WorldWideScience

Sample records for etiolated maize shoots

  1. Screening of different insecticides against maize shoot fly atherigona soccata (Rond.) and maize borer. chilo partellus (swinh.)

    International Nuclear Information System (INIS)

    Shahid, M.A.; Rana, Z.A.; Haq, I.; Tariq, H.

    2010-01-01

    Field studies were carried out in the research area of the Ayub Agricultural Research Institute, Faisalabad to determine the most effective maize seed treatment against maize shoot fly Atherigona soccata (Rond.) and insecticide against maize borer Chilo partellus (Swinh.) Trials were conducted following RCBD and replicated three times during 2005-2006. Two seed treatments Confider (imidacloprid) 70 WS and pensidor 72% WP (5 and 7 mg/kg seed) along with Confider (imidaclorid) 200 SC at the rate 40 ml/acre in the trial against maize shoot fly whereas, flubendiamide 48%, emamection 1.9 EC, spinosad 240 EC. carbofuran 3 G, indoxacarb 150 SC, alphacypermethrine 20 EC, monomehypo 5 G, bifenthrin 10 EC, cartap 4G, cyhalothrine 2.5 EC, cypermethrin 10 EC at the rate 20 ml, 150 ml, 40 ml, 8 kg, 150 ml, 200 ml, 5 kg, 150 ml, 6 kg. 250 ml and 300 ml per acre against maize borer were treated keeping one plo ast untreated check. Treatments were repeated as borer infestation reached above 5% level. All the seed treatments showed significant control of maize shoot fly in spite of dose 5 or 7 mg/kg seed along with foliar spray of confider 200 SC. The insecticides viz. flubendiamide 48% SC. emamectin 1.9 EC, spinosad 240 EC and carbofuran 3 G. indoxacarb 150 SC. alpha cypermethrin 20 EC, not only responded highest yield 5765, 5294, 5289, 5215, 5168 and 5025 kg/ha respectively but also manage the maize borer below ETL. (author)

  2. Chlordecone Transfer and Distribution in Maize Shoots.

    Science.gov (United States)

    Pascal-Lorber, Sophie; Létondor, Clarisse; Liber, Yohan; Jamin, Emilien L; Laurent, François

    2016-01-20

    Chlordecone (CLD) is a persistent organic pollutant (POP) that was mainly used as an insecticide against banana weevils in the French West Indies (1972-1993). Transfer of CLD via the food chain is now the major mechanism for exposure of the population to CLD. The uptake and the transfer of CLD were investigated in shoots of maize, a C4 model plant growing under tropical climates, to estimate the exposure of livestock via feed. Maize plants were grown on soils contaminated with [(14)C]CLD under controlled conditions. The greatest part of the radioactivity was associated with roots, nearly 95%, but CLD was detected in whole shoots, concentrations in old leaves being higher than those in young ones. CLD was thus transferred from the base toward the plant top, forming an acropetal gradient of contaminant. In contrast, results evidenced the existence of a basipetal gradient of CLD concentration within leaves whose extremities accumulated larger amounts of CLD because of evapotranspiration localization. Extractable residues accounted for two-thirds of total residues both in roots and in shoots. This study highlighted the fact that the distribution of CLD contamination within grasses resulted from a conjunction between the age and evapotranspiration rate of tissues. CLD accumulation in fodder may be the main route of exposure for livestock.

  3. Zinc oxide nanoparticle exposure triggers different gene expression patterns in maize shoots and roots

    International Nuclear Information System (INIS)

    Xun, Hongwei; Ma, Xintong; Chen, Jing; Yang, Zhongzhou; Liu, Bao; Gao, Xiang; Li, Guo; Yu, Jiamiao; Wang, Li; Pang, Jinsong

    2017-01-01

    The potential impacts of environmentally accumulated zinc oxide nanoparticles (nZnOs) on plant growth have not been well studied. A transcriptome profile analysis of maize exposed to nZnOs showed that the genes in the shoots and roots responded differently. Although the number of differentially expressed genes (DEGs) in the roots was greater than that in the shoots, the number of up- or down-regulated genes in both the shoots and roots was similar. The enrichment of gene ontology (GO) terms was also significantly different in the shoots and roots. The “nitrogen compound metabolism” and “cellular component” terms were specifically and highly up-regulated in the nZnO-exposed roots, whereas the categories “cellular metabolic process”, “primary metabolic process” and “secondary metabolic process” were down-regulated in the exposed roots only. Our results revealed the DEG response patterns in maize shoots and roots after nZnO exposure. - Highlights: • The gene expression patterns of maize exposed to ZnO nanoparticles (nZnO) varied in the shoots and roots. • A majority of the differentially expressed genes induced by nZnO exposure were exclusive to either the shoots or roots. • A similar number of up- and down-regulated genes was observed in the exposed shoots. • More up-regulated than down-regulated genes were found in the exposed roots. • A greater number of GO processes were observed in the nZnO exposed maize roots than in the exposed shoots. • GO terms in the “nitrogen compound metabolic process” category were exclusively and highly expressed in the exposed roots. • GO terms in the “nutrient reservoir” category were exclusively and highly expressed in the exposed roots. • Term “small molecule metabolic process” was also exclusively up-regulated in the exposed roots. • Processes in “cellular metabolic”, “primary metabolic” and “secondary metabolic” were down-regulated in the exposed roots.

  4. Zinc oxide nanoparticle exposure triggers different gene expression patterns in maize shoots and roots.

    Science.gov (United States)

    Xun, Hongwei; Ma, Xintong; Chen, Jing; Yang, Zhongzhou; Liu, Bao; Gao, Xiang; Li, Guo; Yu, Jiamiao; Wang, Li; Pang, Jinsong

    2017-10-01

    The potential impacts of environmentally accumulated zinc oxide nanoparticles (nZnOs) on plant growth have not been well studied. A transcriptome profile analysis of maize exposed to nZnOs showed that the genes in the shoots and roots responded differently. Although the number of differentially expressed genes (DEGs) in the roots was greater than that in the shoots, the number of up- or down-regulated genes in both the shoots and roots was similar. The enrichment of gene ontology (GO) terms was also significantly different in the shoots and roots. The "nitrogen compound metabolism" and "cellular component" terms were specifically and highly up-regulated in the nZnO-exposed roots, whereas the categories "cellular metabolic process", "primary metabolic process" and "secondary metabolic process" were down-regulated in the exposed roots only. Our results revealed the DEG response patterns in maize shoots and roots after nZnO exposure. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Gibberellin-induced changes in the populations of translatable mRNAs and accumulated polypeptides in dwarfs of maize and pea

    International Nuclear Information System (INIS)

    Chory, J.; Voytas, D.F.; Olszewski, N.E.; Ausubel, F.M.

    1987-01-01

    Two-dimensional gel electrophoresis was used to characterize the molecular mechanism of gibberellin-induced stem elongation in maize and pea. Dwarf mutants of maize and pea lack endogenous gibberellin (GA 1 ) but become phenotypically normal with exogenous applications of this hormone. Sections from either etiolated maize or green pea seedlings were incubated in the presence of [ 35 S] methionine for 3 hours with or without gibberellin. Labeled proteins from soluble and particulate fractions were analyzed by two-dimensional gel electrophoresis and specific changes in the patterns of protein synthesis were observed upon treatment with gibberellin. Polyadenylated mRNAs from etiolated or green maize shoots and green pea epicotyls treated or not with gibberellin (a 0.5 to 16 hour time course) were assayed by translation in a rabbit reticulocyte extract and separation of products by two-dimensional gel electrophoresis. Both increases and decreases in the levels of specific polypeptides were seen for pea and corn, and these changes were observed within 30 minutes of treatment with gibberellin. Together, these data indicate that gibberellin induces changes in the expression of a subset of gene products within elongating dwarfs. This may be due to changes in transcription rate, mRNA stability, or increased efficiency of translation of certain mRNAs

  6. Emprego do estiolamento na propagação de plantas Etiolation to clonal plant propagation

    Directory of Open Access Journals (Sweden)

    Luiz Antonio Biasi

    1996-08-01

    Full Text Available O estiolamento tem sido utilizado com sucesso no enraizamento de diversas espécies frutíferas e ornamentais lenhosas. Os resultados geralmente são melhores combinando esta técnica com o andamento ou aplicação de reguladores de crescimento. O estiolamento pode ser utilizado de diversas formas, em plantas à campo ou em casa de vegetação. O enraizamento pode ocorrer com os ramos ainda ligados a planta-matriz, realizando-se uma mergulhia, ou então destacados, realizando-se uma estaquia. Neste último caso, após o crescimento do ramo estiolado, ele é novamente exposto à luz, mas com um revestimento opaco em sua base, para que o resto do ramo torne-se verde, mas a base, onde ocorrerá o enraizamento, continue estiolada. O fenômeno ainda não está totalmente conhecido, mas sabe-se que o estiolamento provoca alterações anatômicas e fisiológicas nos tecidos que estão correlacionadas com o melhor enraizamento. Ocorrem reduções na lignificação e suberificação dos tecidos, aumento de tecidos parenquimáticos indiferenciados e redução na espessura das paredes celulares. Também é alterado o controle da luz sobre o metabolismo de auxinas, causando alterações no conteúdo de compostos fenólicos e na atividade do AIA-oxidase e de cofatores do enraizamento.Etiolation has been used successfully to improve rooting in cuttings of woody fruit-tree and ornamental species. The cuttings rooting is usually better when etiolation is used together with ringbarking or hormone application. Etiolation can be achieved through different forms by covering the stock plants in the field or in the greenhouse. The shoots can be rooted while they are still attached to the stock plant, by stooling or they are removed like cuttings. In this case, after the etiolated shoots have elongated enough, the shading is gradually reduced and an opaque band is wrapped around the base of the new shoot, thereby retaining its etiolated condition while the rest of the

  7. Variable Levels of Glutathione S-Transferases Are Responsible for the Differential Tolerance to Metolachlor between Maize (Zea mays) Shoots and Roots.

    Science.gov (United States)

    Li, Dongzhi; Xu, Li; Pang, Sen; Liu, Zhiqian; Wang, Kai; Wang, Chengju

    2017-01-11

    Glutathione S-transferases (GSTs) play important roles in herbicide tolerance. However, studies on GST function in herbicide tolerance among plant tissues are still lacking. To explore the mechanism of metolachlor tolerance difference between maize shoots and roots, the effects of metolachlor on growth, GST activity, and the expression of the entire GST gene family were investigated. It was found that this differential tolerance to metolachlor was correlated with contrasting GST activity between the two tissues and can be eliminated by a GST inhibitor. An in vitro metolachlor-glutathione conjugation assay confirmed that the transformation of metolachlor is 2-fold faster in roots than in shoots. The expression analysis of the GST gene family revealed that most GST genes are expressed much higher in roots than shoots, both in control and in metolachlor-treated plants. Taken together, higher level expression of most GST genes, leading to higher GST activity and faster herbicide transformation, appears to be responsible for the higher tolerance to metolachlor of maize roots than shoots.

  8. Gibberellins and gravitropism in maize shoots: endogenous gibberellin-like substances and movement and metabolism of [3]gibberellin A

    International Nuclear Information System (INIS)

    Rood, S.B.; Kaufman, P.B.; Abe, H.; Pharis, R.P.

    1987-01-01

    [ 3 H]Gibberellin A 20 (GA 20 ) of high specific radioactivity was applied equilaterally in a ring of microdrops to the internodal pulvinus of shoots of 3-week-old vertical normal maize (Zea mays L.), and to a pleiogravitropic (prostrate) maize mutant, lazy (la). All plants converted the [ 3 H]GA 1 - and [ 3 H]GA 29 -like metabolites as well as to several metabolites with the partitioning and chromatographic behavior of glucosyl conjugates of [ 3 H]GA 1 [ 3 H]GA 29 , and [ 3 H]GA 8 . The tentative identification of these putative [ 3 H]GA glucosyl conjugates was further supported by the release of the free [ 3 H]GA moiety after cleavage with cellulase. Within 12 hours of the [ 3 H]GA 20 feed, there was a significantly higher proportion of total radioactivity in lower than in upper halves of internode and leaf sheaf pulvini in gravistimulated normal maize. Further, there was a significantly higher proportion of putative free GA metabolites of [ 3 H]GA 20 , especially [ 3 H] GA 1 , in the lower halves of normal maize relative to upper halves. The differential localization of the metabolites between upper and lower halves was not apparent in the pleiogravitropic mutant, la. Endogenous GA-like substances were also examined in gravistimulated maize shoots. Forty-eight hours after gravistimulation of 3-week-old maize seedlings, endogenous free GA-like substances in upper and lower leaf sheath and internode pulvini halves were extracted, chromatographed, and bioassayed using the Tanginbozu dwarf rice microdroassay. Lower halves contained higher total levels of GA-like activity

  9. Estiolamento na micropropagação do Abacaxizeiro cv. Pérola Etiolated in micropropagation of cv. Pérola Pineapple plant

    Directory of Open Access Journals (Sweden)

    Maria Aparecida Moreira

    2003-10-01

    Full Text Available Objetivou-se estudar o efeito do estiolamento na micropropagação de abacaxizeiro cv. Pérola e posterior recuperação dos brotos estiolados, realizando-se dois experimentos. No primeiro, os caules utilizados como explantes foram obtidos de brotos pré-estabelecidos in vitro, dos quais foram retiradas as folhas. O estiolamento foi induzido colocando-se os explantes em tubos de ensaio no escuro por 20, 40 e 80 dias, contendo os seguintes meios de cultura: 1 MS suplementado com 0,1 mg.L-1 de ANA e 0,5 mg.L-1 de BAP, 2 MS suplementado com 1,8 mg.L-1 de ANA e 2 mg.L-1 de BAP e 3 MS sem reguladores de crescimento. Para número de brotos, o melhor meio foi o MS + 1,8 mg.L-1 de ANA e 2 mg.L-1 de BAP, obtendo-se média de 10,26 brotações aos 40 dias no escuro. Para comprimento de brotos estiolados, o meio MS sem reguladores de crescimento foi significativamente melhor quando os explantes foram mantidos por 80 dias no escuro, apresentando comprimento médio de 10,86 cm. No segundo experimento, os brotos estiolados, com e sem o ápice, foram colocados horizontalmente em placas contendo meios de cultura com idêntica formulação aos descritos anteriormente. Para número total de brotos, brotações estioladas sem ápice em meio MS suplementado com 1,8mg.L-1 de ANA e 2 mg.L-1 de BAP promoveram o melhor resultado, correspondendo a 10,61 brotações por explante.It was aimed to produce micropropagated plantlets of pineapple cv. Pérola by using the etiolated technique and subsequent recovery of etiolated shoots. Two experiments were carried out. In the first, the stalks used as explant were obtained from in vitro shoots established without leaves. The etiolation was induced by putting the explants in test tubes in the darkness for 20, 40 and 80 days with the media: 1 MS supplemented with ANA 0.1mg.L-1 and BAP 0.5mg.L-1, 2 MS supplemented with ANA 1.8mg.L-1 and BAP 2mg.L-1 and 3 MS without growth regulators. The best results for shoot number were obtained

  10. UV-B induction of NADP-malic enzyme in etiolated and green maize seedlings

    International Nuclear Information System (INIS)

    Drincovich, M.F.; Casati, P.; Andreo, C.S.; Donahue, R.; Edwards, G.E.

    1998-01-01

    The effect of treatment of etiolated maize seedlings with UV-B and UV-A radiation, and different levels of photosynthetically active radiation (PAR, 400–700 nm), on the activity and quantity of NADP-malic enzyme (NADPME) and on RNA levels was determined. Under low levels of PAR (14 µmol m –2 s –1 ), exposure to UV-B radiation (9 µmol m –2 s –1 ) but not UV-A radiation (11 µmol m –2 s –1 ) for 6–24 h caused a marked increase in the activity of the enzyme similar to that observed under high PAR (300 µmol m –2 s –1 ) in the absence of UV-B. Western blot analysis indicated there was a specific increase of the photosynthetically active isoform of the enzyme. This increase was also measured at the RNA level by dot blot analysis, indicating that the induction is displayed at the level of NADP-ME transcription. UV-B treatment of green leaves after a 12 h dark period also caused an increase in the activity and level of NADP-ME. The UV-B induction of NADP-ME synthesis may reflect a mechanism for induction of photosynthetic processes in C4 photosynthesis. Alternatively, the relatively low intensity of UV-B radiation present under full sunlight might provide a signal that facilitates repair of UV-B-induced damage through the increased activity of different enzymes such as NADP-ME. It is speculated that the reducing power and pyruvate generated by activity of NADP-ME may be used for respiration in cellular repair processes and as substrates for the fatty acid synthesis required for membrane repair. (author)

  11. The effects of increased phosphorus application on shoot dry matter ...

    African Journals Online (AJOL)

    The effects of increased phosphorus application on shoot dry matter, shoot P and Zn concentrations in wheat ( Triticum durum L.) and maize ( Zea mays L.)wheat ( Triticum durum L.) and maize ( Zea mays L.) grown in a calcareous soil.

  12. Gibberellins and gravitropism in maize shoots: endogenous gibberellin-like substances and movement and metabolism of [3H]Gibberellin A20

    Science.gov (United States)

    Rood, S. B.; Kaufman, P. B.; Abe, H.; Pharis, R. P.

    1987-01-01

    [3H]Gibberellin A20 (GA20) of high specific radioactivity (49.9 gigabecquerel per millimole) was applied equilaterally in a ring of microdrops to the internodal pulvinus of shoots of 3-week-old gravistimulated and vertical normal maize (Zea mays L.), and to a pleiogravitropic (prostrate) maize mutant, lazy (la). All plants converted the [3H]GA20 to [3H]GA1- and [3H]GA29-like metabolites as well as to several metabolites with the partitioning and chromatographic behavior of glucosyl conjugates of [3H]GA1, [3H]GA29, and [3H]GA8. The tentative identification of these putative [3H]GA glucosyl conjugates was further supported by the release of the free [3H]GA moiety after cleavage with cellulase. Within 12 hours of the [3H]GA20 feed, there was a significantly higher proportion of total radioactivity in lower than in upper halves of internode and leaf sheath pulvini in gravistimulated normal maize. Further, there was a significantly higher proportion of putative free GA metabolites of [3H]GA20, especially [3H]GA1, in the lower halves of normal maize relative to upper halves. The differential localization of the metabolites between upper and lower halves was not apparent in the pleiogravitropic mutant, la. Endogenous GA-like substances were also examined in gravistimulated maize shoots. Forty-eight hours after gravistimulation of 3-week-old maize seedlings, endogenous free GA-like substances in upper and lower leaf sheath and internode pulvini halves were extracted, chromatographed, and bioassayed using the "Tanginbozu" dwarf rice microdrop assay. Lower halves contained consistently higher total levels of GA-like activity. The qualitative elution profile of GA-like substances differed consistently, upper halves containing principally a GA20-like substance and lower halves containing principally a GA20-like substance and lower halves containing mainly GA1-like and GA19-like substances. Gibberellins A1 (10 nanograms per gram) and A20 (5 nanograms per gram) were identified

  13. Growth Protocols for Etiolated Soybeans Germinated within BRIC-60 Canisters Under Spaceflight Conditions

    Science.gov (United States)

    Levine, H. G.; Sharek, J. A.; Johnson, K. M.; Stryjewski, E. C.; Prima, V. I.; Martynenko, O. I.; Piastuch, W. C.

    As part of the GENEX (Gene Expression) spaceflight experiment, protocols were developed to optimize the inflight germination and subsequent growth of 192 soybean (Glycine max cv McCall) seeds during STS-87. We describe a method which provided uniform growth and development of etiolated seedlings while eliminating root and shoot restrictions for short-term (4-7 day) experiments. Final seedling growth morphologies and the gaseous CO2 and ethylene levels present both on the last day in space and at the time of recovery within the spaceflight and ground control BRIC-60 canisters are presented

  14. Apoplastic domains and sub-domains in the shoots of etiolated corn seedlings

    Science.gov (United States)

    Epel, B. L.; Bandurski, R. S.

    1990-01-01

    Light Green, an apoplastic probe, was applied to the cut mesocotyl base or to the cut coleoptile apex of etiolated seedlings of Zea mays L. cv. Silver Queen. Probe transport was measured and its tissue distribution determined. In the mesocotyl, there is an apoplastic barrier between cortex and stele. This barrier creates two apoplastic domains which are non-communicating. A kinetic barrier exists between the apoplast of the mesocotyl stele and that of the coleoptile. This kinetic barrier is not absolute and there is limited communication between the apoplasts of the two regions. This kinetic barrier effectively creates two sub-domains. In the coleoptile, there is communication between the apoplast of the vascular strands and that of the surrounding cortical tissue. No apoplastic communication was observed between the coleoptile cortex and the mesocotyl cortex. Thus, the apoplastic space of the coleoptile cortex is a sub-domain of the integrated coleoptile domain and is separate from that of the apoplastic domain of the mesocotyl cortex.

  15. Risk assessment of potentially toxic elements in agricultural soils and maize tissues from selected districts in Tanzania

    International Nuclear Information System (INIS)

    Marwa, Ernest M.M.; Meharg, Andrew A.; Rice, Clive M.

    2012-01-01

    A field survey was conducted to investigate the contamination of potentially toxic elements (PTEs) arsenic (As), lead (Pb), chromium (Cr), and nickel (Ni) in Tanzanian agricultural soils and to evaluate their uptake and translocation in maize as proxy to the safety of maize used for human and animal consumption. Soils and maize tissues were sampled from 40 farms in Tanzania and analyzed using inductively coupled plasma-mass spectrometry in the United Kingdom. The results showed high levels of PTEs in both soils and maize tissues above the recommended limits. Nickel levels of up to 34.4 and 56.9 mg kg −1 respectively were found in some maize shoots and grains from several districts. Also, high Pb levels >0.2 mg kg −1 were found in some grains. The grains and shoots with high levels of Ni and Pb are unfit for human and animal consumption. Concentrations of individual elements in maize tissues and soils did not correlate and showed differences in uptake and translocation. However, Ni showed a more efficient transfer from soils to shoots than As, Pb and Cr. Transfer of Cr and Ni from shoots to grains was higher than other elements, implying that whatever amount is assimilated in maize shoots is efficiently mobilized and transferred to grains. Thus, the study recommended to the public to stop consuming and feeding their animals maize with high levels of PTEs for their safety. - Highlights: ► High Ni and Pb levels above the allowable limits were found in maize grains. ► Also maize shoots unfit for animal use were found with high Ni concentrations. ► Mining activities were among the sources of soil contamination. ► The public advised to stop consuming maize with potentially toxic elements.

  16. Radiographing roots and shoots

    International Nuclear Information System (INIS)

    Shariffah Noor Khamseah Al Idid

    1985-01-01

    The effect of seed orientation on germination time and on shoot and root growth patterns is studied. Neutron radiography is used to observe the development of 4 types of plants, maize, greenpea, soya bean and padi. These plants were grown in varying orientations; sand sizes, sand thicknesses, and level of water content. Radiography of the seeds and plants were obtained for time exposure ranging from 3-12 hours and at reactor thermal power level, ranging from 500-750 kilowatts. Results obtained showed that seeds planted in varying orientations need different length of time for shoot emergence. Neutron radiography is now developed to other areas of non-industrial applications in Malaysia. (A.J.)

  17. Myo-inositol esters of indole-3-acetic acid are endogenous components of Zea mays L. shoot tissue

    Science.gov (United States)

    Chisnell, J. R.

    1984-01-01

    Indole-3-acetyl-myo-inositol esters have been demonstrated to be endogenous components of etiolated Zea mays shoots tissue. This was accomplished by comparison of the putative compounds with authentic, synthetic esters. The properties compared were liquid and gas-liquid chromatographic retention times and the 70-ev mass spectral fragmentation pattern of the pentaacetyl derivative. The amount of indole-3-acetyl-myo-inositol esters in the shoots was determined to be 74 nanomoles per kilogram fresh weight as measured by isotope dilution, accounting for 19% of the ester indole-3-acetic acid of the shoot. This work is the first characterization of an ester conjugate of indole-3-acetate acid from vegetative shoot tissue using multiple chromatographic properties and mass spectral identification. The kernel and the seedling shoot both contain indole-3-acetyl-myo-inositol esters, and these esters comprise approximately the same percentage of the total ester content of the kernel and of the shoot.

  18. Improvement of the soil nitrogen content and maize growth by earthworms and arbuscular mycorrhizal fungi in soils polluted by oxytetracycline.

    Science.gov (United States)

    Cao, Jia; Wang, Chong; Ji, Dingge

    2016-11-15

    Interactions between earthworms (Eisenia fetida) and arbuscular mycorrhizal fungi (Rhizophagus intraradices, AM fungi) have been suggested to improve the maize nitrogen (N) content and biomass and were studied in soils polluted by oxytetracycline (OTC). Maize was planted and amended with AMF and/or earthworms (E) in the soil with low (1mgkg(-1) soil DM) or high (100mgkg(-1) soil DM) amounts of OTC pollution in comparison to soil without OTC. The root colonization, shoot and root biomass, shoot and root N contents, soil nitrogen forms, ammonia-oxidizing bacteria (AOB) and archaea (AOA) were measured at harvest. The results indicated that OTC decreased maize shoot and root biomass (psoil urease activity and AOB and AOA abundance, which resulted in a lower N availability for maize roots and shoots. There was a significant interaction between earthworms and AM fungi on the urease activity in soil polluted by OTC (ppolluted soil by increasing the urease activity and relieving the stress from OTC on the soil N cycle. AM fungi and earthworms interactively increased maize shoot and root biomass (ppolluted soils through their regulation of the urease activity and the abundance of ammonia oxidizers, resulting in different soil NH4(+)-N and NO3(-)-N contents, which may contribute to the N content of maize shoots and roots. Earthworms and AM fungi could be used as an efficient method to relieve the OTC stress in agro-ecosystems. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. [Effects of soil pH on the competitive uptake of amino acids by maize and microorganisms].

    Science.gov (United States)

    Ma, Qing Xu; Wang, Jun; Cao, Xiao Chuang; Sun, Yan; Sun, Tao; Wu, Liang Huan

    2017-07-18

    Organic nitrogen can play an important role in plant growth, and soil pH changed greatly due to the over-use of chemical fertilizers, but the effects of soil pH on the competitive uptake of amino acids by plants and rhizosphere microorganisms are lack of detailed research. To study the effects of soil pH on the uptake of amino acids by maize and soil microorganisms, two soils from Hangzhou and Tieling were selected, and the soil pH was changed by the electrokinesis, then the 15 N-labeled glycine was injected to the centrifuge tube with a short-term uptake of 4 h. Soil pH had a significant effect on the shoot and root biomass, and the optimal pH for maize shoot growth was 6.48 for Hangzhou red soil, while it was 7.65 for Tieling brown soil. For Hangzhou soil, the 15 N abundance of maize shoots under pH=6.48 was significantly higher than under other treatments, and the uptake amount of 15 N-glycine was also much higher. However, the 15 N abundance of maize shoots and roots under pH=7.65 Tieling soil was significantly lower than it under pH=5.78, but the uptake amount of 15 N-glycine under pH=7.65 was much higher. The microbial biomass C was much higher in pH=6.48 Hangzhou soil, while it was much lower in pH=7.65 Tieling soil. According to the results of root uptake, root to shoot transportation, and the competition with microorganisms, we suggested that although facing the fierce competition with microorganisms, the maize grown in pH=6.48 Hangzhou soil increased the uptake of glycine by increasing its root uptake and root to shoot transportation. While in pH=7.65 Tieling soil, the activity of microorganisms was decreased, which decreased the competition with maize for glycine, and increased the uptake of glycine by maize.

  20. Effect of Thorium on Growth and Uptake of Some Elements by Maize Plant

    International Nuclear Information System (INIS)

    Al-Shobaki, M.E.E.

    2012-01-01

    A pot experiment (sand culture) was carried out to investigate the effect of thorium on maize dry matter yield, contents and uptake of N,P ,K, Na and Fe and thorium accumulation in maize plant.The pots were contaminated by thorium as Thorium Nitrate(Th (NO 3 ) 4 ,H 2 O)at concentrations 0,5,10,11,12,13,14,15 and 50 ppm. Pots irrigated by 1/10 Hogland solution for 15 days, increased tol/4 Hogland solution after that.The results show that the dry matter (shoot, root and whole plant)decreased with increasing thorium concentration in soil up to 12 ppm and slightly increased with increasing Th to 13 ppm . The Nitrogen content and its uptake decreased with increasing thorium concentration in media growth up to 11 ppm .They were slightly increased at Th concentration between 11-14 ppm in maize shoot and root. The shoots always contained N-content and uptake more than that found in roots . P- uptake decreased in both shoots and roots with increasing in thorium concentration in media growth.

  1. The mechanisms of root exudates of maize in improvement of iron nutrition of peanut in peanut/maize intercropping system by 14C tracer technique

    International Nuclear Information System (INIS)

    Zuo Yuanmei; Chen Qing; Zhang Fusuo

    2004-01-01

    The related mechanisms of root exudates of maize in improvement iron nutrition of peanut intercropped with maize was investigated by 14 C tracer technique. Neighboring roots between maize and peanut were separated by a 30 μm nylon net, the iron nutrition of peanut was also improved just like normal intercropping of maize and peanut. The results proved that root exudates of maize played an important role in improvement iron nutrition of peanut. The photosynthesis carbohydrate of maize could exuded into the rhizosphere of peanut and transfer into shoot and root of peanut in intercropping system. Root exudates of maize could increased efficiency of iron in soil and improved iron utilization of peanut

  2. Allelopathic potential of Jimsonweed (Datura stramonium L. on the early growth of maize (Zea mays L. and sunflower (Helianthus annuus L.

    Directory of Open Access Journals (Sweden)

    Zvonko Pacanoski

    2014-09-01

    Full Text Available Laboratory and glasshouse experiments were carried out to investigate the allelopathic potential of different plant parts of D. stramonium on maize and sunflower on early growth stages. The aqueous leachates of D. stramonium roots and shoot did not produc a significant effect on germination and shoot length of maize, but root length of maize was significantly reduced at the highest (1/1 D. stramonium roots leachate compared to control. From the other side, germination of sunflower was significantly reduced at the highest (1/1 D. stramonium shoot leachate concentration, but lower (1/5 and 1/2 D. stramonium roots leachate concentrations significantly increased root and shoot length of sunflower compared to control. In glasshouse experiment, no one treatment with different D. stramonium plant residues significantly affected density, height and fresh weight of maize plants compared to control. Contrary, D. stramonium mixtures with 1/1 root and shoot residues significantly reduced plants density and fresh weight of sunflower plants compared to control. Lower (1/2 and 1/5 mixtures of D. stramonium roots residues and mixture with 1/5 D. stramonium shoot residues significantly increased the height of the sunflower plants.

  3. Plant regeneration from protoplasts ofVicia narbonensis via somatic embryogenesis and shoot organogenesis.

    Science.gov (United States)

    Tegeder, M; Kohn, H; Nibbe, M; Schieder, O; Pickardt, T

    1996-11-01

    Protoplasts ofVicia narbonensis isolated from epicotyls and shoot tips of etiolated seedlings were embedded in 1.4% sodium-alginate at a final density of 2.5×10(5) protoplasts/ml and cultivated in Kao and Michayluk-medium containing 0.5 mg/I of each of 2,4- dichlorophenoxyacetic acid, naphthylacetic acid and 6 -benzylaminopurine. A division frequency of 36% and a plating efficiency of 0.40-0.5% were obtained. Six weeks after embedding, protoplast-derived calluses were transferred onto gelrite-solidified Murashige and Skoog-media containing various growth regulators. Regeneration of plants was achieved via two morphologically distinguishable pathways. A two step protocol (initially on medium with a high auxin concentration followed by a culture phase with lowered auxin amount) was used to regenerate somatic embryos, whereas cultivation on medium containing thidiazuron and naphthylacetic acid resulted in shoot morphogenesis. Mature plants were recovered from both somatic embryos as well as from thidiazuron-induced shoots.

  4. Lumbricus terrestris L. activity increases the availability of metals and their accumulation in maize and barley

    International Nuclear Information System (INIS)

    Ruiz, E.; Alonso-Azcarate, J.; Rodriguez, L.

    2011-01-01

    The effect of the earthworm Lumbricus terrestris L. on metal availability in two mining soils was assessed by means of chemical extraction methods and a pot experiment using crop plants. Results from single and sequential extractions showed that L. terrestris had a slight effect on metal fractionation in the studied soils: only metals bound to the soil organic matter were significantly increased in some cases. However, we found that L. terrestris significantly increased root, shoot and total Pb and Zn concentrations in maize and barley for the soil with the highest concentrations of total and available metals. Specifically, shoot Pb concentration was increased by a factor of 7.5 and 3.9 for maize and barley, respectively, while shoot Zn concentration was increased by a factor of 3.7 and 1.7 for maize and barley, respectively. Our results demonstrated that earthworm activity increases the bioavailability of metals in soils. - Research highlights: → Lumbricus terrestris L. activity increases the bioavailability of metals in soils. → Earthworm activity can significantly increase total, shoot and root metal concentrations for crop plants. → Both bioassays and chemical extraction methods are necessary for assessing the bioavailability of metals in contaminated soils. - Lumbricus terrestris L. activity increases the bioavailability of metals in soils and total, shoot and root metal concentrations for maize and barley.

  5. Lumbricus terrestris L. activity increases the availability of metals and their accumulation in maize and barley

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz, E. [Department of Chemical Engineering, School of Civil Engineering, University of Castilla-La Mancha, Avenida Camilo Jose Cela, s/n, 13071 Ciudad Real (Spain); Alonso-Azcarate, J. [Department of Physical Chemistry, Faculty of Environmental Sciences, University of Castilla-La Mancha, Avenida Carlos III, s/n, 45071 Toledo (Spain); Rodriguez, L., E-mail: Luis.Rromero@uclm.es [Department of Chemical Engineering, School of Civil Engineering, University of Castilla-La Mancha, Avenida Camilo Jose Cela, s/n, 13071 Ciudad Real (Spain)

    2011-03-15

    The effect of the earthworm Lumbricus terrestris L. on metal availability in two mining soils was assessed by means of chemical extraction methods and a pot experiment using crop plants. Results from single and sequential extractions showed that L. terrestris had a slight effect on metal fractionation in the studied soils: only metals bound to the soil organic matter were significantly increased in some cases. However, we found that L. terrestris significantly increased root, shoot and total Pb and Zn concentrations in maize and barley for the soil with the highest concentrations of total and available metals. Specifically, shoot Pb concentration was increased by a factor of 7.5 and 3.9 for maize and barley, respectively, while shoot Zn concentration was increased by a factor of 3.7 and 1.7 for maize and barley, respectively. Our results demonstrated that earthworm activity increases the bioavailability of metals in soils. - Research highlights: > Lumbricus terrestris L. activity increases the bioavailability of metals in soils. > Earthworm activity can significantly increase total, shoot and root metal concentrations for crop plants. > Both bioassays and chemical extraction methods are necessary for assessing the bioavailability of metals in contaminated soils. - Lumbricus terrestris L. activity increases the bioavailability of metals in soils and total, shoot and root metal concentrations for maize and barley.

  6. Biosynthesis of DIMBOA in maize using deuterium oxide as a tracer

    International Nuclear Information System (INIS)

    Peng, S.; Chilton, W.S.

    1994-01-01

    Growth of root cultures and of shoot cultures of maize (Zea mays) was noticeably inhibited by 30% D2O in liquid medium. Increasing the concentration of D2O in the medium decreased the concentration of DIMBOA [2,4-dihydroxy-7-methoxy 2H-1,4-benzoxazin-3(4H)-one] and the biomass of roots and shoots. DIMBOA was converted to MBOA [6-methoxy-2(3H)-benzoxazolone] and analysed by mass spectroscopy. Both root cultures and shoot cultures grown on 30% D2O incorporated deuterium at non-exchangeable sites of MBOA (15.6% and 16.1%, respectively), indicating that maize roots and shoots are independently capable of synthesizing DIMBOA from carbohydrate precursors. EI-MS and H-1 NMR showed that there was little selectivity in deuterium labelling between hydrogens at aromatic position 4, 5 or 7, consistent with the major amount of deuterium incorporation occurring prior to synthesis of shikimic acid

  7. Ultrastructure and histology of organogenesis induced from shoot tips of maize (Zea mays, Poaceae

    Directory of Open Access Journals (Sweden)

    Walter Marín-Méndez

    2009-11-01

    Full Text Available Shoot tips of maize (Zea mays L. were cultured on Murashige and Skoog medium supplemented with 2 mg/l BA +1 mg/l 2,4-D +40 mg/l, to investigate phases of ontogenetic development. The study used light microscopy as well as scanning and transmission electronic microscopy techniques. Shoot tips of maize are composed of small cells with a dense cytoplasm and a prominent nucleus. The process of organogenesis began with swelling of the shoot tip, as the first evidence of organogenic calli formation observed three weeks after culture get started. There were two morphologically different types of cells within the organogenic calli. The layer consisted of large cells with small nucleus, free-organelle cytosol, irregular plasmatic membrane, trichome-like structures, and thick cell walls. In the inner cell layer, small and isodiametric cells with a prominent nucleus, small vacuoles, endoplasmatic reticulum, Golgi, mitochondrias and chloroplasts were observed. The presence of trichomes in the more active morphogenic zones could indicate an organogenic potential. Rev. Biol. Trop. 57 (Suppl. 1: 129-139. Epub 2009 November 30.Los ápices de vástagos de maíz (Zea mays L. fueron cultivados con el medio Murashige y Skoog, utilizando como suplemento 2 mg/l BA +1 mg/l 2,4-D +40 mg/l, con el fin de investigar el proceso organogénico durante las diferentes fases del desarrollo ontogenético. El estudio utilizó tanto microscopía de luz, como técnicas de microscopía electrónica. Los análisis histológicos revelaron que los vástagos de maíz están compuestos de pequeñas células con citoplasma denso y núcleo prominente. El proceso de organogénesis inicia con el engrosamiento del ápice del vástago, como primera evidencia de la formación organogénica del calli observada tres semanas después del inicio del cultivo. El estudio ultraestructural muestra dos tipos de células morfológicamente diferentes en el calli organogénico. La capa externa consiste de

  8. [Alleviation of salt stress during maize seed germination by presoaking with exogenous sugar].

    Science.gov (United States)

    Zhao, Ying; Yang, Ke-jun; Li, Zuo-tong; Zhao, Chang-jiang; Xu, Jing-yu; Hu, Xue- wei; Shi, Xin-xin; Ma, Li-feng

    2015-09-01

    The maize variety Kenyu 6 was used to study the effects of exogenous glucose (Glc) and sucrose (Suc) on salt tolerance of maize seeds at germination stage under 150 mmol · L(-1) NaCl treatment. Results showed that under salt stress condition, 0.5 mmol · L(-1) exogenous Glc and Suc presoaking could promote seed germination and early seedling growth. Compared with the salt treatment, Glc presoaking increased the shoot length, radicle length and corresponding dry mass up to 1.5, 1.3, 2.1 and 1.8 times, and those of the Suc presoaking treatment increased up to 1.7, 1.3. 2.7 and 1.9 times, respectively. Exogenous Glc and Suc presoaking resulted in decreased levels of thiobarbituric acid reactive substances (TBARS) and hydrogen peroxide (H2O2) content of maize shoot under salt stress, which were lowered by 24.9% and 20.6% respectively. Exogenous Glc and Suc presoaking could increase the activities of superoxide dismutase (SOD), ascorbate peroxidase (APX), glutathione peroxidase (GPX), glutathione reductase (GR) and induce glucose-6-phosphate dehydrogenase (G6PDH) activity of maize shoot under salt stress. Compared with the salt treatment. Glc presoaking increased the activity of SOD, APX, GPX, GR and G6PDH by 66.2%, 62.9%, 32.0%, 38.5% and 50.5%, and those of the Suc presoaking increased by 67.5%, 59.8%, 30.0%, 38.5% and 50.4%, respectively. Glc and Suc presoaking also significantly increased the contents of ascorbic acid (ASA) and glutathione (GSH), ASA/DHA and GSH/GSSG. The G6PDH activity was found closely related with the strong antioxidation capacity induced by exogenous sugars. In addition, Glc and Suc presoaking enhanced K+/Na+ in maize shoot by 1.3 and 1.4 times of water soaking salt treatment, respectively. These results indicated that exogenous Glc and Suc presoaking could improve antioxidation capacity of maize seeds and maintain the in vivo K+/Na+ ion balance to alleviate the inhibitory effect of salt stress on maize seed germination.

  9. Citric acid mediated phyto extraction of cadmium by maize (zea mays l.)

    International Nuclear Information System (INIS)

    Anwar, S.; Hussain, M.

    2012-01-01

    The aim of the investigation was to determine the potential of citric acid for accumulation and translocation of cadmium and their effect on maize growth. The plants were grown in small plastic glasses and treated with 300 mg kg/sup -1/ CdCl/sub 2/ and 0, 0.25, 0.5, 1 and 2 g kg/sup -1/ of citric acid. After 10 days, the plants were harvested, dried and root and shoot biomass weighed. To study the efficiency of maize to bioaccumulate metal, uptake of cadmium was studied in the root and shoot. The results showed that heavy metal accumulated more in roots than the shoots and application of citric acid depressed Cd uptake at all concentrations. Percent decrease in Cd uptake was 58, 35, 26, 25 and 63, 46, 44, 42 by Sahiwal-2002 and Pak-affgoee, respectively at 0.25, 0.5, 1 and 2 g kg/sup -1/ of citric acid application. Maize proved to be an effective accumulator for cadmium, however, neither concentration of citric acid showed advantages for phytoextraction of cadmium. (author)

  10. Uptake of seed-applied copper by maize and the effects on seed vigor

    Directory of Open Access Journals (Sweden)

    Marcos Altomani Neves Dias

    2015-01-01

    Full Text Available Seed treatment is a low-cost and efficacious method to deliver a diversity of compounds to field crops. This study evaluated the uptake of seed-applied Cu by maize and the effect on seed vigor. The treatments were composed of a control (untreated seeds and five dosages of Cu: 0.11, 0.22, 0.44, 0.88 and 1.76 mg Cu seed–1, applied as cuprous oxide and copper oxychloride formulations. Seedling emergence and the speed of seedling emergence were determined in three periods: 1, 60 and 120 days after Cu application. Evaluations of root and shoot dry mass, Cu tissue concentration and efficiencies of Cu uptake and incorporation were conducted with two-leaf stage maize plants. Seed-applied Cu reduces the speed of maize seedling emergence, while the final emergence percentage is not affected. Shoot dry mass tends to increase with the application of Cu, while there is no interference on root dry mass within the dosages tested. Cu tissue concentration of both roots and shoots increases as higher dosages of Cu are applied to seeds, with higher accumulation in roots. Cuprous oxide promotes higher uptake of Cu by maize roots compared to copper oxychloride.

  11. QTL-By-Environment Interaction in the Response of Maize Root and Shoot Traits to Different Water Regimes

    Directory of Open Access Journals (Sweden)

    Pengcheng Li

    2018-02-01

    Full Text Available Drought is a major abiotic stress factor limiting maize production, and elucidating the genetic control of root system architecture and plasticity to water-deficit stress is a crucial problem to improve drought adaptability. In this study, 13 root and shoot traits and genetic plasticity were evaluated in a recombinant inbred line (RIL population under well-watered (WW and water stress (WS conditions. Significant phenotypic variation was observed for all observed traits both under WW and WS conditions. Most of the measured traits showed significant genotype–environment interaction (GEI in both environments. Strong correlations were observed among traits in the same class. Multi-environment (ME and multi-trait (MT QTL analyses were conducted for all observed traits. A total of 48 QTLs were identified by ME, including 15 QTLs associated with 9 traits showing significant QTL-by-Environment interactions (QEI. QTLs associated with crown root angle (CRA2 and crown root length (CRL1 were identified as having antagonistic pleiotropic effects, while 13 other QTLs showed signs of conditional neutrality (CN, including 9 and 4 QTLs detected under WW and WS conditions, respectively. MT analysis identified 14 pleiotropic QTLs for 13 traits, SNP20 (1@79.2 cM was associated with the length of crown root (CR, primary root (PR, and seminal root (SR and might contribute to increases in root length under WS condition. Taken together, these findings contribute to our understanding of the phenotypic and genotypic patterns of root plasticity in response to water deficiency, which will be useful to improve drought tolerance in maize.

  12. Root-type-specific plasticity in response to localized high nitrate supply in maize (Zea mays).

    Science.gov (United States)

    Yu, Peng; Hochholdinger, Frank; Li, Chunjian

    2015-10-01

    Shoot-borne roots contribute to most of the nutrient uptake throughout the life cycle of maize (Zea mays). Compared with numerous studies with embryonic roots, detailed information on the phenotypic plasticity of shoot-borne roots in response to a heterogeneous nitrogen supply is scarce. The present study therefore provides a comprehensive profile of fine-scale plastic responses of distinct root types to localized high nitrate supply. Seedlings of the maize inbred line B73 were grown in split-root systems. The anatomy and morphological plasticity of the primary root and the roots initiated from the 2nd, 5th and 7th shoot nodes, and their lateral roots, were studied in response to local high nitrate supply to one side of the root system. In contrast to the insensitivity of axial roots, local high nitrate supply increased the length of 1st-order lateral roots on the primary root and the three whorls of shoot-borne roots at different growth stages, and increased the density of 1st-order lateral roots on the 7th shoot-borne root after silking. The length and density of 2nd-order lateral roots on the three whorls of shoot-borne roots displayed a more flexible response to local high nitrate than 1st-order lateral roots. Root diameter and number, and total area and diameter of metaxylem vessels increased from the primary root to early and then later developed shoot-borne roots, which showed a positive relationship with shoot growth and N accumulation. Maize axial roots and lateral roots responded differently to local high nitrate, and this was related to their function. The extent of morphological plasticity of lateral roots in response to local high nitrate depended on the initiation time of the shoot-borne roots on which the lateral roots developed. Morphological plasticity was higher on 2nd-order than on 1st-order lateral roots. The results suggest that higher order lateral root branching might be a potential target for genetic improvement in future maize breeding.

  13. Improved tolerance of maize (Zea mays L.) to heavy metals by colonization of a dark septate endophyte (DSE) Exophiala pisciphila

    International Nuclear Information System (INIS)

    Li, T.; Liu, M.J.; Zhang, X.T.; Zhang, H.B.; Sha, T.; Zhao, Z.W.

    2011-01-01

    Dark septate endophytes (DSE) are ubiquitous and abundant in stressful environments including heavy metal (HM) stress. However, our knowledge about the roles of DSE in improving HM tolerance of their host plants is poor. In this study, maize (Zea mays L.) was inoculated with a HM tolerant DSE strain Exophiala pisciphila H93 in lead (Pb), zinc (Zn), and cadmium (Cd) contaminated soils. E. pisciphila H93 successfully colonized and formed typical DSE structures in the inoculated maize roots. Colonization of E. pisciphila H93 alleviated the deleterious effects of excessive HM supplements and promoted the growth of maize (roots and shoots) under HM stress conditions, though it significantly decreased the biomass of inoculated maize under no HM stress. Further analysis showed that the colonization of E. pisciphila H93 improved the tolerance of maize to HM by restricting the translocation of HM ions from roots to shoots. This study demonstrated that under higher HM stress, such a mutual symbiosis between E. pisciphila and its host (maize) may be an efficient strategy to survive in the stressful environments. - Research Highlights: →Effect of DSE (E. pisciphila) on heavy metal tolerance of maize host was studied. →DSE alleviated the deleterious effect of excessive heavy metals on maize. →DSE restricted the transfer of heavy metals from the roots to shoots in maize. →DSE colonization improved the tolerance of their host plants to heavy metals.

  14. Improved tolerance of maize (Zea mays L.) to heavy metals by colonization of a dark septate endophyte (DSE) Exophiala pisciphila

    Energy Technology Data Exchange (ETDEWEB)

    Li, T.; Liu, M.J.; Zhang, X.T. [Key Laboratory of Conservation and Utilization for Bioresources, Yunnan University, Kunming, 650091 Yunnan (China); Zhang, H.B. [Key Laboratory of Conservation and Utilization for Bioresources, Yunnan University, Kunming, 650091 Yunnan (China); Department of Biology, Yunnan University, Kunming, 650091 Yunnan (China); Sha, T. [Key Laboratory of Conservation and Utilization for Bioresources, Yunnan University, Kunming, 650091 Yunnan (China); Zhao, Z.W., E-mail: zhaozhw@ynu.edu.cn [Key Laboratory of Conservation and Utilization for Bioresources, Yunnan University, Kunming, 650091 Yunnan (China)

    2011-02-15

    Dark septate endophytes (DSE) are ubiquitous and abundant in stressful environments including heavy metal (HM) stress. However, our knowledge about the roles of DSE in improving HM tolerance of their host plants is poor. In this study, maize (Zea mays L.) was inoculated with a HM tolerant DSE strain Exophiala pisciphila H93 in lead (Pb), zinc (Zn), and cadmium (Cd) contaminated soils. E. pisciphila H93 successfully colonized and formed typical DSE structures in the inoculated maize roots. Colonization of E. pisciphila H93 alleviated the deleterious effects of excessive HM supplements and promoted the growth of maize (roots and shoots) under HM stress conditions, though it significantly decreased the biomass of inoculated maize under no HM stress. Further analysis showed that the colonization of E. pisciphila H93 improved the tolerance of maize to HM by restricting the translocation of HM ions from roots to shoots. This study demonstrated that under higher HM stress, such a mutual symbiosis between E. pisciphila and its host (maize) may be an efficient strategy to survive in the stressful environments. - Research Highlights: {yields}Effect of DSE (E. pisciphila) on heavy metal tolerance of maize host was studied. {yields}DSE alleviated the deleterious effect of excessive heavy metals on maize. {yields}DSE restricted the transfer of heavy metals from the roots to shoots in maize. {yields}DSE colonization improved the tolerance of their host plants to heavy metals.

  15. Genetic relationship between plant growth, shoot and kernel sizes in ...

    African Journals Online (AJOL)

    Maize (Zea mays L.) ear vascular tissue transports nutrients that contribute to grain yield. To assess kernel heritabilities that govern ear development and plant growth, field studies were conducted to determine the combining abilities of parents that differed for kernel-size, grain-filling rates and shoot-size. Thirty two hybrids ...

  16. The effect of altered dosage of a mutant allele of Teosinte branched 1 (tb1-ref) on the root system of modern maize.

    Science.gov (United States)

    Gaudin, Amelie C M; McClymont, Sarah A; Soliman, Sameh S M; Raizada, Manish N

    2014-02-14

    There was ancient human selection on the wild progenitor of modern maize, Balsas teosinte, for decreased shoot branching (tillering), in order to allow more nutrients to be diverted to grain. Mechanistically, the decline in shoot tillering has been associated with selection for increased expression of the major domestication gene Teosinte Branched 1 (Tb1) in shoot primordia. Therefore, TB1 has been defined as a repressor of shoot branching. It is known that plants respond to changes in shoot size by compensatory changes in root growth and architecture. However, it has not been reported whether altered TB1 expression affects any plant traits below ground. Previously, changes in dosage of a well-studied mutant allele of Tb1 in modern maize, called tb1-ref, from one to two copies, was shown to increase tillering. As a result, plants with two copies of the tb1-ref allele have a larger shoot biomass than heterozygotes. Here we used aeroponics to phenotype the effects of tb1-ref copy number on maize roots at macro-, meso- and micro scales of development. An increase in the tb1-ref copy number from one to two copies resulted in: (1) an increase in crown root number due to the cumulative initiation of crown roots from successive tillers; (2) higher density of first and second order lateral roots; and (3) reduced average lateral root length. The resulting increase in root system biomass in homozygous tb1-ref mutants balanced the increase in shoot biomass caused by enhanced tillering. These changes caused homozygous tb1-ref mutants of modern maize to more closely resemble its ancestor Balsas teosinte below ground. We conclude that a decrease in TB1 function in maize results in a larger root system, due to an increase in the number of crown roots and lateral roots. Given that decreased TB1 expression results in a more highly branched and larger shoot, the impact of TB1 below ground may be direct or indirect. We discuss the potential implications of these findings for whole

  17. Nanoscale Zinc Oxide Particles for Improving the Physiological and Sanitary Quality of a Mexican Landrace of Red Maize

    Directory of Open Access Journals (Sweden)

    Juan Estrada-Urbina

    2018-04-01

    Full Text Available In this research, quasi-spherical-shaped zinc oxide nanoparticles (ZnO NPs were synthesized by a simple cost-competitive aqueous precipitation method. The engineered NPs were characterized using several validation methodologies: UV–Vis spectroscopy, diffuse reflection UV–Vis, spectrofluorometry, transmission electron microscopy (TEM, nanoparticle tracking analysis (NTA, and Fourier transform infrared (FTIR spectroscopy with attenuated total reflection (ATR. A procedure was established to coat a landrace of red maize using gelatinized maize starch. Each maize seed was treated with 0.16 mg ZnO NPs (~7.7 × 109 particles. The standard germination (SG and accelerated aging (AA tests indicated that ZnO NP-treated maize seeds presented better physiological quality (higher percentage of normal seedlings and sanitary quality (lower percentage of seeds contaminated by microorganisms as compared to controls. The application of ZnO NPs also improved seedling vigor, correlated to shoot length, shoot diameter, root length, and number of secondary roots. Furthermore, shoots and roots of the ZnO NP-treated maize seeds showed a marked increment in the main active FTIR band areas, most notably for the vibrations associated with peptide-protein, lipid, lignin, polysaccharide, hemicellulose, cellulose, and carbohydrate. From these results, it is concluded that ZnO NPs have potential for applications in peasant agriculture to improve the quality of small-scale farmers’ seeds and, as a result, preserve germplasm resources.

  18. Making better maize plants for sustainable grain production in a changing climate.

    Science.gov (United States)

    Gong, Fangping; Wu, Xiaolin; Zhang, Huiyong; Chen, Yanhui; Wang, Wei

    2015-01-01

    Achieving grain supply security with limited arable land is a major challenge in the twenty-first century, owing to the changing climate and increasing global population. Maize plays an increasingly vital role in global grain production. As a C4 plant, maize has a high yield potential. Maize is predicted to become the number one cereal in the world by 2020. However, maize production has plateaued in many countries, and hybrid and production technologies have been fully exploited. Thus, there is an urgent need to shape maize traits and architectures for increased stress tolerance and higher yield in a changing climate. Recent achievements in genomics, proteomics, and metabolomics have provided an unprecedented opportunity to make better maize. In this paper, we discuss the current challenges and potential of maize production, particularly in China. We also highlight the need for enhancing maize tolerance to drought and heat waves, summarize the elite shoot and root traits and phenotypes, and propose an ideotype for sustainable maize production in a changing climate. This will facilitate targeted maize improvement through a conventional breeding program combined with molecular techniques.

  19. Impact of chelator-induced phytoextraction of cadmium on yield and ionic uptake of maize.

    Science.gov (United States)

    Anwar, Sumera; Khan, Shahbaz; Ashraf, M Yasin; Noman, Ali; Zafar, Sara; Liu, Lijun; Ullah, Sana; Fahad, Shah

    2017-06-03

    Enhanced phytoextraction uses soil chelators to increase the bioavailability of heavy metals. This study tested the effectiveness of ethylenediaminetetraacetic acid (EDTA) and citric acid in enhancing cadmium (Cd) phytoextraction and their effects on the growth, yield, and ionic uptake of maize (Zea mays). Maize seeds of two cultivars were sown in pots treated with 15 (Cd 15 ) or 30 mg Cd kg -1 soil (Cd 30 ). EDTA and citric acid at 0.5 g kg -1 each were applied 2 weeks after germination. Results demonstrated that the growth, yield per plant, and total grain weight were reduced by exposure to Cd. EDTA increased the uptake of Cd in shoots, roots, and grains of both maize varieties. Citric acid did not enhance the uptake of Cd, rather it ameliorated the toxicity of Cd, as shown by increased shoot and root length and biomass. Cadmium toxicity reduced the number of grains, rather than the grain size. The maize cultivar Sahiwal-2002 extracted 1.6% and 3.6% of Cd from soil in both Cd+ EDTA treatments. Hence, our study implies that maize can be used to successfully phytoremediate Cd from soil using EDTA, without reducing plant biomass or yield.

  20. EFFECT OF ALUMINUM ON PLANT GROWTH, PHOSPORUS AND CALCIUM UPTAKE OF TROPICAL RICE (Oryza sativa, MAIZE (Zea mays, AND SOYBEAN (Glycine max

    Directory of Open Access Journals (Sweden)

    D. Nursyamsi

    2018-01-01

    Full Text Available Aluminum toxicity is the most limiting factor to plant growth on acid soils. Structural and functional damages in the root system by Al decrease nutrient uptake and lead to reduce plant growth and mineral deficiency in shoot. Greenhouse experiment was conducted to study the effect of Al on plant growth, and P and Ca uptake of rice, maize, and soybean. The plants were grown in hydroponic solution added with 0, 5, 10, and 30 ppm Al, at pH 4.0. The results showed that relative growth of shoots and roots of upland rice, lowland rice, maize, and soybean decreased with an increase of Al level. However, sometimes the low Al level (5 ppm stimulated shoot and root growth of some varieties in these species. According to total AlRG30 values, which is Al concentration in solution when relative growth decreased to 50%, Al tolerance of species was in order of barley < maize < soybean < lowland rice < upland rice. For maize, Al tolerance was in the order of Arjuna < Kalingga < P 3540 < SA 5 < SA 4 < PM 95 A < SA 3 < Antasena; for soybean was Wilis < INPS < Galunggung < Kerinci < Kitamusume; for lowland rice was RD 23 < Kapuas < Cisadane < KDML 105 < IR 66 < RD 13, and for upland rice was Dodokan < JAC165 < Cirata < Orizyca sabana 6 < Danau Tempe < Laut Tawar. Based on the rank of Al tolerance, rice was the useful crop to be planted in acid soils. Antasena (maize, Kitamusume ( soybean , RD 13 (lowland rice, and Laut Tawar (upland rice were also recommended for acid soils. P and Ca concentration in shoots and roots commonly decreased with an increase of Al level. However, the low Al level stimulated absorption of P and Ca concentrations in shoots and roots.

  1. Interactions of phytochromes A, B1 and B2 in light-induced competence for adventitious shoot formation in hypocotyl of tomato (Solanum lycopersicum L.).

    Science.gov (United States)

    Lercari, B; Bertram, L

    2004-02-01

    The interactions of phytochrome A (phyA), phytochrome B1 (phyB1) and phytochrome B2 (phyB2) in light-dependent shoot regeneration from the hypocotyl of tomato was analysed using all eight possible homozygous allelic combinations of the null mutants. The donor plants were pre-grown either in the dark or under red or far-red light for 8 days after sowing; thereafter hypocotyl segments (apical, middle and basal portions) were transferred onto hormone-free medium for culture under different light qualities. Etiolated apical segments cultured in vitro under white light showed a very high frequency of regeneration for all of the genotypes tested besides phyB1phyB2, phyAphyB1 and phyAphyB1phyB2 mutants. Evidence is provided of a specific interference of phyB2 with phyA-mediated HIR to far-red and blue light in etiolated explants. Pre-treatment of donor plants by growth under red light enhanced the competence of phyB1phyB2, phyAphyB1 and phyAphyB1phyB2 mutants for shoot regeneration, whereas pre-irradiation with far-red light enhanced the frequency of regeneration only in the phyAphyB1 mutant. Multiple phytochromes are involved in red light- and far-red light-dependent acquisition of competence for shoot regeneration. The position of the segments along the hypocotyl influenced the role of the various phytochromes and the interactions between them. The culture of competent hypocotyl segments under red, far-red or blue light reduced the frequency of explants forming shoots compared to those cultured under white light, with different genotypes having different response patterns.

  2. Seed priming with KNO3 mediates biochemical processes to inhibit lead toxicity in maize (Zea mays L.).

    Science.gov (United States)

    Nawaz, Fahim; Naeem, Muhammad; Akram, Asim; Ashraf, Muhammad Y; Ahmad, Khawaja S; Zulfiqar, Bilal; Sardar, Hasan; Shabbir, Rana N; Majeed, Sadia; Shehzad, Muhammad A; Anwar, Irfan

    2017-11-01

    Accumulation of lead (Pb) in agricultural soils has become a major factor for reduced crop yields and poses serious threats to humans consuming agricultural products. The present study investigated the effects of KNO 3 seed priming (0 and 0.5% KNO 3 ) on growth of maize (Zea mays L.) seedlings exposed to Pb toxicity (0, 1300 and 2550 mg kg -1 Pb). Pb exposure markedly reduced the growth of maize seedlings and resulted in higher Pb accumulation in roots than shoots. Pretreatment of seeds with KNO 3 significantly improved the germination percentage and increased physiological indices. A stimulating effect of KNO 3 seed priming was also observed on pigments (chlorophyll a, b, total chlorophyll and carotenoid contents) of Pb-stressed plants. Low translocation of Pb from roots to shoots caused an increased accumulation of total free amino acids and higher activities of catalase, peroxidase, superoxide dismutase and ascorbate peroxidase in roots as compared to shoot, which were further enhanced by exogenous KNO 3 supply to prevent Pb toxicity. Maize accumulates more Pb in roots than shoot at early growth stages. Priming of seeds with KNO 3 prevents Pb toxicity, which may be exploited to improve seedling establishment in crop species grown under Pb contaminated soils. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  3. Differences in U root-to-shoot translocation between plant species explained by U distribution in roots

    Energy Technology Data Exchange (ETDEWEB)

    Straczek, Anne; Duquene, Lise [Belgium Nuclear Research Centre (SCK.CEN), Biosphere Impact Studies, Boeretang 200, 2400 Mol (Belgium); Wegrzynek, Dariusz [IAEA, Seibersdorf Laboratories, A-2444 Seibersdorf (Austria); Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Krakow (Poland); Chinea-Cano, Ernesto [IAEA, Seibersdorf Laboratories, A-2444 Seibersdorf (Austria); Wannijn, Jean [Belgium Nuclear Research Centre (SCK.CEN), Biosphere Impact Studies, Boeretang 200, 2400 Mol (Belgium); Navez, Jacques [Royal Museum of Africa, Department of Geology, Leuvensesteenweg 13, 3080 Tervuren (Belgium); Vandenhove, Hildegarde, E-mail: hvandenh@sckcen.b [Belgium Nuclear Research Centre (SCK.CEN), Biosphere Impact Studies, Boeretang 200, 2400 Mol (Belgium)

    2010-03-15

    Accumulation and distribution of uranium in roots and shoots of four plants species differing in their cation exchange capacity of roots (CECR) was investigated. After exposure in hydroponics for seven days to 100 mumol U L{sup -1}, distribution of uranium in roots was investigated through chemical extraction of roots. Higher U concentrations were measured in roots of dicots which showed a higher CECR than monocot species. Chemical extractions indicated that uranium is mostly located in the apoplasm of roots of monocots but that it is predominantly located in the symplasm of roots of dicots. Translocation of U to shoot was not significantly affected by the CECR or distribution of U between symplasm and apoplasm. Distribution of uranium in roots was investigated through chemical extraction of roots for all species. Additionally, longitudinal and radial distribution of U in roots of maize and Indian mustard, respectively showing the lowest and the highest translocation, was studied following X-ray fluorescence (XRF) analysis of specific root sections. Chemical analysis and XRF analysis of roots of maize and Indian mustard clearly indicated a higher longitudinal and radial transport of uranium in roots of Indian mustard than in roots of maize, where uranium mostly accumulated in root tips. These results showed that even if CECR could partly explain U accumulation in roots, other mechanisms like radial and longitudinal transport are implied in the translocation of U to the shoot.

  4. Differences in U root-to-shoot translocation between plant species explained by U distribution in roots

    International Nuclear Information System (INIS)

    Straczek, Anne; Duquene, Lise; Wegrzynek, Dariusz; Chinea-Cano, Ernesto; Wannijn, Jean; Navez, Jacques; Vandenhove, Hildegarde

    2010-01-01

    Accumulation and distribution of uranium in roots and shoots of four plants species differing in their cation exchange capacity of roots (CECR) was investigated. After exposure in hydroponics for seven days to 100 μmol U L -1 , distribution of uranium in roots was investigated through chemical extraction of roots. Higher U concentrations were measured in roots of dicots which showed a higher CECR than monocot species. Chemical extractions indicated that uranium is mostly located in the apoplasm of roots of monocots but that it is predominantly located in the symplasm of roots of dicots. Translocation of U to shoot was not significantly affected by the CECR or distribution of U between symplasm and apoplasm. Distribution of uranium in roots was investigated through chemical extraction of roots for all species. Additionally, longitudinal and radial distribution of U in roots of maize and Indian mustard, respectively showing the lowest and the highest translocation, was studied following X-ray fluorescence (XRF) analysis of specific root sections. Chemical analysis and XRF analysis of roots of maize and Indian mustard clearly indicated a higher longitudinal and radial transport of uranium in roots of Indian mustard than in roots of maize, where uranium mostly accumulated in root tips. These results showed that even if CECR could partly explain U accumulation in roots, other mechanisms like radial and longitudinal transport are implied in the translocation of U to the shoot.

  5. Display of a Maize cDNA library on baculovirus infected insect cells

    Directory of Open Access Journals (Sweden)

    Jones Ian M

    2008-08-01

    Full Text Available Abstract Background Maize is a good model system for cereal crop genetics and development because of its rich genetic heritage and well-characterized morphology. The sequencing of its genome is well advanced, and new technologies for efficient proteomic analysis are needed. Baculovirus expression systems have been used for the last twenty years to express in insect cells a wide variety of eukaryotic proteins that require complex folding or extensive posttranslational modification. More recently, baculovirus display technologies based on the expression of foreign sequences on the surface of Autographa californica (AcMNPV have been developed. We investigated the potential of a display methodology for a cDNA library of maize young seedlings. Results We constructed a full-length cDNA library of young maize etiolated seedlings in the transfer vector pAcTMVSVG. The library contained a total of 2.5 × 105 independent clones. Expression of two known maize proteins, calreticulin and auxin binding protein (ABP1, was shown by western blot analysis of protein extracts from insect cells infected with the cDNA library. Display of the two proteins in infected insect cells was shown by selective biopanning using magnetic cell sorting and demonstrated proof of concept that the baculovirus maize cDNA display library could be used to identify and isolate proteins. Conclusion The maize cDNA library constructed in this study relies on the novel technology of baculovirus display and is unique in currently published cDNA libraries. Produced to demonstrate proof of principle, it opens the way for the development of a eukaryotic in vivo display tool which would be ideally suited for rapid screening of the maize proteome for binding partners, such as proteins involved in hormone regulation or defence.

  6. Screening for salt tolerance in maize (zea mays l.) hybrids at an early seedling stage

    International Nuclear Information System (INIS)

    Akram, M.; Mohsan; Ashraf, M.Y.; Ahmad, R.; Waraich, E.A.

    2010-01-01

    An efficient and simple mass screening technique for selection of maize hybrids for salt tolerance has been developed. Genetic variation for salt tolerance was assessed in hybrid maize (Zea mays L.) using solution-culture technique. The study was conducted in solution culture exposed to four salinity levels (control, 40, 80 and 120 mM NaCl). Seven days old maize seedlings were transplanted in themopol sheet in iron tubs containing one half strength Hoagland nutrient solutions and salinized with common salt (NaCl). The experiment was conducted in the rain protected wire house of Stress Physiology Laboratory of NIAB, Faisalabad, Pakistan. Ten maize hybrids were used for screening against four salinity levels. Seedling of each hybrid was compared for their growth under saline conditions as a percentage of the control values. Considerable variations were observed in the root, shoot length and biomass of different hybrids at different salinity levels. The leaf sample analyzed for inorganic osmolytes (sodium, potassium and calcium) showed that hybrid Pioneer 32B33 and Pioneer 30Y87 have high biomass, root shoot fresh weight and high ratio and showed best salt tolerance performance at all salinity levels on overall basis. (author)

  7. A protochlorophyllide light-harvesting complex involved in de-etiolation of higher plants

    International Nuclear Information System (INIS)

    Reinbothe, C.; Lebedev, N.; Reinbothe, S.

    1999-01-01

    When etiolated angiosperm seedlings break through the soil after germination, they are immediately exposed to sunlight, but at this stage they are unable to perform photosynthesis1. In the absence of chlorophyll a and chlorophyll b, two other porphyrin species cooperate as the basic light-harvesting structure of etiolated plants. Protochlorophyllide a and protochlorophyllide b (ref. 2) form supramolecular complexes with NADPH and two closely related NADPH:protochlorophyllide oxidoreductase (POR) proteins—PORA and PORB (ref. 3)—in the prolamellar body of etioplasts. Here we report that these light-harvesting POR–protochlorophyllide complexes, named LHPP, are essential for the establishment of the photosynthetic apparatus and also confer photoprotection on the plant. They collect sunlight for rapid chlorophyll a biosynthesis and, simultaneously, dissipate excess light energy in the bulk of non-photoreducible protochlorophyllide b. Based on this dual function, it seems that LHPP provides the link between skotomorphogenesis and photosynthesis that is required for efficient de-etiolation

  8. Phytoextraction of Pb and Cu contaminated soil with maize and microencapsulated EDTA.

    Science.gov (United States)

    Xie, Zhiyi; Wu, Longhua; Chen, Nengchang; Liu, Chengshuai; Zheng, Yuji; Xu, Shengguang; Li, Fangbai; Xu, Yanling

    2012-09-01

    Chelate-assisted phytoextraction using agricultural crops has been widely investigated as a remediation technique for soils contaminated with low mobility potentially toxic elements. Here, we report the use of a controlled-release microencapsulated EDTA (Cap-EDTA) by emulsion solvent evaporation to phytoremediate soil contaminated with Pb and Cu. Incubation experiments were carried out to assess the effect of Cap- and non-microencapsulated EDTA (Ncap-EDTA) on the mobility of soil metals. Results showed EDTA effectively increased the mobility of Pb and Cu in the soil solution and Cap-EDTA application provided lower and more constant water-soluble concentrations of Pb and Cu in comparison with. Phytotoxicity may be alleviated and plant uptake of Pb and Cu may be increased after the incorporation of Cap-EDTA. In addition phytoextraction efficiencies of maize after Cap- and Ncap-EDTA application were tested in a pot experiment. Maize shoot concentrations of Pb and Cu were lower with Cap-EDTA application than with Ncap-EDTA. However, shoot dry weight was significantly higher with Cap-EDTA application. Consequently, the Pb and Cu phytoextraction potential of maize significantly increased with Cap-EDTA application compared with the control and Ncap-EDTA application.

  9. The distribution of 137Cs in maize (Zea mays L.) and two millet species (Panicum miliaceum L. and Panicum maximum Jacq.) cultivated on the cesium-contaminated soil

    International Nuclear Information System (INIS)

    Bystrzejewska-Nowacka, G.; Nowacka, R.

    2004-01-01

    The plant of three species (Zea mays L., Panicum miliaceum L. and Panicum maximum Jacq.) were grown on the soil contaminated with 0.3 mM CsCl solution traced with 137 Cs, in greenhouse. For all the species, the fresh-to-dry weight ratio was equal in the cesium-treated plants and in the central group after 3 weeks of culture. The shoot-to root fresh weight and dry weight ratios were decreased in maize, unchanged in Panicum miliaceum and increased in Panicum maximum, comparing to the control without cesium treatment. The shoot/soil and also root/soil transfer (TF) for 137 Cs (measured by means of Na I gamma spectrometer) were always the highest in maize, then lower in Panicum miliaceum and the lowest in Panicum maximum. All the plants seem to be hyperaccumulators of cesium. The root/soil Tf was especially high in maize, i.e. 55 (kBq kg -1 biomass)/kBq Kg -1 soil). The shoot/root concentration factor (CF) for 137 Cs was the lowest in maize, higher in Panicum miliaceum and highest in Panicum maximum. The proved ability of the investigated plants for phytoextraction of the soil cesium points to the (author). The detectability and reliin soil bioremediation. From this point of view, Panicum maximum seems to be the most useful plant because it accumulates cesium mainly in the shoot, and maize would be the least useful spices since it has the highest accumulation in root. (author)

  10. Proteomics of Maize Root Development.

    Science.gov (United States)

    Hochholdinger, Frank; Marcon, Caroline; Baldauf, Jutta A; Yu, Peng; Frey, Felix P

    2018-01-01

    Maize forms a complex root system with structurally and functionally diverse root types that are formed at different developmental stages to extract water and mineral nutrients from soil. In recent years proteomics has been intensively applied to identify proteins involved in shaping the three-dimensional architecture and regulating the function of the maize root system. With the help of developmental mutants, proteomic changes during the initiation and emergence of shoot-borne, lateral and seminal roots have been examined. Furthermore, root hairs were surveyed to understand the proteomic changes during the elongation of these single cell type structures. In addition, primary roots have been used to study developmental changes of the proteome but also to investigate the proteomes of distinct tissues such as the meristematic zone, the elongation zone as well as stele and cortex of the differentiation zone. Moreover, subcellular fractions of the primary root including cell walls, plasma membranes and secreted mucilage have been analyzed. Finally, the superior vigor of hybrid seedling roots compared to their parental inbred lines was studied on the proteome level. In summary, these studies provide novel insights into the complex proteomic interactions of the elaborate maize root system during development.

  11. Proteomics of Maize Root Development

    Directory of Open Access Journals (Sweden)

    Frank Hochholdinger

    2018-03-01

    Full Text Available Maize forms a complex root system with structurally and functionally diverse root types that are formed at different developmental stages to extract water and mineral nutrients from soil. In recent years proteomics has been intensively applied to identify proteins involved in shaping the three-dimensional architecture and regulating the function of the maize root system. With the help of developmental mutants, proteomic changes during the initiation and emergence of shoot-borne, lateral and seminal roots have been examined. Furthermore, root hairs were surveyed to understand the proteomic changes during the elongation of these single cell type structures. In addition, primary roots have been used to study developmental changes of the proteome but also to investigate the proteomes of distinct tissues such as the meristematic zone, the elongation zone as well as stele and cortex of the differentiation zone. Moreover, subcellular fractions of the primary root including cell walls, plasma membranes and secreted mucilage have been analyzed. Finally, the superior vigor of hybrid seedling roots compared to their parental inbred lines was studied on the proteome level. In summary, these studies provide novel insights into the complex proteomic interactions of the elaborate maize root system during development.

  12. Differential Ability of Maize and Soybean to Acquire and Utilize Phosphorus from Sparingly Soluble Forms in Low- and Medium-P Soils Using {sup 32}P

    Energy Technology Data Exchange (ETDEWEB)

    Adu-Gyamfi, J. J.; Aigner, M.; Linic, S. [Soil and Water Management and Crop Nutrition Laboratory, Seibersdorf (Austria); Gludovacz, D. [Nuclear Material Laboratory, Safeguard Analytical Services, International Atomic Energy Agency, Seibersdorf (Austria)

    2013-11-15

    A glasshouse pot experiment was conducted to evaluate the differential ability of maize (Zea mays) and soybean (Glycine max) to utilize soil phosphorus (P) for plant growth from total-P, available-P and inorganic (Ca-P, Al-P and Fe-P) soil P pools using a carrier-free {sup 32}P solution. A maize variety (DK 315) and a soybean variety (TGX 1910-4F) were grown in pots containing 1 kg of a low available P soil (Hungarian) or a medium available P (Waldviertel) soil labelled with {sup 32}P for 42 days or without {sup 32}P (unlabelled) for 42 and 60 days. The shoot and root biomass of maize and soybean were significantly greater when grown on the Waldviertel than on the Hungarian soils. The shoot P concentrations were higher for soybean (1.7-2.2 g kg{sup -1}) than for maize (1.1-1.4 g kg{sup -1}). The total radioactivity (dpm x 10{sup 6}) was higher in plants grown in Waldviertel than in Hungarian soil and the values reflected plant P uptake and shoot biomass of soybean and maize. The L-values ({mu}g P g soil{sup -1}) of maize and soybean were higher in Waldviertel (72-78) than in Hungarian (9.6-20) soil. No significant differences in L-values were observed for maize and soybean grown on the Waldviertel soil, but for the Hungarian soil, the L-values were higher for maize (20.0) than for soybean (9.6) suggesting that in this low-P soil, maize was more efficient than soybean in taking up soil P. The available P (Bray II) and the Ca-P were the fractions most depleted by plants followed by the Fe-P fractions in the two soils, but differences between the crops were not significant. When soil P is limited, maize and soybean are able to access P mainly from the available P (Bray II), Fe- and Ca-P sparingly soluble fractions and not Al-P from the soil. (author)

  13. Responses of seed germination, seedling growth, and seed yield traits to seed pretreatment in maize (Zea mays L.).

    Science.gov (United States)

    Tian, Yu; Guan, Bo; Zhou, Daowei; Yu, Junbao; Li, Guangdi; Lou, Yujie

    2014-01-01

    A series of seed priming experiments were conducted to test the effects of different pretreatment methods to seed germination, seedling growth, and seed yield traits in maize (Zea mays L.). Results indicated that the seeds primed by gibberellins (GA), NaCl, and polyethylene glycol (PEG) reagents showed a higher imbibitions rate compared to those primed with water. The final germination percentage and germination rate varied with different reagents significantly (P germination experiment. 15% PEG priming reagent increased shoot and root biomass of maize seedling. The shoot biomass of seedlings after presoaking the seeds with NaCl reagent was significantly higher than the seedlings without priming treatment. No significant differences of plant height, leaf number, and hundred-grain weight were observed between control group and priming treatments. Presoaking with water, NaCl (50 mM), or PEG (15%) significantly increased the hundred-grain weight of maize. Therefore, seed pretreatment is proved to be an effective technique to improve the germination performance, seedling growth, and seed yield of maize. However, when compared with the two methods, if immediate sowing is possible, presoaking is recommended to harvest better benefits compared to priming method.

  14. Source and magnitude of ammonium generation in maize roots

    International Nuclear Information System (INIS)

    Feng, J.; Vol, R.J.; Jackson, W.A.

    1998-01-01

    Studies with 15 N indicate that appreciable generation of NH 4 + from endogenous sources accompanies the uptake and assimilation of exogenous NH 4 + by roots. To identify the source of NH 4 + generation, maize (Zea mays L.) seedlings were grown on 14 NH 4 + and then exposed for 3 d to highly labeled 15 NH 4 + . More of the entering 15 NH 4 + was incorporated into the protein-N fraction of roots in darkness (approximately 25%) than in the light (approximately 14%). Although the 14 NH 4 + content of roots declined rapidly to less than 1 micromole per plant, efflux of 14 NH 4 + continued throughout the 3-d period at an average daily rate of 14 micromole per plant. As a consequence, cumulative 14 NH 4 + efflux during the 3-d period accounted for 25% of the total 14 N initially present in the root. Although soluble organic 14 N in roots declined during the 3-d period, insoluble 14 N remained relatively constant. In shoots both soluble organic 14 N and 14 NH 4 + declined, but a comparable increase in insoluble 14 N was noted. Thus, total 14 N in shoots remained constant, reflecting little or no net redistribution of 14 N between shoots and roots. Collectively, these observations reveal that catabolism of soluble organic N, not protein N, is the primary source of endogenous NH 4 + generation in maize roots. (author)

  15. INOCULATION AND ISOLATION OF PLANT GROWTH-PROMOTING BACTERIA IN MAIZE GROWN IN VITÓRIA DA CONQUISTA, BAHIA, BRAZIL

    Directory of Open Access Journals (Sweden)

    Joelma da Silva Santos

    2015-02-01

    Full Text Available Maize is among the most important crops in the world. This plant species can be colonized by diazotrophic bacteria able to convert atmospheric N into ammonium under natural conditions. This study aimed to investigate the effect of inoculation of the diazotrophic bacterium Herbaspirillum seropedicae (ZAE94 and isolate new strains of plant growth-promoting bacteria in maize grown in Vitória da Conquista, Bahia, Brazil. The study was conducted in a greenhouse at the Experimental Area of the Universidade Estadual do Sudoeste da Bahia. Inoculation was performed with peat substrate, with and without inoculation containing strain ZAE94 of H. seropedicae and four rates of N, in the form of ammonium sulfate (0, 60, 100, and 140 kg ha-1 N. After 45 days, plant height, dry matter accumulation in shoots, percentage of N, and total N (NTotal were evaluated. The bacteria were isolated from root and shoot fragments of the absolute control; the technique of the most probable number and identification of bacteria were used. The new isolates were physiologically characterized for production of indole acetic acid (IAA and nitrogenase activity. We obtained 30 isolates from maize plants. Inoculation with strain ZAE94 promoted an increase of 14.3 % in shoot dry mass and of 44.3 % in NTotal when associated with the rate 60 kg ha-1 N. The strains N11 and N13 performed best with regard to IAA production and J06, J08, J10, and N15 stood out in acetylene reduction activity, demonstrating potential for inoculation of maize.

  16. Differential distribution of cadmium in lettuce (Lactuca sativa L.) and maize (Zea mays L.)

    NARCIS (Netherlands)

    Florijn, P.J.

    1993-01-01

    Large genotypic variation in shoot Cd concentrations has been reported in literature for several plant species including lettuce ( Lactuca sativa L.) and maize ( Zea mays L.). The objective of this thesis was to elucidate the physiological andlor

  17. Transcriptomics analysis of etiolated Arabidopsis thaliana seedlings in response to microgravity

    Data.gov (United States)

    National Aeronautics and Space Administration — Gene expression profile of two-week-old etiolated Arabidopsis seedlings under microgravity on board space flight BRIC16 were compared with ground grown control in...

  18. YIELDING AND CONTENT OF SELECTED MICROELEMENTS IN MAIZE FERTILIZED WITH VARIOUS ORGANIC MATERIALS

    Directory of Open Access Journals (Sweden)

    Jerzy Wieczorek

    2017-07-01

    On the basis of conducted research it was found that various fertilizer combinations applied in the experiment had a significant influence on the test plant yielding. All compared fertilizer variants allowed maize to produce statistically significantly higher yield in comparison with the yield harvested from the unfertilized soils. Fertilization with sewage sludge I supplemented with mineral treatment and application of solely mineral salts proved the most beneficial for the maize yield. Applied fertilizer combinations affected the content of microelements. The highest concentrations of nickel in maize green mass were assessed in plant samples from the unfertilized object, whereas zinc and copper from mineral fertilization variant. Except of zinc, introducing additional metal doses did not influence their increased content in plant organs. Soil enrichment with zinc contained in sewage sludge I and II (respectively 77.4 mg and 49.9 mg ∙ pot-1 contributed to its elevated concentration in maize roots but at the same time this metal content statistically significantly decreased in maize shoots in comparison with the amounts determined in plants fertilized with mineral materials.

  19. Allelopathic effects of aqueous extracts of sunflower on wheat (triticum aestivum l.) and maize (zea mays l.)

    International Nuclear Information System (INIS)

    Muhammad, Z.; Mujeed, A.

    2014-01-01

    Sunflower is a potent allelopathic plant which possesses important allelochemicals with known allelopathic activity on other plants. In this study, allelopathic effects of fresh aqueous extracts (FAE) and air dried aqueous extracts (DAE) of root, shoot and leaves of sunflower (Halianthus annuus L.) were investigated on germination and seedling growth of wheat (Triticum aestivum L.) and maize (Zea mays L.) in seed bioassay experiments carried out at Botany Department of Peshawar University during 2010. Results showed significantly inhibitory effects of aqueous extracts on seed germination, growth and dry biomass of seedlings of wheat and maize. In wheat seedlings, significant germination inhibition (15.21%), increased mean germination time (MGT) (57.76%), reduced plumule and radical growth (21.66 and 28.44%) and lowered seedlings dry biomass (31.05%) were recorded under dry aqueous extracts of leaf when compared to control. Germination percentage of maize was inhibited by dry aqueous extracts of leaf by 7.81%, germination index by 16.51%, increased MGT by 25.53%, decreased plumule and radical lengths by 29.00 and 36.12% respectively, and lowered maize seedling dry biomass by 34.02 %. In both experiments, dry aqueous extracts (DAE) were more phytotoxic than fresh aqueous extracts (FAE). Similarly, inhibitory effects of aqueous extracts of different parts of sunflower were recorded in the order leaf > shoot > root for both tested plants. (author)

  20. [A method for genetic transformation of maize for resistance to viral diseases].

    Science.gov (United States)

    Valdez, Marta; Madriz, Kenneth; Ramírez, Pilar

    2004-09-01

    A system for the genetic transformation of maize was developed for two Costa Rican varieties: CR-7 and Diamantes 8843, that can allow the subsequent transfer of viral-derived genes in order to confer resistance to the disease caused by maize rayado fino virus (MRFV). The method is based on particle bombardment of organogenic calli derived from shoot tips. On the other hand, the molecular construction pRFcp-bar, containing the coat protein gene of MRFV and the marker gene bar, was elaborated. For the visual selection of the transformed material was used also the plasmid pDM803 that contains the reporter gene uidA (GUS). The results indicate that devices evaluated: the PIG ("Particle Inflow Gun") and the Bio-Rad are both enough efficient to transfer foreign genes to the genome of the maize.

  1. Comparison of Selenium Toxicity in Sunflower and Maize Seedlings Grown in Hydroponic Cultures.

    Science.gov (United States)

    Garousi, Farzaneh; Veres, Szilvia; Kovács, Béla

    2016-11-01

    Several studies have demonstrated that selenium (Se) at low concentrations is beneficial, whereas high Se concentrations can induce toxicity. Controlling Se uptake, metabolism, translocation and accumulation in plants is important to decrease potential health risks and helping to select proper biofortification methods to improve the nutritional content of plant-based foods. The uptake and distribution of Se, changes in Se content, and effects of various concentrations of Se in two forms (sodium selenite and sodium selenate) on sunflower and maize plants were measured in nutrient solution experiments. Results revealed the Se content in shoots and roots of both sunflower and maize plants significantly increased as the Se level increased. In this study, the highest exposure concentrations (30 and 90 mg/L, respectively) caused toxicity in both sunflower and maize. While both Se forms damaged and inhibited plant growth, each behaved differently, as toxicity due to selenite was observed more than in the selenate treatments. Sunflower demonstrated a high Se accumulation capacity, with higher translocation of selenate from roots to shoots compared with selenite. Since in seleniferous soils, a high change in plants' capability exists to uptake Se from these soils and also most of the cultivated crop plants have a bit tolerance to high Se levels, distinction of plants with different Se tolerance is important. This study has tried to discuss about it.

  2. Nitrogen fertilizer fate after introducing maize into a continuous paddy rice cropping system

    Science.gov (United States)

    Thiemann, Irabella; He, Yao; Siemens, Jan; Brüggemann, Nicolas; Lehndorf, Eva; Amelung, Wulf

    2017-04-01

    After introducing upland crops into permanent flooded cropping systems, soil conditions temporally change from anaerobic to aerobic, which profoundly impacts nitrogen (N) dynamics. In the framework of the DFG research unit 1701 ICON we applied a single 15N-urea pulse in a field experiment in the Philippines with three different crop rotations: continuous paddy rice, paddy rice-dry rice, and paddy rice-maize. Subsequently, we traced the fate of the labelled urea in bulk soil, rhizosphere, roots, biomass and microbial residues (amino sugars) within the following two years. 15N recovery in the first 5 cm of bulk soil was highest in the first dry season of continuous paddy rice cropping (37.8 % of applied 15N) and lowest in the paddy rice-maize rotation (19.2 %). While an accumulation over time could be observed in bulk soil in 5-20 cm depth of the continuous paddy rice system, the recoveries decreased over time within the following two years in the other cropping systems. Highest 15N-recovery in shoots and roots were found in the continuous paddy rice system in the first dry season (27.3 % in shoots, 3.2 % in roots) as well as in the following wet season (4.2 % in shoots, 0.3 % in roots). Lowest recoveries in biomass were found for the paddy rice-dry rice rotation. Long-term fixation of 15N in microbial biomass residues was observed in all cropping systems (2-3 % in the 3rd dry season). The results indicate that the introduction of maize into a continuous paddy rice cropping system can reduce the fertilizer N use efficiency especially in the first year, most likely due to nitrate leaching and gaseous losses to the atmosphere.

  3. Effects of biochar application on morphological traits in maize and soybean

    Directory of Open Access Journals (Sweden)

    Šeremešić Srđan I.

    2015-01-01

    Full Text Available This paper analyses the effects of the biochar application morphologi­cal traits in maize and soybean under semi-controlled conditions. During the study, the in­creasing doses of biochar (0%, 0.5%, 1, 3, and 5% were incorporated in three soil types: Alluvium, Humogley and Chernozem to determine plant height and shoot weight. The ex­periment was set up as fully randomized design with three repetitions. The plants were grown in pots of 5 l with controlled watering and N fertilization. The research results have shown that there are differences in terms of biochar effects on soils. The greatest effect on plant height and shoot weight was obtained when the biochar was applied to Humogley soil and lower effects were found on the Alluvium soil. The increase in aboveground mass of maize and soybeans was significantly conditioned by adding different doses of biochar. Based on these results, it can be concluded that adding biochar can significantly affect the growth of plants. This is a consequence of the changes it causes in soil, which requires further tests to complement the current findings. [Projekat Ministarstva nauke Republike Srbije, br. TR031072 i br. TR031073

  4. Effect of PEG-6000 Imposed Water Deficit on Chlorophyll Metabolism in Maize Leaves

    Directory of Open Access Journals (Sweden)

    Rekha Gadre

    2013-08-01

    Full Text Available Drought stress is one of the major abiotic constraint limiting plant growth and productivity world wide. The current study was undertaken with the aim to investigate the effect of water deficit imposed by PEG-6000, on chlorophyll metabolism in maize leaves to work out the mechanistic details. Leaf segments prepared from primary leaves of etiolated maize seedlings were treated with varying concentrations of polyethylene glycol-6000 (PEG-6000; w/v- 5%, 10%, 20%, 30% in continuous light of intensity 40 Wm-2 at 26±2 °C for 24 h in light chamber. The results demonstrate a concentration dependent decline in chlorophyll content with increasing concentration of polyethylene glycol-6000 (PEG-6000. Reduction in chlorophyll ‘a’ level was to a greater extent than the chlorophyll ‘b’. The RNA content decreased in a concentration dependent manner with PEG, however, proline content increased significantly. Relative water content decreased significantly with the supply of 30% PEG only. A substantial decrease in chlorophyll synthesis due to significant reduction in ALA content and ALAD activity, with no change in chlorophyllase activity with the supply of PEG suggests that water deficit affects chlorophyll formation rather than its degradation.

  5. Responses of Seed Germination, Seedling Growth, and Seed Yield Traits to Seed Pretreatment in Maize (Zea mays L.

    Directory of Open Access Journals (Sweden)

    Yu Tian

    2014-01-01

    Full Text Available A series of seed priming experiments were conducted to test the effects of different pretreatment methods to seed germination, seedling growth, and seed yield traits in maize (Zea mays L.. Results indicated that the seeds primed by gibberellins (GA, NaCl, and polyethylene glycol (PEG reagents showed a higher imbibitions rate compared to those primed with water. The final germination percentage and germination rate varied with different reagents significantly (P<0.05. The recommended prime reagents were GA at 10 mg/L, NaCl at 50 mM, and PEG at 15% on account of germination experiment. 15% PEG priming reagent increased shoot and root biomass of maize seedling. The shoot biomass of seedlings after presoaking the seeds with NaCl reagent was significantly higher than the seedlings without priming treatment. No significant differences of plant height, leaf number, and hundred-grain weight were observed between control group and priming treatments. Presoaking with water, NaCl (50 mM, or PEG (15% significantly increased the hundred-grain weight of maize. Therefore, seed pretreatment is proved to be an effective technique to improve the germination performance, seedling growth, and seed yield of maize. However, when compared with the two methods, if immediate sowing is possible, presoaking is recommended to harvest better benefits compared to priming method.

  6. Dissolution of different zinc salts and zn uptake by Sedum alfredii and maize in mono- and co-cropping under hydroponic culture.

    Science.gov (United States)

    Jiang, Cheng'ai; Wu, Qitang; Zeng, Shucai; Chen, Xian; Wei, Zebin; Long, Xinxian

    2013-09-01

    Previous soil pot and field experiments demonstrated that co-cropping the hyperaccumulator Sedum alfredii with maize increased Zn phytoextraction by S. alfredii and decreased Zn uptake by maize shoots. This hydroponic experiment was conducted to investigate whether the facilitation of Zn phytoextraction by S. alfredii resulted from improved dissolution in this co-cropping system and its relation to root exudates. S. alfredii and maize were mono- and co-cropped (without a root barrier) in nutrient solution spiked with four Zn compounds, ZnS, ZnO, Zn3(PO4)2 and 5ZnO x 2CO3-4H2O (represented as ZnCO3) at 1000 mg/L Zn for 15 days without renewal of nutrient solution after pre-culture. The root exudates were collected under incomplete sterilization and analyzed. The results indicated that the difference in Zn salts had a greater influence on the Zn concentration in maize than for S. alfredii, varying from 210-2603 mg/kg for maize shoots and 6445-12476 mg/kg for S. alfredii in the same order: ZnCO3 > ZnO > Zn3(PO4)2 > ZnS. For the four kinds of Zn sources in this experiment, co-cropping with maize did not improve Zn phytoextraction by S. alfredii. In most cases, compared to co-cropped and mono-cropped maize, mono-cropped S. alfredii resulted in the highest Zn2+ concentration in the remaining nutrient solution, and also had a higher total concentration of low molecular weight organic acids (LMWOA) and lower pH of root exudation. Root exudates did partly influence Zn hyperaccumulation in S. alfredii.

  7. Microtubule bundling plays a role in ethylene-mediated cortical microtubule reorientation in etiolated Arabidopsis hypocotyls.

    Science.gov (United States)

    Ma, Qianqian; Sun, Jingbo; Mao, Tonglin

    2016-05-15

    The gaseous hormone ethylene is known to regulate plant growth under etiolated conditions (the 'triple response'). Although organization of cortical microtubules is essential for cell elongation, the underlying mechanisms that regulate microtubule organization by hormone signaling, including ethylene, are ambiguous. In the present study, we demonstrate that ethylene signaling participates in regulation of cortical microtubule reorientation. In particular, regulation of microtubule bundling is important for this process in etiolated hypocotyls. Time-lapse analysis indicated that selective stabilization of microtubule-bundling structures formed in various arrays is related to ethylene-mediated microtubule orientation. Bundling events and bundle growth lifetimes were significantly increased in oblique and longitudinal arrays, but decreased in transverse arrays in wild-type cells in response to ethylene. However, the effects of ethylene on microtubule bundling were partially suppressed in a microtubule-bundling protein WDL5 knockout mutant (wdl5-1). This study suggests that modulation of microtubule bundles that have formed in certain orientations plays a role in reorienting microtubule arrays in response to ethylene-mediated etiolated hypocotyl cell elongation. © 2016. Published by The Company of Biologists Ltd.

  8. Maize, Sunflower and Barley Sensitivity to the Residual Activity of Clomazone in Soil

    Directory of Open Access Journals (Sweden)

    Jelena Gajić Umiljendić

    2012-01-01

    Full Text Available Sensitivity of maize, sunflower and barley to clomazone residues in loamy soil wasassessed in the study using bioassay. Clomazone was applied at a series of concentrationsfrom 0.12 to 12 mg a.i./kg of soil. After 14 days, morphological (shoot height, fresh and dryweight and physiological (content of carotenoids, chlorophyll a and chlorophyll b parameterswere measured. The results showed that morphological parameters are not valid indicatorsof clomazone sensitivity. Based on the results showing inhibition of the physiologicalparameters, I50 values were calculated and used to estimate the difference in sensitivitybetween the species tested. Sunflower was the most sensitive species, while the differencein sensitivity between maize and barley was not significant.Nomenclature: clomazone (2-(2-chlorbenzyl-4,4-dimethyl-1,2-oxazolidin-3-one, maize(Zea mays L., sunflower (Helianthus annuus L., barley (Hordeum vulgare L.

  9. Involvement of an antioxidant defense system in the adaptive response to cadmium in maize seedlings (Zea mays L.).

    Science.gov (United States)

    Xu, Xianghua; Liu, Cuiying; Zhao, Xiaoyan; Li, Renying; Deng, Wenjing

    2014-11-01

    Chemical and biological analyses were used to investigate the growth response and antioxidant defense mechanism of maize seedlings (Zea mays L.) grown in soils with 0-100 mg kg(-1) Cd. Results showed that maize seedlings have strong abilities to accumulate and tolerate high concentrations of Cd. For soil with 50 mg kg(-1) Cd, the Cd contents in roots and shoots of maize seedlings are as large as 295.6 and 153.0 mg kg(-1) DW, respectively, without visible symptoms of toxicity. Lower soil Cd concentrations lead to a decrease in reduced glutathione (GSH) content in leaves of maize seedlings, whereas higher soil Cd concentrations resulted in an increase in the activities of superoxide dismutase, guaiacol peroxidase, catalase, and ascorbate peroxidase. Maize seedlings have strong capacities to adapt to low concentrations of Cd by consuming GSH and to develop an antioxidative enzyme system to defend against high-Cd stress.

  10. Biochemical markers of embryogenesis in tissue cultures of the maize inbred B73

    International Nuclear Information System (INIS)

    Everett, N.P.; Wach, M.J.; Ashworth, D.J.

    1985-01-01

    Stable embryogenic, organogenic and undifferentiated cell lines of the maize (Zea mays L.) inbred B73 were used to assess the value of using isozyme analyses and the composition of secreted polysaccharides to identify embryogenic cells. Esterase, glutamate dehydrogenase, alcohol dehydrogenase and β-glucosidase all possessed developmentally regulated isozymes but only esterase and glutamate dehydrogenase could be used to distinguish between embryogenic and shoot-forming cultures. Embryogenic callus and suspension cultures secreted a mucilagenous polysaccharide whose production was stimulated by 2, 4-dichlorophenozyacetic acid (2, 4-D). The polysaccharide was different from root slime and corn hull gum and may be related to the 'cementing layer' in maize kernels (author)

  11. Jasmonic acid protects etiolated seedlings of Arabidopsis thaliana against herbivorous arthropods.

    Science.gov (United States)

    Boex-Fontvieille, Edouard; Rustgi, Sachin; Von Wettstein, Diter; Pollmann, Stephan; Reinbothe, Steffen; Reinbothe, Christiane

    2016-08-02

    Seed predators can cause mass ingestion of larger seed populations. As well, herbivorous arthropods attempt to attack etiolated seedlings and chose the apical hook for ingestion, aimed at dropping the cotyledons for later consumption. Etiolated seedlings, as we show here, have established an efficient mechanism of protecting their Achilles' heel against these predators, however. Evidence is provided for a role of jasmonic acid (JA) in this largely uncharacterized plant-herbivore interaction during skotomorphogenesis and that this comprises the temporally and spatially tightly controlled synthesis of a cysteine protease inhibitors of the Kunitz family. Interestingly, the same Kunitz protease inhibitor was found to be expressed in flowers of Arabidopsis where endogenous JA levels are high for fertility. Because both the apical hook and inflorescences were preferred isopod targets in JA-deficient plants that could be rescued by exogenously administered JA, our data identify a JA-dependent mechanism of plant arthropod deterrence that is recalled in different organs and at quite different times of plant development.

  12. Pathway Analysis and Metabolites Identification by Metabolomics of Etiolation Substrate from Fresh-Cut Chinese Water Chestnut (Eleocharis tuberosa

    Directory of Open Access Journals (Sweden)

    Yi-Xiao Li

    2016-12-01

    Full Text Available Fresh-cut Chinese water chestnuts (CWC turn yellow after being peeled, reducing their shelf life and commercial value. Metabolomics, the systematic study of the full complement of small molecular metabolites, was useful for clarifying the mechanism of fresh-cut CWC etiolation and developing methods to inhibit yellowing. In this study, metabolic alterations associated with etiolation at different growth stages (0 day, 2 days, 3 days, 4 days, 5 days from fresh-cut CWC were investigated using LC–MS and analyzed by pattern recognition methods (principal component analysis (PCA, partial least squares-discriminant analysis (PLS-DA, and orthogonal projection to latent structures-discriminant analysis (OPLS-DA. The metabolic pathways of the etiolation molecules were elucidated. The main metabolic pathway appears to be the conversion of phenylalanine to p-coumaroyl-CoA, followed by conversion to naringenin chalcone, to naringenin, and naringenin then following different pathways. Firstly, it can transform into apigenin and its derivatives; secondly, it can produce eriodictyol and its derivatives; and thirdly it can produce dihydrokaempferol, quercetin, and myricetin. The eriodictyol can be further transformed to luteolin, cyanidin, dihydroquercetin, dihydrotricetin, and others. This is the first reported use of metabolomics to study the metabolic pathways of the etiolation of fresh-cut CWC.

  13. Evaluation of the capacity for direct regeneration of maize inbreds of the Lancaster selection group

    Directory of Open Access Journals (Sweden)

    K. V. Derkach

    2013-11-01

    Full Text Available In connection with the necessity of bringing elite maize inbreds of the Lancaster germplasm group, which have potential for cultivation in Ukraine, into the system of genetic tranformation, the aim of this investigation is to identify the ability of maize inbreds of this group to regenerate by direct organogenesis and to determine the optimal mineral basis for their nutritional environment using segments of the node area of shoots. As explantats we used sterile 4-day old seedlings of 4 maize inbreds of Lancaster germplasm and model inbred Chi31 exotic germplasm. The seedlings were obtained by germination of sterile seeds in Petri dishes between two layers of moist sterile filter paper at a temperature of 27 ºC in dark conditions. A single 1 cmlong segment was cut from each from each seedling, running from 0.5 cmbefore the node to 0.5 cmafter the node. A cut was made in each segment of the node in order to create a wounded surface. Explantats were planted in a nutrient environment with mineral bases of MS or N6, modified by the addition of 10 mg/l silver nitrate, 100 mg/l casein hydrolyzate, 690 mg/l L-proline, 30 g/l sucrose, 1.0 mg/l 2,4-dychlorphenoksiacetic acid and 0,1 mg/l abscisic acid. Cultivation was carried out at 25–27 ºC in the light. Direct hemogenesis in this environment on the 14th day of cultivation in vitro reached 100% for each line. This meant that all researched lines of Lancaster germplasm and the model line showed a high capacity for direct regeneration through direct hemogenesis, which does not depend on the composition of the mineral content of their nutritional environment. Callus formation was observed in all genotypes on the 14th day of cultivation in vitro and the extent of its formation increased during the following month of cultivation. The callus formation was observed only at the site of the wounded surface. The calluses were transparent. Although green areas appeared in these calluses, they were

  14. Comparative impact of genetically modified and non modified maize (Zea mays L.) on succeeding crop and associated weed.

    Science.gov (United States)

    Ibrahim, Muhammad; Ahmed, Naseer; Ullah, Faizan; Shinwari, Zabta Khan; Bano, Asghari

    2016-04-01

    This research work documents the comparative impact of genetically modified (GM) (insect resistance) and non modified maize (Zea mays L.) on growth and germination of succeeding crop wheat (Triticum aestivum L.) and associated weed (Avena fatua L.). The aqueous extracts of both the GM and non-GM maize exhibited higher phenolic content than that of methanolic extracts. Germination percentage and germination index of wheat was significantly decreased by GM methanolic extract (10%) as well as that of non-GM maize at 3% aqueous extract. Similarly germination percentage of weed (Avena fatua L.) was significantly reduced by application of 3% and 5% methanolic GM extracts. All extracts of GM maize showed non-significant effect on the number of roots, root length and shoot length per plant but 5% and 10% methanolic extracts of non-GM maize significantly increased the number of roots per plant of wheat seedling. Similarly, 10% methanolic extract of GM maize significantly increased the number of roots per plant of weed seedling. Methanolic extracts of GM and non-GM maize (3% and 5%) significantly decreased the protease activity in wheat as compared to untreated control. © The Author(s) 2013.

  15. Effect of different iron levels on 65Zn uptake and transport in maize seedlings

    International Nuclear Information System (INIS)

    Rathore, V.S.; Sharma, D.; Kandala, J.C.

    1974-01-01

    Uptake and translocation of 65 Zn was studied in two week old maize seedlings at 0.01, 0.1, 1 and 5 ppm iron levels in half-strength Hoagland's solution. Four different zinc levels viz., 0.04, 0.4, 4 and 8 ppm were taken. Total 65 Zn uptake and translocation to shoots at 2, 4, 6 and 12 hours showed that increasing iron levels in the uptake medium reduced Zn-uptake in all combinations and at all uptake hours studied. This antagnnistic effect of iron on zinc uptake was more pronounced at the initial stages and could be partly inhibited by increasing zinc concentration in the uptake medium. Translocation of 65 Zn to shoots increased with increase in uptake time. Increasing iron levels in the medium decreased zinc dislocation to shoots at all zinc levels. (author)

  16. Initial performance of maize in response to NPK fertilization combined with Herbaspirillum seropedicae

    Directory of Open Access Journals (Sweden)

    Marihus Altoé Baldotto

    2012-12-01

    Full Text Available The inoculation with plant growth-promoting bacteria can be a technological approach useful for increasing the production of maize. The objective of this study was to evaluate the initial performance of maize in response to application of doses of NPK combined with the inoculation of the diazotrophic bacteria Herbaspirillum seropedicae in an greenhouse experiment. The experiment consisted of six fertilizer levels: 0, 25, 50, 75, 100 and 200% of the recommended dose of NPK applied to maize inoculated and non-inoculated with H. seropedicae. At 30 days after the treatment application, the growth characteristics and nutritional status of the plants were evaluated. Plant development was influenced by fertilization, but it was enhanced by combination with the bacteria, which resulted in significant increases in the dry mass of shoots (7% and leaf area (9% when compared with non-inoculated plants. The results showed increases in the concentration of N (11%, P (30% and K (17% of maize plants in response to bacterial inoculation together with NPK compared with plants that were applied fertilize only. The greater consistency and stability response of the host plant to bacterization in the presence of chemical fertilizer indicate a promissory biotechnological approach for improving the initial growth and adaptation of maize to the cultivation environment.

  17. Ontogeny of the sheathing leaf base in maize (Zea mays).

    Science.gov (United States)

    Johnston, Robyn; Leiboff, Samuel; Scanlon, Michael J

    2015-01-01

    Leaves develop from the shoot apical meristem (SAM) via recruitment of leaf founder cells. Unlike eudicots, most monocot leaves display parallel venation and sheathing bases wherein the margins overlap the stem. Here we utilized computed tomography (CT) imaging, localization of PIN-FORMED1 (PIN1) auxin transport proteins, and in situ hybridization of leaf developmental transcripts to analyze the ontogeny of monocot leaf morphology in maize (Zea mays). CT imaging of whole-mounted shoot apices illustrates the plastochron-specific stages during initiation of the basal sheath margins from the tubular disc of insertion (DOI). PIN1 localizations identify basipetal auxin transport in the SAM L1 layer at the site of leaf initiation, a process that continues reiteratively during later recruitment of lateral leaf domains. Refinement of these auxin transport domains results in multiple, parallel provascular strands within the initiating primordium. By contrast, auxin is transported from the L2 toward the L1 at the developing margins of the leaf sheath. Transcripts involved in organ boundary formation and dorsiventral patterning accumulate within the DOI, preceding the outgrowth of the overlapping margins of the sheathing leaf base. We suggest a model wherein sheathing bases and parallel veins are both patterned via the extended recruitment of lateral maize leaf domains from the SAM. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  18. Effect of arbuscular mycorrhizal fungal inoculation in combination with different organic fertilizers on maize crop in eroded soils

    International Nuclear Information System (INIS)

    Sharif, M.; Saud, S.; Khan, F.

    2012-01-01

    A pot experiment was conducted to study the effect of inoculating maize (Zea mays L. Azam) with Arbuscular mycorrhizal (AM) fungi in 2 different series of North West Pakistan during the year 2007. Data showed significant increase in shoots and roots yield of maize with the inoculation of AM fungi alone and in combination with farm yard manure (FYM), poultry manure (PM) and humic acid (HA) over control and N-P-K treatments. Accumulation of N by maize shoots increased significantly by the addition of HA, PM and FYM plus N-P-K with or without inoculation of AM fungi over the treatments of N-P-K and control. Plants P accumulation increased significantly over control and N-P-K treatments with the inoculation of AM fungi alone and in combination with FYM, PM and HA in missa soil series. In missa gullied soil series, significantly increased plants P accumulation was noted by the treatments of AM inoculation with PM followed by HA. Accumulation of Mn by maize shoots increased significantly with AM inoculation with HA and PM over all other treatments, Fe increased with PM, HA and FYM. Plants Cu accumulation in missa series increased significantly over control and N-P-K treatments by AM alone and in combination with PM, FYM and HA and by AM fungi with PM, FYM and HA in missa gullied series. Maximum Mycorrhizal root infection rate of 51 % was recorded in the treatment of AM fungal inoculation with HA followed by the treatment inoculated with AM fungi with FYM. In missa gullied soil series, Maximum (59 %) and significantly increased roots infection rates over all treatments were observed in the treatment of AM fungal inoculation with HA followed by PM. Spores concentrations of AM fungi increased significantly with AM inoculation alone and with FYM, PM and HA. Maximum spores numbers of 50 in 20 g soil were recorded by the inoculation of AM fungi alone and with HA. (author)

  19. Morphological plasticity of root growth under mild water stress increases water use efficiency without reducing yield in maize

    Science.gov (United States)

    Cai, Qian; Zhang, Yulong; Sun, Zhanxiang; Zheng, Jiaming; Bai, Wei; Zhang, Yue; Liu, Yang; Feng, Liangshan; Feng, Chen; Zhang, Zhe; Yang, Ning; Evers, Jochem B.; Zhang, Lizhen

    2017-08-01

    A large yield gap exists in rain-fed maize (Zea mays L.) production in semi-arid regions, mainly caused by frequent droughts halfway through the crop-growing period due to uneven distribution of rainfall. It is questionable whether irrigation systems are economically required in such a region since the total amount of rainfall does generally meet crop requirements. This study aimed to quantitatively determine the effects of water stress from jointing to grain filling on root and shoot growth and the consequences for maize grain yield, above- and below-ground dry matter, water uptake (WU) and water use efficiency (WUE). Pot experiments were conducted in 2014 and 2015 with a mobile rain shelter to achieve conditions of no, mild or severe water stress. Maize yield was not affected by mild water stress over 2 years, while severe stress reduced yield by 56 %. Both water stress levels decreased root biomass slightly but shoot biomass substantially. Mild water stress decreased root length but increased root diameter, resulting in no effect on root surface area. Due to the morphological plasticity in root growth and the increase in root / shoot ratio, WU under water stress was decreased, and overall WUE for both above-ground dry matter and grain yield increased. Our results demonstrate that an irrigation system might be not economically and ecologically necessary because the frequently occurring mild water stress did not reduce crop yield much. The study helps us to understand crop responses to water stress during a critical water-sensitive period (middle of the crop-growing season) and to mitigate drought risk in dry-land agriculture.

  20. Morphological plasticity of root growth under mild water stress increases water use efficiency without reducing yield in maize

    Directory of Open Access Journals (Sweden)

    Q. Cai

    2017-08-01

    Full Text Available A large yield gap exists in rain-fed maize (Zea mays L. production in semi-arid regions, mainly caused by frequent droughts halfway through the crop-growing period due to uneven distribution of rainfall. It is questionable whether irrigation systems are economically required in such a region since the total amount of rainfall does generally meet crop requirements. This study aimed to quantitatively determine the effects of water stress from jointing to grain filling on root and shoot growth and the consequences for maize grain yield, above- and below-ground dry matter, water uptake (WU and water use efficiency (WUE. Pot experiments were conducted in 2014 and 2015 with a mobile rain shelter to achieve conditions of no, mild or severe water stress. Maize yield was not affected by mild water stress over 2 years, while severe stress reduced yield by 56 %. Both water stress levels decreased root biomass slightly but shoot biomass substantially. Mild water stress decreased root length but increased root diameter, resulting in no effect on root surface area. Due to the morphological plasticity in root growth and the increase in root ∕ shoot ratio, WU under water stress was decreased, and overall WUE for both above-ground dry matter and grain yield increased. Our results demonstrate that an irrigation system might be not economically and ecologically necessary because the frequently occurring mild water stress did not reduce crop yield much. The study helps us to understand crop responses to water stress during a critical water-sensitive period (middle of the crop-growing season and to mitigate drought risk in dry-land agriculture.

  1. Influence of UV-A or UV-B light and of the nitrogen source on the induction of ferredoxin-dependent glutamate synthase in etiolated tomato cotyledons

    International Nuclear Information System (INIS)

    Migge, A.; Carrayol, E.; Hirel, B.; Lohmann, M.; Meya, G.; Becker, T.W.

    1998-01-01

    The influence of ultraviolet A (UV-A) or B (UV-B) light and of the nitrogen source on the induction of ferredoxin-dependent glutamate synthase (Fd-GOGAT, EC 1.4.7.1) was examined in etiolated cotyledons of tomato (Lycopersicon escu- lentum L.). The Fd-GOGAT activity increased upon illumination of etiolated tomato cotyledons with UV-A or UV-B light. This stimulation of Fd-GOGAT activity was correlated with an increase in both the Fd-GOGAT transcript level and the Fd-GOGAT protein abundance. These results suggest that UV-A or UV-B light stimulates the de novo synthesis of Fd-GOGAT in etiolated tomato cotyledons. Both UV-A and UV-B light failed to influence the activity of NADH-GOGAT (EC 1.4.1.14) in etiolated tomato cotyledons. Taken together, our data indicate that the tomato genes encoding Fd- or NADH-dependent glutamate synthase are regulated differently by UV-A or UV-B light. No difference with respect to both the Fd-GOGAT transcript and protein abundance was found between cotyledons of tomato seedlings grown with either nitrate or ammonium as the sole N-source in the dark or in white light. In addition, the increase in the Fd-GOGAT protein pool induced by white light in etiolated nitrate-grown tomato seedling cotyledons was similar to that induced by white light in etiolated ammonium-grown tomato seedling cotyledons. These results show that the tomato Fd-GOGAT protein level does not depend strongly on the nature of the nitrogen source and that there appears to be no major stimulatory effect on the Fd-GOGAT protein pool produced by nitrate during the illumination of etiolated tomato cotyledons

  2. The SULTR gene family in maize (Zea mays L.): Gene cloning and expression analyses under sulfate starvation and abiotic stress.

    Science.gov (United States)

    Huang, Qin; Wang, Meiping; Xia, Zongliang

    2018-01-01

    Sulfur is an essential macronutrient required for plant growth, development and stress responses. The family of sulfate transporters (SULTRs) mediates the uptake and translocation of sulfate in higher plants. However, basic knowledge of the SULTR gene family in maize (Zea mays L.) is scarce. In this study, a genome-wide bioinformatic analysis of SULTR genes in maize was conducted, and the developmental expression patterns of the genes and their responses to sulfate starvation and abiotic stress were further investigated. The ZmSULTR family includes eight putative members in the maize genome and is clustered into four groups in the phylogenetic tree. These genes displayed differential expression patterns in various organs of maize. For example, expression of ZmSULTR1;1 and ZmSULTR4;1 was high in roots, and transcript levels of ZmSULTR3;1 and ZmSULTR3;3 were high in shoots. Expression of ZmSULTR1;2, ZmSULTR2;1, ZmSULTR3;3, and ZmSULTR4;1 was high in flowers. Also, these eight genes showed differential responses to sulfate deprivation in roots and shoots of maize seedlings. Transcript levels of ZmSULTR1;1, ZmSULTR1;2, and ZmSULTR3;4 were significantly increased in roots during 12-day-sulfate starvation stress, while ZmSULTR3;3 and ZmSULTR3;5 only showed an early response pattern in shoots. In addition, dynamic transcriptional changes determined via qPCR revealed differential expression profiles of these eight ZmSULTR genes in response to environmental stresses such as salt, drought, and heat stresses. Notably, all the genes, except for ZmSULTR3;3, were induced by drought and heat stresses. However, a few genes were induced by salt stress. Physiological determination showed that two important thiol-containing compounds, cysteine and glutathione, increased significantly under these abiotic stresses. The results suggest that members of the SULTR family might function in adaptations to sulfur deficiency stress and adverse growing environments. This study will lay a

  3. Role of microbial inoculation and industrial by-product phosphogypsum in growth and nutrient uptake of maize (Zea mays L.) grown in calcareous soil.

    Science.gov (United States)

    Al-Enazy, Abdul-Aziz R; Al-Oud, Saud S; Al-Barakah, Fahad N; Usman, Adel Ra

    2017-08-01

    Alkaline soils with high calcium carbonate and low organic matter are deficient in plant nutrient availability. Use of organic and bio-fertilizers has been suggested to improve their properties. Therefore, a greenhouse experiment was conducted to evaluate the integrative role of phosphogypsum (PG; added at 0.0, 10, 30, and 50 g PG kg -1 ), cow manure (CM; added at 50 g kg -1 ) and mixed microbial inoculation (Incl.; Azotobacter chroococcum, and phosphate-solubilizing bacteria Bacillus megaterium var. phosphaticum and Pseudomonas fluorescens) on growth and nutrients (N, P, K, Fe, Mn, Zn and Cu) uptake of maize (Zea mays L.) in calcareous soil. Treatment effects on soil chemical and biological properties and the Cd and Pb availability to maize plants were also investigated. Applying PG decreased soil pH. The soil available P increased when soil was inoculated and/or treated with CM, especially with PG. The total microbial count and dehydrogenase activity were enhanced with PG+CM+Incl. Inoculated soils treated with PG showed significant increases in NPK uptake and maize plant growth. However, the most investigated treatments showed significant decreases in shoot micronutrients. Cd and Pb were not detected in maize shoots. Applying PG with microbial inoculation improved macronutrient uptake and plant growth. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  4. Tolerance of Glyphosate-Resistant Maize to Glyphosate Plus MCPA Amine Is Influenced by Dose and Timing

    Directory of Open Access Journals (Sweden)

    Nader Soltani

    2015-01-01

    Full Text Available There is little information on tolerance of glyphosate-resistant maize to glyphosate plus MCPA amine as influenced by dose and timing under Ontario environmental conditions. A total of seven field trials were conducted at various locations in Ontario, Canada, in 2011–2013 to evaluate tolerance of field maize to tank mixes of glyphosate (900 g a.e./ha plus MCPA amine (79, 158, 315, 630, 1260, 2520, or 5040 g a.e./ha at either the 4- or 8-leaf stage. The predicted dose of MCPA amine that caused 5, 10, and 20% injury was 339, 751, and 1914 g a.e./ha when applied to 4-leaf maize but only 64, 140, and 344 g a.e./ha when applied to 8-leaf maize, respectively. The predicted dose of MCPA amine that caused 5, 10, and 20% reduction in shoot dry weight of maize was 488, 844, and 1971 g a.e./ha when applied to 4-leaf maize and only 14, 136, and 616 g a.e./ha when applied to 8-leaf maize, respectively. The predicted dose of MCPA amine that caused 5, 10, and 20% yield reduction was 2557, 4247, and >5040 g a.e./ha when applied to 4-leaf maize and 184, 441, and 1245 g a.e./ha when applied to 8-leaf maize, respectively. Based on these results, glyphosate plus MCPA amine applied at the manufacturer’s recommended dose of 630 g a.e./ha applied to 4-leaf maize has potential to cause injury but the injury is transient with no significant reduction in yield. However, when glyphosate plus MCPA amine is applied to 8-leaf maize it has the potential to cause significant injury and yield loss in maize.

  5. Gravistimulation changes expression of genes encoding putative carrier proteins of auxin polar transport in etiolated pea epicotyls

    Science.gov (United States)

    Hoshino, T.; Hitotsubashi, R.; Miyamoto, K.; Tanimoto, E.; Ueda, J.

    STS-95 space experiment has showed that auxin polar transport in etiolated epicotyls of pea (Pisum sativum L. cv. Alaska) seedlings is controlled by gravistimulation. In Arabidopsis thaliana auxin polar transport has considered to be regulated by efflux and influx carrier proteins in plasma membranes, AtPIN1 and AtAUX1, respectively. In order to know how gravistimuli control auxin polar transport in etiolated pea epicotyls at molecular levels, strenuous efforts have been made, resulting in successful isolation of full-length cDNAs of a putative auxin efflux and influx carriers, PsPIN2 and PsAUX1, respectively. Significantly high levels in homology were found on nucleotide and deduced amino acid sequences among PsPIN2, PsPIN1 (accession no. AY222857, Chawla and DeMason, 2003) and AtPINs, and also among PsAUX1, AtAUX1 and their related genes. Phylogenetic analyses based on the deduced amino acid sequences revealed that PsPIN2 belonged to a subclade including AtPIN3, AtPIN4 relating to lateral transport of auxin, while PsPIN1 belonged to the same clade as AtPIN1 relating to auxin polar transport. In the present study, we examined the effects of gravistimuli on the expression of PsPINs and PsAUX1 in etiolated pea seedlings by northern blot analysis. Expression of PsPIN1, PsPIN2 and PsAUX1 in hook region of 3.5-d-old etiolated pea seedlings grown under simulated microgravity conditions on a 3-D clinostat increased as compared with that of the seedlings grown under 1 g conditions. On the other hand, that of PsPIN1 and PsAUX1 in the 1st internode region under simulated microgravity conditions on a 3-D clinostat also increased, while that of PsPIN2 was affected little. These results suggest that expression of PsPIN1, PsPIN2 and PsAUX1 regulating polar/lateral transport of auxin is substantially under the control of gravity. A possible role of PsPINs and PsAUX1 of auxin polar transport in etiolated pea seedlings will also be discussed.

  6. Zinc solubilizing Bacillus spp. potential candidates for biofortification in maize.

    Science.gov (United States)

    Mumtaz, Muhammad Zahid; Ahmad, Maqshoof; Jamil, Moazzam; Hussain, Tanveer

    2017-09-01

    Bioaugmentation of Zn solubilizing rhizobacteria could be a sustainable intervention to increase bioavailability of Zn in soil which can be helpful in mitigation of yield loss and malnutrition of zinc. In present study, a number of pure rhizobacterial colonies were isolated from maize rhizosphere and screened for their ability to solubilize zinc oxide. These isolates were screened on the basis of zinc and phosphate solubilization, IAA production, protease production, catalase activity and starch hydrolysis. All the selected isolates were also positive for oxidase activity (except ZM22), HCN production (except ZM27) and utilization of citrate. More than 70% of isolates produces ammonia, hydrogen cyanide, siderophores, exopolysaccharides and cellulase. More than half of isolates also showed potential for urease activity and production of lipase. The ZM31 and S10 were the only isolates which showed the chitinase activity. All these isolates were evaluated in a jar trial for their ability to promote growth of maize under axenic conditions. Results revealed that inoculation of selected zinc solubilizing rhizobacterial isolates improved the growth of maize. In comparison, isolates ZM20, ZM31, ZM63 and S10 were best compared to other tested isolates in stimulating the growth attributes of maize like shoot length, root length, plant fresh and dry biomass. These strains were identified as Bacillus sp. (ZM20), Bacillus aryabhattai (ZM31 and S10) and Bacillus subtilis (ZM63) through 16S rRNA sequencing. This study indicated that inoculation of Zn solubilizing strains have potential to promote growth and can be the potential bio-inoculants for biofortification of maize to overcome the problems of malnutrition. Copyright © 2017 Elsevier GmbH. All rights reserved.

  7. Automorphosis-like growth in etiolated pea seedlings is induced by the application of chemicals affecting perception of gravistimulation and its signal transduction

    Science.gov (United States)

    Miyamoto, Kensuke; Hoshino, Tomoki; Hitotsubashi, Reiko; Yamashita, Masamichi; Ueda, Junichi

    Both microgravity conditions in space and simulated microgravity using a 3-dimensional clinostat resulted in: (1) automorphosis of etiolated pea seedlings, (2) epicotyls bending ca. 45° from the vertical line to the direction away from cotyledons, (3) inhibition of hook formation and (4) alternation of growth direction of roots. These facts indicate that the growth and development of etiolated pea seedlings on earth is under the influence of gravistimulation. Lanthanum and gadolinium ions, blockers of stretch-activated mechanosensitive ion channels, induced automorphosis-like epicotyl bending. Cantharidin, an inhibitor of protein phosphatase, also phenocopied automorphosis-like growth. On the other hand, cytochalasin B, cytochalasin D and brefeldin A did not induce automorphological epicotyl bending and inhibition of hook formation, although these compounds strikingly inhibited elongation of etiolated pea epicotyls. These results strongly suggest that stretch-activated mechanosensitive ion channels are involved in the perception of signals of gravistimuli in plants, and they are transduced by protein phosphorylation and dephosphorylation cascades by changing levels of calcium ions. Possible mechanisms to induce automorphosis-like growth in relation to gravity signals in etiolated pea seedlings are discussed.

  8. Phytotoxic Effects of Lanthanum Oxide Nanoparticles on Maize (Zea mays L.)

    Science.gov (United States)

    Liu, Yinglin; Xu, Lina; Dai, Yanhui

    2018-02-01

    The use of lanthanum oxide nanoparticles (La2O3 NPs) in life products have increased dramatically in the past decades, which are inevitable released into natural environment. In this study, we determined the phytotoxicity of La2O3 NPs to maize (Zea mays L.) grown in one-fourth strength Hoagland solution. After being exposed for two weeks, the biomass, roots length and the relative chlorophyll content were measured. La2O3 NPs had phytotoxicity to maize at 5 mg/L. La2O3 NPs decreased shoot biomass (≥10 mg/L), the root biomass and length (≥5 mg/L). Moreover, La2O3 NPs had adverse effects on the chlorophyll content (≥10 mg/L). The decreased chlorophyll content may reduce net photosynthetic rate. This research offers vital information about the phytotoxicity of La2O3 NPs.

  9. Effect of Salicylic Acid on the Growth and Physiological Characteristics of Maize under Stress Conditions

    International Nuclear Information System (INIS)

    Manzoor, K.; Ilyas, N.; Batool, N.; Arshad, M.; Ahmad, B.

    2015-01-01

    Salicylic acid (SA) is a naturally occurring signaling molecule and growth regulator that enhances plant growth particularly in stress conditions. The present study was planned to evaluate the effects of different levels of SA on maize growth under drought and salt stress conditions. An experiment was conducted to test the morphological, physiological and biochemical changes in two cultivar of maize D-1184 and TG-8250. Varying levels of salicylic acid, i.e. 5mM, 10mM and 15mM were applied through foliar method. Exogenous applications of salicylic acid were done after 20 days of germination of the maize plants. Salicylic acid significantly affects root and shoot dry matter under drought and salt stress. Foliar application of SA significantly increased proline concentration (11 percentage and 12 percentage), amino acid accumulation (25 percentage and 18 percentage), relative water (17 percentage and 14 percentage) and Chlorophyll content. Overall, it can be concluded that SA at lower concentration is effective to minimize the effect of stress conditions. Maize cultivar TG-8250 showed better tolerance under drought and salt stress condition as compared to D-1184 cultivar. (author)

  10. Plant root and shoot dynamics during subsurface obstacle interaction

    Science.gov (United States)

    Conn, Nathaniel; Aguilar, Jeffrey; Benfey, Philip; Goldman, Daniel

    As roots grow, they must navigate complex underground environments to anchor and retrieve water and nutrients. From gravity sensing at the root tip to pressure sensing along the tip and elongation zone, the complex mechanosensory feedback system of the root allows it to bend towards greater depths and avoid obstacles of high impedance by asymmetrically suppressing cell elongation. Here we investigate the mechanical and physiological responses of roots to rigid obstacles. We grow Maize, Zea mays, plants in quasi-2D glass containers (22cm x 17cm x 1.4cm) filled with photoelastic gel and observe that, regardless of obstacle interaction, smaller roots branch off the primary root when the upward growing shoot (which contains the first leaf) reaches an average length of 40 mm, coinciding with when the first leaf emerges. However, prior to branching, contacts with obstacles result in reduced root growth rates. The growth rate of the root relative to the shoot is sensitive to the angle of the obstacle surface, whereby the relative root growth is greatest for horizontally oriented surfaces. We posit that root growth is prioritized when horizontal obstacles are encountered to ensure anchoring and access to nutrients during later stages of development. NSF Physics of Living Systems.

  11. Zinc, iron, manganese and copper uptake requirement in response to nitrogen supply and the increased grain yield of summer maize.

    Directory of Open Access Journals (Sweden)

    Yanfang Xue

    Full Text Available The relationships between grain yields and whole-plant accumulation of micronutrients such as zinc (Zn, iron (Fe, manganese (Mn and copper (Cu in maize (Zea mays L. were investigated by studying their reciprocal internal efficiencies (RIEs, g of micronutrient requirement in plant dry matter per Mg of grain. Field experiments were conducted from 2008 to 2011 in North China to evaluate RIEs and shoot micronutrient accumulation dynamics during different growth stages under different yield and nitrogen (N levels. Fe, Mn and Cu RIEs (average 64.4, 18.1 and 5.3 g, respectively were less affected by the yield and N levels. ZnRIE increased by 15% with an increased N supply but decreased from 36.3 to 18.0 g with increasing yield. The effect of cultivars on ZnRIE was similar to that of yield ranges. The substantial decrease in ZnRIE may be attributed to an increased Zn harvest index (from 41% to 60% and decreased Zn concentrations in straw (a 56% decrease and grain (decreased from 16.9 to 12.2 mg kg-1 rather than greater shoot Zn accumulation. Shoot Fe, Mn and Cu accumulation at maturity tended to increase but the proportions of pre-silking shoot Fe, Cu and Zn accumulation consistently decreased (from 95% to 59%, 90% to 71% and 91% to 66%, respectively. The decrease indicated the high reproductive-stage demands for Fe, Zn and Cu with the increasing yields. Optimized N supply achieved the highest yield and tended to increase grain concentrations of micronutrients compared to no or lower N supply. Excessive N supply did not result in any increases in yield or micronutrient nutrition for shoot or grain. These results indicate that optimized N management may be an economical method of improving micronutrient concentrations in maize grain with higher grain yield.

  12. Effect of Piriformospora indica inoculation on root development and distribution of maize (Zea mays L.) in the presence of petroleum contaminated soil

    Science.gov (United States)

    Zamani, Javad; Hajabbasi, Mohammad Ali; Alaie, Ebrahim

    2014-05-01

    The root systems of most terrestrial plants are confronted to various abiotic and biotic stresses. One of these abiotic stresses is contamination of soil with petroleum hydrocarbon, which the efficiency of phytoremediation of petroleum hydrocarbons in soils is dependent on the ability of plant roots to development into the contaminated soils. Piriformospora indica represents a recently discovered fungus that transfers considerable beneficial impact to its host plants. A rhizotron experiment was conducted to study the effects of P. Indica inoculation on root distribution and root and shoot development of maize (Zea mays L.) in the presence of three patterns of petroleum contamination in the soil (subsurface contamination, continuous contamination and without contamination (control)). Root distribution and root and shoot development were monitored over time. The final root and shoot biomass and the final TPH concentration in the rhizosphere were determined. Analysis of digitized images which were prepared of the tracing of the appeared roots along the front rhizotrons showed the depth and total length of root network in the contamination treatments were significantly decreased. Although the degradation of TPH in the rhizosphere of maize was significant, but there were no significant differences between degradation of TPH in the rhizosphere of +P. indica plants in comparison to -P. indica plants.

  13. Intensive field phenotyping of maize (Zea mays L.) root crowns identifies phenes and phene integration associated with plant growth and nitrogen acquisition.

    Science.gov (United States)

    York, Larry M; Lynch, Jonathan P

    2015-09-01

    Root architecture is an important regulator of nitrogen (N) acquisition. Existing methods to phenotype the root architecture of cereal crops are generally limited to seedlings or to the outer roots of mature root crowns. The functional integration of root phenes is poorly understood. In this study, intensive phenotyping of mature root crowns of maize was conducted to discover phenes and phene modules related to N acquisition. Twelve maize genotypes were grown under replete and deficient N regimes in the field in South Africa and eight in the USA. An image was captured for every whorl of nodal roots in each crown. Custom software was used to measure root phenes including nodal occupancy, angle, diameter, distance to branching, lateral branching, and lateral length. Variation existed for all root phenes within maize root crowns. Size-related phenes such as diameter and number were substantially influenced by nodal position, while angle, lateral density, and distance to branching were not. Greater distance to branching, the length from the shoot to the emergence of laterals, is proposed to be a novel phene state that minimizes placing roots in already explored soil. Root phenes from both older and younger whorls of nodal roots contributed to variation in shoot mass and N uptake. The additive integration of root phenes accounted for 70% of the variation observed in shoot mass in low N soil. These results demonstrate the utility of intensive phenotyping of mature root systems, as well as the importance of phene integration in soil resource acquisition. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  14. Dry Priming of Maize Seeds Reduces Aluminum Stress

    Science.gov (United States)

    Alcântara, Berenice Kussumoto; Machemer-Noonan, Katja; Silva Júnior, Francides Gomes; Azevedo, Ricardo Antunes

    2015-01-01

    Aluminum (Al) toxicity is directly related to acidic soils and substantially limits maize yield. Earlier studies using hormones and other substances to treat the seeds of various crops have been carried out with the aim of inducing tolerance to abiotic stress, especially chilling, drought and salinity. However, more studies regarding the effects of seed treatments on the induction of Al tolerance are necessary. In this study, two independent experiments were performed to determine the effect of ascorbic acid (AsA) seed treatment on the tolerance response of maize to acidic soil and Al stress. In the first experiment (greenhouse), the AsA seed treatment was tested in B73 (Al-sensitive genotype). This study demonstrates the potential of AsA for use as a pre-sowing seed treatment (seed priming) because this metabolite increased root and shoot growth under acidic and Al stress conditions. In the second test, the evidence from field experiments using an Al-sensitive genotype (Mo17) and an Al-tolerant genotype (DA) suggested that prior AsA seed treatment increased the growth of both genotypes. Enhanced productivity was observed for DA under Al stress after priming the seeds. Furthermore, the AsA treatment decreased the activity of oxidative stress-related enzymes in the DA genotype. In this study, remarkable effects using AsA seed treatment in maize were observed, demonstrating the potential future use of AsA in seed priming. PMID:26714286

  15. Effect of EDTA and Citric Acid on Phytoextraction of Copper and Zinc from a Naturally Contaminated Soil by Maize (Zea mays L. Cultivars

    Directory of Open Access Journals (Sweden)

    A. Taheripur

    2016-09-01

    Full Text Available Introduction: Mining and smelting activities have contributed to increasing levels of copper (Cu and zinc (Zn in soils around of Sarcheshmeh copper mine (Kerman, Iran. Soil chemical analysis showed that the available of Cu and Zn (extracted with DTPA-TEA were 260.1 and 9.2 mg kg-1 soil, respectively. Phytoextraction is one of the most popular and useful phytoremediation techniques for removal of heavy metals from polluted soils. For chemically-assisted phytoextraction, different chelating agents such as EDTA and citric acid are applied to soil to increase the availability of heavy metals in soil for uptake by plants. A pot experiment was conducted to elucidate the performance of chelating agents addition in improving phytoextraction of Cu and zinc Zn from a naturally contaminated soil by maize (Zea mays L. cultivars. Materials and Methods: A factorial experiment in a completely randomized design was carried out bythree factors of chelate type, chelate concentrations and maize cultivars with three replications in 2012 at ShahreKord University. Chelating agents were Ethylene Diamine Tetra Acetic Acid (EDTA and citric acid (CA. They were applied in concentration levels of 0, 0.75 and 1.5 mmole kg-1 soil with irrigation water. The three maize cultivars used were single cross 704 (SC-704, three v cross 647 (TVC-647, and single cross 677 (SC-677. The pots were 23 cm in diameter and 23 cm deep, and were filled with 4 kg of a silty loam, calcareous soil taken from the surface layer of Sarcheshmeh copper mine area. Maize plant s was grown under greenhouse conditions over 90 days. After the harvest, soil available Cu and Zn contents (extracted with DTPA-TEA were determined by atomic absorption spectrophotometry (AAS. Plant samples (shoot and root were dried for 48 h at 70ºC to determine their dry matter content (yield. Total Cu and Zn concentrations in root and shoot of maize were measured after digestion plant samples by AAS method. The shoot and root

  16. Shoot regeneration and embryogenesis in lily shoot tips cryopreserved by droplet vitrification

    Science.gov (United States)

    Shoot regeneration and embryogenesis were, for the first time, achieved directly in shoot tips of Lilium Oriental hybrid ‘Siberia’ following cryopreservation by droplet-vitrification. Shoot tips (2 mm in length) including 2-3 leaf primordia were excised from 4-week-old adventitious shoots directly r...

  17. Stable isotopes estimate the dependence of the parasitic angiosperm striga hermonthica on its maize host

    International Nuclear Information System (INIS)

    Aflakpui, G.K.S.

    2004-01-01

    The dependence of the root hemi-parasitic angiosperm striga hermonthica on its host for carbon (C) and nitrogen (N) was estimated by labeling the leaves of maize (grown in sand culture at three rates of nitrogen) with 13 C and 15 N. The Striga x N interaction on the responses measured was not significant. The dependence of the parasite on host nitrogen varied from 75 to 83 percent in the leaf, and from 70 to 80 percent in the stem compared with a total dependence of between 74 and 82 per cent. The dependence of the parasite on its host for nitrogen was not affected by the rate of nitrogen fertilizer applied. The heterotrophic carbon derived by S. hermonthica from its maize host varied from 20 to 32 per cent in the leaf, 23 to 41 per cent in the stem, with a total dependence of 22 to 36 per cent. The heterotrophic carbon in the leaf increased as the rate of nitrogen fertilizer applied increased (P<0.05). The total dependence of the parasite on the host for carbon also increased (P<0.05). The total dependence of the parasite on the host for carbon also increased as the rate of nitrogen fertilizer applied increased (P<0.01). The presence of S. hermonthica reduced the shoot biomass of its maize host by about 40 percent (P<0.001), whilst the root biomass was unaffected. Infected plants also partitioned about 41 percent of their total biomass compared with 27 per cent for the uninfected (P<0.001). The application if nitrogen increased the shoot and root biomass (P<0.001) but did not affect the proportion of the total biomass partitioned to the root. The results show that (i) the dependence of striga on its maize host of C and N can be estimated with stable isotopes of C and N and (ii) Striga derives more nitrogen than carbon from the host. (author)

  18. The effect and fate of water-soluble carbon nanodots in maize (Zea mays L.).

    Science.gov (United States)

    Chen, Jing; Dou, Runzhi; Yang, Zhongzhou; Wang, Xiaoping; Mao, Chuanbin; Gao, Xiang; Wang, Li

    2016-08-01

    In this study, the toxicity of water-soluble carbon nanodots (C-dots) to maize (Zea mays L.) and their uptake and transport in plants were investigated. After exposed in sand matrix amended with 0-2000 mg/L C-dots for 4 weeks, we found that the phytotoxicity of C-dots was concentration-dependent. C-dots at 250 and 500 mg/L showed no toxicity to maize. However, 1000 and 2000 mg/L C-dots significantly reduced the fresh weight of root by 57% and 68%, and decreased the shoot fresh weight by 38% and 72%, respectively. Moreover, in maize roots, the exposure of C-dots at 2000 mg/L significantly increased the H2O2 content and lipid peroxidation (6.5 and 1.65 times higher, respectively), as well as, the antioxidant enzymes activities, up to 2, 1.5, 1.9 and 1.9 times higher for catalase, ascorbate peroxidase, guaiacol peroxidase and superoxide dismutase, respectively. On the other hand, C-dots were observed in detached root-cap cells, cortex and vascular bundle of roots and mesophyll cells of leaves through fluorescence microscopy analysis, suggesting that C-dots were absorbed and translocated systemically in maize. Remarkably, a certain amount of C-dots were excreted out from leaf blade. To our knowledge, this is the first study combined phenotypic observation with physiologic responses and bioaccumulation and translocation analysis of C-dots to investigate their effect and fate in maize.

  19. The transition from a maternal to external nitrogen source in maize seedlings

    KAUST Repository

    Sabermanesh, Kasra

    2017-02-07

    Maximising NO3 - uptake during seedling development is important as it has a major influence on plant growth and yield. However, little is known about the processes leading to, and involved in, the initiation of root NO3 - uptake capacity in developing seedlings. This study examines the physiological processes involved in root NO3 - uptake and metabolism, to gain an understanding of how the NO3 - uptake system responds to meet demand as maize seedlings transition from seed N use to external N capture. The concentrations of seed-derived free amino acids within root and shoot tissues are initially high, but decrease rapidly until stabilising eight days after imbibition (DAI). Similarly, shoot N% decreases, but does not stabilise until 12-13 DAI. Following the decrease in free amino acid concentrations, root NO3 - uptake capacity increases until shoot N% stabilises. The increase in root NO3 uptake capacity corresponds with a rapid rise in transcript levels of putative NO3 - transporters, ZmNRT2.1 and ZmNRT2.2. The processes underlying the increase in root NO3 - uptake capacity to meet N demand provide an insight into the processes controlling N uptake.

  20. Clonal analysis of the cell lineages in the male flower of maize

    International Nuclear Information System (INIS)

    Dawe, R.K.; Freeling, M.

    1990-01-01

    The cell lineages in the male flower of maize were characterized using X-rays and transposable elements to produce clonal sectors differing in anthocyanin pigmentation. Less than 50% of the somatic tassel mutations (caused by reversion of unstable color mutations) that were visible on the anther wall were sexually transmitted by the male gametes, unless the sectors were larger than half the tassel circumference. This result is explained by showing that: (a) both the outer (LI) and inner (LII) lineages of the shoot apical meristem form a cell layer in the bilayered anther wall, and that anther pigmentation can be derived from either cell layer; and that (b) the male germ cells are derived almost exclusively from the LII. Therefore, while reversion events in either the LI or LII are visible on the anther, only the LII events are heritable. Reversion events that occur prior to the organization of the shoot apical meristem however, produce large (usually more than one-half tassel) sectors that include both the outer and inner lineages. In contrast to the high level of cell layer invasion previously reported during leaf development, during anther development less than 10(-3) cells in the LI invade the LII to form male gametes. The strong correlation between cell lineage and cell fate in the maize anther has implications for studies on plant evolution and the genetic improvement of cereals by DNA transformation

  1. Small amounts of ammonium (NH4+) can increase growth of maize (Zea mays)

    KAUST Repository

    George, Jessey

    2016-09-16

    Nitrate (NOequation image) and ammonium (NHequation image) are the predominant forms of nitrogen (N) available to plants in agricultural soils. Nitrate concentrations are generally ten times higher than those of NHequation image and this ratio is consistent across a wide range of soil types. The possible contribution of these small concentrations of NHequation image to the overall N budget of crop plants is often overlooked. In this study the importance of this for the growth and nitrogen budget of maize (Zea mays L.) was investigated, using agriculturally relevant concentrations of NHequation image. Maize inbred line B73 was grown hydroponically for 30 d at low (0.5 mM) and sufficient (2.5 mM) levels of NOequation image. Ammonium was added at 0.05 mM and 0.25 mM to both levels of NOequation image. At low NOequation image levels, addition of NHequation image was found to improve the growth of maize plants. This increased plant growth was accompanied by an increase in total N uptake, as well as total phosphorus, sulphur and other micronutrients in the shoot. Ammonium influx was higher than NOequation image influx for all the plants and decreased as the total N in the nutrient medium increased. This study shows that agriculturally relevant proportions of NHequation image supplied in addition to NOequation image can increase growth of maize.

  2. Seed Priming with Melatonin Effects on Seed Germination and Seedling Growth in Maize under Salinity Stress

    International Nuclear Information System (INIS)

    Jiang, X.; Li, H.; Song, X.

    2016-01-01

    The effects on seed germination and seedling growth in maize under salinity stress by seed priming with melatonin were investigated. Seeds of maize cultivar Nonghua101 were soaked in 0.4, 0.8 and 1.6 mM aerated solution of melatonin for 24 h, and primed seeds were germinated under the condition of 150 mM NaCl with paper media. The results showed seed priming with 0.8 mM melatonin was the best performance of all the treatments to seed germination and seedling growth in maize under salinity stress. Then primed with 0.8 mM melatonin or water for 24 h and unprimed seeds were germination under the condition of 150 mM NaCl with sand media. The results showed seed priming with 0.8 mM melatonin significantly improved germination energy, germination percentage, seedling vigor index, shoot and root lengths, seedling fresh and dry weights, K/sup +/ content, relative water content, proline and total phenolic contents, superoxide dismutase, catalase and phenylalanin ammonia lyase activities; and significantly decreased mean emergence time, Na/sup +/ content, electrolyte leakage and malondialdehyde content compared with untreated seeds under salinity stress. These results suggest that seed priming with melatonin alleviates the salinity damage to maize and seed priming with melatonin may be an important alternative approach to decrease the impact of salinity stress in maize. (author)

  3. Effect of Different Arbuscular Mycorrhizal Fungi on Growth and Physiology of Maize at Ambient and Low Temperature Regimes

    Directory of Open Access Journals (Sweden)

    Xiaoying Chen

    2014-01-01

    Full Text Available The effect of four different arbuscular mycorrhizal fungi (AMF on the growth and lipid peroxidation, soluble sugar, proline contents, and antioxidant enzymes activities of Zea mays L. was studied in pot culture subjected to two temperature regimes. Maize plants were grown in pots filled with a mixture of sandy and black soil for 5 weeks, and then half of the plants were exposed to low temperature for 1 week while the rest of the plants were grown under ambient temperature and severed as control. Different AMF resulted in different root colonization and low temperature significantly decreased AM colonization. Low temperature remarkably decreased plant height and total dry weight but increased root dry weight and root-shoot ratio. The AM plants had higher proline content compared with the non-AM plants. The maize plants inoculated with Glomus etunicatum and G. intraradices had higher malondialdehyde and soluble sugar contents under low temperature condition. The activities of catalase (CAT and peroxidase of AM inoculated maize were higher than those of non-AM ones. Low temperature noticeably decreased the activities of CAT. The results suggest that low temperature adversely affects maize physiology and AM symbiosis can improve maize seedlings tolerance to low temperature stress.

  4. Aflatoxins and fumonisin contamination of marketed maize, maize ...

    African Journals Online (AJOL)

    Aflatoxins and fumonisin contamination of marketed maize, maize bran and maize used as animal feed in northern ... PROMOTING ACCESS TO AFRICAN RESEARCH ... African Journal of Food, Agriculture, Nutrition and Development.

  5. Effects of application of groundnut biomass compost on uptake of phosphorus by maize grown on an Ultisol of South Sulawesi

    Directory of Open Access Journals (Sweden)

    Kasifah

    2014-07-01

    Full Text Available Low crop production is acid dryland area of South Sulawesi is due to low availability of P in the soils. One of alternatives that can be performed to overcome the problems of acid soils having high level of exchangeable Al, is through the addition of organic material. In the upland areas in South Sulawesi, crop rice, maize and groundnut crop residues are readily available, but the crop residues are generally only used as animal feed or even burned. This study was aimed to elucidate the effects of groundnut compost on P uptake by maize in Ultisol of Moncongloe, South Sulawesi. Eight kilograms of air dried soil was mixed with compost according to the following treatments; 0, 10, 15, 20, 25, 30, 35 and 40 t compost/ha. All pots received 200 kg/ha KCl and 300 kg Urea/ha as basal fertilizers. Two maize seeds were planted in each pot and thinned to one plant per pot after one week. At harvest maize shoot dry weight and maize root dry weight, length of maize cop, cob weight, cob diameter, weight grains per cob, P uptake by maize, P content in maize grain, soil available P were measured. Results of the study showed that groundnut compost has the ability to improve the availability of P in the soil and increase P uptake by maize grown on an Ultisol of South Sulawesi. Application of 25 t groundnut compost/ha was the optimal rate that can be used to increase P availability in an Ultisol of South Sulawesi.

  6. Sirococcus Shoot Blight

    Science.gov (United States)

    Thomas H. Nicholls; Kathryn Robbins

    1984-01-01

    Sirococcus shoot blight, caused by the fungus Sirococcus strobilinus Preuss, affects conifers in the Northern United States and southern Canada. The fungus infects the new shoots; diseased seedlings and saplings are especially affected. In the United States, sirococcus shoot blight has become increasingly widespread since the early 1970's. When favorable...

  7. Chemical and nutritional values of maize and maize products ...

    African Journals Online (AJOL)

    Maize and maize products in selected grain markets within Kaduna, Nigeria, were obtained and investigated for proximate and mineral composition analysis using Atomic Absorption Spectrophotometer (AAS) and flame photometer. Proximate composition of maize and maize products were in the range of 11.6- 20 .0% ...

  8. Abscisic acid refines the synthesis of chloroplast proteins in maize (Zea mays in response to drought and light.

    Directory of Open Access Journals (Sweden)

    Xiuli Hu

    Full Text Available To better understand abscisic acid (ABA regulation of the synthesis of chloroplast proteins in maize (Zea mays L. in response to drought and light, we compared leaf proteome differences between maize ABA-deficient mutant vp5 and corresponding wild-type Vp5 green and etiolated seedlings exposed to drought stress. Proteins extracted from the leaves of Vp5 and vp5 seedlings were used for two-dimensional electrophoresis (2-DE and subsequent matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF mass spectrometry (MS. After Coomassie brilliant blue staining, approximately 450 protein spots were reproducibly detected on 2-DE gels. A total of 36 differentially expressed protein spots in response to drought and light were identified using MALDI-TOF MS and their subcellular localization was determined based on the annotation of reviewed accession in UniProt Knowledgebase and the software prediction. As a result, corresponding 13 proteins of the 24 differentially expressed protein spots were definitely localized in chloroplasts and their expression was in an ABA-dependent way, including 6 up-regulated by both drought and light, 5 up-regulated by drought but down-regulated by light, 5 up-regulated by light but down-regulated by drought; 5 proteins down-regulated by drought were mainly those involved in photosynthesis and ATP synthesis. Thus, the results in the present study supported the vital role of ABA in regulating the synthesis of drought- and/or light-induced proteins in maize chloroplasts and would facilitate the functional characterization of ABA-induced chloroplast proteins in C(4 plants.

  9. Arbuscular Mycorrhizal Fungi Negatively Affect Nitrogen Acquisition and Grain Yield of Maize in a N Deficient Soil.

    Science.gov (United States)

    Wang, Xin-Xin; Wang, Xiaojing; Sun, Yu; Cheng, Yang; Liu, Shitong; Chen, Xinping; Feng, Gu; Kuyper, Thomas W

    2018-01-01

    Arbuscular mycorrhizal fungi (AMF) play a crucial role in enhancing the acquisition of immobile nutrients, particularly phosphorus. However, because nitrogen (N) is more mobile in the soil solution and easier to access by plants roots, the role of AMF in enhancing N acquisition is regarded as less important for host plants. Because AMF have a substantial N demand, competition for N between AMF and plants particularly under low N condition is possible. Thus, it is necessary to know whether or not AMF affect N uptake of plants and thereby affect plant growth under field conditions. We conducted a 2-year field trial and pot experiments in a greenhouse by using benomyl to suppress colonization of maize roots by indigenous AMF at both low and high N application rates. Benomyl reduced mycorrhizal colonization of maize plants in all experiments. Benomyl-treated maize had a higher shoot N concentration and content and produced more grain under field conditions. Greenhouse pot experiments showed that benomyl also enhanced maize growth and N concentration and N content when the soil was not sterilized, but had no effect on maize biomass and N content when the soil was sterilized but a microbial wash added, providing evidence that increased plant performance is at least partly caused by direct effects of benomyl on AMF. We conclude that AMF can reduce N acquisition and thereby reduce grain yield of maize in N-limiting soils.

  10. PERBANDINGAN JUMP SHOOT DENGAN AWALAN DAN TANPA AWALAN TERHADAP PENINGKATAN KETEPATAN SHOOTING DALAM PERMAINAN BOLABASKET

    OpenAIRE

    I Gusti Ngurah Agung Cahya Prananta; N. Adiputra; I P G Adiatmika

    2015-01-01

    The effectiveness of  jump-shoot technique step jump shoot and still jump shoot in a game is still questionable,  because many different assumptions arise. One opinion stated that step jump shoot was more effective and the other stated that and still jump shoot was more efective. Therefore it is necessary to do research on the analysis of the results of step jump shoot and and still jump shoot to improve the accuracy of shooting in a basketball. The experimental research had been conducted on...

  11. Branch architecture in Ginkgo biloba: wood anatomy and long shoot-short shoot interactions.

    Science.gov (United States)

    Little, Stefan A; Jacobs, Brooke; McKechnie, Steven J; Cooper, Ranessa L; Christianson, Michael L; Jernstedt, Judith A

    2013-10-01

    Ginkgo, centrally placed in seed plant phylogeny, is considered important in many phylogenetic and evolutionary studies. Shoot dimorphism of Ginkgo has been long noted, but no work has yet been done to evaluate the relationships between overall branch architecture and wood ring characters, shoot growth, and environmental conditions. • Branches, sampled from similar canopy heights, were mapped with the age of each long shoot segment determined by counting annual leaf-scar series on its short shoots. Transverse sections were made for each long shoot segment and an adjacent short shoot; wood ring thickness, number of rings, and number of tracheids/ring were determined. Using branch maps, we identified wood rings for each long shoot segment to year and developmental context of each year (distal short shoot growth only vs. at least one distal long shoot). Climate data were also analyzed in conjunction with developmental context. • Significantly thicker wood rings occur in years with distal long shoot development. The likelihood that a branch produced long shoots in a given year was lower with higher maximum annual temperature. Annual maximum temperature was negatively correlated with ring thickness in microsporangiate trees only. Annual minimum temperatures were correlated differently with ring thickness of megasporangiate and microsporangiate trees, depending on the developmental context. There were no significant effects associated with precipitation. • Overall, developmental context alone predicts wood ring thickness about as well as models that include temperature. This suggests that although climatic factors may be strongly correlated with wood ring data among many gymnosperm taxa, at least for Ginkgo, correlations with climate data are primarily due to changes in proportions of shoot developmental types (LS vs. SS) across branches.

  12. Potential for phytoextraction of copper, lead, and zinc by rice (Oryza sativa L.), soybean (Glycine max [L.] Merr.), and maize (Zea mays L.).

    Science.gov (United States)

    Murakami, Masaharu; Ae, Noriharu

    2009-03-15

    Phytoextraction by hyperaccumulators has been proposed for decreasing toxic-metal concentrations of contaminated soils. However, hyperaccumulators have several shortcomings to introduce these species into Asian Monsoon's agricultural fields contaminated with low to moderate toxic-metals. To evaluate the phytoextraction potential, maize (Gold Dent), soybean (Enrei and Suzuyutaka), and rice (Nipponbare and Milyang 23) were pot-grown under aerobic soil conditions for 60d on the Andosol or Fluvisol with low to moderate copper (Cu), lead (Pb), and zinc (Zn) contamination. After 2 months cultivation, the Gold Dent maize and Milyang 23 rice shoots took up 20.2-29.5% and 18.5-20.2% of the 0.1molL(-1) HCl-extractable Cu, 10.0-37.3% and 8.5-34.3% of the DTPA-extractable Cu, and 2.4-6.5% and 2.1-5.9% of the total Cu, respectively, in the two soils. Suzuyutaka soybean shoot took up 23.0-29.4% of the 0.1molL(-1) HCl-extractable Zn, 35.1-52.6% of the DTPA-extractable Zn, and 3.8-5.3% of the total Zn in the two soils. Therefore, there is a great potential for Cu phytoextraction by the Gold Dent maize and the Milyang 23 rice and for Zn phytoextraction by the Suzuyutaka soybean from paddy soils with low to moderate contamination under aerobic soil conditions.

  13. A maize gene encoding an NADPH binding enzyme highly homologous to isoflavone reductases is activated in response to sulfur starvation.

    Science.gov (United States)

    Petrucco, S; Bolchi, A; Foroni, C; Percudani, R; Rossi, G L; Ottonello, S

    1996-01-01

    we isolated a novel gene that is selectively induced both in roots and shoots in response to sulfur starvation. This gene encodes a cytosolic, monomeric protein of 33 kD that selectively binds NADPH. The predicted polypeptide is highly homologous ( > 70%) to leguminous isoflavone reductases (IFRs), but the maize protein (IRL for isoflavone reductase-like) belongs to a novel family of proteins present in a variety of plants. Anti-IRL antibodies specifically recognize IFR polypeptides, yet the maize protein is unable to use various isoflavonoids as substrates. IRL expression is correlated closely to glutathione availability: it is persistently induced in seedlings whose glutathione content is about fourfold lower than controls, and it is down-regulated rapidly when control levels of glutathione are restored. This glutathione-dependent regulation indicates that maize IRL may play a crucial role in the establishment of a thiol-independent response to oxidative stress under glutathione shortage conditions.

  14. A broncofibroscopia no diagnóstico etiológico de afecções pulmonares em pacientes com síndrome da imunodeficiência adquirida

    Directory of Open Access Journals (Sweden)

    Silva R.M. da

    2000-01-01

    Full Text Available OBJETIVO: Avaliar o papel da broncofibroscopia no diagnóstico etiológico de pneumopatias em pacientes positivos ao vírus da imunodeficência humana. MÉTODOS: O presente estudo analisa um grupo de 49 pacientes com diagnóstico de síndrome da imunodeficiência adquirida, admitidos no Hospital Nereu Ramos - Florianópolis -SC. Foram selecionados pacientes sintomáticos respiratórios com lesão simples ao exame radiográfico do tórax, sem diagnóstico etiológico confirmado por exame de escarro. Tais pacientes foram submetidos à broncofibroscopia com realização de lavado broncoalveolar, escovado brônquico e biópsia pulmonar transbrônquica. As amostras foram analisados com bacterioscopia pelo Gram, pesquisa de BAAR, citomegalovírus, P. carinii e outros fungos. RESULTADOS: A broncofibroscopia foi efetiva na realização do diagnóstico etiológico em 71,43% dos casos. A biópsia pulmonar transbrônquica foi a técnica com maior positividade, firmando o diagnóstico em 59,18% dos casos. A técnica com menor positividade foi o escovado brônquico, com diagnóstico em 4,08% dos casos. O agente etiológico mais freqüente foi o P. carinii (42,8%, seguido pelo M. tuberculosis (22,86%. Nenhuma complicação foi observada nos procedimentos realizados. CONCLUSÃO: Concluímos no presente estudo que neste grupo de pacientes a broncofibroscopia foi um procedimento seguro e efetivo para o diagnóstico etiológico de afecções pulmonares.

  15. Bioavailability of Zn in ZnO nanoparticle-spiked soil and the implications to maize plants

    International Nuclear Information System (INIS)

    Liu, Xueqin; Wang, Fayuan; Shi, Zhaoyong; Tong, Ruijian; Shi, Xiaojun

    2015-01-01

    Little is known about the relationships between Zn bioavailability in ZnO nanoparticle (NP)-spiked soil and the implications to crops. The present pot culture experiment studied Zn bioavailability in soil spiked with different doses of ZnO NPs, using the diethylenetriaminepentaacetic acid (DTPA) extraction method, as well as the toxicity and Zn accumulation in maize plants. Results showed that ZnO NPs exerted dose-dependent effects on maize growth and nutrition, photosynthetic pigments, and root activity (dehydrogenase), ranging from stimulatory (100–200 mg/kg) through to neutral (400 mg/kg) and toxic effect (800–3200 mg/kg). Both Zn concentration in shoots and roots correlated positively (P < 0.01) with ZnO NPs dose and soil DTPA-extractable Zn concentration. The BCF of Zn in shoots and roots ranged from 1.02 to 3.83 when ZnO NPs were added. In most cases, the toxic effects on plants elicited by ZnO NPs were overall similar to those caused by bulk ZnO and soluble Zn (ZnSO 4 ) at the same doses, irrespective of some significant differences suggesting a higher toxicity of ZnO NPs. Oxidative stress in plants via superoxide free radical production was induced by ZnO NPs at 800 mg/kg and above, and was more severe than the same doses of bulk ZnO and ZnSO 4 . Although significantly lower compared to bulk ZnO and ZnSO 4 , at least 16 % of the Zn from ZnO NPs was converted into DTPA-extractable (bioavailable) forms. The dissolved Zn 2+ from ZnO NPs may make a dominant contribution to their phytotoxicity. Although low amounts of ZnO NPs exhibited some beneficial effects, the accumulation of Zn from ZnO NPs into maize tissues could pose potential health risks for both plants and human

  16. Growth and nutrient concentrations of maize in pressmud treated saline-sodic soils

    Directory of Open Access Journals (Sweden)

    D. Muhammad

    2009-05-01

    Full Text Available n open-air pot experiment was conducted to investigate effects of pressmud (PM on saline-sodic soil reclamation, mitigating the adverse effects of saline irrigation and increase of maize (Zea mays L. growth. Pressmud was added at the rate of 0, 5, 10 and 20 Mg ha-1 to pots containing 6.8 kg air dried surface (0-20 cm soil collected from two sites. The increasing levels of PM enhanced maize plant height, shoots and roots biomass in both soils. However, the Soil 2, with initial EC and SAR of 5.43 dS m-1 and 18.67(m mol L-11/2, respectively, produced comparatively more biomass at all PM levels than Soil 1 [silty-clay loam, EC = 6.22 dS m-1, SAR = 20.72 (m mol L- 1 1/2]. The [P] in shoots was maximum at the highest PM in both the soils but the [K] increased with PM levels in Soil 1 and decreased in Soil 2 due to the dilution effect. The Soil 1 maintained several folds more [Na] in shoots and consequently lower K:Na ratio than Soil 2. The post harvest soil pH, Na, Ca+Mg and SAR in saturation extracts decreased with increasing levels of PM as compared to control. Soil 2 released more volume of leachate as compared to Soil 1 but the leachate EC and [Na] were comparable while [Ca+Mg] were relatively higher in Soil 2. The higher removal of total salts from Soil 2 resulted in lower soil pH, EC and SAR in this soil as compared to Soil 1. The increases in crop growth with each increment of PM up to 20 Mg ha-1 in the present study proved the benefits of PM in increasing crop yields and suggested that doses higher than 20 Mg PM ha-1 could be applied to the saline-sodic soils ofthe area to get maximum possible crop yields depending on soil and water quality

  17. PERBANDINGAN JUMP SHOOT DENGAN AWALAN DAN TANPA AWALAN TERHADAP PENINGKATAN KETEPATAN SHOOTING DALAM PERMAINAN BOLABASKET

    Directory of Open Access Journals (Sweden)

    I Gusti Ngurah Agung Cahya Prananta

    2015-01-01

    Full Text Available The effectiveness of  jump-shoot technique step jump shoot and still jump shoot in a game is still questionable,  because many different assumptions arise. One opinion stated that step jump shoot was more effective and the other stated that and still jump shoot was more efective. Therefore it is necessary to do research on the analysis of the results of step jump shoot and and still jump shoot to improve the accuracy of shooting in a basketball. The experimental research had been conducted on 20samples of people whowere selected randomly from the men's basketball club of the Faculty of Physical Educationand Health of Teacher Training Institute PGRI Bali. Samples were divided into two groups each  consisting of 10 people. Group I was given training step  jump shoot four sets of 10 reps  and Group II training still jump shoot four sets of 10 reps. The data before and after treatment were tested by SPSS computer program. The data were normally distributed and homogeneous so further tested using pairedt-test to compare the average values?? before and after training between each group, while the independent t-test was used to determine differences in mean values?? between the two groups. Paired t-test resulted the obtained data were significantly increased in both treatment groups p=0,001 in Group I and p=0,000 in Group II (p <0.05. Results of independent t-test found that both groups before training did not differ significantly p=0,926 (p>0.05 and after training both groups equally improve the accuracy of shooting because p=0,133 (p>0.05. It was concluded that botht raining improved the shooting accuracy and there was no difference between the effect of step jumps hoot and still jump shoot toward the shooting accuracy. It was suggested to improve the shooting accuracy in basketball used step jump shoot training and still jump shoot training four sets of 10 reps with a training frequency of 4 times a week for 6 weeks

  18. Effect of soil herbicides on the antioxidant system of maize vegetative organs during ontogenesis

    Directory of Open Access Journals (Sweden)

    I.P. Grigoryuk

    2016-06-01

    Full Text Available The impact of soil herbicides Harnes, Frontier and Merlin on the activity of enzymes superoxid dismutase (SOD, EC 1.15.1.1, catalase (CAT, EC 1.11.1.6, and benzidine peroxidase (POD, EC 1.11.1.7 in maize (Zea mays L.; cultivar Kadr 267 MV roots and leaves was studied in the field experiment. It was established that the adaptation of maize plants to the herbicides treatment was accompanied by significant activation of antioxidant enzymes both in roots (39%, 57%, and 67% above control level and leaves (50%, 64%, and 77% above control, respectively during different vegetation stages (shoots emergence; 3–5 leaves phase; florescence. The herbicides-induced changes of enzymes activity high correlated with ontogenetic dynamics of control plants activity: r = 0.98 for SOD; r = 0.96 for POD; r = 0.98 for CAT.

  19. Resistance of maize varieties to the maize weevil Sitophilus zeamais

    African Journals Online (AJOL)

    This study aimed at evaluating commonly used maize varieties, collected from Melkasa and Bako Agricultural Research Centers and Haramaya University, Ethiopia, against the maize weevil Sitophilus zeamais Motsch., one of the most important cosmopolitan stored product pests in maize. A total of 13 improved maize ...

  20. Intercropping Maize With Legumes for Sustainable Highland Maize Production

    Directory of Open Access Journals (Sweden)

    Adirek Punyalue

    2018-02-01

    Full Text Available Residue burning to prepare soil for maize growing deprives the soil of both protective cover and organic matter, and it exacerbates environmental issues such as Southeast Asia's haze problem. This paper reports on a study that evaluated the effectiveness of maize/legume intercropping as an alternative to maize cultivation with residue burning. Cowpea (Vigna unguiculata, mung bean (V. radiata, rice bean (V. umbellata, and lablab (Lablab purpureus were sown into a standing maize crop 30 days before harvest, and the results were compared with a maize crop grown using residue burning as the method for land preparation at Pang Da Agricultural Station in Chiang Mai, Thailand, in a replicated trial conducted over 3 growing seasons from 2012 to 2014. Intercropping increased maize grain yield by 31–53% and left 70–170% more residue containing 113–230% more nitrogen than the maize sown after residue burning, depending on the legume, and decreased weed dry weight by two-thirds after 2 seasons. Soil biodiversity was enriched by the intercrops, with a doubling in the spore density of arbuscular mycorrhizal fungi in the root-zone soil and increased abundance, diversity (Shannon index, and richness of the soil macrofauna. The abundance of soil animals increased with crop residue dry weight (r = 0.90, P < 0.05 and nitrogen content (r = 0.98, P < 0.01. The effect of intercropping on maize grain yield and accumulation of residue and nitrogen were then confirmed in a participatory experiment involving farmers in 2 highland villages in the Phrao and Chiang Dao districts of Chiang Mai Province with maize and rice bean in 2015. The effects of maize/legume intercropping—increased nitrogen accumulation and crop residue, enhanced soil biodiversity, suppression of weeds, and protection of the soil surface, which enabled the maize to be sown without land clearing with fire—should all contribute to sustainable highland maize production.

  1. Assessing the effect of phosphorus application on early growth of maize at Sunderbazar, Lamjung, Nepal

    Directory of Open Access Journals (Sweden)

    Ram Kumar Shrestha

    2016-12-01

    Full Text Available Phosphorus (P is an essential nutrient element for maize production. A pot experiment was conducted during May-June, 2015 to assess the effects of different rates of P on early growth of maize plant at Sundarbazar, Lamjung. Two maize varieties (Rato Makai and Poshilo Makai-1 were subjected to four P levels (0 kg ha-1, 13 kg ha-1, 18 kg ha-1, and 23 kg ha-1 in randomized complete block design with four replications. The effects of different P level on root elongation, root biomass, plant height, root shoot biomass ratio and total dry matter were investigated at 45 days after sowing. For all parameters, the maximum value was obtained when soil was added with 18 kg P ha-1 & the minimum value under the control of 0 kg P ha-1. Maize varieties differed significantly in terms of all the parameters under study, and Poshilo Makai-1 performed better than Rato Makai at all P levels. So, from this result, it can be concluded that Poshilo Makai-1 appeared to be P efficient over Rato Makai at early growth stage. However, it would be necessary to look at the response of crop up to maturity and at wider range of P to have the better insight of their relative performance.

  2. Effects Of Irrigation With Saline Water, And Soil Type On Germination And Seedling Growth Of Sweet Maize (Zea Mays L.)

    International Nuclear Information System (INIS)

    Mostafa, A.Z.; Amato, M.; Hamdi, A.; Mostafa, A.Z.; Galal, Y.G.M.; Lotfy, S.M.

    2012-01-01

    Germination and early growth of maize Sweet Maize (Zea mays L.), var. (SEL. CONETA) under irrigation with saline water were investigated in a pot experiment with different soil types. Seven salinity levels of irrigation water up to 12 dS/m were used on a Clay soil (C) and a Sandy-Loam (SL). Emergence of maize was delayed under irrigation with saline water, and the final percentage of germination was reduced only at 8 dS/m or above. Seedling shoot and root growth were reduced starting at 4 dS/m of irrigation water. Salts accumulated more in the C soil but reductions in final germination rate and seedling growth were larger in the SL soil, although differences were not always significant. Data indicate that germination is rather tolerant to salinity level in var. SEL. CONETA whereas seedling growth is reduced at moderate salinity levels, and that soil type affects plant performance under irrigation with saline water

  3. Phytochrome quantitation in crude extracts of Avena by enzyme-linked immunosorbent assay with monoclonal antibodies

    Energy Technology Data Exchange (ETDEWEB)

    Shimazaki, Y; Cordonnier, M M; Pratt, L H

    1983-01-01

    An enzyme-linked immunosorbent assay (ELISA), which uses both rabbit polyclonal and mouse monoclonal antibodies to phytochrome, has been adapted for quantitation of phytochrome in crude plant extracts. The assay has a detection limit of about 100 pg phytochrome and can be completed within 10 h. Quantitation of phytochrome in crude extracts of etiolated oat seedlings by ELISA gave values that agreed well with those obtained by spectrophotometric assay. When etiolated oat seedlings were irradiated continuously for 24 h, the amount of phytochrome detected by ELISA and by spectrophotometric assay decreased by more than 1000-fold and about 100-fold, respectively. This discrepancy indicates that phytochrome in light-treated plants may be antigenically distinct from that found in fully etiolated plants. When these light-grown oat seedlings were kept in darkness for 48 h, phytochrome content detected by ELISA increased by 50-fold in crude extracts of green oat shoots, but only about 12-fold in extracts of herbicide-treated oat shoots. Phytochrome reaccumulation in green oat shoots was initially more rapid in the more mature cells of the primary leaf tip than near the basal part of the shoot. The inhibitory effect of Norflurazon on phytochrome accumulation was much more evident near the leaf tip than the shoot base. A 5-min red irradiation of oat seedlings at the end of a 48-h dark period resulted in a subsequent, massive decrease in phytochrome content in crude extracts from both green and Norflurazon-bleached oat shoots. These observations eliminate the possibility that substantial accumulation of chromophore-free phytochrome was being detected and indicate that Norflurazon has a substantial effect on phytochrome accumulation during a prolonged dark period. 25 references, 9 figures, 3 tables.

  4. Photosynthesis of a scots pine shoot: the effect of shoot inclination on the photosynthetic response of a shoot subjected to direct radiation

    International Nuclear Information System (INIS)

    Oker-Blom, P.; Kellomaki, S.; Smolander, H.

    1983-01-01

    A set of photosynthetic responses of a Scots pine (Pinus sylvestris L.) shoot to light was derived from the shoot geometry and the photosynthetic response of a single needle. Computations showed that the shape of the photosynthesis light-curves varies substantially depending on the direction of radiation relative to the shoot position. Differences in the initial and maximum rates of photosynthesis were due to changes in the effective projection area and the irradiated fraction of the shoot, respectively

  5. Breeding of maize types with specific traits at the Maize Research Institute, Zemun Polje

    Directory of Open Access Journals (Sweden)

    Pajić Zorica

    2007-01-01

    Full Text Available Maize is primarily grown as an energy crop, but the use of different specific versions, such as high-oil maize, high-lysine maize, waxy maize, white-seeded maize, popping maize and sweet maize, is quite extensive. Speciality maize, due to its traits and genetic control of these traits, requires a particular attention in handling breeding material during the processes of breeding. It is especially related to prevention of uncontrolled pollination. In order to provide successful selection for a certain trait, the following specific procedures in evaluation of the trait are necessary: the estimation of a popping volume and flake quality in popping maize; the determination of sugars and harvest maturity in sweet maize; the determination of oil in selected samples of high-oil maize types, and so forth. Breeding programmes for speciality maize, except high-amylose maize, have been implemented at the Maize Research Institute, Zemun Polje, Belgrade, for the last 45 years. A great number of high-yielding sweet maize hybrids, popping maize, high-oil and high-lysine, flint and white-seeded maize hybrids were developed during this 45-year period. Auspicious selection and breeding for these traits is facilitated by the abundant genetic variability and technical and technological possibilities necessary for successful selection.

  6. Evaluation of the side effects of poly(epsilon-caprolactone) nanocapsules containing atrazine towards maize plants

    Science.gov (United States)

    Oliveira, Halley; Stolf-Moreira, Renata; Martinez, Cláudia; Sousa, Gustavo; Grillo, Renato; de Jesus, Marcelo; Fraceto, Leonardo

    2015-10-01

    Poly(epsilon-caprolactone) (PCL) nanocapsules have been used as a carrier system for the herbicide atrazine, which is commonly applied to maize. We demonstrated previously that these atrazine containing polymeric nanocapsules were ten-fold more effective in the control of mustard plants (a target species), as compared to a commercial atrazine formulation. Since atrazine can have adverse effects on non-target crops, here we analyzed the effect of encapsulated atrazine on growth, physiological and oxidative stress parameters of soil-grown maize plants (Zea mays L.). One day after the post-emergence treatment with PCL nanocapsules containing atrazine (1 mg mL-1), maize plants presented 15 and 21 % decreases in maximum quantum yield of photosystem II and in net CO2 assimilation rate, respectively, as compared to water-sprayed plants. The same treatment led to a 1.8-fold increase in leaf lipid peroxidation in comparison with control plants. However, all of these parameters were unaffected four and eight days after the application of encapsulated atrazine. These results suggested that the negative effects of atrazine were transient, probably due to the ability of maize plants to detoxify the herbicide. When encapsulated atrazine was applied at a ten-fold lower concentration (0.1 mg mL-1), a dosage that is still effective for weed control, no effects were detected even shortly after application. Regardless of the herbicide concentration, neither pre- nor post-emergence treatment with the PCL nanocapsules carrying atrazine resulted in the development of any macroscopic symptoms in maize leaves, and there were no impacts on shoot growth. Additionally, no effects were observed when plants were sprayed with PCL nanocapsules without atrazine. Overall, these results suggested that the use of PCL nanocapsules containing atrazine did not lead to persistent side effects in maize plants, and that the technique could offer a safe tool for weed control without affecting crop growth.

  7. Estresse salino em plântulas de milho: parte I análise do crescimento Salt stress in maize seedlings: part I growth analysis

    Directory of Open Access Journals (Sweden)

    André Dias de Azevedo Neto

    2000-01-01

    Full Text Available O trabalho foi conduzido em casa de vegetação, objetivando-se avaliar o efeito do estresse salino sobre o crescimento de cultivares de milho com tolerância diferenciada à salinidade. Foi utilizado um arranjo fatorial 2 x 5 com duas cultivares de milho (P-3051 e BR-5011 e cinco níveis de cloreto de sódio na solução nutritiva (0, 25, 50, 75 e 100 mol m-3. Avaliaram-se a matéria seca (MS da parte aérea e raízes, razão parte aérea/raiz, área foliar (AF, taxas de crescimento absoluto (TCA, relativo (TCR e de assimilação líquida (TAL e razão de área foliar (RAF. Excetuando-se a RAF, o estresse salino afetou as demais variáveis estudadas. A MS da parte aérea e raízes, AF, TCA e TCR, sobressaíram-se como os indicadores que melhor representaram o efeito do estresse salino sobre as plantas. Por outro lado, a razão parte aérea/raiz, TAL e RAF foram as variáveis que melhor expressaram os caracteres de tolerância e sensibilidade nas cultivares analisadas.The work was performed in the greenhouse, aiming to evaluate the effect of salt stress on maize cultivars differing in salinity tolerance. Data were carried out on 2 x 5 factorial arrangement with two maize cultivars (P-3051 and BR-5011 and five sodium chloride levels in nutritive solution (0, 25, 50, 75 or 100 mol m-3. The shoot dry matter, root dry matter, shoot to root ratio, leaf area (LA, absolute growth rate (AGR, relative growth rate (RGR, net assimilation rate (NAR and leaf area ratio (LAR were analyzed. The salt stress affected all studied variables, except LAR. The shoot dry matter, root dry matter, LA, AGR and RGR were the best parameters to express the salt stress effect on maize plants. On the other hand, the shoot to root ratio, NAR and the LAR were the best parameters to express differences between cultivars regarding their tolerance or sensitivity to salt stress.

  8. Nitrogen transporter and assimilation genes exhibit developmental stage-selective expression in maize (Zea mays L.) associated with distinct cis-acting promoter motifs.

    Science.gov (United States)

    Liseron-Monfils, Christophe; Bi, Yong-Mei; Downs, Gregory S; Wu, Wenqing; Signorelli, Tara; Lu, Guangwen; Chen, Xi; Bondo, Eddie; Zhu, Tong; Lukens, Lewis N; Colasanti, Joseph; Rothstein, Steven J; Raizada, Manish N

    2013-10-01

    Nitrogen is considered the most limiting nutrient for maize (Zea mays L.), but there is limited understanding of the regulation of nitrogen-related genes during maize development. An Affymetrix 82K maize array was used to analyze the expression of ≤ 46 unique nitrogen uptake and assimilation probes in 50 maize tissues from seedling emergence to 31 d after pollination. Four nitrogen-related expression clusters were identified in roots and shoots corresponding to, or overlapping, juvenile, adult, and reproductive phases of development. Quantitative real time PCR data was consistent with the existence of these distinct expression clusters. Promoters corresponding to each cluster were screened for over-represented cis-acting elements. The 8-bp distal motif of the Arabidopsis 43-bp nitrogen response element (NRE) was over-represented in nitrogen-related maize gene promoters. This conserved motif, referred to here as NRE43-d8, was previously shown to be critical for nitrate-activated transcription of nitrate reductase (NIA1) and nitrite reductase (NIR1) by the NIN-LIKE PROTEIN 6 (NLP6) in Arabidopsis. Here, NRE43-d8 was over-represented in the promoters of maize nitrate and ammonium transporter genes, specifically those that showed peak expression during early-stage vegetative development. This result predicts an expansion of the NRE-NLP6 regulon and suggests that it may have a developmental component in maize. We also report leaf expression of putative orthologs of nitrite transporters (NiTR1), a transporter not previously reported in maize. We conclude by discussing how each of the four transcriptional modules may be responsible for the different nitrogen uptake and assimilation requirements of leaves and roots at different stages of maize development.

  9. School Shootings and Student Performance

    OpenAIRE

    Panu Poutvaara; Olli Ropponen

    2010-01-01

    In this paper, we study how high school students reacted to the shocking news of a school shooting. The shooting coincided with national high-school matriculation exams. As there were exams both before and after the shooting, we can use a difference-in-differences analysis to uncover how the school shooting affected the test scores compared to previous years. We find that the average performance of young men declined due to the school shooting, whereas we do not observe a similar pattern for ...

  10. The influence of gadolinium and yttrium on biomass production and nutrient balance of maize plants

    International Nuclear Information System (INIS)

    Saatz, Jessica; Vetterlein, Doris; Mattusch, Jürgen; Otto, Matthias; Daus, Birgit

    2015-01-01

    Rare earth elements (REE) are expected to become pollutants by enriching in the environment due to their wide applications nowadays. The uptake and distribution of gadolinium and yttrium and its influence on biomass production and nutrient balance was investigated in hydroponic solution experiments with maize plants using increasing application doses of 0.1, 1 and 10 mg L −1 . It could be shown that concentrations of up to 1 mg L −1 of Gd and Y did not reduce or enhance the plant growth or alter the nutrient balance. 10 mg L −1  Gd or Y resulted in REE concentrations of up to 1.2 weight-% in the roots and severe phosphate deficiency symptoms. Transfer rates showed that there was only little transport of Gd and Y from roots to shoots. Significant correlations were found between the concentration of Gd and Y in the nutrient solution and the root tissue concentration of Ca, Mg and P. - Highlights: • Roots accumulate REE in very high concentrations. • Transfer factors from root to shoot tissue are very low, with HREE higher than MREE. • The nutrient balance of the plant is severely influenced by REE addition. • Phosphate deficiency appears at high concentrations of REE addition. - The addition of the rare-earth elements Gd and Y results in less Ca and Mg uptake and phosphate deficiency in maize plants grown in hydroponics

  11. Breeding of maize types with specific traits at the Maize Research Institute, Zemun Polje

    OpenAIRE

    Pajić Zorica

    2007-01-01

    Maize is primarily grown as an energy crop, but the use of different specific versions, such as high-oil maize, high-lysine maize, waxy maize, white-seeded maize, popping maize and sweet maize, is quite extensive. Speciality maize, due to its traits and genetic control of these traits, requires a particular attention in handling breeding material during the processes of breeding. It is especially related to prevention of uncontrolled pollination. In order to provide successful selection for a...

  12. Spatio-temporal changes in endogenous abscisic acid contents during etiolated growth and photomorphogenesis in tomato seedlings

    Czech Academy of Sciences Publication Activity Database

    Humplík, Jan; Turečková, Veronika; Fellner, Martin; Bergougnoux, V.

    2015-01-01

    Roč. 10, č. 8 (2015), č. článku e1039213. ISSN 1559-2316 R&D Projects: GA MŠk(CZ) LO1204 Institutional support: RVO:61389030 Keywords : arabidopsis seedlings * blue-light * phytochromes * germination * metabolism * dormancy * barley * seeds * abscisic acid * blue-light * etiolated growth * photomorphogenesis * tomato Subject RIV: EB - Genetics ; Molecular Biology

  13. Water Deficit and Abscisic Acid Cause Differential Inhibition of Shoot versus Root Growth in Soybean Seedlings 1

    Science.gov (United States)

    Creelman, Robert A.; Mason, Hugh S.; Bensen, Robert J.; Boyer, John S.; Mullet, John E.

    1990-01-01

    Roots often continue to elongate while shoot growth is inhibited in plants subjected to low-water potentials. The cause of this differential response to water deficit was investigated. We examined hypocotyl and root growth, polysome status and mRNA populations, and abscisic acid (ABA) content in etiolated soybean (Glycine max [L.] Merr. cv Williams) seedlings whose growth was inhibited by transfer to low-water potential vermiculite or exogenous ABA. Both treatments affected growth and dry weight in a similar fashion. Maximum inhibition of hypocotyl growth occurred when internal ABA levels (modulated by ABA application) reached the endogenous level found in the elongating zone of seedlings grown in water-deficient vermiculite. Conversely, root growth was affected to only a slight extent in low-water potential seedlings and by most ABA treatments (in some, growth was promoted). In every seedling section examined, transfer of seedlings into low-water potential vermiculite caused ABA levels to increase approximately 5- to 10-fold over that found in well-watered seedlings. Changes in soluble sugar content, polysome status, and polysome mRNA translation products seen in low-water potential seedlings did not occur with ABA treatments sufficient to cause significant inhibition of hypocotyl elongation. These data suggest that both variation in endogenous ABA levels, and differing sensitivity to ABA in hypocotyls and roots can modulate root/shoot growth ratios. However, exogenous ABA did not induce changes in sugar accumulation, polysome status, and mRNA populations seen after transfer into low-water potential vermiculite. Images Figure 6 Figure 7 PMID:16667248

  14. Phytoextraction of cadmium by rice (Oryza sativa L.), soybean (Glycine max (L.) Merr.), and maize (Zea mays L.)

    Energy Technology Data Exchange (ETDEWEB)

    Murakami, M. [Department of Environmental Chemistry, National Institute for Agro-Environmental Sciences, 3-1-3 Kannondai, Tsukuba, Ibaraki 305-0856 (Japan)]. E-mail: simple@affrc.go.jp; Ae, N. [Department of Environmental Chemistry, National Institute for Agro-Environmental Sciences, 3-1-3 Kannondai, Tsukuba, Ibaraki 305-0856 (Japan)]. E-mail: aenoriha@kobe-u.ac.jp; Ishikawa, S. [Department of Environmental Chemistry, National Institute for Agro-Environmental Sciences, 3-1-3 Kannondai, Tsukuba, Ibaraki 305-0856 (Japan)]. E-mail: isatoru@niaes.affrc.go.jp

    2007-01-15

    Selecting a phytoextraction plant with high Cd-accumulating ability based on the plant's compatibility with mechanized cultivation techniques may yield more immediately practical results than selection based on high tolerance to Cd. Rice (Oryza sativa L., cv. Nipponbare and Milyang 23), soybean (Glycine max [L.] Merr., cv. Enrei and Suzuyutaka), and maize (Zea mays L., cv. Gold Dent) were grown on one Andosol and two Fluvisols with low concentration of Cd contamination ranging from 0.83 to 4.29 mg Cd kg{sup -1}, during 60 days in pots (550 mL) placed in a greenhouse. Shoot Cd uptake was as follows: Gold Dent < Enrei and Nipponbare < Suzuyutaka and Milyang 23. Several soil Cd fractions after Milyang 23 harvesting decreased most. Milyang 23 accumulated 10-15% of the total soil Cd in its shoot. The Milyang 23 rice is thus promising for phytoextraction of Cd from paddy soils with low contamination level. - Milyang 23 rice (Oryza sativa L.) accumulated 10-15% of the total soil Cd in its shoot.

  15. Phytoextraction of cadmium by rice (Oryza sativa L.), soybean (Glycine max (L.) Merr.), and maize (Zea mays L.)

    International Nuclear Information System (INIS)

    Murakami, M.; Ae, N.; Ishikawa, S.

    2007-01-01

    Selecting a phytoextraction plant with high Cd-accumulating ability based on the plant's compatibility with mechanized cultivation techniques may yield more immediately practical results than selection based on high tolerance to Cd. Rice (Oryza sativa L., cv. Nipponbare and Milyang 23), soybean (Glycine max [L.] Merr., cv. Enrei and Suzuyutaka), and maize (Zea mays L., cv. Gold Dent) were grown on one Andosol and two Fluvisols with low concentration of Cd contamination ranging from 0.83 to 4.29 mg Cd kg -1 , during 60 days in pots (550 mL) placed in a greenhouse. Shoot Cd uptake was as follows: Gold Dent < Enrei and Nipponbare < Suzuyutaka and Milyang 23. Several soil Cd fractions after Milyang 23 harvesting decreased most. Milyang 23 accumulated 10-15% of the total soil Cd in its shoot. The Milyang 23 rice is thus promising for phytoextraction of Cd from paddy soils with low contamination level. - Milyang 23 rice (Oryza sativa L.) accumulated 10-15% of the total soil Cd in its shoot

  16. The arbuscular mycorrhizal fungus Rhizophagus irregularis differentially regulates the copper response of two maize cultivars differing in copper tolerance.

    Science.gov (United States)

    Merlos, Miguel A; Zitka, Ondrej; Vojtech, Adam; Azcón-Aguilar, Concepción; Ferrol, Nuria

    2016-12-01

    Arbuscular mycorrhiza can increase plant tolerance to heavy metals. The effects of arbuscular mycorrhiza on plant metal tolerance vary depending on the fungal and plant species involved. Here, we report the effect of the arbuscular mycorrhizal fungus Rhizophagus irregularis on the physiological and biochemical responses to Cu of two maize genotypes differing in Cu tolerance, the Cu-sensitive cv. Orense and the Cu-tolerant cv. Oropesa. Development of the symbiosis confers an increased Cu tolerance to cv. Orense. Root and shoot Cu concentrations were lower in mycorrhizal than in non-mycorrhizal plants of both cultivars. Shoot lipid peroxidation increased with soil Cu content only in non-mycorrhizal plants of the Cu-sensitive cultivar. Root lipid peroxidation increased with soil Cu content, except in mycorrhizal plants grown at 250mg Cu kg -1 soil. In shoots of mycorrhizal plants of both cultivars, superoxide dismutase, ascorbate peroxidase, catalase and glutathione reductase activities were not affected by soil Cu content. In Cu-supplemented soils, total phytochelatin content increased in shoots of mycorrhizal cv. Orense but decreased in cv. Oropesa. Overall, these data suggest that the increased Cu tolerance of mycorrhizal plants of cv. Orense could be due to an increased induction of shoot phytochelatin biosynthesis by the symbiosis in this cultivar. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  17. Comparative study of impact of Azotobacter and Trichoderma with other fertilizers on maize growth

    Directory of Open Access Journals (Sweden)

    Sanjay Mahato

    2017-12-01

    Full Text Available Biofertilizers may be a better eco-friendly option to maintain soil fertility. The study was conducted to investigate the effect of Azotobacter and Trichoderma on the vegetative growth of maize (Zea mays L. plants. The experiment was carried out in medium sized pots, at IAAS, Lamjung (Feb 2017 - May 2017 in completely randomized design (CRD, consisting eight treatments and three replications. Treatments were namely T1 (control, T2 (Azotobacter, T3 (Trichoderma, T4 (Azotobacter + Trichoderma, T5 (NPK, T6 (Azotobacter + Trichoderma + FYM, T7 (Azotobacter + Trichoderma + FYM + NPK, T8 (FYM. Azotobacter showed a positive increase in plant height, stem girth, dry shoot weight, root length and width, and root weight while Trichoderma displayed either negative or minimal impact. Effect of FYM was lower than Azotobacter but considerably higher than Trichoderma. Trichoderma seriously inhibited the expression of Azotobacter when used together. Trichoderma even suppressed the outcome (except shoot weight of FYM when used together. Root length was the longest in Azotobacter inoculation. The highest number of leaves was in T7 followed by Azotobacter (T2 and NPK (T5. Unlike leaf width, Azotobacter showed a negligible increase in leaves length while Trichoderma wherever present showed the negative impact. Minimum chlorophyll content was found in Azotobacter or Trichoderma after 73 days. Azotobacter treatment showed early tasseling than Trichoderma. The association of Azotobacter and Trichoderma increased the biomass. Azotobacter has significant effects on growth parameters of maize and can supplement chemical fertilizer, while Trichoderma was found to inhibit most of the growth parameters.

  18. Decomposition and fertilizing effects of maize stover and chromolaena odorata on maize yield

    International Nuclear Information System (INIS)

    Tetteh, F.M.; Safo, E.Y.; Quansah, C.

    2008-01-01

    The quality, rates of decomposition and the fertilizing effect of chromolaena odorata, and maize stover were determined in field experiments as surface application or buried in litter bags. Studies on the effect of plant materials of contrasting qualities (maize stover and C. odorata) applied sole (10 Mg ha -1 ) and mixed, on maize grain and biomass yield were also conducted on the Asuansi (Ferric Acrisol) soil series. Total nitrogen content of the residues ranged from 0.85% in maize stover to 3.50% in C. odorata. Organic carbon ranged from 34.90% in C. odorata to 48.50% in maize stover. Phosphorus ranged from 0.10% in maize stover to 0.76% in C. odorata. In the wet season, the decomposition rate constants (k) were 0.0319 day -1 for C. odorata, and 0.0081 for maize stover. In the dry season, the k values were 0.0083 for C. odorata, and 0.0072 day -1 for maize stover. Burying of the plant materials reduced the half-life (t 50 ) periods from 18 to 10 days for C. odorata, and 45 to 20 days for maize stover. Maize grain yield of 2556 kg ha -1 was obtained in sole C. odorata (10 Mg ha -1 ) compared with 2167 kg ha -1 for maize stover. Mixing of maize stover and C. odorata residues improved the nutrient content as well as nutrient release by the mixtures resulting in greater maize grain yields in the mixtures than the sole maize stover treatment. It is recommended that C. odorata be used as green manure, mulching or composting material to improve fertility. (au)

  19. [Arbuscular mycorrhizal symbiosis influences the biological effects of nano-ZnO on maize].

    Science.gov (United States)

    Wang, Wei-Zhong; Wang, Fa-Yuan; Li, Shuai; Liu, Xue-Qin

    2014-08-01

    Engineered nanoparticles (ENPs) can be taken up and accumulated in plants, then enter human bodies via food chain, and thus cause potential health risk. Arbuscular mycorrhizal fungi form mutualistic symbioses with the majority of higher plants in terrestrial ecosystems, and potentially influence the biological effects of ENPs. The present greenhouse pot culture experiment studied the effects of inoculation with or without arbuscular mycorrhizal fungus Acaulospora mellea on growth and nutritional status of maize under different nano-ZnO levels (0, 500, 1 000, 2000 and 3 000 mg x kg(-1)) artificially added into soil. Results showed that with the increasing nano-ZnO levels in soil, mycorrhizal colonization rate and biomass of maize plants showed a decreasing trend, total root length, total surface area and total volume reduced, while Zn concentration and uptake in plants gradually increased, and P, N, K, Fe, and Cu uptake in shoots all decreased. Compared with the controls, arbuscular mycorrhizal inoculation improved the growth and P, N and K nutrition of maize, enhanced total root length, total surface area and total volume, and increased Zn allocation to roots when nano-ZnO was added. Our results firstly show that nano-ZnO in soil induces toxicity to arbuscular mycorrhizae, while arbuscular mycorrhizal inoculation can alleviate its toxicity and play a protective role in plants.

  20. Residual effect of mixture of glyphosate and 2,4-D in winter maize in different soil textures

    Directory of Open Access Journals (Sweden)

    Schaianne A. Gomes

    Full Text Available ABSTRACT To increase the efficiency in the control of weeds, it is common the use of a mixture of the herbicides glyphosate and 2,4-D in the desiccation. This paper aimed to evaluate the residual effect of these two herbicides on the development of maize plants, in soils of different textures. The experiment was conducted in a greenhouse, in 2015, in a completely randomized design in a 2 x 2 x 7 factorial scheme, corresponding to two soils (Red Yellow Latosol and Quartzarenic Neosol, two herbicide application times (5 and 10 days before maize sowing and seven doses of herbicides (recommended dose of glyphosate, recommended dose of 2,4-D; mixing the recommended doses of glyphosate and 2,4-D; two, ten and fifty times the recommended doses in admixture; and one control, with 4 replicates. After emergence of maize plants, the following variables were evaluated: phytotoxicity, plant height, chlorophyll a and chlorophyll b, shoot fresh and dry matter and root dry matter. In general, there was lower residual effect on the Red Yellow Latosol at all the doses of the herbicides and in the interval of 10 days between the desiccation and sowing.

  1. Bioavailability of Zn in ZnO nanoparticle-spiked soil and the implications to maize plants

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xueqin [Southwest University, College of Resources and Environment (China); Wang, Fayuan, E-mail: wfy1975@163.com; Shi, Zhaoyong [Henan University of Science and Technology, Agricultural College (China); Tong, Ruijian [Luoyang Normal University, Life Science Department (China); Shi, Xiaojun, E-mail: shixj@swu.edu.cn [Southwest University, College of Resources and Environment (China)

    2015-04-15

    Little is known about the relationships between Zn bioavailability in ZnO nanoparticle (NP)-spiked soil and the implications to crops. The present pot culture experiment studied Zn bioavailability in soil spiked with different doses of ZnO NPs, using the diethylenetriaminepentaacetic acid (DTPA) extraction method, as well as the toxicity and Zn accumulation in maize plants. Results showed that ZnO NPs exerted dose-dependent effects on maize growth and nutrition, photosynthetic pigments, and root activity (dehydrogenase), ranging from stimulatory (100–200 mg/kg) through to neutral (400 mg/kg) and toxic effect (800–3200 mg/kg). Both Zn concentration in shoots and roots correlated positively (P < 0.01) with ZnO NPs dose and soil DTPA-extractable Zn concentration. The BCF of Zn in shoots and roots ranged from 1.02 to 3.83 when ZnO NPs were added. In most cases, the toxic effects on plants elicited by ZnO NPs were overall similar to those caused by bulk ZnO and soluble Zn (ZnSO{sub 4}) at the same doses, irrespective of some significant differences suggesting a higher toxicity of ZnO NPs. Oxidative stress in plants via superoxide free radical production was induced by ZnO NPs at 800 mg/kg and above, and was more severe than the same doses of bulk ZnO and ZnSO{sub 4}. Although significantly lower compared to bulk ZnO and ZnSO{sub 4}, at least 16 % of the Zn from ZnO NPs was converted into DTPA-extractable (bioavailable) forms. The dissolved Zn{sup 2+} from ZnO NPs may make a dominant contribution to their phytotoxicity. Although low amounts of ZnO NPs exhibited some beneficial effects, the accumulation of Zn from ZnO NPs into maize tissues could pose potential health risks for both plants and human.

  2. Advances in Maize Transformation Technologies and Development of Transgenic Maize.

    Science.gov (United States)

    Yadava, Pranjal; Abhishek, Alok; Singh, Reeva; Singh, Ishwar; Kaul, Tanushri; Pattanayak, Arunava; Agrawal, Pawan K

    2016-01-01

    Maize is the principal grain crop of the world. It is also the crop where genetic engineering has been employed to a great extent to improve its various traits. The ability to transform maize is a crucial step for application of gene technology in maize improvement. There have been constant improvements in the maize transformation technologies over past several years. The choice of genotype and the explant material to initiate transformation and the different types of media to be used in various stages of tissue culture can have significant impact on the outcomes of the transformation efforts. Various methods of gene transfer, like the particle bombardment, protoplast transformation, Agrobacterium -mediated, in planta transformation, etc., have been tried and improved over years. Similarly, various selection systems for retrieval of the transformants have been attempted. The commercial success of maize transformation and transgenic development is unmatched by any other crop so far. Maize transformation with newer gene editing technologies is opening up a fresh dimension in transformation protocols and work-flows. This review captures the various past and recent facets in improvement in maize transformation technologies and attempts to present a comprehensive updated picture of the current state of the art in this area.

  3. Phototropin 1 and dim-blue light modulate the red light de-etiolation response.

    Science.gov (United States)

    Wang, Yihai; M Folta, Kevin

    2014-01-01

    Light signals regulate seedling morphological changes during de-etiolation through the coordinated actions of multiple light-sensing pathways. Previously we have shown that red-light-induced hypocotyl growth inhibition can be reversed by addition of dim blue light through the action of phototropin 1 (phot1). Here we further examine the fluence-rate relationships of this blue light effect in short-term (hours) and long-term (days) hypocotyl growth assays. The red stem-growth inhibition and blue promotion is a low-fluence rate response, and blue light delays or attenuates both the red light and far-red light responses. These de-etiolation responses include blue light reversal of red or far-red induced apical hook opening. This response also requires phot1. Cryptochromes (cry1 and cry2) are activated by higher blue light fluence-rates and override phot1's influence on hypocotyl growth promotion. Exogenous application of auxin transport inhibitor naphthylphthalamic acid abolished the blue light stem growth promotion in both hypocotyl growth and hook opening. Results from the genetic tests of this blue light effect in auxin transporter mutants, as well as phytochrome kinase substrate mutants indicated that aux1 may play a role in blue light reversal of red light response. Together, the phot1-mediated adjustment of phytochrome-regulated photomorphogenic events is most robust in dim blue light conditions and is likely modulated by auxin transport through its transporters.

  4. Violence and school shootings.

    Science.gov (United States)

    Flannery, Daniel J; Modzeleski, William; Kretschmar, Jeff M

    2013-01-01

    Multiple-homicide school shootings are rare events, but when they happen they significantly impact individuals, the school and the community. We focus on multiple-homicide incidents and identified mental health issues of shooters. To date, studies of school shootings have concluded that no reliable profile of a shooter exists, so risk should be assessed using comprehensive threat assessment protocols. Existing studies primarily utilize retrospective case histories or media accounts. The field requires more empirical and systematic research on all types of school shootings including single victim incidents, those that result in injury but not death and those that are successfully averted. We discuss current policies and practices related to school shootings and the role of mental health professionals in assessing risk and supporting surviving victims.

  5. PEMBELAJARAN LAY UP SHOOT MENGGUNAKAN MEDIA AUDIO VISUAL BASIC LAY UP SHOOT UNTUK MENINGKATKAN HASILBELAJAR LAY UP SHOOT PADA SISWA KELAS VIIIA SMP KANISIUS PATI TAHUN 2013/2014

    Directory of Open Access Journals (Sweden)

    Frendy Nurochwan Febryanto

    2015-01-01

    Full Text Available The purpose of this study was to determine the learning lay up shoot using basic audiovisual media shoot lay ups can improve learning outcomes shoot lay ups in class VIIIA Starch Canisius junior year 2013/2014 . This study uses Classroom Action Research ( CAR. The technique of collecting data through observation and assessment of learning outcomes shoot basketball lay up. Data analysis techniques used in this research is descriptive . At the end of the first cycle activity of teachers in teaching basic techniques lay up shoot using audio-visual media reaches 76.19%, whereas at the end of the first cycle of student activity during the learning process lay up shoot using audio-visualmediareaches78.57%. At the end of the second cycle of activity of teachers in teaching basic techniques lay up shoot using audio-visual media reaches 85.71%, whereas at the end of the second cycle of activity of students during the learning process lay up shoot using audio-visual media reaches 92.86%. Based on the results of the study it can be concluded that learning the lay-up shoot using basic audiovisual media shoot lay ups can improve student learning outcomes at Canisius junior class VIIIA Pati year 2013/2014.

  6. Adolescent mass shootings: developmental considerations in light of the Sandy Hook shooting.

    Science.gov (United States)

    Rice, Timothy R; Hoffman, Leon

    2015-05-01

    Adolescent mass shootings are a special subset of mass killings, which continue despite significant preventative public health efforts. It is often held that these individuals have few salient warning signs that could have been identified. This piece proposes that mass shootings committed by adolescent and post-adolescent young males must be understood from a developmental perspective. The hypothesis proposed in this paper is that such killings occur as the result of the adolescent's frustrated effort to progress along normative development. The goal of normative separation from maternal figures by the boy is presented as a potential risk factor when this goal is thwarted. Childhood case material from the perpetrator of a recent adolescent mass shooting, the Sandy Hook shooting, is discussed as an illustration of this hypothesis. Implications for public health measures and for individualized treatment are presented and developed.

  7. Physiological, Ultrastructural and Proteomic Responses in the Leaf of Maize Seedlings to Polyethylene Glycol-Stimulated Severe Water Deficiency

    Directory of Open Access Journals (Sweden)

    Ruixin Shao

    2015-09-01

    Full Text Available After maize seedlings grown in full-strength Hoagland solution for 20 days were exposed to 20% polyethylene glycol (PEG-stimulated water deficiency for two days, plant height, shoot fresh and dry weights, and pigment contents significantly decreased, whereas malondialdehyde (MDA content greatly increased. Using transmission electron microscopy, we observed that chloroplasts of mesophyll cells in PEG-treated maize seedlings were swollen, with a disintegrating envelope and disrupted grana thylakoid lamellae. Using two-dimensional gel electrophoresis (2-DE method, we were able to identify 22 protein spots with significantly altered abundance in the leaves of treated seedlings in response to water deficiency, 16 of which were successfully identified. These protein species were functionally classified into signal transduction, stress defense, carbohydrate metabolism, protein metabolism, and unknown categories. The change in the abundance of the identified protein species may be closely related to the phenotypic and physiological changes due to PEG-stimulated water deficiency. Most of the identified protein species were putatively located in chloroplasts, indicating that chloroplasts may be prone to damage by PEG stimulated-water deficiency in maize seedlings. Our results help clarify the molecular mechanisms of the responses of higher plants to severe water deficiency.

  8. MaizeGDB: The Maize Genetics and Genomics Database.

    Science.gov (United States)

    Harper, Lisa; Gardiner, Jack; Andorf, Carson; Lawrence, Carolyn J

    2016-01-01

    MaizeGDB is the community database for biological information about the crop plant Zea mays. Genomic, genetic, sequence, gene product, functional characterization, literature reference, and person/organization contact information are among the datatypes stored at MaizeGDB. At the project's website ( http://www.maizegdb.org ) are custom interfaces enabling researchers to browse data and to seek out specific information matching explicit search criteria. In addition, pre-compiled reports are made available for particular types of data and bulletin boards are provided to facilitate communication and coordination among members of the community of maize geneticists.

  9. Effect of Blue Light on Endogenous Isopentenyladenine and Endoreduplication during Photomorphogenesis and De-Etiolation of Tomato (Solanum lycopersicum L.) Seedlings

    Science.gov (United States)

    Bergougnoux, Véronique; Zalabák, David; Jandová, Michaela; Novák, Ondřej; Wiese-Klinkenberg, Anika; Fellner, Martin

    2012-01-01

    Light is one of the most important factor influencing plant growth and development all through their life cycle. One of the well-known light-regulated processes is de-etiolation, i.e. the switch from skotomorphogenesis to photomorphogenesis. The hormones cytokinins (CKs) play an important role during the establishment of photomorphogenesis as exogenous CKs induced photomorphogenesis of dark-grown seedlings. Most of the studies are conducted on the plant model Arabidopsis, but no or few information are available for important crop species, such as tomato (Solanum lycopersicum L.). In our study, we analyzed for the first time the endogenous CKs content in tomato hypocotyls during skotomorphogenesis, photomorphogenesis and de-etiolation. For this purpose, two tomato genotypes were used: cv. Rutgers (wild-type; WT) and its corresponding mutant (7B-1) affected in its responses to blue light (BL). Using physiological and molecular approaches, we identified that the skotomorphogenesis is characterized by an endoreduplication-mediated cell expansion, which is inhibited upon BL exposure as seen by the accumulation of trancripts encoding CycD3, key regulators of the cell cycle. Our study showed for the first time that iP (isopentenyladenine) is the CK accumulated in the tomato hypocotyl upon BL exposure, suggesting its specific role in photomorphogenesis. This result was supported by physiological experiments and gene expression data. We propose a common model to explain the role and the relationship between CKs, namely iP, and endoreduplication during de-etiolation and photomorphogenesis. PMID:23049779

  10. Influence of arbuscular mycorrhizae on photosynthesis and water status of maize plants under salt stress.

    Science.gov (United States)

    Sheng, Min; Tang, Ming; Chen, Hui; Yang, Baowei; Zhang, Fengfeng; Huang, Yanhui

    2008-09-01

    The influence of arbuscular mycorrhizal (AM) fungus Glomus mosseae on characteristics of the growth, water status, chlorophyll concentration, gas exchange, and chlorophyll fluorescence of maize plants under salt stress was studied in the greenhouse. Maize plants were grown in sand and soil mixture with five NaCl levels (0, 0.5, 1.0, 1.5, and 2.0 g/kg dry substrate) for 55 days, following 15 days of non-saline pretreatment. Under salt stress, mycorrhizal maize plants had higher dry weight of shoot and root, higher relative chlorophyll content, better water status (decreased water saturation deficit, increased water use efficiency, and relative water content), higher gas exchange capacity (increased photosynthetic rate, stomatal conductance and transpiration rate, and decreased intercellular CO(2) concentration), higher non-photochemistry efficiency [increased non-photochemical quenching values (NPQ)], and higher photochemistry efficiency [increased the maximum quantum yield in the dark-adapted state (Fv/Fm), the maximum quantum yield in the light-adapted sate (Fv'/Fm'), the actual quantum yield in the light-adapted steady state (phiPSII) and the photochemical quenching values (qP)], compared with non-mycorrhizal maize plants. In addition, AM symbiosis could trigger the regulation of the energy biturcation between photochemical and non-photochemical events reflected in the deexcitation rate constants (kN, kN', kP, and kP'). All the results show that G. mosseae alleviates the deleterious effect of salt stress on plant growth, through improving plant water status, chlorophyll concentration, and photosynthetic capacity, while the influence of AM symbiosis on photosynthetic capacity of maize plants can be indirectly affected by soil salinity and mycorrhizae-mediated enhancement of water status, but not by the mycorrhizae-mediated enhancement of chlorophyll concentration and plant biomass.

  11. Silicon induced improvement in morpho-physiological traits of maize (zea mays l.) under water deficit

    International Nuclear Information System (INIS)

    Amin, M.; Ahmad, R.; Basra, S.M.A.; Murtaza, G.

    2014-01-01

    Current water scarcity is an emerging issue in semi-arid regions like Pakistan and cause of deterioration in productivity of crops to reduce crop yield all over the world. Silicon is known to be better against the deleterious effects of drought on plant growth and development. A pot study was conducted to evaluate the effect of Si nutrition (0, 50, 100 and 150 mg/kg) on the growth of a relatively drought tolerant (P-33H25) and sensitive (FH-810) maize hybrids. Two levels of soil water content were used viz. 100 and 60% of field capacity. Water deficit condition in soil significantly reduced morphological and physiological attributes of maize plants. Silicon application significantly improved the plant height, leaf area per plant, primary root length, dry matter of shoot and roots and plant dry matter, water relation and gas exchange characteristics of both maize cultivars under water deficit condition. Poor growth of drought stressed plants was significantly improved with Si application. The silicon fertilized (100 mg/kg) drought stressed plants of hybrid P-33H25 produced maximum (21.68% more) plant dry matter as compared to plants that were not provided with silicon nutrition. Nonetheless, silicon application (150 mg/kg) resulted in maximum increase (26.03%) in plant dry weight of hybrid FH-810 plants that were grown under limited moisture supply i.e., 60% FC. In conclusion silicon application to drought stressed maize plants was better to improve the growth and dry matter could be attributed to improved osmotic adjustment, photosynthetic rate and lowered transpiration. (author)

  12. Evaluation of the side effects of poly(epsilon-caprolactone nanocapsules containing atrazine towards maize plants

    Directory of Open Access Journals (Sweden)

    Halley Caixeta Oliveira

    2015-10-01

    Full Text Available Poly(epsilon-caprolactone (PCL nanocapsules have been used as a carrier system for the herbicide atrazine, which is commonly applied to maize. We demonstrated previously that these atrazine containing polymeric nanocapsules were ten-fold more effective in the control of mustard plants (a target species, as compared to a commercial atrazine formulation. Since atrazine can have adverse effects on non-target crops, here we analyzed the effect of encapsulated atrazine on growth, physiological and oxidative stress parameters of soil-grown maize plants (Zea mays L.. One day after the post-emergence treatment with PCL nanocapsules containing atrazine (1 mg mL-1, maize plants presented 15 and 21 % decreases in maximum quantum yield of photosystem II and in net CO2 assimilation rate, respectively, as compared to water-sprayed plants. The same treatment led to a 1.8-fold increase in leaf lipid peroxidation in comparison with control plants. However, all of these parameters were unaffected four and eight days after the application of encapsulated atrazine. These results suggested that the negative effects of atrazine were transient, probably due to the ability of maize plants to detoxify the herbicide. When encapsulated atrazine was applied at a ten-fold lower concentration (0.1 mg mL-1, a dosage that is still effective for weed control, no effects were detected even shortly after application. Regardless of the herbicide concentration, neither pre- nor post-emergence treatment with the PCL nanocapsules carrying atrazine resulted in the development of any macroscopic symptoms in maize leaves, and there were no impacts on shoot growth. Additionally, no effects were observed when plants were sprayed with PCL nanocapsules without atrazine. Overall, these results suggested that the use of PCL nanocapsules containing atrazine did not lead to persistent side effects in maize plants, and that the technique could offer a safe tool for weed control without affecting

  13. Maize kernel evolution:From teosinte to maize

    Science.gov (United States)

    Maize is the most productive and highest value commodity in the US and around the world: over 1 billion tons were produced each year in 2013 and 2014. Together, maize, rice and wheat comprise over 60% of the world’s caloric intake, with wide regional variability in the importance of each crop. The i...

  14. Harnessing maize biodiversity

    Science.gov (United States)

    Maize is a remarkably diverse species, adapted to a wide range of climatic conditions and farming practices. The latitudinal range of maize is immense, ranging from 54°N in Alberta, Canada, to 45°S in the province of Chubut, Argentina. In terms of altitude, maize is cultivated from sea level to 4000...

  15. Phylloplane bacteria of Jatropha curcas: diversity, metabolic characteristics, and growth-promoting attributes towards vigor of maize seedling.

    Science.gov (United States)

    Dubey, Garima; Kollah, Bharati; Ahirwar, Usha; Mandal, Asit; Thakur, Jyoti Kumar; Patra, Ashok Kumar; Mohanty, Santosh Ranjan

    2017-10-01

    The complex role of phylloplane microorganisms is less understood than that of rhizospheric microorganisms in lieu of their pivotal role in plant's sustainability. This experiment aims to study the diversity of the culturable phylloplane bacteria of Jatropha curcas and evaluate their growth-promoting activities towards maize seedling vigor. Heterotrophic bacteria were isolated from the phylloplane of J. curcas and their 16S rRNA genes were sequenced. Sequences of the 16S rRNA gene were very similar to those of species belonging to the classes Bacillales (50%), Gammaproteobacteria (21.8%), Betaproteobacteria (15.6%), and Alphaproteobacteria (12.5%). The phylloplane bacteria preferred to utilize alcohol rather than monosaccharides and polysaccharides as a carbon source. Isolates exhibited ACC (1-aminocyclopropane-1-carboxylic acid) deaminase, phosphatase, potassium solubilization, and indole acetic acid (IAA) production activities. The phosphate-solubilizing capacity (mg of PO 4 solubilized by 10 8 cells) varied from 0.04 to 0.21. The IAA production potential (μg IAA produced by 10 8 cells in 48 h) of the isolates varied from 0.41 to 9.29. Inoculation of the isolates to maize seed significantly increased shoot and root lengths of maize seedlings. A linear regression model of the plant-growth-promoting activities significantly correlated (p < 0.01) with the growth parameters. Similarly, a correspondence analysis categorized ACC deaminase and IAA production as the major factors contributing 41% and 13.8% variation, respectively, to the growth of maize seedlings.

  16. In-vitro morphogenesis of corn (Zea mays L.) : I. Differentiation of multiple shoot clumps and somatic embryos from shoot tips.

    Science.gov (United States)

    Zhong, H; Srinivasan, C; Sticklen, M B

    1992-07-01

    In-vitro methods have been developed to regenerate clumps of multiple shoots and somatic embryos at high frequency from shoot tips of aseptically-grown seedlings as well as from shoot apices of precociously-germinated immature zygotic embryos of corn (Zea mays L.). About 500 shoots were produced from a shoot tip after eight weeks of culture (primary culture and one subculture of four weeks) in darkness on Murashige and Skoog basal medium (MS) supplemented with 500 mg/L casein hydrolysate (CH) and 9 μM N(6)-benzyladenine (BA). In this medium, shoots formed in shoot tips as tightly packed "multiple shoot clumps" (MSC), which were composed of some axillary shoots and many adventitious shoots. When the shoot tips were cultured on MS medium containing 500 mg/L CH, 9 μM BA and 2.25 μM 2,4-dichlorophenoxyacetic acid (2,4-D), most of the shoots in the clumps were adventitious in origin. Similar shoot tips cultured on MS medium containing 500 mg/L CH, 4.5 μM BA and 2.25 μM 2,4-D regenerated many somatic embryos within eight weeks of culture. Somatic embryos were produced either directly from the shoot apical meristems or from calli derived from the shoots apices. Both the MSC and the embryos produced normal shoots on MS medium containing 2.25 μM BA and 1.8 μM indole-3-butyric acid (IBA). These shoots were rooted on MS medium containing 3.6 μM IBA, and fertile corn plants were grown in the greenhouse. The sweet-corn genotype, Honey N Pearl, was used for the experiments described above, but shoot-tip cultures from all of 19 other corn genotypes tested also formed MSC on MS medium containing 500 mg/L CH and 9 μM BA.

  17. Current perspectives on shoot branching regulation

    Directory of Open Access Journals (Sweden)

    Cunquan YUAN,Lin XI,Yaping KOU,Yu ZHAO,Liangjun ZHAO

    2015-03-01

    Full Text Available Shoot branching is regulated by the complex interactions among hormones, development, and environmental factors. Recent studies into the regulatory mecha-nisms of shoot branching have focused on strigolactones, which is a new area of investigation in shoot branching regulation. Elucidation of the function of the D53 gene has allowed exploration of detailed mechanisms of action of strigolactones in regulating shoot branching. In addition, the recent discovery that sucrose is key for axillary bud release has challenged the established auxin theory, in which auxin is the principal agent in the control of apical dominance. These developments increase our understan-ding of branching control and indicate that regulation of shoot branching involves a complex network. Here, we first summarize advances in the systematic regulatory network of plant shoot branching based on current information. Then we describe recent developments in the synthesis and signal transduction of strigolactones. Based on these considerations, we further summarize the plant shoot branching regulatory network, including long distance systemic signals and local gene activity mediated by strigolactones following perception of external envi-ronmental signals, such as shading, in order to provide a comprehensive overview of plant shoot branching.

  18. Measurements of water uptake of maize roots: the key function of lateral roots

    Science.gov (United States)

    Ahmed, M. A.; Zarebanadkouki, M.; Kroener, E.; Kaestner, A.; Carminati, A.

    2014-12-01

    Maize (Zea mays L.) is one of the most important crop worldwide. Despite its importance, there is limited information on the function of different root segments and root types of maize in extracting water from soils. Therefore, the aim of this study was to investigate locations of root water uptake in maize. We used neutron radiography to: 1) image the spatial distribution of maize roots in soil and 2) trace the transport of injected deuterated water (D2O) in soil and roots. Maizes were grown in aluminum containers (40×38×1 cm) filled with a sandy soil. When the plants were 16 days old, we injected D2O into selected soil regions containing primary, seminal and lateral roots. The experiments were performed during the day (transpiring plants) and night (not transpiring plants). The transport of D2O into roots was simulated using a new convection-diffusion numerical model of D2O transport into roots. By fitting the observed D2O transport we quantified the diffusional permeability and the water uptake of the different root segments. The maize root architecture consisted of a primary root, 4-5 seminal roots and many lateral roots connected to the primary and seminal roots. Laterals emerged from the proximal 15 cm of the primary and seminal roots. Water uptake occurred primarily in lateral roots. Lateral roots had the highest diffusional permeability (9.4×10-7), which was around six times higher that the diffusional permeability of the old seminal segments (1.4×10-7), and two times higher than the diffusional permeability of the young seminal segments (4.7×10-7). The radial flow of D2O into the lateral (6.7×10-5 ) was much higher than in the young seminal roots (1.1×10-12). The radial flow of D2O into the old seminal was negligible. We concluded that the function of the primary and seminal roots was to collect water from the lateral roots and transport it to the shoot. A maize root system with lateral roots branching from deep primary and seminal roots would be

  19. Effect of diazotrophic bacteria as phosphate solubilizing and indolic compound producers on maize plants

    Directory of Open Access Journals (Sweden)

    Mónica Del Pilar López Ortega

    2013-07-01

    Full Text Available Phosphorus is limiting for growth of maize plants, and because of that use of fertilizers like Rock Phosphate has been proposed. However, direct use of Rock Phosphate is not recommended because of its low availability, so it is necessary to improve it. In this study, a group of diazotrophic bacteria were evaluated as phosphate-solubilizing bacteria, for their production of indolic compounds and for their effects on growth of maize plants. Strains of the genera Azosporillum, Azotobacter, Rhizobium and Klebsiella, were quantitatively evaluated for solubilization of Ca3(PO42 and rock phosphate as a single source of phosphorous in SRS culture media. Additionally, the phosphatase enzyme activity was quantified at pH 5.0, 7.0 and 8.0 using p-nitrophenyl phosphate, and production of indolic compound was determined by colorimetric quantification. The effect of inoculation of bacteria on maize was determined in a completely randomized greenhouse experiment where root and shoot dry weights and phosphorus content were assessed. Results showed that strain C50 produced 107.2 mg .L-1 of available-P after 12 days of fermentation, and AC10 strain had the highest phosphatase activity at pH 8 with 12.7 mg of p-nitrophenol mL .h-1. All strains synthetized indolic compounds, and strain AV5 strain produced the most at 63.03 µg .mL-1. These diazotrophic bacteria increased plant biomass up to 39 % and accumulation of phosphorus by 10%. Hence, use of diazotrphic phosphate-solubilizing bacteria may represent an alternative technology for fertilization systems in maize plants.

  20. Maize growth in response to Azospirillum brasilense, Rhizobium tropici, molybdenum and nitrogen

    Directory of Open Access Journals (Sweden)

    Angelita A. C. Picazevicz

    Full Text Available ABSTRACT The objective of this research was to evaluate the effect of Azospirillum brasilense, Rhizobium tropici, nitrogen (N and molybdenum (Mo fertilization on maize growth. The experiment was carried out in a greenhouse from October to November 2015, in a completely randomized design, in 2 x 2 x 2 x 5 factorial scheme, with 5 replicates, corresponding to the absence and presence of Azospirillum brasilense, Rhizobium tropici, N (30 kg ha-1 and five Mo doses (0, 7.5, 15.0, 22.5 and 30.0 g ha-1. The analyzed variables were: plant height, basal stem diameter, dry biomass of shoots, roots, total and N accumulated in the shoots. There was double or triple interaction between N fertilization, Azospirillum brasilense and Rhizobium tropici for the evaluated variables. However, isolated and/or combined effect of Mo was not observed. Seed inoculation with Azospirillum brasilense as well as their co-inoculation with Rhizobium tropici in the absence of N fertilization was efficient to increase plant growth. Soil N fertilization at sowing was less efficient in promoting plant growth than when it was combined with seed inoculation with Rhizobium tropici.

  1. Root type matters: measurements of water uptake by seminal, crown and lateral roots of maize

    Science.gov (United States)

    Ahmed, Mutez Ali; Zarebanadkouki, Mohsen; Kaestner, Anders; Carminati, Andrea

    2016-04-01

    -old maize the function of lateral roots is to absorb water from the soil, while the function of the primary and seminal roots is to axially transport water to the shoot. For the five weeks-old maize, water was mainly taken up by the crown roots and their associated laterals. The ability of crown roots to uptake water from the distal segments can help maize to extract water from deep soil layers and better tolerate drought. Reference Ahmed MA, Zarebanadkouki M, Kaestner A, Carminati A (2015) Measurements of water uptake of maize roots: the key function of lateral roots. Plant and Soil 1-19. doi: 10.1007/s11104-015-2639-6

  2. Modulation of δ-Aminolevulinic Acid Dehydratase Activity by the Sorbitol-Induced Osmotic Stress in Maize Leaf Segments.

    Science.gov (United States)

    Jain, M; Tiwary, S; Gadre, R

    2018-01-01

    Osmotic stress induced with 1 M sorbitol inhibited δ-aminolevulinic acid dehydratase (ALAD) and aminolevulinic acid (ALA) synthesizing activities in etiolated maize leaf segments during greening; the ALAD activity was inhibited to a greater extent than the ALA synthesis. When the leaves were exposed to light, the ALAD activity increased for the first 8 h, followed by a decrease observed at 16 and 24 h in both sorbitol-treated and untreated leaf tissues. The maximum inhibition of the enzyme activity was observed in the leaf segments incubated with sorbitol for 4 to 8 h. Glutamate increased the ALAD activity in the in vitro enzymatic preparations obtained from the sorbitol-treated leaf segments; sorbitol inhibited the ALAD activity in the preparations from both sorbitol-treated and untreated leaves. It was suggested that sorbitol-induced osmotic stress inhibits the enzyme activity by affecting the ALAD induction during greening and regulating the ALAD steady-state level of ALAD in leaf cells. The protective effect of glutamate on ALAD in the preparations from the sorbitol-treated leaves might be due to its stimulatory effect on the enzyme.

  3. Effect of salicylic acid on the growth photosynthesis and carbohydrate metabolism in salt stressed maize plants

    International Nuclear Information System (INIS)

    Moussa, H.R.; Khodary, S.E.A.

    2003-01-01

    Aqueous solutions of salicylic acid as a spray to Na CI-treated corn (Zea mays L,) significantly increased the growth of shoots and roots as measured after seven days of treatment. Spraying of salicylic acid caused significant increases in the activity of both ribulose 1,5 bisphosphate carboxylase (rubisco) enzyme and photosynthetic pigments. Moreover, salicylic acid treatment induced high values of soluble carbohydrate fractions in salt stressed plants as compared with salicylic acid treated samples. These data suggest that salicylic acid might improve the growth pattern of NaCl-treated maize plants via increasing the rate of photosynthesis and carbohydrate metabolism

  4. Efficiency of Syrian and Indian rock phosphates for maize in two soils amended with sulphur

    International Nuclear Information System (INIS)

    Kanacri, S.

    1995-01-01

    A greenhouse pot experiment was conducted to evaluate the fertilizer use efficiency of three Syrian rock phosphates in comparison to Mussoorie rock phosphate from India for maize grown in a laterite (ultisol) and an alluvial (entisol) soil amended with sulphur, and using sup 3 sup 2 P-labelled triple superphosphate (TSP). Results showed that application of rock phosphates (RPs) to laterite soil significantly increased the dry matter yields of maize shoots, whereas, in alluvial soil, RPs were not found effective in increasing the yields. Data further indicated that all the three Syrian RPs were equally efficient in increasing dry matter yields in laterite soil and were superior to Mussoorie rock phosphate (MRP). Sulphur added in combination with RPs significantly enhanced the dry matter production as well as 'A' value of alluvial soil. Application of sulphur in conjunction with RPs significantly increased the 'A' value of laterite soil however, sulphur did not contribute to any significant increase in the yields. Syrian RPs were more reactive in soils than Mussoorie RP. (author). 7 refs., 6 tabs

  5. Efficiency of Syrian and Indian rock phosphates for maize in two soils amended with sulphur

    International Nuclear Information System (INIS)

    Kanacri, Saloi; Bhujbal, B.M.

    1993-01-01

    A greenhouse pot experiment was conducted to evaluate the fertilizer use efficiency of three Syrian rock phosphates in comparison to Mussoorie rock phosphate from India for maize grown in a laterite (ultisol) and an alluvial (entisol) soil amended with sulphur, and using 32 P-labelled triple superphosphate (TSP). Results showed that application of rock phosphates (RPs) to laterite soil significantly increased the dry matter yields of maize shoots, whereas, in alluvial soil, RPs were not found effective in increasing the yields. Data further indicated that all the three Syrian RPs were equally efficient in increasing dry matter yields in laterite soil and were superior to Mussoorie rock phosphate (MRP). Sulphur added in combination with RPs significantly enhanced the dry matter production as well as 'A'value of alluvial soil. Application of sulphur in conjunction with RPs significantly increased the 'A' value of laterite soil, however, sulphur did not contribute to any significant increase in the yields. Syrian RPs were more reactive in soils than Mussoorie RP. (author). 7 refs., 6 tabs

  6. Shooting mechanisms in nature

    NARCIS (Netherlands)

    Sakes, Aimée; Wiel, van der Marleen; Henselmans, Paul W.J.; Leeuwen, van Johan L.; Dodou, Dimitra; Breedveld, Paul

    2016-01-01

    Background In nature, shooting mechanisms are used for a variety of purposes, including prey capture, defense, and reproduction. This review offers insight into the working principles of shooting mechanisms in fungi, plants, and animals in the light of the specific functional demands that these

  7. Iron Retention in Root Hemicelluloses Causes Genotypic Variability in the Tolerance to Iron Deficiency-Induced Chlorosis in Maize

    Directory of Open Access Journals (Sweden)

    Rongli Shi

    2018-04-01

    Full Text Available Antagonistic interactions of phosphorus (P hamper iron (Fe acquisition by plants and can cause Fe deficiency-induced chlorosis. To determine the physiological processes underlying adverse Fe–P interactions, the maize lines B73 and Mo17, which differ in chlorosis susceptibility, were grown hydroponically at different Fe:P ratios. In the presence of P, Mo17 became more chlorotic than B73. The higher sensitivity of Mo17 to Fe deficiency was not related to Fe–P interactions in leaves but to lower Fe translocation to shoots, which coincided with a larger pool of Fe being fixed in the root apoplast of P-supplied Mo17 plants. Fractionating cell wall components from roots showed that most of the cell wall-contained P accumulated in pectin, whereas most of the Fe was bound to root hemicelluloses, revealing that co-precipitation of Fe and P in the apoplast was not responsible for Fe inactivation in roots. A negative correlation between chlorophyll index and hemicellulose-bound Fe in 85 inbred lines of the intermated maize B73 × Mo17 (IBM population indicated that apoplastic Fe retention contributes to genotypic differences in chlorosis susceptibility of maize grown under low Fe supplies. Our study indicates that Fe retention in the hemicellulose fraction of roots is an important determinant in the tolerance to Fe deficiency-induced chlorosis of graminaceous plant species with low phytosiderophore release, like maize.

  8. Maize response to inoculation with strains of plant growth-promoting bactéria

    Directory of Open Access Journals (Sweden)

    Janaína Dartora

    Full Text Available ABSTRACT The aim of this study was to evaluate the response of maize to inoculation with strains of plant growth-promoting bacteria (PGPB in two cultivation years. The experiment was set in a randomized block design with four replicates in two cultivation years (2012/13 and 2013/14. The treatments consisted of PGPB inoculation: control (without N and without inoculation; 30 kg of N ha-1 at sowing (N1; 160 kg of N ha-1 (N1 + 130 kg of N ha-1 as top-dressing; N1 + A. brasilense, Ab-V5; N1 + A. brasilense, HM053; N1 + Azospirillum sp. L26; N1 + Azospirillum sp. L27; N1 + Enhydrobacter sp. 4331; N1 + Rhizobium sp. 8121. Basal stem diameter, plant height, leaf area, shoot dry matter and yield were evaluated. The strain of Rhizobium sp. 8121and the isolate Azospirillum sp. L26 associated with 30 kg of N ha-1 at sowing promoted yields equivalent to that of the N fertilization of 160 kg ha-1, demonstrating the potential to be used in the inoculation of maize seeds.

  9. REPRESSOR OF ULTRAVIOLET-B PHOTOMORPHOGENESIS function allows efficient phototropin mediated ultraviolet-B phototropism in etiolated seedlings.

    Science.gov (United States)

    Vanhaelewyn, Lucas; Schumacher, Paolo; Poelman, Dirk; Fankhauser, Christian; Van Der Straeten, Dominique; Vandenbussche, Filip

    2016-11-01

    Ultraviolet B (UV-B) light is a part of the solar radiation which has significant effects on plant morphology, even at low doses. In Arabidopsis, many of these morphological changes have been attributed to a specific UV-B receptor, UV resistance locus 8 (UVR8). Recent findings showed that next to phototropin regulated phototropism, UVR8 mediated signaling is able of inducing directional bending towards UV-B light in etiolated seedlings of Arabidopsis, in a phototropin independent manner. In this study, kinetic analysis of phototropic bending was used to evaluate the relative contribution of each of these pathways in UV-B mediated phototropism. Diminishing UV-B light intensity favors the importance of phototropins. Molecular and genetic analyses suggest that UV-B is capable of inducing phototropin signaling relying on phototropin kinase activity and regulation of NPH3. Moreover, enhanced UVR8 responses in the UV-B hypersensitive rup1rup2 mutants interferes with the fast phototropin mediated phototropism. Together the data suggest that phototropins are the most important receptors for UV-B induced phototropism in etiolated seedlings, and a RUP mediated negative feedback pathway prevents UVR8 signaling to interfere with the phototropin dependent response. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  10. Mass shooting and mass media : does media coverage of mass shootings inspire copycat crimes?

    OpenAIRE

    Mesoudi, A.

    2013-01-01

    In December 2012, twenty elementary school children and six adult staff members were shot and killed by a single individual at a school in Connecticut. Although this horrific event was met with widespread shock, Americans are sadly all too familiar with such mass shootings. From Columbine in 1999, to Virginia Tech in 2007, to the Colorado cinema shootings earlier in 2012, mass shootings seem to occur with alarming regularity. And although they appear to afflict the United States more than mos...

  11. Improved recovery of cryotherapy-treated shoot tips following thermotherapy of in vitro-grown stock shoots of raspberry (Rubus idaeus L.).

    Science.gov (United States)

    Wang, Qiaochun; Valkonen, Jari P T

    2009-01-01

    Raspberry bushy dwarf virus (RBDV) can be efficiently eradicated from raspberry plants (Rubus idaeus) by a procedure combining thermotherapy and cryotherapy. However, the bottleneck of this procedure is that, following thermotherapy, cryopreserved shoot tips become chlorotic during regrowth and eventually die after several subcultures. In addition, survival of heat-treated stock shoots and recovery of cryopreserved shoot tips following thermotherapy are low. The present study focused towards improving regrowth of cryopreserved raspberry shoot tips following thermotherapy. Results showed that preconditioning stock shoots with salicylic acid (SA; 0.01-0.1 mM) markedly increased survival of stock shoots after 4 weeks of thermotherapy. Regrowth of cryopreserved shoot tips following thermotherapy was also significantly enhanced when SA (0.05-0.1 mM) was used for preconditioning stock shoots. Addition of either Fe-ethylenediaminetetracetic acid (Fe-EDTA, 50 mg per L) or Fe-ethylenediaminedi(o)hydroxyphenylacetic acid (Fe-EDDHA, 50 mg per L) to post-culture medium strongly promoted regrowth and totally prevented chlorosis of shoots regenerated from cryopreserved shoot tips following thermotherapy. Using the parameters optimized in the present study, about 80 percent survival of heat-treated stock shoots and about 33 percent regrowth of cryopreserved shoot tips following thermotherapy were obtained. Morphology of plants regenerated from cryopreserved shoot tips following thermotherapy was identical to that of control plants, based on observations of leaf shape and size, internode length and plant height. Optimization of the thermotherapy procedure followed by cryotherapy will facilitate the wider application of this technique to eliminate viruses which can invade meristems.

  12. Compatible bacterial mixture, tolerant to desiccation, improves maize plant growth.

    Science.gov (United States)

    Molina-Romero, Dalia; Baez, Antonino; Quintero-Hernández, Verónica; Castañeda-Lucio, Miguel; Fuentes-Ramírez, Luis Ernesto; Bustillos-Cristales, María Del Rocío; Rodríguez-Andrade, Osvaldo; Morales-García, Yolanda Elizabeth; Munive, Antonio; Muñoz-Rojas, Jesús

    2017-01-01

    Plant growth-promoting rhizobacteria (PGPR) increase plant growth and crop productivity. The inoculation of plants with a bacterial mixture (consortium) apparently provides greater benefits to plant growth than inoculation with a single bacterial strain. In the present work, a bacterial consortium was formulated containing four compatible and desiccation-tolerant strains with potential as PGPR. The formulation had one moderately (Pseudomonas putida KT2440) and three highly desiccation-tolerant (Sphingomonas sp. OF178, Azospirillum brasilense Sp7 and Acinetobacter sp. EMM02) strains. The four bacterial strains were able to adhere to seeds and colonize the rhizosphere of plants when applied in both mono-inoculation and multi-inoculation treatments, showing that they can also coexist without antagonistic effects in association with plants. The effects of the bacterial consortium on the growth of blue maize were evaluated. Seeds inoculated with either individual bacterial strains or the bacterial consortium were subjected to two experimental conditions before sowing: normal hydration or desiccation. In general, inoculation with the bacterial consortium increased the shoot and root dry weight, plant height and plant diameter compared to the non-inoculated control or mono-inoculation treatments. The bacterial consortium formulated in this work had greater benefits for blue maize plants even when the inoculated seeds underwent desiccation stress before germination, making this formulation attractive for future field applications.

  13. Compatible bacterial mixture, tolerant to desiccation, improves maize plant growth.

    Directory of Open Access Journals (Sweden)

    Dalia Molina-Romero

    Full Text Available Plant growth-promoting rhizobacteria (PGPR increase plant growth and crop productivity. The inoculation of plants with a bacterial mixture (consortium apparently provides greater benefits to plant growth than inoculation with a single bacterial strain. In the present work, a bacterial consortium was formulated containing four compatible and desiccation-tolerant strains with potential as PGPR. The formulation had one moderately (Pseudomonas putida KT2440 and three highly desiccation-tolerant (Sphingomonas sp. OF178, Azospirillum brasilense Sp7 and Acinetobacter sp. EMM02 strains. The four bacterial strains were able to adhere to seeds and colonize the rhizosphere of plants when applied in both mono-inoculation and multi-inoculation treatments, showing that they can also coexist without antagonistic effects in association with plants. The effects of the bacterial consortium on the growth of blue maize were evaluated. Seeds inoculated with either individual bacterial strains or the bacterial consortium were subjected to two experimental conditions before sowing: normal hydration or desiccation. In general, inoculation with the bacterial consortium increased the shoot and root dry weight, plant height and plant diameter compared to the non-inoculated control or mono-inoculation treatments. The bacterial consortium formulated in this work had greater benefits for blue maize plants even when the inoculated seeds underwent desiccation stress before germination, making this formulation attractive for future field applications.

  14. High Frequency Multiple Shoot Induction of Curculigo orchioides Gaertn.: Shoot Tip V/S Rhizome Disc

    Directory of Open Access Journals (Sweden)

    K. S. Nagesh

    2008-09-01

    Full Text Available Curculigo orchioides Gaertn. is an endangered medicinal plant with anticancer properties. The rhizome and tuberous roots of the plant have been used extensively in India in indigenous medicine. Due to its multiple uses, the demand for Curculigo orchioides is constantly on the rise; however, the supply is rather erratic and inadequate. Destructive harvesting, combined with habitat destruction in the form of deforestation has aggravated the problem. The plant is now considered ‘endangered’ in its natural habitat. Therefore, the need for conservation of this plant is crucial. Here, we describe a successful protocol for multiple shoot induction of C. orchioides using shoot tip and rhizome disc. We find that proximal rhizome discs are optimal for high frequency shoot bud formation than shoot tip and distal rhizome disc. We observed a synergistic effect between 6-benzylaminopurine (BAP and kinetin (KN (each at 1 mg/L on the regeneration of shoot buds from proximal rhizome disc than shoot tip explant. Optimum root induction was achieved on half-strength MS liquid medium supplemented with 1 mg/L of indole-3-butyric acid (IBA. The in vitro raised plantlets were acclimatized in green house and successfully transplanted to natural condition with 90% survival.

  15. Core Promoter Plasticity Between Maize Tissues and Genotypes Contrasts with Predominance of Sharp Transcription Initiation Sites.

    Science.gov (United States)

    Mejía-Guerra, María Katherine; Li, Wei; Galeano, Narmer F; Vidal, Mabel; Gray, John; Doseff, Andrea I; Grotewold, Erich

    2015-12-01

    Core promoters are crucial for gene regulation, providing blueprints for the assembly of transcriptional machinery at transcription start sites (TSSs). Empirically, TSSs define the coordinates of core promoters and other regulatory sequences. Thus, experimental TSS identification provides an essential step in the characterization of promoters and their features. Here, we describe the application of CAGE (cap analysis of gene expression) to identify genome-wide TSSs used in root and shoot tissues of two maize (Zea mays) inbred lines (B73 and Mo17). Our studies indicate that most TSS clusters are sharp in maize, similar to mice, but distinct from Arabidopsis thaliana, Drosophila melanogaster, or zebra fish, in which a majority of genes have broad-shaped TSS clusters. We established that ∼38% of maize promoters are characterized by a broader TATA-motif consensus, and this motif is significantly enriched in genes with sharp TSSs. A noteworthy plasticity in TSS usage between tissues and inbreds was uncovered, with ∼1500 genes showing significantly different dominant TSSs, sometimes affecting protein sequence by providing alternate translation initiation codons. We experimentally characterized instances in which this differential TSS utilization results in protein isoforms with additional domains or targeted to distinct subcellular compartments. These results provide important insights into TSS selection and gene expression in an agronomically important crop. © 2015 American Society of Plant Biologists. All rights reserved.

  16. Selection and Evaluation of Maize Genotypes Tolerance to Low Phosphorus Soils

    Energy Technology Data Exchange (ETDEWEB)

    Yang, J. C.; Jiang, H. M.; Zhang, J. F.; Li, L. L.; Li, G. H. [Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing (China)

    2013-11-15

    Maize species differ in their ability to take up phosphorus (P) from the soil, and these differences are attributed to the morphology and physiology of plants relative to their germplasm base. An effective method of increasing P efficiency in maize is to select and evaluate genotypes that can produce a high yield under P deficient conditions. In this study, 116 maize inbred lines with various genetic backgrounds collected from several Agricultural Universities and Institutes in China were evaluated in a field experiment to identify genotypic differences in P efficiency in 2007. Overall, 15 maize inbred lines were selected from the 116 inbred lines during the 5-year field experimental period based on their 100-grain weight in P-deficient soil at maturity, when compared to the characteristics exhibited in P-sufficient soil. All of the selected lines were evaluated in field experiments from 2008 to 2010 for their tolerance to low-P at the seedling and maturity stages. Inhibition (%) was used and defined as the parameter measured under P limitation compared to the parameters measured under P sufficiency to evaluate the genotypic variation in tolerance. Inhibition of root length, root surface area, volume, root: shoot ratio and P uptake efficiency could be used as indices to assess the genotypic tolerance to P limitation. Low-P tolerant genotypes could uptake more P and accumulate more dry matter at the seedling stage. A strong relationship between the total biomass and root length was exhibited. In order to understand the mechanisms of the genotypic tolerance to low-P soil to utilize P from the sparing soluble P forms, 5 maize genotypes selected out of the 15 maize inbred lines, according to the four quadrant distribution, was used as the criteria in a {sup 32}P isotope tracer experiment to follow the recovery of {sup 32}P in soil P fractions. The {sup 32}P tracer results showed a higher rate for water- soluble P transformation to slowly available P in P deficient soil

  17. Assessment of maize stem borer damage on hybrid maize varieties in Chitwan, Nepal

    OpenAIRE

    Buddhi Bahadur Achhami; Santa Bahadur BK; Ghana Shyam Bhandari

    2015-01-01

    Maize is the second most important cereal crop in Nepal. However, national figure of grain production still remains below than the world's average grain production per unit area. Thus, this experiment was designed to determine the suitable time of maize planting, and to assess the peak period of one of the major insects, maize stem borer, in Chitwan condition. The results showed that plant damage percentage as per the maize planting month varies significantly, and the average plant damage per...

  18. Risk Adjusted Production Efficiency of Maize Farmers in Ethiopia: Implication for Improved Maize Varieties Adoption

    Directory of Open Access Journals (Sweden)

    Sisay Diriba Lemessa

    2017-09-01

    Full Text Available This study analyzes the technical efficiency and production risk of 862 maize farmers in major maize producing regions of Ethiopia. It employs the stochastic frontier approach (SFA to estimate the level of technical efficiencies of stallholder farmers. The stochastic frontier approach (SFA uses flexible risk properties to account for production risk. Thus, maize production variability is assessed from two perspectives, the production risk and the technical efficiency. The study also attempts to determine the socio-economic and farm characteristics that influence technical efficiency of maize production in the study area. The findings of the study showed the existence of both production risk and technical inefficiency in maize production process. Input variables (amounts per hectare such as fertilizer and labor positively influence maize output. The findings also show that farms in the study area exhibit decreasing returns to scale. Fertilizer and ox plough days reduce output risk while labor and improved seed increase output risk. The mean technical efficiency for maize farms is 48 percent. This study concludes that production risk and technical inefficiency prevents the maize farmers from realizing their frontier output. The best factors that improve the efficiency of the maize farmers in the study area include: frequency of extension contact, access to credit and use of intercropping. It was also realized that altitude and terracing in maize farms had influence on farmer efficiency.

  19. Water Deficit and Abscisic Acid Cause Differential Inhibition of Shoot versus Root Growth in Soybean Seedlings : Analysis of Growth, Sugar Accumulation, and Gene Expression.

    Science.gov (United States)

    Creelman, R A; Mason, H S; Bensen, R J; Boyer, J S; Mullet, J E

    1990-01-01

    Roots often continue to elongate while shoot growth is inhibited in plants subjected to low-water potentials. The cause of this differential response to water deficit was investigated. We examined hypocotyl and root growth, polysome status and mRNA populations, and abscisic acid (ABA) content in etiolated soybean (Glycine max [L.] Merr. cv Williams) seedlings whose growth was inhibited by transfer to low-water potential vermiculite or exogenous ABA. Both treatments affected growth and dry weight in a similar fashion. Maximum inhibition of hypocotyl growth occurred when internal ABA levels (modulated by ABA application) reached the endogenous level found in the elongating zone of seedlings grown in water-deficient vermiculite. Conversely, root growth was affected to only a slight extent in low-water potential seedlings and by most ABA treatments (in some, growth was promoted). In every seedling section examined, transfer of seedlings into low-water potential vermiculite caused ABA levels to increase approximately 5- to 10-fold over that found in well-watered seedlings. Changes in soluble sugar content, polysome status, and polysome mRNA translation products seen in low-water potential seedlings did not occur with ABA treatments sufficient to cause significant inhibition of hypocotyl elongation. These data suggest that both variation in endogenous ABA levels, and differing sensitivity to ABA in hypocotyls and roots can modulate root/shoot growth ratios. However, exogenous ABA did not induce changes in sugar accumulation, polysome status, and mRNA populations seen after transfer into low-water potential vermiculite.

  20. The Binomial Distribution in Shooting

    Science.gov (United States)

    Chalikias, Miltiadis S.

    2009-01-01

    The binomial distribution is used to predict the winner of the 49th International Shooting Sport Federation World Championship in double trap shooting held in 2006 in Zagreb, Croatia. The outcome of the competition was definitely unexpected.

  1. Jasmonate inhibits COP1 activity to suppress hypocotyl elongation and promote cotyledon opening in etiolated Arabidopsis seedlings.

    Science.gov (United States)

    Zheng, Yuyu; Cui, Xuefei; Su, Liang; Fang, Shuang; Chu, Jinfang; Gong, Qingqiu; Yang, Jianping; Zhu, Ziqiang

    2017-06-01

    A germinating seedling undergoes skotomorphogenesis to emerge from the soil and reach for light. During this phase, the cotyledons are closed, and the hypocotyl elongates. Upon exposure to light, the seedling rapidly switches to photomorphogenesis by opening its cotyledons and suppressing hypocotyl elongation. The E3 ubiquitin ligase CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1) is critical for maintaining skotomorphogenesis. Here, we report that jasmonate (JA) suppresses hypocotyl elongation and stimulates cotyledon opening in etiolated seedlings, partially phenocopying cop1 mutants in the dark. We also find that JA stabilizes several COP1-targeted transcription factors in a COP1-dependent manner. RNA-seq analysis further defines a JA-light co-modulated and cop1-dependent transcriptome, which is enriched for auxin-responsive genes and genes participating in cell wall modification. JA suppresses COP1 activity through at least two distinct mechanisms: decreasing COP1 protein accumulation in the nucleus; and reducing the physical interaction between COP1 and its activator, SUPPRESSOR OF PHYTOCHROME A-105 1 (SPA1). Our work reveals that JA suppresses COP1 activity to stabilize COP1 targets, thereby inhibiting hypocotyl elongation and stimulating cotyledon unfolding in etiolated Arabidopsis seedlings. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  2. Screening of promising maize genotypes against maize weevil (Sitophilus zeamais Motschulky) in storage condition

    OpenAIRE

    Ram B Paneru; Resham B Thapa

    2017-01-01

    The maize weevil (Sitophilus zeamais Motschulsky) is a serious pest of economic importance in stored grains. It causes major damage to stored maize grain thereby reducing its weight, quality and germination. An experiment was conducted in randomized complete block design (RCBD) with 3 replications to screen 32 maize genotypes against maize weevil in no-choice and free-choice conditions at Entomology Division, Khumaltar, Lalitpur (Room temperature: Maximum 24-32°C and Minimum 18-27°C). The fin...

  3. Or mutation leads to photo-oxidative stress responses in cauliflower (Brassica oleracea) seedlings during de-etiolation.

    Science.gov (United States)

    Men, Xiao; Dong, Kang

    2013-11-01

    The Orange (Or) gene is a gene mutation that can increase carotenoid content in plant tissues normally devoid of pigments. It affects plastid division and is involved in the differentiation of proplastids or non-colored plastids into chromoplasts. In this study, the de-etiolation process of the wild type (WT) cauliflower (Brassica oleracea L. var. botrytis) and Or mutant seedlings was investigated. We analyzed pigment content, plastid development, transcript abundance and protein levels of genes involved in the de-etiolation process. The results showed that Or can increase the carotenoid content in green tissues, although not as effectively as in non-green tissues, and this effect might be caused by the changes in biosynthetic pathway genes at both transcriptional and post-transcriptional levels. There was no significant difference in the plastid development process between the two lines. However, the increased content of antheraxanthin and anthocyanin, and higher expression levels of violaxanthin de-epoxidase gene (VDE) suggested a stress situation leading to photoinhibition and enhanced photoprotection in the Or mutant. The up-regulated expression levels of the reactive oxygen species (ROS)-induced genes, ZAT10 for salt tolerance zinc finger protein and ASCORBATE PEROXIDASE2 (APX2), suggested the existence of photo-oxidative stress in the Or mutant. In summary, abovementioned findings provide additional insight into the functions of the Or gene in different tissues and at different developmental stages.

  4. Exploring karyotype diversity of Argentinian Guaraní maize landraces: Relationship among South American maize.

    Directory of Open Access Journals (Sweden)

    María Florencia Realini

    Full Text Available In Argentina there are two different centers of maize diversity, the Northeastern (NEA and the Northwestern (NWA regions of the country. In NEA, morphological studies identified 15 landraces cultivated by the Guaraní communities in Misiones Province. In the present study we analyzed the karyotype diversity of 20 populations of Guaraní maize landraces through classical and molecular cytogenetic analyses. Our results demonstrate significant intra and inter-populational variation in the percentage, number, size, chromosome position and frequencies of the heterochromatic blocks, which are called knobs. Knob sequence analysis (180-bp and TR-1 did not show significant differences among Guaraní populations. B chromosomes were not detected, and abnormal 10 (AB10 chromosomes were found with low frequency (0.1≥f ≤0.40 in six populations. Our results allowed karyotypic characterization of each analyzed population, defining for the first time the chromosomal constitution of maize germplasm from NEA. The multivariate analysis (PCoA and UPGMA of karyotype parameters allowed the distinction between two populations groups: the Popcorn and the Floury maize populations. These results are in agreement with previously published microsatellite and morphological/phenological studies. Finally, we compared our karyotype results with those previously reported for NWA and Central Region of South America maize. Our data suggest that there are important differences between maize from NEA and NWA at the karyotype level, supporting the hypothesis that there are two pathways of input of South America maize. Our results also confirm the existence of two centers of diversification of Argentinian native maize, NWA and NEA. This work contributes new knowledge about maize diversity, which is relevant for future plans to improve commercial maize, and for conservation of agrobiodiversity.

  5. Photosynthetic capacity, nutrient status and growth of maize (Zea mays L. upon MgSO4 leaf-application

    Directory of Open Access Journals (Sweden)

    Mareike eJezek

    2015-01-01

    Full Text Available The major plant nutrient magnesium is involved in numerous physiological processes and its deficiency can severely reduce the yield and quality of crops. Since Mg availability in soil and uptake into the plant is often limited by unfavorable soil or climatic conditions, application of Mg onto leaves, the site with highest physiological Mg demand, might be a reasonable alternative fertilization strategy. This study aimed to investigate, if MgSO4 leaf-application in practically relevant amounts can efficiently alleviate the effects of Mg starvation in maize, namely reduced photosynthesis capacity, disturbed ion homeostasis and growth depression. Results clearly demonstrated that Mg deficiency could be mitigated by MgSO4 leaf-application as efficiently as by resupply of MgSO4 via the roots in vegetative maize plants. Significant increases in SPAD values and net rate of CO2-assimilation as well as enhanced shoot biomass have been achieved. Ion analysis furthermore revealed an improvement of the nutrient status of Mg-deficient plants with regard to [Mg], [K] and [Mn] in distinct organs, thereby reducing the risk of Mn-toxicity at the rootside, which often occurs together with Mg deficiency on acid soils. In conclusion, foliar fertilization with Mg proved to be an efficient strategy to adequately supply maize plants with magnesium and might hence be of practical relevance to correct nutrient deficiencies during the growing season.

  6. Occurrence of toxigenic fungi in maize and maize-gluten meal from Pakistan

    Directory of Open Access Journals (Sweden)

    Muhammad Kashif SALEEMI

    2012-05-01

    Full Text Available The present study was designed to isolate and identify toxigenic mycoflora of maize and maize-gluten meal. A total of 82 samples of maize and 8 samples of maize-gluten meal were collected from Faisalabad district of Pakistan over a period of two years. These samples were inoculated on different culture media. Fungal contamination of maize and maize-gluten was 56% and 75% of samples, respectively. Isolation frequencies of different genera isolated from maize were Aspergillus 33%; Penicillium 28%; Fusarium 10%; and Alternaria 1%. Isolation frequency among species was maximum for P. verrucosum, followed by A. niger aggregates, A. ochraceous, A. flavus, P. chrysogenum, A. parasiticus, A. carbonarius, Fusarium spp. and Alternaria spp. Relative density of Aspergillus isolates was maximum for A. niger aggregates and A. ochraceous (30% each followed by A. flavus (26%, A. parasiticus (11% and A. carbonarius (3%. Percentage of toxigenic fungi among Aspergillus isolates was 52%. Aflatoxigenic isolates of A. flavus and A. parasiticus were 43 and 67% and ochratoxigenic isolates of A. carbonarius, A. ochraceous and A. niger aggregates were 100, 63 and 38%, respectively. Aspergillus parasiticus produced higher concentrations of AFB1 (maximum 1374.23 ng g-1 than A. flavus (maximum 635.50 ng g-1. Ochratoxin A production potential of A. ochraceous ranged from 1.81 to 9523.1 ng g-1, while in A. niger aggregates it was 1.30 to 1758.6 ng g-1. Isolation frequencies of fungal genera from maize-gluten meal were Aspergillus (63% and Penicillium (50%. A. flavus was the most frequently isolated species. Percentage of toxigenic fungi among Aspergillus isolates was 40%. Aflatoxigenic isolates of A. flavus were 33% and ochratoxigenic isolates of A. ochraceous were 100%.

  7. Transcriptome analysis of Carica papaya embryogenic callus upon De-etiolated 1 (DET1 gene suppression

    Directory of Open Access Journals (Sweden)

    Diyana Jamaluddin

    2017-06-01

    Full Text Available Papaya is considered to be one of the most nutritional fruits. It is rich in vitamins, carotenoids, flavonoids and other phytonutrient which function as antioxidant in our body [1]. Previous studies revealed that the suppression of a negative regulator gene in photomorphogenesis, De-etiolated 1 (DET1 can improve the phytonutrient in tomato and canola without affecting the fruit quality [2,3]. This report contains the experimental data on high-throughput 3′ mRNA sequencing of transformed papaya callus upon DET1 gene suppression.

  8. Global maize production, utilization, and consumption.

    Science.gov (United States)

    Ranum, Peter; Peña-Rosas, Juan Pablo; Garcia-Casal, Maria Nieves

    2014-04-01

    Maize (Zea mays), also called corn, is believed to have originated in central Mexico 7000 years ago from a wild grass, and Native Americans transformed maize into a better source of food. Maize contains approximately 72% starch, 10% protein, and 4% fat, supplying an energy density of 365 Kcal/100 g and is grown throughout the world, with the United States, China, and Brazil being the top three maize-producing countries in the world, producing approximately 563 of the 717 million metric tons/year. Maize can be processed into a variety of food and industrial products, including starch, sweeteners, oil, beverages, glue, industrial alcohol, and fuel ethanol. In the last 10 years, the use of maize for fuel production significantly increased, accounting for approximately 40% of the maize production in the United States. As the ethanol industry absorbs a larger share of the maize crop, higher prices for maize will intensify demand competition and could affect maize prices for animal and human consumption. Low production costs, along with the high consumption of maize flour and cornmeal, especially where micronutrient deficiencies are common public health problems, make this food staple an ideal food vehicle for fortification. © 2014 New York Academy of Sciences. The World Health Organization retains copyright and all other rights in the manuscript of this article as submitted for publication.

  9. Breeding of speciality maize for industrial purposes

    OpenAIRE

    Pajić Zorica; Radosavljević Milica; Filipović Milomir; Todorović Goran; Srdić Jelena; Pavlov Milovan

    2010-01-01

    The breeding programme on speciality maize with specific traits was established at the Maize Research Institute, Zemun Polje, several decades ago. The initial material was collected, new methods applying to breeding of speciality maize, i.e. popping maize, sweet maize and white-seeded maize, were introduced. The aim was to enhance and improve variability of the initial material for breeding these three types of maize. Then, inbred lines of good combining abilities were developed and used as c...

  10. Aflatoxin levels in maize and maize products during the 2004 food ...

    African Journals Online (AJOL)

    Aflatoxin levels in maize and maize products during the 2004 food poisoning ... district were received at the National Public Health Laboratory Services (NPHLS). On analysis, they were found to be highly contaminated with aflatoxin B1.

  11. Date of shoot collection, genotype, and original shoot position affect early rooting of dormant hardwood cuttings of Populus

    Science.gov (United States)

    R. S., Jr. Zalesny; A.H. Wiese

    2006-01-01

    Identifying superior combinations among date of dormant- season shoot collection, genotype, and original shoot position can increase the rooting potential of Populus cuttings. Thus, the objectives of our study were to: 1) evaluate variation among clones in early rooting from hardwood cuttings processed every three weeks from shoots collected...

  12. Changes in the state of carotenoid pigments during greening of etiolated barley seedlings

    International Nuclear Information System (INIS)

    Dilova, S.

    1974-01-01

    Changes in the metabolism of carotenoid pigments during greening of etiolated barley seedlings have been studied. The experiments were carried out with six-day-old etiolated plants, having a well-developed first leaf, grown on 1/2 Knop nutrient solution. The plants were illuminated with light, 10 000 lux intensity. Samples for analysis were taken at nil, 2, 4, 6, 8 and 12 hours. The extraction of the pigments was effected with the aid of the fractionation method according to Chernomorski and Sapozhnikov. The specific radioactivity of the individual carotenoid pigments was measured. To this end the plants were placed on a solution of sodium acetate ( 14 C) for 18 hours before illumination. The radiochemical purification of the pigments was carried out on an aluminium oxide column, after their chromatographic separation on paper. The results obtained from the experiments show that the illumination of the plants leads to a 2.4-fold increase in the total amount of carotenoids. The amount of the carotene increases approximately about 8 times over a 24-hour period and that of the xanthophylles - almost two times. A rhythm is observed in the formation of lutein and violaxanthin, which is discussed in connection with the participation of these pigments in the formation and the activity of the photosynthetic apparatus. The data on the changes in the state of the individual pigments indicate differences in accordance with their nature. The distinct manifestation of the heterogeneity of the carotene is observed in the case where the photosynthesis apparatus is fully formed. Obviously, the manifestation of the heterogeneity of that pigment is related to the formation of chloroplast and changes in the environment. Data on changes in the specific radioactivity of the easily-extractable fractions of the lutein and the violaxanthin show that the newly-synthesized molecules are more easily extractable. (author)

  13. Effect of coated urea and non-coated urea on grain yield, N uptake and N distribution in different parts of maize

    International Nuclear Information System (INIS)

    Ren Yi; Li Guihua; Zhao Linping; Zhang Shuxiang

    2011-01-01

    In order to regulate nitrogen metabolism with nitrogen application rate and to increase nitrogen use efficiency, an isotopic method was used to compare grain yield, biomass and nitrogen use efficiency of coated urea (CU) to those of non-coated urea (U) at the N application rates of 0, 100, 150 and 225 kg/hm 2 . Results showed that CU significantly increased maize N uptake from 15 N fertilizer and aboveground biomass. The nitrogen use efficiency ( 15 NUE) of CU was 13.3-21.4% greater than that of U. There was a significant different of fertilizer 15 N uptake between CU and U in maize parts. And N uptake of CU treatment followed the order of seed > leaves > straws > cob > husk, while N uptake of U treatment was in the order of seed > straws > leaves > cob > husk. The N uptake of maize parts by both CU and U followed the same order when non-isotopic method was applied. No significant variations were observed among treatments in N uptake, Nitrogen Harvest Index and grain yield. The reason maybe that low soil temperatures (< 10 ℃) from the fourth week of October to next April reduced N uptake of winter wheat, therefore, residual NO3-N in cultivated soil layer was high after harvest. Thus, maize N uptake was more dependent on the shoot growth potential than fertilizer amount and types under high amount of available nitrogen. (authors)

  14. Training visual control in wheelchair basketball shooting

    NARCIS (Netherlands)

    Oudejans, R.R.D.; Heubers, S.; Ruitenbeek, J-R.J.A.C.; Janssen, T.W.J.

    2012-01-01

    We examined the effects of visual control training on expert wheelchair basketball shooting, a skill more difficult than in regular basketball, as players shoot from a seated position to the same rim height. The training consisted of shooting with a visual constraint that forced participants to use

  15. Effect of silicon and nanosilicon on reduction of damage caused by salt stress in maize (Zea mays seedlings

    Directory of Open Access Journals (Sweden)

    Assieh Behdad

    2015-12-01

    Full Text Available Salinity reduced the efficiency of agricultural production like maize as one of the most important cereals for food and oil for humans. Silicon is the second most abundant element in the soil and alleviates the biotic and abiotic stresses in plants. The aim of this study is evaluate the effect of silicon and nanosilicon on improvement of salt stress in maize (Zea mays. For this propose, the interaction between the effects of different levels of salinity (0 and 100 mM, silicon and nanosilicon (50, 100 and 150 mg /mL was studied in completely randomized block design with factorial experiments and with three replications. The results showed that salinity significantly decreased root and shoot growth, amount of chlorophyll and carotenoid pigments, protein and potassium contents, compared to control. Treating plants with silicon and nanosilicon caused reduction of salinity effects and increase above indices. Salinity stress also caused a significant increase in proline, anthocyanin and soluble carbohydrate contents, lipid peroxidation, and catalase activity and treatment with silicon and nanosilicon alleviates effects of salt stress and reduced the amount of above indices. 150 mg/mL of nanosilicon showed the maximum effect on diminishing negative effects of salt stress on all examined parameters. So, the use of this element is proposed as alleviator of salt stress on maize.

  16. Screening of promising maize genotypes against maize weevil (Sitophilus zeamais Motschulky in storage condition

    Directory of Open Access Journals (Sweden)

    Ram B Paneru

    2017-12-01

    Full Text Available The maize weevil (Sitophilus zeamais Motschulsky is a serious pest of economic importance in stored grains. It causes major damage to stored maize grain thereby reducing its weight, quality and germination. An experiment was conducted in randomized complete block design (RCBD with 3 replications to screen 32 maize genotypes against maize weevil in no-choice and free-choice conditions at Entomology Division, Khumaltar, Lalitpur (Room temperature: Maximum 24-32°C and Minimum 18-27°C. The findings showed that the maize genotypes had different response to maize weevil damage ranging from susceptible to tolerance. The genotypes Manakamana-3, Lumle White POP Corn and Ganesh-2 showed their tolerance to S. zeamais as evidenced by lower number of weevil emerged/attracted, lower amount of grain debris release and lower proportion of bored grains, while the genotype ZM-627 was the most susceptible to weevil damage in both tests. The other remaining genotypes were intermediate types. This information is useful to improve grain protection in storage and varietal improvement/release program.

  17. Rampage shootings: an historical, empirical, and theoretical overview.

    Science.gov (United States)

    Rocque, Michael; Duwe, Grant

    2018-02-01

    Rampage shootings is a relatively new term to describe a phenomenon that has a long history. Rampage shootings are mass shootings (generally defined as involving four or more victims), taking place in a public location, with victims chosen randomly or for symbolic purposes. These shootings are isolated events, meaning they are not connected to another criminal act (such as robbery or terrorism). Research suggests that rampage shootings are not a new phenomenon, but have occurred throughout the US since the early 1900s. There is some evidence of an increase in recent years, but definitional differences across studies and data sources make interpreting trends somewhat tenuous. Theories regarding the perpetration of rampage shootings center on masculinity, mental illness, and contagion effects. Policies aimed at preventing rampage shootings remain somewhat controversial and not well-tested in the literature. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Modeling shoot-tip temperature in the greenhouse environment

    International Nuclear Information System (INIS)

    Faust, J.E.; Heins, R.D.

    1998-01-01

    An energy-balance model is described that predicts vinca (Catharanthus roseus L.) shoot-tip temperature using four environmental measurements: solar radiation and dry bulb, wet bulb, and glazing material temperature. The time and magnitude of the differences between shoot-tip and air temperature were determined in greenhouses maintained at air temperatures of 15, 20, 25, 30, or 35 °C. At night, shoot-tip temperature was always below air temperature. Shoot-tip temperature decreased from 0.5 to 5 °C below air temperature as greenhouse glass temperature decreased from 2 to 15 °C below air temperature. During the photoperiod under low vapor-pressure deficit (VPD) and low air temperature, shoot-tip temperature increased ≈4 °C as solar radiation increased from 0 to 600 W·m -2 . Under high VPD and high air temperature, shoot-tip temperature initially decreased 1 to 2 °C at sunrise, then increased later in the morning as solar radiation increased. The model predicted shoot-tip temperatures within ±1 °C of 81% of the observed 1-hour average shoot-tip temperatures. The model was used to simulate shoot-tip temperatures under different VPD, solar radiation, and air temperatures. Since the rate of leaf and flower development are influenced by the temperature of the meristematic tissues, a model of shoot-tip temperature will be a valuable tool to predict plant development in greenhouses and to control the greenhouse environment based on a plant temperature setpoint. (author)

  19. Influence of 24-epibrassinolide on seedling growth and distribution of mineral elements in two maize hybrids

    Directory of Open Access Journals (Sweden)

    Waisi Hadi K.

    2017-01-01

    Full Text Available In this study, influence of wide range of 24-epibrassinolide (24-EBL on early growth potential of two maize hybrids (ZP 434 and ZP 704 was examined. Paper concerns germination, seedling biomass, important chlorophylls content, and redistribution of elements (heavy metals and microelements, in a seedlings of the maize hybrids, as influenced by different 24-EBL concentrations. It was found that hybrids react differently to exogenously applied hormone. The biggest differences between two examined maize hybrids considering the germination level were reached with the lowest values at 86% for ZP 704 and 72% for ZP 434, gained at the highest applied concentration of 24-EBL. Seedlings of hybrid ZP 434 reacted positively moderately in the case of shoot length and biomass under the influence of 24-EBL, but seedlings of hybrid ZP 704 had lower values of these parameters under the influence of the phytohormone. Chlorophyll a/b ratios showed that photosynthetic apparatus of seedlings of the hybrids is not active in this stage of development. It was established that 24-EBL affects seedling growth and re-allocation of naturally present mineral elements in early growth stages and that could be one of the reason for poorer growth of ZP 704 treated with various concentrations of 24-EBL, comparing to control. When applied in lower concentrations, 24-EBL is blocking toxic elements such as chromium and nickel to relocate to vital parts of plant, what was case in hybrid ZP704. In case of ZP 434, lower concentrations of 24-EBL are affecting re-allocation of Cu and Cr and these findings suggest that maize hybrid seedlings treated with lower concentrations of 24-EBL could survive and be successful in polluted areas. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. TR31080

  20. Shoot regeneration of limau purut (citrus hystrix) using shoot tip: assessment of calcium gluconate and silver nitrate in overcoming premature leaf senescence

    International Nuclear Information System (INIS)

    Eng, W.H.; Aziz, M.A.; Sinniah, U.R.

    2014-01-01

    This study was carried out to establish an optimum In vitro shoot multiplication system using shoot tip explants derived from 7 week-old seedlings of Citrus hystrix. In the first experiment, shoot tips were cultured on Murashige and Skoog (MS) medium supplemented with 0-13.33 mu M 6-benzylaminopurine (BAP) for 8 weeks. Shoot tips cultured on 2.22 mu M BAP produced the highest mean number of shoots (3.42 shoots) but the shoots had low number of leaves (1.14 leaves) due to the occurrence of premature leaf senescence and callus formation. Meanwhile, the medium devoid of BAP produced the lowest mean number of shoots (1.50 shoots) but highest mean number of leaves (5.41 leaves) indicating that BAP was likely responsible for the premature leaf senescence. In order to overcome the occurrence of premature leaf senescence on medium with BAP, a second experiment was carried out whereby shoot tips were cultured on medium containing 2.22 micro M BAP fortified with 2.00, 4.00 and 6.00 mM calcium gluconate (Ca-glu) and a control treatment with 2.22 mu M BAP. The shoot and leaf numbers were increased with the addition of 4.00 and 6.00 mM Ca-glu. The presence of Ca-glu reduced premature leaf senescence and callus formation to some extent. In the third experiment, the addition of silver nitrate (AgNO/sub 3/) at 10-80 micro M in media with 2.22 micro M BAP and 2.22 micro M BAP + 4 mM Ca-glu could totally overcome premature leaf senescence and callus formation. Media supplemented with 2.22 mirco M BAP + 4 mM Ca-glu + 20 micro M AgNOsub 3/ significantly induced among the highest mean number of shoots and highest mean number of leaves per shoot. (author)

  1. Consumer preferences for maize products in urban Kenya.

    Science.gov (United States)

    De Groote, Hugo; Kimenju, Simon Chege

    2012-06-01

    New maize varieties have been biofortified with provitamin A, mainly a-carotene, which renders the grain yellow or orange. Unfortunately, many African consumers prefer white maize. The maize consumption patterns in Africa are, however, not known. To determine which maize products African consumers prefer to purchase and which maize preparations they prefer to eat. A survey of 600 consumers was conducted in Nairobi, Kenya, at three types of maize outlets: posho mills (small hammer mills), kiosks, and supermarkets. Clients of posho mills had lower incomes and less education than those of kiosks and supermarkets. The preferred maize product of the posho-mill clients was artisanal maize meal; the preferred product of the others was industrial maize meal. Maize is the preferred staple for lunch and dinner, eaten as a stiff porridge (ugali), followed by boiled maize and beans (githeri), regardless of socioeconomic background. For breakfast, only half the consumers prefer maize, mostly as a soft porridge (uji). This proportion is higher in low-income groups. Consumers show a strong preference for white maize over yellow, mostly for its organoleptic characteristics, and show less interest in biofortified maize. Maize is the major food staple in Nairobi, mostly eaten in a few distinct preparations. For biofortified yellow maize to be accepted, a strong public awareness campaign to inform consumers is needed, based on a sensory evaluation and the mass media, in particular on radio in the local language.

  2. Maize variety and method of production

    Science.gov (United States)

    Pauly, Markus; Hake, Sarah; Kraemer, Florian J

    2014-05-27

    The disclosure relates to a maize plant, seed, variety, and hybrid. More specifically, the disclosure relates to a maize plant containing a Cal-1 allele, whose expression results in increased cell wall-derived glucan content in the maize plant. The disclosure also relates to crossing inbreds, varieties, and hybrids containing the Cal-1 allele to produce novel types and varieties of maize plants.

  3. Training Visual Control in Wheelchair Basketball Shooting

    Science.gov (United States)

    Oudejans, Raoul R. D.; Heubers, Sjoerd; Ruitenbeek, Jean-Rene J. A. C.; Janssen, Thomas W. J.

    2012-01-01

    We examined the effects of visual control training on expert wheelchair basketball shooting, a skill more difficult than in regular basketball, as players shoot from a seated position to the same rim height. The training consisted of shooting with a visual constraint that forced participants to use target information as late as possible.…

  4. Growth and Cadmium Phytoextraction by Swiss Chard, Maize, Rice, Noccaea caerulescens, and Alyssum murale in Ph Adjusted Biosolids Amended Soils.

    Science.gov (United States)

    Broadhurst, C Leigh; Chaney, Rufus L; Davis, Allen P; Cox, Albert; Kumar, Kuldip; Reeves, Roger D; Green, Carrie E

    2015-01-01

    Past applications of biosolids to soils at some locations added higher Cd levels than presently permitted. Cadmium phytoextraction would alleviate current land use constraints. Unamended farm soil, and biosolids amended farm and mine soils were obtained from a Fulton Co., IL biosolids management facility. Soils contained 0.16, 22.8, 45.3 mg Cd kg(-1) and 43.1, 482, 812 mg Zn kg(-1) respectively with initial pH 6.0, 6.1, 6.4. In greenhouse studies, Swiss chard (Beta vulgaris var. cicla), a Cd-accumulator maize (inbred B37 Zea mays) and a southern France Cd-hyperaccumulator genotype of Noccaea caerulescens were tested for Cd accumulation and phytoextraction. Soil pH was adjusted from ∼5.5-7.0. Additionally 100 rice (Oryza sativa) genotypes and the Ni-hyperaccumulator Alyssum murale were screened for potential phytoextraction use. Chard suffered phytotoxicity at low pH and accumulated up to 90 mg Cd kg(-1) on the biosolids amended mine soil. The maize inbred accumulated up to 45 mg Cd kg(-1) with only mild phytotoxicity symptoms during early growth at pH>6.0. N. caerulescens did not exhibit phytotoxicity symptoms at any pH, and accumulated up to 235 mg Cd kg(-1) in 3 months. Reharvested N. caerulescens accumulated up to 900 mg Cd kg(-1) after 10 months. Neither Alyssum nor 90% of rice genotypes survived acceptably. Both N. caerulescens and B37 maize show promise for Cd phytoextraction in IL and require field evaluation; both plants could be utilized for nearly continuous Cd removal. Other maize inbreds may offer higher Cd phytoextraction at lower pH, and mono-cross hybrids higher shoot biomass yields. Further, maize grown only for biomass Cd maximum removal could be double-cropped.

  5. Radiosensitivity of in vitro Cultured Banana Shoot-Tips

    International Nuclear Information System (INIS)

    Elagamawy, M.R.

    2002-01-01

    Longitudinally dissected shoot apices of Grand Nain, Williams and Maghrabi banana cultivars were exposed to gamma irradiation with Cobalt 60 source at the doses of 0, 20, 40 and 60 Gy and immediately placed into proliferation medium. A number of micropropagation cycles after irradiation were necessary up to M1 V2 to M1 V4 stage to let mutated sectors developing into non-chimeric shoots. Radiosensitivity was evaluated by the rate of shoot proliferation and by the shoot fresh weight increase. Increasing gamma doses caused reduction in survival rates and average number of shoots. Grand Nain exhibited the highest multiplication- rate (3.1). The lower dose (20 Gy) enhanced shoot multiplication ratio specially in Williams and Maghrabi, which however decreased with increased doses. The doses of 20-40 Gy yielded Ld50, with sensible degree of shoot multiplication, which occurred hardly ever beyond 40 Gy. The dose of 60 Gy resulted 80% lethal shoot growth. Linear decrease in fresh weight was observed in post-irradiation recovery, notably in the Maghrabi. In contradictory vulnerable damage was observed in Williams which showed the highest fresh weight value. Shoot proliferation appeared generally on the surface of the corm. Root formation was observed without additional hormone. The roots were dark colored and was decreased with the increased of dosage

  6. Assessment of maize stem borer damage on hybrid maize varieties in Chitwan, Nepal

    Directory of Open Access Journals (Sweden)

    Buddhi Bahadur Achhami

    2015-12-01

    Full Text Available Maize is the second most important cereal crop in Nepal. However, national figure of grain production still remains below than the world's average grain production per unit area. Thus, this experiment was designed to determine the suitable time of maize planting, and to assess the peak period of one of the major insects, maize stem borer, in Chitwan condition. The results showed that plant damage percentage as per the maize planting month varies significantly, and the average plant damage percentage by stem borer was up to 18.11%. Length of the feeding tunnel in maize stem was significantly higher in January than July. In case of exit holes made by borer counted more than four holes per plant that were planted in the month of January. All in all, except the tunnel length measurement per plant, we observed similar pattern in other borer damage parameters such as exit whole counts and plant damage percentage within the tested varieties. Stem borer damage was not significantly affect on grain yield.

  7. A School Shooting Plot Foiled

    Science.gov (United States)

    Swezey, James A.; Thorp, Kimberly A.

    2010-01-01

    Dinkes, Cataldi, and Lin-Kelly (2007) claims that 78% of public schools reported one or more violent incidents during the 2005/2006 school year. School shootings are a rare but real threat on school campuses. Shootings at private schools are even less frequent with only a few recorded examples in the United States. This case study examines how a…

  8. Maize cob losses and their effects on the poverty status of maize

    African Journals Online (AJOL)

    This study analysed fresh maize cob losses and its effect on the poverty status of maize farmers in Edo State,. Nigeria. The specific .... is the poverty gap for ... Total cost. 162,367.48. 100.00. Returns. Total expected yield (N). 327,966.63. _.

  9. MaizeGDB: The Maize Model Organism Database for Basic, Translational, and Applied Research

    OpenAIRE

    Lawrence, Carolyn J.; Harper, Lisa C.; Schaeffer, Mary L.; Sen, Taner Z.; Seigfried, Trent E.; Campbell, Darwin A.

    2008-01-01

    In 2001 maize became the number one production crop in the world with the Food and Agriculture Organization of the United Nations reporting over 614 million tonnes produced. Its success is due to the high productivity per acre in tandem with a wide variety of commercial uses. Not only is maize an excellent source of food, feed, and fuel, but also its by-products are used in the production of various commercial products. Maize's unparalleled success in agriculture stems from basic research, th...

  10. Genetic resources in maize breeding

    Directory of Open Access Journals (Sweden)

    Anđelković Violeta

    2017-01-01

    Full Text Available Maize, wheat and rice are the most important cereals grown in the world. It is predicted that by 2025 maize is likely to become the crop with the greatest production globally. Conservation of maize germplasm provides the main resources for increased food and feed production. Conservation in gene banks (ex-situ is dominant strategy for maize conservation. More than 130 000 maize accessions, e.g. about 40% of total number, are stored in ten largest gene banks worldwide and Maize Research Institute Zemun Polje (MRIZP gene bank, with about 6000 accessions, is among them. Organized collecting missions started in 1961. in the former Yugoslavian territory, and up today, more than 2000 local maize landraces were stored. Pre-breeding activities that refer to identification of desirable traits from unadapted germplasm within genebank, result in materials expected to be included in breeding programs. Successful examples are LAMP, GEM and GENRES projects. At the end of XX century, at MRIZP genebank two pre-breeding activities were undertaken: eco-core and elite-core collections were created and landraces fulfilled particular criteria were chosen. In the last decade, MRIZP genebank collection was used for identification of sources for drought tolerance and improved grain quality. According to agronomic traits and general combining ability, two mini-core collections were created and included in commercial breeding programs.

  11. Maize lethal necrosis (MLN), an emerging threat to maize-based food security in sub-Saharan Africa

    Science.gov (United States)

    In sub-Saharan Africa, maize is a staple food and key determinant of food security for smallholder farming communities. Pest and disease outbreaks are key constraints to maize productivity. In September 2011, a serious disease outbreak, later diagnosed as maize lethal necrosis (MLN), was reported on...

  12. Putting the Function in Maize Genomics

    Directory of Open Access Journals (Sweden)

    Stephen P. Moose

    2009-07-01

    Full Text Available The 51st Maize Genetics Conference was held March 12–15, 2009 at Pheasant Run Resort in St. Charles, Illinois. Nearly 500 attendees participated in a scientific program (available at covering a wide range of topics which integrate the rich biology of maize with recent discoveries in our understanding of the highly dynamic maize genome. Among the many research themes highlighted at the conference, the historical emphasis on studying the tremendous phenotypic diversity of maize now serves as the foundation for maize as a leading experimental system to characterize the mechanisms that generate variation in complex plant genomes and associate evolutionary change with phenotypes of interest.

  13. Mass Shootings, Mental Illness, and Gun Control.

    Science.gov (United States)

    Philpott-Jones, Sean

    2018-03-01

    In the wake of the Stoneman Douglas School shooting, Republican and Democratic leaders-like the American electorate they represent-remain sharply divided in their responses to gun violence. They are united in their condemnation of these mass shootings, but they disagree about whether stricter or looser gun control laws are the answer. Those on the right side of the political aisle suggest that the issue is one of mental illness rather than gun control. Conversely, those who are more liberal or progressive in their political learnings are quick to condemn attempts to reframe the issue of mass shootings as a mental health problem. Both sides are wrong. Mass shootings are indeed partially a mental health problem, albeit one poorly addressed by our current laws and policies. But the solution to mass shootings also needs to consider strategies that may reduce gun violence in general. © 2018 The Hastings Center.

  14. SHOOT2.0: An indirect grid shooting package for optimal control problems, with switching handling and embedded continuation

    OpenAIRE

    Martinon , Pierre; Gergaud , Joseph

    2010-01-01

    The SHOOT2.0 package implements an indirect shooting method for optimal control problems. It is specifically designed to handle control discontinuities, with an automatic switching detection that requires no assumptions concerning the number of switchings. Special care is also devoted to the computation of the Jacobian matrix of the shooting function, using the variational system instead of classical finite differences. The package also features an embedded continuation method and an automati...

  15. Evaluation of the Aqua‎Crop Model to Simulate Maize Yiled Response under Salinity Stress

    Directory of Open Access Journals (Sweden)

    Aida Mehrazar

    2017-01-01

    Full Text Available Introduction: Limited water resources and its salinity uptrend has caused reducing water and soil quality and consequently reducing the crop production. Thus, use of saline water is the management strategies to decrease drought and water crisis. Furthermore, simulation models are valuable tools for improving on-farm water management and study about the effects of water quality and quantity on crop yield.. The AquaCrop model has recently been developed by the FAO which has the ability to check the production process under different propositions. The initial version of the model was introduced for simulation of crop yield and soil water movement in 2007, that the effect of salinity on crop yield was not considered. Version 4 of the model was released in 2012 in which also considered the effects of salinity on crop yield and simulation of solute Transmission in soil profile. Material and methods: In this project, evaluation of the AquaCrop model and its accuracy was studied in the simulating yield of maize under salt stress. This experiment was conducted in Karaj, on maize hybrid (Zea ma ys L in a sandy soil for investigation of salinity stress on maize yield in 2011-2012. This experiment was conducted in form of randomized complete block design in four replications and five levels of salinity treatments including 0, 4.53, 9.06, 13.59 and 18.13 dS/m at the two times sampling. To evaluate the effect of different levels of salinity on the yield of maize was used Version 4 AquaCrop model and SAS ver 9.1 software .The model calibration was performed by comparing the results of the field studies and the results of simulations in the model. In calculating the yield under different scenarios of salt stress by using AquaCrop, the model needs climate data, soil data, vegetation data and information related to farm management. The effects of salinity on yield and some agronomic and physiological traits of hybrid maize (Shoot length, root length, dry weight

  16. Effects of biochar, compost and biochar-compost on growth and nutrient status of maize in two Mediterranean soils

    Science.gov (United States)

    Manolikaki, Ioanna; Diamadopoulos, Evan

    2017-04-01

    During the past years, studies have shown that biochar alone or combined with compost, has the potential to improve soil fertility and maize yield mostly on tropical soils whereas experiments on Mediterranean soils are rare. Therefore, the influence of biochar, compost and mixtures of the two, on maize (Zea mays L.) growth and nutrient status were investigated, in this study. Biochars were produced from 2 feedstocks: grape pomace (GP) and rice husks (RH) pyrolyzed at 300°C. Maize was grown for 30 days in a greenhouse pot trial on two Mediterranean soils amended with biochar or/with compost at application rates of 0% and 2% (w/w) (equivalent to 0 and 16 t ha-1) and N fertilization. Total aboveground dry matter yield of maize was significantly improved relative to the control for all organic amendments, with increases in yield 43-60.8%, in sandy loam soil, while, in loam soil a statistically significant increase of 70.6-81.3% was recorded for all the amendments apart from compost. Some morphological traits, such as aboveground height of plants, shoot diameter and belowground dry matter yield were significantly increased by the organic treatments. Aboveground concentration of P was significantly increased from 1.46 mg g-1 at control to 1.69 mg g-1 at 2% GP biochar in sandy loam soil, whereas GP biochar combined with compost gave an increase of 2.03 mg g-1 compared to control 1.23 mg g-1. K and Mn concentrations of above ground tissues were significantly increased only in sandy loam soil, while Fe in both soils. N concentration of aboveground tissues declined for all the amendments in loam soil and in sandy loam soil apart from compost amendment. Significant positive impacts of amended soils on nutrients uptake were observed in both soils as compared to the control related to the improved dry matter yield of plant. The current study demonstrated that maize production could be greatly improved by biochar and compost because of the nutrients they supply and their

  17. School shootings: law enforcement and school district networking

    OpenAIRE

    Topadzhikyan, Tigran

    2013-01-01

    CHDS State/Local School shootings have happened in the past and will happen again. The history of school shootings prompts all stakeholders to look at ways to prevent them from happening, and if they do happen, to be resilient. Change is needed in the prevention of school shootings. The case studies of Virginia Tech, Sandy Hook, E. O. Green Junior High, and Beslan school shootings reveal that the lack of information sharing and lack of communication were flaws; and the incidents might have...

  18. Identification of resistance to Maize rayado fino virus in maize inbred lines

    Science.gov (United States)

    Maize rayado fino virus (MRFV) is one of the most important virus diseases of maize in America. Severe yield losses, ranging from 10 to 50% in landraces to nearly 100% in contemporary cultivars, have been reported. Resistance has been reported in populations, but few inbred lines have been identifie...

  19. Influence of sub-lethal crude oil concentration on growth, water relations and photosynthetic capacity of maize (Zea mays L.) plants.

    Science.gov (United States)

    Athar, Habib-Ur-Rehman; Ambreen, Sarah; Javed, Muhammad; Hina, Mehwish; Rasul, Sumaira; Zafar, Zafar Ullah; Manzoor, Hamid; Ogbaga, Chukwuma C; Afzal, Muhammad; Al-Qurainy, Fahad; Ashraf, Muhammad

    2016-09-01

    Maize tolerance potential to oil pollution was assessed by growing Zea mays in soil contaminated with varying levels of crude oil (0, 2.5 and 5.0 % v/w basis). Crude oil contamination reduced soil microflora which may be beneficial to plant growth. It was observed that oil pollution caused a remarkable decrease in biomass, leaf water potential, turgor potential, photosynthetic pigments, quantum yield of photosystem II (PSII) (Fv/Fm), net CO2 assimilation rate, leaf nitrogen and total free amino acids. Gas exchange characteristics suggested that reduction in photosynthetic rate was mainly due to metabolic limitations. Fast chlorophyll a kinetic analysis suggested that crude oil damaged PSII donor and acceptor sides and downregulated electron transport as well as PSI end electron acceptors thereby resulting in lower PSII efficiency in converting harvested light energy into biochemical energy. However, maize plants tried to acclimate to moderate level of oil pollution by increasing root diameter and root length relative to its shoot biomass, to uptake more water and mineral nutrients.

  20. UV-B inhibition of hypocotyl growth in etiolated Arabidopsis thaliana seedlings is a consequence of cell cycle arrest initiated by photodimer accumulation

    Science.gov (United States)

    Biever, Jessica J.; Brinkman, Doug; Gardner, Gary

    2014-01-01

    Ultraviolet (UV) radiation is an important constituent of sunlight that determines plant morphology and growth. It induces photomorphogenic responses but also causes damage to DNA. Arabidopsis mutants of the endonucleases that function in nucleotide excision repair, xpf-3 and uvr1-1, showed hypersensitivity to UV-B (280–320nm) in terms of inhibition of hypocotyl growth. SOG1 is a transcription factor that functions in the DNA damage signalling response after γ-irradiation. xpf mutants that carry the sog1-1 mutation showed hypocotyl growth inhibition after UV-B irradiation similar to the wild type. A DNA replication inhibitor, hydroxyurea (HU), also inhibited hypocotyl growth in etiolated seedlings, but xpf-3 was not hypersensitive to HU. UV-B irradiation induced accumulation of the G2/M-specific cell cycle reporter construct CYCB1;1-GUS in wild-type Arabidopsis seedlings that was consistent with the expected accumulation of photodimers and coincided with the time course of hypocotyl growth inhibition after UV-B treatment. Etiolated mutants of UVR8, a recently described UV-B photoreceptor gene, irradiated with UV-B showed inhibition of hypocotyl growth that was not different from that of the wild type, but they lacked UV-B-specific expression of chalcone synthase (CHS), as expected from previous reports. CHS expression after UV-B irradiation was not different in xpf-3 compared with the wild type, nor was it altered after HU treatment. These results suggest that hypocotyl growth inhibition by UV-B light in etiolated Arabidopsis seedlings, a photomorphogenic response, is dictated by signals originating from UV-B absorption by DNA that lead to cell cycle arrest. This process occurs distinct from UVR8 and its signalling pathway responsible for CHS induction. PMID:24591052

  1. Partitioning between primary and secondary metabolism of carbon allocated to roots in four maize genotypes under water deficit and its effects on productivity

    Directory of Open Access Journals (Sweden)

    Alyne Oliveira Lavinsky

    2015-10-01

    Full Text Available Plants may respond to drought by altering biomass allocation to shoots and roots or by changing the metabolic activities in these organs. To determine how drought changes the partitioning of carbon allocated to growth and secondary metabolism in maize roots and how it affects photosynthesis (A and productivity in maize, we evaluated leaf gas exchange, yield componentes, root morphology, and primary and secondary metabolites including total soluble sugars (TSS, starch (S, phenolics (PHE, and lignin (LIG. Data were collected from pot-grown plants of four maize genotypes: BRS 1010 and 2B710 (sensitive genotypes and DKB390 and BRS1055 (tolerant genotypes under two soil water tensions: field capacity (FC, − 18 kPa and water deficit (WD, − 138 kPa. WD was applied at the pre-flowering stage for 12 days and then the water supply was restored and maintained at optimum levels until the end of the cycle. For genotype BRS 1055 under FC, the greatest A did not result in greater grain biomass (DGB because the accumulated photoassimilates had already filled the cells, and thus the excessive TSS synthesized in leaves was allocated to roots in large amounts. However, the sharp decrease in A caused by WD imposition in this genotype did not affect the influx pressure of leaf TSS, which was due largely to conversion of primary metabolites to PHE compounds to increase the length of fine roots. In leaves of DKB390 under WD, both S and TSS were reduced, whereas PHE were increased to prevent excessive water loss and xylem cavitation. Under WD, both BRS1010 and 2B710 genotypes displayed reduced allocation of biomass to shoots and roots and LIG content in leaves, as well as lower A and DGB values. In BRS1010 this response was coupled to S decrease in leaves and TSS increase in roots, whereas in 2B710 there was a concomitant S increase in roots.

  2. Shooting Mechanisms in Nature: A Systematic Review.

    Directory of Open Access Journals (Sweden)

    Aimée Sakes

    Full Text Available In nature, shooting mechanisms are used for a variety of purposes, including prey capture, defense, and reproduction. This review offers insight into the working principles of shooting mechanisms in fungi, plants, and animals in the light of the specific functional demands that these mechanisms fulfill.We systematically searched the literature using Scopus and Web of Knowledge to retrieve articles about solid projectiles that either are produced in the body of the organism or belong to the body and undergo a ballistic phase. The shooting mechanisms were categorized based on the energy management prior to and during shooting.Shooting mechanisms were identified with projectile masses ranging from 1·10-9 mg in spores of the fungal phyla Ascomycota and Zygomycota to approximately 10,300 mg for the ballistic tongue of the toad Bufo alvarius. The energy for shooting is generated through osmosis in fungi, plants, and animals or muscle contraction in animals. Osmosis can be induced by water condensation on the system (in fungi, or water absorption in the system (reaching critical pressures up to 15.4 atmospheres; observed in fungi, plants, and animals, or water evaporation from the system (reaching up to -197 atmospheres; observed in plants and fungi. The generated energy is stored as elastic (potential energy in cell walls in fungi and plants and in elastic structures in animals, with two exceptions: (1 in the momentum catapult of Basidiomycota the energy is stored in a stalk (hilum by compression of the spore and droplets and (2 in Sphagnum energy is mainly stored in compressed air. Finally, the stored energy is transformed into kinetic energy of the projectile using a catapult mechanism delivering up to 4,137 J/kg in the osmotic shooting mechanism in cnidarians and 1,269 J/kg in the muscle-powered appendage strike of the mantis shrimp Odontodactylus scyllarus. The launch accelerations range from 6.6g in the frog Rana pipiens to 5,413,000g in

  3. Comparative diversity of arthropods on Bt maize and non-Bt maize in two different cropping systems in South Africa.

    Science.gov (United States)

    Truter, J; Van Hamburg, H; Van Den Berg, J

    2014-02-01

    The biodiversity of an agroecosystem is not only important for its intrinsic value but also because it influences ecological functions that are vital for crop production in sustainable agricultural systems and the surrounding environment. A concern about genetically modified (GM) crops is the potential negative impact that such crops could have on diversity and abundance of nontarget organisms, and subsequently on ecosystem functions. Therefore, it is essential to assess the potential environmental risk of the release of a GM crop and to study its effect on species assemblages within that ecosystem. Assessment of the impact of Bt maize on the environment is hampered by the lack of basic checklists of species present in maize agroecosystems. The aims of the study were to compile a checklist of arthropods that occur on maize in South Africa and to compare the diversity and abundance of arthropods and functional groups on Bt maize and non-Bt maize. Collections of arthropods were carried out during two growing seasons on Bt maize and non-Bt maize plants at two localities. Three maize fields were sampled per locality during each season. Twenty plants, each of Bt maize and non-Bt maize, were randomly selected from the fields at each site. The arthropods collected during this study were classified to morphospecies level and grouped into the following functional groups: detritivores, herbivores, predators, and parasitoids. Based on feeding strategy, herbivores and predators were further divided into sucking herbivores or predators (piercing-sucking mouthparts) and chewing herbivores or predators (chewing mouthparts). A total of 8,771 arthropod individuals, comprising 288 morphospecies and presenting 20 orders, were collected. Results from this short-term study indicated that abundance and diversity of arthropods in maize and the different functional guilds were not significantly affected by Bt maize, either in terms of diversity or abundance.

  4. Effects of maize maturity at harvest and dietary proportion of maize silage on intake and performance of growing/finishing bulls

    DEFF Research Database (Denmark)

    Zaralis, K.; Nørgaard, P.; Helander, C.

    2014-01-01

    Whole-crop maize silage as forage in diets of finishing cattle can promote high intakes and thus, enhances animal performance. In the present study we evaluated the effect of whole-crop maize maturity at harvest and the proportion of maize-silage in diets of finishing bulls, on feed intake...... of treatments, involving two maturity stages of maize at harvest (i.e. dough stage or dent stage) and two maize silage proportions (i.e. 100% maize silage or 50% maize and 50% grass silage). The diets were offered ad libitum as total mixed rations (TMRs) with inclusion of concentrates (i.e. rolled barley; dried...... distillers’ grain plus soluble; cold-pressed rapeseed cake) in a 40% proportion on DM basis. All animals were slaughtered at a target body weight of 630 kg. Bulls fed on diets containing maize silage as sole forage achieved higher live-weight gain (P

  5. Sound propagation from a semi-open shooting range

    NARCIS (Netherlands)

    Eerden, F.J.M. van der; Berg, F. van den

    2011-01-01

    Semi-open shooting ranges, in contrast to a fully open shooting range, are often used in the densely populated area of the Netherlands. The Ministry of Defense operates a number of these ranges. In these shooting ranges above the line of fire a number of screens are situated for safety precautions

  6. Effect of arbuscular mycorrhizal fungus (Glomus caledonium) on the accumulation and metabolism of atrazine in maize (Zea mays L.) and atrazine dissipation in soil

    Energy Technology Data Exchange (ETDEWEB)

    Huang Honglin [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, 18th Shuangqinglu, Haidian District, Beijing 100085 (China); Zhang Shuzhen [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, 18th Shuangqinglu, Haidian District, Beijing 100085 (China)]. E-mail: szzhang@mail.rcees.ac.cn; Shan Xiaoquan [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, 18th Shuangqinglu, Haidian District, Beijing 100085 (China); Chen Baodong [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, 18th Shuangqinglu, Haidian District, Beijing 100085 (China); Zhu Yongguan [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, 18th Shuangqinglu, Haidian District, Beijing 100085 (China); Bell, J. Nigel B. [Center for Environmental Policy, Imperial College, London (United Kingdom)

    2007-03-15

    Effects of an arbuscular mycorrhizal (AM) fungus (Glomus caledonium) on accumulation and metabolism of atrazine in maize grown in soil contaminated with different concentrations of atrazine were investigated in a series of pot experiments. Roots of mycorrhizal plants accumulated more atrazine than non-mycorrhizal roots. In contrast, atrazine accumulation in shoot decreased in mycorrhizal compared with non-mycorrhizal plants. No atrazine derivatives were detected in the soil, either with or without mycorrhizal colonization. However, atrazine metabolites, deethylatrazine (DEA) and deisopropylatrazine (DIA), were detected in plant roots and the AM colonization enhanced the metabolism. After plant harvest atrazine concentrations decreased markedly in the soils compared to the initial concentrations. The decreases were the most in rhizosphere soil and then near-rhizosphere soil and the least in bulk soil. Mycorrhizal treatment enhanced atrazine dissipation in the near-rhizosphere and bulk soils irrespective of atrazine application rates. - Arbuscular mycorrhizal fungus increases the accumulation and metabolism of atrazine in maize.

  7. Effect of arbuscular mycorrhizal fungus (Glomus caledonium) on the accumulation and metabolism of atrazine in maize (Zea mays L.) and atrazine dissipation in soil

    International Nuclear Information System (INIS)

    Huang Honglin; Zhang Shuzhen; Shan Xiaoquan; Chen Baodong; Zhu Yongguan; Bell, J. Nigel B.

    2007-01-01

    Effects of an arbuscular mycorrhizal (AM) fungus (Glomus caledonium) on accumulation and metabolism of atrazine in maize grown in soil contaminated with different concentrations of atrazine were investigated in a series of pot experiments. Roots of mycorrhizal plants accumulated more atrazine than non-mycorrhizal roots. In contrast, atrazine accumulation in shoot decreased in mycorrhizal compared with non-mycorrhizal plants. No atrazine derivatives were detected in the soil, either with or without mycorrhizal colonization. However, atrazine metabolites, deethylatrazine (DEA) and deisopropylatrazine (DIA), were detected in plant roots and the AM colonization enhanced the metabolism. After plant harvest atrazine concentrations decreased markedly in the soils compared to the initial concentrations. The decreases were the most in rhizosphere soil and then near-rhizosphere soil and the least in bulk soil. Mycorrhizal treatment enhanced atrazine dissipation in the near-rhizosphere and bulk soils irrespective of atrazine application rates. - Arbuscular mycorrhizal fungus increases the accumulation and metabolism of atrazine in maize

  8. Water Status Related Root-to-Shoot Communication Regulates the Chilling Tolerance of Shoot in Cucumber (Cucumis sativus L.) Plants.

    Science.gov (United States)

    Zhang, Zi-Shan; Liu, Mei-Jun; Gao, Hui-Yuan; Jin, Li-Qiao; Li, Yu-Ting; Li, Qing-Ming; Ai, Xi-Zhen

    2015-10-16

    Although root-to-shoot communication has been intensively investigated in plants under drought, few studies have examined root-to-shoot communication under chilling. Here we explored whether root-to-shoot communication contributes to the chilling-light tolerance of cucumber shoots and clarified the key signal involves in this communication. After leaf discs chilling-light treatment, the photoinhibitions of Photosystem I (PSI) and Photosystem II (PSII) were similar in leaf discs of two cucumber varieties (JY-3 and JC-4). When the whole plants, including roots, were chilled under light, the photosynthetic performances in JC-4 leaves decreased more seriously than that in JY-3 leaves. However, when the water status of leaves was maintained by warming roots or floating the attached leaves on water, the PSII activity and amount of PSI in the leaves of the two varieties were similar after chilling-light treatment. In addition, the differences of PSII activities and amount of PSI between the two varieties under whole plant chilling-light treatment were independent of ABA pretreatment. Above results indicate that (1) the better water status in leaves under chilling contributes to the higher chilling tolerance of JY-3; (2) the water status, rather than an ABA signal, dominates root-to-shoot communication under chilling and the chilling tolerance of cucumber shoot.

  9. Bacterial endophytes from wild maize suppress Fusarium graminearum in modern maize and inhibit mycotoxin accumulation

    Directory of Open Access Journals (Sweden)

    Walaa Kamel Mousa

    2015-10-01

    Full Text Available Wild maize (teosinte has been reported to be less susceptible to pests than their modern maize (corn relatives. Endophytes, defined as microbes that inhabit plants without causing disease, are known for their ability to antagonize plant pests and pathogens. We hypothesized that the wild relatives of modern maize may host endophytes that combat pathogens. Fusarium graminearum is the fungus that causes Gibberella Ear Rot (GER in modern maize and produces the mycotoxin, deoxynivalenol (DON. In this study, 215 bacterial endophytes, previously isolated from diverse maize genotypes including wild teosintes, traditional landraces and modern varieties, were tested for their ability to antagonize F. graminearum in vitro. Candidate endophytes were then tested for their ability to suppress GER in modern maize in independent greenhouse trials. The results revealed that three candidate endophytes derived from wild teosintes were most potent in suppressing F. graminearum in vitro and GER in a modern maize hybrid. These wild teosinte endophytes could suppress a broad spectrum of fungal pathogens of modern crops in vitro. The teosinte endophytes also suppressed DON mycotoxin during storage to below acceptable safety threshold levels. A fourth, less robust anti-fungal strain was isolated from a modern maize hybrid. Three of the anti-fungal endophytes were predicted to be Paenibacillus polymyxa, along with one strain of Citrobacter. Microscopy studies suggested a fungicidal mode of action by all four strains. Molecular and biochemical studies showed that the P. polymyxa strains produced the previously characterized anti-Fusarium compound, fusaricidin. Our results suggest that the wild relatives of modern crops may serve as a valuable reservoir for endophytes in the ongoing fight against serious threats to modern agriculture. We discuss the possible impact of crop evolution and domestication on endophytes in the context of plant defense.

  10. Metabolite Profiling of Low-P Tolerant and Low-P Sensitive Maize Genotypes under Phosphorus Starvation and Restoration Conditions.

    Directory of Open Access Journals (Sweden)

    Arshid Hussain Ganie

    Full Text Available Maize (Zea mays L. is one of the most widely cultivated crop plants. Unavoidable economic and environmental problems associated with the excessive use of phosphatic fertilizers demands its better management. The solution lies in improving the phosphorus (P use efficiency to sustain productivity even at low P levels. Untargeted metabolomic profiling of contrasting genotypes provides a snap shot of whole metabolome which differs under specific conditions. This information provides an understanding of the mechanisms underlying tolerance to P stress and the approach for increasing P-use-efficiency.A comparative metabolite-profiling approach based on gas chromatography-mass spectrometry (GC/MS was applied to investigate the effect of P starvation and its restoration in low-P sensitive (HM-4 and low-P tolerant (PEHM-2 maize genotypes. A comparison of the metabolite profiles of contrasting genotypes in response to P-deficiency revealed distinct differences among low-P sensitive and tolerant genotypes. Another set of these genotypes were grown under P-restoration condition and sampled at different time intervals (3, 5 and 10 days to investigate if the changes in metabolite profile under P-deficiency was restored. Significant variations in the metabolite pools of these genotypes were observed under P-deficiency which were genotype specific. Out of 180 distinct analytes, 91 were identified. Phosphorus-starvation resulted in accumulation of di- and trisaccharides and metabolites of ammonium metabolism, specifically in leaves, but decreased the levels of phosphate-containing metabolites and organic acids. A sharp increase in the concentrations of glutamine, asparagine, serine and glycine was observed in both shoots and roots under low-P condition.The new insights generated on the maize metabolome in response to P-starvation and restoration would be useful towards improvement of the P-use efficiency in maize.

  11. Inoculation of arbuscular mycorrhizal fungi and phosphate solubilizing bacteria in the presence of rock phosphate improves phosphorus uptake and growth of maize

    International Nuclear Information System (INIS)

    Wahid, F.; Sharif, M.; Khan, M. A.; Khan, S. A.

    2016-01-01

    The beneficial microbes like arbuscular mycorrhizal fungi (AMF) and phosphate solubilizing bacteria (PSB) are known to play an important role in phosphorous (P) supply to plants in a sustainable manner in P deficient soils. In this scenario, a pot experiment was conducted under greenhouse condition to assess the synergistic effect of AMF and PSB strains (Coccus DIM7 Streptococcus PIM6 and Bacillus sp. PIS7) on P solubility from RP and their successive uptake by maize (Zea-mays L. Azam) crop at alkaline soil. The experiment was completely randomized design with three replications having calcareous silty clay loam soil, low in organic matter, nitrogen and phosphorus contents. RP was used as a crude phosphate alone and/or in combination with the native AMF and PSB inoculum. The Results indicated that the rhizosphere interactions between AMF and PSB significantly promote RP mineralization in soil and improved all growth parameters including shoot (56 percent), root yield (52 percent), height (41 percent), N (80 percent) and P (91 percent) uptake by the maize plants as compared to control and single inoculation. A remarkable increase in soil spore density, PSB population and percent root colonization in maize plants were also recorded by the combined inoculation of AMF and PSB with RP. From this study, it is concluded that the combined application of AMF and PSB with RP has the potential to improve maize growth and nutrients uptake. Moreover, AMF and PSB inoculants are recommended as useful biofertilizers for enhancing P solubility and bioavailability in P deficient agricultural soils. (author)

  12. Faba Bean: Transcriptome Analysis from Etiolated Seedling and Developing Seed Coat of Key Cultivars for Synthesis of Proanthocyanidins, Phytate, Raffinose Family Oligosaccharides, Vicine, and Convicine

    Directory of Open Access Journals (Sweden)

    Heather Ray

    2015-03-01

    Full Text Available Faba bean ( L. has been little examined from a genetic or genomic perspective despite its status as an established food and forage crop with some key pharmaceutical factors such as vicine and convicine (VC, which provoke severe haemolysis in genetically susceptible humans. We developed next-generation sequencing libraries to maximize information to elucidate the VC pathway or relevant markers as well as other genes of interest for the species. One selected cultivar, A01155, lacks synthesis of the favism-provoking factors, VC, and is low in tannin, while two cultivars, SSNS-1 and CDC Fatima, are wild-type for these factors. Tissues (5- to 6-d-old root and etiolated shoot and developing seed coat were selected to maximize the utility and breadth of the gene expression profile. Approximately 1.2 × 10 expressed transcripts were sequenced and assembled into contigs. The synthetic pathways for phosphatidylinositol or phytate, the raffinose family oligosaccharides, and proanthocyanidin were examined and found to contain nearly a full complement of the synthetic genes for these pathways. A severe deficiency in anthocyanidin reductase expression was found in the low-tannin cultivar A01155. Approximately 5300 variants, including 234 variants specific to one of the three cultivars, were identified. Differences in expression and variants potentially related to VC synthesis were analyzed using strategies exploiting differences in expression between cultivars and tissues. These sequences should be of high utility for marker-assisted selection for the key traits vicine, convicine, and proanthocyanidin, and should contribute to the scant genetic maps available for this species.

  13. Callose deposition during gravitropism of Zea mays and Pisum sativum and its inhibition by 2-deoxy-D-glucose

    Science.gov (United States)

    Jaffe, M. J.; Leopold, A. C.

    1984-01-01

    In etiolated corn (Zea mays L.) and etiolated pea (Pisum sativum L.) seedlings, a gravitropic stimulation induces the deposition of callose. In the corn coleoptiles this occurs within 5 min of gravity stimulation, and prior to the beginning of curvature. Both gravitropic curvature and callose deposition reach their maxima by 12 h. Within the first 2 h more callose is deposited on the upper (concave) side, but after 2-3 h, this deposition pattern is reversed. An inhibitor of protein glycosylation, 2-deoxy-D-glucose (DDG), inhibits callose production and considerably retards gravitropic bending in both species of plants. Mannose can relieve the inhibition of gravitropic bending by DDG. The pea mutant "Ageotropum", which does not respond to gravity when etiolated, also fails to produce callose in response to a gravitic stimulus. These correlations indicate that callose deposition may be a biochemical component of gravitropism in plant shoots.

  14. Micropore surface area of alkali-soluble plant macromolecules (humic acids) drives their decomposition rates in soil.

    Science.gov (United States)

    Papa, Gabriella; Spagnol, Manuela; Tambone, Fulvia; Pilu, Roberto; Scaglia, Barbara; Adani, Fabrizio

    2010-02-01

    Previous studies suggested that micropore surface area (MSA) of alkali-soluble bio-macromolecules of aerial plant residues of maize constitutes an important factor that explains their humification in soil, that is, preservation against biological degradation. On the other hand, root plant residue contributes to the soil humus balance, as well. Following the experimental design used in a previous paper published in this journal, this study shows that the biochemical recalcitrance of the alkali-soluble acid-insoluble fraction of the root plant material, contributed to the root maize humification of both Wild-type maize plants and its corresponding mutant brown midrib (bm3), this latter characterized by reduced lignin content. Humic acids (HAs) existed in root (root-HAs) were less degraded in soil than corresponding HAs existed in shoot (shoot-HAs): shoot-HAs bm3 (48%)>shoot-HAs Wild-type (37%)>root-HAs Wild-type (33%)>root-HAs bm3 (22%) (degradability shown in parenthesis). These differences were related to the MSA of HAs, that is, root-HAs having a higher MSA than shoot-HAs: shoot-HAs bm3 (41.43+/-1.2m(2)g(-1))<shoot-HAs Wild-type (43.43+/-1.7m(2)g(-1))maize shoots and the results of this study, it was possible to find a very good correlation between degradability of HAs and HA-MSAs (r=-0.88, P<0.08, n=4), confirming that MSA was able to explain bio-macromolecules recalcitrance in soil.

  15. Characteristics of schools in which fatal shootings occur.

    Science.gov (United States)

    de Apodaca, Roberto Flores; Brighton, Lauren M; Perkins, Ashley N; Jackson, Kiana N; Steege, Jessica R

    2012-04-01

    School-based violence, and fatal school shootings in particular, have gained increased attention in the media and psychological literature. Most reports have focused on the characteristics of perpetrators, but there is a growing awareness that school-related factors may also influence the occurrence of fatal school shootings. The current study examined several key characteristics of all schools where random (38) and targeted (96) fatal shootings occurred in the United States between 1966 and 2009. These were compared with a group (138) of schools randomly selected to represent the population of all schools in the United States. The size of a school's enrollment, urban or suburban locale, public funding, and predominantly non-white enrollment were positively associated with fatal shootings. Universities and colleges were disproportionately associated with random shootings and high schools with targeted ones. It was proposed that characteristics of schools that allow feelings of anonymity or alienation among students may help create environmental conditions associated with fatal school shootings. Implications for future research and interventions are considered.

  16. "Achieving Mexico’s Maize Potential"

    OpenAIRE

    Antonio Turrent Fernández; Timothy A. Wise; Elise Garvey

    2012-01-01

    Rising agricultural prices, combined with growing import dependence, have driven Mexico’s food import bill over $20 billion per year and increased its agricultural trade deficit. Mexico imports one-third of its maize, overwhelmingly from the United States, but three million producers grow most of the country’s white maize, which is used primarily for tortillas and many other pluricultural products for human consumption. Yield gaps are large among the country’s small to medium-scale maize farm...

  17. The Level of Vision Necessary for Competitive Performance in Rifle Shooting: Setting the Standards for Paralympic Shooting with Vision Impairment.

    Science.gov (United States)

    Allen, Peter M; Latham, Keziah; Mann, David L; Ravensbergen, Rianne H J C; Myint, Joy

    2016-01-01

    The aim of this study was to investigate the level of vision impairment (VI) that would reduce performance in shooting; to guide development of entry criteria to visually impaired (VI) shooting. Nineteen international-level shooters without VI took part in the study. Participants shot an air rifle, while standing, toward a regulation target placed at the end of a 10 m shooting range. Cambridge simulation glasses were used to simulate six different levels of VI. Visual acuity (VA) and contrast sensitivity (CS) were assessed along with shooting performance in each of seven conditions of simulated impairment and compared to that with habitual vision. Shooting performance was evaluated by calculating each individual's average score in every level of simulated VI and normalizing this score by expressing it as a percentage of the baseline performance achieved with habitual vision. Receiver Operating Characteristic curves were constructed to evaluate the ability of different VA and CS cut-off criteria to appropriately classify these athletes as achieving 'expected' or 'below expected' shooting results based on their performance with different levels of VA and CS. Shooting performance remained relatively unaffected by mild decreases in VA and CS, but quickly deteriorated with more moderate losses. The ability of visual function measurements to classify shooting performance was good, with 78% of performances appropriately classified using a cut-off of 0.53 logMAR and 74% appropriately classified using a cut-off of 0.83 logCS. The current inclusion criteria for VI shooting (1.0 logMAR) is conservative, maximizing the chance of including only those with an impairment that does impact performance, but potentially excluding some who do have a genuine impairment in the sport. A lower level of impairment would include more athletes who do have a genuine impairment but would potentially include those who do not actually have an impairment that impacts performance in the sport. An

  18. Ionomic and metabolic responses to neutral salt or alkaline salt stresses in maize (Zea mays L.) seedlings.

    Science.gov (United States)

    Guo, Rui; Shi, LianXuan; Yan, Changrong; Zhong, Xiuli; Gu, FengXue; Liu, Qi; Xia, Xu; Li, Haoru

    2017-02-10

    Soil salinity and alkalinity present a serious threat to global agriculture. However, most of the studies have focused on neutral salt stress, and the information on the metabolic responses of plants to alkaline salt stress is limited. This investigation aimed at determining the influence of neutral salt and alkaline salt stresses on the content of metal elements and metabolites in maize plant tissues, by using mixtures of various proportions of NaCl, NaHCO 3 , Na 2 SO 4 , and Na 2 CO 3 . We found that alkaline salt stress suppressed more pronouncedly the photosynthesis and growth of maize plants than salinity stress. Under alkaline salt stress conditions, metal ions formed massive precipitates, which ultimately reduced plant nutrient availability. On the other hand, high neutral salt stress induced metabolic changes in the direction of gluconeogenesis leading to the enhanced formation of sugars as a reaction contributing to the mitigation of osmotic stress. Thus, the active synthesis of sugars in shoots was essential to the development of salt tolerance. However, the alkaline salt stress conditions characterized by elevated pH values suppressed substantially the levels of photosynthesis, N metabolism, glycolysis, and the production of sugars and amino acids. These results indicate the presence of different defensive mechanisms responsible for the plant responses to neutral salt and alkaline salt stresses. In addition, the increased concentration of organic acids and enhanced metabolic energy might be potential major factors that can contribute to the maintenance intracellular ion balance in maize plants and counteract the negative effects of high pH under alkaline salt stress.

  19. Exploring maize-legume intercropping systems in Southwest Mexico

    NARCIS (Netherlands)

    Flores-Sanchez, D.; Pastor, A.V.; Lantinga, E.A.; Rossing, W.A.H.; Kropff, M.J.

    2013-01-01

    Maize yields in continuous maize production systems of smallholders in the Costa Chica, a region in Southwest Mexico, are low despite consistent inputs of fertilizers and herbicides. This study was aimed at investigating the prospects of intercropping maize (Zea mays L.) and maize-roselle (Hibiscus

  20. Methionine metabolism and ethylene formation in etiolated pea stem sections

    International Nuclear Information System (INIS)

    Schilling, N.; Kende, H.

    1979-01-01

    Stem sections of etiolated pea seedlings (Pisum sativum L. cv. Alaska) were incubated overnight on tracer amounts of L-[U- 14 C]methionine and, on the following morning, on 0.1 millimolar indoleacetic acid to induce ethylene formation. Following the overnight incubation, over 70% of the radioactivity in the soluble fraction was shown to be associated with S-methylmethionine (SMM). The specific radioactivity of the ethylene evolved closely paralleled that of carbon atoms 3 and 4 of methionine extracted from the tissue and was always higher than that determined for carbon atoms 3 and 4 of extracted SMM. Overnight incubation of pea stem sections on 1 millimolar methionine enhanced indoleacetic acid-induced ethylene formation by 5 to 10%. Under the same conditions, 1 millimolar homocysteine thiolactone increased ethylene synthesis by 20 to 25%, while SMM within a concentration range of 0.1 to 10 millimolar did not influence ethylene production. When unlabeled methionine or homocysteine thiolactone was applied to stem sections which had been incubated overnight in L-[U- 14 C]methionine, the specific radioactivity of the ethylene evolved was considerably lowered. Application of unlabeled SMM reduced the specific radioactivity of ethylene only slightly

  1. Climatic and non-climatic drivers of spatiotemporal maize-area dynamics across the northern limit for maize production

    DEFF Research Database (Denmark)

    Odgaard, Mette Vestergaard; Bøcher, Peder Klith; Dalgaard, Tommy

    2011-01-01

    It is expected that the ongoing anthropogenic climate change will drive changes in agricultural production and its geographic distribution. Here, we assess the extent to which climate change is already driving spatiotemporal dynamics in maize production in Denmark. We use advanced spatial...... regression modeling with multi-model averaging to assess the extent to which the recent spatiotemporal dynamics of the maize area in Denmark are driven by climate (temperature as represented by maize heating units [MHU] and growing-season precipitation), climate change and non-climatic factors (cattle...... cultivation and cattle farming, probably reflecting a change to a more favorable climate for maize cultivation: in the beginning of the study period, northern areas were mostly too cold for maize cultivation, irrespective of cattle density, but this limitation has been diminishing as climate has warmed...

  2. Root~Shoot Growth Interactions of Sorghmn (Sorghwn Bicolor L ...

    African Journals Online (AJOL)

    growth. Studies on root-shoot intera'ctions in relation to mechanical impedance have only investigated the effect on shoots of ... growth regulators that may be responsible. Studies of root-shoot ... of germinating seeds to MI leaving roots in rela-.

  3. Protocol optimization for in vitro shoot multiplication of Jackfruit ...

    African Journals Online (AJOL)

    Jemal

    2017-01-11

    Jan 11, 2017 ... Protocol optimization for in vitro shoot multiplication of ... shoot length and leaf number, whereby 2 mg/L BAP alone was found to be the best with a mean shoot .... Analysis of variance showed that the interaction between.

  4. Micropropagation of Asparagus by in vitro shoot culture.

    Science.gov (United States)

    Stajner, Nataša

    2013-01-01

    Asparagus officinalis is most extensively studied species within the genus Asparagus, which is well known as garden asparagus. This species is dioecious with unisexual flowers, which means that generative propagation gives roughly equal number of male and female plants. Male plants are high yielders and preferred commercially over female plants. Tissue culture techniques could efficiently promote vegetative propagation of male plants and pave the way for efficient plant breeding.This chapter describes an efficient micropropagation protocol for developing rapid growing in vitro Asparagus shoot cultures. The source of explants, inoculation, and shoot proliferation, followed by shoot propagation, rooting, and acclimatization is described. The optimal medium for Asparagus micropropagation described in this chapter is composed of MS macro- and microelements and a combination of auxins and cytokinins. Plant growth regulators NAA, kinetin, and BA were used in various concentrations. Three different media representing the whole micropropagation protocol of Asparagus are described; medium for shoot initiation, medium for shoot multiplication, and medium for root formation. By in vitro propagation of Asparagus, root initiation is difficult, but can be promoted by adding growth retardant ancymidol which also greatly promotes shoot development and suppresses callus formation.

  5. Identification and Pathogenicity of Bacteria Associated with Etiolation and Decline of Creeping Bentgrass Golf Course Putting Greens.

    Science.gov (United States)

    Roberts, Joseph A; Ma, Bangya; Tredway, Lane P; Ritchie, David F; Kerns, James P

    2018-01-01

    Bacterial etiolation and decline has developed into a widespread issue with creeping bentgrass (CBG) (Agrostis stolonifera) putting green turf. The condition is characterized by an abnormal elongation of turfgrass stems and leaves that in rare cases progresses into a rapid and widespread necrosis and decline. Recent reports have cited bacteria, Acidovorax avenae and Xanthomonas translucens, as causal agents; however, few cases exist where either bacterium were isolated in conjunction with turf exhibiting bacterial disease symptoms. From 2010 to 2014, turfgrass from 62 locations submitted to the NC State Turf Diagnostic Clinic exhibiting bacterial etiolation and/or decline symptoms were sampled for the presence of bacterial pathogens. Isolated bacteria were identified using rRNA sequencing of the 16S subunit and internal transcribed spacer region (16S-23S or ITS). Results showed diverse bacteria isolated from symptomatic turf and A. avenae and X. translucens were only isolated in 26% of samples. Frequently isolated bacterial species were examined for pathogenicity to 4-week-old 'G2' CBG seedlings and 8-week-old 'A-1' CBG turfgrass stands in the greenhouse. While results confirmed pathogenicity of A. avenae and X. translucens, Pantoea ananatis was also shown to infect CBG turf; although pathogenicity varied among isolated strains. These results illustrate that multiple bacteria are associated with bacterial disease and shed new light on culturable bacteria living in CBG turfgrass putting greens. Future research to evaluate additional microorganisms (i.e., bacteria and fungi) could provide new information on host-microbe interactions and possibly develop ideas for management tactics to reduce turfgrass pests.

  6. Regeneration of okra ( Abelmoschus esculentus L.) via apical shoot ...

    African Journals Online (AJOL)

    Abelmoschus esculentus L. Monech) via apical shoot culture system. The study of apical shoot culture system was found effective for regeneration of apical shoots. The okra (A. esculentus L. Monech) N-550 line evolved at R&D, Nirmal Seeds Pvt. Ltd., ...

  7. Modelo etiológico dos comportamentos de risco para os transtornos alimentares em adolescentes brasileiros do sexo feminino

    Directory of Open Access Journals (Sweden)

    Leonardo de Sousa Fortes

    2016-01-01

    Full Text Available Resumo: O objetivo foi construir um modelo etiológico dos comportamentos de risco para os transtornos alimentares em adolescentes brasileiros do sexo feminino. Participaram 1.358 adolescentes de quatro cidades. Foram avaliados os comportamentos de risco para os transtornos alimentares, insatisfação corporal, pressões midiáticas, autoestima, estado de humor, sintomas depressivos e perfeccionismo por intermédio de escalas psicométricas. Peso, estatura e dobras cutâneas foram aferidos para calcular o índice de massa corporal (IMC e o percentual de gordura (%G. O modelo de equação estrutural explanou 76% da variância dos comportamento de risco (F(9, 1.351 = 74,50; p = 0,001. Os achados indicaram que a insatisfação corporal mediou a relação entre as pressões midiáticas, autoestima, estado de humor, IMC, %G e os comportamentos de risco (F(9, 1.351 = 59,89; p = 0,001. Vale destacar que embora os sintomas depressivos não tenham se relacionado com a insatisfação corporal, o modelo indicou relação direta com os comportamentos de risco para os transtornos alimentares (F(2, 1.356 = 23,98; p = 0,001. Concluiu-se que somente o perfeccionismo não aderiu ao modelo etiológico dos comportamentos de risco para os transtornos alimentares em adolescentes brasileiras.

  8. 14CO2-fixation and nitrate reductase activity in vivo in relation to hybrid vigour in maize

    International Nuclear Information System (INIS)

    Balasubramanian, V.; Shanthakumari, P.; Sinha, S.K.

    1977-01-01

    Dry matter accumulation in maize shoots, leaf area, 14 CO 2 -fixation and nitrate reductase activity in vivo were measured in the field grown heterotic hybrid CM 400x CM 300 and its inbred parents CM 300 and CM 400 from seedling to maturity. Rates of dry matter accumulation and leaf area development were higher in the hybrid during the initial vegetative phase than in the inbreds. The hybrid had more absolute level of 14 CO 2 -fixation and nitrate reductase activity, although the rates of these processes on unit weight basis were not higher than those of inbreds. It is concluded that the rapid development of leaf area in hybrids during the early stages of vegetative growth is probably important for hybrid vigour. (author)

  9. Light requirement for shoot regeneration in horseradish hairy roots.

    Science.gov (United States)

    Saitou, T; Kamada, H; Harada, H

    1992-08-01

    Hairy roots of horseradish (Armoracia rusticana) were induced by inoculation with Agrobacterium rhizogenes harboring Ri plasmid and cultured on phytohormone-free Murashige and Skoog medium after eliminating the bacteria. Hairy roots grew vigorously and sometimes formed yellowish calli under dark conditions. On the other hand, growth of hairy roots stopped after several weeks of culture with light, then shoots were regenerated. Frequency of shoot formation from hairy roots increased as the culture period in light lengthened and the light intensity increased. The shoot regeneration was induced by treatment with white or red light, but not with far-red light. Shoot regeneration by red light was inhibited by following treatment with far-red light. Red and far-red light reversibly affected shoot regeneration. Excised roots of nontransformed plants grew quite slowly on phytohormone-free Murashige and Skoog medium and occasionally formed shoots under white light conditions.

  10. Mass propagation of shoots of Stevia rebaudiana using a large scale bioreactor.

    Science.gov (United States)

    Akita, M; Shigeoka, T; Koizumi, Y; Kawamura, M

    1994-01-01

    A procedure for the mass propagation of multiple shoots of Stevia rebaudiana is described. Isolated shoot primordia were used as the inoculum to obtain clusters of shoot primordia. Such clusters were grown in a 500 liter bioreactor to obtain shoots. A total of 64.6 Kg of shoots were propagated from 460 g of the inoculated shoot primordia. These shoots were easily acclimatized in soil.

  11. Influence of Rhizophagus irregularis inoculation and phosphorus application on growth and arsenic accumulation in maize (Zea mays L.) cultivated on an arsenic-contaminated soil.

    Science.gov (United States)

    Cattani, I; Beone, G M; Gonnelli, C

    2015-05-01

    Southern Tuscany (Italy) is characterized by extensive arsenic (As) anomalies, with concentrations of up to 2000 mg kg soil(-1). Samples from the location of Scarlino, containing about 200 mg kg(-1) of As, were used to study the influence of the inoculation of an arbuscular mycorrhizal (AM) fungus (Rhizophagus irregularis, previously known as Glomus intraradices) and of phosphorus (P) application, separately and in combination, on As speciation in the rhizosphere of Zea mays on plant growth and As accumulation. Also, P distribution in plant parts was investigated. Each treatment produced a moderate rise of As(III) in the rhizosphere, increased As(III) and lowered As(V) concentration in shoots. P treatment, alone or in combination with AM, augmented the plant biomass. The treatments did not affect total As concentration in the shoots (with all the values <1 mg kg(-1) dry weight), while in the roots it was lowered by P treatment alone. Such decrease was probably a consequence of the competition between P and As(V) for the same transport systems, interestingly nullified by the combination with AM treatment. P concentration was higher with AM only in both shoots and roots. Therefore, the obtained results can be extremely encouraging for maize cultivation on a marginal land, like the one studied.

  12. Effects of using phenotypic means and genotypic values in GGE biplot analyses on genotype by environment studies on tropical maize (Zea mays).

    Science.gov (United States)

    Granato, I S C; Fritsche-Neto, R; Resende, M D V; Silva, F F

    2016-10-05

    The objective of this study was to examine the effects of the type and intensity of nutritional stress, and of the statistical treatment of the data, on the genotype x environment (G x E) interaction for tropical maize (Zea mays). For this purpose, 39 hybrid combinations were evaluated under low- and high-nitrogen and -phosphorus availability. The plants were harvested at the V6 stage, and the shoot dry mass was estimated. The variance components and genetic values were assessed using the restricted maximum likelihood/best linear unbiased prediction method, and subsequently analyzed using the GGE biplot method. We observed differences in the performances of the hybrids depending on both the type and intensity of nutritional stress. The results of relationship between environments depended on whether genotypic values or phenotypic means were used. The selection of tropical maize genotypes against nutritional stress should be performed for each nutrient availability level within each type of nutritional stress. The use of phenotypic means for this purpose provides greater reliability than do genotypic values for the analysis of the G x E interaction using GGE biplot.

  13. Enhanced in vitro multiple shoot induction in elite Pakistani guava ...

    African Journals Online (AJOL)

    Elite guava (Psidium guajava L.) strains of cv. Safeda were explored in vitro for multiple shoot induction. Shoot induction was enhanced up to 83% with 3.5 to 4.25 shoots per single node cutting and shoot tip explants, respectively, using higher levels of benzyl amino purine (BAP) in Murashige and Skoog (MS) medium.

  14. Exposure to lead in South African shooting ranges

    International Nuclear Information System (INIS)

    Mathee, Angela; Jager, Pieter de; Naidoo, Shan; Naicker, Nisha

    2017-01-01

    Introduction: Lead exposure in shooting ranges has been under scrutiny for decades, but no information in this regard is available in respect of African settings, and in South Africa specifically. The aim of this study was to determine the blood lead levels in the users of randomly selected private shooting ranges in South Africa's Gauteng province. Methods: An analytical cross sectional study was conducted, with participants recruited from four randomly selected shooting ranges and three archery ranges as a comparator group. Results: A total of 118 (87 shooters and 31 archers) were included in the analysis. Shooters had significantly higher blood lead levels (BLL) compared to archers with 36/85 (42.4%) of shooters versus 2/34 (5.9%) of archers found to have a BLL ≥10 μg/dl (p<0.001). Conclusion: Shooting ranges may constitute an import site of elevated exposure to lead. Improved ventilation, low levels of awareness of lead hazards, poor housekeeping, and inadequate personal hygiene facilities and practices at South African shooting ranges need urgent attention. - Highlights: • This is the first study, to our knowledge, of lead exposure in shooting ranges in an African setting. • This study indicates highly elevated lead exposure amongst the users of certain private shooting ranges in South Africa. • Lead exposure may be a serious, yet under-studied, source of adult lead exposure in South Africa, and possibly elsewhere on the African continent.

  15. Exposure to lead in South African shooting ranges

    Energy Technology Data Exchange (ETDEWEB)

    Mathee, Angela [South African Medical Research Council, Environment & Health Research Unit, PO Box 87373, Houghton 2041 (South Africa); University of the Witwatersrand (School of Public Health), PO Box Wits, Johannesburg 2050 (South Africa); University of Johannesburg (Environmental Health Department, Faculty of Health Sciences), PO Box 524, Auckland Park, Johannesburg 2006 (South Africa); Jager, Pieter de [University of the Witwatersrand (School of Public Health), PO Box Wits, Johannesburg 2050 (South Africa); National Health Laboratory Service (Epidemiology and Surveillance Unit, National Institute for Occupational Health), PO Box 4788, Johannesburg 2000 (South Africa); Naidoo, Shan [University of the Witwatersrand (School of Public Health), PO Box Wits, Johannesburg 2050 (South Africa); Naicker, Nisha [South African Medical Research Council, Environment & Health Research Unit, PO Box 87373, Houghton 2041 (South Africa); University of the Witwatersrand, School of Public Health, PO Box Wits, Johannesburg 2050 (South Africa); University of Johannesburg, Environmental Health Department, Faculty of Health Sciences, PO Box 524, Auckland Park, Johannesburg 2006 (South Africa)

    2017-02-15

    Introduction: Lead exposure in shooting ranges has been under scrutiny for decades, but no information in this regard is available in respect of African settings, and in South Africa specifically. The aim of this study was to determine the blood lead levels in the users of randomly selected private shooting ranges in South Africa's Gauteng province. Methods: An analytical cross sectional study was conducted, with participants recruited from four randomly selected shooting ranges and three archery ranges as a comparator group. Results: A total of 118 (87 shooters and 31 archers) were included in the analysis. Shooters had significantly higher blood lead levels (BLL) compared to archers with 36/85 (42.4%) of shooters versus 2/34 (5.9%) of archers found to have a BLL ≥10 μg/dl (p<0.001). Conclusion: Shooting ranges may constitute an import site of elevated exposure to lead. Improved ventilation, low levels of awareness of lead hazards, poor housekeeping, and inadequate personal hygiene facilities and practices at South African shooting ranges need urgent attention. - Highlights: • This is the first study, to our knowledge, of lead exposure in shooting ranges in an African setting. • This study indicates highly elevated lead exposure amongst the users of certain private shooting ranges in South Africa. • Lead exposure may be a serious, yet under-studied, source of adult lead exposure in South Africa, and possibly elsewhere on the African continent.

  16. Shoot growth of Merlot and Cabernet Sauvignon grapevine varieties

    Directory of Open Access Journals (Sweden)

    Marcelo Borghezan

    2012-02-01

    Full Text Available The objective of this work was to evaluate shoot growth of the grapevine varieties Merlot and Cabernet Sauvignon, during 2006/2007, and Cabernet Sauvignon, during 2008/2009, in São Joaquim, SC, Brazil. The experiment was carried out in a commercial vineyard trained on a vertical trellis system. The shoots of the central part of the plants were selected, and the lengths from the base to the apex of 20 shoots per cultivar were evaluated. In 2006/2007, monitoring began at pruning, on 9/15/2006, and ended on 2/6/2007, totalizing 144 days of evaluation. During the 2008/2009 cycle, phenology and shoot growth for 'Cabernet Sauvignon' were assessed from grape development (1/13/2009 (pea-sized grapes until shoot vegetative growth had ceased. Budburst occurred in the second half of September, and shoot-growth cessation occurred during ripening. Higher growth rates (about 4 cm per day were observed in pre- and post-flowering, followed by reduction due to the competition for photosynthates for the formation of flowers and bunches. Temperature and photoperiod induce grapevine shoots to cease growth in the highland regions of Santa Catarina State, Brazil.

  17. Associative bacteria influence maize (Zea mays L.) growth, physiology and root anatomy under different nitrogen levels.

    Science.gov (United States)

    Calzavara, Anderson Kikuchi; Paiva, Pedro Henrique Godoy; Gabriel, Lorrant Cavanha; de Oliveira, André Luiz Martinez; Milani, Karina; Oliveira, Halley Caixeta; Bianchini, Edmilson; Pimenta, José Antonio; de Oliveira, Maria Cristina Neves; Dias-Pereira, Jaqueline; Stolf-Moreira, Renata

    2018-05-15

    Despite the great diversity of plant growth-promoting bacteria (PGPB) with potential to partially replace the use of N-fertilizers in agriculture, few PGPB are explored for the production of commercial inoculants, reinforcing the importance of identifying positive plant-bacteria interactions. Aiming to better understand the influence of PGPB inoculation in plant development, two PGPB species with distant phylogenetic relationship were inoculated in maize. Maize seeds were inoculated with Bacillus sp. or Azospirillum brasilense. After germinating, the plants were subjected to two nitrogen treatments: full (N+) and limiting (N-) nitrogen supply. Then, anatomical, biometric and physiological analyses were performed. Both PGPB species modified the anatomical pattern of roots, as verified by the higher metaxylem vessel elements (MVE) number. Bacillus sp. also increased the MVE area in maize roots. Under N+ condition, both PGPB decreased the leaf protein content and led to the development of shorter roots; however, Bacillus sp. increased root and shoot dry weight, whereas A. brasilense increased photosynthesis rate and leaf nitrate content. In plants subjected to N limitation (N-), photosynthesis rate and photosystem II efficiency increased in those inoculated with Bacillus sp., whilst A. brasilense led to higher ammonium, amino acids and total soluble sugars contents in the leaves, compared to control. Plant developmental and metabolical patterns were switched by the inoculation, regardless the inoculant bacteria used, producing similar as well as distinct modifications on the parameters studied. These results indicatie that even non-diazotrophic inoculant strains can improve the plant N-status as result of the morpho-anatomical and physiological modifications produced by the PGPB. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  18. The Level of Vision Necessary for Competitive Performance in Rifle Shooting: Setting the Standards for Paralympic Shooting With Vision Impairment

    Directory of Open Access Journals (Sweden)

    Peter M Allen

    2016-11-01

    Full Text Available The aim of this study was to investigate the level of vision impairment that would reduce performance in shooting; to guide development of entry criteria to visually impaired (VI shooting. Nineteen international-level shooters without vision impairment took part in the study. Participants shot an air rifle, while standing, towards a regulation target placed at the end of a 10m shooting range. Cambridge simulation glasses were used to simulate six different levels of vision impairment. Visual acuity (VA and contrast sensitivity (CS were assessed along with shooting performance in each of seven conditions of simulated impairment and compared to that with habitual vision. Shooting performance was evaluated by calculating each individual’s average score in every level of simulated vision impairment and normalising this score by expressing it as a percentage of the baseline performance achieved with habitual vision. Receiver Operating Characteristic (ROC curves were constructed to evaluate the ability of different VA and CS cut-off criteria to appropriately classify these athletes as achieving ‘expected’ or ‘below expected’ shooting results based on their performance with different levels of VA and CS. Shooting performance remained relatively unaffected by mild decreases in VA and CS, but quickly deteriorated with more moderate losses. The ability of visual function measurements to classify shooting performance was good, with 78% of performances appropriately classified using a cut-off of 0.53 logMAR and 74% appropriately classified using a cut-off of 0.83 logCS. The current inclusion criteria for VI shooting (1.0 logMAR is conservative, maximising the chance of including only those with an impairment that does impact performance, but potentially excluding some who do have a genuine impairment in the sport. A lower level of impairment would include more athletes who do have a genuine impairment but would potentially include those who do not

  19. Shoot and root morphogenesis from Eucalyptus grandis x urophylla ...

    African Journals Online (AJOL)

    Eucalyptus grandis x urophylla plantlets were regenerated via indirect organogenesis. Histological assessment of their development focused on identifying the calli, the differentiation of shoots from the calli and the shoot-root junction from the nascent shoots. Vascular tissue formation within the callus preceded that of ...

  20. Pollen-Mediated Gene Flow in Maize: Implications for Isolation Requirements and Coexistence in Mexico, the Center of Origin of Maize.

    Science.gov (United States)

    Baltazar, Baltazar M; Castro Espinoza, Luciano; Espinoza Banda, Armando; de la Fuente Martínez, Juan Manuel; Garzón Tiznado, José Antonio; González García, Juvencio; Gutiérrez, Marco Antonio; Guzmán Rodríguez, José Luis; Heredia Díaz, Oscar; Horak, Michael J; Madueño Martínez, Jesús Ignacio; Schapaugh, Adam W; Stojšin, Duška; Uribe Montes, Hugo Raúl; Zavala García, Francisco

    2015-01-01

    Mexico, the center of origin of maize (Zea mays L.), has taken actions to preserve the identity and diversity of maize landraces and wild relatives. Historically, spatial isolation has been used in seed production to maintain seed purity. Spatial isolation can also be a key component for a strategy to minimize pollen-mediated gene flow in Mexico between transgenic maize and sexually compatible plants of maize conventional hybrids, landraces, and wild relatives. The objective of this research was to generate field maize-to-maize outcrossing data to help guide coexistence discussions in Mexico. In this study, outcrossing rates were determined and modeled from eight locations in six northern states, which represent the most economically important areas for the cultivation of hybrid maize in Mexico. At each site, pollen source plots were planted with a yellow-kernel maize hybrid and surrounded by plots with a white-kernel conventional maize hybrid (pollen recipient) of the same maturity. Outcrossing rates were then quantified by assessing the number of yellow kernels harvested from white-kernel hybrid plots. The highest outcrossing values were observed near the pollen source (12.9% at 1 m distance). The outcrossing levels declined sharply to 4.6, 2.7, 1.4, 1.0, 0.9, 0.5, and 0.5% as the distance from the pollen source increased to 2, 4, 8, 12, 16, 20, and 25 m, respectively. At distances beyond 20 m outcrossing values at all locations were below 1%. These trends are consistent with studies conducted in other world regions. The results suggest that coexistence measures that have been implemented in other geographies, such as spatial isolation, would be successful in Mexico to minimize transgenic maize pollen flow to conventional maize hybrids, landraces and wild relatives.

  1. Evapotranspiración y eficiencia en el uso de agua en intercultivos maíz-soja vs cultivos puros Evapotranspiration and water use efficiency in maize-soybean intercrops and the sole crops

    Directory of Open Access Journals (Sweden)

    Cristian Valenzuela

    2009-12-01

    Full Text Available En este trabajo se evaluó la evapotranspiración real (ETR y la eficiencia en el uso de agua (EUA del intercultivo maíz-soja bajo dos arreglos espaciales y en los respectivos cultivos puros. El experimento se realizó en la Unidad Integrada Balcarce Facultad de Ciencias Agrarias, UNMdP-EEA INTA durante la campaña 2007-08. Los tratamientos fueron: a Intercultivo con dos surcos de soja y uno de maíz (2_1, b intercultivo con tres surcos de soja y dos de maíz (3_2, c maíz puro (M y d soja pura (S. El cultivo de maíz se sembró el 18/10 y el de soja el 3/12. La ETR acumulada entre la emergencia de maíz y la madurez fisiológica de soja fue de 586,7, 564,8, 570,5 y 596,0 mm para 2_1, 3_2, M y S, respectivamente. La EUA en biomasa (EUA B resultó significativamente más alta en M (44,5 kg-1mm-1 que en S (18,6 kg ha-1mm-1, 2_1 (35,3 kg ha-1mm-1 y 3_2 (35,3 kg ha-1mm-1. La EUA B de S fue significativamente menor que en los intercultivos. Las EUA en grano fueron 21,2, 5,5, 16,9 y 17,0 kg ha-1mm-1 para M, S, 2_1 e 3_2, respectivamente. La significancia de las diferencias entre tratamientos coincidió con la descripta para la EUA B.This work studies the real evapotranspiration (RET and the water use efficiency (WUE in a maize-soybean intercrop with two spatial arrangements and in their sole crops. The experiment was conducted in the UIB, FCA-UNMdP EEA INTA during the 2007-2008 season. Treatments were: a 2 rows soybeans and 1 row maize intercrop (2_1, b 3 rows soybean and 2 rows maize intercrop (3_2, c sole maize and d sole soybean. Crops were sown on October 18 (maize and December 3 (soybean. RET accumulated from maize emergence to soybean physiological maturity was 586,7, 564,8, 570,5 y 596,0 mm for 2_1, 3_2, sole maize and sole soybean, respectively. Water use efficiency (WUE as the quotient between accumulated shoot biomass and RET was significantly higher in sole maize (44,5 kg ha-1mm-1 than in sole soybean (18,6 kg ha-1mm-1, 2_1 (35,3 kg ha-1mm

  2. Structure–Function Relationships in Highly Modified Shoots of Cactaceae

    Science.gov (United States)

    MAUSETH, JAMES D.

    2006-01-01

    • Background and Aims Cacti are extremely diverse structurally and ecologically, and so modified as to be intimidating to many biologists. Yet all have the same organization as most dicots, none differs fundamentally from Arabidopsis or other model plants. This review explains cactus shoot structure, discusses relationships between structure, ecology, development and evolution, and indicates areas where research on cacti is necessary to test general theories of morphogenesis. • Scope Cactus leaves are diverse; all cacti have foliage leaves; many intermediate stages in evolutionary reduction of leaves are still present; floral shoots often have large, complex leaves whereas vegetative shoots have microscopic leaves. Spines are modified bud scales, some secrete sugar as extra-floral nectaries. Many cacti have juvenile/adult phases in which the flowering adult phase (a cephalium) differs greatly from the juvenile; in some, one side of a shoot becomes adult, all other sides continue to grow as the juvenile phase. Flowers are inverted: the exterior of a cactus ‘flower’ is a hollow vegetative shoot with internodes, nodes, leaves and spines, whereas floral organs occur inside, with petals physically above stamens. Many cacti have cortical bundles vascularizing the cortex, however broad it evolves to be, thus keeping surface tissues alive. Great width results in great weight of weak parenchymatous shoots, correlated with reduced branching. Reduced numbers of shoot apices is compensated by great increases in number of meristematic cells within individual SAMs. Ribs and tubercles allow shoots to swell without tearing during wet seasons. Shoot epidermis and cortex cells live and function for decades then convert to cork cambium. Many modifications permit water storage within cactus wood itself, adjacent to vessels. PMID:16820405

  3. Structure-function relationships in highly modified shoots of cactaceae.

    Science.gov (United States)

    Mauseth, James D

    2006-11-01

    Cacti are extremely diverse structurally and ecologically, and so modified as to be intimidating to many biologists. Yet all have the same organization as most dicots, none differs fundamentally from Arabidopsis or other model plants. This review explains cactus shoot structure, discusses relationships between structure, ecology, development and evolution, and indicates areas where research on cacti is necessary to test general theories of morphogenesis. Cactus leaves are diverse; all cacti have foliage leaves; many intermediate stages in evolutionary reduction of leaves are still present; floral shoots often have large, complex leaves whereas vegetative shoots have microscopic leaves. Spines are modified bud scales, some secrete sugar as extra-floral nectaries. Many cacti have juvenile/adult phases in which the flowering adult phase (a cephalium) differs greatly from the juvenile; in some, one side of a shoot becomes adult, all other sides continue to grow as the juvenile phase. Flowers are inverted: the exterior of a cactus 'flower' is a hollow vegetative shoot with internodes, nodes, leaves and spines, whereas floral organs occur inside, with petals physically above stamens. Many cacti have cortical bundles vascularizing the cortex, however broad it evolves to be, thus keeping surface tissues alive. Great width results in great weight of weak parenchymatous shoots, correlated with reduced branching. Reduced numbers of shoot apices is compensated by great increases in number of meristematic cells within individual SAMs. Ribs and tubercles allow shoots to swell without tearing during wet seasons. Shoot epidermis and cortex cells live and function for decades then convert to cork cambium. Many modifications permit water storage within cactus wood itself, adjacent to vessels.

  4. Spine micromorphology of normal and hyperhydric Mammillaria gracilis Pfeiff. (Cactaceae) shoots.

    Science.gov (United States)

    Peharec, P; Posilović, H; Balen, B; Krsnik-Rasol, M

    2010-07-01

    Artificial conditions of tissue culture affect growth and physiology of crassulacean acid metabolism plants which often results in formation of hyperhydric shoots. In in vitro conditions Mammillaria gracilis Pfeiff. (Cactaceae) growth switches from organized to unorganized way, producing a habituated organogenic callus which simultaneously regenerates morphologically normal as well as altered hyperhydric shoots. In this study, influence of tissue culture conditions on morphology of cactus spines of normal and hyperhydric shoots was investigated. Spines of pot-grown Mammillaria plants and of in vitro regenerated shoots were examined with stereo microscope and scanning electron microscope. The pot-grown plants had 16-17 spines per areole. In vitro grown normal shoots, even though they kept typical shoot morphology, had lower number of spines (11-12) and altered spine morphology. This difference was even more pronounced in spine number (six to seven) and morphology of the hyperhydric shoots. Scanning electron microscopy analysis revealed remarkable differences in micromorphology of spine surface between pot-grown and in vitro grown shoots. Spines of in vitro grown normal shoots showed numerous long trichomes, which were more elongated on spines of the hyperhydric shoots; the corresponding structures on spine surface of pot-grown plants were noticed only as small protrusions. Scanning electron microscopy morphometric studies showed that the spines of pot-grown plants were significantly longer compared to the spines of shoots grown in tissue culture. Moreover, transverse section shape varies from elliptical in pot-grown plants to circular in normal and hyperhydric shoots grown in vitro. Cluster and correspondence analyses performed on the scanning electron microscope obtained results suggest great variability among spines of pot-grown plants. Spines of in vitro grown normal and hyperhydric shoots showed low level of morphological variation among themselves despite the

  5. Millet's Shooting Stars

    Science.gov (United States)

    Beech, M.

    1988-12-01

    In this essay two paintings by the French artist Jean-Francois Millet are described. These paintings, Les Etoiles Filantes and Nuit Etoilée are particularly interesting since they demonstrate the rare artistic employment of the shooting-star image and metaphor.

  6. Multiple shoot regeneration of cotton (Gossypium hirsutum L.) via ...

    African Journals Online (AJOL)

    user

    2011-03-14

    Mar 14, 2011 ... Induction of multiple shoots of cotton (Gossypium hirsutum L.) plant in two commercial varieties (Sahel and Varamin) using shoot apex was done. Explants were isolated from 3 - 4 days old seedlings, then they were cultured on a shoot induction media, modified MS nutrient agar with combinations: 1- ...

  7. Production of polyploids from cultured shoot tips of Eucalyptus ...

    African Journals Online (AJOL)

    Polyploids from cultured shoot tips of Eucalyptus globulus were produced by treatment with colchicine. Results showed that the combination of 0.5% colchicine and treating multiple shoot clumps for 4 days was the most appropriate conditions for E. globulus polyploidy induction and the effect of the use of multiple shoot ...

  8. Metabolic changes associated with shoot formation in tobacco callus cultures

    Energy Technology Data Exchange (ETDEWEB)

    Grady, K.L.

    1982-08-01

    Callus tissue derived from Nicotiana tabacum L. stem pith parenchyma cells was grown either on medium which maintains the callus in an undifferentiated state, or on medium which induces the formation of shoots. Two complementary types of studies were performed with the goal of establishing metabolic markers for the initiation of shoot formation: one designed to characterize the flow of radioactive sucrose into various metabolic pools, and one which allowed measurement of intermediary metabolite concentrations. In the former, callus tissue was incubated in (U-/sup 14/C)sucrose for periods up to one hour, and patterns of metabolite labelling in tissue grown on shoot-forming and non-shoot-forming media were compared. In the latter studies, tissue was grown for an entire subculture period on non-shoot-forming medium labelled with (U-/sup 14/C)sucrose, then subcultured to labelled non-shoot-forming or shoot-forming media, and sampled at intervals during the first week of growth. 189 references.

  9. Metabolic changes associated with shoot formation in tobacco callus cultures

    International Nuclear Information System (INIS)

    Grady, K.L.

    1982-08-01

    Callus tissue derived from Nicotiana tabacum L. stem pith parenchyma cells was grown either on medium which maintains the callus in an undifferentiated state, or on medium which induces the formation of shoots. Two complementary types of studies were performed with the goal of establishing metabolic markers for the initiation of shoot formation: one designed to characterize the flow of radioactive sucrose into various metabolic pools, and one which allowed measurement of intermediary metabolite concentrations. In the former, callus tissue was incubated in [U- 14 C]sucrose for periods up to one hour, and patterns of metabolite labelling in tissue grown on shoot-forming and non-shoot-forming media were compared. In the latter studies, tissue was grown for an entire subculture period on non-shoot-forming medium labelled with [U- 14 C]sucrose, then subcultured to labelled non-shoot-forming or shoot-forming media, and sampled at intervals during the first week of growth. 189 references

  10. Maize water status and physiological traits as affected by root endophytic fungus Piriformospora indica under combined drought and mechanical stresses.

    Science.gov (United States)

    Hosseini, Fatemeh; Mosaddeghi, Mohammad Reza; Dexter, Anthony Roger; Sepehri, Mozhgan

    2018-05-01

    Under combined drought and mechanical stresses, mechanical stress primarily controlled physiological responses of maize. Piriformospora indica mitigated the adverse effects of stresses, and inoculated maize experienced less oxidative damage and had better adaptation to stressful conditions. The objective of this study was to investigate the effect of maize root colonization by an endophytic fungus P. indica on plant water status, physiological traits and root morphology under combined drought and mechanical stresses. Seedlings of inoculated and non-inoculated maize (Zea mays L., cv. single cross 704) were cultivated in growth chambers filled with moistened siliceous sand at a matric suction of 20 hPa. Drought stress was induced using PEG 6000 solution with osmotic potentials of 0, - 0.3 and - 0.5 MPa. Mechanical stress (i.e., penetration resistances of 1.05, 4.23 and 6.34 MPa) was exerted by placing weights on the surface of the sand medium. After 30 days, leaf water potential (LWP) and relative water content (RWC), root and shoot fresh weights, root volume (RV) and diameter (RD), leaf proline content, leaf area (LA) and catalase (CAT) and ascorbate peroxidase (APX) activities were measured. The results show that exposure to individual drought and mechanical stresses led to higher RD and proline content and lower plant biomass, RV and LA. Moreover, increasing drought and mechanical stress severity increased APX activity by about 1.9- and 3.1-fold compared with the control. When plants were exposed to combined stresses, mechanical stress played the dominant role in controlling plant responses. P. indica-inoculated plants are better adapted to individual and combined stresses. The inoculated plants had greater RV, LA, RWC, LWP and proline content under stressful conditions. In comparison with non-inoculated plants, inoculated plants showed lower CAT and APX activities which means that they experienced less oxidative stress induced by stressful conditions.

  11. Shooting mechanisms in Nature : A systematic review

    NARCIS (Netherlands)

    Sakes, A.; van der Wiel, M.; Henselmans, P.W.J.; van Leeuwen, J.L.; Dodou, D.; Breedveld, P.

    2016-01-01

    Background
    In nature, shooting mechanisms are used for a variety of purposes, including prey capture, defense, and reproduction. This review offers insight into the working principles of shooting mechanisms in fungi, plants, and animals in the light of the specific functional demands that these

  12. Shoot organogenesis in oleaster (Elaeagnus angustifolia L.)

    African Journals Online (AJOL)

    STORAGESEVER

    2009-02-04

    Feb 4, 2009 ... Regenerated plantlets were acclimatized and successfully transplanted to soil. Key words: shoot organogenesis, callus, ... saline and alkaline soils (Economou and Maloupa, 1995). Its fruits have been used as a .... cally inert compounds as reported by Kaminek (1992). Direct shoot organogenesis without ...

  13. Cell fate regulation in the shoot meristem.

    Science.gov (United States)

    Laux, T; Mayer, K F

    1998-04-01

    The shoot meristem is a proliferative centre containing pluripotent stem cells that are the ultimate source of all cells and organs continuously added to the growing shoot. The progeny of the stem cells have two developmental options, either to renew the stem cell population or to leave the meristem and to differentiate, possibly according to signals from more mature tissue. The destiny of each cell depends on its position within the dynamic shoot meristem. Genetic data suggest a simple model in which graded positional information is provided by antagonistic gene functions and is interpreted by genes which regulate cell fate.

  14. Co-Inoculation Effects of Thiobacillus thiooxidans Bacteria and Mycorrhiza (Glomus spp. on Maize Nutrition at Different Levels of Sulfur

    Directory of Open Access Journals (Sweden)

    A. Gholami

    2016-02-01

    was performed on all experimental data and means were compared using the least Significant Differences (LSD test with SAS software. The significance level was p>0.05 unless stated otherwise. Results and Discussion: Results showed sulfur application increased significantly the amount of S, P, N, Fe, Zn, shoot dry weight and leaf chlorophyll of maize. With increasing Sulfur, sulfur concentration in plant shoot increased with linear trend. The highest S concentration was obtained with 200 mg.kg-1 S and the lowest amount was obtained from control plots. Applications of 50, 100, 150 and 200 mg.kg-1 S increased P content about 0.45, 3.91, 4.74 and 5.56 %, respectively. The highest N contentwas obtained with 100 mg.kg-1 S. The thiobacillus significantly increased P, Fe, Zn anddecreased root colonization and soil pH compared to control. Thiobacillus bacteria increased shoot P only with application of 100 mg.kg-1 S. Mycorrhizal inoculation increased the amount of N, P, S, Fe, Zn, shoot dry weight and root colonization. Inoculation with G.intra and G.mosseae increased shoot P content about 4.18 and 3.34% in comparison with the control plots. Single or combination of sulfur and thiobacillus had a negative impact on the root colonization. Based on the results it seems that sulfur, thiobacillus and mycorrhiza in alkaline soils improved crops nutrition and growth. S application and thiobacillus interaction on S concentration of maize shoot were significant. In condition of 0 or 50 mg.kg-1 S application, inoculation of thiobacillus is recommended. Also, the effects of mycorrhiza on P shoot was significant with no application of S.

  15. Digestate as nutrient source for biomass production of sida, lucerne and maize

    Science.gov (United States)

    Bueno Piaz Barbosa, Daniela; Nabel, Moritz; Horsch, David; Tsay, Gabriela; Jablonowski, Nicolai

    2014-05-01

    Biogas as a renewable energy source is supported in many countries driven by climate and energy policies. Nowadays, Germany is the largest biogas producer in the European Union. A sustainable resource management has to be considered within this growing scenario of biogas production systems and its environmental impacts. In this respect, studies aiming to enhance the management of biogas residues, which represents a valuable source of nutrients and organic fertilization, are needed. Our objective was to evaluate the digestate (biogas residue after fermentation process) application as nutrient source for biomass production of three different plants: sida (Sida hermaphrodita - Malvaceae), lucerne (Medicago sativa - Fabaceae) and maize (Zea mays - Poaceae). The digestate was collected from an operating biogas facility (fermenter volume 2500m³, ADRW Natur Power GmbH & Co.KG Titz/Ameln, Germany) composed of maize silage as the major feedstock, and minor amounts of chicken manure, with a composition of 3,29% N; 1,07% P; 3,42% K; and 41,2% C. An arable field soil (Endogleyic Stagnosol) was collected from 0-30 cm depth and 5 mm sieved. The fertilizer treatments of the plants were established in five replicates including digestate (application amount equivalent to 40 t ha-1) and NPK fertilizer (application amount equivalent to 200:100:300 kg ha-1) applications, according to the recommended agricultural doses, and a control (no fertilizer application). The digestate and the NPK fertilizer were thoroughly mixed with the soil in a rotatory shaker for 30 min. The 1L pots were filled with the fertilized soil and the seedlings were transplanted and grown for 30 days under greenhouse conditions (16 h day/8 h night: 24ºC/18ºC; 60% air humidity). After harvesting, the leaf area was immediately measured, and the roots were washed to allow above and below-ground biomass determination. Subsequently, shoots and roots were dried at 60ºC for 48 hours. The biomass and leaf area of sida

  16. Accuracy of Skill Performance in the Basketball Free Throw Shooting

    Directory of Open Access Journals (Sweden)

    Igawa Shoji

    2011-12-01

    Full Text Available The purpose of this study were to investigates how timing of shot of skilled player and assess performance accuracy of free throw shooting. Ten college students participated in this study (5 skilled players, and 5 naïve participants aged 18-23 years. They performed free throw shooting at 10 times. Shooting seen was recorded three cameras and analyzed shooting successful rate, off-target distance (the distance between the basketball through point and the center of the goal and shot timing. Shot timing was not significant difference. Shooting successful rate of skilled players was higher than unskilled players. Offtarget distance of skilled players was significant smaller than naive player. Consequently, skilled player is possible to aim at the center of the goal and shooting near the center of goal.

  17. Gibberellin A3 Is Biosynthesized from Gibberellin A20 via Gibberellin A5 in Shoots of Zea mays L. 1

    Science.gov (United States)

    Fujioka, Shozo; Yamane, Hisakazu; Spray, Clive R.; Phinney, Bernard O.; Gaskin, Paul; MacMillan, Jake; Takahashi, Nobutaka

    1990-01-01

    [17-13C,3H]-Labeled gibberellin A20 (GA20), GA5, and GA1 were fed to homozygous normal (+/+), heterozygous dominant dwarf (D8/+), and homozygous dominant dwarf (D8/D8) seedlings of Zea mays L. (maize). 13C-Labeled GA29, GA8, GA5, GA1, and 3-epi-GA1, as well as unmetabolized [13C]GA20, were identified by gas chromatography-selected ion monitoring (GC-SIM) from feeds of [17-13C, 3H]GA20 to all three genotypes. 13C-Labeled GA8 and 3-epi-G1, as well as unmetabolized [13C]GA1, were identified by GC-SIM from feeds of [17-13C, 3H]GA1 to all three genotypes. From feeds of [17-13C, 3H]GA5, 13C-labeled GA3 and the GA3-isolactone, as well as unmetabolized [13C]GA5, were identified by GC-SIM from +/+ and D8/D8, and by full scan GC-MS from D8/+. No evidence was found for the metabolism of [17-13C, 3H]GA5 to [13C]GA1, either by full scan GC-mass spectrometry or by GC-SIM. The results demonstrate the presence in maize seedlings of three separate branches from GA20, as follows: (a) GA20 → GA1 → GA8; (b) GA20 → GA5 → GA3; and (c) GA20 → GA29. The in vivo biogenesis of GA3 from GA5, as well as the origin of GA5 from GA20, are conclusively established for the first time in a higher plant (maize shoots). PMID:16667678

  18. Is Drought Tolerance in Maize (Zea Mays L.) Cultivars at the Juvenile Stage Maintained at the Reproductive Stage

    International Nuclear Information System (INIS)

    Bashir, N.; Mahmood, S.; Zafar, Z. U.; Athar, H. R.; Manzoor, H.; Rasul, S.

    2016-01-01

    Among several abiotic stresses, drought or water scarcity is a major constraint for crop production in many parts of the world. Six maize (Zea mays L.) cultivars; DTC, EV-77, EV-78, EV-79, Faisalabad mays, and 6621 were evaluated for drought tolerance at germination and seedling stages. Distilled deionized water was used as control but uniform drought stress was induced using 3, 6 and 9 percent of polyethylene glycol-6000 (PEG-6000) which correspond to osmotic potential of -0.0466, -0.0759 and -0.0876 MPa, respectively. PEG influenced the germination and growth of the cultivars in a concentration dependent manner but the highest level of PEG induced more drastic decline for the various attributes studied. The cultivars showed significantly variable responses to different levels of PEG. The result of study clearly suggested variability of characters for drought tolerance among maize cultivars. Based on the pattern of variability for various attributes, 3 groups of cultivars can be classified. The cultivar 6621 had a consistent degree of sensitivity to drought in terms the reduction of various attributes studied. The second group includes DTC which showed a steady tolerance ((germination percentage (GP), energy of emergence (EG), germination rate (GR), root fresh and dry weight (RFW and RDW), shoot fresh and dry weight (SFW and SDW), dry biomass tolerance index (DBTI) and seedling vigor index (SVI)) thus seemed to provide some manifestation of drought tolerance. For the third group of cultivars, pattern of drought tolerance was independent for germination, growth and physiological indices as an incoherent variability of attributes was observed. A similar pattern of variability for a number of characters to simulated water stress in the cultivar DTC served as reliable determinants for drought tolerance in maize. To assess maintenance of degree of drought tolerance selected maize cultivars, a field experiment was also conducted. Kernel yield, 1000- kernel weight (g

  19. Journalism and School Shootings in Finland 2007 -2008

    OpenAIRE

    Raittila, Pentti; Koljonen, Kari; Väliverronen, Jari

    2010-01-01

    Two school shootings in Finland (Jokela in 2007 and Kauhajoki in 2008) resulted in the death of 20 people, and they shook not only the foundations of Finnish society but also of the profession that reported about the tragedies. This report is based on research conducted on school shootings at the University of Tampere Journalism Research and Development Centre between 2008 and 2009. The analysis concentrates on both the journalistic texts published on the shootings and journalists' actions...

  20. Maize, tropical (Zea mays L.).

    Science.gov (United States)

    Assem, Shireen K

    2015-01-01

    Maize (Zea mays L.) is the third most important food crop globally after wheat and rice. In sub-Saharan Africa, tropical maize has traditionally been the main staple of the diet; 95 % of the maize grown is consumed directly as human food and as an important source of income for the resource-poor rural population. The biotechnological approach to engineer biotic and abiotic traits implies the availability of an efficient plant transformation method. The production of genetically transformed plants depends both on the ability to integrate foreign genes into target cells and the efficiency with which plants are regenerated. Maize transformation and regeneration through immature embryo culture is the most efficient system to regenerate normal transgenic plants. However, this system is highly genotype dependent. Genotypes adapted to tropic areas are difficult to regenerate. Therefore, transformation methods used with model genotypes adapted to temperate areas are not necessarily efficient with tropical lines. Agrobacterium-mediated transformation is the method of choice since it has been first achieved in 1996. In this report, we describe a transformation method used successfully with several tropical maize lines. All the steps of transformation and regeneration are described in details. This protocol can be used with a wide variety of tropical lines. However, some modifications may be needed with recalcitrant lines.

  1. Effect of Bambara nut and cowpea intercropped with maize at different times on nutritive quality of maize for ruminant feeding

    Directory of Open Access Journals (Sweden)

    Olanite, J. A.

    2017-06-01

    Full Text Available Effects of Bambara nut and cowpea planted with maize at different times on nutritive quality of maize forage were investigated. The study was laid out in a Completely Randomized Design and the treatments were combination of crop types (Bambara nut-maize (MB and Cowpea-maize (MC and planting times of legumes (2 wks before planting maize, 2WBPM and 2 wks after planting maize, 2WAPM, and sole maize (as control. An experimental field measuring 19 m � 11 m was divided into 3 replicates; each replicate was sub-divided into 5 plots of dimension 3 m2 each, with 1 m and 2 m inter-plots and inter-blocks spacing respectively. Maize forage samples were harvested on each plot at 10 wks after planting, oven-dried, milled and analyzed to evaluate the chemical composition, mineral composition, in vitro gas production and post-incubation characteristics. Results revealed significant differences (P<0.05 among treatments with the highest (95.00% and least DM (92.12% values were recorded for MB 2WBPM and MC 2WAPM, respectively. CP values ranged from 10.36% in MB 2WBPM to 15.67% in MC 2WBPM but not significantly different from 14.19 % recorded for sole maize. Ash ranged from 7.00% in MB 2WAPM to 10.00% in sole maize. MC 2WBPM and sole maize had the highest (50.63% and least (38.40% in ADF content (P<0.05. ADL value (7.25% observed in MB 2WBPM was the highest, compared to the least (5.00% in sole maize. Sole maize recorded the least (40.40% and highest (25.91% cellulose and hemicellulose contents, respectively while MC 2WAPM had the highest (50.88% and lowest (15.80% values for cellulose and hemicellulose, respectively. Ca content (4.55g/kg of MB 2WAPM was lower than the other treatments. P content ranged from 3.54 g/kg in MB 2WAPM to 12.02 g/kg in MC 2WAPM. Gas production rates only varied (P<0.05 at the 3rd, 6th, 24th and 48th hours of incubation. MB 2WBPM yielded highest values of short chain fatty acids (0.09 �mol and metabolizable energy (3.08 MJ/kg while MB

  2. Defense.gov Special Report: Fort Hood Shooting

    Science.gov (United States)

    identify possible insider threats, Army Secretary John M. McHugh told lawmakers. Story Obama: Soldiers ," Army Secretary John M. McHugh told lawmakers. Story President Praises Swift Response to Fort Hood Remarks on Fort Hood Shooting at White House McHugh, Odierno Address Fort Hood Shooting Before Congress

  3. Lead pollution of shooting range soils | Sehube | South African ...

    African Journals Online (AJOL)

    Atotal of eight military shooting ranges were used for this study. Soil samples were collected at each of the eight shooting ranges at the berm, target line, 50 and 100 m from berm. In all of the shooting ranges investigated the highest total lead (Pb) concentrations were found in the bermsoils. Elevated Pb concentrations of 38 ...

  4. Contagion in Mass Killings and School Shootings.

    Directory of Open Access Journals (Sweden)

    Sherry Towers

    Full Text Available Several past studies have found that media reports of suicides and homicides appear to subsequently increase the incidence of similar events in the community, apparently due to the coverage planting the seeds of ideation in at-risk individuals to commit similar acts.Here we explore whether or not contagion is evident in more high-profile incidents, such as school shootings and mass killings (incidents with four or more people killed. We fit a contagion model to recent data sets related to such incidents in the US, with terms that take into account the fact that a school shooting or mass murder may temporarily increase the probability of a similar event in the immediate future, by assuming an exponential decay in contagiousness after an event.We find significant evidence that mass killings involving firearms are incented by similar events in the immediate past. On average, this temporary increase in probability lasts 13 days, and each incident incites at least 0.30 new incidents (p = 0.0015. We also find significant evidence of contagion in school shootings, for which an incident is contagious for an average of 13 days, and incites an average of at least 0.22 new incidents (p = 0.0001. All p-values are assessed based on a likelihood ratio test comparing the likelihood of a contagion model to that of a null model with no contagion. On average, mass killings involving firearms occur approximately every two weeks in the US, while school shootings occur on average monthly. We find that state prevalence of firearm ownership is significantly associated with the state incidence of mass killings with firearms, school shootings, and mass shootings.

  5. Contagion in Mass Killings and School Shootings.

    Science.gov (United States)

    Towers, Sherry; Gomez-Lievano, Andres; Khan, Maryam; Mubayi, Anuj; Castillo-Chavez, Carlos

    2015-01-01

    Several past studies have found that media reports of suicides and homicides appear to subsequently increase the incidence of similar events in the community, apparently due to the coverage planting the seeds of ideation in at-risk individuals to commit similar acts. Here we explore whether or not contagion is evident in more high-profile incidents, such as school shootings and mass killings (incidents with four or more people killed). We fit a contagion model to recent data sets related to such incidents in the US, with terms that take into account the fact that a school shooting or mass murder may temporarily increase the probability of a similar event in the immediate future, by assuming an exponential decay in contagiousness after an event. We find significant evidence that mass killings involving firearms are incented by similar events in the immediate past. On average, this temporary increase in probability lasts 13 days, and each incident incites at least 0.30 new incidents (p = 0.0015). We also find significant evidence of contagion in school shootings, for which an incident is contagious for an average of 13 days, and incites an average of at least 0.22 new incidents (p = 0.0001). All p-values are assessed based on a likelihood ratio test comparing the likelihood of a contagion model to that of a null model with no contagion. On average, mass killings involving firearms occur approximately every two weeks in the US, while school shootings occur on average monthly. We find that state prevalence of firearm ownership is significantly associated with the state incidence of mass killings with firearms, school shootings, and mass shootings.

  6. The effect of triacontanol on shoot multiplication and production of antioxidant compounds in shoot cultures of Salvia officinalis L.

    Directory of Open Access Journals (Sweden)

    Izabela Grzegorczyk

    2011-01-01

    Full Text Available This report describes the effect of triacontanol on shoot multiplication and production of antioxidant compounds (carnosic acid, carnosol and rosmarinic acid in S. officinalis cultures grown on MS basal medium (agar solidified medium supplemented with 0.1 mg l-1 IAA, 0.45 mg l-1 BAP. It was found that shoot proliferation significantly increased when triacontanol at concentrations of 5, 10 or 20 µg l-1 was added to the medium. HPLC analysis of acetone and methanolic extracts of sage shoots showed that the production of diterpenoids, carnosic acid/carnosol ratio, as well as, contents of rosmarinic acid were also affected by the treatment with triacontanol. The highest stimulation effect of triacontanol was observed on the production of carnosol, where the treatment with 20 µg l l-1 increased the content of this diterpenoid 4.5-fold compared to that in the control (sage shoots growing on MS basal medium, only.

  7. Australian Mass Shootings: An Analysis of Incidents and Offenders.

    Science.gov (United States)

    McPhedran, Samara

    2017-06-01

    Mass shooting events are relatively underresearched, and most study comes from the United States. Despite significant international interest, little is known about other countries' experiences of these events. The current study examines Australian mass shooting incidents and offenders, with emphasis on mental illness, life strains, and offenders' life histories. Australia had 14 mass shootings between 1964 and 2014. Most offenders experienced acute life stressors and/or chronic strains leading up to the event; however, diagnosed mental illness was less commonly documented. These observations provide new information about mass shooting incidents and offenders, and can help to inform international policy development.

  8. Characterization of Indian and exotic quality protein maize (QPM ...

    African Journals Online (AJOL)

    Polymorphism analysis and genetic diversity of normal maize and quality protein maize (QPM) inbreds among locally well adapted germplasm is a prerequisite for hybrid maize breeding program. The diversity analyses of 48 maize accessions including Indian and exotic germplasm using 75 simple sequence repeat (SSR) ...

  9. Variation for N Uptake System in Maize: Genotypic Response to N Supply

    KAUST Repository

    Garnett, Trevor; Plett, Darren; Conn, Vanessa; Conn, Simon; Rabie, Huwaida; Rafalski, J. Antoni; Dhugga, Kanwarpal; Tester, Mark A.; Kaiser, Brent N.

    2015-01-01

    An understanding of the adaptations made by plants in their nitrogen (N) uptake systems in response to reduced N supply is important to the development of cereals with enhanced N uptake efficiency (NUpE). Twenty seven diverse genotypes of maize (Zea mays, L.) were grown in hydroponics for 3 weeks with limiting or adequate N supply. Genotypic response to N was assessed on the basis of biomass characteristics and the activities of the nitrate (NO−3) and ammonium (NH+4) high-affinity transport systems. Genotypes differed greatly for the ability to maintain biomass with reduced N. Although, the N response in underlying biomass and N transport related characteristics was less than that for biomass, there were clear relationships, most importantly, lines that maintained biomass at reduced N maintained net N uptake with no change in size of the root relative to the shoot. The root uptake capacity for both NO−3 and NH+4 increased with reduced N. Transcript levels of putative NO−3 and NH+4 transporter genes in the root tissue of a subset of the genotypes revealed that predominately ZmNRT2 transcript levels responded to N treatments. The correlation between the ratio of transcripts of ZmNRT2.2 between the two N levels and a genotype's ability to maintain biomass with reduced N suggests a role for these transporters in enhancing NUpE. The observed variation in the ability to capture N at low N provides scope for both improving NUpE in maize and also to better understand the N uptake system in cereals.

  10. Variation for N Uptake System in Maize: Genotypic Response to N Supply

    KAUST Repository

    Garnett, Trevor

    2015-11-09

    An understanding of the adaptations made by plants in their nitrogen (N) uptake systems in response to reduced N supply is important to the development of cereals with enhanced N uptake efficiency (NUpE). Twenty seven diverse genotypes of maize (Zea mays, L.) were grown in hydroponics for 3 weeks with limiting or adequate N supply. Genotypic response to N was assessed on the basis of biomass characteristics and the activities of the nitrate (NO−3) and ammonium (NH+4) high-affinity transport systems. Genotypes differed greatly for the ability to maintain biomass with reduced N. Although, the N response in underlying biomass and N transport related characteristics was less than that for biomass, there were clear relationships, most importantly, lines that maintained biomass at reduced N maintained net N uptake with no change in size of the root relative to the shoot. The root uptake capacity for both NO−3 and NH+4 increased with reduced N. Transcript levels of putative NO−3 and NH+4 transporter genes in the root tissue of a subset of the genotypes revealed that predominately ZmNRT2 transcript levels responded to N treatments. The correlation between the ratio of transcripts of ZmNRT2.2 between the two N levels and a genotype\\'s ability to maintain biomass with reduced N suggests a role for these transporters in enhancing NUpE. The observed variation in the ability to capture N at low N provides scope for both improving NUpE in maize and also to better understand the N uptake system in cereals.

  11. A(maize)ing attraction: gravid Anopheles arabiensis are attracted and oviposit in response to maize pollen odours.

    Science.gov (United States)

    Wondwosen, Betelehem; Hill, Sharon R; Birgersson, Göran; Seyoum, Emiru; Tekie, Habte; Ignell, Rickard

    2017-01-23

    Maize cultivation contributes to the prevalence of malaria mosquitoes and exacerbates malaria transmission in sub-Saharan Africa. The pollen from maize serves as an important larval food source for Anopheles mosquitoes, and females that are able to detect breeding sites where maize pollen is abundant may provide their offspring with selective advantages. Anopheles mosquitoes are hypothesized to locate, discriminate among, and select such sites using olfactory cues, and that synthetic volatile blends can mimic these olfactory-guided behaviours. Two-port olfactometer and two-choice oviposition assays were used to assess the attraction and oviposition preference of gravid Anopheles arabiensis to the headspace of the pollen from two maize cultivars (BH-660 and ZM-521). Bioactive compounds were identified using combined gas chromatography and electroantennographic detection from the headspace of the cultivar found to be most attractive (BH-660). Synthetic blends of the volatile compounds were then assessed for attraction and oviposition preference of gravid An. arabiensis, as above. Here the collected headspace volatiles from the pollen of two maize cultivars was shown to differentially attract and stimulate oviposition in gravid An. arabiensis. Furthermore, a five-component synthetic maize pollen odour blend was identified, which elicited the full oviposition behavioural repertoire of the gravid mosquitoes. The cues identified from maize pollen provide important substrates for the development of novel control measures that modulate gravid female behaviour. Such measures are irrespective of indoor or outdoor feeding and resting patterns, thus providing a much-needed addition to the arsenal of tools that currently target indoor biting mosquitoes.

  12. Mixing of maize and wheat genomic DNA by somatic hybridization in regenerated sterile maize plants.

    Science.gov (United States)

    Szarka, B.; Göntér, I.; Molnár-Láng, M.; Mórocz, S.; Dudits, D.

    2002-07-01

    Intergeneric somatic hybridization was performed between albino maize ( Zea mays L.) protoplasts and mesophyll protoplasts of wheat ( Triticum aestivum L.) by polyethylene glycol (PEG) treatments. None of the parental protoplasts were able to produce green plants without fusion. The maize cells regenerated only rudimentary albino plantlets of limited viability, and the wheat mesophyll protoplasts were unable to divide. PEG-mediated fusion treatments resulted in hybrid cells with mixed cytoplasm. Six months after fusion green embryogenic calli were selected as putative hybrids. The first-regenerates were discovered as aborted embryos. Regeneration of intact, green, maize-like plants needed 6 months of further subcultures on hormone-free medium. These plants were sterile, although had both male and female flowers. The cytological analysis of cells from callus tissues and root tips revealed 56 chromosomes, but intact wheat chromosomes were not observed. Using total DNA from hybrid plants, three RAPD primer combinations produced bands resembling the wheat profile. Genomic in situ hybridization (GISH) using total wheat DNA as a probe revealed the presence of wheat DNA islands in the maize chromosomal background. The increased viability and the restored green color were the most-significant new traits as compared to the original maize parent. Other intermediate morphological traits of plants with hybrid origin were not found.

  13. Shooting stars

    International Nuclear Information System (INIS)

    Maurette, M.; Hammer, C.

    1985-01-01

    A shooting star passage -even a star shower- can be sometimes easily seen during moonless black night. They represent the partial volatilization in earth atmosphere of meteorites or micrometeorites reduced in cosmic dusts. Everywhere on earth, these star dusts are searched to be gathered. This research made one year ago on the Greenland ice-cap is this article object; orbit gathering projects are also presented [fr

  14. Changes of the laser-induced blue, green and red fluorescence signatures during greening of etiolated leaves of wheat

    International Nuclear Information System (INIS)

    Stober, F.; Lichtenthaler, H.K.

    1992-01-01

    The UV-laser-induced blue, green and red fluorescence-emission spectra were used to characterize the pigment status of etiolated leaves of wheat (Triticum aestivum L.) during a 48 h greening period under white light conditions. Upon UV-light excitation (337 nm) leaves not only show a fluorescence emission in the red spectral region between 650 and 800nm (chlorophyll fluorescence with maxima near 690nm and 735 nm), but also in the blue and green regions between 400 to 570 nm with maxima or shoulders near 450 nm (blue) and 530 nm (green). During greening of etiolated leaves the chlorophyll-fluorescence ratio F690/F735 strongly correlated with the total chlorophyll content and the ratio of the chlorophylls to the carotenoids (a+b/x+c). The ratio of the blue to the green fluorescence F450/F530 was also correlated with the total chlorophyll content and the ratio of chlorophylls to total carotenoids (a+b/x+c). Consequently, there also existed a correlation between the chlorophyll-fluorescence ratio F690/F735 and the ratio of the blue to green fluorescence F450/F530. In contrast, the ratios of the blue to red fluorescences F450/F690 and F450/F735 did not show clear relations to the pigment content of the investigated plants. The particular shape of the UV-laser-induced-fluorescence emission spectra of wheat leaves as well as the dependencies of the fluorescence ratios on the pigment content are due to a partial and differential reabsorption of the emitted fluorescences by the photosynthetic pigments

  15. thidiazuron improves adventitious bud and shoot regeneration

    African Journals Online (AJOL)

    Prof. Adipala Ekwamu

    Induction of adventitious buds and shoots from intact leaves and stem internode segments of two recalcitrant. Ugandan sweetpotato (Ipomoea batatas L.) cultivars was investigated in vitro on Murashige and Skoog (MS) medium, supplemented with 3 different levels (0.5, 2.0 and 4.0 µM) of Thidiazuron (TDZ). Shoots were.

  16. School shootings during 2013-2015 in the USA.

    Science.gov (United States)

    Kalesan, Bindu; Lagast, Kinan; Villarreal, Marcos; Pino, Elizabeth; Fagan, Jeffrey; Galea, Sandro

    2017-10-01

    Data on the factors associated with school shootings in the USA are limited. The public conversation has often suggested several factors that may be linked to these events, however with little empirical support. Aiming to fill this gap, we describe the characteristics of school shooting incidents in the USA between 2013 and 2015 and explore whether four factors that represent domains of firearm policy, educational policy and epidemiological risk factors for intentional firearm injuries-background check (BC) policies, per capita mental health expenditures (MHE), K-12 education expenditure (KEE) and urbanicity-were associated with school shootings during this period. We searched LexisNexis, a newspaper and broadcast media databases for school shooting incidents from 1 January 2013 to 31 December 2015. Presence of BC laws was extracted from legal information in LexisNexis. State-level covariates of per capita MHE (2013), KEE (2013) and urbanicity (2010) rates were obtained from publicly available data sources. We used negative binomial regression models accounting for clustering by state to explore unadjusted associations between the BC laws, state-level covariates and school shootings to report IRR and 95% CI. We documented 154 school shootings (35, 55 and 64 each year). In unadjusted models, BC for firearm purchase (IRR=0.55, 95% CI 0.39 to 0.76), ammunition purchase (IRR=0.11, 95% CI 0.05 to 0.27), log per capita MHE (IRR=0.58, 95% CI 0.37 to 0.90), log per-capita KEE (IRR=0.09, 9% CI 0.02 to 0.29) and urbanicity (IRR=0.97, 95% CI 0.96 to 0.99) were associated with school shooting. School shootings are less likely in states with BC laws, higher MHE and KEE, and with greater per cent urban population. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  17. Applying CSM-CERES-Maize to define a sowing window for irrigated maize crop - The Riacho´s Farm case study

    Directory of Open Access Journals (Sweden)

    Denise Freitas Silva

    2011-08-01

    Full Text Available Irrigation use constitutes an alternative to improve maize production in Central Minas Gerais State, Brazil. However, even under adequate water supply conditions, other environmental factors may influence maize crop growth and development and may, ultimately, affect grain yield. This study aimed to establish a sowing window for irrigated maize crop, based on simulation results obtained with the decision support model CSM-CERES-Maize. Simulations were made for crop management conditions of Riacho´s Farm, located in Matozinhos, Minas Gerais State, Brazil. It was employed the model´s seasonal tool, along with a data set containing 46 years of weather data records, to simulate maize yield for weekly sowing scenarios, starting on August 1st and ending on July 24th of each year. One defined an irrigated maize sowing window, taking into account the yield break risk that a farmer would be willing to take. The model proved to be an interesting tool to assist in decision making, regarding crop and irrigation management, for an irrigated maize production system. Assuming a 10% yield break in the expected average maximum maize yield, it was defined as sowing window, the period from January 23rd to March 6th, with February 20th as the best sowing date. Other sowing windows may be established according to the risk that the farmer would be willing to take.

  18. The Mental Health Consequences of Mass Shootings.

    Science.gov (United States)

    Lowe, Sarah R; Galea, Sandro

    2017-01-01

    Mass shooting episodes have increased over recent decades and received substantial media coverage. Despite the potentially widespread and increasing mental health impact of mass shootings, no efforts to our knowledge have been made to review the empirical literature on this topic. We identified 49 peer-reviewed articles, comprised of 27 independent samples in the aftermath of 15 mass shooting incidents. Based on our review, we concluded that mass shootings are associated with a variety of adverse psychological outcomes in survivors and members of affected communities. Less is known about the psychological effects of mass shootings on indirectly exposed populations; however, there is evidence that such events lead to at least short-term increases in fears and declines in perceived safety. A variety of risk factors for adverse psychological outcomes have been identified, including demographic and pre-incident characteristics (e.g., female gender and pre-incident psychological symptoms), event exposure (e.g., greater proximity to the attack and acquaintance with the deceased), and fewer psychosocial resources (e.g., emotion regulation difficulties and lower social support). Further research that draws on pre-incident and longitudinal data will yield important insights into the processes that exacerbate or sustain post-incident psychological symptoms over time and provide important information for crisis preparedness and post-incident mental health interventions. © The Author(s) 2015.

  19. Status and prospects of maize research in Nepal

    Directory of Open Access Journals (Sweden)

    Govind KC

    2015-12-01

    Full Text Available Food and nutritional securities are the major threats coupled with declining factor productivity and climate change effects in Nepal. Maize being the principal food crops of the majority of the hill people and source of animal feed for ever growing livestock industries in Terai of Nepal. Despite the many efforts made to increase the maize productivity in the country, the results are not much encouraging. Many of the maize based technologies developed and recommended for the farmers to date are not fully adopted. Therefore, problem is either on technology development or on dissemination or on both. Considering the above facts, some of the innovative and modern approaches of plant breeding and crop management technologies to increase the maize yield need to be developed and disseminated. There is a need for location-specific maize production technologies, especially for lowland winter maize, marginal upland maize production system, and resource poor farmers. Research efforts can be targeted to address both yield potential and on-farm yields by reducing the impacts of abiotic and biotic constraints. Therefore, in order to streamline the future direction of maize research in Nepal, an attempt has been made in this article to highlight the present status and future prospects with few key pathways.

  20. Mass Shootings: The Role of the Media in Promoting Generalized Imitation.

    Science.gov (United States)

    Meindl, James N; Ivy, Jonathan W

    2017-03-01

    Mass shootings are a particular problem in the United States, with one mass shooting occurring approximately every 12.5 days. Recently a "contagion" effect has been suggested wherein the occurrence of one mass shooting increases the likelihood of another mass shooting occurring in the near future. Although contagion is a convenient metaphor used to describe the temporal spread of a behavior, it does not explain how the behavior spreads. Generalized imitation is proposed as a better model to explain how one person's behavior can influence another person to engage in similar behavior. Here we provide an overview of generalized imitation and discuss how the way in which the media report a mass shooting can increase the likelihood of another shooting event. Also, we propose media reporting guidelines to minimize imitation and further decrease the likelihood of a mass shooting.

  1. Light Requirement for Shoot Regeneration in Horseradish Hairy Roots 1

    Science.gov (United States)

    Saitou, Tsutomu; Kamada, Hiroshi; Harada, Hiroshi

    1992-01-01

    Hairy roots of horseradish (Armoracia rusticana) were induced by inoculation with Agrobacterium rhizogenes harboring Ri plasmid and cultured on phytohormone-free Murashige and Skoog medium after eliminating the bacteria. Hairy roots grew vigorously and sometimes formed yellowish calli under dark conditions. On the other hand, growth of hairy roots stopped after several weeks of culture with light, then shoots were regenerated. Frequency of shoot formation from hairy roots increased as the culture period in light lengthened and the light intensity increased. The shoot regeneration was induced by treatment with white or red light, but not with far-red light. Shoot regeneration by red light was inhibited by following treatment with far-red light. Red and far-red light reversibly affected shoot regeneration. Excised roots of nontransformed plants grew quite slowly on phytohormone-free Murashige and Skoog medium and occasionally formed shoots under white light conditions. PMID:16669041

  2. Selection for drought tolerance in two tropical maize populations ...

    African Journals Online (AJOL)

    Drought is a major factor limiting maize (Zea mays L.) yield in much of the world. The need to breed maize cultivars with improved drought tolerance is apparent. This study compared two maize populations, ZM601 and ZM607 for drought tolerance during flowering, the most drought-vulnerable period for the maize plant.

  3. Effects of maize planting patterns on the performance of cassava ...

    African Journals Online (AJOL)

    sola

    The design was a split-plot arrangement, laid out in a randomized ... significant differences (P<0.05) between the treatments in the growth and yield parameters of maize. The mean effects of companion crops on maize leaf area were 0.61, 0.60, 0.60 and 0.52 m2/plant for sole maize, maize / melon, maize / cassava and.

  4. Developing Inset Resistant Maize Varieties for Food Security in Kenya

    International Nuclear Information System (INIS)

    Mugo, S.

    2002-01-01

    The Insect Resistant Maize for Africa (IRMA) project aims at increasing maize production and food security through development and deployment of stem borer resistant maize germplasm developed using conventional and through biotechnology methods such as Bt maize. Bt maize offers farmers an effective and practical option for controlling stem borers. It was recognized that the development and routine use of Bt maize will require addressing relevant bio-safety, environmental, and community concerns and research and information gathering activities are in place to address these concerns and research and information gathering activities are in place to address these concerns. Suitable Bt gene have been acquired or synthesized and back-crossed into elite maize germplasm at CIMMYT-Mexico, and the effective Cry-proteins against the major maize stem borers in Kenya were identified to better target pests. Stem borer resistant maize germplasm is being developed through conventional breeding, using locally adapted and exotic germplasm. for safe and effective deployment of Bt maize,studies on its impacts on target and non-target arthropods as well as studies on the effects of Bt maize on key non-target arthropods as well as studies on gene flow are underway. Insect resistance management strategies are being developed through quantifying the effectiveness, ???. Socioeconomic impact studies are revealing factors in the society that may influence the adoption of Bt maize in Kenya. Also, baseline data, essential for the monitoring and evaluation of the Bt maize technology in Kenya, has been established. Technology transfer and capacity building, creating awareness and communications have received attention in the project. This paper describes the major research activities as they relate to development of the stem bore resistant maize germplasm

  5. Genetic Factors Involved in Fumonisin Accumulation in Maize Kernels and Their Implications in Maize Agronomic Management and Breeding.

    Science.gov (United States)

    Santiago, Rogelio; Cao, Ana; Butrón, Ana

    2015-08-20

    Contamination of maize with fumonisins depends on the environmental conditions; the maize resistance to contamination and the interaction between both factors. Although the effect of environmental factors is a determinant for establishing the risk of kernel contamination in a region, there is sufficient genetic variability among maize to develop resistance to fumonisin contamination and to breed varieties with contamination at safe levels. In addition, ascertaining which environmental factors are the most important in a region will allow the implementation of risk monitoring programs and suitable cultural practices to reduce the impact of such environmental variables. The current paper reviews all works done to address the influence of environmental variables on fumonisin accumulation, the genetics of maize resistance to fumonisin accumulation, and the search for the biochemical and/or structural mechanisms of the maize plant that could be involved in resistance to fumonisin contamination. We also explore the outcomes of breeding programs and risk monitoring of undertaken projects.

  6. Effects of calcium gluconate and ascorbic acid on controlling shoot ...

    African Journals Online (AJOL)

    In vitro shoot necrosis is a quite widespread disorder affecting raspberry micropropagation. This study was conducted to investigate effects of calcium gluconate and ascorbic acid on shoot necrosis and dieback of raspberry shoots during micropropagation. Nodal segments of primocane-fruiting raspberry cultivars 'Allgold', ...

  7. Tragedy and the Meaning of School Shootings

    Science.gov (United States)

    Warnick, Bryan R.; Johnson, Benjamin A.; Rocha, Samuel

    2010-01-01

    School shootings are traumatic events that cause a community to question itself, its values, and its educational systems. In this article Bryan Warnick, Benjamin Johnson, and Samuel Rocha explore the meanings of school shootings by examining three recent books on school violence. Topics that grow out of these books include (1) how school shootings…

  8. RESPONSIVENESS OF SPATIAL PRICE VOLATILITY TO INCREASED GOVERNMENT PARTICIPATION IN MAIZE GRAIN AND MAIZE MEAL MARKETING IN ZAMBIA

    OpenAIRE

    Syampaku, E.M; Mafimisebi, Taiwo Ejiola

    2014-01-01

    The study analyzed the responsiveness of maize grain and maize meal spatial price volatilities to increased government participation in maize grain marketing in Zambia using descriptive statistics and vector auto-regression (VAR). This was achieved by comparing spatial price volatility means and spatial price means for the period under increased government participation with respective means for periods under limited government participation. Also, spatial price volatilities were regressed ag...

  9. Distributed trouble-shooting

    NARCIS (Netherlands)

    Post, W.M.; Bogaard, S.A.A. van den; Rasker, P.C.

    2004-01-01

    When knowledge, required for trouble-shooting at sea, can be supplied real-time but from a distance, problems, such as with the limited availability of specialists, and the high costs of maintenance, may be tackled. Unclear is, however, how this redistribution of knowledge will work in practice. We

  10. Biotechnology in maize breeding

    Directory of Open Access Journals (Sweden)

    Mladenović-Drinić Snežana

    2004-01-01

    Full Text Available Maize is one of the most important economic crops and the best studied and most tractable genetic system among monocots. The development of biotechnology has led to a great increase in our knowledge of maize genetics and understanding of the structure and behaviour of maize genomes. Conventional breeding practices can now be complemented by a number of new and powerful techniques. Some of these often referred to as molecular methods, enable scientists to see the layout of the entire genome of any organism and to select plants with preferred characteristics by "reading" at the molecular level, saving precious time and resources. DNA markers have provided valuable tools in various analyses ranging from phylogenetic analysis to the positional cloning of genes. Application of molecular markers for genetic studies of maize include: assessment of genetic variability and characterization of germ plasm, identification and fingerprinting of genotypes, estimation of genetic distance, detection of monogamic and quantitative trait loci, marker assisted selection, identification of sequence of useful candidate genes, etc. The development of high-density molecular maps which has been facilitated by PCR-based markers, have made the mapping and tagging of almost any trait possible and serve as bases for marker assisted selection. Sequencing of maize genomes would help to elucidate gene function, gene regulation and their expression. Modern biotechnology also includes an array of tools for introducing or deieting a particular gene or genes to produce plants with novel traits. Development of informatics and biotechnology are resulted in bioinformatic as well as in expansion of microarrey technique. Modern biotechnologies could complement and improve the efficiency of traditional selection and breeding techniques to enhance agricultural productivity.

  11. Firearm Legislation and Fatal Police Shootings in the United States.

    Science.gov (United States)

    Kivisto, Aaron J; Ray, Bradley; Phalen, Peter L

    2017-07-01

    To examine whether stricter firearm legislation is associated with rates of fatal police shootings. We used a cross-sectional, state-level design to evaluate the effect of state-level firearm legislation on rates of fatal police shootings from January 1, 2015, through October 31, 2016. We measured state-level variation in firearm laws with legislative scorecards from the Brady Center, and for fatal police shootings we used The Counted, an online database maintained by The Guardian. State-level firearm legislation was significantly associated with lower rates of fatal police shootings (incidence rate ratio = 0.961; 95% confidence interval = 0.939, 0.984). When we controlled for sociodemographic factors, states in the top quartile of legislative strength had a 51% lower incidence rate than did states in the lowest quartile. Laws aimed at strengthening background checks, promoting safe storage, and reducing gun trafficking were associated with fewer fatal police shootings. Legislative restrictions on firearms are associated with reductions in fatal police shootings. Public Health Implications. Although further research is necessary to determine causality and potential mechanisms, firearm legislation is a potential policy solution for reducing fatal police shootings in the United States.

  12. Genomic-based-breeding tools for tropical maize improvement.

    Science.gov (United States)

    Chakradhar, Thammineni; Hindu, Vemuri; Reddy, Palakolanu Sudhakar

    2017-12-01

    Maize has traditionally been the main staple diet in the Southern Asia and Sub-Saharan Africa and widely grown by millions of resource poor small scale farmers. Approximately, 35.4 million hectares are sown to tropical maize, constituting around 59% of the developing worlds. Tropical maize encounters tremendous challenges besides poor agro-climatic situations with average yields recorded <3 tones/hectare that is far less than the average of developed countries. On the contrary to poor yields, the demand for maize as food, feed, and fuel is continuously increasing in these regions. Heterosis breeding introduced in early 90 s improved maize yields significantly, but genetic gains is still a mirage, particularly for crop growing under marginal environments. Application of molecular markers has accelerated the pace of maize breeding to some extent. The availability of array of sequencing and genotyping technologies offers unrivalled service to improve precision in maize-breeding programs through modern approaches such as genomic selection, genome-wide association studies, bulk segregant analysis-based sequencing approaches, etc. Superior alleles underlying complex traits can easily be identified and introgressed efficiently using these sequence-based approaches. Integration of genomic tools and techniques with advanced genetic resources such as nested association mapping and backcross nested association mapping could certainly address the genetic issues in maize improvement programs in developing countries. Huge diversity in tropical maize and its inherent capacity for doubled haploid technology offers advantage to apply the next generation genomic tools for accelerating production in marginal environments of tropical and subtropical world. Precision in phenotyping is the key for success of any molecular-breeding approach. This article reviews genomic technologies and their application to improve agronomic traits in tropical maize breeding has been reviewed in

  13. The correlation of the radiocaesium concentration of new shoots harvested in 2012 and old leaves, and new shoots harvested in 2011 grown in Kanagawa prefecture

    International Nuclear Information System (INIS)

    Shiraki, Yoshiya; Takeda, Hajime; Okamoto, Tamotsu; Kita, Nobuhiro

    2013-01-01

    We conducted this study to analyze the correlation between 137 Cs concentration of new shoots harvested in the first crop of tea in 2012, and new shoots harvested in the shuto-bancha in 2011 and old leaves harvested at the same time respectively. In the first crop of tea in 2012, the 137 Cs concentration of new shoots was related to that of old leaves, and the correlation of the coefficient was 0.663(p 137 Cs concentration(new shoots/old leaves) was related to the days until harvest of the first crop of tea in 2012, and the correlation coefficient was -0.771(p 137 Cs concentration was derived from the dilution effect due to growth and development of tea plants. Regression analysis was performed to forecast the 137 Cs concentration of the new shoots in the first crop of tea. The 137 Cs concentration of new shoots in the harvested first crop of tea(Y) was related to the 137 Cs concentration of old leaves harvested the previous winter(X). The correlation of the coefficient was 0.783(p 137 Cs concentration of new shoots of the first crop of tea in 2012 decreased about 1/6 to 1/25 compared with that of new shoots of the first crop of tea in 2011. (author)

  14. Maize (Zea mays L.).

    Science.gov (United States)

    Frame, Bronwyn; Warnberg, Katey; Main, Marcy; Wang, Kan

    2015-01-01

    Agrobacterium tumefaciens-mediated transformation is an effective method for introducing genes into maize. In this chapter, we describe a detailed protocol for genetic transformation of the maize genotype Hi II. Our starting plant material is immature embryos cocultivated with an Agrobacterium strain carrying a standard binary vector. In addition to step-by-step laboratory transformation procedures, we include extensive details in growing donor plants and caring for transgenic plants in the greenhouse.

  15. Physiological Responses to Cadmium, Nickel and their Interaction in the Seedlings of Two Maize (Zea mays L. Cultivars

    Directory of Open Access Journals (Sweden)

    Pavlovkin Ján

    2016-12-01

    Full Text Available In the leaves of maize seedlings, cultivars Premia and Blitz, the relatively low 2 μmol/L concentration of cadmium (Cd, nickel (Ni, or both metals acting simultaneously (Cd +Ni for 72 h, induced a significant metal accumulation, decrease in total K+ content, reduction of light-induced membrane electrical potential (EM repolarisation in mesophyll cells and changes of ascorbic acid (AsA, dehydroascorbic acid (DHA and glutathione (GSH content. Shoot growth and the values of resting EM did not change significantly. Increased K+ leakage, from the leaves, and lipid peroxidation accompanied by increase of TBA-reactive substances (TBARS were found only in cv. Blitz exposed to Cd + Ni. This indicates a capability of high leaf-cell anti-oxidant pool to ameliorate the toxic effects on plasma membrane of single ions in both cultivars, and of Cd + Ni only in cv. Premia. The decreased total content of K+ in leaves in all variants indicated repressing the K+ uptake and/or distribution to the shoots. Under anoxia, the magnitude of the repolarisation obtained after switching on the light was smaller in Cd-treated cultivar Premia than in the controls, and this also occurred in Ni- and Cd + Ni-treated cultivar Blitz.

  16. Influence of Plant Growth Regulators and Humic Substance on the Phytoremediation of Nickel in a Ni-Polluted Soil

    Directory of Open Access Journals (Sweden)

    Mahshid Shafigh

    2017-06-01

    Full Text Available Introduction: Plants can uptake, bioaccumulate and immobilize different metals in their tissues. Phytoremediation technique has been used to remove hazardous substances including heavy metals from the environment. Assisted phytoremediation is usually the process of applying a chemical additive to heavy metal contaminated soils to enhance the metal uptake by plants. The main objective of present study was to investigate the effectiveness of plant growth regulators (PGRs and a humic substance (HS on Ni phytoremediation by maize in a Ni-pollutrd calcareous soil. Materials and Methods: The experiment designed as a 5×3 factorial trial arranged in a completely randomized design with three replicates. Three kilograms of soil was placed in plastic pots and pots were watered with distilled water to field capacity and maintained at this moisture level throughout the experiment by watering the pots to a constant weight. The soils were polluted with 250 mg Ni Kg-1 as Ni-nitrate Ni (NO32. Six maize (Zea mays L. seeds were planted 2 cm deep in soil and thinned to three uniform stands 1 week after emergence. Treatments consisted of three levels of soil application of commercially humic substance, HS, (0, 3, and 6 mg kg as Humax 95-WSG containing about 80% humic acid, and about 15% fulvic acid and five levels of PGRs (0 or 10 µM GA3, IAA, BAP and SA. The HS was applied as split doses in three times at 15 day intervals along with irrigation water. The seedlings were exposed to aqueous solutions of HS 16 days after sowing for the first time. Prepared solutions of PGRs were sprayed three times at 15 day intervals from emergence. Seven weeks after planting, shoots were harvested and roots were separated from soil carefully, both parts were rinsed with distilled water and dried at 65°C for 72 h, weighed, ground, and dry meshed at 550°C. Root and shoot dry matter and Ni concentration and uptake and phytoremediation criteria were considered as plant responses

  17. Selection of diazotrophic bacteria isolated from wastewater treatment plant sludge at a poultry slaughterhouse for their effect on maize plants

    Directory of Open Access Journals (Sweden)

    Jorge Avelino Rodriguez Lozada

    Full Text Available ABSTRACT The economic and environmental costs of nitrogen fertilization have intensified the search for technologies that reduce mineral fertilization, for example atmospheric nitrogen-fixing (diazotrophic bacteria inoculation. In this context, the present study addressed the isolation and quantification of diazotrophic bacteria in the sludge from treated wastewater of a poultry slaughterhouse; a description of the bacteria, based on cell and colony morphology; and an assessment of growth and N content of maize plants in response to inoculation. Sixteen morphotypes of bacteria were isolated in six N-free culture media (JMV, JMVL, NFb, JNFb, LGI, and LGI-P. The bacteria stained gram-positive, with 10 rod- and six coccoid-shaped isolates. To evaluate the potential of bacteria to promote plant growth, maize seeds were inoculated. The experiment consisted of 17 treatments (control plus 16 bacterial isolates and was carried out in a completely randomized design with six replicates. The experimental units consisted of one pot containing two maize plants in a greenhouse. Forty-five days after planting, the variables plant height, leaf number, stem diameter, root and shoot fresh and dry weight, and N content were measured. The highest values were obtained with isolate UFV L-162, which produced 0.68 g total dry matter per plant and increased N content to 22.14 mg/plant, representing increments of 74 and 133%, respectively, compared with the control. Diazotrophs inhabit sludge from treated wastewater of poultry slaughterhouses and can potentially be used to stimulate plant development and enrich inoculants.

  18. IMAZAPYR-RESISTANT MAIZE TECHNOLOGY ADOPTION FOR ...

    African Journals Online (AJOL)

    Prof. Adipala Ekwamu

    decisions by protecting maize (Zea mays L.) crop in western Kenya from Striga. Key Words: Adopters, Zea ... Africa, efficient and profitable production of maize is severely constrained by ..... gap by understanding its source. African. Journal of ...

  19. The Level of Vision Necessary for Competitive Performance in Rifle Shooting: Setting the Standards for Paralympic Shooting with Vision Impairment

    NARCIS (Netherlands)

    Allen, P.M.; Latham, K.; Mann, D.L.; Ravensbergen, H.J.C.; Myint, J.

    2016-01-01

    The aim of this study was to investigate the level of vision impairment (VI) that would reduce performance in shooting; to guide development of entry criteria to visually impaired (VI) shooting. Nineteen international-level shooters without VI took part in the study. Participants shot an air rifle,

  20. Growth performance and carcass characteristics of Tanzania Shorthorn Zebu cattle finished on molasses or maize grain with rice or maize by-products

    DEFF Research Database (Denmark)

    Asimwe, I.; Kimambo, A. E.; Laswai, G. H.

    2015-01-01

    Forty five steers (2.5–3.0 years of age and 200±5 (SEM) kg body weight) were allotted randomly into five diets to assess the effects of finishing Tanzania Shorthorn Zebu (TSZ) cattle in feedlot using diets based on either molasses or maize grain combined with maize or rice by-products. The diets...... were hay and concentrate mixtures of hominy feed with molasses (HFMO), rice polishing with molasses (RPMO), hominy feed with maize meal (HFMM), rice polishing with maize meal (RPMM) and a control of maize meal with molasses (MMMO). All concentrate mixtures contained cotton seed cake, mineral mixture.......35 for HFMO) than in maize grain based diets (6.94, 6.73 and 6.19 for RPMM, MMMO and HFMM, respectively). Energy intake was highest (P

  1. CERES-Maize model-based simulation of climate change impacts on maize yields and potential adaptive measures in Heilongjiang Province, China.

    Science.gov (United States)

    Lin, Yumei; Wu, Wenxiang; Ge, Quansheng

    2015-11-01

    Climate change would cause negative impacts on future agricultural production and food security. Adaptive measures should be taken to mitigate the adverse effects. The objectives of this study were to simulate the potential effects of climate change on maize yields in Heilongjiang Province and to evaluate two selected typical household-level autonomous adaptive measures (cultivar changes and planting time adjustments) for mitigating the risks of climate change based on the CERES-Maize model. The results showed that flowering duration and maturity duration of maize would be shortened in the future climate and thus maize yield would reduce by 11-46% during 2011-2099 relative to 1981-2010. Increased CO2 concentration would not benefit maize production significantly. However, substituting local cultivars with later-maturing ones and delaying the planting date could increase yields as the climate changes. The results provide insight regarding the likely impacts of climate change on maize yields and the efficacy of selected adaptive measures by presenting evidence-based implications and mitigation strategies for the potential negative impacts of future climate change. © 2014 Society of Chemical Industry.

  2. Ferns: the missing link in shoot evolution and development

    Directory of Open Access Journals (Sweden)

    Andrew Robert George Plackett

    2015-11-01

    Full Text Available Shoot development in land plants is a remarkably complex process that gives rise to an extreme diversity of forms. Our current understanding of shoot developmental mechanisms comes almost entirely from studies of angiosperms (flowering plants, the most recently diverged plant lineage. Shoot development in angiosperms is based around a layered multicellular apical meristem that produces lateral organs and/or secondary meristems from populations of founder cells at its periphery. In contrast, non-seed plant shoots develop from either single apical initials or from a small population of morphologically distinct apical cells. Although developmental and molecular information is becoming available for non-flowering plants, such as the model moss Physcomitrella patens, making valid comparisons between highly divergent lineages is extremely challenging. As sister group to the seed plants, the monilophytes (ferns and relatives represent an excellent phylogenetic midpoint of comparison for unlocking the evolution of shoot developmental mechanisms, and recent technical advances have finally made transgenic analysis possible in the emerging model fern Ceratopteris richardii. This review compares and contrasts our current understanding of shoot development in different land plant lineages with the aim of highlighting the potential role that the fern C. richardii could play in shedding light on the evolution of underlying genetic regulatory mechanisms.

  3. quixotic coupling between irrigation system and maize-cowpea

    African Journals Online (AJOL)

    ACSS

    number row-1 and maize grain yield, respectively. The ridge ... Key Words: Furrow irrigation, water use efficiency, Zea mays. RÉSUMÉ ... important in arid and semi-arid regions, with ... as maize) canopy is not able to intercept all the solar radiation during the growth period. ... Intercropping maize and legumes considerably ...

  4. Mental illness, mass shootings, and the politics of American firearms.

    Science.gov (United States)

    Metzl, Jonathan M; MacLeish, Kenneth T

    2015-02-01

    Four assumptions frequently arise in the aftermath of mass shootings in the United States: (1) that mental illness causes gun violence, (2) that psychiatric diagnosis can predict gun crime, (3) that shootings represent the deranged acts of mentally ill loners, and (4) that gun control "won't prevent" another Newtown (Connecticut school mass shooting). Each of these statements is certainly true in particular instances. Yet, as we show, notions of mental illness that emerge in relation to mass shootings frequently reflect larger cultural stereotypes and anxieties about matters such as race/ethnicity, social class, and politics. These issues become obscured when mass shootings come to stand in for all gun crime, and when "mentally ill" ceases to be a medical designation and becomes a sign of violent threat.

  5. Plant-induced changes in soil chemistry do not explain differences in uranium transfer

    International Nuclear Information System (INIS)

    Duquene, L.; Vandenhove, H.; Tack, F.; Avoort, E. van der; Hees, M. van; Wannijn, J.

    2006-01-01

    A greenhouse experiment was set up with maize, ryegrass, Indian mustard, wheat and pea to evaluate to what extent differences in uranium (U) transfer factors can be explained by root-mediated changes in selected soil properties. The experiment involved an acid and an alkaline soil contaminated with 238 U. U soil-to-shoot transfer factors (TFs) ranged between 0.0005 and 0.021 on the acid soil and between 0.007 and 0.179 on the alkaline soil. Indian mustard showed the highest U uptake in shoots and maize the lowest. The root TFs, only available for the acid soil, ranged from 0.58 for maize and Indian mustard to 1.38 for ryegrass. The difference in U uptake between the two soils and the five plants was only partially explained by the different initial U concentrations in soil solution or differences in soil properties in the two soils. However, we obtained a significant relation for differences in shoot TFs observed between the two soils when relating shoot TFs with concentration of UO 2 2+ and uranyl carbonate complexes in soil solution (R 2 = 0.88). The physiological mechanisms by which root-to-shoot U transfer is inhibited or promoted seemed at least as important as the plant-induced changes in soil characteristics in determining soil-to-shoot TFs

  6. Propanol in maize silage at Danish dairy farms

    DEFF Research Database (Denmark)

    Raun, Birgitte Marie Løvendahl; Kristensen, Niels Bastian

    2010-01-01

    The objective of the present study was to investigate the prevalence maize silage containing propanol, the seasonal variation in propanol content of maize silage, and correlations between propanol and other fermentation products in maize silage collected from 20 randomly selected Danish dairy farms...... farms, the maize silage had ≥5 g propanol/kg DM. The present study indicates that dairy cows in Denmark are commonly exposed to propanol and that approximately 20% of the dairy cows will have an intake in the range of 75-100 g propanol/d under common feeding conditions....

  7. Water transfer in an alfalfa/maize association

    International Nuclear Information System (INIS)

    Corak, S.J.; Blevins, D.G.; Pallardy, S.G.

    1987-01-01

    The authors investigated the possibility of interspecific water transfer in an alfalfa (Medicago sativa L.) and maize (Zea mays L.) association. An alfalfa plant was grown through two vertically stacked plastic tubes. A 5 centimeter air gap between tubes was bridged by alfalfa roots. Five-week old maize plants with roots confined to the top tube were not watered, while associated alfalfa roots had free access to water in the bottom tube (the -/+ treatment). Additional treatments included: top and bottom tubes watered (+/+), top and bottom tubes droughted (-/-), and top tube droughted after removal of alfalfa root bridges and routine removal of alfalfa tillers (-*). Predawn leaf water potential of maize in the -/+ treatment fell to -1.5 megapascals 13 days after the start of drought; thereafter, predawn and midday potentials were maintained near -1.9 megapascals. Leaf water potentials of maize in the -/- and -* treatments declined steadily; all plants in these treatments were completely desiccated before day 50. High levels of tritium activity were detected in water extracted from both alfalfa and maize leaves after 3 H 2 O was injected into the bottom -/+ tube at day 70 or later. Maize in the -/+ treatment was able to survive an otherwise lethal period of drought by utilizing water lost by alfalfa roots

  8. Sub-Saharan African maize-based foods

    NARCIS (Netherlands)

    Ekpa, Onu; Palacios-Rojas, Natalia; Kruseman, Gideon; Fogliano, Vincenzo; Linnemann, Anita R.

    2018-01-01

    The demand for maize in Sub-Saharan Africa will triple by 2050 due to rapid population growth, while challenges from climate change will threaten agricultural productivity. Most maize breeding programmes have focused on improving agronomic properties and have paid relatively little attention to

  9. Lack of detectable allergenicity in genetically modified maize containing "Cry" proteins as compared to native maize based on in silico & in vitro analysis.

    Directory of Open Access Journals (Sweden)

    Chandni Mathur

    Full Text Available Genetically modified, (GM crops with potential allergens must be evaluated for safety and endogenous IgE binding pattern compared to native variety, prior to market release.To compare endogenous IgE binding proteins of three GM maize seeds containing Cry 1Ab,1Ac,1C transgenic proteins with non GM maize.An integrated approach of in silico & in vitro methods was employed. Cry proteins were tested for presence of allergen sequence by FASTA in allergen databases. Biochemical assays for maize extracts were performed. Specific IgE (sIgE and Immunoblot using food sensitized patients sera (n = 39 to non GM and GM maize antigens was performed.In silico approaches, confirmed for non sequence similarity of stated transgenic proteins in allergen databases. An insignificant (p> 0.05 variation in protein content between GM and non GM maize was observed. Simulated Gastric Fluid (SGF revealed reduced number of stable protein fractions in GM then non GM maize which might be due to shift of constituent protein expression. Specific IgE values from patients showed insignificant difference in non GM and GM maize extracts. Five maize sensitized cases, recognized same 7 protein fractions of 88-28 kD as IgE bindng in both GM and non-GM maize, signifying absence of variation. Four of the reported IgE binding proteins were also found to be stable by SGF.Cry proteins did not indicate any significant similarity of >35% in allergen databases. Immunoassays also did not identify appreciable differences in endogenous IgE binding in GM and non GM maize.

  10. Maize-Pathogen Interactions: An Ongoing Combat from a Proteomics Perspective

    Directory of Open Access Journals (Sweden)

    Olga Pechanova

    2015-11-01

    Full Text Available Maize (Zea mays L. is a host to numerous pathogenic species that impose serious diseases to its ear and foliage, negatively affecting the yield and the quality of the maize crop. A considerable amount of research has been carried out to elucidate mechanisms of maize-pathogen interactions with a major goal to identify defense-associated proteins. In this review, we summarize interactions of maize with its agriculturally important pathogens that were assessed at the proteome level. Employing differential analyses, such as the comparison of pathogen-resistant and susceptible maize varieties, as well as changes in maize proteomes after pathogen challenge, numerous proteins were identified as possible candidates in maize resistance. We describe findings of various research groups that used mainly mass spectrometry-based, high through-put proteomic tools to investigate maize interactions with fungal pathogens Aspergillus flavus, Fusarium spp., and Curvularia lunata, and viral agents Rice Black-streaked Dwarf Virus and Sugarcane Mosaic Virus.

  11. Maize-Pathogen Interactions: An Ongoing Combat from a Proteomics Perspective.

    Science.gov (United States)

    Pechanova, Olga; Pechan, Tibor

    2015-11-30

    Maize (Zea mays L.) is a host to numerous pathogenic species that impose serious diseases to its ear and foliage, negatively affecting the yield and the quality of the maize crop. A considerable amount of research has been carried out to elucidate mechanisms of maize-pathogen interactions with a major goal to identify defense-associated proteins. In this review, we summarize interactions of maize with its agriculturally important pathogens that were assessed at the proteome level. Employing differential analyses, such as the comparison of pathogen-resistant and susceptible maize varieties, as well as changes in maize proteomes after pathogen challenge, numerous proteins were identified as possible candidates in maize resistance. We describe findings of various research groups that used mainly mass spectrometry-based, high through-put proteomic tools to investigate maize interactions with fungal pathogens Aspergillus flavus, Fusarium spp., and Curvularia lunata, and viral agents Rice Black-streaked Dwarf Virus and Sugarcane Mosaic Virus.

  12. Differential resistance reaction of maize genotypes to maize stem borer (Chilo partellus Swinhoe at Chitwan, Nepal

    Directory of Open Access Journals (Sweden)

    Ghanashyam Bhandari

    2016-12-01

    Full Text Available Maize stem borer (MSB, Chilo partellus Swinhoe, Lepidoptera: Pyralidae is one of the most important insect pest of maize in Nepal. Host plant resistance is the cost-effective, ecologically sound and stable approach to reduce damage by stem borers. Forty four maize genotypes were screened for resistance to maize stem borer at the research field of National Maize Research Program, Rampur during spring seasons (March to June of two consecutive years 2013 and 2014. The maize genotypes were evaluated in randomized complete block design with three replications and data were collected on foliar damage rating, tunnel length and number of exit holes made by the borer. The foliar damage and tunnel length damage were significant for genotypes for both the years. The exit holes were not significant in 2013 but significant in 2014 ranging from 2-6 scale. The foliar rating ranged from 2 to 5.5 in 2013 and 1.1 to 4.5 in 2014 on a 1-9 rating scale. The highly resistant genotypes (10 cm scale. The least susceptible genotypes (<5 cm were RampurSO3F8, RampurSO3FQ02 and RampurS10F18. The genotypes having least exit holes (2.0 in 2014 were RampurSO3F8, RampurSO3FQ02, RampurS10F18. Thus less damage parameters were observed in R-POP-2, RML-5/RML-8, RampurSO3F8, RampurSO3FQ02 and RampurS10F18 and therefore they can be used as parents or as sources of resistance in breeding program.

  13. Multiple vantage points on the mental health effects of mass shootings.

    Science.gov (United States)

    Shultz, James M; Thoresen, Siri; Flynn, Brian W; Muschert, Glenn W; Shaw, Jon A; Espinel, Zelde; Walter, Frank G; Gaither, Joshua B; Garcia-Barcena, Yanira; O'Keefe, Kaitlin; Cohen, Alyssa M

    2014-09-01

    The phenomenon of mass shootings has emerged over the past 50 years. A high proportion of rampage shootings have occurred in the United States, and secondarily, in European nations with otherwise low firearm homicide rates; yet, paradoxically, shooting massacres are not prominent in the Latin American nations with the highest firearm homicide rates in the world. A review of the scientific literature from 2010 to early 2014 reveals that, at the individual level, mental health effects include psychological distress and clinically significant elevations in posttraumatic stress, depression, and anxiety symptoms in relation to the degree of physical exposure and social proximity to the shooting incident. Psychological repercussions extend to the surrounding affected community. In the aftermath of the deadliest mass shooting on record, Norway has been in the vanguard of intervention research focusing on rapid delivery of psychological support and services to survivors of the "Oslo Terror." Grounded on a detailed review of the clinical literature on the mental health effects of mass shootings, this paper also incorporates wide-ranging co-author expertise to delineate: 1) the patterning of mass shootings within the international context of firearm homicides, 2) the effects of shooting rampages on children and adolescents, 3) the psychological effects for wounded victims and the emergency healthcare personnel who care for them, 4) the disaster behavioral health considerations for preparedness and response, and 5) the media "framing" of mass shooting incidents in relation to the portrayal of mental health themes.

  14. Overexpression of the protein phosphatase 2A regulatory subunit a gene ZmPP2AA1 improves low phosphate tolerance by remodeling the root system architecture of maize.

    Directory of Open Access Journals (Sweden)

    Jiemin Wang

    Full Text Available Phosphate (Pi limitation is a constraint for plant growth and development in many natural and agricultural ecosystems. In this study, a gene encoding Zea mays L. protein phosphatase 2A regulatory subunit A, designated ZmPP2AA1, was induced in roots by low Pi availability. The function of the ZmPP2AA1 gene in maize was analyzed using overexpression and RNA interference. ZmPP2AA1 modulated root gravitropism, negatively regulated primary root (PR growth, and stimulated the development of lateral roots (LRs. A detailed characterization of the root system architecture (RSA in response to different Pi concentrations with or without indole-3-acetic acid and 1-N-naphthylphthalamic acid revealed that auxin was involved in the RSA response to low Pi availability. Overexpression of ZmPP2AA1 enhanced tolerance to Pi starvation in transgenic maize in hydroponic and soil pot experiments. An increased dry weight (DW, root-to-shoot ratio, and total P content and concentration, along with a delayed and reduced accumulation of anthocyanin in overexpressing transgenic maize plants coincided with their highly branched root system and increased Pi uptake capability under low Pi conditions. Inflorescence development of the ZmPP2AA1 overexpressing line was less affected by low Pi stress, resulting in higher grain yield per plant under Pi deprivation. These data reveal the biological function of ZmPP2AA1, provide insights into a linkage between auxin and low Pi responses, and drive new strategies for the efficient utilization of Pi by maize.

  15. Fungal Diversity of Maize (Zea Mays L. Grains

    Directory of Open Access Journals (Sweden)

    Gulbis Kaspars

    2016-06-01

    Full Text Available Maize is becoming more and more important crop for dairy farming as forage and as substrate for biogas production. The mycotoxin producing fungi can spoil feed, reduce cattle productivity and cause health problems. The aim of this research was to study the mycoflora of maize grains in order to clarify the fungal composition and verify the presence of potential mycotoxin producing fungi. The grain samples were collected from different maize hybrid performance trial in Research and Study farm “Vecauce” of Latvia University of Agriculture in 2014. The fungi from 14 genera were isolated from surface sterilized grains. The most abundant were Alternaria, Fusarium and Penicillium spp. Mycotoxin producing fungi are present in maize grain mycoflora, and there is a risk that maize production can contain mycotoxins.

  16. Maize Bioactive Peptides against Cancer

    Science.gov (United States)

    Díaz-Gómez, Jorge L.; Castorena-Torres, Fabiola; Preciado-Ortiz, Ricardo E.; García-Lara, Silverio

    2017-06-01

    Cancer is one of the main chronic degenerative diseases worldwide. In recent years, consumption of whole-grain cereals and their derived food products has been associated with reduction risks of various types of cancer. Cereals main biomolecules includes proteins, peptides, and amino acids present in different quantities within the grain. The nutraceutical properties associated with peptides exerts biological functions that promote health and prevent this disease. In this review, we report the current status and advances on maize peptides regarding bioactive properties that have been reported such as antioxidant, antihypertensive, hepatoprotective, and anti-tumour activities. We also highlighted its biological potential through which maize bioactive peptides exert anti-cancer activity. Finally, we analyse and emphasize the possible areas of application for maize peptides.

  17. In vitro mass propagation of Salvia canariensis by axillary shoots

    Directory of Open Access Journals (Sweden)

    Sebastiana Mederos Molina

    2014-01-01

    Full Text Available During the establishment of shoots of Salvia canariensis L., five environmental factor treatments were applied. For each axillary node two shoots grew well when explants were incubated at continued ligth for 15 days followed by 16 hrs photoperiod by 30 days. Shoots multiplication was improved on a modified Murashige and Skoog (MS (1962 medium - MS + 825 mg/l NH4NO3 - supplemented with 10-7 M BA and 10-7 M NAA. The shoots produced well developed root systems within three weeks after transfer to the same culture medium supplemented with 5x 10-7 M NAA.

  18. Esquizofrenia, genética, epigênesis, ambiente: uma revisão sistemática das hipóteses etiológicas unifi cadas e do perfi l genética; e um novo algoritmo para o tratamento dos achados principais

    OpenAIRE

    Machado Dias, Alvaro; Luiz Rodriguez, E. Avelino

    2010-01-01

    Contexto: la esquizofrenia es un síndrome complejo relacionado con genes y factores de riesgo no genéticos. Estudios epidemiológicos reconocidos reportan su presencia en todas las culturas y regiones geográficas. En este sentido, las Hipótesis Etiológicas Unificadas enfrentan simultáneamente el desafío de presentar los datos experimentales y demostrar que éstos dan cuenta del perfil universal del síndrome. Objetivos: revisar sistemáticamente las más prominentes Hipótesis Etiológicas Unifi - c...

  19. Morphological Evaluation of Shoots Regenerated from Hygromycin-Resistant Rice Callus (cv IACuba-28

    Directory of Open Access Journals (Sweden)

    Maylin Pérez Bernal

    2007-01-01

    Full Text Available An evaluation system based on the morphological characteristics of regenerated hygromycin-resistant rice callus shoots was established for correlating such characteristics with shoot viability on hygromycin. Embryogenic rice calli were transformed by Agrobacterium tumefaciens (EHA105/ pCAMBIA1300, containing the hygromycin-phosphotransferase gene as selection marker. After two weeks on selection medium, hygromycin-resistant calli were transferred to regeneration medium. Regenerated shoots were extracted every 5 days (over a 30-day period and classified into three classes according to their morphological structure: class I: vigorous shoot having typical bipolar structure; class II: shoot having small root compared to apical length, or shoot without roots; class III: shoots having an abnormal appearance, such as malformed leaves or albinism. Individualised shoots were transferred to MS medium containing hygromycin for evaluating their resistance to antibiotics. A relationship was observed between regenerated shoots’ morphological characteristics and the percentage of shoots’ viability on hygromycin. Class I prevailed at early shoot extraction and was the most resistant to hygromycin. Drastic class I reduction was found with later shoot extraction, whilst classes II and III became increased. Likewise, shoot viability became radically reduced on MS medium containing hygromycin. This result might be applied for improving efficiency regarding obtaining transgenic rice plants, taking into account the best time for obtaining high percentages of hygromycin-resistant shoots having the best morphological characteristics.

  20. Genomic variation in recently collected maize landraces from Mexico

    Directory of Open Access Journals (Sweden)

    María Clara Arteaga

    2016-03-01

    Full Text Available The present dataset comprises 36,931 SNPs genotyped in 46 maize landraces native to Mexico as well as the teosinte subspecies Zea maiz ssp. parviglumis and ssp. mexicana. These landraces were collected directly from farmers mostly between 2006 and 2010. We accompany these data with a short description of the variation within each landrace, as well as maps, principal component analyses and neighbor joining trees showing the distribution of the genetic diversity relative to landrace, geographical features and maize biogeography. High levels of genetic variation were detected for the maize landraces (HE = 0.234 to 0.318 (mean 0.311, while slightly lower levels were detected in Zea m. mexicana and Zea m. parviglumis (HE = 0.262 and 0.234, respectively. The distribution of genetic variation was better explained by environmental variables given by the interaction of altitude and latitude than by landrace identity. This dataset is a follow up product of the Global Native Maize Project, an initiative to update the data on Mexican maize landraces and their wild relatives, and to generate information that is necessary for implementing the Mexican Biosafety Law. Keywords: Maize, Teosinte, Maize SNP50K BeadChip, Mexican landraces, Proyecto Global de Maíces Nativos

  1. Shoot Differentiation in Callus Cultures of Datura Innoxia

    DEFF Research Database (Denmark)

    Engvild, Kjeld Christensen

    1973-01-01

    promoted shoot differentiation. Gibberellic acid inhibited shoot formation weakly, but inhibited proper leaf blade formation. Root differentiation was rare. The callus cultures of Datura innoxia grew rapidly (100-fold in 4 weeks) on a slightly modified Murashige and Skoog medium (0.5 mg/l thiamin · HCl, p...

  2. Handgun Acquisitions in California After Two Mass Shootings.

    Science.gov (United States)

    Studdert, David M; Zhang, Yifan; Rodden, Jonathan A; Hyndman, Rob J; Wintemute, Garen J

    2017-05-16

    Mass shootings are common in the United States. They are the most visible form of firearm violence. Their effect on personal decisions to purchase firearms is not well-understood. To determine changes in handgun acquisition patterns after the mass shootings in Newtown, Connecticut, in 2012 and San Bernardino, California, in 2015. Time-series analysis using seasonal autoregressive integrated moving-average (SARIMA) models. California. Adults who acquired handguns between 2007 and 2016. Excess handgun acquisitions (defined as the difference between actual and expected acquisitions) in the 6-week and 12-week periods after each shooting, overall and within subgroups of acquirers. In the 6 weeks after the Newtown and San Bernardino shootings, there were 25 705 (95% prediction interval, 17 411 to 32 788) and 27 413 (prediction interval, 15 188 to 37 734) excess acquisitions, respectively, representing increases of 53% (95% CI, 30% to 80%) and 41% (CI, 19% to 68%) over expected volume. Large increases in acquisitions occurred among white and Hispanic persons, but not among black persons, and among persons with no record of having previously acquired a handgun. After the San Bernardino shootings, acquisition rates increased by 85% among residents of that city and adjacent neighborhoods, compared with 35% elsewhere in California. The data relate to handguns in 1 state. The statistical analysis cannot establish causality. Large increases in handgun acquisitions occurred after these 2 mass shootings. The spikes were short-lived and accounted for less than 10% of annual handgun acquisitions statewide. Further research should examine whether repeated shocks of this kind lead to substantial increases in the prevalence of firearm ownership. None.

  3. Inducing salt tolerance in maize through ACC-deaminase biotechnology (abstract)

    International Nuclear Information System (INIS)

    Shahroona, B.; Arshad, M.; Zahir, Z.A.

    2005-01-01

    Ethylene is one of the five established classes of phytohormones. Its involvement in evoking physiological responses in plants exposed to any kind of environmental stresses (such as salinity, drought and metal toxicity stresses) is well established, thus it has also been designated as 'stress' hormone. It is generally believed that stress induces accelerated synthesis of ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC), which subsequently results in the out burst of ethylene production and plant responds to this higher level of ethylene. Thus any check on this accelerated ethylene production in plants exposed to salinity stress could help in minimizing the negative impact of this stress and plants might survive better. There are some soil bacteria which carry ACC-deaminase enzyme and their presence on root surface results in lowering the accelerated production of ethylene. Trials were conducted under axenic condition to study the effect of inoculation with ACC-deaminase containing rhizobacteria to ameliorate the effect of salinity on seedling growth. Maize seedlings were exposed to different salinity levels and results indicated that inoculation with ACC-deaminase containing rhizobacteria significantly increased root elongation, shoot length, fresh and dry weight of seedlings at all the salinity levels. (author)

  4. Strategic Marketing Problems in the Uganda Maize Seed Industry

    OpenAIRE

    Larson, Donald W.; Mbowa, Swaibu

    2004-01-01

    Strategic marketing issues and challenges face maize seed marketing firms as farmers increasingly adopt hybrid varieties in a modernizing third world country such as Uganda. The maize seed industry of Uganda has changed dramatically from a government owned, controlled, and operated industry to a competitive market oriented industry with substantial private firm investment and participation. The new maize seed industry is young, dynamic, growing and very competitive. The small maize seed marke...

  5. The Effect of High School Shootings on Schools and Student Performance

    OpenAIRE

    Louis-Philippe Beland; Dongwoo Kim

    2015-01-01

    We analyze how fatal shootings in high schools affect schools and students using data from shooting databases, school report cards, and the Common Core of Data. We examine schools’ test scores, enrollment, and number of teachers, as well as graduation, attendance, and suspension rates at schools that experienced a shooting, employing a difference-in-differences strategy that uses other high schools in the same district as the comparison group. Our findings suggest that homicidal shootings s...

  6. Methodology of shooting training using modern IT techniques

    Science.gov (United States)

    Gudzbeler, Grzegorz; Struniawski, Jarosław

    2017-08-01

    Mastering, improvement, shaping and preservation of skills of safe, efficient and effective use of the firearm requires the use of relevant methodology of conducting the shooting training. However reality of police trainings does not usually allow for intensive training shooting with the use of ammunition. An alternative solution is the use of modern training technologies. Example of this is the "Virtual system of improvement tactics of intervention services responsible for security and shooting training." Introduction of stimulator to police trainings will enable complete stuff preparation to achieve its tasks, creating potential of knowledge and experience in many areas, far exceeding the capabilities of conventional training.

  7. Unraveling the role of dark septate endophyte (DSE) colonizing maize (Zea mays) under cadmium stress: physiological, cytological and genic aspects.

    Science.gov (United States)

    Wang, Jun-ling; Li, Tao; Liu, Gao-yuan; Smith, Joshua M; Zhao, Zhi-wei

    2016-02-25

    A growing body of evidence suggests that plant root-associated fungi such as dark septate endophytes (DSE) can help plants overcome many biotic and abiotic stresses, of great interest is DSE-plant metal tolerance and alleviation capabilities on contaminated soils. However, the tolerance and alleviation mechanisms involved have not yet been elucidated. In the current study, the regulation and physiological response of Zea mays to its root-associated DSE, Exophiala pisciphila was analyzed under increased soil Cd stress (0, 10, 50, 100 mg kg(-1)). Under Cd stress, DSE inoculation significantly enhanced the activities of antioxidant enzymes and low-molecular weight antioxidants, while also inducing increased Cd accumulation in the cell wall and conversion of Cd into inactive forms by shoot and root specific regulation of genes related to metal uptake, translocation and chelation. Our results showed that DSE colonization resulted in a marked tolerance to Cd, with a significant decrease in cadmium phytotoxicity and a significant increase in maize growth by triggering antioxidant systems, altering metal chemical forms into inactive Cd, and repartitioning subcellular Cd into the cell wall. These results provide comprehensive evidence for the mechanisms by which DSE colonization bioaugments Cd tolerance in maize at physiological, cytological and molecular levels.

  8. Unraveling the role of dark septate endophyte (DSE) colonizing maize (Zea mays) under cadmium stress: physiological, cytological and genic aspects

    Science.gov (United States)

    Wang, Jun-Ling; Li, Tao; Liu, Gao-Yuan; Smith, Joshua M.; Zhao, Zhi-Wei

    2016-02-01

    A growing body of evidence suggests that plant root-associated fungi such as dark septate endophytes (DSE) can help plants overcome many biotic and abiotic stresses, of great interest is DSE-plant metal tolerance and alleviation capabilities on contaminated soils. However, the tolerance and alleviation mechanisms involved have not yet been elucidated. In the current study, the regulation and physiological response of Zea mays to its root-associated DSE, Exophiala pisciphila was analyzed under increased soil Cd stress (0, 10, 50, 100 mg kg-1). Under Cd stress, DSE inoculation significantly enhanced the activities of antioxidant enzymes and low-molecular weight antioxidants, while also inducing increased Cd accumulation in the cell wall and conversion of Cd into inactive forms by shoot and root specific regulation of genes related to metal uptake, translocation and chelation. Our results showed that DSE colonization resulted in a marked tolerance to Cd, with a significant decrease in cadmium phytotoxicity and a significant increase in maize growth by triggering antioxidant systems, altering metal chemical forms into inactive Cd, and repartitioning subcellular Cd into the cell wall. These results provide comprehensive evidence for the mechanisms by which DSE colonization bioaugments Cd tolerance in maize at physiological, cytological and molecular levels.

  9. Maize production in mid hills of Nepal: from food to feed security

    OpenAIRE

    Krishna Prasad Timsina; Yuga Nath Ghimire; Jeevan Lamichhane

    2016-01-01

    This study was undertaken in 2016 to analyze the production and utilization of maize in Nepal. Sixty maize growers from Kavre and Lamjung districts were selected using purposive, cluster and simple random sampling techniques. Similarly, six feed industries and five maize experts from Chitwan district were also interviewed. Study shows 56% of the total areas were used for maize production and 50% of the maize areas were covered by hybrid maize. There was no practice of contract maize productio...

  10. [Genetic regulation of plant shoot stem cells].

    Science.gov (United States)

    Al'bert, E V; Ezhova, T A

    2013-02-01

    This article describes the main features of plant stem cells and summarizes the results of studies of the genetic control of stem cell maintenance in the apical meristem of the shoot. It is demonstrated that the WUS-CLV gene system plays a key role in the maintenance of shoot apical stem cells and the formation of adventitious buds and somatic embryos. Unconventional concepts of plant stem cells are considered.

  11. THE PRELIMINARY STUDIES ON THE INFLUENCE OF SHOOTING RANGES ON ENVIRONMENT

    Directory of Open Access Journals (Sweden)

    Karolina Wodnik

    2017-08-01

    Full Text Available The aim of the study was to assess the impact of the shooting activity on the environment. The studies were conducted in the area of the sports shooting range. The invertebrates assemblages were identified to the family level as well as morphospecies. The second method do not require the proficiency in identification. The following indices of the biodiversity were used for the assessment of the impact of sports shooting ranges: Simpson, Shannon-Wiener, Margalef, Berger-Parker and Menhinick. A decreased biodiversity was observed at two studied sites comparing to the reference site what proves the influence of shooting activity on the biodiversity and suggest disturbance of the ecosystem integrity because of shooting activity.

  12. Vulnerability of Maize Yields to Droughts in Uganda

    Directory of Open Access Journals (Sweden)

    Terence Epule Epule

    2017-03-01

    Full Text Available Climate projections in Sub-Saharan Africa (SSA forecast an increase in the intensity and frequency of droughts with implications for maize production. While studies have examined how maize might be affected at the continental level, there have been few national or sub-national studies of vulnerability. We develop a vulnerability index that combines sensitivity, exposure and adaptive capacity and that integrates agroecological, climatic and socio-economic variables to evaluate the national and spatial pattern of maize yield vulnerability to droughts in Uganda. The results show that maize yields in the north of Uganda are more vulnerable to droughts than in the south and nationally. Adaptive capacity is higher in the south of the country than in the north. Maize yields also record higher levels of sensitivity and exposure in the north of Uganda than in the south. Latitudinally, it is observed that maize yields in Uganda tend to record higher levels of vulnerability, exposure and sensitivity towards higher latitudes, while in contrast, the adaptive capacity of maize yields is higher towards the lower latitudes. In addition to lower precipitation levels in the north of the country, these observations can also be explained by poor soil quality in most of the north and socio-economic proxies, such as, higher poverty and lower literacy rates in the north of Uganda.

  13. Contributions of Zea mays subspecies mexicana haplotypes to modern maize.

    Science.gov (United States)

    Yang, Ning; Xu, Xi-Wen; Wang, Rui-Ru; Peng, Wen-Lei; Cai, Lichun; Song, Jia-Ming; Li, Wenqiang; Luo, Xin; Niu, Luyao; Wang, Yuebin; Jin, Min; Chen, Lu; Luo, Jingyun; Deng, Min; Wang, Long; Pan, Qingchun; Liu, Feng; Jackson, David; Yang, Xiaohong; Chen, Ling-Ling; Yan, Jianbing

    2017-11-30

    Maize was domesticated from lowland teosinte (Zea mays ssp. parviglumis), but the contribution of highland teosinte (Zea mays ssp. mexicana, hereafter mexicana) to modern maize is not clear. Here, two genomes for Mo17 (a modern maize inbred) and mexicana are assembled using a meta-assembly strategy after sequencing of 10 lines derived from a maize-teosinte cross. Comparative analyses reveal a high level of diversity between Mo17, B73, and mexicana, including three Mb-size structural rearrangements. The maize spontaneous mutation rate is estimated to be 2.17 × 10 -8 ~3.87 × 10 -8 per site per generation with a nonrandom distribution across the genome. A higher deleterious mutation rate is observed in the pericentromeric regions, and might be caused by differences in recombination frequency. Over 10% of the maize genome shows evidence of introgression from the mexicana genome, suggesting that mexicana contributed to maize adaptation and improvement. Our data offer a rich resource for constructing the pan-genome of Zea mays and genetic improvement of modern maize varieties.

  14. Oven-drying reduces ruminal starch degradation in maize kernels

    NARCIS (Netherlands)

    Ali, M.; Cone, J.W.; Hendriks, W.H.; Struik, P.C.

    2014-01-01

    The degradation of starch largely determines the feeding value of maize (Zea mays L.) for dairy cows. Normally, maize kernels are dried and ground before chemical analysis and determining degradation characteristics, whereas cows eat and digest fresh material. Drying the moist maize kernels

  15. Shoot growth of Merlot and Cabernet Sauvignon grapevine varieties

    OpenAIRE

    Marcelo Borghezan; Olavo Gavioli; Hamilton Justino Vieira; Aparecido Lima da Silva

    2012-01-01

    The objective of this work was to evaluate shoot growth of the grapevine varieties Merlot and Cabernet Sauvignon, during 2006/2007, and Cabernet Sauvignon, during 2008/2009, in São Joaquim, SC, Brazil. The experiment was carried out in a commercial vineyard trained on a vertical trellis system. The shoots of the central part of the plants were selected, and the lengths from the base to the apex of 20 shoots per cultivar were evaluated. In 2006/2007, monitoring began at pruning, on 9/15/2006, ...

  16. Root phosphatase activity, plant growth and phosphorus accumulation of maize genotypes

    Directory of Open Access Journals (Sweden)

    Machado Cynthia Torres de Toledo

    2004-01-01

    Full Text Available The activity of the enzyme phosphatase (P-ase is a physiological characteristic related to plant efficiency in relation to P acquisition and utilization, and is genetically variable. As part of a study on maize genotype characterization in relation to phosphorus (P uptake and utilization efficiency, two experiments were set up to measure phosphatase (P-ase activity in intact roots of six local and improved maize varieties and two sub-populations. Plants were grown at one P level in nutrient solution (4 mg L-1 and the P-ase activity assay was run using 17-day-old plants for varieties and 24-day-old plants for subpopulations. Shoot and root dry matter yields and P concentrations and contents in plant parts were determined, as well as P-efficiency indexes. Root P-ase activity differed among varieties, and highest enzimatic activities were observed in two local varieties -'Catetão' and 'Caiano' -and three improved varieties -'Sol da Manhã', 'Nitrodente' and 'BR 106'. 'Carioca', a local variety, had the lowest activity. Between subpopulations, 'ND2', with low yielding and poorly P-efficient plants, presented higher root P-ase activity as compared to 'ND10', high yielding and highly P-efficient plants. In general, subpopulations presented lower P-ase activities as compared to varieties. Positive and/or negative correlations were obtained between P-ase activity and P-efficiency characteristics, specific for the genotypes, not allowing inference on a general and clear association between root-secreted phosphatase and dry matter production or P acquisition. Genotypic variability must be known and considered before using P-ase activity as an indicator of P nutritional status, or P tolerance, adaptation and efficiency under low P conditions.

  17. Effect of organic fertilizers on maize production in Eastern Georgia

    Science.gov (United States)

    Jolokhava, Tamar; Kenchiashvili, Naira; Tarkhnishvili, Maia; Ghambashidze, Giorgi

    2016-04-01

    Maize remains to be the most important cereal crop in Georgia. Total area of arable land under cereal crops production equals to 184 thousands hectares (FAO statistical yearbook, 2014), from which maize takes the biggest share. Leading position of maize among other cereal crops is caused by its dual purpose as food and feed product. In Spite of a relatively high production of maize to other cereals there is still a high demand on it, especially as feed for animal husbandry. The same tendency is seen in organic production, where producers of livestock and poultry products require organically grown maize, the average yield of which is much less than those produced conventionally. Therefore, it is important to increase productivity of maize in organic farms. Current study aimed to improve maize yield using locally produced organic fertilizers and to compare them to the effect of mineral fertilizers. The study was carried out in Eastern Georgia under dry subtropical climate conditions on local hybrid of maize. This is the first attempt to use hybrid maize (developed with organic plant breeding method) in organic field trials in Georgia. The results shown, that grain yield from two different types of organic fertilizers reached 70% of the yields achieved with industrial mineral fertilizers. As on farm level differences between organic and conventional maize production are much severe, the results from the field trials seems to be promising for future improvement of organic cereal crop production.

  18. Intercropping maize with cassava or cowpea in Ghana | Ennin ...

    African Journals Online (AJOL)

    Maize/cassava and maize/cowpea intercrops were evaluated in southern Ghana, over a 5-year period to determine the optimum combination of component crop varieties and component plant population densities to optimize productivity of maize-based intercropping systems. Results indicated that some cowpea varieties ...

  19. Enterobacterias como agentes etiológicos de la diarrea en la comunidad

    Directory of Open Access Journals (Sweden)

    Carlos Agudelo

    1992-06-01

    Full Text Available Con el fin de identificar, a nivel de la comunidad, los enteropatógenos bacterianos que producen diarrea en niños menores de 10 años, tomamos muestras de heces de 204 pacientes con cuadro diarreico de 1 a 7 días de evolución y de un grupo control, sin diarrea, conformado por 48 niños. Evaluamos también la recuperación de los microorganismos empleando o no medio de Cary-Blair como medio de transporte e identificamos las categorías de Escherichia coli aisladas empleando pruebas biológicas e inmunológicas. Se destacaron como agentes etiológicos de la diarrea E. coli (58,8%, E. coli enterotoxigénica, productora de toxina labil (ECET-TL (5,1%, Salmonella enteritidis (6,9% y Shigella sonnei (5,9%. Cuando no se usó el medio de transporte de Cary-Blair la sensibilidad en la recuperación de los microorganismos fue del 37%. Se destaca la importancia de determinar la frecuencia real de las categorías de E. coli en nuestro medio.

  20. In vitro regeneration of Salix nigra from adventitious shoots.

    Science.gov (United States)

    Lyyra, Satu; Lima, Amparo; Merkle, Scott A

    2006-07-01

    Black willow (Salix nigra Marsh.) is the largest and only commercially important willow species in North America. It is a candidate for phytoremediation of polluted soils because it is fast-growing and thrives on floodplains throughout eastern USA. Our objective was to develop a protocol for the in vitro regeneration of black willow plants that could serve as target material for gene transformation. Unexpanded inflorescence explants were excised from dormant buds collected from three source trees and cultured on woody plant medium (WPM) supplemented with one of: (1) 0.1 mg l(-1) thidiazuron (TDZ); (2) 0.5 mg l(-1) 6-benzoaminopurine (BAP); or (3) 1 mg l(-1) BAP. All plant growth regulator (PGR) treatments induced direct adventitious bud formation from the genotypes. The percentage of explants producing buds ranged from 20 to 92%, depending on genotype and treatment. Although most of the TDZ-treated inflorescences produced buds, these buds failed to elongate into shoots. Buds on explants treated with BAP elongated into shoots that were easily rooted in vitro and further established in potting mix in high humidity. The PGR treatments significantly affected shoot regeneration frequency (P < 0.01). The highest shoot regeneration frequency (36%) was achieved with Genotype 3 cultured on 0.5 mg l(-1) BAP. Mean number of shoots per explant varied from one to five. The ability of black willow inflorescences to produce adventitious shoots makes them potential targets for Agrobacterium-mediated transformation with heavy-metal-resistant genes for phytoremediation.

  1. Development of maizeSNP3072, a high-throughput compatible SNP array, for DNA fingerprinting identification of Chinese maize varieties.

    Science.gov (United States)

    Tian, Hong-Li; Wang, Feng-Ge; Zhao, Jiu-Ran; Yi, Hong-Mei; Wang, Lu; Wang, Rui; Yang, Yang; Song, Wei

    2015-01-01

    Single nucleotide polymorphisms (SNPs) are abundant and evenly distributed throughout the maize ( Zea mays L.) genome. SNPs have several advantages over simple sequence repeats, such as ease of data comparison and integration, high-throughput processing of loci, and identification of associated phenotypes. SNPs are thus ideal for DNA fingerprinting, genetic diversity analysis, and marker-assisted breeding. Here, we developed a high-throughput and compatible SNP array, maizeSNP3072, containing 3072 SNPs developed from the maizeSNP50 array. To improve genotyping efficiency, a high-quality cluster file, maizeSNP3072_GT.egt, was constructed. All 3072 SNP loci were localized within different genes, where they were distributed in exons (43 %), promoters (21 %), 3' untranslated regions (UTRs; 22 %), 5' UTRs (9 %), and introns (5 %). The average genotyping failure rate using these SNPs was only 6 %, or 3 % using the cluster file to call genotypes. The genotype consistency of repeat sample analysis on Illumina GoldenGate versus Infinium platforms exceeded 96.4 %. The minor allele frequency (MAF) of the SNPs averaged 0.37 based on data from 309 inbred lines. The 3072 SNPs were highly effective for distinguishing among 276 examined hybrids. Comparative analysis using Chinese varieties revealed that the 3072SNP array showed a better marker success rate and higher average MAF values, evaluation scores, and variety-distinguishing efficiency than the maizeSNP50K array. The maizeSNP3072 array thus can be successfully used in DNA fingerprinting identification of Chinese maize varieties and shows potential as a useful tool for germplasm resource evaluation and molecular marker-assisted breeding.

  2. Romanian maize

    DEFF Research Database (Denmark)

    Sauer, Johannes; Balint, Borbala

    This research aims at shedding empirical light on the relative efficiency of small-scale maize producers in Romania. Farmers in transition countries still face heavily distorted price systems resulting from imperfect market conditions and socioeconomic and institutional constraints. To capture...

  3. ProFITS of maize: a database of protein families involved in the transduction of signalling in the maize genome

    Directory of Open Access Journals (Sweden)

    Zhang Zhenhai

    2010-10-01

    Full Text Available Abstract Background Maize (Zea mays ssp. mays L. is an important model for plant basic and applied research. In 2009, the B73 maize genome sequencing made a great step forward, using clone by clone strategy; however, functional annotation and gene classification of the maize genome are still limited. Thus, a well-annotated datasets and informative database will be important for further research discoveries. Signal transduction is a fundamental biological process in living cells, and many protein families participate in this process in sensing, amplifying and responding to various extracellular or internal stimuli. Therefore, it is a good starting point to integrate information on the maize functional genes involved in signal transduction. Results Here we introduce a comprehensive database 'ProFITS' (Protein Families Involved in the Transduction of Signalling, which endeavours to identify and classify protein kinases/phosphatases, transcription factors and ubiquitin-proteasome-system related genes in the B73 maize genome. Users can explore gene models, corresponding transcripts and FLcDNAs using the three abovementioned protein hierarchical categories, and visualize them using an AJAX-based genome browser (JBrowse or Generic Genome Browser (GBrowse. Functional annotations such as GO annotation, protein signatures, protein best-hits in the Arabidopsis and rice genome are provided. In addition, pre-calculated transcription factor binding sites of each gene are generated and mutant information is incorporated into ProFITS. In short, ProFITS provides a user-friendly web interface for studies in signal transduction process in maize. Conclusion ProFITS, which utilizes both the B73 maize genome and full length cDNA (FLcDNA datasets, provides users a comprehensive platform of maize annotation with specific focus on the categorization of families involved in the signal transduction process. ProFITS is designed as a user-friendly web interface and it is

  4. Comparative proteomics reveals the physiological differences between winter tender shoots and spring tender shoots of a novel tea (Camellia sinensis L.) cultivar evergrowing in winter.

    Science.gov (United States)

    Liu, Shengjie; Gao, Jiadong; Chen, Zhongjian; Qiao, Xiaoyan; Huang, Hualin; Cui, Baiyuan; Zhu, Qingfeng; Dai, Zhangyan; Wu, Hualing; Pan, Yayan; Yang, Chengwei; Liu, Jun

    2017-11-20

    A recently discovered tea [Camellia sinensis (L.) O. Kuntze] cultivar can generate tender shoots in winter. We performed comparative proteomics to analyze the differentially accumulated proteins between winter and spring tender shoots of this clonal cultivar to reveal the physiological basis of its evergrowing character during winter. We extracted proteins from the winter and spring tender shoots (newly formed two leaves and a bud) of the evergrowing tea cultivar "Dongcha11" respectively. Thirty-three differentially accumulated high-confidence proteins were identified by matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF / TOF MS). Among these, 24 proteins had increased abundance while nine showed were decreased abundance in winter tender shoots as compared with the spring tender shoots. We categorized the differentially accumulated proteins into eight critical biological processes based on protein function annotation including photosynthesis, cell structure, protein synthesis & destination, transporters, metabolism of sugars and polysaccharides, secondary metabolism, disease/defense and proteins with unknown functions. Proteins with increased abundance in winter tender shoots were mainly related to the processes of photosynthesis, cytoskeleton and protein synthesis, whereas those with decreased abundance were correlated to metabolism and the secondary metabolism of polyphenolic flavonoids. Biochemical analysis showed that the total contents of soluble sugar and amino acid were higher in winter tender shoots while tea polyphenols were lower as compared with spring tender shoots. Our study suggested that the simultaneous increase in the abundance of photosynthesis-related proteins rubisco, plastocyanin, and ATP synthase delta chain, metabolism-related proteins eIF4 and protease subunits, and the cytoskeleton-structure associated proteins phosphatidylinositol transfer protein and profilin may be because of the adaptation of the

  5. Inorganic phosphorus fertilizer ameliorates maize growth by reducing metal uptake, improving soil enzyme activity and microbial community structure.

    Science.gov (United States)

    Wu, Wencheng; Wu, Jiahui; Liu, Xiaowen; Chen, Xianbin; Wu, Yingxin; Yu, Shixiao

    2017-09-01

    Recently, several studies have showed that both organic and inorganic fertilizers are effective in immobilizing heavy metals at low cost, in comparison to other remediation strategies for heavy metal-contaminated farmlands. A pot trial was conducted in this study to examine the effects of inorganic P fertilizer and organic fertilizer, in single application or in combination, on growth of maize, heavy metal availabilities, enzyme activities, and microbial community structure in metal-contaminated soils from an electronic waste recycling region. Results showed that biomass of maize shoot and root from the inorganic P fertilizer treatments were respectively 17.8 and 10.0 folds higher than the un-amended treatments (CK), while the biomass in the organic fertilizer treatments was only comparable to the CK. In addition, there were decreases of 85.0% in Cd, 74.3% in Pb, 66.3% in Cu, and 91.9% in Zn concentrations in the roots of maize grown in inorganic P fertilizer amended soil. Consistently, urease and catalase activities in the inorganic P fertilizer amended soil were 3.3 and 2.0 times higher than the CK, whereas no enhancement was observed in the organic fertilizer amended soil. Moreover, microbial community structure was improved by the application of inorganic P fertilizer, but not by organic fertilizer; the beneficial microbial groups such as Kaistobacter and Koribacter were most frequently detected in the inorganic P fertilizer amended soil. The negligible effect from the organic fertilizer might be ascribed to the decreased pH value in soils. The results suggest that the application of inorganic P fertilizer (or in combination with organic fertilizer) might be a promising strategy for the remediation of heavy metals contaminated soils in electronic waste recycling region. Copyright © 2017. Published by Elsevier Inc.

  6. Bringing sexy back: reclaiming the body aesthetic via self-shooting

    DEFF Research Database (Denmark)

    Tiidenberg, Katrin

    2014-01-01

    ’s ‘technologies of the self’ to analyze self-shooting (taking photos of one-self). Constricting societal norms of sexuality, body shape and body practices influence how my participants (N=20, 10 female, 9 male, 1 transgender, ages 21 - 51, average age 34) live their embodied and sexual lives. Through self-shooting...... and by negotiating the community specific issues of control, power and the gaze, they are able to construct a new, empowered, embodied identity for themselves. I look at self-shooting and selfie-blogging as a practice of reclaiming control over one’s embodied self AND over the body-aesthetic, thus appropriating what...... is and is not ‘sexy’. The NSFW self-shooting community offers a safe space otherwise so hard to find within the body/sexuality-normative mainstream culture. This makes self-shooting a collective therapeutic activity. In their self-images participants construct themselves as ‘beautiful’, ‘sexy’, ‘devious’, ‘more than...

  7. Maize production in mid hills of Nepal: from food to feed security

    Directory of Open Access Journals (Sweden)

    Krishna Prasad Timsina

    2016-12-01

    Full Text Available This study was undertaken in 2016 to analyze the production and utilization of maize in Nepal. Sixty maize growers from Kavre and Lamjung districts were selected using purposive, cluster and simple random sampling techniques. Similarly, six feed industries and five maize experts from Chitwan district were also interviewed. Study shows 56% of the total areas were used for maize production and 50% of the maize areas were covered by hybrid maize. There was no practice of contract maize production. The results revealed that 60%, 25% and 3% of the grain were used for animal feed, food and seed respectively in hill districts. Whereas the remaining amount of the maize (12% was sold to the different buyers. The proportion of maize feed supply to different animals in the study area was varying. Result shows that at least 1.5 million tons of maize is required only to the feed industries affiliated with national feed industry association in Nepal. Similarly, out of total maize used in feed production, 87% of the maize was imported from India each year by feed industries. Analysis shows negative correlation between scale of feed production and use of domestic maize due to unavailability of required quantity of maize in time. The major pre-condition of feed industries for maize buying was moisture content which must be equal or less than 14%. Very little or no inert materials and physical injury, free from fungal attack and bigger size were also the criteria for maize buying. However, some of the feed industries were also thinking about protein and amino acid contents. Result shows 13% and 8.5% increasing demand of poultry feed and animal feed, respectively over the last five year in Nepal. Most likely, maize is known as a means of food security in Nepal, however, in the context of changing utilization patterns at the farm level and also tremendous increasing demand of maize at the industry level suggest to give more focus on development and dissemination of

  8. The Effect of High School Shootings on Schools and Student Performance

    Science.gov (United States)

    Beland, Louis-Philippe; Kim, Dongwoo

    2016-01-01

    We analyze how fatal shootings in high schools affect schools and students using data from shooting databases, school report cards, and the Common Core of Data. We examine schools' test scores, enrollment, number of teachers, graduation, attendance, and suspension rates at schools that experienced a shooting, employing a difference-in-differences…

  9. A Comparative Study on the Uptake and Toxicity of Nickel Added in the Form of Different Salts to Maize Seedlings

    Directory of Open Access Journals (Sweden)

    Jing Nie

    2015-11-01

    Full Text Available In soil ecotoxicological studies, a toxic metal is usually added in the form of either an inorganic or organic salt with relatively high solubility. Nitrate, chloride, acetate, or sulfate are commonly considered as valid options for that aim. However, recent studies have shown that different salts of the same metal at the same cationic concentration may exhibit different toxicities to plants and soil organisms. This information should be considered when selecting data to use for developing toxicological criteria for soil environment. A comparative study was carried out to evaluate the toxicity of five nickel (Ni salts: NiCl2, NiSO4, Ni(II-citrate, Ni(CH3COO2, and Ni(II-EDTA (ethylenediaminetetraacetate, on maize seedlings. The plant metrics used were plant height, shoot and root biomass, leaf soluble sugars and starch, and the Ni contents of the shoots and roots. The results indicated that when Ni was added to the soil, toxicity varied with the selected anionic partner with the following toxicity ranking NiSO4 < Ni(CH3COO2 < Ni(II-citrate < NiCl2 < Ni(II-EDTA. Taking the plant-height metric as an example, the effective concentrations for 50% inhibition (EC50 were 3148 mg·kg−1 for NiSO4, 1315 mg·kg−1 for NiCl2, and 89 mg·kg−1 for Ni(II-EDTA. Compared with the Ni in the other salts, that in Ni(II-EDTA was taken up the most efficiently by the maize roots and, thus, resulted in the greatest toxic effects on the plants. Nickel generally reduced leaf soluble sugars, which indicated an effect on plant carbohydrate metabolism. The outcome of the study demonstrates that different salts of the same metal have quite different ecotoxicities. Therefore, the anionic counterpart of a potentially toxic metal cation must be taken into account in the development of ecotoxicological criteria for evaluating the soil environment, and a preferred approach of leaching soil to reduce the anionic partner should also be considered.

  10. Maize flour fortification in Africa: markets, feasibility, coverage, and costs.

    Science.gov (United States)

    Fiedler, John L; Afidra, Ronald; Mugambi, Gladys; Tehinse, John; Kabaghe, Gladys; Zulu, Rodah; Lividini, Keith; Smitz, Marc-Francois; Jallier, Vincent; Guyondet, Christophe; Bermudez, Odilia

    2014-04-01

    The economic feasibility of maize flour and maize meal fortification in Kenya, Uganda, and Zambia is assessed using information about the maize milling industry, households' purchases and consumption levels of maize flour, and the incremental cost and estimated price impacts of fortification. Premix costs comprise the overwhelming share of incremental fortification costs and vary by 50% in Kenya and by more than 100% across the three countries. The estimated incremental cost of maize flour fortification per metric ton varies from $3.19 in Zambia to $4.41 in Uganda. Assuming all incremental costs are passed onto the consumer, fortification in Zambia would result in at most a 0.9% increase in the price of maize flour, and would increase annual outlays of the average maize flour-consuming household by 0.2%. The increases for Kenyans and Ugandans would be even less. Although the coverage of maize flour fortification is not likely to be as high as some advocates have predicted, fortification is economically feasible, and would reduce deficiencies of multiple micronutrients, which are significant public health problems in each of these countries. © 2013 New York Academy of Sciences.

  11. Lack of Detectable Allergenicity in Genetically Modified Maize Containing “Cry” Proteins as Compared to Native Maize Based on In Silico & In Vitro Analysis

    Science.gov (United States)

    Mathur, Chandni; Kathuria, Pooran C.; Dahiya, Pushpa; Singh, Anand B.

    2015-01-01

    Background Genetically modified, (GM) crops with potential allergens must be evaluated for safety and endogenous IgE binding pattern compared to native variety, prior to market release. Objective To compare endogenous IgE binding proteins of three GM maize seeds containing Cry 1Ab,1Ac,1C transgenic proteins with non GM maize. Methods An integrated approach of in silico & in vitro methods was employed. Cry proteins were tested for presence of allergen sequence by FASTA in allergen databases. Biochemical assays for maize extracts were performed. Specific IgE (sIgE) and Immunoblot using food sensitized patients sera (n = 39) to non GM and GM maize antigens was performed. Results In silico approaches, confirmed for non sequence similarity of stated transgenic proteins in allergen databases. An insignificant (p> 0.05) variation in protein content between GM and non GM maize was observed. Simulated Gastric Fluid (SGF) revealed reduced number of stable protein fractions in GM then non GM maize which might be due to shift of constituent protein expression. Specific IgE values from patients showed insignificant difference in non GM and GM maize extracts. Five maize sensitized cases, recognized same 7 protein fractions of 88-28 kD as IgE bindng in both GM and non-GM maize, signifying absence of variation. Four of the reported IgE binding proteins were also found to be stable by SGF. Conclusion Cry proteins did not indicate any significant similarity of >35% in allergen databases. Immunoassays also did not identify appreciable differences in endogenous IgE binding in GM and non GM maize. PMID:25706412

  12. The response of maize production in Kenya to economic incentives

    Directory of Open Access Journals (Sweden)

    Onono, P.A.,

    2013-06-01

    Full Text Available Agricultural development policy in Kenya has emphasised the use of incentives towards increased production and therefore self-sufficiency in maize which is a basic staple for most households. The channels used to provide incentives to maize farmers over the years include setting higher producer prices; subsidisation of inputs; provision of agricultural credit, research and extension services; construction and maintenance of roads, development of irrigation and water systems; legislative, institutional and macroeconomic reforms. Despite these efforts outputof maize has remained below domestic requirements in most years and the country continues to rely on imports to meet the deficits. Studies have assessed the responsiveness of maize to output price and reported inelastic responses and have recommended policies targeting non-price incentives to complement prices for the required increased production of maize. The studies, however, did not analyse the influence of the non-price incentives on the production of the crop. The findings of those studies are therefore deficient in explaining the relative importance of different non-price incentives and how they complement prices in influencing maize production in Kenya. This study investigated the response of maize production to both price and non-price incentives. The aim of this study was to ascertain the relative importance of non-price factors in influencing production of the crops as well as complementarity between price and non-price incentives. The findings show that maize production responds positively to its output price, development expenditures in agriculture, maize sales to marketing boards, growth in per capita GDP, liberalisation and governance reforms. However, maize production responds negatively to fertiliser price and unfavourable weather conditions. The response of maize output to its price is lower with rising inflation and grain market liberalisation.

  13. In vitro shoot multiplication of Ziziphus spina-christi by shoot tip culture

    African Journals Online (AJOL)

    USER

    2010-02-08

    Feb 8, 2010 ... Key words: Clonal propagation, cidir, shoot tip culture, Ziziphus spina-christi (L.) Desf. INTRODUCTION. Ziziphus spina-christi (L.) Desf., locally known as cidir, is a multipurpose tree species belonging to the botanical family Rhamnaceae. It is an important cultivated tree and one of the few truly native tree ...

  14. MaizeGDB: enabling access to basic, translational, and applied research information

    Science.gov (United States)

    MaizeGDB is the Maize Genetics and Genomics Database (available online at http://www.maizegdb.org). The MaizeGDB project is not simply an online database and website but rather an information service to maize researchers that supports customized data access and analysis needs to individual research...

  15. "Omics" of maize stress response for sustainable food production: opportunities and challenges.

    Science.gov (United States)

    Gong, Fangping; Yang, Le; Tai, Fuju; Hu, Xiuli; Wang, Wei

    2014-12-01

    Maize originated in the highlands of Mexico approximately 8700 years ago and is one of the most commonly grown cereal crops worldwide, followed by wheat and rice. Abiotic stresses (primarily drought, salinity, and high and low temperatures), together with biotic stresses (primarily fungi, viruses, and pests), negatively affect maize growth, development, and eventually production. To understand the response of maize to abiotic and biotic stresses and its mechanism of stress tolerance, high-throughput omics approaches have been used in maize stress studies. Integrated omics approaches are crucial for dissecting the temporal and spatial system-level changes that occur in maize under various stresses. In this comprehensive analysis, we review the primary types of stresses that threaten sustainable maize production; underscore the recent advances in maize stress omics, especially proteomics; and discuss the opportunities, challenges, and future directions of maize stress omics, with a view to sustainable food production. The knowledge gained from studying maize stress omics is instrumental for improving maize to cope with various stresses and to meet the food demands of the exponentially growing global population. Omics systems science offers actionable potential solutions for sustainable food production, and we present maize as a notable case study.

  16. Mixed cropping of groundnuts and maize in East Java

    NARCIS (Netherlands)

    Hoof, van W.C.H.

    1987-01-01

    Mixed cropping of groundnuts and maize in East Java was studied by means of a survey of farming practice and by field experiments. The influence of different sowing times and plant density of maize on the development and yield of groundnuts and maize were the main topics in this thesis. Plant

  17. Maize and the Malnutrition Conundrum in South Africa | BOOYENS ...

    African Journals Online (AJOL)

    In this paper, the author gives an overview of the factors leading to maize becoming a staple food among black people in South Africa. The purported relationship between maize consumption and malnutrition, proposals as well as experimental and practical efforts to correct the dietary deficiencies of maize are briefly ...

  18. Ship and Shoot

    Science.gov (United States)

    Woods, Ron

    2012-01-01

    Ron Woods shared incredibly valuable insights gained during his 28 years at the Kennedy Space Center (KSC) packaging Flight Crew Equipment for shuttle and ISS missions. In particular, Woods shared anecdotes and photos from various processing events. The moral of these stories and the main focus of this discussion were the additional processing efforts and effects related to a "ship-and-shoot" philosophy toward flight hardware.

  19. Disentangling the intertwined genetic bases of root and shoot growth in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Marie Bouteillé

    Full Text Available Root growth and architecture are major components of plant nutrient and water use efficiencies and these traits are the matter of extensive genetic analysis in several crop species. Because root growth relies on exported assimilate from the shoot, and changes in assimilate supply are known to alter root architecture, we hypothesized (i that the genetic bases of root growth could be intertwined with the genetic bases of shoot growth and (ii that the link could be either positive, with alleles favouring shoot growth also favouring root growth, or negative, because of competition for assimilates. We tested these hypotheses using a quantitative genetics approach in the model species Arabidopsis thaliana and the Bay-0 × Shahdara recombinant inbred lines population. In accordance with our hypothesis, root and shoot growth traits were strongly correlated and most root growth quantitative trait loci (QTLs colocalized with shoot growth QTLs with positive alleles originating from either the same or the opposite parent. In order to identify regions that could be responsible for root growth independently of the shoot, we generated new variables either based on root to shoot ratios, residuals of root to shoot correlations or coordinates of principal component analysis. These variables showed high heritability allowing genetic analysis. They essentially all yielded similar results pointing towards two regions involved in the root--shoot balance. Using Heterogeneous Inbred Families (a kind of near-isogenic lines, we validated part of the QTLs present in these two regions for different traits. Our study thus highlights the difficulty of disentangling intertwined genetic bases of root and shoot growth and shows that this difficulty can be overcome by using simple statistical tools.

  20. Differential TOR activation and cell proliferation in Arabidopsis root and shoot apexes.

    Science.gov (United States)

    Li, Xiaojuan; Cai, Wenguo; Liu, Yanlin; Li, Hui; Fu, Liwen; Liu, Zengyu; Xu, Lin; Liu, Hongtao; Xu, Tongda; Xiong, Yan

    2017-03-07

    The developmental plasticity of plants relies on the remarkable ability of the meristems to integrate nutrient and energy availability with environmental signals. Meristems in root and shoot apexes share highly similar molecular players but are spatially separated by soil. Whether and how these two meristematic tissues have differential activation requirements for local nutrient, hormone, and environmental cues (e.g., light) remain enigmatic in photosynthetic plants. Here, we report that the activation of root and shoot apexes relies on distinct glucose and light signals. Glucose energy signaling is sufficient to activate target of rapamycin (TOR) kinase in root apexes. In contrast, both the glucose and light signals are required for TOR activation in shoot apexes. Strikingly, exogenously applied auxin is able to replace light to activate TOR in shoot apexes and promote true leaf development. A relatively low concentration of auxin in the shoot and high concentration of auxin in the root might be responsible for this distinctive light requirement in root and shoot apexes, because light is required to promote auxin biosynthesis in the shoot. Furthermore, we reveal that the small GTPase Rho-related protein 2 (ROP2) transduces light-auxin signal to activate TOR by direct interaction, which, in turn, promotes transcription factors E2Fa,b for activating cell cycle genes in shoot apexes. Consistently, constitutively activated ROP2 plants stimulate TOR in the shoot apex and cause true leaf development even without light. Together, our findings establish a pivotal hub role of TOR signaling in integrating different environmental signals to regulate distinct developmental transition and growth in the shoot and root.

  1. Review: Maize research and production in Nigeria | Iken | African ...

    African Journals Online (AJOL)

    Maize (Zea mays) is a major important cereal being cultivated in the rainforest and the derived Savannah zones of Nigeria. Land races, improved high yielding and pest and diseases resistant varieties of maize have been developed. Key words: Maize, Zea mays, Nigeria. African Journal of Biotechnology Vol.3(6) 2004: 302- ...

  2. The Combining Ability of Maize Inbred Lines for Grain Yield and ...

    African Journals Online (AJOL)

    The Combining Ability of Maize Inbred Lines for Grain Yield and Reaction to Grey ... East African Journal of Sciences ... (GLS) to maize production, the national maize research program of Ethiopia ... The information from this study will be useful for the development of high-yielding and GLS disease-resistant maize varieties.

  3. Allelopathy of winter cover straws on the initial maize growthAlelopatia de palhadas de coberturas de inverno sobre o crescimento inicial de milho

    Directory of Open Access Journals (Sweden)

    Jaqueline Senen

    2011-07-01

    Full Text Available In agricultural crops is common planting the main crop on the remains of straw harvesting the crop earlier due to no-tillage system. The straw remaining in the soil can exert positive or negative influence on the main crop through the release of organic compounds that carry allelopathy on plants of the subsequent growing. This experiment consisted of mixing and blending of different types of turnip (Brassica rapa L., oats (Avena sativa L., crambe (Crambe abyssinica Hochst. Ex RE Fries, Safflower (Carthamus tinctorius L. and rapeseed (Brassica napus L . var in soil and placed in plastic trays where they planted the seeds of maize. The experimental design was completely randomized design with six treatments and three repetições. As ratings were: emergence, rate of emergence, shoot length, root length, root dry weight, dry weight of shoots. The cover crops canola and safflower showed a positive effect, as crambe, turnips and oats had a negative effect on initial growth of maize seedlings, are not suitable for cover crop to maize sowing.Nas lavouras agrícolas é comum o cultivo da cultura principal sobre os restos de palha da colheita do cultivo anterior em decorrência do sistema de plantio direto. A palhada remanescente no solo pode exercer influência positiva ou negativa sobre a cultura principal pela liberação de compostos orgânicos que exercem alelopatia sobre as plantas da cultura subsequente. Este experimento constou da mistura e homogeneização das palhas de nabo (Brassica rapa L., aveia (Avena sativa L., crambe (Crambe abyssinica Hochst. ex R. E. Fries, cartamo (Carthamus tinctorius L. e canola (Brassica napus L.var no solo, que foi colocado em bandejas plásticas onde semeou-se o milho. O delineamento experimental foi inteiramente casualizados com seis tratamentos e três repetições. As características analizadas foram: emergência, índice de velocidade de emergência, comprimento de parte aérea, comprimento de raiz, massa

  4. Extraction and characterization of natural cellulose fibers from maize tassel

    CSIR Research Space (South Africa)

    Maepa, CE

    2015-04-01

    Full Text Available This article reports on the extraction and characterization of novel natural cellulose fibers obtained from the maize (tassel) plant. Cellulose was extracted from the agricultural residue (waste biomaterial) of maize tassel. The maize tassel fibers...

  5. Usage of γ-ray treatment for productivity increasing of maize

    International Nuclear Information System (INIS)

    Ilieva, V.; Dimov, K.

    2003-01-01

    The aim of this study is to determine the influence of γ irradiation on phosphorus nutrition and maize productivity increasing. The vegetation experiment with irradiated and non-irradiated maize seeds in controlled conditions (moisture and temperature) for determination of phosphorus and phosphorus-gypsum absorption was carried out. The influence of γ irradiation on maize growth, export of mineral elements in maize, phosphorus fertilizing and dry biomass of maize plants are presented. The effect of the moisture of γ irradiated maize seeds (sort 'Knezha' - 3L - 621) on dry substance and yield of green mass is also discussed. Based on the presented experimental data the following conclusion have been made: the maize seeds (sort 'Knezha, hybrid H-708) simulation is useful; in all variants of phosphorus-gypsum absorption the increasing of plant mass yield (absolutely dry) is observed; the absorbed phosphates reserve is enhanced twice; the efficiency of 32 P use in stimulated seeds is higher than in non-stimulated seeds; the phosphorus content in maize (sort 'Knezha' - 2L - 611) is increasing mainly in leaves after X-ray irradiation (750 - 1500 R); γ irradiation (7.5 Gy) stimulate the root system (18%) and side roots development and drying up overcome

  6. Biofuel, land and water: maize, switchgrass or Miscanthus?

    International Nuclear Information System (INIS)

    Zhuang Qianlai; Qin Zhangcai; Chen Min

    2013-01-01

    The productive cellulosic crops switchgrass and Miscanthus are considered as viable biofuel sources. To meet the 2022 national biofuel target mandate, actions must be taken, e.g., maize cultivation must be intensified and expanded, and other biofuel crops (switchgrass and Miscanthus) must be cultivated. This raises questions on the use efficiencies of land and water; to date, the demand on these resources to meet the national biofuel target has rarely been analyzed. Here, we present a data-model assimilation analysis, assuming that maize, switchgrass and Miscanthus will be grown on currently available croplands in the US. Model simulations suggest that maize can produce 3.0–5.4 kiloliters (kl) of ethanol for every hectare of land, depending on the feedstock to ethanol conversion efficiency; Miscanthus has more than twice the biofuel production capacity relative to maize, and switchgrass is the least productive of the three potential sources of ethanol. To meet the biofuel target, about 26.5 million hectares of land and over 90 km 3 of water (of evapotranspiration) are needed if maize grain alone is used. If Miscanthus was substituted for maize, the process would save half of the land and one third of the water. With more advanced biofuel conversion technology for Miscanthus, only nine million hectares of land and 45 km 3 of water would probably meet the national target. Miscanthus could be a good alternative biofuel crop to maize due to its significantly lower demand for land and water on a per unit of ethanol basis. (letter)

  7. Effect of plant-derived smoke solutions on physiological and biochemical attributes of maize (Zea mays L.) under salt stress

    International Nuclear Information System (INIS)

    Waheed, M.A.; Shakir, S.K.; Rehman, S.U.; Khan, M.D.

    2016-01-01

    Among abiotic stresses, salinity is an important factor reducing crop yield. Plant-derived smoke solutions have been used as growth promoters since last two decades. The present study was conducted to investigate the effect of Cymbopogon jwaracusa smoke extracts (1:100 and 1:400) on physiological and biochemical aspects of maize (Zea mays L.) under salt stress (100, 150, 200 and 250 mM). Results showed that seed germination percentage was improved up to 93% with smoke as compared to control (70%), while seedling vigor in term of root and shoot fresh weights and dry weights were also significantly increased in seeds primed with smoke extracts. Similarly, in case of alleviating solutions, there occurred a significant alleviation in the adverse effects of salt solutions when mixed smoke in all studied end points. Application of smoke solution has also increased the level of K+ and Ca+2 while reduced the level of Na+ content in maize. In addition, the levels of photosynthetic pigments, total nitrogen and protein contents were also alleviated with the application of smoke as compared to salt. There occurred an increase in the activities of Anti-oxidant in response of salt stress but overcome with the smoke application. It can be concluded that plant-derived smoke solution has the potential to alleviate the phytotoxic effects of saline condition and can increased the productivity in plants. (author)

  8. Production of high-amylose maize lines using RNA interference in ...

    African Journals Online (AJOL)

    amylose maize lines with a low T-DNA copy number, demonstrating that RNAi is an efficient method for the production of high-amylose maize lines. Key words: Maize, high-amylose, RNA interference, starch branching enzyme gene sbe2a.

  9. Highly efficient in vitro adventitious shoot regeneration of Adenosma ...

    African Journals Online (AJOL)

    Adenosma glutinosum (Linn.) Druce is an important aromatic plant, but no information is available regarding its regeneration, callus induction and proliferation from leaf explants. In this study, an in vitro shoot regeneration procedure was developed for native A. glutinosum using leaf explants. Callus induction and shoots ...

  10. Effect of mycorrhizal inoculation on the growth and phytoextraction of heavy metals by maize grown in oil contaminated soil

    International Nuclear Information System (INIS)

    Achakzai, A.K.K.; Liasu, M.O.; Popoola, O.J.

    2011-01-01

    Pot experiments were conducted to investigate the effect of AM (Glomus mosseae ) fungi inoculation (M) on the growth of maize and phyto extraction of selected heavy metals from a soil contaminated with crude oil (C). Four soil treatments, each with three replicates i.e., C/sup +/M/sup +/, M/sup +/, C/sup +/ and control (without oil and inoculum) were conducted. Half of the pots with the soil treatments were planted with singly sown (SS) and the other half with densely sown i.e., four maize seedlings (DS). Various plant growth attributes were measured at weekly intervals Cu/sup 2+/, Ni/sup 2+/, Pb/sup 2+/ and Cd/sup 2+/ in the soil, root and shoot of maize plants were determined separately. Inoculation by AM promoted the vegetative growth attributes in both treatments viz., C/sup +/M/sup +/ and M/+. AM inoculation also promoted the hyper extraction of heavy metals from C/sup +/M/sup +/ soils, but inhibited by soils treated with M/sup +/. High planting density i.e., DS also promoted phyto extraction of heavy metals from uncontaminated (M/sup +/) soils, but had minimal effect on phyto extraction from oil contaminated soils (C/sup +/). Planting density complemented the promotive effect of AM inoculation on phyto extraction of heavy metals from C/sup +/ soils. The hyper extraction of selected metals from soil is more favored by planting density in C/sup +/ soils, whereas AM inoculation tends to exclude heavy metals from potted plants. However, in case of C/sup +/M/sup +/ soils, AM inoculation promotes the hyper extraction of metals more than planting density. While the combination of the two phenomena act synergistically to promote metal hyper extraction from C/sup +/M/sup +/ as well as M/sup +/ soils. (author)

  11. The effect of ultraviolet-B radiation on gene expression and pigment composition in etiolated and green pea leaf tissue: UV-B-induced changes are gene-specific and dependent upon the developmental stage

    International Nuclear Information System (INIS)

    Jordan, B.R.; James, P.E.; Strid, A.; Anthony, R.G.

    1994-01-01

    The effect of ultraviolet-B radiation (UV-B: 280–320nm) on gene expression and pigment composition has been investigated in pea tissue at different stages of development. Pea (Pisum sativum L., cv. Feltham First) seedlings were grown for 17d and then exposed to supplementary UV-B radiation. Chlorophyll a per unit fresh weight decreased by more than 20% compared with control levels after exposure to UV-B radiation for 7d. In contrast, chlorophyll b content remained the same or increased slightly. Leaf protein biosynthesis, as determined by 35 S-methionine incorporation, was rapidly inhibited by UV-B radiation, although the steady-state levels of proteins were either unchanged or only slightly altered. RNA transcripts for the chlorophyll a/b binding protein (cab) were also rapidly reduced to low or even undetectable levels in the expanded third leaf or younger leaf bud tissue after exposure to UV-B radiation. In contrast, cab RNA transcripts were either low or undetectable in etiolated pea tissue, but increased substantially in light and during exposure to UV-B radiation. The cab RNA transcripts were still present at control levels in pea plants after 7d of greening under supplementary UV-B radiation or UV-B alone. The protein composition changed significantly over the 7d of greening, but no differences could be detected between the light treatments. The increase in chlorophyll content was slightly greater during de-etiolation under supplementary UV-B radiation than under control irradiance. Under UV-B radiation alone, chlorophyll was synthesized at a greatly reduced rate. Changes in protective pigments were also determined. Anthocyanins did not change in either etiolated or green tissue exposed to UV-B radiation. However, other flavonoids increased substantially in either tissue during exposure to light and UV-B radiation. The RNA levels for chalcone synthase were measured in green and etiolated tissue exposed to UV-B radiation. The chs RNA transcripts were

  12. Structuring agreements for seismic group shoots

    International Nuclear Information System (INIS)

    Keeping, C.E.

    1999-01-01

    Sigma Explorations Inc. sells licenses to use Sigma owned seismic data. The company participates with exploration and production companies in the joint acquisition of semi-private participation surveys. This paper discusses three major types of seismic group shoots and the essential elements of the agreements that govern or should govern them. They are: (1) exploration and production company joint ventures, (2) publicly offered spec shoots, and (3) semi-private participation surveys. The key issue with the exploration and production company joint ventures is that the companies are owners of the seismic data in proportion to their contribution towards the cost of the program. Their use of the data should be restricted to those situations permitted by the other owners. These are not often well documented, and there is much concern in the industry as a result. The key issue with publicly offered spec shoots is that the seismic company ultimately owns the data and the client exploration and production company is a licensee and must behave as such. In most such cases the rights and responsibilities are well documented in formal agreements that are signed in advance of the program's beginning date

  13. Iron and manganese oxides modified maize straw to remove tylosin from aqueous solutions.

    Science.gov (United States)

    Yin, Yongyuan; Guo, Xuetao; Peng, Dan

    2018-08-01

    Maize straw modified by iron and manganese oxides was synthesized via a simple and environmentally friendly method. Three maize straw materials, the original maize straw, maize straw modified by manganese oxides and maize straw modified by iron and manganese oxides, were detected by SEM, BET, XPS, XRD and FTIR. The results showed that maize straw was successfully modified and maize straw modified by iron and manganese oxides has a larger surface area than MS. According to the experimental data, the sorption trend could conform to the pseudo-second-order kinetic model well, and the sorption ability of tylosin on sorbents followed the order of original maize straw oxides iron and manganese oxides. The study indicated that manganese oxides and iron-manganese oxides could significantly enhance the sorption capacity of original maize straw. The sorption isotherm data of tylosin on original maize straw fit a linear model well, while Freundlich models were more suitable for maize straw modified by manganese oxides and maize straw modified by iron and manganese oxides. The pH, ionic strength and temperature can affect the sorption process. The sorption mechanisms of tylosin on iron and manganese oxides modified maize straw were attribute to the surface complexes, electrostatic interactions, H bonding and hydrophobic interactions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Effect of Hormones on Direct Shoot Regeneration in Hypocotyl Explants of Tomato

    Directory of Open Access Journals (Sweden)

    Rizwan RASHID

    2010-03-01

    Full Text Available This study was conducted for developing a high frequency regeneration system in two genotypes of tomato (Lycopersicon esculentum Mill., �Punjab Upma� and �IPA-3� for direct shoot regeneration from hypocotyl explants. The explants were excised from in vitro tomato seedlings and cultured on MS medium supplemented with different concentrations and combinations of hormones. Direct regeneration was significantly influenced by the genotype hormones combination and concentrations. The MS medium supplemented with (Kinetin 0.5 mg/l and (BAP 0.5 mg/l was found optimum for inducing direct shoot regeneration and number of shoots per explant from hypocotyl explants on this medium. Shoot regeneration per cent in �Punjab Upma� and �IPA-3� per cent was recorded to be highest i.e (86.02 and (82.57 respectively. Besides this, average number shoots per explant was also highest i.e (3.16 in case of �Punjab Upma� and (2.93 in case of �IPA-3�. A significant decline was observed in percent shoot regeneration and average number of shoots per explant with increase in the hormonal concentration. Shoots were obtained and transferred to the elongation medium (MS + BAP 0.3 mg/l. Hundred per cent rooting was induced in separated shoots upon culturing on MS and � MS basal media. Hardening on moist cotton showed maximum plantlet survival rate in case of both genotypes. After hardening, plants were transferred to soil. Thus, a tissue culture base line was established in tomato for obtaining direct regeneration using hypocotyl as explants.

  15. Effect of Hormones on Direct Shoot Regeneration in Hypocotyl Explants of Tomato

    Directory of Open Access Journals (Sweden)

    Rizwan RASHID

    2010-03-01

    Full Text Available This study was conducted for developing a high frequency regeneration system in two genotypes of tomato (Lycopersicon esculentum Mill., Punjab Upma and IPA-3 for direct shoot regeneration from hypocotyl explants. The explants were excised from in vitro tomato seedlings and cultured on MS medium supplemented with different concentrations and combinations of hormones. Direct regeneration was significantly influenced by the genotype hormones combination and concentrations. The MS medium supplemented with (Kinetin 0.5 mg/l and (BAP 0.5 mg/l was found optimum for inducing direct shoot regeneration and number of shoots per explant from hypocotyl explants on this medium. Shoot regeneration per cent in Punjab Upma and IPA-3 per cent was recorded to be highest i.e (86.02 and (82.57 respectively. Besides this, average number shoots per explant was also highest i.e (3.16 in case of Punjab Upma and (2.93 in case of IPA-3. A significant decline was observed in percent shoot regeneration and average number of shoots per explant with increase in the hormonal concentration. Shoots were obtained and transferred to the elongation medium (MS + BAP 0.3 mg/l. Hundred per cent rooting was induced in separated shoots upon culturing on MS and MS basal media. Hardening on moist cotton showed maximum plantlet survival rate in case of both genotypes. After hardening, plants were transferred to soil. Thus, a tissue culture base line was established in tomato for obtaining direct regeneration using hypocotyl as explants.

  16. Water relations, gas exchange and growth of dominant and suppressed shoots of Arbutus unedo L.

    Science.gov (United States)

    Castell, C; Terradas, J

    1995-06-01

    Basal shoots produced by Arbutus unedo L. after cutting at ground level vary in size and growth rate, and are classified accordingly as dominant or suppressed. The suppressed shoots eventually cease growth and die. In this study, we investigated the role of light and water in the competition among shoots of A. unedo. Dominant and suppressed shoots of A. unedo showed similar leaf water potentials and tissue water relations over the year, suggesting that water status is not responsible for the lack of flushing in suppressed shoots. Although suppressed shoots did not flush under low light, they showed many characteristics of shade-tolerant plants. Leaves of suppressed shoots had lower leaf conductance and light-saturated photosynthetic rate, and higher specific leaf area than leaves of dominant shoots. We conclude that light was the main resource determining competition among shoots and the death of suppressed shoots.

  17. (SSR) markers for drought tolerance in maize

    African Journals Online (AJOL)

    Maize is moderately sensitive to drought. Drought affects virtually all aspects of maize growth in varying degrees at all stages, from germination to maturity. Tolerance to drought is genetically and physiologically complicated and inherited quantitatively. Application of molecular-marker aided selection technique for ...

  18. Hospital-based shootings in the United States: 2000 to 2011.

    Science.gov (United States)

    Kelen, Gabor D; Catlett, Christina L; Kubit, Joshua G; Hsieh, Yu-Hsiang

    2012-12-01

    Workplace violence in health care settings is a frequent occurrence. Emergency departments (EDs) are considered particularly vulnerable. Gunfire in hospitals is of particular concern; however, information about such workplace violence is limited. Therefore, we characterize US hospital-based shootings from 2000 to 2011. Using LexisNexis, Google, Netscape, PubMed, and ScienceDirect, we searched reports for acute care hospital shooting events in the United States for 2000 through 2011. All hospital-based shootings with at least 1 injured victim were analyzed. Of 9,360 search "hits," 154 hospital-related shootings were identified, 91 (59%) inside the hospital and 63 (41%) outside on hospital grounds. Shootings occurred in 40 states, with 235 injured or dead victims. Perpetrators were overwhelmingly men (91%) but represented all adult age groups. The ED environs were the most common site (29%), followed by the parking lot (23%) and patient rooms (19%). Most events involved a determined shooter with a strong motive as defined by grudge (27%), suicide (21%), "euthanizing" an ill relative (14%), and prisoner escape (11%). Ambient society violence (9%) and mentally unstable patients (4%) were comparatively infrequent. The most common victim was the perpetrator (45%). Hospital employees composed 20% of victims; physician (3%) and nurse (5%) victims were relatively infrequent. Event characteristics that distinguished the ED from other sites included younger perpetrator, more likely in custody, and unlikely to have a personal relationship with the victim (ill relative, grudge, coworker). In 23% of shootings within the ED, the weapon was a security officer's gun taken by the perpetrator. Case fatality inside the hospital was much lower in the ED setting (19%) than other sites (73%). Although it is likely that not every hospital-based shooting was identified, such events are relatively rare compared with other forms of workplace violence. The unpredictable nature of this type of

  19. A comparative study on infestation of three varieties of maize ( Zea ...

    African Journals Online (AJOL)

    A study was carried out to study the infestation of three maize varieties (Maize suwan I–Y, Maize T2 USR – White single cross and Maize suwan 123) by Sitophilus zeamais Motsch. Infestation was assessed by counting the numbers of alive and dead adults and the number of infested and uninfested seeds. It was found out ...

  20. Model Persamaan Massa Karbon Akar Pohon dan Root-Shoot Ratio Massa Karbon (Equation Models of Tree Root Carbon Mass and Root-Shoot Carbon Mass Ratio

    Directory of Open Access Journals (Sweden)

    Elias .

    2011-03-01

    Full Text Available The case study was conducted in the area of Acacia mangium plantation at BKPH Parung Panjang, KPH Bogor. The objective of the study was to formulate equation models of tree root carbon mass and root to shoot carbon mass ratio of the plantation. It was found that carbon content in the parts of tree biomass (stems, branches, twigs, leaves, and roots was different, in which the highest and the lowest carbon content was in the main stem of the tree and in the leaves, respectively. The main stem and leaves of tree accounted for 70% of tree biomass. The root-shoot ratio of root biomass to tree biomass above the ground and the root-shoot ratio of root biomass to main stem biomass was 0.1443 and 0.25771, respectively, in which 75% of tree carbon mass was in the main stem and roots of tree. It was also found that the root-shoot ratio of root carbon mass to tree carbon mass above the ground and the root-shoot ratio of root carbon mass to tree main stem carbon mass was 0.1442 and 0.2034, respectively. All allometric equation models of tree root carbon mass of A. mangium have a high goodness-of-fit as indicated by its high adjusted R2.Keywords: Acacia mangium, allometric, root-shoot ratio, biomass, carbon mass

  1. Correlation of arbuscular mycorrhizal colonization with plant growth, nodulation, and shoot npk in legumes

    International Nuclear Information System (INIS)

    Javaid, A.; Anjum, T.; Shah, M.H.M.

    2007-01-01

    Correlation of arbuscular mycorrhizal colonization with different root and shoot growth, nodulation and shoot NPK parameters was studied in three legumes viz. Trifolium alexandrianum, Medicago polymorpha and Melilotus parviflora. The three test legume species showed different patterns of root and shoot growth, nodulation, mycorrhizal colonization and shoot N, P and K content. Different mycorrhizal structures viz. mycelium, arbuscules and vesicles showed different patters of correlation with different studied parameters. Mycelial infection showed an insignificantly positive correlation with root and shoot dry biomass and total root length. Maximum root length was however, negatively associated with mycelial infection. Both arbuscular and vesicular infections were negatively correlated with shoot dry biomass and different parameters of root growth. The association between arbuscular infection and maximum root length was significant. All the three mycorrhizal structures showed a positive correlation with number and biomass of nodules. The association between arbuscular infection and nodule number was significant. Mycelial infection was positively correlated with percentage and total shoot N and P. Similarly percentage N was also positively correlated with arbuscular and vesicular infections. By contrast, total shoot N showed a negative association with arbuscular as well as vesicular infections. Similarly both percentage and total shoot P were negatively correlated with arbuscular and vesicular infections. All the associations between mycorrhizal parameters and shoot K were negative except between vesicular infection and shoot %K. (author)

  2. Mass shootings: a meta-analysis of the dose-response relationship.

    Science.gov (United States)

    Wilson, Laura C

    2014-12-01

    A meta-analysis was conducted to examine the dose-response theory as it relates to posttraumatic stress symptoms (PTSSs) following mass shootings. It was hypothesized that greater exposure to a mass shooting would be associated with greater PTSSs. Trauma exposure in the current study was broadly defined as the extent to which a person experienced or learned about a mass shooting. The meta-analysis identified 11 qualifying studies that included 13 independent effect sizes from a total of 8,047 participants. The overall weighted mean effect size, based on a random effects model, was r = .19, p shooting on the relationship between exposure and PTSSs. Because so few studies satisfied the inclusion criteria, the present study also documents that this area of the literature is underresearched. Copyright © 2014 International Society for Traumatic Stress Studies.

  3. Effects of temperature changes on maize production in Mozambique

    Science.gov (United States)

    Harrison, L.; Michaelsen, J.; Funk, Chris; Husak, G.

    2011-01-01

    We examined intraseasonal changes in maize phenology and heat stress exposure over the 1979-2008 period, using Mozambique meteorological station data and maize growth requirements in a growing degree-day model. Identifying historical effects of warming on maize growth is particularly important in Mozambique because national food security is highly dependent on domestic food production, most of which is grown in already warm to hot environments. Warming temperatures speed plant development, shortening the length of growth periods necessary for optimum plant and grain size. This faster phenological development also alters the timing of maximum plant water demand. In hot growing environments, temperature increases during maize pollination threaten to make midseason crop failure the norm. In addition to creating a harsher thermal environment, we find that early season temperature increases have caused the maize reproductive period to start earlier, increasing the risk of heat and water stress. Declines in time to maize maturation suggest that, independent of effects to water availability, yield potential is becoming increasingly limited by warming itself. Regional variations in effects are a function of the timing and magnitude of temperature increases and growing season characteristics. Continuation of current climatic trends could induce substantial yield losses in some locations. Farmers could avoid some losses through simple changes to planting dates and maize varietal types.

  4. Youth Responses to School Shootings: A Reviw

    DEFF Research Database (Denmark)

    Travers, Áine

    2018-01-01

    PURPOSE OF REVIEW:This paper aims to synthesize research relating to youth responses to school shootings between 2014 and 2017. The main questions it addresses are how such events impact young people psychologically, and what risk or protective factors may contribute to different trajectories...... of recovery? RECENT FINDINGS:Recent research suggests that most young people exposed to school shootings demonstrate resilience, exhibiting no long-term dysfunction. However, a minority will experience severe and chronic symptoms. The likelihood of experiencing clinically significant reactions is influenced...

  5. Seed treatments enhance photosynthesis in maize seedlings by reducing infection with Fusarium spp. and consequent disease development in maize

    Science.gov (United States)

    The effects of a seed treatment on early season growth, seedling disease development, incidence Fusarium spp. infection, and photosynthetic performance of maize were evaluated at two locations in Iowa in 2007. Maize seed was either treated with Cruiser 2Extreme 250 ® (fludioxonil + azoxystrobin + me...

  6. PERFORMANCE OF MAIZE (ZEA MAYS) CULTIVARS AS ...

    African Journals Online (AJOL)

    IBUKUN

    reported to have low remobilisation efficiency and reduced plasticity of seed weight to assimilate availability ... have indicated that the use of organo-mineral fertiliser in maize and melon gave high relative .... The soil physical and chemical characteristics of ..... yield in maize by examining genetic improvement and heterosis.

  7. Deregulation of Lesotho's maize market

    OpenAIRE

    van Schalkwyk, Herman D.; van Zyl, Johan; Botha, P.W.; Bayley, B.

    1997-01-01

    During the past year, there have been major policy reforms in Lesotho and South Africa with respect to maize pricing and marketing. In Lesotho the impact of deregulation on producers, consumers and government revenues was substantially lower than it should have been, and as a result Lesotho was not able to reap the full benefits of these changes. This is partly because information on the changes to the maize marketing system did not reach the potential beneficiaries of the new system. Free an...

  8. Efficient regeneration of plants from shoot tip explants of ...

    African Journals Online (AJOL)

    Dendrobium densiflorum Lindl. is one of the horticulturally important orchids of Nepal due to its beautiful yellowish flower and medicinal properties. The present study was carried out for plant regeneration from shoot tip explants of D. densiflorum by tissue culture technique. The shoot tip explants of this species, obtained ...

  9. Effects of eco-friendly carbohydrate-based superabsorbent polymers on seed germination and seedling growth of maize

    Science.gov (United States)

    Tao, Jinghe; Zhang, Wenxu; Liang, Li; Lei, Ziqiang

    2018-02-01

    Desertification is the degradation of land in arid and semi-arid areas. Nowadays, lack of water and desertification are extreme problems for plant survival and growth in the arid and semi-arid areas of the world. It becomes increasingly important as to how to let the plant absorb moisture more effectively for keeping growth strong. We synthesized superabsorbent polymers (SAPs) with carbohydrate and characterized them by Fourier transform infrared spectra analyses, scanning electron microscopy and thermogravimetric/differential thermal analyses. Then, a completely randomized experiment was conducted to assess the effect of carbohydrate-based SAPs on seed germination and seedling growth of maize in an artificial climate chest. The results showed that adding an appropriate amount of SAPs could improve root length, shoot length, total biomass, germination potential and germination rate. It indicates that this SAP is not toxic to plants and can promote seed germination, and at the same time provides a possibility of replacing other substrates.

  10. Effects of eco-friendly carbohydrate-based superabsorbent polymers on seed germination and seedling growth of maize

    Science.gov (United States)

    Tao, Jinghe; Liang, Li; Lei, Ziqiang

    2018-01-01

    Desertification is the degradation of land in arid and semi-arid areas. Nowadays, lack of water and desertification are extreme problems for plant survival and growth in the arid and semi-arid areas of the world. It becomes increasingly important as to how to let the plant absorb moisture more effectively for keeping growth strong. We synthesized superabsorbent polymers (SAPs) with carbohydrate and characterized them by Fourier transform infrared spectra analyses, scanning electron microscopy and thermogravimetric/differential thermal analyses. Then, a completely randomized experiment was conducted to assess the effect of carbohydrate-based SAPs on seed germination and seedling growth of maize in an artificial climate chest. The results showed that adding an appropriate amount of SAPs could improve root length, shoot length, total biomass, germination potential and germination rate. It indicates that this SAP is not toxic to plants and can promote seed germination, and at the same time provides a possibility of replacing other substrates. PMID:29515838

  11. Growing sensitivity of maize to water scarcity under climate change.

    Science.gov (United States)

    Meng, Qingfeng; Chen, Xinping; Lobell, David B; Cui, Zhenling; Zhang, Yi; Yang, Haishun; Zhang, Fusuo

    2016-01-25

    Climate change can reduce crop yields and thereby threaten food security. The current measures used to adapt to climate change involve avoiding crops yield decrease, however, the limitations of such measures due to water and other resources scarcity have not been well understood. Here, we quantify how the sensitivity of maize to water availability has increased because of the shift toward longer-maturing varieties during last three decades in the Chinese Maize Belt (CMB). We report that modern, longer-maturing varieties have extended the growing period by an average of 8 days and have significantly offset the negative impacts of climate change on yield. However, the sensitivity of maize production to water has increased: maize yield across the CMB was 5% lower with rainfed than with irrigated maize in the 1980s and was 10% lower (and even >20% lower in some areas) in the 2000s because of both warming and the increased requirement for water by the longer-maturing varieties. Of the maize area in China, 40% now fails to receive the precipitation required to attain the full yield potential. Opportunities for water saving in maize systems exist, but water scarcity in China remains a serious problem.

  12. Effect and fate of lindane in maize plant

    International Nuclear Information System (INIS)

    Bennaceur, M.; Ghezal, F.; Klaa, K.

    1992-10-01

    The fate and effect of lindane in maize plant, soil and predators were studied following insecticide application under field conditions. Respectively 84,2% and 93,3% of lindane residues were lost after 2 and 4 months in soil after treatment. About 90% of the insecticide was lost after one month in maize plant. Lindane residues were present in maize grains (0,205ppm). Lindane decreases the density of many predators in soils such as species of collembola, coccinellidae, formicidae, coleoptera

  13. Combining Maize Base Germplasm for Cold Tolerance Breeding

    OpenAIRE

    Rodríguez Graña, Víctor Manuel; Butrón Gómez, Ana María; Sandoya Miranda, Germán; Ordás Pérez, Amando; Revilla Temiño, Pedro

    2007-01-01

    Early planting can contribute to increased grain yield of maize (Zea mays L.), but it requires cold tolerance. A limited number of cold-tolerant maize genotypes have been reported. The objectives of this study were to test a new strategy to improve cold tolerance in maize searching for broad x narrow genetic combinations that may be useful as base populations for breeding programs, to compare genotype performance under cold-controlled and field conditions, and to establish the major genetic e...

  14. Status and prospects of maize research in Nepal

    OpenAIRE

    Govind KC; Tika B. Karki; Jiban Shrestha; Buddhi B. Achhami

    2015-01-01

    Food and nutritional securities are the major threats coupled with declining factor productivity and climate change effects in Nepal. Maize being the principal food crops of the majority of the hill people and source of animal feed for ever growing livestock industries in Terai of Nepal. Despite the many efforts made to increase the maize productivity in the country, the results are not much encouraging. Many of the maize based technologies developed and recommended for the farmers to date ar...

  15. Metabolomic homeostasis shifts after callus formation and shoot regeneration in tomato

    Science.gov (United States)

    Kumari, Alka; Ray, Kamalika; Sadhna, Sadhna; Pandey, Arun Kumar; Sreelakshmi, Yellamaraju; Sharma, Rameshwar

    2017-01-01

    Plants can regenerate from a variety of tissues on culturing in appropriate media. However, the metabolic shifts involved in callus formation and shoot regeneration are largely unknown. The metabolic profiles of callus generated from tomato (Solanum lycopersicum) cotyledons and that of shoot regenerated from callus were compared with the pct1-2 mutant that exhibits enhanced polar auxin transport and the shr mutant that exhibits elevated nitric oxide levels. The transformation from cotyledon to callus involved a major shift in metabolite profiles with denser metabolic networks in the callus. In contrast, the transformation from callus to shoot involved minor changes in the networks. The metabolic networks in pct1-2 and shr mutants were distinct from wild type and were rewired with shifts in endogenous hormones and metabolite interactions. The callus formation was accompanied by a reduction in the levels of metabolites involved in cell wall lignification and cellular immunity. On the contrary, the levels of monoamines were upregulated in the callus and regenerated shoot. The callus formation and shoot regeneration were accompanied by an increase in salicylic acid in wild type and mutants. The transformation to the callus and also to the shoot downregulated LST8 and upregulated TOR transcript levels indicating a putative linkage between metabolic shift and TOR signalling pathway. The network analysis indicates that shift in metabolite profiles during callus formation and shoot regeneration is governed by a complex interaction between metabolites and endogenous hormones. PMID:28481937

  16. Características clínicas y diagnóstico etiológico de las uveítis virales

    Directory of Open Access Journals (Sweden)

    Adrianne Mayuli Suñet Álvarez

    Full Text Available Objetivo: determinar las características clínicas y epidemiológicas de las uveítis virales según su etiología. Métodos: se realizó un estudio observacional y descriptivo transversal, que determinó el diagnóstico clínico y etiológico, según la reacción en cadena de polimerasa (PCR de 10 ojos de pacientes atendidos en la consulta de uveítis, en el Instituto Cubano de Oftalmología «Ramón Pando Ferrer», de mayo a noviembre del 2010. Se utilizó una muestra de fluidos intraoculares tomada a los pacientes. Las variables analizadas fueron: edad, sexo, color de piel, antecedentes personales generales u oculares, clasificación anatómica y patológica de la uveítis, curso evolutivo, bilateralidad, agudeza visual y presión intraocular iniciales y finales respectivamente, hallazgos al fondo de ojo y resultados de la PCR. La información fue procesada y los resultados expuestos en tablas. Resultados: la edad promedio de los pacientes estudiados fue de 34,5 años, que presentaron en su mayoría episodios de uveítis anteriores unilaterales. La agudeza visual mejor corregida final mejoró con respecto a la inicial en el grupo de estudio, aunque la presión intraocular se mantuvo elevada sin lograr controlarla. El virus más hallado fue el Herpes simple. Conclusiones: los virus son responsables de producir inflamaciones oculares de presentación variada, lo que en ocasiones retrasa el diagnóstico, empeorando el pronóstico visual. En estos casos el método de PCR ha demostrado ser una herramienta útil para establecer el diagnóstico etiológico.

  17. Germination, seedling growth and relative water content of shoot in ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-08-18

    Aug 18, 2008 ... (mg), root : shoot length (R:S) ratio, and relative water content of shoot (RWC, %) were investigated in this study. The results ... seedlings may provide an advantage by allowing access ... Residual chlorine was eliminated by.

  18. Genomic variation in recently collected maize landraces from Mexico

    Science.gov (United States)

    Arteaga, María Clara; Moreno-Letelier, Alejandra; Mastretta-Yanes, Alicia; Vázquez-Lobo, Alejandra; Breña-Ochoa, Alejandra; Moreno-Estrada, Andrés; Eguiarte, Luis E.; Piñero, Daniel

    2015-01-01

    The present dataset comprises 36,931 SNPs genotyped in 46 maize landraces native to Mexico as well as the teosinte subspecies Zea maiz ssp. parviglumis and ssp. mexicana. These landraces were collected directly from farmers mostly between 2006 and 2010. We accompany these data with a short description of the variation within each landrace, as well as maps, principal component analyses and neighbor joining trees showing the distribution of the genetic diversity relative to landrace, geographical features and maize biogeography. High levels of genetic variation were detected for the maize landraces (HE = 0.234 to 0.318 (mean 0.311), while slightly lower levels were detected in Zea m. mexicana and Zea m. parviglumis (HE = 0.262 and 0.234, respectively). The distribution of genetic variation was better explained by environmental variables given by the interaction of altitude and latitude than by landrace identity. This dataset is a follow up product of the Global Native Maize Project, an initiative to update the data on Mexican maize landraces and their wild relatives, and to generate information that is necessary for implementing the Mexican Biosafety Law. PMID:26981357

  19. An Analysis of US School Shooting Data (1840-2015)

    Science.gov (United States)

    Paradice, David

    2017-01-01

    This paper describes the construction and descriptive analysis of a data set of United States school shooting events. Three hundred forty-three shooting events are included, spanning 175 years of United States educational history. All levels of US educational institution are included. Events are included when a firearm is discharged, regardless of…

  20. Revisiting the Virginia Tech Shootings: An Ecological Systems Analysis

    Science.gov (United States)

    Hong, Jun Sung; Cho, Hyunkag; Lee, Alvin Shiulain

    2010-01-01

    School shooting cases since the late 1990s have prompted school officials and legislators to develop and implement programs and measures that would prevent violence in school. Despite the number of explanations by the media, politicians, organizations, and researchers about the etiology of school shootings, we are not united in our understanding…

  1. Small heat shock protein message in etiolated Pea seedlings under altered gravity

    Science.gov (United States)

    Talalaiev, O.

    Plants are subjected to various environmental changes during their life cycle To protect themselves against unfavorable influences plant cells synthesize several classes of small heat shock proteins sHsp ranging in size from 15 to 30 kDa This proteins are able to enhance the refolding of chemically denatured proteins in an ATP-independent manner in other words they can function as molecular chaperones The potential contribution of effects of space flight at the plant cellular and gene regulation level has not been characterized yet The object of our study is sHsp gene expression in etiolated Pisum sativum seedlings exposed to altered gravity and environmental conditions We designed primers to detect message for two inducible forms of the cytosolic small heat shock proteins sHsp 17 7 and sHsp 18 1 Applying the RT- PCR we explore sHsps mRNA in pea seedling cells subjected to two types of altered gravity achieved by centrifugation from 3 to 8g by clinorotation 2 rpm and temperature elevation 42oC Temperature elevation as the positive control significantly increased PsHspl7 7 PsHspl8 1 expression We investigate the expression of actin it was constant and comparable for unstressed controls for all variants Results are under discussion

  2. Mechanism of blue-light-induced plasma-membrane depolarization in etiolated cucumber hypocotyls

    Science.gov (United States)

    Spalding, E. P.; Cosgrove, D. J.

    1992-01-01

    A large, transient depolarization of the plasma membrane precedes the rapid blue-light (BL)-induced growth suppression in etiolated seedlings of Cucumis sativus L. The mechanism of this voltage transient was investigated by applying inhibitors of ion channels and the plasma-membrane H(+)-ATPase, by manipulating extracellular ion concentrations, and by measuring cell input resistance and ATP levels. The depolarizing phase was not affected by Ca(2+)-channel blockers (verapamil, La3+) or by reducing extracellular free Ca2+ by treatment with ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA). However, these treatments did reduce the rate of repolarization, indicating an inward movement of Ca2+ is involved. No effects of the K(+)-channel blocker tetraethylammonium (TEA+) were detected. Vanadate and KCN, used to inhibit the H(+)-ATPase, reduced or completely inhibited the BL-induced depolarization. Levels of ATP increased by 11-26% after 1-2 min of BL. Input resistance of trichrome cells, measured with double-barreled microelectrodes, remained constant during the onset of the depolarization but decreased as the membrane voltage became more positive than -90 mV. The results indicate that the depolarization mechanism initially involves inactivation of the H(+)-ATPase with subsequent transient activation of one or more types of ion channels.

  3. The effect of time constraints and running phases on combined event pistol shooting performance.

    Science.gov (United States)

    Dadswell, Clare; Payton, Carl; Holmes, Paul; Burden, Adrian

    2016-01-01

    The combined event is a crucial aspect of the modern pentathlon competition, but little is known about how shooting performance changes through the event. This study aimed to identify (i) how performance-related variables changed within each shooting series and (ii) how performance-related variables changed between each shooting series. Seventeen modern pentathletes completed combined event trials. An optoelectronic shooting system recorded score and pistol movement, and force platforms recorded centre of pressure movement 1 s prior to every shot. Heart rate and blood lactate values were recorded throughout the event. Whilst heart rate and blood lactate significantly increased between series (P  0.05). Thus, combined event shooting performance following each running phase appears similar to shooting performance following only 20 m of running. This finding has potential implications for the way in which modern pentathletes train for combined event shooting, and highlights the need for modern pentathletes to establish new methods with which to enhance shooting accuracy.

  4. Efficient regeneration of sorghum, Sorghum bicolor (L.) Moench, from shoot-tip explant.

    Science.gov (United States)

    Syamala, D; Devi, Prathibha

    2003-12-01

    Novel protocols for production of multiple shoot-tip clumps and somatic embryos of Sorghum bicolor (L.) Moench were developed with long-term goal of crop improvement through genetic transformation. Multiple shoot-tip clumps were developed in vitro from shoot-tip explant of one-week old seedling, cultured on MS medium containing only BA (0.5, 1 or 2 mg/l) or both BA (1 or 2 mg/l) and 2,4-D (0.5 mg/l) with bi-weekly subculture. Somatic embryos were directly produced on the enlarged dome shaped growing structures that developed from the shoot-tips of one-week old seedling explants (without any callus formation) when cultured on MS medium supplemented with both 2,4-D (0.5 mg/l) and BA (0.5 mg/l). However, the supplementation of MS medium with only 2,4-D (0.5 mg/l) induced compact callus without any plantlet regeneration. Each multiple shoot-clump was capable of regenerating more than 80 shoots via an intensive differentiation of both axillary and adventitious shoot buds, the somatic embryos were capable of 90% germination, plant conversion and regeneration. The regenerated shoots could be efficiently rooted on MS medium containing indole-3-butyric acid (IBA 1 mg/l). The plants were successfully transplanted to glasshouse and grown to maturity with a survival rate of 98%. Morphogenetic response of the explants was found to be genotypically independent.

  5. Is Investment in Maize Research Balanced and Justified? An Empirical Study

    Directory of Open Access Journals (Sweden)

    Hari Krishna Shrestha

    2016-12-01

    Full Text Available The objective of this study was to investigate whether the investment in maize research was adequate and balanced in Nepalese context. Resource use in maize research was empirically studied with standard congruency analysis by using Full Time Equivalent (FTE of researchers as a proxy measure of investment. The number of researchers involved in maize was 61 but it was only 21.25 on FTE basis, indicating that full time researchers were very few as compared to the cultivated area of maize in the country. Statistical analysis revealed that the investment in maize research was higher in Tarai and lower in the Hills. Congruency index on actual production basis was found low across the eco-zones and even lower across the geographical regions indicating that the investment in maize research was a mismatch and not justified. While adjusted with the equity factor and the research progress factor in the analysis substantial difference was not found in congruency index. This study recommends that substantial increase in investment in maize research is needed with balanced and justified manner across the eco-zones and the geographical regions. Hills need special attention to increase the investment as maize output value is higher in this eco-zone. Eastern and western regions also need increased investment in maize according to their contribution in the output value.

  6. Developing a database for maize variety in Nigeria | Daniel | Moor ...

    African Journals Online (AJOL)

    Performance data of maize varieties at different locations needs to be accurate and accessible to stimulate the improvement of the Nigerian maize seed system. This paper describes a database model to implement a simple computerized information system for maize varieties and their performance at various locations in ...

  7. GPU based numerical simulation of core shooting process

    Directory of Open Access Journals (Sweden)

    Yi-zhong Zhang

    2017-11-01

    Full Text Available Core shooting process is the most widely used technique to make sand cores and it plays an important role in the quality of sand cores. Although numerical simulation can hopefully optimize the core shooting process, research on numerical simulation of the core shooting process is very limited. Based on a two-fluid model (TFM and a kinetic-friction constitutive correlation, a program for 3D numerical simulation of the core shooting process has been developed and achieved good agreements with in-situ experiments. To match the needs of engineering applications, a graphics processing unit (GPU has also been used to improve the calculation efficiency. The parallel algorithm based on the Compute Unified Device Architecture (CUDA platform can significantly decrease computing time by multi-threaded GPU. In this work, the program accelerated by CUDA parallelization method was developed and the accuracy of the calculations was ensured by comparing with in-situ experimental results photographed by a high-speed camera. The design and optimization of the parallel algorithm were discussed. The simulation result of a sand core test-piece indicated the improvement of the calculation efficiency by GPU. The developed program has also been validated by in-situ experiments with a transparent core-box, a high-speed camera, and a pressure measuring system. The computing time of the parallel program was reduced by nearly 95% while the simulation result was still quite consistent with experimental data. The GPU parallelization method can successfully solve the problem of low computational efficiency of the 3D sand shooting simulation program, and thus the developed GPU program is appropriate for engineering applications.

  8. Micropropagation of Plantago asiatica L. through culture of shoot-tips

    Directory of Open Access Journals (Sweden)

    Joanna Makowczyńska

    2011-01-01

    Full Text Available Shoot-tip multiplication of the medicinal species - Plantago asiatica was carried on MS medium with IAA and BAP or kinetin. Best results in micropropagation were achieved by adding 0.1 mg/dm3 IAA and 1 mg/dm3 BAP. After 6 weeks shoots were transferred to MS medium for rooting. The resulting plantlets were transferred after 8 weeks into pots and after a period of adaptation into the ground (field culture. The species Plantago asiatica was propagated in vitro by shoot-tip multiplication for the first time.

  9. Lippia dulcis shoot cultures as a source of the sweet sesquiterpene hernandulcin.

    Science.gov (United States)

    Sauerwein, M; Flores, H E; Yamazaki, T; Shimomura, K

    1991-04-01

    The axenic shoot culture of Lippia dulcis Trev., Verbenaceae, was established on hormone-free Murashige-Skoog solid medium containing 3% sucrose. Shoots were cultured in various liquid or solid media. Woody Plant liquid medium was best for shoot multiplication, but the production of hernandulcin was relatively low. The highest hernandulcin content (2.9% dry wt) was obtained after 28 days of culture on Murashige-Skoog solid medium containing 2% sucrose. The addition of chitosan to the culture media enhanced the growth of shoots as well as the production of hernandulcin, especially with the liquid medium.

  10. Global maize trade and food security: implications from a social network model.

    Science.gov (United States)

    Wu, Felicia; Guclu, Hasan

    2013-12-01

    In this study, we developed a social network model of the global trade of maize: one of the most important food, feed, and industrial crops worldwide, and critical to food security. We used this model to analyze patterns of maize trade among nations, and to determine where vulnerabilities in food security might arise if maize availability was decreased due to factors such as diversion to nonfood uses, climatic factors, or plant diseases. Using data on imports and exports from the U.N. Commodity Trade Statistics Database for each year from 2000 to 2009 inclusive, we summarized statistics on volumes of maize trade between pairs of nations for 217 nations. There is evidence of market segregation among clusters of nations; with three prominent clusters representing Europe, Brazil and Argentina, and the United States. The United States is by far the largest exporter of maize worldwide, whereas Japan and the Republic of Korea are the largest maize importers. In particular, the star-shaped cluster of the network that represents U.S. maize trade to other nations indicates the potential for food security risks because of the lack of trade these other nations conduct with other maize exporters. If a scenario arose in which U.S. maize could not be exported in as large quantities, maize supplies in many nations could be jeopardized. We discuss this in the context of recent maize ethanol production and its attendant impacts on food prices elsewhere worldwide. © 2013 Society for Risk Analysis.

  11. From many, one: genetic control of prolificacy during maize domestication.

    Directory of Open Access Journals (Sweden)

    David M Wills

    2013-06-01

    Full Text Available A reduction in number and an increase in size of inflorescences is a common aspect of plant domestication. When maize was domesticated from teosinte, the number and arrangement of ears changed dramatically. Teosinte has long lateral branches that bear multiple small ears at their nodes and tassels at their tips. Maize has much shorter lateral branches that are tipped by a single large ear with no additional ears at the branch nodes. To investigate the genetic basis of this difference in prolificacy (the number of ears on a plant, we performed a genome-wide QTL scan. A large effect QTL for prolificacy (prol1.1 was detected on the short arm of chromosome 1 in a location that has previously been shown to influence multiple domestication traits. We fine-mapped prol1.1 to a 2.7 kb "causative region" upstream of the grassy tillers1 (gt1 gene, which encodes a homeodomain leucine zipper transcription factor. Tissue in situ hybridizations reveal that the maize allele of prol1.1 is associated with up-regulation of gt1 expression in the nodal plexus. Given that maize does not initiate secondary ear buds, the expression of gt1 in the nodal plexus in maize may suppress their initiation. Population genetic analyses indicate positive selection on the maize allele of prol1.1, causing a partial sweep that fixed the maize allele throughout most of domesticated maize. This work shows how a subtle cis-regulatory change in tissue specific gene expression altered plant architecture in a way that improved the harvestability of maize.

  12. Studies on the traditional methods of production of maize tuwo (a ...

    African Journals Online (AJOL)

    African Journal of Food, Agriculture, Nutrition and Development ... on the quality characteristics of maize tuwo (a Nigerian nonfermented maize dumpling) ... The sequential mixing of flour and water during maize tuwo preparation should also ...

  13. Variation in shoot tolerance mechanisms not related to ion toxicity in barley

    KAUST Repository

    Tilbrook, Joanne

    2017-09-27

    Soil salinity can severely reduce crop growth and yield. Many studies have investigated salinity tolerance mechanisms in cereals using phenotypes that are relatively easy to measure. The majority of these studies measured the accumulation of shoot Na+ and the effect this has on plant growth. However, plant growth is reduced immediately after exposure to NaCl before Na+ accumulates to toxic concentrations in the shoot. In this study, nondestructive and destructive measurements are used to evaluate the responses of 24 predominately Australian barley (Hordeum vulgare L.) lines at 0, 150 and 250mMNaCl. Considerable variation for shoot tolerance mechanisms not related to ion toxicity (shoot ion-independent tolerance) was found, withsome lines being able to maintain substantial growth rates under salt stress, whereas others stopped growing. Hordeum vulgare spp. spontaneum accessions and barley landraces predominantly had the best shoot ion independent tolerance, although two commercial cultivars, Fathom and Skiff, also had high tolerance. The tolerance of cv. Fathom may be caused by a recent introgression from H. vulgare L. spp. spontaneum. This study shows that the most salt-tolerant barley lines are those that contain both shoot ion-independent tolerance and the ability to exclude Na+ from the shoot (and thus maintain high K+: Na+ ratios).

  14. Variation in shoot tolerance mechanisms not related to ion toxicity in barley

    KAUST Repository

    Tilbrook, Joanne; Schilling, Rhiannon K.; Berger, Bettina; Garcia, Alexandre F.; Trittermann, Christine; Coventry, Stewart; Rabie, Huwaida; Brien, Chris; Nguyen, Martin; Tester, Mark A.; Roy, Stuart J.

    2017-01-01

    Soil salinity can severely reduce crop growth and yield. Many studies have investigated salinity tolerance mechanisms in cereals using phenotypes that are relatively easy to measure. The majority of these studies measured the accumulation of shoot Na+ and the effect this has on plant growth. However, plant growth is reduced immediately after exposure to NaCl before Na+ accumulates to toxic concentrations in the shoot. In this study, nondestructive and destructive measurements are used to evaluate the responses of 24 predominately Australian barley (Hordeum vulgare L.) lines at 0, 150 and 250mMNaCl. Considerable variation for shoot tolerance mechanisms not related to ion toxicity (shoot ion-independent tolerance) was found, withsome lines being able to maintain substantial growth rates under salt stress, whereas others stopped growing. Hordeum vulgare spp. spontaneum accessions and barley landraces predominantly had the best shoot ion independent tolerance, although two commercial cultivars, Fathom and Skiff, also had high tolerance. The tolerance of cv. Fathom may be caused by a recent introgression from H. vulgare L. spp. spontaneum. This study shows that the most salt-tolerant barley lines are those that contain both shoot ion-independent tolerance and the ability to exclude Na+ from the shoot (and thus maintain high K+: Na+ ratios).

  15. Comparative effectiveness of ACC-deaminase and/or nitrogen-fixing rhizobacteria in promotion of maize (Zea mays L.) growth under lead pollution.

    Science.gov (United States)

    Hassan, Waseem; Bano, Rizwana; Bashir, Farhat; David, Julie

    2014-09-01

    Lead (Pb) pollution is appearing as an alarming threat nowadays. Excessive Pb concentrations in agricultural soils result in minimizing the soil fertility and health which affects the plant growth and leads to decrease in crop production. Plant growth promoting rhizobacteria (PGPR) are beneficial bacteria which can protect the plants against many abiotic stresses, and enhance the growth. The study aimed to identify important rhizobacterial strains by using the 1-aminocyclopropane-1-carboxylate (ACC) enrichment technique and examine their inoculation effects in the growth promotion of maize, under Pb pollution. A pot experiment was conducted and six rhizobacterial isolates were used. Pb was added to 2 kg soil in each pot (with 4 seeds/pot) using Pb(NO3)2 at the rate of 0, 100, 200, 300, and 400 mg kg(-1) Pb with three replications in completely randomized design. Rhizobacterial isolates performed significantly better under all Pb levels, i.e., 100 to 400 Pb mg kg(-1) soil, compared to control. Comparing the efficacy of the rhizobacterial isolates under different Pb levels, rhizobacterial isolates having both ACC-deaminase and nitrogen-fixing activities (AN8 and AN12) showed highest increase in terms of the physical, chemical and enzymatic growth parameters of maize, followed by the rhizobacterial isolates having ACC-deaminase activity only (ACC5 and ACC8), and then the nitrogen-fixing rhizobia (Azotobacter and RN5). However, the AN8 isolate showed maximum efficiency, and highest shoot and root length (14.2 and 6.1 cm), seedling fresh and dry weights (1.91 and 0.14 g), chlorophyll a, b, and carotenoids (24.1, 30.2 and 77.7 μg/l), protein (0.82 mg/g), proline (3.42 μmol/g), glutathione S-transferase, peroxidase and catalase (12.3, 4.2 and 7.2 units/mg protein), while the lowest Pb uptake in the shoot and root (0.83 and 0.48 mg/kg) were observed under this rhizobial isolate at the highest Pb level (i.e., 400 Pb mg kg(-1) soil). The results revealed that PGPR

  16. EPICORMIC SHOOTS INDUCTION AND ROOTING CUTTINGS OF Calophyllum brasiliense

    Directory of Open Access Journals (Sweden)

    Dagma Kratz

    2016-12-01

    Full Text Available Calophyllum brasiliense is present in a wide natural distribution range in Brazil and its monopodial growth, with a rectilinear stem and a moderately dense timber has attracted the attention from the logging industry in recent decades. In the meantime, the lack of efficient rescue and vegetative propagation methods of adult plants has been a narrowing condition for the selection of superior genotypes in breeding programs of the species. Therefore, we evaluate epicormic shoots induction methods and the rooting cuttings of 14 year-old Calophyllum brasiliense trees. From this scope, three methods of epicormic shoots induction were evaluated: coppicing, girdling and partial girdling. We evaluate the number of produced sprouts and the percentage of sprouted trees at 06, 12 and 15 months’ after the experiment installation. Results have indicated the feasibility of Calophyllum brasiliense vegetative rescue by cuttings method using epicormic shoots induced by coppicing and girdling. In contrast, partial girdling was not effective in epicormic shoots emission. Concerning adventitious roots, the sprouting technique had no influence in the rooting of cuttings, showing variation among the different stock plants.

  17. How to talk (and not to talk) about school shootings

    OpenAIRE

    Scheper-Hughes, N

    2018-01-01

    © RAI 2018 In this guest editorial, the author addresses the latest school shootings at the Marjory Stoneman Douglas High School in Parkland, Florida. This event is weighed up against reports written by prominent academics, including anthropologists, during previous school shootings.

  18. [Contamination with genetically modified maize MON863 of processed foods on the market].

    Science.gov (United States)

    Ohgiya, Yoko; Sakai, Masaaki; Miyashita, Taeko; Yano, Koichi

    2009-06-01

    Genetically modified maize MON863 (MON863), which has passed a safety examination in Japan, is commercially cultivated in the United States as a food and a resource for fuel. Maize is an anemophilous flower, which easily hybridizes. However, an official method for quantifying the content of MON863 has not been provided yet in Japan. We here examined MON863 contamination in maize-processed foods that had no labeling indicating of the use of genetically modified maize.From March 2006 to July 2008, we purchased 20 frozen maize products, 8 maize powder products, 7 canned maize products and 4 other maize processed foods. Three primer pairs named MON 863 primer, MON863-1, and M3/M4 for MON863-specific integrated cassette were used for qualitative polymerase chain reaction (PCR). A primer pair "SSIIb-3" for starch synthase gene was used to confirm the quality of extracted DNA. The starch synthase gene was detected in all samples. In qualitative tests, the MON863-specific fragments were detected in 7 (18%) maize powder products out of the 39 processed foods with all the three primer pairs.We concluded that various maize processed foods on the market were contaminated with MON863. It is important to accumulate further information on MON863 contamination in maize-processed foods that have no label indication of the use of genetically modified maize.

  19. Nitrogen effects on maize yield following groundnut in rotation on ...

    African Journals Online (AJOL)

    Rotating maize (Zea mays L.) with groundnut (Arachis hypogaea L.) has been proposed as a way to maintain soil fertility and prevent maize productivity declines in the smallholder cropping systems of sub-humid Zimbabwe. Field experiments with fertilizer-N on maize in rotation with groundnut were conducted at three ...

  20. Quantitative trait loci for resistance to Maize rayado fino virus

    Science.gov (United States)

    Maize rayado fino virus (MRFV) causes one of the most important virus diseases of maize in regions of Mexico, Central and South America, where it causes moderate to severe yield losses. The virus is found from the southern United States. to northern Argentina where its vector, the maize leafhopper D...

  1. Sporophytic control of pollen tube growth and guidance in maize

    Science.gov (United States)

    Lausser, Andreas; Kliwer, Irina; Srilunchang, Kanok-orn; Dresselhaus, Thomas

    2010-01-01

    Pollen tube germination, growth, and guidance (progamic phase) culminating in sperm discharge is a multi-stage process including complex interactions between the male gametophyte as well as sporophytic tissues and the female gametophyte (embryo sac), respectively. Inter- and intra-specific crossing barriers in maize and Tripsacum have been studied and a precise description of progamic pollen tube development in maize is reported here. It was found that pollen germination and initial tube growth are rather unspecific, but an early, first crossing barrier was detected before arrival at the transmitting tract. Pollination of maize silks with Tripsacum pollen and incompatible pollination of Ga1s/Ga1s-maize silks with ga1-maize pollen revealed another two incompatibility barriers, namely transmitting tract mistargeting and insufficient growth support. Attraction and growth support by the transmitting tract seem to play key roles for progamic pollen tube growth. After leaving transmitting tracts, pollen tubes have to navigate across the ovule in the ovular cavity. Pollination of an embryo sac-less maize RNAi-line allowed the role of the female gametophyte for pollen tube guidance to be determined in maize. It was found that female gametophyte controlled guidance is restricted to a small region around the micropyle, approximately 50–100 μm in diameter. This area is comparable to the area of influence of previously described ZmEA1-based short-range female gametophyte signalling. In conclusion, the progamic phase is almost completely under sporophytic control in maize. PMID:19926683

  2. School Shootings Stun Reservation

    Science.gov (United States)

    Borja, Rhea R.; Cavanagh, Sean

    2005-01-01

    This article deals with the impact brought by the school shootings at Red Lake Indian Reservation in Minnesota to the school community. A deeply troubled 16-year-old student shot and killed seven other people and himself at a high school. The nation's deadliest school attack since the 1999 slayings at Colorado's suburban Columbine High School took…

  3. Violent mass shootings in Sweden from 1960 to 1995: profiles, patterns, and motives.

    Science.gov (United States)

    Lindquist, O; Lidberg, L

    1998-03-01

    During the past few decades, violent mass shooting in Sweden has increased rapidly. In the 36 years between 1960 and 1995, fourteen such occasions were recorded, during which 32 people were killed and 57 were wounded. The 14 offenders were men between the ages of 17 and 61 years. In the 20 years from 1960 to 1979, five shootings were committed by five offenders, leaving 10 dead and 13 wounded; in the 16 years between 1980 and 1995, there were nine different shootings committed by nine offenders, with 22 dead and 44 wounded. Seven of the shootings were classified as mass shootings, six as spree shootings, and one as a serial shooting. In all but four of these cases, the firearms used were illegal weapons. The four legal firearms belonged to an unemployed young laborer, an officer, a former United Nations (U.N.) soldier, and a member of the Swedish military volunteer corps. Of those killed, 68.8% were strangers to the offender; among the wounded, the corresponding figure was 89.5%. Profiles of the offenders and of the victims were studied. The psychiatric diagnoses among the offenders and the measures taken to prevent the increase in mass shooting in Sweden are presented.

  4. Exploring cost-effective maize integrated weed management ...

    African Journals Online (AJOL)

    Several production constraints have led to low yields (< 2.5 t ha-1) in maize (Zea mays L.) inUganda, among which are weeds. This study investigated the most cost-effective integrated weedmanagement (IWM) approach in maize in eastern Uganda. An experiment was conducted atIkulwe station, Mayuge in 2011 and 2012 ...

  5. Direct shoot organogenesis of Digitalis trojana Ivan., an endemic ...

    African Journals Online (AJOL)

    STORAGESEVER

    2010-03-15

    Mar 15, 2010 ... An efficient protocol for in vitro propagation of Digitalis trojana Ivan. was developed via adventitious shoot regeneration. Leaf explants were cultured on MS which were supplemented with different concentrations of NAA (0.1, 0.5, 1.0 mg/ml) and BAP (0.1, 0.5, 1.0, 3.0, 5.0 mg/ml) for shoot formation.

  6. Assessment of Climate Suitability of Maize in South Korea

    Science.gov (United States)

    Hyun, S.; Choi, D.; Seo, B.

    2017-12-01

    Assessing suitable areas for crops would be useful to design alternate cropping systems as an adaptation option to climate change adaptation. Although suitable areas could be identified by using a crop growth model, it would require a number of input parameters including cultivar and soil. Instead, a simple climate suitability model, e.g., EcoCrop model, could be used for an assessment of climate suitability for a major grain crop. The objective of this study was to assess of climate suitability for maize using the EcoCrop model under climate change conditions in Korea. A long term climate data from 2000 - 2100 were compiled from weather data source. The EcoCrop model implemented in R was used to determine climate suitability index at each grid cell. Overall, the EcoCrop model tended to identify suitable areas for maize production near the coastal areas whereas the actual major production areas located in inland areas. It is likely that the discrepancy between assessed and actual crop production areas would result from the socioeconomic aspects of maize production. Because the price of maize is considerably low, maize has been grown in an area where moisture and temperature conditions would be less than optimum. In part, a simple algorithm to predict climate suitability for maize would caused a relatively large error in climate suitability assessment under the present climate conditions. In 2050s, the climate suitability for maize increased in a large areas in southern and western part of Korea. In particular, the plain areas near the coastal region had considerably greater suitability index in the future compared with mountainous areas. The expansion of suitable areas for maize would help crop production policy making such as the allocation of rice production area for other crops due to considerably less demand for the rice in Korea.

  7. A Comprehensive Analysis of Alternative Splicing in Paleopolyploid Maize

    Directory of Open Access Journals (Sweden)

    Wenbin Mei

    2017-05-01

    Full Text Available Identifying and characterizing alternative splicing (AS enables our understanding of the biological role of transcript isoform diversity. This study describes the use of publicly available RNA-Seq data to identify and characterize the global diversity of AS isoforms in maize using the inbred lines B73 and Mo17, and a related species, sorghum. Identification and characterization of AS within maize tissues revealed that genes expressed in seed exhibit the largest differential AS relative to other tissues examined. Additionally, differences in AS between the two genotypes B73 and Mo17 are greatest within genes expressed in seed. We demonstrate that changes in the level of alternatively spliced transcripts (intron retention and exon skipping do not solely reflect differences in total transcript abundance, and we present evidence that intron retention may act to fine-tune gene expression across seed development stages. Furthermore, we have identified temperature sensitive AS in maize and demonstrate that drought-induced changes in AS involve distinct sets of genes in reproductive and vegetative tissues. Examining our identified AS isoforms within B73 × Mo17 recombinant inbred lines (RILs identified splicing QTL (sQTL. The 43.3% of cis-sQTL regulated junctions are actually identified as alternatively spliced junctions in our analysis, while 10 Mb windows on each side of 48.2% of trans-sQTLs overlap with splicing related genes. Using sorghum as an out-group enabled direct examination of loss or conservation of AS between homeologous genes representing the two subgenomes of maize. We identify several instances where AS isoforms that are conserved between one maize homeolog and its sorghum ortholog are absent from the second maize homeolog, suggesting that these AS isoforms may have been lost after the maize whole genome duplication event. This comprehensive analysis provides new insights into the complexity of AS in maize.

  8. Studies on maize inbred lines susceptibility to herbicides

    Directory of Open Access Journals (Sweden)

    Stefanović Lidija

    2010-01-01

    Full Text Available This paper presents the analysis of results obtained during long- term studies on the response of maize inbred lines to herbicides. Under the agroecological conditions of Zemun Polje the response (reaction of maize inbred lines to herbicides of different classes was investigated. Biological tests were performed and some agronomic, morphological, physiological and biochemical parameters were determined when the response of maize inbred lines to herbicides was estimated. The use of active ingredients of herbicides from triazine, acetanilide, thiocarbamate to new chemical groups (sulfonylurea etc., have been resulted in changes in weed suppression and susceptibility of inbred lines. Obtained results show that effects of herbicides on susceptible maize genotypes can be different: they can slowdown the growth and development and affect the plant height; they can also affect the stages of the tassel and ear development and at the end they can reduced grain yield of the tested inbreds. Numerous studies confirmed the existence of differences in susceptibility level of maize genotypes in relation to herbicides. According to gained results the recommendations for growers are made on the possibility of the application of new herbicides in the hybrid seed production.

  9. Translocation of sorbitol and other photosynthates in golden delicious apple shoots

    International Nuclear Information System (INIS)

    Steenkamp, J.; Terblanche, J.H.; De Villiers, O.T.

    1982-01-01

    This study was undertaken to determine to what extent sorbitol and other photosynthates are translocated in Golden Delicious apple shoots. The distribution of radioactivity in the different fractions, after the leaves had been exposed to radiocarbon, was found in segment of the shoots directly below the treatment leaves. The highest 14 C activity was in the carbohydrate fraction. The results indicate that sorbitol is the principal carbohydrate transported in Golden Delicious apple shoots

  10. Ethylene Contributes to maize insect resistance1-Mediated Maize Defense against the Phloem Sap-Sucking Corn Leaf Aphid1[OPEN

    Science.gov (United States)

    Louis, Joe; Basu, Saumik; Varsani, Suresh; Castano-Duque, Lina; Jiang, Victoria; Williams, W. Paul; Felton, Gary W.; Luthe, Dawn S.

    2015-01-01

    Signaling networks among multiple phytohormones fine-tune plant defense responses to insect herbivore attack. Previously, it was reported that the synergistic combination of ethylene (ET) and jasmonic acid (JA) was required for accumulation of the maize insect resistance1 (mir1) gene product, a cysteine (Cys) proteinase that is a key defensive protein against chewing insect pests in maize (Zea mays). However, this study suggests that mir1-mediated resistance to corn leaf aphid (CLA; Rhopalosiphum maidis), a phloem sap-sucking insect pest, is independent of JA but regulated by the ET-signaling pathway. Feeding by CLA triggers the rapid accumulation of mir1 transcripts in the resistant maize genotype, Mp708. Furthermore, Mp708 provided elevated levels of antibiosis (limits aphid population)- and antixenosis (deters aphid settling)-mediated resistance to CLA compared with B73 and Tx601 maize susceptible inbred lines. Synthetic diet aphid feeding trial bioassays with recombinant Mir1-Cys Protease demonstrates that Mir1-Cys Protease provides direct toxicity to CLA. Furthermore, foliar feeding by CLA rapidly sends defensive signal(s) to the roots that trigger belowground accumulation of the mir1, signifying a potential role of long-distance signaling in maize defense against the phloem-feeding insects. Collectively, our data indicate that ET-regulated mir1 transcript accumulation, uncoupled from JA, contributed to heightened resistance to CLA in maize. In addition, our results underscore the significance of ET acting as a central node in regulating mir1 expression to different feeding guilds of insect herbivores. PMID:26253737

  11. Influence of calcium content of tissue on hyperhydricity and shoot-tip necrosis of in vitro regenerated shoots of Lavandula angustifolia Mill.

    Directory of Open Access Journals (Sweden)

    Marília Pereira Machado

    2014-10-01

    Full Text Available In the present study, the effects of two CaCl2.2H2O levels (440 and 1320 mg L-1 and two subcultures were evaluated on in vitro shoots of Lavandula angustifolia cv. Provence Blue. Ca2+ content of the apical, middle and basal portion of shoots was determined. Increasing CaCl2.2H2O level in the culture medium increased tissue Ca2+ content and decreased hyperhydricity. Shoot-tip necrosis also decreased with 1320 mg L-1 CaCl2.2H2O, but it did not occur in the second subculture. The middle and basal portion had higher Ca2+ content than apical portion. In non-hyperhydric tissues, there were smaller and more juxtaposed cells. Scanning electron microscopy of the leaves demonstrated that trichomes from in vitro leaf surface occurred in smaller quantities.

  12. The economic implication of substituting cocoa pod husk for maize ...

    African Journals Online (AJOL)

    This saving was found to bridge the deficit between demand and supply as given by supplementation done by importing maize. The study concluded that by utilizing CPH in compounding various livestock feed rations, the high price of maize arising from excessive demand can be reduced. The limiting role of maize in ...

  13. Performance of laying hens fed diets containing DAS-59122-7 maize grain compared with diets containing nontransgenic maize grain.

    Science.gov (United States)

    Jacobs, C M; Utterback, P L; Parsons, C M; Rice, D; Smith, B; Hinds, M; Liebergesell, M; Sauber, T

    2008-03-01

    An experiment using 216 Hy-Line W-36 pullets was conducted to evaluate transgenic maize grain containing the cry34Ab1 and cry35Ab1 genes from a Bacillus thuringiensis (Bt) strain and the phosphinothricin ace-tyltransferase (pat) gene from Streptomyces viridochromogenes. Expression of the cry34Ab1 and cry35Ab1 genes confers resistance to corn rootworms, and the pat gene confers tolerance to herbicides containing glufosinate-ammonium. Pullets (20 wk of age) were placed in cage lots (3 hens/cage, 2 cages/lot) and were randomly assigned to 1 of 3 corn-soybean meal dietary treatments (12 lots/treatment) formulated with the following maize grains: near-isogenic control (control), conventional maize, and transgenic test corn line 59122 containing event DAS-59122-7. Differences between 59122 and control group means were evaluated with statistical significance at P < 0.05. Body weight and gain, egg production, egg mass, and feed efficiency for hens fed the 59122 corn were not significantly different from the respective values for hens fed diets formulated with control maize grain. Egg component weights, Haugh unit measures, and egg weight class distribution were similar regardless of the corn source. This research indicates that performance of hens fed diets containing 59122 maize grain, as measured by egg production and egg quality, was similar to that of hens fed diets formulated with near-isogenic corn grain.

  14. A review on important maize diseases and their management in Nepal

    Directory of Open Access Journals (Sweden)

    Subash Subedi

    2015-12-01

    Full Text Available In Nepal, maize ranks second after rice both in area and production. In recent years, maize area and production has shown a steady increase, but productivity has been low (2.46 t/ha. The major maize producing regions in Nepal are mid hill (72.85%, terai (17.36% and high hill (9.79% respectively. A literature review was carried out to explore major maize diseases and their management in Nepal. The omnipresent incidence of diseases at the pre harvest stage has been an important bottleneck in increasing production. Till now, a total of 78 (75 fungal and 3 bacterial species are pathogenic to maize crop in Nepal. The major and economically important maize diseases reported are Gray leaf spot, Northern leaf blight, Southern leaf Blight, Banded leaf and sheath blight, Ear rot, Stalk rot, Head smut, Common rust, Downy mildew and Brown spot. Information on bacterial and virus diseases, nematodes and yield loss assessment is also given. Description of the major maize diseases, their causal organisms, distribution, time and intensity of disease incidence, symptoms, survival, spreads, environmental factors for disease development, yield losses and various disease management strategies corresponded to important maize diseases of Nepal are gathered and compiled thoroughly from the available publications. Concerted efforts of NARC commodity programs, divisions, ARS and RARS involving research on maize pathology and their important outcomes are mentioned. The use of disease management methods focused on host resistance has also been highlighted.

  15. appraisal of indigenous pig procution and management practices

    African Journals Online (AJOL)

    Dr Adesope

    investigate the effects of maize-stover compost fertilizer and plant spacing on the ... and cumulative shoot yield but leaf area, number of off shoots and dry matter ... with its fear of soil and water pollution by inorganic fertilizers calls for the use of ...

  16. Field-Evolved Resistance to Bt Maize by Western Corn Rootworm

    Science.gov (United States)

    Gassmann, Aaron J.; Petzold-Maxwell, Jennifer L.; Keweshan, Ryan S.; Dunbar, Mike W.

    2011-01-01

    Background Crops engineered to produce insecticidal toxins derived from the bacterium Bacillus thuringiensis (Bt) are planted on millions of hectares annually, reducing the use of conventional insecticides and suppressing pests. However, the evolution of resistance could cut short these benefits. A primary pest targeted by Bt maize in the United States is the western corn rootworm Diabrotica virgifera virgifera (Coleoptera: Chrysomelidae). Methodology/Principal Findings We report that fields identified by farmers as having severe rootworm feeding injury to Bt maize contained populations of western corn rootworm that displayed significantly higher survival on Cry3Bb1 maize in laboratory bioassays than did western corn rootworm from fields not associated with such feeding injury. In all cases, fields experiencing severe rootworm feeding contained Cry3Bb1 maize. Interviews with farmers indicated that Cry3Bb1 maize had been grown in those fields for at least three consecutive years. There was a significant positive correlation between the number of years Cry3Bb1 maize had been grown in a field and the survival of rootworm populations on Cry3Bb1 maize in bioassays. However, there was no significant correlation among populations for survival on Cry34/35Ab1 maize and Cry3Bb1 maize, suggesting a lack of cross resistance between these Bt toxins. Conclusions/Significance This is the first report of field-evolved resistance to a Bt toxin by the western corn rootworm and by any species of Coleoptera. Insufficient planting of refuges and non-recessive inheritance of resistance may have contributed to resistance. These results suggest that improvements in resistance management and a more integrated approach to the use of Bt crops may be necessary. PMID:21829470

  17. Diversity in global maize germplasm: Characterization and utilization

    Indian Academy of Sciences (India)

    2012-10-15

    Oct 15, 2012 ... maize farmers as well as to the scientific community are depicted in figure 1, and ..... best practices for maintaining the original genetic diversity of the gene bank ..... maize; in Studies in the neolithic and urban revolution: V.

  18. Climate Change and Maize Production: Empirical Evidence from ...

    African Journals Online (AJOL)

    Michael Madukwe

    Time series data on aggregate maize production, fertilizer use, .... The maize response model (eqn 3) was estimated using the time series data for ... The R. 2 value obtained from the equation is 0.534. This further indicates that aggregate total.

  19. Assessment of the phytoextraction potential of high biomass crop plants

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez-Allica, Javier [NEIKER-tecnalia, Basque Institute of Agricultural Research and Development, c/Berreaga 1, E-48160 Derio (Spain); Becerril, Jose M. [Department of Plant Biology and Ecology, University of the Basque Country, P.O. Box 644, E-48080 Bilbao (Spain); Garbisu, Carlos [NEIKER-tecnalia, Basque Institute of Agricultural Research and Development, c/Berreaga 1, E-48160 Derio (Spain)], E-mail: cgarbisu@neiker.net

    2008-03-15

    A hydroponic screening method was used to identify high biomass crop plants with the ability to accumulate metals. Highest values of shoot accumulation were found in maize cv. Ranchero, rapeseed cv. Karat, and cardoon cv. Peralta for Pb (18 753 mg kg{sup -1}), Zn (10 916 mg kg{sup -1}), and Cd (242 mg kg{sup -1}), respectively. Subsequently, we tested the potential of these three cultivars for the phytoextraction of a metal spiked compost, finding out that, in cardoon and maize plants, increasing Zn and Cd concentrations led to lower values of root and shoot DW. By contrast, rapeseed shoot growth was not significantly affected by Cd concentration. Finally, a metal polluted soil was used to check these cultivars' phytoextraction capacity. Although the soil was phytotoxic enough to prevent the growth of cardoon and rapeseed plants, maize plants phytoextracted 3.7 mg Zn pot{sup -1}. We concluded that the phytoextraction performance of cultivars varies depending on the screening method used. - The phytoextraction performance of cultivars varies significantly depending on the screening method used.

  20. Assessment of the phytoextraction potential of high biomass crop plants

    International Nuclear Information System (INIS)

    Hernandez-Allica, Javier; Becerril, Jose M.; Garbisu, Carlos

    2008-01-01

    A hydroponic screening method was used to identify high biomass crop plants with the ability to accumulate metals. Highest values of shoot accumulation were found in maize cv. Ranchero, rapeseed cv. Karat, and cardoon cv. Peralta for Pb (18 753 mg kg -1 ), Zn (10 916 mg kg -1 ), and Cd (242 mg kg -1 ), respectively. Subsequently, we tested the potential of these three cultivars for the phytoextraction of a metal spiked compost, finding out that, in cardoon and maize plants, increasing Zn and Cd concentrations led to lower values of root and shoot DW. By contrast, rapeseed shoot growth was not significantly affected by Cd concentration. Finally, a metal polluted soil was used to check these cultivars' phytoextraction capacity. Although the soil was phytotoxic enough to prevent the growth of cardoon and rapeseed plants, maize plants phytoextracted 3.7 mg Zn pot -1 . We concluded that the phytoextraction performance of cultivars varies depending on the screening method used. - The phytoextraction performance of cultivars varies significantly depending on the screening method used

  1. 19 CFR 10.57 - Certified seed potatoes, and seed corn or maize.

    Science.gov (United States)

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Certified seed potatoes, and seed corn or maize... Provisions Potatoes, Corn, Or Maize § 10.57 Certified seed potatoes, and seed corn or maize. Claim for classification as seed potatoes under subheading 0701.10.00, as seed corn (maize) under subheading 1005.10...

  2. Multiple Pesticides Detoxification Function of Maize (Zea mays) GST34.

    Science.gov (United States)

    Li, Dongzhi; Xu, Li; Pang, Sen; Liu, Zhiqian; Zhao, Weisong; Wang, Chengju

    2017-03-08

    ZmGST34 is a maize Tau class GST gene and was found to be differently expressed between two maize cultivars differing in tolerance to herbicide metolachlor. To explore the possible role of ZmGST34 in maize development, the expression pattern and substrate specificity of ZmGST34 were characterized by quantitative RT-PCR and heterologous expression system, respectively. The results indicated that the expression level of ZmGST34 was increased ∼2-5-fold per day during the second-leaf stage of maize seedling. Chloroacetanilide herbicides or phytohormone treatments had no influence on the expression level of ZmGST34, suggesting that ZmGST34 is a constitutively expressed gene in maize seedling. Heterologous expression in Escherichia coli and in Arabidopsis thaliana proved that ZmGST34 can metabolize most chloroacetanilide herbicides and increase tolerance to these herbicides in transgenic Arabidopsis thaliana. The constitutive expression pattern and broad substrate activity of ZmGST34 suggested that this gene may play an important role in maize development in addition to the detoxification of pesticides.

  3. The Importance of Maize Management on Dung Beetle Communities in Atlantic Forest Fragments.

    Directory of Open Access Journals (Sweden)

    Renata Calixto Campos

    Full Text Available Dung beetle community structures changes due to the effects of destruction, fragmentation, isolation and decrease in tropical forest area, and therefore are considered ecological indicators. In order to assess the influence of type of maize cultivated and associated maize management on dung beetle communities in Atlantic Forest fragments surrounded by conventional and transgenic maize were evaluated 40 Atlantic Forest fragments of different sizes, 20 surrounded by GM maize and 20 surrounded by conventional maize, in February 2013 and 2014 in Southern Brazil. After applying a sampling protocol in each fragment (10 pitfall traps baited with human feces or carrion exposed for 48 h, a total of 3454 individuals from 44 species were captured: 1142 individuals from 38 species in GM maize surrounded fragments, and 2312 from 42 species in conventional maize surrounded fragments. Differences in dung beetle communities were found between GM and conventional maize communities. As expected for fragmented areas, the covariance analysis showed a greater species richness in larger fragments under both conditions; however species richness was greater in fragments surrounded by conventional maize. Dung beetle structure in the forest fragments was explained by environmental variables, fragment area, spatial distance and also type of maize (transgenic or conventional associated with maize management techniques. In Southern Brazil's scenario, the use of GM maize combined with associated agricultural management may be accelerating the loss of diversity in Atlantic Forest areas, and consequently, important ecosystem services provided by dung beetles may be lost.

  4. The Importance of Maize Management on Dung Beetle Communities in Atlantic Forest Fragments.

    Science.gov (United States)

    Campos, Renata Calixto; Hernández, Malva Isabel Medina

    2015-01-01

    Dung beetle community structures changes due to the effects of destruction, fragmentation, isolation and decrease in tropical forest area, and therefore are considered ecological indicators. In order to assess the influence of type of maize cultivated and associated maize management on dung beetle communities in Atlantic Forest fragments surrounded by conventional and transgenic maize were evaluated 40 Atlantic Forest fragments of different sizes, 20 surrounded by GM maize and 20 surrounded by conventional maize, in February 2013 and 2014 in Southern Brazil. After applying a sampling protocol in each fragment (10 pitfall traps baited with human feces or carrion exposed for 48 h), a total of 3454 individuals from 44 species were captured: 1142 individuals from 38 species in GM maize surrounded fragments, and 2312 from 42 species in conventional maize surrounded fragments. Differences in dung beetle communities were found between GM and conventional maize communities. As expected for fragmented areas, the covariance analysis showed a greater species richness in larger fragments under both conditions; however species richness was greater in fragments surrounded by conventional maize. Dung beetle structure in the forest fragments was explained by environmental variables, fragment area, spatial distance and also type of maize (transgenic or conventional) associated with maize management techniques. In Southern Brazil's scenario, the use of GM maize combined with associated agricultural management may be accelerating the loss of diversity in Atlantic Forest areas, and consequently, important ecosystem services provided by dung beetles may be lost.

  5. Effects of fluoride on mitochondrial activity in higher plants. [Glycine max, Zea mays

    Energy Technology Data Exchange (ETDEWEB)

    Miller, J E; Miller, G W

    1974-01-01

    The effects of fluoride on respiration of plant tissue and mitochondria were investigated. Fumigation of young soybean plants (Glycine max Merr. cm. Hawkeye) with 9-12 ..mu..g x m/sup -3/ HF caused a stimulation of respiration at about 2 days of treatment followed by inhibition 2 days later. Mitochondria isolated from the stimulated tissue had higher respiration rates, greater ATPase activity, and lower P/O ratios, while in mitochondria from inhibited tissue, all three were reduced. Treatment of etiolated soybean hypocotyl sections in Hoagland's solution containing KF for 3 to 10 h only resulted in inhibition of respiration. Mitochondria isolated from this tissue elicited increased respiration rates with malate as substrate and inhibited respiration with succinate. With both substrates respiratory control and ADP/O ratios were decreased. Direct treatment of mitochondria from etiolated soybean hypocotyl tissue with fluoride resulted in inhibition of state 3 respiration and lower ADP/O ratios with the substrates succinate, malate, and NADH. Fluoride was also found to increase the amount of osmotically induced swelling and cause a more rapid leakage of protein with mitochondria isolated from etiolated corn shoots (Zea mays L. cv. Golden Cross Bantam). 40 references, 1 figure, 5 tables.

  6. The Sandy Hook Elementary School shooting as tipping point

    Science.gov (United States)

    Shultz, James M; Muschert, Glenn W; Dingwall, Alison; Cohen, Alyssa M

    2013-01-01

    Among rampage shooting massacres, the Sandy Hook Elementary School shooting on December 14, 2012 galvanized public attention. In this Commentary we examine the features of this episode of gun violence that has sparked strong reactions and energized discourse that may ultimately lead toward constructive solutions to diminish high rates of firearm deaths and injuries in the United States. PMID:28228989

  7. Prevalence of genetically modified rice, maize, and soy in Saudi food products.

    Science.gov (United States)

    Elsanhoty, Rafaat M; Al-Turki, A I; Ramadan, Mohamed Fawzy

    2013-10-01

    Qualitative and quantitative DNA-based methods were applied to detect genetically modified foods in samples from markets in the Kingdom of Saudi Arabia. Two hundred samples were collected from Al-Qassim, Riyadh, and Mahdina in 2009 and 2010. GMOScreen 35S and NOS test kits for the detection of genetically modified organism varieties in samples were used. The positive results obtained from GMOScreen 35S and NOS were identified using specific primer pairs. The results indicated that all rice samples gave negative results for the presence of 35S and NOS terminator. About 26 % of samples containing soybean were positive for 35S and NOS terminator and 44 % of samples containing maize were positive for the presence of 35S and/or NOS terminator. The results showed that 20.4 % of samples was positive for maize line Bt176, 8.8 % was positive for maize line Bt11, 8.8 % was positive for maize line T25, 5.9 % was positive for maize line MON 810, and 5.9 % was positive for StarLink maize. Twelve samples were shown to contain genetically modified (GM) soy and 6 samples >10 % of GM soy. Four samples containing GM maize were shown to contain >5 % of GM maize MON 810. Four samples containing GM maize were shown to contain >1 % of StarLink maize. Establishing strong regulations and certified laboratories to monitor GM foods or crops in Saudi market is recommended.

  8. The Effect of Ascorbic Acid Treatment on Viability and Vigor Maize (Zea mays L. Seedling under Drought Stress

    Directory of Open Access Journals (Sweden)

    HAMIDAH HAMAMA

    2010-09-01

    Full Text Available This study was conducted in the laboratory and the field to examine the effects of ascorbic acid treatment on germination and seedling growth under drought stress. The laboratory works consisted of two experiments and were designed to determine the critical osmotic potential of maize and to determine the optimum ascorbic acid concentration. The field study was designed to examine the effects of soaking seed in ascorbic acid on seedling growth under drought stress. Drought condition was simulated by PEG-6000 and regulation of water treatment. During the first experiment, interactions of both osmotic potential and varieties were significant at all variables. Germination percentage and speed of germination were significantly decreased by increasing of osmotic potential. The second experiment showed that interactions of both factors were significant at all variables except vigor index, the length of shoot, primary, and seminal root. The results showed that the ascorbic acid treatment improved the germination percentage, the speed of germination and the vigor index compared with the control, besides the increase in length of shoot, primary and seminal root and number of seminal root. However, the best result was showed by 55 mM ascobic acid. The result of field experiment showed that interactions were not always significant and 55 mM ascorbic acid treatment increased the seedling height, the number of leaves and leaf area but it had no effect on the water deficit and the root length.

  9. Cadmium spiked soil modulates root organic acids exudation and ionic contents of two differentially Cd tolerant maize (Zea mays L.) cultivars.

    Science.gov (United States)

    Javed, M Tariq; Akram, M Sohail; Tanwir, Kashif; Javed Chaudhary, Hassan; Ali, Qasim; Stoltz, Eva; Lindberg, Sylvia

    2017-07-01

    Our earlier work described that the roots of two maize cultivars, grown hydroponically, differentially responded to cadmium (Cd) stress by initiating changes in medium pH depending on their Cd tolerance. The current study investigated the root exudation, elemental contents and antioxidant behavior of the same maize cultivars [cv. 3062 (Cd-tolerant) and cv. 31P41 (Cd-sensitive)] under Cd stress. Plants were maintained in a rhizobox-like system carrying soil spiked with Cd concentrations of 0, 10, 20, 30, 40 and 50 μmol/kg soil. The root and shoot Cd contents increased, while Mg, Ca and Fe contents mainly decreased at higher Cd levels, and preferentially in the sensitive cultivar. Interestingly, the K contents increased in roots of cv. 3062 at low Cd treatments. The Cd stress caused acidosis of the maize root exudates predominantly in cv. 3062. The concentration of various organic acids was significantly increased in the root exudates of cv. 3062 with applied Cd levels. This effect was diminished in cv. 31P41 at higher Cd levels. Cd exposure increased the relative membrane permeability, anthocyanin (only in cv. 3062), proline contents and the activities of peroxidases (POD) and superoxide dismutase (SOD). The only exception was the catalase activity, which was diminished in both cultivars. Root Cd contents were positively correlated with the secretion of acetic acid, oxalic acid, glutamic acid, citric acid, and succinic acid. The antioxidants like POD and SOD exhibited a positive correlation with the organic acids under Cd stress. It is likly that a high exudation of dicarboxylic organic acids improves nutrient uptake and activities of antioxidants, which enables the tolerant cultivar to acclimatize in Cd polluted environment. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Assessment of carbon sources on in vitro shoot regeneration in tomato

    International Nuclear Information System (INIS)

    Shah, S.H.; Jan, S.A.

    2014-01-01

    An innovative approach for in vitro shoot regeneration by both direct and indirect means was developed in three tomato genotypes culturing hypocotyls and leaf discs explants on MS and N6 basal media fortified with various concentrations of carbon sources (sucrose and sorbitol) individually, accumulatively and also in amalgamation with various plant growth regulators. No response of in vitro shoot regeneration was recorded in all the genotypes by the individual application of carbon sources in both MS and N6 basal media. On the other hand, their accumulative effect rapidly enhanced the in vitro shoot regeneration frequency in all the genotypes. The highest shoot organogenesis frequency (100, 99.00 and 97.69%) was recorded in Rio Grande, Roma and Moneymaker, respectively on MS medium fortified with carbon sources (30: 30 g/l) culturing hypocotyls. Supplementation of sucrose: sorbitol (30: 30 g/l) in N6 medium along with different PGRs (0.1 mg/l IAA, 1.0 mg/l ZEA and 2.0 mg/l BAP) produced the highest shoot regeneration frequency (96.33, 92.69 and 88.74%) in Roma, Rio Grande and Moneymaker culturing leaf discs. Our findings suggest an alternative approach as hormone-free protocol for in vitro shoot regeneration in tomato that would save the resources with regard to hormonal costs and time. (author)

  11. Application of csm- ceres-maize model for seasonal and multi-decadal predictions of maize yield in under subtropical condition of Chitwan, Nepal

    Directory of Open Access Journals (Sweden)

    Lal Prasad Amgain

    2015-12-01

    Full Text Available The average maize yield of 2.5 t/ha in sub-tropical terai and inner terai of Nepal has been very less than its potential yield of about 5.0 t/ha, for which changing climatic scenarios have been reported the critical factors. Cropping system Model (CSM-Crop Estimation through Resource and Environment Synthesis (CERES-Maize, embedded under Decision Support System for Agro-technology Transfer (DSSAT ver. 4.2 was evaluated from a datasets of field experimentation by growing four diverse maize genotypes viz. full season OPV (Rampur Composite, Quality Protein Maize (Posilo Makai-1, Hybrid (Gaurav and Pop corn (Pool-12 under three different planting dates (September 1, October 1 and November 1 in 2009-10 at Rampur Campus, Chitwan. The experiment was laid out in two factor factorial randomized complete block design (RCBD with three replications in slightly acidic (pH 6.7 sandy loam soil having low soil available N( 0.49% and K (148 kg/ha and medium P (16.3 kg/ha status. The ancillary and yield data obtaining from field experiment was analyzed from the M-Stat C software and recorded that Gaurav hybrid produced significantly higher yield under September 1 planting (5.86 t/ha followed by Posilo Makai 1 (5.55 t/ha, Rampur Composite (5.1t/ha and the least with Pool-12 (3.45 t/ha. Further, the heat use efficiency of diverse maize genotypes were also calculated by using the mean temperature based accumulative heat unit system and found the stable yields only with Rampur Composite for all planting dates and the rest genotypes were suitable only to the early winter plantings. Model calibration was done by using September 1 planting date for all 4 maize genotypes while validation was accomplished by using the remaining treatments for predicting growth and yield of different maize genotypes. The year 2006- 07 was found 13, 18, 23 and 7% higher in producing the maize yield than the standard year 2009-10 for Rampur Composite, Posilo Makai-1, Gaurav and Pool-12

  12. Evaluation of maize-soybean flour blends for sour maize bread ...

    African Journals Online (AJOL)

    Properties examined included amylose content, bulk density, dispersibility, swelling power, water absorption capacity and viscoelastic properties. The effect of the different flour/meal samples on the properties of sour maize bread were evaluated by baking bread samples with the different flours/meals using a mixed starter ...

  13. Gene expression in arabidopsis shoot tips after liquid nitrogen exposure

    Science.gov (United States)

    Arabidopsis thaliana shoot tips can be successfully cryopreserved using either Plant Vitrification Solution 2 (PVS2) or Plant Vitrification Solution 3 (PVS3) as the cryoprotectant. We used this model system to identify suites of genes that were either upregulated or downregulated as shoot tips recov...

  14. Cryopreservation of in vitro -grown shoot tips of apricot ( Prunus ...

    African Journals Online (AJOL)

    In vitro grown apricot (Prunus armeniaca L.) cv. El-Hamawey shoot tips were successfully cryopreserved using an encapsulation-dehydration procedure. Shoot tips were encapsulated in calcium-alginate beads before preculture on woody plant (WP) medium supplemented with different sucrose concentrations; 0.1, 0.3, 0.5, ...

  15. Bamboo shoot preservation for enhancing its business potential and local economy: a review.

    Science.gov (United States)

    Bal, Lalit M; Singhal, Poonam; Satya, Santosh; Naik, S N; Kar, Abhijit

    2012-01-01

    Bamboo shoot as food has been used in traditional ways by the tribal community the world over. For enhancing its business potential, research on various aspects of bamboo shoot as food is being carried out in Japan, Taiwan, Thailand, and Asian countries and several products are available in the market. Bamboo shoots are used as a delicacy in human food, are a good source of dietary fiber, low in fat and calories. The research studies included in this review paper focus on post-harvest preservation of bamboo shoot. In view of the seasonal availability of bamboo shoot, the post-harvest preservation system for handling cynogenic toxicity in raw shoot while keeping nutrients intact and enhancement of shelf life of the value added products assume great significance for the business potential of this natural product. A yardstick of assessing the "Shelf life-Quality Matrix" developed in this review paper would give a new perspective of quality control in case of preservation of bamboo shoot. Also, knowledge gaps identified in this paper would give impetus to new academic and R&D activities, in turn generating an innovative job profile in the food industry as well as rural entrepreneurship.

  16. A selfish gene governing pollen-pistil compatibility confers reproductive isolation between maize relatives.

    Science.gov (United States)

    Kermicle, Jerry L

    2006-01-01

    Some populations of maize's closest relatives, the annual teosintes of Mexico, are unreceptive to maize pollen. When present in the pistil (silk and ovary) a number of maize genes discriminate against or exclude pollen not carrying the same allele. An analogous gene Tcb1-s was found in some teosinte populations but not in sympatric or parapatric maize. It was polymorphic among populations of teosinte growing wild, but regularly present in populations growing in intimate association with maize as a weed. Introduction of Tcb1-s into maize substantially to fully restored compatibility with Tcb1-s carrying teosintes. Although Tcb1-s pollen can fertilize tcb1 tcb1 maize, it is at a competitive disadvantage relative to tcb1 pollen. Hence, the influence of Tcb1-s on crossability is bidirectional. In the absence of maize, Tcb1-s can increase in teosinte populations without improving their fitness. In the presence of maize, Tcb1-s appears to have been co-opted to provide reproductive isolation for adaptation to a cultivated habitat.

  17. Application of soybean shoot-cutting in SMV-resistance genetic analysis

    Institute of Scientific and Technical Information of China (English)

    Haifeng Chen; Zhihui Shan; Xin'an zhou; Zhonglu Yang; Qiao Wan; Yanyan Yang; Shuilian Chen; Chanjuan Zhang; Limiao Chen; Songli Yuan; Dezhen Qiu

    2016-01-01

    Soybean mosaic virus (SMV) is one of the most serious diseases affecting soy-bean yield. Recombination inbred lines (RILs) are common materials for resistance genetic research. However, the population construction always takes quite a long time which pro-long the breading process. Shoot-cutting is a well-established technique for plant multipli-cation. It has high successful ratio in soybean. In this study, we use shoot-cutting to multiply two F2 populations from the crosses of susceptible and resistant varieties. Soybean plants can be multiplied from 1 into 3 homogenous ones within 30 days, bringing on well-grown plants with normal seeds. The SMV resistance from cutting-shoot plants was consistent with that from original plants. When shoot-cutting is applied in a F2 population, the pheno-typic and genotypic data can be simultaneously collected and corresponding saved during population development. The genetic research and resistant breeding can be effectively promoted by this technology.

  18. Genetic diversity among yellow maize with pro-vitamin A content

    Directory of Open Access Journals (Sweden)

    Mercy Oluremi Olowolafe

    2016-06-01

    Full Text Available An improvement in the concentration of vitamin A in adapted yellow maize varieties grown in Africa can have a positive impact on the dietary intakes in regions where maize is a staple food. The present study was designed to identify heterotic groups and divergent parents for developing new pro-vitamin A enriched maize lines. Ten Simple Sequence Repeats (SSR markers were used to generate DNA profiles among thirteen commonly grown yellow maize lines across south western Nigeria and three high pro-vitamin A lines from International Institute of Tropical Agriculture (IITA, Ibadan. The result obtained estimated 100% polymorphism among the ten SSR markers with polymorphic information content that ranged from 0.28 to 0.71 on an average of 0.50. Genetic similarity coefficients among the 16 maize lines varied from 0.28 to 0.92 GS with an average of 0.63 GS. Four well defined groups were identified at 0.65 GS with an IITA line, PVA8, solely, formed a group. The study identified PVA8 and its most three distant relatives as potential divergent parents that could serve as important genetic resources for broadening the genetic base of the presently assessed IAR&T maize collections and also to develop new maize lines with higher level of pro-vitamin A content.

  19. Nitrogen-15 uptake by whole plants and root callus cultures of inbred maize lines and their F1 hybrids

    International Nuclear Information System (INIS)

    Mladenova, Y.; Karadimova, M.

    1981-01-01

    The uptake of nitrogen-15 by 3 maize genotypes was investigated. Comparative analysis of N15 assimilation and distribution in the organs of intact plants of two self-pollinated lines and their F1 hybrid and also in a callus tissue of roots of the same genotypes was made. From the results the conclusion is drawn that the N-use efficiency of the female line is higher than that of the male line both in intact plants and callus tissues from roots. This fact indicates that the N-use efficiency is determined not only by the functions of the cells in the shoots, suggesting the participation of the photosynthetic carboxylases but also by the functions of cells without a photosynthesizing apparatus. The N-use efficiency in the F1 hybrid manifests ''heterosis'', in spite of the intact plants or root callus tissues are being studied. (author)

  20. Giant panda foraging and movement patterns in response to bamboo shoot growth.

    Science.gov (United States)

    Zhang, Mingchun; Zhang, Zhizhong; Li, Zhong; Hong, Mingsheng; Zhou, Xiaoping; Zhou, Shiqiang; Zhang, Jindong; Hull, Vanessa; Huang, Jinyan; Zhang, Hemin

    2018-03-01

    Diet plays a pivotal role in dictating behavioral patterns of herbivorous animals, particularly specialist species. The giant panda (Ailuropoda melanoleuca) is well-known as a bamboo specialist. In the present study, the response of giant pandas to spatiotemporal variation of bamboo shoots was explored using field surveys and GPS collar tracking. Results show the dynamics in panda-bamboo space-time relationships that have not been previously articulated. For instance, we found a higher bamboo stump height of foraged bamboo with increasing elevation, places where pandas foraged later in spring when bamboo shoots become more fibrous and woody. The time required for shoots to reach optimum height for foraging was significantly delayed as elevation increased, a pattern which corresponded with panda elevational migration patterns beginning from the lower elevational end of Fargesia robusta distribution and gradually shifting upward until the end of the shooting season. These results indicate that giant pandas can respond to spatiotemporal variation of bamboo resources, such as available shoots. Anthropogenic interference of low-elevation F. robusta habitat should be mitigated, and conservation attention and increased monitoring should be given to F. robusta areas at the low- and mid-elevation ranges, particularly in the spring shooting season.

  1. beta-Blockade used in precision sports: effect on pistol shooting performance.

    Science.gov (United States)

    Kruse, P; Ladefoged, J; Nielsen, U; Paulev, P E; Sørensen, J P

    1986-08-01

    In a double-blind cross-over study of 33 marksmen (standard pistol, 25 m) the adrenergic beta 1-receptor blocker, metoprolol, was compared to placebo. Metoprolol obviously improved the pistol shooting performance compared with placebo. Shooting improved by 13.4% of possible improvement (i.e., 600 points minus actual points obtained) as an average (SE = 4%, 2P less than 0.002). The most skilled athletes demonstrated the clearest metoprolol improvement. We found no correlation between the shooting improvement and changes in the cardiovascular variables (i.e., changes of heart rate and systolic blood pressure) and no correlation to the estimated maximum O2 uptake. The shooting improvement is an effect of metoprolol on hand tremor. Emotional increase of heart rate and systolic blood pressure seem to be a beta 1-receptor phenomenon.

  2. Fusarium graminearum and Fusarium verticillioides infection on maize seeds

    Directory of Open Access Journals (Sweden)

    Dayana Portes Ramos

    2014-03-01

    Full Text Available The previous knowledge of the infection process and pathogens behavior, for evaluating the physiological potential of maize seeds, is essential for decision making on the final destination of lots that can endanger sowing. This research was carried out in order to study the minimum period required for maize seeds contamination by Fusarium graminearum Schwabe and Fusarium verticillioides (Sacc. Nirenberg, as well as these pathogens influence on seed germination and vigor, by using the cold test. Three maize seeds hybrids, kept in contact with the pathogens for different periods, were evaluated with and without surface disinfection. After determining the most suitable period, new samples were contaminated by F. graminearum and F. verticillioides, under different infection levels, and subjected to germination tests in sand. The cold test was conducted with healthy and contaminated seeds, at different periods, in a cold chamber. The contact of maize seeds with F. graminearum and F. verticillioides for 16 hours was enough to cause infection. F. graminearum and F. verticillioides did not affect the maize seeds germination, however, F. graminearum reduced the vigor of seeds lots.

  3. Mapping the Diversity of Maize Races in Mexico

    Science.gov (United States)

    Perales, Hugo; Golicher, Duncan

    2014-01-01

    Traditional landraces of maize are cultivated throughout more than one-half of Mexico's cropland. Efforts to organize in situ conservation of this important genetic resource have been limited by the lack of knowledge of regional diversity patterns. We used recent and historic collections of maize classified for race type to determine biogeographic regions and centers of landrace diversity. We also analyzed how diversity has changed over the last sixty years. Based on racial composition of maize we found that Mexico can be divided into 11 biogeographic regions. Six of these biogeographic regions are in the center and west of the country and contain more than 90% of the reported samples for 38 of the 47 races studied; these six regions are also the most diverse. We found no evidence of rapid overall decline in landrace diversity for this period. However, several races are now less frequently reported and two regions seem to support lower diversity than in previous collection periods. Our results are consistent with a previous hypothesis for diversification centers and for migration routes of original maize populations merging in western central Mexico. We provide maps of regional diversity patterns and landrace based biogeographic regions that may guide efforts to conserve maize genetic resources. PMID:25486121

  4. Relationship between the shoot characteristics and plant resistance to vascular-streak dieback on cocoa

    Directory of Open Access Journals (Sweden)

    Agung Wahyu Soesilo

    2014-12-01

    Full Text Available Vascular-streak dieback (Oncobasidium theobromae is a serious disease on cocoa damaging the vegetative tissue especially on the branches and leaves. This research was aimed to identify the relationship between characteristics of sprouting ability and VSD resistance to confirm the response of cocoa to pruning treatment on VSD control and developing criteria for selection. Trial was carried out at Kaliwining Experimental Station of ICCRI, a VSD-endemic area by using 668 plants of hybrid populayion which were derivated from intercrossing among seven clones performing different response to VSD. The resistance was evaluated by scoring the plant damage with the scale of 0-6 on drought season in the year of 2009 and 2011. The characteristics of sprouting ability was assessed by recording the pruned trees for the variables of the number of re-growth shoot, shoot height, number of new shoot per pruned branches, shoot diameter and number of leaves per shoot. It was analyzed that the variables of the number of shoot per pruned branches, shoot diameter, shoot height and number of leaves per shoot were not significantly correlated to the score of VSD damage. Grouping of the resistance also performed similar results whereas mean of the sprouting variables were not different among group but the percentage of sprouted branches tend to be higher with the higher of the resistance (lower score. This result confirmed any mechanism of tolerance on VSD resistance by accelerating shoot rejuvenation on resistant plant. Key words : vascular-streak diaback, cocoa, resistance, characteristics of sprouting

  5. Effect of potassium application on ammonium nutrition in maize (zea mays l.) under salt stress

    International Nuclear Information System (INIS)

    Yousra, M.; Akhtar, J.; Saqib, A.; Haq, M.A

    2012-01-01

    Application of potassium has been found to minimize the toxic effect of NH/sup 4/sup +/ under salt stress. To study the interactive effect of K+ and NH4+ under saline condition, maize (Zea mays L., cv. Pioneer-3335) was grown in a hydroponic culture with ammonium (5.0 and 10 mM) as (NH/sub 4/)/sub 2/SO/ sub 4/ at two different levels (3.0 and 9.0 mM) of K+ under control and 100 mM NaCl. Under saline condition, 5 mM NH/sub 4/sup +/ application along with 3.0 mM K+ decreased the dry mass by 24% in maize while its addition at the rate of 10 mM showed a percent decline upto 70% than the control. A decrease in shoot dry mass induced by the combine application of 5.0 mM NH4+ and 9.0 mM K+ was 19% relative to control whilst a decrease i.e. 52% was observed at 10 mM NH/sub 4+/ level. The increasing concentration of potassium was found to alleviate the NH/sub 4+/ toxicity and salinity stress partly by inhibiting the uptake of NH/sub 4+/ and Na+ and by stimulating the N assimilation in plant body. Growth improvement at combination of 5.0 mM NH/sub 4+/ and 9.0 mM K+ was reinforced by higher K+ influx into root cells and its translocation to the growing tissues. Elevating the K+ supply also resulted in the enhanced plant growth several times and reduction in NH/sub 4+/ toxicity and salinity stress. (author)

  6. Apparent digestibility coefficient of chickpea, maize, high-quality protein maize, and beans diets in juvenile and adult Nile tilapia ( Oreochromis niloticus

    Directory of Open Access Journals (Sweden)

    Magnolia Montoya-Mejía

    Full Text Available ABSTRACT The objective of our study was to assess the apparent digestibility of plant ingredients in diets for juvenile (50 g and adult (220 g Nile tilapia (Oreochromis niloticus. Dietary dry matter and protein apparent digestibility coefficients of four plant-derived feedstuffs (chickpea, maize, high-quality maize protein, and beans were tested. The beans diet had the lowest apparent digestibility coefficient of dry matter (ADCDM (69.41%, while no significant differences were detected in ADCDM among the other diets; ADCDM was significantly higher in adults compared with juveniles (77.02 vs. 73.76%. Apparent dry matter digestibility coefficient of ingredients (ADCI was significantly higher in the chickpea (70.48% and high-quality protein maize (71.09% ingredients, and lower in the beans (52.79% ingredient. Apparent dry matter digestibility coefficient of ingredients was significantly higher in juveniles compared with adults (72.56 vs. 56.80%. The protein digestibility of diet (ADCCP was significantly higher in the reference diet (93.68%, while the lowest corresponded to the maize (87.86% and beans (87.29% diets. Significantly lower apparent digestibility coefficient of protein (ADCICP was obtained with the high-quality maize protein (59.11% and maize (49.48% ingredients, while higher ADCICP was obtained with the chickpea and beans ingredients (71.31 and 63.89%, respectively. The apparent digestibility coefficient of ingredient crude protein ADCICP was significantly higher in juveniles compared with adults (67.35 vs. 53.46. Digestibility is generally higher in juveniles, and we recommend using chickpea as an ingredient in diets for Nile tilapia.

  7. African maize porridge: a food with slow in vitro starch digestibility

    CSIR Research Space (South Africa)

    Van der Merwe, B

    2001-02-15

    Full Text Available maize porridge to bread. An in vitro method was used to determine the starch digestibility of African maize porridge compared to other cereal foods. Maize porridge had a much lower in vitro starch digestibility than white bread (P<0.001). There was a...

  8. The nitrate leached below maize root zone is available for deep-rooted wheat in winter wheat-summer maize rotation in the North China Plain

    Energy Technology Data Exchange (ETDEWEB)

    Zhou Shunli [Key Laboratory of Crop Cultivation and Farming System, Ministry of Agriculture, College of Agronomy and Biotechnology, China Agricultural University, 2 West Yuanmingyuan Road, Beijing 100094 (China)], E-mail: zhoushl@cau.edu.cn; Wu Yongcheng [Key Laboratory of Crop Cultivation and Farming System, Ministry of Agriculture, College of Agronomy and Biotechnology, China Agricultural University, 2 West Yuanmingyuan Road, Beijing 100094 (China); College of Agronomy, Si Chuan Agricultural University, Yaan 625014 (China); Wang Zhimin [Key Laboratory of Crop Cultivation and Farming System, Ministry of Agriculture, College of Agronomy and Biotechnology, China Agricultural University, 2 West Yuanmingyuan Road, Beijing 100094 (China); Lu Laiqing; Wang Runzheng [Wuqiao Experimental Station, China Agricultural University, Hebei 061802 (China)

    2008-04-15

    In winter wheat (Triticum aestivum L.)-summer maize (Zea mays L.) rotation system in the North China Plain, maize roots do not extend beyond 1.2 m in the vertical soil profile, but wheat roots can reach up to 2.0 m. Increases in soil nitrate content at maize harvest and significant reductions after winter wheat harvest were observed in the 1.4-2.0 m depth under field conditions. The recovery of {sup 15}N isotope (calcium nitrate) from various (1.0, 1.2, 1.4, 1.6, 1.8 and 2.0 m) soil depths showed that deep-rooting winter wheat could use soil nitrate up to the 2.0 m depth. This accounted partially, for the reduced nitrate in the 1.4-2.0 m depth of the soil after harvest of wheat in the rotation system. - Deep-rooted wheat can recycle nitrate leached from maize root zone in winter wheat-summer maize rotation system.

  9. The nitrate leached below maize root zone is available for deep-rooted wheat in winter wheat-summer maize rotation in the North China Plain

    International Nuclear Information System (INIS)

    Zhou Shunli; Wu Yongcheng; Wang Zhimin; Lu Laiqing; Wang Runzheng

    2008-01-01

    In winter wheat (Triticum aestivum L.)-summer maize (Zea mays L.) rotation system in the North China Plain, maize roots do not extend beyond 1.2 m in the vertical soil profile, but wheat roots can reach up to 2.0 m. Increases in soil nitrate content at maize harvest and significant reductions after winter wheat harvest were observed in the 1.4-2.0 m depth under field conditions. The recovery of 15 N isotope (calcium nitrate) from various (1.0, 1.2, 1.4, 1.6, 1.8 and 2.0 m) soil depths showed that deep-rooting winter wheat could use soil nitrate up to the 2.0 m depth. This accounted partially, for the reduced nitrate in the 1.4-2.0 m depth of the soil after harvest of wheat in the rotation system. - Deep-rooted wheat can recycle nitrate leached from maize root zone in winter wheat-summer maize rotation system

  10. Strategies for narrowing the maize yield gap of household farms through precision fertigation under irrigated conditions using CERES-Maize model.

    Science.gov (United States)

    Liu, Jiangang; Wang, Guangyao; Chu, Qingquan; Chen, Fu

    2017-07-01

    Nitrogen (N) application significantly increases maize yield; however, the unreasonable use of N fertilizer is common in China. The analysis of crop yield gaps can reveal the limiting factors for yield improvement, but there is a lack of practical strategies for narrowing yield gaps of household farms. The objectives of this study were to assess the yield gap of summer maize using an integrative method and to develop strategies for narrowing the maize yield gap through precise N fertilization. The results indicated that there was a significant difference in maize yield among fields, with a low level of variation. Additionally, significant differences in N application rate were observed among fields, with high variability. Based on long-term simulation results, the optimal N application rate was 193 kg ha -1 , with a corresponding maximum attainable yield (AY max ) of 10 318 kg ha -1 . A considerable difference between farmers' yields and AY max was observed. Low agronomic efficiency of applied N fertilizer (AE N ) in farmers' fields was exhibited. The integrative method lays a foundation for exploring the specific factors constraining crop yield gaps at the field scale and for developing strategies for rapid site-specific N management. Optimization strategies to narrow the maize yield gap include increasing N application rates and adjusting the N application schedule. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  11. Analysis of Maize Seed Germs by Photoacoustic Microscopy and Photopyroelectric Technique

    Science.gov (United States)

    Pacheco, A. Domínguez; Aguilar, C. Hernández; Cruz-Orea, A.

    2013-05-01

    A knowledge about thermal parameters of structural components of maize seed is of great relevance in the seed technology practice. The objective of the present study was to determine the thermal effusivity of germs of maize ( Zea mays L.) of different genotypes by means of the photopyroelectric technique (PPE) in the inverse configuration and obtaining the thermal imaging of these samples by photoacoustic microscopy (PAM). Germs from crystalline maize (white pigment), semi-crystalline maize (yellow pigment), and floury maize (blue pigment) were used in this investigation. The results show differences between germs of maize seeds mainly in the values of their thermal effusivities. The thermal images showed minimum inhomogeneity of these seed germs. Characterizations of thermal parameters in seeds are important in agriculture and food production and could be particularly useful to define their quality and determine their utility. PPE and PAM can be considered as potential diagnostic tools for the characterization of agriculture seeds.

  12. Locally processed roasted-maize-based weaning foods fortified with ...

    African Journals Online (AJOL)

    Locally processed roasted-maize-based weaning foods fortified with legumes: factors ... African Journal of Food, Agriculture, Nutrition and Development ... Tom Brown (roasted-maize porridge) is one of the traditional weaning foods in Ghana.

  13. Life-History Traits of Spodoptera frugiperda Populations Exposed to Low-Dose Bt Maize.

    Science.gov (United States)

    Sousa, Fernanda F; Mendes, Simone M; Santos-Amaya, Oscar F; Araújo, Octávio G; Oliveira, Eugenio E; Pereira, Eliseu J G

    2016-01-01

    Exposure to Bacillus thuringiensis (Bt) toxins in low- and moderate-dose transgenic crops may induce sublethal effects and increase the rate of Bt resistance evolution, potentially compromising control efficacy against target pests. We tested this hypothesis using the fall armyworm Spodoptera frugiperda, a major polyphagous lepidopteran pest relatively tolerant to Bt notorious for evolving field-relevant resistance to single-gene Bt maize. Late-instar larvae were collected from Bt Cry1Ab and non-Bt maize fields in five locations in Brazil, and their offspring was compared for survival, development, and population growth in rearing environment without and with Cry1Ab throughout larval development. Larval survival on Cry1Ab maize leaves varied from 20 to 80% among the populations. Larvae reared on Cry1Ab maize had seven-day delay in development time in relation to control larvae, and such delay was shorter in offspring of armyworms from Cry1Ab maize. Population growth rates were 50-70% lower for insects continuously exposed to Cry1Ab maize relative to controls, showing the population-level effect of Cry1Ab, which varied among the populations and prior exposure to Cry1Ab maize in the field. In three out of five populations, armyworms derived from Bt maize reared on Cry1Ab maize showed higher larval weight, faster larval development and better reproductive performance than the armyworms derived from non-Bt maize, and one of these populations showed better performance on both Cry1Ab and control diets, indicating no fitness cost of the resistance trait. Altogether, these results indicate that offspring of armyworms that developed on field-grown, single-gene Bt Cry1Ab maize had reduced performance on Cry1Ab maize foliage in two populations studied, but in other three populations, these offspring had better overall performance on the Bt maize foliage than that of the armyworms from non-Bt maize fields, possibly because of Cry1Ab resistance alleles in these populations

  14. Gibberella ear rot of maize (Zea mays) in Nepal: distribution of the mycotoxins nivalenol and deoxynivalenol in naturally and experimentally infected maize.

    Science.gov (United States)

    Desjardins, Anne E; Busman, Mark; Manandhar, Gyanu; Jarosz, Andrew M; Manandhar, Hira K; Proctor, Robert H

    2008-07-09

    The fungus Fusarium graminearum (sexual stage Gibberella zeae) causes ear rot of maize (Zea mays) and contamination with the 8-ketotrichothecenes nivalenol (1) or 4-deoxynivalenol (2), depending on diversity of the fungal population for the 4-oxygenase gene (TRI13). To determine the importance of 1 and 2 in maize ear rot, a survey of naturally contaminated maize in Nepal was combined with experiments in the field and in a plant growth room. In the survey, 1 contamination was 4-fold more frequent than 2 contamination and 1-producers (TRI13) were isolated more than twice as frequently as 2-producers (Psi TRI13). In maize ear rot experiments, genetically diverse 1-producers and 2-producers caused ear rot and trichothecene contamination. Among strains with the same genetic background, however, 1-producers caused less ear rot and trichothecene contamination than did 2-producers. The high frequency of 1 contamination and the high virulence of many 1-producers are of concern because maize is a staple food of rural populations in Nepal and because 1 has proven to be more toxic than 2 to animals.

  15. In vitro cytotoxicity of fungi spoiling maize silage

    DEFF Research Database (Denmark)

    Rasmussen, Rie Romme; Rasmussen, Peter Have; Larsen, Thomas Ostenfeld

    2011-01-01

    Penicillium roqueforti, Penicillium paneum, Monascus ruber, Alternaria tenuissima, Fusarium graminearum, Fusarium avenaceum, Byssochlamys nivea and Aspergillus fumigatus have previously been identified as major fungal contaminants of Danish maize silage. In the present study their metabolite....... roqueforti metabolites roquefortine C (48μg/mL), andrastin A (>50μg/mL), mycophenolic acid (>100μg/mL) and 1-hydroxyeremophil-7(11),9(10)-dien-8-one (>280μg/mL) were high. Fractionating of agar extracts identified PR-toxin as an important cytotoxic P. roqueforti metabolite, also detectable in maize silage....... The strongly cytotoxic B. nivea and P. paneum agar extracts contained patulin above the IC50 of 0.6μg/mL, however inoculated onto maize silage B. nivea and P. paneum did not produce patulin (>371μg/kg). Still B. nivea infected maize silage containing mycophenolic acid (∼50mg/kg), byssochlamic acid and other...

  16. Root-Expressed Maize Lipoxygenase 3 Negatively Regulates Induced Systemic Resistance to Colletotrichum graminicola in Shoots

    Directory of Open Access Journals (Sweden)

    Nasie eConstantino

    2013-12-01

    Full Text Available We have previously reported that disruption of a maize root-expressed 9-lipoxygenase (9-LOX gene, ZmLOX3, results in dramatic increase in resistance to diverse leaf and stalk pathogens. Despite evident economic significance of these findings, the mechanism behind this increased resistance remained elusive. In this study, we show that increased resistance of the lox3-4 mutants is due to constitutive activation of induced systemic resistance (ISR signaling. We showed that ZmLOX3 lacked expression in leaves in response to anthracnose leaf blight pathogen Colletotrichum graminicola, but was expressed constitutively in the roots, thus prompting our hypothesis: the roots of lox3-4 mutants are the source of increased resistance in leaves. Supporting this hypothesis, treatment of wild-type plants (WT with xylem sap of lox3-4 mutant induced resistance to C. graminicola to the levels comparable to those observed in lox3-4 mutant. Moreover, treating mutants with the sap collected from WT plants partially restored the susceptibility to C. graminicola. lox3-4 mutants showed primed defense responses upon infection, which included earlier and greater induction of defense-related PAL and GST genes compared to WT. In addition to the greater expression of the octadecanoid pathway genes, lox3-4 mutant responded earlier and with a greater accumulation of H2O2 in response to C. graminicola infection or treatment with alamethicin. These findings suggest that lox3-4 mutants display constitutive ISR-like signaling. In support of this idea, root colonization by Trichoderma virens strain GV29-8 induced the same level of disease resistance in WT as the treatment with the mutant sap, but had no additional resistance effect in lox3-4 mutant. While treatment with T. virens GV29 strongly and rapidly suppressed ZmLOX3 expression in hydroponically grown WT roots, T. virens Δsml mutant, which is deficient in ISR induction, was unable to suppress expression of ZmLOX3, thus

  17. Factors Affecting the Efficiency of Maize Marketing in Vandeikya ...

    African Journals Online (AJOL)

    Factors Affecting the Efficiency of Maize Marketing in Vandeikya Local Government Area of Benue State, Nigeria. ... Two hundred maize marketers were selected from Vandeikya Local Area (LGA) of ... EMAIL FULL TEXT EMAIL FULL TEXT

  18. participatory evaluation of drought tolerant maize varieties in the ...

    African Journals Online (AJOL)

    User

    ). Maize production provides livelihoods for millions of subsistence farmers in WCA, thus, increasing the productivity of maize-based cropping sys- tems could increase and stabilize rural incomes, alleviate poverty and reduce food insecurity in.

  19. A review on important maize diseases and their management in Nepal

    OpenAIRE

    Subash Subedi

    2015-01-01

    In Nepal, maize ranks second after rice both in area and production. In recent years, maize area and production has shown a steady increase, but productivity has been low (2.46 t/ha). The major maize producing regions in Nepal are mid hill (72.85%), terai (17.36%) and high hill (9.79%) respectively. A literature review was carried out to explore major maize diseases and their management in Nepal. The omnipresent incidence of diseases at the pre harvest stage has been an important bottleneck ...

  20. Fruit production and branching density affect shoot and whole-tree wood to leaf biomass ratio in olive.

    Science.gov (United States)

    Rosati, Adolfo; Paoletti, Andrea; Al Hariri, Raeed; Famiani, Franco

    2018-02-14

    The amount of shoot stem (i.e., woody part of the shoot) dry matter per unit shoot leaf dry matter (i.e., the shoot wood to leaf biomass ratio) has been reported to be lower in short shoots than in long ones, and this is related to the greater and earlier ability of short shoots to export carbon. This is important in fruit trees, since the greater and earlier carbon export ability of shoots with a lower wood to leaf biomass ratio improves fruit production. This ratio may vary with cultivars, training systems or plant age, but no study has previously investigated the possible effect of fruit production. In this study on two olive cultivars (i.e., Arbequina, with low growth rate, and Frantoio, with high growth rate) subject to different fruit production treatments, we found that at increasing fruit production, shoot length and shoot wood to leaf biomass ratio were proportionally reduced in the new shoots growing at the same time as the fruit. Specifically, fruit production proportionally reduced total new-shoot biomass, length, leaf area and average shoot length. With decreasing shoot length, shoot diameter, stem mass, internode length, individual leaf area and shoot wood to leaf biomass ratio also decreased. This may be viewed as a plant strategy to better support fruit growth in the current year, given the greater and earlier ability of short shoots to export carbon. Moreover, at the whole-tree level, the percentage of total tree biomass production invested in leaves was closely correlated with branching density, which differed significantly across cultivars. By branching more, Arbequina concentrates more shoots (thus leaves) per unit of wood (trunk, branches and root) mass, decreasing wood to leaf biomass ratio at the whole-tree level. Therefore, while, at the shoot level, shoot length determines shoot wood to leaf biomass ratio, at the canopy level branching density is also an important determinant of whole-tree wood to leaf biomass ratio. Whole-tree wood to leaf