closed micro-aquarium isolated from sample flows, we succeeded in measuring the chemotaxis of Euglena for a gas substance quantitatively, which cannot be achieved with the conventional flow-type or hydro-gel-type microfluidic devices. We found positive (negative) chemotaxis for CO2 concentrations below (above) 15%, with 64 ppm as the minimum concentration affecting the cells. We also observed chemotaxis for ethanol and H2O2. By supplying culture medium via the microchannels, the Euglena culture remained alive for more than 2 months. The sensing chip is thus useful for culturing cells and using them for environmental toxicity/nutrition studies by monitoring their motion.

  13. Biochemical and physiological analyses of NADPH-dependent thioredoxin reductase isozymes in Euglena gracilis.

    Science.gov (United States)

    Tamaki, Shun; Maruta, Takanori; Sawa, Yoshihiro; Shigeoka, Shigeru; Ishikawa, Takahiro

    2015-07-01

    At least four peroxiredoxins that are coupled with the thioredoxin (Trx) system have been shown to play a key role in redox metabolism in the unicellular phytoflagellate Euglena gracilis. In order to clarify Trx-mediated redox regulation in this alga, we herein identified three NADPH-dependent thioredoxin reductases (NTRs) using a homologous search and characterized their enzymatic properties and physiological roles. Each Euglena NTR protein belonged to the small, large, and NTRC types, and were named EgNTR1, EgNTR2, and EgNTRC, respectively. EgNTR2 was phylogenetically different from the known NTRs in eukaryotic algae. EgNTR1 was predicted to be localized in mitochondria, EgNTR2 in the cytosol, and EgNTRC in plastids. The catalytic efficiency of EgNTR2 for NADPH was 30-46-fold higher than those of EgNTR1 and truncated form of EgNTRC, suggested that large type EgNTR2 reduced Trx more efficiently. The silencing of EgNTR2 gene expression resulted in significant growth inhibition and cell hypertrophy in Euglena cells. These results suggest that EgNTRs function in each cellular compartment and are physiologically important, particularly in the cytosol. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  14. A pseudogene cluster in the leader region of the Euglena chloroplast 16S-23S rRNA genes.

    Science.gov (United States)

    Miyata, T; Kikuno, R; Ohshima, Y

    1982-01-01

    The nucleotide sequence of a region (leader region) preceding the 5'-end of 16S-23S rRNA gene region of Euglena gracilis chloroplast DNA was compared with the homologous sequences that code for the 16S-23S rRNA operons of Euglena and E. coli. The leader region shows close homology in sequence to the 16S-23S rRNA gene region of Euglena (Orozco et al. (1980) J. Biol.Chem. 255, 10997-11003) as well as to the rrnD operon of E. coli, suggesting that it was derived from the 16S-23S rRNA gene region by gene duplication. It was shown that the leader region had accumulated nucleotide substitutions at an extremely rapid rate in its entirety, similar to the rate of tRNAIle pseudogene identified in the leader region. In addition, the leader region shows an unique base content which is quite distinct from those of 16S-23S rRNA gene regions of Euglena and E. coli, but again is similar to that of the tRNAIle pseudogene. The above two results strongly suggest that the leader region contains a pseudogene cluster which was derived from a gene cluster coding for the functional 16S-23S rRNA operon possibly by imperfect duplication during evolution of Euglena chloroplast DNA. PMID:7041094

  15. Antitumor activity of the β-glucan paramylon from Euglena against preneoplastic colonic aberrant crypt foci in mice.

    Science.gov (United States)

    Watanabe, Toshiaki; Shimada, Ryoko; Matsuyama, Ai; Yuasa, Masahiro; Sawamura, Hiromi; Yoshida, Eriko; Suzuki, Kengo

    2013-11-01

    In the present study, the effects of β-glucans isolated from Euglena on the formation of preneoplastic aberrant crypt foci (ACF) in the colon were examined in mice. Mice were fed a semi-purified AIN-93M diet containing cellulose or the same diet but with the cellulose replaced with β-glucans in the form of Euglena, paramylon, or amorphous paramylon, for 11 weeks. After consuming these dietary supplements for 8 days, half of the mice were intraperitoneally administered 1,2-dimethylhydrazine (DMH) at a dose of 20 mg kg(-1) body weight every week for 6 weeks. Among the DMH-treated groups, the paramylon- and amorphous paramylon-fed mice displayed a significantly lower number of ACF than the control group. Also, the liver weight of the paramylon group was markedly decreased compared with those of the control and Euglena groups, whereas the cecal content weight and fecal volume of the paramylon group were significantly increased. As for the levels of organic acids in the cecal contents, the paramylon group displayed significantly increased lactic acid levels compared with the control and Euglena groups. From these findings, although the mechanism of the ACF-inhibiting effects of paramylon remains unclear, it is considered that β-glucans, such as paramylon and its isomer amorphous paramylon, have preventive effects against colon cancer and are more effective against the condition than Euglena.

  16. Identification and enzymatic characterization of an endo-1,3-β-glucanase from Euglena gracilis.

    Science.gov (United States)

    Takeda, Takumi; Nakano, Yuki; Takahashi, Machiko; Konno, Naotake; Sakamoto, Yuichi; Arashida, Ryo; Marukawa, Yuka; Yoshida, Eriko; Ishikawa, Takahiro; Suzuki, Kengo

    2015-08-01

    Euglena produces paramylon as a storage polysaccharide, and is thought to require β-1,3-glucan degrading enzymes to release and utilize the accumulated carbohydrate. To investigate β-1,3-glucan degradation in Euglena, endo-1,3-β-glucanases were partially purified from Euglena gracilis by hydrophobic, gel filtration and anion-exchange chromatography. Tryptic digests and mass-spectrometric analysis identified three proteins in the purified fraction as a member of glycoside hydrolase family (GH) 17 and two members of GH81. These genes were cloned from an Euglena cDNA pool by PCR. EgCel17A fused with a histidine-tag at the carboxy terminus was heterologously produced by Aspergillus oryzae and purified by immobilized metal affinity chromatography. Purified EgCel17A had a molecular weight of about 40kDa by SDS-PAGE, which was identical to that deduced from its amino acid sequence. The enzyme showed hydrolytic activity towards β-1,3-glucans such as laminarin and paramylon. Maximum activity of laminarin degradation by EgCel17A was attained at pH 4.0-5.5 and 60°C after 1h incubation or 50°C after 20h incubation. The enzyme had a Km of 0.21mg/ml and a Vmax of 40.5units/mg protein for laminarin degradation at pH 5.0 and 50°C. Furthermore, EgCel17A catalyzed a transglycosylation reaction by which reaction products with a higher molecular weight than the supplied substrates were initially generated; however, ultimately the substrates were degraded into glucose, laminaribiose and laminaritriose. EgCel17A effectively produced soluble β-1,3-glucans from alkaline-treated Euglena freeze-dried powder containing paramylon. Thus, EgCel17 is the first functional endo-1,3-β-glucanase to be identified from E. gracilis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Identification and comparative analysis of the chloroplast α-subunit gene of DNA-dependent RNA polymerase from seven Euglena species

    Science.gov (United States)

    Sheveleva, Elena V.; Giordani, Nicole V.; Hallick, Richard B.

    2002-01-01

    When the sequence of the Euglena gracilis chloroplast genome was reported in 1993 the α-subunit gene (rpoA) of RNA polymerase appeared to be missing, based on a comparison of all putative reading frames to the then known rpoA loci. Since there has been a large increase in known rpoA sequences, the question of a Euglena chloroplast rpoA gene was re-examined. A previously described unknown reading frame of 161 codons was found to be part of an rpoA gene split by a single group III intron. This rpoA gene, which is highly variable from species to species, was then isolated and characterized in five other euglenoid species, Euglena anabaena, Euglena granulata, Euglena myxocylindracea, Euglena stellata and Euglena viridis, and in the Astasia longa plastid genome. All seven Euglena rpoA genes have either one or three group III introns. The rpoA gene products in Euglena spp. appear to be the most variable in this gene family when compared to the rpoA gene in other species of bacteria, algae and plants. Additionally, Euglena rpoA proteins lack a C-terminal domain required for interaction with some regulatory proteins, a feature shared only with some chlorophyte green algae. The E.gracilis rpoA gene is the distal cistron of a multigene cluster that includes genes for carbohydrate biosynthesis, photosynthetic electron transport, an antenna complex and ribosomal proteins. This study provides new insights into the transcription system of euglenoid plastids, the organization of the plastid genome, group III intron evolution and euglenoid phylogeny. PMID:11861918

  18. Euglena in time: Evolution, control of central metabolic processes and multi-domain proteins in carbohydrate and natural product biochemistry

    Directory of Open Access Journals (Sweden)

    Ellis C. O’Neill

    2015-12-01

    Full Text Available Euglena gracilis is a eukaryotic microalgae that has been the subject of scientific study for hundreds of years. It has a complex evolutionary history, with traces of at least four endosymbiotic genomes and extensive horizontal gene transfer. Given the importance of Euglena in terms of evolutionary cell biology and its unique taxonomic position, we initiated a de novo transcriptome sequencing project in order to understand this intriguing organism. By analysing the proteins encoded in this transcriptome, we can identify an extremely complex metabolic capacity, rivalling that of multicellular organisms. Many genes have been acquired from what are now very distantly related species. Herein we consider the biology of Euglena in different time frames, from evolution through control of cell biology to metabolic processes associated with carbohydrate and natural products biochemistry.

  19. Physiological functions of pyruvate:NADP+ oxidoreductase and 2-oxoglutarate decarboxylase in Euglena gracilis under aerobic and anaerobic conditions.

    Science.gov (United States)

    Nakazawa, Masami; Hayashi, Ryuta; Takenaka, Shigeo; Inui, Hiroshi; Ishikawa, Takahiro; Ueda, Mitsuhiro; Sakamoto, Tatsuji; Nakano, Yoshihisa; Miyatake, Kazutaka

    2017-07-01

    In Euglena gracilis, pyruvate:NADP+ oxidoreductase, in addition to the pyruvate dehydrogenase complex, functions for the oxidative decarboxylation of pyruvate in the mitochondria. Furthermore, the 2-oxoglutarate dehydrogenase complex is absent, and instead 2-oxoglutarate decarboxylase is found in the mitochondria. To elucidate the central carbon and energy metabolisms in Euglena under aerobic and anaerobic conditions, physiological significances of these enzymes involved in 2-oxoacid metabolism were examined by gene silencing experiments. The pyruvate dehydrogenase complex was indispensable for aerobic cell growth in a glucose medium, although its activity was less than 1% of that of pyruvate:NADP+ oxidoreductase. In contrast, pyruvate:NADP+ oxidoreductase was only involved in the anaerobic energy metabolism (wax ester fermentation). Aerobic cell growth was almost completely suppressed when the 2-oxoglutarate decarboxylase gene was silenced, suggesting that the tricarboxylic acid cycle is modified in Euglena and 2-oxoglutarate decarboxylase takes the place of the 2-oxoglutarate dehydrogenase complex in the aerobic respiratory metabolism.

  20. Amino acids as possible alternative nitrogen source for growth of Euglena gracilis Z in life support systems

    Science.gov (United States)

    Richter, P. R.; Liu, Y.; An, Y.; Li, X.; Nasir, A.; Strauch, S. M.; Becker, I.; Krüger, J.; Schuster, M.; Ntefidou, M.; Daiker, V.; Haag, F. W. M.; Aiach, A.; Lebert, M.

    2015-01-01

    In recent times Euglena gracilis Z was employed as primary producer in closed environmental life-support system (CELSS), e.g. in space research. The photosynthetic unicellular flagellate is not capable of utilizing nitrate, nitrite, and urea as nitrogen source. Therefore, ammonium is supplied as an N-source in the lab (provided as diammonium-dihydrogenphosphate, (NH4)2HPO4) to E. gracilis cultures. While nitrate exerts low toxicity to organisms, ammonium is harmful for many aquatic organisms especially, at high pH-values, which causes the ionic NH+4 (low toxicity) to be partially transformed into the highly toxic ammonia, NH3. In earlier reports, Euglena gracilis was described to grow with various amino acids as sole N-source. Our aim was to investigate alternatives for (NH4)2HPO4 as N-source with lower toxicity for organisms co-cultivated with Euglena in a CELSS. The growth kinetics of Euglena gracilis cultures was determined in the presence of different amino acids (glycine, glutamine, glutamic acid, leucine, and threonine). In addition, uptake of those amino acids by the cells was measured. Cell growth in the presence of glycine and glutamine was quite comparable to the growth in (NH4)2HPO4 containing cultures while a delay in growth was observed in the presence of leucine and threonine. Unlike, aforementioned amino acids glutamate consumption was very poor. Cell density and glutamate concentration were almost unaltered throughout the experiment and the culture reached the stationary phase within 8 days. The data are compared with earlier studies in which utilization of amino acids in Euglena gracilis was investigated. All tested amino acids (glutamate with limitations) were found to have the potential of being an alternative N-source for Euglena gracilis. Hence, these amino acids can be used as a non-toxic surrogate for (NH4)2HPO4.

  1. Transient freezing behavior in photophobic responses of Euglena gracilis investigated in a microfluidic device.

    Science.gov (United States)

    Ozasa, Kazunari; Lee, Jeesoo; Song, Simon; Maeda, Mizuo

    2014-10-01

    We found that the transient freezing behavior in photophobic responses of Euglena gracilis is a good indicator of the metabolic status of the cells. The transient blue light photophobic responses of E. gracilis cells were investigated on-chip using a new measurement, 'trace momentum' (TM), to evaluate their swimming activity quantitatively in real time. When blue light of intensity >30 mW cm(-2) was repeatedly switched on and off, a large negative spike in the TM was observed at the onset of the 'blue-light-off' phase. Single-cell trace analysis at a blue light intensity of 40 mW cm(-2) showed that 48% (on average, n = 15) of tumbling Euglena cells ceased activity ('freezing') for 2-30 s at the onset of blue-light-off before commencing forward motion in a straight line (termed 'straightforward swimming'), while 45% smoothly commenced straightforward swimming without delay. The proportion of freezing Euglena cells depended on the blue light intensity (only 20% at 20 mW cm(-2)). When the cells were stimulated by four blue light pulses at the higher intensity, without pre-exposure, the transient freezing behavior was more prominent but, on repeating the stimuli after an 80 min interval in red light, the same cells did not freeze. This shows that the metabolism of the cells had changed to anti-freezing during the interval. The relationship between the interval time with/without light irradiation and the blue light adaptation was elucidated experimentally. The origin of the freezing behavior is considered to be a shortage of a metabolic substance that promotes smooth switching of flagellum movement from in situ rotation mode to a straightforward swimming mode. © The Author 2014. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  2. Analysis of Euglena gracilis Plastid-Targeted Proteins Reveals Different Classes of Transit Sequences▿

    Science.gov (United States)

    Durnford, Dion G.; Gray, Michael W.

    2006-01-01

    The plastid of Euglena gracilis was acquired secondarily through an endosymbiotic event with a eukaryotic green alga, and as a result, it is surrounded by a third membrane. This membrane complexity raises the question of how the plastid proteins are targeted to and imported into the organelle. To further explore plastid protein targeting in Euglena, we screened a total of 9,461 expressed sequence tag (EST) clusters (derived from 19,013 individual ESTs) for full-length proteins that are plastid localized to characterize their targeting sequences and to infer potential modes of translocation. Of the 117 proteins identified as being potentially plastid localized whose N-terminal targeting sequences could be inferred, 83 were unique and could be classified into two major groups. Class I proteins have tripartite targeting sequences, comprising (in order) an N-terminal signal sequence, a plastid transit peptide domain, and a predicted stop-transfer sequence. Within this class of proteins are the lumen-targeted proteins (class IB), which have an additional hydrophobic domain similar to a signal sequence and required for further targeting across the thylakoid membrane. Class II proteins lack the putative stop-transfer sequence and possess only a signal sequence at the N terminus, followed by what, in amino acid composition, resembles a plastid transit peptide. Unexpectedly, a few unrelated plastid-targeted proteins exhibit highly similar transit sequences, implying either a recent swapping of these domains or a conserved function. This work represents the most comprehensive description to date of transit peptides in Euglena and hints at the complex routes of plastid targeting that must exist in this organism. PMID:16998072

  3. Enzymatic conversion of glutamate to delta-aminolevulinic acid in soluble extracts of Euglena gracilis.

    Science.gov (United States)

    Mayer, S M; Beale, S I; Weinstein, J D

    1987-09-15

    Glutamate was converted to the chlorophyll and heme precursor delta-aminolevulinic acid in soluble extracts of Euglena gracilis. delta-Aminolevulinic acid-forming activity depended on the presence of native enzyme, glutamate, ATP, Mg2+, NADPH or NADH, and RNA. The requirement for reduced pyridine nucleotide was observed only if, prior to incubation, the enzyme extract was filtered through activated carbon to remove firmly bound reductant. Dithiothreitol was also required for activity after carbon treatment. delta-Aminolevulinic acid formation was stimulated by RNA from various plant tissues and algal cells, including greening barley leaves and members of the algal groups Chlorophyta (Chlorella vulgaris, Chlamydomonas reinhardtii), Rhodophyta (Cyanidium caldarium), Cyanophyta (Anacystis nidulans, Synechocystis sp. PCC 6803), and Prochlorophyta (Prochlorothrix hollandica), but not by RNA derived from Escherichia coli, yeast, wheat germ, bovine liver, and Methanobacterium thermoautotrophicum. E. coli glutamate-specific tRNA was inhibitory. Several of the RNAs that did not stimulate delta-aminolevulinic acid formation nevertheless became acylated when incubated with glutamate in the presence of Euglena enzyme extract. RNA extracted from nongreen dark-grown wild-type Euglena cells was about half as stimulatory as that from chlorophyllous light-grown cells, and RNA from aplastidic mutant cells stimulated only slightly. delta-Aminolevulinic acid-forming enzyme activity was present in extracts of light-grown wild-type cells, but undetectable in extracts of aplastidic mutant and dark-grown wild-type cells. Gabaculine inhibited delta-aminolevulinic acid formation at submicromolar concentration. Heme inhibited 50% at 25 microM, but protoporphyrin IX, Mg-protoporphyrin IX, and protochlorophyllide inhibited only slightly at this concentration.

  4. Pigmented euglenophytes of the genera Euglena, Euglenaria, Lepocinclis, Phacus and Monomorphina from the southeastern United States

    Directory of Open Access Journals (Sweden)

    Wołowski Konrad

    2013-12-01

    Full Text Available The biogeography and taxonomy of euglenophytes from the southeastern United States were studied in material from lakes, ponds and rivers of Alabama, Georgia, Kentucky, Mississippi, North Carolina and Tennessee. The 68 taxa found, 26 of which are new for this region, belong to the genera Euglena (26 taxa, Euglenaria (2, Lepocinclis (13, Phacus (25 and Monomorphina (2. The taxa occurred at low density, sometimes as a single specimen. Euglenophyte diversity was highest in ponds; rivers had the fewest taxa. Euglenophytes were present in most plankton samples.

  5. Effects of Mg2+ and Ca2+ on photoinduced Euglena flagellar responses

    Science.gov (United States)

    1980-01-01

    The flagellar frequency and waveform of Euglena were analyzed under full illumination (420-700 nm) and in a restricted wavelength band (530- 700 nm) when the cells were in a medium containing Mg2+ or had been microinjected with Mg2+, Mn2+, or Ca2+ in solution. Magnesium abolished the change in flagellar frequency and the reversal in waveform that cells exhibit when illuminated by a 530-700 nm wavelength band. Under this restricted illumination, Ca2+ caused an increase in flagellar waveform reversal and a decrease in beating frequency. The flagellar motility of cells impaled on a microelectrode was examined in cells illuminated with various wavelengths. PMID:6769928

  6. Investigation of metal ion accumulation in Euglena gracilis by fluorescence methods

    Science.gov (United States)

    Shen, H.; Ren, Q. G.; Mi, Y.; Shi, X. F.; Yao, H. Y.; Jin, C. Z.; Huang, Y. Y.; He, W.; Zhang, J.; Liu, B.

    2002-04-01

    Single cell synchrotron X-ray fluorescence (SXRF) microprobe measurements as well as X-ray absorption near edge structure experiments have been done at Beijing Synchrotron Radiation Facility on Euglena Gracilis cells. Concentrations of the metal ions Mn 2+, Nd 3+, Ce 3+ and other trace elements, such as Ca, Fe, Zn, etc. have been measured both by single cell SXRF and bulk PIXE technique. It was found that the content of Ca, Fe and Zn was lower after the uptake of rare earths or Mn by the cells, while the valence states of Mn 2+, Ce 3+ and Nd 3+ were unaltered. The results related to cytochemistry are also discussed.

  7. Different effects of eubacterial and eukaryotic DNA topoisomerase II inhibitors on chloroplasts ofEuglena gracilis

    Science.gov (United States)

    Krajčovič, Juraj; Ebringer, Libor

    1990-03-01

    Inhibitors of eubacterial and eukaryotic DNA topoisomerases type II exhibited different effects on chloroplasts of the flagellateEuglena gracilis. Antibacterial agents (cinoxacin, nalidixic and oxolinic acids, ciprofloxacin, enoxacin, norfloxacin and ofloxacin) from the group of quinolones and coumarins (coumermycin A1, clorobiocin and novobiocin) — all inhibitors of prokaryotic DNA topoisomerase II — were very potent eliminators of chloroplasts fromE. gracilis. In contrast, antitumor drugs (adriamycin, etoposide, teniposide and mitoxantrone) — antagonists of the eukaryotic counterpart — did not affect these semiautonomous photosynthetic organelles. These findings point out again the close evolutionary relationships between eubacteria and chloroplasts and are in agreement with the hypothesis of an endosymbiotic origin of chloroplasts.

  8. The Effect of Increased Temperatures and Ultraviolet Radiation on Dissolved Oxygen in Ecosystems Primarily Comprised of "Euglena"

    Science.gov (United States)

    Carpenter, Matt

    2009-01-01

    The purpose of this study was to determine whether increased levels of UV radiation and temperatures from global warming have a significant impact on dissolved oxygen (DO) output from the alga, "Euglena," which affects other organisms in the ecosystem. The original hypothesis stated that if temperature was increased along with exposure time to…

  9. Effect of chromium on the fatty acid composition of two strains of Euglena gracilis

    Energy Technology Data Exchange (ETDEWEB)

    Rocchetta, Iara [Departamento de Biodiversidad y Biologia Experimental, Universidad de Buenos Aires, Pab. II, Ciudad Universitaria, 1428 Buenos Aires (Argentina)]. E-mail: rocchetta@bg.fcen.uba.ar; Mazzuca, Marcia [Departamento de Quimica, Facultad de Ciencias Naturales, Universidad de Patagonia, Comodoro Rivadavia, Chubut (Argentina); Conforti, Visitacion [Departamento de Biodiversidad y Biologia Experimental, Universidad de Buenos Aires, Pab. II, Ciudad Universitaria, 1428 Buenos Aires (Argentina); Ruiz, Laura [Departamento de Biodiversidad y Biologia Experimental, Universidad de Buenos Aires, Pab. II, Ciudad Universitaria, 1428 Buenos Aires (Argentina); Balzaretti, Vilma [Departamento de Quimica, Facultad de Ciencias Naturales, Universidad de Patagonia, Comodoro Rivadavia, Chubut (Argentina); Rios de Molina, Maria del Carmen [Departamento de Quimica Biologica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pab. II, Ciudad Universitaria, 1428 Buenos Aires (Argentina)

    2006-05-15

    The effect of hexavalent chromium on fatty acid composition was studied in two strains of Euglena gracilis; UTEX 753 (from the Culture Collection of Algae of Texas University, USA) and MAT (isolated from a highly polluted River). Both were grown in photoauxotrophic and photoheterotrophic conditions and exposed to two metal concentrations, one below and one above IC{sub 5}. The high malondialdehyde (MDA) levels (3 to 7-fold) obtained with chromium concentration above IC{sub 5}, suggested the existence of metal-induced lipid peroxidation. Total lipid content increased only with concentration below IC{sub 5}, whereas it was inhibited by higher metal concentration. Photoheterotrophic control strains exhibited a significantly higher proportion of saturated and polyunsaturated fatty acids. Polyunsaturated acids were most affected by chromium, especially those related to chloroplast structures. Ultra-structure studies showed clear thylakoid disorganization in all treated cells. The results indicate that hexavalent chromium affects levels of fatty acids, especially those related to photosynthetic activity. - Fatty acid evaluation in the presence of chromium in Euglena gracilis grown in different culture conditions.

  10. Microalga Euglena as a bioindicator for testing genotoxic potentials of organic pollutants in Taihu Lake, China.

    Science.gov (United States)

    Li, Mei; Gao, Xiangyu; Wu, Bing; Qian, Xin; Giesy, John P; Cui, Yibin

    2014-05-01

    The microalga Euglena was selected as a bioindicator for determining genotoxicity potencies of organic pollutants in Meiliang Bay of Taihu Lake, Jiangsu, China among seasons in 2008. Several methods, including the comet assay to determine breaks in DNA and quantification of antioxidant enzymes were applied to characterize genotoxic effects of organic extracts of water from Taihu Lake on the flagellated, microalga Euglena gracilis. Contents of photosynthetic pigments, including Chl a, Chl b and carotenoid pigments were inversely proportion to concentrations of organic extracts to which E. gracilis was exposed. Organic extracts of Taihu Lake water also affected activities of superoxide dismutase (SOD) and peroxidase (POD) of E. gracilis. There were no statistically significant differences in SOD activities among seasons except in June but significant differences in POD activities were observed among all seasons. The metrics of DNA fragmentation in the alkaline unwinding assay (Comet assay), olive tail moment (OTM) and tail moment (TM), used as measurement endpoints during the genotoxicity assay were both greater when E. gracilis was exposed to organic of water collected from Taihu Lake among four seasons. It is indicated that the comet assay was useful for determining effects of constituents of organic extracts of water on E. gracilis and this assay was effective as an early warning to organic pollutants.

  11. Biochemistry and Physiology of Heavy Metal Resistance and Accumulation in Euglena.

    Science.gov (United States)

    Moreno-Sánchez, Rafael; Rodríguez-Enríquez, Sara; Jasso-Chávez, Ricardo; Saavedra, Emma; García-García, Jorge D

    2017-01-01

    Free-living microorganisms may become suitable models for removal of heavy metals from polluted water bodies, sediments, and soils by using and enhancing their metal accumulating abilities. The available research data indicate that protists of the genus Euglena are a highly promising group of microorganisms to be used in bio-remediation of heavy metal-polluted aerobic and anaerobic acidic aquatic environments. This chapter analyzes the variety of biochemical mechanisms evolved in E. gracilis to resist, accumulate and remove heavy metals from the environment, being the most relevant those involving (1) adsorption to the external cell pellicle; (2) intracellular binding by glutathione and glutathione polymers, and their further compartmentalization as heavy metal-complexes into chloroplasts and mitochondria; (3) polyphosphate biosynthesis; and (4) secretion of organic acids. The available data at the transcriptional, kinetic and metabolic levels on these metabolic/cellular processes are herein reviewed and analyzed to provide mechanistic basis for developing genetically engineered Euglena cells that may have a greater removal and accumulating capacity for bioremediation and recycling of heavy metals.

  12. The four-transmembrane protein IP39 of Euglena forms strands by a trimeric unit repeat

    Science.gov (United States)

    Suzuki, Hiroshi; Ito, Yasuyuki; Yamazaki, Yuji; Mineta, Katsuhiko; Uji, Masami; Abe, Kazuhiro; Tani, Kazutoshi; Fujiyoshi, Yoshinori; Tsukita, Sachiko

    2013-01-01

    Euglenoid flagellates have striped surface structures comprising pellicles, which allow the cell shape to vary from rigid to flexible during the characteristic movement of the flagellates. In Euglena gracilis, the pellicular strip membranes are covered with paracrystalline arrays of a major integral membrane protein, IP39, a putative four-membrane-spanning protein with the conserved sequence motif of the PMP-22/EMP/MP20/Claudin superfamily. Here we report the three-dimensional structure of Euglena IP39 determined by electron crystallography. Two-dimensional crystals of IP39 appear to form a striated pattern of antiparallel double-rows in which trimeric IP39 units are longitudinally polymerised, resulting in continuously extending zigzag-shaped lines. Structural analysis revealed an asymmetric molecular arrangement in the trimer, and suggested that at least four different interactions between neighbouring protomers are involved. A combination of such multiple interactions would be important for linear strand formation of membrane proteins in a lipid bilayer. PMID:23612307

  13. The transcriptome of Euglena gracilis reveals unexpected metabolic capabilities for carbohydrate and natural product biochemistry.

    Science.gov (United States)

    O'Neill, Ellis C; Trick, Martin; Hill, Lionel; Rejzek, Martin; Dusi, Renata G; Hamilton, Chris J; Zimba, Paul V; Henrissat, Bernard; Field, Robert A

    2015-10-01

    Euglena gracilis is a highly complex alga belonging to the green plant line that shows characteristics of both plants and animals, while in evolutionary terms it is most closely related to the protozoan parasites Trypanosoma and Leishmania. This well-studied organism has long been known as a rich source of vitamins A, C and E, as well as amino acids that are essential for the human diet. Here we present de novo transcriptome sequencing and preliminary analysis, providing a basis for the molecular and functional genomics studies that will be required to direct metabolic engineering efforts aimed at enhancing the quality and quantity of high value products from E. gracilis. The transcriptome contains over 30,000 protein-encoding genes, supporting metabolic pathways for lipids, amino acids, carbohydrates and vitamins, along with capabilities for polyketide and non-ribosomal peptide biosynthesis. The metabolic and environmental robustness of Euglena is supported by a substantial capacity for responding to biotic and abiotic stress: it has the capacity to deploy three separate pathways for vitamin C (ascorbate) production, as well as producing vitamin E (α-tocopherol) and, in addition to glutathione, the redox-active thiols nor-trypanothione and ovothiol.

  14. The involvement of a protein kinase in phototaxis and gravitaxis of Euglena gracilis.

    Science.gov (United States)

    Daiker, Viktor; Häder, Donat-P; Richter, Peter R; Lebert, Michael

    2011-05-01

    The unicellular flagellate Euglena gracilis shows positive phototaxis at low-light intensities (10 W/m(2)). Phototaxis is based on blue light-activated adenylyl cyclases, which produce cAMP upon irradiation. In the absence of light the cells swim upward in the water column (negative gravitaxis). The results of sounding rocket campaigns and of a large number of ground experiments led to the following model of signal perception and transduction in gravitaxis of E. gracilis: The body of the cell is heavier than the surrounding medium, sediments and thereby exerts a force onto the lower membrane. Upon deviation from a vertical swimming path mechano-sensitive ion channels are activated. Calcium is gated inwards which leads to an increase in the intracellular calcium concentration and causes a change of the membrane potential. After influx, calcium activates one of several calmodulins found in Euglena, which in turn activates an adenylyl cyclase (different from the one involved in phototaxis) to produce cAMP from ATP. One further element in the sensory transduction chain of both phototaxis and gravitaxis is a specific protein kinase A. We found five different protein kinases A in E. gracilis. The blockage of only one of these (PK.4, accession No. EU935859) by means of RNAi inhibited both phototaxis and gravitaxis, while inhibition of the other four affected neither phototaxis nor gravitaxis. It is assumed that cAMP directly activates this protein kinase A which may in turn phosphorylate a protein involved in the flagellar beating mechanism.

  15. Protection of negative gravitaxis in Euglena gracilis Z against gamma-ray irradiation by Trolox C

    Energy Technology Data Exchange (ETDEWEB)

    Sakashita, Tetsuya; Doi, Masahiro; Yasuda, Hiroshi; Fuma, Shoichi [National Inst. of Radiological Sciences, Chiba (Japan). Research Center for Radiation Safety; Hader, D.P. [Biologie der Friedrich-Alexander Univ., Erlangen (Germany). Inst. fuer Botanik und Pharmazeutische Biologie

    2002-12-01

    The protective effects of Trolox on the inhibition of negative gravitaxis in Euglena gracilis exposed to 200 Gy {sup 60}Co gamma-rays were examined using different concentrations (1, 10 and 100 {mu}M). The orientation precision of the negative gravitaxis was quantified using the r-value. A significant decrease in the r-value was observed in gamma-irradiated samples (0.18+/-0.03) compared to those of non-irradiated samples (0.47+/-0.03). There were no significant changes in the r-value of cells exposed to 200 Gy gamma-rays by the addition of 1 or 10 {mu}M of Trolox. A significant increase (0.19) in the r-value of cells exposed to 200 Gy with 100 {mu}M Trolox was observed. The results indicates that Trolox at a concentration of 100 {mu}M protects negative gravitaxis against {sup 60}Co gamma-ray irradiation at a dose of 200 Gy. It also suggests that the negative gravitaxis of Euglena gracilis is affected by free radicals.(author)

  16. Genotoxicity and subchronic toxicity evaluation of dried Euglena gracilis ATCC PTA-123017.

    Science.gov (United States)

    Simon, Ryan R; Vo, Trung D; Levine, Robert

    2016-10-01

    Euglena gracilis is a microalga capable of synthesizing various nutrients of interest in human and animal nutrition. When cultivated aerobically in the dark, Euglena synthesize paramylon, a storage polysaccharide comprised of high molecular weight beta-1,3-D-glucose polymers organized in cytoplasmic granules. Beta-glucans have been shown to have immune modulation effects, including anti-microbial, anti-tumor, and anti-oxidant properties, and metabolic effects, such as regulation of cholesterol and blood sugar levels. Preparations of E. gracilis and paramylon may therefore have potential utility as functional food ingredients for human and animal nutrition. A battery of toxicological studies was conducted on a dried preparation of E. gracilis and paramylon to support their safe food use. The dried alga was not genotoxic in a bacterial reverse mutation test and mammalian micronucleus test. In the subchronic toxicity study, rats were provided E. gracilis in the diet at levels of 0, 12,500, 25,000 or 50,000 ppm. Paramylon was provided at a concentration of 50,000 ppm. No effects that could be attributable to treatment were observed in clinical observations, body weight, food consumption, ophthalmology, hematology and clinical chemistry, urinalysis, and macroscopic and microscopic findings. A NOAEL of 50,000 ppm in the diet was determined for both ingredients. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Critical Involvement of Environmental Carbon Dioxide Fixation to Drive Wax Ester Fermentation in Euglena

    Science.gov (United States)

    Nishio, Kazuki; Nakazawa, Masami; Nakamoto, Masatoshi; Okazawa, Atsushi; Kanaya, Shigehiko; Arita, Masanori

    2016-01-01

    Accumulation profiles of wax esters in Euglena gracilis Z were studied under several environmental conditions. The highest amount of total wax esters accumulated under hypoxia in the dark, and C28 (myristyl-myristate, C14:0-C14:0) was prevalent among all conditions investigated. The wax ester production was almost completely suppressed under anoxia in the light, and supplying exogenous inorganic carbon sources restored wax ester fermentation, indicating the need for external carbon sources for the wax ester fermentation. 13C-labeling experiments revealed specific isotopic enrichment in the odd-numbered fatty acids derived from wax esters, indicating that the exogenously-supplied CO2 was incorporated into wax esters via the propionyl-CoA pathway through the reverse tricarboxylic acid (TCA) cycle. The addition of 3-mercaptopicolinic acid, a phosphoenolpyruvate carboxykinase (PEPCK) inhibitor, significantly affected the incorporation of 13C into citrate and malate as the biosynthetic intermediates of the odd-numbered fatty acids, suggesting the involvement of PEPCK reaction to drive wax ester fermentation. Additionally, the 13C-enrichment pattern of succinate suggested that the CO2 assimilation might proceed through alternative pathways in addition to the PEPCK reaction. The current results indicate that the mechanisms of anoxic CO2 assimilation are an important target to reinforce wax ester fermentation in Euglena. PMID:27669566

  18. Exploration of polar lipid accumulation profiles in Euglena gracilis using LipidBlast, an MS/MS spectral library constructed in silico.

    Science.gov (United States)

    Ogawa, Takumi; Furuhashi, Takeshi; Okazawa, Atsushi; Nakai, Rai; Nakazawa, Masami; Kind, Tobias; Fiehn, Oliver; Kanaya, Shigehiko; Arita, Masanori; Ohta, Daisaku

    2014-01-01

    A rapid protocol for polar lipid profiling was applied to Euglena gracilis lipid metabolism by LipidBlast, an MS/MS spectral similarity search tool. The similarity search results suggested anoxia-induced polar lipid metabolism in Euglena characterized by the accumulation of differential lipid classes, carbon chain lengths, and unsaturated bond numbers. The informatics-supported MS spectral search provides an alternative option for global lipid profiling studies.

  19. Amino acids as possible alternative nitrogen source for growth of Euglena gracilis Z in life support systems.

    Science.gov (United States)

    Richter, P R; Liu, Y; An, Y; Li, X; Nasir, A; Strauch, S M; Becker, I; Krüger, J; Schuster, M; Ntefidou, M; Daiker, V; Haag, F W M; Aiach, A; Lebert, M

    2015-01-01

    In recent times Euglena gracilis Z was employed as primary producer in closed environmental life-support system (CELSS), e.g. in space research. The photosynthetic unicellular flagellate is not capable of utilizing nitrate, nitrite, and urea as nitrogen source. Therefore, ammonium is supplied as an N-source in the lab (provided as diammonium-dihydrogenphosphate, (NH4)2HPO4) to E. gracilis cultures. While nitrate exerts low toxicity to organisms, ammonium is harmful for many aquatic organisms especially, at high pH-values, which causes the ionic NH4+ (low toxicity) to be partially transformed into the highly toxic ammonia, NH3. In earlier reports, Euglena gracilis was described to grow with various amino acids as sole N-source. Our aim was to investigate alternatives for (NH4)2HPO4 as N-source with lower toxicity for organisms co-cultivated with Euglena in a CELSS. The growth kinetics of Euglena gracilis cultures was determined in the presence of different amino acids (glycine, glutamine, glutamic acid, leucine, and threonine). In addition, uptake of those amino acids by the cells was measured. Cell growth in the presence of glycine and glutamine was quite comparable to the growth in (NH4)2HPO4 containing cultures while a delay in growth was observed in the presence of leucine and threonine. Unlike, aforementioned amino acids glutamate consumption was very poor. Cell density and glutamate concentration were almost unaltered throughout the experiment and the culture reached the stationary phase within 8 days. The data are compared with earlier studies in which utilization of amino acids in Euglena gracilis was investigated. All tested amino acids (glutamate with limitations) were found to have the potential of being an alternative N-source for Euglena gracilis. Hence, these amino acids can be used as a non-toxic surrogate for (NH4)2HPO4. Copyright © 2014 The Committee on Space Research (COSPAR). Published by Elsevier Ltd. All rights reserved.

  20. A new homolog of FocA transporters identified in cadmium-resistant Euglena gracilis.

    Science.gov (United States)

    Deloménie, Claudine; Foti, Emilie; Floch, Enora; Diderot, Vimala; Porquet, Dominique; Dupuy, Corinne; Bonaly, Jacqueline

    2007-06-29

    To better understand the cellular mechanism of stress resistance to various pollutants (cadmium, pentachlorophenol), we undertook a survey of the Euglena gracilis transcriptome by mRNA differential display and cDNA cloning. We performed a real-time RT-PCR analysis upon four selected genes. One of them significantly changed its expression level in response to stress treatments: B25 gene was overexpressed in Cd-resistant cells whereas it was down-regulated in PCP-adapted cells. By Race assays we obtained for B25 a 1093bp cDNA. The deduced protein was identified as a bacterial formate/nitrite transporter (FocA) homolog and the gene was named EgFth. From all the data, we concluded that EgFth overexpression was related to chronic exposure to cadmium.

  1. Some observations on the biosynthesis of the plant sulpholipid by Euglena gracilis

    Science.gov (United States)

    Davies, W. H.; Mercer, E. I.; Goodwin, T. W.

    1966-01-01

    1. dl-Cysteine decreases the uptake of 35SO42− by Euglena gracilis but does not decrease the relative incorporation of the isotope into sulpholipid; cysteic acid, on the other hand, does not affect the uptake of 35SO42− but does dilute out its incorporation into the sulpholipid. 2. Both l-[35S]cysteic acid and dl-+meso-[3-14C]cysteic acid appear almost exclusively in 6-sulphoquinovose. 3. Molybdate inhibits the incorporation of 35SO42− into sulpholipid but not its uptake into the cells; this suggests that adenosine 3′-phosphate 5′-sulphatophosphate may be concerned with the biosynthesis of sulpholipid, and it was shown to be formed by chloroplast fragments. 4. An outline scheme for sulpholipid biosynthesis based on these observations is discussed. PMID:5941333

  2. Production of a thermal stress resistant mutant Euglena gracilis strain using Fe-ion beam irradiation.

    Science.gov (United States)

    Yamada, Koji; Kazama, Yusuke; Mitra, Sharbanee; Marukawa, Yuka; Arashida, Ryo; Abe, Tomoko; Ishikawa, Takahiro; Suzuki, Kengo

    2016-08-01

    Euglena gracilis is a common phytoplankton species, which also has motile flagellate characteristics. Recent research and development has enabled the industrial use of E. gracilis and selective breeding of this species is expected to further expand its application. However, the production of E. gracilis nuclear mutants is difficult because of the robustness of its genome. To establish an efficient mutation induction procedure for E. gracilis, we employed Fe-ion beam irradiation in the RIKEN RI beam factory. A decrease in the survival rate was observed with the increase in irradiation dose, and the upper limit used for E. gracilis selective breeding was around 50 Gy. For a practical trial of Fe-ion irradiation, we conducted a screening to isolate high-temperature-tolerant mutants. The screening yielded mutants that proliferated faster than the wild-type strain at 32 °C. Our results demonstrate the effectiveness of heavy-ion irradiation on E. gracilis selective breeding.

  3. Localized Bioconvection of Euglena Caused by Phototaxis in the Lateral Direction

    Science.gov (United States)

    Suematsu, Nobuhiko J.; Awazu, Akinori; Izumi, Shunsuke; Noda, Shuhei; Nakata, Satoshi; Nishimori, Hiraku

    2011-06-01

    Localized pattern of bioconvection was newly observed in a suspension of Euglena gracilis, which was a photosensitive micro-organism. The suspension was exposed bright illumination from the bottom, in which the cells swam away from the light source. Then high-density spots, i.e., settling the cells, were formed at a part of a sealed chamber. This localized pattern was contrast with a general bioconvection where pattern was generated whole of a chamber. The experimental observations were reproduced by a mathematical model that was based on the phototaxis of individual cells in both vertical and lateral directions. Our results indicate that convection is maintained by upward swimming, as with general bioconvection, and the localization originates from lateral phototaxis.

  4. Phototactic number-density flux in the localized bioconvection of Euglena gracilis

    Science.gov (United States)

    Shoji, Erika; Suematsu, Nobuhiko; Nishimori, Hiraku; Awazu, Akinori; Izumi, Shunsuke; Iima, Makoto

    2014-11-01

    Euglena gracilis is a unicellular phototactic flagellate; it escapes from light sources if the light intensity is higher than 200 W/m2 (negative phototaxis). When the suspension of E. gracilis is illuminated from the bottom by strong light, bioconvection patterns are generated. In the case of E. gracilis, the patterns can be spatially localized. The localization mechanism has not been clarified. We report experimental results related to the localization mechanism. In particular, we experimentally measured the strength of the phototaxis in the lateral direction as well as vertical direction. We prepared a thin container in which the suspension is included, and gave the linearly-changing light intensity. We found the number density gets a peak at a particular light intensity, which never happens if the suspension has the vertical phototaxis only. Further, we succeeded in getting the function representing lateral phototaxis. The relationship between the measured functions and the localized convection cells will be also reported.

  5. Localized Bioconvection Patterns and Their Initial State Dependency in Euglena gracilis Suspensions in an Annular Container

    Science.gov (United States)

    Shoji, Erika; Nishimori, Hiraku; Awazu, Akinori; Izumi, Shunsuke; Iima, Makoto

    2014-04-01

    Localized patterns of bioconvection in Euglena gracilis suspensions were experimentally analyzed in an annular container. Near the critical mean density of convection, we succeeded in isolating two basic types of localized convection patterns. One was an almost stationary pattern consisting of two convection cells centered by an isolated high-density region of the microorganism where a downflow was generated, which we call a "bioconvection unit". The other was a traveling wave pattern consisting of an array of moving high-density waves bounded in a certain area. The effect of the mean density of E. gracilis on the emergence of the localized convection pattern was also examined. Near the critical mean density, we found that the emergence probability of the localized convection pattern depends on the initial state, i.e., whether E. gracilis has a uniform or localized distribution, which suggests that the system is bistable. Such bistability is often accompanied by localized structures in spatially extended dissipative systems.

  6. Investigation of metal ion accumulation in Euglena gracilis by fluorescence methods

    Energy Technology Data Exchange (ETDEWEB)

    Shen, H. E-mail: haoshen@fudan.edu.cn; Ren, Q.G.; Mi, Y.; Shi, X.F.; Yao, H.Y.; Jin, C.Z.; Huang, Y.Y.; He, W.; Zhang, J.; Liu, B

    2002-04-01

    Single cell synchrotron X-ray fluorescence (SXRF) microprobe measurements as well as X-ray absorption near edge structure experiments have been done at Beijing Synchrotron Radiation Facility on Euglena Gracilis cells. Concentrations of the metal ions Mn{sup 2+}, Nd{sup 3+}, Ce{sup 3+} and other trace elements, such as Ca, Fe, Zn, etc. have been measured both by single cell SXRF and bulk PIXE technique. It was found that the content of Ca, Fe and Zn was lower after the uptake of rare earths or Mn by the cells, while the valence states of Mn{sup 2+}, Ce{sup 3+} and Nd{sup 3+} were unaltered. The results related to cytochemistry are also discussed.

  7. Cadmium removal by Euglena gracilis is enhanced under anaerobic growth conditions

    Energy Technology Data Exchange (ETDEWEB)

    Santiago-Martínez, M. Geovanni; Lira-Silva, Elizabeth; Encalada, Rusely; Pineda, Erika; Gallardo-Pérez, Juan Carlos [Departamento de Bioquímica, Instituto Nacional de Cardiología (Mexico); Zepeda-Rodriguez, Armando [Facultad de Medicina, UNAM, Mexico City (Mexico); Moreno-Sánchez, Rafael; Saavedra, Emma [Departamento de Bioquímica, Instituto Nacional de Cardiología (Mexico); Jasso-Chávez, Ricardo, E-mail: rjass_cardiol@yahoo.com.mx [Departamento de Bioquímica, Instituto Nacional de Cardiología (Mexico)

    2015-05-15

    Highlights: • The protist Euglena gracilis had the ability to grow and remove large amounts of Cd{sup 2+} under anaerobic conditions. • High biomass was attained by combination of glycolytic and mitochondrial carbon sources. • Routes of degradation of glucose, glutamate and malate under anaerobic conditions in E. gracilis are described. • Biosorption was the main mechanism of Cd{sup 2+} removal in anaerobiosis, whereas the Cd{sup 2+} intracellularly accumulated was inactivated by thiol-molecules and polyphosphate. - Abstract: The facultative protist Euglena gracilis, a heavy metal hyper-accumulator, was grown under photo-heterotrophic and extreme conditions (acidic pH, anaerobiosis and with Cd{sup 2+}) and biochemically characterized. High biomass (8.5 × 10{sup 6} cells mL{sup −1}) was reached after 10 days of culture. Under anaerobiosis, photosynthetic activity built up a microaerophilic environment of 0.7% O{sub 2}, which was sufficient to allow mitochondrial respiratory activity: glutamate and malate were fully consumed, whereas 25–33% of the added glucose was consumed. In anaerobic cells, photosynthesis but not respiration was activated by Cd{sup 2+} which induced higher oxidative stress. Malondialdehyde (MDA) levels were 20 times lower in control cells under anaerobiosis than in aerobiosis, although Cd{sup 2+} induced a higher MDA production. Cd{sup 2+} stress induced increased contents of chelating thiols (cysteine, glutathione and phytochelatins) and polyphosphate. Biosorption (90%) and intracellular accumulation (30%) were the mechanisms by which anaerobic cells removed Cd{sup 2+} from medium, which was 36% higher versus aerobic cells. The present study indicated that E. gracilis has the ability to remove Cd{sup 2+} under anaerobic conditions, which might be advantageous for metal removal in sediments from polluted water bodies or bioreactors, where the O{sub 2} concentration is particularly low.

  8. The influence of microgravity on Euglena gracilis as studied on Shenzhou 8.

    Science.gov (United States)

    Nasir, A; Strauch, S M; Becker, I; Sperling, A; Schuster, M; Richter, P R; Weißkopf, M; Ntefidou, M; Daiker, V; An, Y A; Li, X Y; Liu, Y D; Lebert, M

    2014-01-01

    The German Aerospace Center (DLR) enabled German participation in the joint space campaign on the unmanned Shenzhou 8 spacecraft in November 2011. In this report, the effect of microgravity on Euglena gracilis cells is described. Custom-made dual compartment cell fixation units (containing cells in one chamber and fixative - RNA lysis buffer - in another one) were enclosed in a small container and placed in the Simbox incubator, which is an experiment support system. Cells were fixed by injecting them with fixative at different time intervals. In addition to stationary experiment slots, Simbox provides a 1 g reference centrifuge. Cell fixation units were mounted in microgravity and 1 g reference positions of Simbox. Two Simbox incubators were used, one for space flight and the other as ground reference. Cells were fixed soon after launch and shortly before return of the spaceship. Due to technical problems, only early in-flight samples (about 40 min after launch microgravity and corresponding 1 g reference) were fully mixed with fixative, therefore only data from those samples are presented. Transcription of several genes involved in signal transduction, oxidative stress defence, cell cycle regulation and heat shock responses was investigated with quantitative PCR. The data indicate that Euglena cells suffer stress upon short-term exposure to microgravity; various stress-induced genes were up-regulated. Of 32 tested genes, 18 were up-regulated, one down-regulated and the rest remained unaltered. These findings are in a good agreement with results from other research groups using other organisms. © 2013 German Botanical Society and The Royal Botanical Society of the Netherlands.

  9. Characterization of a bifunctional glyoxylate cycle enzyme, malate synthase/isocitrate lyase, of Euglena gracilis.

    Science.gov (United States)

    Nakazawa, Masami; Nishimura, Masaaki; Inoue, Kengo; Ueda, Mitsuhiro; Inui, Hiroshi; Nakano, Yoshihisa; Miyatake, Kazutaka

    2011-01-01

    The glyoxylate cycle is a modified form of the tricarboxylic acid cycle, which enables organisms to synthesize carbohydrates from C2 compounds. In the protozoan Euglena gracilis, the key enzyme activities of the glyoxylate cycle, isocitrate lyase (ICL) and malate synthase (MS), are conferred by a single bifunctional protein named glyoxylate cycle enzyme (Euglena gracilis glyoxylate cycle enzyme [EgGCE]). We analyzed the enzymatic properties of recombinant EgGCE to determine the functions of its different domains. The 62-kDa N-terminal domain of EgGCE was sufficient to provide the MS activity as expected from an analysis of the deduced amino acid sequence. In contrast, expression of the 67-kDa C-terminal domain of EgGCE failed to yield ICL activity even though this domain was structurally similar to ICL family enzymes. Analyses of truncation mutants suggested that the N-terminal residues of EgGCE are critical for both the ICL and MS activities. The ICL activity of EgGCE increased in the presence of micro-molar concentrations of acetyl-coenzyme A (CoA). Acetyl-CoA also increased the activity in a mutant type EgGCE with a mutation at the acetyl-CoA binding site in the MS domain of EgGCE. This suggests that acetyl-CoA regulates the ICL reaction by binding to a site other than the catalytic center of the MS reaction. © 2011 The Author(s). Journal of Eukaryotic Microbiology© 2011 International Society of Protistologists.

  10. High-throughput optofluidic profiling of Euglena gracilis with morphological and chemical specificity

    Science.gov (United States)

    Guo, Baoshan; Lei, Cheng; Ito, Takuro; Jiang, Yiyue; Ozeki, Yasuyuki; Goda, Keisuke

    2016-11-01

    The world is faced with environmental problems and the energy crisis due to the combustion and depletion of fossil fuels. The development of reliable, sustainable, and economical sources of alternative fuels is an important, but challenging goal for the world. As an alternative to liquid fossil fuels, algal biofuel is expected to play a key role in alleviating global warming since algae absorb atmospheric CO2 via photosynthesis. Among various algae for fuel production, Euglena gracilis is an attractive microalgal species as it is known to produce wax ester (good for biodiesel and aviation fuel) within lipid droplets. To date, while there exist many techniques for inducing microalgal cells to produce and accumulate lipid with high efficiency, few analytical methods are available for characterizing a population of such lipid-accumulated microalgae including E. gracilis with high throughout, high accuracy, and single-cell resolution simultaneously. Here we demonstrate a high-throughput optofluidic Euglena gracilis profiler which consists of an optical time-stretch microscope and a fluorescence analyzer on top of an inertial-focusing microfluidic device that can detect fluorescence from lipid droplets in their cell body and provide images of E. gracilis cells simultaneously at a high throughput of 10,000 cells/s. With the multi-dimensional information acquired by the system, we classify nitrogen-sufficient (ordinary) and nitrogen-deficient (lipid-accumulated) E. gracilis cells with a low false positive rate of 1.0%. This method provides a promise for evaluating the efficiency of lipid-inducing techniques for biofuel production, which is also applicable for identifying biomedical samples such as blood cells and cancer cells.

  11. Influence of different light-dark cycles on motility and photosynthesis of Euglena gracilis in closed bioreactors.

    Science.gov (United States)

    Richter, Peter R; Strauch, Sebastian M; Ntefidou, Maria; Schuster, Martin; Daiker, Viktor; Nasir, Adeel; Haag, Ferdinand W M; Lebert, Michael

    2014-10-01

    Abstract The unicellular photosynthetic freshwater flagellate Euglena gracilis is a promising candidate as an oxygen producer in biological life-support systems. In this study, the capacity of Euglena gracilis to cope with different light regimes was determined. Cultures of Euglena gracilis in closed bioreactors were exposed to different dark-light cycles (40 W/m(2) light intensity on the surface of the 20 L reactor; cool white fluorescent lamps in combination with a 100 W filament bulb): 1 h-1 h, 2 h-2 h, 4 h-4 h, 6 h-6 h, and 8 h-16 h, respectively. Motility and oxygen development in the reactors were measured constantly. It was found that, during exposure to light-dark cycles of 1 h-1 h, 2 h-2 h, 4 h-4 h, and 6 h-6 h, precision of gravitaxis as well as the number of motile cells increased during the dark phase, while velocity increased in the light phase. Oxygen concentration did not yet reach a plateau phase. During dark-light cycles of 8 h-16 h, fast changes of movement behavior in the cells were detected. The cells showed an initial decrease of graviorientation after onset of light and an increase after the start of the dark period. In the course of the light phase, graviorientation increased, while motility and velocity decreased after some hours of illumination. In all light profiles, Euglena gracilis was able to produce sufficient oxygen in the light phase to maintain the oxygen concentration above zero in the subsequent dark phase.

  12. Clustered organization, polycistronic transcription, and evolution of modification-guide snoRNA genes in Euglena gracilis.

    Science.gov (United States)

    Moore, Ashley N; Russell, Anthony G

    2012-01-01

    Previous studies have shown that the eukaryotic microbe Euglena gracilis contains an unusually large assortment of small nucleolar RNAs (snoRNAs) and ribosomal RNA (rRNA) modification sites. However, little is known about the evolutionary mechanisms contributing to this situation. In this study, we have examined the organization and evolution of snoRNA genes in Euglena with the additional objective of determining how these properties relate to the rRNA modification pattern in this protist. We have identified and extensively characterized a clustered pattern of genes encoding previously biochemically isolated snoRNA sequences in E. gracilis. We show that polycistronic transcription is a prevalent snoRNA gene expression strategy in this organism. Further, we have identified 121 new snoRNA coding regions through sequence analysis of these clusters. We have identified an E. gracilis U14 snoRNA homolog clustered with modification-guide snoRNA genes. The U14 snoRNAs in other eukaryotic organisms examined to date typically contain both a modification and a processing domain. E. gracilis U14 lacks the modification domain but retains the processing domain. Our analysis of U14 structure and evolution in Euglena and other eukaryotes allows us to propose a model for its evolution and suggest its processing role may be its more important function, explaining its conservation in many eukaryotes. The preponderance of apparent small and larger-scale duplication events in the genomic regions we have characterized in Euglena provides a mechanism for the generation of the unusually diverse collection and abundance of snoRNAs and modified rRNA sites. Our findings provide the framework for more extensive whole genome analysis to elucidate whether these snoRNA gene clusters are spread across multiple chromosomes and/or form dense "arrays" at a limited number of chromosomal loci.

  13. Energy-Saving Lipid Extraction from Wet Euglena gracilis by the Low-Boiling-Point Solvent Dimethyl Ether

    Directory of Open Access Journals (Sweden)

    Hideki Kanda

    2015-01-01

    Full Text Available We tested a wet extraction method for lipid extraction from Euglena gracilis water slurry at 0.51 MPa and 20 °C using liquefied dimethyl ether (DME. The yields, proximate analyses, elemental composition, and molecular weight distribution properties of the extracts from E. gracilis and the remaining residues obtained by DME extraction were compared with those of the extracts obtained by hexane Soxhlet extraction.

  14. Cell-surface changes in cadmium-resistant Euglena: Studies using lectin-binding techniques and flow cytometry

    Energy Technology Data Exchange (ETDEWEB)

    Bonaly, J.; Brochiero, E. [Faculte de Pharmacie, Chatenay-Malabry (France)

    1994-01-01

    Most in vitro studies on contaminants focus on the short-term effects of pollutants on cells, without regard to long-term effects and the ability of cells or microorganisms to develop a specific resistance to a pollutant. Cadmium is ubiquitous environmental contaminant. This heavy metal enters the aquatic environment mainly through vapor emissions and fallout during smelting operations. Diverse mechanisms of algal resistance to toxic metals are known. Among these, the most general mechanism is the development of metal-binding proteins. In cadmium-resistant unicellular Euglena gracilis Z algae cells, the metal did not appear to be sequestered on soluble metal-binding ligands. Previous experiments have shown that resistance development is related to a diminution of cadmium penetration into cells, implicating cell surface or membrane alteration. This research investigates the mechanisms of development of cadmium resistance in Euglena cells at the cell-surface level. Sugar chains of glycoproteins and glycolipids are a predominant feature of the surface of cells. Moreover, the cell-response to environmental changes is often orchestrated through surface macromolecules such as glycoproteins. In this study, we applied this lectin method to investigate surface carbohydrate expression during and after resistance development. Our interest was twofold: (1) to learn more about the carbohydrate composition of the cell-surface of Euglena; and (2) to determine whether transition from wild cells to Cd-resistant cells changes the expression of cell-surface carbohydrates. 13 refs., 2 figs., 1 tab.

  15. Negative gravitactic behavior of Euglena gracilis can not be described by the mechanism of buoyancy-oriented upward swimming

    Science.gov (United States)

    Lebert, Michael; Häder, Donat-Peter

    1999-01-01

    Gravitactic behavior of microorganisms has been known for more than a hundred years. Euglena gracilis serves as a model system for gravity-triggered behavioral responses. Two basic mechanisms are discussed for gravitaxis: one is based on a physical mechanism where an asymmetric mass distribution pulls the cell passively in the correct orientation and, in contrast, the involvement of an active sensory system. A recently developed high-resolution motion-tracking system allows the analysis of single tracks during reorientation. The results are compared to a model developed by Fukui and Asai (1985) which describes gravitaxis of Paramecium caudatum on the basis of a physical mechanism. Taking into account the different size, different density, different mass distribution as well as the different velocity, results of the adapted model description of Paramecium were applied to measured data of Euglena. General shapes as well as the time scale of the predicted reorientational movement compared to measurements were different. The analysis clearly rules out the possibility that gravitaxis of Euglena gracilis is based on a pure physical phenomenon, and gives further support to the involvement of an active reorientational system. In addition, it could be shown that cell form changes during reorientation, even in an initial period where no angular change was observed.

  16. De novo assembly and comparative transcriptome analysis of Euglena gracilis in response to anaerobic conditions.

    Science.gov (United States)

    Yoshida, Yuta; Tomiyama, Takuya; Maruta, Takanori; Tomita, Masaru; Ishikawa, Takahiro; Arakawa, Kazuharu

    2016-03-03

    The phytoflagellated protozoan, Euglena gracilis, has been proposed as an attractive feedstock for the accumulation of valuable compounds such as β-1,3-glucan, also known as paramylon, and wax esters. The production of wax esters proceeds under anaerobic conditions, designated as wax ester fermentation. In spite of the importance and usefulness of Euglena, the genome and transcriptome data are currently unavailable, though another research group has recently published E.gracilis transcriptome study during our submission. We herein performed an RNA-Seq analysis to provide a comprehensive sequence resource and some insights into the regulation of genes including wax ester metabolism by comparative transcriptome analysis of E.gracilis under aerobic and anaerobic conditions. The E.gracilis transcriptome analysis was performed using the Illumina platform and yielded 90.3 million reads after the filtering steps. A total of 49,826 components were assembled and identified as a reference sequence of E.gracilis, of which 26,479 sequences were considered to be potentially expressed (having FPKM value of greater than 1). Approximately half of all components were estimated to be regulated in a trans-splicing manner, with the addition of protruding spliced leader sequences. Nearly 40 % of 26,479 sequences were annotated by similarity to Swiss-Prot database using the BLASTX program. A total of 2080 transcripts were identified as differentially expressed genes (DEGs) in response to anaerobic treatment for 24 h. A comprehensive pathway enrichment analysis using the KEGG pathway revealed that the majority of DEGs were involved in photosynthesis, nucleotide metabolism, oxidative phosphorylation, fatty acid metabolism. We successfully identified a candidate gene set of paramylon and wax esters, including novel β-1,3-glucan and wax ester synthases. A comparative expression analysis of aerobic- and anaerobic-treated E.gracilis cells indicated that gene expression changes in these

  17. The pathway via D-galacturonate/L-galactonate is significant for ascorbate biosynthesis in Euglena gracilis: identification and functional characterization of aldonolactonase.

    Science.gov (United States)

    Ishikawa, Takahiro; Nishikawa, Hitoshi; Gao, Youngshun; Sawa, Yoshihiro; Shibata, Hitoshi; Yabuta, Yukinori; Maruta, Takanori; Shigeoka, Shigeru

    2008-11-07

    We have previously proposed that Euglena gracilis possesses a pathway for the production of ascorbate (AsA) through d-galacturonate/L-galactonate as representative intermediates ( Shigeoka, S., Nakano, Y., and Kitaoka, S. (1979) J. Nutr. Sci. Vitaminol. 25, 299-307 ). However, genetic evidence proving that the pathway exists has not been obtained yet. We report here the identification of a gene encoding aldonolactonase, which catalyzes a penultimate step of the biosynthesis of AsA in Euglena. By a BLAST search, we identified one candidate for the enzyme having significant sequence identity with rat gluconolactonase, a key enzyme for the production of AsA via d-glucuronate in animals. The purified recombinant aldonolactonase expressed in Escherichia coli catalyzed the reversible reaction of L-galactonate and L-galactono-1,4-lactone with zinc ion as a cofactor. The apparent K(m) values for L-galactonate and L-galactono-1,4-lactone were 1.55 +/- 0.3 and 1.67 +/- 0.39 mm, respectively. The cell growth of Euglena was arrested by silencing the expression of aldonolactonase through RNA interference and then restored to the normal state by supplementation with L-galactono-1,4-lactone. Euglena cells accumulated more AsA on supplementation with d-galacturonate than d-glucuronate. The present results indicate that aldonolactonase is significant for the biosynthesis of AsA in Euglena cells, which predominantly utilize the pathwayviad-galacturonate/L-galactonate. The identification of aldonolactonase provides the first insight into the biosynthesis of AsA via uronic acids as the intermediate in photosynthetic algae including Euglena.

  18. Characterisation of cryoinjury in Euglena gracilis using flow-cytometry and cryomicroscopy.

    Science.gov (United States)

    Fleck, Roland A; Pickup, Roger W; Day, John G; Benson, Erica E

    2006-04-01

    Flow-cytometry and cryomicroscopy elucidated that the unicellular algal protist Euglena gracilis was undamaged by cryoprotectant added at 0 degree C, and super-cooling in the absence of ice. Cryoinjuries were however induced by: osmotic shock resulting from excessive cryodehydration, intracellular ice, and fracturing of the frozen medium on thawing. Suboptimal cooling at -0.3 degrees C min(-1) to -60 degrees C and osmotic shock invariably resulted in damage to the organism's pellicle and osmoregulatory system causing, a significant (P > 0.005) increase in cell size. Cell damage was not repairable and led to death. The responses of E. gracilis to cryopreservation as visualised by flow-cytometry and cryomicroscopy assisted the development of an improved storage protocol. This comprised: cryoprotection with methanol [10%(v/v)] at 0 degree C, cooling at 0.5 degrees C min(-1) to -60 degrees C, isothermal hold for 30 min, and direct immersion in liquid nitrogen. Highest post-thaw viability (>60%) was obtained using two-step thawing, which involved initial slow warming to -130 degrees C followed by relatively rapid warming (approximately 90 degrees C min(-1)) to ambient temperature (ca. 25 degrees C).

  19. Gravitactic orientation of Euglena gracilis – a sensitive endpoint for ecotoxicological assessment of water pollutants

    Directory of Open Access Journals (Sweden)

    Aziz eUllah

    2013-12-01

    Full Text Available Pollution of aquatic environments with natural and anthropogenically produced substances is one of the major environmental problems of the world. In many countries the decreasing quantity of water coupled with its increasing usage in multiple sectors has adversely affected water quality and caused problems of water pollution. Polluted water has been a main cause of adverse effects on plants, animals and humans throughout the world. Physicochemical analysis of water, which is a common method used for quality assessment of water, alone may not be enough as it cannot evaluate the impact on living organisms. Therefore, bioassessment of water and wastewater quality is considered to be essential to reflect the ultimate effects on living organisms. Many organisms like bacteria, algae, fish, invertebrates and protozoan are used as bioassay organisms for assessment of water quality. This review article elucidates the use of Euglena gracilis, a freshwater motile flagellate of the phylum Euglenophyta, as a suitable organism in ecotoxicological studies with special emphasis on its gravitactic orientation as a sensitive end point in ecotoxicological assessment of water pollutants.

  20. Solar Radiation Stress in Natural Acidophilic Biofilms of Euglena mutabilis Revealed by Metatranscriptomics and PAM Fluorometry.

    Science.gov (United States)

    Puente-Sánchez, Fernando; Olsson, Sanna; Gómez-Rodriguez, Manuel; Souza-Egipsy, Virginia; Altamirano-Jeschke, Maria; Amils, Ricardo; Parro, Victor; Aguilera, Angeles

    2016-02-01

    The daily photosynthetic performance of a natural biofilm of the extreme acidophilic Euglena mutabilis from Río Tinto (SW, Spain) under full solar radiation was analyzed by means of pulse amplitude-modulated (PAM) fluorescence measurements and metatrascriptomic analysis. Natural E. mutabilis biofilms undergo large-scale transcriptomic reprogramming during midday due to a dynamic photoinhibition and solar radiation stress. Photoinhibition is due to UV radiation and not to light intensity, as revealed by PAM fluorometry analysis. In order to minimize the negative effects of solar radiation, our data supports the presence of a circadian rhythm in this euglenophyte that increases their opportunity to survive. Differential gene expression throughout the day (at 12:00, 20:00 and night) was monitored by massive Illumina parallel sequencing of metatranscriptomic libraries. The transcription pattern was altered in genes involved in Photosystem II stability and repair, UV damaged DNA repair, non-photochemical quenching and oxidative stress, supporting the photoinhibition detected by PAM fluorometry at midday. Copyright © 2016 Elsevier GmbH. All rights reserved.

  1. Sulfate uptake in photosynthetic Euglena gracilis. Mechanisms of regulation and contribution to cysteine homeostasis.

    Science.gov (United States)

    García-García, Jorge Donato; Olin-Sandoval, Viridiana; Saavedra, Emma; Girard, Lourdes; Hernández, Georgina; Moreno-Sánchez, Rafael

    2012-10-01

    Sulfate uptake was analyzed in photosynthetic Euglena gracilis grown in sulfate sufficient or sulfate deficient media, or under Cd(2+) exposure or Cys overload, to determine its regulatory mechanisms and contribution to Cys homeostasis. In control and sulfate deficient or Cd(2+)-stressed cells, one high affinity and two low affinity sulfate transporters were revealed, which were partially inhibited by photophosphorylation and oxidative phosphorylation inhibitors and ionophores, as well as by chromate and molybdate; H(+) efflux also diminished in presence of sulfate. In both sulfate deficient and Cd(2+)-exposed cells, the activity of the sulfate transporters was significantly increased. However, the content of thiol-metabolites was lower in sulfate-deficient cells, and higher in Cd(2+)-exposed cells, in comparison to control cells. In cells incubated with external Cys, sulfate uptake was strongly inhibited correlating with 5-times increased intracellular Cys. Re-supply of sulfate to sulfate deficient cells increased the Cys, γ-glutamylcysteine and GSH pools, and to Cys-overloaded cells resulted in the consumption of previously accumulated Cys. In contrast, in Cd(2+) exposed cells none of the already elevated thiol-metabolites changed. (i) Sulfate transport is an energy-dependent process; (ii) sulfate transporters are over-expressed under sulfate deficiency or Cd(2+) stress and their activity can be inhibited by high internal Cys; and (iii) sulfate uptake exerts homeostatic control of the Cys pool. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Trophic transfer of gold nanoparticles from Euglena gracilis or Chlamydomonas reinhardtii to Daphnia magna.

    Science.gov (United States)

    Lee, Woo-Mi; Yoon, Sung-Ji; Shin, Yu-Jin; An, Youn-Joo

    2015-06-01

    Understanding the trophic transfer of nanoparticles (NPs) is important because NPs are small enough to easily penetrate into organisms. In this study, we evaluated the trophic transfer of gold NPs (AuNPs) within the aquatic food chain. We observed AuNPs transfer from 2 species of primary producers (Chlamydomonas reinhardtii or Euglena gracilis) to the primary consumer (Daphnia magna). Also, bioaccumulation of AuNPs in E. gracilis was higher than that in C. reinhardtii. The reasons for the difference in Au accumulation may be the physical structure of these organisms, and the surface area that is available for interaction with NPs. C. reinhardtii has a cell wall that may act as a barrier to the penetration of NPs. The size of E. gracilis is larger than that of C. reinhardtii. This study demonstrates the trophic transfer of AuNPs from a general producer to a consumer in an aquatic environment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. A modified single-cell electroporation method for molecule delivery into a motile protist, Euglena gracilis.

    Science.gov (United States)

    Ohmachi, Masashi; Fujiwara, Yoshie; Muramatsu, Shuki; Yamada, Koji; Iwata, Osamu; Suzuki, Kengo; Wang, Dan Ohtan

    2016-11-01

    Single-cell transfection is a powerful technique for delivering chemicals, drugs, or probes into arbitrary, specific single cells. This technique is especially important when the analysis of molecular function and cellular behavior in individual microscopic organisms such as protists requires the precise identification of the target cell, as fluorescence labeling of bulk populations makes tracking of individual motile protists virtually impossible. Herein, we have modified current single-cell electroporation techniques for delivering fluorescent markers into single Euglena gracilis, a motile photosynthetic microalga. Single-cell electroporation introduced molecules into individual living E. gracilis cells after a negative pressure was applied through a syringe connected to the micropipette to the target cell. The new method achieves high transfection efficiency and viability after electroporation. With the new technique, we successfully introduced a variety of molecules such as GFP, Alexa Fluor 488, and exciton-controlled hybridization-sensitive fluorescent oligonucleotide (ECHO) RNA probes into individual motile E. gracilis cells. We demonstrate imaging of endogenous mRNA in living E. gracilis without interfering with their physiological functions, such as swimming or division, over an extended period of time. Thus the modified single-cell electroporation technique is suitable for delivering versatile functional molecules into individual motile protists. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Euglena gracilis Genome and Transcriptome: Organelles, Nuclear Genome Assembly Strategies and Initial Features.

    Science.gov (United States)

    Ebenezer, ThankGod Echezona; Carrington, Mark; Lebert, Michael; Kelly, Steven; Field, Mark C

    2017-01-01

    Euglena gracilis is a major component of the aquatic ecosystem and together with closely related species, is ubiquitous worldwide. Euglenoids are an important group of protists, possessing a secondarily acquired plastid and are relatives to the Kinetoplastidae, which themselves have global impact as disease agents. To understand the biology of E. gracilis, as well as to provide further insight into the evolution and origins of the Kinetoplastidae, we embarked on sequencing the nuclear genome; the plastid and mitochondrial genomes are already in the public domain. Earlier studies suggested an extensive nuclear DNA content, with likely a high degree of repetitive sequence, together with significant extrachromosomal elements. To produce a list of coding sequences we have combined transcriptome data from both published and new sources, as well as embarked on de novo sequencing using a combination of 454, Illumina paired end libraries and long PacBio reads. Preliminary analysis suggests a surprisingly large genome approaching 2 Gbp, with a highly fragmented architecture and extensive repeat composition. Over 80% of the RNAseq reads from E. gracilis maps to the assembled genome sequence, which is comparable with the well assembled genomes of T. brucei and T. cruzi. In order to achieve this level of assembly we employed multiple informatics pipelines, which are discussed here. Finally, as a preliminary view of the genome architecture, we discuss the tubulin and calmodulin genes, which highlight potential novel splicing mechanisms.

  5. Circadian clocks and antiaging: do non-aging microalgae like Euglena reveal anything?

    Science.gov (United States)

    Goto, Ken; Beneragama, Chalinda K

    2010-04-01

    Microalgae that divide symmetrically in all aspects do not age. While the evolutionary reason for this is obvious, little attention has been paid to the mechanistic explanations. A great deal of study involving many research fields would be needed to explain the mechanisms if we suppose that the immortality results from a lifelong sufficiency of defense from stress or from an essential part of counteracting age-accompanied damage accumulation. Additionally, little is known about the relationships between homeostasis and circadian clocks in antiaging, although each of these has been studied separately. Here, we present a conceptual generalization of those relationships, as suggested by evidence from non-aging microalgae, mainly Euglena. The circadian gating of mitosis and circadian temporal coordination may respectively reduce radiation- and disharmony-induced stress in which homeostasis cannot be involved, whereas circadian resistance rhythms may greatly help homeostatic defense from radiation- and metabolism-induced stress. We also briefly sketch mammalian aging research to compare the current status of knowledge with that of algal antiaging. Copyright 2009 Elsevier Ireland Ltd. All rights reserved.

  6. Succinate and Lactate Production from Euglena gracilis during Dark, Anaerobic Conditions

    Science.gov (United States)

    Tomita, Yuko; Yoshioka, Kazumasa; Iijima, Hiroko; Nakashima, Ayaka; Iwata, Osamu; Suzuki, Kengo; Hasunuma, Tomohisa; Kondo, Akihiko; Hirai, Masami Yokota; Osanai, Takashi

    2016-01-01

    Euglena gracilis is a eukaryotic, unicellular phytoflagellate that has been widely studied in basic science and applied science. Under dark, anaerobic conditions, the cells of E. gracilis produce a wax ester that can be converted into biofuel. Here, we demonstrate that under dark, anaerobic conditions, E. gracilis excretes organic acids, such as succinate and lactate, which are bulk chemicals used in the production of bioplastics. The levels of succinate were altered by changes in the medium and temperature during dark, anaerobic incubation. Succinate production was enhanced when cells were incubated in CM medium in the presence of NaHCO3. Excretion of lactate was minimal in the absence of external carbon sources, but lactate was produced in the presence of glucose during dark, anaerobic incubation. E. gracilis predominantly produced L-lactate; however, the percentage of D-lactate increased to 28.4% in CM medium at 30°C. Finally, we used a commercial strain of E. gracilis for succinate production and found that nitrogen-starved cells, incubated under dark, anaerobic conditions, produced 869.6 mg/L succinate over a 3-day incubation period, which was 70-fold higher than the amount produced by nitrogen-replete cells. This is the first study to demonstrate organic acid excretion by E. gracilis cells and to reveal novel aspects of primary carbon metabolism in this organism. PMID:28066371

  7. Compression and release dynamics of an active matter system of Euglena gracilis

    Science.gov (United States)

    Lam, Amy; Tsang, Alan C. H.; Ouellette, Nicholas; Riedel-Kruse, Ingmar

    Active matter, defined as ensembles of self-propelled particles, encompasses a large variety of systems at all scales, from nanoparticles to bird flocks. Though various models and simulations have been created to describe the dynamics of these systems, experimental verification has been difficult to obtain. This is frequently due to the complex interaction rules which govern the particle behavior, in turn making systematic varying of parameters impossible. Here, we propose a model for predicting the system evolution of compression and release of an active system based on experiments and simulations. In particular, we consider ensembles of the unicellular, photo-responsive algae, Euglena gracilis, under light stimulation. By varying the spatiotemporal light patterns, we are able to finely adjust cell densities and achieve arbitrary non-homogeneous distributions, including compression into high-density aggregates of varying geometries. We observe the formation of depletion zones after the release of the confining stimulus and investigate the effects of the density distribution and particle rotational noise on the depletion. These results provide implications for defining state parameters which determine system evolution.

  8. Identification and characterization of cytosolic fructose-1,6-bisphosphatase in Euglena gracilis.

    Science.gov (United States)

    Ogawa, Takahisa; Kimura, Ayako; Sakuyama, Harumi; Tamoi, Masahiro; Ishikawa, Takahiro; Shigeoka, Shigeru

    2015-01-01

    Euglena gracilis has the ability to accumulate a storage polysaccharide, a β-1,3-glucan known as paramylon, under aerobic conditions. Under anaerobic conditions, E. gracilis cells degrade paramylon and synthesize wax esters. Cytosolic fructose-1,6-bisphosphatase (FBPase) appears to be a key enzyme in gluconeogenesis and position branch point of carbon partitioning between paramylon and wax ester biosynthesis. We herein identified and characterized cytosolic FBPase from E. gracilis. The Km and Vmax values of EgFBPaseIII were 16.5 ± 1.6 μM and 30.4 ± 7.2 μmol min(-1) mg protein(-1), respectively. The activity of EgFBPaseIII was not regulated by AMP or reversible redox modulation. No significant differences were observed in the production of paramylon in transiently suppressed EgFBPaseIII gene expression cells by RNAi (KD-EgFBPaseIII); nevertheless, FBPase activity was markedly decreased in KD-EgFBPaseIII cells. On the other hand, the growth of KD-EgFBPaseIII cells was slightly higher than that of control cells.

  9. Statistics and Stochastic Models of an Individual Motion of Photosensitive Alga Euglena gracilis

    Science.gov (United States)

    Ogawa, Takuma; Izumi, Shunsuke; Iima, Makoto

    2017-07-01

    The motion of individual Euglena gracilis was experimentally analyzed. The flow field of E. gracilis during free swimming was visualized by the particle image velocimetry method to show that the time-averaged flow field is well represented by two Stokeslets, suggesting that the flow around E. gracilis is categorized as the typical puller type. The orbit of swimming E. gracilis in a uniform environment was also analyzed. The orbit was classified into two modes, "moving" and "stationary", to obtain statistics on waiting time, swimming length during a single motion, and the directional change between two successive swimming directions. For the distribution of waiting time and swimming length, power laws were obtained. On the basis of the results, biased random walk models were constructed to discuss the long-time diffusion behavior of an individual motion. The swimming behavior of E. gracilis in a nonuniform light environment was analyzed by focusing on the directional change behavior, whereby a Markov chain model was proposed to reproduce the observed behavior.

  10. Sequence Evidence for the Presence of Two Tetrapyrrole Pathways in Euglena gracilis

    Science.gov (United States)

    Kořený, Luděk; Oborník, Miroslav

    2011-01-01

    Abstract Genes encoding enzymes of the tetrapyrrole biosynthetic pathway were searched within Euglena gracilis EST databases and 454 genome reads and their 5' end regions were sequenced when not available. Phylogenetic analyses and protein localization predictions support the hypothesis concerning the presence of two separated tetrapyrrole pathways in E. gracilis. One of these pathways resembles the heme synthesis in primarily heterotrophic eukaryotes and was presumably present in the host cell prior to secondary endosymbiosis with a green alga. The second pathway is similar to the plastid-localized tetrapyrrole syntheses in plants and photosynthetic algae. It appears to be localized to the secondary plastid, presumably derived from an algal endosymbiont and probably serves only for the production of plastidial heme and chlorophyll. Thus, E. gracilis represents an evolutionary intermediate in a metabolic transformation of a primary heterotroph to a photoautotroph through secondary endosymbiosis. We propose here that the tetrapyrrole pathway serves as a highly informative marker for the evolution of plastids and plays a crucial role in the loss of plastids. PMID:21444293

  11. Molecular Analysis of the Graviperception Signal Transduction in the Flagellate Euglena

    Science.gov (United States)

    Häder, Donat; Daiker, Viktor; Richter, Peter; Lebert, Michael

    The unicellular flagellate Euglena gracilis perceives and reacts to the gravitational vector of the Earth. Recent results of experiments on parabolic rocket flights have revealed that the orientation can be explained by passive orientation only to a small extend while the remainder relies on an active physiological sensor and an internal sensory transduction chain. Our current working hypothesis is based on the fact that the cellular contents is heavier than the surrounding medium and consequently exerts pressure onto the lower membrane where it activates mechano-sensitive ion channels located at the front end under the trailing flagellum. We recently succeeded in identifying these channels as gene products of the TRP family. RNAi of the corresponding gene abolished graviperception. These channels allow a gated influx of calcium which depolarizes the internal electrical potential and eventually causes a course correction by the flagellar beating. The inwardly gated calcium binds to a specific calmodulin which is likewise an intrinsic element of the signal transduction chain. RNAi of the related mRNA also stopped graviperception. This calmodulin is thought to activate an adenylyl cyclase which generates cyclic AMP which in turn modulates the beating pattern of the flagellum.

  12. Assessment of the phytochemical constituents and antioxidant activity of a bloom forming microalgae Euglena tuba.

    Science.gov (United States)

    Chaudhuri, Dipankar; Ghate, Nikhil Baban; Deb, Shampa; Panja, Sourav; Sarkar, Rhitajit; Rout, Jayashree; Mandal, Nripendranath

    2014-06-04

    Unstable generation of free radicals in the body are responsible for many degenerative diseases. A bloom forming algae Euglena tuba growing abundantly in the aquatic habitats of Cachar district in the state of Assam in North-East India was analysed for its phytochemical contents, antioxidant activity as well as free radical scavenging potentials. Based on the ability of the extract in ABTS•+ radical cation inhibition and Fe3+ reducing power, the obtained results revealed the prominent antioxidant activity of the algae, with high correlation coefficient of its TEAC values to the respective phenolic and flavonoid contents. The extract had shown its scavenging activity for different free radicals and 41.89 ± 0.41 μg/ml, 5.83 ± 0.07 μg/ml, 278.46 ± 15.02 μg/ml and 223.25 ± 4.19 μg/ml were determined as the IC50 values for hydroxyl, superoxide, nitric oxide and hypochlorous acid respectively, which are lower than that of the corresponding reference standards. The phytochemical analysis also revealed that the phenolics, flavonoids, alkaloids, tannins and carbohydrates are present in adequate amount in the extract which was confirmed by HPLC analysis. The results showed that 70% methanol extract of the algae possesses excellent antioxidant and free radical scavenging properties.

  13. [Genotoxicity effect of organic pollutants in Meiliang Bay of Taihu Lake on microalga Euglena gracilis].

    Science.gov (United States)

    Gao, Xiang-Yu; Cui, Yi-Bin; Hu, Chang-Wei; Qian, Xin; Kong, Zhi-Ming; Li, Mei

    2009-11-01

    Organic pollutant ingredients and content of water samples from Taihu Lake were analyzed by GC-MS. Results showed that Taihu Lake was already contaminated by the organic pollutant, and 15 kinds of targeted organic pollutants were detected. At lower concentrations (1 time), organic pollutants could not have notable effect on the growth of Euglena gracilis, but could increase the content of photosynthetic pigment. At higher concentrations (5, 10 times), organic pollutants restrained the growth of E. gracilis remarkably, and decreased the content of photosynthetic pigment. Activities of SOD and POD increased with the content of organic pollutants. It is indicated that organic pollution could induce activities of antioxidation enzymes in E. gracilis. TOM and TM for the genotoxicity assay increased and DNA damage was found. In higher concentration groups, DNA damage was serious and had an obvious dose-effect relationship. It is indicated that Meiliang bay water may have potential mutagenicity. Comet assay combined with SOD analysis was of value to genotoxic monitoring of polluted water and was a suitable biomarker for organic pollutants in water.

  14. Atypical composition and structure of the mitochondrial dimeric ATP synthase from Euglena gracilis.

    Science.gov (United States)

    Yadav, K N Sathish; Miranda-Astudillo, Héctor V; Colina-Tenorio, Lilia; Bouillenne, Fabrice; Degand, Hervé; Morsomme, Pierre; González-Halphen, Diego; Boekema, Egbert J; Cardol, Pierre

    2017-04-01

    Mitochondrial respiratory-chain complexes from Euglenozoa comprise classical subunits described in other eukaryotes (i.e. mammals and fungi) and subunits that are restricted to Euglenozoa (e.g. Euglena gracilis and Trypanosoma brucei). Here we studied the mitochondrial F1FO-ATP synthase (or Complex V) from the photosynthetic eukaryote E. gracilis in detail. The enzyme was purified by a two-step chromatographic procedure and its subunit composition was resolved by a three-dimensional gel electrophoresis (BN/SDS/SDS). Twenty-two different subunits were identified by mass-spectrometry analyses among which the canonical α, β, γ, δ, ε, and OSCP subunits, and at least seven subunits previously found in Trypanosoma. The ADP/ATP carrier was also associated to the ATP synthase into a dimeric ATP synthasome. Single-particle analysis by transmission electron microscopy of the dimeric ATP synthase indicated that the structures of both the catalytic and central rotor parts are conserved while other structural features are original. These new features include a large membrane-spanning region joining the monomers, an external peripheral stalk and a structure that goes through the membrane and reaches the inter membrane space below the c-ring, the latter having not been reported for any mitochondrial F-ATPase. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Cadmium removal by Euglena gracilis is enhanced under anaerobic growth conditions.

    Science.gov (United States)

    Santiago-Martínez, M Geovanni; Lira-Silva, Elizabeth; Encalada, Rusely; Pineda, Erika; Gallardo-Pérez, Juan Carlos; Zepeda-Rodriguez, Armando; Moreno-Sánchez, Rafael; Saavedra, Emma; Jasso-Chávez, Ricardo

    2015-05-15

    The facultative protist Euglena gracilis, a heavy metal hyper-accumulator, was grown under photo-heterotrophic and extreme conditions (acidic pH, anaerobiosis and with Cd(2+)) and biochemically characterized. High biomass (8.5×10(6)cellsmL(-1)) was reached after 10 days of culture. Under anaerobiosis, photosynthetic activity built up a microaerophilic environment of 0.7% O₂, which was sufficient to allow mitochondrial respiratory activity: glutamate and malate were fully consumed, whereas 25-33% of the added glucose was consumed. In anaerobic cells, photosynthesis but not respiration was activated by Cd(2+) which induced higher oxidative stress. Malondialdehyde (MDA) levels were 20 times lower in control cells under anaerobiosis than in aerobiosis, although Cd(2+) induced a higher MDA production. Cd(2+) stress induced increased contents of chelating thiols (cysteine, glutathione and phytochelatins) and polyphosphate. Biosorption (90%) and intracellular accumulation (30%) were the mechanisms by which anaerobic cells removed Cd(2+) from medium, which was 36% higher versus aerobic cells. The present study indicated that E. gracilis has the ability to remove Cd(2+) under anaerobic conditions, which might be advantageous for metal removal in sediments from polluted water bodies or bioreactors, where the O₂ concentration is particularly low. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Optimization of complex medium composition for heterotrophic cultivation of Euglena gracilis and paramylon production.

    Science.gov (United States)

    Ivušić, Franjo; Šantek, Božidar

    2015-06-01

    Heterotrophic cultivation of Euglena gracilis was carried out on synthetic (Hutner medium) and complex cultivation media in order to optimize production of β-1,3-glucan (paramylon). For preparation of complex media, various industrial by-products (e.g., molasses, corn steep solid, yeast extract, and beef extract) were used with or without addition of pure compounds [glucose, galactose, fructose, lactose, maltose, sucrose, and (NH4)2HPO4]. Heterotrophic cultivation of E. gracilis was performed in Erlenmeyer flasks and additionally confirmed during research in the stirred tank bioreactor. The results clearly show that E. gracilis can easily metabolize glucose and fructose as carbon sources and corn steep solid as complex nitrogen and growth factors source for biomass growth and paramylon synthesis. Furthermore, it was also proved that addition of (NH4)2HPO4, beef extract, or gibberellic acid did not have positive effect on the biomass growth and paramylon synthesis. After optimization of complex medium composition and verification in the stirred tank bioreactor, it was concluded that medium composed of glucose (20 g/L) and corn steep solid (30 g/L) is the most suitable complex medium for industrial cultivation of E. gracilis and paramylon production.

  17. Assessment of the phytochemical constituents and antioxidant activity of a bloom forming microalgae Euglena tuba

    Directory of Open Access Journals (Sweden)

    Dipankar Chaudhuri

    2014-01-01

    Full Text Available BACKGROUND: Unstable generation of free radicals in the body are responsible for many degenerative diseases. A bloom forming algae Euglena tuba growing abundantly in the aquatic habitats of Cachar district in the state of Assam in North-East India was analysed for its phytochemical contents, antioxidant activity as well as free radical scavenging potentials. RESULTS: Based on the ability of the extract in ABTS•+ radical cation inhibition and Fe3+ reducing power, the obtained results revealed the prominent antioxidant activity of the algae, with high correlation coefficient of its TEAC values to the respective phenolic and flavonoid contents. The extract had shown its scavenging activity for different free radicals and 41.89 ± 0.41 µg/ml, 5.83 ± 0.07 µg/ml, 278.46 ± 15.02 µg/ml and 223.25 ± 4.19 µg/ml were determined as the IC50 values for hydroxyl, superoxide, nitric oxide and hypochlorous acid respectively, which are lower than that of the corresponding reference standards. The phytochemical analysis also revealed that the phenolics, flavonoids, alkaloids, tannins and carbohydrates are present in adequate amount in the extract which was confirmed by HPLC analysis. CONCLUSIONS: The results showed that 70% methanol extract of the algae possesses excellent antioxidant and free radical scavenging properties.

  18. High-speed stimulated Raman scattering microscopy for studying the metabolic diversity of motile Euglena gracilis

    Science.gov (United States)

    Suzuki, Y.; Wakisaka, Y.; Iwata, O.; Nakashima, A.; Ito, T.; Hirose, M.; Domon, R.; Sugawara, M.; Tsumura, N.; Watarai, H.; Shimobaba, T.; Suzuki, K.; Goda, K.; Ozeki, Y.

    2017-02-01

    Microalgae have been receiving great attention for their ability to produce biomaterials that are applicable for food supplements, drugs, biodegradable plastics, and biofuels. Among such microalgae, Euglena gracilis has become a popular species by virtue of its capability of accumulating useful metabolites including paramylon and lipids. In order to maximize the production of desired metabolites, it is essential to find ideal culturing conditions and to develop efficient methods for genetic transformation. To achieve this, understanding and controlling cell-to-cell variations in response to external stress is essential, with chemically specific analysis of microalgal cells including E. gracilis. However, conventional analytical tools such as fluorescence microscopy and spontaneous Raman scattering are not suitable for evaluation of diverse populations of motile microalgae, being restricted either by the requirement for fluorescent labels or a limited imaging speed, respectively. Here we demonstrate video-rate label-free metabolite imaging of live E. gracilis using stimulated Raman scattering (SRS) - an optical spectroscopic method for probing the vibrational signatures of molecules with orders of magnitude higher sensitivity than spontaneous Raman scattering. Our SRS's highspeed image acquisition (27 metabolite images per second) allows for population analysis of live E. gracilis cells cultured under nitrogen-deficiency - a technique for promoting the accumulation of paramylon and lipids within the cell body. Thus, our SRS system's fast imaging capability enables quantification and analysis of previously unresolvable cell-to-cell variations in the metabolite accumulation of large motile E. gracilis cell populations.

  19. Shape-based separation of microalga Euglena gracilis using inertial microfluidics.

    Science.gov (United States)

    Li, Ming; Muñoz, Hector Enrique; Goda, Keisuke; Di Carlo, Dino

    2017-09-07

    Euglena gracilis (E. gracilis) has been proposed as one of the most attractive microalgae species for biodiesel and biomass production, which exhibits a number of shapes, such as spherical, spindle-shaped, and elongated. Shape is an important biomarker for E. gracilis, serving as an indicator of biological clock status, photosynthetic and respiratory capacity, cell-cycle phase, and environmental condition. The ability to prepare E. gracilis of uniform shape at high purities has significant implications for various applications in biological research and industrial processes. Here, we adopt a label-free, high-throughput, and continuous technique utilizing inertial microfluidics to separate E. gracilis by a key shape parameter-cell aspect ratio (AR). The microfluidic device consists of a straight rectangular microchannel, a gradually expanding region, and five outlets with fluidic resistors, allowing for inertial focusing and ordering, enhancement of the differences in cell lateral positions, and accurate separation, respectively. By making use of the shape-activated differences in lateral inertial focusing dynamic equilibrium positions, E. gracilis with different ARs ranging from 1 to 7 are directed to different outlets.

  20. On the chemical identification and visualization of uranium species in biofilms and Euglena mutabilis cells; Zur chemischen Identifizierung und Visualisierung von Uran-Spezies in Biofilmen und Euglena mutabilis Zellen

    Energy Technology Data Exchange (ETDEWEB)

    Brockmann, Sina

    2013-11-14

    For risk assessment of anthropogenic uranium contaminations in the environment a detailed knowledge of the migration and immobilization behavior is required to prevent health hazards for humans and animals caused by an uncontrolled discharge of uranium. Hence, comprehensive studies on the interactions of uranium with the environment are required. Besides the influences of the geological materials, there is a huge effect of the biosphere, especially the interactions with microorganisms and biofilms, on the properties of uranium in the environment. The aim of this study was to investigate and to describe naturally occurring biofilms from real uranium contaminated areas and their influence on the uranium migration. The investigations in this study on the localization and the speciation of the uranium in the biosystems were primarily done with a coupled system of laser scanning microscopy (CLSM) and laser induced fluorescence spectroscopy (LIFS). Natural biofilms collected from two uranium contaminated acid mine drainage (AMD) environments, the former uranium mine in Koenigstein (Saxony, Germany) and the former Gessenheap near Ronneburg (Thuringia,Germany), were investigated in this study. The chosen samples represent typical biofilm communities living in AMD water and are exemplary for potentially occurring scenarios of contaminated mining water both in the underground and on the surface. The investigation on the interactions between uranium and Euglena mutabilis, which is a typical unicellular microorganism that can be found in acidic, uranium and other heavy metal containing waters, was another important part of this study. Bioaccumulation experiments of uranium on living Euglena mutabilis cells depending on the pH (pH 3 - 6) and on the background media in sodium perchlorate (9 g/l) or sodium sulfate (3.48 g/l) solution containing 0.01 mM uranium show an effective immobilization of uranium. At the acidic pH-values (pH 3 - 4) over 90 % of the added uranium was

  1. High irradiance responses involving photoreversible multiple photoreceptors as related to photoperiodic induction of cell division in Euglena.

    Science.gov (United States)

    Bolige, Aoen; Goto, Ken

    2007-02-01

    Little is known about the photoreceptors involved in the photoperiodism of unicellular organisms, which we elucidated by deriving their action spectra. The flagellated alga Euglena gracilis exhibits photoperiodism, with a long-day response in cell reproduction. The underlying clock is a circadian rhythm with photoinductive capability, peaking at subjective dusk and occurring at the 26th hour in continuous darkness (DD) when transferred from continuous light (LL); it regulates photoinduction, a high-irradiance response (HIR), of a dark-capability of progressing through cell division. We derived the action spectra by irradiating E. gracilis with monochromatic light for 3h at around the 26th hour; the action maxima occurred at 380, 450-460, 480, 610, 640, 660, 680, and 740nm. Except for the maximum at 450-460nm, which was always a major maximum, the maxima greatly depended on the red (R)/far-red (FR) ratio of the prior LL. The high R/FR ratio resulted in a dominant major peak at 640nm and minor peaks at 480 and 680nm, whereas the low ratio resulted in dominant major peaks at 610 and 740nm and minor peaks at 380 and 660nm; the critical fluence was minimally about 60mmolm(-2). These HIRs resulted from the accumulation of corresponding low-fluence responses (LFRs) because we found that repetition of a 3-min light/dark cycle, with critical fluences of 1mmolm(-2), lasting for 3h resulted in the same photoinduction as the continuous 3-h irradiation. Moreover, these LFRs expressed photoreversibility. Thus, photoperiodic photoinduction involves Euglena-phytochrome (640 and 740nm) and blue photoreceptor (460nm). Although 380, 480, 610, 660, and 680nm may also represent Euglena-phytochrome, a definite conclusion awaits further study.

  2. Applicability of Euglena gracilis for biorefineries demonstrated by the production of α-tocopherol and paramylon followed by anaerobic digestion.

    Science.gov (United States)

    Grimm, Philipp; Risse, Joe M; Cholewa, Dominik; Müller, Jakob M; Beshay, Usama; Friehs, Karl; Flaschel, Erwin

    2015-12-10

    In this study the use of Euglena gracilis biomass for α-tocopherol, paramylon and biogas production in a value-added chain was investigated. Therefore, we analyzed the dry cell weight and product concentrations at different growth phases during heterotrophic, photoheterotrophic and photoautotrophic cultivation in a low-cost minimal medium. Furthermore, the specific biogas yields for differently derived biomass with and without product recovery were investigated. We demonstrate that growth phase and cultivation mode not only have a significant impact on product formation, but also influence the yield of biogas obtained from anaerobic digestion of Euglena gracilis biomass. The maximum dry cell weight concentration ranged from 12.3±0.14gL(-1) for heterotrophically to 3.4±0.02gL(-1) for photoautotrophically grown Euglena gracilis cells. The heterotrophically grown biomass accumulated product concentrations of 5.3±0.12mgL(-1) of α-tocopherol and 9.3±0.1gL(-1) of paramylon or 805±10.9mL of biogasgvs(-1) (per gram volatile solids). The results for photoautotrophically grown cells were 8.6±0.22mgL(-1) of α-tocopherol and 0.78±0.01gL(-1) of paramylon or 648±7.2mL of biogasgvs(-1). For an energy-saving downstream procedure the extracting agent methanol does not have to be removed strictly. Samples with residual methanol showed a significantly increased biogas yield, because the solvent can be used as an additional substrate for methane production by archaebacteria. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. The presequence of Euglena LHCPII, a cytoplasmically synthesized chloroplast protein, contains a functional endoplasmic reticulum-targeting domain.

    Science.gov (United States)

    Kishore, R; Muchhal, U S; Schwartzbach, S D

    1993-01-01

    The precursor to the Euglena light-harvesting chlorophyll a/b-binding protein of photosystem II (pLHCPII) is unique; it is a polyprotein, synthesized on membrane-bound ribosomes and transported to the Golgi apparatus prior to chloroplast localization. A cDNA corresponding to the 5' end of LHCPII mRNA has been isolated and sequenced. The deduced amino acid sequence of this cDNA indicates that Euglena pLHCPII contains a 141-amino acid N-terminal extension. The N-terminal extension contains three hydrophobic domains and a potential signal peptidase cleavage site at amino acid 35. Cotranslational processing by canine microsomes removed approximately 35 amino acids from an in vitro synthesized 33-kDa pLHCPII composed of a 141-amino acid N-terminal extension and a 180-amino acid partial LHCPII unit truncated at the beginning of the third membrane-spanning hydrophobic domain. Processed pLHCPII was degraded by exogenous protease, indicating that it had not been translocated to the microsomal lumen. Extraction with 0.1 M Na2CO3, pH 11.5, did not remove the processed pLHCPII from the microsomal membrane. A stop-transfer membrane anchor sequence appears to anchor the nascent protein within the membrane, preventing translocation into the lumen. Taken together, these results provide biochemical evidence for a functional cleaved signal sequence within the N-terminal extension of a Euglena cytoplasmically synthesized chloroplast-localized protein. Images Fig. 2 Fig. 3 PMID:8265635

  4. [Ultrastructural description of Euglena pailasensis (Euglenozoa) from Rincón de la Vieja volcano, Guanacaste, Costa Rica].

    Science.gov (United States)

    Sánchez, Ethel; Vargas, Maribel; Mora, Marielos; Ortega, José Maria; Serrano, Aurelio; Freer, Enrique; Sittenfeld, Ana

    2004-03-01

    The euglenoids are unicellular eukaryotic flagellates living in a diversity of soils and aquatic environments and ecosystems. This study describes the ultrastructure of an euglenoid isolated from the surface of a boiling mud pool with temperatures ranging from 38 to 98 degrees C and pH 2 - 4. The hot mud pool is located in Area de Pailas de Barro, Las Pailas, Rincón de la Vieja Volcano, Guanacaste, Costa Rica. The morphological characterization of the Euglena pailasensis was performed by SEM and TEM. It was determined that, although the euglenoid was obtained from an extreme volcanic environment, the general morphology corresponds to that of a typical member of Euglena of 30-45 microm long and 8-10 microm wide, with membrane, pellicle, chloroplasts, mitochondria, nucleus, pigments and other cytoplasmic organelles. E. pailasensis is delimited by a membrane and by 40 to 90 pellicle strips. It was observed up to 5 elongated chloroplasts per cell. The chloroplast contains several osmiophilic globules and a pyrenoid penetrated by few thylakoid pairs. The nutritious material is reserved in numerous small paramylon grains located at the center of the cell, mitocondria are characterized by the presence of crests in radial disposition toward the interior of the lumen. It was also observed around the external surface "pili" like filaments originating from the pellicle strips. There is no evidence for the presence of flagella in the ampulla (reservoir/canal area), a fact confirmed by negative staining, and a difference regarding other species of Euglena. The observed ultrastructural characteristics are not sufficient to explain the adaptation of this species to acid and hot environments.

  5. UV-B affects photosynthesis, ROS production and motility of the freshwater flagellate, Euglena agilis Carter

    Energy Technology Data Exchange (ETDEWEB)

    Kottuparambil, Sreejith [Institute of Green Environmental Research Center, University of Incheon, Incheon, 406 840 (Korea, Republic of); Shin, Woongghi [Department of Biology, Chungnam University, Daejeon, 306 764 (Korea, Republic of); Brown, Murray T. [School of Marine Science and Engineering, Plymouth University, Drake Circus, Plymouth PL4 8AA (United Kingdom); Han, Taejun, E-mail: hanalgae@hanmail.net [Institute of Green Environmental Research Center, University of Incheon, Incheon, 406 840 (Korea, Republic of); Department of Marine Science, University of Incheon, Incheon, 406 840 (Korea, Republic of)

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer We proposed a hypothesis for the UV-B protective/adaptive mechanism in Euglena agilis. After moderate levels of UV-B radiation, ROS plays a signaling role to shut down photosynthetic system for protection against harmful UV radiation. Black-Right-Pointing-Pointer E. agilis exposed to excessive UV appears to become animal-like, investing all its stored energy into movement rather than into sustaining its photosynthetic machinery. Black-Right-Pointing-Pointer This adaptation allows E. agilis to avoid harmful UV and seek a safe place where the organism may regain its photosynthetic capacity for survival. - Abstract: The effects of ultraviolet B (UV-B; 295-320 nm) radiation on certain vital physiological (photosynthesis), biochemical (production of reactive oxygen species - ROS) and behavioral (motility and orientation) characteristics were investigated in the unicellular photoautotroph, Euglena agilis Carter. The photosynthetic performance of E. agilis was recorded after exposure of between 15 and 60 min followed by a period of recovery lasting 6-24 h under dim light (5-10 {mu}mol photons m{sup -2} s{sup -1}). The maximum quantum yield of PS II (F{sub v}/F{sub m}) was reduced to 65% and 14% of initial values immediately following 15 and 30 min UV-B exposure, but recovered to 100 and 86% of the initials, respectively. Values of rETR{sub max} in E. agilis exposed to 15 min UV-B were similar to those of the initials, but a 30 min UV exposure resulted in 75% reduction of rETR{sub max} with only a 43% recovery as compared with the initial after 24 h recovery. After a 60 min UV-B exposure, there were no Chl a fluorescence signals, and hence no F{sub v}/F{sub m} or rETR{sub max}. A UV dose-dependent increase in DCFH-DA fluorescence was found in E. agilis cells, reflecting an increase in ROS production. After exposures to UV-B for between 15 and 60 min, the percentages of motile cells in the population decreased to 76, 39 and 15

  6. The Flux of Euglena gracilis Cells Depends on the Gradient of Light Intensity.

    Directory of Open Access Journals (Sweden)

    Takuma Ogawa

    Full Text Available We have quantified the photomovement behavior of a suspension of Euglena gracilis representing a behavioral response to a light gradient. Despite recent measurements of phototaxis and photophobicity, the details of macroscopic behavior of cell photomovements under conditions of light intensity gradients, which are critical to understand recent experiments on spatially localized bioconvection patterns, have not been fully understood. In this paper, the flux of cell number density under a light intensity gradient was measured by the following two experiments. In the first experiment, a capillary containing the cell suspension was illuminated with different light intensities in two regions. In the steady state, the differences of the cell numbers in the two regions normalized by the total number were proportional to the light difference, where the light intensity difference ranged from 0.5-2.0 μmol m-2 s-1. The proportional coefficient was positive (i.e., the bright region contained many microorganisms when the mean light intensity was weak (1.25 μmol m-2 s-1, whereas it was negative when the mean intensity was strong (13.75 μmol m-2 s-1. In the second experiment, a shallow rectangular container of the suspension was illuminated with stepwise light intensities. The cell number density distribution exhibited a single peak at the position where the light intensity was about Ic ≃ 3.8 μmol m-2 s-1. These results suggest that the suspension of E. gracilis responded to the light gradient and that the favorable light intensity was Ic.

  7. Arsenic oxidation and bioaccumulation by the acidophilic protozoan, Euglena mutabilis, in acid mine drainage (Carnoules, France)

    Energy Technology Data Exchange (ETDEWEB)

    Casiot, C.; Bruneel, O.; Personne, J.-C.; Leblanc, M.; Elbaz-Poulichet, F. [University of Montpellier 2, Montpellier (France)

    2004-03-29

    In the acid stream (pH 2.5-4.7) originating from the Camoules mine tailings, the acidophilic protozoan Euglena mutabilis grows with extremely high sulfate (1.9-4.9 g/l), iron (0.7-1.7 g/l) and arsenic concentrations (0.08-0.26 g/l). Strong variations in flow rate and high sulfate concentrations (up to 4.9 g/l) have been registered in early winter and might be the reason for the reduction in cell number of the protozoan from October to December 2001. No relation was established between arsenic concentration and/or speciation and abundance of the protozoan in the stream. Arsenite, which is the most toxic form, predominates in water. The oxidation of arsenite to arsenate occurred within a few days in laboratory experiments when E. mutabilis was present in Reigous Creek water and synthetic As(III)-rich culture medium. Methylated compounds (MMA, DMA) were not identified in the culture media. The protozoan bioaccumulated As in the cell (336{+-} 112 {mu}g As/g dry wt.) as inorganic arsenite (105 {+-} 52 {mu}g As/g dry wt.) and arsenate (231 {+-} 112 {mu}g As/g dry wt.). Adsorption of As at the cell surface reached 57 mg/g dry wt. in the As(V) form for E. mutabilis grown in 250 mg/l As(III) synthetic medium. Both intracellular accumulation and adsorption at the cell surface increased for increasing As(III) concentration in the medium but the concentration factor in the cell relative to soluble As decreased.

  8. The Flux of Euglena gracilis Cells Depends on the Gradient of Light Intensity.

    Science.gov (United States)

    Ogawa, Takuma; Shoji, Erika; Suematsu, Nobuhiko J; Nishimori, Hiraku; Izumi, Shunsuke; Awazu, Akinori; Iima, Makoto

    2016-01-01

    We have quantified the photomovement behavior of a suspension of Euglena gracilis representing a behavioral response to a light gradient. Despite recent measurements of phototaxis and photophobicity, the details of macroscopic behavior of cell photomovements under conditions of light intensity gradients, which are critical to understand recent experiments on spatially localized bioconvection patterns, have not been fully understood. In this paper, the flux of cell number density under a light intensity gradient was measured by the following two experiments. In the first experiment, a capillary containing the cell suspension was illuminated with different light intensities in two regions. In the steady state, the differences of the cell numbers in the two regions normalized by the total number were proportional to the light difference, where the light intensity difference ranged from 0.5-2.0 μmol m-2 s-1. The proportional coefficient was positive (i.e., the bright region contained many microorganisms) when the mean light intensity was weak (1.25 μmol m-2 s-1), whereas it was negative when the mean intensity was strong (13.75 μmol m-2 s-1). In the second experiment, a shallow rectangular container of the suspension was illuminated with stepwise light intensities. The cell number density distribution exhibited a single peak at the position where the light intensity was about Ic ≃ 3.8 μmol m-2 s-1. These results suggest that the suspension of E. gracilis responded to the light gradient and that the favorable light intensity was Ic.

  9. Temporal change of photophobic step-up responses of Euglena gracilis investigated through motion analysis.

    Directory of Open Access Journals (Sweden)

    Kazunari Ozasa

    Full Text Available The adaptation to a strong light is one of the essential characteristics of green algae, yet lacking relatively the information about the photophobic responses of Eukaryotic microalgae. We investigated the photophobic step-up responses of Euglena gracilis over a time course of several hours with alternated repetition of blue-light pulse illumination and spatially patterned blue-light illumination. Four distinctive photophobic motions in response to strong blue light were identified in a trace image analysis, namely on-site rotation, running and tumbling, continuous circular swimming, and unaffected straightforward swimming. The cells cultured in autotrophic conditions under weak light showed mainly the on-site rotation response at the beginning of blue-light illumination, but they acquired more blue-light tolerant responses of running and tumbling, circular swimming, or straightforward swimming. The efficiency of escaping from a blue-light illuminated area improved markedly with the development of these photophobic motions. Time constant of 3.0 h was deduced for the evolution of photophobic responses of E. gracilis. The nutrient-rich metabolic status of the cells resulting from photosynthesis during the experiments, i.e., the accumulation of photosynthesized nutrient products in balance between formation and consumption, was the main factor responsible for the development of photophobic responses. The reduction-oxidation status in and around E. gracilis cells did not affect their photophobic responses significantly, unlike the case of photophobic responses and phototaxis of Chlamydomonas reinhardtii cells. This study shows that the evolution of photophobic motion type of E. gracilis is dominated mainly by the nutrient metabolic status of the cells. The fact suggests that the nutrient-rich cells have a higher threshold for switching the flagellar motion from straightforward swimming to rotation under a strong light.

  10. Temporal change of photophobic step-up responses of Euglena gracilis investigated through motion analysis.

    Science.gov (United States)

    Ozasa, Kazunari; Won, June; Song, Simon; Tamaki, Shun; Ishikawa, Takahiro; Maeda, Mizuo

    2017-01-01

    The adaptation to a strong light is one of the essential characteristics of green algae, yet lacking relatively the information about the photophobic responses of Eukaryotic microalgae. We investigated the photophobic step-up responses of Euglena gracilis over a time course of several hours with alternated repetition of blue-light pulse illumination and spatially patterned blue-light illumination. Four distinctive photophobic motions in response to strong blue light were identified in a trace image analysis, namely on-site rotation, running and tumbling, continuous circular swimming, and unaffected straightforward swimming. The cells cultured in autotrophic conditions under weak light showed mainly the on-site rotation response at the beginning of blue-light illumination, but they acquired more blue-light tolerant responses of running and tumbling, circular swimming, or straightforward swimming. The efficiency of escaping from a blue-light illuminated area improved markedly with the development of these photophobic motions. Time constant of 3.0 h was deduced for the evolution of photophobic responses of E. gracilis. The nutrient-rich metabolic status of the cells resulting from photosynthesis during the experiments, i.e., the accumulation of photosynthesized nutrient products in balance between formation and consumption, was the main factor responsible for the development of photophobic responses. The reduction-oxidation status in and around E. gracilis cells did not affect their photophobic responses significantly, unlike the case of photophobic responses and phototaxis of Chlamydomonas reinhardtii cells. This study shows that the evolution of photophobic motion type of E. gracilis is dominated mainly by the nutrient metabolic status of the cells. The fact suggests that the nutrient-rich cells have a higher threshold for switching the flagellar motion from straightforward swimming to rotation under a strong light.

  11. Effects of temperature, CO2/O2 concentrations and light intensity on cellular multiplication of microalgae, Euglena gracilis

    Science.gov (United States)

    Kitaya, Y.; Azuma, H.; Kiyota, M.

    2005-01-01

    Microalgae culture is likely to play an important role in aquatic food production modules in bioregenerative systems for producing feeds for fish, converting CO2 to O2 and remedying water quality as well as aquatic higher plants. In the present study, the effects of culture conditions on the cellular multiplication of microalgae, Euglena gracilis, was investigated as a fundamental study to determine the optimum culture conditions for microalgae production in aquatic food production modules including both microalgae culture and fish culture systems. E. gracilis was cultured under conditions with five levels of temperatures (25-33 degrees C), three levels of CO2 concentrations (2-6%), five levels of O2 concentrations (10-30%), and six levels of photosynthetic photon flux (20-200 micromoles m-2 s-1). The number of Euglena cells in a certain volume of solution was monitored with a microscope under each environmental condition. The multiplication rate of the cells was highest at temperatures of 27-31 degrees C, CO2 concentration of 4%, O2 concentration of 20% and photosynthetic photon flux of about 100 micromoles m-2 s-1. The results demonstrate that E. gracilis could efficiently produce biomass and convert CO2 to O2 under relatively low light intensities in aquatic food production modules. c2005 Published by Elsevier Ltd on behalf of COSPAR.

  12. Effects of CO2 and O2 concentrations and light intensity on growth of microalgae (Euglena gracilis) in CELSS.

    Science.gov (United States)

    Kitaya, Y; Kibe, S; Oguchi, M; Tanaka, H; Miyatake, K; Nakano, Y

    1998-01-01

    Green microalgae are likely to play an important role in bioregenerative systems for producing food and converting CO2 to O2 in a controlled ecological life support system (CELSS). In the present study, a method for evaluating the effects of environmental variables on the multiplication rate of microalgal cells was developed to determine the optimum culture condition for a microalgal culture system that can function effectively in the CELSS. The microalga, Euglena gracilis, was cultured in water droplets (3 microliters in liquid volume each) in a vessel (25 ml in air volume) in which the CO2 and O2 concentrations were controlled. The number of Euglena cells cultured at CO2 concentrations ranging from 2% to 6%, O2 concentrations ranging from 5% to 20%, and PPF levels ranging from 50 to 100 micromoles m-2 s-1 was monitored by using a video camera and a microscope. The multiplication rate of cells was highest and the cell number increased by 8.3 times during 48 h under a condition of 4% CO2, 21% O2 and 100 micromoles m-2 s-1 PPF. The multiplication rate of the cells was highest at 4% CO2, followed by 6% and 2% CO2, and it decreased with decreasing O2 concentration and decreasing PPF.

  13. Characterization and physiological role of two types of chloroplastic fructose-1,6-bisphosphatases in Euglena gracilis.

    Science.gov (United States)

    Ogawa, Takahisa; Kimura, Ayako; Sakuyama, Harumi; Tamoi, Masahiro; Ishikawa, Takahiro; Shigeoka, Shigeru

    2015-06-01

    The chloroplastic fructose-1,6-bisphosphatase (FBPase) is a late-limiting enzyme in the Calvin cycle. In the present study, we isolated and characterized the cDNAs encoding two types of chloroplastic FBPase isoforms (EgFBPaseI and II) from Euglena gracilis. The Km values of recombinant EgFBPaseI and EgFBPaseII for fructose 1,6-bisphosphate (Fru 1,6-P2) were 165 ± 17 and 2200 ± 200 μM, respectively. The activity of EgFBPaseI was inhibited by 1mM H2O2 and recovered when incubated with DTT. The activity of EgFBPaseII was resistant to concentrations of H2O2 up to 1mM, which was distinct from those of EgFBPaseI and spinach chloroplastic FBPase. The suppression of EgFBPaseI gene expression by gene silencing markedly decreased photosynthetic activity and inhibited cell growth. The results of the present study clearly demonstrated that EgFBPaseI played a critical role in photosynthesis in Euglena chloroplasts. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Effects of gamma-ray and high energy carbon ion irradiation on swimming velocity of Euglena gracilis

    Science.gov (United States)

    Sakashita, T.; Doi, M.; Yasuda, H.; Fuma, S.; Häder, D.-P.

    The effects of gamma-ray and high energy carbon ion irradiation on the swimming velocity of the photosynthetic flagellate Euglena gracilis strain Z were studied, focusing on a dose-effect relationship. Cells were exposed to 60Co gamma-rays at 6 doses of 10, 15, 20, 40, 100 and 200 Gy for water, and also to 290 MeV/amu carbon ions from the Heavy Ion Medical Accelerator in Chiba at 7 doses (5, 10, 15, 20, 50, 100 and 200 Gy for water). The swimming velocity was measured by a biomonitoring system, called ECOTOX. The swimming velocities of Euglena gracilis cells were significantly decreased by >40 Gy gamma-rays and >5 Gy carbon ions, respectively. The 50% effective doses for inhibition, 34±4 Gy (gamma-rays) and 13±1 Gy (290 MeV/amu carbon ions), were estimated from the best fit to data of the logistic model. The relative biological effectiveness (2.6±0.4) was calculated by the ratio of 50% effective doses. The inhibition of the swimming velocity of the cells irradiated with gamma-rays was still present after 3 days, while recovery of the swimming velocity was shown in the cells exposed to 290 MeV/amu carbon ions. It is suggested that ionizing radiation inhibits ATP production and/or increases frictional drag on beating of the flagellum, thus decreasing swimming velocity.

  15. In Euglena, spliced-leader RNA (SL-RNA) and 5S rRNA genes are tandemly repeated.

    Science.gov (United States)

    Keller, M; Tessier, L H; Chan, R L; Weil, J H; Imbault, P

    1992-01-01

    In Euglena gracilis, a 26 nucleotide leader sequence (spliced leader sequence = SL) is transferred by trans-splicing to the 5' end of a vast majority of cytoplasmic mRNAs (8). The SL originates from the 5' extremity of a family of closely related snRNAs (SL-RNAs) which are about 100 nucleotide long. In this paper we present the nucleotide sequences of two SL-RNA genes, confirming the sequences previously established by sequencing purified SL-RNAs. Although some SL-RNA genes are dispersed throughout the genome, we show that the majority of SL-RNA genes are located on 0.6 kb repeated units which also encode the cytoplasmic 5S rRNA. We estimate that the copy number of these repeated units is about 300 per haploid genome. The association of SL-RNA and 5S rRNA genes in tandemly repeated units is also found in nematodes but paradoxically does not exist in trypanosomes which are phylogenically much closer to Euglena. We also show that a high number of sequences analogous to the 26 nucleotide SL are dispersed throughout the genome and are not associated with SL-RNAs. Images PMID:1579464

  16. Effects of temperature, CO 2/O 2 concentrations and light intensity on cellular multiplication of microalgae, Euglena gracilis

    Science.gov (United States)

    Kitaya, Y.; Azuma, H.; Kiyota, M.

    Microalgae culture is likely to play an important role in aquatic food production modules in bioregenerative systems for producing feeds for fish, converting CO 2 to O 2 and remedying water quality as well as aquatic higher plants. In the present study, the effects of culture conditions on the cellular multiplication of microalgae, Euglena gracilis, was investigated as a fundamental study to determine the optimum culture conditions for microalgae production in aquatic food production modules including both microalgae culture and fish culture systems. E. gracilis was cultured under conditions with five levels of temperatures (25-33 °C), three levels of CO 2 concentrations (2-6%), five levels of O 2 concentrations (10-30%), and six levels of photosynthetic photon flux (20-200 μmol m -2 s -1). The number of Euglena cells in a certain volume of solution was monitored with a microscope under each environmental condition. The multiplication rate of the cells was highest at temperatures of 27-31 °C, CO 2 concentration of 4%, O 2 concentration of 20% and photosynthetic photon flux of about 100 μmol m -2 s -1. The results demonstrate that E. gracilis could efficiently produce biomass and convert CO 2 to O 2 under relatively low light intensities in aquatic food production modules.

  17. RuBisCO in Non-Photosynthetic Alga Euglena longa: Divergent Features, Transcriptomic Analysis and Regulation of Complex Formation.

    Science.gov (United States)

    Záhonová, Kristína; Füssy, Zoltán; Oborník, Miroslav; Eliáš, Marek; Yurchenko, Vyacheslav

    2016-01-01

    Euglena longa, a close relative of the photosynthetic model alga Euglena gracilis, possesses an enigmatic non-photosynthetic plastid. Its genome has retained a gene for the large subunit of the enzyme RuBisCO (rbcL). Here we provide new data illuminating the putative role of RuBisCO in E. longa. We demonstrated that the E. longa RBCL protein sequence is extremely divergent compared to its homologs from the photosynthetic relatives, suggesting a possible functional shift upon the loss of photosynthesis. Similarly to E. gracilis, E. longa harbors a nuclear gene encoding the small subunit of RuBisCO (RBCS) as a precursor polyprotein comprising multiple RBCS repeats, but one of them is highly divergent. Both RBCL and the RBCS proteins are synthesized in E. longa, but their abundance is very low compared to E. gracilis. No RBCS monomers could be detected in E. longa, suggesting that processing of the precursor polyprotein is inefficient in this species. The abundance of RBCS is regulated post-transcriptionally. Indeed, blocking the cytoplasmic translation by cycloheximide has no immediate effect on the RBCS stability in photosynthetically grown E. gracilis, but in E. longa, the protein is rapidly degraded. Altogether, our results revealed signatures of evolutionary degradation (becoming defunct) of RuBisCO in E. longa and suggest that its biological role in this species may be rather unorthodox, if any.

  18. Comparative toxicity of physiological and biochemical parameters in Euglena gracilis to short-term exposure to potassium sorbate.

    Science.gov (United States)

    Engel, Fernanda; Pinto, Luciano Henrique; Del Ciampo, Lineu Fernando; Lorenzi, Luciano; Heyder, Carmen Diamantina Teixeira; Häder, Donat Peter; Erzinger, Gilmar Sidnei

    2015-01-01

    Potassium sorbate is the potassium salt of sorbic acid, is a widespread and efficient antioxidant that has multiple functions in plants, traditionally associated with the reactions of photosynthesis; however, it has moderate toxicity to various species including rat, fish, bacteria and human health. The effects of potassium sorbate on the movement and photosynthetic parameters of Euglena gracilis were studied during short-term exposure. Potassium sorbate showed acute toxicity to the green flagellate E. gracilis affecting different physiological parameters used as endpoints in an automatic bioassay such as motility, precision of gravitational orientation (r-value), upward movement and alignment, with mean EC50 values of 2867.2 mg L(-1). The concentrations above 625 mg L(-1) of potassium sorbate induce an inhibition of the photosynthetic efficiency and electron transport rate and, in concentrations more than 2500.0 mg L(-1), the Euglena cells undergo a complete inhibition of photosynthesis even at low light irradiation.

  19. RuBisCO in Non-Photosynthetic Alga Euglena longa: Divergent Features, Transcriptomic Analysis and Regulation of Complex Formation.

    Directory of Open Access Journals (Sweden)

    Kristína Záhonová

    Full Text Available Euglena longa, a close relative of the photosynthetic model alga Euglena gracilis, possesses an enigmatic non-photosynthetic plastid. Its genome has retained a gene for the large subunit of the enzyme RuBisCO (rbcL. Here we provide new data illuminating the putative role of RuBisCO in E. longa. We demonstrated that the E. longa RBCL protein sequence is extremely divergent compared to its homologs from the photosynthetic relatives, suggesting a possible functional shift upon the loss of photosynthesis. Similarly to E. gracilis, E. longa harbors a nuclear gene encoding the small subunit of RuBisCO (RBCS as a precursor polyprotein comprising multiple RBCS repeats, but one of them is highly divergent. Both RBCL and the RBCS proteins are synthesized in E. longa, but their abundance is very low compared to E. gracilis. No RBCS monomers could be detected in E. longa, suggesting that processing of the precursor polyprotein is inefficient in this species. The abundance of RBCS is regulated post-transcriptionally. Indeed, blocking the cytoplasmic translation by cycloheximide has no immediate effect on the RBCS stability in photosynthetically grown E. gracilis, but in E. longa, the protein is rapidly degraded. Altogether, our results revealed signatures of evolutionary degradation (becoming defunct of RuBisCO in E. longa and suggest that its biological role in this species may be rather unorthodox, if any.

  20. UV-B affects photosynthesis, ROS production and motility of the freshwater flagellate, Euglena agilis Carter.

    Science.gov (United States)

    Kottuparambil, Sreejith; Shin, Woongghi; Brown, Murray T; Han, Taejun

    2012-10-15

    The effects of ultraviolet B (UV-B; 295-320 nm) radiation on certain vital physiological (photosynthesis), biochemical (production of reactive oxygen species - ROS) and behavioral (motility and orientation) characteristics were investigated in the unicellular photoautotroph, Euglena agilis Carter. The photosynthetic performance of E. agilis was recorded after exposure of between 15 and 60 min followed by a period of recovery lasting 6-24h under dim light (5-10 μmol photons m(-2) s(-1)). The maximum quantum yield of PS II (F(v)/F(m)) was reduced to 65% and 14% of initial values immediately following 15 and 30 min UV-B exposure, but recovered to 100 and 86% of the initials, respectively. Values of rETR(max) in E. agilis exposed to 15 min UV-B were similar to those of the initials, but a 30 min UV exposure resulted in 75% reduction of rETR(max) with only a 43% recovery as compared with the initial after 24h recovery. After a 60 min UV-B exposure, there were no Chl a fluorescence signals, and hence no F(v)/F(m) or rETR(max). A UV dose-dependent increase in DCFH-DA fluorescence was found in E. agilis cells, reflecting an increase in ROS production. After exposures to UV-B for between 15 and 60 min, the percentages of motile cells in the population decreased to 76, 39 and 15%, respectively. Following 24h in dim light, the percentage of motile cells increased to between 66% and 95% of the initial value. The velocity of non-irradiated cells was 60 μm s(-1), which decreased to 16-35 μm s(-1) immediately following exposure for 15-60 min. After periods of time in dim light (6, 12 and 24h) velocities had recovered to between 44 and 81% of the initial value. In untreated controls, the r-value was 0.23, indicating random movement of E. agilis, but it increased to 0.35 and 0.72 after exposure to UV-B for 30 and 60 min, respectively. There was a tendency towards vertical downward movement of cells proportional to the duration of exposure. The compactness of E. agilis decreased

  1. Analysis of evolutionary relationship between Astasia longa and Euglena gracilis by using RAPD Technique and cladistic analysis

    Science.gov (United States)

    Wang, Jiang-Xin; Shi, Zhi-Xin; Gan, Xiao-Ni; Xie, Shu-Lian

    2001-03-01

    Although both Astasia longa and Euglena gracilis belong to different genera, they share many morphological characters except that A. longa has no chloroplast. In the 1940's, on the basis of the finding that in darkness or upon addition of some chemicals, E. gracilis would fade reversibly or irreversibly, some scholars hypothesised that A. longa evolved from E. gracilis by losing chloroplast. The author's use of RAPD and cladistic analyses in a study on the evolutionary relationship between A. longa and E. gracilis showed that the A. longa's relationship with E. gracilis was closer than that with other green euglenoids. This proves the hypothesis that A. longa evolved from E. gracilis is reasonable. The results of this study suggest that saprophytic colorless euglenoids were transformed from green euglenoids by losing their choroplasts.

  2. High-throughput label-free image cytometry and image-based classification of live Euglena gracilis

    Science.gov (United States)

    Lei, Cheng; Ito, Takuro; Ugawa, Masashi; Nozawa, Taisuke; Iwata, Osamu; Maki, Masanori; Okada, Genki; Kobayashi, Hirofumi; Sun, Xinlei; Tiamsak, Pimsiri; Tsumura, Norimichi; Suzuki, Kengo; Di Carlo, Dino; Ozeki, Yasuyuki; Goda, Keisuke

    2016-01-01

    We demonstrate high-throughput label-free single-cell image cytometry and image-based classification of Euglena gracilis (a microalgal species) under different culture conditions. We perform it with our high-throughput optofluidic image cytometer composed of a time-stretch microscope with 780-nm resolution and 75-Hz line rate, and an inertial-focusing microfluidic device. By analyzing a large number of single-cell images from the image cytometer, we identify differences in morphological and intracellular phenotypes between E. gracilis cell groups and statistically classify them under various culture conditions including nitrogen deficiency for lipid induction. Our method holds promise for real-time evaluation of culture techniques for E. gracilis and possibly other microalgae in a non-invasive manner. PMID:27446699

  3. Fatty acid and metabolomic profiling approaches differentiate heterotrophic and mixotrophic culture conditions in a microalgal food supplement 'Euglena'.

    Science.gov (United States)

    Zeng, Min; Hao, Wenlong; Zou, Yongdong; Shi, Mengliang; Jiang, Yongguang; Xiao, Peng; Lei, Anping; Hu, Zhangli; Zhang, Weiwen; Zhao, Liqing; Wang, Jiangxin

    2016-06-02

    Microalgae have been recognized as a good food source of natural biologically active ingredients. Among them, the green microalga Euglena is a very promising food and nutritional supplements, providing high value-added poly-unsaturated fatty acids, paramylon and proteins. Different culture conditions could affect the chemical composition and food quality of microalgal cells. However, little information is available for distinguishing the different cellular changes especially the active ingredients including poly-saturated fatty acids and other metabolites under different culture conditions, such as light and dark. In this study, together with fatty acid profiling, we applied a gas chromatography-mass spectrometry (GC-MS)-based metabolomics to differentiate hetrotrophic and mixotrophic culture conditions. This study suggests metabolomics can shed light on understanding metabolomic changes under different culture conditions and provides a theoretical basis for industrial applications of microalgae, as food with better high-quality active ingredients.

  4. Photosynthesis and photosynthetic pigments in the flagellate Euglena gracilis - as sensitive endpoints for toxicity evaluation of liquid detergents.

    Science.gov (United States)

    Azizullah, Azizullah; Richter, Peter; Häder, Donat-Peter

    2014-04-05

    The present study was designed to validate the applicability of photosynthetic performance using a PAM fluorometer and photosynthetic pigments in Euglena gracilis as endpoint parameters in toxicity assessment of liquid detergents using a dish washing liquid detergent during short- (0-72h) and long-term (7days) exposure. In short-term experiments, the detergent affected the photosynthetic efficiency with EC50 values (calculated for Fv/Fm) of 22.07%, 7.27%, 1.4% and 2.34%, after 0, 1, 24 and 72h, respectively. The relative electron transport rate (rETR) and quantum yield measured with increasing irradiances were also inhibited by the detergent. The most severe effect of the detergent on the light-harvesting pigments (μgmL(-1)) was observed after 72h where chlorophyll a and total carotenoids were decreased at concentrations above 0.1% and chlorophyll b was decreased at concentrations above 0.5%. In long-term experiments, the detergent reduced the photosynthetic efficiency of cultures giving an EC50 value of 0.867% for Fv/Fm. rETR and quantum yield with increasing irradiance were shown to be adversely affected at concentrations of 0.1% or above. A decrease in chlorophyll a and total carotenoids (μgmL(-1)) was observed at concentrations of 0.05% detergent or above. Chlorophyll b was shown to be comparatively less affected by detergent stress, and a significant decrease was observed at concentrations of 0.5% or above. However, there was no prominent decrease in per cell (Euglena) concentration of any pigment. It can be concluded that photosynthesis and light-harvesting pigments in E. gracilis were sensitive to detergent stress and can be used as sensitive parameters in toxicity assessment of detergents in aquatic environments. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. A rapid phenol toxicity test based on photosynthesis and movement of the freshwater flagellate, Euglena agilis Carter

    Energy Technology Data Exchange (ETDEWEB)

    Kottuparambil, Sreejith [Institute of Green Environmental Research Center, Incheon National University, Incheon 406 840 (Korea, Republic of); Kim, Youn-Jung [Institute of Green Environmental Research Center, Incheon National University, Incheon 406 840 (Korea, Republic of); Department of Marine Science, Incheon National University, Incheon 406 840 (Korea, Republic of); Green-Pioneer (Ltd.), Incheon National University, Incheon 406 840 (Korea, Republic of); Choi, Hoon; Kim, Mi-Sung; Park, Areum; Park, Jihae [Institute of Green Environmental Research Center, Incheon National University, Incheon 406 840 (Korea, Republic of); Shin, Woongghi [Department of Biology, Chungnam University, Daejeon 306 764 (Korea, Republic of); Han, Taejun, E-mail: hanalgae@hanmail.net [Institute of Green Environmental Research Center, Incheon National University, Incheon 406 840 (Korea, Republic of); Department of Marine Science, Incheon National University, Incheon 406 840 (Korea, Republic of); Green-Pioneer (Ltd.), Incheon National University, Incheon 406 840 (Korea, Republic of)

    2014-10-15

    Highlights: • Rapid phenol toxicity tests (1 h) were developed based on Chl a fluorescence and the movement parameters of Euglena agilis. • Phenol significantly reduced F{sub v}/F{sub m} of PS II and rETRmax with EC50 values of 8.94 and 4.67 mM, respectively. • Among the movement parameters tested, velocity was the most sensitive biomarker with an EC50 of 3.17 mM. • The EC50 values for F{sub v}/F{sub m}, motility, and velocity appear to overlap the environmental permissible levels of phenol. - Abstract: Phenol, a monosubstituted aromatic hydrocarbon with various commercial uses, is a major organic constituent in industrial wastewaters. The ecotoxic action of phenol for aquatic environment is well known. In this study, rapid phenol toxicity tests (1 h) were developed based on chlorophyll a (Chl a) fluorescence and the movement parameters of the freshwater flagellate, Euglena agilis Carter. Phenol significantly reduced the maximum quantum yield (F{sub v}/F{sub m}) of photosystem II (PS II) and the maximum photosynthetic electron transport rate (rETR{sub max}) with median effective concentration (EC{sub 50}) values of 8.94 and 4.67 mM, respectively. Phenol reduced the motility and triggered change in the swimming velocity of the test organism. Among the parameters tested, velocity was the most sensitive biomarker with an EC{sub 50} of 3.17 mM. The EC{sub 50} values for F{sub v}/F{sub m}, motility, and velocity appear to overlap the permitted levels of phenol. In conclusion, the photosynthesis and movement of E. agilis can be fast and sensitive risk assessment parameters for the evaluation of phenol toxicity in municipal and industrial effluents.

  6. [A new species of Euglena (Euglenozoa: Euglenales) isolated from extreme environments in "boiling mudflats" of Rincón de la Vieja volcano, Costa Rica].

    Science.gov (United States)

    Sittenfeld, Ana; Vargas, Maribelle; Sánchez, Ethel; Mora, Marielos; Serrano, Aurelio

    2004-03-01

    A new species of euglena isolated from a hot and acid mud pool located in Las Pailas de Barro, Volcán Rincón de la Vieja, Costa Rica is described. This species inhabits hot and acid environments. Euglena pailasensis sp. nov. main features are: the absence of flagella, the presence filaments like "pilis", the presence of chloroplasts with pyrenoids crossed by several tylakoids, and acid and heat tolerance. Molecular phylogeny studies using 18S rDNA and Gap C genes indicated that the new species is related to E. mutabilis. Its taxonomic characters based on morphology, biology and sequence of the 18S rDNA and Gap C genes are discussed and compared with other closely related species of the genus.

  7. Molecular analysis of the graviperception signal transduction in the flagellate Euglena gracilis: Involvement of a transient receptor potential-like channel and a calmodulin

    Science.gov (United States)

    Häder, Donat-Peter; Richter, Peter R.; Schuster, Martin; Daiker, Viktor; Lebert, Michael

    2009-04-01

    Euglena gracilis, a unicellular, photosynthetic flagellate is a model system for environmentally controlled behavior responses. The organism shows pronounced negative gravitaxis. This movement is based on physiological mechanisms, which in the past had been only indirectly assessed. It was shown that mechano-sensitive calcium channels are involved in the gravitaxis response. Recent studies have demonstrated that members of the transient receptor potential (TRP) family function as mechano-sensitive channels in several different cell types. We have sequenced part of a TRP gene in Euglena and applied RNA interference (RNAi) to confirm that these channels are involved in graviperception. It was found that RNAi against the putative TRP channel abolished gravitaxis. The genes of three calmodulins were sequences in Euglena, one of which was previously known in its protein structure (cal 1). The other two were unknown (cal 2 and cal 3). Cal 2 has been analyzed in detail. The biosynthesis of the corresponding proteins of cal 1 and cal 2 was inhibited by means of RNA interference to see whether this blockage impairs gravitaxis. RNAi of cal 1 leads to a long-term loss of free swimming in the cells (while euglenoid movement persists). It induced pronounced cell form aberrations and the division of cells was hampered. After recovery from RNAi the cell showed precise negative gravitaxis again. Thus cal 1 does not seem to be involved in gravitaxis. In contrast, the blockage of cal 2 has no pronounced influence on motility and cell form but leads to a complete loss of gravitactic orientation for more than 30 days showing that this calmodulin is an element in the signal transduction chain. The data are discussed in the context of the current model of the gravitaxis signal transduction chain in Euglena gracilis.

  8. VERTICAL MIGRATION OF A MIXED-SPECIES EUGLENA (EUGLENOPHYTA) ASSEMBLAGE INHABITING THE HIGH-INTERTIDAL SANDS OF NYE BEACH, OREGON(1).

    Science.gov (United States)

    Kingston, Michael B; Gough, Jennifer S

    2009-10-01

    Comparatively little is known about the vertical migration of the microphytobenthic community forming visible patches on high-energy beaches. We collected surface and cored samples to evaluate the timing and extent of downward migration of a multispecies Euglena assemblage inhabiting Nye Beach, Oregon. Euglena density at the surface was highly variable and was not correlated with the time of low tide or instantaneous irradiance measurements; however, triplicate cores collected at low and high tides revealed a tidal rhythm in mean depth. On average, 95% of the assemblage occurred within 1 cm of the surface during low tide, but 54% of the assemblage was collected between 1 and 8 cm below the surface during high tide. A midday shading experiment revealed that short-term changes in irradiance levels altered the Euglena density at the sediment surface by inducing vertical migration. This response to short-term fluctuations in light may explain the weak correlation between cell density at the surface and time of day. The high-intertidal location of these patches prevented the removal of nonmigrating cells by daily high tides, which increased the variability in surface samples and obscured the tidal migration rhythm detected in the core samples. Due in part to the semidiurnal nature of Oregon tides, this study provides in situ confirmation of past mesocosm research indicating that sediment disturbance during daily submersed periods is an important process in maintaining the quasi-tidal rhythm in the appearance and disappearance of Euglena spp. from the surface of beaches and intertidal sandflats. © 2009 Phycological Society of America.

  9. Surface properties and intracellular speciation revealed an original adaptive mechanism to arsenic in the acid mine drainage bio-indicator Euglena mutabilis.

    Science.gov (United States)

    Halter, David; Casiot, Corinne; Heipieper, Hermann J; Plewniak, Frédéric; Marchal, Marie; Simon, Stéphane; Arsène-Ploetze, Florence; Bertin, Philippe N

    2012-02-01

    Euglena mutabilis is a protist ubiquitously found in extreme environments such as acid mine drainages which are often rich in arsenic. The response of E. mutabilis to this metalloid was compared to that of Euglena gracilis, a protist not found in such environments. Membrane fatty acid composition, cell surface properties, arsenic accumulation kinetics, and intracellular arsenic speciation were determined. The results revealed a modification in fatty acid composition leading to an increased membrane fluidity in both Euglena species under sublethal arsenic concentrations exposure. This increased membrane fluidity correlated to an induced gliding motility observed in E. mutabilis in the presence of this metalloid but did not affect the flagellar dependent motility of E. gracilis. Moreover, when compared to E. gracilis, E. mutabilis showed highly hydrophobic cell surface properties and a higher tolerance to water-soluble arsenical compounds but not to hydrophobic ones. Finally, E. mutabilis showed a lower accumulation of total arsenic in the intracellular compartment and an absence of arsenic methylated species in contrast to E. gracilis. Taken together, our results revealed the existence of a specific arsenical response of E. mutabilis that may play a role in its hypertolerance to this toxic metalloid.

  10. Short leader sequences may be transferred from small RNAs to pre-mature mRNAs by trans-splicing in Euglena.

    Science.gov (United States)

    Tessier, L H; Keller, M; Chan, R L; Fournier, R; Weil, J H; Imbault, P

    1991-01-01

    Very closely related short sequences are present at the 5' end of cytoplasmic mRNAs in Euglena as evidenced by comparison of cDNA sequences and hybrid-arrested translation experiments. By cloning Euglena gracilis nuclear DNA and isolating the rbcS gene (encoding the small subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase), we have shown that the short leader sequence does not flank the nuclear gene sequence. The leader sequences were found to constitute the 5' extremities of a family of small RNAs. Sequencing six members of this family revealed a striking similarity to vertebrate U snRNAs. We propose that a trans-splicing mechanism transfers the spliced leader (SL) sequence from these small RNAs (SL RNAs) to pre-mature mRNAs. Transfer of leader sequences to mRNAs by trans-splicing has been shown only in trypanosomes where cis-splicing is unknown, and in nematodes where not more than 10% of the mRNAs have leader sequences. Our results strongly suggest that Euglena is a unique organism in which both a widespread trans-splicing and a cis-splicing mechanism co-exist. Images PMID:1868836

  11. Chromium- and copper-induced inhibition of photosynthesis in Euglena gracilis analysed on the single-cell level by fluorescence kinetic microscopy.

    Science.gov (United States)

    Rocchetta, Iara; Küpper, Hendrik

    2009-01-01

    Here, we investigated effects of copper (Cu) and chromium (Cr) toxicity on two contrasting strains of Euglena gracilis, with and without chloroplasts, grown in culture media promoting either phototrophic or heterotrophic growth. This led to insights into Cr/Cu toxicity mechanisms and into the regulation of phototrophic vs heterotrophic metabolism. Our data strongly suggest that in Cu(2+) and Cr(6+) stressed Euglena photosynthesis is the primary target of damage. In the applied light conditions, this was mainly damage to the photosystem II reaction centre, as shown by single-cell measurements of photochemical fluorescence quenching. Respiration and photosynthetic dark reactions were less sensitive. The malfunctioning photosynthesis enhanced production of reactive oxygen species (mainly superoxide), leading to elevated amounts of carotenoid degradation products. At higher metal concentrations in chloroplast-containing cells, but not white cells, this oxidative stress resulted in increased respiratory oxygen uptake, likely by damage to mitochondria. During growth in nutrient solution promoting heterotrophic metabolism, the cells were able to repair the metal-induced damage to photosynthesis, moderating the inhibition of photochemistry. Growth in medium forcing the cells into photosynthesis increased the investment in photosynthetic pigments. Comparison of the two Euglena strains surprisingly showed that the previously metal-resistant strain lost this resistance during culture.

  12. Long term stability of Oligo (dT) 25 magnetic beads for the expression analysis of Euglena gracilis for long term space projects

    Science.gov (United States)

    Becker, Ina; Strauch, Sebastian M.; Hauslage, Jens; Lebert, Michael

    2017-05-01

    The unicellular freshwater flagellate Euglena gracilis has a highly developed sensory system. The cells use different stimuli such as light and gravity to orient themselves in the surrounding medium to find areas for optimal growth. Due to the ability to produce oxygen and consume carbon dioxide, Euglena is a suitable candidate for life support systems. Participation in a long-term space experiment would allow for the analysis of changes and adaptations to the new environment, and this could bring new insights into the mechanism of perception of gravity and the associated signal transduction chain. For a molecular analysis of transcription patterns, an automated system is necessary, capable of performing all steps from taking a sample, processing it and generating data. One of the developmental steps is to find long-term stable reagents and materials and test them for stability at higher-than-recommended temperature conditions during extended storage time. We investigated the usability of magnetic beads in an Euglena specific lysis buffer after addition of the RNA stabilizer Dithiothreitol over 360 days and the lysis buffer with the stabilizer alone over 455 days at the expected storage temperature of 19 °C. We can claim that the stability is not impaired at all after an incubation period of over one year. This might be an interesting result for researchers who have to work under non-standard lab conditions, as in biological or medicinal fieldwork.

  13. U3 snoRNA genes are multi-copy and frequently linked to U5 snRNA genes in Euglena gracilis§

    Science.gov (United States)

    2009-01-01

    Background U3 snoRNA is a box C/D small nucleolar RNA (snoRNA) involved in the processing events that liberate 18S rRNA from the ribosomal RNA precursor (pre-rRNA). Although U3 snoRNA is present in all eukaryotic organisms, most investigations of it have focused on fungi (particularly yeasts), animals and plants. Relatively little is known about U3 snoRNA and its gene(s) in the phylogenetically broad assemblage of protists (mostly unicellular eukaryotes). In the euglenozoon Euglena gracilis, a distant relative of the kinetoplastid protozoa, Southern analysis had previously revealed at least 13 bands hybridizing with U3 snoRNA, suggesting the existence of multiple copies of U3 snoRNA genes. Results Through screening of a λ genomic library and PCR amplification, we recovered 14 U3 snoRNA gene variants, defined by sequence heterogeneities that are mostly located in the U3 3'-stem-loop domain. We identified three different genomic arrangements of Euglena U3 snoRNA genes: i) stand-alone, ii) linked to tRNAArg genes, and iii) linked to a U5 snRNA gene. In arrangement ii), the U3 snoRNA gene is positioned upstream of two identical tRNAArg genes that are convergently transcribed relative to the U3 gene. This scenario is reminiscent of a U3 snoRNA-tRNA gene linkage previously described in trypanosomatids. We document here twelve different U3 snoRNA-U5 snRNA gene arrangements in Euglena; in each case, the U3 gene is linked to a downstream and convergently oriented U5 gene, with the intergenic region differing in length and sequence among the variants. Conclusion The multiple U3 snoRNA-U5 snRNA gene linkages, which cluster into distinct families based on sequence similarities within the intergenic spacer, presumably arose by genome, chromosome, and/or locus duplications. We discuss possible reasons for the existence of the unusually large number of U3 snoRNA genes in the Euglena genome. Variability in the signal intensities of the multiple Southern hybridization bands raises

  14. U3 snoRNA genes are multi-copy and frequently linked to U5 snRNA genes in Euglena gracilis§

    Directory of Open Access Journals (Sweden)

    Charette J Michael

    2009-11-01

    Full Text Available Abstract Background U3 snoRNA is a box C/D small nucleolar RNA (snoRNA involved in the processing events that liberate 18S rRNA from the ribosomal RNA precursor (pre-rRNA. Although U3 snoRNA is present in all eukaryotic organisms, most investigations of it have focused on fungi (particularly yeasts, animals and plants. Relatively little is known about U3 snoRNA and its gene(s in the phylogenetically broad assemblage of protists (mostly unicellular eukaryotes. In the euglenozoon Euglena gracilis, a distant relative of the kinetoplastid protozoa, Southern analysis had previously revealed at least 13 bands hybridizing with U3 snoRNA, suggesting the existence of multiple copies of U3 snoRNA genes. Results Through screening of a λ genomic library and PCR amplification, we recovered 14 U3 snoRNA gene variants, defined by sequence heterogeneities that are mostly located in the U3 3'-stem-loop domain. We identified three different genomic arrangements of Euglena U3 snoRNA genes: i stand-alone, ii linked to tRNAArg genes, and iii linked to a U5 snRNA gene. In arrangement ii, the U3 snoRNA gene is positioned upstream of two identical tRNAArg genes that are convergently transcribed relative to the U3 gene. This scenario is reminiscent of a U3 snoRNA-tRNA gene linkage previously described in trypanosomatids. We document here twelve different U3 snoRNA-U5 snRNA gene arrangements in Euglena; in each case, the U3 gene is linked to a downstream and convergently oriented U5 gene, with the intergenic region differing in length and sequence among the variants. Conclusion The multiple U3 snoRNA-U5 snRNA gene linkages, which cluster into distinct families based on sequence similarities within the intergenic spacer, presumably arose by genome, chromosome, and/or locus duplications. We discuss possible reasons for the existence of the unusually large number of U3 snoRNA genes in the Euglena genome. Variability in the signal intensities of the multiple Southern

  15. U3 snoRNA genes are multi-copy and frequently linked to U5 snRNA genes in Euglena gracilis.

    Science.gov (United States)

    Charette, J Michael; Gray, Michael W

    2009-11-16

    U3 snoRNA is a box C/D small nucleolar RNA (snoRNA) involved in the processing events that liberate 18S rRNA from the ribosomal RNA precursor (pre-rRNA). Although U3 snoRNA is present in all eukaryotic organisms, most investigations of it have focused on fungi (particularly yeasts), animals and plants. Relatively little is known about U3 snoRNA and its gene(s) in the phylogenetically broad assemblage of protists (mostly unicellular eukaryotes). In the euglenozoon Euglena gracilis, a distant relative of the kinetoplastid protozoa, Southern analysis had previously revealed at least 13 bands hybridizing with U3 snoRNA, suggesting the existence of multiple copies of U3 snoRNA genes. Through screening of a lambda genomic library and PCR amplification, we recovered 14 U3 snoRNA gene variants, defined by sequence heterogeneities that are mostly located in the U3 3'-stem-loop domain. We identified three different genomic arrangements of Euglena U3 snoRNA genes: i) stand-alone, ii) linked to tRNAArg genes, and iii) linked to a U5 snRNA gene. In arrangement ii), the U3 snoRNA gene is positioned upstream of two identical tRNAArg genes that are convergently transcribed relative to the U3 gene. This scenario is reminiscent of a U3 snoRNA-tRNA gene linkage previously described in trypanosomatids. We document here twelve different U3 snoRNA-U5 snRNA gene arrangements in Euglena; in each case, the U3 gene is linked to a downstream and convergently oriented U5 gene, with the intergenic region differing in length and sequence among the variants. The multiple U3 snoRNA-U5 snRNA gene linkages, which cluster into distinct families based on sequence similarities within the intergenic spacer, presumably arose by genome, chromosome, and/or locus duplications. We discuss possible reasons for the existence of the unusually large number of U3 snoRNA genes in the Euglena genome. Variability in the signal intensities of the multiple Southern hybridization bands raises the possibility that

  16. Una nueva especie de Euglena (Euglenozoa: Euglenales) aislada de ambientes extremófilos en las Pailas de Barro del Volcán Rincón de la Vieja, Costa Rica

    OpenAIRE

    Sittenfeld, Ana; Vargas, Maribelle; Sánchez, Ethel; Mora, Marielos; Serrano, Aurelio

    2014-01-01

    Se describe una nueva especie de euglena aislada de las Pailas de Barro Caliente del Volcán Rincón de la Vieja, Costa Rica. Esta especie se caracteriza por habitar sitios ácidos y calientes. Euglena pailasensis sp. nov. tiene como características principales: la ausencia de flagelos, presencia de filamentos similares a “pilis”, presencia de cloroplastos con pirenoides atravesados por varios tilacoides, además, es termotolerante y acido-tolerante. Los análisis filogenéticos para el gen ADNr 18...

  17. Una nueva especie de Euglena (Euglenozoa: Euglenales) aislada de ambientes extremófilos en las Pailas de Barro del Volcán Rincón de la Vieja, Costa Rica

    OpenAIRE

    Ana Sittenfeld; Maribelle Vargas; Ethel Sánchez; Marielos Mora; Aurelio Serrano

    2004-01-01

    Se describe una nueva especie de euglena aislada de las Pailas de Barro Caliente del Volcán Rincón de la Vieja, Costa Rica. Esta especie se caracteriza por habitar sitios ácidos y calientes. Euglena pailasensis sp. nov. tiene como características principales: la ausencia de flagelos, presencia de filamentos similares a "pilis", presencia de cloroplastos con pirenoides atravesados por varios tilacoides, además, es termotolerante y acido-tolerante. Los análisis filogenéticos para el gen ADNr 18...

  18. Growth performances and changes of macronutrient ion concentrations in the culture medium when Euglena gracilis was cultured with nitrified digestate.

    Science.gov (United States)

    Takemura, Kenji; Endo, Ryosuke; Shibuya, Toshio; Kitaya, Yoshiaki

    2017-09-01

    We investigated the possibility of using Euglena gracilis to convert digestate from methane fermentation of organic wastes into a medium for soilless crop culture. The growth of E. gracilis cultured with aqueous solutions containing filtrate of raw digestate at 1-30% (v/v) and nitrified digestate at 10-100% (v/v) was examined. Concentrations of plant macronutrient ions in nitrified digestate before and after culturing E. gracilis were also examined. Specific growth rates in aqueous solutions containing filtrate of raw digestate at 1-10% and nitrified digestate at 10-100% showed no significant differences, respectively (0.781 ± 0.031 d(-1) and 0.925 ± 0.033 d(-1), mean ± standard error). The rates in the filtrate of nitrified digestate were significantly higher than those in the filtrate of raw digestate. Moreover, there were no significant differences between the concentrations of plant macronutrient ions other than [Formula: see text] in the filtrate of nitrified digestate before and after culturing E. gracilis. The concentration of [Formula: see text] decreased significantly by 10.5% of the initial concentration. As a result, the constituent ratio of plant macronutrient ions other than magnesium in the solution after culturing E. gracilis was similar to that in a standard nutrient solution for soilless culture.

  19. O2 evolution and cyclic electron flow around photosystem I in long-term ground batch culture of Euglena gracilis

    Science.gov (United States)

    An, Yanjun; Wang, Suqin; Hao, Zongjie; Zhou, Yiyong; Liu, Yongding

    2014-12-01

    Based on the purpose of better exploring the function of green producers in the closed aquatic biological life support system, the condition of dynamic O2 evolution and performance of cyclic electron flow around photosystem I (CEF-PSI) in long-term ground batch culture of Euglena gracilis were studied, the relationship between linear electron flow (LEF) and CEF-PSI was revealed, the function of CEF-PSI was investigated. Excellent consistency in O2 evolution pattern was observed in cultures grown in both closed and open containers, O2 evolution was strictly suppressed in phase 1, but the rate of it increased significantly in phase 2. CEF-PSI was proposed to be active during the whole course of cultivation, even in the declining phase 3, it still operated at the extent of 47-55%. It is suggested that the relationship between LEF and CEF-PSI is not only competition but also reciprocity. CEF-PSI was proposed to contribute to the considerable growth in phase 1; it was also suggested to play an important protective role against photosystem II (PSII) photoinhibition at the greatly enhanced level (approximately 80-95%) on the 2nd day. Our results in this research suggest that E. gracilis had very particular photosynthetic characteristics, the strict O2 evolution suppression in the initial culture phase might be a special light acclimation behavior, and CEF-PSI could be an important mechanism involved in this kind of adaptation to the changeable light environment.

  20. Intramolecular photo-switching and intermolecular energy transfer as primary photoevents in photoreceptive processes: The case of Euglena gracilis

    Energy Technology Data Exchange (ETDEWEB)

    Mercatelli, Raffaella; Quercioli, Franco [Istituto Sistemi Complessi, CNR, Via Madonna del Piano 10, 50019 Sesto Fiorentino (Italy); Barsanti, Laura; Evangelista, Valter [Istituto di Biofisica, CNR, Via Moruzzi 1, 56124 Pisa (Italy); Coltelli, Primo [ISTI, CNR, Via Moruzzi 1, 56124 Pisa (Italy); Passarelli, Vincenzo; Frassanito, Anna Maria [Istituto di Biofisica, CNR, Via Moruzzi 1, 56124 Pisa (Italy); Gualtieri, Paolo, E-mail: paolo.gualtieri@pi.ibf.cnr.it [Istituto di Biofisica, CNR, Via Moruzzi 1, 56124 Pisa (Italy)

    2009-07-24

    In this paper we report the results of measurements performed by FLIM on the photoreceptor of Euglenagracilis. This organelle consists of optically bistable proteins, characterized by two thermally stable isomeric forms: A{sub 498,} non fluorescent and B{sub 462}, fluorescent. Our data indicate that the primary photoevent of Euglena photoreception upon photon absorption consists of two contemporaneous different phenomena: an intramolecular photo-switch (i.e., A{sub 498} becomes B{sub 462}), and a intermolecular and unidirectional Forster-type energy transfer. During the FRET process, the fluorescent B{sub 462} form acts as donor for the non-fluorescent A{sub 498} form of the protein nearby, which acts as acceptor. We hypothesize that in nature these phenomena follow each other with a domino progression along the orderly organized and closely packed proteins in the photoreceptor layer(s), modulating the isomeric composition of the photoreceptive protein pool. This mechanism guarantees that few photons are sufficient to produce a signal detectable by the cell.

  1. A rapid phenol toxicity test based on photosynthesis and movement of the freshwater flagellate, Euglena agilis Carter.

    Science.gov (United States)

    Kottuparambil, Sreejith; Kim, Youn-Jung; Choi, Hoon; Kim, Mi-Sung; Park, Areum; Park, Jihae; Shin, Woongghi; Han, Taejun

    2014-10-01

    Phenol, a monosubstituted aromatic hydrocarbon with various commercial uses, is a major organic constituent in industrial wastewaters. The ecotoxic action of phenol for aquatic environment is well known. In this study, rapid phenol toxicity tests (1h) were developed based on chlorophyll a (Chl a) fluorescence and the movement parameters of the freshwater flagellate, Euglena agilis Carter. Phenol significantly reduced the maximum quantum yield (Fv/Fm) of photosystem II (PS II) and the maximum photosynthetic electron transport rate (rETRmax) with median effective concentration (EC50) values of 8.94 and 4.67 mM, respectively. Phenol reduced the motility and triggered change in the swimming velocity of the test organism. Among the parameters tested, velocity was the most sensitive biomarker with an EC50 of 3.17 mM. The EC50 values for Fv/Fm, motility, and velocity appear to overlap the permitted levels of phenol. In conclusion, the photosynthesis and movement of E. agilis can be fast and sensitive risk assessment parameters for the evaluation of phenol toxicity in municipal and industrial effluents. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Label-free chemical imaging of live Euglena gracilis by high-speed SRS spectral microscopy (Conference Presentation)

    Science.gov (United States)

    Wakisaka, Yoshifumi; Suzuki, Yuta; Tokunaga, Kyoya; Hirose, Misa; Domon, Ryota; Akaho, Rina; Kuroshima, Mai; Tsumura, Norimichi; Shimobaba, Tomoyoshi; Iwata, Osamu; Suzuki, Kengo; Nakashima, Ayaka; Goda, Keisuke; Ozeki, Yasuyuki

    2016-03-01

    Microbes, especially microalgae, have recently been of great interest for developing novel biofuels, drugs, and biomaterials. Imaging-based screening of live cells can provide high selectivity and is attractive for efficient bio-production from microalgae. Although conventional cellular screening techniques use cell labeling, labeling of microbes is still under development and can interfere with their cellular functions. Furthermore, since live microbes move and change their shapes rapidly, a high-speed imaging technique is required to suppress motion artifacts. Stimulated Raman scattering (SRS) microscopy allows for label-free and high-speed spectral imaging, which helps us visualize chemical components inside biological cells and tissues. Here we demonstrate high-speed SRS imaging, with temporal resolution of 0.14 seconds, of intracellular distributions of lipid, polysaccharide, and chlorophyll concentrations in rapidly moving Euglena gracilis, a unicellular phytoflagellate. Furthermore, we show that our method allows us to analyze the amount of chemical components inside each living cell. Our results indicate that SRS imaging may be applied to label-free screening of living microbes based on chemical information.

  3. Improvement of kinetics, yield, and colloidal stability of biogenic gold nanoparticles using living cells of Euglena gracilis microalga

    Science.gov (United States)

    Dahoumane, Si Amar; Yéprémian, Claude; Djédiat, Chakib; Couté, Alain; Fiévet, Fernand; Coradin, Thibaud; Brayner, Roberta

    2016-03-01

    Recent years have witnessed a boom in the biosynthesis of a large variety of nanomaterials using different biological resources among which algae-based entities have been gaining much more attention within the community of material scientists worldwide. In our previously published findings, we explored some factors that governed the biofabrication of gold nanoparticles using living cultures of microalgae, such as the utilized microalgal genera, the phylum they belong to, and the impact of tetrachloroauric acid concentrations on the ability of these strains to perform the biosynthesis of gold nanoparticles once in contact with these cations. As a follow-up, we present in this paper an improvement of the features of bioproduced gold colloids using living cells of Euglena gracilis microalga when this species is grown under either mixotrophic or autotrophic conditions, i.e., exposed to light and grown in an organic carbon-enriched culture medium versus under autotrophic conditions. As an outcome to this alteration, the growth rate of this photosynthetic microorganism is multiplied 7-8 times when grown under mixotrophic conditions compared to autotrophic ones. Therefore, the yield, the kinetics, and the colloidal stability of the biosynthesized gold nanoparticles are dramatically enhanced. Moreover, the shape and the size of the as-produced nano-objects via this biological method are affected. In addition to round-shaped gold nanoparticles, particular shapes, such as triangles and hexagons, appear. These findings add up to the amassed knowledge toward the design of photobioreactors for the scalable and sustainable production of interesting nanomaterials.

  4. In situ proteo-metabolomics reveals metabolite secretion by the acid mine drainage bio-indicator, Euglena mutabilis.

    Science.gov (United States)

    Halter, David; Goulhen-Chollet, Florence; Gallien, Sébastien; Casiot, Corinne; Hamelin, Jérôme; Gilard, Françoise; Heintz, Dimitri; Schaeffer, Christine; Carapito, Christine; Van Dorsselaer, Alain; Tcherkez, Guillaume; Arsène-Ploetze, Florence; Bertin, Philippe N

    2012-07-01

    Euglena mutabilis is a photosynthetic protist found in acidic aquatic environments such as peat bogs, volcanic lakes and acid mine drainages (AMDs). Through its photosynthetic metabolism, this protist is supposed to have an important role in primary production in such oligotrophic ecosystems. Nevertheless, the exact contribution of E. mutabilis in organic matter synthesis remains unclear and no evidence of metabolite secretion by this protist has been established so far. Here we combined in situ proteo-metabolomic approaches to determine the nature of the metabolites accumulated by this protist or potentially secreted into an AMD. Our results revealed that the secreted metabolites are represented by a large number of amino acids, polyamine compounds, urea and some sugars but no fatty acids, suggesting a selective organic matter contribution in this ecosystem. Such a production may have a crucial impact on the bacterial community present on the study site, as it has been suggested previously that prokaryotes transport and recycle in situ most of the metabolites secreted by E. mutabilis. Consequently, this protist may have an indirect but important role in AMD ecosystems but also in other ecological niches often described as nitrogen-limited.

  5. Fluorescent mannosides serve as acceptor substrates for glycosyltransferase and sugar-1-phosphate transferase activities in Euglena gracilis membranes.

    Science.gov (United States)

    Ivanova, Irina M; Nepogodiev, Sergey A; Saalbach, Gerhard; O'Neill, Ellis C; Urbaniak, Michael D; Ferguson, Michael A J; Gurcha, Sudagar S; Besra, Gurdyal S; Field, Robert A

    2017-01-13

    Synthetic hexynyl α-D-mannopyranoside and its α-1,6-linked disaccharide counterpart were fluorescently labelled through CuAAC click chemistry with 3-azido-7-hydroxycoumarin. The resulting triazolyl-coumarin adducts, which were amenable to analysis by TLC, HPLC and mass spectrometry, proved to be acceptor substrates for α-1,6-ManT activities in mycobacterial membranes, as well as α- and β-GalT activities in trypanosomal membranes, benchmarking the potential of the fluorescent acceptor approach against earlier radiochemical assays. Following on to explore the glycobiology of the benign protozoan alga Euglena gracilis, α-1,3- and α-1,2-ManT activities were detected in membrane preparations, along with GlcT, Glc-P-T and GlcNAc-P-T activities. These studies serve to demonstrate the potential of readily accessible fluorescent glycans as substrates for exploring carbohydrate active enzymes. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  6. Arsenic hypertolerance in the protist Euglena mutabilis is mediated by specific transporters and functional integrity maintenance mechanisms.

    Science.gov (United States)

    Halter, David; Andres, Jérémy; Plewniak, Frédéric; Poulain, Julie; Da Silva, Corinne; Arsène-Ploetze, Florence; Bertin, Philippe N

    2015-06-01

    Arsenic is a toxic metalloid known to cause multiple and severe cellular damages, including lipid peroxidation, protein misfolding, mutagenesis and double and single-stranded DNA breaks. Thus, exposure to this compound is lethal for most organisms but some species such as the photosynthetic protist Euglena mutabilis are able to cope with very high concentrations of this metalloid. Our comparative transcriptomic approaches performed on both an arsenic hypertolerant protist, i.e. E. mutabilis, and a more sensitive one, i.e. E. gracilis, revealed multiple mechanisms involved in arsenic tolerance. Indeed, E. mutabilis prevents efficiently the accumulation of arsenic in the cell through the expression of several transporters. More surprisingly, this protist induced the expression of active DNA reparation and protein turnover mechanisms, which allow E. mutabilis to maintain functional integrity of the cell under challenging conditions. Our observations suggest that this protist has acquired specific functions regarding arsenic and has developed an original metabolism to cope with acid mine drainages-related stresses. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.

  7. [Accumulation of α-tocopherol and β-carotene in Euglena gracilis Cells under Autotrophic and Mixotrophic Culture Conditions].

    Science.gov (United States)

    Mokrosnop, V M; Polishchuk, A V; Zolotareva, E K

    2016-01-01

    The aim of the work was to find the mode of cultivation of unicellular flagellate Euglena gracilis, favorable for the simultaneous accumulation of α-tocopherol and β-carotene. Cells were grown either in photoautotrophic or photoheterotrophic conditions in the presence of 100 mM ethanol (variant Et) or 40 mM glutamate (variant Gt), or their combination (variant EtGt). The exogenous substrates significantly stimulated light-dependent growth of E. gracilis. The largest increase of biomass was recorded on the 20th day in the variant EtGt and exceeded the autotrophic control by 7 times. The content of β-carotene and chlorophyll (Chl) per cell in mixotrophic cultures exceeded the control by 2-3 and 1.6-2 times, respectively. At the same time, α-tocopherol accumulation in autotrophic cells was greater than in the cells of mixotrophic cultures by 2-7 times. Total yield of tocopherol per unit volume of culture medium, which depended not only on its intracellular content, but also on the amount of accumulated biomass was highest in EtGt variant. A correlation between the accumulation of the antioxidants and the equilibrium concentration of oxygen in the growth medium, which depended on the intensities of photosynthesis and respiration has been analyzed.

  8. Isolation and Expression of a cDNA Encoding Methylmalonic Aciduria Type A Protein from Euglena gracilis Z

    Directory of Open Access Journals (Sweden)

    Fumio Watanabe

    2013-02-01

    Full Text Available In animals, cobalamin (Cbl is a cofactor for methionine synthase and methylmalonyl-CoA mutase (MCM, which utilizes methylcobalamin and 5′-deoxyadenosylcobalamin (AdoCbl, respectively. The cblA complementation class of inborn errors of Cbl metabolism in humans is one of three known disorders that affect AdoCbl synthesis. The gene responsible for cblA has been identified in humans (MMAA as well as its homolog (meaB in Methylobacterium extorquens. Recently, it has been reported that human MMAA plays an important role in the protection and reactivation of MCM in vitro. However, the physiological function of MMAA is largely unknown. In the present study, we isolated the cDNA encoding MMAA from Euglena gracilis Z, a photosynthetic flagellate. The deduced amino acid sequence of the cDNA shows 79%, 79%, 79% and 80% similarity to human, mouse, Danio rerio MMAAs and M. extorquens MeaB, respectively. The level of the MCM transcript was higher in Cbl-deficient cultures of E. gracilis than in those supplemented with Cbl. In contrast, no significant differences were observed in the levels of the MMAA transcript under the same two conditions. No significant difference in MCM activity was observed between Escherichia coli that expressed either MCM together with MMAA or expressed MCM alone.

  9. Improvement of kinetics, yield, and colloidal stability of biogenic gold nanoparticles using living cells of Euglena gracilis microalga

    Energy Technology Data Exchange (ETDEWEB)

    Dahoumane, Si Amar, E-mail: sa.dahoumane@gmail.com [Paris-Diderot University, Sorbonne Paris Cité, Interfaces, Traitements, Organisation et Dynamique des Systèmes (ITODYS), UMR 7086, CNRS (France); Yéprémian, Claude; Djédiat, Chakib; Couté, Alain [Muséum National d’Histoire Naturelle, Département RDDM, UMR 7245, Unité MCAM (France); Fiévet, Fernand [Paris-Diderot University, Sorbonne Paris Cité, Interfaces, Traitements, Organisation et Dynamique des Systèmes (ITODYS), UMR 7086, CNRS (France); Coradin, Thibaud, E-mail: thibaud.coradin@upmc.fr [UPMC—Paris 06, CNRS, Chimie de la Matière Condensée de Paris, Collège de France (France); Brayner, Roberta, E-mail: roberta.brayner@univ-paris-diderot.fr [Paris-Diderot University, Sorbonne Paris Cité, Interfaces, Traitements, Organisation et Dynamique des Systèmes (ITODYS), UMR 7086, CNRS (France)

    2016-03-15

    Recent years have witnessed a boom in the biosynthesis of a large variety of nanomaterials using different biological resources among which algae-based entities have been gaining much more attention within the community of material scientists worldwide. In our previously published findings, we explored some factors that governed the biofabrication of gold nanoparticles using living cultures of microalgae, such as the utilized microalgal genera, the phylum they belong to, and the impact of tetrachloroauric acid concentrations on the ability of these strains to perform the biosynthesis of gold nanoparticles once in contact with these cations. As a follow-up, we present in this paper an improvement of the features of bioproduced gold colloids using living cells of Euglena gracilis microalga when this species is grown under either mixotrophic or autotrophic conditions, i.e., exposed to light and grown in an organic carbon-enriched culture medium versus under autotrophic conditions. As an outcome to this alteration, the growth rate of this photosynthetic microorganism is multiplied 7–8 times when grown under mixotrophic conditions compared to autotrophic ones. Therefore, the yield, the kinetics, and the colloidal stability of the biosynthesized gold nanoparticles are dramatically enhanced. Moreover, the shape and the size of the as-produced nano-objects via this biological method are affected. In addition to round-shaped gold nanoparticles, particular shapes, such as triangles and hexagons, appear. These findings add up to the amassed knowledge toward the design of photobioreactors for the scalable and sustainable production of interesting nanomaterials.

  10. High-throughput label-free screening of euglena gracilis with optofluidic time-stretch quantitative phase microscopy

    Science.gov (United States)

    Guo, Baoshan; Lei, Cheng; Ito, Takuro; Yaxiaer, Yalikun; Kobayashi, Hirofumi; Jiang, Yiyue; Tanaka, Yo; Ozeki, Yasuyuki; Goda, Keisuke

    2017-02-01

    The development of reliable, sustainable, and economical sources of alternative fuels is an important, but challenging goal for the world. As an alternative to liquid fossil fuels, microalgal biofuel is expected to play a key role in reducing the detrimental effects of global warming since microalgae absorb atmospheric CO2 via photosynthesis. Unfortunately, conventional analytical methods only provide population-averaged lipid contents and fail to characterize a diverse population of microalgal cells with single-cell resolution in a noninvasive and interference-free manner. Here we demonstrate high-throughput label-free single-cell screening of lipid-producing microalgal cells with optofluidic time-stretch quantitative phase microscopy. In particular, we use Euglena gracilis - an attractive microalgal species that produces wax esters (suitable for biodiesel and aviation fuel after refinement) within lipid droplets. Our optofluidic time-stretch quantitative phase microscope is based on an integration of a hydrodynamic-focusing microfluidic chip, an optical time-stretch phase-contrast microscope, and a digital image processor equipped with machine learning. As a result, it provides both the opacity and phase contents of every single cell at a high throughput of 10,000 cells/s. We characterize heterogeneous populations of E. gracilis cells under two different culture conditions to evaluate their lipid production efficiency. Our method holds promise as an effective analytical tool for microalgaebased biofuel production.

  11. High-Throughput Accurate Single-Cell Screening of Euglena gracilis with Fluorescence-Assisted Optofluidic Time-Stretch Microscopy.

    Science.gov (United States)

    Guo, Baoshan; Lei, Cheng; Ito, Takuro; Jiang, Yiyue; Ozeki, Yasuyuki; Goda, Keisuke

    2016-01-01

    The development of reliable, sustainable, and economical sources of alternative fuels is an important, but challenging goal for the world. As an alternative to liquid fossil fuels, algal biofuel is expected to play a key role in alleviating global warming since algae absorb atmospheric CO2 via photosynthesis. Among various algae for fuel production, Euglena gracilis is an attractive microalgal species as it is known to produce wax ester (good for biodiesel and aviation fuel) within lipid droplets. To date, while there exist many techniques for inducing microalgal cells to produce and accumulate lipid with high efficiency, few analytical methods are available for characterizing a population of such lipid-accumulated microalgae including E. gracilis with high throughout, high accuracy, and single-cell resolution simultaneously. Here we demonstrate high-throughput, high-accuracy, single-cell screening of E. gracilis with fluorescence-assisted optofluidic time-stretch microscopy-a method that combines the strengths of microfluidic cell focusing, optical time-stretch microscopy, and fluorescence detection used in conventional flow cytometry. Specifically, our fluorescence-assisted optofluidic time-stretch microscope consists of an optical time-stretch microscope and a fluorescence analyzer on top of a hydrodynamically focusing microfluidic device and can detect fluorescence from every E. gracilis cell in a population and simultaneously obtain its image with a high throughput of 10,000 cells/s. With the multi-dimensional information acquired by the system, we classify nitrogen-sufficient (ordinary) and nitrogen-deficient (lipid-accumulated) E. gracilis cells with a low false positive rate of 1.0%. This method holds promise for evaluating cultivation techniques and selective breeding for microalgae-based biofuel production.

  12. The mitochondrial respiratory chain of the secondary green alga Euglena gracilis shares many additional subunits with parasitic Trypanosomatidae.

    Science.gov (United States)

    Perez, Emilie; Lapaille, Marie; Degand, Hervé; Cilibrasi, Laura; Villavicencio-Queijeiro, Alexa; Morsomme, Pierre; González-Halphen, Diego; Field, Mark C; Remacle, Claire; Baurain, Denis; Cardol, Pierre

    2014-11-01

    The mitochondrion is an essential organelle for the production of cellular ATP in most eukaryotic cells. It is extensively studied, including in parasitic organisms such as trypanosomes, as a potential therapeutic target. Recently, numerous additional subunits of the respiratory-chain complexes have been described in Trypanosoma brucei and Trypanosoma cruzi. Since these subunits had apparently no counterparts in other organisms, they were interpreted as potentially associated with the parasitic trypanosome lifestyle. Here we used two complementary approaches to characterise the subunit composition of respiratory complexes in Euglena gracilis, a non-parasitic secondary green alga related to trypanosomes. First, we developed a phylogenetic pipeline aimed at mining sequence databases for identifying homologues to known respiratory-complex subunits with high confidence. Second, we used MS/MS proteomics after two-dimensional separation of the respiratory complexes by Blue Native- and SDS-PAGE both to confirm in silico predictions and to identify further additional subunits. Altogether, we identified 41 subunits that are restricted to E. gracilis, T. brucei and T. cruzi, along with 48 classical subunits described in other eukaryotes (i.e. plants, mammals and fungi). This moreover demonstrates that at least half of the subunits recently reported in T. brucei and T. cruzi are actually not specific to Trypanosomatidae, but extend at least to other Euglenozoa, and that their origin and function are thus not specifically associated with the parasitic lifestyle. Furthermore, preliminary biochemical analyses suggest that some of these additional subunits underlie the peculiarities of the respiratory chain observed in Euglenozoa. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Catalytic Deoxygenation of Hexadecyl Palmitate as a Model Compound of Euglena Oil in H2 and N2 Atmospheres

    Directory of Open Access Journals (Sweden)

    Yanyong Liu

    2017-11-01

    Full Text Available Hexadecyl palmitate (C15H31COOC16H33, used as a model compound for Euglena oil was deoxygenated to hydrocarbons over various solid catalysts in autoclave reactors. In a H2 atmosphere, 1 wt.% of Pd/Mg(AlO catalyst, derived from a hydrotalcite precursor, yielded a C15H31COOC16H33 conversion close to 100%, and a C10‒C16 (aviation fuel range hydrocarbon yield of 90.2% for the deoxygenation of C15H31COOC16H33 at 300 °C for 2 h. In a N2 atmosphere, 1 wt.% of Pd/Mg(AlO catalyst yielded a C10‒C16 hydrocarbon yield of 63.5%, which was much higher than those obtained with Mg(AlO (15.1%, H-ZSM-5 (8.3%, and 1 wt.% Pd/C (26.2% for the deoxygenation of C15H31COOC16H33 at 300 °C for 2 h. The Pd metal site and the solid base site in Mg(AlO had a synergetic effect on the deoxygenation of C15H31COOC16H33 in N2 atmosphere over the Pd/Mg(AlO catalyst. By prolonging the reaction time to 5 h for reaction at 300 °C in N2 atmosphere, the yield of C10‒C16 hydrocarbons increased to 80.4% with a C15H31COOC16H33 conversion of 99.1% over the 1 wt.% Pd/Mg(AlO catalyst.

  14. High-Throughput Accurate Single-Cell Screening of Euglena gracilis with Fluorescence-Assisted Optofluidic Time-Stretch Microscopy.

    Directory of Open Access Journals (Sweden)

    Baoshan Guo

    Full Text Available The development of reliable, sustainable, and economical sources of alternative fuels is an important, but challenging goal for the world. As an alternative to liquid fossil fuels, algal biofuel is expected to play a key role in alleviating global warming since algae absorb atmospheric CO2 via photosynthesis. Among various algae for fuel production, Euglena gracilis is an attractive microalgal species as it is known to produce wax ester (good for biodiesel and aviation fuel within lipid droplets. To date, while there exist many techniques for inducing microalgal cells to produce and accumulate lipid with high efficiency, few analytical methods are available for characterizing a population of such lipid-accumulated microalgae including E. gracilis with high throughout, high accuracy, and single-cell resolution simultaneously. Here we demonstrate high-throughput, high-accuracy, single-cell screening of E. gracilis with fluorescence-assisted optofluidic time-stretch microscopy-a method that combines the strengths of microfluidic cell focusing, optical time-stretch microscopy, and fluorescence detection used in conventional flow cytometry. Specifically, our fluorescence-assisted optofluidic time-stretch microscope consists of an optical time-stretch microscope and a fluorescence analyzer on top of a hydrodynamically focusing microfluidic device and can detect fluorescence from every E. gracilis cell in a population and simultaneously obtain its image with a high throughput of 10,000 cells/s. With the multi-dimensional information acquired by the system, we classify nitrogen-sufficient (ordinary and nitrogen-deficient (lipid-accumulated E. gracilis cells with a low false positive rate of 1.0%. This method holds promise for evaluating cultivation techniques and selective breeding for microalgae-based biofuel production.

  15. Contribuição ao conhecimento dos algas do gênero Euglena (Euglenophyceae no município do Rio de Janeiro e arredores, Brasil Contribution to the study of the algal genus Euglena (Euglenophyceae near Rio de Janeiro, Brazil

    Directory of Open Access Journals (Sweden)

    Mariângela Menezes

    1989-07-01

    Full Text Available Procedeu-se pioneiramente ao levantamento taxonômico das algas pigmentadas do gênero Euglena Ehr. (Euglenophyceae, baseado na análise de cerca de 150 amostras, coletadas de agosto de 1980 a novembro de 1982 em diversos corpos d'agua acessíveis do Município do Rio de Janeiro e arredores, Brasil. Do total de amostras coletadas, 68 continham euglenóides pigmentados e destas, 36 mostraram representantes de Euglena. Foram identificados 17 taxons distribuídos em 14 espécies e 3 variedades, dos quais, apenas 8 já haviam sido documentados para o Estado do Rio de Janeiro, constituindo os demais primeiros novos registros de ocorrência na área estudada. Euglena agilis H.J. Cart. foi o táxon melhor representado em número de amostras, aparecendo em 22% das 36 amostras analisadas. Todos os taxons foram descritos, medidos, ilustrados e comentados com base em seus caracteres morfológicos vegetativos a partir de material vivo e, sempre que possível, em amostras populacionais. Acrescentaram-se ainda informações quanto à distribuição geográfica dos 17 taxons identificados no Estado do Rio de Janeiro bem como uma chave artificial indentada para identificação das espécies inventariadas. Complementam o trabalho 48 figuras, um mapa do Estado e outro do Município, contendo este indicação dos locais de coleta.A taxonomical survey was first carried out at a floristic inventory of the pigmented Euglena Ehr. (Euglenophyceae, based on the analisys of near 150 samples, collected from August 1980 to November 1982 at accessible bodies of water of the Municipality of Rio de Janeiro and surroundings, Brazil. Of the samples collected, 68 contained specimens of pigmented euglenoids, of these 36 showed repiesentatives of Euglena. Seventeen taxa were identified and distributed in 14 species and 3 varieties, of which 8 have already been identified for the State of Rio de Janeiro, being the others for the first time recorded in the area. Euglena agilis H. J

  16. Suppression of the phytoene synthase gene (EgcrtB) alters carotenoid content and intracellular structure of Euglena gracilis.

    Science.gov (United States)

    Kato, Shota; Soshino, Mika; Takaichi, Shinichi; Ishikawa, Takahiro; Nagata, Noriko; Asahina, Masashi; Shinomura, Tomoko

    2017-07-17

    Photosynthetic organisms utilize carotenoids for photoprotection as well as light harvesting. Our previous study revealed that high-intensity light increases the expression of the gene for phytoene synthase (EgcrtB) in Euglena gracilis (a unicellular phytoflagellate), the encoded enzyme catalyzes the first committed step of the carotenoid biosynthesis pathway. To examine carotenoid synthesis of E. gracilis in response to light stress, we analyzed carotenoid species and content in cells grown under various light intensities. In addition, we investigated the effect of suppressing EgcrtB with RNA interference (RNAi) on growth and carotenoid content. After cultivation for 7 days under continuous light at 920 μmol m-2 s-1, β-carotene, diadinoxanthin (Ddx), and diatoxanthin (Dtx) content in cells was significantly increased compared with standard light intensity (55 μmol m-2 s-1). The high-intensity light (920 μmol m-2 s-1) increased the pool size of diadinoxanthin cycle pigments (i.e., Ddx + Dtx) by 1.2-fold and the Dtx/Ddx ratio from 0.05 (control) to 0.09. In contrast, the higher-intensity light treatment caused a 58% decrease in chlorophyll (a + b) content and diminished the number of thylakoid membranes in chloroplasts by approximately half compared with control cells, suggesting that the high-intensity light-induced accumulation of carotenoids is associated with an increase in both the number and size of lipid globules in chloroplasts and the cytoplasm. Transient suppression of EgcrtB in this alga by RNAi resulted in significant decreases in cell number, chlorophyll, and total major carotenoid content by 82, 82 and 86%, respectively, relative to non-electroporated cells. Furthermore, suppression of EgcrtB decreased the number of chloroplasts and thylakoid membranes and increased the Dtx/Ddx ratio by 1.6-fold under continuous illumination even at the standard light intensity, indicating that blocking carotenoid synthesis increased the susceptibility

  17. Mitochondrial trans-2-enoyl-CoA reductase of wax ester fermentation from Euglena gracilis defines a new family of enzymes involved in lipid synthesis.

    Science.gov (United States)

    Hoffmeister, Meike; Piotrowski, Markus; Nowitzki, Ulrich; Martin, William

    2005-02-11

    Under anaerobiosis, Euglena gracilis mitochondria perform a malonyl-CoA independent synthesis of fatty acids leading to accumulation of wax esters, which serve as the sink for electrons stemming from glycolytic ATP synthesis and pyruvate oxidation. An important enzyme of this unusual pathway is trans-2-enoyl-CoA reductase (EC 1.3.1.44), which catalyzes reduction of enoyl-CoA to acyl-CoA. Trans-2-enoyl-CoA reductase from Euglena was purified 1700-fold to electrophoretic homogeneity and was active with NADH and NADPH as the electron donor. The active enzyme is a monomer with molecular mass of 44 kDa. The amino acid sequence of tryptic peptides determined by electrospray ionization mass spectrometry were used to clone the corresponding cDNA, which encoded a polypeptide that, when expressed in Escherichia coli and purified by affinity chromatography, possessed trans-2-enoyl-CoA reductase activity close to that of the enzyme purified from Euglena. Trans-2-enoyl-CoA reductase activity is present in mitochondria and the mRNA is expressed under aerobic and anaerobic conditions. Using NADH, the recombinant enzyme accepted crotonyl-CoA (km=68 microm) and trans-2-hexenoyl-CoA (km=91 microm). In the crotonyl-CoA-dependent reaction, both NADH (km=109 microm) or NADPH (km=119 microm) were accepted, with 2-3-fold higher specific activities for NADH relative to NADPH. Trans-2-enoyl-CoA reductase homologues were not found among other eukaryotes, but are present as hypothetical reading frames of unknown function in sequenced genomes of many proteobacteria and a few Gram-positive eubacteria, where they occasionally occur next to genes involved in fatty acid and polyketide biosynthesis. Trans-2-enoyl-CoA reductase assigns a biochemical activity, NAD(P)H-dependent acyl-CoA synthesis from enoyl-CoA, to one member of this gene family of previously unknown function.

  18. Immunomodulatory effects of dietary β-1,3-glucan from Euglena gracilis in rainbow trout (Oncorhynchus mykiss) immersion vaccinated against Yersinia ruckeri

    DEFF Research Database (Denmark)

    Skov, Jakob; Kania, Per Walter; Holten-Andersen, Lars

    2012-01-01

    Potential immunostimulatory effects of orally administered β-glucan were investigated in combination with immersion vaccination against enteric redmouth disease caused by Yersinia ruckeri in rainbow trout (Oncorhynchus mykiss). A linear, unbranched and pure (purity ≥98%) β-1,3-glucan (syn....... paramylon) from the alga Euglena gracilis was applied at an inclusion level of 1% β-glucan in feed administered at a rate of 1% biomass day(-1) for 84 consecutive days. Fish were vaccinated after two weeks of experimental feeding and bath challenged with live Y. ruckeri six weeks post-vaccination. Blood...... and head kidney were sampled at day 0, 13 (1 day pre-vaccination), 15, 55, 59 (day 3 post-challenge (p.c.)), 70 and 84. Vaccination induced significantly increased survival p.c., whereas the β-glucan had no effect on survival in either unvaccinated or vaccinated fish. Expression in head kidney of genes...

  19. Zn-bis-glutathionate is the best co-substrate of the monomeric phytochelatin synthase from the photosynthetic heavy metal-hyperaccumulator Euglena gracilis.

    Science.gov (United States)

    García-García, Jorge D; Girard, Lourdes; Hernández, Georgina; Saavedra, Emma; Pardo, Juan P; Rodríguez-Zavala, José S; Encalada, Rusely; Reyes-Prieto, Adrián; Mendoza-Cózatl, David G; Moreno-Sánchez, Rafael

    2014-03-01

    The phytochelatin synthase from photosynthetic Euglena gracilis (EgPCS) was analyzed at the transcriptional, kinetic, functional, and phylogenetic levels. Recombinant EgPCS was a monomeric enzyme able to synthesize, in the presence of Zn(2+) or Cd(2+), phytochelatin2-phytochelatin4 (PC2-PC4) using GSH or S-methyl-GS (S-methyl-glutathione), but not γ-glutamylcysteine or PC2 as a substrate. Kinetic analysis of EgPCS firmly established a two-substrate reaction mechanism for PC2 synthesis with Km values of 14-22 mM for GSH and 1.6-2.5 μM for metal-bis-glutathionate (Me-GS2). EgPCS showed the highest Vmax and catalytic efficiency with Zn-(GS)2, and was inactivated by peroxides. The EgPCS N-terminal domain showed high similarity to that of other PCSases, in which the typical catalytic core (Cys-70, His-179 and Asp-197) was identified. In contrast, the C-terminal domain showed no similarity to other PCSases. An EgPCS mutant comprising only the N-terminal 235 amino acid residues was inactive, suggesting that the C-terminal domain is essential for activity/stability. EgPCS transcription in Euglena cells was not modified by Cd(2+), whereas its heterologous expression in ycf-1 yeast cells provided resistance to Cd(2+) stress. Phylogenetic analysis of the N-terminal domain showed that EgPCS is distant from plants and other photosynthetic organisms, suggesting that it evolved independently. Although EgPCS showed typical features of PCSases (constitutive expression; conserved N-terminal domain; kinetic mechanism), it also exhibited distinct characteristics such as preference for Zn-(GS)2 over Cd-(GS)2 as a co-substrate, a monomeric structure, and ability to solely synthesize short-chain PCs, which may be involved in conferring enhanced heavy-metal resistance.

  20. Una nueva especie de Euglena (Euglenozoa: Euglenales aislada de ambientes extremófilos en las Pailas de Barro del Volcán Rincón de la Vieja, Costa Rica

    Directory of Open Access Journals (Sweden)

    Ana Sittenfeld

    2004-03-01

    Full Text Available Se describe una nueva especie de euglena aislada de las Pailas de Barro Caliente del Volcán Rincón de la Vieja, Costa Rica. Esta especie se caracteriza por habitar sitios ácidos y calientes. Euglena pailasensis sp. nov. tiene como características principales: la ausencia de flagelos, presencia de filamentos similares a "pilis", presencia de cloroplastos con pirenoides atravesados por varios tilacoides, además, es termotolerante y acido-tolerante. Los análisis filogenéticos para el gen ADNr 18S y la secuencia del gen para la enzima Gap C indican que la nueva especie está relacionada con E. mutabilis. Las características taxonómicas basadas en la morfología, biología y secuencia del ADNr 18S y los genes GAP C, son discutidas y comparadas con otras especies relativamente cercanas al géneroAnew species of euglena isolated from a hot and acid mud pool located in Las Pailas de Barro, Volcán Rincón de la Vieja, Costa Rica is described. This species inhabits hot and acid environments. Euglena pailasensis sp. nov. main features are: the absence of flagella, the presence filaments like "pilis", the presence of chloroplasts with pyrenoids crossed by several tylakoids, and acid and heat tolerance. Molecular phylogeny studies using 18S rDNA and Gap C genes indicated that the new species is related to E mutabilis. Its taxonomic characters based on morphology, biology and sequence of the 18S rDNA and Gap C genes are discussed and compared with other closely related species of the genus

  1. Descripción ultraestructural de Euglena pailasensis (Euglenozoa del Volcán Rincón de la Vieja, Guanacaste, Costa Rica

    Directory of Open Access Journals (Sweden)

    Ethel Sánchez

    2004-03-01

    H 2 - 4. The hot mud pool is located in Area de Pailas de Barro, Las Pailas, Rincón de la Vieja Volcano, Guanacaste, Costa Rica. The morphological characterization of the Euglena pailasensis was performed by SEM and TEM. It was determined that, although the euglenoid was obtained from an extreme volcanic environment, the general morphology corresponds to that of a typical member of Euglena of 30-45 µm long and 8-10 µm wide, with membrane, pellicle, chloroplasts, mitochondria, nucleus, pigments and other cytoplasmic organelles. E. pailasensis is delimited by a membrane and by 40 to 90 pellicle strips. It was observed up to 5 elongated chloroplasts per cell. The chloroplast contains several osmiophilic globules and a pyrenoid penetrated by few thylakoid pairs. The nutritious material is reserved in numerous small paramylon grains located at the center of the cell, mitocondria are characterized by the presence of crests in radial disposition toward the interior of the lumen. It was also observed around the external surface "pili" like filaments originating from the pellicle strips. There is no evidence for the presence of flagella in the ampulla (reservoir/canal area, a fact confirmed by negative staining, and a difference regarding other species of Euglena. The observed ultrastructural characteristics are not sufficient to explain the adaptation of this species to acid and hot environments

  2. Identification and functional analysis of the geranylgeranyl pyrophosphate synthase gene (crtE) and phytoene synthase gene (crtB) for carotenoid biosynthesis in Euglena gracilis.

    Science.gov (United States)

    Kato, Shota; Takaichi, Shinichi; Ishikawa, Takahiro; Asahina, Masashi; Takahashi, Senji; Shinomura, Tomoko

    2016-01-05

    Euglena gracilis, a unicellular phytoflagellate within Euglenida, has attracted much attention as a potential feedstock for renewable energy production. In outdoor open-pond cultivation for biofuel production, excess direct sunlight can inhibit photosynthesis in this alga and decrease its productivity. Carotenoids play important roles in light harvesting during photosynthesis and offer photoprotection for certain non-photosynthetic and photosynthetic organisms including cyanobacteria, algae, and higher plants. Although, Euglenida contains β-carotene and xanthophylls (such as zeaxanthin, diatoxanthin, diadinoxanthin and 9'-cis neoxanthin), the pathway of carotenoid biosynthesis has not been elucidated. To clarify the carotenoid biosynthetic pathway in E. gracilis, we searched for the putative E. gracilis geranylgeranyl pyrophosphate (GGPP) synthase gene (crtE) and phytoene synthase gene (crtB) by tblastn searches from RNA-seq data and obtained their cDNAs. Complementation experiments in Escherichia coli with carotenoid biosynthetic genes of Pantoea ananatis showed that E. gracilis crtE (EgcrtE) and EgcrtB cDNAs encode GGPP synthase and phytoene synthase, respectively. Phylogenetic analyses indicated that the predicted proteins of EgcrtE and EgcrtB belong to a clade distinct from a group of GGPP synthase and phytoene synthase proteins, respectively, of algae and higher plants. In addition, we investigated the effects of light stress on the expression of crtE and crtB in E. gracilis. Continuous illumination at 460 or 920 μmol m(-2) s(-1) at 25 °C decreased the E. gracilis cell concentration by 28-40 % and 13-91 %, respectively, relative to the control light intensity (55 μmol m(-2) s(-1)). When grown under continuous light at 920 μmol m(-2) s(-1), the algal cells turned reddish-orange and showed a 1.3-fold increase in the crtB expression. In contrast, EgcrtE expression was not significantly affected by the light-stress treatments examined. We identified genes

  3. Modulating effects of orally supplied Euglena gracilis on the physiological responses of the freshwater mussel Diplodon chilensis, exposed to sewage water pollution in a Patagonian river (Argentina).

    Science.gov (United States)

    Bianchi, Virginia A; Castro, Juan M; Rocchetta, Iara; Conforti, Visitación; Pascual, Mariano; Luquet, Carlos M

    2016-04-01

    In order to test if orally supplied Euglena sp. cells modulate the physiological status of bivalves during bioremediation procedures, we evaluated the effect of Euglena gracilis diet on the immune response, oxidative balance and metabolic condition of Diplodon chilensis exposed to sewage water pollution. Mussels were fed for 90 days with E. gracilis (EG) or Scenedesmus vacuolatus (SV, control diet), and then exposed for 10 days at three sites along the Pocahullo river basin: 1) an unpolluted site, upstream of the city (control, C); 2) upstream (UpS) and 3) downstream (DoS) from the main tertiary-treated sewage discharge, in the city of San Martín de los Andes, Northwest Patagonia, Argentina. Our results show that the total hemocyte number decreases while pollution load increases along the river course for both, EG and SV mussels. Phagocytic activity is higher in EG mussels than in SV ones under all conditions. Reactive oxygen species (ROS) production in hemocytes increases with the increase in the pollution load, being significantly higher for EG mussels than for SV ones at DoS; no changes are observed for total oxyradical scavenging capacity (TOSC). Hemocytes' viability is increased for E. gracilis diet at C and remains unchanged in this group of mussels when exposed at the polluted sites. Lysosomal membrane stability is higher in EG mussels than in SV ones for all conditions, although it is decreased at polluted sites compared with that at C. Antioxidant (catalase) and detoxifying (gluthatione S-transferase) defenses are generally lower in gills and digestive gland of EG mussels than in SV ones. Lipid peroxidation (TBARS) is evident in gills of EG mussels at C, and in digestive gland of the same group, at all the sites. Gill mass factor (GF) is affected by the E. gracilis diet; it is increased at C and decreased at polluted sites when compared with that of SV ones. Digestive gland mass factor (DGF) is higher in EG mussels than in SV ones. In D

  4. A microalga, Euglena tuba induces apoptosis and suppresses metastasis in human lung and breast carcinoma cells through ROS-mediated regulation of MAPKs.

    Science.gov (United States)

    Panja, Sourav; Ghate, Nikhil Baban; Mandal, Nripendranath

    2016-01-01

    Euglena tuba, a microalga, is known for its excellent antioxidant and iron-chelation activities; however its anticancer efficacies have not been reported yet. This study investigates the antitumor and antimetastatic activities of 70 % methanolic extract of Euglena tuba (ETME) against human lung (A549) and breast cancer (MCF-7) cells in vitro. Moreover, we had examined ETME's role in inducing intracellular ROS with the regulation of antioxidants and MAPK pathway. Anticancer activity of ETME was thoroughly studied using flow cytometry, confocal microscopy and western blotting; along with various biochemical assays for analysing ROS-induced regulation of antioxidant enzymes. Inhibition of invasion and migration of malignant cells by ETME were investigated by wound healing and zymographic studies. DNA-Protein interaction with ETME was also studied. ETME inhibited the growth of both A549 (IC50 92.14 µg/ml) and MCF-7 cells (IC50 50.27 µg/ml) by inducing apoptosis, while remained non-toxic against nomral WI-38 cells (IC50 911.43 µg/ml). ETME treatment resulted in increasing Bax/Bcl-2 ratio, BID truncation and activation of caspase cascade. This ultimately leads to PARP degradation and apoptosis through the intrinsic and extrinsic pathway in both A549 and MCF-7 cells. Wound healing and gelatin zymography studies revealed that ETME significantly inhibited the invasion and migration of both A549 and MCF-7 cells dose-dependently through the downregulation of MMP-9. Further investigations showed that ETME selectively induces intracellular ROS, regulated the levels of intracellular antioxidants and suppresses the activation of ERK1/2, JNK, P38 mitogen-activated protein kinase pathways in both type of malignant cells. Further DNA and protein binding studies revealed that ETME strongly interact with DNA as well as protein attributing the possibilities of presence of components which are targeting the macromolecules in cancer cells. Moreover, when the identified compounds

  5. Analysis of intergenic spacer transcripts suggests ‘read-around’ transcription of the extrachromosomal circular rDNA in Euglena gracilis

    Science.gov (United States)

    Greenwood, Spencer J.; Schnare, Murray N.; Cook, James R.; Gray, Michael W.

    2001-01-01

    We report here the sequence of the 1743 bp intergenic spacer (IGS) that separates the 3′-end of the large subunit ribosomal RNA (rRNA) gene from the 5′-end of the small subunit (SSU) rRNA gene in the circular, extrachromosomal ribosomal DNA (rDNA) of Euglena gracilis. The IGS contains a 277 nt stretch of sequence that is related to a sequence found in ITS 1, an internal transcribed spacer between the SSU and 5.8S rRNA genes. Primer extension analysis of IGS transcripts identified three abundant reverse transcriptase stops that may be analogous to the transcription initiation site (TIS) and two processing sites (A′ and A0) that are found in this region in other eukaryotes. Features that could influence processing at these sites include an imperfect palindrome near site A0 and a sequence near site A′ that could potentially base pair with U3 small nucleolar RNA. Our identification of the TIS (verified by mung bean nuclease analysis) is considered tentative because we also detected low-abundance transcripts upstream of this site throughout the entire IGS. This result suggests the possibility of ‘read-around’ transcription, i.e. transcription that proceeds multiple times around the rDNA circle without termination. PMID:11353089

  6. Alteration of Wax Ester Content and Composition in Euglena gracilis with Gene Silencing of 3-ketoacyl-CoA Thiolase Isozymes.

    Science.gov (United States)

    Nakazawa, Masami; Andoh, Hiroko; Koyama, Keiichiro; Watanabe, Yomi; Nakai, Takeo; Ueda, Mitsuhiro; Sakamoto, Tatsuji; Inui, Hiroshi; Nakano, Yoshihisa; Miyatake, Kazutaka

    2015-05-01

    Euglena gracilis produces wax ester under hypoxic and anaerobic culture conditions with a net synthesis of ATP. In wax ester fermentation, fatty acids are synthesized by reversing beta-oxidation in mitochondria. A major species of wax ester produced by E. gracilis is myristyl myristate (14:0-14:0Alc). Because of its shorter carbon chain length with saturated compounds, biodiesel produced from E. gracilis wax ester may have good cold flow properties with high oxidative stability. We reasoned that a slight metabolic modification would enable E. gracilis to produce a biofuel of ideal composition. In order to produce wax ester with shorter acyl chain length, we focused on isozymes of the enzyme 3-ketoacyl-CoA thiolase (KAT), a condensing enzyme of the mitochondrial fatty acid synthesis pathway in E. gracilis. We performed a gene silencing study of KAT isozymes in E. gracilis. Six KAT isozymes were identified in the E. gracilis EST database, and silencing any three of them (EgKAT1-3) altered the wax ester amount and composition. In particular, silencing EgKAT1 induced a significant compositional shift to shorter carbon chain lengths in wax ester. A model fuel mixture inferred from the composition of wax ester in EgKAT1-silenced cells showed a significant decrease in melting point compared to that of the control cells.

  7. Phytochemical profile of a microalgae Euglena tuba and its hepatoprotective effect against iron-induced liver damage in Swiss albino mice.

    Science.gov (United States)

    Panja, S; Chaudhuri, D; Ghate, N B; Mandal, N

    2014-12-01

    This study was aimed to evaluate different phytochemical constituents and the ameliorating effect of 70% methanol extract of Euglena tuba (ETME) on iron overload-induced liver injury, along with its in vitro iron-chelating and DNA protection effects. Phytochemicals of ETME were identified by GC-MS analysis. Iron chelation and protection of Fenton reaction-induced DNA damage was conducted in vitro. Post oral administration of ETME to iron-overloaded mice, the levels of serum parameters, antioxidant enzymes, liver iron, lipid peroxidation, protein carbonyl and hydroxyproline contents were measured. ETME showed inhibition of lipid peroxidation, protein oxidation and liver fibrosis. The serum markers and liver iron were lessened, whereas enhanced levels of liver antioxidant enzymes were detected in ETME-treated group. Furthermore, the histopathological observations also substantiated the protective effects of the extract. Several bioactive compounds identified by GC-MS may be the basis of hepatoprotective as well as antioxidant and iron-chelating effect of ETME. Currently available iron-chelating agents show several side effects and limitations which may be overcome by ETME, which suggest its benefit against pathology of iron overload-linked diseases. Hence, ETME can be used as a promising hepatoprotective agent. © 2014 The Society for Applied Microbiology.

  8. Evaluación de la bioacumulación de cobre en Euglena gracilis mediante la técnica de fluorescencia de rayos X

    Directory of Open Access Journals (Sweden)

    David Cervantes-Garcia

    2014-07-01

    Full Text Available En esta investigación se evaluó el efecto de la exposición de cobre en la capacidad de bioacumulación de metal en células de Euglena gracilis. La acumulación de metal medida con la técnica de fluorescencia de rayos X (XRF mostró que la acumulación de Cu+2 en E. gracilis fue dosis dependiente y se incrementó significativamente en las células tratadas con 0.4 y 0.8 mM de Cu+2 con respecto al control. No se descarta la presencia de una estrategia de acumulación en E. gracilis que podría involucrar la participación de una serie de múltiples procesos, como producción de vacuolas. Futuros estudios al respecto deberán orientarse a evaluar la capacidad de bioacumulación de E. gracilis para su aplicación en programas de biorremediación de sistemas acuáticos.

  9. Enhancement of photosynthetic capacity in Euglena gracilis by expression of cyanobacterial fructose-1,6-/sedoheptulose-1,7-bisphosphatase leads to increases in biomass and wax ester production.

    Science.gov (United States)

    Ogawa, Takahisa; Tamoi, Masahiro; Kimura, Ayako; Mine, Ayaka; Sakuyama, Harumi; Yoshida, Eriko; Maruta, Takanori; Suzuki, Kengo; Ishikawa, Takahiro; Shigeoka, Shigeru

    2015-01-01

    Microalgae have recently been attracting attention as a potential platform for the production of biofuels. Euglena gracilis, a unicellular phytoflagellate, has been proposed as an attractive feedstock to produce biodiesel because it can produce large amounts of wax esters, consisting of medium-chain fatty acids and alcohols with 14:0 carbon chains. E. gracilis cells highly accumulate a storage polysaccharide, a β-1,3-glucan known as paramylon, under aerobic conditions. When grown aerobically and then transferred into anaerobic conditions, E. gracilis cells degrade paramylon to actively synthesize and accumulate wax esters. Thus, the enhanced accumulation of paramylon through the genetic engineering of photosynthesis should increase the capacity for wax ester production. We herein generated transgenic Euglena (EpFS) cells expressing the cyanobacterial fructose-1,6-/sedoheptulose-1,7-bisphosphatase (FBP/SBPase), which is involved in the Calvin cycle, to enhance its photosynthetic activity. FBP/SBPase was successfully expressed within Euglena chloroplasts. The cell volume of the EpFS4 cell line was significantly larger than that of wild-type cells under normal growth conditions. The photosynthetic activity of EpFS4 cells was significantly higher than that of wild type under high light and high CO2, resulting in enhanced biomass production, and the accumulation of paramylon was increased in transgenic cell lines than in wild-type cells. Furthermore, when EpFS cell lines grown under high light and high CO2 were placed on anaerobiosis, the productivity of wax esters was approximately 13- to 100-fold higher in EpFS cell lines than in wild-type cells. Our results obtained here indicate that the efficiency of biomass production in E. gracilis can be improved by genetically modulating photosynthetic capacity, resulting in the enhanced production of wax esters. This is the first step toward the utilization of E. gracilis as a sustainable source for biofuel production under

  10. A redescription of morphologically similar species from the genus Euglena: E. laciniata, E. sanguinea, E. sociabilis, and E. splendens(1).

    Science.gov (United States)

    Karnkowska-Ishikawa, Anna; Milanowski, Rafał; Triemer, Richard E; Zakryś, Bożena

    2013-06-01

    Euglena sanguinea (Ehrenberg 1831) was one of the first green euglenoid species described in the literature. At first, the species aroused the interest of researchers mainly due to the blood-red color of its cells, which, as it later turned out, is not a constant feature. Complicated chloroplast morphology, labeled by Pringsheim as the "peculiar chromatophore system", made the correct identification of the species difficult, which is the reason why, throughout the 20th century, new species resembling E. sanguinea were continually being named due to a lack of suitable diagnostic features to distinguish E. sanguinea. Interest in E. sanguinea has returned in recent years, following findings that the species can produce ichthyotoxins. This was followed by the need to classify E. sanguinea correctly, which was achieved through the verification of morphological and molecular data for all species similar to E. sanguinea. As the result of the analysis, the number of species sharing some morphological similarities with E. sanguinea could be reduced from 12, as described in the literature, to four, with established epitypes and updated diagnostic descriptions. The most important diagnostic features included: the presence of mucocysts (i.e., whether they were visible before and/or after staining), the number of chloroplasts, the size of the double-sheathed pyrenoids, and the presence of the large paramylon grain in the vicinity of the stigma. Moreover, sequence analysis revealed the presence of unusually long SSU rDNA sequences in E. sanguinea. Previously, SSU rDNA sequences of such length were known to be present in primary osmotrophic euglenoids. © 2013 Phycological Society of America.

  11. Biosynthesis of docosahexaenoic acid in Euglena gracilis: biochemical and molecular evidence for the involvement of a Delta4-fatty acyl group desaturase.

    Science.gov (United States)

    Meyer, Astrid; Cirpus, Petra; Ott, Claudia; Schlecker, Rainer; Zähringer, Ulrich; Heinz, Ernst

    2003-08-19

    Docosahexaenoic acid (DHA) can be synthesized via alternative routes from which only the omega3/omega6-pathways involve the action of a Delta4-fatty acid desaturase. We examined the suitability of Euglena gracilis, Thraustochytrium sp., Schizochytrium sp., and Crypthecodinium cohnii to serve as sources for cloning a cDNA encoding a Delta4-fatty acid desaturase. For this purpose we carried out in vivo labeling studies with radiolabeled C22 polyunsaturated fatty acid substrates. Schizochytrium sp. was unable to convert exogenously supplied [2-(14)C]-docosapentaenoic acid (DPA, 22:5(Delta)(7,10,13,16,19)) to DHA, while E. gracilis and Thraustochytrium sp. carried out this desaturation very efficiently. Hydrogenation and alpha-oxidation of the labeled DHA isolated from these two organisms showed that it was the result of direct Delta4-desaturation and not of substrate breakdown and resynthesis. To clone the desaturase gene, a cDNA library of E. gracilis was subjected to mass sequencing. A full-length clone with highest homology to the Delta4-desaturase of Thraustochytrium sp. was isolated, and its function was verified by heterologous expression in yeast. The desaturase efficiently converted DPA to DHA. Analysis of the substrate specificity demonstrated that the enzyme activity was not limited to C22 fatty acids, since it also efficiently desaturated C16 fatty acids. The enzyme showed strict Delta4-regioselectivity and required the presence of a Delta7-double bond in the substrate. Positional analysis of phosphatidylcholine revealed that the proportion of the Delta4-desaturated products was up to 20 times higher in the sn-2 position than in the sn-1 position.

  12. Euglenophyceae de ambientes lênticos na planície costeira do Rio Grande do Sul, Sul do Brasil: gêneros Euglena Ehr. e Lepocinclis Perty Euglenophyceae of lentic environments at the coastal plain of Rio Grande do Sul State, South of Brazil: genera Euglena Ehr. and Lepocinclis Perty

    Directory of Open Access Journals (Sweden)

    Sandra Maria Alves-da-Silva

    2006-06-01

    Full Text Available São apresentados 28 táxons específicos e infra-específicos dos gêneros Euglena Ehr. e Lepocinclis Perty como resultado do estudo do fitoplâncton e perifíton em ambientes lênticos (lagoas, açude e banhados da Lagoa do Casamento e ecossistemas associados (30º03'- 30º34'S e 50º25'- 50º47'W e ecossistemas próximos ao Butiazal de Tapes (30º23'- 30º38'S e 51º16'- 51º29'W na planície costeira do Rio Grande do Sul. As coletas abrangeram as estações de outono e primavera de 2003. As áreas úmidas (banhados associadas à Lagoa do Casamento na primavera de 2003 apresentaram maior riqueza específica destes dois gêneros. Lepocinclis salina Fritsch var. salina foi a espécie que se distinguiu quanto a distribuição por ter ocorrido em 41,2% do total de amostras analisadas. São novos registros para o estado do Rio Grande do Sul e país, L. playfairiana Defl. var. playfairiana e L. boseensis Xie, Qiu & Ling.Twenty eight specific and infra-specific taxa of the genera Euglena Ehr. and Lepocinclis Perty are presented as a result of phytoplankton and periphyton study in lentic systems next to Lagoa do Casamento (30º03'- 30º34'S and 50º25'- 50º47'W and Butiazal de Tapes (30º23'- 30º38'S and 51º16'- 51º29'W, coastal zone of Rio Grande do Sul State. Samples were collected in autumn and spring seasons in 2003. The swamps associated to Lagoa do Casamento in spring of 2003 presented more specific richness of these two genera. Lepocinclis salina Fritsch var. salina distinguished by its distribution, occuring in 41,2% of the analized samples. Two taxa are new records for the State and Brazil: L. playfairiana Defl. var. playfairiana and L. boseensis Xie, Qiu & Ling.

  13. Study of Euglenophyta in the Jacuí Delta State Park, Rio Grande do Sul, Brazil. 1. Euglena Ehr., Lepocinclis Perty Estudo de Euglenophyta no Parque Estadual Delta do Jacuí, Rio Grande do Sul, Brasil, 1. Euglena Ehr., Lepocinclis Perty

    Directory of Open Access Journals (Sweden)

    Sandra Maria Alves-da-Silva

    2004-03-01

    Full Text Available This paper is the result of the study of pigmented Euglenaceae performed within the area of the Jacuí Delta State Park, located between parallels 29º56' and 30º03'S and meridians 51º12'and 51º18'W, with qualitative samplings at 25 stations, distributed over 8 islands, 8 "sacos" (i.e. small bays, 4 river mouths, 2 stream mouths and 3 channels in December/1993 and January/1994, and from February/1998 to December/1999. One hundred and fifty taxa of the Euglenophyceae were identified in the area. Currently 23 specific and infraspecific taxa of genus Euglena and 12 taxa of Lepocinclis are presented. E. acus Ehr. var. acus, and L. salina Fritsch var. salina were the taxa best represented in the region since they occured in over 40% of the samples studied. E. bonettoi (Tell & Zaloc. Couté & Thérez., L. playfairiana Defl. var. striata Conf. and L. caudata (Cunha Conr. were recorded exclusively for South America; sixteen taxa identified have a cosmopolitan distribution. Ranges of some abiotic variables of the environments in which each taxon occurred in the study area are mentioned.Este trabalho é o resultado do estudo de Euglenaceae pigmentadas realizado na área do Parque Estadual Delta do Jacuí, localizado entre paralelos 29º56' e 30º03'S e os meridianos 51º12'e 51º18'W, com amostragens qualitativas em 25 estações de coletas distribuídas em 8 ilhas, 8 sacos, 6 desembocaduras de rios e 3 canais, em dezembro/1993 e janeiro/1994 e de fevereiro/1998 a dezembro/1999. Foram identificados na área cerca de 150 táxons de Euglenophyceae. São apresentados, neste trabalho, 23 táxons específicos e infra-específicos do gênero Euglena e 12 táxons de Lepocinclis. E. acus Ehr. var. acus e L. salina Fritsch var. salina foram os táxons melhor representados na área por ocorrerem em mais de 40% dos biótopos estudados. E. bonettoi (Tell & Zaloc. Couté & Thérez., L. playfairiana Defl. var. striata Conf. e L. caudata (Cunha Conr. foram

  14. Nucleus-encoded mRNAs for chloroplast proteins GapA, PetA, and PsbO are trans-spliced in the flagellate Euglena gracilis irrespective of light and plastid function.

    Science.gov (United States)

    Mateášiková-Kováčová, Bianka; Vesteg, Matej; Drahovská, Hana; Záhonová, Kristína; Vacula, Rostislav; Krajčovič, Juraj

    2012-01-01

    Euglena gracilis is a fresh-water flagellate possessing secondary chloroplasts of green algal origin. In contrast with organisms possessing primary plastids, mRNA levels of nucleus-encoded genes for chloroplast proteins in E. gracilis depend on neither light nor plastid function. However, it remains unknown, if all these mRNAs are trans-spliced and possess spliced leader sequence at the 5'-end and if trans-splicing depends on light or functional plastids. This study revealed that polyadenylated mRNAs encoding the chloroplast proteins glyceraldehyde-3-phosphate dehydrogenase (GapA), cytochrome f (PetA), and subunit O of photosystem II (PsbO) are trans-spliced irrespective of light or plastid function. © 2012 The Author(s) Journal of Eukaryotic Microbiology © 2012 International Society of Protistologists.

  15. Phytochrome-like responses in Euglena: A low fluence response that reorganizes the spectral dependence of the high irradiance response in long-day photoperiodic induction of cell division.

    Science.gov (United States)

    Bolige, Aoen; Goto, Ken

    2007-02-01

    Irradiance spectra change spatiotemporally, and angiosperms adapt accordingly, mainly through phytochromes. This study challenges the long-held belief that the flagellated alga Euglena gracilis lacks phytochromes and is therefore unaffected by spectral changes. We photoautotrophically cultured the alga under continuous light (LL), then transferred it to darkness. After about 26h in darkness, different irradiations for 3h enabled cell division in dark-arrested G2 cells evoking a high-irradiance response (HIR). The spectral characteristics of the irradiation during the LL period (pre-irradiation) defined the spectral sensitivity in the subsequent dark period. LL with light rich in the red spectrum led to a HIR to the red spectrum (R-HIR), whereas light rich in the far-red spectrum (FR) led to a FR-HIR. Finishing the period of pre-irradiation consisting of continuous cool-white fluorescent light (rich in R) by a FR pulse enhanced the characteristics of the FR-HIR 26h later. By contrast, a R pulse given at the end of the pre-irradiation rich in FR potentiated the R-HIR. The effects were completely photoreversible between R and FR with critical fluences of about 2mmolm(-2), satisfying the classic diagnostic feature of phytochromes. The action spectrum of the FR effect at the end of pre-irradiation consisting of continuous cool-white fluorescent light (rich in R) had a main peak at 740nm and a minor peak at 380nm, whereas antagonization of the FR effect had a main peak at 640nm and a minor peak at 480nm. Wavelengths of 610 and 670nm appeared in both spectra. We also demonstrated the photoreversibility of 380/640, 480/740, and (610 and 670)/(640 and 740) nm. We conclude that Euglena displays phytochrome-like responses similar to the 'shade avoidance' and 'end-of-day FR' effects reported in angiosperms.

  16. TAXONOMIC REVISIONS OF MORPHOLOGICALLY SIMILAR SPECIES FROM TWO EUGLENOID GENERA: EUGLENA (E. GRANULATA AND E. VELATA) AND EUGLENARIA (EU. ANABAENA, EU. CAUDATA, AND EU. CLAVATA)(1).

    Science.gov (United States)

    Karnkowska-Ishikawa, Anna; Milanowski, Rafał; Triemer, Richard E; Zakryś, Bożena

    2012-06-01

    The establishment of epitypes (together with the emended diagnoses) for three species of Euglenaria Karnkowska, E. W. Linton et Kwiatowski [Eu. anabaena (Mainx) Karnkowska et E. W. Linton; Eu. caudata (Hübner) Karnkowska et E. W. Linton; and Eu. clavata (Skuja) Karnkowska et E. W. Linton] and two species of Euglena Ehrenberg [E. granulata (Klebs) Schmitz and E. velata Klebs] was achieved due to literature studies, verification of morphological diagnostic features (cell size, cell shape, number of chloroplasts, the presence of mucocysts), as well as molecular characters (SSU rDNA). Now all these species are easy to identify and distinguish, despite their high morphological similarity, that is, spindle-shaped (or cylindrically spindle-shaped) cells and parietal, lobed chloroplasts with a single pyrenoid, accompanied by bilateral paramylon caps located on both sides of the chloroplast. E. granulata is the only species in this group that has spherical mucocysts. E. velata is distinguished by the largest cells (90-150 μm) and has the highest number of chloroplasts (>30). Eu. anabaena has the fewest chloroplasts (usually 3-6), and its cells are always (whether the organism is swimming or not) spindle-shaped or cylindrically spindle-shaped, in contrast to the cells of Eu. clavata, which are club-shaped (clavate) while swimming and only after stopping change to resemble the shape of a spindle or a cylindrical spindle; Eu. clavata has numerous chloroplasts (15-20). Eu. caudata is characterized by asymmetrical spindle-shaped (fusiform) cells, that is, with an elongated rear section and a shorter front section; the number of chloroplasts normally ranges from 7 to 15. © 2012 Phycological Society of America.

  17. Respuesta fisiológica de Euglena gracilis al estrés por cobre

    Directory of Open Access Journals (Sweden)

    David Cervantes García

    2011-01-01

    Full Text Available The objective of this study was to evaluate the toxic effect of Cu2 + in the physiological development of E. gracilis. The results showed that E. gracilis had an effect on the dose-dependent growth to the concentration of metal. The exposure of E. gracilis metal at doses of 0.8 and 1.6 mM of Cu2+ showed a significant negative effect on the stability of DNA and photosynthetic pigments involved in capturing light in the antenna complex after 144 h of exposure to the metal.

  18. Immunomodulation of rainbow trout (Oncorhynchus mykiss) fry by bath exposure to a β-glucan from Euglena gracilis

    DEFF Research Database (Denmark)

    Chettri, Jiwan Kumar; Kania, Per Walter; Buchmann, Kurt

    2013-01-01

    Early developmental stages of fish mostly depend on innate immune factors for their protection. Augmenting these factors by application of different immunostimulatory substances may be beneficial for rearing and survival of the early life stages of fish. Bath administration of stimulants leads...... to a uniform exposure of fish independent of feed intake and reduces the individual handling. The present study demonstrates the immunostimulatory effect of beta-glucan (bath exposure) in rainbow trout fry at different dosages and exposure time. Rainbow trout fry (avg. wt. 770 mg; 87 days post hatch) were...... exposed to three different concentrations of beta-glucan (10, 100 and 1000 microgram/mL) by bath exposure for 1 and 24 h. Expression of immune related genes from pooled internal organ samples of individual fish were analysed using a real time qPCR assay. Expression of complement factors (C3 and factor B...

  19. 8 Periphyton Associated with Nymphaea lotus Linn.cdr

    African Journals Online (AJOL)

    Administrator

    . Three genera of Euglenophyta were observed in Kpong and Odaw though they differed in constitution. In Kpong, Euglena showed the highest frequency while. Peranema and Trachelomonas showed the lowest. Eutrepia was absent. Euglena ...

  20. Descripción ultraestructural de Euglena pailasensis (Euglenozoa) del Volcán Rincón de la Vieja, Guanacaste, Costa Rica

    OpenAIRE

    Sánchez, Ethel; Vargas, Maribelle; Mora, Marielos; Ortega, José María; Serrano, Aurelio; Freer, Enrique; Sittenfeld, Ana

    2014-01-01

    Los euglenoides son eucariotas unicelulares flagelados que habitan ambientes acuáticos y suelos de una gran diversidad de ecosistemas. Este trabajo presenta la descripción morfológica ultraestructural del euglenoide E. pailasensis aislado de las fuentes de lodo caliente de las “pailas de barro” en el Volcán Rincón de la Vieja, Guanacaste, Costa Rica. La temperatura de estos sitios puede variar entre 38 y 98° C y puede tener un pH entre 1 y 4. El estudio se realizó utilizando microscopia elect...

  1. Descripción ultraestructural de Euglena pailasensis (Euglenozoa) del Volcán Rincón de la Vieja, Guanacaste, Costa Rica

    OpenAIRE

    Ethel Sánchez; Maribel Vargas; Marielos Mora; José María Ortega; Aurelio Serrano; Enrique Freer; Ana Sittenfeld

    2004-01-01

    Los euglenoides son eucariotas unicelulares flagelados que habitan ambientes acuáticos y suelos de una gran diversidad de ecosistemas. Este trabajo presenta la descripción morfológica ultraestructural del euglenoide E. pailasensis aislado de las fuentes de lodo caliente de las "pailas de barro" en el Volcán Rincón de la Vieja, Guanacaste, Costa Rica. La temperatura de estos sitios puede variar entre 38 y 98° C y puede tener un pH entre 1 y 4. El estudio se realizó utilizando microscopia elect...

  2. Morphological Identification and Single-Cell Genomics of Marine Diplonemids

    Czech Academy of Sciences Publication Activity Database

    Gawryluk, R. M. R.; del Campo, J.; Okamoto, n.; Strassert, J. F. H.; Lukeš, Julius; Richards, T.A.; Worden, A.Z.; Santoro, A. E.; Keeling, P. J.

    2016-01-01

    Roč. 26, č. 22 (2016), s. 3053-3059 ISSN 0960-9822 Institutional support: RVO:60077344 Keywords : Euglena gracilis * introns * genes * annotation * RNA Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 8.851, year: 2016

  3. La bio-indication de la pollution aquatique par les microalgues (Cas ...

    African Journals Online (AJOL)

    enregistre 10 genres dans l'Oued "Bounamoussa": Microcystis, Euglena, Lepocinclis, Gomphonema, Melosira, Navicula,. Synedra, Chlorella, Closterium et Scenedesmus. Au niveau du Lac des "Oiseaux", nous avons note !'existence de 17 genres: Aphanizomenon, Anabaena, Cylindrospermum, Merismopedia, Microcystis, ...

  4. Novel Euglenoid Derived Alkaloid

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Disclosed herein is a purified toxin isolated from Euglena sanguinea. More specifically the toxin, termed euglenophycin, is an alkaloid having herbicidal and...

  5. Relationships between algae taxa and physico-chemical ...

    African Journals Online (AJOL)

    , Pinnularia sp., Tabellaria sp. and Lyngbya sp. are associated to low values of TDS and conductivity while Phacus sp., Closterium sp., Euglena sp. and Trachelomonas sp. thrive better in high polluted waters. The distribution of these algae ...

  6. 微細藻類の純粋培養における抗生物質の最適化

    OpenAIRE

    坂下, 郁子; 高山, 勝己; 上島, 晃智

    2016-01-01

    Euglena is a typical green microalgae. Recently, the focus has been on Euglena as a nutrient supplement as well as Chlorella sp. The multiplication of microalgae is slower than that of bacteria; therefore, it is difficult to obtain a pure culture. The addition of antibiotics to the medium is becomingthe method of choice for preventing contamination. The effectiveness of nine antibiotics-valinomycin, penicillin, trimethoprim, tetracycline, streptomycin, mitomycin, chloramphenicol, nalidixic ac...

  7. The question of histidine content in c-type cytochromes.

    Science.gov (United States)

    Cusanovich, M A; Meyer, T; Tedro, S M; Kamen, M D

    1971-03-01

    Reports that histidine may not occur in heme peptides derived from c-type cytochromes isolated from chloroplasts of Euglena gracilis and Porphyra sp. have not been substantiated in the present investigation, in which the amino acid composition and a partial sequence were determined for a heme peptide derived from the c-type cytochromes of a strain of Euglena closely related to that used in the previous studies. It is concluded that no evidence exists to challenge the generalization that histidine is always present vicinal to the hemebinding site in c-type cytochromes.

  8. Pancreatic lipase

    African Journals Online (AJOL)

    use

    2011-12-05

    Dec 5, 2011 ... Alpha/beta-hydrolase fold enzymes: structure, functions and mechanism. Curr. Protein Pept. Sci. 1(2): 209-235. Huang AHC (1996). Oleosins and oil bodies in seeds and other organs. Plant Physiol. 110: 1055-1061. Hulanicka D, Erwin J, Block K (1964). Lipid metabolism of Euglena gracilis. J. Biol. Chem.

  9. Food habits and diel feeding rhythm of introduced fish, Tilapia zillii ...

    African Journals Online (AJOL)

    Macrophytes, detritus, blue greens, diatoms, green algae, Ceratium, Euglena and Phacus constituted food of plant origin whereas chironomid larvae, Copepoda, Cladocera, Rotifera, Nematoda, fish eggs and fish scales constituted food of animal origin. Furthermore, animal foods such as Ephemeroptera and molluscs were ...

  10. Antioxidative properties of some phototropic microalgae grown in waste water

    DEFF Research Database (Denmark)

    Safafar, Hamed; Jacobsen, Charlotte; Møller, Peter

    for the screening and selection of the species. In this study,the potential antioxidant activities of 12 micro algal sample from Chlorella., Spirulina., Euglena, Scenedesmus and Haematococcus species grown in waste water in Kalundborg micro algal facilities were evaluated using three antioxidant assays, including...

  11. The plastid genome of Eutreptiella provides a window into the process of secondary endosymbiosis of plastid in euglenids.

    Directory of Open Access Journals (Sweden)

    Štěpánka Hrdá

    Full Text Available Euglenids are a group of protists that comprises species with diverse feeding modes. One distinct and diversified clade of euglenids is photoautotrophic, and its members bear green secondary plastids. In this paper we present the plastid genome of the euglenid Eutreptiella, which we assembled from 454 sequencing of Eutreptiella gDNA. Comparison of this genome and the only other available plastid genomes of photosynthetic euglenid, Euglena gracilis, revealed that they contain a virtually identical set of 57 protein coding genes, 24 genes fewer than the genome of Pyramimonas parkeae, the closest extant algal relative of the euglenid plastid. Searching within the transcriptomes of Euglena and Eutreptiella showed that 6 of the missing genes were transferred to the nucleus of the euglenid host while 18 have been probably lost completely. Euglena and Eutreptiella represent the deepest bifurcation in the photosynthetic clade, and therefore all these gene transfers and losses must have happened before the last common ancestor of all known photosynthetic euglenids. After the split of Euglena and Eutreptiella only one additional gene loss took place. The conservation of gene content in the two lineages of euglenids is in contrast to the variability of gene order and intron counts, which diversified dramatically. Our results show that the early secondary plastid of euglenids was much more susceptible to gene losses and endosymbiotic gene transfers than the established plastid, which is surprisingly resistant to changes in gene content.

  12. The accumulation of heavy metals (Cd, Pb, Hg, Cr) and their state in ...

    African Journals Online (AJOL)

    While in Mogan Lake, Spirogyra sp., Zygnema sp., Euglena sp., Achnanthes sp., Cymbella sp., Fragilaria sp. Navicula sp., Scenedesmus sp., Oocystis sp., Synedra sp., Oscillatoria sp., Chlorella sp., Cosmarium sp. and Nitzshia sp. were determined. Zooplanktonic dominant organisms determined in Beysehir Lake were ...

  13. Dose dependent effects of dietary immunostimulants on rainbow trout immune parameters and susceptibility to the parasite Ichthyophthirius multifiliis

    DEFF Research Database (Denmark)

    Mohammad, Rezkar Jaafar; Skov, Jakob; Kania, Per Walter

    2011-01-01

    and on susceptibility to the skin-parasitic ciliate Ichthyophthirius multifiliis (Ich) have been investigated. A basal diet (dry pelleted feed) was supplemented with 0% (control), 0.2% (low), 2.0% (medium), and 5.0% (high) of the β-1,3-glucan particulate insoluble algae glucan, paramylon, from Euglena gracilis. Fish...

  14. Taxon-rich multigene phylogeny of photosynthetic euglenoids (Euglenophyceae

    Directory of Open Access Journals (Sweden)

    Jong Im eKim

    2015-08-01

    Full Text Available To establish taxonomy and understand phylogenetic relationships among strains and species of the photosynthetic euglenoids, we performed phylogenetic analyses based on a four gene sequence dataset (nr SSU and LSU rDNA, and pt SSU and LSU rDNA from 343 taxa (including three outgroup. The phylogenetic tree based on the combined dataset was split into two major clades: Euglenaceae and Phacaceae. The family Euglenaceae was a well-supported monophyletic group containing eight genera (Colacium, Cryptoglena, Euglena, Euglenaformis, Euglenaria, Monomorphina, Strombomonas, and Trachelomonas, each representing a monophyletic lineage, except for the genus Euglena. The genus Euglena was divided into three subclades (A1, A2, and A3 and was paraphyletic due to Euglena archeoplastidiata being grouped with the genus Euglenaria and E. cf. velata with the genus Colacium. The family Phacaceae was supported as a monophyletic group and contained three genera (Discoplastis, Lepocinclis, and Phacus. The genus Phacus contained traditionally defined members as well as the non-traditional P. warszewiczii and P. limnophila, which support the generic concept of Linton et al. (2010.

  15. A step towards on-chip biochemical energy cascade of microorganisms: carbon dioxide generation induced by ethanol fermentation in 3D printed modular lab-on-a-chip

    Science.gov (United States)

    Podwin, A.; Kubicki, W.; Adamski, K.; Walczak, R.; Dziuban, J. A.

    2016-11-01

    The concept of biochemical energy cascade of microorganisms towards oxygen generation in 3D printed lab-on-a-chip has been presented. In this work, carbon dioxide - a product of ethanol fermentation of yeasts has been utilized to enable light-initialized photosynthesis of euglenas and as a result of their metabolic transitions produce pure oxygen.

  16. Effects of mixed substrates on growth and vitamin production by ...

    African Journals Online (AJOL)

    SERVER

    2007-10-16

    Oct 16, 2007 ... The effects of mixed carbon sources on growth and production of vitamins E and A by Euglena gracilis .... The media were sterilized by autoclaving at 121oC for 15 min. Effect of mixed carbon sources on cell growth. Erlenmeyer flask (500 ml) containing 100 ml of the .... yeast saccharomyces cerevisiae.

  17. Effects of mixed substrates on growth and vitamin production by ...

    African Journals Online (AJOL)

    The effects of mixed carbon sources on growth and production of vitamins E and A by Euglena gracilis cells were investigated in batch culture. The cells were grown mixotrophically in glucose (G), ethanol (E) and a mixture of glucose and ethanol (EG). Cell growth was measured by counting the cell number with microscope, ...

  18. Phytoplankton-Environmental Interactions in Reservoirs. Volume I. Papers Presented at Workshop, 10-12 April 1979, Monterey, California.

    Science.gov (United States)

    1981-09-01

    existing reservoirs and in the creation of new reservoirs. In this regard, questions posed by regulatory agencies generally concern the potential for...on the above results by showing that the nano and net plankton fractions of populations from the Bight displayed the same remarkable increase in...sample occurrences, were Sconedesmus, Synedra, Cyclotella, Oscil- latoria, Euglena , Cryptomonas, Navicula, Nitzschia, Anabaena, and Microcystis. All

  19. Dicty_cDB: Contig-U15770-1 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available LE00014441 High Light Acclimated Euglena gracili... 46 7.8 1 ( DT729330 ) EST1163... filte... 46 7.8 1 ( EE473495 ) BNYS2DCT_UP_001_H07_27FEB2005_049 Brassica napus ... 46 7.8 1 ( EC674325 ) E

  20. Phytoplankton Community Responses in A Perturbed Tropical ...

    African Journals Online (AJOL)

    Generally, Spirogyra, Ulothrix, Oscillatoria, and Navicula species were the preponderant species. Euglena viridis was the only member of the class Euglenophyceae recorded in the river and it occurred only sporadically in station 1. The low fauna diversity experienced in station 2 throughout the period of sampling showed ...

  1. Ocorrência de Euglenophyceae pigmentadas em rizipiscicultura na Região do Vale do Itajaí, SC, Sul do Brasil Occurrence of pigmented Euglenophyceae in rice-fish fields of the Itajaí River Valley region, Santa Catarina State, southern Brazil

    Directory of Open Access Journals (Sweden)

    Sandra Maria Alves-da-Silva

    2008-03-01

    Full Text Available O estudo de uma amostra oriunda do cultivo de arroz irrigado (Oriza sativa L. associado com criação de carpa comum (Cyprinus carpio Linnaeus, 1758, em um ambiente raso (20 m² × 0,30 m de prof., na Região do Vale do Itajaí, Santa Catarina (26º53'33''S, 048º49'41''W, resultou na identificação de 48 morfoespécies da classe Euglenophyceae, representados pelos gêneros Euglena, Lepocinclis, Phacus, Strombomonas e Trachelomonas. O gênero Trachelomonas foi o que apresentou o maior número de táxons (26%. Destacou-se Euglena caudata Hübnere Euglena sanguinea Ehr. pelo elevado número de indivíduos por lâmina. Vinte e oito táxons são primeiras citações de ocorrência para o estado de Santa Catarina. São fornecidas descrições, chaves dicotômicas, dimensões, relação entre o comprimento e a largura celular (Rc/l, ilustrações dos táxons e distribuição geográfica mundial.A sample collected from rice-fish fields (Oriza sativa L. and Cyprinus carpio Linnaeus, 1758 in shallow water (20 m²× 0.30 m deep in the Itajai River Valley region, Santa Catarina (26º53'33''S and 48º49'41''W revealed 48 morphospecies from the class Euglenophyceae represented by the genera Euglena, Lepocinclis, Phacus,Strombomonas and Trachelomonas. Trachelomonas was the best represented genus with 26% of all taxa. The reddish water at the time of sampling was due to the high number of Euglena caudata Hübnerand Euglena sanguinea Ehr. individuals per plate (bloom. Twenty eight taxa are new records for the state of Santa Catarina. Descriptions, dichotomous keys, size variation, length/width relationship (Rc/l, illustrations and geographic distribution are provided for all taxa.

  2. Modular 3D printed lab-on-a-chip bio-reactor for the biochemical energy cascade of microorganisms

    Science.gov (United States)

    Podwin, Agnieszka; Dziuban, Jan A.

    2017-10-01

    The paper presents the sandwiched polymer 3D printed lab-on-a-chip bio-reactor for the biochemical energy cascade of microorganisms. Euglenas and yeast were separately and simultaneously cultured for 10 d in the chip. As a result of the experiments, euglenas, light-initialized and nourished by CO2—a product of ethanol fermentation handled by yeast—generated oxygen, based on the photosynthesis process. The presence of oxygen in the bio-reactor was confirmed by the colorimetric method—a bicarbonate (pH) indicator. Preliminary studies towards the obtainment of an effective source of oxygen are promising and further research should be done to enable the utility of the bio-reactor in, for instance, microbial fuel cells.

  3. Physical Non-Contact Communication between Microscopic Aquatic Species: Novel Experimental Evidences for an Interspecies Information Exchange

    Directory of Open Access Journals (Sweden)

    Daniel Fels

    2016-01-01

    Full Text Available Previous experiments on physical non-contact communication within same species gave rise to test for this type of communication also across the species border, which was the aim of the present study. It was found that autotrophic unicellular organisms (Euglena viridis, separated by cuvettes, affected the proliferation rate of heterotrophic unicellular organisms (Paramecium caudatum. Further, the heterotrophic unicellular organism affected also the proliferation rate of a multicellular heterotrophic organism (Rotatoria sp. and vice versa. In the case when populations (of Euglena viridis and Paramecium caudatum were shielded against electromagnetic fields in the optical spectrum from each other, no effects were measured. The results may support the notion that the organisation of ecosystems relies also on the exchange of electromagnetic fields from their constituting biosystems.

  4. Occurrence of phosphatidylsulfocholine, the sulfonium analog of phosphatidylcholine in some diatoms and algae.

    Science.gov (United States)

    Bisseret, P; Ito, S; Tremblay, P A; Volcani, B E; Dessort, D; Kates, M

    1984-12-06

    A survey of seven species of diatoms, one Euglena sp. and one dinoflagellate sp. for the presence of phosphatidylsulfocholine (PSC), the sulfonium analog of phosphatidylcholine (PC), was carried out using 1H-NMR spectroscopy and ammonia desorption chemical ionization mass spectrometry. PSC alone was found only in a non-photosynthetic diatom, Nitzschia alba. PSC, together with PC, was found in four of the diatoms (Nitzschia angularis, Cylindrotheca fusiformis, Phaeodactylum tricornutum and Navicula pelliculosa) in proportions of 6-24% of the total PC + PSC fraction, but little or no PSC (less than 2%) was detected in the remaining two (Cyclotella nana and Navicula incerta). Little or no PSC (less than 2%) was detected in a Euglena sp. by 1H-NMR but its presence was confirmed by 35S-labeling. The amount of PSC, if any, in the dinoflagellate (Amphidinium carterae) was below the level of detection by 1H-NMR.

  5. Physical Non-Contact Communication between Microscopic Aquatic Species: Novel Experimental Evidences for an Interspecies Information Exchange.

    Science.gov (United States)

    Fels, Daniel

    2016-01-01

    Previous experiments on physical non-contact communication within same species gave rise to test for this type of communication also across the species border, which was the aim of the present study. It was found that autotrophic unicellular organisms (Euglena viridis), separated by cuvettes, affected the proliferation rate of heterotrophic unicellular organisms (Paramecium caudatum). Further, the heterotrophic unicellular organism affected also the proliferation rate of a multicellular heterotrophic organism (Rotatoria sp.) and vice versa. In the case when populations (of Euglena viridis and Paramecium caudatum) were shielded against electromagnetic fields in the optical spectrum from each other, no effects were measured. The results may support the notion that the organisation of ecosystems relies also on the exchange of electromagnetic fields from their constituting biosystems.

  6. MICROALGAE AS TOCOPHEROL PRODUCERS

    Directory of Open Access Journals (Sweden)

    V. M. Mokrosnop

    2014-04-01

    Full Text Available Microalgae are able to accumulate considerable amounts of tocopherols (up to 4 mg/g dry weight. The content of α-tocopherol to plant oils is low, whereas microalgae contain up to 97% of the tocochromanols that provides high bioactivity. The data about the content of tocopherols in eukaryotic microalgae Dunaliella tertiolecta, Nannochloropsis oculata, Isochrysis galbana, Euglena gracilis, Tetraselmis suecica, Diacronema vlkianum, as well as in the cyanobacterium Spirulina platensis are given in the paper. The largest amounts of tocopherols are synthesized by Euglena gracilis cells at mixotrophic cultivation. The level of tocopherols in microalgae depends on cultivation conditions. Two-stage biotech cultivation techniques, limiting nutrition in some biogenic elements, the introduction of exogenous carbon sources are used to increase the yield of tocopherol from microalgae. The approaches to the genetic transformation of plants leading to higher content of active vitamin E are rewieved as well.

  7. Delineating Playas in the Arid Southwest: A Literature Review

    Science.gov (United States)

    2001-04-01

    1998); the black layers appear to have a very high abundance of bacteria , based on light microscopy, compared to other playa substrata (Brostoff...these crusts are blue- green algae, green algae, diatoms, euglenas, lichens, fungi, mosses, liverworts, and bacteria . They are a bio- logically diverse...by the filamentous blue-green alga Microcoleus vaginatus. Other typical genera include Phormidium, Plectonema, Schizothrix, Nostoc , Tolypothrix, and

  8. New Conjugated Benzothiazole-N-oxides: Synthesis and Biological Activity

    Directory of Open Access Journals (Sweden)

    Pavlína Foltínová

    2009-12-01

    Full Text Available Eleven new 2-styrylbenzothiazole-N-oxides have been prepared by aldol – type condensation reactions between 2-methylbenzothiazole–N-oxide and para-substituted benzaldehydes. Compounds with cyclic amino substituents showed typical push-pull molecule properties. Four compounds were tested against various bacterial strains as well as the protozoan Euglena gracilis as model microorganisms. Unlike previously prepared analogous benzothiazolium salts, only weak activity was recorded.

  9. ミドリムシに対する強磁場の影響

    OpenAIRE

    谷本, 能文; 泉, 俊輔; 吉田, 耕一; 鈴木, 友恵; 藤原, 好恒; 平田, 敏文; 山田, 外史; 伊藤, 喜久男

    2000-01-01

    ミドリムシに対する強磁場の影響について研究した。生きているミドリムシは,水平方向の勾配強磁場(380T2m-1)中では,高磁場方向に移動する(正の走磁性)。一方,EDTAで殺したミドリムシは,低磁場側に集まった。8Tの均一磁場では走磁性は見られなかった。強磁場中のミドリムシの顕微鏡観察の結果,ミドリムシは磁場とほぼ垂直方向に配向して泳ぎ,また殺したミドリムシも磁場配向していた。ミドリムシの正の走磁性は,ミドリムシの磁場配向とミドリムシにかかる不均一な磁気力の2つを考慮することにより説明された。 Effect of high magnetic field on Euglena gracilis Z was examined. Euglena was placed in a high gradient magnetic field (380 T2m-1). Living Euglena moved to higher magnetic field, whereas dead Euglena moved to the opposite side (lower magnetic fiel...

  10. Phenolic Profile and Antioxidant Activity of Crude Extracts from Microalgae and Cyanobacteria Strains

    OpenAIRE

    Idaira Jerez-Martel; Sara García-Poza; Gara Rodríguez-Martel; Milagros Rico; Cristina Afonso-Olivares; Juan Luis Gómez-Pinchetti

    2017-01-01

    Aqueous and methanolic extracts of several microalgae (Ankistrodesmus sp., Spirogyra sp., Euglena cantabrica, and Caespitella pascheri) and cyanobacteria (Nostoc sp., Nostoc commune, Nodularia spumigena, Leptolyngbya protospira, Phormidiochaete sp., and Arthrospira platensis) were screened for their radical scavenging activity against the stable radical 1,1-diphenyl-2-picrylhydrazyl. Despite the fact that water was a more efficient solvent to extract greater amount of extractable substances, ...

  11. Air pollutant production by algal cell cultures

    Science.gov (United States)

    Fong, F.; Funkhouser, E. A.

    1982-01-01

    The production of phytotoxic air pollutants by cultures of Chlorella vulgaris and Euglena gracilis is considered. Algal and plant culture systems, a fumigation system, and ethylene, ethane, cyanide, and nitrogen oxides assays are discussed. Bean, tobacco, mustard green, cantaloupe and wheat plants all showed injury when fumigated with algal gases for 4 hours. Only coleus plants showed any resistance to the gases. It is found that a closed or recycled air effluent system does not produce plant injury from algal air pollutants.

  12. JUST 28 No. 1 April 2008

    African Journals Online (AJOL)

    Administrator

    2008-04-01

    Apr 1, 2008 ... 0.79. 12. 0.06. Green algae-filamentous. Euglena sp. 8. 3.16. 27. 0.14. Spirogyra sp. 2. 0.79. 5. 0.03. Ulothrix sp. 12. 4.74. 683. 3.65. Green algae-colony. Ankistrodesmus sp. 29. 11.46. 3572. 19.09. Diatoms. Melosira sp. 22. 8.70. 2828. 15.11. Navicula spp. 19. 7.51. 443. 2.37. Dinoflagelate. Peridinium sp.

  13. A biotic video game smart phone kit for formal and informal biophysics education

    Science.gov (United States)

    Kim, Honesty; Lee, Seung Ah; Riedel-Kruse, Ingmar

    2015-03-01

    Novel ways for formal and informal biophysics education are important. We present a low-cost biotic game design kit that incorporates microbial organisms into an interactive gaming experience: A 3D-printable microscope containing four LEDs controlled by a joystick enable human players to provide directional light stimuli to the motile single-celled organism Euglena gracilis. These cellular behaviors are displayed on the integrated smart phone. Real time cell-tracking couples these cells into interactive biotic video game play, i.e., the human player steers Euglena to play soccer with virtual balls and goals. The player's learning curve in mastering this fun game is intrinsically coupled to develop a deeper knowledge about Euglena's cell morphology and the biophysics of its phototactic behavior. This kit is dual educational - via construction and via play - and it provides an engaging theme for a formal biophysics devices class as well as to be presented in informal outreach activities; its low cost and open soft- and hardware should enable wide adoption.

  14. Phenolic Profile and Antioxidant Activity of Crude Extracts from Microalgae and Cyanobacteria Strains

    Directory of Open Access Journals (Sweden)

    Idaira Jerez-Martel

    2017-01-01

    Full Text Available Aqueous and methanolic extracts of several microalgae (Ankistrodesmus sp., Spirogyra sp., Euglena cantabrica, and Caespitella pascheri and cyanobacteria (Nostoc sp., Nostoc commune, Nodularia spumigena, Leptolyngbya protospira, Phormidiochaete sp., and Arthrospira platensis were screened for their radical scavenging activity against the stable radical 1,1-diphenyl-2-picrylhydrazyl. Despite the fact that water was a more efficient solvent to extract greater amount of extractable substances, it seems that methanol was more efficient to extract a selected group of compounds with a higher antioxidant activity. In addition, the identification of 4 simple phenolics (gallic, syringic, protocatechuic, and chlorogenic acids and the flavonoids (+ catechin and (- epicatechin was carried out by using reverse phase high performance liquid chromatography. The strain Euglena cantabrica showed the highest concentration of phenolic compounds, particularly gallic and protocatechuic acids (5.87 and 2.97 mg per gram of dried biomass, resp.. Aqueous and methanolic extracts of microalgae Euglena cantabrica also exhibited the highest antioxidant activity, probably due to the presence of the high contents of phenolics.

  15. Ecotoxicological studies of CdS nanoparticles on photosynthetic microorganisms.

    Science.gov (United States)

    Brayner, Roberta; Dahoumane, Si Amar; Nguyen, Julie Ngoc-Lan; Yéprémian, Claude; Djediat, Chakib; Couté, Alain; Fiévet, Fernand

    2011-03-01

    The potential ecotoxicity of nanosized cadmium sulfide (CdS), synthesized by the polyol process, was investigated using common Anabaena flos-aquae cyanobacteria and Euglena gracilis euglenoid microalgae. The photosynthetic activities of these microorganisms, after addition of free Cd2+ ions and CdS nanoparticles, varied with the presence of tri-n-octylphosphine oxide (TOPO) used to protect surface particle to avoid toxicity and also to control particle size and shape during the synthesis. The nanoparticle concentration was varied from 10(-3) to 5 x 10(-4) M. It was observed that the cadmium concentration, the addition of TOPO protective agent and the particle dissolution process in the culture medium play an important role during the ecotoxicological tests. Viability tests were followed by PAM fluorimetry. Cd2+ ions were very toxic for Anabaena flos aquae. The same behavior was observed after contact with CdS and CdS-TOPO nanoparticles. However, for Euglena gracilis, the photosynthetic activity was stable for more than 1 month in the presence of Cd2+ ions. Moreover, it was observed that the toxicity varies with the concentration of CdS and CdS-TOPO nanoparticles, both kind of nanoparticles are toxic for this microorganism. Transmission electron microscopy (TEM) analyses of microorganisms ultrathin sections showed that polysaccharides produced by Anabaena flos-aquae, after contact with CdS and CdS-TOPO nanoparticles, protect the microalgae against particle internalization. Only some particles were observed inside the cells. Moreover, the nanoparticle internalization was observed after contact with all nanoparticles in the presence of Euglena gracilis by endocytosis. All nanoparticles are inside vesicles formed by the cells.

  16. Gravitational sensory transduction chain in flagellates

    Science.gov (United States)

    Häder, D.-P.; Richter, P.; Ntefidou, M.; Lebert, M.

    Earlier hypotheses have assumed that gravitactic orientation in flagellates, such as the photosynthetic unicell Euglena gracilis, is brought about by passive alignment of the cells in the water column by being tail heavy. A recent experiment on a sounding rocket (TEXUS 40) comparing immobilized cells with mobile cells demonstrated that the passive buoy effect can account for approximately 20% of the orientation of the cells in a gravity field. The cells show either positive or negative gravitaxis depending on other external or internal factors. Shortly after inoculation, the tendency of young cells to swim downward in the water column can be readily reverted by adding micromolar concentrations of some heavy metal ions including copper, cadmium or lead. The negative gravitaxis of older cells is converted into a positive one by stress factors such as increasing salinity or exposure to excessive visible or UV radiation. The mechanism for this switch seems to involve reactive oxygen species since the gravitactic sign change was suppressed when oxygen was removed by flushing the cell suspension with nitrogen. Also, the addition of radical scavengers (Trolox, ascorbic acid or potassium cyanide) abolished or reduced the gravitactic sign change. Addition of hydrogen peroxide induced a gravitactic sign change in the absence of external stress factors. The primary reception for the gravity vector seems to involve mechanosensitive ion channels which specifically gate calcium ions inward. We have identified several gene sequences for putative mechanosensory channels in Euglena and have applied RNAi to identify which of these channels are involved in graviperception. The influx of Ca 2+ activates calmodulin (CaM) which has been shown to be involved in the sensory transduction chain of graviorientation. It is known that an adenylyl cyclase is bound to the flagellar membrane in Euglena which is activated by CaM. This enzyme produces cAMP which has also been shown to be the key

  17. Immune response of rainbow trout (Oncorhynchus mykiss) larvae to Yersinia ruckeri

    DEFF Research Database (Denmark)

    Chettri, Jiwan Kumar; Kania, Per Walter; Raida, Martin Kristian

    of naive larvae were bath exposed for 1 h with different concentrations of ß-glucan from Euglena gracilis. Two days post infection, larvae showed typical signs of Yersinia infection with haemorrhages in mouth region and inflammation on the dorsal side of the body. However, no mortality was observed during...... of immune factors at the transcriptional level. It may be speculated that at this stage of life, larvae may combat invading pathogens by using armour consisting of different immune factors without regulating their expression....

  18. Nano-aquarium for dynamic observation of aquatic microorganisms fabricated by femtosecond laser direct writing of photostructurable glass

    Science.gov (United States)

    Hanada, Y.; Sugioka, K.; Kawano, H.; Ishikawa, I.; Miyawaki, A.; Midorikawa, K.

    2008-02-01

    We demonstrate the fabrication of three-dimensional (3-D) hollow microstructures embedded in photostructurable glass by a femtosecond (fs) laser direct writing. Fs laser direct writing followed by annealing and successive wet etching in dilute hydrofluoric (HF) acid solution resulted in the rapid manufacturing of microchips with 3-D hollow microstructures for the dynamic observation of living microorganisms in fresh water. The embedded microchannel structure enables us to analyze the continuous motion of Euglena gracilis. A microchamber with a movable microneedle demonstrates its ability for the elucidation of the information transmission process in Pleurosira laevis. Such microchips, referred to as nano-aquariums realize the efficient and highly functional observation of microorganisms.

  19. A highly efficient photosynthesis system using LCD technology for solar energy

    Energy Technology Data Exchange (ETDEWEB)

    Kanai, Kenji [Research Inst. for Innovative Technology for the Earth (RITE), Kyoto (Japan); Nakano, Yoshihisa [Osaka Prefecture Univ., Coll. of Agriculture, Osaka (Japan)

    1999-07-01

    For CO{sub 2} fixation and utilisation, a newly developed culture combining a light conduction plate of Liquid Crystal Display (LCD) technology worked well. The injected light energy was effectively served to the whole area into the culture without mechanical energy such as stirring the fluid and the light energy efficiency of this system was obtained up to 60% of the theoretical value of 8 mol photons / 1 mol CO{sub 2}. The photosynthesis of the plant-like micro-organism, euglena glacilis, was used with solar energy. The product was useful for feed and will be for foods and fuels. (Author)

  20. Structure and dynamics of phytoplankton community in the Botafogo reservoir-Pernambuco-Brazil

    Directory of Open Access Journals (Sweden)

    Giulliari Alan da Silva Tavares de Lira

    2009-04-01

    Full Text Available The aim of the present study was to investigate the structure and dynamics of the phytoplankton in the Botafogo reservoir-PE-Brazil. Phytoplankton assemblages were identified from current literature and density was estimated using an inverted microscope. Concurrently to the sampling of biotic variables, measurements of abiotic parameters, such as water temperature, dissolved oxygen and pH, were determined using field probes and transparency was determined with a Secchi disk. Total phosphorus and total nitrogen concentrations were determined in laboratory. A total of 24 taxa were identified. Chlorophyta presented the greatest number of species. Species diversity in the reservoir was low throughout the study period. Principal component analysis revealed that Trachelomonas volvocina, Chlorella vulgaris, Euglena sp. and Peridinium gatunense were directly correlated with oxygen, turbidity and total nitrogen; Planktosphaeria gelatinosa, P. gatunense and Euglena sp. were directed correlated with total nitrogen; rainfall explained the occurrence of Monoraphidium arcuatum and Chlorella vulgaris.O objetivo do presente estudo foi investigar a estrutura e dinâmica do fitoplâncton no reservatório de Botafogo-PE-Brasil. A comunidade fitoplanctônica foi identificada com literatura atualizada e a densidade estimada usando microscópio invertido. Concomitantemente as coletas das variáveis bióticas, foram medidos alguns parâmetros abióticos como temperatura da água, oxigênio dissolvido, condutividade e pH usando sondas de campo e transparência com disco de Secchi. Concentrações de fósforo total e nitrogênio total foram determinados em laboratório. Vinte e quatro táxons foram identificados tendo Chlorophyta apresentado maior número de espécie. A diversidade de espécie no reservatório foi baixa durante todo o período de estudo. A análise de componentes principais mostrou que Trachelomonas volvocina, Chlorella vulgaris, Euglena sp. e

  1. Ecological impacts of environmental toxicants and radiation on the microbial ecosystem: a model simulation of computational microbiology

    Energy Technology Data Exchange (ETDEWEB)

    Doi, Masahiro; Sakashita, Tetsuya; Ishii, Nobuyoshi; Fuma, Shoichi; Takeda, Hiroshi; Miyamoto, Kiriko; Yanagisawa, K.; Nakamura, Yuji [National Institute of Radiological Sciences, Inage, Chiba (Japan); Kawabata, Zenichiro [Center for Ecological Research, Kyoto Univ., Otsu, Shiga (Japan)

    2000-05-01

    This study explores a microorganic closed-ecosystem by computer simulation to illustrate symbiosis among populations in the microcosm that consists of heterotroph protozoa, Tetrahymena thermophila B as a consumer, autotroph algae, Euglena gracilis Z as a primary producer and saprotroph Bacteria, Escherichia coli DH5 as decomposer. The simulation program is written as a procedure of StarLogoT1.5.1, which is developed by Center for Connected Learning and Computer-Based Modeling, Tufts University. The virtual microcosm is structured and operated by the following rules; (1) Environment is defined as a lattice model, which consists of 10,201 square patches, 300 micron Wide, 300 micron Length and 100 micron Hight. (2) Each patch has its own attributes, Nutrient, Detritus and absolute coordinates, (3) Components of the species, Tetrahymena, Euglena and E-coli are defined as sub-system, and each sub-system has its own attributes as location, heading direction, cell-age, structured biomass, reserves energy and demographic parameters (assimilation rate, breeding threshold, growth rate, etc.). (4) Each component of the species, Tetrahymena, Euglena and E-coli, lives by foraging (Tetrahymena eats E-coli), excreting its metabolic products to the environment (as a substrate of E-coli), breeding and dying according vital condition. (5) Euglena utilizes sunlight energy by photosynthesis process and produces organic compounds. E-coli breaks down the organic compounds of dead protoplasm or metabolic wastes (Detritus) and releases inorganic substances to construct down stream of food cycle. Virtual ecosystem in this study is named SIM-COSM, a parallel computing model for self-sustaining system of complexity. It found that SIM-COSM is a valuable to illustrate symbiosis among populations in the microcosm, where a feedback mechanism acts in response to disturbances and interactions among species and environment. In the simulation, microbes increased demographic and environmental

  2. Euglenophyta of the Danube River in Serbia

    Directory of Open Access Journals (Sweden)

    Subakov-Simić Gordana

    2008-01-01

    Full Text Available Most genera and many species of euglenophytes exist worldwide. They usually occur during the summer months in slow-flowing and stagnant waters, rich with organic substances. Euglenophytes of the Danube River in Serbia were studied at 16 localities during 2002-2003. A total of 61 taxa were found, 21 belonging to the genus Euglena Ehr., eight to Lepocinclis Perty, 15 to Phacus Duj., six to Strombomonas Defl., and 11 to Trachelomonas Ehr. The highest number of taxa (35 was recorded at Bačka Palanka during September 2002, but at the Tekije locality no euglenophytes were detected at all.

  3. The role of algae in mine drainage bioremediation

    Energy Technology Data Exchange (ETDEWEB)

    Davison, J. (Lambda Bioremediation Systems, Inc., Columbus, OH (USA))

    1990-06-01

    The effect of mine drainage effluent on aquatic ecosystems has been abundantly documented and remediation efforts to data have always been costly and temporary at best. Bioremediation, using natural environmental microbes, to treat acid mine drainage has shown great promise as an affordable, permanent treatment. At Lambda, we used mixatrophic cultures of bacteria, algae, protozoans and fungal groups on four different jobs and it has proven effective. The role of two particular algal groups, the Euglena mutabilis and the Ochramonas sp. are particularly of phycological interest.

  4. Tetrapyrrole Synthesis of Photosynthetic Chromerids Is Likely Homologous to the Unusual Pathway of Apicomplexan Parasites

    Czech Academy of Sciences Publication Activity Database

    Kořený, Luděk; Sobotka, Roman; Janouškovec, J.; Keeling, P. J.; Oborník, Miroslav

    2011-01-01

    Roč. 23, č. 9 (2011), s. 3454-3462 ISSN 1040-4651 R&D Projects: GA ČR GA206/08/1423; GA AV ČR IAA601410907 Institutional research plan: CEZ:AV0Z60220518; CEZ:AV0Z50200510 Keywords : YEAST SACCHAROMYCES-CEREVISIAE * HEME-BIOSYNTHESIS PATHWAY * PLASMODIUM-FALCIPARUM * MALARIA PARASITE * 5-AMINOLEVULINATE SYNTHASE * SECONDARY PLASTIDS * TOXOPLASMA-GONDII * PROTEIN-TRANSPORT * EUGLENA-GRACILIS * METABOLIC MAPS Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 8.987, year: 2011

  5. Molecular characterization of phytoplankton dissolved organic matter (DOM) and sulfur components using high resolution Orbitrap mass spectrometry.

    Science.gov (United States)

    Mangal, Vaughn; Stock, Naomi L; Guéguen, Celine

    2016-03-01

    Orbitrap high resolution mass spectrometry (HRMS) with electrospray ionization in both positive and negative polarity was conducted on Suwannee River fulvic acid (SRFA), Pony Lake fulvic acid (PLFA) standards, and dissolved organic matter (DOM) released by freshwater phytoplankton (Scenedesmus obliquus, Euglena mutabilis, and Euglena gracilis). Three-dimensional van Krevelen diagrams expressing various oxygenation states of sulfur molecules and abundance plots of sulfur-containing species were constructed. Orbitrap HRMS analysis of SRFA found a high density of peaks in the lignin region (77 %) and low density of protein material (6.53 %), whereas for PLFA, 25 % of the total peaks were lignin related compared to 56 % of peaks in protein regions, comparable with other HRMS studies. Phytoplankton-derived DOM of S. obliquus, E. mutabilis, and E. gracilis was dominated by protein molecules at respective percentages of 36, 46, and 49 %, and is consistent with previous experiments examining phytoplankton-derived DOM composition. The normalized percentage of SO-containing compounds was determined among the three phytoplankton to be 56 % for Scenedesmus, 54 % for E. mutabilis, and 47 % for E. gracilis, suggesting variation between sulfur content in phytoplankton-derived DOM and differences in metal binding capacities. These results suggest the level of resolution by Orbitrap mass spectrometry is sufficient for preliminary characterization of phytoplankton DOM at an affordable cost relative to other HRMS techniques.

  6. A split and rearranged nuclear gene encoding the iron-sulfur subunit of mitochondrial succinate dehydrogenase in Euglenozoa

    Directory of Open Access Journals (Sweden)

    Gray Michael W

    2009-02-01

    Full Text Available Abstract Background Analyses based on phylogenetic and ultrastructural data have suggested that euglenids (such as Euglena gracilis, trypanosomatids and diplonemids are members of a monophyletic lineage termed Euglenozoa. However, many uncertainties are associated with phylogenetic reconstructions for ancient and rapidly evolving groups; thus, rare genomic characters become increasingly important in reinforcing inferred phylogenetic relationships. Findings We discovered that the iron-sulfur subunit (SdhB of mitochondrial succinate dehydrogenase is encoded by a split and rearranged nuclear gene in Euglena gracilis and trypanosomatids, an example of a rare genomic character. The two subgenic modules are transcribed independently and the resulting mRNAs appear to be independently translated, with the two protein products imported into mitochondria, based on the presence of predicted mitochondrial targeting peptides. Although the inferred protein sequences are in general very divergent from those of other organisms, all of the required iron-sulfur cluster-coordinating residues are present. Moreover, the discontinuity in the euglenozoan SdhB sequence occurs between the two domains of a typical, covalently continuous SdhB, consistent with the inference that the euglenozoan 'half' proteins are functional. Conclusion The discovery of this unique molecular marker provides evidence for the monophyly of Euglenozoa that is independent of evolutionary models. Our results pose questions about the origin and timing of this novel gene arrangement and the structure and function of euglenozoan SdhB.

  7. Perubahan Populasi Protozoa dan Alga Dominan pada Air Genangan Tanah Padi Sawah yang Diberi Bokashi Berkelanjutan

    Directory of Open Access Journals (Sweden)

    Ainin Niswati

    2008-09-01

    Full Text Available Protozoa and alga play important roles in biogeochemical nutrient cycles in freshwater environment, especially in the paddy fields. The changes from the conventional technologies to organic technologies will change the communities structures of organisms lived in the paddy fields environment. The fields experiment was conducted to study the population dynamic of protozoa and algae dominant inhabited in the floodwater of the paddy fields subjected by continues ‘bokashi’ application. The results showed that protozoa and algae inhabited in the paddy fields in present study were dominated by Euglena, Pleodorina, Volvox, and Diatom. The continued application of bokashi for 4 years significantly increased the total population of protozoa and algae, however, the significantly effect was obtained in the population of Volvox only. The population of protozoa and algae were affected by the time of flooding of paddy fields where it increases exponentially at the 20 and 30 days after flooding and stable after that, ecxept for Euglena where it increases sligthly by flooding time.

  8. Turbidimetric method for evaluation of photocatalytic activities of suspended fine particles

    Directory of Open Access Journals (Sweden)

    Hideki Aoyagi

    2010-10-01

    Full Text Available Hideki Aoyagi1, Katsumi Yabusaki21Life Science and Bioengineering, Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan; 2Electronics and Optics Research Laboratory, Kowa Ltd, Chofugaoka, Chofu City, Tokyo, JapanAbstract: A spectrophotometer with special cuvette was developed for evaluating the photocatalytic activities of suspended fine particles. The spectrophotometer can continuously irradiate UV light using LED to the sample solution, and changes in the absorbance at 664 nm during photocatalytic degradation of methylene blue (MB were monitored continuously. From the onset of MB degradation, the absorbance decreased and reached a steady value at the end of the reaction. This process was expressed by first order kinetics and the photocatalytic activities of various fine particles could be evaluated quantitatively based on the reaction rate constant (k. The effect of photocatalysis using various TiO2 fine particles on the physiological activities of Euglena gracilis was related with k value.Keywords: photocatalyst, fine nano sized particles, specialized spectrophotometer, Euglena gracilis, rate constant

  9. Effects of pond partition on characteristics of algae and water quality in pond located at high latitudes; Anteichi wo secchishita kanreichiike no suishitsu henka to sorui tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Li, J. [Yamato Setsubi Construction Co. Ltd., Gunma (Japan); Kuroda, M. [Gunma University, Gunma (Japan). Faculty of Engineering; Wang, B. [Harbin Architectural and Civil Engineering Institute, Harbin (China). Water Pollution Control Research Center

    1995-10-10

    Characteristics of algae and water quality were studied at a pond located in high latitudes. Domestic and industrial wastewaters discharged are treated through different type stabilization ponds made by enclosing a part of the pond to remove BOD{sub 5}, COD{sub cr} and nutrients. Effects of the pond partition on the dominance species of algae and water quality were studied. During the cold term (-20{degree}C - -5{degree}C), Cryptomonas, Chlamydomonas and Euglena were dominance species in the pond. While Euglena, which may be grown by uptaking organic material was the dominance one in the stabilization pond, and its population increased in falling temperature. It plays an important role for removal of BOD{sub 5} and COD{sub cr}. On the other hand, during the warm term (15{degree}C - 30{degree}C), dominance species were Cyclotella, Chlorella and Microcystis in the pond and Scenedesmus obliqnus in facultative ponds of the stabilization ponds. Microcystis and Scenedesmus obliqnus would uptake NH4{sup +}-N truly. Removal of NH4{sup +}-N and PO4{sup 3-}-P depends on the concentration of Chl.a. The relationship between NH4{sup +}-N and PO4{sup 3-}-P removal and the concentrations of Chl.a was obtained. 11 refs., 8 figs., 3 tabs.

  10. Telomeric localization of the modified DNA base J in the genome of the protozoan parasite Leishmania.

    Science.gov (United States)

    Genest, Paul-André; Ter Riet, Bas; Cijsouw, Tony; van Luenen, Henri G A M; Borst, Piet

    2007-01-01

    Base J or beta-d-glucosylhydroxymethyluracil is a DNA modification replacing a fraction of thymine in the nuclear DNA of kinetoplastid parasites and of Euglena. J is located in the telomeric sequences of Trypanosoma brucei and in other simple repeat DNA sequences. In addition, J was found in the inactive variant surface glycoprotein (VSG) expression sites, but not in the active expression site of T. brucei, suggesting that J could play a role in transcription silencing in T. brucei. We have now looked at the distribution of J in the genomes of other kinetoplastid parasites. First, we analyzed the DNA sequences immunoprecipitated with a J-antiserum in Leishmania major Friedlin. Second, we investigated the co-migration of J- and telomeric repeat-containing DNA sequences of various kinetoplastids using J-immunoblots and Southern blots of fragmented DNA. We find only approximately 1% of J outside the telomeric repeat sequences of Leishmania sp. and Crithidia fasciculata, in contrast to the substantial fraction of non-telomeric J found in T. brucei, Trypanosoma equiperdum and Trypanoplasma borreli. Our results suggest that J is a telomeric base modification, recruited for other (unknown) functions in some kinetoplastids and Euglena.

  11. Bioaccumulation of nickel by algae

    Energy Technology Data Exchange (ETDEWEB)

    Wang, H.K.; Wood, J.M.

    1984-02-01

    Six strains of algae and one Euglena sp. were tested for their ability to bioaccumulate nickel. Radioactive /sup 63/Ni was used together with a microplate technique to determine the conditions for nickel removal by axenic cultures of cyanobacteria, green algae, and one euglenoid. The cyanobacteria tested were found to be more sensitive to nickel toxicity than the green algae or the Euglena sp. The concentration factor (CF) for nickel was determined under a variety of conditions and found to be in the range from 0 to 3.0 x 10/sup 3/. The effect of environmental variables on nickel uptake was examined, and a striking pH effect for biaccumulation was observed, with most of the algal strains accumulating nickel optimally at approximately pH 8.0. Competition experiments for binding sites between nickel and other cations as well as with other complexing anions, showed that /sup 63/Ni uptake was affected only by cobalt and by humic acids.

  12. Operation of an enclosed aquatic ecosystem in the Shenzhou-8 mission

    Science.gov (United States)

    Li, Xiaoyan; Richter, Peter R.; Hao, Zongjie; An, Yanjun; Wang, Gaohong; Li, Dunhai; Liu, Yongding; Strauch, Sebastian M.; Schuster, Martin; Haag, Ferdinand W.; Lebert, Michael

    2017-05-01

    Long- term spaceflight needs reliable Biological life support systems (BLSS) to supply astronauts with enough food, fresh air and recycle wasters, but the knowledge about the operation pattern and controlling strategy is rear. For this purpose, a miniaturized enclosed aquatic ecosystem was developed and flown on the Chinese spaceship Shenzhou-8. The system with a total volume of about 60 mL was separated into two chambers by means of a gas transparent membrane. The lower chamber was inoculated with Euglena gracilis cells, and the upper chamber was cultured with Chlorella cells and three snails. After 17.5 days flight, the samples were analyzed. It was found that all snails in the ground module (GM) were alive, while in the flight module (FM) only one snail survived. The total cell numbers, assimilation of nutrients like nitrogen and phosphorus, soluble proteins and carbohydrate contents showed a decrease in FM than in GM. The correlation analysis showed upper chambers of both FM and GM had the same positive and negative correlation factors, while differential correlation was found in lower chambers. These results suggested primary productivity in the enclosed system decreased in microgravity, accompanied with nutrients assimilation. The FM chamber endured lacking of domination species to sustain the system development and GM chamber endured richness in population abundance. These results implied photosynthesis intensity should be reduced to keep the system healthy. More Chlorella but less Euglena might be a useful strategy to sustain system stability. It is the first systematic analysis of enclosed systems in microgravity.

  13. Acidophilic algae isolated from mine-impacted environments and their roles in sustaining heterotrophic acidophiles

    Directory of Open Access Journals (Sweden)

    David Barrie Johnson

    2012-09-01

    Full Text Available Two acidophilic algae, identified as strains of Chlorella protothecoides var. acidicola and Euglena mutabilis, were isolated in pure culture from abandoned copper mines in Spain and Wales and grown in pH- and temperature-controlled bioreactors. The Chlorella isolate grew optimally at pH 2.5 and 30 ˚C, with a corresponding culture doubling time of 9 hours. The isolates displayed similar tolerance (10-50 mM to four transition metals tested. Growth of the algae in liquid media was paralleled with increasing concentrations of dissolved organic carbon (DOC. Glycolic acid was identified as a significant component (12- 14% of total DOC. Protracted incubation resulted in concentrations of glycolic acid declining in both cases, and glycolic acid added to a culture of Chlorella incubated in the dark was taken up by the alga (~100% within three days. Two monosaccharides were identified in cell-free liquors of each algal isolate: fructose and glucose (Chlorella, and mannitol and glucose (Euglena. These were rapidly metabolised by acidophilic heterotrophic bacteria (Acidiphilium and Acidobacterium spp. though only fructose was utilised by the more fastidious heterotroph Acidocella aromatica. The significance of algae in promoting the growth of iron- (and sulfate- reducing heterotrophic acidophiles that are important in remediating mine-impacted waters is discussed.

  14. Macroevolution via secondary endosymbiosis: a Neo-Goldschmidtian view of unicellular hopeful monsters and Darwin's primordial intermediate form.

    Science.gov (United States)

    Kutschera, U; Niklas, K J

    2008-08-01

    Seventy-five years ago, the geneticist Richard Goldschmidt hypothesized that single mutations affecting development could result in major phenotypic changes in a single generation to produce unique organisms within animal populations that he called "hopeful monsters". Three decades ago, Sarah P. Gibbs proposed that photosynthetic unicellular micro-organisms like euglenoids and dinoflagellates are the products of a process now called "secondary endosymbiosis" (i.e., the evolution of a chloroplast surrounded by three or four membranes resulting from the incorporation of a eukaryotic alga by a eukaryotic heterotrophic host cell). In this article, we explore the evidence for Goldschmidt's "hopeful monster" concept and expand the scope of this theory to include the macroevolutionary emergence of organisms like Euglena and Chlorarachnion from secondary endosymbiotic events. We argue that a Neo-Goldschmidtian perspective leads to the conclusion that cell chimeras such as euglenids and dinoflagellates, which are important groups of phytoplankton in freshwater and marine ecosystems, should be interpreted as "successful monsters". In addition, we argue that Charles Darwin had euglenoids (infusoria) in mind when he speculated on the "primordial intermediate form", although his Proto-Euglena-hypothesis for the origin of the last common ancestor of all forms of life is no longer acceptable.

  15. Wax Ester Fermentation and Its Application for Biofuel Production.

    Science.gov (United States)

    Inui, Hiroshi; Ishikawa, Takahiro; Tamoi, Masahiro

    2017-01-01

    In Euglena cells under anaerobic conditions, paramylon, the storage polysaccharide, is promptly degraded and converted to wax esters. The wax esters synthesized are composed of saturated fatty acids and alcohols with chain lengths of 10-18, and the major constituents are myristic acid and myristyl alcohol. Since the anaerobic cells gain ATP through the conversion of paramylon to wax esters, the phenomenon is named "wax ester fermentation". The wax ester fermentation is quite unique in that the end products, i.e. wax esters, have relatively high molecular weights, are insoluble in water, and accumulate in the cells, in contrast to the common fermentation end products such as lactic acid and ethanol.A unique metabolic pathway involved in the wax ester fermentation is the mitochondrial fatty acid synthetic system. In this system, fatty acid are synthesized by the reversal of β-oxidation with an exception that trans-2-enoyl-CoA reductase functions instead of acyl-CoA dehydrogenase. Therefore, acetyl-CoA is directly used as a C2 donor in this fatty acid synthesis, and the conversion of acetyl-CoA to malonyl-CoA, which requires ATP, is not necessary. Consequently, the mitochondrial fatty acid synthetic system makes possible the net gain of ATP through the synthesis of wax esters from paramylon. In addition, acetyl-CoA is provided in the anaerobic cells from pyruvate by the action of a unique enzyme, oxygen sensitive pyruvate:NADP(+) oxidoreductase, instead of the common pyruvate dehydrogenase multienzyme complex.Wax esters produced by anaerobic Euglena are promising biofuels because myristic acid (C14:0) in contrast to other algal produced fatty acids, such as palmitic acid (C16:0) and stearic acid (C18:0), has a low freezing point making it suitable as a drop-in jet fuel. To improve wax ester production, the molecular mechanisms by which wax ester fermentation is regulated in response to aerobic and anaerobic conditions have been gradually elucidated by identifying

  16. Encapsulation dehydration colligative cryoprotective strategies and amplified fragment length polymorphism markers to verify the identity and genetic stability of euglenoids following cryopreservation.

    Science.gov (United States)

    Harding, Keith; Miller, Julia; Timmermann, Hella; Lorenz, Maike; Day, John G; Friedl, Thomas

    2010-01-01

    An encapsulation/dehydration procedure was developed for Euglena gracilis Klebs as a 'model alga' to examine various cryoprotective regimes combined with controlled rate cooling to cryopreserve other Euglenoid taxa. Cryoprotective variables were optimised to enable reproducible growth following a combination of alginate encapsulation, sucrose osmotic dehydration, air desiccation, methanol treatment, cooling to -40 degrees C and plunging into liquid nitrogen (LN). Amplified Fragment Length Polymorphism (AFLP) analysis was adapted to: (i) verify algal identity by discriminating between different Euglenoids and (ii) examine the genetic stability of algal cultures prior to various stages of cryoprotective treatments and following exposure to LN. AFLPs were highly reproducible (> 99%) as reliable diagnostic markers, where a single DNA fragment change accounted for -0.4% of the detectable variation in an AFLP pattern. AFLP changes were detected in cryoprotective treatments following LN exposure. Successive stages of the dehydration and desiccation treatments did not accumulate AFLP changes indicating these are random events.

  17. Impact of green algae on the measurement of Microcystis aeruginosa populations in lagoon-treated wastewater with an algae online analyser.

    Science.gov (United States)

    Nguyen, Thang; Roddick, Felicity A; Fan, Linhua

    2015-01-01

    Tests on the algae online analyser (AOA) showed that there was a strong direct linear correlation between cell density and in vivo Chl-a concentration for M. aeruginosa over the range of interest for a biologically treated effluent at a wastewater treatment plant (25,000-65,000 cells mL(-1), equivalent to a biovolume of 2-6 mm3 L(-1)). However, the AOA can provide an overestimate or underestimate of M. aeruginosa populations when green algae are present in the effluent, depending on their species and relative numbers. The results from this study demonstrated that the green algae (e.g., Euglena gracilis, Chlorella sp.) in the field phytoplankton population should be considered during calibration. In summary, the AOA has potential for use as an alert system for the presence of M. aeruginosa, and thus potentially of cyanobacterial blooms, in wastewater stabilization ponds.

  18. Ecological impacts of umbrella effects of radiation on the individual members

    Energy Technology Data Exchange (ETDEWEB)

    Doi, Masahiro [Regulatory Sciences Research Group, Research Center for Radiation Protection, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba-shi, 263-8555 (Japan); Kawaguchi, Isao [Regulatory Sciences Research Group, Research Center for Radiation Protection, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba-shi, 263-8555 (Japan)]. E-mail: kawag@nirs.go.jp

    2007-07-15

    In order to study the interactions in a model aquatic microcosm, an individual-based computer simulation model was developed. The microcosm consists of Euglena gracilis as an autotroph algae, Tetrahymena thermophila as a heterotroph protozoa and Escherichia coli as a saprotroph bacteria. There exists a strong interaction between Tetrahymena and E. coli as the first is the predator of the second. Ecological toxicity tests were conducted to test the population level impacts of the biological effects of radiation and toxicants on the lethality and mobility factors that influence directly or indirectly growth and reproduction. Radiological effects on lethality of E. coli individuals were translated to the reduction of the equilibrium population of Tetrahymena. A synergistic effect at the community level was also observed by the simulation of a combined exposure of radiation and a toxicant which reduced the feeding efficiency of Tetrahymena.

  19. Impacts of radiation exposure on the experimental microbial ecosystem: a particle-based model simulation approach

    Energy Technology Data Exchange (ETDEWEB)

    Doi, M.; Tanaka, N.; Fuma, S.; Kawabata, Z.

    2004-07-01

    Well-designed experimental model ecosystem could be a simple reference of the actual environment and complex ecological systems. For ecological toxicity test of radiation and other environmental toxicants, we investigated and aquatic microbial ecosystem (closed microcosm) in the test tube with initial substrates,autotroph flagellate algae (Euglena, G.), heterotroph ciliate protozoa (Tetrahymena T.) and saprotroph bacteria (E, coli). These species organizes by itself to construct the ecological system, that keeps the sustainable population dynamics for more than 2 years after inoculation only by adding light diurnally and controlling temperature at 25 degree Celsius. Objective of the study is to develop the particle-based computer simulation by reviewing interactions among microbes and environment, and analyze the ecological toxicities of radiation on the microcosm by replicating experimental results in the computer simulation. (Author) 14 refs.

  20. Species diversity and ecological studies Euglenophyta in the Zayandeh Rood lake dam

    Directory of Open Access Journals (Sweden)

    Masoumeh Shams

    2010-07-01

    Full Text Available Zayandeh Rood Lake, as the largest Isfahan natural Lake, is located in the west of Isfahan city with the area of about 48 km2. Sampling of Euglenophyta was done in four stations from August 2005 through June 2006. Ecological factors such as pH, EC, salinity, temperature and various nutrients were measured. A total of 4 genus and 9 species were identified in this lake. Euglena proxima Dang., Phacus caudatus var. ovalis Drez. and Trachelomonas robusta Swir., showed high density 1420, 952, 2380 cell/cm3, respectively. In this lake density of Euglenophyta increased in warm seasons because of high ions such as nitrate and phosphate. Based upon algal flora results, Zayandeh Rood dam lake could be regarded as an oligo-mesotrophic lake.

  1. Antimutagenic Activity and Radical Scavenging Activity of Water Infusions and Phenolics from Ligustrum Plants Leaves

    Directory of Open Access Journals (Sweden)

    Milan Nagy

    2009-01-01

    Full Text Available Water infusions of Ligustrum delavayanum and Ligustrum vulgare leaves and eight phenolics isolated therefrom have been assayed in vitro on ofloxacin-induced genotoxicity in the unicellular flagellate Euglena gracilis. The tested compounds luteolin, quercetin, luteolin-7-glucoside, luteolin-7-rutinoside, quercetin-3-rutinoside, apigenin-7-rutinoside, tyrosol and esculetin inhibited the mutagenic activity of ofloxacin (43 µM in E. gracilis. Water infusions from leaves of L. delavayanum and L. vulgare showed higher antimutagenic effect (pt < 0.001. The activity of these samples against ofloxacin (86 µM-induced genotoxicity was lower, but statistically significant (pt < 0.05, excluding the water infusion of L. delavayanum leaves (pt < 0.01. Efficacy of quercetin, luteolin-7-rutinoside, apigenin-7-rutinoside was insignificant. The antimutagenic effect of most phenolics we studied could be clearly ascribed to their DPPH scavenging activity, substitution patterns and lipophilicity.

  2. Phylogenetic affinities of Diplonema within the Euglenozoa as inferred from the SSU rRNA gene and partial COI protein sequences.

    Science.gov (United States)

    Maslov, D A; Yasuhira, S; Simpson, L

    1999-03-01

    In order to shed light on the phylogenetic position of diplonemids within the phylum Euglenozoa, we have sequenced small subunit rRNA (SSU rRNA) genes from Diplonema (syn. Isonema) papillatum and Diplonema sp. We have also analyzed a partial sequence of the mitochondrial gene for cytochrome c oxidase subunit I from D. papillatum. With both markers, the maximum likelihood method favored a closer grouping of diplonemids with kinetoplastids, while the parsimony and distance suggested a closer relationship of diplonemids with euglenoids. In each case, the differences between the best tree and the alternative trees were small. The frequency of codon usage in the partial D. papillatum COI was different from both related groups; however, as is the case in kinetoplastids but not in Euglena, both the non-canonical UGA codon and the canonical UGG codon were used to encode tryptophan in Diplonema.

  3. [Plant biotests of soil and water, polluted with petroleum and petroleum products].

    Science.gov (United States)

    Petukhov, V N; Fomchenkov, V M; Chugunov, V A; Kholodenko, V P

    2000-01-01

    Reactiona of higher plants (mustard, oat, rye, salad, dill and barley) and microalgae (Euglena gracilis) on the contamination of soil and water with petroleum and oil products was studied. The germination of seeds was analyzed. The length of sprouts, dry biomass and length of plant roots, as well as the optical density of micro-algal broth culture were determined. Negative effects of soil and water contamination with petroleum and oil products on plant and microalgal parameters examined was shown. After biological destruction of contaminants by an association of destructor strains (Acinetobacter sp., Mycobacterium flavescens and Rhodoccocus sp.), the toxicity of contaminated mediums decreased. The data suggest that the integral toxicity of soil and water contaminated with petroleum and oil products and toxicity change during biodestruction of these pollutants can be analyzed by using plant test organisms.

  4. Seasonal phytoplanktonic diversity of Kitham lake, Agra.

    Science.gov (United States)

    Tiwari, Ashesh; Chauhan, S V S

    2006-01-01

    Two years (Jan. 2000 - Dec. 2001) data on the seasonal studies of phytoplanktonic diversity of Kitham lake (Sur Sarovar) Agra revealed the presence of 73 algal species. A limited number of these were recorded throughout the year, while others were distributed in different seasons mainly in winter and summer seasons. During winters, Chlorophyceae was the most dominant group followed by Bacillariophyceae. On the other hand, Cyanophyceae and Euglenophyceae were the most dominant during summers. Certain species e.g. Pandorina morum, Pediastrum tetras, Gonium sp., Chlorella vulgaris, Scendesmus quadricauda, Oedogonium cardiocum, Synedra ulna, Oscillatoria agardhii and Euglena gracillis were recorded throughout the year. Chlorella, Stigeoclonium, Pandorina, Micratinium, Oscillatoria, Anacystis, Nitzschia and Cymbella were found to be good indicators of water pollution.

  5. Phylogeny of protozoa deduced from 5S rRNA sequences.

    Science.gov (United States)

    Kumazaki, T; Hori, H; Osawa, S

    1983-01-01

    The nucleotide sequences of 5S rRNAs from three protozoa, Bresslaua vorax, Euplotes woodruffi and Chlamydomonas sp. have been determined and aligned together with the sequences of 12 protozoa species including unicellular green algae already reported by the authors and others. Using this alignment, a phylogenic tree of the 15 species of protozoa has been constructed. The tree suggests that the ancestor for protozoa evolved at an early time of eukaryotic evolution giving two major groups of organisms. One group, which shares a common ancestor with vascular plants, contains a unicellular green flagellate (Chlamydomonas) and unicellular green algae. The other group, which shares a common ancestor with the multicellular animals, includes various flagellated protozoa (including Euglena), ciliated protozoa and slime molds. Most of these protozoa appear to have separated from one another at a fairly early period of eukaryotic evolution.

  6. One-pot synthesis of thermoplastic mixed paramylon esters using trifluoroacetic anhydride.

    Science.gov (United States)

    Shibakami, Motonari; Tsubouchi, Gen; Sohma, Mitsugu; Hayashi, Masahiro

    2015-03-30

    Mixed paramylon esters prepared from paramylon (a storage polysaccharide of Euglena), acetic acid, and a long-chain fatty acid by one-pot synthesis using trifluoroacetic anhydride as a promoter and solvent were shown to have thermoplasticity. Size exclusion chromatography indicated that the mixed paramylon esters had a weight average molecular weight of approximately 4.9-6.7×10(5). Thermal analysis showed that these esters were stable in terms of the glass transition temperature (>90°C) and 5% weight loss temperature (>320°C). The degree of substitution of the long alkyl chain group, a dominant factor determining thermoplasticity, was controlled by tuning the feed molar ratio of acetic acid and long-chain fatty acid to paramylon. These results implied that the one-pot synthesis is useful for preparing structurally-well defined thermoplastic mixed paramylon esters with high molecular weight. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Phytobenthos and phytoplankton community changes upon exposure to a sunflower oil spill in a South African protected freshwater wetland.

    Science.gov (United States)

    Oberholster, Paul J; Blaise, Christian; Botha, A-M

    2010-11-01

    The occurrence of a sunflower oil spill in 2007 in the Con Joubert Bird Sanctuary freshwater wetland, South Africa, inhibited the growth of sensitive phytoplankton species and promoted that of tolerant species. The algal divisions Chlorophyta and Euglenophyta were well represented in the sunflower oil contaminated water, especially the species Euglena sociabilis, Phacus pleuronectes and Chlamydomonas africana. Young and mature resting zygotes of Chlamydomonas africana were recorded in high abundance at all the sunflower oil contaminated sampling sites. The phytobenthos diversity and abundance were significantly suppressed and negatively associated with low Dissolved Oxygen concentrations and the negative redox potential of the bottom sediment. At the intracellular level, phytoplankton chlorophyll a and b concentrations as physiological variables were more sensitive indicators of the adverse effects of sunflower oil than the 72 h Selenastrum capricornutum algal bioassay conducted.

  8. Ultrastructural Alterations in Lepocinclis acus (Euglenophyta Induced by Medium with High Organic Matter Content

    Directory of Open Access Journals (Sweden)

    Visitación T. Conforti

    2017-11-01

    Full Text Available Ultrastructural changes induced by exposure to excess of organic matter were studied in Lepocinclis acus (ex Euglena acus. The cells isolated from the Matanza River, Buenos Aires, Argentina, were grown in soil water medium (SWM. When transferred to medium enriched with Bacteriological Peptone OXOID®, marked body deformation and a significant shortening and widening of the cells was observed. These changes were unexpected in a species with quite rigid cells, a condition previously shown in studies of the pellicle fine structure. Transmission electron microscopy observations suggest that cellular deformation might be facilitated by an increase in strip number, whereas in the original strips normal ultrastructure was maintained. An increase in number and volume of paramylon grains and vacuoles, as well as the presence of membrane whorls in vacuoles was observed. The fine structure of organisms grown in medium with and without organic matter enrichment was compared, and the systematic and ecological importance of morphological changes triggered by cell deformation was discussed.

  9. Antimutagenicity of milk fermented by Enterococcus faecium.

    Science.gov (United States)

    Belicová, A; Krajcovic, J; Dobias, J; Ebringer, L

    1999-01-01

    The diethyl ether extracts isolated from unfermented milk and milk fermented by Enterococcus faecium exhibited dose-dependent inhibition of mutagenesis induced by N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), nitrovin (NIT), 5-nitro-2-furylacrylic acid (NFA) and UV-irradiation on the Ames bacterial test (Salmonella typhimurium strains TA97 and TA100) and the unicellular flagellate Euglena gracilis. Overall, the fermented milk extract was the most active against UV-irradiation, less active against NIT and MNNG, and the least active against NFA on bacteria. The highest antibleaching effects were observed against MNNG. The differences between antimutagenic effects from fermented and unfermented milk extracts were determined to be statistically significant at the 0.95 CI level.

  10. Dynamics of Deformable Active Particles under External Flow Field

    Science.gov (United States)

    Tarama, Mitsusuke

    2017-10-01

    In most practical situations, active particles are affected by their environment, for example, by a chemical concentration gradient, light intensity, gravity, or confinement. In particular, the effect of an external flow field is important for particles swimming in a solvent fluid. For deformable active particles such as self-propelled liquid droplets and active vesicles, as well as microorganisms such as euglenas and neutrophils, a general description has been developed by focusing on shape deformation. In this review, we present our recent studies concerning the dynamics of a single active deformable particle under an external flow field. First, a set of model equations of active deformable particles including the effect of a general external flow is introduced. Then, the dynamics under two specific flow profiles is discussed: a linear shear flow, as the simplest example, and a swirl flow. In the latter case, the scattering dynamics of the active deformable particles by the swirl flow is also considered.

  11. Euglenoid blooms in the floodplain wetlands of Barak Valley, Assam, North eastern India.

    Science.gov (United States)

    Duttagupta, S; Gupta, Susmita; Gupta, Abhik

    2004-07-01

    Red blooms of Euglena sp. in the floodplain wetland ecosystems of Barak Valley, Assam, India, were found to be induced by high concentrations of NH3-N, NO3, Fe, Mg and to some extent, PO4, Cu and Zn in their water. The trace elements were rapidly accumulated by the bloom organisms to high levels, whereby their concentrations in the water declined, leading to a collapse of the bloom, which tended to reappear as decomposition again led to the release of the nutrients. The bloom also harboured fairly high density of certain other algae and zooplankton, thereby acting as a sub-system within the wetland ecosystem. The bloom is non-toxic and is exploited as a fish food by the fish-farmers who artificially induce a bloom for augmenting the growth of surface-feeding species of fishes.

  12. Inhibition of freshwater algal species by co-culture with two fungi.

    Science.gov (United States)

    Jia, Yong; Du, Jingjing; Fang, Hao; Zhao, Guiying; Tian, Xingjun

    2013-05-01

    Microorganisms have attracted worldwide attention as possible agents for the inhibition of water blooms. Algae can usually be inhibited and degraded directly by fungi. In this study, the effects of Trichaptum abietinum 1302BG and Lopharia spadicea on different freshwater algal species, namely, Microcystis aeruginosa, Chlorella vulgaris, Glenodinium sp., Navicula sp., Cryptomonas ovata, and Euglena gracilis, were detected. After 24h, there was a significant inhibitory effect in all algal cultures with T. abietinum 1302BG, except E. gracilis, and all algal cultures with L. spadicea, except Navicula sp. and E. gracilis. The dried masses of two fungi increased while majority of the algal cells disappeared after 72 h of co-incubation with M. aeruginosa, C. vulgaris, Glenodinium sp., and C. ovata. Thus, the two fungi might inhibit the growth of different freshwater algal species and utilize the algal cells for their growth. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. TAXONOMIC DIVERSITY AND THE ROLE OF ALGAEFLORA FOR BIOLOGICAL DEPURATION OF WATERS FROM RIVER COGÂLNIC (R. MOLDOVA

    Directory of Open Access Journals (Sweden)

    SALARU VICTOR

    2008-11-01

    Full Text Available During 2004-2005 there were performed studies regarding the taxonomic structure of the algaeflora in river Cogâlnic in order to point out the role of the algae during the process of water quality improvement and the role of the indicator of the most representative species. River Cogâlnic, or Cunduc, starts from nearby village Iurceni, district Nisporeni and flows into lake Sasac, and runs for a distance of 243 km. Decrease of the analyzed water quality from the river is caused by the sewerage waters from different sectors from town Hinceshti and Cimishlia that are directed into the river without any depuration. We've studied about 118 samples in which we've discovered about 382 species and intraspecific taxonomic units of algae of the following types: Cyanophyta -73, Euglenophyta-75, Chlorophyta-111, Xantophyta-3, Bacillariophyta-118 and Chrysophyta-2. Mass development of the euglena within Colgalnic river, among which are the following types of species Euglena-26, Trachelomonas-14 and Phacus-13, demonstrate a high level of trophicity in water. Among the chloride algae predominate the following species Scenedesmus-21, and from cyanophyta species predominates Oscillatoria-23. The high taxonomic level of the bacillariophyta algae is determined by species as Navicula-27, Nitzschia-24 and Surirella-16. Most of species refer to categories β and β-α , demonstrating a high level of water pollution. This fact speaks about the high concentration of nitrogen and phosphor compounds in water. It was demonstrated that as far as we go from the places were the sewerage waters flow into the river, the excessive quantities of biological elements decrease clearly. Also, go down the quantity of bicarbonates and oxidizers. Numeric growth of the algae is nothing else but a positive role for water depuration.

  14. Sulfate assimilation in eukaryotes: fusions, relocations and lateral transfers

    Directory of Open Access Journals (Sweden)

    Durnford Dion G

    2008-02-01

    Full Text Available Abstract Background The sulfate assimilation pathway is present in photosynthetic organisms, fungi, and many bacteria, providing reduced sulfur for the synthesis of cysteine and methionine and a range of other metabolites. In photosynthetic eukaryotes sulfate is reduced in the plastids whereas in aplastidic eukaryotes the pathway is cytosolic. The only known exception is Euglena gracilis, where the pathway is localized in mitochondria. To obtain an insight into the evolution of the sulfate assimilation pathway in eukaryotes and relationships of the differently compartmentalized isoforms we determined the locations of the pathway in lineages for which this was unknown and performed detailed phylogenetic analyses of three enzymes involved in sulfate reduction: ATP sulfurylase (ATPS, adenosine 5'-phosphosulfate reductase (APR and sulfite reductase (SiR. Results The inheritance of ATPS, APR and the related 3'-phosphoadenosine 5'-phosphosulfate reductase (PAPR are remarkable, with multiple origins in the lineages that comprise the opisthokonts, different isoforms in chlorophytes and streptophytes, gene fusions with other enzymes of the pathway, evidence a eukaryote to prokaryote lateral gene transfer, changes in substrate specificity and two reversals of cellular location of host- and endosymbiont-originating enzymes. We also found that the ATPS and APR active in the mitochondria of Euglena were inherited from its secondary, green algal plastid. Conclusion Our results reveal a complex history for the enzymes of the sulfate assimilation pathway. Whilst they shed light on the origin of some characterised novelties, such as a recently described novel isoform of APR from Bryophytes and the origin of the pathway active in the mitochondria of Euglenids, the many distinct and novel isoforms identified here represent an excellent resource for detailed biochemical studies of the enzyme structure/function relationships.

  15. Risks of increased UV-B radiation for phytoplankton; Risiken erhoehter UV-B-Strahlung auf Phytoplankton

    Energy Technology Data Exchange (ETDEWEB)

    Haeder, D.P. [Inst. fuer Botanik und Pharmazeutische Biologie, Erlangen (Germany); Gerber, S. [Inst. fuer Botanik und Pharmazeutische Biologie, Erlangen (Germany)

    1994-03-01

    The BayFORKLIM programme focussed on two main aspects of the risks of increased UV-B radiation for phytoplankton. The first involved laboratory studies on wild organisms which, unlike laboratory organisms, are adapted to the present climate and in particular to today`s intensities of UV-B radiation. The studies were performed on euglena sanguinea taken from an algal bloom. These algal orient themselves exclusively by positive phototaxis in their habitat, that is, they move towards the water surface. Their red colour derives from haematochrome, a mixture of carotinoids which probably serve as protective prigments. Artificial, intensified UV-B radiation impairs the orientation of these organisms, reduces their swimming speed, and bleaches their chlorophylla. Exposition time until impairment is the same as for laboratory-bred, `more sensitive` organisms. Beside the laboratory work, field studies were performed on algal at different altitudes, namely in Erlangen and on the Zugspitze, where they were exposed to natural, `above-normal` UV-B radiation. These experiments yielded a higher pigment bleaching rate on the Zugspitze than in Erlangen for all three species under study. Motility likewise decreased faster on the Zugspitze than in Erlangen. Filters that absorb UV-B radiation protect the algal to some degree: Bleaching and immotility are delayed. (orig.) [Deutsch] Die Risiken erhoehter UV-B-Strahlung fuer Phytoplankton wurden im Rahmen des BayFORKLIM unter 2 Hauptaspekten betrachtet: Zum einen wurden Untersuchungen an Freilandorganismen vorgenommen, die - anders als Labororganismen - an die heutigen Klimabedingungen und insbesondere an die herrschenden UV-B-Bestrahlungsstaerken angepasst sind. Dazu wurden Untersuchungen an Euglena sanguinea aus einer Algenbluete durchgefuehrt. Die Algen orientieren sich in ihrem Habitat ausschliesslich durch positive Phototaxis, die sie an die Gewaesseroberflaeche bringt. Sie sind durch Haematochrom, einer Mischung aus Carotinoiden

  16. Interactions of uranium (VI) with biofilms; Wechselwirkung von Uran(VI) mit Biofilmen

    Energy Technology Data Exchange (ETDEWEB)

    Brockmann, Sina; Arnold, Thuro; Bernhard, Gert

    2013-07-01

    In this study a detailed investigation was made of natural biofilms from two uranium-contaminated sites, namely the former uranium mine in Koenigstein (Saxony) and the ground surface of the former Grassenhalde tailing heap in Thuringia. A predominance of uranyl sulphate (UO{sub 2}SO{sub 4}), a highly mobile, solute uranium species, was found in the mine waters of both sites. In this study an investigation was made of the capacity of Euglena mutabilis cells for bioaccumulation of uranium in a pH range of 3 to 6 using living cells and sodium perchlorate (9 g/l) or sodium sulphate (3.48 g/l) as background media. At acidic pH values in the range from 3 to 4 it was possible to remove more than 90% of the original uranium content from the test solution regardless of the medium being used. The speciation of the uranium accumulated in the Euglena cells was investigated by laser-induced fluorescence spectroscopy (LIFS). It was found that a new uranium species of low variability forms on the cells independent of the background medium, state of life of the cells and pH value. By comparing the data from the LIFS measurements with reference values it was possible to narrow down the identity of the uranium species to one bonded to (organo) phosphate and/or carboxylic functional groups. Using time-resolved FT-IR spectroscopy it was possible to demonstrate carboxylic bonding of uranium to dead cells. However it was not possible to exclude (organo) complexation with this method. An investigation of the specific location of the uranium on or in the cells using combined CLSM/LIFS technology yielded first indications of intracellular accumulation of uranium in the living cells. Supplementary TEM/EDX measurements confirmed the intracellular uptake, showing it to occur in round to oval cell organelles which are thought to be vacuoles or vacuole-like vesicles. It was not possible to detect uranium on dead cells using these methods. This points to passive, homogeneously distributed

  17. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) coupled to XAD fractionation: Method to algal organic matter characterization.

    Science.gov (United States)

    Nicolau, Rudy; Leloup, Maud; Lachassagne, Delphine; Pinault, Emilie; Feuillade-Cathalifaud, Geneviève

    2015-05-01

    This work is focused on the development of an analytical procedure for the improvement of the Organic Matter structure characterization, particularly the algal matter. Two fractions of algal organic matter from laboratory cultures of algae (Euglena gracilis) and cyanobacteria (Microcystis aeruginosa) were extracted with XAD resins. The fractions were studied using laser desorption ionization (LDI) and Matrix-Assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF). A comparison with the natural organic matter characteristics from commercial humic acids and fulvic acids extracted from Suwannee River was performed. Results show that algal and natural organic matters have unique quasi-polymeric structures. Significant repeating patterns were identified. Different fractions extracted from organic matter with common origin had common structures. Thus, 44, 114 and 169Da peaks separation for fractions from E. gracilis organic matter and 28, 58 and 100Da for M. aeruginosa ones were clearly observed. Using the developed protocol, a structural scheme and organic matter composition were obtained. The range 600-2000Da contained more architectural composition differences than the range 100-600Da, suggesting that organic matter is composed of an assembly of common small molecules. Associated to specific monomers, particular patterns were common to all samples but assembly and resulting structure were unique for each organic matter. Thus, XAD fractionation coupled to mass spectroscopy allowed determining a specific fingerprint for each organic matter. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Profiling planktonic biomass using element-specific, multicomponent nuclear magnetic resonance spectroscopy.

    Science.gov (United States)

    Komatsu, Takanori; Kobayashi, Toshiya; Hatanaka, Minoru; Kikuchi, Jun

    2015-06-02

    Planktonic metabolism plays crucial roles in Earth's elemental cycles. Chemical speciation as well as elemental stoichiometry is important for advancing our understanding of planktonic roles in biogeochemical cycles. In this study, a multicomponent solid-state nuclear magnetic resonance (NMR) approach is proposed for chemical speciation of cellular components, using several advanced NMR techniques. Measurements by ssNMR were performed on (13)C and (15)N-labeled Euglena gracilis, a flagellated protist. 3D dipolar-assisted rotational resonance, double-cross-polarization (1)H-(13)C correlation spectroscopy, and (1)H-(13)C solid-state heteronuclear single quantum correlation spectroscopy successively allowed characterization of cellular components. These techniques were then applied to E. gracilis cultured in high and low ammonium media to demonstrate the power of this method for profiling and comparing cellular components. Cellular NMR spectra indicated that ammonium induced both paramylon degradation and amination. Arginine was stored as a nitrogen reserve and ammonium replaced by arginine catabolism via the arginine dihydrolase pathway. (15)N and (31)P cellular ssNMR indicated arginine and polyphosphate accumulation in E. gracilis, respectively. This chemical speciation technique will contribute to environmental research by providing detailed information on environmental chemical properties.

  19. Eukaryotic stromatolite builders in acid mine drainage: Implications for Precambrian iron formations and oxygenation of the atmosphere?

    Energy Technology Data Exchange (ETDEWEB)

    Brake, S.S.; Hasiotis, S.T.; Dannelly, H.K.; Connors, K.A. [Indiana State University, Terre Haute, IN (United States). Dept. of Geography, Geology & Anthropology

    2002-07-01

    Biological activity of Euglena mutabilis, an acidophilic, photosynthetic protozoan, contributes to the formation of Fe-rich stromatolites in acid mine drainage systems. E. mutabilis is the dominant microbe in bright green benthic mats (biofilm), coating drainage channels at abandoned coal mine sites in Indiana. It builds biolaminates through phototactic and aerotactic behavior, similar to prokaryotes, by moving through precipitates that periodically cover the mats. E. mutabilis also contributes to formation of Fe-rich stromatolites by (1) intracellularly storing Fe compounds released after death, contributing to the solid material of stromatolites and acting as nucleation sites for precipitation of authigenic Fe minerals, and (2) generating 02 via photosynthesis that further facilitates precipitation of reduced Fe, any excess 02 not consumed by Fe precipitation being released to the atmosphere. Recognition of E. mutabilis-dominated biofilm in acidic systems raises a provocative hypothesis relating processes involved in formation of Fe-rich stromatolites by E. mutabilis to those responsible for development of Precambrian stromatolitic Fe formations and oxygenation of the early atmosphere.

  20. Analysis of the molecular evolutionary history of the ascorbate peroxidase gene family: inferences from the rice genome.

    Science.gov (United States)

    Teixeira, Felipe Karam; Menezes-Benavente, Larissa; Margis, Rogério; Margis-Pinheiro, Márcia

    2004-12-01

    Ascorbate peroxidase (APx) is a class I peroxidase that catalyzes the conversion of H(2)O(2) to H(2)O and O(2) using ascorbate as the specific electron donor. This enzyme has a key function in scavenging reactive oxygen species (ROS) and the protection against toxic effects of ROS in higher plants, algae, and Euglena. Here we report the identification of an APx multigene family in rice and propose a molecular evolutionary relationship between the diverse APx isoforms. In rice, the APx gene family has eight members, which encode two cytosolic, two putative peroxisomal, and four chloroplastic isoforms, respectively. Phylogenetic analyses were conducted using all APx protein sequences available in the NCBI databases. The results indicate that the different APx isoforms arose by a complex evolutionary process involving several gene duplications. The structural organization of APx genes also reflects this process and provides evidence for a close relationship among proteins located in the same subcellular compartment. A molecular evolutionary pathway, in which cytosolic and peroxisomal isoforms diverged early from chloroplastic ones, is proposed.

  1. Response of aquatic protists to electric field exposure.

    Science.gov (United States)

    Miliša, Marko; Đikić, Domagoj; Mandić, Tvrtko; Grozić, Dino; Čolić, Ivan; Ostojić, Ana

    2017-08-01

    To test the effects of short-term exposure of aquatic organisms to electric field (EF) with negligible magnetic component. We built a plate capacitor that served as a source of EF of strengths that can be found in nature near transmission lines. We exposed two cultured protist species Euglena viridis and Paramecium caudatum to EFs for 24 hours and monitored their abundance, morphology, intracellular superoxide anion (by dihydroethidium [DHE]), hydrogen peroxide by (H2DCF) and lipid peroxidation (MDA) contents, catalase (CAT) and superoxide dismutase (SOD) activity. We found that even short-term exposure to low strength EF causes changes in population abundance, morphology and oxidative stress response in both species. As the EF strength increased, abundance of both species decreased. However, at weaker EFs, fission rates were seemingly promoted. We noted a decrease in size in both organisms in directions perpendicular to their fission planes correlated with EF strength. DHE and H2DCF fluorescence intensity and SOD activity were higher in organisms exposed to the stronger EFs. We suggest that the electric component of the field, rather than the magnetic, is the main cause of all the noted effects. As a result, aquatic organisms should be given greater importance in studies assessing the effects of EMFs in spite of the attenuating effects of water to EF strengths.

  2. Hunting for agile prey: trophic specialisation in leptophryid amoebae (Vampyrellida, Rhizaria) revealed by two novel predators of planktonic algae.

    Science.gov (United States)

    Hess, Sebastian

    2017-09-01

    Vampyrellid amoebae (Vampyrellida, Rhizaria) are widespread in freshwater, marine and terrestrial ecosystems and consume a wide range of eukaryotes, e.g. algae, fungi and micrometazoa. Environmental sequences indicate that only a small fraction of their genetic diversity is phenotypically characterised, emphasising the need to further explore unknown vampyrellids and their interactions with prey organisms. This study tests the prey range specificity of three vampyrellid amoebae with 49 strains of three common groups of freshwater algae (Zygnematophyceae, Euglenophyceae and Volvocales), and documents specific interactions by time-lapse microscopy. Two of the amoebae, here introduced as the novel genera Arachnomyxa and Planctomyxa based on morphology and SSU rRNA gene comparisons, display a complementary prey range and consume motile algae, namely Volvocales and Euglenophyceae, respectively. This reveals the existence of specialised 'plankton feeders' in the vampyrellid family Leptophryidae, contrasting with the strikingly broad prey range of Leptophrys vorax. The distinct autecological characteristics found in this group of morphologically rather indistinct amoebae contribute to our knowledge about the vastly understudied vampyrellid amoebae. Furthermore, time-lapse observations suggest that euglenoid movements exerted by the sluggish species of the 'Euglena deses group' as a reaction to vampyrellid contact may serve as an effective defence against microbial predators. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. Advancing Small Satellite Electronics Heritage for Microfluidic Biological Experiments

    Science.gov (United States)

    White, Bruce; Mazmanian, Edward; Tapio, Eric

    2016-01-01

    DLR's Eu:CROPIS (Euglena and Combined Regenerative Organic-Food Production in Space) mission, launching in 2017, will carry multiple biological payloads into a sun-synchronous orbit, including NASA Ames' PowerCell experiment. PowerCell will attempt to characterize the viability of synthetic biology at micro-g, Lunar, and Martian gravity levels. PowerCell experiment requirements demand an electronic system similar to previous microfluidic biology payloads, but with an expanded feature set. As such, the system was based on PharmaSat (Diaz-Aguado et al. 2009), a previous successful biology payload from NASA Ames, and improved upon. Newer, more miniaturized electronics allow for greater capability with a lower part count and smaller size. Two identical PowerCell enclosures will fly. Each enclosure contains two separate and identical experiments with a 48-segment optical density measurement system, grow light system, microfluidic system for nutrient delivery and waste flushing, plus thermal control and environmental sensing/housekeeping including temperature, pressure, humidity, and acceleration. Electronics consist of a single Master PCB that interfaces to the spacecraft bus and regulates power and communication, plus LED, Detector, and Valve Manifold PCBs for each experiment. To facilitate ease of reuse on future missions, experiment electronics were designed to be compatible with a standard 3U small sat form factor and power bus, or to interface with a Master power/comm PCB for use in a larger satellite as in the case of PowerCell's flight on Eu:CROPIS.

  4. Evolution of the Tetrapyrrole Biosynthetic Pathway in Secondary Algae: Conservation, Redundancy and Replacement.

    Directory of Open Access Journals (Sweden)

    Jaromír Cihlář

    Full Text Available Tetrapyrroles such as chlorophyll and heme are indispensable for life because they are involved in energy fixation and consumption, i.e. photosynthesis and oxidative phosphorylation. In eukaryotes, the tetrapyrrole biosynthetic pathway is shaped by past endosymbioses. We investigated the origins and predicted locations of the enzymes of the heme pathway in the chlorarachniophyte Bigelowiella natans, the cryptophyte Guillardia theta, the "green" dinoflagellate Lepidodinium chlorophorum, and three dinoflagellates with diatom endosymbionts ("dinotoms": Durinskia baltica, Glenodinium foliaceum and Kryptoperidinium foliaceum. Bigelowiella natans appears to contain two separate heme pathways analogous to those found in Euglena gracilis; one is predicted to be mitochondrial-cytosolic, while the second is predicted to be plastid-located. In the remaining algae, only plastid-type tetrapyrrole synthesis is present, with a single remnant of the mitochondrial-cytosolic pathway, a ferrochelatase of G. theta putatively located in the mitochondrion. The green dinoflagellate contains a single pathway composed of mostly rhodophyte-origin enzymes, and the dinotoms hold two heme pathways of apparently plastidal origin. We suggest that heme pathway enzymes in B. natans and L. chlorophorum share a predominantly rhodophytic origin. This implies the ancient presence of a rhodophyte-derived plastid in the chlorarachniophyte alga, analogous to the green dinoflagellate, or an exceptionally massive horizontal gene transfer.

  5. Phytoplankton community of Lake Baskandi anua, Cachar District, Assam, North East India – An ecological study

    Directory of Open Access Journals (Sweden)

    Devi M.B.

    2016-01-01

    Full Text Available Diversity, relative abundance and dominance of phytoplankton community of the Lake Baskandi anua, an oxbow lake of Assam, North east India were studied during December 2009 to November 2010. Chlorophyll content and biomass of phytoplankton along with physico-chemical properties of water of the lake were also estimated. The lake is covered with Hydrilla and other macrophytes like Eichhornia, Trapa, Altrnenthera, Polygonum, Ludwizia sp., etc. Seasonal fluctuations of 41 genera of phytoplankton, belonging to 5 groups (Chlorophyceae, Cyanobacteria, Bacillariophyceae, Euglenophyceae and Dinophyceae were encountered in the lake. Chlorophyceae was found to be highest in winter, Cyanobacteria and Euglena in monsoon and Bacillariophyceae in pre monsoon. According to Engelmann’s scale, Spirogyra indica was found eudominant followed by 10 dominant, 24 subdominant and 20 recedent species. Chlorophyll- a content of phytoplankton varied from 14.18 to 33.89 μg·L-1, during the study period. One way analysis of variance (ANOVA revealed significant seasonal variation in physico-chemical properties of water like Water temperature, pH, Conductivity, Dissolved oxygen, Free CO2, Total alkalinity, Calcium, Chloride, Nitrate and Ammonia. Relationship between phytoplankton group assemblage and environmental variables were explored by the ordination method CCA (Canonical Correspondence Analysis.

  6. Species selection for the design of gold nanobioreactor by photosynthetic organisms

    Energy Technology Data Exchange (ETDEWEB)

    Dahoumane, Si Amar [Universite Paris Diderot, Interfaces, Traitements, Organisation et Dynamique des Systemes (ITODYS), UMR 7086, CNRS, Sorbonne Paris Cite (France); Djediat, Chakib; Yepremian, Claude; Coute, Alain [Museum National d' Histoire Naturelle, Departement RDDM, FRE 3206, USM 505 (France); Fievet, Fernand [Universite Paris Diderot, Interfaces, Traitements, Organisation et Dynamique des Systemes (ITODYS), UMR 7086, CNRS, Sorbonne Paris Cite (France); Coradin, Thibaud, E-mail: thibaud.coradin@upmc.fr [UPMC Universites Paris 06, CNRS, Chimie de la Matiere Condensee de Paris (LCMCP), College de France (France); Brayner, Roberta, E-mail: roberta.brayner@univ-paris-diderot.fr [Universite Paris Diderot, Interfaces, Traitements, Organisation et Dynamique des Systemes (ITODYS), UMR 7086, CNRS, Sorbonne Paris Cite (France)

    2012-06-15

    The design of cell-based bioreactors for inorganic particles formation requires both a better understanding of the underlying processes and the identification of most suitable organisms. With this purpose, the process of Au{sup 3+} incorporation, intracellular reduction, and Au{sup 0} nanoparticle release in the culture medium was compared for four photosynthetic microorganisms, Klebsormidium flaccidum and Cosmarium impressulum green algae, Euglena gracilis euglenoid and Anabaena flos-aquae cyanobacteria. At low gold content, the two green algae show maintained photosynthetic activity and recovered particles (ca. 10 nm in size) are similar to internal colloids, indicating a full biological control over the whole process. In similar conditions, the euglenoid exhibits a rapid loss of biological activity, due to the absence of protective extracellular polysaccharide, but could grow again after an adaptation period. This results in a larger particle size dispersity but larger reduction yield. The cyanobacteria undergo rapid cell death, due to their prokaryotic nature, leading to high gold incorporation rate but poor control over released particle size. Similar observations can be made after addition of a larger gold salt concentration when all organisms rapidly die, suggesting that part of the process is not under biological control anymore but also involves extracellular chemical reactions. Overall, fruitful information on the whole biocrystallogenesis process is gained and most suitable species for further bioreactor design can be identified, i.e., green algae with external coating.

  7. Influence of water chemistry on the distribution of an acidophilic protozoan in an acid mine drainage system at the abandoned Green Valley coal mine, Indiana, USA

    Energy Technology Data Exchange (ETDEWEB)

    Brake, S.S.; Dannelly, H.K.; Connors, K.A.; Hasiotis, S.T. [Indiana State University, Terre Haute, IN (United States). Dept. of Geography Geology & Anthropology

    2001-07-01

    Euglena mutabilis, a benthic photosynthetic protozoan that intracellularly sequesters Fe, is variably abundant in the main effluent channel that contains acid mine drainage (AMD) discharging from the Green Valley coal mine site in western Indiana. Samples of effluent (pH 3.0-4.6) taken from the main channel and samples of contaminated stream water (pH 3.3 to 8.0) collected from an adjacent stream were analyzed to evaluate the influence of water chemistry on E. mutabilis distribution. E. mutabilis communities were restricted to areas containing unmixed effluent with the thickest (up to 3 mm) benthic communities residing in effluent containing high concentrations of total Fe (up to 12110 mg/l), SO{sub 4}(up to 2940 mg/l), Al (up to 1846 mg/l), and Cl (up to 629 mg/l). Communities were also present, but much less abundant, in areas with effluent containing lower concentrations of these same constituents. In effluent where SO{sub 4} was most highly concentrated, E. mutabilis was largely absent, suggesting that extremely high concentrations of SO{sub 4} may have an adverse effect on this potentially beneficial Fe-mediating, acidophilic protozoan.

  8. On the natural diet of Daphnia laevis in the eutrophic Pampulha reservoir (Belo Horizonte, Minas Gerais

    Directory of Open Access Journals (Sweden)

    E. M. ESKINAZI-SANT'ANNA

    Full Text Available The aim of this study was to assess the major food items ingested by adult specimens of Daphnia laevis within the eutrophic Pampulha reservoir in Belo Horizonte, Minas Gerais, Brazil. The gut content was analyzed after addition of sodium hypochlorite and also through the examination of dissected guts under scanning electron microscopy. The results showed that Chlorophyceae was the main food item ingested, representing c. 80.5% of the total ingested food. Moreover, Eutetramorus fottii, Coelastrum pseudomicroporum and Oocystis lacustris, the dominant phytoplankton species within the reservoir, were the most frequent cells found in the gut contents. Euglenophyta also represented an important food item accounting for 15% of the ingested material, including mainly Trachelomonas volvocina and Euglena oxyuris, although less abundant in the reservoir (< 10% of total phytoplankton. Blue-green algae occurred at much lower percentages in the guts than in the phytoplankton. A small amount of undigested Microcystis aeruginosa colonies were also found in the gut content of D. laevis. Scanning electron microscopy results showed that, besides phytoplankton cells, a great amount of abiogenic material was also ingested. The amount of this inorganic material increased considerably in the tract (from 15% to 75% of the gut content, when a peak of D. laevis was observed in the reservoir. Our assumption is that the ingestion of this inorganic material can be a strategy used by D. laevis to obtain additional food supply.

  9. CHANGE OF THE ECOLOGICAL STATE OF UMAGUSINSKOE RESERVOIR AFTER BUILDING

    Directory of Open Access Journals (Sweden)

    Shkundina F.B.

    2016-04-01

    Full Text Available Phytoplankton and hydrochemical indicators Yumaguzinskoye reservoir (South Urals were studied. Chemical composition was sufficiently uniform and characterized by hydrocarbonate magnesium-calcium composition. Phytoplankton sampling and processing carried out by standard methods. Development of Yumaguzinskoye reservoir is characterized by the moderate eutrophication. At present, the situation has improved and consistents with our forecast of 0,95 % of the runoff. It was identified 80 species and intraspecific taxa of algae and cyanobacteria at the highest species diversity of diatoms and green algae in 2012, 2014 and 2015. The dominant species were Chlorella vulgaris Beijer, Kirchniriella obesa (W. West Schimidle, Synechocystis salina Sauv., Peridinum cinctum (O. Mull. Ehr., Merismopedia minima G.Beck, Scenedesmus quandricanda (Turp. Breb in size; Chlorella vulgaris Beijer, Chlamydomonas vulgaris Ehr., Peridinum cinctum (O. Mull. Ehr., Euglena viridis Stein. in biomass. It has been a trend of increasing the number and biomass in 2006-2007 years and a decrease in these indicators in 2012-2015. Downstream water salinity gradually decreases. There is some dilution near the dam. The current state of the phytoplankton indicates the formation of oligotrophic conditions favorable for the formation of a satisfactory quality of water intakes located in the middle reaches of the Belaya river.

  10. Tracking of mercury ions in living cells with a fluorescent chemodosimeter under single- or two-photon excitation

    Energy Technology Data Exchange (ETDEWEB)

    Lu Zhoujun [State Key Lab for Advanced Photonic Materials and Devices, Department of Optical Science and Engineering, Fudan University, Shanghai 200433 (China); Wang Peinan [State Key Lab for Advanced Photonic Materials and Devices, Department of Optical Science and Engineering, Fudan University, Shanghai 200433 (China)], E-mail: pnwang@fudan.edu.cn; Zhang Yu [State Key Lab for Advanced Photonic Materials and Devices, Department of Optical Science and Engineering, Fudan University, Shanghai 200433 (China); Chen Jiyao; Zhen Shen [Department of Physics, Fudan University, Shanghai 200433 (China); Leng Bing; Tian He [Labs for Advanced Materials and Institute of Fine Chemicals, East China University of Science and Technology, Shanghai 200237 (China)

    2007-08-10

    Tracking of Hg{sup 2+} in solutions as well as in living cells was conducted with a fluorescent chemodosimeter by measuring the spectral shift of its fluorescence under single- or two-photon excitation. The spectral hypsochromic shifts of this chemodosimeter when reacting with Hg{sup 2+} were found to be about 50 nm in acetonitrile/water solutions and 32 nm in Euglena gracilis 277 living cells. This chemodosimeter shows high sensitivity and selectivity, and is not influenced by the pH values. It can signal Hg{sup 2+} in solutions down to the ppb range under either single-photon excitation (SPE) at 405 nm or two-photon excitation (TPE) at 800 nm. However, with low cellular chemodosimeter concentrations, the SPE spectra were disturbed by the auto-fluorescence from the native fluorophore in the cell, while the TPE spectra were still of high quality since the two-photon absorption cross section of this chemodosimeter is much larger than that of the native fluorophores in the cell.

  11. Study of metal bioaccumulation by nuclear microprobe analysis of algae fossils and living algae cells

    Energy Technology Data Exchange (ETDEWEB)

    Guo, P.; Wang, J.; Li, X.; Zhu, J. E-mail: iamzhu@hotmail.com; Reinert, T.; Heitmann, J.; Spemann, D.; Vogt, J.; Flagmeyer, R.-H.; Butz, T

    2000-03-01

    Microscopic ion-beam analysis of palaeo-algae fossils and living green algae cells have been performed to study the metal bioaccumulation processes. The algae fossils, both single cellular and multicellular, are from the late Neoproterozonic (570 million years ago) ocean and perfectly preserved within a phosphorite formation. The biosorption of the rare earth element ions Nd{sup 3+} by the green algae species euglena gracilis was investigated with a comparison between the normal cells and immobilized ones. The new Leipzig Nanoprobe, LIPSION, was used to produce a proton beam with 2 {mu}m size and 0.5 nA beam current for this study. PIXE and RBS techniques were used for analysis and imaging. The observation of small metal rich spores (<10 {mu}m) surrounding both of the fossils and the living cells proved the existence of some specific receptor sites which bind metal carrier ligands at the microbic surface. The bioaccumulation efficiency of neodymium by the algae cells was 10 times higher for immobilized algae cells. It confirms the fact that the algae immobilization is an useful technique to improve its metal bioaccumulation.

  12. The influence of aquatic macrophytes on distribution and feeding habit of two Asplanchna species (A. priodonta and A. herrickii in shallow wetlands, South Korea

    Directory of Open Access Journals (Sweden)

    Jong-Yun Choi

    2014-06-01

    Full Text Available We tested the hypothesis that the spatial distribution and diet composition of Asplanchna species might be affected by the presence of aquatic macrophytes in 33 wetlands in South Korea. We estimated the densities of Asplanchna and other rotifer and crustacean, together with environmental parameters, in both vegetated and open water zones, from May to June 2011. In the present study, two species of Asplanchna, A. priodonta and A. herrickii, were observed and significantly more abundant in open water zones lacking macrophytes. In particular, the density of A. priodonta was higher than that of A. herrickii, and the density of A. priodonta was strongly positively correlated with the area of open water. In addition, gut content analysis was used to determine their dietary preferences, with the finding that there was apparent differentiation in food source utilisation between the two Asplanchna species; A. priodonta consumed some protozoa, phytoplankton, and exclusively pelagic rotifer, while A. herrickii consumed primarily Euglena. In particular, Keratella and Polyarthra were most commonly consumed by A. priodonta in open water. Macrophytes represent a suitable habitat for epiphytic rotifer but not for pelagic rotifer; this characteristic drives pelagic rotifer such as Asplanchna towards open water and may be responsible for the significant negative correlation that we observed between macrophyte and Asplanchna densities.

  13. Production of microscopic algae for its consequent use as aviation fuel

    Energy Technology Data Exchange (ETDEWEB)

    Maekawa, T.; Akamatsu, N. [Research Inst. of Tsukuba Bio-tech Corp., Ibaraki (Japan); Jia, J.; Intabon, K. [Tsukuba Univ., Ibaraki (Japan); Terazawa, Y. [Nakamura Gakuen Univ. Fukuoka (Japan). Nourishment Science Dept.

    2010-07-01

    There is a large market for aviation fuel in Japan's aviation industry whose annual demand for aviation fuel is 12 million KL. In this study, a biofuel was produced from microscopic algae for use as jet fuel at an industrial scale. In order to comply with the cap-and-trade environmental policy of the European Union, algal oil as a biomass fuel must represent 3 per cent , 5 per cent and 10 per cent of total annual demand by 2011, 2013, and 2020, respectively. The microscopic algae Euglena gracilis was used in this study. Its lipid concentration was about 20 per cent. The extraction residue contains a high-density protein that can be used in animal feed. The electricity required to supply the light needed to cultivate E. gracilis ranged from 180 MW to 900 MW for 4 L of bioreactor medium. The maximum quantity of photons needed in the cultivation liquid was determined along with the light intensity required during the start up period for the cultivation of E. gracilis. Continuous harvesting in high yields of E. gracilis kept the density of the dry matter of E. gracilis between 0.5 g/l to1.5 g/l. It was concluded that the liquid used to cultivate E. gracilis should be sterilized by maintaining a low pH level by blowing carbon dioxide into the liquid.

  14. Toxoplasma gondii: further studies on the subpellicular network

    Directory of Open Access Journals (Sweden)

    Leandro Lemgruber

    2009-08-01

    Full Text Available The association of the pellicle with cytoskeletal elements in Toxoplasma gondii allows this parasite to maintain its mechanical integrity and makes possible its gliding motility and cell invasion. The inner membrane complex (IMC resembles the flattened membrane sacs observed in free-living protozoa and these sacs have been found to associate with cytoskeletal proteins such as articulins. We used immunofluorescence microscopy to characterise the presence and distribution of plateins, a sub-family of articulins, in T. gondii tachyzoites. A dispersed labelling of the whole protozoan body was observed. Electron microscopy of detergent-extracted cells revealed the presence of a network of 10 nm filaments distributed throughout the parasite. These filaments were labelled with anti-platein antibodies. Screening the sequenced T. gondii genome, we obtained the sequence of an IMC predicted protein with 25% identity and 42% similarity to the platein isoform alpha 1 present in Euplotes aediculatus, but with 42% identity and 55% similarity to that found in Euglena gracilis, suggesting strong resemblance to articulins.

  15. Ecological effects of various toxic agents on the aquatic microcosm in comparison with acute ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Fuma, S. E-mail: fuma@nirs.go.jp; Ishii, N.; Takeda, H.; Miyamoto, K.; Yanagisawa, K.; Ichimasa, Y.; Saito, M.; Kawabata, Z.; Polikarpov, G.G

    2003-07-01

    The purpose of this study was an evaluation of the effect levels of various toxic agents compared with acute doses of ionizing radiation for the experimental model ecosystem, i.e., microcosm mimicking aquatic microbial communities. For this purpose, the authors used the microcosm consisting of populations of the flagellate alga Euglena gracilis as a producer, the ciliate protozoan Tetrahymena thermophila as a consumer and the bacterium Escherichia coli as a decomposer. Effects of aluminum and copper on the microcosm were investigated in this study, while effects of {gamma}-rays, ultraviolet radiation, acidification, manganese, nickel and gadolinium were reported in previous studies. The microcosm could detect not only the direct effects of these agents but also the community-level effects due to the interspecies interactions or the interactions between organisms and toxic agents. The authors evaluated doses or concentrations of each toxic agent which had the following effects on the microcosm: (1) no effects; (2) recognizable effects, i.e., decrease or increase in the cell densities of at least one species; (3) severe effects, i.e., extinction of one or two species; and (4) destructive effects, i.e., extinction of all species. The resulting effects data will contribute to an ecological risk assessment of the toxic agents compared with acute doses of ionizing radiation.

  16. Potential antimutagenic activity of berberine, a constituent of Mahonia aquifolium

    Directory of Open Access Journals (Sweden)

    Tóth Jaroslav

    2002-02-01

    Full Text Available Abstract Background As part of a study aimed at developing new pharmaceutical products from natural resources, the purpose of this research was twofold: (1 to fractionate crude extracts from the bark of Mahonia aquifolium and (2 to evaluate the strength of the antimutagenic activity of the separate components against one of the common direct-acting chemical mutagens. Methods The antimutagenic potency was evaluated against acridine orange (AO by using Euglena gracilis as an eukaryotic test model, based on the ability of the test compound/fraction to prevent the mutagen-induced damage of chloroplast DNA. Results It was found that the antimutagenicity of the crude Mahonia extract resides in both bis-benzylisoquinoline (BBI and protoberberine alkaloid fractions but only the protoberberine derivatives, jatrorrhizine and berberine, showed significant concentration-dependent inhibitory effect against the AO-induced chloroplast mutagenesis of E. gracilis. Especially berberine elicited, at a very low dose, remarkable suppression of the AO-induced mutagenicity, its antimutagenic potency being almost three orders of magnitude higher when compared to its close analogue, jatrorrhizine. Possible mechanisms of the antimutagenic action are discussed in terms of recent literature data. While the potent antimutagenic activity of the protoberberines most likely results from the inhibition of DNA topoisomerase I, the actual mechanism(s for the BBI alkaloids is hard to be identified. Conclusions Taken together, the results indicate that berberine possesses promising antimutagenic/anticarcinogenic potential that is worth to be investigated further.

  17. On the natural diet of Daphnia laevis in the eutrophic Pampulha reservoir (Belo Horizonte, Minas Gerais

    Directory of Open Access Journals (Sweden)

    ESKINAZI-SANT'ANNA E. M.

    2002-01-01

    Full Text Available The aim of this study was to assess the major food items ingested by adult specimens of Daphnia laevis within the eutrophic Pampulha reservoir in Belo Horizonte, Minas Gerais, Brazil. The gut content was analyzed after addition of sodium hypochlorite and also through the examination of dissected guts under scanning electron microscopy. The results showed that Chlorophyceae was the main food item ingested, representing c. 80.5% of the total ingested food. Moreover, Eutetramorus fottii, Coelastrum pseudomicroporum and Oocystis lacustris, the dominant phytoplankton species within the reservoir, were the most frequent cells found in the gut contents. Euglenophyta also represented an important food item accounting for 15% of the ingested material, including mainly Trachelomonas volvocina and Euglena oxyuris, although less abundant in the reservoir (< 10% of total phytoplankton. Blue-green algae occurred at much lower percentages in the guts than in the phytoplankton. A small amount of undigested Microcystis aeruginosa colonies were also found in the gut content of D. laevis. Scanning electron microscopy results showed that, besides phytoplankton cells, a great amount of abiogenic material was also ingested. The amount of this inorganic material increased considerably in the tract (from 15% to 75% of the gut content, when a peak of D. laevis was observed in the reservoir. Our assumption is that the ingestion of this inorganic material can be a strategy used by D. laevis to obtain additional food supply.

  18. A more desirable balanced polyunsaturated fatty acid composition achieved by heterologous expression of Δ15/Δ4 desaturases in mammalian cells.

    Directory of Open Access Journals (Sweden)

    Guiming Zhu

    Full Text Available Arachidonic (ARA, eicosapentaenoic (EPA and docosahexaenoic (DHA acids are the most biologically active polyunsaturated fatty acids, but their biosyntheses in mammals are very limited. The biosynthesis of DHA is the most difficult, because this undergoes the Sprecher pathway--a further elongation step from docosapentaenoic acid (DPA, a Δ6-desaturase acting on a C24 fatty acid substrate followed by a peroxisomal chain shortening step. This paper reports the successful heterologous expression of two non-mammalian genes (with modification of codon usage, coding for Euglena gracilis Δ4-desaturase and Siganus canaliculatus Δ4-desaturase respectively, in mammalian cells (HEK293 cell line. Both of the Δ4-desaturases can efficiently function, directly converting DPA into DHA. Moreover, the cooperation of the E. gracilis Δ4-desaturase with C. elegans Δ15-desaturase (able to convert a number of n-6 PUFAs to their corresponding n-3 PUFAs in transgenic HEK293 cells made a more desirable fatty acid composition--a drastically reduced n-6/n-3 PUFAs ratio and a high level of DHA as well as EPA and ARA. Our findings provide a basis for potential applications of the gene constructs for expression of Δ15/Δ4-desaturases in transgenic livestock to produce such a fatty acid profile in the related products, which certainly will bring benefit to human health.

  19. Biochemical characterization of a mitochondrial-like organelle from Blastocystis sp. subtype 7.

    Science.gov (United States)

    Lantsman, Yelena; Tan, Kevin S W; Morada, Mary; Yarlett, Nigel

    2008-09-01

    A mitochondrion-like organelle (MLO) was isolated from isotonic homogenates of Blastocystis. The organelle sedimented at 5000 g for 10 min, and had an isopycnic density in sucrose of 1.2 g ml(-1). Biochemical characterization enabled the demonstration of several key enzymes that allowed the construction of a metabolic pathway consisting of an incomplete Krebs cycle linked to the oxygen-sensitive enzymes pyruvate : NADP(+) oxidoreductase (PNO), acetate : succinate CoA transferase (ASCT) and succinate thiokinase (STK), which cumulatively are responsible for recycling CoA and generating ATP. The organelle differs from typical aerobic mitochondria in possessing an oxygen-sensitive PNO that can use FAD(+) or FMN(+) as electron acceptor but is inactive with NAD(+), Spinacia oleracea ferredoxin or Clostridium pasteurianum ferredoxin. A gene with 77 % sequence similarity to the PNO mitochondrion precursor cluster from Euglena gracilis sp[Q941N5] was identified in the Blastocystis genome database. A second cluster with 56 % sequence similarity to the pyruvate : ferredoxin oxidoreductase (PFOR) from Trichomonas vaginalis was also identified, which is in agreement with the concept that the PNO gene arose through the fusion of a eubacterial gene for PFOR with the gene for NADPH : cytochrome p450 reductase. Hydrogenase activity was not detected under the conditions used in this study. The Blastocystis oranelle therefore demonstrates significant biochemical differences from traditional mitochondria and hydrogenosomes, but possesses features of both. Based upon the results of this study, the Blastocystis organelle falls into the category of a MLO.

  20. Characterization of a bacterial laminaribiose phosphorylase.

    Science.gov (United States)

    Kitaoka, Motomitsu; Matsuoka, Yasuyuki; Mori, Kiyotaka; Nishimoto, Mamoru; Hayashi, Kiyoshi

    2012-01-01

    Bacterial laminaribiose phosphorylase (LBP(bac)) was first identified and purified from cell-free extract of Paenibacillus sp. YM-1. It phosphorolyzed laminaribiose into α-glucose 1-phosphate and glucose, but did not phosphorolyze other glucobioses. It slightly phosphorolyzed laminaritriose and higher laminarioligosaccharides. The specificity of the degree of polymerization of the substrate was clearly different from that of the enzyme of Euglena gracilis (LBP(Eug)): LBP(bac) was more specific to laminaribiose than LBP(Eug). It showed acceptor specificity in reverse phosphorolysis similar to LBP(Eug). Cloning of the gene encoding LBP(bac) (lbpA) has revealed that LBP(bac) is a member of the glucoside hydrolase family 94, which includes cellobiose phosphorylase, cellodextrin phosphorylase, and N,N'-diacetylchitobiose phosphorylase. The genes that encode the components of an ATP-binding cassette sugar transporter specific to laminarioligosaccharides were identified upstream of lbpA, suggesting that the role of LBP(bac) is to utilize laminaribiose generated outside the cell. This role is different from that of LBP(Eug), which participates in the utilization of paramylon, the intracellular storage 1,3-β-glucan.

  1. Photosynthetic performance of phototrophic biofilms in extreme acidic environments.

    Science.gov (United States)

    Souza-Egipsy, Virginia; Altamirano, María; Amils, Ricardo; Aguilera, Angeles

    2011-08-01

    Photosynthesis versus irradiance curves and their associated photosynthetic parameters from different phototrophic biofilms isolated from an extreme acidic environment (Río Tinto, SW, Spain) were studied in order to relate them to their species composition and the physicochemical characteristics of their respective sampling locations. The results indicated that the biofilms are low light acclimated showing a photoinhibition model; only floating communities of filamentous algae showed a light saturation model. Thus, all the biofilms analysed showed photoinhibition over 60 µmol photon m(-2) s(-1) except in the case of Zygnemopsis sp. sample, which showed a light-saturated photosynthesis model under irradiations higher that 200 µmol photon m(-2) s(-1). The highest values of compensation light intensity (I(c)) were showed also by Zygnemosis sp. biofilm (c. 40 µmol photon m(-2) s(-1)), followed by Euglena mutabilis and Chlorella sp. samples (c. 20 µmol photon m(-2) s(-1)). The diatom sample showed the lowest I(c) values (c. 5 µmol photon m(-2) s(-1)). As far as we know this is the first attempt to determine the photosynthetic activity of low pH and heavy metal tolerant phototrophic biofilms, which may give light in the understanding of the ecological importance of these biofilms for the maintenance of the primary production of these extreme and unique ecosystems. © 2011 Society for Applied Microbiology and Blackwell Publishing Ltd.

  2. Oxidation of c-Type Cytochromes by the Membrane-Bound Cytochrome Oxidase (Cytochrome aa(3)) of Blue-Green Algae.

    Science.gov (United States)

    Kienzl, P F; Peschek, G A

    1982-03-01

    Respiratory particles containing an aa(3)-type cytochrome oxidase were prepared from Anacystis nidulans, Synechocystis 6714, Synechococcus lividus, Anabaena variabilis, Nostoc sp. strain MAC, Nostoc muscorum, and Mastigocladus laminosus. Oxidation of c-type cytochromes by membrane preparations of the different blue-green algae was observed using purified cytochromes from horse heart, Candida krusei, tuna, Saccharomyces oviformis, Rhodospirillum rubrum, Rhodospirillum molischianum, Rhodopseudomonas palustris, Rhodocyclus purpureus, Paracoccus denitrificans, Anacystis nidulans, Anabaena variabilis, Euglena gracilis, and Scenedesmus obliquus. Rapid oxidations were consistently observed with the mitochondrial c-type cytochromes (horse heart cytochrome c reacts most rapidly) and with cytochromes c(2) from Rhodopseudomonas palustris and Rhodocyclus purpureus; in contrast, the cytochrome c(2) from Rhodospirillum rubrum and the plastidic cytochromes from E. gracilis and Scendesmus obliquus were inactive with all membrane preparations. All reactions were inhibited by low concentrations of KCN, NaN(3), and CO, and they were activated by Tween 80, thus indicating participation of the terminal oxidase. The results are discussed in view of the spectral similarities between the terminal oxidase of blue-green algae and the mitochondrial aa(3)-type cytochrome oxidase of plants and other eukaryotes.

  3. Algal diversity in flowing waters at an acidic mine drainage "barrens" in central Pennsylvania, USA.

    Science.gov (United States)

    Prasanna, Radha; Ratha, Sachitra Kumar; Rojas, Claudia; Bruns, Mary Ann

    2011-11-01

    Microscopic investigations were undertaken to decipher the diversity in the lotic algal communities from acidic waters (pH 2.4-3.2) flowing overland in sheets and channels at an acid mine drainage (AMD) barrens near Kylertown, PA, USA. Microscopic observations, supplemented with taxonomic keys, aided in identification of the dominant algae, and measurement of carbon from adjacent soils was undertaken. The unicellular protist Euglena sp. was most abundant in slower flowing waters (i.e., pool near point of emergence and surficial flow sheets), while Ulothrix sp. was most abundant in faster flowing water from the central stream channel. A diverse range of unicellular microalgae such as Chlorella, Cylindrocystis, Botryococcus, and Navicula and several filamentous forms identified as Microspora, Cladophora, and Binuclearia were also recorded. The observed high algal diversity may be related to the long duration of AMD flow at this site which has led to the development of adapted algal communities. The comparatively higher carbon content in soil materials adjacent to slower flowing water sampling locations provides evidence for the important role of algae as primary producers in this extreme environment.

  4. Saline landfill leachate disposal in facultative lagoons for wastewater treatment.

    Science.gov (United States)

    Orta de Velasquez, M T; Monje-Ramirez, I; Yañez Noguez, I

    2012-01-01

    This study was carried out to determine the effect of disposing of saline landfill leachates in a Facultative Lagoon Wastewater Treatment Plant (FLWTP). The FLWTP is near a landfill and presents two characteristics: a wastewater influent with low organic matter, and high lagoon salinity due to the soil characteristics. These characteristics made the FLWTP a viable candidate to evaluate the feasibility of adding landfill leachates to the wastewater influent. Different mixtures of leachate with raw wastewater using volumetric ratios of 4%, 6%, and 10% (v/v) were evaluated in facultative lagoon reactors (FLRs). A 10% concentration of leachates in raw wastewater increased BOD5 and COD in the influent from 45 to 110 mg L(-1) and from 219 to 711 mg L(-1), respectively. It was found that the increase in salinity given by the raw wastewater and leachate mixture did not inhibit algae diversity. The types of algae present were Microcystis sp., Merismopedia sp., Euglena sp., Scenedesmus sp., Chlorella, Diatomea and Anacystis sp. However, decreased algae densities were observed, as measured by the decrease in chlorophyll concentration. The results showed that a 100% leachate concentration combined with wastewater did not upset biological treatment in the FLRs. Mean removal efficiencies for BOD5 and COD were 75% and 35%, respectively, giving a final BOD5 lower than 25 mg L(-1). There was also a significant decrease in the leachate heavy metal content when diluted with raw wastewater as result of natural precipitation.

  5. Differences in planktonic microbial communities associated with three types of macrophyte stands in a shallow lake.

    Science.gov (United States)

    Mentes, Anikó; Szabó, Attila; Somogyi, Boglárka; Vajna, Balázs; Tugyi, Nóra; Csitári, Bianka; Vörös, Lajos; Felföldi, Tamás

    2017-11-29

    Little is known about how various substances from living and decomposing aquatic macrophytes affect the horizontal patterns of planktonic bacterial communities. Study sites were located within Lake Kolon, which is a freshwater marsh and can be characterized by open water sites and small ponds with different macrovegetation (Phragmites australis, Nymphea alba and Utricularia vulgaris). Our aim was to reveal the impact of these macrophytes on the composition of the planktonic microbial communities using comparative analysis of environmental parameters, microscopy and pyrosequencing data. Bacterial 16S rRNA gene sequences were dominated by members of phyla Proteobacteria (36-72%), Bacteroidetes (12-33%) and Actinobacteria (5-26%), but the in the anoxic sample the ratio of Chlorobi (54%) was also remarkable. In the phytoplankton community, Cryptomonas sp., Dinobryon divergens, Euglena acus and chrysoflagellates had the highest proportion. Despite the similarities in most of the measured environmental parameters, the inner ponds had different bacterial and algal communities, suggesting that the presence and quality of macrophytes directly and indirectly controlled the composition of microbial plankton. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. Advantages of environmental scanning electron microscopy in studies of microorganisms.

    Science.gov (United States)

    Collins, S P; Pope, R K; Scheetz, R W; Ray, R I; Wagner, P A; Little, B J

    1993-08-01

    Microorganisms, including bacteria, fungi, protozoa, and microalgae, are composed predominantly of water which prohibits direct observation in a traditional scanning electron microscope (SEM). Preparation for SEM requires that microorganisms be fixed, frozen or dehydrated, and coated with a conductive film before observation in a high vacuum environment. Sample preparation may mechanically disturb delicate samples, compromise morphological information, and introduce other artifacts. The environmental scanning electron microscope (ESEM) provides a technology for imaging hydrated or dehydrated biological samples with minimal manipulation and without the need for conductive coatings. Sporulating cultures of three fungi, Aspergillus sp., Cunninghamella sp., and Mucor sp., were imaged in the ESEM to assess usefulness of the instrument in the direct observation of delicate, uncoated, biological specimens. Asexual sporophores showed no evidence of conidial displacement or disruption of sporangia. Uncoated algal cells of Euglena gracilis and Spirogyra sp. were examined using the backscatter electron detector (BSE) and the environmental secondary electron detector (ESD) of the ESEM. BSE images had more clearly defined intracellular structures, whereas ESD gave a clearer view of the surface E. gracilis cells fixed with potassium permanganate, Spirogyra sp. stained with Lugol's solution, and Saprolegnia sp. fixed with osmium tetroxide were compared using BSE and ESD to demonstrate that cellular details could be enhanced by the introduction of heavy metals. The effect of cellular water on signal quality was evaluated by comparing hydrated to critical point dried specimens.

  7. Studies on the phytoplankton populations and physico-chemical conditions of treated sewage discharged into Lake Manzala in Egypt.

    Science.gov (United States)

    el-Naggar, M E; Shaaban-Dessouki, S A; Abdel-Hamid, M I; Aly, E M

    1998-04-01

    Over a full year, the phytoplankton populations and physico-chemical conditions of treated sewage discharged into Lake Manzala in Egypt were investigated. Sixty-seven species of algae were identified, 18 Cyanophyta (Cyanobacteria), 19 Chlorophyta, 21 Bacillariophyta, 6 Euglenophyta, 2 Cryptophyta and one species Pyrrhophyta. Nitzschia (6 spp.), Scenedesmus (6 spp.), Navicula (4 spp.), Oscillatoria (4 spp.) and Euglena (4 spp.) were the most common genera. A remarkable seasonal variation in species composition and standing crop of the phytoplankton populations was noted during the study. The total phytoplankton standing crop appeared to be mainly dependent on the growth of certain species viz., Oscillatoria chalybea, O. princepes, O. tenuis, Microcystis aeruginosa, Anabaena constricta (Cyanophyta), Nitzschia obtusa, Bacillaria paradoxa, Cocconeis placentula, Cyclotella meneghiniana (Bacillariophyta), Pandorina morum, Volvox sp. (Chlorophyta) and Phacus curvicauda (Euglenophyta). The continuous presence of Anabaena constricta and Nitzschia palea was recorded in the treated sewage. The least represented algal divisions were Pyrrhophyta and Cryptophyta, both in terms of quality and quantity. The data indicate that the secondary effluents were unstable in their chemical features and grossly polluted. Therefore, the treatment systems must treat the discharged sewage to a tertiary level before discharging into Lake Manzala.

  8. [Bioinformatics studies on photosynthetic system genes in cyanobacteria and chloroplasts].

    Science.gov (United States)

    Shi, Ding-Ji; Zhang, Chao; Li, Shi-Ming; Li, Ci-Shan; Zhang, Peng-Peng; Yang, Ming-Li

    2004-06-01

    This study compared homology of base sequences in genes encoding photosynthetic system proteins of cyanobacteria (Synechocystics sp. PCC6803, Nostoc sp. PCC7120) with these of chloroplasts (from Marchantia Polymorpha, Nicotiana tobacum, Oryza sativ, Euglena gracilis, Pinus thunbergii, Zea mays, Odentella sinesis, Cyanophora paradoxa, Porphyra purpurea and Arabidopsis thaliana) by BLAST method. While the gene sequence of Synechocystics sp. PCC6803 was considered as the criterion (100%) the homology of others were compared with it. Among the genes for photosystem I, psaC homology was the highest (90.14%) and the lowest was psaJ (52.24%). The highest ones were psbD (83.71%) for photosystem II, atpB (79.58%) for ATP synthase and petB (81.66%) for cytochrome b6/f complex. The lowest ones were psbN (49.70%) for photosystem II, atpF (26.69%) for ATP synthase and petA (55.27%) for cytochrome b6/f complex. Also, this paper discussed why the homology of gene sequences was the highest or the lowest. No report has been published and this bioinformatics research may provide some evidences for the origin and evolution of chloroplasts.

  9. Arsenite response in Coccomyxa sp. Carn explored by transcriptomic and non-targeted metabolomic approaches.

    Science.gov (United States)

    Koechler, Sandrine; Bertin, Philippe N; Plewniak, Frédéric; Baltenweck, Raymonde; Casiot, Corinne; Heipieper, Hermann J; Bouchez, Olivier; Arsène-Ploetze, Florence; Hugueney, Philippe; Halter, David

    2016-04-01

    Arsenic is a toxic metalloid known to generate an important oxidative stress in cells. In the present study, we focused our attention on an alga related to the genus Coccomyxa, exhibiting an extraordinary capacity to resist high concentrations of arsenite and arsenate. The integrated analysis of high-throughput transcriptomic data and non-targeted metabolomic approaches highlighted multiple levels of protection against arsenite. Indeed, Coccomyxa sp. Carn induced a set of transporters potentially preventing the accumulation of this metalloid in the cells and presented a distinct arsenic metabolism in comparison to another species more sensitive to that compound, i.e. Euglena gracilis, especially in regard to arsenic methylation. Interestingly, Coccomyxa sp. Carn was characterized by a remarkable accumulation of the strong antioxidant glutathione (GSH). Such observation could explain the apparent low oxidative stress in the intracellular compartment, as suggested by the transcriptomic analysis. In particular, the high amount of GSH in the cell could play an important role for the tolerance to arsenate, as suggested by its partial oxidation into oxidized glutathione in presence of this metalloid. Our results therefore reveal that this alga has acquired multiple and original defence mechanisms allowing the colonization of extreme ecosystems such as acid mine drainages. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  10. Formation of the chlorophyll precursor delta-aminolevulinic acid in cyanobacteria requires aminoacylation of a tRNAGlu species.

    Science.gov (United States)

    O'Neill, G P; Peterson, D M; Schön, A; Chen, M W; Söll, D

    1988-09-01

    In the chloroplasts of higher plants and algae, the biosynthesis of the chlorophyll precursor delta-aminolevulinic acid (ALA) involves at least three enzymes and a tRNA species. Here we demonstrate that in cell extracts of the unicellular cyanobacterium Synechocystis sp. strain PCC 6803 ALA was formed from glutamate in a series of reactions in which activation of glutamate by glutamyl-tRNAGlu formation was the first step. The activated glutamate was reduced by a dehydrogenase which displayed tRNA sequence specificity. Fractionation of strain 6803 tRNA by reverse-phase chromatography and polyacrylamide gel electrophoresis yielded two pure tRNAGlu species which stimulated ALA synthesis in vitro. These tRNAs had identical primary sequences but differed in the nucleotide modification of their anticodon. The 6803 tRNAGlu was similar to the sequences of tRNAGlu species or tRNAGlu genes from Escherichia coli and from chloroplasts of Euglena gracilis and higher plants. Southern blot analysis revealed at least two tRNAGlu gene copies in the 6803 chromosome. A glutamate-1-semialdehyde aminotransferase, the terminal enzyme in the conversion of glutamate to ALA in chloroplasts, was detected in 6803 cell extracts by the conversion of glutamate-1-semialdehyde to ALA and by the inhibition of this reaction by gabaculin.

  11. OMNIHAB - a controlled environmental system for application in gravitational biology

    Science.gov (United States)

    Anken, Ralf; Hilbig, Reinhard; Anken, Ralf; Lebert, Michael; Häder, Donat

    Several "closed" habitats have been designed in the past for experiments with unicellular organisms as well as with multicellular animals and plants under long-term microgravity. Some of these environmental systems were flown successfully. The bioregenerative C.E.B.A.S.- Minimodul allowed the maintenance of higher plants (Ceratophyllum sp.), mollusks (Biomphalaria glabrata) and fish (swordtail Xiphophorus helleri, cichlid fish Oreochromis mossambicus) under spaceflight conditions (STS-89, STS-90 Neurolab, STS-107). A much simpler and smaller system, the OMEGAHAB, was successfully employed on the FOTON M-3 flight, containing cichlid fish larvae and unicellular algae (Euglena gracilis). Further aquatic habitats are under development (e.g., AquaHab, another aquatic research module especially dedicated to ground based, application-oriented research). These systems tend to be specialized, minimal ecosystems with limited research potential. Therefore, we propose to develop a controlled, multi-modular hardware to increase the diversity of experimental species to be flown together. Currently, a variety of plant and animal species are used as model systems. Combining as many of them as possible (and conducting a most effective sample-sharing among the different working groups) will strongly improve the cost-benefit ratio and thus effectiveness of a space- flight experiment in utilising limited resources at the maximum. The concept of OMNIHAB, an aquatic life support system comprising exchangeable modules, will be presented at the meeting.

  12. Formation of the chlorophyll precursor. gamma. -aminolevulinic acid in cyanobacteria requires aminoacylation of a tRNA sup Glu species. [Synechocystis

    Energy Technology Data Exchange (ETDEWEB)

    O' Nell, G.P.; Peterson, D.M.; Schoen, A., Chen, Minwei; Soell, D. (Yale Univ., New Haven, CT (USA))

    1988-09-01

    In the chloroplasts of higher plants and algae, the biosynthesis of the chlorophyll precursor {gamma}-aminolevulinic acid (ALA) involves at least three enzymes and a tRNA species. Here we demonstrate that in cell extracts of the unicellular cyanobacterium Synechocystis sp. strain PCC 6803 ALA was formed from glutamate in a series of reactions in which activation of glutamate by glutamyl-tRNA{sup Glu} formation was the first step. The activated glutamate was reduced by a dehydrogenase which displayed tRNA sequence specificity. Fractionation of strain 6803 tRNA by reverse-phase chromatography and polyacrylamide gel electrophoresis yielded two pure tRNA{sup Glu} species which stimulated ALA synthesis in vitro. These tRNAs had identical primary sequence but differed in the nucleotide modification of their anticodon. The 6803 tRNA{sup Glu} was similar to the sequence of tRNA{sup Glu} species or tRNA genes from Escherichia coli and from chloroplasts of Euglena gracilis and higher plants. Southern blot analysis revealed at least two tRNA{sup Glu} gene copies in the 6803 chromosome. A glutamate-1-semialdehyde aminotransferase, the terminal enzyme in the conversion of glutamate to ALA in chloroplasts, was detected in 6803 cell extracts by the conversion of glutamate-1-semialdehyde to ALA and by the inhibition of this reaction by gabaculin.

  13. Selection of microalgae suitable for culturing with digestate from methane fermentation.

    Science.gov (United States)

    Khanh, N; Kitaya, Y; Xiao, L; Endo, R; Shibuya, T

    2013-01-01

    The effects ofdigestate on the growth rates of Euglena gracilis, Chlorella vulgaris, and Dunaliella tertiolecta were investigated to select suitable microalgae for culturing with digestate from methane fermentation. Microalgae were cultured in an aqueous solution containing digestate at concentrations of 5%, 10%, 13%, 20%, 40%, 50%, and 100%, and Cramer-Myers (CM) solution as a control, at photosynthetic photon flux densities (PPFDs) of 75-150 micromol m(-2) s(-1) with continuous illumination at 30 degrees C. The number of cells was monitored daily, and specific growth rates (mu) were calculated as cellular multiplication rates. The maximum mu values of these species were greater in appropriate concentrations of digestate than in CM medium. The maximum mu values were 0.047 h(-1) in 10% digestate for E. gracilis, 0.065 h(-1) in 20% digestate for C. vulgaris, and 0.052 h(-1) in 50% digestate for D. tertiolecta at a PPFD of 150 micromol m(-2) s(-1). The mu of D. tertiolecta were 2.5 and 1.1 times higher than those of E. gracilis and C. vulgaris, respectively, in 50% digestate. These results demonstrated that these species could be cultured at high growth rates with diluted methane fermentation sludge and that, among these species, Dunaliella sp. was suitable for culturing at higher concentration of digestate under relatively low-level light conditions.

  14. Diversity of microflora in the gut and casts of tropical composting earthworms reared on different substrates.

    Science.gov (United States)

    Parthasarathi, K; Ranganathan, L S; Anandi, V; Zeyer, Josef

    2007-01-01

    The diversity of fungi, bacteria, yeast, actinomycetes and protozoa were analysed in the gut and casts of Eudrilus eugeniae, Lampito mauritii, Eisenia fetida and Perionyx excavatus, both qualitatively and quantitatively as influenced by different feed substrates like clay loam soil, cowdung and pressmud. While actinomycetes (Streptomyces albus, S. somaliensis, Nocardia asteroides, N. caviae and Saccharomonosporia) were not digested by any of these species of worms, protozoa (Amoeba proteus, A. terricola, Paramecium trichium, Euglena viridis, E. orientalis, Vorticella picta and Trichomonas hominis) and yeast (Candida tropicalis, C. krusei C. albicans and Cryptococcus neoformans) were totally digested. Certain species of fungi (Saksenae vasiformis, Mucor plumbeus, Cladosporium carrionii, C. herbacium, Alternaria sp., Cunninghamella echinulata, Mycetia sterila, Syncephalostrum racemosum, Curvalaria lunata, C. geniculata and Geotrichum candidum) and bacteria (Pseudomonas aeruginosa, Bacterium antitratum, Mima polymorpha, Enterobacter aerogenes, E. cloacae, Proteus vulgaris, P. mirabilis, P. rettgeri, Escherichia coli, Staphylococus citreus, Bacillus subtilis, B. cereus, Enterococci and Micrococci) were completely digested. Certain other species were not digested fungi like Aspergillus fumigatus, A. flavus, A. ochraceous, Trichoderma koningii (except by Eeugeniae), Fusarium moniliforme (except by E. eugeniae) and Rhizopus sp., and bacteria like Klebsiella pneumoniae and Morganella morganii) and these were multiplied during the transit of the organic residues through the gut of worms. The microbial proliferation was more in the casts, due to the environment prevailing--rich in nutrient supply and large surface area available for growth and reproduction of the microbes that lead to enhanced microbial activity and humic acid contents in the casts.

  15. Cytological basis of photoresponsive behavior in a sponge larva.

    Science.gov (United States)

    Leys, S P; Degnan, B M

    2001-12-01

    Ontogenetic changes in the photoresponse of larvae from the demosponge Reneira sp. were studied by analyzing the swimming paths of individual larvae exposed to diffuse white light. Larvae swam upward upon release from the adult, but were negatively phototactic until at least 12 hours after release. The larval photoreceptors are presumed to be a posterior ring of columnar monociliated epithelial cells that possess 120-microm-long cilia and pigment-filled protrusions. A sudden increase in light intensity caused these cilia to become rigidly straight. If the light intensity remained high, the cilia gradually bent over the pigmented vesicles in the adjacent cytoplasm, and thus covered one entire pole of the larva. The response was reversed upon a sudden decrease in light intensity. The ciliated cells were sensitive to changes in light intensity in larvae of all ages. This response is similar to the shadow response in tunicate larvae or the shading of the photoreceptor in Euglena and is postulated to allow the larvae to steer away from brighter light to darker areas, such as under coral rubble-the preferred site of the adult sponge on the reef flat. In the absence of a coordinating system in cellular sponges, the spatial organization and autonomous behavior of the pigmented posterior cells control the rapid responses to light shown by these larvae.

  16. A maturase-encoding group III twintron is conserved in deeply rooted euglenoid species: are group III introns the chicken or the egg?

    Science.gov (United States)

    Doetsch, N A; Thompson, M D; Hallick, R B

    1998-01-01

    The fourth intron of the Euglena gracilis chloroplast photosystem II gene, psbCi4, is a 1,605-bp twintron composed of two group III introns and a coding locus for a 458-aa polypeptide, mat1, located in the internal intron. psbCi4 homologs have been identified in seven euglenoids, including E. myxocylindracea, E. viridis, E. deses, E. pisciformis, Cryptoglena pigra, Eutreptia sp., and Lepocinclis beutschlii. All of the species examined contain both the group III twintron and the mat1 locus, revealing a more widespread occurrence of group III introns than previously known. The L. beutschlii mat1 locus is interrupted by two novel mini-group II introns of 224 and 258 nt, the smallest group II introns yet identified. Reverse transcriptase polymerase chain reaction analysis confirmed the splicing boundaries of the external and internal E. myxocylindracea, E. viridis, and E. deses introns as well as the novel L. beutschlii mat1 introns. As determined by comparative phylogenetic analysis, group III introns contain a structural homolog of group II intron domain VI. The mat1 loci encode peptide motifs characteristic of group II intron maturases. A group III intron-encoded protein whose predicted sequence is similar to group II intron-encoded maturases and a bona fide domain VI within group III introns are compelling evidence for a common ancestor of group II and group III introns.

  17. A trilogy on. delta. -aminolevulinic acid biosynthesis in plants and algae: I. Glutamate is the sole precursor to protoheme and heme a in maize. II. The UUC glutamate anticodon is a general feature of the tRNA required for ALA biosynthesis. III. Protein and ALA biosynthesis use the same tRNA

    Energy Technology Data Exchange (ETDEWEB)

    Schneegurt, M.A.

    1989-01-01

    Specifically radiolabeled substrates can be used to determine whether the heme and chlorophyll precursor {delta}-aminolevulinic acid (ALA) is synthesized via the fife-carbon pathway (incorporation from L-1-({sup 14}C)glutamate) or ALA synthase (incorporation from 2-({sup 14}C)glycine). In etiolated maize epicotyl sections, highly purified total cellular protoheme was labeled 29.7 times more effectively by glutamate than by glycine. Mitochondrial heme {alpha} was labeled 4.1 times more effectively by glutamate than by glycine. Cell-free plant and algal preparations require tRNA for the enzymatic conversion of glutamate to ALA. The tRNA required for ALA biosynthesis ahs been shown to contain the UUC glutamate anticodon, as determined by its specific retention through anticodon:anticodon interactions by tRNA{sup Phe(GAA)}-acrylamide. A fraction that was highly enriched in the RNA which supported ALA formation was obtained by affinity chromatography of RNA extracts from Chlorella vulgaris, Euglena garcilis, Cyanidium caldarium, Synechocystis, sp. PCC 6803, pea, and spinach. Other glutamate-accepting RNAs that were not retained by the affinity column were ineffective in supporting ALA formation.

  18. Abundance, food habits, and breeding season of exotic T ilapia zillii and native O reochromis niloticus L. fish species in Lake Zwai , Ethiopia

    Directory of Open Access Journals (Sweden)

    Padanillay C. Prabu

    2008-05-01

    Full Text Available Relative abundance, diet and breeding season overlap in the reproduction of exotic Tilapia zillii and native Oreochromis niloticus in Lake Zwai were studied from samples collected over 12 months. Younger fish of both species collected were also evaluated for food composition.Food items from stomachs of both species were collected and analysed using the frequency of occurrence method. In terms of number, T. zillii dominated O. niloticus at the sampling sites. In both species, macrophytes, detritus, blue green algae, diatoms, green algae, Ceratium, Euglena,and Phacus constituted foods of plant origin, whereas chironomid larvae, Copepoda, Cladocera,Rotifera, Nematoda, fish eggs, and fish scales constituted foods of animal origin. Foods of the latter type such as Ephemeroptera and mollusks were also noted in the diet of adult T. zillii.Despite the extensive overlap in food habits of the two species, however, the food items were found in the diet of the species with different average percentage frequencies of occurrence. The level of gonad maturation and gonadosomatic index (GSI values showed that in Lake Zwai breeding was year-round for both T. zillii and O. niloticus, with a peak during April-September and February-August respectively, indicating extended breeding season overlap in reproduction. The two species were always found together in the catches from the sampling sites, which indicated some niche overlap between them.

  19. Assessing Transformations of Algal Organic Matter in the Long-Term: Impacts of Humification-Like Processes

    Directory of Open Access Journals (Sweden)

    Maud Leloup

    2015-08-01

    Full Text Available Algae and cyanobacteria are important contributors to the natural organic matter (NOM of eutrophic water resources. The objective of this work is to increase knowledge on the modifications of algal organic matter (AOM properties in the long term to anticipate blooms footprint in such aquatic environments. The production of AOM from an alga (Euglena gracilis and a cyanobacteria (Microcystis aeruginosa was followed up and characterized during the stationary phase and after one year and four months of cultivation, in batch experiments. Specific UV absorbance (SUVA index, organic matter fractionation according to hydrophobicity and apparent molecular weight were combined to assess the evolution of AOM. A comparison between humic substances (HS mainly derived from allochthonous origins and AOM characteristics was performed to hypothesize impacts of AOM transformation processes on the water quality of eutrophic water resources. Each AOM fraction underwent a specific evolution pattern, depending on its composition. Impacts of humification-like processes were predominant over release of biopolymers due to cells decay and led to an increase in the hydrophobic compounds part and molecular weights over time. However, the hydrophilic fraction remained the major fraction whatever the growth stage. Organic compounds generated by maturation of these precursors corresponded to large and aliphatic structures.

  20. Preliminary study on applicability of microsatellite DNA primers from parasite protozoa Trypanosoma cruzi in free-living protozoa

    Science.gov (United States)

    Zhang, Wenjing; Yu, Yuhe; Shen, Yunfen; Miao, Wei; Feng, Weisong

    2004-04-01

    In this paper, we took the lead in studying on specificity of the microsatellite DNA loci and applicability of microsatellite DNA primers in protozoa. In order to study characters of microsatellites in free-living protozoa, eight microsatellite loci primers developed from Trypanosoma cruzi (MCLE01, SCLE10, MCLE08, SCLE11, MCLF10, MCLG10, MCL03, MCL05) were employed to amplify microsatellite in four free-living protozoa, including Bodo designis, Euglena gracilis FACHB848, Paramecium bruzise and Tetrahymena thermophila BF1. In the amplification systems of P. bruzise, four loci (SCLE10, SCLE11, MCLF10, MCL03) were amplified successfully, and four amplification fragments were in proper size. In genome of E. gracilis FACHB848, five of eight primers brought five clear amplification bands. In B. designis, three (No.4, 5 and 7) of eight loci produced clear and sharp products without stutter bands, whereas no bands appeared in T. thermophila BF1. Further, eight 300 500 bp amplification fragments were cloned and sequenced. Nevertheless, all sequenced products did not contain corresponding microsatellite sequence, although Bodo is in the same order and has the nearest phylogenetic relation with Trypanosoma among these four species. Thus, the microsatellite DNA primers can not be applied among order or more far taxa, and the specificity of microsatellite DNA is very high in protozoa. The results of this study will contribute to our understanding of microsatellite DNA in protozoa.

  1. [Manganese-dependent ribonucleotide reductase of Propionibacterium freudenreichii subsp. shermanii: partial purification, characterization, and role in DNA biosynthesis].

    Science.gov (United States)

    Iordan, E P; Bryukhanov, A L; Dunaevskiĭ, Ia E; Pryanishnikova, N I; Danilova, I V

    2000-01-01

    Like Lactobacillus leichmanii, Rhizobium meliloti, and Euglena gracilis, P. freudenreichii implicates cobalamin in DNA anabolism via adenosylcobalamin-dependent ribonucleotide reductase. However, in the absence of corrinoids, P. freudenreichii is able to synthesize DNA with the involvement of an alternative ribonucleotide reductase, which is independent of adenosylcobalamin. This enzyme is localized in both the cytoplasm (80% of activity) and the cytoplasmic membrane (20% of activity), being loosely bound to the latter. Experiments with crude ribonucleotide reductase isolated from extracts of corrinoid-deficient cells showed that manganese specifically stimulates this enzyme and that it is composed of two protein subunits, a feature that is typical of all metal-containing reductases activated by molecular oxygen. Low concentrations of manganese ions enhanced DNA synthesis in corrinoid-deficient manganese-limited cells. This effect was prevented by the addition of 80 mM hydroxyurea, a specific inhibitor of metal-containing aerobic ribonucleotide reductases. It was concluded that, in adenosylcobalamin-deficient P. freudenreichii cells, DNA synthesis is provided with deoxyribosyl precursors through the functioning of manganese-dependent aerobic ribonucleotide reductase composed of two subunits.

  2. Temporal variability of intertidal benthic metabolism under emersed conditions in an exposed sandy beach (Wimereux, eastern English Channel, France)

    Science.gov (United States)

    Spilmont, N.; Migné, A.; Lefebvre, A.; Artigas, L. F.; Rauch, M.; Davoult, D.

    2005-02-01

    Benthic community metabolism during emersion was measured in a three-year survey by monitoring CO 2 fluxes in benthic chambers on an exposed sandy beach of the eastern English Channel (Wimereux, France). The three-year chronology of variations in benthic metabolism was characterised by a high variability around a low value for gross community primary production (GCP: 17.47 ± 40.85 mgC m -2 h -1, mean ± SD) and community respiration (CR: 1.66 ± 1.97 mgC m -2 h -1, mean ± SD). Although benthic metabolism remained low most of the time, some high values of primary production and respiration were occasionally detected. High primary production rates (up to 213.94 mgC m -2 h -1 measured at the end of summer) matched with the development of Euglena sp., together with the occurrence of phytoplanktonic species on the sediment, whereas high community respiration rates were detected at the end of spring on Phaeocystis sp. foam deposits. Community respiration was positively correlated with bacterial abundance, suggesting that CR was mainly supported by microfauna.

  3. Ecological Traits of the Algae-Bearing Tetrahymena utriculariae (Ciliophora) from Traps of the Aquatic Carnivorous Plant Utricularia reflexa.

    Science.gov (United States)

    Šimek, Karel; Pitsch, Gianna; Salcher, Michaela M; Sirová, Dagmara; Shabarova, Tanja; Adamec, Lubomír; Posch, Thomas

    2017-05-01

    Trap fluid of aquatic carnivorous plants of the genus Utricularia hosts specific microbiomes consisting of commensal pro- and eukaryotes of largely unknown ecology. We examined the characteristics and dynamics of bacteria and the three dominant eukaryotes, i.e. the algae-bearing ciliate Tetrahymena utriculariae (Ciliophora), a green flagellate Euglena agilis (Euglenophyta), and the alga Scenedesmus alternans (Chlorophyta), associated with the traps of Utricularia reflexa. Our study focused on ecological traits and life strategies of the highly abundant ciliate whose biomass by far exceeds that of other eukaryotes and bacteria independent of the trap age. The ciliate was the only bacterivore in the traps, driving rapid turnover of bacterial standing stock. However, given the large size of the ciliate and the cell-specific uptake rates of bacteria we estimated that bacterivory alone would likely be insufficient to support its apparent rapid growth in traps. We suggest that mixotrophy based on algal symbionts contributes significantly to the diet and survival strategy of the ciliate in the extreme (anaerobic, low pH) trap-fluid environment. We propose a revised concept of major microbial interactions in the trap fluid where ciliate bacterivory plays a central role in regeneration of nutrients bound in rapidly growing bacterial biomass. © 2016 The Author(s) Journal of Eukaryotic Microbiology © 2016 International Society of Protistologists.

  4. Effects of 2,4-dichlorophenoxyacetic acid on Kentucky algae: simultaneous laboratory and field toxicity testings.

    Science.gov (United States)

    Kobraei, M E; White, D S

    1996-11-01

    2,4-D was applied to a cove in Kentucky Lake which was highly infested with Myriophllum spicatum (Eurasian watermilfoil). Effects of 2,4-D on nontarget algal communities were monitored concurrently in the field and in laboratory microcosms for eight days. Results indicated that indirect effects of water temperature and increased nutrient concentrations due to lysis in milfoil plants may be more important in the field community dominated by Chlorophyta, Pyrrhophyta, and Bacillariophyta. 2,4-D applied at the label-recommended rate of 2 mg/L or less stimulated total community growth in both laboratory and field indicating a possible hormonal effect of 2,4-D on algae. Reduced community growth and metabolism at high laboratory concentrations of 100 mg/L and 1000 mg/L may indicate an inhibitory effect on photosynthesis and/or respiration in algae. 2,4-D altered the laboratory community structure and function in all concentrations tested. Heterotrophic taxa such as Nitzschia, Euglena, Chlamydomonas, Mallomonas, Anabaena, and Oscillatoria appeared to be least affected by 2,4-D at high concentrations. Scenedesmus, Pediastrum, Characiosiphon, Navicula, Melosira, and Fragilaria appeared to be more sensitive, even in the lowest concentrations.

  5. Spatial and seasonal variation of microphytoplankton community and the correlation with environmental parameters in a hypereutrophic tropical estuary - Maranhão - Brazil

    Directory of Open Access Journals (Sweden)

    Ana Karoline Duarte dos Santos

    Full Text Available Abstract The Bacanga River Estuary has a hydrodynamic behavior and its tidal flow is limited by a dam. It is considered as a hypertrophic environment that receives daily high loads of domestic sewage without treatment. This study aimed to evaluate the spatial and temporal variation of phytoplankton community and its relationship with environmental parameters. Bi-monthly sampling campaigns were carried out at six fixed sites between 2012 and 2013. Physical-chemical and biological parameters were collected (chlorophyll a, phytoplankton composition and abundance to perform the statistical correlations. The results indicate that phytoplankton community is mostly represented by diatoms, with Skeletonema costatum being the dominant species responsible for bloom in April and June of 2012. The dominance of this species is related to the high silicate concentrations, pH and turbidity. Other blooms events as well as the Euglena gracilis and Chlamydomonas sp. were recorded in February 2013, when the total phosphorus concentrations were high and the dissolved oxygen concentrations were higher. Dinoflagellates, cyanobacteria and diatom Thallassiosira sp. were widely distributed in the dry period and highly correlated with salinity, water transparency and nutrients. Hence, the distribution of phytoplankton community is more defined seasonally, rather than spatially.

  6. Tidal Influence on Nutrients Status and Phytoplankton Population of Okpoka Creek, Upper Bonny Estuary, Nigeria

    Directory of Open Access Journals (Sweden)

    O. A. Davies

    2013-01-01

    Full Text Available Okpoka Creek of the Upper Bonny Estuary in the Niger Delta is a tidal creek receiving organic anthropogenic effluents from its environs. The study investigated the influence of tides (low and high on the species composition, diversity, abundance, and distribution of phytoplankton. The surface water and phytoplankton samples were collected monthly from May 2004 to April 2006 at both tides from ten stations according to standard methods. Phytoplankton was identified microscopically. Species diversity was calculated using standard indices. Data analyses were done using analysis of variance, Duncan multiple range, and descriptive statistics. Phosphate and ammonia exceeded international acceptable levels of 0.10 mg/L for natural water bodies indicating high nutrient status, organic matter, and potential pollutants. A total of 158 species of phytoplankton were identified. Diatoms dominated the phytoplankton (62.9%. Diversity indices of diatoms were 1.5±0.03 (Margalef and 0.8±0.01 (Shannon. Pollution-indicator species such as Navicula microcephala, Nitzschia sigma, Synedra ulna (diatoms, Cladophora glomerata (green alga, Euglena acus (euglenoid, Anabeana spiroides (blue-green alga, and Ceratium furca (dinoflagellate were recorded at either only low, high or both tides. Concerted environmental surveillance on Upper Bonny Estuary is advocated to reduce the inflow of pollutants from the Bonny Estuary into this Creek caused by tidal influence.

  7. Microbial Community Structure and Physiological Status of Different Types of Biofilms in an Acid Mine Drainage Site Determined by Phospholipid Analysis

    Science.gov (United States)

    Fang, J.

    2009-12-01

    A unique aspect of the acid mine drainage (AMD) system at the Green Valley coal mine site (GVS) in western Indiana is the abundance of biofims and biolaminates - stromatolites. Three major types of biofilms have been observed from the AMD site: bright green biofilm dominated by the acidophilic, oxygenic photosynthetic protozoan Euglena mutabilis, olive green biofilm of photosynthetic diatom belonging to the genus Nitzschia, and an olive-green to brownish-green filamentous algae-dominated community. These biofilms are either attached to hard substrata of the effluent channel, or floating at the surface of the effluent with abundant oxygen bubbles, with or without encrusted Fe precipitates. We analyzed lipids (hydrocarbons, wax esters, phospholipids, glycolipids, and neutral lipids) to determine the microbial biomass, community structure and physiological status of biofims collected from the GVS site. Distinctive lipid compositions were observed. The attached, red-crusted biofilms were characterized by abundant wax esters, monounsaturated fatty acids, whereas the floating biofilms by phytadienes, phytanol, polyunsaturated n-alkenes, polyunsaturated fatty acids. The accumulation of abundant wax esters probably reflects the readily available carbon and limitation of nutrients to the biofilm. Alternatively, the wax esters may be the biochemical relics of the anaerobic past of the Earth and the detection of these compounds has important implications for the evolution of eukaryotes and the paleo-environmental conditions on early Earth. This type of biochemical machine may have allowed early eukaryotes to survive recurrent anoxic conditions on early Earth.

  8. Development of phytotoxicity tests using wetland species

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, M.K.; Fairchild, J.F. [National Biological Survey, Columbia, MO (United States)

    1994-12-31

    Laboratory phytotoxicity tests used to assess contaminant effects may not effectively protect wetland communities. The authors are developing routine culture and testing methods for selected fresh water plants, that can be used in risk assessments and monitoring of existing wetland systems. Utility of these tests includes evaluating the effects of point or non-point source contamination that may cause water or sediment quality degradation. Selected species include algae (blue-green, green), phytoflagellates (Chlamydomonas, Euglena), and floating or submerged vascular plants (milfoil, coontail, wild celery, elodea, duckweed). Algae toxicity tests range from 2-d, 4-d, and 7 day tests, and macrophyte tests from 10-d to 14 days. Metribuzin and boron are the selected contaminants for developing the test methods. Metribuzin, a triazinone herbicide, is a photosystem 11 inhibitor, and is commonly used for control of grass and broad-leaf plants. As a plant micronutrient, boron is required in very small amounts, but excessive levels can result in phytotoxicity or accumulation. The investigations focus on the influence of important factors including the influence of light quality and quantity, and nutrient media. Reference toxicant exposures with potassium chloride are used to establish baseline data for sensitivity and vitality of the plants. These culture and test methods will be incorporated into recommendations for standard phytotoxicity test designs.

  9. Effects of chronic γ-irradiation on the aquatic microbial microcosm: equi-dosimetric comparison with effects of heavy metals.

    Science.gov (United States)

    Fuma, Shoichi; Kawaguchi, Isao; Kubota, Yoshihisa; Yoshida, Satoshi; Kawabata, Zen'ichiro; Polikarpov, Gennady G

    2012-02-01

    Effects of chronic γ-irradiation were investigated in the aquatic microcosm consisting of flagellate algae Euglena gracilis as producers, ciliate protozoa Tetrahymena thermophila as consumers and bacteria Escherichia coli as decomposers. At 1.1 Gy day(-1), no effects were observed. At 5.1 Gy day(-1), cell densities of E. coli showed a tendency to be lower than those of controls. At 9.7 and 24.7 Gy day(-1), population decrease was observed in E. coli. E. gracilis and T. thermophila died out after temporal population decrease and subsequent population increase in T. thermophila. It is likely that this temporal population increase was an indirect effect due to interspecies interactions. Effect dose rates of γ-rays were compared with effect concentrations of some metals using the radiochemoecological conceptual model and the effect index for microcosm. Comparison of these community-level effects data with environmental exposure data suggests that ionising radiation, gadolinium and dysprosium have low risks to affect aquatic microbial communities while manganese, nickel and copper have considerable risks. Effects of chronic irradiation were smaller than those of acute irradiation, and an acute to chronic ratio was calculated to be 28 by dividing an acute dose by chronic daily dose rate at which the effect index was 10%. This ratio would be useful for community-level extrapolation from acute to chronic radiation effects. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Phytoplankton community and limnology of Chatla floodplain wetland of Barak valley, Assam, North-East India

    Directory of Open Access Journals (Sweden)

    Sultana Laskar H.

    2013-09-01

    Full Text Available Phytoplankton diversity was investigated over a period of two years (2006 to 2008 in Chatla floodplain wetland in Barak valley, Assam, North-East India. Site 1 and site 2 are two inlets and site 3 is a lentic system associated with vegetation cover of Calamus tenuis and Baringtonia acutangula. The floodplain has a unique hydrology because of the presence of different types of habitats (inlets, fisheries, beels and outlets which maintains a network among the floodplains, rivers and streams. Phytoplankton community composition, density and diversity were studied in relation to environmental variables. All the variables were estimated by following standard methods. Phytoplankton was collected by plankton net and quantitative estimation was made by using Sedgwick Rafter counting cell. Phytoplankton community comprised 53 taxa represented by Chlorophyceae (31, Cyanophyceae (11, Bacillariophyceae (7, Euglenophyceae (1 and Dinophyceae (3. Phytoplankton taxa was dominated by Volvox sp., Nostoc sp., Eunotia sp., Navicula sp., Euglena spp. and density was found highest in site 3 and lowest in site 1. Shannon diversity index (H′ for phytoplankton community varied between 2.4 to 2.65 indicating fairly high species diversity. The varying magnitude of correlationship among environmental variables and phytoplankton species density as shown by Canonical correspondence analysis (CCA indicated that some of the environmental variables (water temperature, transparency, rainfall, nitrate and ammonia are the driving factors for governing the phytoplankton species assemblages in Chatla floodplain wetland. Fluctuation of phytoplankton density and community composition in different habitats indicated various niche apportionment as well as anthropogenic influences.

  11. Assessment of the impact of chlorophyll derivatives to control parasites in aquatic ecosystems.

    Science.gov (United States)

    Erzinger, Gilmar Sidnei; Souza, Suellen Carolina; Pinto, Luciano Henrique; Hoppe, Roberto; Del Ciampo, Lineu Fernando; Souza, Ozair; Correia, Cláudia Hack Gumz; Häder, Donat-Peter

    2015-05-01

    Several research groups have studied new biopesticides which are less toxic to the environment and capable of controlling the vectors of parasitic diseases, especially in aquatic ecosystems. Pest control by photodynamic substances is an alternative to chemical or other measures, with chlorophyll and its derivatives as the most studied substances supported by their easy availability and low production costs. The impact of chlorophyll derivatives on four different species, a small crustacean (Daphnia similis), a unicellular alga (Euglena gracilis) and two species of fish (Astyanax bimaculatus and Cyprynus carpio) were tested under short-term conditions. In addition, the effects of long-term exposure were evaluated in D. similis and E. gracilis. In short-term tests, mortality of D. similis (EC50 = 7.75 mg/L) was most strongly affected by chlorophyllin, followed by E. gracilis (EC50 = 12.73 mg/L). The fish species showed a greater resistance documented by their EC50 values of 17.58 and 29.96 mg/L in C. carpio and A. bimaculatus, respectively. A risk quotient is calculated by dividing an estimate of exposure by an estimate of effect. It indicated that chlorophyll derivatives can be applied in nature to control the vectors of parasitic diseases under short-term conditions, but long-term exposure requires new formulations.

  12. Biodiesel Production From Algae to Overcome the Energy Crisis

    Directory of Open Access Journals (Sweden)

    Suliman Khan

    2017-10-01

    Full Text Available The use of energy sources has reached at the level that whole world is relying on it. Being the major source of energy, fuels are considered the most important. The fear of diminishing the available sources thirst towards biofuel production has increased during last decades. Considering the food problems, algae gain the most attention to be used as biofuel producers. The use of crop and food-producing plants will never be a best fit into the priorities for biofuel production as they will disturb the food needs. Different types of algae having the different production abilities. Normally algae have 20%–80% oil contents that could be converted into different types of fuels such as kerosene oil and biodiesel. The diesel production from algae is economical and easy. Different species such as tribonema, ulothrix and euglena have good potential for biodiesel production. Gene technology can be used to enhance the production of oil and biodiesel contents and stability of algae. By increasing the genetic expressions, we can find the ways to achieve the required biofuel amounts easily and continuously to overcome the fuels deficiency. The present review article focusses on the role of algae as a possible substitute for fossil fuel as an ideal biofuel reactant.

  13. Ecología trófica en larvas de Rhinella arenarum (Anura: Bufonidae en agroecosistemas y sus posibles implicaciones para la conservación

    Directory of Open Access Journals (Sweden)

    Clarisa Bionda

    2012-06-01

    Full Text Available El crecimiento de la agricultura produce perdida del habitat natural, con consecuencias para la biodiversidad de los anfibios. Se analizo la dieta y condición corporal de larvas de anuros de Rhinella arenarum que habitan agroecosistemas. Los muestreos fueron realizados en dos agroecosistemas y en un tercer sitio, no afectado por cultivos. Las larvas capturadas fueron anestesiadas, fijadas y preservadas en formaldehido, se realizaron medidas corporales y se analizo la dieta de las larvas. Se registro diversidad en la oferta alimenticia proporcionada por los distintos ambientes. La dieta tuvo una predominancia de algas Bacillarophyceae, seguidas por Cyanophyceae. Particularmente, los géneros Navicula, Nitzschia, Hantzschia y Gomphonema (clase Bacillarophyceae, fueron importantes en los agroecosistemas. Los géneros Osillatoria, Euglena y Strombomonas (clases Cyanophyceae y Euglenophyceae, predominaron en la dieta de las larvas de anuros en el sitio menos alterado. Las larvas de los sitios más alterados consumen menor cantidad de alimento y registran una menor condición corporal. La presencia de determinadas algas, indicarían un mayor grado de contaminación en los agroecosistemas. La eutrofización de lagunas podría alterar la disponibilidad de alimento para larvas de anuros que podría tener consecuencias poblacionales negativas. Se sugiere el análisis de dietas larvarias como un potencial bioindicador de salubridad ambiental.

  14. Diet of tadpoles of Physalaemus biligonigerus (Leiuperidae from agricultural ponds in the central region of Argentina

    Directory of Open Access Journals (Sweden)

    Clarisa de Lourdes Bionda

    2013-12-01

    Full Text Available The intensification of agriculture has led an important loss of natural habitats, with significant consequences for biodiversity. In this sense, the studies on anuran amphibian tadpoles inhabiting these environments are relevant, because the larval stage is a phase of population regulation. The aim of this study was to analyze the diet in Physalaemus biligonigerus tadpoles, an anuran species widely distributed in South America and that inhabit agroecosystems. Three sites were sampled; two agroecosystems with different alteration degrees (AG1 and AG2 and an uncultured (SM third place. The captured tadpoles were anesthetized, fixed and preserved in formaldehyde (10%. Subsequently, the complete intestine was removed and analyzed for food items under a binocular microscope. The diet in P. biligonigerus tadpoles has a dominance of algae Bacillariophyceae, mainly in agroecosystems, due to the presence of the genera Navicula, Nitzschia and Gomphonema. There was a considerable abundance of the Gomphonema genus in the AG2 site. In addition, in the AG1 site several non-diatom algae were particularly abundant in the diet, such as the genera Euglena, Oedogonium and Chaetophora. In the SM site, the non-diatom genus Oscillatoria was well represented in the diet. Tadpoles inhabiting the site with abundant crop and livestock (AG1 ingested a significantly smaller amount of food. The presence of certain algae associated with eutrophic environments could indicate some pollution in agroecosystems (AG1 and AG2. Larval diet is suggested as a potential bioindicator of environmental health for these areas.

  15. Periphyton communities in New Zealand streams impacted by acid mine drainage

    Energy Technology Data Exchange (ETDEWEB)

    Bray, J.P.; Broady, P.A.; Niyogi, D.K.; Harding, J.S. [University of Canterbury, Christchurch (New Zealand). School for Biological Science

    2008-07-01

    Discharges from historic and current coal mines frequently generate waters low in pH (< 3), high in heavy metals ( e. g. Fe, Al) and cover streambeds in metal precipitates. The present study investigated periphyton communities at 52 stream sites on the West Coast, South Island, New Zealand, representing a range of impacts from acid mine drainage (AMD). Taxonomic richness was negatively related to acidity and metal oxides and biomass was negatively correlated with metal oxides, but positively related to acidity. Streams with low pH (< 3.5) had low periphyton richness (14 taxa across all sites) and were dominated by Klebsormidium acidophilum, Navicula cincta and Euglena mutabilis. As pH increased, so did taxonomic richness while community dominance decreased and community composition became more variable. Canonical correspondence analyses of algal assemblages revealed patterns influenced by pH. These findings indicate that streams affected by AMD possess a predictable assemblage composition of algal species that can tolerate the extreme water chemistry and substrate conditions. The predictability of algal communities declines with decreasing stress, as other abiotic and biotic factors become increasingly more important.

  16. Nanophase Iron Oxides as an Ultraviolet Sunscreen for Ancient Photosynthetic Microbes: A Possible Link Between Early Organisms, Banded-Iron Formations, and the Oxygenation of the Atmosphere

    Science.gov (United States)

    Bishop, Janice L.; Rothschild, Lynn J.; Rothschild, Lynn J.; Rogoff, Dana A.

    2006-01-01

    We propose that nanophase iron oxide-bearing materials provided important niches for ancient photosynthetic microbes on the early Earth that ultimately led to the oxygenation of the Earth s atmosphere and the formation of iron oxide deposits. Atmospheric oxygen and ozone attenuate UV radiation on the Earth today providing substantial protection for photosynthetic organisms. With ultraviolet radiation fluxes likely to have been even higher on the early Earth than today, accessing solar radiation was particularly risky for early organisms. Yet, we know that photosynthesis arose then and played a critical role in subsequent evolution. Of primary importance was protection at approx.250-290 nm, where peak nucleic acid (approx.260 nm) and protein (approx.280 nm) absorptions occur. Nanophase ferric oxide/oxyhydroxide minerals absorb, and thus block, the lethal UV radiation, while transmitting light through much of the visible and near-infrared regions of interest to photosynthesis (400 to 1100 nm). Further, they were available in early environments, and are synthesized by many organisms. Based on ferric oxide/oxyhydroxide spectral properties, likely geologic processes, and the results of experiments with the photosynthetic organisms, Euglena sp. and Chlumydomonus reinhardtii, we propose a scenario where photosynthesis, and ultimately the oxygenation of the atmosphere, depended on the protection of early microbes by nanophase ferric oxides/oxyhydroxides. The results of this study are also applicable to other potentially habitable iron-bearing planetary bodies because of the evolutionary pressure to utilize solar radiation when available as an energy source.

  17. Plant-like proteins in protozoa, metazoa and fungi imply universal plastid endosymbiosis.

    Science.gov (United States)

    Yuan, Shu; Guo, Jian-Hua; Du, Jun-Bo; Lin, Hong-Hui

    2010-01-01

    In recent years, plant-like proteins in protozoa, metazoa and fungi have been identified. Analysis of them suggests that for millions of years universal plastid endosymbiosis and gene transfer occurred in ancestors of metazoa/fungi, and some transferred fragments have been reserved till now even in modern mammals. Most eukaryotes once contained plastids in the ancient era, and some of them lost plastids later. Functions of homologues in cyanobacterial genomes and eukaryotic genomes are in consensus, and are most involved in organic compound metabolism. With emergence of organelles and subcellular structures in the eukaryotic cell, the locations of these proteins diversified. Furthermore, some novel functions were adopted, especially in vertebrates. Analysis also implies that plastids acquired through a mechanism of secondary endosymbiosis may be preserved even until the multicellular era in simple animals. Phylogenetic trees of some proteins suggest that in ancient times the common ancestor of photosynthetic protist Euglena and parasite Trypanosoma once engulfed a green alga, and then it lost the plastid, but recently some euglenids engulfed algae again. Plastid endosymbiosis is a more general process than we originally thought, and may happen more than one time in one species.

  18. Evolutionary History of the Enzymes Involved in the Calvin-Benson Cycle in Euglenids.

    Science.gov (United States)

    Markunas, Chelsea M; Triemer, Richard E

    2016-05-01

    Euglenids are an ancient lineage that may have existed as early as 2 billion years ago. A mere 65 years ago, Melvin Calvin and Andrew A. Benson performed experiments on Euglena gracilis and elucidated the series of reactions by which carbon was fixed and reduced during photosynthesis. However, the evolutionary history of this pathway (Calvin-Benson cycle) in euglenids was more complex than Calvin and Benson could have imagined. The chloroplast present today in euglenophytes arose from a secondary endosymbiosis between a phagotrophic euglenid and a prasinophyte green alga. A long period of evolutionary time existed before this secondary endosymbiotic event took place, which allowed for other endosymbiotic events or gene transfers to occur prior to the establishment of the green chloroplast. This research revealed the evolutionary history of the major enzymes of the Calvin-Benson cycle throughout the euglenid lineage and showed that the majority of genes for Calvin-Benson cycle enzymes shared an ancestry with red algae and/or chromophytes suggesting they may have been transferred to the nucleus prior to the acquisition of the green chloroplast. © 2015 The Author(s) Journal of Eukaryotic Microbiology © 2015 International Society of Protistologists.

  19. Fitoplancton del Parque Nacional de las Tablas de Daimiel. I. Las euglenofitas

    Directory of Open Access Journals (Sweden)

    Rojo, Carmen

    1999-06-01

    Full Text Available Las Tablas de Daimiel is one of the most important wetlands in the Iberian Península. The increase of water contamination is producing obvious eutrophication. Monthly water samples were taken during 1996 and 1997 at five places - both from channels and shallow water (tablas. 18 taxa of Euglenophyta were found, two of them had been found before in Las Tablas de Daimiel (Astasia sp. and Euglena acus. Nine species are new records for this wetland (E. acilis, E. polymorpha, Lepocinclis ovum var. dimidio-minor. Phacus brevicaudatus, P. pyrum, P. skujae, Trachelomonas armata, T. abrupta and T. volvocinopsis; six species are new records for Spain (E. agilis var. piriformis, E. clara, E. oxyuris var. oxyuris, E. splendens, L. ovum var. globula, and P. brachykentron, and one species is new record for Europe (T. sculpta. The richness of Euglenophyta has increased conspicuously (1 species in 1975, 8 species in 1992-1993 and 18 species in 1996-1997. Moreover, the increasing water level from 19% has reduced the Euglenophyta density and these populations have simultaneously spread throughout the whole Park. The fluctuation seen in the Euglenophyte populations of the Tablas de Daimiel is not a response to contamination events, but the result of a the long eutrophication process endured by these wetlands.Las Tablas de Daimiel, una de las zonas húmedas más importantes de la Península Ibérica, sufre un claro proceso de eutrofización debido al aumento de la contaminación. Durante los años 1996 y 1997 se tomaron muestras mensualmente en cinco zonas que corresponden a canales y a zonas de aguas someras -tablas-, y se identificaron 18 táxones pertenecientes a Euglenophyta. Una especie fue del género Astasia, siete de Euglena, dos de Lepocinclis, cuatro de Phacus y otras cuatro de Trachelomonas. Seis de ellas son nuevas citas para España, y una lo es para Europa. Se observó un aumento en la riqueza de euglenofitas (una especie en 1975, ocho en 1992- 1993 y

  20. Utilização de bioindicadores em diferentes hidrossistemas de uma indústria de papeis reciclados em Governador Valadares - MG Use of biological indicators in different hydrosystems of an industry of recycled papers in Governador Valadares - MG

    Directory of Open Access Journals (Sweden)

    Ivan César de Oliveira Bastos

    2006-09-01

    Full Text Available A bacia do rio Doce, quinta maior do estado de Minas Gerais, mostra-se bastante degradada com impactos diretos na vegetação, no solo, na biodiversidade e na qualidade das águas. Sabendo-se da importância da bacia em questão, a utilização de bioindicadores aquáticos representa uma das formas mais modernas para se detectar níveis diferenciados de carga orgânica, sendo premente seu estudo e aplicação. Este trabalho propõe a utilização de organismos microscópicos como o fitoplâncton que, aliados a parâmetros físico-químicos, poderiam indicar poluição em seus diferentes níveis. A metodologia utilizada foi estabelecida conforme Sladecek (1973 e Greenberg (1992. Foram amostradas sete estações de coleta no ribeirão Capim, na área de influência de uma empresa de papéis reciclados, objetivando-se detectar possíveis impactos na cadeia trófica. As análises mostraram a ocorrência de 41 taxa, destacando-se a predominância dos gêneros Oscylatoria a Anacystis pertencentes à divisão Cyanophyta nos ambientes de maior estresse, e organismos da divisão Chlorophyta nos demais ambientes amostrados. Observou-se ainda a capacidade de adaptação de alguns gêneros, entre eles Euglena e Navicula, os quais se fizeram presentes em quase todos os ambientes amostrados.The Rio Doce’s basin, which is the fifth greatest basin of the state of Minas Gerais, Brazil, is severely degraded by the direct impacts on vegetation, soil, biodiversity, and water quality. Due to the importance of this basin, the use of aquatic bioindicators is one of the most modern methods to detect differentiated levels of organic matter, and its study and application is a relevant issue. This paper proposes the use microscopic organisms such phytoplankton, which combined with physicochemical parameters, would indicate pollution on its different levels. The applied methodology was according to Sladecek (1973 and Greenberg (1992. It was sampled seven collect stations

  1. Modul.LES: a multi-compartment, multi-organism aquatic life support system as experimental platform for research in ∆g

    Science.gov (United States)

    Hilbig, Reinhard; Anken, Ralf; Grimm, Dennis

    In view of space exploration and long-term satellite missions, a new generation of multi-modular, multi-organism bioregenerative life support system with different experimental units (Modul.LES) is planned, and subunits are under construction. Modul.LES will be managed via telemetry and remote control and therefore is a fully automated experimental platform for different kinds of investigations. After several forerunner projects like AquaCells (2005), C.E.B.A.S. (1998, 2003) or Aquahab (OHB-System AG the Oreochromis Mossambicus Eu-glena Gracilis Aquatic Habitat (OmegaHab) was successfully flown in 2007 in course of the FOTON-M3 Mission. It was a 3 chamber controlled life support system (CLSS), compris-ing a bioreactor with the green algae Euglena gracilis, a fish chamber with larval cichlid fish Oreochromis mossambicus and a filter chamber with biodegrading bacteria. The sensory super-vision of housekeeping management was registered and controlled by telemetry. Additionally, all scientific data and videos of the organisms aboard were stored and sequentially transmitted to relay stations. Based on the effective performance of OmegaHab, this system was chosen for a reflight on Bion-M1 in 2012. As Bion-M1 is a long term mission (appr. 4 weeks), this CLSS (OmegaHab-XP) has to be redesigned and refurbished with enhanced performance. The number of chambers has been increased from 3 to 4: an algae bioreactor, a fish tank for adult and larval fish (hatchery inserted), a nutrition chamber with higher plants and crustaceans and a filter chamber. The OmegaHab-XP is a full automated system with an extended satellite downlink for video monitoring and housekeeping data acquisition, but no uplink for remote control. OmegaHab-XP provides numerous physical and chemical parameters which will be monitored regarding the state of the biological processes and thus enables the automated con-trol aboard. Besides the two basic parameters oxygen content and temperature, products of the

  2. Las Euglenófitas en las Tablas de Daimiel como ejemplo de las limitaciones de los indicadores biológicos de la degradación ambiental

    Directory of Open Access Journals (Sweden)

    Conforti, Visitación

    2005-12-01

    Full Text Available Las Tablas de Daimiel National Park is a semiarid, hypertrophic wetland located in La Mancha (Ciudad Real, Central Spain. During the period 1996-2002 we carried out monthly samplings at three sites of Las Tablas. Thirty five taxa of Euglenophytes of the genera Astasia (1 taxon, Euglena (15, Lepocinclis (6, Phacus (9, and Trachelomonas (4 were identified. Six taxa are new records for Spain. Abundance, species richness, species groups and absolute and relative biomass of Euglenophytes widely fluctuated spatio-temporally in Las Tablas, without any statistically significant relationship (P > 0.05 with organic carbon (either particulate or dissolved, which has been long considered the main factor controlling the occurrence and abundance of Euglenophytes. The same lack of relationship was observed for other nutrients, such as ammonia, soluble reactive phosphorus and total nitrogen and phosphorus. Our results challenge the role of Euglenophytes for assessing environmental degradation in hypertrophic ecosystems, a topic of increasing interest in view of the newly implemented European Water Framework Directive and its proposals for biological monitoring. However, these results might invigorate ecological studies on Euglenophytes, still in its infancy unlike in other algal groups.El Parque Nacional Las Tablas de Daimiel es un humedal semiárido hipertrófico, situado en la llanura manchega (Ciudad Real. Entre 1996 y 2002 se realizaron muestreos mensuales en tres lugares representativos del Parque, en los que se identificaron 35 táxones diferentes de Euglenófitas: 1 del género Astasia, 15 de Euglena, 6 de Lepocinclis, 9 de Phacus y 4 de Trachelomonas, de los cuales 6 son citas nuevas para España. En este trabajo se ofrecen la descripción y una amplia iconografía de los mismos. Densidad, riqueza específica, grupos de especies y biovolúmenes absoluto y relativo fluctuaron mucho espacial y temporalmente en el humedal, sin manifestar relación alguna

  3. Phytoplanktonic composition of three cultivation systems used in Litopenaeus vannamei (BOONE, 1931 marine shrimp farms = Composição fitoplanctônica em três sistemas de cultivo do camarão marinho Litopenaeus vannamei (BOONE, 1931

    Directory of Open Access Journals (Sweden)

    Michelle Pereira Melo

    2010-07-01

    Full Text Available The aim of this work is to assess the different compositions of phytoplankton in three cultivation systems of marine shrimps Litopenaeus vannamei (BOONE, 1931, denominated as organic, intensive and semi intensive. The samples were done fortnightly, when phytoplankton was collected by a net for phytoplankton, 65 ƒÊm mesh, being then filtrated in a total volume of water of 100 L, and preserved in formaldehyde solution at 4% and identified according to the methodology of Cordeiro et al. (1997. The results show that the densities of Diatoms were of 16.65, 10.47 and 7.57 cel. 103 mL-1 for the organic, intensive and semi intensive cultivations, respectively. As for cyanobacteria, the average figures were 42.06 cel. 103 mL-1 forsemi intensive 17.27 cel. 103 mL-1, in the intensive cultivation and 6.11 cel. 103 mL-1 for the organic cultivation system. The dinoflagellates had the highest cellular density in the phytoplankton community analyzed with 61.9 cel. 103 mL-1 in the intensive cultivation, 0.33 and 0.03 cel. 103 mL-1 for both semi intensive and organic cultivation systems respectively. Euglenas presented the results of 4.98 and 14.86 cel. 103 mL-1 only for semi intensive and intensive cultivations. It was then concluded that all cultivations presented average rates below recommended for such studied systems.Conduziu-se esse trabalho com o objetivo de avaliar as diferentes composicoes fitoplanctonicas em tres sistemas de cultivo para o camarao marinho Litopenaeus vannamei (BOONE, 1931, denominados de organico, intensivo e semiintensivo. As amostragens foram realizadas quinzenalmente, onde o fitoplancton foi coletado atraves de uma rede de plancton, com malha de 65 ƒÊm, sendo filtrado um volume de agua total de 100 litros, que foram preservadas em solucao de formol a 4% e identificadas segundo a metodologia de Cordeiro et al. (1997. Os resultados mostram que as densidades de diatomaceas foram de 16,65; 10,47 e 7,57 cel. 103 mL-1, respectivamente

  4. Ecología trófica en larvas de Rhinella arenarum (Anura: Bufonidae en agroecosistemas y sus posibles implicaciones para la conservación Trophic ecology in tadpoles of Rhinella arenarum (Anura: Bufonidae in agroecosystems and their possible implications for conservation

    Directory of Open Access Journals (Sweden)

    Clarisa Bionda

    2012-06-01

    Full Text Available El crecimiento de la agricultura produce perdida del habitat natural, con consecuencias para la biodiversidad de los anfibios. Se analizo la dieta y condición corporal de larvas de anuros de Rhinella arenarum que habitan agroecosistemas. Los muestreos fueron realizados en dos agroecosistemas y en un tercer sitio, no afectado por cultivos. Las larvas capturadas fueron anestesiadas, fijadas y preservadas en formaldehido, se realizaron medidas corporales y se analizo la dieta de las larvas. Se registro diversidad en la oferta alimenticia proporcionada por los distintos ambientes. La dieta tuvo una predominancia de algas Bacillarophyceae, seguidas por Cyanophyceae. Particularmente, los géneros Navicula, Nitzschia, Hantzschia y Gomphonema (clase Bacillarophyceae, fueron importantes en los agroecosistemas. Los géneros Osillatoria, Euglena y Strombomonas (clases Cyanophyceae y Euglenophyceae, predominaron en la dieta de las larvas de anuros en el sitio menos alterado. Las larvas de los sitios más alterados consumen menor cantidad de alimento y registran una menor condición corporal. La presencia de determinadas algas, indicarían un mayor grado de contaminación en los agroecosistemas. La eutrofización de lagunas podría alterar la disponibilidad de alimento para larvas de anuros que podría tener consecuencias poblacionales negativas. Se sugiere el análisis de dietas larvarias como un potencial bioindicador de salubridad ambiental.Trophic ecology in tadpoles of Rhinella arenarum (Anura: Bufonidae in agroecosystems and their possible implications for conservation. The progress of the agriculture border has led an important loss of natural habitats, with significant consequences for biodiversity. In this sense, the studies in anuran amphibian tadpoles inhabiting these environments are relevant, because the larval stage is a phase of population regulation. The aim of this study was to analyze the body condition and diet in Rhinella arenarum

  5. Anaerobic Coculture of Microalgae with Thermosipho globiformans and Methanocaldococcus jannaschii at 68°C Enhances Generation of n-Alkane-Rich Biofuels after Pyrolysis

    Science.gov (United States)

    Matsuyama, Shigeru; Igarashi, Kensuke; Utsumi, Motoo; Shiraiwa, Yoshihiro; Kuwabara, Tomohiko

    2013-01-01

    We tested different alga-bacterium-archaeon consortia to investigate the production of oil-like mixtures, expecting that n-alkane-rich biofuels might be synthesized after pyrolysis. Thermosipho globiformans and Methanocaldococcus jannaschii were cocultured at 68°C with microalgae for 9 days under two anaerobic conditions, followed by pyrolysis at 300°C for 4 days. Arthrospira platensis (Cyanobacteria), Dunaliella tertiolecta (Chlorophyta), Emiliania huxleyi (Haptophyta), and Euglena gracilis (Euglenophyta) served as microalgal raw materials. D. tertiolecta, E. huxleyi, and E. gracilis cocultured with the bacterium and archaeon inhibited their growth and CH4 production. E. huxleyi had the strongest inhibitory effect. Biofuel generation was enhanced by reducing impurities containing alkanenitriles during pyrolysis. The composition and amounts of n-alkanes produced by pyrolysis were closely related to the lipid contents and composition of the microalgae. Pyrolysis of A. platensis and D. tertiolecta containing mainly phospholipids and glycolipids generated short-carbon-chain n-alkanes (n-tridecane to n-nonadecane) and considerable amounts of isoprenoids. E. gracilis also produced mainly short n-alkanes. In contrast, E. huxleyi containing long-chain (31 and 33 carbon atoms) alkenes and very long-chain (37 to 39 carbon atoms) alkenones, in addition to phospholipids and glycolipids, generated a high yield of n-alkanes of various lengths (n-tridecane to n-pentatriacontane). The gas chromatography-mass spectrometry (GC-MS) profiles of these n-alkanes were similar to those of native petroleum crude oils despite containing a considerable amount of n-hentriacontane. The ratio of phytane to n-octadecane was also similar to that of native crude oils. PMID:23183975

  6. Anaerobic coculture of microalgae with Thermosipho globiformans and Methanocaldococcus jannaschii at 68°C enhances generation of n-alkane-rich biofuels after pyrolysis.

    Science.gov (United States)

    Yamane, Kunio; Matsuyama, Shigeru; Igarashi, Kensuke; Utsumi, Motoo; Shiraiwa, Yoshihiro; Kuwabara, Tomohiko

    2013-02-01

    We tested different alga-bacterium-archaeon consortia to investigate the production of oil-like mixtures, expecting that n-alkane-rich biofuels might be synthesized after pyrolysis. Thermosipho globiformans and Methanocaldococcus jannaschii were cocultured at 68°C with microalgae for 9 days under two anaerobic conditions, followed by pyrolysis at 300°C for 4 days. Arthrospira platensis (Cyanobacteria), Dunaliella tertiolecta (Chlorophyta), Emiliania huxleyi (Haptophyta), and Euglena gracilis (Euglenophyta) served as microalgal raw materials. D. tertiolecta, E. huxleyi, and E. gracilis cocultured with the bacterium and archaeon inhibited their growth and CH(4) production. E. huxleyi had the strongest inhibitory effect. Biofuel generation was enhanced by reducing impurities containing alkanenitriles during pyrolysis. The composition and amounts of n-alkanes produced by pyrolysis were closely related to the lipid contents and composition of the microalgae. Pyrolysis of A. platensis and D. tertiolecta containing mainly phospholipids and glycolipids generated short-carbon-chain n-alkanes (n-tridecane to n-nonadecane) and considerable amounts of isoprenoids. E. gracilis also produced mainly short n-alkanes. In contrast, E. huxleyi containing long-chain (31 and 33 carbon atoms) alkenes and very long-chain (37 to 39 carbon atoms) alkenones, in addition to phospholipids and glycolipids, generated a high yield of n-alkanes of various lengths (n-tridecane to n-pentatriacontane). The gas chromatography-mass spectrometry (GC-MS) profiles of these n-alkanes were similar to those of native petroleum crude oils despite containing a considerable amount of n-hentriacontane. The ratio of phytane to n-octadecane was also similar to that of native crude oils.

  7. [Trophic ecology in tadpoles of Rhinella arenarum (Anura: Bufonidae) in agroecosystems and their possible implications for conservation].

    Science.gov (United States)

    Bionda, Clarisa; Gari, Noemi; Luque, Elisa; Salas, Nancy; Lajmanovich, Rafael; Martino, Adolfo

    2012-06-01

    The progress of the agriculture border has led an important loss of natural habitats, with significant consequences for biodiversity. In this sense, the studies in anuran amphibian tadpoles inhabiting these environments are relevant, because the larval stage is a phase of population regulation. The aim of this study was to analyze the body condition and diet in Rhinella arenarum, tadpoles, an anuran species widely distributed in South America and that inhabit agroecosystems. Three sites were sampled, two agroecosystems with different alteration degrees (C1 and C2) and an uncultured (SM) third place. The captured tadpoles were anesthetized, fixed and preserved in formaldehyde (10%). Subsequently, body measurements were made and the complete intestine was removed and analyzed for food items under a binocular microscope. The diet in R. arenarum tadpoles has a dominance of algae Bacillariophyceae, followed by Cyanophyceae. In particular, the class Bacillariophyceae, due to the presence of the genus Navicula, Nitzschia, Gomphonema and Hantzschia, was important in the diet of the anurans in those agroecosystems. Class Cyanophyceae, mainly represented by genus Oscillatoria and Euglenophyceae represented by Euglena and Strombomonas, were predominant in the diet of the anurans in SM. Some differences in the total items consumed by tadpole were observed between the studied sites. Tadpoles that inhabit the modified sites (C1 and C2) recorded a significantly smaller amount of food. Moreover, the tadpoles that inhabit these sites showed a lower body condition. The presence of certain algae associated with eutrophic environments, could indicate some pollution in agroecosystems (C1 and C2). Food resources would be lesser in places with strong agricultural activity, possibly with a greater degree of eutrophication. A smaller food amount could have consequences at population level for the short and long time terms, because of its impact on individual growth. Larval diet is

  8. Study of the chemistry and biota of acid and alkaline ponds at the Smoking Hills, N. W. T

    Energy Technology Data Exchange (ETDEWEB)

    Havas, M.

    1981-01-01

    Sulphur dioxide and sulphuric acid aerosols, emitted from spontaneously burning bituminous shales at the Smoking Hills, have significantly altered nearby tundra ponds. The antiquity of these burns, the intensity of the emissions, and the relatively localized but severe effects have produced an ideal field-laboratory for the study of the long-term consequences of acidification. Many of the once alkaline ponds have become acidic. A bimodal pH distribution of the ponds shows peaks at pH 8 and pH3, which correspond to the two dominant buffering systems in this area. Metal concentrations are elevated in the acidified ponds, especially below pH 4.5. Changes in pH in the soils and sediments, relate to aerial deposition and differential leaching rates. Biological diversity is significantly reduced in the acidified ponds. The few species that can survive are abundant. These include the alga Euglena mutabilis, the mosses Drepanocladus exannulatus and Leptodictyum riparium, the rotifer Brachionus urceolaris, and the red Diptera Chironomus riparius. Crustaceans are rare or absent from acidified ponds. Bioassays revealed that crustaceans were sensitive to pH below 4.5. Insect larvae, in contrast, were considerably more tolerant. Metals especially Al, increased the toxicity of the acidified pond water. Acid-sensitive invertebrates were unable to regulate osmotically important elements at low pH. The net loss of sodium by Daphnia was due primarily to an accelerated rate of sodium loss. Sodium uptake was also affected, but only at very low pH's. Daphnia middendorffiana was able to recover following brief exposure to pH 4.0 when restored to a neutral solution. Secondary fungal infection was observed and many interfere with long-term survival in acid waters.

  9. Gravitactic signal transduction elements in astasia longa investigated during parabolic flights

    Science.gov (United States)

    Richter, Peter R.; Schuster, Martin; Lebert, Michael; Häder, Donat-P.

    2003-12-01

    Euglena gracilis and its close relative Astasia longa show a pronounced negative gravitactic behavior. Many experiments revealed that gravitaxis is most likely mediated by an active physiological mechanism. The goal of the present study was to examine elements in the sensory transduction by means of inhibitors of gravitaxis and the intracellular calcium concentration during short microgravity periods. During the course of six parabolic flights (ESA 31 th parabolic flight campaign and DLR 6 th parabolic flight campaign) the effects of trifluoperazine (calmodulin inhibitor), caffeine (phosphodiesterase inhibitor) and gadolinium (blocks mechano-sensitive ion channels) was investigated. Due to the extreme parabolic flight maneuvers of the aircraft alternating phases of 1.8×gn (about 20 s) and microgravity (about 22 s) were achieved (gn: acceleration of Earth's gravity field). The duration of the microgravity periods was sufficient to detect a loss of cell orientation in the samples. In the presence of gadolinium impaired gravitaxis was found during acceleration, while caffeine-treated cells showed, compared to the controls, a very precise gravitaxis and faster reorientation in the 1.8×gn period following microgravity. A transient increase of the intracellular calcium upon increased acceleration was detected also in inhibitor-treated samples. Additionally, it was found that the cells showed a higher calcium signal when they deviated from the vertical swimming direction. In the presence of trifluoperazine a slightly higher general calcium signal was detected compared to untreated controls, while gadolinium was found to decrease the intracellular calcium concentration. In the presence of caffeine no clear changes of intracellular calcium were detected compared to the control.

  10. Diatoms in acid mine drainage and their role in the formation of iron-rich stromatolites

    Energy Technology Data Exchange (ETDEWEB)

    Brake, S.S.; Hasiotis, S.T.; Dannelly, H.K. [Indiana State University, Terre Haute, IN (United States)

    2004-08-01

    Adverse conditions in the acid mine drainage (AMD) system at the Green Valley mine, Indiana, limit diatom diversity to one species, Nitzschia tubicola. It is present in three distinct microbial consortia: Euglena mutabilis-dominated biofilm, diatom-dominated biofilm, and diatom-exclusive biofilm. E. mutabilis dominates the most extensive biofilm, with lesser numbers of N. tubicola, other eukaryotes, and bacteria. Diatom-dominated biofilm occurs as isolated patches containing N. tubicola with minor fungal hyphae, filamentous algae, E. mutabilis, and bacteria. Diatom-exclusive biofilm is rare, composed entirely of N. tubicola. Diatom distribution is influenced by seasonal and intraseasonal changes in water temperature and chemistry. Diatoms are absent in winter due to cool water temperatures. In summer, isolated patchy communities are present due to warmer water temperatures. In 2001, the diatom community expanded its distribution following a major rainfall that temporarily diluted the effluent, creating hospitable conditions for diatom growth. After several weeks when effluent returned to preexisting conditions, the diatom biofilm retreated to isolated patches, and E. mutabilis biofilm flourished. Iron-rich stromatolites underlie the biofilms and consist of distinct laminae, recording spatial and temporal oscillations in physicochemical conditions and microbial activity. The stromatolites are composed of thin, wavy laminae with partially decayed E. mutabilis biofilm, representing microbial activity and iron precipitation under normal AMD conditions. Alternating with the wavy layers are thicker, porous, spongelike laminae composed of iron precipitated on and incorporated into radiating colonies of diatoms. These layers indicate episodic changes in water chemistry, allowing diatoms to temporarily dominate the system.

  11. Crystal structure of homoisocitrate dehydrogenase from Schizosaccharomyces pombe

    Energy Technology Data Exchange (ETDEWEB)

    Bulfer, Stacie L.; Hendershot, Jenna M.; Trievel, Raymond C. (Michigan); (UCSF)

    2013-09-18

    Lysine biosynthesis in fungi, euglena, and certain archaebacteria occurs through the {alpha}-aminoadipate pathway. Enzymes in the first steps of this pathway have been proposed as potential targets for the development of antifungal therapies, as they are absent in animals but are conserved in several pathogenic fungi species, including Candida, Cryptococcus, and Aspergillus. One potential antifungal target in the {alpha}-aminoadipate pathway is the third enzyme in the pathway, homoisocitrate dehydrogenase (HICDH), which catalyzes the divalent metal-dependent conversion of homoisocitrate to 2-oxoadipate (2-OA) using nicotinamide adenine dinucleotide (NAD{sup +}) as a cofactor. HICDH belogns to a family of {beta}-hydroxyacid oxidative decarboxylases that includes malate dehydrogenase, tartrate dehydrogenase, 6-phosphogluconate dehydrogenase, isocitrate dehydrogenase (ICDH), and 3-isopropylmalte dehydrogenase (IPMDH). ICDH and IPMDH are well-characterized enzymes that catalyze the decarboxylation of isocitrate to yield 2-oxoglutarate (2-OG) in the citric acid cycle and the conversion of 3-isopropylmalate to 2-oxoisovalerate in the leucine biosynthetic pathway, respectively. Recent structural and biochemical studies of HICDH reveal that this enzyme shares sequence, structural, and mechanistic homology with ICDH and IPMDH. To date, the only published structures of HICDH are from the archaebacteria Thermus thermophilus (TtHICDH). Fungal HICDHs diverge from TtHICDH in several aspects, including their thermal stability, oligomerization state, and substrate specificity, thus warranting further characterization. To gain insights into these differences, they determined crystal structures of a fungal Schizosaccharomyces pombe HICDH (SpHICDH) as an apoenzyme and as a binary complex with additive tripeptide glycyl-glycyl-glycine (GGG) to 1.55 {angstrom} and 1.85 {angstrom} resolution, respectively. Finally, a comparison of the SpHICDH and TtHICDH structures reveal differences in

  12. Localizing Proteins in Fixed Giardia lamblia and Live Cultured Mammalian Cells by Confocal Fluorescence Microscopy.

    Science.gov (United States)

    Nyindodo-Ogari, Lilian; Schwartzbach, Steven D; Skalli, Omar; Estraño, Carlos E

    2016-01-01

    Confocal fluorescence microscopy and electron microscopy (EM) are complementary methods for studying the intracellular localization of proteins. Confocal fluorescence microscopy provides a rapid and technically simple method to identify the organelle in which a protein localizes but only EM can identify the suborganellular compartment in which that protein is present. Confocal fluorescence microscopy, however, can provide information not obtainable by EM but required to understand the dynamics and interactions of specific proteins. In addition, confocal fluorescence microscopy of cells transfected with a construct encoding a protein of interest fused to a fluorescent protein tag allows live cell studies of the subcellular localization of that protein and the monitoring in real time of its trafficking. Immunostaining methods for confocal fluorescence microscopy are also faster and less involved than those for EM allowing rapid optimization of the antibody dilution needed and a determination of whether protein antigenicity is maintained under fixation conditions used for EM immunogold labeling. This chapter details a method to determine by confocal fluorescence microscopy the intracellular localization of a protein by transfecting the organism of interest, in this case Giardia lamblia, with the cDNA encoding the protein of interest and then processing these organisms for double label immunofluorescence staining after chemical fixation. Also presented is a method to identify the organelle targeting information in the presequence of a precursor protein, in this case the presequence of the precursor to the Euglena light harvesting chlorophyll a/b binding protein of photosystem II precursor (pLHCPII), using live cell imaging of mammalian COS7 cells transiently transfected with a plasmid encoding a pLHCPII presequence fluorescent protein fusion and stained with organelle-specific fluorescent dyes.

  13. Escherichia coli Enoyl-Acyl Carrier Protein Reductase (FabI) Supports Efficient Operation of a Functional Reversal of the β-Oxidation Cycle

    Science.gov (United States)

    Vick, Jacob E.; Clomburg, James M.; Blankschien, Matthew D.; Chou, Alexander; Kim, Seohyoung

    2014-01-01

    We recently used a synthetic/bottom-up approach to establish the identity of the four enzymes composing an engineered functional reversal of the β-oxidation cycle for fuel and chemical production in Escherichia coli (J. M. Clomburg, J. E. Vick, M. D. Blankschien, M. Rodriguez-Moya, and R. Gonzalez, ACS Synth Biol 1:541–554, 2012, http://dx.doi.org/10.1021/sb3000782). While native enzymes that catalyze the first three steps of the pathway were identified, the identity of the native enzyme(s) acting as the trans-enoyl coenzyme A (CoA) reductase(s) remained unknown, limiting the amount of product that could be synthesized (e.g., 0.34 g/liter butyrate) and requiring the overexpression of a foreign enzyme (the Euglena gracilis trans-enoyl-CoA reductase [EgTER]) to achieve high titers (e.g., 3.4 g/liter butyrate). Here, we examine several native E. coli enzymes hypothesized to catalyze the reduction of enoyl-CoAs to acyl-CoAs. Our results indicate that FabI, the native enoyl-acyl carrier protein (enoyl-ACP) reductase (ENR) from type II fatty acid biosynthesis, possesses sufficient NADH-dependent TER activity to support the efficient operation of a β-oxidation reversal. Overexpression of FabI proved as effective as EgTER for the production of butyrate and longer-chain carboxylic acids. Given the essential nature of fabI, we investigated whether bacterial ENRs from other families were able to complement a fabI deletion without promiscuous reduction of crotonyl-CoA. These characteristics from Bacillus subtilis FabL enabled ΔfabI complementation experiments that conclusively established that FabI encodes a native enoyl-CoA reductase activity that supports the β-oxidation reversal in E. coli. PMID:25527535

  14. Ecological Study of Periphytic Algal Community of Doodh Ganga and Khansha-Mansha Streams of Yusmarg Forests: A Health Resort of Kashmir Valley, India

    Directory of Open Access Journals (Sweden)

    Rafia Rashid

    2013-06-01

    Full Text Available The present study on Doodh Ganga and Khansha-Mansha streams of Yusmarg forests deals with the general ecological studies on periphytic algal community in terms of species composition and density. During the present investigation the periphytic algal community of Doodh Ganga and Khansha-Mansha streams were represented by 30 taxa which belonged to 4 major classes namely Bacillariophyceae (14, Chlorophyceae (11, Cyanophyceae (4 and Euglenophyceae (1. The most common periphytic species encountered across all the sites included Closterium sp., Zygnema sp., Amphora sp., Cymbella sp., Epithemia sp., Fragilaria sp., Navicula sp., Synedra sp., Tabellaria sp., Lyngbya sp. and Phormidium sp. Among the two streams, Doodh Ganga showed large number of taxa (45 and Khansha-Mansha was having 37 taxa of periphyton. Bacillariophyceae was the dominant group both in diversity and density and included 14 taxa contributing 57% of total periphytic algal population. Cyanophyceae forming the second dominant class was represented by 4 genera comprising 22% of the total periphytic algae .Chlorophyceae ranked third in its dominance pattern with 11 genera forming 20% of all the periphytic algae. Euglenophyceae was represented by only one species of Euglena sp. forming 1% of all the periphytic algae and found only at site 2 (Doodh Ganga downstream.Amongst the study sites the highest (5.69 value of Shannon Weiner Index was found at Doodh Ganga upstream while as lowest (4.38 at Khansha-Mansha downstream. The primary conclusion is that the streams, having crystal clear water, and are free from pollution as Chlorophyceae are better represented in both the streams. Further, as a result of less anthropogenic pressures the quality of water is fairly good.

  15. The evolution of glutathione metabolism in phototrophic microorganisms

    Science.gov (United States)

    Fahey, R. C.; Buschbacher, R. M.; Newton, G. L.

    1987-01-01

    Of the many roles ascribed to glutathione (GSH) the one most clearly established is its role in the protection of higher eucaryotes against oxygen toxicity through destruction of thiol-reactive oxygen byproducts. If this is the primary function of GSH then GSH metabolism should have evolved during or after the evolution of oxygenic photosynthesis. That many bacteria do not produce GSH is consistent with this view. In the present study we have examined the low-molecular-weight thiol composition of a variety of phototrophic microorganisms to ascertain how evolution of GSH production is related to evolution of oxygenic photosynthesis. Cells were extracted in the presence of monobromobimane (mBBr) to convert thiols to fluorescent derivatives, which were analyzed by high-pressure liquid chromatography. Significant levels of GSH were not found in the green bacteria (Chlorobium thiosulfatophilum and Chloroflexus aurantiacus). Substantial levels of GSH were present in the purple bacteria (Chromatium vinosum, Rhodospirillum rubrum, Rhodobacter sphaeroides, and Rhodocyclus gelatinosa), the cyanobacteria [Anacystis nidulans, Microcoleus chthonoplastes S.G., Nostoc muscorum, Oscillatoria amphigranulata, Oscillatoria limnetica, Oscillatoria sp. (Stinky Spring, Utah), Oscillatoria terebriformis, Plectonema boryanum, and Synechococcus lividus], and eucaryotic algae (Chlorella pyrenoidsa, Chlorella vulgaris, Euglena gracilis, Scenedesmus obliquus, and Chlamydomonas reinhardtii). Other thiols measured included cysteine, gamma-glutamylcysteine, thiosulfate, coenzyme A, and sulfide; several unidentified thiols were also detected. Many of the organisms examined also exhibited a marked ability to reduce mBBr to syn-(methyl,methyl)bimane, an ability that was quenched by treatment with 2-pyridyl disulfide or 5,5'-bisdithio-(2-nitrobenzoic acid) prior to reaction with mBBr. These observations indicate the presence of a reducing system capable of electron transfer to mBBr and reduction of

  16. Monitoring a newly re-born patient: water quality and cyanotoxin occurrence in a reconstructed shallow Mediterranean lake

    Directory of Open Access Journals (Sweden)

    Spyros Gkelis

    2017-05-01

    Full Text Available Lake Karla (Central Greece is a unique example - at European scale - of a shallow lake ecosystem that was dried in the 1960s and in 2009 started to be restored. The lake is listed in the network of the Greek protected areas as it is considered a vital aquatic ecosystem, in terms of biodiversity. It has, however, already been adversely affected by both agricultural and industrial land uses in the surrounding area, leading to eutrophication and shifting algal community towards bloom-forming toxic cyanobacterial species. After repeated heavy-blooms, cyanotoxin occurrence and mass fish kills, the local ecosystem management authority has implemented a water quality monitoring program (July 2013 - July 2015 to assess environmental pressures and the response of aquatic biota in the lake. Microscopic, immunological, and molecular techniques combined with physico-chemical parameters, complemented by liquid chromatography tandem mass spectrometry (LC-MS/MS, were used to monitor cyanobacteria blooms and the associated cyanotoxin production from three different sites in Lake Karla and from the adjacent Kalamaki Reservoir. Water quality was also assessed by the structure of benthic invertebrate community on the sediment. Cyanobacteria were the main phytoplankton component, representing more than 70% of the total phytoplankton abundance; dominant taxa belonged to Cylindrospermopsis raciborskii, Limnothrix redekei, Anabaenopsis elenkinii, and Microcystis spp. Euglenophytes (Euglena, diatoms (Nitzschia, and chlorophytes (Scenedesmus were also important phytoplankton constituents. LC-MS/MS confirmed the co-occurrence of microcystins, cylindrospermopsin, saxitoxin, neo-saxitoxin and anatoxin-a. The occurrence of cyanotoxins in relation to the persistent and dominant cyanobacteria and the impact of cyanobacterial harmful algal blooms on the newly constructed lake along with the land uses and the emergent mitigation measures are discussed.

  17. Seasonal dynamics of phytoplankton in two tropical rivers of varying size and human impact in Southeast Nigeria

    Directory of Open Access Journals (Sweden)

    Okechukwu Idumah Okogwu

    2013-12-01

    Full Text Available Phytoplankton occurrence and dynamics in rivers are mainly shaped by hydrophysical conditions and nutrient availability. Phytoplankton main structuring factors have been poorly studied in West African rivers, and this study was undertaken to identify these conditions in two tropical rivers that vary in size and human impact. For this, environmental variables and phytoplankton monthly samples were collected from the middle reaches of Asu and Cross rivers during an 18 months survey from March 2005-July 2006. Phytoplankton biomass (F=11.87, p=0.003, Shannon-Weiner diversity and species richness (F=5.93, p=0.003 showed significant seasonality in Asu but not in Cross River. Data was analyzed with Canonical correspondence analysis (CCA and showed environmental differences between the two rivers, nitrate in Asu River (5.1-15.5mg/L was significantly higher than Cross River (0.03-1.7mg/L, while PO4 (0.2-0.9mg/L was significantly lower in Asu River compared to Cross River (0.03-2.6mg/L (p<0.05. Eutrophic factors (NO3 determined primarily phytoplankton dynamics in Asu River, especially during the dry season, whereas hydrophysical factors (depth, transparency and temperature shaped phytoplankton in Cross River. Taxa indicative of an eutrophic condition, such as Euglena, Chlorella, Chlorococcus, Ceratium, Peridinium, Anabaena, Aphanizomenon, Closterium, Scenedesmus and Pediastrum spp., were frequently encountered in the shallow impounded Asu River, while riverine species, such as Frustulia rhomboids, Gyrosigma sp., Opephora martyr and Surirella splendida dominated Cross River. A succession pattern was observed in the functional groups identified: Na/MP→TB→P (rainy→dry season was observed in Asu River, whereas MP/D predominated in Cross River for both seasons. We concluded that, if nutrients predominate hydrophysical factors in shaping phytoplankton during dry season (half of the year then, they are as important as hydrophysical factors structuring

  18. Análise qualitativa da comunidade fitoplanctônica de uma piscicultura em Alvorada d´Oeste, Rondônia, Brasil

    Directory of Open Access Journals (Sweden)

    Rafaela Lemes da Costa

    2015-07-01

    Full Text Available A piscicultura é um dos segmentos da produção animal que mais cresce no cenário mundial. O levantamento da comunidade fitoplanctônica nestes ambientes permite estabelecer formas de manejo mais eficientes. Objetivou-se com esta pesquisa realizar a análise qualitativa da comunidade fitoplanctônica visando a compreensão da dinâmica ecológica aquática para subsidiar medidas de manejo para a produção piscícola. O estudo foi desenvolvido na Piscicultura Santa Helena, km 14, TN 13, GB 4, no município de Alvorada dâ´Oeste, Rondônia, Brasil, onde três hectares de lâmina d´água são destinados ao cultivo de Colossoma macropomum. A represa de abastecimento e três viveiros foram escolhidos para as análises. As coletas ocorreram bimestralmente entre agosto-2013 à maio-2014. Foram identificados 74 táxons. A classe com maior representatividade (23 táxons e de ocorrência nos viveiros (43% foi a Chlorophyceae, na represa de abastecimento onde não é cultivado Colossoma macropomum não houve dominância monoespecífica da comunidade fitoplanctônica. As Cianofíceas apesar de não terem sido a classe de maior diversidade de táxons se mostraram influentes na comunidade fitoplanctônica, com altas densidades do gênero Microcystis e Planktotrix que juntamente com o gênero Euglena (Euglenophyceae ocasionaram florações pontuais em outubro-2013 e fevereiro-2014

  19. Meneco, a Topology-Based Gap-Filling Tool Applicable to Degraded Genome-Wide Metabolic Networks.

    Directory of Open Access Journals (Sweden)

    Sylvain Prigent

    2017-01-01

    Full Text Available Increasing amounts of sequence data are becoming available for a wide range of non-model organisms. Investigating and modelling the metabolic behaviour of those organisms is highly relevant to understand their biology and ecology. As sequences are often incomplete and poorly annotated, draft networks of their metabolism largely suffer from incompleteness. Appropriate gap-filling methods to identify and add missing reactions are therefore required to address this issue. However, current tools rely on phenotypic or taxonomic information, or are very sensitive to the stoichiometric balance of metabolic reactions, especially concerning the co-factors. This type of information is often not available or at least prone to errors for newly-explored organisms. Here we introduce Meneco, a tool dedicated to the topological gap-filling of genome-scale draft metabolic networks. Meneco reformulates gap-filling as a qualitative combinatorial optimization problem, omitting constraints raised by the stoichiometry of a metabolic network considered in other methods, and solves this problem using Answer Set Programming. Run on several artificial test sets gathering 10,800 degraded Escherichia coli networks Meneco was able to efficiently identify essential reactions missing in networks at high degradation rates, outperforming the stoichiometry-based tools in scalability. To demonstrate the utility of Meneco we applied it to two case studies. Its application to recent metabolic networks reconstructed for the brown algal model Ectocarpus siliculosus and an associated bacterium Candidatus Phaeomarinobacter ectocarpi revealed several candidate metabolic pathways for algal-bacterial interactions. Then Meneco was used to reconstruct, from transcriptomic and metabolomic data, the first metabolic network for the microalga Euglena mutabilis. These two case studies show that Meneco is a versatile tool to complete draft genome-scale metabolic networks produced from

  20. Limnological characterisation and phytoplankton seasonal variation in a subtropical shallow lake (Guaiba Lake, Brazil: a long-term study

    Directory of Open Access Journals (Sweden)

    Rodrigo da Rocha Andrade

    2014-12-01

    Full Text Available AIM: to provide a long-term limnological characterisation of a subtropical shallow lake in addition to verifying seasonal differences, including phytoplankton variation. METHODS: monthly sampling at sites IP, SJ and MD from 2000 to 2009 to analyse temperature - T; depth - Z; the depth of the euphotic zone - Zeu; Zeu/Z (%; total suspended solids - TSS; dissolved oxygen - DO; pH; electrical conductivity - EC; N-NH3, N-NO2, N-NO3; soluble reactive phosphorus - SRP; chlorophyll a - Chl-a and phytoplankton. RESULTS: low values of Z and Zeu characterised the shallow and turbid conditions of lake and corresponded to the contribution of nano-microflagellates (Chlamydomonas sp., Spermatozopsis sp., Cryptomonas sp. and Rhodomonas sp and diatoms (Aulacoseira granulata. Zeu/Z (%, SRP and Chl-a were significantly different at site IP (meso-eutrophic compared to sites SJ and MD (eutrophic. Phytoplankton density was also significantly higher at sites SJ and MD, and the largest relative contribution of Actinastrum sp., Dictyosphaerium sp., Micractinium sp., Monoraphidium sp., Scenedesmus/Desmodesmus sp. and Euglena sp. corresponded to the most polluted waters at site SJ. The significantly higher T (ºC in summer corresponded to significantly higher Chl-a as well as a greater richness and density of phytoplankton. Cocconeis sp., Gomphonema sp. and Pinnularia sp. (pennated diatoms were negatively correlated with temperature and were therefore more representative at the three sites in winter. Asterionella formosa was correlated with SRP and vernal blooms were recorded (2000-2001. Planktothrix isothrix and Planktothricoides raciborskii were expressive in the summer/late summer (2004-2005, and were significantly correlated with Chl-a and low SRP in water column. CONCLUSIONS: The study corroborated the sensitivity of phytoplankton in characterising different stages of eutrophication at different sites and corresponding watersheds as well as in characterising

  1. Eukaryote-to-eukaryote gene transfer gives rise to genome mosaicism in euglenids

    Directory of Open Access Journals (Sweden)

    Weber Andreas PM

    2011-04-01

    Full Text Available Abstract Background Euglenophytes are a group of photosynthetic flagellates possessing a plastid derived from a green algal endosymbiont, which was incorporated into an ancestral host cell via secondary endosymbiosis. However, the impact of endosymbiosis on the euglenophyte nuclear genome is not fully understood due to its complex nature as a 'hybrid' of a non-photosynthetic host cell and a secondary endosymbiont. Results We analyzed an EST dataset of the model euglenophyte Euglena gracilis using a gene mining program designed to detect laterally transferred genes. We found E. gracilis genes showing affinity not only with green algae, from which the secondary plastid in euglenophytes evolved, but also red algae and/or secondary algae containing red algal-derived plastids. Phylogenetic analyses of these 'red lineage' genes suggest that E. gracilis acquired at least 14 genes via eukaryote-to-eukaryote lateral gene transfer from algal sources other than the green algal endosymbiont that gave rise to its current plastid. We constructed an EST library of the aplastidic euglenid Peranema trichophorum, which is a eukaryovorous relative of euglenophytes, and also identified 'red lineage' genes in its genome. Conclusions Our data show genome mosaicism in E. gracilis and P. trichophorum. One possible explanation for the presence of these genes in these organisms is that some or all of them were independently acquired by lateral gene transfer and contributed to the successful integration and functioning of the green algal endosymbiont as a secondary plastid. Alternative hypotheses include the presence of a phagocytosed alga as the single source of those genes, or a cryptic tertiary endosymbiont harboring secondary plastid of red algal origin, which the eukaryovorous ancestor of euglenophytes had acquired prior to the secondary endosymbiosis of a green alga.

  2. A point mutation in Euglene gracilis chloroplast tRNA{sup Glu} uncouples protein and chlorophyll biosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Stange-Thomann, N.; Thomann, H.U.; Lloyd, A.J.; Soell, D. [Yale Univ., New Haven, CT (United States); Lyman, H. [Univ. of New York, Stony Brook, NY (United States)

    1994-08-16

    The universal precursor of tetrapyrrole pigments (e.g., chlorophylls and hemes) is 5-aminolevulinic acid (ALA), which in Euglena gracilis chloroplasts is derived via the two-step C{sub 5} pathway from glutamate charged to tRNA{sup Glu}. The first enzyme in this pathway, Glu-tRNA reductase (GluTR) catalyzes the reduction of glutamyl-tRNA{sup Glu} (Glu-tRNA) to glutamate 1-semialdehyde (GSA) with the release of the uncharged tRNA{sup Glu}. The second enzyme, GSA-2, 1-aminomutase, converts GSA to ALA. tRNA{sup Glu} is a specific cofactor for the NADPH-dependent reduction by GluTR, an enzyme that recognizes the tRNA in a sequence-specific manner. This RNA is the normal tRNA{sup Glu}, a dual-function molecule participating both in protein and in ALA and, hence, chlorophyll biosynthesis. A chlorophyll-deficient mutant of E. gracilis (Y{sub 9}ZNaIL) does not synthesize ALA from glutamate, although it contains GluTR and GSA-2,1-aminomutase activity. The tRNA{sup Glu} isolated from the mutant can still be acrylated with glutamate in vitro and in vitro. Furthermore, it supports chloroplast protein synthesis; however, it is a poor substrate for GluTR. Sequence analysis of the tRNA and of its gene revealed a C56 {yields} U mutation in the resulting gene product. C56 is therefore an important identity element for GluTR. Thus, a point mutation in the T loop of tRNA uncouples protein from chlorophyll biosynthesis.

  3. Evidence for transitional stages in the evolution of euglenid group II introns and twintrons in the Monomorphina aenigmatica plastid genome.

    Directory of Open Access Journals (Sweden)

    Jean-François Pombert

    Full Text Available BACKGROUND: Photosynthetic euglenids acquired their plastid by secondary endosymbiosis of a prasinophyte-like green alga. But unlike its prasinophyte counterparts, the plastid genome of the euglenid Euglena gracilis is riddled with introns that interrupt almost every protein-encoding gene. The atypical group II introns and twintrons (introns-within-introns found in the E. gracilis plastid have been hypothesized to have been acquired late in the evolution of euglenids, implying that massive numbers of introns may be lacking in other taxa. This late emergence was recently corroborated by the plastid genome sequences of the two basal euglenids, Eutreptiella gymnastica and Eutreptia viridis, which were found to contain fewer introns. METHODOLOGY/PRINCIPAL FINDINGS: To gain further insights into the proliferation of introns in euglenid plastids, we have characterized the complete plastid genome sequence of Monomorphina aenigmatica, a freshwater species occupying an intermediate phylogenetic position between early and late branching euglenids. The M. aenigmatica UTEX 1284 plastid genome (74,746 bp, 70.6% A+T, 87 genes contains 53 intron insertion sites, of which 41 were found to be shared with other euglenids including 12 of the 15 twintron insertion sites reported in E. gracilis. CONCLUSIONS: The pattern of insertion sites suggests an ongoing but uneven process of intron gain in the lineage, with perhaps a minimum of two bursts of rapid intron proliferation. We also identified several sites that represent intermediates in the process of twintron evolution, where the external intron is in place, but not the internal one, offering a glimpse into how these convoluted molecular contraptions originate.

  4. Tracing the evolution of the light-harvesting antennae in chlorophyll a/b-containing organisms.

    Science.gov (United States)

    Koziol, Adam G; Borza, Tudor; Ishida, Ken-Ichiro; Keeling, Patrick; Lee, Robert W; Durnford, Dion G

    2007-04-01

    The light-harvesting complexes (LHCs) of land plants and green algae have essential roles in light capture and photoprotection. Though the functional diversity of the individual LHC proteins are well described in many land plants, the extent of this family in the majority of green algal groups is unknown. To examine the evolution of the chlorophyll a/b antennae system and to infer its ancestral state, we initiated several expressed sequence tag projects from a taxonomically broad range of chlorophyll a/b-containing protists. This included representatives from the Ulvophyceae (Acetabularia acetabulum), the Mesostigmatophyceae (Mesostigma viride), and the Prasinophyceae (Micromonas sp.), as well as one representative from each of the Euglenozoa (Euglena gracilis) and Chlorarachniophyta (Bigelowiella natans), whose plastids evolved secondarily from a green alga. It is clear that the core antenna system was well developed prior to green algal diversification and likely consisted of the CP29 (Lhcb4) and CP26 (Lhcb5) proteins associated with photosystem II plus a photosystem I antenna composed of proteins encoded by at least Lhca3 and two green algal-specific proteins encoded by the Lhca2 and 9 genes. In organisms containing secondary plastids, we found no evidence for orthologs to the plant/algal antennae with the exception of CP29. We also identified PsbS homologs in the Ulvophyceae and the Prasinophyceae, indicating that this distinctive protein appeared prior to green algal diversification. This analysis provides a snapshot of the antenna systems in diverse green algae, and allows us to infer the changing complexity of the antenna system during green algal evolution.

  5. Structural intermediate in the photocycle of a BLUF (sensor of blue light using FAD) protein Slr1694 in a Cyanobacterium Synechocystis sp. PCC6803.

    Science.gov (United States)

    Hasegawa, Koji; Masuda, Shinji; Ono, Taka-aki

    2004-11-30

    Slr1694 in Synechocystis sp. PCC6803 is a family of blue-light photoreceptors based on flavin adenine dinucleotide (FAD) called BLUF (sensor of blue light using FAD) proteins, which include AppA from Rhodobacter sphaeroides and PAC from Euglena gracilis. Illumination of dark-state Slr1694 at 15 degrees C reversibly induced a signaling light state characterized by the red shift in the UV-visible spectrum and by the light-induced Fourier transform infrared (FTIR) difference spectrum for structural changes of a bound flavin and apo protein. Illumination at the medium-low temperature (-35 degrees C) led to the red shift in the UV-visible spectrum despite some small difference in the light-induced changes. In contrast, the -35 degrees C illumination resulted in a completely different light-induced FTIR spectrum, in which almost all of the bands were suppressed with the exception of the bands for the change of C4=O bonding of the FAD isoalloxazine ring. The C4=O bands were induced at -35 degrees C with almost the same intensity, but the band frequency for the light state was upshifted by 6 cm(-)(1). The changes in frequency of the light-state C4=O band and in amplitude of other bands showed the same temperature dependence with a half-change temperature at approximately -20 degrees C. It was indicated that the light-induced structural changes of apo protein and FAD were inhibited at low temperature with the exception of the change in hydrogen bonding to the C4=O group. The light-induced formation of the FTIR bands was similarly inhibited by sample dehydration. We discussed the possibility that this constrained light state is a trapped intermediate state in the photocycle of Slr1694.

  6. Characterization of the RNA Required for Biosynthesis of delta-Aminolevulinic Acid from Glutamate : Purification by Anticodon-Based Affinity Chromatography and Determination That the UUC Glutamate Anticodon Is a General Requirement for Function in ALA Biosynthesis.

    Science.gov (United States)

    Schneegurt, M A; Beale, S I

    1988-02-01

    The heme and chlorophyll precursor delta-aminolevulinic acid acid (ALA) is formed in plants and algae from glutamate in a process that requires at least three enzyme components plus a low molecular weight RNA which co-purifies with the tRNA fraction during DEAE-cellulose column chromatography. RNA that is effective in the in vitro ALA biosynthetic system was extracted from several plant and algal species that form ALA via this route. In all cases, the effective RNA contained the UUC glutamate anticodon, as determined by its specific retention on an affinity resin containing an affine ligand directed against this anticodon. Construction of the affinity resin was based on the fact that the UUC glutamate anticodon is complementary to the GAA phenylalanine anticodon. By covalently linking the 3' terminus of yeast tRNA(Phe(GAA)) to hydrazine-activated polyacrylamide gel beads, a resin carrying an affine ligand specific for the anticodon of tRNA(Glu(UUC)) was obtained. Column chromatography of plant and algal RNA extracts over this resin yielded a fraction that was highly enriched in the ability to stimulate ALA formation from glutamate when added to enzyme extracts of the unicellular green alga Chlorella vulgaris. Enhancement of ALA formation per A(260) unit added was as much as 50 times greater with the affinity-purified RNA than with the RNA before affinity purification. The affinity column selectively retained RNA which supported ALA formation upon chromatography of RNA extracts from species of the diverse algal groups Chlorophyta (Chlorella Vulgaris), Euglenophyta (Euglena gracilis), Rhodophyta (Cyanidium caldarium), and Cyanophyta (Synechocystis sp. PCC 6803), and a higher plant (spinach). Other glutamate-accepting tRNAs that were not retained by the affinity column were ineffective in supporting ALA formation. These results indicate that possession of the UUC glutamate anticodon is a general requirement for RNA to participate in the conversion of glutamate to ALA

  7. Epilithic algae distribution along a chemical gradient in a naturally acidic river, Río Agrio (Patagonia, Argentina).

    Science.gov (United States)

    Baffico, Gustavo D

    2010-04-01

    The epilithic algae distribution along a pH gradient and the relationship between the chemical gradient and biomass development were studied in Río Agrio, a naturally acidic river located in Patagonia (Argentina). The epilithic community was monitored during the summer of three consecutive years in sites located above and below the entrance of tributaries. The epilithic community showed differences between sites based on the chemical composition of the water and the precipitates that appear on the streambed of the river. The lowest biomass, diversity, and number of species were found at the most extreme part of the river in terms of pH (ca. 2) and element concentrations. Euglena mutabilis was the dominant species in this section of the river. As pH increased (ca. 3), the community changed to be dominated by filamentous green algae (Ulothrix spp., Mougeotia sp., Klebsormidium sp.) showing luxuriant growths in terms of biomass. With the inflow of a neutral tributary, the pH of Río Agrio increased above 3, and the precipitates of orange-red iron hydroxides appeared. The algal community was not affected by these precipitates or the low P concentrations, along the next 30 km of river downstream from this site. The apparent physical stress that the precipitates impose on algae is in fact a dynamic reservoir of P because diel cycle of Fe could be promoting precipitation and redissolution processes that binds and releases P from these precipitates. Where the pH increased above 6, precipitates of aluminum hydroxides appeared. At this site, the epilithic biomass and density decreased, some algae species changed, but the diversity and the number of species in general remained consistent with the upstream values. The physical stress of the Al precipitates on the algae is added to the chemical stress that represents the sequestering of P in these precipitates that are not redissolved, resulting P a limiting nutrient for algae growth.

  8. Seasonal dynamics of phytoplankton in two tropical rivers of varying size and human impact in southeast Nigeria.

    Science.gov (United States)

    Okogwu, Okechukwu Idumah; Ugwumba, Alex O

    2013-12-01

    Phytoplankton occurrence and dynamics in rivers are mainly shaped by hydrophysical conditions and nutrient availability. Phytoplankton main structuring factors have been poorly studied in West African rivers, and this study was undertaken to identify these conditions in two tropical rivers that vary in size and human impact. For this, environmental variables and phytoplankton monthly samples were collected from the middle reaches of Asu and Cross rivers during an 18 months survey from March 2005-July 2006. Phytoplankton biomass (F=11.87, p=0.003), Shannon-Weiner diversity and species richness (F=5.93, p=0.003) showed significant seasonality in Asu but not in Cross River. Data was analyzed with Canonical correspondence analysis (CCA) and showed environmental differences between the two rivers, nitrate in Asu River (5.1-15.5 mg/L) was significantly higher than Cross River (0.03-1.7 mg/L), while PO4 (0.2-0.9 mg/L) was significantly lower in Asu River compared to Cross River (0.03-2.6 mg/L) (p Euglena, Chlorella, Chlorococcus, Ceratium, Peridinium, Anabaena, Aphanizomenon, Closterium, Scenedesmus and Pediastrum spp., were frequently encountered in the shallow impounded Asu River, while riverine species, such as Frustulia rhomboids, Gyrosigma sp., Opephora martyr and Surirella splendida dominated Cross River. A succession pattern was observed in the functional groups identified: Na/MP-->TB-->P (rainy-->dry season) was observed in Asu River, whereas MP/D predominated in Cross River for both seasons. We concluded that, if nutrients predominate hydrophysical factors in shaping phytoplankton during dry season (half of the year) then, they are as important as hydrophysical factors structuring phytoplankton during rainy season (the other half).

  9. Temporal variation in plankton assemblages and physicochemistry of Devils Lake, North Dakota

    Science.gov (United States)

    Leland, H.V.; Berkas, W.R.

    1998-01-01

    Seasonal and annual variation in biomass and structure of algal assemblages of hyposaline Devils Lake were examined in relation to turbidity, ambient concentrations of major ions, trace elements and nutrients, and the standing crop of herbivores. Lake level declined during the early years of study, but rose markedly in subsequent years as historically large volumes of water flowed into this hydrologically-closed basin. Winter algal assemblages were dominated (in biomass) most years by small, non-motile chlorophytes (Choricystis minor, Kirchneriella lunaris or Dunaliella sp.), or Euglena sp. in the most saline sub-basin. Spring assemblages were dominated by diatoms (Stephanodiscus cf. minutulus, Surirella peisonis, Cyclotella meneghiniana and Entomoneis paludosa were especially prominent) or chlorophytes (C. minor) until the lake level rose. C. minor abundances then declined in spring assemblages and diatoms (Stephanodiscus cf. agassizensis and S. niagarae; E. paludosa in the more saline sub-basins) dominated. The potential for nitrogen-deficient conditions for phytoplankton growth was evidenced most summers and early autumns by consistently high concentrations of reactive-P relative to inorganic-N and blooms of the N-fixing cyanophyte Aphanizomenon flos-aquae; Microcystis aeruginosa typically was a co-dominant (> 30% of biomass) in these assemblages. Pulses of diatoms (S. cf. agassizensis and C. meneghiniana) occurred in summers following unusually prolonged periods of calm weather or large water inflows. Physical (irradiance, turbulence) and chemical (major nutrients) variables were the primary factors associated with phytoplankton growth. Transparency and major nutrient concentrations accounted for more of the annual variation in phytoplankton structure than did salinity. Seasonal abundance patterns of the dominant zooplankton (the copepod Diaptomus sicilis; the cladocerans Ceriodaphnia quadrangula, Chydorus sphaericus, Daphnia pulex and Diaphanosoma birgei; and

  10. The evolution of glutathione metabolism in phototrophic microorganisms.

    Science.gov (United States)

    Fahey, R C; Buschbacher, R M; Newton, G L

    1987-01-01

    Of the many roles ascribed to glutathione (GSH) the one most clearly established is its role in the protection of higher eucaryotes against oxygen toxicity through destruction of thiol-reactive oxygen byproducts. If this is the primary function of GSH then GSH metabolism should have evolved during or after the evolution of oxygenic photosynthesis. That many bacteria do not produce GSH is consistent with this view. In the present study we have examined the low-molecular-weight thiol composition of a variety of phototrophic microorganisms to ascertain how evolution of GSH production is related to evolution of oxygenic photosynthesis. Cells were extracted in the presence of monobromobimane (mBBr) to convert thiols to fluorescent derivatives, which were analyzed by high-pressure liquid chromatography. Significant levels of GSH were not found in the green bacteria (Chlorobium thiosulfatophilum and Chloroflexus aurantiacus). Substantial levels of GSH were present in the purple bacteria (Chromatium vinosum, Rhodospirillum rubrum, Rhodobacter sphaeroides, and Rhodocyclus gelatinosa), the cyanobacteria [Anacystis nidulans, Microcoleus chthonoplastes S.G., Nostoc muscorum, Oscillatoria amphigranulata, Oscillatoria limnetica, Oscillatoria sp. (Stinky Spring, Utah), Oscillatoria terebriformis, Plectonema boryanum, and Synechococcus lividus], and eucaryotic algae (Chlorella pyrenoidsa, Chlorella vulgaris, Euglena gracilis, Scenedesmus obliquus, and Chlamydomonas reinhardtii). Other thiols measured included cysteine, gamma-glutamylcysteine, thiosulfate, coenzyme A, and sulfide; several unidentified thiols were also detected. Many of the organisms examined also exhibited a marked ability to reduce mBBr to syn-(methyl,methyl)bimane, an ability that was quenched by treatment with 2-pyridyl disulfide or 5,5'-bisdithio-(2-nitrobenzoic acid) prior to reaction with mBBr. These observations indicate the presence of a reducing system capable of electron transfer to mBBr and reduction of

  11. Nanophase iron oxides as a key ultraviolet sunscreen for ancient photosynthetic microbes

    Science.gov (United States)

    Bishop, Janice L.; Louris, Stephanie K.; Rogoff, Dana A.; Rothschild, Lynn J.

    2006-07-01

    photosynthetic organisms, Euglena sp. and Chlamydomonas reinhardtii, we propose a scenario where photosynthesis, and ultimately the oxygenation of the atmosphere, depended on the protection of early microbes by nanophase ferric oxides/oxyhydroxides.

  12. A horizontally acquired group II intron in the chloroplast psbA gene of a psychrophilic Chlamydomonas: in vitro self-splicing and genetic evidence for maturase activity.

    Science.gov (United States)

    Odom, Obed W; Shenkenberg, David L; Garcia, Joshua A; Herrin, David L

    2004-07-01

    The majority of known group II introns are from chloroplast genomes, yet the first self-splicing group II intron from a chloroplast gene was reported only recently, from the psbA gene of the euglenoid, Euglena myxocylindracea. Herein, we describe a large (2.6-kb) group II intron from the psbA gene (psbA1) of a psychrophilic Chlamydomonas sp. from Antarctica that self-splices accurately in vitro. Remarkably, this intron, which also encodes an ORF with putative reverse transcriptase, maturase, and endonuclease domains, is in the same location, and is related to the E. myxocylindracea intron, as well as to group IIB2 introns from cyanobacteria. In vitro self-splicing of Chs.psbA1 occurred via a lariat, and required Mg(2+) (>12 mM) and NH(4)(+). Self-splicing was improved by deleting most of the ORF and by using pre-RNAs directly from transcription reactions, suggestive of a role for folding during transcription. Self-splicing of Chs.psbA1 pre-RNAs showed temperature optima of ~44 degrees C, but with a broad shoulder on the low side of the peak; splicing was nearly absent at 50 degrees C, indicative of thermolability. Splicing of wild-type Chs.psbA1 also occurred in Escherichia coli, but not when the ORF was disrupted by mutations, providing genetic evidence that it has maturase activity. This work provides the first description of a ribozyme from a psychrophilic organism. It also appears to provide a second instance of interkingdom horizontal transfer of this group IIB2 intron (or a close relative) from cyanobacteria to chloroplasts.

  13. Resolving the question of trypanosome monophyly: a comparative genomics approach using whole genome data sets with low taxon sampling.

    Science.gov (United States)

    Leonard, Guy; Soanes, Darren M; Stevens, Jamie R

    2011-07-01

    Since the first attempts to classify the evolutionary history of trypanosomes, there have been conflicting reports regarding their true phylogenetic relationships and, in particular, their relationships with other vertebrate trypanosomatids, e.g. Leishmania sp., as well as with the many insect parasitising trypanosomatids. Perhaps the issue that has provided most debate is that concerning the monophyly (or otherwise) of genus Trypanosoma and, even with the advent of molecular methods, the findings of numerous studies have varied significantly depending on the gene sequences analysed, number of taxa included, choice of outgroup and phylogenetic methodology. While of arguably limited applied importance, resolution of the question as to whether or not trypanosomes are monophyletic is critical to accurate evaluation of competing, mutually exclusive evolutionary scenarios for these parasites, namely the 'vertebrate-first' or 'insect-first' hypotheses. Therefore, a new approach, which could overcome previous limitations was needed. At its most simple, the problem can be defined within the framework of a trifurcated tree with three hypothetical positions at which the root can be placed. Using BLASTp and whole-genome gene-by-gene phylogenetic analyses of Trypanosoma brucei, Trypanosoma cruzi, Leishmania major and Naegleria gruberi, we have identified 599 gene markers--putative homologues--that were shared between the genomes of these four taxa. Of these, 75 homologous gene families that demonstrate monophyly of the kinetoplastids were identified. We then used these data sets in combination with an additional outgroup, Euglena gracilis, coupled with large-scale gene concatenation and diverse phylogenetic techniques to investigate the relative branching order of T. brucei, T. cruzi and L. major. Our findings confirm the monophyly of genus Trypanosoma and demonstrate that <1% of the analysed gene markers shared between the genomes of T. brucei, T. cruzi and L. major reject

  14. An extended phylogenetic analysis reveals ancient origin of "non-green" phosphoribulokinase genes from two lineages of "green" secondary photosynthetic eukaryotes: Euglenophyta and Chlorarachniophyta

    Directory of Open Access Journals (Sweden)

    Sekimoto Hiroyuki

    2011-09-01

    Full Text Available Abstract Background Euglenophyta and Chlorarachniophyta are groups of photosynthetic eukaryotes harboring secondary plastids of distinct green algal origins. Although previous phylogenetic analyses of genes encoding Calvin cycle enzymes demonstrated the presence of genes apparently not derived from green algal endosymbionts in the nuclear genomes of Euglena gracilis (Euglenophyta and Bigelowiella natans (Chlorarachniophyta, the origins of these "non-green" genes in "green" secondary phototrophs were unclear due to the limited taxon sampling. Results Here, we sequenced five new phosphoribulokinase (PRK genes (from one euglenophyte, two chlorarachniophytes, and two glaucophytes and performed an extended phylogenetic analysis of the genes based on a phylum-wide taxon sampling from various photosynthetic eukaryotes. Our phylogenetic analyses demonstrated that the PRK sequences form two genera of Euglenophyta formed a robust monophyletic group within a large clade including stramenopiles, haptophytes and a cryptophyte, and three genera of Chlorarachniophyta were placed within the red algal clade. These "non-green" affiliations were supported by the taxon-specific insertion/deletion sequences in the PRK alignment, especially between euglenophytes and stramenopiles. In addition, phylogenetic analysis of another Calvin cycle enzyme, plastid-targeted sedoheptulose-bisphosphatase (SBP, showed that the SBP sequences from two genera of Chlorarachniophyta were positioned within a red algal clade. Conclusions Our results suggest that PRK genes may have been transferred from a "stramenopile" ancestor to Euglenophyta and from a "red algal" ancestor to Chlorarachniophyta before radiation of extant taxa of these two "green" secondary phototrophs. The presence of two of key Calvin cycle enzymes, PRK and SBP, of red algal origins in Chlorarachniophyta indicate that the contribution of "non-green" algae to the plastid proteome in the "green" secondary phototrophs is

  15. Interaction of silver nanoparticles with algae and fish cells: a side by side comparison.

    Science.gov (United States)

    Yue, Yang; Li, Xiaomei; Sigg, Laura; Suter, Marc J-F; Pillai, Smitha; Behra, Renata; Schirmer, Kristin

    2017-02-28

    Silver nanoparticles (AgNP) are widely applied and can, upon use, be released into the aquatic environment. This raises concerns about potential impacts of AgNP on aquatic organisms. We here present a side by side comparison of the interaction of AgNP with two contrasting cell types: algal cells, using the algae Euglena gracilis as model, and fish cells, a cell line originating from rainbow trout (Oncorhynchus mykiss) gill (RTgill-W1). The comparison is based on the AgNP behavior in exposure media, toxicity, uptake and interaction with proteins. (1) The composition of exposure media affected AgNP behavior and toxicity to algae and fish cells. (2) The toxicity of AgNP to algae was mediated by dissolved silver while nanoparticle specific effects in addition to dissolved silver contributed to the toxicity of AgNP to fish cells. (3) AgNP did not enter into algal cells; they only adsorbed onto the cell surface. In contrast, AgNP were taken up by fish cells via endocytic pathways. (4) AgNP can bind to both extracellular and intracellular proteins and inhibit enzyme activity. Our results showed that fish cells take up AgNP in contrast to algal cells, where AgNP sorbed onto the cell surface, which indicates that the cell wall of algae is a barrier to particle uptake. This particle behaviour results in different responses to AgNP exposure in algae and fish cells. Yet, proteins from both cell types can be affected by AgNP exposure: for algae, extracellular proteins secreted from cells for, e.g., nutrient acquisition. For fish cells, intracellular and/or membrane-bound proteins, such as the Na+/K+-ATPase, are susceptible to AgNP binding and functional impairment.

  16. High-throughput, label-free, single-cell, microalgal lipid screening by machine-learning-equipped optofluidic time-stretch quantitative phase microscopy.

    Science.gov (United States)

    Guo, Baoshan; Lei, Cheng; Kobayashi, Hirofumi; Ito, Takuro; Yalikun, Yaxiaer; Jiang, Yiyue; Tanaka, Yo; Ozeki, Yasuyuki; Goda, Keisuke

    2017-05-01

    The development of reliable, sustainable, and economical sources of alternative fuels to petroleum is required to tackle the global energy crisis. One such alternative is microalgal biofuel, which is expected to play a key role in reducing the detrimental effects of global warming as microalgae absorb atmospheric CO 2 via photosynthesis. Unfortunately, conventional analytical methods only provide population-averaged lipid amounts and fail to characterize a diverse population of microalgal cells with single-cell resolution in a non-invasive and interference-free manner. Here high-throughput label-free single-cell screening of lipid-producing microalgal cells with optofluidic time-stretch quantitative phase microscopy was demonstrated. In particular, Euglena gracilis, an attractive microalgal species that produces wax esters (suitable for biodiesel and aviation fuel after refinement), within lipid droplets was investigated. The optofluidic time-stretch quantitative phase microscope is based on an integration of a hydrodynamic-focusing microfluidic chip, an optical time-stretch quantitative phase microscope, and a digital image processor equipped with machine learning. As a result, it provides both the opacity and phase maps of every single cell at a high throughput of 10,000 cells/s, enabling accurate cell classification without the need for fluorescent staining. Specifically, the dataset was used to characterize heterogeneous populations of E. gracilis cells under two different culture conditions (nitrogen-sufficient and nitrogen-deficient) and achieve the cell classification with an error rate of only 2.15%. The method holds promise as an effective analytical tool for microalgae-based biofuel production. © 2017 International Society for Advancement of Cytometry. © 2017 International Society for Advancement of Cytometry.

  17. Environmental toxicity of effluents of different laboratories of a compounding pharmacy

    Directory of Open Access Journals (Sweden)

    Luciano Henrique Pinto

    2016-11-01

    Full Text Available There is a growing concern over so-called "emerging pollutants" in the production of pharmaceuticals. These pollutants reach the environment from household waste or from leftovers generated during production. In small concentrations of the order of micrograms per liter or less, or in concentrations ineffective at producing a biological response in humans in the short-term, chronic exposure can still have a great impact on the environment. This study evaluated the possible risk of contamination posed by the release of raw materials from small-scale drug production by compounding pharmacies, based on an ecotoxicity assessment conducted by biomonitoring Euglena gracilis algae. The study also investigated the impacts on behavior and the changes in the photosynthesis process of this algae. Samples of four laboratories with different demands were comparatively analyzed. Behavioral changes of the algae (ascent rate to the surface, r-value and speed of movement were assessed by biomonitoring NG-TOX and photosynthetic parameters were measured by pulse-amplitude modulation fluorometer (PAM. The results showed that the effluent from hormone laboratory that had a low semestral production had little impact. On another hand, the effluent from the psychotropics laboratory, even with intermediate demand, had a significant impact on the behavior and photosynthetic activity of algae. The behavior differences observed between the different sectors of drugs shows that the impacts and potential environmental risks are different for each sector. The demand and the different substances manipulated can be crucial in risk classification and in the choice of decontamination methods.

  18. An evaluation of autotrophic microbes for the removal of carbon dioxide from combustion gas streams

    Energy Technology Data Exchange (ETDEWEB)

    Apel, W.A.; Walton, M.R.; Dugan, P.R. (EG G Idaho, Inc., Idaho Falls, ID (United States). Center for Biological Processing Technology)

    1994-11-01

    Carbon dioxide is a greenhouse gas that is believed to be a major contributor to global warming. Studies have shown that significant amounts of CO[sub 2] are released into the atmosphere as a result of fossil fuels combustion. Therefore, considerable interest exists in effective and economical technologies for the removal of CO[sub 2] from fossil fuel combustion gas streams. This work evaluated the use of autotrophic microbes for the removal of CO[sub 2] from coal fired power plant combustion gas streams. The CO[sub 2] removal rates of the following autotrophic microbes were determined: [ital Chlorella pyrenoidosa], [ital Euglena gracilis], [ital Thiobacillus ferrooxidans], [ital Aphanocapsa delicatissima], [ital Isochrysis galbana], [ital Phaodactylum tricornutum], [ital Navicula tripunctata schizonemoids], [ital Gomphonema parvulum], [ital Surirella ovata ovata], and four algal consortia. Of those tested, [ital Chlorella pyrenoidosa] exhibited the highest removal rate with 2.6 g CO[sub 2] per day per g dry weight of biomass being removed under optimized conditions. Extrapolation of these data indicated that to remove CO[sub 2] from the combustion gases of a coal fired power plant burning 2.4 x 10[sup 4] metric tons of coal per day would require a bioreactor 386 km[sup 2] x 1m deep and would result in the production of 2.13 x 10[sup 5] metric tons (wet weight) of biomass per day. Based on these calculations, it was concluded that autotrophic CO[sub 2] removal would not be feasible at most locations, and as a result, alternate technologies for CO[sub 2] removal should be explored. 14 refs., 7 figs., 2 tabs.

  19. Development of a New Radiation Sensor for Satellite Missions

    Science.gov (United States)

    Ritter, Birgit; Berger, Thomas; Reitz, Guenther; Hauslage, Jens; Marsalek, Karel; Aeckerlein, Joachim; M, Hartmut

    The RAMIS (RAdiation Measurements In Space) experiment aims to measure cosmic radiation with energy deposition ranging from minimal ionizing protons up to relativistic iron nuclei. The radiation detector principle uses two silicon detectors, each with an active area of 0.5cm² that are arranged in a telescope configuration. The experiment will fly in 2016 on the first mission of the newly developed DLR (German Aerospace Center) Compact Satellite, which intends to provide an easy accessible platform for scientific research within DLR as well as for international partners and their experiments. As the satellite will orbit Earth at an altitude of about 600 km on a polar orbit, valuable insights are gained not only in the galactic cosmic ray (GCR) component of the radiation field and in solar energetic particles (SEPs) in case of solar events. Also the trapped radiation in the horns of the electron belts around Earth can be studied in detail. Particle fluxes will be monitored and energy deposition spectra recorded from which linear energy transfer spectra will be generated. These spectra give an estimate for the quality of the radiation field. The RAMIS experiment consists of two modules, i.e. two small silicon detector telescopes, with one module being located outside on top of the satellite, while the other one is placed inside next to the primary payload of the satellite, the Eu:CROPIS experiment. Eu:CROPIS is a combined self-sustained biological life support system under Moon and Mars gravity, which uses Euglena as oxygen suppliers, biofilter for wastewater treatment and detoxification, and urine as primary fertilizer. In addition to its scientific output RAMIS will provide dosimetric monitoring for Eu:CROPIS and serve as a radiation exposure information system for the satellite bus. Furthermore the obtained data can be used for benchmarking and improvement of radiation belt models as well as of shielding models by combining the results of both modules. The RAMIS

  20. Combined effects of {gamma}-rays and acidification on an experimental model ecosystem

    Energy Technology Data Exchange (ETDEWEB)

    Fuma, Shoichi; Ishii, Nobuyoshi; Takeda, Hiroshi [National Inst. of Radiological Sciences, Chiba (Japan); Kawabata, Zen' ichiro [Kyoto Univ. (Japan). Center for Ecological Research; Ichimasa, Yusuke [Ibaraki Univ., Mito (Japan). Faculty of Science

    2002-05-01

    It is necessary to evaluate combined effects of ionizing radiation and other toxic agents on ecosystems, because ecosystems are exposed to these various factors. The authors studied combined effects of {gamma}-rays and acidification on an experimental model ecosystem (microcosm) mimicking aquatic microbial communities. Microcosms, consisted of flagellate algae Euglena gracilis Z as a producer, ciliate protozoa Tetrahymena thermophila B as a consumer and bacteria Escherichia coli DH5{alpha} as a decomposer, were loaded by the following treatments: Irradiation with 100 Gy {sup 60}Co {gamma}-rays; Acidification of culture medium to pH4.0 with the mixture of 0.1 N HNO{sub 3} and 0.1 N H{sub 2}SO{sub 4} (1:1, v/v), which mimicked acid rain; and Irradiation with 100 Gy {gamma}-rays followed by the acidification of the culture medium (pH 4.0). The {gamma}-irradiation induced a temporary decrease in cell densities of E. coli, but did not affect cell densities of the other species. The concentrations of chlorophyll a and ATP in the microcosm were not affected by the {gamma}-irradiation, and chlorophyll a concentrations in a Eu. gracilis cell were not affected, either. The acidification significantly decreased cell densities of T. thermophila, slightly decreased cell densities of E. coli, and slightly increased cell densities of Eu. gracilis. The concentrations of chlorophyll a and ATP in the microcosm were increased by the acidification, although chlorophyll a concentrations in a Eu. gracilis cell were decreased. The combined exposure to {gamma}-rays and acids temporarily decreased cell densities of E. coli, significantly decreased cell densities of T. thermophila, and slightly increased cell densities of Eu. gracilis. The concentrations of chlorophyll a and ATP in the microcosm were increased by the combined exposure, although chlorophyll a concentrations in a Eu. gracilis cell were decreased. The authors therefore conclude that combined exposure to {gamma}-rays and acids

  1. Spliced leader RNA-mediated trans-splicing in phylum Rotifera.

    Science.gov (United States)

    Pouchkina-Stantcheva, Natalia N; Tunnacliffe, Alan

    2005-06-01

    In kinetoplastids, Euglena, and four metazoan phyla, trans-splicing has been described as a mechanism for the generation of mature messenger RNAs (mRNAs): 5'-ends of precursor mRNAs are replaced by a short spliced leader (SL) exon from a small SL RNA. Although the full phylogenetic range is unknown, trans-splicing has not been found in vertebrates, insects, plants, or yeast. In animal groups where it does occur, i.e., nematodes, cnidarians, platyhelminths, and primitive chordates, SL RNAs do not show sequence relatedness across phyla. The apparently sporadic phylogenetic distribution and the lack of SL RNA homology have led to opposing hypotheses on its evolution, involving either an ancient origin followed by loss in multiple lineages or independent acquisition in several taxa. Here we present evidence for the occurrence of trans-splicing in bdelloid rotifers (Bdelloidea, Rotifera). A common 23-nt sequence, representing the SL exon-diagnostic of SL RNA-mediated trans-splicing-was found at the 5'-end of at least 50%-65% of mRNAs from Adineta ricciae and Philodina sp. The trans-splicing pattern in bdelloid rotifers can be unusually complex, as observed in transcripts from a heat shock protein gene, hsp82-1, where the SL exon was spliced to three alternative positions. Bdelloid rotifer SL RNAs were found to be 105 or 106 nt long and comprised the SL sequence, a conserved splice donor site and an intron containing a putative spliceosome-binding motif. Intriguingly, some similarity of rotifer SL RNA sequence and predicted secondary structure was seen to that of the predominant SL1 RNA of nematodes, although it is unlikely that this demonstrates homology. In addition, sequence corresponding to the rotifer SL exon was found at the 5'-end of a number of full-length complementary DNA (cDNA) clones in a rice (Oryza sativa) database. None of these cDNAs gave a close match with homologous plant genes, suggesting that a small but significant portion of the rice expressed

  2. Light-induced structural changes in a putative blue-light receptor with a novel FAD binding fold sensor of blue-light using FAD (BLUF); Slr1694 of synechocystis sp. PCC6803.

    Science.gov (United States)

    Masuda, Shinji; Hasegawa, Koji; Ishii, Asako; Ono, Taka-aki

    2004-05-11

    The sensor of blue-light using FAD (BLUF) domain is the flavin-binding fold categorized to a new class of blue-light sensing domain found in AppA from Rhodobacter sphaeroides and PAC from Euglena gracilis, but little is known concerning the mechanism of blue-light perception. An open reading frame slr1694 in a cyanobacterium Synechocystis sp. PCC6803 encodes a protein possessing the BLUF domain. Here, a full-length Slr1694 protein retaining FAD was expressed and purified and found to be present as an oligomeric form (trimer or tetramer). Using the purified Slr1694, spectroscopic properties of Slr1694 were characterized. Slr1694 was found to show the same red-shift of flavin absorption and quenching of flavin fluorescence by illumination as those of AppA. These changes reversed in the dark although the rate of dark state regeneration was much faster in Slr1694 than AppA, indicating that Slr1694 is a blue-light receptor based on BLUF with the similar photocycle to that of AppA. The dark decay in D(2)O was nearly four times slower than in H(2)O. Light-induced Fourier transform infrared (FTIR) difference spectroscopy was applied to examine the light-induced structure change of a chromophore and apo-protein with deuteration and universal (13)C and (15)N isotope labeling. The FTIR results indicate that light excitation induced distinct changes in the amide I modes of peptide backbone but relatively limited changes in flavin chromophore. Light excitation predominantly weakened the C(4)=O and C(2)=O bonding and strengthened the N1C10a and/or C4aN5 bonding, indicating formational changes of the isoalloxazine ring II and III of FAD but little formational change in the isoalloxazine ring I. The photocycle of the BLUF is unique in the sense that light excitation leads to the structural rearrangements of the protein moieties coupled with a minimum formational change of the chromophore.

  3. Glyceraldehyde-3-phosphate dehydrogenase gene diversity in eubacteria and eukaryotes: evidence for intra- and inter-kingdom gene transfer.

    Science.gov (United States)

    Figge, R M; Schubert, M; Brinkmann, H; Cerff, R

    1999-04-01

    Cyanobacteria contain up to three highly divergent glyceraldehyde-3-phosphate dehydrogenase (GAPDH) genes: gap1, gap2, and gap3. Genes gap1 and gap2 are closely related at the sequence level to the nuclear genes encoding cytosolic and chloroplast GAPDH of higher plants and have recently been shown to play distinct key roles in catabolic and anabolic carbon flow, respectively, of the unicellular cyanobacterium Synechocystis sp. PCC6803. In the present study, sequences of 10 GAPDH genes distributed across the cyanobacteria Prochloron didemni, Gloeobacter violaceus PCC7421, and Synechococcus PCC7942 and the alpha-proteobacterium Paracoccus denitrificans and the beta-proteobacterium Ralstonia solanacearum were determined. Prochloron didemni possesses homologs to the gap2 and gap3 genes from Anabaena, Gloeobacter harbors gap1 and gap2 homologs, and Synechococcus possesses gap1, gap2, and gap3. Paracoccus harbors two highly divergent gap genes that are related to gap3, and Ralstonia possesses a homolog of the gap1 gene. Phylogenetic analyses of these sequences in the context of other eubacterial and eukaryotic GAPDH genes reveal that divergence across eubacterial gap1, and gap2, and gap3 genes is greater than that between eubacterial gap1 and eukaroytic glycolytic GapC or between eubacterial gap2 and eukaryotic Calvin cycle GapAB. These data strongly support previous analyses which suggested that eukaryotes acquired their nuclear genes for GapC and GapAB via endosymbiotic gene transfer from the antecedents of mitochondria and chloroplasts, and extend the known range of sequence diversity of the antecedent eubacterial genes. Analyses of available GAPDH sequences from other eubacterial sources indicate that the glycosomal gap gene from trypanosomes (cytosolic in Euglena) and the gap gene from the spirochete Treponema pallidum are each other's closest relatives. This specific relationship can therefore not reflect organismal evolution but must be the result of an

  4. OMEGAHAB-XP a bioregenerative aquatic life support system designed to be used in Bion-M1 long term space flight

    Science.gov (United States)

    Hilbig, Reinhard; Lebert, Michael

    The OmegaHab XP Experiment will be based on the OmegaHab system successfully flown in the context of the FOTON M3 mission. OmegaHab XP -a refurbished OmegaHab for a long term mission -is in general assembled from four parts: an algae compartment, a nutrition com-partment for higher plants and crustaceens, a fish compartment and a filter compartment with biodegradant bacterias. The algae compartment (Euglena gracilis; unicellular, photosynthetic flagellate) will be illuminated with photosynthetic active radiation and will produce oxygen. The photosynthetic process also consumes carbon dioxide and if available ammonia. In addi-tion, nitrate will be taken up by the algae and by this means removed from the system. Via a gas-permeable membrane (gas/ion exchanger) the produced oxygen will be transported in a separate fish compartment. The metabolism of the fish will produce carbon dioxide and nitro-genic components. These components as well as the carbon dioxide will be transported back in the algae compartment and subsequently used by the algae. The transport of the components is enhanced by a counter flow inside the gas/ion exchanger driven by a pump. In addition, a filter system is installed which removes debris as well as ammonia by means of ammonia metabolizing bacteria. The nutrition compartment with higher plants and the crustaceans (e.g. Hyalella azteca; flown successfully aboard shuttles) builds the basis of this multi-trophic sys-tem. Hyalella azteca can reproduce in an adequate amount to replace external fish nutrition for Oreochromis mossambicus in large parts. The fish compartment is divided into two chambers: a hatchery chamber for larval fishes and an chamber for subadult Oreochromis mossambicus. The system is fully automatic and measures and stores all house-keeping data internally. These house-keeping data include light, temperature, acceleration and oxygen as well as many system related parameters. By means of Peltier-elements the system can be

  5. Metabolic engineering of the fungal D-galacturonate pathway for L-ascorbic acid production.

    Science.gov (United States)

    Kuivanen, Joosu; Penttilä, Merja; Richard, Peter

    2015-01-08

    Synthetic L-ascorbic acid (vitamin C) is widely used as a preservative and nutrient in food and pharmaceutical industries. In the current production method, D-glucose is converted to L-ascorbic acid via several biochemical and chemical steps. The main source of L-ascorbic acid in human nutrition is plants. Several alternative metabolic pathways for L-ascorbic acid biosynthesis are known in plants. In one of them, D-galacturonic acid is the precursor. D-Galacturonic acid is also the main monomer in pectin, a plant cell wall polysaccharide. Pectin is abundant in biomass and is readily available from several waste streams from fruit and sugar processing industries. In the present work, we engineered the filamentous fungus Aspergillus niger for the conversion of D-galacturonic acid to L-ascorbic acid. In the generated pathway, the native D-galacturonate reductase activity was utilized while the gene coding for the second enzyme in the fungal D-galacturonic acid pathway, an L-galactonate consuming dehydratase, was deleted. Two heterologous genes coding for enzymes from the plant L-ascorbic acid pathway--L-galactono-1,4-lactone lactonase from Euglena gracilis (EgALase) and L-galactono-1,4-lactone dehydrogenase from Malpighia glabra (MgGALDH)--were introduced into the A. niger strain. Alternatively, an unspecific L-gulono-1,4-lactone lactonase (smp30) from the animal L-ascorbic acid pathway was introduced in the fungal strain instead of the plant L-galactono-1,4-lactone lactonase. In addition, a strain with the production pathway inducible with D-galacturonic acid was generated by using a bidirectional and D-galacturonic acid inducible promoter from the fungus. Even though, the lactonase enzyme activity was not observed in the resulting strains, they were capable of producing L-ascorbic acid from pure D-galacturonic acid or pectin-rich biomass in a consolidated bioprocess. Product titers up to 170 mg/l were achieved. In the current study, an L-ascorbic acid pathway using

  6. A Mach-Zender Holographic Microscope for Quantifying Bacterial Motility

    Science.gov (United States)

    Niraula, B.; Nadeau, J. L.; Serabyn, E.; Wallace, J. K.; Liewer, K.; Kuhn, J.; Graff, E.; Lindensmith, C.

    2014-12-01

    attractant is also established. The eukaryotic strains are Euglena gracilis, which demonstrates both phototaxis and geotaxis, and Paramecium micromultinucleatum. The challenges of optimizing resolution vs. field of view, and of handling the large volumes of data generated during holographic imaging, are discussed.

  7. Diurnal changes in the xanthophyll cycle pigments of freshwater algae correlate with the environmental hydrogen peroxide concentration rather than non-photochemical quenching

    Science.gov (United States)

    Roach, Thomas; Miller, Ramona; Aigner, Siegfried; Kranner, Ilse

    2015-01-01

    Background and Aims In photosynthetic organisms exposure to high light induces the production of reactive oxygen species (ROS), such as hydrogen peroxide (H2O2), which in part is prevented by non-photochemical quenching (NPQ). As one of the most stable and longest-lived ROS, H2O2 is involved in key signalling pathways in development and stress responses, although in excess it can induce damage. A ubiquitous response to high light is the induction of the xanthophyll cycle, but its role in algae is unclear as it is not always associated with NPQ induction. The aim of this study was to reveal how diurnal changes in the level of H2O2 are regulated in a freshwater algal community. Methods A natural freshwater community of algae in a temporary rainwater pool was studied, comprising photosynthetic Euglena species, benthic Navicula diatoms, Chlamydomonas and Chlorella species. Diurnal measurements were made of photosynthetic performance, concentrations of photosynthetic pigments and H2O2. The frequently studied model organisms Chlamydomonas and Chlorella species were isolated to study photosynthesis-related H2O2 responses to high light. Key Results NPQ was shown to prevent H2O2 release in Chlamydomonas and Chlorella species under high light; in addition, dissolved organic carbon excited by UV-B radiation was probably responsible for a part of the H2O2 produced in the water column. Concentrations of H2O2 peaked at 2 µm at midday and algae rapidly scavenged H2O2 rather than releasing it. A vertical H2O2 gradient was observed that was lowest next to diatom-rich benthic algal mats. The diurnal changes in photosynthetic pigments included the violaxanthin and diadinoxanthin cycles; the former was induced prior to the latter, but neither was strictly correlated with NPQ. Conclusions The diurnal cycling of H2O2 was apparently modulated by the organisms in this freshwater algal community. Although the community showed flexibility in its levels of NPQ, the diurnal changes in

  8. Treatment efficiency in wastewater treatment plant of Hat Yai Municipality by quantitative removal of microbial indicators

    Directory of Open Access Journals (Sweden)

    Duangporn Kantachote

    2009-11-01

    Full Text Available The efficiency of treatment in a wastewater treatment plant of Hat Yai Municipality through stabilization ponds and constructed wetlands was monitored by using the bacterial indicators, total coliforms (TC, fecal coliforms (FC, Escherichia coli and fecal streptococci (FS, and photosynthetic microbes. The sequence of water flow in the wastewater treatment plant is as follows: primary or anaerobic pond (P, facultative pond (F, maturation pond (M, constructed wetlands (W1, W2 and W3, and an effluent storage pond (S for the treated wastewater. The wastewater treatment plant has an approximate area of 3,264,000 m2 (2,040 rai and its dry weather flow was running at only 40,000 m3/ day. There were 10 sampling times used for all the 7 ponds during July-October, 2006.Statistical analysis using a Two-Factorial Design model, indicated that pond types significantly affected temperature, dissolved oxygen (DO, and pH (p<0.05, whereas the time of sampling during the day had a significant effect (p<0.05 only on the temperature and light intensity available to the ponds. There were also significant different removal efficiencies of the different bacterial indicator groups tested (p<0.05. The overall performance of the wastewater treatment plant effectively removed TC, FC, E. coli, and FS as follows, 99.8%, 99.8%, 75.8% and 98.8%, respectively. The amounts of bacterial indicators, except for E. coli, showed a negative correlation with levels of light intensity and DO, whereas there was no correlation between the pH and the different indicator bacteria. There was a positive middle level correlation between pHand chlorophyll a.There were five different divisions of photosynthetic organisms detected throughout the plant as follows, Cyanophyta, Chlorophyta, Bacillariophyta, Euglenophyta, and Pyrrhophyta. The least diversity was found in the anaerobic pond (P as there were only 15 genera. Euglena, an indicator of dirty water, was detected only in this pond. The

  9. Plancto e hidrobiologia sanitária de tanques tropicais com dáfnias e rotíferos

    Directory of Open Access Journals (Sweden)

    Lejeune P. H. de Oliveira

    1967-01-01

    NH[4 subscripted]. b Species of the genus Chlamydomonas; it is even possible that all the species of theses genus inhabit strong-mesosaprobic to polysaprobic waters when in massive blooms. c Several species of Euglenaceae in fast growing number, at the same time of the protozoa Amoebidae, Vorticellidae and simultaneous with deposition of the decaying cells of the blue algae Anacystis cyanea (= Microcystis when the consumed oxygen by organic matter resulted in 40 mg. L. But, we found, among various Euglenacea the cosmopolite species (Euglena viridis, a well known polysaprobic indicatior of which presence occur in septic zone. d Analcystis cyanea (= M. aeruginosa as we observed was in blooms increasing to the order of billions of cells per litter, its maximum in the summer. Temperatures 73ºF to 82ºF but even 90ºF, the pH higher than 8. When these blue algae was joined to the rotifer Brachionus calyflorus the waters gets a milky appearance, but greenished one. In fact, that cosmopolite algae is used as a mesosaprobic indicator. Into the water of the ponds its predominance finished when the septic polysaprobic conditions began. e Ankistrodesmus falcatus was present in the 5th pond from 26the. April untill the 26th July, and when N.NH[4 subscripted] gets 1.28 mg. L. and when chlorinity stayed from 0.034 to 0.061 mg. L. It never was found at N.NH[4 subscripted] higher than 1 mg. L. The green algae A. falcatus, an indicatior of pollution, lives in moderate mesosaprobic waters. f As everyone knows, the rotifer eggs may be widely dispersed by wind. The rotifer Asplanchna brightwelli in our observation seemed like a green colored bag, overcharged by green cells and detritus, specially into its spacious stomach, which ends blindly (the intestine, cloaca, being absent. The stock of Asplanchna in the ponds, during the construction of the bridge "PONTE OSWALDO CRUZ" inhabits alkaline waters, pH 8,0 a 8,3, and when we observed we noted its dissolved oxygen from 3.5 to 4 mg. L

  10. Biological soil crusts are the main contributor to winter soil respiration in a temperate desert ecosystem of China

    Science.gov (United States)

    He, M. Z.

    2012-04-01

    distribute with cover about 1% of the entire study area. Prior to revegetation, straw-checkerboards approximately 1×1 m2 in area were constructed using wheat or rice straw to stabilize the dune surface and allow time for the planted xerophytic shrubs to adapt to the new environment. In 1956, the following 2-year-old xerophytic shrub seedlings were planted within the checkerboard at a density of 16 individuals per 100 m2 and grown without irrigation: Artemisia ordosica Krasch, H. scoparium Fisch, Calligonum mongolicum Turc'z, Caragana microphylla Lam., Caragana korshinskii Kom, Salix gordejevii and Atraphaxis bracteata A.Los. The stabilized area was then expanded to parallel areas in 1964 and 1982 using the same method and species. As a result, the initial stages of change that have occurred at these sites were similar. After more than fifties years succession, the predominant plants are semi-shrubs, shrubs, forbs, and grasses at present and BSCs formed. The common BSCs in the region may be dominated by cyanobacteria, algae, lichens and mosses, or any combination of these organisms. Cyanobacteria species include Microcolous vaginatus Gom., Hydrocoleus violacens Gom., Lyngbya crytoraginatus Schk., Phormidium amblgum Gom., P. autumnale (Ag.) Gom., P. foveolarum (Mont.) Gom. and Phormidium luridum (Kutz) Gom. etc; algal species mainly include Anabaena azotica Ley, Euglena sp., Hantzschia amphioxys var capitata Grum, Oscillatoria obscura Gom., O. pseudogeminate G. Schm. And Scytonema javanicum (Kutz) Bornet Flash etc; lichen species include Collema tenax (Sw.) Ach., Endocarpon pusillum Hedw.; and moss species are dominated by Bryum argenteum Hedw., Didymodon constrictus (Mitt.) Saito., Tortula bidentata Bai Xue Liang and T. desertorum Broth.. Experimental Design and Rs measurements On October 2010, We selected the moss-dominated BSCs at four revegetation sites and natural vegetation sites, in which 3 replicated plots were selected randomly. In each plot, olyvinyl chloride (PVC