WorldWideScience

Sample records for ethynylene oligomer monolayers

  1. Optical constants and self-assembly of phenylene ethynylene oligomer monolayers

    DEFF Research Database (Denmark)

    Marx, E.; Walzer, Karsten; Less, R.J.

    2004-01-01

    This paper studies the self-assembly on gold surfaces of 1,4-ethynylphenyl-4'-ethynylphenyl-2'-nitro-1-benzenedithiolate (EP2NO(2)), a substituted phenylene ethynylene trimer with applications in molecular electronics. We develop an ellipsometric technique to measure the optical constants...... of these self-assembled monolayers, and we also use attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy and scanning tunneling microscopy (STM) to confirm the structure of the films....

  2. Molecular junctions based on SAMs of cruciform oligo(phenylene ethynylene)s

    DEFF Research Database (Denmark)

    Wei, Zhongming; Li, Tao; Jennum, Karsten Stein

    2012-01-01

    Cruciform oligo(phenylene ethynylene)s (OPEs) with an extended tetrathiafulvalene (TTF) donor moiety (OPE5-TTF and OPE3-TTF) and their simple analogues (OPE5-S and OPE3) without conjugated substituents were used to form high quality self-assembled monolayers (SAMs) on ultra-flat gold substrates...

  3. Effect of Side Chains on Molecular Conformation of Anthracene-Ethynylene-Phenylene-Vinylene Oligomers: A Comparative Density Functional Study With and Without Dispersion Interaction.

    Science.gov (United States)

    Dong, Chuanding; Hoppe, Harald; Beenken, Wichard J D

    2016-06-02

    Using density functional calculations with and without dispersion interaction, we studied the effects of linear octyl and branched 2-ethylhexyl side chains on the oligomer conformation of the conjugated copolymer poly(p-anthracene-ethynylene)-alt-poly(p-phenylene-vinylene). With dispersion included, the branched side chains can cause significant bending of the oligomer backbone, while without dispersion they induce mainly torsional disorder. The oligomers with mainly linear side chains keep good planarity when optimized with and without dispersion. Despite their dramatically different conformations, the calculated absorption spectra of the oligomers with various side chain combinations are very similar, indicating that the conformation of the copolymer is not the main reason for the experimentally observed different spectra of ordered and disordered phases.

  4. Antifungal Properties of Cationic Phenylene Ethynylenes and Their Impact on β-Glucan Exposure.

    Science.gov (United States)

    Pappas, Harry C; Sylejmani, Rina; Graus, Matthew S; Donabedian, Patrick L; Whitten, David G; Neumann, Aaron K

    2016-08-01

    Candida species are the cause of many bloodstream infections through contamination of indwelling medical devices. These infections account for a 40% mortality rate, posing a significant risk to immunocompromised patients. Traditional treatments against Candida infections include amphotericin B and various azole treatments. Unfortunately, these treatments are associated with high toxicity, and resistant strains have become more prevalent. As a new frontier, light-activated phenylene ethynylenes have shown promising biocidal activity against Gram-positive and -negative bacterial pathogens, as well as the environmental yeast Saccharomyces cerevisiae In this study, we monitored the viability of Candida species after treatment with a cationic conjugated polymer [poly(p-phenylene ethynylene); PPE] or oligomer ["end-only" oligo(p-phenylene ethynylene); EO-OPE] by flow cytometry in order to explore the antifungal properties of these compounds. The oligomer was found to disrupt Candida albicans yeast membrane integrity independent of light activation, while PPE is able to do so only in the presence of light, allowing for some control as to the manner in which cytotoxic effects are induced. The contrast in killing efficacy between the two compounds is likely related to their size difference and their intrinsic abilities to penetrate the fungal cell wall. Unlike EO-OPE-DABCO (where DABCO is quaternized diazabicyclo[2,2,2]octane), PPE-DABCO displayed a strong propensity to associate with soluble β-glucan, which is expected to inhibit its ability to access and perturb the inner cell membrane of Candida yeast. Furthermore, treatment with PPE-DABCO unmasked Candida albicans β-glucan and increased phagocytosis by Dectin-1-expressing HEK-293 cells. In summary, cationic phenylene ethynylenes show promising biocidal activity against pathogenic Candida yeast cells while also exhibiting immunostimulatory effects. Copyright © 2016, American Society for Microbiology. All Rights

  5. Dynamics of the central phenylene ring torsional motion in halogenated phenylene ethynylene oligomers

    Energy Technology Data Exchange (ETDEWEB)

    Pejov, Ljupco [Institute of Chemistry, Department of Physical Chemistry, SS. Cyril and Methodius University, Arhimedova 5, P.O. Box 162, 1000 Skopje(Macedonia, The Former Yugoslav Republic of)], E-mail: ljupcop@iunona.pmf.ukim.edu.mk; La Rosa, Manuela [PST Group- M6, STMicroelectronics, Stradale Primosole 50, 95121 Catania (Italy); Kocarev, Ljupco [Institute for Nonlinear Science, University of California, San Diego 9500 Gilman, Drive, La Jolla, CA 92093-0402 (United States); Macedonian Academy of Sciences and Arts, bul. Krste Misirkov 2, P.O. Box 428, 1000 Skopje (Macedonia, The Former Yugoslav Republic of)

    2007-11-09

    The dynamics of intramolecular torsional motion of central phenylene ring in a series of phenylene ethynylene oligomer derivatives was investigated. On the basis of calculated hindered rotational potentials corresponding to this motion, the torsional energy levels were obtained by solving the torsional Schroedinger equation. Subsequently, the torsional correlation time and transition probability was computed within the Bloembergen-Purcell-Pound (BPP) formalism, considering both the classical and quantum mechanical tunneling contributions to the intramolecular rotation. The results were interpreted in the context of molecular conductivity switching behavior of the considered series of compounds. Also some other parameters relevant to molecular admittance were calculated, such as the HOMO-LUMO energy difference and the spatial extent of the frontier molecular orbitals. Classical electrostatic arguments were applied to understand the physical basis of the conformational stability differences in the studied compounds. It was found that halogenation of the central phenylene ring may be used for fine-tuning of molecular conduction behavior, in the sense of modulating the HOMO-LUMO energy difference, the spatial extent of frontier MOs, as well as the barrier height to torsional motion of the central phenylene ring. The time scale of the temperature induced stochastic conformational switching between the 'on' and 'off' states, along with the corresponding transition probability could be varied by an order of magnitude upon halogenation of the central phenylene ring. The tunneling contributions to the torsional correlation time were found to be of minor importance in this context, and this quantity may be quite correctly estimated with the classical BPP approach.

  6. Dynamics of the central phenylene ring torsional motion in halogenated phenylene ethynylene oligomers

    International Nuclear Information System (INIS)

    Pejov, Ljupco; La Rosa, Manuela; Kocarev, Ljupco

    2007-01-01

    The dynamics of intramolecular torsional motion of central phenylene ring in a series of phenylene ethynylene oligomer derivatives was investigated. On the basis of calculated hindered rotational potentials corresponding to this motion, the torsional energy levels were obtained by solving the torsional Schroedinger equation. Subsequently, the torsional correlation time and transition probability was computed within the Bloembergen-Purcell-Pound (BPP) formalism, considering both the classical and quantum mechanical tunneling contributions to the intramolecular rotation. The results were interpreted in the context of molecular conductivity switching behavior of the considered series of compounds. Also some other parameters relevant to molecular admittance were calculated, such as the HOMO-LUMO energy difference and the spatial extent of the frontier molecular orbitals. Classical electrostatic arguments were applied to understand the physical basis of the conformational stability differences in the studied compounds. It was found that halogenation of the central phenylene ring may be used for fine-tuning of molecular conduction behavior, in the sense of modulating the HOMO-LUMO energy difference, the spatial extent of frontier MOs, as well as the barrier height to torsional motion of the central phenylene ring. The time scale of the temperature induced stochastic conformational switching between the 'on' and 'off' states, along with the corresponding transition probability could be varied by an order of magnitude upon halogenation of the central phenylene ring. The tunneling contributions to the torsional correlation time were found to be of minor importance in this context, and this quantity may be quite correctly estimated with the classical BPP approach

  7. Dark Antimicrobial Mechanisms of Cationic Phenylene Ethynylene Polymers and Oligomers against Escherichia coli

    Directory of Open Access Journals (Sweden)

    Taylor D. Canady

    2011-07-01

    Full Text Available The interactions of poly(phenylene ethynylene (PPE-based cationic conjugated polyelectrolytes (CPEs and oligo-phenylene ethynylenes (OPEs with E. coli cells are investigated to gain insights into the differences in the dark killing mechanisms between CPEs and OPEs. A laboratory strain of E. coli with antibiotic resistance is included in this work to study the influence of antibiotic resistance on the antimicrobial activity of the CPEs and OPEs. In agreement with our previous findings, these compounds can efficiently perturb the bacterial cell wall and cytoplasmic membrane, resulting in bacterial cell death. Electron microscopy imaging and cytoplasmic membrane permeability assays reveal that the oligomeric OPEs penetrate the bacterial outer membrane and interact efficiently with the bacterial cytoplasmic membrane. In contrast, the polymeric CPEs cause serious damage to the cell surface. In addition, the minimum inhibitory concentration (MIC and hemolytic concentration (HC of the CPEs and OPEs are also measured to compare their antimicrobial activities against two different strains of E. coli with the compounds’ toxicity levels against human red blood cells (RBC. MIC and HC measurements are in good agreement with our previous model membrane perturbation study, which reveals that the different membrane perturbation abilities of the CPEs and OPEs are in part responsible for their selectivity towards bacteria compared to mammalian cells. Our study gives insight to several structural features of the PPE-based CPEs and OPEs that modulate their antimicrobial properties and that these features can serve as a basis for further tuning their structures to optimize antimicrobial properties.

  8. Electrochemically assisted mechanically controllable break junction studies on the stacking configurations of oligo(phenylene ethynylene)s molecular junctions

    International Nuclear Information System (INIS)

    Zheng, Jue-Ting; Yan, Run-Wen; Tian, Jing-Hua; Liu, Jun-Yang; Pei, Lin-Qi; Wu, De-Yin; Dai, Ke; Yang, Yang; Jin, Shan

    2016-01-01

    Highlights: • I-V characteristics of a series of oligo(phenylene ethynylene)s molecular junctions were measured. • Conductance values were found to be dependent on molecular length and substituent group. • The measured low conductance values were explained by theoretical calculations. • EC-MCBJ is feasible to fabricate and characterize molecular junctions. - Abstract: We demonstrate an electrochemically assisted mechanically controllable break junction (EC-MCBJ) approach for current-voltage characteristic (I-V curve) measurements of metal/molecule/metal junctions. A series of oligo(phenylene ethynylene)s compounds (OPEs), including those involving electron withdrawing substituent group and different backbone lengths, had been successfully designed, synthesized, and placed onto the fabricated nanogap to form molecular junctions. The observed evolution in the measured conductances of OPEs indicates that there is a dependence of conductance on molecular length and substituent group. Compared with those extracted from conductance histogram construction, the conductances of OPEs measured from I-V curves are considerably lower. Based on the transmission spectra of OPEs that calculated by density functional theory (DFT) combined with non-equilibrium Green’s function (NEGF) method, this difference was attributed to our distinct experimental operation, which may give rise to a stacking configuration of two OPE molecules.

  9. Formation of high-quality self-assembled monolayers of conjugated dithiols on gold : Base matters

    NARCIS (Netherlands)

    Valkenier, Hennie; Huisman, Everardus H.; Hal, Paul A. van; de Leeuw, Dagobert; Chiechi, Ryan C.; Hummelen, Jan C.

    2011-01-01

    This Article reports a systematic study on the formation of self-assembled monolayers (SAMs) of conjugated molecules for molecular electronic (ME) devices. We monitored the deprotection reaction of acetyl protected dithiols of oligophenylene ethynylenes (OPEs) in solution using two different bases

  10. HAMLET forms annular oligomers when deposited with phospholipid monolayers.

    Science.gov (United States)

    Baumann, Anne; Gjerde, Anja Underhaug; Ying, Ming; Svanborg, Catharina; Holmsen, Holm; Glomm, Wilhelm R; Martinez, Aurora; Halskau, Oyvind

    2012-04-20

    Recently, the anticancer activity of human α-lactalbumin made lethal to tumor cells (HAMLET) has been linked to its increased membrane affinity in vitro, at neutral pH, and ability to cause leakage relative to the inactive native bovine α-lactalbumin (BLA) protein. In this study, atomic force microscopy resolved membrane distortions and annular oligomers (AOs) produced by HAMLET when deposited at neutral pH on mica together with a negatively charged lipid monolayer. BLA, BAMLET (HAMLET's bovine counterpart) and membrane-binding Peptide C, corresponding to BLA residues 75-100, also form AO-like structures under these conditions but at higher subphase concentrations than HAMLET. The N-terminal Peptide A, which binds to membranes at acidic but not at neutral pH, did not form AOs. This suggests a correlation between the capacity of the proteins/peptides to integrate into the membrane at neutral pH-as observed by liposome content leakage and circular dichroism experiments-and the formation of AOs, albeit at higher concentrations. Formation of AOs, which might be important to HAMLET's tumor toxic action, appears related to the increased tendency of the protein to populate intermediately folded states compared to the native protein, the formation of which is promoted by, but not uniquely dependent on, the oleic acid molecules associated with HAMLET. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Oligo(naphthylene–ethynylene) Molecular Rods

    DEFF Research Database (Denmark)

    Cramer, Jacob Roland; Ning, Yanxiao; Shen, Cai

    2013-01-01

    of palladium-catalyzed Sonogashira reactions between naphthyl halides and acetylenes. The triazene functionality was used as a protected iodine precursor to allow linear extension of the molecular rods during the synthe-ses. The carboxylic acid groups in the target molecules were protected as esters during......Molecular rods designed for surface chirality studies have been synthesized in high yields. The molecules are composed of oligo(naphthylene–ethynylene) skeletons and functionalized at their two termini with carboxylic acids and hydrophobic groups. The molecular skeletons were constructed by means...

  12. Effect of Conjugation Length on Photoinduced Charge-Transfer in π-Conjugated Oligomer-Acceptor Dyads

    KAUST Repository

    Jiang, Junlin

    2017-05-25

    A series of -conjugated oligomer-acceptor dyads were synthesized that feature oligo(phenylene ethynylene) (OPE) conjugated backbones end-capped with a naphthalene diimide (NDI) acceptor. The OPE segments vary in length from 4 to 8 phenylene ethynene units (PEn-NDI, where n = 4, 6 and 8). Fluorescence and transient absorption spectroscopy reveals that intramolecular OPE NDI charge transfer dominates the deactivation of excited states of the PEn-NDI oligomers. Both charge separation (CS) and charge recombination (CR) are strongly exothermic (G0CS ~ -1.1 and G0CR ~ -2.0 eV), and the driving forces do not vary much across the series because the oxidation and reduction potentials and singlet energies of the OPEs do not vary much with their length. Bimolecular photoinduced charge transfer between model OPEs that do not contain the NDI acceptors with methyl viologen was studied, and the results reveal that the absorption of the cation radical state (OPE+•) remains approximately constant ( ~ 575 nm) regardless of oligomer length. This finding suggests that the cation radical (polaron) of the OPE is relatively localized, effectively occupying a confined segment of n 4 repeat units in the longer oligomers. Photoinduced intramolecular electron transfer dynamics in the PEn-NDI series was investigated by UV-visible femtosecond transient absorption spectroscopy with visible and mid-infrared probes. Charge separation occurs on the 1 – 10 ps timescale, with the rates decreasing slightly with increased oligomer length (βCS ~ 0.15 Å-1). The rate for charge-recombination decreases in the sequence PE4-NDI > PE6-NDI ~ PE8-NDI. The discontinuous distance dependence in the rate for charge recombination may be related to the spatial localization of the positive polaron state in the longer oligomers.

  13. Effect of Conjugation Length on Photoinduced Charge-Transfer in π-Conjugated Oligomer-Acceptor Dyads

    KAUST Repository

    Jiang, Junlin; Alsam, Amani Abdu; Wang, Shanshan; Aly, Shawkat Mohammede; Pan, Zhenxing; Mohammed, Omar F.; Schanze, Kirk S.

    2017-01-01

    A series of -conjugated oligomer-acceptor dyads were synthesized that feature oligo(phenylene ethynylene) (OPE) conjugated backbones end-capped with a naphthalene diimide (NDI) acceptor. The OPE segments vary in length from 4 to 8 phenylene ethynene units (PEn-NDI, where n = 4, 6 and 8). Fluorescence and transient absorption spectroscopy reveals that intramolecular OPE NDI charge transfer dominates the deactivation of excited states of the PEn-NDI oligomers. Both charge separation (CS) and charge recombination (CR) are strongly exothermic (G0CS ~ -1.1 and G0CR ~ -2.0 eV), and the driving forces do not vary much across the series because the oxidation and reduction potentials and singlet energies of the OPEs do not vary much with their length. Bimolecular photoinduced charge transfer between model OPEs that do not contain the NDI acceptors with methyl viologen was studied, and the results reveal that the absorption of the cation radical state (OPE+•) remains approximately constant ( ~ 575 nm) regardless of oligomer length. This finding suggests that the cation radical (polaron) of the OPE is relatively localized, effectively occupying a confined segment of n 4 repeat units in the longer oligomers. Photoinduced intramolecular electron transfer dynamics in the PEn-NDI series was investigated by UV-visible femtosecond transient absorption spectroscopy with visible and mid-infrared probes. Charge separation occurs on the 1 – 10 ps timescale, with the rates decreasing slightly with increased oligomer length (βCS ~ 0.15 Å-1). The rate for charge-recombination decreases in the sequence PE4-NDI > PE6-NDI ~ PE8-NDI. The discontinuous distance dependence in the rate for charge recombination may be related to the spatial localization of the positive polaron state in the longer oligomers.

  14. Hydration effect on the electronic transport properties of oligomeric phenylene ethynylene molecular junctions

    International Nuclear Information System (INIS)

    Zong-Liang, Li; Huai-Zhi, Li; Yong, Ma; Guang-Ping, Zhang; Chuan-Kui, Wang

    2010-01-01

    A first-principles computational method based on the hybrid density functional theory is developed to simulate the electronic transport properties of oligomeric phenylene ethynylene molecular junctions with H 2 O molecules accumulated in the vicinity as recently reported by Na et al. [Nanotechnology 18 424001 (2007)]. The numerical results show that the hydrogen bonds between the oxygen atoms of the oligomeric phenylene ethynylene molecule and H 2 O molecules result in the localisation of the molecular orbitals and lead to the lower transition peaks. The H 2 O molecular chains accumulated in the vicinity of the molecular junction can not only change the electronic structure of the molecular junctions, but also open additional electronic transport pathways. The obvious influence of H 2 O molecules on the electronic structure of the molecular junction and its electronic transport properties is thus demonstrated. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  15. Formation of high-quality self-assembled monolayers of conjugated dithiols on gold: base matters.

    Science.gov (United States)

    Valkenier, Hennie; Huisman, Everardus H; van Hal, Paul A; de Leeuw, Dago M; Chiechi, Ryan C; Hummelen, Jan C

    2011-04-06

    This Article reports a systematic study on the formation of self-assembled monolayers (SAMs) of conjugated molecules for molecular electronic (ME) devices. We monitored the deprotection reaction of acetyl protected dithiols of oligophenylene ethynylenes (OPEs) in solution using two different bases and studied the quality of the resulting SAMs on gold. We found that the optimal conditions to reproducibly form dense, high-quality monolayers are 9-15% triethylamine (Et(3)N) in THF. The deprotection base tetrabutylammonium hydroxide (Bu(4)NOH) leads to less dense SAMs and the incorporation of Bu(4)N into the monolayer. Furthermore, our results show the importance of the equilibrium concentrations of (di)thiolate in solution on the quality of the SAM. To demonstrate the relevance of these results for molecular electronics applications, large-area molecular junctions were fabricated using no base, Et(3)N, and Bu(4)NOH. The magnitude of the current-densities in these devices is highly dependent on the base. A value of β=0.15 Å(-1) for the exponential decay of the current-density of OPEs of varying length formed using Et(3)N was obtained. © 2011 American Chemical Society

  16. DFT study of the effect of fluorine atoms on the crystal structure and semiconducting properties of poly(arylene-ethynylene) derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Moral, Mónica, E-mail: monica.moral@uclm.es [Renewable Energy Research Institute, University of Castilla-La Mancha, Paseo de la Investigación 1, 02071 Albacete (Spain); García, Gregorio [Department of Chemistry, University of Burgos, Plaza Misael Bañuelos, s/n, 09001 Burgos (Spain); Garzón, Andrés [Department of Physical Chemistry, Faculty of Pharmacy, University of Castilla-La Mancha, Paseo de los Estudiantes, 02071 Albacete (Spain); Granadino-Roldán, José M.; Fernández-Gómez, Manuel [Department of Physical and Analytical Chemistry, Faculty of Experimental Sciences, University of Jaén, Campus Las Lagunillas, s/n, 23071 Jaén (Spain)

    2016-04-21

    The effect of fluorine substitution on the molecular structure, crystal packing, and n-type semiconducting properties of a set of poly(arylene-ethynylene) polymers based on alternating thiadiazole and phenyl units linked through ethynylene groups has been studied by means of Density Functional Theory. As a result, an enlargement in the interplanar distance between cofacial polymer chains, as well as a decrease of the electronic coupling and electron mobility is predicted. On the other hand, fluorination could facilitate electron injection into the material. A polymer containing both alkoxy pendant chains and fluorine atoms is proposed as a compromise solution between efficiency of electron injection and charge transport within the material.

  17. Electrical characterization of single molecule and Langmuir–Blodgett monomolecular films of a pyridine-terminated oligo(phenylene-ethynylene derivative

    Directory of Open Access Journals (Sweden)

    Henrry M. Osorio

    2015-05-01

    Full Text Available Monolayer Langmuir–Blodgett (LB films of 1,4-bis(pyridin-4-ylethynylbenzene (1 together with the “STM touch-to-contact” method have been used to study the nature of metal–monolayer–metal junctions in which the pyridyl group provides the contact at both molecule–surface interfaces. Surface pressure vs area per molecule isotherms and Brewster angle microscopy images indicate that 1 forms true monolayers at the air–water interface. LB films of 1 were fabricated by deposition of the Langmuir films onto solid supports resulting in monolayers with surface coverage of 0.98 × 10−9 mol·cm−2. The morphology of the LB films that incorporate compound 1 was studied using atomic force microscopy (AFM. AFM images indicate the formation of homogeneous, monomolecular films at a surface pressure of transference of 16 mN·m−1. The UV–vis spectra of the Langmuir and LB films reveal that 1 forms two dimensional J-aggregates. Scanning tunneling microscopy (STM, in particular the “STM touch-to-contact” method, was used to determine the electrical properties of LB films of 1. From these STM studies symmetrical I–V curves were obtained. A junction conductance of 5.17 × 10−5 G0 results from the analysis of the pseudolinear (ohmic region of the I–V curves. This value is higher than that of the conductance values of LB films of phenylene-ethynylene derivatives contacted by amines, thiols, carboxylate, trimethylsilylethynyl or acetylide groups. In addition, the single molecule I–V curve of 1 determined using the I(s method is in good agreement with the I–V curve obtained for the LB film, and both curves fit well with the Simmons model. Together, these results not only indicate that the mechanism of transport through these metal–molecule–metal junctions is non-resonant tunneling, but that lateral interactions between molecules within the LB film do not strongly influence the molecule conductance. The results presented here

  18. Sequence-defined oligo(ortho-arylene) foldamers derived from the benzannulation of ortho(arylene ethynylene)s† †Electronic supplementary information (ESI) available. CCDC 1483959–1483967. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c6sc02520j Click here for additional data file. Click here for additional data file.

    Science.gov (United States)

    Lehnherr, Dan; Chen, Chen; Pedramrazi, Zahra; DeBlase, Catherine R.; Alzola, Joaquin M.; Keresztes, Ivan; Lobkovsky, Emil B.

    2016-01-01

    A Cu-catalyzed benzannulation reaction transforms ortho(arylene ethynylene) oligomers into ortho-arylenes. This approach circumvents iterative Suzuki cross-coupling reactions previously used to assemble hindered ortho-arylene backbones. These derivatives form helical folded structures in the solid-state and in solution, as demonstrated by X-ray crystallography and solution-state NMR analysis. DFT calculations of misfolded conformations are correlated with variable-temperature 1H and EXSY NMR to reveal that folding is cooperative and more favorable in halide-substituted naphthalenes. Helical ortho-arylene foldamers with specific aromatic sequences organize functional π-electron systems into arrangements ideal for ambipolar charge transport and show preliminary promise for the surface-mediated synthesis of structurally defined graphene nanoribbons. PMID:28567248

  19. Tetrafullerene conjugates for all-organic photovoltaics

    NARCIS (Netherlands)

    Fernández, G.; Sánchez, L.; Veldman, D.; Wienk, M.M.; Atienza, C.M.; Guldi, D.M.; Janssen, R.A.J.; Martin, N.

    2008-01-01

    The synthesis of two new tetrafullerene nanoconjugates in which four C60 units are covalently connected through different -conjugated oligomers (oligo(p-phenylene ethynylene) and oligo(p-phenylene vinylene)) is described. The photovoltaic (PV) response of these C60-based conjugates was evaluated by

  20. Synthesis and luminescent properties of star-burst D-π-A compounds based on 1,3,5-triazine core and carbazole end-capped phenylene ethynylene arms

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zheng [Department of Applied Chemistry, Nanjing Tech University, Nanjing 210009 (China); Liu, Rui, E-mail: rui.liu@njtech.edu.cn [Department of Applied Chemistry, Nanjing Tech University, Nanjing 210009 (China); Zhu, Xiaolin [Department of Applied Chemistry, Nanjing Tech University, Nanjing 210009 (China); Li, Yuhao [Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433 (China); Chang, Jin [Queensland University of Technology, 2 George St., Brisbane 4000 (Australia); Zhu, Hongjun, E-mail: zhuhjnjut@hotmail.com [Department of Applied Chemistry, Nanjing Tech University, Nanjing 210009 (China); Ma, Liangwei; Lv, Wangjie; Guo, Jun [Department of Applied Chemistry, Nanjing Tech University, Nanjing 210009 (China)

    2014-12-15

    Two new star-burst compounds based on 1,3,5-triazine core and carbazole end-capped phenylene ethynylene arms (1a and 1b) were synthesized and characterized. Their photophysical properties were investigated systematically via spectroscopic and theoretical methods. Both compounds exhibit strong {sup 1}π–π{sup ⁎} transitions in the UV region and intense {sup 1}π–π{sup ⁎}/intramolecular charge transfer ({sup 1}ICT) absorption bands in the UV–vis region. Introducing the carbazole end-capped phenylene ethynylene arm on the 1,3,5-triazine core causes a slight bathochromic shift and enhanced molar extinction coefficient of the {sup 1}π–π{sup ⁎}/{sup 1}ICT transition band. Both compounds are emissive in solution at room temperature and 77 K, which exhibit pronounced positive solvatochromic effect. The emitting state could be ascribed to {sup 1}ICT state in more polar solvent, and {sup 1}π–π{sup ⁎} state in low-polarity solvent. The high emission quantum yields (Φ{sub em}=0.90∼1.0) of 1a and 1b (in hexane and toluene) make them potential candidates as efficient light-emitting materials. The spectroscopic studies and theoretical calculations indicate that the photophysical properties of these compounds can be tuned by the carbazole end-capped phenylene ethynylene arm, which would also be useful for rational design of photofunctional materials. - Highlights: • Star-burst compounds based on 1,3,5-triazine core and carbazole end-capped phenylene ethynylene arms. • Photophysical properties of target compounds were investigated systematically via spectroscopic and theoretical methods. • The relatively high fluorescence quantum yields make them potential candidates as light-emitting materials.

  1. Detection of aniline oligomers on polyaniline-gold interface using resonance Raman scattering.

    Science.gov (United States)

    Trchová, Miroslava; Morávková, Zuzana; Dybal, Jiří; Stejskal, Jaroslav

    2014-01-22

    In situ deposited conducting polyaniline films prepared by the oxidation of aniline with ammonium peroxydisulfate in aqueous media of various acidities on gold and silicon supports were characterized by Raman spectroscopy. Enhanced Raman bands were found in the spectra of polyaniline films produced in the solutions of weak acids or in water on gold surface. These bands were weak for the films prepared in solutions of a strong acid on a gold support. The same bands are present in the Raman spectra of the reaction intermediates deposited during aniline oxidation in water or aqueous solutions of weak or strong acids on silicon removed from the reaction mixture at the beginning of the reaction. Such films are formed by aniline oligomers adsorbed on the surface. They were detected on the polyaniline-gold interface using resonance Raman scattering on the final films deposited on gold. The surface resonance Raman spectroscopy of the monolayer of oligomers found in the bulk polyaniline film makes this method advantageous in surface science, with many applications in electrochemistry, catalysis, and biophysical, polymer, or analytical chemistry.

  2. Pyrene-Containing ortho-Oligo(phenylene)ethynylene Foldamer as a Ratiometric Probe Based on Circularly Polarized Luminescence.

    Science.gov (United States)

    Reiné, Pablo; Justicia, Jose; Morcillo, Sara P; Abbate, Sergio; Vaz, Belen; Ribagorda, María; Orte, Ángel; Álvarez de Cienfuegos, Luis; Longhi, Giovanna; Campaña, Araceli G; Miguel, Delia; Cuerva, Juan M

    2018-04-20

    In this manuscript, we report the first synthesis of an organic monomolecular emitter, which behaves as a circularly polarized luminescence (CPL)-based ratiometric probe. The enantiopure helical ortho-oligo(phenylene)ethynylene ( o-OPE) core has been prepared by a new and efficient macrocyclization reaction. The combination of such o-OPE helical skeleton and a pyrene couple leads to two different CPL emission features in a single structure whose ratio linearly responds to silver(I) concentration.

  3. Immobilization of Colloidal Monolayers at Fluid–Fluid Interfaces

    Directory of Open Access Journals (Sweden)

    Peter T. Bähler

    2016-07-01

    Full Text Available Monolayers of colloidal particles trapped at an interface between two immiscible fluids play a pivotal role in many applications and act as essential models in fundamental studies. One of the main advantages of these systems is that non-close packed monolayers with tunable inter-particle spacing can be formed, as required, for instance, in surface patterning and sensing applications. At the same time, the immobilization of particles locked into desired structures to be transferred to solid substrates remains challenging. Here, we describe three different strategies to immobilize monolayers of polystyrene microparticles at water–decane interfaces. The first route is based on the leaking of polystyrene oligomers from the particles themselves, which leads to the formation of a rigid interfacial film. The other two rely on in situ interfacial polymerization routes that embed the particles into a polymer membrane. By tracking the motion of the colloids at the interface, we can follow in real-time the formation of the polymer membranes and we interestingly find that the onset of the polymerization reaction is accompanied by an increase in particle mobility determined by Marangoni flows at the interface. These results pave the way for future developments in the realization of thin tailored composite polymer-particle membranes.

  4. PIPERIDINE OLIGOMERS AND COMBINATORIAL LIBRARIES THEREOF

    DEFF Research Database (Denmark)

    1999-01-01

    The present invention relates to piperidine oligomers, methods for the preparation of piperidine oligomers and compound libraries thereof, and the use of piperidine oligomers as drug substances. The present invention also relates to the use of combinatorial libraries of piperidine oligomers...... in libraries (arrays) of compounds especially suitable for screening purposes....

  5. Characteristics of tau oligomers

    Directory of Open Access Journals (Sweden)

    Yan eRen

    2013-07-01

    Full Text Available In Alzheimer disease (AD and other tauopathies, microtubule-associated protein tau becomes hyperphosphorylated, undergoes conformational changes, aggregates, eventually becoming neurofibrillary tangles (NFTs. As accumulating evidence suggests that NFTs themselves may not be toxic, attention is now turning toward the role of intermediate tau oligomers in AD pathophysiology. Sarkosyl extraction is a standard protocol for investigating insoluble tau aggregates in brains. There is a growing consensus that sarkosyl-insoluble tau correlates with the pathological features of tauopathy. While sarkosyl-insoluble tau from tauopathy brains has been well characterized as a pool of filamentous tau, other dimers, multimers, and granules of tau are much less well understood. There are protocols for identifying these tau oligomers. In this mini review, we discuss the characteristics of tau oligomers isolated via different methods and materials.

  6. Electron beam curing of acrylic oligomers

    International Nuclear Information System (INIS)

    Seto, J.; Arakawa, S.; Ishimoto, C.; Miyashita, M.; Nagai, T.; Noguchi, T.; Shibata, A.

    1984-01-01

    The electron-beam curing process of acrylic oligomers, with and without γ-Fe 2 O 3 pigment filler and blended linear polymer, was investigated in terms of molecular structure and reaction mechanism. The polymerized fraction of trimethylolpropane-triacrylate (TMPTA) oligomers increases with increasing total dose, and is independent of the dose rate. Since the reaction rate is linearly dependent on the dose rate, the reaction mechanism involves monomolecular termination. The reaction rate does not depend on the number of functional groups of the oligomer at low doses, but above 0.3 Mrad the rate is slower for oligomers of higher functionality. A gel is formed more readily upon curing of a polyfunctional than a monofunctional oligomer, especially at high conversion to polymer; the resulting loss of flexibility of the polymer chains slows the reaction. Decrease of the molecular weight per functional group results in lower conversion; this is also due to the loss of chain flexibility, which is indicated as well by a higher glass-transition temperature. Modification of the acrylate oligomers with urethane results in more effective cross-linking reactions because of the more rigid molecular chains. Addition of γ-Fe 2 O 3 pigment reduces the reaction rate very little, but has the effect of providing added structural integrity, as indicated by the decrease of solvent-extractable material and the improvement of anti-abrasion properties. However, the flexibility of the coating and its adhesion to a PET base film are diminished. To increase the flexibility, linear polyvinylchloride and/or polyurethane were added to the acrylic oligomers. Final conversion to polymer was nearly 100 percent, and a higher elastic modulus and better antiabrasion properties were realized

  7. Synthesis and characterization of thermally stable oligomer-metal ...

    African Journals Online (AJOL)

    The thermal stabilities of the oligomer-metal complexes were compared by thermogravimetric (TG) and differential thermal (DTA) analyses. According to TG, oligomer-metal complexes were stable against to temperature and thermooxidative decomposition. The weight losses of oligomer-metal complexes were found to be 5 ...

  8. Selection of conformational states in self-assembled surface structures formed from an oligo(naphthylene-ethynylene) 3-bit binary switch

    DEFF Research Database (Denmark)

    Ning, Yanxiao; Cramer, Jacob Roland; Nuermaimaiti, Ajiguli

    2015-01-01

    ). The conformations result from binary positions of n = 3 naphtalene units on a linear oligo(naphthylene-ethynylene) backbone. On Au(111), inter-molecular interactions involving carboxyl and bulky tert-butyl-phenyl functional groups induce the molecules to form two ordered phases with brick-wall and lamella structure...... conformational states. Together these observations imply selection and adaptation of conformational states upon molecular self-assembly. From DFT modeling and statistical analysis of the molecular conformations, the observed selection of conformational states is attributed to steric interaction between...

  9. Conformation of ionizable poly Para phenylene ethynylene in dilute solutions

    International Nuclear Information System (INIS)

    Wijesinghe, Sidath; Maskey, Sabina; Perahia, Dvora; Grest, Gary S.

    2015-01-01

    The conformation of dinonyl poly para phenylene ethynylenes (PPEs) with carboxylate side chains, equilibrated in solvents of different quality is studied using molecular dynamics simulations. PPEs are of interest because of their tunable electro-optical properties, chemical diversity, and functionality which are essential in wide range of applications. The polymer conformation determines the conjugation length and their assembly mode and affects electro-optical properties which are critical in their current and potential uses. The current study investigates the effect of carboxylate fraction on PPEs side chains on the conformation of chains in the dilute limit, in solvents of different quality. The dinonyl PPE chains are modeled atomistically, where the solvents are modeled both implicitly and explicitly. Dinonyl PPEs maintained a stretched out conformation up to a carboxylate fraction f of 0.7 in all solvents studied. The nonyl side chains are extended and oriented away from the PPE backbone in toluene and in implicit good solvent whereas in water and implicit poor solvent, the nonyl side chains are collapsed towards the PPE backbone. Thus, rotation around the aromatic ring is fast and no long range correlations are seen within the backbone

  10. Fibril specific, conformation dependent antibodies recognize a generic epitope common to amyloid fibrils and fibrillar oligomers that is absent in prefibrillar oligomers

    Directory of Open Access Journals (Sweden)

    Rasool Suhail

    2007-09-01

    Full Text Available Abstract Background Amyloid-related degenerative diseases are associated with the accumulation of misfolded proteins as amyloid fibrils in tissue. In Alzheimer disease (AD, amyloid accumulates in several distinct types of insoluble plaque deposits, intracellular Aβ and as soluble oligomers and the relationships between these deposits and their pathological significance remains unclear. Conformation dependent antibodies have been reported that specifically recognize distinct assembly states of amyloids, including prefibrillar oligomers and fibrils. Results We immunized rabbits with a morphologically homogeneous population of Aβ42 fibrils. The resulting immune serum (OC specifically recognizes fibrils, but not random coil monomer or prefibrillar oligomers, indicating fibrils display a distinct conformation dependent epitope that is absent in prefibrillar oligomers. The fibril epitope is also displayed by fibrils of other types of amyloids, indicating that the epitope is a generic feature of the polypeptide backbone. The fibril specific antibody also recognizes 100,000 × G soluble fibrillar oligomers ranging in size from dimer to greater than 250 kDa on western blots. The fibrillar oligomers recognized by OC are immunologically distinct from prefibrillar oligomers recognized by A11, even though their sizes overlap broadly, indicating that size is not a reliable indicator of oligomer conformation. The immune response to prefibrillar oligomers and fibrils is not sequence specific and antisera of the same specificity are produced in response to immunization with islet amyloid polypeptide prefibrillar oligomer mimics and fibrils. The fibril specific antibodies stain all types of amyloid deposits in human AD brain. Diffuse amyloid deposits stain intensely with anti-fibril antibody although they are thioflavin S negative, suggesting that they are indeed fibrillar in conformation. OC also stains islet amyloid deposits in transgenic mouse models of type

  11. Biophysical characterization data on Aβ soluble oligomers produced through a method enabling prolonged oligomer stability and biological buffer conditions

    Directory of Open Access Journals (Sweden)

    Amanda C. Crisostomo

    2015-09-01

    Aβ1-40 soluble oligomers are produced that are suitable for biophysical studies requiring sufficient transient stability to exist in their “native” conformation in biological phosphate-saline buffers for extended periods of time. The production involves an initial preparation of highly monomeric Aβ in a phosphate saline buffer that transitions to fibrils and oligomers through time incubation alone, without added detergents or non-aqueous chemicals. This criteria ensures that the only difference between initial monomeric Aβ reactant and subsequent Aβ oligomer products is their degree of peptide assembly. A number of chemical and biophysical methods were used to characterize the monomeric reactants and soluble oligomer and amyloid fibril products, including chemical cross-linking, Western blots, fraction solubility, thioflvain T binding, size exclusion chromatography, transmission electron micrscopy, circular dichroism spectroscopy, and fluorescence resonance energy transfer.

  12. Preparation of Stable Amyloid-β Oligomers Without Perturbative Methods.

    Science.gov (United States)

    Kotler, Samuel A; Ramamoorthy, Ayyalusamy

    2018-01-01

    Soluble amyloid-β (Aβ) oligomers have become a focal point in the study of Alzheimer's disease due to their ability to elicit cytotoxicity. A number of recent studies have concentrated on the structural characterization of soluble Aβ oligomers to gain insight into their mechanism of toxicity. Consequently, providing reproducible protocols for the preparation of such oligomers is of utmost importance. The method presented in this chapter details a protocol for preparing an Aβ oligomer, with a primarily disordered secondary structure, without the need for chemical modification or amino acid substitution. Due to the stability of these disordered Aβ oligomers and the reproducibility with which they form, they are amenable for biophysical and high-resolution structural characterization.

  13. Structural and functional properties of prefibrillar α-synuclein oligomers.

    Science.gov (United States)

    Pieri, Laura; Madiona, Karine; Melki, Ronald

    2016-04-14

    The deposition of fibrillar alpha-synuclein (α-syn) within inclusions (Lewy bodies and Lewy neurites) in neurons and glial cells is a hallmark of synucleinopathies. α-syn populates a variety of assemblies ranging from prefibrillar oligomeric species to fibrils whose specific contribution to neurodegeneration is still unclear. Here, we compare the specific structural and biological properties of distinct soluble prefibrillar α-syn oligomers formed either spontaneously or in the presence of dopamine and glutaraldehyde. We show that both on-fibrillar assembly pathway and distinct dopamine-mediated and glutaraldehyde-cross-linked α-syn oligomers are only slightly effective in perturbing cell membrane integrity and inducing cytotoxicity, while mature fibrils exhibit the highest toxicity. In contrast to low-molecular weight and unstable oligomers, large stable α-syn oligomers seed the aggregation of soluble α-syn within reporter cells although to a lesser extent than mature α-syn fibrils. These oligomers appear elongated in shape. Our findings suggest that α-syn oligomers represent a continuum of species ranging from unstable low molecular weight particles to mature fibrils via stable elongated oligomers composed of more than 15 α-syn monomers that possess seeding capacity.

  14. Boron-rich oligomers for BNCT

    International Nuclear Information System (INIS)

    Gula, M.; Perleberg, O.; Gabel, D.

    2000-01-01

    The synthesis of two BSH derivatives is described, which can be used for oligomerization in DNA-synthesizers. Synthesis pathways lead to final products in five and six steps, respectively. Because of chirality interesting results were expected. NMR-measurements confirm this expectation. Possible oligomers with high concentrations of boron can be attached to biomolecules. These oligomers can be explored with several imaging methods (EELS, PEM) to determine the lower detection limit of boron with these methods. (author)

  15. Electrografting of conductive oligomers and polymers using diazonium electroreduction

    International Nuclear Information System (INIS)

    Lacroix, Jean Christophe; Trippe-Allard, Gaelle; Ghilane, Jalal; Martin, Pascal

    2014-01-01

    This paper describes the attachment of conjugated oligomers onto electrode surface through the reduction of diazonium compounds. In this connection some properties of conjugated oligomers and of layers grafted through diazonium electroreduction will first be briefly presented. The electrochemical behavior of conjugated oligomers grafted on a surface using diazonium electroreduction will then be discussed. (paper)

  16. Electrografting of conductive oligomers and polymers using diazonium electroreduction

    Science.gov (United States)

    Lacroix, Jean Christophe; Trippe-Allard, Gaelle; Ghilane, Jalal; Martin, Pascal

    2014-03-01

    This paper describes the attachment of conjugated oligomers onto electrode surface through the reduction of diazonium compounds. In this connection some properties of conjugated oligomers and of layers grafted through diazonium electroreduction will first be briefly presented. The electrochemical behavior of conjugated oligomers grafted on a surface using diazonium electroreduction will then be discussed.

  17. Synthesis and Self-Assembly of Chiral Cylindrical Molecular Complexes: Functional Heterogeneous Liquid-Solid Materials Formed by Helicene Oligomers

    Directory of Open Access Journals (Sweden)

    Nozomi Saito

    2018-01-01

    Full Text Available Chiral cylindrical molecular complexes of homo- and hetero-double-helices derived from helicene oligomers self-assemble in solution, providing functional heterogeneous liquid-solid materials. Gels and liotropic liquid crystals are formed by fibril self-assembly in solution; molecular monolayers and fibril films are formed by self-assembly on solid surfaces; gels containing gold nanoparticles emit light; silica nanoparticles aggregate and adsorb double-helices. Notable dynamics appears during self-assembly, including multistep self-assembly, solid surface catalyzed double-helix formation, sigmoidal and stairwise kinetics, molecular recognition of nanoparticles, discontinuous self-assembly, materials clocking, chiral symmetry breaking and homogeneous-heterogeneous transitions. These phenomena are derived from strong intercomplex interactions of chiral cylindrical molecular complexes.

  18. Tau Oligomers as Pathogenic Seeds: Preparation and Propagation In Vitro and In Vivo.

    Science.gov (United States)

    Gerson, Julia E; Sengupta, Urmi; Kayed, Rakez

    2017-01-01

    Tau oligomers have been shown to be the main toxic tau species in a number of neurodegenerative disorders. In order to study tau oligomers both in vitro and in vivo, we have established methods for the reliable preparation, isolation, and detection of tau oligomers. Methods for the seeding of tau oligomers, isolation of tau oligomers from tissue, and detection of tau oligomers using tau oligomer-specific antibodies by biochemical and immunohistochemical methods are detailed below.

  19. Electron beam curing polyurethane acrylate oligomer in air

    International Nuclear Information System (INIS)

    Zhu, Zhenkang; Chen, Xing; Zhou, Jichun; Ma, Zue-Teh

    1988-01-01

    It has been found according to our synthesis that a novel kind of polyurethane acrylate oligomer can be cured by electron beam in the presence of oxygen, even at normal atomospheric levels, without any additives. Irradiation of the oligomer with substantially complete cure to a solid non-tacky state is quite remarkable. It has the same gel content (90 %) in air as in nitrogen at dose of 33 kGy. Double bond conversion of the oligomer is about 50 % by I.R. (author)

  20. Molecular heterojunctions of oligo(phenylene ethynylene)s with linear to cruciform framework

    DEFF Research Database (Denmark)

    Wei, Zhongming; Hansen, Tim; Santella, Marco

    2015-01-01

    Electrical transport properties of molecular junctions are fundamentally affected by the energy alignment between molecular frontier orbitals (highest occupied molecular orbital (HOMO) or lowest unoccupied molecular orbital (LUMO)) and Fermi level (or work function) of electrode metals. Dithiaful......Electrical transport properties of molecular junctions are fundamentally affected by the energy alignment between molecular frontier orbitals (highest occupied molecular orbital (HOMO) or lowest unoccupied molecular orbital (LUMO)) and Fermi level (or work function) of electrode metals......-tetrathiafulvalene (TTF) can form good self-assembled monolayers (SAMs) on Au substrates. Molecular heterojunctions based on these SAMs are investigated using conducting probe-atomic force microscopy with different tips (Ag, Au, and Pt) and Fermi levels. The calibrated conductance values follow the sequence OPE3-TTF...... > OPE3-DTF > OPE3 irrespective of the tip metal. Rectification properties (or diode behavior) are observed in case of the Ag tip for which the work function is furthest from the HOMO levels of the OPE3s. Quantum chemical calculations of the transmission qualitatively agree with the experimental data...

  1. Synthesis and photophysical and electroluminescent properties of poly(1,4-phenylene–ethynylene)-alt-poly(1,4-phenylene–vinylene)s with various dissymmetric substitution of alkoxy side chains

    Czech Academy of Sciences Publication Activity Database

    Bouguerra, N.; Růžička, Aleš; Ulbricht, C.; Enengl, C.; Enengl, S.; Pokorná, Veronika; Výprachtický, Drahomír; Tordin, E.; Aitout, R.; Cimrová, Věra; Egbe, D. A. M.

    2016-01-01

    Roč. 49, č. 2 (2016), s. 455-464 ISSN 0024-9297 R&D Projects: GA ČR(CZ) GA13-26542S; GA ČR(CZ) GAP106/12/0827 Institutional support: RVO:61389013 Keywords : poly(1,4-phenylene-ethynylene)-alt-poly(1,4-phenylene-vinylene)s * dissymmetric side chains * synthesis Subject RIV: CD - Macromolecular Chemistry Impact factor: 5.835, year: 2016

  2. Pigments and oligomers for inks - moving towards the best combination

    International Nuclear Information System (INIS)

    Hutchinson, I.; Smith, S.; Grierson, W.; Devine, E.

    1999-01-01

    The formulation of UV curable printing inks depends on several complex factors. If the individual components of the ink are not complementary, then performance problems can arise. One critical combination is that between the pigment and the oligomer. In a new approach to improve understanding of pigment/oligomer interactions, the resources of a pigment manufacturer and an oligomer manufacturer have been combined to investigate the problem. Initial screening of process yellow pigments and several oligomer types highlighted performance variations which were then examined in more detail

  3. Binding Sites for Amyloid-β Oligomers and Synaptic Toxicity

    Science.gov (United States)

    Smith, Levi M.; Strittmatter, Stephen M.

    2017-01-01

    In Alzheimer’s disease (AD), insoluble and fibrillary amyloid-β (Aβ) peptide accumulates in plaques. However, soluble Aβ oligomers are most potent in creating synaptic dysfunction and loss. Therefore, receptors for Aβ oligomers are hypothesized to be the first step in a neuronal cascade leading to dementia. A number of cell-surface proteins have been described as Aβ binding proteins, and one or more are likely to mediate Aβ oligomer toxicity in AD. Cellular prion protein (PrPC) is a high-affinity Aβ oligomer binding site, and a range of data delineates a signaling pathway leading from Aβ complexation with PrPC to neuronal impairment. Further study of Aβ binding proteins will define the molecular basis of this crucial step in AD pathogenesis. PMID:27940601

  4. Synthesis and optoelectronic characterization of some triphenylamine-based compounds containing strong acceptor substituents

    Energy Technology Data Exchange (ETDEWEB)

    Grigoras, Mircea, E-mail: grim@icmpp.ro; Ivan, Teofilia; Vacareanu, Loredana; Catargiu, Ana Maria; Tigoianu, Radu

    2014-09-15

    Three novel triphenylamine-based compounds containing strong electron acceptor groups have been synthesized and their comparative photophysical properties are presented. These compounds were obtained by a two-step method: (i) triphenylamine compounds with one, two and three phenylacetylene arms were synthesized by Sonogashira reaction between iodine-substituted triphenylamines and phenylacetylene, followed by (ii) post-modification of these electron-rich alkynes by addition of the strong electron acceptor, tetracyanoethylene. Characterization of all oligomers was made by FTIR, {sup 1}H-NMR, UV–vis and fluorescence spectroscopy. A batochromic shifting of the UV and photoluminescence maxima was observed with the increase of the acceptor group number. The electrochemical behavior was studied by cyclic voltammetry. The cyclic voltammograms have evidenced that triphenylamine-phenylacetylene compounds undergo only oxidation processes while compounds modified with tetracyanoethylene show both oxidation and reduction peaks associated with donor and acceptor groups, respectively. The donor–acceptor compounds coordinate metal ions (i.e., Hg{sup 2+} and Sn{sup 2+}) by cyano groups resulting in the decreasing of charge transfer band intensity, and they can be used as chemosensors. - Highlights: • Three triphenylamine-based ethynylene compounds were prepared by Sonogashira reaction. • Post-modification of ethynylene linkages by tetracyanethylene cycloaddition and retroconversion led to donor–acceptor compounds. • Photophysical properties of donor–acceptor oligomers were studied in different solvents.

  5. α-Synuclein oligomers induced by docosahexaenoic acid affect membrane integrity.

    Directory of Open Access Journals (Sweden)

    Chiara Fecchio

    Full Text Available A key feature of Parkinson disease is the aggregation of α-synuclein and its intracellular deposition in fibrillar form. Increasing evidence suggests that the pathogenicity of α-synuclein is correlated with the activity of oligomers formed in the early stages of its aggregation process. Oligomers toxicity seems to be associated with both their ability to bind and affect the integrity of lipid membranes. Previously, we demonstrated that α-synuclein forms oligomeric species in the presence of docosahexaenoic acid and that these species are toxic to cells. Here we studied how interaction of these oligomers with membranes results in cell toxicity, using cellular membrane-mimetic and cell model systems. We found that α-synuclein oligomers are able to interact with large and small unilamellar negatively charged vesicles acquiring an increased amount of α-helical structure, which induces small molecules release. We explored the possibility that oligomers effects on membranes could be due to pore formation, to a detergent-like effect or to fibril growth on the membrane. Our biophysical and cellular findings are consistent with a model where α-synuclein oligomers are embedded into the lipid bilayer causing transient alteration of membrane permeability.

  6. Amyloid-β oligomer detection by ELISA in cerebrospinal fluid and brain tissue.

    Science.gov (United States)

    Bruggink, Kim A; Jongbloed, Wesley; Biemans, Elisanne A L M; Veerhuis, Rob; Claassen, Jurgen A H R; Kuiperij, H Bea; Verbeek, Marcel M

    2013-02-15

    Amyloid-β (Aβ) deposits are important pathological hallmarks of Alzheimer's disease (AD). Aβ aggregates into fibrils; however, the intermediate oligomers are believed to be the most neurotoxic species and, therefore, are of great interest as potential biomarkers. Here, we have developed an enzyme-linked immunosorbent assay (ELISA) specific for Aβ oligomers by using the same capture and (labeled) detection antibody. The ELISA predominantly recognizes relatively small oligomers (10-25 kDa) and not monomers. In brain tissue of APP/PS1 transgenic mice, we found that Aβ oligomer levels increase with age. However, for measurements in human samples, pretreatment to remove human anti-mouse antibodies (HAMAs) was required. In HAMA-depleted human hippocampal extracts, the Aβ oligomer concentration was significantly increased in AD compared with nondemented controls. Aβ oligomer levels could also be quantified in pretreated cerebrospinal fluid (CSF) samples; however, no difference was detected between AD and control groups. Our data suggest that levels of small oligomers might not be suitable as biomarkers for AD. In addition, we demonstrate the importance of avoiding HAMA interference in assays to quantify Aβ oligomers in human body fluids. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. Star-shaped tetrathiafulvalene oligomers towards the construction of conducting supramolecular assembly.

    Science.gov (United States)

    Iyoda, Masahiko; Hasegawa, Masashi

    2015-01-01

    The construction of redox-active supramolecular assemblies based on star-shaped and radially expanded tetrathiafulvalene (TTF) oligomers with divergent and extended conjugation is summarized. Star-shaped TTF oligomers easily self-aggregate with a nanophase separation to produce supramolecular structures, and their TTF units stack face-to-face to form columnar structures using the fastener effect. Based on redox-active self-organizing supramolecular structures, conducting nanoobjects are constructed by doping of TTF oligomers with oxidants after the formation of such nanostructures. Although radical cations derived from TTF oligomers strongly interact in solution to produce a mixed-valence dimer and π-dimer, it seems to be difficult to produce nanoobjects of radical cations different from those of neutral TTF oligomers. In some cases, however, radical cations form nanostructured fibers and rods by controlling the supramolecular assembly, oxidation states, and counter anions employed.

  8. Oligomers and Polymers Based on Pentacene Building Blocks

    Science.gov (United States)

    Lehnherr, Dan; Tykwinski, Rik R.

    2010-01-01

    Functionalized pentacene derivatives continue to provide unique materials for organic semiconductor applications. Although oligomers and polymers based on pentacene building blocks remain quite rare, recent synthetic achievements have provided a number of examples with varied structural motifs. This review highlights recent work in this area and, when possible, contrasts the properties of defined-length pentacene oligomers to those of mono- and polymeric systems.

  9. Radiation curable oligomers

    International Nuclear Information System (INIS)

    Huemmer, T.F.; Edison, B.A.

    1977-01-01

    A process is described for the high energy radiation curing of oligomers for use as coatings. The method is particularly applicable to the reaction products of certain low molecular weight epoxy compounds and certain low molecular weight mono-hydroxy vinyl compounds having at least one vinylic unsaturation. The curable mixture is applied as a thin film and cured very quickly

  10. Electrorheology of aniline oligomers

    Czech Academy of Sciences Publication Activity Database

    Mrlík, M.; Sedlačík, M.; Pavlínek, V.; Bober, Patrycja; Trchová, Miroslava; Stejskal, Jaroslav; Sáha, P.

    2013-01-01

    Roč. 291, č. 9 (2013), s. 2079-2086 ISSN 0303-402X R&D Projects: GA ČR GA202/09/1626 Institutional support: RVO:61389013 Keywords : anilin e oligomers * polyaniline * electrorheology Subject RIV: JI - Composite Materials Impact factor: 2.410, year: 2013

  11. Oligomers and Polymers Based on Pentacene Building Blocks

    Directory of Open Access Journals (Sweden)

    Dan Lehnherr

    2010-04-01

    Full Text Available Functionalized pentacene derivatives continue to provide unique materials for organic semiconductor applications. Although oligomers and polymers based on pentacene building blocks remain quite rare, recent synthetic achievements have provided a number of examples with varied structural motifs. This review highlights recent work in this area and, when possible, contrasts the properties of defined-length pentacene oligomers to those of mono- and polymeric systems.

  12. Amyloid oligomers and protofibrils, but not filaments, self-replicate from native lysozyme.

    Science.gov (United States)

    Mulaj, Mentor; Foley, Joseph; Muschol, Martin

    2014-06-25

    Self-assembly of amyloid fibrils is the molecular mechanism best known for its connection with debilitating human disorders such as Alzheimer's disease but is also associated with various functional cellular responses. There is increasing evidence that amyloid formation proceeds along two distinct assembly pathways involving either globular oligomers and protofibrils or rigid monomeric filaments. Oligomers, in particular, have been implicated as the dominant molecular species responsible for pathogenesis. Yet the molecular mechanisms regulating their self-assembly have remained elusive. Here we show that oligomers/protofibrils and monomeric filaments, formed along distinct assembly pathways, display critical differences in their ability to template amyloid growth at physiological vs denaturing temperatures. At physiological temperatures, amyloid filaments remained stable but could not seed growth of native monomers. In contrast, oligomers and protofibrils not only remained intact but were capable of self-replication using native monomers as the substrate. Kinetic data further suggested that this prion-like growth mode of oligomers/protofibrils involved two distinct activities operating orthogonal from each other: autocatalytic self-replication of oligomers from native monomers and nucleated polymerization of oligomers into protofibrils. The environmental changes to stability and templating competence of these different amyloid species in different environments are likely to be important for understanding the molecular mechanisms underlying both pathogenic and functional amyloid self-assembly.

  13. Effects of lattice fluctuations on electronic transmission in metal/conjugated-oligomer/metal structures

    International Nuclear Information System (INIS)

    Yu, Z.G.; Smith, D.L.; Saxena, A.; Bishop, A.R.

    1997-01-01

    The electronic transmission across metal/conjugated-oligomer/metal structures in the presence of lattice fluctuations is studied for short oligomer chains. The lattice fluctuations are approximated by static white noise disorder. Resonant transmission occurs when the energy of an incoming electron coincides with a discrete electronic level of the oligomer. The corresponding transmission peak diminishes in intensity with increasing disorder strength. Because of disorder there is an enhancement of the electronic transmission for energies that lie within the electronic gap of the oligomer. If fluctuations are sufficiently strong, a transmission peak within the gap is found at the midgap energy E=0 for degenerate conjugated oligomers (e.g., trans-polyacetylene) and E≠0 for AB-type degenerate oligomers. These results can be interpreted in terms of soliton-antisoliton states created by lattice fluctuations. copyright 1997 The American Physical Society

  14. Tau oligomers impair memory and induce synaptic and mitochondrial dysfunction in wild-type mice

    Directory of Open Access Journals (Sweden)

    Jackson George R

    2011-06-01

    Full Text Available Abstract Background The correlation between neurofibrillary tangles of tau and disease progression in the brains of Alzheimer's disease (AD patients remains an area of contention. Innovative data are emerging from biochemical, cell-based and transgenic mouse studies that suggest that tau oligomers, a pre-filament form of tau, may be the most toxic and pathologically significant tau aggregate. Results Here we report that oligomers of recombinant full-length human tau protein are neurotoxic in vivo after subcortical stereotaxic injection into mice. Tau oligomers impaired memory consolidation, whereas tau fibrils and monomers did not. Additionally, tau oligomers induced synaptic dysfunction by reducing the levels of synaptic vesicle-associated proteins synaptophysin and septin-11. Tau oligomers produced mitochondrial dysfunction by decreasing the levels of NADH-ubiquinone oxidoreductase (electron transport chain complex I, and activated caspase-9, which is related to the apoptotic mitochondrial pathway. Conclusions This study identifies tau oligomers as an acutely toxic tau species in vivo, and suggests that tau oligomers induce neurodegeneration by affecting mitochondrial and synaptic function, both of which are early hallmarks in AD and other tauopathies. These results open new avenues for neuroprotective intervention strategies of tauopathies by targeting tau oligomers.

  15. Antioxidant Activity of Hispidin Oligomers from Medicinal Fungi: A DFT Study

    Directory of Open Access Journals (Sweden)

    El Hassane Anouar

    2014-03-01

    Full Text Available Hispidin oligomers are styrylpyrone pigments isolated from the medicinal fungi Inonotus xeranticus and Phellinus linteus. They exhibit diverse biological activities and strong free radical scavenging activity. To rationalize the antioxidant activity of a series of four hispidin oligomers and determine the favored mechanism involved in free radical scavenging, DFT calculations were carried out at the B3P86/6-31+G (d, p level of theory in gas and solvent. The results showed that bond dissociation enthalpies of OH groups of hispidin oligomers (ArOH and spin density delocalization of related radicals (ArO• are the appropriate parameters to clarify the differences between the observed antioxidant activities for the four oligomers. The effect of the number of hydroxyl groups and presence of a catechol moiety conjugated to a double bond on the antioxidant activity were determined. Thermodynamic and kinetic studies showed that the PC-ET mechanism is the main mechanism involved in free radical scavenging. The spin density distribution over phenoxyl radicals allows a better understanding of the hispidin oligomers formation.

  16. Photo-electron spectroscopy study of energy levels in conjugated oligomers

    NARCIS (Netherlands)

    Veenstra, SC; Heeres, A; Stalmach, U; Wildeman, J; Hadziioannou, G; Sawatzky, GA; Jonkman, HT; Moss, SC

    2002-01-01

    We report on the valence orbital structure of poly(para-phenylenevinylene) (PPV)-like oligomers. We studied these molecules as isolated oligomers in the gas phase, as well as in thin films deposited on metal substrates. We use a simple model based on a previously reported Hamiltonian that accurately

  17. Solvent free low-melt viscosity imide oligomers and thermosetting polymide composites

    Science.gov (United States)

    Chuang, Chun-Hua (Inventor)

    2012-01-01

    .[.This invention relates to the composition and a solvent-free process for preparing novel imide oligomers and polymers specifically formulated with effective amounts of a dianhydride such as 2,3,3',4-biphenyltetra carboxylic dianydride (a-BPDA), at least one aromatic diamine and an endcapped of 4-phenylethynylphthalic anhydride (PEPA) or nadic anhydride to produce imide oligomers that possess a low-melt viscosity of 1-60 poise at 260-280.degree. C. When the imide oligomer melt is cured at about 371.degree. C. in a press or autoclave under 100-500 psi, the melt resulted in a thermoset polyimide having a glass transition temperature (T.sub.g) equal to and above 310.degree. C. A novel feature of this process is that the monomers; namely the dianhydrides, diamines and the endcaps, are melt processable to form imide oligomers at temperatures ranging between 232-280.degree. C. (450-535.degree. F.) without any solvent. These low-melt imide oligomers can be easily processed by resin transfer molding (RTM), vacuum-assisted resin transfer molding (VARTM) or the resin infusion process with fiber preforms e.g. carbon, glass or quartz preforms to produce polyimide matrix composites with 288-343.degree. C. (550-650.degree. F.) high temperature performance capability..]. .Iadd.This invention relates to compositions and a solvent-free reaction process for preparing imide oligomers and polymers specifically derived from effective amounts of dianhydrides such as 2,3,3',4'-biphenyltetracarboxylic dianhydride (a-BPDA), at least one aromatic polyamine and an end-cap such as 4-phenylethynyphthalic anhydride (PEPA) or nadic anhydride to produce imide oligomers that possess a low-melt viscosity of 1-60 poise at 260.degree. C.-280.degree. C..Iaddend.

  18. Computer simulations and theoretical aspects of the depletion interaction in protein-oligomer mixtures.

    Science.gov (United States)

    Boncina, M; Rescic, J; Kalyuzhnyi, Yu V; Vlachy, V

    2007-07-21

    The depletion interaction between proteins caused by addition of either uncharged or partially charged oligomers was studied using the canonical Monte Carlo simulation technique and the integral equation theory. A protein molecule was modeled in two different ways: either as (i) a hard sphere of diameter 30.0 A with net charge 0, or +5, or (ii) as a hard sphere with discrete charges (depending on the pH of solution) of diameter 45.4 A. The oligomers were pictured as tangentially jointed, uncharged, or partially charged, hard spheres. The ions of a simple electrolyte present in solution were represented by charged hard spheres distributed in the dielectric continuum. In this study we were particularly interested in changes of the protein-protein pair-distribution function, caused by addition of the oligomer component. In agreement with previous studies we found that addition of a nonadsorbing oligomer reduces the phase stability of solution, which is reflected in the shape of the protein-protein pair-distribution function. The value of this function in protein-protein contact increases with increasing oligomer concentration, and is larger for charged oligomers. The range of the depletion interaction and its strength also depend on the length (number of monomer units) of the oligomer chain. The integral equation theory, based on the Wertheim Ornstein-Zernike approach applied in this study, was found to be in fair agreement with Monte Carlo results only for very short oligomers. The computer simulations for a model mimicking the lysozyme molecule (ii) are in qualitative agreement with small-angle neutron experiments for lysozyme-dextran mixtures.

  19. Self-propagative replication of Aβ oligomers suggests potential transmissibility in Alzheimer disease.

    Directory of Open Access Journals (Sweden)

    Amit Kumar

    Full Text Available The aggregation of amyloid-β (Aβ peptide and its deposition in parts of the brain form the central processes in the etiology of Alzheimer disease (AD. The low-molecular weight oligomers of Aβ aggregates (2 to 30 mers are known to be the primary neurotoxic agents whose mechanisms of cellular toxicity and synaptic dysfunction have received substantial attention in the recent years. However, how these toxic agents proliferate and induce widespread amyloid deposition throughout the brain, and what mechanism is involved in the amplification and propagation of toxic oligomer species, are far from clear. Emerging evidence based on transgenic mice models indicates a transmissible nature of Aβ aggregates and implicates a prion-like mechanism of oligomer propagation, which manifests as the dissemination and proliferation of Aβ toxicity. Despite accumulating evidence in support of a transmissible nature of Aβ aggregates, a clear, molecular-level understanding of this intriguing mechanism is lacking. Recently, we reported the characterization of unique replicating oligomers of Aβ42 (12-24 mers in vitro called Large Fatty Acid-derived Oligomers (LFAOs (Kumar et al., 2012, J. Biol. Chem. In the current report, we establish that LFAOs possess physiological activity by activating NF-κB in human neuroblastoma cells, and determine the experimental parameters that control the efficiency of LFAO replication by self-propagation. These findings constitute the first detailed report on monomer - oligomer lateral propagation reactions that may constitute potential mechanism governing transmissibility among Aβ oligomers. These data support the previous reports on transmissible mechanisms observed in transgenic animal models.

  20. EGb761 provides a protective effect against Aβ1-42 oligomer-induced cell damage and blood-brain barrier disruption in an in vitro bEnd.3 endothelial model.

    Directory of Open Access Journals (Sweden)

    Wen-bin Wan

    Full Text Available Alzheimer's disease (AD is the most common form of senile dementia which is characterized by abnormal amyloid beta (Aβ accumulation and deposition in brain parenchyma and cerebral capillaries, and leads to blood-brain barrier (BBB disruption. Despite great progress in understanding the etiology of AD, the underlying pathogenic mechanism of BBB damage is still unclear, and no effective treatment has been devised. The standard Ginkgo biloba extract EGb761 has been widely used as a potential cognitive enhancer for the treatment of AD. However, the cellular mechanism underlying the effect remain to be clarified. In this study, we employed an immortalized endothelial cell line (bEnd.3 and incubation of Aβ(1-42 oligomer, to mimic a monolayer BBB model under conditions found in the AD brain. We investigated the effect of EGb761 on BBB and found that Aβ1-42 oligomer-induced cell injury, apoptosis, and generation of intracellular reactive oxygen species (ROS, were attenuated by treatment with EGb761. Moreover, treatment of the cells with EGb761 decreased BBB permeability and increased tight junction scaffold protein levels including ZO-1, Claudin-5 and Occludin. We also found that the Aβ(1-42 oligomer-induced upregulation of the receptor for advanced glycation end-products (RAGE, which mediates Aβ cytotoxicity and plays an essential role in AD progression, was significantly decreased by treatment with EGb761. To our knowledge, we provide the first direct in vitro evidence of an effect of EGb761 on the brain endothelium exposed to Aβ(1-42 oligomer, and on the expression of tight junction (TJ scaffold proteins and RAGE. Our results provide a new insight into a possible mechanism of action of EGb761. This study provides a rational basis for the therapeutic application of EGb761 in the treatment of AD.

  1. Applications of oligomers for nanostructured conducting polymers.

    Science.gov (United States)

    Wang, Yue; Tran, Henry D; Kaner, Richard B

    2011-01-03

    This Feature Article provides an overview of the distinctive nanostructures that aniline oligomers form and the applications of these oligomers for shaping the nanoscale morphologies and chirality of conducting polymers. We focus on the synthetic methods for achieving such goals and highlight the underlying mechanisms. The clear advantages of each method and their possible drawbacks are discussed. Assembly and applications of these novel organic (semi)conducting nanomaterials are also outlined. We conclude this article with our perspective on the main challenges, new opportunities, and future directions for this nascent yet vibrant field of research. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Transport properties in monolayer-bilayer-monolayer graphene planar junctions

    Institute of Scientific and Technical Information of China (English)

    Kai-Long Chu; Zi-Bo Wang; Jiao-Jiao Zhou; Hua Jiang

    2017-01-01

    The transport study of graphene based junctions has become one of the focuses in graphene research.There are two stacking configurations for monolayer-bilayer-monolayer graphene planar junctions.One is the two monolayer graphene contacting the same side of the bilayer graphene,and the other is the two-monolayer graphene contacting the different layers of the bilayer graphene.In this paper,according to the Landauer-Büttiker formula,we study the transport properties of these two configurations.The influences of the local gate potential in each part,the bias potential in bilayer graphene,the disorder and external magnetic field on conductance are obtained.We find the conductances of the two configurations can be manipulated by all of these effects.Especially,one can distinguish the two stacking configurations by introducing the bias potential into the bilayer graphene.The strong disorder and the external magnetic field will make the two stacking configurations indistinguishable in the transport experiment.

  3. Donor-acceptor-donor thienyl/bithienyl-benzothiadiazole/quinoxaline model oligomers: experimental and theoretical studies.

    Science.gov (United States)

    Pina, João; de Melo, J Seixas; Breusov, D; Scherf, Ullrich

    2013-09-28

    A comprehensive spectral and photophysical investigation of four donor-acceptor-donor (DAD) oligomers consisting of electron-deficient 2,1,3-benzothiadiazole or quinoxaline moieties linked to electron-rich thienyl or bithienyl units has been undertaken. Additionally, a bis(dithienyl) substituted naphthalene was also investigated. The D-A-D nature of these oligomers resulted in the presence of an intramolecular charge transfer (ICT) state, which was further substantiated by solvatochromism studies (analysis with the Lippert-Mataga formalism). Hereby, significant differences have been obtained for the fluorescence quantum yields of the oligomers in the non-polar solvent methylcyclohexane vs. the polar ethanol. The study was further complemented with the determination of the optimized ground-state molecular geometries for the oligomers together with the prediction of the lowest vertical one-electron excitation energy and the relevant molecular orbital contours using DFT calculations. The electronic transitions show a clear HOMO to LUMO charge-transfer character. In contrast to the thiophene oligomers (the oligothiophenes with n = 1-7), where the intersystem crossing (ISC) yield decreases with n, the studied DAD oligomers were found to show an increase in the ISC efficiency with the number of (donor) thienyl units.

  4. Laser-Induced Population Inversion in Rhodamine 6G for Lysozyme Oligomer Detection.

    Science.gov (United States)

    Hanczyc, Piotr; Sznitko, Lech

    2017-06-06

    Fluorescence spectroscopy is a common method for detecting amyloid fibrils in which organic fluorophores are used as markers that exhibit an increase in quantum yield upon binding. However, most of the dyes exhibit enhanced emission only when bound to mature fibrils, and significantly weaker signals are obtained in the presence of amyloid oligomers. In the concept of population inversion, a laser is used as an excitation source to keep the major fraction of molecules in the excited state to create the pathways for the occurrence of stimulated emission. In the case of the proteins, the conformational changes lead to the self-ordering and thus different light scattering conditions that can influence the optical signatures of the generated light. Using this methodology, we show it is possible to optically detect amyloid oligomers using commonly available staining dyes in which population inversion can be induced. The results indicate that rhodamine 6G molecules are complexed with oligomers, and using a laser-assisted methodology, weakly emissive states can be detected. Significant spectral red-shifting of rhodamine 6G dispersed with amyloid oligomers and a notable difference determined by comparison of spectra of the fibrils suggest the existence of specific dye aggregates around the oligomer binding sites. This approach can provide new insights into intermediate oligomer states that are believed to be responsible for toxic seeding in neurodegeneration diseases.

  5. Solvent Free Low-Melt Viscosity Imide Oligomers And Thermosetting Polyimide Composites

    Science.gov (United States)

    Chuang, CHun-Hua (Inventor)

    2006-01-01

    This invention relates to the composition and a solvent-free process for preparing novel imide oligomers and polymers specifically formulated with effective amounts of a dianhydride such as 2,3,3',4-biphenyltetra carboxylic dianydride (a-BPDA), at least one aromatic diamine' and an endcapped of 4-phenylethynylphthalic anhydride (PEPA) or nadic anhydride to produce imide oligomers that possess a low-melt viscosity of 1-60 poise at 260-280" C. When the imide oligomer melt is cured at about 371 C. in a press or autoclave under 100-500 psi, the melt resulted in a thermoset polyimide having a glass transition temperature (T(sub g)) equal to and above 310 C. A novel feature of this process is that the monomers; namely the dianhydrides, diamines and the endcaps, are melt processable to form imide oligomers at temperatures ranging between 232-280 C. (450-535 F) without any solvent. These low-melt imide oligomers can be easily processed by resin transfer molding (RTM), vacuum-assisted resin transfer molding (VARTM) or the resin infusion process with fiber preforms e.g. carbon, glass or quartz preforms to produce polyimide matrix composites with 288-343C (550-650 F) high temperature performance capability.

  6. Aniline oligomers versus polyaniline

    Czech Academy of Sciences Publication Activity Database

    Stejskal, Jaroslav; Trchová, Miroslava

    2012-01-01

    Roč. 61, č. 2 (2012), s. 240-251 ISSN 0959-8103 R&D Projects: GA AV ČR IAA400500905; GA AV ČR IAA100500902; GA ČR GA203/08/0686; GA ČR GA202/09/1626 Institutional research plan: CEZ:AV0Z40500505 Keywords : polyaniline * anilin e oligomers * anilin e Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.125, year: 2012

  7. Charge Separation and Recombination in Small Band Gap Oligomer-Fullerene Triads

    NARCIS (Netherlands)

    Karsten, Bram P.; Bouwer, Ricardo K. M.; Hummelen, Jan C.; Williams, Rene M.; Janssen, Rene A. J.

    2010-01-01

    Synthesis and photophysics of a series of thiophene-thienopyrazine small band gap oligomers end-capped at both ends with C(60) are presented In these triads a photoinduced electron transfer reaction occurs between the oligomer as a donor and the fullerene as an acceptor Femtosecond photoinduced

  8. Diamondoid monolayers as electron emitters

    Science.gov (United States)

    Yang, Wanli [El Cerrito, CA; Fabbri, Jason D [San Francisco, CA; Melosh, Nicholas A [Menlo Park, CA; Hussain, Zahid [Orinda, CA; Shen, Zhi-Xun [Stanford, CA

    2012-04-10

    Provided are electron emitters based upon diamondoid monolayers, preferably self-assembled higher diamondoid monolayers. High intensity electron emission has been demonstrated employing such diamondoid monolayers, particularly when the monolayers are comprised of higher diamondoids. The application of such diamondoid monolayers can alter the band structure of substrates, as well as emit monochromatic electrons, and the high intensity electron emissions can also greatly improve the efficiency of field-effect electron emitters as applied to industrial and commercial applications.

  9. Structural Investigations of on-pathway Oligomers of α-Synuclein

    DEFF Research Database (Denmark)

    Pedersen, Martin Nors; Horvath, Istvan; Weise, Christoph F.

    Academy of Sciences of the United States of America 108(8): 3246-3251. Horvath, I., et al. (2012). "Mechanisms of protein oligomerization: In-hibitor of functional amyloids templates a-synuclein fibrilla-tion." Journal of the American Chemical Society. Spillantini, M. G., et al. (1997). "[alpha...... by decomposition of SAXS data from the evolving fibrillating solution (Giehm et al. 2011). NMR data have furthermore suggested that the C-terminal is exposed on oligomers obtained by incubation with the ligand FN075 (Horvath et al. 2012). In this study we aim at obtaining SAXS data from isolated stabilized...... oligomer (MAX-lab, May 2012); data analysis is in progress. ITC experiments are furthermore planned to more accurately determine the stoichiometry between α-synuclein and FN075. Horvath and co-workers have already shown that the FN075 stabilized oligomer is on pathway. We have shown that the in...

  10. Characterization of methacrylate-based composites containing thio-urethane oligomers.

    Science.gov (United States)

    Bacchi, Atais; Nelson, Morgan; Pfeifer, Carmem S

    2016-02-01

    To evaluate the ability of thio-urethane oligomers to improve the properties of restorative composite resins. Oligomers were synthesized by combining 1,6-hexanediol-diissocyante (aliphatic) with pentaerythritol tetra-3-mercaptopropionate (PETMP) or 1,3-bis(1-isocyanato-1-methylethyl)benzene (aromatic) with trimethylol-tris-3-mercaptopropionate (TMP), at 1:2 isocyanate:thiol, leaving pendant thiols. Oligomers were added at 0-20 wt% to BisGMA-TEGDMA (70-30 wt%). Silanated inorganic fillers were added (70 wt%). Materials were photoactivated at 800 mW/cm(2) filtered to 320-500 nm. Near-IR was used to follow degree of methacrylate conversion (DC). Mechanical properties were evaluated in three-point bending with 2 mm × 2 mm × 25 mm bars for flexural strength/modulus and toughness (FS/E, and T) according to ISO 4049, and 2 mm × 5 mm × 25 mm notched specimens for fracture toughness (KIC). Polymerization stress (PS) was measured on the Bioman. Results were analyzed with ANOVA/Tukey's test (α=5%). Significant increase in DC was observed in thio-urethane-containing materials especially for the group with 20 wt% of aliphatic version. Materials composed by oligomers also promoted higher FS, E, and KIC in comparison to controls irrespective of thio-urethane type. A significant increase in toughness was detected by ANOVA, but not distinguished in the groups. The PS was significantly reduced by the presence of thio-urethane for almost all groups. The use of thio-urethane oligomer to compose methacrylate-based restorative composite promote increase in DC, FS, E and KIC while significant reduces PS. A simple additive was shown to reduce stress while increasing convrersion and mechanical properties, mainly fracture toughness. This has he potential of increasing the service life of dental composites, without changing current operatory procedures. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  11. Acrylate oligomers in ultraviolet cured PSA's glass transition, molecular weight versus peel strength

    International Nuclear Information System (INIS)

    Miller, H.C.

    1999-01-01

    Typically those not skilled in the art relate Glass Transition Temperature to Pressure Sensitive Adhesives. You need a low Tg material to prepare good pressure sensitive adhesives. This report deals with a wide range acrylate terminated oligomers in a standard formulation. Molecular weight, chemical structure variations are examined versus the Glass Transition of the oligomers and final peel strength. Each formulated adhesive will require unique oligomer properties to reach one hundred newtons per 100 millimeters (5.71 pounds per square inch) peel strength. Excellent peel strengths may be obtained with oligomer molecular weight ranging from six thousand to one thousand molecular weight and glass transition temperatures ranging from minus seventy four degrees centigrade up to thirteen degrees centigrade

  12. Synthesis of soybean oil-based thiol oligomers.

    Science.gov (United States)

    Wu, Jennifer F; Fernando, Shashi; Weerasinghe, Dimuthu; Chen, Zhigang; Webster, Dean C

    2011-08-22

    Industrial grade soybean oil (SBO) and thiols were reacted to generate thiol-functionalized oligomers via a thermal, free radical initiated thiol-ene reaction between the SBO double bond moieties and the thiol functional groups. The effect of the reaction conditions, including thiol concentration, catalyst loading level, reaction time, and atmosphere, on the molecular weight and the conversion to the resultant soy-thiols were examined in a combinatorial high-throughput fashion using parallel synthesis, combinatorial FTIR, and rapid gel permeation chromatography (GPC). High thiol functionality and concentration, high thermal free radical catalyst concentration, long reaction time, and the use of a nitrogen reaction atmosphere were found to favor fast consumption of the SBO, and produced high molecular weight products. The thiol conversion during the reaction was inversely affected by a high thiol concentration, but was favored by a long reaction time and an air reaction atmosphere. These experimental observations were explained by the initial low affinity of the SBO and thiol, and the improved affinity between the generated soy-thiol oligomers and unreacted SBO during the reaction. The synthesized soy-thiol oligomers can be used for renewable thiol-ene UV curable materials and high molecular solids and thiourethane thermal cure materials. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Preparation of Chito-Oligomers by Hydrolysis of Chitosan in the Presence of Zeolite as Adsorbent

    Science.gov (United States)

    Ibrahim, Khalid A.; El-Eswed, Bassam I.; Abu-Sbeih, Khaleel A.; Arafat, Tawfeeq A.; Al Omari, Mahmoud M. H.; Darras, Fouad H.; Badwan, Adnan A.

    2016-01-01

    An increasing interest has recently been shown to use chitin/chitosan oligomers (chito-oligomers) in medicine and food fields because they are not only water-soluble, nontoxic, and biocompatible materials, but they also exhibit numerous biological properties, including antibacterial, antifungal, and antitumor activities, as well as immuno-enhancing effects on animals. Conventional depolymerization methods of chitosan to chito-oligomers are either chemical by acid-hydrolysis under harsh conditions or by enzymatic degradation. In this work, hydrolysis of chitosan to chito-oligomers has been achieved by applying adsorption-separation technique using diluted HCl in the presence of different types of zeolite as adsorbents. The chito-oligomers were retrieved from adsorbents and characterized by differential scanning calorimetry (DSC), liquid chromatography/mass spectroscopy (LC/MS), and ninhydrin test. PMID:27455287

  14. Thio-urethane oligomers improve the properties of light-cured resin cements.

    Science.gov (United States)

    Bacchi, Ataís; Consani, Rafael L; Martim, Gedalias C; Pfeifer, Carmem S

    2015-05-01

    Thio-urethanes were synthesized by combining 1,6-hexanediol-diissocyante (aliphatic) with pentaerythritol tetra-3-mercaptopropionate (PETMP) or 1,3-bis(1-isocyanato-1-methylethyl)benzene (aromatic) with trimethylol-tris-3-mercaptopropionate (TMP), at 1:2 isocyanate:thiol, leaving pendant thiols. Oligomers were added at 10-30 phr to BisGMA-UDMA-TEGDMA (5:3:2, BUT). 25 wt% silanated inorganic fillers were added. Commercial cement (Relyx Veneer, 3M-ESPE) was also evaluated with 10-20 phr of aromatic oligomer. Near-IR was used to follow methacrylate conversion (DC) and rate of polymerization (Rpmax). Mechanical properties were evaluated in three-point bending (ISO 4049) for flexural strength/modulus (FS/FM, and toughness), and notched specimens (ASTM Standard E399-90) for fracture toughness (KIC). Polymerization stress (PS) was measured on the Bioman. Volumetric shrinkage (VS, %) was measured with the bonded disk technique. Results were analyzed with ANOVA/Tukey's test (α=5%). In general terms, for BUT cements, conversion and mechanical properties in flexure increased for selected groups with the addition of thio-urethane oligomers. The aromatic versions resulted in greater FS/FM than aliphatic. Fracture toughness increased by two-fold in the experimental groups (from 1.17 ± 0.36 MPam(1/2) to around 3.23 ± 0.22 MPam(1/2)). Rpmax decreased with the addition of thio-urethanes, though the vitrification point was not statistically different from the control. VS and PS decreased with both oligomers. For the commercial cement, 20 phr of oligomer increased DC, vitrification, reduced Rpmax and also significantly increased KIC, and reduced PS and FM. Thio-urethane oligomers were shown to favorably modify conventional dimethacrylate networks. Significant reductions in polymerization stress were achieved at the same time conversion and fracture toughness increased. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  15. Multicolored, Low-Voltage-Driven, Flexible Organic Electrochromic Devices Based on Oligomers.

    Science.gov (United States)

    Wan, Zhijun; Zeng, Jinming; Li, Hui; Liu, Ping; Deng, Wenji

    2018-04-20

    In this study, a series of organic conjugated oligomers containing 3,4-ethylenedioxythiophene (EDOT) and aromatic groups are synthesized, which are as follows: 2,5-di(methyl benzoate)-3,4-ethylenedioxy-thiophene (1EDOT-2B-COOCH 3 ), 5,5'-di(methyl benzoate)-2,2'-bi(3,4-ethylenedioxythiophene) (2EDOT-2B-COOCH 3 ), 5,5″-di(methyl benzoate)-2,2':5',2″-ter(3,4-ethylenedioxythiophene) (3EDOT-2B-COOCH 3 ), and 5,5″'-di(methyl benzoate)-2,2':5',2″: 5″,2″'-quater(3,4-ethylenedioxythiophene) (4EDOT-2B-COOCH 3 ). Using these oligomers as active materials, flexible organic electrochromic devices are fabricated. The device structure is indium tin oxide-PET plastic slide (ITO-PET)/active layer/conducting gel/ITO-PET, and the electrochromic properties of oligomers are investigated. These oligomers exhibit reversible color changes upon electrochemical doping and dedoping. The highest optical contrast is exhibited by 4EDOT-2B-COOCH 3 , which is 75.2% at 700 nm. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Peptide oligomers for holographic data storage

    DEFF Research Database (Denmark)

    Berg, Rolf Henrik; Hvilsted, Søren; Ramanujam, P.S.

    1996-01-01

    SEVERAL classes of organic materials (such as photoanisotropic liquid-crystalline polymers(1-4) and photorefractive polymers(5-7)) are being investigated for the development of media for optical data storage. Here we describe a new family of organic materials-peptide oligomers containing azobenzene...

  17. Self-assembly of aniline oligomers

    Czech Academy of Sciences Publication Activity Database

    Zhao, Y.; Tomšík, Elena; Wang, J.; Morávková, Zuzana; Zhigunov, Alexander; Stejskal, Jaroslav; Trchová, Miroslava

    2013-01-01

    Roč. 8, č. 1 (2013), s. 129-137 ISSN 1861-4728 R&D Projects: GA ČR GA202/09/1626; GA ČR GAP205/12/0911 Institutional research plan: CEZ:AV0Z40500505 Institutional support: RVO:61389013 Keywords : morphology * oligoaniline * oligomers Subject RIV: CD - Macromolecular Chemistry Impact factor: 3.935, year: 2013

  18. Direct Correlation Between Ligand-Induced α-Synuclein Oligomers and Amyloid-like Fibril Growth

    DEFF Research Database (Denmark)

    Pedersen, Martin Nors; Foderà, Vito; Horvath, Istvan

    2015-01-01

    link to disease related degenerative activity. Fibrils formed in the presence and absence of FN075 are indistinguishable on microscopic and macroscopic levels. Using small angle X-ray scattering, we reveal that FN075 induced oligomers are similar, but not identical, to oligomers previously observed......Aggregation of proteins into amyloid deposits is the hallmark of several neurodegenerative diseases such as Alzheimer's and Parkinson's disease. The suggestion that intermediate oligomeric species may be cytotoxic has led to intensified investigations of pre-fibrillar oligomers, which...

  19. Monolayer-by-monolayer growth of platinum films on complex carbon fiber paper structure

    Energy Technology Data Exchange (ETDEWEB)

    Pang, Liuqing; Zhang, Yunxia [Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi’an 710119 (China); Liu, Shengzhong, E-mail: szliu@dicp.ac.cn [Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi’an 710119 (China); Dalian National Laboratory for Clean Energy, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China)

    2017-06-15

    Graphical abstract: A controlled monolayer-by-monolayer deposition process has been developed to fabricate Pt coating on carbon fiber paper with complex network structures using a dual buffer strategy. This development may pave a way to fabricate superior Pt catalysts with the minimal Pt usage. In fact, the present Pt group metal loading is 25 times lower than the U.S. DOE 2017 target value. - Highlights: • Developed a controlled monolayer-by-monolayer Pt deposition using a dual buffer strategy. • The present Pt group metal loading is 25 times lower than the U.S. DOE 2017 target value. • This development may pave a way to fabricate superior Pt catalysts with the minimal Pt usage. - Abstract: A controlled monolayer-by-monolayer deposition process has been developed to fabricate Pt coating on carbon fiber paper with complex network structures using a dual buffer (Au/Ni) strategy. The X-ray diffraction, electrochemical quartz crystal microbalance, current density analyses, and X-ray photoelectron spectroscopy results conclude that the monolayer deposition process accomplishes full coverage on the substrate and that the thickness of the deposition layer can be controlled on a single atom scale. This development may pave a way to fabricate superior Pt catalysts with the minimal Pt usage. In fact, the present Pt group metal loading is 25 times lower than the U.S. DOE 2017 target value.

  20. Preparation of Chito-Oligomers by Hydrolysis of Chitosan in the Presence of Zeolite as Adsorbent

    Directory of Open Access Journals (Sweden)

    Khalid A. Ibrahim

    2016-07-01

    Full Text Available An increasing interest has recently been shown to use chitin/chitosan oligomers (chito-oligomers in medicine and food fields because they are not only water-soluble, nontoxic, and biocompatible materials, but they also exhibit numerous biological properties, including antibacterial, antifungal, and antitumor activities, as well as immuno-enhancing effects on animals. Conventional depolymerization methods of chitosan to chito-oligomers are either chemical by acid-hydrolysis under harsh conditions or by enzymatic degradation. In this work, hydrolysis of chitosan to chito-oligomers has been achieved by applying adsorption-separation technique using diluted HCl in the presence of different types of zeolite as adsorbents. The chito-oligomers were retrieved from adsorbents and characterized by differential scanning calorimetry (DSC, liquid chromatography/mass spectroscopy (LC/MS, and ninhydrin test.

  1. Determination of oligomers in virgin and recycled polyethylene terephthalate (PET) samples by UPLC-MS-QTOF.

    Science.gov (United States)

    Ubeda, Sara; Aznar, Margarita; Nerín, Cristina

    2018-03-01

    An oligomer is a molecule that consists of a few monomer units. It can be formed during polymer manufacturing and also due to polymer degradation processes or even during use conditions. Since oligomers are not included in chemical databases, their identification is a complex process. In this work, the oligomers present in 20 different PET pellet samples have been determined. Two different sample treatment procedures, solvent extraction and total dissolution, were applied in order to select the most efficient one. The analyses were carried out by UPLC-MS-QTOF. The use of high resolution mass spectrometry allowed the structural elucidation of these compounds and their correct identification. The main oligomers identified were cyclic as well as lineal from the first, second, and third series. All of them were composed of terephthalic acid (TPA), diethylene glycol (DEG), and ethylene glycol (EG). Quantitative values were very different in both procedures. In total dissolution of PET samples, the concentration of oligomers was always, at least, 10 times higher than in solvent extraction; some of the compounds were only detected when total dissolution was used. Results showed that the oligomers with the highest concentration values were dimers and trimers, cyclic, as well as lineal, from the first and second series. The oligomer with the maximum concentration value was TPA 2 -EG-DEG that was found in all the samples in a concentration range from 2493 to 19,290 ng/g PET. No differences between virgin and recycled PET were found. Migration experiments were performed in two PET bottles, and results showed the transference of most of these oligomers to a fat food simulant (ethanol 95%). Graphical abstract Graphical abstract of the two procedures developd and optimized for identifying oligomers in PET pellets and in migration form PET bottles.

  2. Separation of xylose oligomers using centrifugal partition chromatography with a butanol-methanol-water system.

    Science.gov (United States)

    Lau, Ching-Shuan; Clausen, Edgar C; Lay, Jackson O; Gidden, Jennifer; Carrier, Danielle Julie

    2013-01-01

    Xylose oligomers are the intermediate products of xylan depolymerization into xylose monomers. An understanding of xylan depolymerization kinetics is important to improve the conversion of xylan into monomeric xylose and to minimize the formation of inhibitory products, thereby reducing ethanol production costs. The study of xylan depolymerization requires copious amount of xylose oligomers, which are expensive if acquired commercially. Our approach consisted of producing in-house oligomer material. To this end, birchwood xylan was used as the starting material and hydrolyzed in hot water at 200 °C for 60 min with a 4 % solids loading. The mixture of xylose oligomers was subsequently fractionated by a centrifugal partition chromatography (CPC) with a solvent system of butanol:methanol:water in a 5:1:4 volumetric ratio. Operating in an ascending mode, the butanol-rich upper phase (the mobile phase) eluted xylose oligomers from the water-rich stationary phase at a 4.89 mL/min flow rate for a total fractionation time of 300 min. The elution of xylose oligomers occurred between 110 and 280 min. The yields and purities of xylobiose (DP 2), xylotriose (DP 3), xylotetraose (DP 4), and xylopentaose (DP 5) were 21, 10, 14, and 15 mg/g xylan and 95, 90, 89, and 68 %, respectively. The purities of xylose oligomers from this solvent system were higher than those reported previously using tetrahydrofuran:dimethyl sulfoxide:water in a 6:1:3 volumetric ratio. Moreover, the butanol-based solvent system improved overall procedures by facilitating the evaporation of the solvents from the CPC fractions, rendering the purification process more efficient.

  3. Packing of ganglioside-phospholipid monolayers

    DEFF Research Database (Denmark)

    Majewski, J.; Kuhl, T.L.; Kjær, K.

    2001-01-01

    Using synchrotron grazing-incidence x-ray diffraction (GIXD) and reflectivity, the in-plane and out-of-plane structure of mixed ganglioside-phospholipid monolayers was investigated at the air-water interface. Mixed monolayers of 0, 5, 10, 20, and 100 mol% ganglioside GM, and the phospholipid...... monolayers did not affect hydrocarbon tail packing (fluidization or condensation of the hydrocarbon region). This is in contrast to previous investigations of lipopolymer-lipid mixtures, where the packing structure of phospholipid monolayers was greatly altered by the inclusion of lipids bearing hydrophilic...

  4. Aβ42 oligomers selectively disrupt neuronal calcium release.

    Science.gov (United States)

    Lazzari, Cristian; Kipanyula, Maulilio J; Agostini, Mario; Pozzan, Tullio; Fasolato, Cristina

    2015-02-01

    Accumulation of amyloid-β (Aβ) peptides correlates with aging and progression of Alzheimer's disease (AD). Aβ peptides, which cause early synaptic dysfunctions, spine loss, and memory deficits, also disturb intracellular Ca(2+) homeostasis. By cytosolic and endoplasmic reticulum Ca(2+) measurements, we here define the short-term effects of synthetic Aβ42 on neuronal Ca(2+) dynamics. When applied acutely at submicromolar concentration, as either oligomers or monomers, Aβ42 did not cause Ca(2+) release or Ca(2+) influx. Similarly, 1-hour treatment with Aβ42 modified neither the resting cytosolic Ca(2+) level nor the long-lasting Ca(2+) influx caused by KCl-induced depolarization. In contrast, Aβ42 oligomers, but not monomers, significantly altered Ca(2+) release from stores with opposite effects on inositol 1,4,5-trisphosphate (IP3)- and caffeine-induced Ca(2+) mobilization without alteration of the total store Ca(2+) content. Ca(2+) dysregulation by Aβ42 oligomers involves metabotropic glutamate receptor 5 and requires network activity and the intact exo-endocytotic machinery, being prevented by tetrodotoxin and tetanus toxin. These findings support the idea that Ca(2+) store dysfunction is directly involved in Aβ42 neurotoxicity and represents a potential therapeutic target in AD-like dementia. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Phase transitions in surfactant monolayers

    International Nuclear Information System (INIS)

    Casson, B.D.

    1998-01-01

    Two-dimensional phase transitions have been studied in surfactant monolayers at the air/water interface by sum-frequency spectroscopy and ellipsometry. In equilibrium monolayers of medium-chain alcohols C n H 2n+1 OH (n = 9-14) a transition from a two-dimensional crystalline phase to a liquid was observed at temperatures above the bulk melting point. The small population of gauche defects in the solid phase increased only slightly at the phase transition. A model of the hydrocarbon chains as freely rotating rigid rods allowed the area per molecule and chain tilt in the liquid phase to be determined. The area per molecule, chain tilt and density of the liquid phase all increased with increasing chain length, but for each chain length the density was higher than in a bulk liquid hydrocarbon. In a monolayer of decanol adsorbed at the air/water interface a transition from a two-dimensional liquid to a gas was observed. A clear discontinuity in the coefficient of ellipticity as a function of temperature showed that the transition is first-order. This result suggests that liquid-gas phase transitions in surfactant monolayers may be more widespread than once thought. A solid-liquid phase transition has also been studied in mixed monolayers of dodecanol with an anionic surfactant (sodium dodecyl sulphate) and with a homologous series of cationic surfactants (alkyltrimethylammonium bromides: C n TABs, n = 12, 14, 16). The composition and structure of the mixed monolayers was studied above and below the phase transition. At low temperatures the mixed monolayers were as densely packed as a monolayer of pure dodecanol in its solid phase. At a fixed temperature the monolayers under-went a first-order phase transition to form a phase that was less dense and more conformationally disordered. The proportion of ionic surfactant in the mixed monolayer was greatest in the high temperature phase. As the chain length of the C n TAB increased the number of conformational defects

  6. Accumulation of oligomer-prone α-synuclein exacerbates synaptic and neuronal degeneration in vivo.

    Science.gov (United States)

    Rockenstein, Edward; Nuber, Silke; Overk, Cassia R; Ubhi, Kiren; Mante, Michael; Patrick, Christina; Adame, Anthony; Trejo-Morales, Margarita; Gerez, Juan; Picotti, Paola; Jensen, Poul H; Campioni, Silvia; Riek, Roland; Winkler, Jürgen; Gage, Fred H; Winner, Beate; Masliah, Eliezer

    2014-05-01

    In Parkinson's disease and dementia with Lewy bodies, α-synuclein aggregates to form oligomers and fibrils; however, the precise nature of the toxic α-synuclein species remains unclear. A number of synthetic α-synuclein mutations were recently created (E57K and E35K) that produce species of α-synuclein that preferentially form oligomers and increase α-synuclein-mediated toxicity. We have shown that acute lentiviral expression of α-synuclein E57K leads to the degeneration of dopaminergic neurons; however, the effects of chronic expression of oligomer-prone α-synuclein in synapses throughout the brain have not been investigated. Such a study could provide insight into the possible mechanism(s) through which accumulation of α-synuclein oligomers in the synapse leads to neurodegeneration. For this purpose, we compared the patterns of neurodegeneration and synaptic damage between a newly generated mThy-1 α-synuclein E57K transgenic mouse model that is prone to forming oligomers and the mThy-1 α-synuclein wild-type mouse model (Line 61), which accumulates various forms of α-synuclein. Three lines of α-synuclein E57K (Lines 9, 16 and 54) were generated and compared with the wild-type. The α-synuclein E57K Lines 9 and 16 were higher expressings of α-synuclein, similar to α-synuclein wild-type Line 61, and Line 54 was a low expressing of α-synuclein compared to Line 61. By immunoblot analysis, the higher-expressing α-synuclein E57K transgenic mice showed abundant oligomeric, but not fibrillar, α-synuclein whereas lower-expressing mice accumulated monomeric α-synuclein. Monomers, oligomers, and fibrils were present in α-synuclein wild-type Line 61. Immunohistochemical and ultrastructural analyses demonstrated that α-synuclein accumulated in the synapses but not in the neuronal cells bodies, which was different from the α-synuclein wild-type Line 61, which accumulates α-synuclein in the soma. Compared to non-transgenic and lower-expressing mice, the

  7. Photophysical, electrochemical and photovoltaic properties of thiophene-containing arylene-ethynylene/arylene-vinylene polymers

    International Nuclear Information System (INIS)

    Egbe, Daniel Ayuk Mbi; Huong Nguyen, Le; Muehlbacher, David; Hoppe, Harald; Schmidtke, Kathy; Serdar Sariciftci, Niyazi

    2006-01-01

    This work reports the properties of two types of thiophene-containing poly(arylene-ethynylene)-alt-poly(arylene-vinylene)s polymers, whose repeating units (-Ph-C≡C-Th-CH=CH-Ph-CH=CH-) n , 1, and (-Th-C≡C-Ph-C≡C-Th-CH=CH-Ph-CH=CH-) n , 2, consist respectively of a 1 : 2 and a 2 : 2 ratio of -C≡C-/-CH=CH- moieties. Although similar electrochemical data (HOMO: - 5.43 eV, LUMO: ∼- 3.15 eV, E g ec = 2.28 eV) as well as identical thin film absorption behaviour (λ a = 501 nm, E g opt = 2.10 eV) were obtained for both types of materials, significant differences in their thin film photoluminescence behaviour and photovoltaic properties were observed. While polymer 1 shows a fluorescence maximum at λ e = 568 nm (with a fluorescence quantum yield of Φ f = 7%), a total fluorescence quenching was observed in 2. Solar cells (set up: ITO/PEDOT : PSS/active layer/LiF/Al; active layer consisting of 1 or 2 as donor and PCBM as acceptor in a 1 : 3 ratio by weight) designed from 1 (best cell: V OC = 900 mV, I SC = 2.51 mA.cm -2 , FF = 53.7%, η AM1.5 = 1.21%) show far better photovoltaic performance than those from 2 (best cell: V OC = 500 mV, I SC = 1.44 mA.cm -2 , FF = 37.1%, η AM1.5 = 0.27%)

  8. Ultrafast Photoinduced Electron Transfer in a π-Conjugated Oligomer/Porphyrin Complex

    KAUST Repository

    Aly, Shawkat Mohammede

    2014-10-02

    Controlling charge transfer (CT), charge separation (CS), and charge recombination (CR) at the donor-acceptor interface is extremely important to optimize the conversion efficiency in solar cell devices. In general, ultrafast CT and slow CR are desirable for optimal device performance. In this Letter, the ultrafast excited-state CT between platinum oligomer (DPP-Pt(acac)) as a new electron donor and porphyrin as an electron acceptor is monitored for the first time using femtosecond (fs) transient absorption (TA) spectroscopy with broad-band capability and 120 fs temporal resolution. Turning the CT on/off has been shown to be possible either by switching from an organometallic oligomer to a metal-free oligomer or by controlling the charge density on the nitrogen atom of the porphyrin meso unit. Our time-resolved data show that the CT and CS between DPP-Pt(acac) and cationic porphyrin are ultrafast (approximately 1.5 ps), and the CR is slow (ns time scale), as inferred from the formation and the decay of the cationic and anionic species. We also found that the metallic center in the DPP-Pt(acac) oligomer and the positive charge on the porphyrin are the keys to switching on/off the ultrafast CT process.

  9. Laccase-Catalyzed Synthesis of Low-Molecular-Weight Lignin-Like Oligomers and their Application as UV-Blocking Materials.

    Science.gov (United States)

    Lim, Jieyan; Sana, Barindra; Krishnan, Ranganathan; Seayad, Jayasree; Ghadessy, Farid J; Jana, Satyasankar; Ramalingam, Balamurugan

    2018-02-02

    The laccase-catalyzed oxidative polymerization of monomeric and dimeric lignin model compounds was carried out with oxygen as the oxidant in aqueous medium. The oligomers were characterized by using gel permeation chromatography (GPC) and matrix-assisted laser desorption ionization time-of-flight mass spectroscopy (MALDI-TOF MS) analysis. Oxidative polymerization led to the formation of oligomeric species with a number-average molecular weight (M n ) that ranged from 700 to 2300 Da with a low polydispersity index. Spectroscopic analysis provided insight into the possible modes of linkages present in the oligomers, and the oligomerization is likely to proceed through the formation of C-C linkages between phenolic aromatic rings. The oligomers were found to show good UV light absorption characteristics with high molar extinction coefficient (5000-38 000 m -1  cm -1 ) in the UV spectral region. The oligomers were blended independently with polyvinyl chloride (PVC) by using solution blending to evaluate the compatibility and UV protection ability of the oligomers. The UV/Vis transmittance spectra of the oligomer-embedded PVC films indicated that these lignin-like oligomers possessed a notable ability to block UV light. In particular, oligomers obtained from vanillyl alcohol and the dimeric lignin model were found to show good photostability in accelerated UV weathering experiments. The UV-blocking characteristics and photostability were finally compared with the commercial low-molecular-weight UV stabilizer 2,4-dihydroxybenzophenone. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Optimization of the All-D Peptide D3 for Aβ Oligomer Elimination.

    Directory of Open Access Journals (Sweden)

    Antonia Nicole Klein

    Full Text Available The aggregation of amyloid-β (Aβ is postulated to be the crucial event in Alzheimer's disease (AD. In particular, small neurotoxic Aβ oligomers are considered to be responsible for the development and progression of AD. Therefore, elimination of thesis oligomers represents a potential causal therapy of AD. Starting from the well-characterized d-enantiomeric peptide D3, we identified D3 derivatives that bind monomeric Aβ. The underlying hypothesis is that ligands bind monomeric Aβ and stabilize these species within the various equilibria with Aβ assemblies, leading ultimately to the elimination of Aβ oligomers. One of the hereby identified d-peptides, DB3, and a head-to-tail tandem of DB3, DB3DB3, were studied in detail. Both peptides were found to: (i inhibit the formation of Thioflavin T-positive fibrils; (ii bind to Aβ monomers with micromolar affinities; (iii eliminate Aβ oligomers; (iv reduce Aβ-induced cytotoxicity; and (v disassemble preformed Aβ aggregates. The beneficial effects of DB3 were improved by DB3DB3, which showed highly enhanced efficacy. Our approach yielded Aβ monomer-stabilizing ligands that can be investigated as a suitable therapeutic strategy against AD.

  11. PrP(Sc-specific antibodies with the ability to immunodetect prion oligomers.

    Directory of Open Access Journals (Sweden)

    Mourad Tayebi

    Full Text Available The development of antibodies with binding capacity towards soluble oligomeric forms of PrPSc recognised in the aggregation process in early stage of the disease would be of paramount importance in diagnosing prion diseases before extensive neuropathology has ensued. As blood transfusion appears to be efficient in the transmission of the infectious prion agent, there is an urgent need to develop reagents that would specifically recognize oligomeric forms of the abnormally folded prion protein, PrPSc.To that end, we show that anti-PrP monoclonal antibodies (called PRIOC mAbs derived from mice immunised with native PrP-coated microbeads are able to immunodetect oligomers/multimers of PrPSc. Oligomer-specific immunoreactivity displayed by these PRIOC mAbs was demonstrated as large aggregates of immunoreactive deposits in prion-permissive neuroblastoma cell lines but not in equivalent non-infected or prn-p(0/0 cell lines. In contrast, an anti-monomer PrP antibody displayed diffuse immunoreactivity restricted to the cell membrane. Furthermore, our PRIOC mAbs did not display any binding with monomeric recombinant and cellular prion proteins but strongly detected PrPSc oligomers as shown by a newly developed sensitive and specific ELISA. Finally, PrioC antibodies were also able to bind soluble oligomers formed of Aβ and α-synuclein. These findings demonstrate the potential use of anti-prion antibodies that bind PrPSc oligomers, recognised in early stage of the disease, for the diagnosis of prion diseases in blood and other body fluids.

  12. Amyloid β oligomers induce interleukin-1β production in primary microglia in a cathepsin B- and reactive oxygen species-dependent manner

    Energy Technology Data Exchange (ETDEWEB)

    Taneo, Jun; Adachi, Takumi [Department of Animal Development and Physiology, Kyoto University, Yoshida-Konoe, Sakyo, Kyoto 606-8501 (Japan); Yoshida, Aiko; Takayasu, Kunio [Responses to Environmental Signals and Stresses, Graduate School of Biostudies, Kyoto University, Yoshida-Konoe, Sakyo, Kyoto, Kyoto 606-8501 (Japan); Takahara, Kazuhiko, E-mail: ktakahar@zoo.zool.kyoto-u.ac.jp [Department of Animal Development and Physiology, Kyoto University, Yoshida-Konoe, Sakyo, Kyoto 606-8501 (Japan); Japan Science and Technology Agency, Core Research for Evolutional Science and Technology (CREST), Tokyo 102-0081 (Japan); Inaba, Kayo [Department of Animal Development and Physiology, Kyoto University, Yoshida-Konoe, Sakyo, Kyoto 606-8501 (Japan); Japan Science and Technology Agency, Core Research for Evolutional Science and Technology (CREST), Tokyo 102-0081 (Japan)

    2015-03-13

    Amyloid β (Aβ) peptide, a causative agent of Alzheimer's disease, forms two types of aggregates: oligomers and fibrils. These aggregates induce inflammatory responses, such as interleukin-1β (IL-1β) production by microglia, which are macrophage-like cells located in the brain. In this study, we examined the effect of the two forms of Aβ aggregates on IL-1β production in mouse primary microglia. We prepared Aβ oligomer and fibril from Aβ (1–42) peptide in vitro. We analyzed the characteristics of these oligomers and fibrils by electrophoresis and atomic force microscopy. Interestingly, Aβ oligomers but not Aβ monomers or fibrils induced robust IL-1β production in the presence of lipopolysaccharide. Moreover, Aβ oligomers induced endo/phagolysosome rupture, which released cathepsin B into the cytoplasm. Aβ oligomer-induced IL-1β production was inhibited not only by the cathepsin B inhibitor CA-074-Me but also by the reactive oxygen species (ROS) inhibitor N-acetylcysteine. Random chemical crosslinking abolished the ability of the oligomers to induce IL-1β. Thus, multimerization and fibrillization causes Aβ oligomers to lose the ability to induce IL-1β. These results indicate that Aβ oligomers, but not fibrils, induce IL-1β production in primary microglia in a cathepsin B- and ROS-dependent manner. - Highlights: • We prepared amyloid β (Aβ) fibrils with minimum contamination of Aβ oligomers. • Primary microglia (MG) produced IL-1β in response to Aβ oligomers, but not fibrils. • Only Aβ oligomers induced leakage of cathepsin B from endo/phagolysosomes. • IL-1β production in response to Aβ oligomers depended on both cathepsin B and ROS. • Crosslinking reduced the ability of the Aβ oligomers to induce IL-1β from MG.

  13. Causative factors for formation of toxic islet amyloid polypeptide oligomer in type 2 diabetes mellitus

    Directory of Open Access Journals (Sweden)

    Jeong HR

    2015-11-01

    Full Text Available Hye Rin Jeong, Seong Soo A AnDepartment of Bionano Technology, Gachon Medical Research Institute, Gachon University, Gyeonggi-do, Republic of KoreaAbstract: Human islet amyloid polypeptide (h-IAPP is a peptide hormone that is synthesized and cosecreted with insulin from insulin-secreting pancreatic β-cells. Recently, h-IAPP was proposed to be the main component responsible for the cytotoxic pancreatic amyloid deposits in patients with type 2 diabetes mellitus (T2DM. Since the causative factors of IAPP (or amylin oligomer aggregation are not fully understood, this review will discuss the various forms of h-IAPP aggregation. Not all forms of IAPP aggregates trigger the destruction of β-cell function and loss of β-cell mass; however, toxic oligomers do trigger these events. Once these toxic oligomers form under abnormal metabolic conditions in T2DM, they can lead to cell disruption by inducing cell membrane destabilization. In this review, the various factors that have been shown to induce toxic IAPP oligomer formation will be presented, as well as the potential mechanism of oligomer and fibril formation from pro-IAPPs. Initially, pro-IAPPs undergo enzymatic reactions to produce the IAPP monomers, which can then develop into oligomers and fibrils. By this mechanism, toxic oligomers could be generated by diverse pathway components. Thus, the interconnections between factors that influence amyloid aggregation (eg, absence of PC2 enzyme, deamidation, reduction of disulfide bonds, environmental factors in the cell, genetic mutations, copper metal ions, and heparin will be presented. Hence, this review will aid in understanding the fundamental causative factors contributing to IAPP oligomer formation and support studies for investigating novel T2DM therapeutic approaches, such as the development of inhibitory agents for preventing oligomerization at the early stages of diabetic pathology.Keywords: amyloid aggregation, causative factor, IAPP, islet

  14. Dynamics in coarse-grained models for oligomer-grafted silica nanoparticles

    KAUST Repository

    Hong, Bingbing

    2012-01-01

    Coarse-grained models of poly(ethylene oxide) oligomer-grafted nanoparticles are established by matching their structural distribution functions to atomistic simulation data. Coarse-grained force fields for bulk oligomer chains show excellent transferability with respect to chain lengths and temperature, but structure and dynamics of grafted nanoparticle systems exhibit a strong dependence on the core-core interactions. This leads to poor transferability of the core potential to conditions different from the state point at which the potential was optimized. Remarkably, coarse graining of grafted nanoparticles can either accelerate or slowdown the core motions, depending on the length of the grafted chains. This stands in sharp contrast to linear polymer systems, for which coarse graining always accelerates the dynamics. Diffusivity data suggest that the grafting topology is one cause of slower motions of the cores for short-chain oligomer-grafted nanoparticles; an estimation based on transition-state theory shows the coarse-grained core-core potential also has a slowing-down effect on the nanoparticle organic hybrid materials motions; both effects diminish as grafted chains become longer. © 2012 American Institute of Physics.

  15. Interchain interactions in charged diacetylenic oligomers carrying bulk substituents revisited

    International Nuclear Information System (INIS)

    Ottonelli, M.; Izzo, G.M.M.; Comoretto, D.; Musso, G.F.; Dellepiane, G.

    2006-01-01

    We are studying how the electronic properties of an aggregate, built with conjugated oligomers carrying bulk substituents, are affected by intermolecular interactions. In this paper we apply the CEO (Collective Electronic Oscillator) method, on the basis of the semiempirical INDO/S Hamiltonian, to compute the electronic density matrix modifications following the photon absorption in a doubly charged cluster of two units of a fully carbazolyl-substituted oligodiacetylene tetramer, taken as a model system. The picture that had emerged from our previous calculations based on the less sophisticated CIS (Configuration Interaction including Singles) approach is seen to be confirmed. Despite the large separation between the backbones, a through-space charge transfer occurs between the two oligomers due to the fact that the excess charge, contrary to what is generally believed, is not localized on the conjugated backbone, but is spread out over the carbazolyl moieties of the charged molecule. Consideration of this kind of interaction improves the theoretical results obtained for the isolated charged oligomer chain, and aids in better explaining some features of the experimental photoinduced spectra of the corresponding polymer

  16. Extended Ladder-Type Benzo[ k ]tetraphene-Derived Oligomers

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jongbok [Department of Chemistry, Texas A& M University, 3255 TAMU College Station TX 77843-3255 USA; Li, Huanbin [MOE Key Laboratory of Macromolecular Synthesis and Functionalization, State Key Laboratory of Silicon Materials, Department of Polymer Science and Engineering, Zhejiang University, 38 Zheda Rd Hangzhou 310027 China; Kalin, Alexander J. [Department of Chemistry, Texas A& M University, 3255 TAMU College Station TX 77843-3255 USA; Yuan, Tianyu [Department of Materials Science and Engineering, Texas A& M University, 3003 TAMU College Station TX 77843-3003 USA; Wang, Chenxu [Department of Materials Science and Engineering, Texas A& M University, 3003 TAMU College Station TX 77843-3003 USA; Olson, Troy [Department of Chemistry, Texas A& M University, 3255 TAMU College Station TX 77843-3255 USA; Li, Hanying [MOE Key Laboratory of Macromolecular Synthesis and Functionalization, State Key Laboratory of Silicon Materials, Department of Polymer Science and Engineering, Zhejiang University, 38 Zheda Rd Hangzhou 310027 China; Fang, Lei [Department of Chemistry, Texas A& M University, 3255 TAMU College Station TX 77843-3255 USA; Department of Materials Science and Engineering, Texas A& M University, 3003 TAMU College Station TX 77843-3003 USA

    2017-10-02

    Well-defined, fused-ring aromatic oligomers represent promising candidates for the fundamental understanding and application of advanced carbon-rich materials, though bottom-up synthesis and structure–property correlation of these compounds remain challenging. In this work, an efficient synthetic route was employed to construct extended benzo[k]tetraphene-derived oligomers with up to 13 fused rings. The molecular and electronic structures of these compounds were clearly elucidated. Precise correlation of molecular sizes and crystallization dynamics was established, thus demonstrating the pivotal balance between intermolecular interaction and molecular mobility for optimized processing of highly ordered solids of these extended conjugated molecules.

  17. Excitations and optical properties of phenylene-based conjugated polymers and oligomers

    Science.gov (United States)

    Brazovskii, S.; Kirova, N.; Bishop, A. R.; Klimov, V.; McBranch, D.; Barashkov, N. N.; Ferraris, J. P.

    1998-01-01

    We present a combined experimental and theoretical study of the ground and photoexcited optical properties of a model oligomer of PPV, MEH-DSB. Our theoretical picture is based upon a band description of electronic states of PPV oligomers, while invoking corrections from Coulomb interactions. The necessary discrete energy levels at low and intermediate energies appear naturally, in addition to the lower energy delocalized states. On this basis we identify the most important features in direct optical absorption for both high (4-6 eV) and low (2-4 eV) photon energies as well as in photoinduced absorption (PA) and stimulated photoemissions (SE) in MEH-DSB solutions, which represent the limit of noninteracting oligomers. While in agreement with previous interpretations for three absorption peaks (2.74, 4.46 and 6.2 eV), we give a new assignment for the most disputed 3.62 eV one as well as for the two PA peaks.

  18. Nitrogen-Containing, Light-Absorbing Oligomers Produced in Aerosol Particles Exposed to Methylglyoxal, Photolysis, and Cloud Cycling.

    Science.gov (United States)

    De Haan, David O; Tapavicza, Enrico; Riva, Matthieu; Cui, Tianqu; Surratt, Jason D; Smith, Adam C; Jordan, Mary-Caitlin; Nilakantan, Shiva; Almodovar, Marisol; Stewart, Tiffany N; de Loera, Alexia; De Haan, Audrey C; Cazaunau, Mathieu; Gratien, Aline; Pangui, Edouard; Doussin, Jean-François

    2018-04-03

    Aqueous methylglyoxal chemistry has often been implicated as an important source of oligomers in atmospheric aerosol. Here we report on chemical analysis of brown carbon aerosol particles collected from cloud cycling/photolysis chamber experiments, where gaseous methylglyoxal and methylamine interacted with glycine, ammonium, or methylammonium sulfate seed particles. Eighteen N-containing oligomers were identified in the particulate phase by liquid chromatography/diode array detection/electrospray ionization high-resolution quadrupole time-of-flight mass spectrometry. Chemical formulas were determined and, for 6 major oligomer products, MS 2 fragmentation spectra were used to propose tentative structures and mechanisms. Electronic absorption spectra were calculated for six tentative product structures by an ab initio second order algebraic-diagrammatic-construction/density functional theory approach. For five structures, matching calculated and measured absorption spectra suggest that they are dominant light-absorbing species at their chromatographic retention times. Detected oligomers incorporated methylglyoxal and amines, as expected, but also pyruvic acid, hydroxyacetone, and significant quantities of acetaldehyde. The finding that ∼80% (by mass) of detected oligomers contained acetaldehyde, a methylglyoxal photolysis product, suggests that daytime methylglyoxal oligomer formation is dominated by radical addition mechanisms involving CH 3 CO*. These mechanisms are evidently responsible for enhanced browning observed during photolytic cloud events.

  19. Structure–property relationships of synthetic organophosphorus flame retardant oligomers by thermal analysis

    International Nuclear Information System (INIS)

    Bai, Zhiman; Wang, Xin; Tang, Gang; Song, Lei; Hu, Yuan; Yuen, Richard K.K.

    2013-01-01

    Highlights: • Oligomers with different chemical components in molecular chains were synthesized. • FP-3 containing three IFR components possessed high thermal stability. • FP-3 possessed lowest flammability. • FP-3 exhibited a synergistic interaction between gas and condensed phase. - Abstract: A series of flame retardant oligomers with different chemical components in molecular chains, designated as FP-1, FP-2 and FP-3, respectively, were successfully synthesized using solution polycondensation and well characterized. The thermal properties and flammability of these oligomers were investigated by thermogravimetric analysis (TGA) and microscale combustion calorimeter (MCC). The results demonstrated that FP-3 had the lowest flammability in terms of the lowest maximum mass loss rate, and FP-1 possessed the highest thermal stability and char yield, due to its higher stable hexatomic ring structure of piperazine compared with the linear alkane chain structure of neopentyl glycol. The gases evolved during decomposition were analyzed using Fourier transform infrared coupled with the thermogravimetric analyzer (TG–IR) technique. The char residues of the flame retardant oligomers were investigated by scanning electron microscopy (SEM) and Raman spectroscopy. The results demonstrated that FP-3 exhibited a synergistic interaction between the gas phase and condensation phase, increasing its flame retardancy

  20. Evaluation of monolayers and mixed monolayers formed from mercaptobenzothiazole and decanethiol as sensing platforms

    International Nuclear Information System (INIS)

    Mary Vergheese, T.; Berchmans, Sheela

    2004-01-01

    In this investigation, the characterisation of monolayer and mixed monolayers formed from mercaptobenzothiazole (MBT) and decanethiol (DT) has been carried out with cyclic voltammetry. The SAMs have been tested for their stability and electron transfer blocking properties. The redox probes used in the present study are [Fe(China) 6 ] 4- , [Ru(NH 3 ) 6 ] 2+ and Cu underpotential deposition (upd). The electron transfer kinetics is investigated in acid and neutral pH range. Electron transfer kinetics is altered by the nature of charge on the redox probe and the charge on the monolayer. Electron transfer kinetics of negatively charged redox probes like ferrocyanide ions is blocked when the surface pK a medium and at pK a >pH medium reversible features is observed for negatively charged probes. An exactly reverse effect is observed in the case of positively charged redox species like [Ru(NH 3 ) 6 ] 2+/3+ . Cu under potential deposition studies reflects the structural integrity and compactness of the SAM layer. The utility of these monolayers and mixed monolayer for selective sensing of dopamine is discussed based on their ability to discriminate between positively and negatively charged redox species at different pH

  1. Mitochondrial Ca2+ overload underlies Abeta oligomers neurotoxicity providing an unexpected mechanism of neuroprotection by NSAIDs.

    Directory of Open Access Journals (Sweden)

    Sara Sanz-Blasco

    Full Text Available Dysregulation of intracellular Ca(2+ homeostasis may underlie amyloid beta peptide (Abeta toxicity in Alzheimer's Disease (AD but the mechanism is unknown. In search for this mechanism we found that Abeta(1-42 oligomers, the assembly state correlating best with cognitive decline in AD, but not Abeta fibrils, induce a massive entry of Ca(2+ in neurons and promote mitochondrial Ca(2+ overload as shown by bioluminescence imaging of targeted aequorin in individual neurons. Abeta oligomers induce also mitochondrial permeability transition, cytochrome c release, apoptosis and cell death. Mitochondrial depolarization prevents mitochondrial Ca(2+ overload, cytochrome c release and cell death. In addition, we found that a series of non-steroidal anti-inflammatory drugs (NSAIDs including salicylate, sulindac sulfide, indomethacin, ibuprofen and R-flurbiprofen depolarize mitochondria and inhibit mitochondrial Ca(2+ overload, cytochrome c release and cell death induced by Abeta oligomers. Our results indicate that i mitochondrial Ca(2+ overload underlies the neurotoxicity induced by Abeta oligomers and ii inhibition of mitochondrial Ca(2+ overload provides a novel mechanism of neuroprotection by NSAIDs against Abeta oligomers and AD.

  2. Mitochondrial Ca2+ overload underlies Abeta oligomers neurotoxicity providing an unexpected mechanism of neuroprotection by NSAIDs.

    Science.gov (United States)

    Sanz-Blasco, Sara; Valero, Ruth A; Rodríguez-Crespo, Ignacio; Villalobos, Carlos; Núñez, Lucía

    2008-07-23

    Dysregulation of intracellular Ca(2+) homeostasis may underlie amyloid beta peptide (Abeta) toxicity in Alzheimer's Disease (AD) but the mechanism is unknown. In search for this mechanism we found that Abeta(1-42) oligomers, the assembly state correlating best with cognitive decline in AD, but not Abeta fibrils, induce a massive entry of Ca(2+) in neurons and promote mitochondrial Ca(2+) overload as shown by bioluminescence imaging of targeted aequorin in individual neurons. Abeta oligomers induce also mitochondrial permeability transition, cytochrome c release, apoptosis and cell death. Mitochondrial depolarization prevents mitochondrial Ca(2+) overload, cytochrome c release and cell death. In addition, we found that a series of non-steroidal anti-inflammatory drugs (NSAIDs) including salicylate, sulindac sulfide, indomethacin, ibuprofen and R-flurbiprofen depolarize mitochondria and inhibit mitochondrial Ca(2+) overload, cytochrome c release and cell death induced by Abeta oligomers. Our results indicate that i) mitochondrial Ca(2+) overload underlies the neurotoxicity induced by Abeta oligomers and ii) inhibition of mitochondrial Ca(2+) overload provides a novel mechanism of neuroprotection by NSAIDs against Abeta oligomers and AD.

  3. Structures and shear response of lipid monolayers

    International Nuclear Information System (INIS)

    Dutta, P.; Ketterson, J.B.

    1993-02-01

    This report discusses our work during the last 3 years using x-ray diffraction and shear measurements to study lipid monolayers (membranes). The report is divided into: (1) structure: phase diagram of saturated fatty acid Langmuir monolayers, effect of head group interactions, studies of transferred monolayers (LB films); (2) mechanical properties: fiber=optic capillary wave probe and centrosymmetric trough, mechanical behavior of heneicosanoic acid monolayer phases

  4. Rhodium-Coordinated Poly(arylene-ethynylene)-alt-Poly(arylene-vinylene) Copolymer Acting as Photocatalyst for Visible-Light-Powered NAD+/NADH Reduction

    Science.gov (United States)

    2014-01-01

    A 2,2′-bipyridyl-containing poly(arylene-ethynylene)-alt-poly(arylene-vinylene) polymer, acting as a light-harvesting ligand system, was synthesized and coupled to an organometallic rhodium complex designed for photocatalytic NAD+/NADH reduction. The material, which absorbs over a wide spectral range, was characterized by using various analytical techniques, confirming its chemical structure and properties. The dielectric function of the material was determined from spectroscopic ellipsometry measurements. Photocatalytic reduction of nucleotide redox cofactors under visible light irradiation (390–650 nm) was performed and is discussed in detail. The new metal-containing polymer can be used to cover large surface areas (e.g. glass beads) and, due to this immobilization step, can be easily separated from the reaction solution after photolysis. Because of its high stability, the polymer-based catalyst system can be repeatedly used under different reaction conditions for (photo)chemical reduction of NAD+. With this concept, enzymatic, photo-biocatalytic systems for solar energy conversion can be facilitated, and the precious metal catalyst can be recycled. PMID:25130570

  5. Enthalpies of solvation of ethylene oxide oligomers CH{sub 3}O(CH{sub 2}CH{sub 2}O){sub n}CH{sub 3} (n = 1 to 4) in different H-bonding solvents: Methanol, chloroform, and water. Group contribution method as applied to the polar oligomers

    Energy Technology Data Exchange (ETDEWEB)

    Barannikov, Vladimir P., E-mail: vpb@isc-ras.ru [Institute of Solution Chemistry, Russian Academy of Sciences, Academicheskaya Str. 1, Ivanovo 153045 (Russian Federation); Guseynov, Sabir S.; Vyugin, Anatoliy I. [Institute of Solution Chemistry, Russian Academy of Sciences, Academicheskaya Str. 1, Ivanovo 153045 (Russian Federation)

    2011-12-15

    Highlights: > Solvation enthalpy is found for ethylene oxide oligomers in chloroform and methanol. > Coefficients of solute-solute interaction are determined for oligomers in methanol. > Enthalpies of hydrogen bonding of oligomers with chloroform and water are estimated. > Additivity scheme is developed for describing enthalpies of solvation of oligomers. - Abstract: The enthalpies of solution and solvation of ethylene oxide oligomers CH{sub 3}O(CH{sub 2}CH{sub 2}O){sub n}CH{sub 3} (n = 1 to 4) in methanol and chloroform have been determined from calorimetric measurements at T = 298.15 K. The enthalpic coefficients of pairwise solute-solute interaction for methanol solutions have been calculated. The enthalpic characteristics of the oligomers in methanol, chloroform, water and tetrachloromethane have been compared. The hydrogen bonding of the oligomers with chloroform and water molecules is exhibited in the values of solvation enthalpy and coefficient of solute-solute interaction. This effect is not observed for methanol solvent. The thermochemical data evidence an existence of multi-centred hydrogen bonds in associates of polyethers with the solvent molecules. Enthalpies of hydrogen bonding of the oligomers with chloroform and water have been estimated. The additivity scheme has been developed to describe the enthalpies of solvation of ethylene oxide oligomers, unbranched monoethers and n-alkanes in chloroform, methanol, water, and tetrachloromethane. The correction parameters for contribution of repeated polar groups and correction term for methoxy-compounds have been introduced. The obtained group contributions permit to describe the enthalpies of solvation of unbranched monoethers and ethylene oxide oligomers in the solvents with standard deviation up to 0.6 kJ . mol{sup -1}. The values of group contributions and corrections are strongly influenced by solvent properties.

  6. Formation of soluble amyloid oligomers and amyloid fibrils by the multifunctional protein vitronectin

    Directory of Open Access Journals (Sweden)

    Langen Ralf

    2008-10-01

    Full Text Available Abstract Background The multifunctional protein vitronectin is present within the deposits associated with Alzheimer disease (AD, age-related macular degeneration (AMD, atherosclerosis, systemic amyloidoses, and glomerulonephritis. The extent to which vitronectin contributes to amyloid formation within these plaques, which contain misfolded, amyloidogenic proteins, and the role of vitronectin in the pathophysiology of the aforementioned diseases is currently unknown. The investigation of vitronectin aggregation is significant since the formation of oligomeric and fibrillar structures are common features of amyloid proteins. Results We observed vitronectin immunoreactivity in senile plaques of AD brain, which exhibited overlap with the amyloid fibril-specific OC antibody, suggesting that vitronectin is deposited at sites of amyloid formation. Of particular interest is the growing body of evidence indicating that soluble nonfibrillar oligomers may be responsible for the development and progression of amyloid diseases. In this study we demonstrate that both plasma-purified and recombinant human vitronectin readily form spherical oligomers and typical amyloid fibrils. Vitronectin oligomers are toxic to cultured neuroblastoma and retinal pigment epithelium (RPE cells, possibly via a membrane-dependent mechanism, as they cause leakage of synthetic vesicles. Oligomer toxicity was attenuated in RPE cells by the anti-oligomer A11 antibody. Vitronectin fibrils contain a C-terminal protease-resistant fragment, which may approximate the core region of residues essential to amyloid formation. Conclusion These data reveal the propensity of vitronectin to behave as an amyloid protein and put forth the possibilities that accumulation of misfolded vitronectin may contribute to aggregate formation seen in age-related amyloid diseases.

  7. α-Synuclein oligomers and clinical implications for Parkinson disease

    Science.gov (United States)

    Kalia, Lorraine V.; Kalia, Suneil K.; McLean, Pamela J.; Lozano, Andres M.; Lang, Anthony E.

    2012-01-01

    Protein aggregation within the central nervous system has been recognized as a defining feature of neurodegenerative diseases since the early 20th century. Since that time, there has been a growing list of neurodegenerative disorders, including Parkinson disease, which are characterized by inclusions of specific pathogenic proteins. This has led to the long-held dogma that these characteristic protein inclusions, which are composed of large insoluble fibrillar protein aggregates and visible by light microscopy, are responsible for cell death in these diseases. However, the correlation between protein inclusion formation and cytotoxicity is inconsistent suggesting another form of the pathogenic proteins may be contributing to neurodegeneration. There is emerging evidence implicating soluble oligomers, smaller protein aggregates not detectable by conventional microscopy, as potential culprits in the pathogenesis of neurodegenerative diseases. The protein α-synuclein is well recognized to contribute to the pathogenesis of Parkinson disease and is the major component of Lewy bodies and Lewy neurites. However, α-synuclein also forms oligomeric species with certain conformations being toxic to cells. The mechanisms by which these α-synuclein oligomers cause cell death are being actively investigated as they may provide new strategies for diagnosis and treatment of Parkinson disease and related disorders. Here we review the possible role of α-synuclein oligomers in cell death in Parkinson disease and discuss the potential clinical implications. PMID:23225525

  8. Solution-processable septithiophene monolayer transistor

    NARCIS (Netherlands)

    Defaux, M.; Gholamrezaie, F.; Wang, J.; Kreyes, A.; Ziener, U.; Anokhin, D.V.; Ivanov, D.A.; Moser, A.; Neuhold, A.; Salzmann, I.; Resel, R.; Leeuw, de D.M.; Meskers, S.C.J.; Moeller, M.; Mourran, A.

    2012-01-01

    Septithiophene with endgroups designed to form liquid crystalline phases and allows controlled deposition of an electrically connected monolayer. Field effect mobilies mobilities of charge carriers and spectroscopic properties of the monolayer provide evidence of sustainable transport and

  9. Solution-Processable Septithiophene Monolayer Transistor

    NARCIS (Netherlands)

    Defaux, Matthieu; Gholamrezaie, Fatemeh; Wang, Jingbo; Kreyes, Andreas; Ziener, Ulrich; Anokhin, Denis V.; Ivanov, Dimitri A.; Moser, Armin; Neuhold, Alfred; Salzmann, Ingo; Resel, Roland; de Leeuw, Dago M.; Meskers, Stefan C. J.; Moeller, Martin; Mourran, Ahmed

    2012-01-01

    Septithiophene with endgroups designed to form liquid crystalline phases and allows controlled deposition of an electrically connected monolayer. Field effect mobilies mobilities of charge carriers and spectroscopic properties of the monolayer provide evidence of sustainable transport and

  10. Studies on Oligomer Metal Complexes Derived from Bisamic Acid of Pyromellitic Dianhydride and 4-Bromoaniline.

    Science.gov (United States)

    Patel, Yogesh S

    2014-01-01

    Novel oligomer metal complexes (2a-f) of the ligand 2,5-bis((4-bromophenyl)carbamoyl) terephthalic acid (1) were prepared using transition metal salts and characterized by various spectroscopic techniques. The geometry of oligomer metal complexes was carried out by electronic spectral analysis and magnetic measurement studies. Polymeric properties have also been carried out. Ligand was synthesized using pyromellitic dianhydride and 4-bromoaniline. It was duly characterized. All novel synthesized compounds 1 and 2a-f were evaluated for their antibacterial and antifungal activity. The results showed significantly higher antibacterial and antifungal activity of oligomer metal complexes compared to the ligand.

  11. Evaluation of monolayers and mixed monolayers formed from mercaptobenzothiazole and decanethiol as sensing platforms

    Energy Technology Data Exchange (ETDEWEB)

    Mary Vergheese, T.; Berchmans, Sheela

    2004-02-15

    In this investigation, the characterisation of monolayer and mixed monolayers formed from mercaptobenzothiazole (MBT) and decanethiol (DT) has been carried out with cyclic voltammetry. The SAMs have been tested for their stability and electron transfer blocking properties. The redox probes used in the present study are [Fe(China){sub 6}]{sup 4-}, [Ru(NH{sub 3}){sub 6}]{sup 2+} and Cu underpotential deposition (upd). The electron transfer kinetics is investigated in acid and neutral pH range. Electron transfer kinetics is altered by the nature of charge on the redox probe and the charge on the monolayer. Electron transfer kinetics of negatively charged redox probes like ferrocyanide ions is blocked when the surface pK{sub a}pH{sub medium} reversible features is observed for negatively charged probes. An exactly reverse effect is observed in the case of positively charged redox species like [Ru(NH{sub 3}){sub 6}]{sup 2+/3+}. Cu under potential deposition studies reflects the structural integrity and compactness of the SAM layer. The utility of these monolayers and mixed monolayer for selective sensing of dopamine is discussed based on their ability to discriminate between positively and negatively charged redox species at different pH.

  12. Organic heterostructures based on arylenevinylene oligomers deposited by MAPLE

    Czech Academy of Sciences Publication Activity Database

    Socol, M.; Preda, N.; Vacareanu, L.; Grigoras, M.; Socol, G.; Mihailescu, I. N.; Stanculescu, F.; Jelínek, Miroslav; Stanculescu, A.; Stoicanescu, M.

    2014-01-01

    Roč. 302, May (2014), s. 216-222 ISSN 0169-4332 Institutional support: RVO:68378271 Keywords : organic heterostructures * MAPLE * oligomer * optoelectronica Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.711, year: 2014

  13. Combined HILIC-ELSD/ESI-MS(n) enables the separation, identification and quantification of sugar beet pectin derived oligomers.

    Science.gov (United States)

    Remoroza, C; Cord-Landwehr, S; Leijdekkers, A G M; Moerschbacher, B M; Schols, H A; Gruppen, H

    2012-09-01

    The combined action of endo-polygalacturonase (endo-PGII), pectin lyase (PL), pectin methyl esterase (fungal PME) and RG-I degrading enzymes enabled the extended degradation of methylesterified and acetylated sugar beet pectins (SBPs). The released oligomers were separated, identified and quantified using hydrophilic interaction liquid chromatography (HILIC) with online electrospray ionization ion trap mass spectrometry (ESI-IT-MS(n)) and evaporative light scattering detection (ELSD). By MS(n), the structures of galacturonic acid (GalA) oligomers having an acetyl group in the O-2 and/or O-3 positions eluting from the HILIC column were elucidated. The presence of methylesterified and/or acetylated galacturonic acid units within an oligomer reduced the interaction with the HILIC column significantly compared to the unsubstituted GalA oligomers. The HILIC column enables a good separation of most oligomers present in the digest. The use of ELSD to quantify oligogalacturonides was validated using pure GalA standards and the signal was found to be independent of the chemical structure of the oligomer being detected. The combination of chromatographic and enzymatic strategies enables to distinguish SBPs having different methylesters and acetyl group distribution. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. New strategy for stable-isotope-aided, multidimensional NMR spectroscopy of DNA oligomers

    Energy Technology Data Exchange (ETDEWEB)

    Ono, Okira; Tate, Shin-Ichi; Kainosho, Masatsune [Tokyo Metropolitan Univ., Tokyo (Japan)

    1994-12-01

    Nuclear Magnetic Resonance (NMR) is the most efficient method for determining the solution structures of biomolecules. By applying multidimensional heteronuclear NMR techniques to {sup 13}C/{sup 15}N-labeled proteins, we can determine the solution structures of proteins with molecular mass of 20 to 30kDa at an accuracy similar to that of x-ray crystallography. Improvements in NMR instrumentation and techniques as well as the development of protein engineering methods for labeling proteins have rapidly advanced multidimensional heteronuclear NMR of proteins. In contrast, multidimensional heteronuclear NMR studies of nucleic acids is less advanced because there were no efficient methods for preparing large amounts of labeled DNA/RNA oligomers. In this report, we focused on the chemical synthesis of DNA oligomers labeled at specific residue(s). RNA oligomers with specific labels, which are difficult to synthesize by the enzyme method, can be synthesized by the chemical method. The specific labels are useful for conformational analysis of larger molecules such as protein-nucleic acid complexes.

  15. Janus Monolayer Transition-Metal Dichalcogenides.

    Science.gov (United States)

    Zhang, Jing; Jia, Shuai; Kholmanov, Iskandar; Dong, Liang; Er, Dequan; Chen, Weibing; Guo, Hua; Jin, Zehua; Shenoy, Vivek B; Shi, Li; Lou, Jun

    2017-08-22

    The crystal configuration of sandwiched S-Mo-Se structure (Janus SMoSe) at the monolayer limit has been synthesized and carefully characterized in this work. By controlled sulfurization of monolayer MoSe 2 , the top layer of selenium atoms is substituted by sulfur atoms, while the bottom selenium layer remains intact. The structure of this material is systematically investigated by Raman, photoluminescence, transmission electron microscopy, and X-ray photoelectron spectroscopy and confirmed by time-of-flight secondary ion mass spectrometry. Density functional theory (DFT) calculations are performed to better understand the Raman vibration modes and electronic structures of the Janus SMoSe monolayer, which are found to correlate well with corresponding experimental results. Finally, high basal plane hydrogen evolution reaction activity is discovered for the Janus monolayer, and DFT calculation implies that the activity originates from the synergistic effect of the intrinsic defects and structural strain inherent in the Janus structure.

  16. Toxic prefibrillar α-synuclein amyloid oligomers adopt a distinctive antiparallel β-sheet structure.

    Science.gov (United States)

    Celej, María Soledad; Sarroukh, Rabia; Goormaghtigh, Erik; Fidelio, Gerardo D; Ruysschaert, Jean-Marie; Raussens, Vincent

    2012-05-01

    Parkinson's disease is an age-related movement disorder characterized by the presence in the mid-brain of amyloid deposits of the 140-amino-acid protein AS (α-synuclein). AS fibrillation follows a nucleation polymerization pathway involving diverse transient prefibrillar species varying in size and morphology. Similar to other neurodegenerative diseases, cytotoxicity is currently attributed to these prefibrillar species rather than to the insoluble aggregates. Nevertheless, the underlying molecular mechanisms responsible for cytotoxicity remain elusive and structural studies may contribute to the understanding of both the amyloid aggregation mechanism and oligomer-induced toxicity. It is already recognized that soluble oligomeric AS species adopt β-sheet structures that differ from those characterizing the fibrillar structure. In the present study we used ATR (attenuated total reflection)-FTIR (Fourier-transform infrared) spectroscopy, a technique especially sensitive to β-sheet structure, to get a deeper insight into the β-sheet organization within oligomers and fibrils. Careful spectral analysis revealed that AS oligomers adopt an antiparallel β-sheet structure, whereas fibrils adopt a parallel arrangement. The results are discussed in terms of regions of the protein involved in the early β-sheet interactions and the implications of such conformational arrangement for the pathogenicity associated with AS oligomers.

  17. Interface Bond Improvement of Sisal Fibre Reinforced Polylactide Composites with Added Epoxy Oligomer.

    Science.gov (United States)

    Hao, Mingyang; Wu, Hongwu; Qiu, Feng; Wang, Xiwen

    2018-03-07

    To improve the interfacial bonding of sisal fiber-reinforced polylactide biocomposites, polylactide (PLA) and sisal fibers (SF) were melt-blended to fabricate bio-based composites via in situ reactive interfacial compatibilization with addition of a commercial grade epoxy-functionalized oligomer Joncryl ADR @ -4368 (ADR). The FTIR (Fourier Transform infrared spectroscopy) analysis and SEM (scanning electron microscope) characterization demonstrated that the PLA molecular chain was bonded to the fiber surface and the epoxy-functionalized oligomer played a hinge-like role between the sisal fibers and the PLA matrix, which resulted in improved interfacial adhesion between the fibers and the PLA matrix. The interfacial reaction and microstructures of composites were further investigated by thermal and rheological analyses, which indicated that the mobility of the PLA molecular chain in composites was restricted because of the introduction of the ADR oligomer, which in turn reflected the improved interfacial interaction between SF and the PLA matrix. These results were further justified with the calculation of activation energies of glass transition relaxation (∆ E a ) by dynamic mechanical analysis. The mechanical properties of PLA/SF composites were simultaneously reinforced and toughened with the addition of ADR oligomer. The interfacial interaction and structure-properties relationship of the composites are the key points of this study.

  18. Diffusivities and Viscosities of Poly(ethylene oxide) Oligomers

    KAUST Repository

    Hong, Bingbing; Escobedo, Fernando; Panagiotopoulos, Athanassios Z.

    2010-01-01

    Diffusivities and viscosities of poly(ethylene oxide) (PEO) oligomer melts with 1 to 12 repeat units have been obtained from equilibrium molecular dynamics simulations using the TraPPE-UA force field. The simulations generated diffusion coefficients

  19. Synthesis and Electronic Properties of Length-Defined 9,10-Anthrylene-Butadiynylene Oligomers.

    Science.gov (United States)

    Nagaoka, Maiko; Tsurumaki, Eiji; Nishiuchi, Mai; Iwanaga, Tetsuo; Toyota, Shinji

    2018-05-18

    Linear π-conjugated oligomers consisting of anthracene and diacetylene units were readily synthesized by a one-pot process that involved desilylation and oxidative coupling from appropriate building units. We were able to isolate length-defined oligomers ranging from 2-mer to 6-mer as stable and soluble solids. The bathochromic shifts in the UV-vis spectra suggested that the π-conjugation was extended with elongation of the linear chain. Cyclic voltammetric measurements showed characteristic reversible oxidation waves that were dependent on the number of anthracene units.

  20. Size-Dependent Affinity of Glycine and Its Short Oligomers to Pyrite Surface: A Model for Prebiotic Accumulation of Amino Acid Oligomers on a Mineral Surface

    Science.gov (United States)

    Afrin, Rehana; Ganbaatar, Narangerel; Aono, Masashi; Cleaves, H. James; Yano, Taka-aki; Hara, Masahiko

    2018-01-01

    The interaction strength of progressively longer oligomers of glycine, (Gly), di-Gly, tri-Gly, and penta-Gly, with a natural pyrite surface was directly measured using the force mode of an atomic force microscope (AFM). In recent years, selective activation of abiotically formed amino acids on mineral surfaces, especially that of pyrite, has been proposed as an important step in many origins of life scenarios. To investigate such notions, we used AFM-based force measurements to probe possible non-covalent interactions between pyrite and amino acids, starting from the simplest amino acid, Gly. Although Gly itself interacted with the pyrite surface only weakly, progressively larger unbinding forces and binding frequencies were obtained using oligomers from di-Gly to penta-Gly. In addition to an expected increase of the configurational entropy and size-dependent van der Waals force, the increasing number of polar peptide bonds, among others, may be responsible for this observation. The effect of chain length was also investigated by performing similar experiments using l-lysine vs. poly-l-lysine (PLL), and l-glutamic acid vs. poly-l-glutamic acid. The results suggest that longer oligomers/polymers of amino acids can be preferentially adsorbed on pyrite surfaces. PMID:29370126

  1. Preparation and Photoluminescence of Tungsten Disulfide Monolayer

    Directory of Open Access Journals (Sweden)

    Yanfei Lv

    2018-05-01

    Full Text Available Tungsten disulfide (WS2 monolayer is a direct band gap semiconductor. The growth of WS2 monolayer hinders the progress of its investigation. In this paper, we prepared the WS2 monolayer through chemical vapor transport deposition. This method makes it easier for the growth of WS2 monolayer through the heterogeneous nucleation-and-growth process. The crystal defects introduced by the heterogeneous nucleation could promote the photoluminescence (PL emission. We observed the strong photoluminescence emission in the WS2 monolayer, as well as thermal quenching, and the PL energy redshift as the temperature increases. We attribute the thermal quenching to the energy or charge transfer of the excitons. The redshift is related to the dipole moment of WS2.

  2. Protein misfolding cyclic amplification induces the conversion of recombinant prion protein to PrP oligomers causing neuronal apoptosis.

    Science.gov (United States)

    Yuan, Zhen; Yang, Lifeng; Chen, Baian; Zhu, Ting; Hassan, Mohammad Farooque; Yin, Xiaomin; Zhou, Xiangmei; Zhao, Deming

    2015-06-01

    The formation of neurotoxic prion protein (PrP) oligomers is thought to be a key step in the development of prion diseases. Recently, it was determined that the sonication and shaking of recombinant PrP can convert PrP monomers into β-state oligomers. Herein, we demonstrate that β-state oligomeric PrP can be generated through protein misfolding cyclic amplification from recombinant full-length hamster, human, rabbit, and mutated rabbit PrP, and that these oligomers can be used for subsequent research into the mechanisms of PrP-induced neurotoxicity. We have characterized protein misfolding cyclic amplification-induced monomer-to-oligomer conversion of PrP from three species using western blotting, circular dichroism, size-exclusion chromatography, and resistance to proteinase K (PK) digestion. We have further shown that all of the resulting β-oligomers are toxic to primary mouse cortical neurons independent of the presence of PrP(C) in the neurons, whereas the corresponding monomeric PrP were not toxic. In addition, we found that this toxicity is the result of oligomer-induced apoptosis via regulation of Bcl-2, Bax, and caspase-3 in both wild-type and PrP(-/-) cortical neurons. It is our hope that these results may contribute to our understanding of prion transformation within the brain. We found that β-state oligomeric PrPs can be generated through protein misfolding cyclic amplification (PMCA) from recombinant full-length hamster, human, rabbit, and mutated rabbit PrP. β-oligomers are toxic to primary mouse cortical neurons independent of the presence of PrP(C) in the neurons, while the corresponding monomeric PrPs were not toxic. This toxicity is the result of oligomers-induced apoptosis via regulation of Bcl-2, Bax, and caspase-3. These results may contribute to our understanding of prion transformation within the brain. © 2015 International Society for Neurochemistry.

  3. Charge transfer in conjugated oligomers encapsulated into carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Almadori, Y.; Alvarez, L.; Michel, T.; Le Parc, R.; Bantignies, J.L.; Hermet, P.; Sauvajol, J.L. [Laboratoire Charles Coulomb UMR 5521, Universite Montpellier 2, 34095 Montpellier (France); Laboratoire Charles Coulomb UMR 5521, CNRS, 34095 Montpellier (France); Arenal, R. [Laboratoire d' Etude des Microstructures, CNRS-ONERA, 92322 Chatillon (France); Laboratorio de Microscopias Avanzadas, Instituto de Nanociencia de Aragon, U. Zaragoza, 50018 Zaragoza (Spain); Babaa, R. [Laboratoire de Chimie des Surfaces et Interfaces, CEA, IRAMIS, SPCSI, 91191 Gif-sur-Yvette Cedex (France); Chemical Engineering Department, University of Technology PETRONAS, UTP, Ipoh-Perak (Malaysia); Jouselme, B.; Palacin, S. [Laboratoire de Chimie des Surfaces et Interfaces, CEA, IRAMIS, SPCSI, 91191 Gif-sur-Yvette Cedex (France)

    2011-11-15

    This study deals with a hybrid system consisting in quaterthiophene derivative encapsulated inside single-walled and multi-walled carbon nanotubes. Investigations of the encapsulation step are performed by transmission electron microscopy. Raman spectroscopy data point out different behaviors depending on the laser excitation energy with respect to the optical absorption of quaterthiophene. At low excitation energy (far from the oligomer resonance window) there is no significant modification of the Raman spectra before and after encapsulation. By contrast, at high excitation energy (close to the oligomer resonance window), Raman spectra exhibit a G-band shift together with an important RBM intensity loss, suggesting a significant charge transfer between the inserted molecule and the host nanotubes. Those results suggest a photo induced process leading to a significant charge transfer. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. Structure and shear response of lipid monolayers

    International Nuclear Information System (INIS)

    Dutta, P.; Ketterson, J.B.

    1990-02-01

    Organic monolayers and multilayers are both scientifically fascinating and technologically promising; they are, however, both complex systems and relatively inaccessible to experimental probes. In this Progress Report, we describe our X-ray diffraction studies, which have given us substantial new information about the structures and phase transitions in monolayers on the surface of water; our use of these monolayers as a unique probe of the dynamics of wetting and spreading; and our studies of monolayer mechanical properties using a simple but effective technique available to anyone using the Wilhelmy method to measure surface tension

  5. Structure and properties of binary mixtures polystyrene-epoxyacrylic oligomers irradiated by electrons

    International Nuclear Information System (INIS)

    Lomonosova, N.V.

    1995-01-01

    Using the methods of birefringence, isometrical heating, IR-dichroism and thermal optical analysis change in structure of oriented polymer-oligomer systems on the base of PS (M>10 6 ) and epoxyacrylic (EA) oligomers of aliphatic and aromatic structure is studied during the process of irradiation by fast electrons. Their mechanical properties are studied and it is established that introduction of aliphatic epoxyacrylate to PS and subsequent irradiation allow to obtain composite materials with higher values of strength, modulus of elasticity and softening temperature in isotropic and oriented states. 6 refs., 2 figs., 3 tabs

  6. Monolayer Superconductivity in WS2

    NARCIS (Netherlands)

    Zheliuk, Oleksandr; Lu, Jianming; Yang, Jie; Ye, Jianting

    Superconductivity in monolayer tungsten disulfide (2H-WS2) is achieved by strong electrostatic electron doping of an electric double-layer transistor (EDLT). Single crystals of WS2 are grown by a scalable method - chemical vapor deposition (CVD) on standard Si/SiO2 substrate. The monolayers are

  7. Selective amyloid β oligomer assay based on abasic site-containing molecular beacon and enzyme-free amplification.

    Science.gov (United States)

    Zhu, Linling; Zhang, Junying; Wang, Fengyang; Wang, Ya; Lu, Linlin; Feng, Chongchong; Xu, Zhiai; Zhang, Wen

    2016-04-15

    Amyloid-beta (Aβ) oligomers are highly toxic species in the process of Aβ aggregation and are regarded as potent therapeutic targets and diagnostic markers for Alzheimer's disease (AD). Herein, a label-free molecular beacon (MB) system integrated with enzyme-free amplification strategy was developed for simple and highly selective assay of Aβ oligomers. The MB system was constructed with abasic site (AP site)-containing stem-loop DNA and a fluorescent ligand 2-amino-5,6,7-trimethyl-1,8-naphyridine (ATMND), of which the fluorescence was quenched upon binding to the AP site in DNA stem. Enzyme-free amplification was realized by target-triggered continuous opening of two delicately designed MBs (MB1 and MB2). Target DNA hybridization with MB1 and then MB2 resulted in the release of two ATMND molecules in one binding event. Subsequent target recycling could greatly amplify the detection sensitivity due to the greatly enhanced turn-on emission of ATMND fluorescence. Combining with Aβ oligomers aptamers, the strategy was applied to analyze Aβ oligomers and the results showed that it could quantify Aβ oligomers with high selectivity and monitor the Aβ aggregation process. This novel method may be conducive to improve the diagnosis and pathogenic study of Alzheimer's disease. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Flame retardant cotton fabrics by electron beam-induced polymerization of vinyl phosphonate oligomer

    International Nuclear Information System (INIS)

    Sawai, Takeshi; Ametani, Kazuo; Enomoto, Ichiro

    1988-01-01

    Vinyl phosphonate oligomer is presently used commercially as a cellulosic flame retardant in conjugation with N-methylol acrylamide, using a persulfate catalyst and a thermal cure. This combination can also be cured at room temperature with electron beams, as can the vinyl phosphonate alone. For the textile application, fixation of flame retardants by electron beams with low energy is one of the most promising applications. For the purpose of preparing flame resistant cotton fabrics such as bed sheets and pajamas, flame retardant curing of vinyl phosphonate oligomer on cotton fabrics was examined using electron beams from a self-sealed electron beam processor and gamma rays from a 60 Co source. A joint investigation was undertaken by the Tokyo Metropolitan Textile Research Institute and Tokyo Metropolitan Isotope Research Center to determine the feasibility of curing vinyl phosphonate oligomer on the cotton fabrics for textile finishing. (author)

  9. Characterization and Properties of Oligothiophenes Using Scanning Tunneling Microscopy for Possible Use in Organic Electronics

    International Nuclear Information System (INIS)

    Bishara, E.M.El.

    2009-01-01

    A scanning tunneling microscopy study has been made on a group of alkyl-substituted oligothiophenes. The self-assembled monolayers of this type of semi-conducting oligomers on graphite were observed and characterized. To control the self-assembly, it is important to first understand the forces that drive the spontaneous ordering of molecules at interfaces. For the identification of the forces, several substituted oligothiophenes were examined: carboxylic acid groups, methyl ester carboxylic acid, and iodine atoms at one end and benzyl esters at the other end of the oligomers this is in addition to the non-functionalized oligothiophehens, Self-assembled monolayers of these molecules were then examined by STM. A detailed analysis of the driving forces and parameters controlling the formation of the self-assembled 2- D crystal monolayers was carried out by performing modeling of the experimental observations. The theoretical calculations gave us a conclusive insight into the intermolecular interactions, which lead to the observed conformation of molecules on the surface. An attempt to react two iodinated oligomers on the surface after the formation of the monolayer has been done; a topochemical reaction studies using UV/Vis light irradiation has been preceded. The targeted reaction was achieved. This can be considered as a great step towards the formation of nano-wires and other organic electronic devices. The applicability of the above method of force-driven self organisation in different patterns was examined as template for building donor-nano structures for electronic devices. It was necessary to examine the stability of the formed templates in air. The monolayers were left to dry and STM images were taken; C60 was then added to the monolayer, and the complexation of the C60 (as acceptor) with the formed monolayer template was examined.

  10. Conjugated Polymers and Oligomers: Structural and Soft Matter Aspects

    DEFF Research Database (Denmark)

    This book identifies modern topics and current trends of structural and soft matter aspects of conjugated polymers and oligomers. Each chapter recognizes an active research line where structural perspective dominates research and therefore the book covers fundamental aspects of persistent...

  11. Effect of phenolic oligomer on adhesion of poly (ethylene terephthalate) film laminated steel sheets by Electron Beam Curing method

    International Nuclear Information System (INIS)

    Masuhara, Kenichi; Mori, Koji; Koshiishi, Kenji; Sasaki, Takashi.

    1995-01-01

    Adhesion of poly (ethylene terephthalate) film by Electron Beam Curing (EBC) method which can be thought as an energy-saving process was studied for the purpose of bestowing economically design and distinctness of image on thermosetting high molecular weight polyester precoated steel sheets. Adhesion of EB curable resins onto metal is generally poor. In this report, addition of EB curable phenolic resole oligomer with bifunctional acrylates to the top coat used for precoated steel was studied in order to increase the adhesion of an EB curable adhesive, and it was found that the phenolic oligomer is tremendously effective for the improvement of adhesion. The reasons why the phenolic oligomer provides excellent adhesion were 1) elongation at break of the top coat to which the phenolic oligomer is added is little decreased by EB irradiation, and the formability does not reduce. 2) As the phenolic oligomer is unevenly distributed to the surface layer of the top coat, it is suggested that the contact frequency of the phenolic oligomer to the EB curable adhesive is so high that graft polymerization between them is liable to occur. (author)

  12. Unraveling the Role of Π - Conjugation in Thiophene Oligomers for Optoelectronic Properties by DFT/TDDFT Approach

    Directory of Open Access Journals (Sweden)

    Gajalakshmi

    Full Text Available ABSTRACT Thiophene oligomer has been investigated using DFT/TDDFT calculations with an aim to check its suitability for opto electronic applications and also to analyse the influence of π-bridge. Our results revealed that thiophene oligomers have excellent π-conjugation throughout. FMO analysis give an estimate of band gap of thiophene oligomer and further revealed HOMO are localized on π - bridge, donor group and LUMO are localized on π - bridge and acceptor group. A TDDFT calculation has been performed to understand the absorption properties of them in gas phase and solvent phase. PCM calculations convey that absorption maxima show positive solvatochromism. Among the designed candidates, the one with more π - bridge show higher wavelength of absorption maxima and would be a choice for better optoelectronic materials. NBO analysis provides support for complete delocalization in these systems. It is interesting to note that oligomer with more π-bridge display an enhanced optoelectronic properties than with less π - bridge.

  13. A simple procedure for preparing chitin oligomers through acetone precipitation after hydrolysis in concentrated hydrochloric acid.

    Science.gov (United States)

    Kazami, Nao; Sakaguchi, Masayoshi; Mizutani, Daisuke; Masuda, Tatsuhiko; Wakita, Satoshi; Oyama, Fumitaka; Kawakita, Masao; Sugahara, Yasusato

    2015-11-05

    Chitin oligomers are of interest because of their numerous biologically relevant properties. To prepare chitin oligomers containing 4-6 GlcNAc units [(GlcNAc)4-6], α- and β-chitin were hydrolyzed with concentrated hydrochloric acid at 40 °C. The reactant was mixed with acetone to recover the acetone-insoluble material, and (GlcNAc)4-6 was efficiently recovered after subsequent water extraction. Composition analysis using gel permeation chromatography and MALDI-TOF mass spectrometry indicated that (GlcNAc)4-6 could be isolated from the acetone-insoluble material with recoveries of approximately 17% and 21% from the starting α-chitin and β-chitin, respectively. The acetone precipitation method is highly useful for recovering chitin oligomers from the acid hydrolysate of chitin. The changes in the molecular size and higher-order structure of chitin during the course of hydrolysis were also analyzed, and a model that explains the process of oligomer accumulation is proposed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. High-resolution NMR characterization of low abundance oligomers of amyloid-β without purification.

    Science.gov (United States)

    Kotler, Samuel A; Brender, Jeffrey R; Vivekanandan, Subramanian; Suzuki, Yuta; Yamamoto, Kazutoshi; Monette, Martine; Krishnamoorthy, Janarthanan; Walsh, Patrick; Cauble, Meagan; Holl, Mark M Banaszak; Marsh, E Neil G; Ramamoorthy, Ayyalusamy

    2015-07-03

    Alzheimer's disease is characterized by the misfolding and self-assembly of the amyloidogenic protein amyloid-β (Aβ). The aggregation of Aβ leads to diverse oligomeric states, each of which may be potential targets for intervention. Obtaining insight into Aβ oligomers at the atomic level has been a major challenge to most techniques. Here, we use magic angle spinning recoupling (1)H-(1)H NMR experiments to overcome many of these limitations. Using (1)H-(1)H dipolar couplings as a NMR spectral filter to remove both high and low molecular weight species, we provide atomic-level characterization of a non-fibrillar aggregation product of the Aβ1-40 peptide using non-frozen samples without isotopic labeling. Importantly, this spectral filter allows the detection of the specific oligomer signal without a separate purification procedure. In comparison to other solid-state NMR techniques, the experiment is extraordinarily selective and sensitive. A resolved 2D spectra could be acquired of a small population of oligomers (6 micrograms, 7% of the total) amongst a much larger population of monomers and fibers (93% of the total). By coupling real-time (1)H-(1)H NMR experiments with other biophysical measurements, we show that a stable, primarily disordered Aβ1-40 oligomer 5-15 nm in diameter can form and coexist in parallel with the well-known cross-β-sheet fibrils.

  15. High-capacity conductive nanocellulose paper sheets for electrochemically controlled extraction of DNA oligomers.

    Directory of Open Access Journals (Sweden)

    Aamir Razaq

    Full Text Available Highly porous polypyrrole (PPy-nanocellulose paper sheets have been evaluated as inexpensive and disposable electrochemically controlled three-dimensional solid phase extraction materials. The composites, which had a total anion exchange capacity of about 1.1 mol kg(-1, were used for extraction and subsequent release of negatively charged fluorophore tagged DNA oligomers via galvanostatic oxidation and reduction of a 30-50 nm conformal PPy layer on the cellulose substrate. The ion exchange capacity, which was, at least, two orders of magnitude higher than those previously reached in electrochemically controlled extraction, originated from the high surface area (i.e. 80 m(2 g(-1 of the porous composites and the thin PPy layer which ensured excellent access to the ion exchange material. This enabled the extractions to be carried out faster and with better control of the PPy charge than with previously employed approaches. Experiments in equimolar mixtures of (dT(6, (dT(20, and (dT(40 DNA oligomers showed that all oligomers could be extracted, and that the smallest oligomer was preferentially released with an efficiency of up to 40% during the reduction of the PPy layer. These results indicate that the present material is very promising for the development of inexpensive and efficient electrochemically controlled ion-exchange membranes for batch-wise extraction of biomolecules.

  16. Computational Design of High-χ Block Oligomers for Accessing 1 nm Domains.

    Science.gov (United States)

    Chen, Qile P; Barreda, Leonel; Oquendo, Luis E; Hillmyer, Marc A; Lodge, Timothy P; Siepmann, J Ilja

    2018-05-22

    Molecular dynamics simulations are used to design a series of high-χ block oligomers (HCBOs) that can self-assemble into a variety of mesophases with domain sizes as small as 1 nm. The exploration of these oligomers with various chain lengths, volume fractions, and chain architectures at multiple temperatures reveals the presence of ordered lamellae, perforated lamellae, and hexagonally packed cylinders. The achieved periods are as small as 3.0 and 2.1 nm for lamellae and cylinders, respectively, which correspond to polar domains of approximately 1 nm. Interestingly, the detailed phase behavior of these oligomers is distinct from that of either solvent-free surfactants or block polymers. The simulations reveal that the behavior of these HCBOs is a product of an interplay between both "surfactant factors" (headgroup interactions, chain flexibility, and interfacial curvature) and "block polymer factors" (χ, chain length N, and volume fraction f). This insight promotes the understanding of molecular features pivotal for mesophase formation at the sub-5 nm length scale, which facilitates the design of HCBOs tailored toward particular desired morphologies.

  17. Monolayer collapse regulating process of adsorption-desorption of palladium nanoparticles at fatty acid monolayers at the air-water interface.

    Science.gov (United States)

    Goto, Thiago E; Lopez, Ricardo F; Iost, Rodrigo M; Crespilho, Frank N; Caseli, Luciano

    2011-03-15

    In this paper, we investigate the affinity of palladium nanoparticles, stabilized with glucose oxidase, for fatty acid monolayers at the air-water interface, exploiting the interaction between a planar system and spheroids coming from the aqueous subphase. A decrease of the monolayer collapse pressure in the second cycle of interface compression proved that the presence of the nanoparticles causes destabilization of the monolayer in a mechanism driven by the interpenetration of the enzyme into the bilayer/multilayer structure formed during collapse, which is not immediately reversible after monolayer expansion. Surface pressure and surface potential-area isotherms, as well as infrared spectroscopy [polarization modulation infrared reflection adsorption spectroscopy (PM-IRRAS)] and deposition onto solid plates as Langmuir-Blodgett (LB) films, were employed to construct a model in which the nanoparticle has a high affinity for the hydrophobic core of the structure formed after collapse, which provides a slow desorption rate from the interface after monolayer decompression. This may have important consequences on the interaction between the metallic particles and fatty acid monolayers, which implies the regulation of the multifunctional properties of the hybrid material.

  18. Backbone conformation affects duplex initiation and duplex propagation in hybridisation of synthetic H-bonding oligomers.

    Science.gov (United States)

    Iadevaia, Giulia; Núñez-Villanueva, Diego; Stross, Alexander E; Hunter, Christopher A

    2018-06-06

    Synthetic oligomers equipped with complementary H-bond donor and acceptor side chains form multiply H-bonded duplexes in organic solvents. Comparison of the duplex forming properties of four families of oligomers with different backbones shows that formation of an extended duplex with three or four inter-strand H-bonds is more challenging than formation of complexes that make only two H-bonds. The stabilities of 1 : 1 complexes formed between length complementary homo-oligomers equipped with either phosphine oxide or phenol recognition modules were measured in toluene. When the backbone is very flexible (pentane-1,5-diyl thioether), the stability increases uniformly by an order of magnitude for each additional base-pair added to the duplex: the effective molarities for formation of the first intramolecular H-bond (duplex initiation) and subsequent intramolecular H-bonds (duplex propagation) are similar. This flexible system is compared with three more rigid backbones that are isomeric combinations of an aromatic ring and methylene groups. One of the rigid systems behaves in exactly the same way as the flexible backbone, but the other two do not. For these systems, the effective molarity for formation of the first intramolecular H-bond is the same as that found for the other two backbones, but additional H-bonds are not formed between the longer oligomers. The effective molarities are too low for duplex propagation in these systems, because the oligomer backbones cannot adopt conformations compatible with formation of an extended duplex.

  19. Alzheimer's-associated Aβ oligomers show altered structure, immunoreactivity and synaptotoxicity with low doses of oleocanthal

    International Nuclear Information System (INIS)

    Pitt, Jason; Roth, William; Lacor, Pascale; Smith, Amos B.; Blankenship, Matthew; Velasco, Pauline; De Felice, Fernanda; Breslin, Paul; Klein, William L.

    2009-01-01

    It now appears likely that soluble oligomers of amyloid-β 1-42 peptide, rather than insoluble fibrils, act as the primary neurotoxin in Alzheimer's disease (AD). Consequently, compounds capable of altering the assembly state of these oligomers (referred to as ADDLs) may have potential for AD therapeutics. Phenolic compounds are of particular interest for their ability to disrupt Aβ oligomerization and reduce pathogenicity. This study has focused on oleocanthal (OC), a naturally-occurring phenolic compound found in extra-virgin olive oil. OC increased the immunoreactivity of soluble Aβ species, when assayed with both sequence- and conformation-specific Aβ antibodies, indicating changes in oligomer structure. Analysis of oligomers in the presence of OC showed an upward shift in MW and a ladder-like distribution of SDS-stable ADDL subspecies. In comparison with control ADDLs, oligomers formed in the presence of OC (Aβ-OC) showed equivalent colocalization at synapses but exhibited greater immunofluorescence as a result of increased antibody recognition. The enhanced signal at synapses was not due to increased synaptic binding, as direct detection of fluorescently-labeled ADDLs showed an overall reduction in ADDL signal in the presence of OC. Decreased binding to synapses was accompanied by significantly less synaptic deterioration assayed by drebrin loss. Additionally, treatment with OC improved antibody clearance of ADDLs. These results indicate oleocanthal is capable of altering the oligomerization state of ADDLs while protecting neurons from the synaptopathological effects of ADDLs and suggest OC as a lead compound for development in AD therapeutics.

  20. Synergistic influence of phosphorylation and metal ions on tau oligomer formation and coaggregation with α-synuclein at the single molecule level

    Directory of Open Access Journals (Sweden)

    Nübling Georg

    2012-07-01

    Full Text Available Abstract Background Fibrillar amyloid-like deposits and co-deposits of tau and α-synuclein are found in several common neurodegenerative diseases. Recent evidence indicates that small oligomers are the most relevant toxic aggregate species. While tau fibril formation is well-characterized, factors influencing tau oligomerization and molecular interactions of tau and α-synuclein are not well understood. Results We used a novel approach applying confocal single-particle fluorescence to investigate the influence of tau phosphorylation and metal ions on tau oligomer formation and its coaggregation with α-synuclein at the level of individual oligomers. We show that Al3+ at physiologically relevant concentrations and tau phosphorylation by GSK-3β exert synergistic effects on the formation of a distinct SDS-resistant tau oligomer species even at nanomolar protein concentration. Moreover, tau phosphorylation and Al3+ as well as Fe3+ enhanced both formation of mixed oligomers and recruitment of α-synuclein in pre-formed tau oligomers. Conclusions Our findings provide a new perspective on interactions of tau phosphorylation, metal ions, and the formation of potentially toxic oligomer species, and elucidate molecular crosstalks between different aggregation pathways involved in neurodegeneration.

  1. Indirubin Derivative 7-Bromoindirubin-3-Oxime (7Bio Attenuates Aβ Oligomer-Induced Cognitive Impairments in Mice

    Directory of Open Access Journals (Sweden)

    Liping Chen

    2017-11-01

    Full Text Available Indirubins are natural occurring alkaloids extracted from indigo dye-containing plants. Indirubins could inhibit various kinases, and might be used to treat chronic myelocytic leukemia, cancer and neurodegenerative disorders. 7-bromoindirubin-3-oxime (7Bio, an indirubin derivative derived from indirubin-3-oxime, possesses inhibitory effects against cyclin-dependent kinase-5 (CDK5 and glycogen synthase kinase-3β (GSK3β, two pharmacological targets of Alzheimer's disease (AD. In this study, we have discovered that 2.3–23.3 μg/kg 7Bio effectively prevented β-amyloid (Aβ oligomer-induced impairments of spatial cognition and recognition without affecting bodyweight and motor functions in mice. Moreover, 7Bio potently inhibited Aβ oligomer-induced expression of interleukin-6 (IL-6 and tumor necrosis factor-α (TNF-α. Furthermore, 7Bio significantly prevented the decreased expression of synapsin-1 and PSD-95, biomarkers of pre-synaptic and post-synaptic proteins in Aβ oligomer-treated mice. The mean optical density (OD with hyper-phosphorylated tau (pTau, glial fibrillary acidic protein (GFAP and CD45 positive staining in the hippocampus of 7Bio-treated mice were significantly decreased compared to those of Aβ oligomer-treated mice. In addition, Western blotting analysis showed that 7Bio attenuated Aβ oligomer-decreased expression of pSer9-GSK3β. Those results suggested that 7Bio could potently inhibit Aβ oligomer-induced neuroinflammation, synaptic impairments, tau hyper-phosphorylation, and activation of astrocytes and microglia, which may contribute to the neuroprotective effects of 7Bio. Based on these findings, we expected that 7Bio might be developed as a novel anti-AD lead compound.

  2. Charge transport and dielectric relaxation processes in anilin-based oligomers

    Czech Academy of Sciences Publication Activity Database

    Mrlík, M.; Moučka, R.; Ilčíková, M.; Bober, Patrycja; Kazantseva, N.; Špitálský, Z.; Trchová, Miroslava; Stejskal, Jaroslav

    2014-01-01

    Roč. 192, June (2014), s. 37-42 ISSN 0379-6779 Institutional support: RVO:61389013 Keywords : aniline-based oligomers * conductivity * dielectric properties Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.252, year: 2014

  3. Photopolymerizable silicone monomers, oligomers, and resins

    International Nuclear Information System (INIS)

    Jacobine, A.F.; Nakos, S.T.

    1992-01-01

    The purpose of this chapter is to acquaint the general photopolymer researcher with the historical development of the chemistry and technology of photopolymerizable silicone monomers, fluids, and resins. The current status of research in these areas is assessed. The focus of this chapter is not only on the polymer chemistry and application of this technology, but also on important aspects of the synthetic chemistry involved in the preparation of UV-curable silicone monomers, oligomers, and resins. 236 refs., 6 tabs

  4. Theory of microphase separation in homopolymer-oligomer mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Olemskoi, Alexander [Department of Physical Electronics, Sumy State University, Rimskii-Korsakov St. 2, 40007 Sumy (Ukraine)]. E-mail: alex@ufn.ru; Savelyev, Alexey [Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3290 (United States)]. E-mail: alexsav@unc.edu

    2005-11-01

    This work starts with the review of theoretical methods proposed, during past decades, for description of phase behavior in different polymer systems, involving variety of linear polymers (regular and polydisperse block (co)polymers, random polymers) and the polymer systems with non-covalent bonds of different strength. Microphase separation (MS) into different ordered mesophases is known to be the principal property of such systems. It is shown that most of the theoretical approaches proposed for description of the MS are based on the simple random phase approximation (RPA). It turns out, however, that mean field RPA method applied to description of the systems with non-covalent bonds does not provide the whole picture of MS. We show that the problem here arises when one treats both Flory-Huggins non-associated interactions and non-covalent bonds (hydrogen, ionic) within the unified RPA scheme, which is obviously rough for description of the latter type of interactions. Such a theory was developed in a few recent papers for the systems involving weak hydrogen bonds between homopolymer chains and the low molecular weight oligomers (surfactants). However, it leaves some experimental data unaccounted. The purpose of this review is to consider more detailed theory which is able to explain not only all the experimental data for the above systems but also to take into account the strength variation of non-bonding interactions. In particular, we consider the strong ionic interactions, weak hydrogen bonding, and the interactions of intermediate strength between polymer chain and short oligomers within our unifying theory. To develop such a description in a self-consistent way we propose to use a general field theory of stochastic systems. The mesoscopic (lamellar) structure of the periodically alternating layers of stretched homopolymer chains surrounded by perpendicularly oriented oligomeric tails is studied for the systems with both strong (ionic) and weak (hydrogen

  5. Theory of microphase separation in homopolymer-oligomer mixtures

    International Nuclear Information System (INIS)

    Olemskoi, Alexander; Savelyev, Alexey

    2005-01-01

    This work starts with the review of theoretical methods proposed, during past decades, for description of phase behavior in different polymer systems, involving variety of linear polymers (regular and polydisperse block (co)polymers, random polymers) and the polymer systems with non-covalent bonds of different strength. Microphase separation (MS) into different ordered mesophases is known to be the principal property of such systems. It is shown that most of the theoretical approaches proposed for description of the MS are based on the simple random phase approximation (RPA). It turns out, however, that mean field RPA method applied to description of the systems with non-covalent bonds does not provide the whole picture of MS. We show that the problem here arises when one treats both Flory-Huggins non-associated interactions and non-covalent bonds (hydrogen, ionic) within the unified RPA scheme, which is obviously rough for description of the latter type of interactions. Such a theory was developed in a few recent papers for the systems involving weak hydrogen bonds between homopolymer chains and the low molecular weight oligomers (surfactants). However, it leaves some experimental data unaccounted. The purpose of this review is to consider more detailed theory which is able to explain not only all the experimental data for the above systems but also to take into account the strength variation of non-bonding interactions. In particular, we consider the strong ionic interactions, weak hydrogen bonding, and the interactions of intermediate strength between polymer chain and short oligomers within our unifying theory. To develop such a description in a self-consistent way we propose to use a general field theory of stochastic systems. The mesoscopic (lamellar) structure of the periodically alternating layers of stretched homopolymer chains surrounded by perpendicularly oriented oligomeric tails is studied for the systems with both strong (ionic) and weak (hydrogen

  6. NEXAFS characterization of DNA components and molecular-orientation of surface-bound DNA oligomers

    International Nuclear Information System (INIS)

    Samuel, Newton T.; Lee, C.-Y.; Gamble, Lara J.; Fischer, Daniel A.; Castner, David G.

    2006-01-01

    Single stranded DNA oligomers (ssDNA) immobilized onto solid surfaces forms the basis for several biotechnological applications such as DNA microarrays, affinity separations, and biosensors. Surface structure of Surface-bound oligomers is expected to significantly influence their biological activity and interactions with the environment. In this study near-edge X-ray absorption fine structure spectroscopy (NEXAFS) is used to characterize the components of DNA (nucleobases, nucleotides and nucleosides) and the orientation information of surface-bound ssDNA. The K-edges of carbon, nitrogen and oxygen have spectra with features that are characteristic of the different chemical species present in the nucleobases of DNA. The effect of addition of the DNA sugar and phosphate components on the NEXAFS K-edge spectra was also investigated. The polarization-dependent nitrogen K-edge NEXAFS data show significant changes for different orientations of surface bound ssDNA. These results establish NEXAFS as a powerful technique for chemical and structural characterization of surface-bound DNA oligomers

  7. Genotoxicity of styrene oligomers extracted from polystyrene intended for use in contact with food

    Directory of Open Access Journals (Sweden)

    Makoto Nakai

    2014-01-01

    Full Text Available Here, we conducted in vitro genotoxicity tests to evaluate the genotoxicity of styrene oligomers extracted from polystyrene intended for use in contact with food. Styrene oligomers were extracted with acetone and the extract was subjected to the Ames test (OECD test guideline No. 471 and the in vitro chromosomal aberration test (OECD test guideline No. 473 under good laboratory practice conditions. The concentrations of styrene dimers and trimers in the concentrated extract were 540 and 13,431 ppm, respectively. Extraction with acetone provided markedly higher concentrations of styrene oligomers compared with extraction with 50% ethanol aqueous solution, which is the food simulant currently recommended for use in safety assessments of polystyrene by both the United States Food and Drug Administration and the European Food Safety Authority. And these high concentrations of styrene dimers and trimers were utilized for the evaluation of genotoxicity in vitro. Ames tests using five bacterial tester strains were negative both in the presence or absence of metabolic activation. The in vitro chromosomal aberration test using Chinese hamster lung cells (CHL/IU was also negative. Together, these results suggest that the risk of the genotoxicity of styrene oligomers that migrate from polystyrene food packaging into food is very low.

  8. Formation of nitrogen-containing oligomers by methylglyoxal and amines in simulated evaporating cloud droplets.

    Science.gov (United States)

    De Haan, David O; Hawkins, Lelia N; Kononenko, Julia A; Turley, Jacob J; Corrigan, Ashley L; Tolbert, Margaret A; Jimenez, Jose L

    2011-02-01

    Reactions of methylglyoxal with amino acids, methylamine, and ammonium sulfate can take place in aqueous aerosol and evaporating cloud droplets. These processes are simulated by drying droplets and bulk solutions of these compounds (at low millimolar and 1 M concentrations, respectively) and analyzing the residuals by scanning mobility particle sizing, nuclear magnetic resonance, aerosol mass spectrometry (AMS), and electrospray ionization MS. The results are consistent with imine (but not diimine) formation on a time scale of seconds, followed by the formation of nitrogen-containing oligomers, methylimidazole, and dimethylimidazole products on a time scale of minutes to hours. Measured elemental ratios are consistent with imidazoles and oligomers being major reaction products, while effective aerosol densities suggest extensive reactions take place within minutes. These reactions may be a source of the light-absorbing, nitrogen-containing oligomers observed in urban and biomass-burning aerosol particles.

  9. Synthesis of alginate oligomers by gamma irradiation and to investigate its antioxidant and prebiotic activity

    International Nuclear Information System (INIS)

    Bhoir, S.A.; Chawla, S.P.

    2016-01-01

    Alginate oligomers formed by alginate lyase have been reported to possess antioxidant activity as well as prebiotic activity. Hence, utility of gamma radiation to depolymerise alginate in its aqueous solution was investigated and its antioxidant and prebiotic activities were screened. 1% aqueous solution of sodium alginate was subjected to gamma irradiation and it's reducing power and ability to scavenge DPPH". and O_2"."."-, chelate iron and prevent heat induced β-carotene bleaching was determined. Prebiotic activity was determined by using alginate oligomers to promote prebiotic activity of Lactobacillus plantarum against E coli. Gamma radiation induced depolymerisation of alginate resulted in formation of oligomers with antioxidant and prebiotic activity. These polymers are potential candidates for utilization as natural preservatives and functional foods

  10. Characterizing the Dynamics of α-Synuclein Oligomers Using Hydrogen/Deuterium Exchange Monitored by Mass Spectrometry

    DEFF Research Database (Denmark)

    Mysling, Simon; Betzer, Cristine; Jensen, Poul Henning

    2013-01-01

    Soluble oligomers formed by α-synuclein (αSN) are suspected to play a central role in neuronal cell death during Parkinson's disease. While studies have probed the surface structure of these oligomers, little is known about the backbone dynamics of αSN when they form soluble oligomers. Using...... analyses performed on αSN fibrils and indicated a possible zipperlike maturation mechanism for αSN aggregates. We find the protected N-terminus (residues 4-17) to be of particular interest, as this region has previously been observed to be highly dynamic for both monomeric and fibrillar αSN. This region...... has mainly been described in relation to membrane binding of αSN, and structuring may be important in relation to disease....

  11. Synthesis of Citric-Acrylate Oligomer and its in-Situ Reaction with Chrome Tanned Collagen (hide powder)

    International Nuclear Information System (INIS)

    Haroun, A.A.; Masoud, R.A.; Bronco, S.; Ciardelli, F.

    2005-01-01

    The purpose of this study was to formulate the new combined system of acrylic and citric acids, which has been prepared by free radical polymerization and esterification reaction at the same time to form citric acrylate (CAC) oligomer through ester linkage and low molecular weight (Mw 2241), in compared with polyacrylic acid. The chemical structure and the reaction mechanism of this oligomer were confirmed by different spectroscopic tools (1 H , 13 C-NMR, ATR-IR), gel permeation chromatography and thermogravimetric analysis (TGA/DTA). The problem of the effect of the masking agents in the chrome tanning of the collagen and the pickling of the hide has been approached from the study of the hydrothermal and mechanical properties, using this new eco-friendly oligomer, which was carried out in-situ treated/grafted chrome tanned collagen (hide powder), and pickled hide. The microemulsion grafting copolymerization of (CAC) using 2.2-azo-bis isobutyronitrile (ABIN), via direct coupling reaction, onto the chrome tanned collagen showed that the free amino groups of the collagen were considered to be a potential site for the in-situ reaction with (CAC) oligomer. Also, using of citric-acrylate (CAC) oligomer, during chrome tanning of leather, instead of the traditional strong acids (sulfuric, hydrochloric and formic) resulted in significant improvement in chrome exhaustion and physical properties

  12. Monolayer MoS2 heterojunction solar cells

    KAUST Repository

    Tsai, Menglin

    2014-08-26

    We realized photovoltaic operation in large-scale MoS2 monolayers by the formation of a type-II heterojunction with p-Si. The MoS 2 monolayer introduces a built-in electric field near the interface between MoS2 and p-Si to help photogenerated carrier separation. Such a heterojunction photovoltaic device achieves a power conversion efficiency of 5.23%, which is the highest efficiency among all monolayer transition-metal dichalcogenide-based solar cells. The demonstrated results of monolayer MoS 2/Si-based solar cells hold the promise for integration of 2D materials with commercially available Si-based electronics in highly efficient devices. © 2014 American Chemical Society.

  13. Structures of Metalloporphyrin-Oligomer Multianions: Cofacial versus Coplanar Motifs as Resolved by Ion Mobility Spectrometry.

    Science.gov (United States)

    Brendle, Katrina; Schwarz, Ulrike; Jäger, Patrick; Weis, Patrick; Kappes, Manfred

    2016-11-03

    We have combined ion mobility mass spectrometry with quantum chemical calculations to investigate the gas-phase structures of multiply negatively charged oligomers of meso-tetra(4-sulfonatophenyl)metalloporphyrins comprising the divalent metal centers Zn II , Cu II , and Pd II . Sets of candidate structures were obtained by geometry optimizations based on calculations at both the semiempirical PM7 and density functional theory (DFT) levels. The corresponding theoretical cross sections were calculated with the projection approximation and also with the trajectory method. By comparing these collision cross sections with the respective experimental values we were able to assign oligomer structures up to the tetramer. In most cases the cross sections of the lowest energy isomers predicted by theory were found to agree with the measurements to within the experimental uncertainty (2%). Specifically, we find that for a given oligomer size the structures are independent of the metal center but depend strongly on the charge state. Oligomers in low charge states with a correspondingly larger number of sodium counterions tend to form stacked, cofacial structures reminiscent of H-aggregate motifs observed in solution. By contrast, in higher charge states, the stack opens to form coplanar structures.

  14. Natural amyloid-β oligomers acutely impair the formation of a contextual fear memory in mice.

    Science.gov (United States)

    Kittelberger, Kara A; Piazza, Fabrizio; Tesco, Giuseppina; Reijmers, Leon G

    2012-01-01

    Memory loss is one of the hallmark symptoms of Alzheimer's disease (AD). It has been proposed that soluble amyloid-beta (Abeta) oligomers acutely impair neuronal function and thereby memory. We here report that natural Abeta oligomers acutely impair contextual fear memory in mice. A natural Abeta oligomer solution containing Abeta monomers, dimers, trimers, and tetramers was derived from the conditioned medium of 7PA2 cells, a cell line that expresses human amyloid precursor protein containing the Val717Phe familial AD mutation. As a control we used 7PA2 conditioned medium from which Abeta oligomers were removed through immunodepletion. Separate groups of mice were injected with Abeta and control solutions through a cannula into the lateral brain ventricle, and subjected to fear conditioning using two tone-shock pairings. One day after fear conditioning, mice were tested for contextual fear memory and tone fear memory in separate retrieval trials. Three experiments were performed. For experiment 1, mice were injected three times: 1 hour before and 3 hours after fear conditioning, and 1 hour before context retrieval. For experiments 2 and 3, mice were injected a single time at 1 hour and 2 hours before fear conditioning respectively. In all three experiments there was no effect on tone fear memory. Injection of Abeta 1 hour before fear conditioning, but not 2 hours before fear conditioning, impaired the formation of a contextual fear memory. In future studies, the acute effect of natural Abeta oligomers on contextual fear memory can be used to identify potential mechanisms and treatments of AD associated memory loss.

  15. Natural Amyloid-Beta Oligomers Acutely Impair the Formation of a Contextual Fear Memory in Mice

    Science.gov (United States)

    Kittelberger, Kara A.; Piazza, Fabrizio; Tesco, Giuseppina; Reijmers, Leon G.

    2012-01-01

    Memory loss is one of the hallmark symptoms of Alzheimer's disease (AD). It has been proposed that soluble amyloid-beta (Abeta) oligomers acutely impair neuronal function and thereby memory. We here report that natural Abeta oligomers acutely impair contextual fear memory in mice. A natural Abeta oligomer solution containing Abeta monomers, dimers, trimers, and tetramers was derived from the conditioned medium of 7PA2 cells, a cell line that expresses human amyloid precursor protein containing the Val717Phe familial AD mutation. As a control we used 7PA2 conditioned medium from which Abeta oligomers were removed through immunodepletion. Separate groups of mice were injected with Abeta and control solutions through a cannula into the lateral brain ventricle, and subjected to fear conditioning using two tone-shock pairings. One day after fear conditioning, mice were tested for contextual fear memory and tone fear memory in separate retrieval trials. Three experiments were performed. For experiment 1, mice were injected three times: 1 hour before and 3 hours after fear conditioning, and 1 hour before context retrieval. For experiments 2 and 3, mice were injected a single time at 1 hour and 2 hours before fear conditioning respectively. In all three experiments there was no effect on tone fear memory. Injection of Abeta 1 hour before fear conditioning, but not 2 hours before fear conditioning, impaired the formation of a contextual fear memory. In future studies, the acute effect of natural Abeta oligomers on contextual fear memory can be used to identify potential mechanisms and treatments of AD associated memory loss. PMID:22238679

  16. Coronavirus nucleocapsid proteins assemble constitutively in high molecular oligomers

    NARCIS (Netherlands)

    Cong, Yingying; Kriegenburg, Franziska; de Haan, Cornelis A. M.; Reggiori, Fulvio

    2017-01-01

    Coronaviruses (CoV) are enveloped viruses and rely on their nucleocapsid N protein to incorporate the positive-stranded genomic RNA into the virions. CoV N proteins form oligomers but the mechanism and relevance underlying their multimerization remain to be fully understood. Using in vitro pull-down

  17. Solid state properties of oligomers containing dithienothiophene or fluorene residues suitable for field effect transistor devices

    International Nuclear Information System (INIS)

    Porzio, William; Destri, Silvia; Giovanella, Umberto; Pasini, Mariacecilia; Marin, Luminita; Iosip, Mariana Dana; Campione, Marcello

    2007-01-01

    A series of three thiophene based oligomers has been extensively characterized. The chemical design has been addressed to obtain ionization potential (IP) and electronic affinity (EA) values matching the work function of commonly used electrode materials. Such IP and EA values were tested by cyclovoltammetry. In order to tune electron-donation and drawing strength the sequence of the molecule subunits in the oligomer has been varied. The thermal properties with particular reference to their stability during preparation and operation were checked by using differential scanning calorimetry, polarised light microscopy and thermogravimetric analysis techniques. Prototypes of thin film field effect transistor, based on this series of oligomers have been electrically and structurally characterized. The long axes of the molecules are oriented nearly perpendicular to the gate insulator, in agreement with both highly sensitive X-ray diffraction and atomic force microscopy. From powder diffraction data the structure of oligomer I was solved. A general relation is envisaged between charge mobility and packing closeness in the series. For the most promising molecule a study of mobility/temperature behaviour was performed yielding interesting results

  18. Long-range electron transfer in zinc-phthalocyanine-oligo(phenylene-ethynylene)-based donor-bridge-acceptor dyads.

    Science.gov (United States)

    Göransson, Erik; Boixel, Julien; Fortage, Jérôme; Jacquemin, Denis; Becker, Hans-Christian; Blart, Errol; Hammarström, Leif; Odobel, Fabrice

    2012-11-05

    In the context of long-range electron transfer for solar energy conversion, we present the synthesis, photophysical, and computational characterization of two new zinc(II) phthalocyanine oligophenylene-ethynylene based donor-bride-acceptor dyads: ZnPc-OPE-AuP(+) and ZnPc-OPE-C(60). A gold(III) porphyrin and a fullerene has been used as electron accepting moieties, and the results have been compared to a previously reported dyad with a tin(IV) dichloride porphyrin as the electron acceptor (Fortage et al. Chem. Commun. 2007, 4629). The results for ZnPc-OPE-AuP(+) indicate a remarkably strong electronic coupling over a distance of more than 3 nm. The electronic coupling is manifested in both the absorption spectrum and an ultrafast rate for photoinduced electron transfer (k(PET) = 1.0 × 10(12) s(-1)). The charge-shifted state in ZnPc-OPE-AuP(+) recombines with a relatively low rate (k(BET) = 1.0 × 10(9) s(-1)). In contrast, the rate for charge transfer in the other dyad, ZnPc-OPE-C(60), is relatively slow (k(PET) = 1.1 × 10(9) s(-1)), while the recombination is very fast (k(BET) ≈ 5 × 10(10) s(-1)). TD-DFT calculations support the hypothesis that the long-lived charge-shifted state of ZnPc-OPE-AuP(+) is due to relaxation of the reduced gold porphyrin from a porphyrin ring based reduction to a gold centered reduction. This is in contrast to the faster recombination in the tin(IV) porphyrin based system (k(BET) = 1.2 × 10(10) s(-1)), where the excess electron is instead delocalized over the porphyrin ring.

  19. Thermodynamically stable amyloid-β monomers have much lower membrane affinity than the small oligomers

    Directory of Open Access Journals (Sweden)

    Bidyut eSarkar

    2013-04-01

    Full Text Available Amyloid beta (Aβ is an extracellular 39-43 residue long peptide present in the mammalian cerebrospinal fluid, whose aggregation is associated with Alzheimer’s disease. Small oligomers of Aβ are currently thought to be the key to toxicity. However, it is not clear why the monomers of Aβ are non-toxic, and at what stage of aggregation toxicity emerges. Interactions of Aβ with cell membranes is thought to be the initiator of toxicity, but membrane-binding studies with different preparations of monomers and oligomers have not settled this issue. We have earlier found that thermodynamically stable Aβ monomers emerge spontaneously from oligomeric mixtures upon long term incubation in physiological solutions (Nag et al, JBC, 2011. Here we show that the membrane-affinity of these stable Aβ monomers is much lower than that of a mixture of small oligomers (containing dimers to decamers, providing a clue to the emergence of toxicity. Fluorescently labeled Aβ40 monomers show negligible binding to cell membranes of a neuronal cell line (RN46A at physiological concentrations (250 nM, while oligomers at the same concentrations show strong binding within 30 minutes of incubation. The increased affinity most likely does not require any specific neuronal receptor, since this difference in membrane-affinity was also observed in a somatic cell-line (HEK 293T. Similar results are also obtained for Aβ42 monomers and oligomers. Minimal amount of cell death is observed at these concentrations even after 36 hours of incubation. It is likely that membrane binding precedes subsequent slower toxic events induced by Aβ. Our results a provide an explanation for the non-toxic nature of Aβ monomers, b suggest that Aβ toxicity emerges at the initial oligomeric phase, and c provide a quick assay for monitoring the benign-to-toxic transformation of Aβ.

  20. Distinct Internalization Pathways of Human Amylin Monomers and Its Cytotoxic Oligomers in Pancreatic Cells

    Science.gov (United States)

    Trikha, Saurabh; Jeremic, Aleksandar M.

    2013-01-01

    Toxic human amylin oligomers and aggregates are implicated in the pathogenesis of type 2 diabetes mellitus (TTDM). Although recent studies have shown that pancreatic cells can recycle amylin monomers and toxic oligomers, the exact uptake mechanism and trafficking routes of these molecular forms and their significance for amylin toxicity are yet to be determined. Using pancreatic rat insulinoma (RIN-m5F) beta (β)-cells and human islets as model systems we show that monomers and oligomers cross the plasma membrane (PM) through both endocytotic and non-endocytotic (translocation) mechanisms, the predominance of which is dependent on amylin concentrations and incubation times. At low (≤100 nM) concentrations, internalization of amylin monomers in pancreatic cells is completely blocked by the selective amylin-receptor (AM-R) antagonist, AC-187, indicating an AM-R dependent mechanism. In contrast at cytotoxic (µM) concentrations monomers initially (1 hour) enter pancreatic cells by two distinct mechanisms: translocation and macropinocytosis. However, during the late stage (24 hours) monomers internalize by a clathrin-dependent but AM-R and macropinocytotic independent pathway. Like monomers a small fraction of the oligomers initially enter cells by a non-endocytotic mechanism. In contrast a majority of the oligomers at both early (1 hour) and late times (24 hours) traffic with a fluid-phase marker, dextran, to the same endocytotic compartments, the uptake of which is blocked by potent macropinocytotic inhibitors. This led to a significant increase in extra-cellular PM accumulation, in turn potentiating amylin toxicity in pancreatic cells. Our studies suggest that macropinocytosis is a major but not the only clearance mechanism for both amylin’s molecular forms, thereby serving a cyto-protective role in these cells. PMID:24019897

  1. Benzothienobenzothiophene-based conjugated oligomers as semiconductors for stable organic thin-film transistors.

    Science.gov (United States)

    Yu, Han; Li, Weili; Tian, Hongkun; Wang, Haibo; Yan, Donghang; Zhang, Jingping; Geng, Yanhou; Wang, Fosong

    2014-04-09

    Two benzothienobenzothiophene (BTBT)-based conjugated oligomers, i.e., 2,2'-bi[1]benzothieno[3,2-b][1]benzothiophene (1) and 5,5'-bis([1]benzothieno[3,2-b][1]benzothiophen-2-yl)-2,2'-bithiophene (2), were prepared and characterized. Both oligomers exhibit excellent thermal stability, with 5% weight-loss temperatures (T(L)) above 370 °C; no phase transition was observed before decomposition. The highest occupied molecular orbital (HOMO) levels of 1 and 2 are -5.3 and -4.9 eV, respectively, as measured by ultraviolet photoelectron spectroscopy. Thin-film X-ray diffraction and atomic force microscopy characterizations indicate that both oligomers form highly crystalline films with large domain sizes on octadecyltrimethoxysilane-modified substrates. Organic thin-film transistors with top-contact and bottom-gate geometry based on 1 and 2 exhibited mobilities up to 2.12 cm(2)/V·s for 1 and 1.39 cm(2)/V·s for 2 in an ambient atmosphere. 1-based devices exhibited great air and thermal stabilities, as evidenced by the slight performance degradation after 2 months of storage under ambient conditions and after thermal annealing at temperatures below 250 °C.

  2. Rapamycin-induced oligomer formation system of FRB-FKBP fusion proteins.

    Science.gov (United States)

    Inobe, Tomonao; Nukina, Nobuyuki

    2016-07-01

    Most proteins form larger protein complexes and perform multiple functions in the cell. Thus, artificial regulation of protein complex formation controls the cellular functions that involve protein complexes. Although several artificial dimerization systems have already been used for numerous applications in biomedical research, cellular protein complexes form not only simple dimers but also larger oligomers. In this study, we showed that fusion proteins comprising the induced heterodimer formation proteins FRB and FKBP formed various oligomers upon addition of rapamycin. By adjusting the configuration of fusion proteins, we succeeded in generating an inducible tetramer formation system. Proteins of interest also formed tetramers by fusing to the inducible tetramer formation system, which exhibits its utility in a broad range of biological applications. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  3. Studies on Oligomer Metal Complexes Derived from Bisamic Acid of Pyromellitic Dianhydride and 4-Bromoaniline

    OpenAIRE

    Patel, Yogesh S.

    2014-01-01

    Novel oligomer metal complexes (2a–f) of the ligand 2,5-bis((4-bromophenyl)carbamoyl) terephthalic acid (1) were prepared using transition metal salts and characterized by various spectroscopic techniques. The geometry of oligomer metal complexes was carried out by electronic spectral analysis and magnetic measurement studies. Polymeric properties have also been carried out. Ligand was synthesized using pyromellitic dianhydride and 4-bromoaniline. It was duly characterized. All novel synthesi...

  4. Lateral pressure profiles in lipid monolayers

    NARCIS (Netherlands)

    Baoukina, Svetlana; Marrink, Siewert J.; Tieleman, D. Peter

    2010-01-01

    We have used molecular dynamics simulations with coarse-grained and atomistic models to study the lateral pressure profiles in lipid monolayers. We first consider simple oil/air and oil/water interfaces, and then proceed to lipid monolayers at air/water and oil/water interfaces. The results are

  5. Ultrafast electron transfer in all-carbon-based SWCNT-C60 donor-acceptor nanoensembles connected by poly(phenylene-ethynylene) spacers

    Science.gov (United States)

    Barrejón, Myriam; Gobeze, Habtom B.; Gómez-Escalonilla, María J.; Fierro, José Luis G.; Zhang, Minfang; Yudasaka, Masako; Iijima, Sumio; D'Souza, Francis; Langa, Fernando

    2016-08-01

    Building all-carbon based functional materials for light energy harvesting applications could be a solution to tackle and reduce environmental carbon output. However, development of such all-carbon based donor-acceptor hybrids and demonstration of photoinduced charge separation in such nanohybrids is a challenge since in these hybrids part of the carbon material should act as an electron donating or accepting photosensitizer while the second part should fulfil the role of an electron acceptor or donor. In the present work, we have successfully addressed this issue by synthesizing covalently linked all-carbon-based donor-acceptor nanoensembles using single-walled carbon nanotubes (SWCNTs) as the donor and C60 as the acceptor. The donor-acceptor entities in the nanoensembles were connected by phenylene-ethynylene spacer units to achieve better electronic communication and to vary the distance between the components. These novel SWCNT-C60 nanoensembles have been characterized by a number of techniques, including TGA, FT-IR, Raman, AFM, absorbance and electrochemical methods. The moderate number of fullerene addends present on the side-walls of the nanotubes largely preserved the electronic structure of the nanotubes. The thermodynamic feasibility of charge separation in these nanoensembles was established using spectral and electrochemical data. Finally, occurrence of ultrafast electron transfer from the excited nanotubes in these donor-acceptor nanohybrids has been established by femtosecond transient absorption studies, signifying their utility in building light energy harvesting devices.Building all-carbon based functional materials for light energy harvesting applications could be a solution to tackle and reduce environmental carbon output. However, development of such all-carbon based donor-acceptor hybrids and demonstration of photoinduced charge separation in such nanohybrids is a challenge since in these hybrids part of the carbon material should act as an

  6. Synthesis of Cycloveratrylene Macrocycles and Benzyl Oligomers Catalysed by Bentonite under Microwave/Infrared and Solvent-Free Conditions

    Directory of Open Access Journals (Sweden)

    Manuel Salmón

    2013-10-01

    Full Text Available Tonsil Actisil FF, which is a commercial bentonitic clay, promotes the formation of cycloveratrylene macrocycles and benzyl oligomers from the corresponding benzyl alcohols in good yields under microwave heating and infrared irradiation in the absence of solvent in both cases. The catalytic reaction is sensitive to the type of substituent on the aromatic ring. Thus, when benzyl alcohol was substituted with a methylenedioxy, two methoxy or three methoxy groups, a cyclooligomerisation process was induced. Unsubstituted, methyl and methoxy benzyl alcohols yielded linear oligomers. In addition, computational chemistry calculations were performed to establish a validated mechanistic pathway to explain the growth of the obtained linear oligomers.

  7. Structure and properties of binary polystyrene-epoxy acrylate oligomer mixtures irradiated by electron beams

    International Nuclear Information System (INIS)

    Lomonosova, N.V.

    1995-01-01

    The change in the structure of oriented polymer-oligomer systems based on polystyrene (PS) with M > 10 6 and epoxy acrylate oligomers (aliphatic and aromatic) under irradiation by accelerated electrons was studied using birefringence, isometric heating, IR dichroism, and thermooptical analysis. Mechanical properties of these systems were investigated. It was found that, by adding aliphatic epoxy acrylate to PS and further irradiating this mixture, one can obtain both isotropic and oriented composites with higher strengths, elasticity moduli, and glass transition temperatures

  8. Large Friction Anisotropy of a Polydiacetylene Monolayer

    International Nuclear Information System (INIS)

    Burns, A.R.; Carpick, R.W.; Sasaki, D.Y.

    1999-01-01

    Friction force microscopy measurements of a polydiacetylene monolayer film reveal a 300% friction anisotropy that is correlated with the film structure. The film consists of a monolayer of the red form of N-(2-ethanol)- 10,12 pentacosadiynamide, prepared on a Langmuir trough and deposited on a mica substrate. As confirmed by atomic force microscopy and fluorescence microscopy, the monolayer consists of domains of linearly oriented conjugated backbones with pendant hydrocarbon side chains above and below the backbones. Maximum friction occurs when the sliding direction is perpendicular to the backbone. We propose that the backbones impose anisotropic packing of the hydrocarbon side chains which leads to the observed friction anisotropy. Friction anisotropy is therefore a sensitive, optically-independent indicator of polymer backbone direction and monolayer structural properties

  9. Natural amyloid-β oligomers acutely impair the formation of a contextual fear memory in mice.

    Directory of Open Access Journals (Sweden)

    Kara A Kittelberger

    Full Text Available Memory loss is one of the hallmark symptoms of Alzheimer's disease (AD. It has been proposed that soluble amyloid-beta (Abeta oligomers acutely impair neuronal function and thereby memory. We here report that natural Abeta oligomers acutely impair contextual fear memory in mice. A natural Abeta oligomer solution containing Abeta monomers, dimers, trimers, and tetramers was derived from the conditioned medium of 7PA2 cells, a cell line that expresses human amyloid precursor protein containing the Val717Phe familial AD mutation. As a control we used 7PA2 conditioned medium from which Abeta oligomers were removed through immunodepletion. Separate groups of mice were injected with Abeta and control solutions through a cannula into the lateral brain ventricle, and subjected to fear conditioning using two tone-shock pairings. One day after fear conditioning, mice were tested for contextual fear memory and tone fear memory in separate retrieval trials. Three experiments were performed. For experiment 1, mice were injected three times: 1 hour before and 3 hours after fear conditioning, and 1 hour before context retrieval. For experiments 2 and 3, mice were injected a single time at 1 hour and 2 hours before fear conditioning respectively. In all three experiments there was no effect on tone fear memory. Injection of Abeta 1 hour before fear conditioning, but not 2 hours before fear conditioning, impaired the formation of a contextual fear memory. In future studies, the acute effect of natural Abeta oligomers on contextual fear memory can be used to identify potential mechanisms and treatments of AD associated memory loss.

  10. Thermal conductivity of a h-BCN monolayer.

    Science.gov (United States)

    Zhang, Ying-Yan; Pei, Qing-Xiang; Liu, Hong-Yuan; Wei, Ning

    2017-10-18

    A hexagonal graphene-like boron-carbon-nitrogen (h-BCN) monolayer, a new two-dimensional (2D) material, has been synthesized recently. Herein we investigate for the first time the thermal conductivity of this novel 2D material. Using molecular dynamics simulations based on the optimized Tersoff potential, we found that the h-BCN monolayers are isotropic in the basal plane with close thermal conductivity magnitudes. Though h-BCN has the same hexagonal lattice as graphene and hexagonal boron nitride (h-BN), it exhibits a much lower thermal conductivity than the latter two materials. In addition, the thermal conductivity of h-BCN monolayers is found to be size-dependent but less temperature-dependent. Modulation of the thermal conductivity of h-BCN monolayers can also be realized by strain engineering. Compressive strain leads to a monotonic decrease in the thermal conductivity while the tensile strain induces an up-then-down trend in the thermal conductivity. Surprisingly, the small tensile strain can facilitate the heat transport of the h-BCN monolayers.

  11. Charge-carrier selective electrodes for organic bulk heterojunction solar cell by contact-printed siloxane oligomers

    International Nuclear Information System (INIS)

    Hwang, Hyun-Sik; Khang, Dahl-Young

    2015-01-01

    ‘Smart’ (or selective) electrode for charge carriers, both electrons and holes, in organic bulk-heterojunction (BHJ) solar cells using insertion layers made of hydrophobically-recovered and contact-printed siloxane oligomers between electrodes and active material has been demonstrated. The siloxane oligomer insertion layer has been formed at a given interface simply by conformally-contacting a cured slab of polydimethylsiloxane stamp for less than 100 s. All the devices, either siloxane oligomer printed at one interface only or printed at both interfaces, showed efficiency enhancement when compared to non-printed ones. The possible mechanism that is responsible for the observed efficiency enhancement has been discussed based on the point of optimum symmetry and photocurrent analysis. Besides its simplicity and large-area applicability, the demonstrated contact-printing technique does not involve any vacuum or wet processing steps and thus can be very useful for the roll-based, continuous production scheme for organic BHJ solar cells. - Highlights: • Carrier-selective insertion layer in organic bulk heterojunction solar cells • Simple contact-printing of siloxane oligomers improves cell efficiency. • Printed siloxane layer reduces carrier recombination at electrode surfaces. • Siloxane insertion layer works equally well at both electrode surfaces. • Patterned PDMS stamp shortens the printing time within 100 s

  12. Atomistic simulation of CO 2 solubility in poly(ethylene oxide) oligomers

    KAUST Repository

    Hong, Bingbing; Panagiotopoulos, Athanassios Z.

    2013-01-01

    We have performed atomistic molecular dynamics simulations coupled with thermodynamic integration to obtain the excess chemical potential and pressure-composition phase diagrams for CO2 in poly(ethylene oxide) oligomers. Poly(ethylene oxide

  13. Investigation of the structure of isobutylene oligomers, used in the capacity of stock for succinimide additives, by the method of proton magnetic resonance

    Energy Technology Data Exchange (ETDEWEB)

    Iarmoliuk, V.M.; Garun, Ia.E.; Ostroverkhov, V.G.; Pustovit, V.E.; Tikhonov, V.P.

    1980-01-01

    By the method of proton magnetic resonance, investigation was made of the structure of hydrocarbon framework of isobutylene oligomers of the Salavatsk petrochemical plant, produced by the cation polymerization of the isobutane isobutylene fraction at a temperature from -10 to +20/sup 0/ with A1C1/sub 3/ and used in the production of succinide additives. Determination was made of the qualitative and quantitative compositions of the various structures in the oligomers. It is shown, that as a rule, oligobutenes are not pure oligomers of isobutylene, but represent, at least, fragments of four structures, which can be formed on the basis of isobutylene. The content of the given structures does not affect the reaction capacity of the oligomers in respect to the maleic anhydride. It was established, that the low molecular fraction, contained in oligomers up to 5%, are not isobutylene oligomers, but represent a low molecular polymer of butene-2 and its copolymer with isobutylene.

  14. Macrocyclic 2,7-Anthrylene Oligomers.

    Science.gov (United States)

    Yamamoto, Yuta; Wakamatsu, Kan; Iwanaga, Tetsuo; Sato, Hiroyasu; Toyota, Shinji

    2016-05-06

    A macrocyclic compound consisting of six 2,7-anthrylene units was successfully synthesized by Ni-mediated coupling of the corresponding dibromo precursor as a novel π-conjugated compound. This compound was sufficiently stable and soluble in organic solvents due to the presence of mesityl groups. X-ray analysis showed that the molecule had a nonplanar and hexagonal wheel-shaped framework of approximately S6 symmetry. The dynamic process between two S6 structures was observed by using the dynamic NMR technique, the barrier being 58 kJ mol(-1) . The spectroscopic properties of the hexamer were compared with those of analogous linear oligomers. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Intrahippocampal Administration of Amyloid-β1–42 Oligomers Acutely Impairs Spatial Working Memory, Insulin Signaling, and Hippocampal Metabolism

    Science.gov (United States)

    Pearson-Leary, Jiah; McNay, Ewan C.

    2017-01-01

    Increasing evidence suggests that abnormal brain accumulation of amyloid-β1–42 (Aβ1–42) oligomers plays a causal role in Alzheimer’s disease (AD), and in particular may cause the cognitive deficits that are the hallmark of AD. In vitro, Aβ1–42 oligomers impair insulin signaling and suppress neural functioning. We previously showed that endogenous insulin signaling is an obligatory component of normal hippocampal function, and that disrupting this signaling led to a rapid impairment of spatial working memory, while delivery of exogenous insulin to the hippocampus enhanced both memory and metabolism; diet-induced insulin resistance both impaired spatial memory and prevented insulin from increasing metabolism or cognitive function. Hence, we tested the hypothesis that Aβ1–42 oligomers could acutely impair hippocampal metabolic and cognitive processes in vivo in the rat. Our findings support this hypothesis: Aβ1–42 oligomers impaired spontaneous alternation behavior while preventing the task-associated dip in hippocampal ECF glucose observed in control animals. In addition, Aβ1–42 oligomers decreased plasma membrane translocation of the insulin-sensitive glucose transporter 4 (GluT4), and impaired insulin signaling as measured by phosphorylation of Akt. These data show in vivo that Aβ1–42 oligomers can rapidly impair hippocampal cognitive and metabolic processes, and provide support for the hypothesis that elevated Aβ1–42 leads to cognitive impairment via interference with hippocampal insulin signaling. PMID:22430529

  16. Extracellular Tau Oligomers Induce Invasion of Endogenous Tau into the Somatodendritic Compartment and Axonal Transport Dysfunction

    Science.gov (United States)

    Swanson, Eric; Breckenridge, Leigham; McMahon, Lloyd; Som, Sreemoyee; McConnell, Ian; Bloom, George S.

    2017-01-01

    Aggregates composed of the microtubule associated protein, tau, are a hallmark of Alzheimer’s disease and non-Alzheimer’s tauopathies. Extracellular tau can induce the accumulation and aggregation of intracellular tau, and tau pathology can be transmitted along neural networks over time. There are six splice variants of central nervous system tau, and various oligomeric and fibrillar forms are associated with neurodegeneration in vivo. The particular extracellular forms of tau capable of transferring tau pathology from neuron to neuron remain ill defined, however, as do the consequences of intracellular tau aggregation on neuronal physiology. The present study was undertaken to compare the effects of extracellular tau monomers, oligomers, and filaments comprising various tau isoforms on the behavior of cultured neurons. We found that 2N4R or 2N3R tau oligomers provoked aggregation of endogenous intracellular tau much more effectively than monomers or fibrils, or of oligomers made from other tau isoforms, and that a mixture of all six isoforms most potently provoked intracellular tau accumulation. These effects were associated with invasion of tau into the somatodendritic compartment. Finally, we observed that 2N4R oligomers perturbed fast axonal transport of membranous organelles along microtubules. Intracellular tau accumulation was often accompanied by increases in the run length, run time and instantaneous velocity of membranous cargo. This work indicates that extracellular tau oligomers can disrupt normal neuronal homeostasis by triggering axonal tau accumulation and loss of the polarized distribution of tau, and by impairing fast axonal transport. PMID:28482642

  17. Nonequilibrium 2-hydroxyoctadecanoic acid monolayers: effect of electrolytes.

    Science.gov (United States)

    Lendrum, Conrad D; Ingham, Bridget; Lin, Binhua; Meron, Mati; Toney, Michael F; McGrath, Kathryn M

    2011-04-19

    2-Hydroxyacids display complex monolayer phase behavior due to the additional hydrogen bonding afforded by the presence of the second hydroxy group. The placement of this group at the position α to the carboxylic acid functionality also introduces the possibility of chelation, a utility important in crystallization including biomineralization. Biomineralization, like many biological processes, is inherently a nonequilibrium process. The nonequilibrium monolayer phase behavior of 2-hydroxyoctadecanoic acid was investigated on each of pure water, calcium chloride, sodium bicarbonate and calcium carbonate crystallizing subphases as a precursor study to a model calcium carbonate biomineralizing system, each at a pH of ∼6. The role of the bicarbonate co-ion in manipulating the monolayer structure was determined by comparison with monolayer phase behavior on a sodium chloride subphase. Monolayer phase behavior was probed using surface pressure/area isotherms, surface potential, Brewster angle microscopy, and synchrotron-based grazing incidence X-ray diffraction and X-ray reflectivity. Complex phase behavior was observed for all but the sodium chloride subphase with hydrogen bonding, electrostatic and steric effects defining the symmetry of the monolayer. On a pure water subphase hydrogen bonding dominates with three phases coexisting at low pressures. Introduction of calcium ions into the aqueous subphase ensures strong cation binding to the surfactant head groups through chelation. The monolayer becomes very unstable in the presence of bicarbonate ions within the subphase due to short-range hydrogen bonding interactions between the monolayer and bicarbonate ions facilitated by the sodium cation enhancing surfactant solubility. The combined effects of electrostatics and hydrogen bonding are observed on the calcium carbonate crystallizing subphase. © 2011 American Chemical Society

  18. Alpha-synuclein oligomers - neurotoxic molecules in Parkinson’s disease and other Lewy body disorders

    Directory of Open Access Journals (Sweden)

    Martin Ingelsson

    2016-09-01

    Full Text Available Adverse intra- and extracellular effects of toxic α-synuclein are believed to be central to the pathogenesis in Parkinson’s disease and other disorders with Lewy body pathology in the nervous system. One of the physiological roles of α-synuclein relates to the regulation of neurotransmitter release at the presynapse, although it is still unclear whether this mechanism depends on the action of monomers or smaller oligomers. As for the pathogenicity, accumulating evidence suggest that prefibrillar species, rather than the deposits per se, are responsible for the toxicity in affected cells. In particular, larger oligomers or protofibrils of α-synuclein have been shown to impair protein degradation as well as the function of several organelles, such as the mitochondria and the endoplasmic reticulum. Accumulating evidence further suggest that oligomers/protofibrils may have a toxic effect on the synapse, which may lead to disrupted electrophysiological properties. In addition, recent data indicate that oligomeric α-synuclein species can spread between cells, either as free-floating proteins or via extracellular vesicles, and thereby act as seeds to propagate disease between interconnected brain regions. Taken together, several lines of evidence suggest that α-synuclein have neurotoxic properties and therefore should be an appropriate molecular target for therapeutic intervention in Parkinson’s disease and other disorders with Lewy pathology. In this context, immunotherapy with monoclonal antibodies against α-synuclein oligomers/protofibrils should be a particularly attractive treatment option.

  19. Targeting α-synuclein oligomers

    DEFF Research Database (Denmark)

    van Diggelen, Femke

    Parkinson’s Disease (PD) is a complex disease, characterised by degeneration of neocortical, limbic and nigrostriatal neurons. It is unknown what initiates neurodegeneration, but soluble oligomers of the protein α-synuclein (αSn) seem to be particularly toxic, compared to insoluble fibrils...... unique characteristics, e.g. they were recognized by different conformational antibodies and DHA–αSOs also formed a second elongated species in addition to the dominant spherical species. Although further functional testing is needed, this suggests that each species has its own distinct toxic mechanism......+/K+ ATPase, V-type ATPase, VDAC, CaMKII and Rab-3A. The identification of these targets is a first step towards unravelling the toxic pathways which are activated upon synaptic binding of extracellularly added αSOs, and hopefully will contribute to the discovery of new disease modifying compounds, which can...

  20. Zitterbewegung in monolayer silicene in a magnetic field

    International Nuclear Information System (INIS)

    Romera, E.; Roldán, J.B.; Santos, F. de los

    2014-01-01

    We study the Zitterbewegung in monolayer silicene under a perpendicular magnetic field. Using an effective Hamiltonian, we have investigated the autocorrelation function and the density currents in this material. Moreover, we have analyzed other types of periodicities of the system (classical and revival times). Finally, the above results are compared with their counterparts in two other monolayer materials subject to a magnetic field: graphene and MoS 2 . - Highlights: • We study Zitterbewegung in monolayer silicene in a magnetic field. • We have analyzed other types of periodicities in silicene. • The above results are compared with other monolayer materials (graphene and MoS 2 )

  1. Zitterbewegung in monolayer silicene in a magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Romera, E. [Departamento de Física Atómica, Molecular y Nuclear and Instituto Carlos I de Física Teórica y Computacional, Universidad de Granada, Fuentenueva s/n, 18071 Granada (Spain); Roldán, J.B. [Departamento de Electrónica y Tecnología de Computadores and CITIC, Universidad de Granada, Fuentenueva s/n, 18071 Granada (Spain); Santos, F. de los [Departamento de Electromagnetismo y Física de la Materia, and Instituto Carlos I de Física Teórica y Computacional, Universidad de Granada, Fuentenueva s/n, 18071 Granada (Spain)

    2014-07-04

    We study the Zitterbewegung in monolayer silicene under a perpendicular magnetic field. Using an effective Hamiltonian, we have investigated the autocorrelation function and the density currents in this material. Moreover, we have analyzed other types of periodicities of the system (classical and revival times). Finally, the above results are compared with their counterparts in two other monolayer materials subject to a magnetic field: graphene and MoS{sub 2}. - Highlights: • We study Zitterbewegung in monolayer silicene in a magnetic field. • We have analyzed other types of periodicities in silicene. • The above results are compared with other monolayer materials (graphene and MoS{sub 2})

  2. Testing the effectiveness of monolayers under wind and wave conditions.

    Science.gov (United States)

    Palada, C; Schouten, P; Lemckert, C

    2012-01-01

    Monolayers are highly desirable for their evaporation reducing capabilities due to their relatively minimal cost and ease of application. Despite these positive attributes, monolayers have consistently failed to perform effectively due to the harsh wind and wave conditions prevalent across real-world water reserves. An exhaustive and consistent study testing the influence of wind and wave combinations on monolayer performance has yet to be presented in the literature. To remedy this, the effect of simultaneous wind and wave conditions on a benchmark high-performance monolayer (octadecanol suspension, CH(3)(CH(2))(16)CH(2)OH) has been analysed. Subjected only to waves, the monolayer remained intact due to its innate ability to compress and expand. However, the constant simultaneous application of wind and waves caused the monolayer to break up and gather down-wind where it volatilised over time. At wind speeds above 1.3 m s(-1) the monolayer was completely ineffective. For wind speeds below this threshold, the monolayer had an influence on the evaporation rate dependent on wind speed. From these results a series of application protocols can now be developed for the optimised deployment of monolayers in real-world water reserves. This will be of interest to private, commercial and government organisations involved in the storage and management of water resources.

  3. Molecular size evolution of oligomers in organic aerosols collected in urban atmospheres and generated in a smog chamber.

    Science.gov (United States)

    Kalberer, Markus; Sax, Mirjam; Samburova, Vera

    2006-10-01

    Only a minor fraction of the total organic aerosol mass can be resolved on a molecular level. High molecular weight compounds in organic aerosols have recently gained much attention because this class of compound potentially explains a major fraction of the unexplained organic aerosol mass. These compounds have been identified with different mass spectrometric methods, and compounds with molecular masses up to 1000 Da are found in secondary organic aerosols (SOA) generated from aromatic and terpene precursors in smog chamber experiments. Here, we apply matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) to SOA particles from two biogenic precursors, alpha-pinene and isoprene. Similar oligomer patterns are found in these two SOA systems, but also in SOA from trimethylbenzene, an anthropogenic SOA precursor. However, different maxima molecular sizes were measured for these three SOA systems. While oligomers in alpha-pinene and isoprene have sizes mostly below 600-700 Da, they grow up to about 1000 Da in trimethylbenzene-SOA. The final molecular size of the oligomers is reached early during the particle aging process, whereas other particle properties related to aging, such as the overall acid concentration or the oligomer concentration, increase continuously over a much longer time scale. This kinetic behavior of the oligomer molecular size growth can be explained by a chain growth kinetic regime. Similar oligomer mass patterns were measured in aqueous extracts of ambient aerosol samples (measured with the same technique). Distinct differences between summer and winter were observed. In summer a few single mass peaks were measured with much higher intensity than in winter, pointing to a possible difference in the formation processes of these compounds in winter and summer.

  4. Isolation and Quantification of Polyamide Cyclic Oligomers in Kitchen Utensils and Their Migration into Various Food Simulants.

    Science.gov (United States)

    Abe, Yutaka; Mutsuga, Motoh; Ohno, Hiroyuki; Kawamura, Yoko; Akiyama, Hiroshi

    2016-01-01

    Small amounts of cyclic monomers and oligomers are present in polyamide (PA)-based kitchen utensils. In this study, we isolated eight PA-based cyclic monomers and oligomers from kitchen utensils made from PA6 (a polymer of ε-caprolactam) and PA66 (a polymer of 1,6-diaminohexane and adipic acid). Their structures were identified using high-resolution mass spectrometry and 1H- and 13C-nuclear magnetic resonance spectroscopy, and their residual levels in PA-based kitchen utensils and degree of migration into food simulants were quantified by high-performance liquid chromatography/mass spectrometry using purchased PA6 monomer and isolated PA66 monomers, and isolated PA6 and PA66 oligomers as calibration standards. Their total residual levels among 23 PA-based kitchen utensils made from PA6, PA66, and copolymers of PA6 and PA66 (PA6/66) ranged from 7.8 to 20 mg/g. Using water, 20% ethanol, and olive oil as food simulants, the total migration levels of the PA monomers and oligomers ranged from 0.66 to 100 μg/cm2 under most examined conditions. However, the total migration levels of the PA66 monomer and oligomers from PA66 and PA6/66 kitchen utensils into 20% ethanol at 95°C were very high (1,700 and 2,200 μg/cm2, respectively) due to swelling by high-temperature ethanol.

  5. Isolation and Quantification of Polyamide Cyclic Oligomers in Kitchen Utensils and Their Migration into Various Food Simulants.

    Directory of Open Access Journals (Sweden)

    Yutaka Abe

    Full Text Available Small amounts of cyclic monomers and oligomers are present in polyamide (PA-based kitchen utensils. In this study, we isolated eight PA-based cyclic monomers and oligomers from kitchen utensils made from PA6 (a polymer of ε-caprolactam and PA66 (a polymer of 1,6-diaminohexane and adipic acid. Their structures were identified using high-resolution mass spectrometry and 1H- and 13C-nuclear magnetic resonance spectroscopy, and their residual levels in PA-based kitchen utensils and degree of migration into food simulants were quantified by high-performance liquid chromatography/mass spectrometry using purchased PA6 monomer and isolated PA66 monomers, and isolated PA6 and PA66 oligomers as calibration standards. Their total residual levels among 23 PA-based kitchen utensils made from PA6, PA66, and copolymers of PA6 and PA66 (PA6/66 ranged from 7.8 to 20 mg/g. Using water, 20% ethanol, and olive oil as food simulants, the total migration levels of the PA monomers and oligomers ranged from 0.66 to 100 μg/cm2 under most examined conditions. However, the total migration levels of the PA66 monomer and oligomers from PA66 and PA6/66 kitchen utensils into 20% ethanol at 95°C were very high (1,700 and 2,200 μg/cm2, respectively due to swelling by high-temperature ethanol.

  6. A combined semiempirical-DFT study of oligomers within the finite-chain approximation, evolution from oligomers to polymers.

    Science.gov (United States)

    Derosa, Pedro A

    2009-06-01

    A computationally cheap approach combining time-independent density functional theory (TIDFT) and semiempirical methods with an appropriate extrapolation procedure is proposed to accurately estimate geometrical and electronic properties of conjugated polymers using just a small set of oligomers. The highest occupied molecular orbital-lowest unoccupied molecular orbital gap (HLG) obtained at a TIDFT level (B3PW91) for two polymers, trans-polyacetylene--the simplest conjugated polymer, and a much larger poly(2-methoxy-5-(2,9-ethyl-hexyloxy)-1,4-phenylenevinylene (MEH-PPV) polymer converge to virtually the same asymptotic value than the excitation energy obtained with time-dependent DFT (TDDFT) calculations using the same functional. For TIDFT geometries, the HLG is found to converge to a value within the experimentally accepted range for the band gap of these polymers, when an exponential extrapolation is used; however if semiempirical geometries are used, a linear fit of the HLG versus 1/n is found to produce the best results. Geometrical parameters are observed to reach a saturation value in good agreement with experimental information, within the length of oligomers calculated here and no extrapolation was considered necessary. Finally, the performance of three different semiempirical methods (AM1, PM3, and MNDO) and for the TIDFT calculations, the performance of 7 different full electron basis sets (6-311+G**, 6-31+ +G**, 6-311+ +G**, 6-31+G**, 6-31G**, 6-31+G*, and 6-31G) is compared and it is determined that the choice of semiempirical method or the basis set does not significantly affect the results. 2008 Wiley Periodicals, Inc.

  7. Controlled electrodeposition of Au monolayer film on ionic liquid

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Qiang; Pang, Liuqing; Li, Man; Zhang, Yunxia; Ren, Xianpei [Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi’an 710062 (China); Liu, Shengzhong Frank, E-mail: szliu@dicp.ac.cn [Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi’an 710062 (China); Dalian Institute of Chemical Physics, Dalian National Laboratory for Clean Energy, Chinese Academy of Sciences, Dalian 116023 (China)

    2016-05-15

    Highlights: • We fabricate Au monolayer film on Ionic liquid substrate using an electrochemical deposition technique. • Au monolayer film was deposited on a “soft substrate” for the first time. • Au monolayer film can contribute extra Raman enhancement. - Abstract: Gold (Au) nanoparticles have been attractive for centuries for their vibrant appearance enhanced by their interaction with sunlight. Nowadays, there have been tremendous research efforts to develop them for high-tech applications including therapeutic agents, sensors, organic photovoltaics, medical applications, electronics and catalysis. However, there remains to be a challenge to fabricate a monolayer Au coating with complete coverage in controlled fashion. Here we present a facile method to deposit a uniform Au monolayer (ML) film on the [BMIM][PF{sub 6}] ionic liquid substrate using an electrochemical deposition process. It demonstrates that it is feasible to prepare a solid phase coating on the liquid-based substrate. Moreover, the thickness of the monolayer coating can be controlled to a layer-by-layer accuracy.

  8. Detection of the electronic structure of iron-(iii)-oxo oligomers forming in aqueous solutions.

    Science.gov (United States)

    Seidel, Robert; Kraffert, Katrin; Kabelitz, Anke; Pohl, Marvin N; Kraehnert, Ralph; Emmerling, Franziska; Winter, Bernd

    2017-12-13

    The nature of the small iron-oxo oligomers in iron-(iii) aqueous solutions has a determining effect on the chemical processes that govern the formation of nanoparticles in aqueous phase. Here we report on a liquid-jet photoelectron-spectroscopy experiment for the investigation of the electronic structure of the occurring iron-oxo oligomers in FeCl 3 aqueous solutions. The only iron species in the as-prepared 0.75 M solution are Fe 3+ monomers. Addition of NaOH initiates Fe 3+ hydrolysis which is followed by the formation of iron-oxo oligomers. At small enough NaOH concentrations, corresponding to approximately [OH]/[Fe] = 0.2-0.25 ratio, the iron oligomers can be stabilized for several hours without engaging in further aggregation. Here, we apply a combination of non-resonant as well as iron 2p and oxygen 1s resonant photoelectron spectroscopy from a liquid microjet to detect the electronic structure of the occurring species. Specifically, the oxygen 1s partial electron yield X-ray absorption (PEY-XA) spectra are found to exhibit a peak well below the onset of liquid water and OH - (aq) absorption. The iron 2p absorption gives rise to signal centered between the main absorption bands typical for aqueous Fe 3+ . Absorption bands in both PEY-XA spectra are found to correlate with an enhanced photoelectron peak near 20 eV binding energy, which demonstrates the sensitivity of resonant photoelectron (RPE) spectroscopy to mixing between iron and ligand orbitals. These various signals from the iron-oxo oligomers exhibit maximum intensity at [OH]/[Fe] = 0.25 ratio. For the same ratio, we observe changes in the pH as well as in complementary Raman spectra, which can be assigned to the transition from monomeric to oligomeric species. At approximately [OH]/[Fe] = 0.3 we begin to observe particles larger than 1 nm in radius, detected by small-angle X-ray scattering.

  9. SAXS and stability studies of iron-induced oligomers of bacterial frataxin CyaY.

    Directory of Open Access Journals (Sweden)

    Mostafa Fekry

    Full Text Available Frataxin is a highly conserved protein found in both prokaryotes and eukaryotes. It is involved in several central functions in cells, which include iron delivery to biochemical processes, such as heme synthesis, assembly of iron-sulfur clusters (ISC, storage of surplus iron in conditions of iron overload, and repair of ISC in aconitase. Frataxin from different organisms has been shown to undergo iron-dependent oligomerization. At least two different classes of oligomers, with different modes of oligomer packing and stabilization, have been identified. Here, we continue our efforts to explore the factors that control the oligomerization of frataxin from different organisms, and focus on E. coli frataxin CyaY. Using small-angle X-ray scattering (SAXS, we show that higher iron-to-protein ratios lead to larger oligomeric species, and that oligomerization proceeds in a linear fashion as a results of iron oxidation. Native mass spectrometry and online size-exclusion chromatography combined with SAXS show that a dimer is the most common form of CyaY in the presence of iron at atmospheric conditions. Modeling of the dimer using the SAXS data confirms the earlier proposed head-to-tail packing arrangement of monomers. This packing mode brings several conserved acidic residues into close proximity to each other, creating an environment for metal ion binding and possibly even mineralization. Together with negative-stain electron microscopy, the experiments also show that trimers, tetramers, pentamers, and presumably higher-order oligomers may exist in solution. Nano-differential scanning fluorimetry shows that the oligomers have limited stability and may easily dissociate at elevated temperatures. The factors affecting the possible oligomerization mode are discussed.

  10. Evidence of indirect gap in monolayer WSe2

    KAUST Repository

    Hsu, Wei-Ting

    2017-10-09

    Monolayer transition metal dichalcogenides, such as MoS2 and WSe2, have been known as direct gap semiconductors and emerged as new optically active materials for novel device applications. Here we reexamine their direct gap properties by investigating the strain effects on the photoluminescence of monolayer MoS2 and WSe2. Instead of applying stress, we investigate the strain effects by imaging the direct exciton populations in monolayer WSe2–MoS2 and MoSe2–WSe2 lateral heterojunctions with inherent strain inhomogeneity. We find that unstrained monolayer WSe2 is actually an indirect gap material, as manifested in the observed photoluminescence intensity–energy correlation, from which the difference between the direct and indirect optical gaps can be extracted by analyzing the exciton thermal populations. Our findings combined with the estimated exciton binding energy further indicate that monolayer WSe2 exhibits an indirect quasiparticle gap, which has to be reconsidered in further studies for its fundamental properties and device applications.

  11. Large-area and bright pulsed electroluminescence in monolayer semiconductors

    KAUST Repository

    Lien, Der-Hsien; Amani, Matin; Desai, Sujay B.; Ahn, Geun Ho; Han, Kevin; He, Jr-Hau; Ager, Joel W.; Wu, Ming C.; Javey, Ali

    2018-01-01

    Transition-metal dichalcogenide monolayers have naturally terminated surfaces and can exhibit a near-unity photoluminescence quantum yield in the presence of suitable defect passivation. To date, steady-state monolayer light-emitting devices suffer from Schottky contacts or require complex heterostructures. We demonstrate a transient-mode electroluminescent device based on transition-metal dichalcogenide monolayers (MoS, WS, MoSe, and WSe) to overcome these problems. Electroluminescence from this dopant-free two-terminal device is obtained by applying an AC voltage between the gate and the semiconductor. Notably, the electroluminescence intensity is weakly dependent on the Schottky barrier height or polarity of the contact. We fabricate a monolayer seven-segment display and achieve the first transparent and bright millimeter-scale light-emitting monolayer semiconductor device.

  12. Large-area and bright pulsed electroluminescence in monolayer semiconductors

    KAUST Repository

    Lien, Der-Hsien

    2018-04-04

    Transition-metal dichalcogenide monolayers have naturally terminated surfaces and can exhibit a near-unity photoluminescence quantum yield in the presence of suitable defect passivation. To date, steady-state monolayer light-emitting devices suffer from Schottky contacts or require complex heterostructures. We demonstrate a transient-mode electroluminescent device based on transition-metal dichalcogenide monolayers (MoS, WS, MoSe, and WSe) to overcome these problems. Electroluminescence from this dopant-free two-terminal device is obtained by applying an AC voltage between the gate and the semiconductor. Notably, the electroluminescence intensity is weakly dependent on the Schottky barrier height or polarity of the contact. We fabricate a monolayer seven-segment display and achieve the first transparent and bright millimeter-scale light-emitting monolayer semiconductor device.

  13. Length dependence of rectification in organic co-oligomer spin rectifiers

    International Nuclear Information System (INIS)

    Hu Gui-Chao; Zhang Zhao; Li Ying; Ren Jun-Feng; Wang Chuan-Kui

    2016-01-01

    The rectification ratio of organic magnetic co-oligomer diodes is investigated theoretically by changing the molecular length. The results reveal two distinct length dependences of the rectification ratio: for a short molecular diode, the charge-current rectification changes little with the increase of molecular length, while the spin-current rectification is weakened sharply by the length; for a long molecular diode, both the charge-current and spin-current rectification ratios increase quickly with the length. The two kinds of dependence switch at a specific length accompanied with an inversion of the rectifying direction. The molecular ortibals and spin-resolved transmission analysis indicate that the dominant mechanism of rectification suffers a change at this specific length, that is, from asymmetric shift of molecular eigenlevels to asymmetric spatial localization of wave functions upon the reversal of bias. This work demonstrates a feasible way to control the rectification in organic co-oligomer spin diodes by adjusting the molecular length. (paper)

  14. Protonation of octadecylamine Langmuir monolayer by adsorption of halide counterions

    Science.gov (United States)

    Sung, Woongmo; Avazbaeva, Zaure; Lee, Jonggwan; Kim, Doseok

    Langmuir monolayer consisting of octadecylamine (C18H37NH2, ODA) was investigated by heterodyne vibrational sum-frequency generation (HD-VSFG) spectroscopy in conjunction with surface pressure-area (π- A) isotherm, and the result was compared with that from cationic-lipid (DPTAP) Langmuir monolayer. In case of ODA monolayer on pure water, both SF intensity of water OH band and the surface pressure were significantly smaller than those of the DPTAP monolayer implying that only small portion of the amine groups (-NH3+ is protonated in the monolayer. In the presence of sodium halides (NaCl and NaI) in the subphase water, it was found that the sign of Imχ (2) of water OH band remained the same as that of the ODA monolayer on pure water, but there was a substantial increase in the SF amplitude. From this, we propose that surface excess of the halide counterions (Cl- and I-) makes the solution condition near the ODA monolayer/water interface more acidic so that ODA molecules in the monolayer are more positively charged, which works to align the water dipoles at the interface.

  15. Tumor delivery of antisense oligomer using trastuzumab within a streptavidin nanoparticle

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yi [University of Massachusetts Medical School, Division of Nuclear Medicine, Department of Radiology, Worcester, MA (United States); Yale University, Yale PET Center, Department of Diagnostic Radiology, New Haven, CT (United States); Liu, Xinrong; Chen, Ling; Cheng, Dengfeng; Rusckowski, Mary [University of Massachusetts Medical School, Division of Nuclear Medicine, Department of Radiology, Worcester, MA (United States); Hnatowich, Donald J. [University of Massachusetts Medical School, Division of Nuclear Medicine, Department of Radiology, Worcester, MA (United States); Umass Medical School, Department of Radiology, Worcester, MA (United States)

    2009-12-15

    Trastuzumab (Herceptin trademark) is often internalized following binding to Her2+ tumor cells. The objective of this study was to investigate whether trastuzumab can be used as a specific carrier to deliver antisense oligomers into Her2+ tumor cells both in vitro and in vivo. A biotinylated MORF oligomer antisense to RhoC mRNA and its biotinylated sense control were labeled with either lissamine for fluorescence detection or {sup 99m}Tc for radioactivity detection and were linked to biotinylated trastuzumab via streptavidin. The nanoparticles were studied in SUM190 (RhoC+, Her2+) study and SUM149 (RhoC+, Her2-) control cells in culture and as xenografts in mice. As evidence of unimpaired Her2+ binding of trastuzumab within the nanoparticle, accumulations were clearly higher in SUM190 compared to SUM149 cells and, by whole-body imaging, targeting of SUM190 tumor was similar to that expected for a radiolabeled trastuzumab. As evidence of internalization, fluorescence microscopy images of cells grown in culture and obtained from xenografts showed uniform cytoplasm distribution of the lissamine-MORF. An invasion assay showed decreased RhoC expression in SUM190 cells when incubated with the antisense MORF nanoparticles at only 100 nM. Both in cell culture and in animals, the nanoparticle with trastuzumab as specific carrier greatly improved tumor delivery of the antisense oligomer against RhoC mRNA into tumor cells overexpressing Her2 and may be of general utility. (orig.)

  16. Chemical and Biological Significance of Oenothein B and Related Ellagitannin Oligomers with Macrocyclic Structure

    Directory of Open Access Journals (Sweden)

    Takashi Yoshida

    2018-03-01

    Full Text Available In 1990, Okuda et al. reported the first isolation and characterization of oenothein B, a unique ellagitannin dimer with a macrocyclic structure, from the Oenothera erythrosepala leaves. Since then, a variety of macrocyclic analogs, including trimeric–heptameric oligomers have been isolated from various medicinal plants belonging to Onagraceae, Lythraceae, and Myrtaceae. Among notable in vitro and in vivo biological activities reported for oenothein B are antioxidant, anti-inflammatory, enzyme inhibitory, antitumor, antimicrobial, and immunomodulatory activities. Oenothein B and related oligomers, and/or plant extracts containing them have thus attracted increasing interest as promising targets for the development of chemopreventive agents of life-related diseases associated with oxygen stress in human health. In order to better understand the significance of this type of ellagitannin in medicinal plants, this review summarizes (1 the structural characteristics of oenothein B and related dimers; (2 the oxidative metabolites of oenothein B up to heptameric oligomers; (3 the distribution of oenotheins and other macrocyclic analogs in the plant kingdom; and (4 the pharmacological activities hitherto documented for oenothein B, including those recently found by our laboratory.

  17. Defects and oxidation of group-III monochalcogenide monolayers

    Science.gov (United States)

    Guo, Yu; Zhou, Si; Bai, Yizhen; Zhao, Jijun

    2017-09-01

    Among various two-dimensional (2D) materials, monolayer group-III monochalcogenides (GaS, GaSe, InS, and InSe) stand out owing to their potential applications in microelectronics and optoelectronics. Devices made of these novel 2D materials are sensitive to environmental gases, especially O2 molecules. To address this critical issue, here we systematically investigate the oxidization behaviors of perfect and defective group-III monochalcogenide monolayers by first-principles calculations. The perfect monolayers show superior oxidation resistance with large barriers of 3.02-3.20 eV for the dissociation and chemisorption of O2 molecules. In contrast, the defective monolayers with single chalcogen vacancy are vulnerable to O2, showing small barriers of only 0.26-0.36 eV for the chemisorption of an O2 molecule. Interestingly, filling an O2 molecule to the chalcogen vacancy of group-III monochalcogenide monolayers could preserve the electronic band structure of the perfect system—the bandgaps are almost intact and the carrier effective masses are only moderately disturbed. On the other hand, the defective monolayers with single vacancies of group-III atoms carry local magnetic moments of 1-2 μB. These results help experimental design and synthesis of group-III monochalcogenides based 2D devices with high performance and stability.

  18. Co-existence of two different α-synuclein oligomers with different core structures determined by hydrogen/deuterium exchange mass spectrometry

    DEFF Research Database (Denmark)

    Paslawski, Wojciech; Mysling, Simon; Thomsen, Karen

    2014-01-01

    Neurodegenerative disorders are characterized by the formation of protein oligomers and amyloid fibrils, which in the case of Parkinson's disease involves the protein α-synuclein (αSN). Cytotoxicity is mainly associated with the oligomeric species, but we still know little about their assembly...... are protected from exchange with D2 O until they dissociate into monomeric αSN by EX1 exchange kinetics. Fewer residues are protected against exchange in oligomer type II, but this type does not revert to αSN monomers. Both oligomers are protected in the core sequence Y39-A89. Based on incubation studies...

  19. Regeneration of cello-oligomers via selective depolymerization of cellulose fibers derived from printed paper wastes.

    Science.gov (United States)

    Voon, Lee Ken; Pang, Suh Cem; Chin, Suk Fun

    2016-05-20

    Cellulose extracted from printed paper wastes were selectively depolymerized under controlled conditions into cello-oligomers of controllable chain lengths via dissolution in an ionic liquid, 1-allyl-3-methylimidazolium chloride (AMIMCl), and in the presence of an acid catalyst, Amberlyst 15DRY. The depolymerization process was optimized against reaction temperature, concentration of acid catalyst, and reaction time. Despite rapid initial depolymerization process, the rate of cellulose depolymerization slowed down gradually upon prolonged reaction time, with 75.0 wt% yield of regenerated cello-oligomers (mean Viscosimetric Degree of Polymerization value of 81) obtained after 40 min. The depolymerization of cellulose fibers at 80 °C appeared to proceed via a second-order kinetic reaction with respect to the catalyst concentration of 0.23 mmol H3O(+). As such, the cellulose depolymerization process could afford some degree of control on the degree of polymerization or chain lengths of cello-oligomers formed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Organization of the resting TCR in nanoscale oligomers.

    Science.gov (United States)

    Schamel, Wolfgang W A; Alarcón, Balbino

    2013-01-01

    Despite the low affinity of the T-cell antigen receptor (TCR) for its peptide/major histocompatibility complex (pMHC) ligand, T cells are very sensitive to their antigens. This paradox can be resolved if we consider that the TCR may be organized into pre-existing oligomers or nanoclusters. Such structures could improve antigen recognition by increasing the functional affinity (avidity) of the TCR-pMHC interaction and by allowing cooperativity between individual TCRs. Up to approximately 20 TCRs become tightly apposed in these nanoclusters, often in a linear manner, and such structures could reflect a relatively generalized phenomenon: the non-random concentration of membrane receptors in specific areas of the plasma membrane known as protein islands. The association of TCRs into nanoclusters can explain the enhanced kinetics of the pMHC-TCR interaction in two dimensional versus three dimensional systems, but also their existence calls for a revision of the TCR triggering models based on pMHC-induced TCR clustering. Interestingly, the B-cell receptor and the FcεRI have also been shown to form nanoclusters, suggesting that the formation of pre-existing receptor oligomers could be widely used in the immune system. © 2012 John Wiley & Sons A/S. Published by Blackwell Publishing Ltd.

  1. Single-molecule studies of oligomer extraction and uptake of dyes in poly(dimethylsiloxane) films.

    Science.gov (United States)

    Lange, Jeffrey J; Collinson, Maryanne M; Culbertson, Christopher T; Higgins, Daniel A

    2009-12-15

    Single-molecule microscopic methods were used to probe the uptake, mobility, and entrapment of dye molecules in cured poly(dimethylsiloxane) (PDMS) films as a function of oligomer extraction. The results are relevant to the use of PDMS in microfluidic separations, pervaporation, solid-phase microextraction, and nanofiltration. PDMS films were prepared by spin-casting dilute solutions of Sylgard 184 onto glass coverslips, yielding approximately 1.4 microm thick films after curing. Residual oligomers were subsequently extracted from the films by "spin extraction". In this procedure, 200 microL aliquots of isopropyl alcohol were repeatedly dropped onto the film surface and spun off at 2000 rpm. Samples extracted 5, 10, 20, and 40 times were investigated. Dye molecules were loaded into these films by spin-casting nanomolar dye solutions onto the films. Both neutral perylene diimide (N,N'-bis(butoxypropyl)perylene-3,4,9,10-tetracarboxylic diimide) and cationic rhodamine 6G (R6G) dyes were employed. The films were imaged by confocal fluorescence microscopy. The images obtained depict nonzero populations of fixed and mobile molecules in all films. Cross-correlation methods were used to quantitatively determine the population of fixed molecules in a given region, while a Bayesian burst analysis was used to obtain the total population of molecules. The results show that the total amount of dye loaded increases with increased oligomer extraction, while the relative populations of fixed and mobile molecules decrease and increase, respectively. Bulk R6G data also show greater dye loading with increased oligomer extraction.

  2. Programmable Oligomers Targeting 5′-GGGG-3′ in the Minor Groove of DNA and NF-κB Binding Inhibition

    Science.gov (United States)

    Chenoweth, David M.; Poposki, Julie A.; Marques, Michael A.; Dervan, Peter B.

    2009-01-01

    A series of hairpin oligomers containing benzimidazole (Bi) and imidazopyridine (Ip) rings were synthesized and screened to target 5′-WGGGGW-3′, a core sequence in the DNA binding site of NF-κB, a prolific transcription factor important in biology and disease. Five Bi and Ip containing oligomers bound to the 5′-WGGGGW-3′ site with high affinity. One of the oligomers (Im-Im-Im-Im-γ-PyBi-PyBi-β-Dp) was able to inhibit DNA binding by the transcription factor NF-κB. PMID:17095230

  3. Integrated circuits based on conjugated polymer monolayer.

    Science.gov (United States)

    Li, Mengmeng; Mangalore, Deepthi Kamath; Zhao, Jingbo; Carpenter, Joshua H; Yan, Hongping; Ade, Harald; Yan, He; Müllen, Klaus; Blom, Paul W M; Pisula, Wojciech; de Leeuw, Dago M; Asadi, Kamal

    2018-01-31

    It is still a great challenge to fabricate conjugated polymer monolayer field-effect transistors (PoM-FETs) due to intricate crystallization and film formation of conjugated polymers. Here we demonstrate PoM-FETs based on a single monolayer of a conjugated polymer. The resulting PoM-FETs are highly reproducible and exhibit charge carrier mobilities reaching 3 cm 2  V -1  s -1 . The high performance is attributed to the strong interactions of the polymer chains present already in solution leading to pronounced edge-on packing and well-defined microstructure in the monolayer. The high reproducibility enables the integration of discrete unipolar PoM-FETs into inverters and ring oscillators. Real logic functionality has been demonstrated by constructing a 15-bit code generator in which hundreds of self-assembled PoM-FETs are addressed simultaneously. Our results provide the state-of-the-art example of integrated circuits based on a conjugated polymer monolayer, opening prospective pathways for bottom-up organic electronics.

  4. Structural fingerprints and their evolution during oligomeric vs. oligomer-free amyloid fibril growth.

    Science.gov (United States)

    Foley, Joseph; Hill, Shannon E; Miti, Tatiana; Mulaj, Mentor; Ciesla, Marissa; Robeel, Rhonda; Persichilli, Christopher; Raynes, Rachel; Westerheide, Sandy; Muschol, Martin

    2013-09-28

    Deposits of fibrils formed by disease-specific proteins are the molecular hallmark of such diverse human disorders as Alzheimer's disease, type II diabetes, or rheumatoid arthritis. Amyloid fibril formation by structurally and functionally unrelated proteins exhibits many generic characteristics, most prominently the cross β-sheet structure of their mature fibrils. At the same time, amyloid formation tends to proceed along one of two separate assembly pathways yielding either stiff monomeric filaments or globular oligomers and curvilinear protofibrils. Given the focus on oligomers as major toxic species, the very existence of an oligomer-free assembly pathway is significant. Little is known, though, about the structure of the various intermediates emerging along different pathways and whether the pathways converge towards a common or distinct fibril structures. Using infrared spectroscopy we probed the structural evolution of intermediates and late-stage fibrils formed during in vitro lysozyme amyloid assembly along an oligomeric and oligomer-free pathway. Infrared spectroscopy confirmed that both pathways produced amyloid-specific β-sheet peaks, but at pathway-specific wavenumbers. We further found that the amyloid-specific dye thioflavin T responded to all intermediates along either pathway. The relative amplitudes of thioflavin T fluorescence responses displayed pathway-specific differences and could be utilized for monitoring the structural evolution of intermediates. Pathway-specific structural features obtained from infrared spectroscopy and Thioflavin T responses were identical for fibrils grown at highly acidic or at physiological pH values and showed no discernible effects of protein hydrolysis. Our results suggest that late-stage fibrils formed along either pathway are amyloidogenic in nature, but have distinguishable structural fingerprints. These pathway-specific fingerprints emerge during the earliest aggregation events and persist throughout the

  5. Structural fingerprints and their evolution during oligomeric vs. oligomer-free amyloid fibril growth

    Science.gov (United States)

    Foley, Joseph; Hill, Shannon E.; Miti, Tatiana; Mulaj, Mentor; Ciesla, Marissa; Robeel, Rhonda; Persichilli, Christopher; Raynes, Rachel; Westerheide, Sandy; Muschol, Martin

    2013-09-01

    Deposits of fibrils formed by disease-specific proteins are the molecular hallmark of such diverse human disorders as Alzheimer's disease, type II diabetes, or rheumatoid arthritis. Amyloid fibril formation by structurally and functionally unrelated proteins exhibits many generic characteristics, most prominently the cross β-sheet structure of their mature fibrils. At the same time, amyloid formation tends to proceed along one of two separate assembly pathways yielding either stiff monomeric filaments or globular oligomers and curvilinear protofibrils. Given the focus on oligomers as major toxic species, the very existence of an oligomer-free assembly pathway is significant. Little is known, though, about the structure of the various intermediates emerging along different pathways and whether the pathways converge towards a common or distinct fibril structures. Using infrared spectroscopy we probed the structural evolution of intermediates and late-stage fibrils formed during in vitro lysozyme amyloid assembly along an oligomeric and oligomer-free pathway. Infrared spectroscopy confirmed that both pathways produced amyloid-specific β-sheet peaks, but at pathway-specific wavenumbers. We further found that the amyloid-specific dye thioflavin T responded to all intermediates along either pathway. The relative amplitudes of thioflavin T fluorescence responses displayed pathway-specific differences and could be utilized for monitoring the structural evolution of intermediates. Pathway-specific structural features obtained from infrared spectroscopy and Thioflavin T responses were identical for fibrils grown at highly acidic or at physiological pH values and showed no discernible effects of protein hydrolysis. Our results suggest that late-stage fibrils formed along either pathway are amyloidogenic in nature, but have distinguishable structural fingerprints. These pathway-specific fingerprints emerge during the earliest aggregation events and persist throughout the

  6. A MOLECULAR-DYNAMICS STUDY OF LECITHIN MONOLAYERS

    NARCIS (Netherlands)

    AHLSTROM, P; BERENDSEN, HJC

    1993-01-01

    Two monolayers of didecanoyllecithin at the air-water interface have been studied using molecular dynamics simulations. The model system consisted of two monolayers of 42 lecithin molecules each separated by a roughly 4 nm thick slab of SPC water. The area per lecithin molecule was 0.78 nm(2)

  7. WSe2 Monolayer

    KAUST Repository

    Zhang, Shuai; Wang, Chen-Guang; Li, Ming-yang; Huang, Di; Li, Lain-Jong; Ji, Wei; Wu, Shiwei

    2017-01-01

    dichalcogenide materials, intrinsic defects in WSe2 arise surprisingly from single tungsten vacancies, leading to the hole (p-type) doping. Furthermore, we found these defects to dominate the excitonic emission of the WSe2 monolayer at low temperature. Our work

  8. "Nail" and "comb" effects of cholesterol modified NIPAm oligomers on cancer targeting liposomes

    KAUST Repository

    Li, Wengang; Deng, Lin; Moosa, Basem; Wang, Guangchao; Mashat, Afnan; Khashab, Niveen M.

    2014-01-01

    Thermosensitive liposomes are a promising approach to controlled release and reduced drug cytotoxicity. Low molecular weight N-isopropylacrylamide (NIPAm) oligomers (NOs) with different architectures (main chain NOs (MCNOs) and side chain NOs (SCNOs)) were synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization and radical polymerization and then separately used to prepare thermosensitive liposomes. A more controlled and enhanced release was observed for both NO liposomes compared to pristine ones. Two release mechanisms depending on the oligomer architecture, namely "nail" for MCNOs and "comb" for SCNOs, are proposed. In addition to thermosensitivity, the cancer targeting property of NO liposomes was achieved by further biotinylation of the delivery system. © The Royal Society of Chemistry.

  9. Liquid Crystalline Thermosets from Ester, Ester-imide, and Ester-amide Oligomers

    Science.gov (United States)

    Dingemans, Theodorus J. (Inventor); Weiser, Erik S. (Inventor); St. Clair, Terry L. (Inventor)

    2009-01-01

    Main chain thermotropic liquid crystal esters, ester-imides, and ester-amides were prepared from AA, BB, and AB type monomeric materials and end-capped with phenylacetylene, phenylmaleimide, or nadimide reactive end-groups. The end-capped liquid crystal oligomers are thermotropic and have, preferably, molecular weights in the range of approximately 1000-15,000 grams per mole. The end-capped liquid crystaloligomers have broad liquid crystalline melting ranges and exhibit high melt stability and very low melt viscosities at accessible temperatures. The end-capped liquid crystal oli-gomers are stable forup to an hour in the melt phase. They are highly processable by a variety of melt process shape forming and blending techniques. Once processed and shaped, the end-capped liquid crystal oigomers were heated to further polymerize and form liquid crystalline thermosets (LCT). The fully cured products are rubbers above their glass transition temperatures.

  10. Amyloid oligomer structure characterization from simulations: A general method

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Phuong H., E-mail: phuong.nguyen@ibpc.fr [Laboratoire de Biochimie Théorique, UPR 9080, CNRS Université Denis Diderot, Sorbonne Paris Cité IBPC, 13 rue Pierre et Marie Curie, 75005 Paris (France); Li, Mai Suan [Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw (Poland); Derreumaux, Philippe, E-mail: philippe.derreumaux@ibpc.fr [Laboratoire de Biochimie Théorique, UPR 9080, CNRS Université Denis Diderot, Sorbonne Paris Cité IBPC, 13 rue Pierre et Marie Curie, 75005 Paris (France); Institut Universitaire de France, 103 Bvd Saint-Germain, 75005 Paris (France)

    2014-03-07

    Amyloid oligomers and plaques are composed of multiple chemically identical proteins. Therefore, one of the first fundamental problems in the characterization of structures from simulations is the treatment of the degeneracy, i.e., the permutation of the molecules. Second, the intramolecular and intermolecular degrees of freedom of the various molecules must be taken into account. Currently, the well-known dihedral principal component analysis method only considers the intramolecular degrees of freedom, and other methods employing collective variables can only describe intermolecular degrees of freedom at the global level. With this in mind, we propose a general method that identifies all the structures accurately. The basis idea is that the intramolecular and intermolecular states are described in terms of combinations of single-molecule and double-molecule states, respectively, and the overall structures of oligomers are the product basis of the intramolecular and intermolecular states. This way, the degeneracy is automatically avoided. The method is illustrated on the conformational ensemble of the tetramer of the Alzheimer's peptide Aβ{sub 9−40}, resulting from two atomistic molecular dynamics simulations in explicit solvent, each of 200 ns, starting from two distinct structures.

  11. Orientational epitaxy in adsorbed monolayers

    International Nuclear Information System (INIS)

    Novaco, A.D.; McTague, J.P.

    1977-01-01

    The ground state for adsorbed monolayers on crystalline substrates is shown to involve a definite relative orientation of the substrate and adsorbate crystal axes, even when the relative lattice parameters are incommensurate. The rotation angle which defines the structure of the monolayer-substrate system is determined by the competition between adsorbate-substrate and adsorbate-adsorbate energy terms, and is generally not a symmetry angle. Numerical predictions are presented for the rare gas-graphite systems, whose interaction potentials are rather well known. Recent LEED data for some of these systems appear to corroborate these predictions

  12. Theoretical study of stability geometrical and electronic structure of (BeHsub(2))sub(n) oligomers

    Energy Technology Data Exchange (ETDEWEB)

    Sukhanov, L P; Boldyrev, A I; Charkin, O P [AN SSSR, Moscow. Inst. Novykh Khimicheskikh Problem

    1983-01-01

    The Hartree-Fock-Ruthane method with the Roos-Siegbahn two-exponent basis is used to calculate stability, geometrical and electronic structures of (BeHsub(2))sub(n) oligomers, where n=1, 2, 3, 4 and 6. It is shown that with the growth of oligomerization degree n stability of linear band structure is increased as compared with other configurations including high-coordination volumetric ones. Tendencies in formation with n growth of geometrical, energetic characteristics, electronic structure of (BeHsub(2))sub(n) oligomers of band type are analysed.

  13. Subcellular topological effect of particle monolayers on cell shapes and functions.

    Science.gov (United States)

    Miura, Manabu; Fujimoto, Keiji

    2006-12-01

    We studied topological effects of subcellular roughness displayed by a closely packed particle monolayer on adhesion and growth of endothelial cells. Poly(styrene-co-acrylamide) (SA) particles were prepared by soap-free emulsion copolymerization. Particle monolayers were prepared by Langmuir-Blodgett deposition using particles, which were 527 (SA053) and 1270 nm (SA127) in diameter. After 24-h incubation, cells tightly adhered on a tissue culture polystyrene dish and randomly spread. On the other hand, cells attached on particle monolayers were stretched into a narrow stalk-like shape. Lamellipodia spread from the leading edge of cells attached on SA053 monolayer to the top of the particles and gradually gathered to form clusters. This shows that cell-cell adhesion became stronger than cell-substrate interaction. Cells attached to SA127 monolayer extended to the reverse side of a particle monolayer and engulfed particles. They remained immobile without migration 24h after incubation. This shows that the inhibition of extensions on SA127 monolayer could inhibit cell migration and cell proliferation. Cell growth on the particle monolayers was suppressed compared with a flat TCPS dish. The number of cells on SA053 gradually increased, whereas that on SA127 decreased with time. When the cell seeding density was increased to 200,000 cells cm(-2), some adherent cells gradually became into contact with adjacent cells. F-actin condensations were formed at the frame of adherent cells and the thin filaments grew from the edges to connect each other with time. For the cell culture on SA053 monolayer, elongated cells showed a little alignment. Cells showed not arrangement of actin stress fibers but F-actin condensation at the contact regions with neighboring cells. Interestingly, the formed cell monolayer could be readily peeled from the particle monolayer. These results indicate that endothelial cells could recognize the surface roughness displayed by particle monolayers and

  14. Viscosity of nanoconfined polyamide-6,6 oligomers: atomistic reverse nonequilibrium molecular dynamics simulation.

    Science.gov (United States)

    Eslami, Hossein; Müller-Plathe, Florian

    2010-01-14

    Our new simulation scheme in isosurface-isothermal-isobaric ensemble [Eslami, H.; Mozaffari, F.; Moghadasi, J.; Müller-Plathe, F. J. Chem. Phys. 2008, 129, 194702], developed to simulate confined fluids in equilibrium with bulk, is applied to simulate polyamide-6,6 oligomers confined between graphite surfaces. The reverse nonequilibrium molecular dynamics simulation technique is employed to shear the graphite surfaces. In this work, six confined systems, with different surface separations, as well as the bulk fluid are simulated. Our results show a viscosity increase with respect to the bulk fluid, with decreasing distance between surfaces. Also, the calculated viscosities of the confined systems show an oscillatory behavior with maxima corresponding to well-formed layers between the surfaces. We observe a substantial slip at the surfaces, with the slip length depending on the shear rate and on the slit width. The slip length and the slip velocity show oscillatory behavior with out-of-phase oscillations with respect to the solvation force oscillations. Moreover, the temperature difference between coldest and hottest parts of the simulation box depends on the shear rate and on the layering effect (solvation force oscillations). An analysis of oligomer deformation under flow shows preferential alignment of oligomers parallel to the surfaces with increasing shear rate.

  15. NMR studies of DNA oligomers and their interactions with minor groove binding ligands

    Energy Technology Data Exchange (ETDEWEB)

    Fagan, Patricia A. [Univ. of California, Berkeley, CA (United States). Dept. of Chemistry

    1996-05-01

    The cationic peptide ligands distamycin and netropsin bind noncovalently to the minor groove of DNA. The binding site, orientation, stoichiometry, and qualitative affinity of distamycin binding to several short DNA oligomers were investigated by NMR spectroscopy. The oligomers studied contain A,T-rich or I,C-rich binding sites, where I = 2-desaminodeoxyguanosine. I•C base pairs are functional analogs of A•T base pairs in the minor groove. The different behaviors exhibited by distamycin and netropsin binding to various DNA sequences suggested that these ligands are sensitive probes of DNA structure. For sites of five or more base pairs, distamycin can form 1:1 or 2:1 ligand:DNA complexes. Cooperativity in distamycin binding is low in sites such as AAAAA which has narrow minor grooves, and is higher in sites with wider minor grooves such as ATATAT. The distamycin binding and base pair opening lifetimes of I,C-containing DNA oligomers suggest that the I,C minor groove is structurally different from the A,T minor groove. Molecules which direct chemistry to a specific DNA sequence could be used as antiviral compounds, diagnostic probes, or molecular biology tools. The author studied two ligands in which reactive groups were tethered to a distamycin to increase the sequence specificity of the reactive agent.

  16. Molecular printboards: monolayers of beta-cyclodextrins on silicon oxide surfaces.

    Science.gov (United States)

    Onclin, Steffen; Mulder, Alart; Huskens, Jurriaan; Ravoo, Bart Jan; Reinhoudt, David N

    2004-06-22

    Monolayers of beta-cyclodextrin host molecules have been prepared on SiO2 surfaces. An ordered and stable cyano-terminated monolayer was modified in three consecutive surface reactions. First, the cyanide groups were reduced to their corresponding free amines using Red Al as a reducing agent. Second, 1,4-phenylene diisothiocyanate was used to react with the amine monolayer where it acts as a linking molecule, exposing isothiocyanates that can be derivatized further. Finally, per-6-amino beta-cyclodextrin was reacted with these isothiocyanate functions to yield a monolayer exposing beta-cyclodextrin. All monolayers were characterized by contact angle measurements, ellipsometric thickness measurements, Brewster angle Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and time-of-flight secondary ion mass spectrometry, which indicate the formation of a densely packed cyclodextrin surface. It was demonstrated that the beta-cyclodextrin monolayer could bind suitable guest molecules in a reversible manner. A fluorescent molecule (1), equipped with two adamantyl groups for complexation, was adsorbed onto the host monolayer from solution to form a monolayer of guest molecules. Subsequently, the guest molecules were desorbed from the surface by competition with increasing beta-cyclodextrin concentration in solution. The data were fitted using a model. An intrinsic binding constant of 3.3 +/- 1 x 10(5) M(-1) was obtained, which corresponds well to previously obtained results with a divalent guest molecule on beta-cyclodextrin monolayers on gold. In addition, the number of guest molecules bound to the host surface was determined, and a surface coverage of ca. 30% was found.

  17. Formation of a stable oligomer of beta-2 microglobulin requires only transient encounter with Cu(II).

    Science.gov (United States)

    Calabrese, Matthew F; Miranker, Andrew D

    2007-03-16

    Beta-2 Microglobulin (beta2m) is a small, globular protein, with high solubility under conditions comparable to human serum. A complication of hemodialysis in renal failure patients is the deposition of unmodified beta2m as amyloid fibers. In vitro, exposure of beta2m to equimolar Cu(2+) under near-physiological conditions can result in self-association leading to amyloid fiber formation. Previously, we have shown that the early steps in this process involve a catalyzed structural rearrangement followed by formation of discrete oligomers. These oligomers, however, have a continued requirement for Cu(2+) while mature fibers are resistant to addition of metal chelate. Here, we report that the transition from Cu(2+) dependent to chelate resistant states occurs in the context of small oligomers, dimeric to hexameric in size. These species require Cu(2+) to form, but once generated, do not need metal cation for stability. Importantly, this transition occurs gradually over several days and the resulting oligomers are isolatable and kinetically stable on timescales exceeding weeks. In addition, formation is enhanced by levels of urea similar to those found in hemodialysis patients. Our results are consistent with our hypothesis that transient encounter of full-length wild-type beta2m with transition metal cation at the dialysis membrane interface is causal to dialysis related amyloidosis.

  18. Metal ion interaction with phosphorylated tyrosine analogue monolayers on gold.

    Science.gov (United States)

    Petoral, Rodrigo M; Björefors, Fredrik; Uvdal, Kajsa

    2006-11-23

    Phosphorylated tyrosine analogue molecules (pTyr-PT) were assembled onto gold substrates, and the resulting monolayers were used for metal ion interaction studies. The monolayers were characterized by X-ray photoelectron spectroscopy (XPS), infrared reflection-absorption spectroscopy (IRAS), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS), both prior to and after exposure to metal ions. XPS verified the elemental composition of the molecular adsorbate and the presence of metal ions coordinated to the phosphate groups. Both the angle-dependent XPS and IRAS results were consistent with the change in the structural orientation of the pTyr-PT monolayer upon exposure to metal ions. The differential capacitance of the monolayers upon coordination of the metal ions was evaluated using EIS. These metal ions were found to significantly change the capacitance of the pTyr-PT monolayers in contrast to the nonphosphorylated tyrosine analogue (TPT). CV results showed reduced electrochemical blocking capabilities of the phosphorylated analogue monolayer when exposed to metal ions, supporting the change in the structure of the monolayer observed by XPS and IRAS. The largest change in the structure and interfacial capacitance was observed for aluminum ions, compared to calcium, magnesium, and chromium ions. This type of monolayer shows an excellent capability to coordinate metal ions and has a high potential for use as sensing layers in biochip applications to monitor the presence of metal ions.

  19. Mechanical and electronic properties of Janus monolayer transition metal dichalcogenides

    Science.gov (United States)

    Shi, Wenwu; Wang, Zhiguo

    2018-05-01

    The mechanical and electronic properties of Janus monolayer transition metal dichalcogenides MXY (M  =  Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W; X/Y  =  S, Se, Te) were investigated using density functional theory. Results show that breaking the out-of-plane structural symmetry can be used to tune the electronic and mechanical behavior of monolayer transition metal dichalcogenides. The band gaps of monolayer WXY and MoXY are in the ranges of 0.16–1.91 and 0.94–1.69 eV, respectively. A semiconductor to metallic phase transition occurred in Janus monolayer MXY (M  =  Ti, Zr and Hf). The monolayers MXY (M  =  V, Nb, Ta and Cr) show metallic characteristics, which show no dependence on the structural symmetry breaking. The mechanical properties of MXY depended on the composition. Monolayer MXY (M  =  Mo, Ti, Zr, Hf and W) showed brittle characteristic, whereas monolayer CrXY and VXY are with ductile characteristic. The in-plane stiffness of pristine and Janus monolayer MXY are in the range between 22 and 158 N m‑1. The tunable electronic and mechanical properties of these 2D materials would advance the development of ultra-sensitive detectors, nanogenerators, low-power electronics, and energy harvesting and electromechanical systems.

  20. Some biological actions of PEG-conjugated RNase A oligomers

    Czech Academy of Sciences Publication Activity Database

    Poučková, P.; Škvor, J.; Gotte, G.; Vottariello, F.; Slavík, Tomáš; Matoušek, Josef; Laurents, D. V.; Libonati, M.; Souček, J.

    2006-01-01

    Roč. 53, č. 1 (2006), s. 79-85 ISSN 0028-2685 R&D Projects: GA ČR GA523/04/0755; GA MZd NR8233 Grant - others:Spanish Ministerio de Ciencia y Technologia BQU2003-05227 Institutional research plan: CEZ:AV0Z50450515 Keywords : RNase A oligomers * polyethylene glycol conjugates * anti-tumour activity Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.247, year: 2006

  1. Mass Spectrometric Characterization of Oligomers in Pseudomonas aeruginosa Azurin Solutions

    Czech Academy of Sciences Publication Activity Database

    Sokolová, L.; Williamson, H.; Sýkora, Jan; Hof, Martin; Gray, H. B.; Brutschy, B.; Vlček, Antonín

    2011-01-01

    Roč. 115, č. 16 (2011), s. 4790-4800 ISSN 1520-6106 R&D Projects: GA MŠk(CZ) ME10124; GA MŠk(CZ) LC06063 Institutional research plan: CEZ:AV0Z40400503 Keywords : mass spectrometry * oligomers * pseudomonas aeruginosa azurin solutions Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.696, year: 2011

  2. Humans Can Taste Glucose Oligomers Independent of the hT1R2/hT1R3 Sweet Taste Receptor.

    Science.gov (United States)

    Lapis, Trina J; Penner, Michael H; Lim, Juyun

    2016-08-23

    It is widely accepted that humans can taste mono- and disaccharides as sweet substances, but they cannot taste longer chain oligo- and polysaccharides. From the evolutionary standpoint, the ability to taste starch or its oligomeric hydrolysis products would be highly adaptive, given their nutritional value. Here, we report that humans can taste glucose oligomer preparations (average degree of polymerization 7 and 14) without any other sensorial cues. The same human subjects could not taste the corresponding glucose polymer preparation (average degree of polymerization 44). When the sweet taste receptor was blocked by lactisole, a known sweet inhibitor, subjects could not detect sweet substances (glucose, maltose, and sucralose), but they could still detect the glucose oligomers. This suggests that glucose oligomer detection is independent of the hT1R2/hT1R3 sweet taste receptor. Human subjects described the taste of glucose oligomers as "starchy," while they describe sugars as "sweet." The dose-response function of glucose oligomer was also found to be indistinguishable from that of glucose on a molar basis. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. GalaxyHomomer: a web server for protein homo-oligomer structure prediction from a monomer sequence or structure.

    Science.gov (United States)

    Baek, Minkyung; Park, Taeyong; Heo, Lim; Park, Chiwook; Seok, Chaok

    2017-07-03

    Homo-oligomerization of proteins is abundant in nature, and is often intimately related with the physiological functions of proteins, such as in metabolism, signal transduction or immunity. Information on the homo-oligomer structure is therefore important to obtain a molecular-level understanding of protein functions and their regulation. Currently available web servers predict protein homo-oligomer structures either by template-based modeling using homo-oligomer templates selected from the protein structure database or by ab initio docking of monomer structures resolved by experiment or predicted by computation. The GalaxyHomomer server, freely accessible at http://galaxy.seoklab.org/homomer, carries out template-based modeling, ab initio docking or both depending on the availability of proper oligomer templates. It also incorporates recently developed model refinement methods that can consistently improve model quality. Moreover, the server provides additional options that can be chosen by the user depending on the availability of information on the monomer structure, oligomeric state and locations of unreliable/flexible loops or termini. The performance of the server was better than or comparable to that of other available methods when tested on benchmark sets and in a recent CASP performed in a blind fashion. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  4. A pentacene monolayer trapped between graphene and a substrate.

    Science.gov (United States)

    Zhang, Qicheng; Peng, Boyu; Chan, Paddy Kwok Leung; Luo, Zhengtang

    2015-09-21

    A self-assembled pentacene monolayer can be fabricated between the solid-solid interface of few-layered graphene (FLG) and the mica substrate, through a diffusion-spreading method. By utilizing a transfer method that allows us to sandwich pentacene between graphene and mica, followed by controlled annealing, we enabled the diffused pentacene to be trapped in the interfaces and led to the formation of a stable monolayer. We found that the formation of a monolayer is kinetically favored by using a 2D Ising lattice gas model for pentacene trapped between the graphene-substrate interfaces. This kinetic Monte Carlo simulation results indicate that, due to the graphene substrate enclosure, the spreading of the first layer proceeds faster than the second layer, as the kinetics favors the filling of voids by molecules from the second layer. This graphene assisted monolayer assembly method provides a new avenue for the fabrication of two-dimensional monolayer structures.

  5. Monolayer atomic crystal molecular superlattices

    Science.gov (United States)

    Wang, Chen; He, Qiyuan; Halim, Udayabagya; Liu, Yuanyue; Zhu, Enbo; Lin, Zhaoyang; Xiao, Hai; Duan, Xidong; Feng, Ziying; Cheng, Rui; Weiss, Nathan O.; Ye, Guojun; Huang, Yun-Chiao; Wu, Hao; Cheng, Hung-Chieh; Shakir, Imran; Liao, Lei; Chen, Xianhui; Goddard, William A., III; Huang, Yu; Duan, Xiangfeng

    2018-03-01

    Artificial superlattices, based on van der Waals heterostructures of two-dimensional atomic crystals such as graphene or molybdenum disulfide, offer technological opportunities beyond the reach of existing materials. Typical strategies for creating such artificial superlattices rely on arduous layer-by-layer exfoliation and restacking, with limited yield and reproducibility. The bottom-up approach of using chemical-vapour deposition produces high-quality heterostructures but becomes increasingly difficult for high-order superlattices. The intercalation of selected two-dimensional atomic crystals with alkali metal ions offers an alternative way to superlattice structures, but these usually have poor stability and seriously altered electronic properties. Here we report an electrochemical molecular intercalation approach to a new class of stable superlattices in which monolayer atomic crystals alternate with molecular layers. Using black phosphorus as a model system, we show that intercalation with cetyl-trimethylammonium bromide produces monolayer phosphorene molecular superlattices in which the interlayer distance is more than double that in black phosphorus, effectively isolating the phosphorene monolayers. Electrical transport studies of transistors fabricated from the monolayer phosphorene molecular superlattice show an on/off current ratio exceeding 107, along with excellent mobility and superior stability. We further show that several different two-dimensional atomic crystals, such as molybdenum disulfide and tungsten diselenide, can be intercalated with quaternary ammonium molecules of varying sizes and symmetries to produce a broad class of superlattices with tailored molecular structures, interlayer distances, phase compositions, electronic and optical properties. These studies define a versatile material platform for fundamental studies and potential technological applications.

  6. Surface-segregated monolayers: a new type of ordered monolayer for surface modification of organic semiconductors.

    Science.gov (United States)

    Wei, Qingshuo; Tajima, Keisuke; Tong, Yujin; Ye, Shen; Hashimoto, Kazuhito

    2009-12-09

    We report a new type of ordered monolayer for the surface modification of organic semiconductors. Fullerene derivatives with fluorocarbon chains ([6,6]-phenyl-C(61)-buryric acid 1H,1H-perfluoro-1-alkyl ester or FC(n)) spontaneously segregated as a monolayer on the surface of a [6,6]-phenyl-C(61)-butyric acid methyl ester (PCBM) film during a spin-coating process from the mixture solutions, as confirmed by X-ray photoelectron spectroscopy (XPS). Ultraviolet photoelectron spectroscopy (UPS) showed the shift of ionization potentials (IPs) depending on the fluorocarbon chain length, indicating the formation of surface dipole moments. Surface-sensitive vibrational spectroscopy, sum frequency generation (SFG) revealed the ordered molecular orientations of the C(60) moiety in the surface FC(n) layers. The intensity of the SFG signals from FC(n) on the surface showed a clear odd-even effect when the length of the fluorocarbon chain was changed. This new concept of the surface-segregated monolayer provides a facile and versatile approach to modifying the surface of organic semiconductors and is applicable to various organic optoelectronic devices.

  7. Nanoparticle for delivery of antisense γPNA oligomers targeting CCR5.

    Science.gov (United States)

    Bahal, Raman; McNeer, Nicole Ali; Ly, Danith H; Saltzman, W Mark; Glazer, Peter M

    2013-01-01

    The development of a new class of peptide nucleic acids (PNAs), i.e., gamma PNAs (γPNAs), creates the need for a general and effective method for its delivery into cells for regulating gene expression in mammalian cells. Here we report the antisense activity of a recently developed hydrophilic and biocompatible diethylene glycol (miniPEG)-based gamma peptide nucleic acid called MPγPNAs via its delivery by poly(lactide-co-glycolide) (PLGA)-based nanoparticle system. We show that MPγPNA oligomers designed to bind to the selective region of chemokine receptor 5 (CC R5) transcript, induce potent and sequence-specific antisense effects as compared with regular PNA oligomers. In addition, PLGA nanoparticle delivery of MPγPNAs is not toxic to the cells. The findings reported in this study provide a combination of γPNA technology and PLGA-based nanoparticle delivery method for regulating gene expression in live cells via the antisense mechanism.

  8. Density determination of langmuir-blodgett monolayer films using x-ray reflectivity technique

    International Nuclear Information System (INIS)

    Damar Yoga Kusuma

    2015-01-01

    Monolayer deposition by Langmuir-Blodgett technique produces monolayer films that are uniform with controllable thickness down to nanometer scale. To evaluate the quality of the monolayer deposition, X-ray reflectivity technique are employed to monitor the monolayers density. Langmuir-Blodgett monolayer with good coverage and uniformity results in film density close to its macroscopic film counterpart whereas films with presence of air gaps shows lower density compared to its macroscopic film counterpart. (author)

  9. Nonlinear optical characteristics of monolayer MoSe{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Le, Chinh Tam; Ullah, Farman; Senthilkumar, Velusamy; Kim, Yong Soo [Department of Physics and Energy Harvest Storage Research Center, University of Ulsan (Korea, Republic of); Clark, Daniel J.; Jang, Joon I. [Department of Physics, Applied Physics and Astronomy, Binghamton University, Binghamton, NY (United States); Sim, Yumin; Seong, Maeng-Je [Department of Physics, Chung-Ang University, Seoul (Korea, Republic of); Chung, Koo-Hyun [School of Mechanical Engineering, University of Ulsan (Korea, Republic of); Park, Hyoyeol [Electronics, Communication and Semiconductor Applications Department, Ulsan College (Korea, Republic of)

    2016-08-15

    In this study, we utilized picosecond pulses from an Nd:YAG laser to investigate the nonlinear optical characteristics of monolayer MoSe{sub 2}. Two-step growth involving the selenization of pulsed-laser-deposited MoO{sub 3} film was employed to yield the MoSe{sub 2} monolayer on a SiO{sub 2}/Si substrate. Raman scattering, photoluminescence (PL) spectroscopy, and atomic force microscopy verified the high optical quality of the monolayer. The second-order susceptibility χ{sup (2)} was calculated to be ∝50 pm V{sup -1} at the second harmonic wavelength λ{sub SHG} ∝810 nm, which is near the optical gap of the monolayer. Interestingly, our wavelength-dependent second harmonic scan can identify the bound excitonic states including negatively charged excitons much more efficiently, compared with the PL method at room temperature. Additionally, the MoSe{sub 2} monolayer exhibits a strong laser-induced damage threshold ∝16 GW cm{sup -2} under picosecond-pulse excitation{sub .} Our findings suggest that monolayer MoSe{sub 2} can be considered as a promising candidate for high-power, thin-film-based nonlinear optical devices and applications. (copyright 2016 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. Organization in sol-gel polymerization of methacrylate co-oligomers containing trimethoxysilylpropyl methacrylate

    Czech Academy of Sciences Publication Activity Database

    Vraštil, J.; Matějka, Libor; Špaček, V.; Večeřa, M.; Prokůpek, L.

    2005-01-01

    Roč. 46, č. 25 (2005), s. 11232-11240 ISSN 0032-3861 Institutional research plan: CEZ:AV0Z40500505 Keywords : organic-inorganic hybrid * sol-gel process * oligomers Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.849, year: 2005

  11. Mechanisms leading to oligomers and SOA through aqueous photooxidation: insights from OH radical oxidation of acetic acid and methylglyoxal

    Directory of Open Access Journals (Sweden)

    Y. Tan

    2012-01-01

    Full Text Available Previous experiments have demonstrated that the aqueous OH radical oxidation of methylglyoxal produces low volatility products including pyruvate, oxalate and oligomers. These products are found predominantly in the particle phase in the atmosphere, suggesting that methylglyoxal is a precursor of secondary organic aerosol (SOA. Acetic acid plays a central role in the aqueous oxidation of methylglyoxal and it is a ubiquitous product of gas phase photochemistry, making it a potential "aqueous" SOA precursor in its own right. However, the fate of acetic acid upon aqueous-phase oxidation is not well understood. In this research, acetic acid (20 μM–10 mM was oxidized by OH radicals, and pyruvic acid and methylglyoxal experimental samples were analyzed using new analytical methods, in order to better understand the formation of SOA from acetic acid and methylglyoxal. Glyoxylic, glycolic, and oxalic acids formed from acetic acid and OH radicals. In contrast to the aqueous OH radical oxidation of methylglyoxal, the aqueous OH radical oxidation of acetic acid did not produce succinic acid and oligomers. This suggests that the methylgloxal-derived oligomers do not form through the acid catalyzed esterification pathway proposed previously. Using results from these experiments, radical mechanisms responsible for oligomer formation from methylglyoxal oxidation in clouds and wet aerosols are proposed. The importance of acetic acid/acetate as an SOA precursor is also discussed. We hypothesize that this and similar chemistry is central to the daytime formation of oligomers in wet aerosols.

  12. A Fluorescent Oligothiophene-Bis-Triazine ligand interacts with PrP fibrils and detects SDS-resistant oligomers in human prion diseases.

    Science.gov (United States)

    Imberdis, Thibaut; Ayrolles-Torro, Adeline; Duarte Rodrigues, Alysson; Torrent, Joan; Alvarez-Martinez, Maria Teresa; Kovacs, Gabor G; Verdier, Jean-Michel; Robitzer, Mike; Perrier, Véronique

    2016-01-26

    Prion diseases are characterized by the accumulation in the central nervous system of an abnormally folded isoform of the prion protein, named PrP(Sc). Aggregation of PrP(Sc) into oligomers and fibrils is critically involved in the pathogenesis of prion diseases. Oligomers are supposed to be the key neurotoxic agents in prion disease, so modulation of prion aggregation pathways with small molecules can be a valuable strategy for studying prion pathogenicity and for developing new diagnostic and therapeutic approaches. We previously identified thienyl pyrimidine compounds that induce SDS-resistant PrP(Sc) (rSDS-PrP(Sc)) oligomers in prion-infected samples. Due to the low effective doses of the thienyl pyrimidine hits, we synthesized a quaterthiophene-bis-triazine compound, called MR100 to better evaluate their diagnostic and therapeutic potentials. This molecule exhibits a powerful activity inducing rSDS-PrP(Sc) oligomers at nanomolar concentrations in prion-infected cells. Fluorescence interaction studies of MR100 with mouse PrP fibrils showed substantial modification of the spectrum, and the interaction was confirmed in vitro by production of rSDS-oligomer species upon incubation of MR100 with fibrils in SDS-PAGE gel. We further explored whether MR100 compound has a potential to be used in the diagnosis of prion diseases. Our results showed that: (i) MR100 can detect rSDS-oligomers in prion-infected brain homogenates of various species, including human samples from CJD patients; (ii) A protocol, called "Rapid Centrifugation Assay" (RCA), was developed based on MR100 property of inducing rSDS-PrP(Sc) oligomers only in prion-infected samples, and avoiding the protease digestion step. RCA allows the detection of both PK-sensitive and PK-resistant PrP(Sc) species in rodents samples but also from patients with different CJD forms (sporadic and new variant); (iii) A correlation could be established between the amount of rSDS-PrP(Sc) oligomers revealed by MR100 and the

  13. Analysis of linear and cyclic oligomers in polyamide-6 without sample preparation by liquid chromatography using the sandwich injection method. II. Methods of detection and quantification and overall long-term performance.

    Science.gov (United States)

    Mengerink, Y; Peters, R; Kerkhoff, M; Hellenbrand, J; Omloo, H; Andrien, J; Vestjens, M; van der Wal, S

    2000-05-05

    By separating the first six linear and cyclic oligomers of polyamide-6 on a reversed-phase high-performance liquid chromatographic system after sandwich injection, quantitative determination of these oligomers becomes feasible. Low-wavelength UV detection of the different oligomers and selective post-column reaction detection of the linear oligomers with o-phthalic dicarboxaldehyde (OPA) and 3-mercaptopropionic acid (3-MPA) are discussed. A general methodology for quantification of oligomers in polymers was developed. It is demonstrated that the empirically determined group-equivalent absorption coefficients and quench factors are a convenient way of quantifying linear and cyclic oligomers of nylon-6. The overall long-term performance of the method was studied by monitoring a reference sample and the calibration factors of the linear and cyclic oligomers.

  14. Cholesterol facilitates interactions between α-synuclein oligomers and charge-neutral membranes

    DEFF Research Database (Denmark)

    van Maarschalkerweerd, Andreas; Vetri, Valeria; Vestergaard, Bente

    2015-01-01

    composed of anionic lipids, while the more physiologically relevant zwitterionic lipids remain intact. We present experimental evidence for significant morphological changes in zwitterionic membranes containing cholesterol, induced by α-synuclein oligomers. Depending on the lipid composition, model...... of cholesterol for mediating interactions between physiologically relevant membranes and α-synuclein....

  15. Surface Charge Transfer Doping of Monolayer Phosphorene via Molecular Adsorption.

    Science.gov (United States)

    He, Yuanyuan; Xia, Feifei; Shao, Zhibin; Zhao, Jianwei; Jie, Jiansheng

    2015-12-03

    Monolayer phosphorene has attracted much attention owing to its extraordinary electronic, optical, and structural properties. Rationally tuning the electrical transport characteristics of monolayer phosphorene is essential to its applications in electronic and optoelectronic devices. Herein, we study the electronic transport behaviors of monolayer phosphorene with surface charge transfer doping of electrophilic molecules, including 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4TCNQ), NO2, and MoO3, using density functional theory combined with the nonequilibrium Green's function formalism. F4TCNQ shows optimal performance in enhancing the p-type conductance of monolayer phosphorene. Static electronic properties indicate that the enhancement is originated from the charge transfer between adsorbed molecule and phosphorene layer. Dynamic transport behaviors demonstrate that additional channels for hole transport in host monolayer phosphorene were generated upon the adsorption of molecule. Our work unveils the great potential of surface charge transfer doping in tuning the electronic properties of monolayer phosphorene and is of significance to its application in high-performance devices.

  16. Caspase-cleaved tau exhibits rapid memory impairment associated with tau oligomers in a transgenic mouse model.

    Science.gov (United States)

    Kim, YoungDoo; Choi, Hyunwoo; Lee, WonJae; Park, Hyejin; Kam, Tae-In; Hong, Se-Hoon; Nah, Jihoon; Jung, Sunmin; Shin, Bora; Lee, Huikyong; Choi, Tae-Yong; Choo, Hyosun; Kim, Kyung-Keun; Choi, Se-Young; Kayed, Rakez; Jung, Yong-Keun

    2016-03-01

    In neurodegenerative diseases like AD, tau forms neurofibrillary tangles, composed of tau protein. In the AD brain, activated caspases cleave tau at the 421th Asp, generating a caspase-cleaved form of tau, TauC3. Although TauC3 is known to assemble rapidly into filaments in vitro, a role of TauC3 in vivo remains unclear. Here, we generated a transgenic mouse expressing human TauC3 using a neuron-specific promoter. In this mouse, we found that human TauC3 was expressed in the hippocampus and cortex. Interestingly, TauC3 mice showed drastic learning and spatial memory deficits and reduced synaptic density at a young age (2-3months). Notably, tau oligomers as well as tau aggregates were found in TauC3 mice showing memory deficits. Further, i.p. or i.c.v. injection with methylene blue or Congo red, inhibitors of tau aggregation in vitro, and i.p. injection with rapamycin significantly reduced the amounts of tau oligomers in the hippocampus, rescued spine density, and attenuated memory impairment in TauC3 mice. Together, these results suggest that TauC3 facilitates early memory impairment in transgenic mice accompanied with tau oligomer formation, providing insight into the role of TauC3 in the AD pathogenesis associated with tau oligomers and a useful AD model to test drug candidates. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Amino siloxane oligomer-linked graphene oxide as an efficient adsorbent for removal of Pb(II) from wastewater

    International Nuclear Information System (INIS)

    Luo, Shenglian; Xu, Xiangli; Zhou, Guiyin; Liu, Chengbin; Tang, Yanhong; Liu, Yutang

    2014-01-01

    Graphical abstract: A high performance sorbent, oligomer-linked graphene oxide, was prepared by using oligomeric poly3-aminopropyltriethoxysilane as crosslinking agents. The sorbent could selectively remove Pb(II) with high adsorption capacity. - Highlights: • Oligomer-linked graphene oxide sharply fattened function groups. • The sorbent exhibited high adsorption capacity toward Pb(II). • Pb, Cu and Fe were selectively removed from smelter industrial effluent. • The sorption could be conducted at a wide pH range of about 4.0–7.0. - Abstract: A high performance sorbent, oligomer-linked graphene oxide (GO) composite, was prepared through simple cross-linking reactions between GO sheets and poly3-aminopropyltriethoxysilane (PAS) oligomers as crosslinking agents. The three-dimensional PAS oligomers prevented GO sheets from aggregation, provided foreign molecules with easier access, and introduced a large amount of amino functional groups. The morphology, structure and property of the PAS-GO composite were determined by scanning electron microscope (SEM), transmission electron microscope (TEM), Fourie transform infrared (FTIR), X-ray diffractometer (XRD), thermogravimetric analysis (TGA) and X-ray photoelectron spectroscopy (XPS). The adsorption performance of PAS-GO was investigated in removing Pb(II) ions from water. Compared to 3-aminopropyltriethoxysilane functionalized GO (AS-GO) which was prepared by the direct reaction between 3-aminopropyltriethoxysilane and GO, PAS-GO exhibited much higher adsorptivity toward Pb(II) with the maximum adsorption capacity of 312.5 mg/g at 303 K and furthermore the maximum adsorption capacity increased with increasing temperature. The adsorption could be conducted in a wide pH range of 4.0–7.0. Importantly, PAS-GO had a priority tendency to adsorb Pb, Cu and Fe from a mixed solution of metal ions, especially from a practical industrial effluent

  18. Advanced chemistry of monolayers at interfaces trends in methodology and technology

    CERN Document Server

    Imae, Toyoko

    2007-01-01

    Advanced Chemistry of Monolayers at Interfaces describes the advanced chemistry of monolayers at interfaces. Focusing on the recent trends of methodology and technology, which are indispensable in monolayer science. They are applied to monolayers of surfactants, amphiphiles, polymers, dendrimers, enzymes, and proteins, which serve many uses.Introduces the methodologies of scanning probe microscopy, surface force instrumentation, surface spectroscopy, surface plasmon optics, reflectometry, and near-field scanning optical microscopy. Modern interface reaction method, lithographic tech

  19. Pressure-dependent optical and vibrational properties of monolayer molybdenum disulfide

    KAUST Repository

    Nayak, Avinash P.; Pandey, Tribhuwan; Voiry, Damien; Liu, Jin; Moran, Samuel T.; Sharma, Ankit; Tan, Cheng; Chen, Changhsiao; Li, Lain-Jong; Chhowalla, Manish U.; Lin, Jungfu; Singh, Abhishek Kumar; Akinwande, Deji

    2015-01-01

    vibrational dynamics of the distorted monolayer 1T-MoS2 (1T′) and the monolayer 2H-MoS2 via a diamond anvil cell (DAC) and density functional theory (DFT) calculations. The direct optical band gap of the monolayer 2H-MoS2 increases by 11.7% from 1.85 to 2.08 e

  20. Supersymmetry theory of microphase separation in homopolymer-oligomer mixtures

    International Nuclear Information System (INIS)

    Olemskoi, Alexander; Krakovsky, Ivan; Savelyev, Alexey

    2004-01-01

    The mesoscopic structure of periodically alternating layers of stretched homopolymer chains surrounded by perpendicularly oriented oligomeric tails is studied for systems with both strong (ionic) and weak (hydrogen) interactions. We focus on the consideration of the distribution of oligomers along the homopolymer chains that is described by the effective equation of motion with the segment number playing the role of imaginary time. The supersymmetry technique is developed to consider associative hydrogen bonding, self-action effects, inhomogeneity, and temperature fluctuations in the oligomer distribution. Making use of the self-consistent approach allows one to explain experimentally observed temperature dependence of the structure period and the order-disorder transition temperature and period as functions of the oligomeric fraction for systems with different bonding strengths. A whole set of parameters of the model used is found for strong, intermediate, and weak coupled systems being Poly (4-vinyl pyridine)-dodecyl benzene sulfonic acid [P4VP-(DBSA) x ], P4VP-[Zn(DBS) 2 ] x , and P4VP- 3-pentadecyl Phenol x , respectively. A passage from the former two to the latter is shown to cause a crucial decrease in the magnitude of both parameters of hydrogen bonding and self-action, as well as the order-disorder transition temperature

  1. Enhanced piezoelectricity of monolayer phosphorene oxides: a theoretical study.

    Science.gov (United States)

    Yin, Huabing; Zheng, Guang-Ping; Gao, Jingwei; Wang, Yuanxu; Ma, Yuchen

    2017-10-18

    Two-dimensional (2D) piezoelectric materials have potential applications in miniaturized sensors and energy conversion devices. In this work, using first-principles simulations at different scales, we systematically study the electronic structures and piezoelectricity of a series of 2D monolayer phosphorene oxides (POs). Our calculations show that the monolayer POs have tunable band gaps along with remarkable piezoelectric properties. The calculated piezoelectric coefficient d 11 of 54 pm V -1 in POs is much larger than those of 2D transition metal dichalcogenide monolayers and the widely used bulk α-quartz and AlN, and almost reaches the level of the piezoelectric effect in recently discovered 2D GeS. Furthermore, two other considerable piezoelectric coefficients, i.e., d 31 and d 26 with values of -10 pm V -1 and 21 pm V -1 , respectively, are predicted in some monolayer POs. We also examine the correlation between the piezoelectric coefficients and energy stability. The enhancement of piezoelectricity for monolayer phosphorene by oxidation will broaden the applications of phosphorene and phosphorene derivatives in nano-sized electronic and piezotronic devices.

  2. Rheological and mechanical properties and interfacial stress development of composite cements modified with thio-urethane oligomers.

    Science.gov (United States)

    Bacchi, Ataís; Pfeifer, Carmem S

    2016-08-01

    Thio-urethane oligomers have been shown to reduce stress and increase toughness in highly filled composite materials. This study evaluated the influence of thio-urethane backbone structure on rheological and mechanical properties of resin cements modified with a fixed concentration of the oligomers. Thio-urethane oligomers (TU) were synthesized by combining thiols - pentaerythritol tetra-3-mercaptopropionate (PETMP) or trimethylol-tris-3-mercaptopropionate (TMP) - with isocyanates - 1,6-hexanediol-diissocyante (HDDI) (aliphatic) or 1,3-bis(1-isocyanato-1-methylethyl)benzene (BDI) (aromatic) or dicyclohexylmethane 4,4'-diisocyanate (HMDI) (cyclic), at 1:2 isocyanate:thiol, leaving pendant thiols. 20wt% TU were added to BisGMA-UDMA-TEGDMA (5:3:2). 60wt% silanated inorganic fillers were added. Near-IR was used to follow methacrylate conversion and rate of polymerization ( [Formula: see text] ). Mechanical properties were evaluated in three-point bending (ISO 4049) for flexural strength/modulus (FS/FM, and toughness), and notched specimens (ASTM Standard E399-90) for fracture toughness (KIC). PS was measured on the Bioman. Viscosity (V) and gel-points (defined as the crossover between storage and loss shear moduli (G'/G″)) were obtained with rheometry. Glass transition temperature (Tg), cross-link density and homogeneity of the network were obtained with dynamic mechanical analysis. Film-thickness was evaluated according to ISO 4049. DC and mechanical properties increased and [Formula: see text] and PS decreased with the addition of TUs. Gelation (G'/G″) was delayed and DC at G'/G″ increased in TU groups. Tg and cross-link density dropped in TU groups, while oligomers let to more homogenous networks. An increase in V was observed, with no effect on film-thickness. Significant reductions in PS were achieved at the same time conversion and mechanical properties increased. The addition of thio-urethane oligomers proved successful in improving several key properties

  3. Monolayer arrangement of fatty hydroxystearic acids on graphite: Influence of hydroxyl groups

    Energy Technology Data Exchange (ETDEWEB)

    Medina, S. [Laboratorio de Rayos-X, Centro de Investigación Tecnología e Innovación, de la Universidad de Sevilla (CITIUS), Universidad de Sevilla, Avenida Reina Mercedes, 4B. 41012, Sevilla (Spain); Benítez, J.J.; Castro, M.A. [Instituto de Ciencia de Materiales de Sevilla, Consejo Superior de Investigaciones Científicas-Universidad de Sevilla, Avenida Américo Vespucio, 49. 41092, Sevilla (Spain); Cerrillos, C. [Servicio de Microscopía, Centro de Investigación Tecnología e Innovación, de la Universidad de Sevilla (CITIUS), Universidad de Sevilla, Avenida Reina Mercedes, 4B. 41012, Sevilla (Spain); Millán, C. [Instituto de Ciencia de Materiales de Sevilla, Consejo Superior de Investigaciones Científicas-Universidad de Sevilla, Avenida Américo Vespucio, 49. 41092, Sevilla (Spain); Alba, M.D., E-mail: alba@icmse.csic.es [Instituto de Ciencia de Materiales de Sevilla, Consejo Superior de Investigaciones Científicas-Universidad de Sevilla, Avenida Américo Vespucio, 49. 41092, Sevilla (Spain)

    2013-07-31

    Previous studies have indicated that long-chain linear carboxylic acids form commensurate packed crystalline monolayers on graphite even at temperatures above their melting point. This study examines the effect on the monolayer formation and structure of adding one or more secondary hydroxyl, functional groups to the stearic acid skeleton (namely, 12-hydroxystearic and 9,10-dihydroxystearic acid). Moreover, a comparative study of the monolayer formation on recompressed and monocrystalline graphite has been performed through X-ray diffraction (XRD) and Scanning Tunneling Microscopy (STM), respectively. The Differential Scanning Calorimetry (DSC) and XRD data were used to confirm the formation of solid monolayers and XRD data have provided a detailed structural analysis of the monolayers in good correspondence with obtained STM images. DSC and XRD have demonstrated that, in stearic acid and 12-hydroxystearic acid adsorbed onto graphite, the monolayer melted at a higher temperature than the bulk form of the carboxylic acid. However, no difference was observed between the melting point of the monolayer and the bulk form for 9,10-dihydroxystearic acid adsorbed onto graphite. STM results indicated that all acids on the surface have a rectangular p2 monolayer structure, whose lattice parameters were uniaxially commensurate on the a-axis. This structure does not correlate with the initial structure of the pure compounds after dissolving, but it is conditioned to favor a) hydrogen bond formation between the carboxylic groups and b) formation of hydrogen bonds between secondary hydroxyl groups, if spatially permissible. Therefore, the presence of hydroxyl functional groups affects the secondary structure and behavior of stearic acid in the monolayer. - Highlights: • Hydroxyl functional groups affect structure and behavior of acids in the monolayer. • Acids on the surface have a rectangular p2 monolayer structure. • Lattice parameters of acids are uniaxially

  4. Towards directional assembly of hierarchical structures: aniline oligomers as the model precursors

    Czech Academy of Sciences Publication Activity Database

    Zhao, Y.; Stejskal, Jaroslav; Wang, J.

    2013-01-01

    Roč. 5, č. 7 (2013), s. 2620-2626 ISSN 2040-3364 R&D Projects: GA ČR GAP205/12/0911 Institutional support: RVO:61389013 Keywords : aniline oligomers * hierarchical nanostructures * microflowers Subject RIV: CD - Macromolecular Chemistry Impact factor: 6.739, year: 2013

  5. Side-chain degradation of ultrapure π-conjugated oligomers: implications for organic electronics

    NARCIS (Netherlands)

    Abbel, R.J.; Wolffs, M.; Bovee, R.A.A.; Dongen, van J.L.J.; Lou, X.W.; Henze, O.; Feast, W.J.; Meijer, E.W.; Schenning, A.P.H.J.

    2009-01-01

    The degrdn. of two defect-free pi-conjugated oligomers and the participation of their solubilizing side chains in the process are studied in unprecedented detail. The detected intermediate products reveal a mechanism of successive shortening of alkyl and oligo(ethylene glycol) substituents.

  6. Isolation and Quantification of Polyamide Cyclic Oligomers in Kitchen Utensils and Their Migration into Various Food Simulants

    OpenAIRE

    Abe, Yutaka; Mutsuga, Motoh; Ohno, Hiroyuki; Kawamura, Yoko; Akiyama, Hiroshi

    2016-01-01

    Small amounts of cyclic monomers and oligomers are present in polyamide (PA)-based kitchen utensils. In this study, we isolated eight PA-based cyclic monomers and oligomers from kitchen utensils made from PA6 (a polymer of ε-caprolactam) and PA66 (a polymer of 1,6-diaminohexane and adipic acid). Their structures were identified using high-resolution mass spectrometry and 1H- and 13C-nuclear magnetic resonance spectroscopy, and their residual levels in PA-based kitchen utensils and degree of m...

  7. Combining Orthogonal Chain-End Deprotections and Thiol-Maleimide Michael Coupling: Engineering Discrete Oligomers by an Iterative Growth Strategy.

    Science.gov (United States)

    Huang, Zhihao; Zhao, Junfei; Wang, Zimu; Meng, Fanying; Ding, Kunshan; Pan, Xiangqiang; Zhou, Nianchen; Li, Xiaopeng; Zhang, Zhengbiao; Zhu, Xiulin

    2017-10-23

    Orthogonal maleimide and thiol deprotections were combined with thiol-maleimide coupling to synthesize discrete oligomers/macromolecules on a gram scale with molecular weights up to 27.4 kDa (128mer, 7.9 g) using an iterative exponential growth strategy with a degree of polymerization (DP) of 2 n -1. Using the same chemistry, a "readable" sequence-defined oligomer and a discrete cyclic topology were also created. Furthermore, uniform dendrons were fabricated using sequential growth (DP=2 n -1) or double exponential dendrimer growth approaches (DP=22n -1) with significantly accelerated growth rates. A versatile, efficient, and metal-free method for construction of discrete oligomers with tailored structures and a high growth rate would greatly facilitate research into the structure-property relationships of sophisticated polymeric materials. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Exciton Binding Energy of Monolayer WS2

    Science.gov (United States)

    Zhu, Bairen; Chen, Xi; Cui, Xiaodong

    2015-03-01

    The optical properties of monolayer transition metal dichalcogenides (TMDC) feature prominent excitonic natures. Here we report an experimental approach to measuring the exciton binding energy of monolayer WS2 with linear differential transmission spectroscopy and two-photon photoluminescence excitation spectroscopy (TP-PLE). TP-PLE measurements show the exciton binding energy of 0.71 +/- 0.01 eV around K valley in the Brillouin zone.

  9. Molecular Dynamics Simulations of Silica Nanoparticles Grafted with Poly(ethylene oxide) Oligomer Chains

    KAUST Repository

    Hong, Bingbing; Panagiotopoulos, Athanassios Z.

    2012-01-01

    A molecular model of silica nanoparticles grafted with poly(ethylene oxide) oligomers has been developed for predicting the transport properties of nanoparticle organic-hybrid materials (NOHMs). Ungrafted silica nanoparticles in a medium of poly(ethylene

  10. Defect-Mediated Lithium Adsorption and Diffusion on Monolayer Molybdenum Disulfide.

    Science.gov (United States)

    Sun, Xiaoli; Wang, Zhiguo; Fu, Y Q

    2015-12-22

    Monolayer Molybdenum Disulfide (MoS2) is a promising anode material for lithium ion batteries because of its high capacities. In this work, first principle calculations based on spin density functional theory were performed to investigate adsorption and diffusion of lithium on monolayer MoS2 with defects, such as single- and few-atom vacancies, antisite, and grain boundary. The values of adsorption energies on the monolayer MoS2 with the defects were increased compared to those on the pristine MoS2. The presence of defects causes that the Li is strongly bound to the monolayer MoS2 with adsorption energies in the range between 2.81 and 3.80 eV. The donation of Li 2s electron to the defects causes an enhancement of adsorption of Li on the monolayer MoS2. At the same time, the presence of defects does not apparently affect the diffusion of Li, and the energy barriers are in the range of 0.25-0.42 eV. The presence of the defects can enhance the energy storage capacity, suggesting that the monolayer MoS2 with defects is a suitable anode material for the Li-ion batteries.

  11. The Effect of H2SO4 Concentration on the Ionic Conductivity of Liquid PMMA Oligomer

    International Nuclear Information System (INIS)

    Norashima Kamaluddin; Famiza Abdul Latif; Han, C.C.; Ruhani Ibrahim; Sharil Fadli Mohamad Zamri; Norashima Kamaluddin; Famiza Abdul Latif; Han, C.C.; Ruhani Ibrahim; Sharil Fadli Mohamad Zamri

    2015-01-01

    To date gel and film type polymer electrolytes have been widely synthesized due to their wide range of electrical properties. However these types of polymer electrolytes exhibit poor mechanical stability and poor electrode-electrolyte contact hence deprive the overall performance of a battery system. Therefore, in order to indulge the advantages of polymer as electrolyte, a new class of polymer electrolyte was synthesized and investigated. In this study, liquid poly(methyl methacrylate) (PMMA) electrolyte was synthesized using the simplest free radical polymerization technique using benzoyl peroxide as the initiator. At this stage, it was found that this liquid PMMA oligomer (MW=3000 g/ mole) has a potential as electrolyte in electrochemical devices. It was found that an ionic conductivity of ∼10 -7 S/ cm at room temperature can be achieved when only small volume of high molarity of sulfuric acid (H 2 SO 4 ) was doped in the liquid PMMA oligomer. The properties of this liquid PMMA oligomer were further investigated using Fourier Transform Infrared Spectroscopy (FTIR). (author)

  12. Thermal ripples in model molybdenum disulfide monolayers

    Energy Technology Data Exchange (ETDEWEB)

    Remsing, Richard C.; Klein, Michael L. [Institute for Computational Molecular Science, Center for the Computational, Design of Functional Layered Materials, and Department of Chemistry, Temple University, 1925 N. 12th St., 19122, Philadelphia, PA (United States); Waghmare, Umesh V. [Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, 560 064, Jakkur, Bangalore (India)

    2017-01-15

    Molybdenum disulfide (MoS{sub 2}) monolayers have the potential to revolutionize nanotechnology. To reach this potential, it will be necessary to understand the behavior of this two-dimensional (2D) material on large length scales and under thermal conditions. Herein, we use molecular dynamics (MD) simulations to investigate the nature of the rippling induced by thermal fluctuations in monolayers of the 2H and 1T phases of MoS{sub 2}. The 1T phase is found to be more rigid than the 2H phase. Both monolayer phases are predicted to follow long wavelength scaling behavior typical of systems with anharmonic coupling between vibrational modes as predicted by classic theories of membrane-like systems. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. Hydrogen bonding as the origin of the switching behavior in dithiolated phenylene-vinylene oligomers

    KAUST Repository

    Obodo, Tobechukwu Joshua; Gkionis, Konstantinos; Rungger, Ivan; Sanvito, Stefano; Schwingenschlö gl, Udo

    2013-01-01

    We investigate theoretically the switching behavior of a dithiolated phenylene-vinylene oligomer sandwiched between Au(111) electrodes using self-interaction corrected density-functional theory combined with the nonequilibrium Green

  14. Chain Stretching and Order-Disorder Transitions in Block Copolymer Monolayers and Multilayers

    Science.gov (United States)

    Kramer, Edward J.; Mishra, Vindhya; Stein, Gila E.; Sohn, Karen E.; Hur, Sumi; Fredrickson, Glenn H.; Cochran, Eric W.

    2009-03-01

    Both monolayers of block copolymer cylinders and spheres undergo order to disorder transitions (ODT) at temperatures well below those of the bulk. Monolayers of PS-b-P2VP cylinders undergo a ``nematic'' to ``isotropic'' transition at temperatures about 20 K below the bulk ODT while monolayers of PS-b-P2VP with P2VP spheres undergo a 2D crystal to hexatic transition at least 10 K below the bulk ODT. Bilayers of each structure disorder at temperatures well above that of the monolayers. While one is tempted to attribute all of the difference to the fact that ordered monolayers are quasi 2 dimensional while bilayers are not, an alternative explanation exists. In the cylinder monolayer the corona PS chains must stretch to fill a nearly square cross-section domain rather than a hexagonal one in the bulk, while the corona PS chains in a sphere monolayer must stretch to fill a hexagonal prism rather than an octahedron in the bulk. The more non-uniform stretching of the chains in the monolayer should increase its free energy and decrease its order-disorder temperature.

  15. The interaction of insulin, glucose, and insulin-glucose mixtures with a phospholipid monolayer.

    Science.gov (United States)

    Shigenobu, Hayato; McNamee, Cathy E

    2012-12-15

    We determined how glucose or insulin interacts with a phospholipid monolayer at the air/water interface and explained these mechanisms from a physico-chemical point of view. The 1,2-dipalmitoyl-2-sn-glycero-3-phosphatidylcholine (DPPC) monolayer at an air/water interface acted as a model membrane, which allowed the effect of the molecular packing density in the monolayer on the interactions to be determined. The interaction of glucose, insulin, and a mixture of glucose and insulin to the DPPC monolayer were investigated via surface pressure-area per molecule Langmuir isotherms and fluorescence microscopy. Glucose adsorbed to the underside of the DPPC monolayer, while insulin was able to penetrate through the monolayer when the phospholipid molecules were not densely packed. The presence of a mixture of insulin and glucose affected the molecular packing in the DPPC monolayer differently than the pure insulin or glucose solutions, and the glucose-insulin mixture was seen to be able to penetrate through the monolayer. These results indicated that glucose and insulin interact with one another, giving a material that may then transported through a pore in the monolayer or through the spaces between the molecules of the monolayer. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. Bending of conjugated molecular wires and its effect on electron conduction properties

    International Nuclear Information System (INIS)

    Das, Bidisa

    2010-01-01

    The electronic structure and electron transport properties of simple conjugated molecular wires like oligophenylene ethynylene (OPE) and oligophenylene vinylene (OPV) are studied under compression. If artificially confined to a given shorter length, the oligomers tend to bend and bending causes a loss in the overlap of the conjugated molecular orbitals. Theoretical modeling of electronic transport has been carried out for all undistorted and compressed OPE/OPV oligomers. OPV exists in step-like or V-like conformations and they have the same stability with very similar frontier molecular orbitals. The conductances of these molecular wires are calculated when inserted between two gold probes and the conductances for OPV are found to be comparable to OPE when the interfaces are same. The conductance decreases with bending due to the gradual loss in overlap of the molecular orbitals. It is also found that the conductances of the molecular wires decrease very strongly if the terminal sulfur atom is simultaneously bonded to hydrogen and a gold surface, thus reflecting the importance of the interface in determining the conductance in two-probe systems. From the conductance studies it may be concluded that if one or more benzene rings of OPE are rotated from coplanar conditions, the orthogonal molecular orbitals may completely block the electronic transport, rendering the molecule insulating.

  17. Nonlinear optical studies of organic monolayers

    International Nuclear Information System (INIS)

    Shen, Y.R.

    1988-02-01

    Second-order nonlinear optical effects are forbidden in a medium with inversion symmetry, but are necessarily allowed at a surface where the inversion summary is broken. They are often sufficiently strong so that a submonolayer perturbation of the surface can be readily detected. They can therefore be used as effective tools to study monolayers adsorbed at various interfaces. We discuss here a number of recent experiments in which optical second harmonic generation (SHG) and sum-frequency generation (SFG) are employed to probe and characterize organic monolayers. 15 refs., 5 figs

  18. Atomistic simulation of CO 2 solubility in poly(ethylene oxide) oligomers

    KAUST Repository

    Hong, Bingbing

    2013-10-02

    We have performed atomistic molecular dynamics simulations coupled with thermodynamic integration to obtain the excess chemical potential and pressure-composition phase diagrams for CO2 in poly(ethylene oxide) oligomers. Poly(ethylene oxide) dimethyl ether, CH3O(CH 2CH2O)nCH3 (PEO for short) is a widely applied physical solvent that forms the major organic constituent of a class of novel nanoparticle-based absorbents. Good predictions were obtained for pressure-composition-density relations for CO2 + PEO oligomers (2 ≤ n ≤ 12), using the Potoff force field for PEO [J. Chem. Phys. 136, 044514 (2012)] together with the TraPPE model for CO2 [AIChE J. 47, 1676 (2001)]. Water effects on Henrys constant of CO2 in PEO have also been investigated. Addition of modest amounts of water in PEO produces a relatively small increase in Henrys constant. Dependence of the calculated Henrys constant on the weight percentage of water falls on a temperature-dependent master curve, irrespective of PEO chain length. © 2013 Taylor & Francis.

  19. Enhanced Solubilization of Fluoranthene by Hydroxypropyl β-Cyclodextrin Oligomer for Bioremediation

    Directory of Open Access Journals (Sweden)

    Kyeong Hui Park

    2018-01-01

    Full Text Available Fluoranthene (FT is a polycyclic aromatic hydrocarbon (PAH, consisting of naphthalene and benzene rings connected by a five-member ring. It is widespread in the environment. The hydrophobicity of FT limits its availability for biological uptake and degradation. In this study, hydroxypropyl β-cyclodextrin oligomers (HP-β-CD-ol were synthesized with epichlorohydrin (EP, while the solubility enhancement of FT by HP-β-CD-ol was investigated in water. The synthesized HP-β-CD-ol was characterized by MALDI-TOF mass spectrometry (MS, 1H NMR, and 13C NMR spectroscopy. The solubility of FT increased 178-fold due to the complex formation with HP-β-CD oligomers. The inclusion complexes of FT/HP-β-CD-ol were analyzed using Fourier-Transform Infrared (FT-IR, Differential Scanning Calorimetry (DSC, Scanning Electron Microscope (SEM, and Nuclear Overhauser Effect Spectroscopy Nuclear magnetic resonance (NOESY NMR spectroscopy. On the basis of these results, HP-β-CD-ol is recommended as a potential solubilizer for the development of PAH removal systems.

  20. QIAD assay for quantitating a compound’s efficacy in elimination of toxic Aβ oligomers

    Science.gov (United States)

    Brener, Oleksandr; Dunkelmann, Tina; Gremer, Lothar; van Groen, Thomas; Mirecka, Ewa A.; Kadish, Inga; Willuweit, Antje; Kutzsche, Janine; Jürgens, Dagmar; Rudolph, Stephan; Tusche, Markus; Bongen, Patrick; Pietruszka, Jörg; Oesterhelt, Filipp; Langen, Karl-Josef; Demuth, Hans-Ulrich; Janssen, Arnold; Hoyer, Wolfgang; Funke, Susanne A.; Nagel-Steger, Luitgard; Willbold, Dieter

    2015-01-01

    Strong evidence exists for a central role of amyloid β-protein (Aβ) oligomers in the pathogenesis of Alzheimer’s disease. We have developed a fast, reliable and robust in vitro assay, termed QIAD, to quantify the effect of any compound on the Aβ aggregate size distribution. Applying QIAD, we studied the effect of homotaurine, scyllo-inositol, EGCG, the benzofuran derivative KMS88009, ZAβ3W, the D-enantiomeric peptide D3 and its tandem version D3D3 on Aβ aggregation. The predictive power of the assay for in vivo efficacy is demonstrated by comparing the oligomer elimination efficiency of D3 and D3D3 with their treatment effects in animal models of Alzheimer´s disease. PMID:26394756

  1. Unanticipated C=C bonds in covalent monolayers on silicon revealed by NEXAFS.

    Science.gov (United States)

    Lee, Michael V; Lee, Jonathan R I; Brehmer, Daniel E; Linford, Matthew R; Willey, Trevor M

    2010-02-02

    Interfaces are crucial to material properties. In the case of covalent organic monolayers on silicon, molecular structure at the interface controls the self-assembly of the monolayers, which in turn influences the optical properties and electrical transport. These properties intrinsically affect their application in biology, tribology, optics, and electronics. We use near-edge X-ray absorption fine structure spectroscopy to show that the most basic covalent monolayers formed from 1-alkenes on silicon retain a double bond in one-fifth to two-fifths of the resultant molecules. Unsaturation in the predominantly saturated monolayers will perturb the regular order and affect the dependent properties. The presence of unsaturation in monolayers produced by two different methods also prompts the re-evaluation of other radical-based mechanisms for forming covalent monolayers on silicon.

  2. Modulation of α-synuclein fibrillization by ring-fused 2-pyridones: templation and inhibition involve oligomers with different structure.

    Science.gov (United States)

    Horvath, Istvan; Sellstedt, Magnus; Weise, Christoph; Nordvall, Lina-Maria; Krishna Prasad, G; Olofsson, Anders; Larsson, Göran; Almqvist, Fredrik; Wittung-Stafshede, Pernilla

    2013-04-15

    In a recent study we discovered that a ring-fused 2-pyridone compound triggered fibrillization of a key protein in Parkinson's disease, α-synuclein. To reveal how variations in compound structure affect protein aggregation, we now prepared a number of strategic analogs and tested their effects on α-synuclein amyloid fiber formation in vitro. We find that, in contrast to the earlier templating effect, some analogs inhibit α-synuclein fibrillization. For both templating and inhibiting compounds, the key species formed in the reactions are α-synuclein oligomers that contain compound. Despite similar macroscopic appearance, the templating and inhibiting oligomers are distinctly different in secondary structure content. When the inhibitory oligomers are added in seed amounts, they inhibit fresh α-synuclein aggregation reactions. Our study demonstrates that small chemical changes to the same central fragment can result in opposite effects on protein aggregation. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Characterization of self-assembled monolayers on a ruthenium surface

    NARCIS (Netherlands)

    Shaheen, Amrozia; Sturm, Jacobus Marinus; Ricciardi, R.; Huskens, Jurriaan; Lee, Christopher James; Bijkerk, Frederik

    2017-01-01

    We have modified and stabilized the ruthenium surface by depositing a self-assembled monolayer (SAM) of 1-hexadecanethiol on a polycrystalline ruthenium thin film. The growth mechanism, dynamics, and stability of these monolayers were studied. SAMs, deposited under ambient conditions, on

  4. Heterointerface Screening Effects between Organic Monolayers and Monolayer Transition Metal Dichalcogenides

    KAUST Repository

    Zheng, Yu Jie; Huang, Yu Li; Chen, Yifeng; Zhao, Weijie; Eda, Goki; Spataru, Catalin D.; Zhang, Wenjing; Chang, Yung-Huang; Li, Lain-Jong; Chi, Dongzhi; Quek, Su Ying; Wee, Andrew Thye Shen

    2016-01-01

    © 2016 American Chemical Society. The nature and extent of electronic screening at heterointerfaces and their consequences on energy level alignment are of profound importance in numerous applications, such as solar cells, electronics etc. The increasing availability of two-dimensional (2D) transition metal dichalcogenides (TMDs) brings additional opportunities for them to be used as interlayers in "van der Waals (vdW) heterostructures" and organic/inorganic flexible devices. These innovations raise the question of the extent to which the 2D TMDs participate actively in dielectric screening at the interface. Here we study perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA) monolayers adsorbed on single-layer tungsten diselenide (WSe2), bare graphite, and Au(111) surfaces, revealing a strong dependence of the PTCDA HOMO-LUMO gap on the electronic screening effects from the substrate. The monolayer WSe2 interlayer provides substantial, but not complete, screening at the organic/inorganic interface. Our results lay a foundation for the exploitation of the complex interfacial properties of hybrid systems based on TMD materials.

  5. Heterointerface Screening Effects between Organic Monolayers and Monolayer Transition Metal Dichalcogenides

    KAUST Repository

    Zheng, Yu Jie

    2016-01-21

    © 2016 American Chemical Society. The nature and extent of electronic screening at heterointerfaces and their consequences on energy level alignment are of profound importance in numerous applications, such as solar cells, electronics etc. The increasing availability of two-dimensional (2D) transition metal dichalcogenides (TMDs) brings additional opportunities for them to be used as interlayers in "van der Waals (vdW) heterostructures" and organic/inorganic flexible devices. These innovations raise the question of the extent to which the 2D TMDs participate actively in dielectric screening at the interface. Here we study perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA) monolayers adsorbed on single-layer tungsten diselenide (WSe2), bare graphite, and Au(111) surfaces, revealing a strong dependence of the PTCDA HOMO-LUMO gap on the electronic screening effects from the substrate. The monolayer WSe2 interlayer provides substantial, but not complete, screening at the organic/inorganic interface. Our results lay a foundation for the exploitation of the complex interfacial properties of hybrid systems based on TMD materials.

  6. Steady State and Time-Resolved Fluorescence Dynamics of Triphenylamine Based Oligomers with Phenylene/Thiophene/Furan in Solvents

    International Nuclear Information System (INIS)

    Qi, Zeng; Ying-Liang, Liu; Kang, Meng; Xiang-Jie, Zhao; Shu-Feng, Wang; Qi-Huang, Gong

    2009-01-01

    We investigate the photo-physical properties of a series of triphenylamine-based oligomers by steady-state and picosecond transient fluorescence measurements in solvents. The oligomers are composed alternatively with triphenylamine and phenylene/thiophene/furan group, bridged by vinyl group (PNB/PNT/PNF). Their fluorescence spectra show bathochromic phenomenon with solvent polarity and viscosity increasing. The fluorescence decays are bi-exponential for PNB and PNT, and tri-exponential for PNF in THF and aniline. The strong viscosity dependence suggests conformational relaxation along the PNF chain after photo excitation. (condensed matter: electronicstructure, electrical, magnetic, and opticalproperties)

  7. Rationally designed turn promoting mutation in the amyloid-β peptide sequence stabilizes oligomers in solution.

    Directory of Open Access Journals (Sweden)

    Jayakumar Rajadas

    Full Text Available Enhanced production of a 42-residue beta amyloid peptide (Aβ(42 in affected parts of the brain has been suggested to be the main causative factor for the development of Alzheimer's Disease (AD. The severity of the disease depends not only on the amount of the peptide but also its conformational transition leading to the formation of oligomeric amyloid-derived diffusible ligands (ADDLs in the brain of AD patients. Despite being significant to the understanding of AD mechanism, no atomic-resolution structures are available for these species due to the evanescent nature of ADDLs that hinders most structural biophysical investigations. Based on our molecular modeling and computational studies, we have designed Met35Nle and G37p mutations in the Aβ(42 peptide (Aβ(42Nle35p37 that appear to organize Aβ(42 into stable oligomers. 2D NMR on the Aβ(42Nle35p37 peptide revealed the occurrence of two β-turns in the V24-N27 and V36-V39 stretches that could be the possible cause for the oligomer stability. We did not observe corresponding NOEs for the V24-N27 turn in the Aβ(21-43Nle35p37 fragment suggesting the need for the longer length amyloid peptide to form the stable oligomer promoting conformation. Because of the presence of two turns in the mutant peptide which were absent in solid state NMR structures for the fibrils, we propose, fibril formation might be hindered. The biophysical information obtained in this work could aid in the development of structural models for toxic oligomer formation that could facilitate the development of therapeutic approaches to AD.

  8. Template-Directed Self-Assembly of Alkanethiol Monolayers: Selective Growth on Preexisting Monolayer Edges

    NARCIS (Netherlands)

    Sharpe, R.B.A.; Burdinski, Dirk; Huskens, Jurriaan; Zandvliet, Henricus J.W.; Reinhoudt, David; Poelsema, Bene

    2007-01-01

    Self-assembled monolayers were investigated for their suitability as two-dimensional scaffolds for the selective growth of alkanethiol edge structures. Heterostructures with chemical contrast could be grown, whose dimensions were governed by both the initial pattern sizes and the process time.

  9. Formation and electrochemical investigation of ordered cobalt coordinated peptide monolayers on gold substrates

    International Nuclear Information System (INIS)

    Wang Xinxin; Nagata, Kenji; Higuchi, Masahiro

    2012-01-01

    The monolayers composed of cobalt coordinated peptides were prepared on gold substrates by two different approaches. One was the self-assembly method, which was used to prepare a peptide monolayer on the gold substrate via the spontaneous attachment of peptides owing to the interaction between gold and sulfur at the N-terminal of the peptide. The other one was the stepwise polymerization method that was utilized to fabricate the unidirectionally arranged peptide monolayer by the stepwise condensation of amino acids from the initiator fixed on the gold substrate. Leu 2 Ala(4-Pyri)Leu 6 Ala(4-Pyri)Leu 6 sequence was chosen as the cobalt coordinated peptide. The 4-pyridyl alanines, Ala(4-Pyri)s, were introduced as ligands for cobalt to the leucine-rich sequential peptide. The complexation between cobalt and pyridyl groups of the peptide induced the formation of a stable α-helical bundle, which oriented perpendicularly to the substrate surface. In the case of the monolayer fabricated by the stepwise polymerization method, the direction of the peptide macro-dipole moment aligned unidirectionally, and the cobalt complexes were fixed in the monolayer to form the ordered arrangement. On the other hand, the peptides prepared by the self-assembly method formed the mixture of parallel and antiparallel packing owing to the dipole-dipole interaction. The spatial location of the cobalt complexes in the monolayer prepared by the self-assembly method was distorted, compared with that in the monolayer fabricated by the stepwise polymerization method. The vectorial electron flow through the peptide monolayer was achieved by the regular alignment of the peptide macro-dipole moment and the cobalt complexes in the monolayer fabricated by the stepwise polymerization method. - Highlights: ► We fabricated ordered Co coordinated peptide monolayers on the gold substrates. ► The Co complexes in peptide monolayer formed an ordered arrangement of the peptide. ► The peptide macro

  10. Synthesis, optical properties and supramolecular order of π-conjugated 2,5-di(alcoxy)phenyleneethynylene oligomers

    Science.gov (United States)

    Castruita, Griselda; Arias, Eduardo; Moggio, Ivana; Pérez, Fátima; Medellín, Diana; Torres, Román; Ziolo, Ronald; Olivas, Amelia; Giorgetti, Emilia; Muniz-Miranda, Maurizio

    2009-11-01

    Two series of 2,5-di(alkoxy)phenyleneethynylene oligomers were synthesized by Sonogashira-Heck coupling reaction. The chemical structure was corroborated by 1H, 13C, APT, DEPT-135 NMR, Raman, FTIR and MALDI-TOF mass spectrometry. The chemical structure of the molecules has been varied in order to study the effect on the physicochemical and optoelectronic properties of the different chain lengths of the lateral substituents (dodecanoxy and butoxy), of different terminal groups (H, Br and I), of different chain length (3, 5 and 7 repeat units in the main conjugated backbone). The thermal properties were analyzed by DSC, TGA and by temperature-dependent X-ray diffraction. The diffraction studies of the oligomers revealed a crystalline behavior for the butoxy series, while for the dodecanoxy series the X-ray patterns are consistent with a supramolecular organization formed of randomly distributed crystalline domains that exhibit a periodic structure at small angles, indicating the presence of a lamellar order. The optical properties can be modulated within a series by increasing the length of the conjugated oligomer chain. On the contrary, neither the length of the alkoxy substituents nor the terminal groups have effect on the shape of the absorption and emission spectra.

  11. Structural, electronic and magnetic properties of Au-based monolayer derivatives in honeycomb structure

    Energy Technology Data Exchange (ETDEWEB)

    Kapoor, Pooja, E-mail: pupooja16@gmail.com; Sharma, Munish; Ahluwalia, P. K. [Physics Department, Himachal Pradesh University, Shimla, Himachal Pradesh, India 171005 (India); Kumar, Ashok [Centre for Physical Sciences, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, India, 151001 (India)

    2016-05-23

    We present electronic properties of atomic layer of Au, Au{sub 2}-N, Au{sub 2}-O and Au{sub 2}-F in graphene-like structure within the framework of density functional theory (DFT). The lattice constant of derived monolayers are found to be higher than the pristine Au monolayer. Au monolayer is metallic in nature with quantum ballistic conductance calculated as 4G{sub 0}. Similarly, Au{sub 2}-N and Au{sub 2}-F monolayers show 4G{sub 0} and 2G{sub 0} quantum conductance respectively while semiconducting nature with calculated band gap of 0.28 eV has been observed for Au{sub 2}-O monolayer. Most interestingly, half metalicity has been predicted for Au{sub 2}-N and Au{sub 2}-F monolayers. Our findings may have importance for the application of these monolayers in nanoelectronic and spintronics.

  12. Sub-THz Characterisation of Monolayer Graphene

    Directory of Open Access Journals (Sweden)

    Ehsan Dadrasnia

    2014-01-01

    Full Text Available We explore the optical and electrical characteristics of monolayer graphene by using pulsed optoelectronic terahertz time-domain spectroscopy in the frequency range of 325–500 GHz based on fast direct measurements of phase and amplitude. We also show that these parameters can, however, be measured with higher resolution using a free space continuous wave measurement technique associated with a vector network analyzer that offers a good dynamic range. All the scattering parameters (both magnitude and phase are measured simultaneously. The Nicholson-Ross-Weir method is implemented to extract the monolayer graphene parameters at the aforementioned frequency range.

  13. Detection of aniline oligomers on polyaniline-gold interface using resonance Raman scattering

    Czech Academy of Sciences Publication Activity Database

    Trchová, Miroslava; Morávková, Zuzana; Dybal, Jiří; Stejskal, Jaroslav

    2014-01-01

    Roč. 6, č. 2 (2014), s. 942-950 ISSN 1944-8244 R&D Projects: GA ČR GAP205/12/0911; GA ČR(CZ) GA13-00270S Institutional support: RVO:61389013 Keywords : polyaniline * aniline oligomers * Raman spectroscopy Subject RIV: CD - Macromolecular Chemistry Impact factor: 6.723, year: 2014

  14. Piezoelectric effect on the thermal conductivity of monolayer gallium nitride

    Science.gov (United States)

    Zhang, Jin

    2018-01-01

    Using molecular dynamics and density functional theory simulations, in this work, we find that the heat transport property of the monolayer gallium nitride (GaN) can be efficiently tailored by external electric field due to its unique piezoelectric characteristic. As the monolayer GaN possesses different piezoelectric properties in armchair and zigzag directions, different effects of the external electric field on thermal conductivity are observed when it is applied in the armchair and zigzag directions. Our further study reveals that due to the elastoelectric effect in the monolayer GaN, the external electric field changes the Young's modulus and therefore changes the phonon group velocity. Also, due to the inverse piezoelectric effect, the applied electric field induces in-plane stress in the monolayer GaN subject to a length constraint, which results in the change in the lattice anharmonicity and therefore affects the phonon mean free path. Furthermore, for relatively long GaN monolayers, the in-plane stress may trigger the buckling instability, which can significantly reduce the phonon mean free path.

  15. Radiation-chemical hardening of phenol-formaldehyde oligomers

    International Nuclear Information System (INIS)

    Shlapatskaya, V.V.; Omel'chenko, S.I.

    1978-01-01

    Radiation-chemical hardening of phenol formaldehyde oligomers of the resol type has been studied in the presence of furfural and diallylphthalate diluents. The samples have been hardened on an electron accelerator at an electron energy of 1.0-1.1 MeV and a dose rate of 2-3 Mrad/s. The kinetics of hardening has been studied on the yield of gel fraction within the range of absorbed doses from 7 to 400 Mrad. Radiation-chemical hardening of the studied compositions is activated with sensitizers, namely, amines, metal chlorides, and heterocyclic derivatives of metals. Furfural and diallylphthalate compositions are suitable for forming glass-fibre plastic items by the wet method and coatings under the action of ionizing radiations

  16. Structural Transitions of Solvent-Free Oligomer-Grafted Nanoparticles

    KAUST Repository

    Chremos, Alexandros

    2011-09-01

    Novel structural transitions of solvent-free oligomer-grafted nanoparticles are investigated by using molecular dynamics simulations of a coarse-grained bead-spring model. Variations in core size and grafting density lead to self-assembly of the nanoparticles into a variety of distinct structures. At the boundaries between different structures, the nanoparticle systems undergo thermoreversible transitions. This structural behavior, which has not been previously reported, deviates significantly from that of simple liquids. The reversible nature of these transitions in solvent-free conditions offers new ways to control self-assembly of nanoparticles at experimentally accessible conditions. © 2011 American Physical Society.

  17. Gas sensing with self-assembled monolayer field-effect transistors

    NARCIS (Netherlands)

    Andringa, Anne-Marije; Spijkman, Mark-Jan; Smits, Edsger C. P.; Mathijssen, Simon G. J.; van Hal, Paul A.; Setayesh, Sepas; Willard, Nico P.; Borshchev, Oleg V.; Ponomarenko, Sergei A.; Blom, Paul W. M.; de Leeuw, Dago M.

    A new sensitive gas sensor based on a self-assembled monolayer field-effect transistor (SAMFET) was used to detect the biomarker nitric oxide. A SAMFET based sensor is highly sensitive because the analyte and the active channel are separated by only one monolayer. SAMFETs were functionalised for

  18. Defect-Mediated Lithium Adsorption and Diffusion on Monolayer Molybdenum Disulfide

    OpenAIRE

    Sun, Xiaoli; Wang, Zhiguo; Fu, Yong Qing

    2015-01-01

    Monolayer Molybdenum Disulfide (MoS2) is a promising anode material for lithium ion batteries because of its high capacities. In this work, first principle calculations based on spin density functional theory were performed to investigate adsorption and diffusion of lithium on monolayer MoS2 with defects, such as single- and few-atom vacancies, antisite, and grain boundary. The values of adsorption energies on the monolayer MoS2 with the defects were increased compared to those on the pristin...

  19. Topography and instability of monolayers near domain boundaries

    International Nuclear Information System (INIS)

    Diamant, H.; Witten, T. A.; Ege, C.; Gopal, A.; Lee, K. Y. C.

    2001-01-01

    We theoretically study the topography of a biphasic surfactant monolayer in the vicinity of domain boundaries. The differing elastic properties of the two phases generally lead to a nonflat topography of 'mesas,' where domains of one phase are elevated with respect to the other phase. The mesas are steep but low, having heights of up to 10 nm. As the monolayer is laterally compressed, the mesas develop overhangs and eventually become unstable at a surface tension of about K(δc 0 ) 2 (δc 0 being the difference in spontaneous curvature and K a bending modulus). In addition, the boundary is found to undergo a topography-induced rippling instability upon compression, if its line tension is smaller than about Kδc 0 . The effect of diffuse boundaries on these features and the topographic behavior near a critical point are also examined. We discuss the relevance of our findings to several experimental observations related to surfactant monolayers: (i) small topographic features recently found near domain boundaries; (ii) folding behavior observed in mixed phospholipid monolayers and model lung surfactants; (iii) roughening of domain boundaries seen under lateral compression; (iv) the absence of biphasic structures in tensionless surfactant films

  20. Investigating Alkylsilane Monolayer Tribology at a Single-Asperity Contact with Molecular Dynamics Simulation.

    Science.gov (United States)

    Summers, Andrew Z; Iacovella, Christopher R; Cummings, Peter T; McCabe, Clare

    2017-10-24

    Chemisorbed monolayer films are known to possess favorable characteristics for nanoscale lubrication of micro- and nanoelectromechanical systems (MEMS/NEMS). Prior studies have shown that the friction observed for monolayer-coated surfaces features a strong dependence on the geometry of contact. Specifically, tip-like geometries have been shown to penetrate into monolayer films, inducing defects in the monolayer chains and leading to plowing mechanisms during shear, which result in higher coefficients of friction (COF) than those observed for planar geometries. In this work, we use molecular dynamics simulations to examine the tribology of model silica single-asperity contacts under shear with monolayer-coated substrates featuring various film densities. It is observed that lower monolayer densities lead to reduced COFs, in contrast to results for planar systems where COF is found to be nearly independent of monolayer density. This is attributed to a liquid-like response to shear, whereby fewer defects are imparted in monolayer chains from the asperity, and chains are easily displaced by the tip as a result of the higher free volume. This transition in the mechanism of molecular plowing suggests that liquid-like films should provide favorable lubrication at single-asperity contacts.

  1. DPPC Monolayers Exhibit an Additional Phase Transition at High Surface Pressure

    DEFF Research Database (Denmark)

    Shen, Chen; de la Serna, Jorge B.; Struth, Bernd

    2015-01-01

    Pulmonary surfactant forms a monolayer at the air/aqueous interface within the lung. During the breath process, the surface pressure (Π) periodically varies from ~40mN/m up to ~70mN/m. The film is mechanically stable during this rapid and reversible expansion. Pulmonary surfactant consists of ~90......% of lipid with 10% integrated proteins. Among its lipid compounds, di-palmitoyl-phosphatidylcholine (DPPC) dominates (~45wt%). DPPC is the only known lipid that can be compressed to very high surface pressure (~70mN/m) before its monolayer collapses. Most probably, this feature contributes to the mechanical...... stability of the alveoli monolayer. Still, to the best of our knowledge, some details of the compression isotherm presented here and the related structures of the DPPC monolayer were not studied so far. The liquid-expanded/liquid-condensed phase transition of the DPPC monolayer at ~10mN/m is well known...

  2. Collapse of Langmuir monolayer at lower surface pressure: Effect of hydrophobic chain length

    Energy Technology Data Exchange (ETDEWEB)

    Das, Kaushik, E-mail: kaushikdas2089@gmail.com; Kundu, Sarathi [Physical Sciences Division, Institute of Advanced Study in Science and Technology, Vigyan Path, Paschim Boragaon, Garchuk, Guwahati, Assam 781035 (India)

    2016-05-23

    Long chain fatty acid molecules (e.g., stearic and behenic acids) form a monolayer on water surface in the presence of Ba{sup 2+} ions at low subphase pH (≈ 5.5) and remain as a monolayer before collapse generally occurs at higher surface pressure (π{sub c} > 50 mN/m). Monolayer formation is verified from the surface pressure vs. area per molecule (π-A) isotherms and also from the atomic force microscopy (AFM) analysis of the films deposited by single upstroke of hydrophilic Si (001) substrate through the monolayer covered water surface. At high subphase pH (≈ 9.5), barium stearate molecules form multilayer structure at lower surface pressure which is verified from the π-A isotherms and AFM analysis of the film deposited at 25 mN/m. Such monolayer to multilayer structure formation or monolayer collapse at lower surface pressure is unusual as at this surface pressure generally fatty acid salt molecules form a monolayer on the water surface. Formation of bidentate chelate coordination in the metal containing headgroups is the reason for such monolayer to multilayer transition. However, for longer chain barium behenate molecules only monolayer structure is maintained at that high subphase pH (≈ 9.5) due to the presence of relatively more tail-tail hydrophobic interaction.

  3. Transfer matrix theory of monolayer graphene/bilayer graphene heterostructure superlattice

    International Nuclear Information System (INIS)

    Wang, Yu

    2014-01-01

    We have formulated a transfer matrix method to investigate electronic properties of graphene heterostructure consisting of monolayer graphene and bilayer counterpart. By evaluating transmission, conductance, and band dispersion, we show that, irrespective of the different carrier chiralities in monolayer graphene and bilayer graphene, superlattice consisting of biased bilayer graphene barrier and monolayer graphene well can mimic the electronic properties of conventional semiconductor superlattice, displaying the extended subbands in the quantum tunneling regime and producing anisotropic minigaps for the classically allowed transport. Due to the lateral confinement, the lowest mode has shifted away from the charge neutral point of monolayer graphene component, opening a sizeable gap in concerned structure. Following the gate-field and geometry modulation, all electronic states and gaps between them can be externally engineered in an electric-controllable strategy.

  4. Exploring atomic defects in molybdenum disulphide monolayers

    KAUST Repository

    Hong, Jinhua; Hu, Zhixin; Probert, Matt; Li, Kun; Lv, Danhui; Yang, Xinan; Gu, Lin; Mao, Nannan; Feng, Qingliang; Xie, Liming; Zhang, Jin; Wu, Dianzhong; Zhang, Zhiyong; Jin, Chuanhong; Ji, Wei; Zhang, Xixiang; Yuan, Jun; Zhang, Ze

    2015-01-01

    Defects usually play an important role in tailoring various properties of two-dimensional materials. Defects in two-dimensional monolayer molybdenum disulphide may be responsible for large variation of electric and optical properties. Here we present a comprehensive joint experiment-theory investigation of point defects in monolayer molybdenum disulphide prepared by mechanical exfoliation, physical and chemical vapour deposition. Defect species are systematically identified and their concentrations determined by aberration-corrected scanning transmission electron microscopy, and also studied by ab-initio calculation. Defect density up to 3.5 × 10 13 cm '2 is found and the dominant category of defects changes from sulphur vacancy in mechanical exfoliation and chemical vapour deposition samples to molybdenum antisite in physical vapour deposition samples. Influence of defects on electronic structure and charge-carrier mobility are predicted by calculation and observed by electric transport measurement. In light of these results, the growth of ultra-high-quality monolayer molybdenum disulphide appears a primary task for the community pursuing high-performance electronic devices.

  5. Exploring atomic defects in molybdenum disulphide monolayers

    KAUST Repository

    Hong, Jinhua

    2015-02-19

    Defects usually play an important role in tailoring various properties of two-dimensional materials. Defects in two-dimensional monolayer molybdenum disulphide may be responsible for large variation of electric and optical properties. Here we present a comprehensive joint experiment-theory investigation of point defects in monolayer molybdenum disulphide prepared by mechanical exfoliation, physical and chemical vapour deposition. Defect species are systematically identified and their concentrations determined by aberration-corrected scanning transmission electron microscopy, and also studied by ab-initio calculation. Defect density up to 3.5 × 10 13 cm \\'2 is found and the dominant category of defects changes from sulphur vacancy in mechanical exfoliation and chemical vapour deposition samples to molybdenum antisite in physical vapour deposition samples. Influence of defects on electronic structure and charge-carrier mobility are predicted by calculation and observed by electric transport measurement. In light of these results, the growth of ultra-high-quality monolayer molybdenum disulphide appears a primary task for the community pursuing high-performance electronic devices.

  6. Affinity of serum apolipoproteins for lipid monolayers

    International Nuclear Information System (INIS)

    Ibdah, J.A.

    1987-01-01

    The effects of lipid composition and packing as well as the structure of the protein on the affinities of apolipoproteins for lipid monolayers have been investigated. The adsorption of 14 C-reductively methylated human apolipoproteins A-I and A-II at saturating subphase concentrations to monolayers prepared with synthetic lipids or lipoprotein surface lipids spread at various initial surface pressures has been studied. The adsorption of apolipoproteins is monitored by following the surface radioactivity using a gas flow counter and Wilhelmy plate, respectively. The physical states of the lipid monolayers are evaluated by measurement of the surface pressure-molecular area isotherms using a Langmuir-Adam surface balance. The probable helical regions in various apolipoproteins have been predicted using a secondary structure analysis computer program. The mean residue hydrophobicity and mean residue hydrophobic moment for the predicted helical segments have been calculated. The surface properties of synthetic peptides which are amphipathic helix analogs have been investigated at the air-water and lipid-water interfaces

  7. Janus monolayers of transition metal dichalcogenides

    KAUST Repository

    Lu, Ang-Yu

    2017-05-15

    Structural symmetry-breaking plays a crucial role in determining the electronic band structures of two-dimensional materials. Tremendous efforts have been devoted to breaking the in-plane symmetry of graphene with electric fields on AB-stacked bilayers or stacked van der Waals heterostructures. In contrast, transition metal dichalcogenide monolayers are semiconductors with intrinsic in-plane asymmetry, leading to direct electronic bandgaps, distinctive optical properties and great potential in optoelectronics. Apart from their in-plane inversion asymmetry, an additional degree of freedom allowing spin manipulation can be induced by breaking the out-of-plane mirror symmetry with external electric fields or, as theoretically proposed, with an asymmetric out-of-plane structural configuration. Here, we report a synthetic strategy to grow Janus monolayers of transition metal dichalcogenides breaking the out-of-plane structural symmetry. In particular, based on a MoS2 monolayer, we fully replace the top-layer S with Se atoms. We confirm the Janus structure of MoSSe directly by means of scanning transmission electron microscopy and energy-dependent X-ray photoelectron spectroscopy, and prove the existence of vertical dipoles by second harmonic generation and piezoresponse force microscopy measurements.

  8. PT-symmetry management in oligomer systems

    International Nuclear Information System (INIS)

    Horne, R L; Cuevas, J; Kevrekidis, P G; Whitaker, N; Abdullaev, F Kh; Frantzeskakis, D J

    2013-01-01

    We study the effects of management of the PT-symmetric part of the potential within the setting of Schrödinger dimer and trimer oligomer systems. This is done by rapidly modulating in time the gain/loss profile. This gives rise to a number of interesting properties of the system, which are explored at the level of an averaged equation approach. Remarkably, this rapid modulation provides for a controllable expansion of the region of exact PT-symmetry, depending on the strength and frequency of the imposed modulation. The resulting averaged models are analysed theoretically and their exact stationary solutions are translated into time-periodic solutions through the averaging reduction. These are, in turn, compared with the exact periodic solutions of the full non-autonomous PT-symmetry managed problem and very good agreement is found between the two. (paper)

  9. Mixed DPPC/POPC Monolayers: All-atom Molecular Dynamics Simulations and Langmuir Monolayer Experiments

    Czech Academy of Sciences Publication Activity Database

    Olžyńska, Agnieszka; Zubek, M.; Roeselová, Martina; Korchowiec, J.; Cwiklik, Lukasz

    2016-01-01

    Roč. 1858, č. 12 (2016), s. 3120-3130 ISSN 0005-2736 R&D Projects: GA ČR GA15-14292S Institutional support: RVO:61388955 ; RVO:61388963 Keywords : phospholipid monolayers * Lung surfactant * molecular dynamics Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.498, year: 2016

  10. Self assembled monolayers of octadecyltrichlorosilane for dielectric materials

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Vijay, E-mail: cirivijaypilani@gmail.com [Centre for Nanoscience and Engineering, Indian Institute of Science-Bangalore (India); Mechanical Engineering Department, Birla Institute of Technology and Science-Pilani (India); Puri, Paridhi; Nain, Shivani [Mechanical Engineering Department, Birla Institute of Technology and Science-Pilani (India); Bhat, K. N. [Centre for Nanoscience and Engineering, Indian Institute of Science-Bangalore (India); Sharma, N. N. [Mechanical Engineering Department, Birla Institute of Technology and Science-Pilani (India); School of Automobile, Mechanical & Mechatronics, Manipal University-Jaipur (India)

    2016-04-13

    Treatment of surfaces to change the interaction of fluids with them is a critical step in constructing useful microfluidics devices, especially those used in biological applications. Selective modification of inorganic materials such as Si, SiO{sub 2} and Si{sub 3}N{sub 4} is of great interest in research and technology. We evaluated the chemical formation of OTS self-assembled monolayers on silicon substrates with different dielectric materials. Our investigations were focused on surface modification of formerly used common dielectric materials SiO{sub 2}, Si{sub 3}N{sub 4} and a-poly. The improvement of wetting behaviour and quality of monolayer films were characterized using Atomic force microscope, Scanning electron microscope, Contact angle goniometer, Raman spectroscopy and X-ray photoelectron spectroscopy (XPS) monolayer deposited oxide surface.

  11. In vitro synthesis and purification of PhIP-deoxyguanosine and PhIP-DNA oligomer covalent complexes

    Energy Technology Data Exchange (ETDEWEB)

    Freeman, J.

    1994-12-01

    2-Amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) is a heterocyclic amine compound formed when meats are cooked at high temperatures. PhIP damages DNA by forming covalent complexes with DNA carcinogen. In an effort to understand how the binding of PhIP to DNA may cause cancer, it is important to characterize the structures of PhIP-damaged DNA molecules. Our HPLC data support fluorescence and {sup 32}P Post-labeling studies which indicate the formation of several species of 2{prime}deoxyguanosine-(dG) or oligodeoxynucleotide-PhIP adducts. The reaction of PhIP with dG resulted in a reddish precipitate that was likely the major adduct, N-(deoxyguanosin-8-yl)-PhIP (dG-C8-PhIP) adduct, with a more polar adduct fraction remaining in the supernatant. Reversed-phase HPLC analysis of the adducts in the supernatant revealed the existence of species of much shorter retention times than the dG-C8-PhIP adduct, confirming that these species are more polar than dG-C8-PhIP. At least four adducts were formed in the reaction of PhIP with DNA oligomer. HPLC analysis of the PhIP-DNA oligomer supernatant after butanol extractions revealed four unresolved peaks which spectra had maximum wavelengths between 340 and 360 nm. Though adduct peaks were not completely resolved, there was {approximately}3 minutes interval between the DNA oligomer peak and the adduct peaks. Furthermore, fluorescence emission data of the DNA oligomer-PhIP adduct solution show heterogeneous binding. The more polar PhIP adducts were fraction-collected and their structures will be solved by nuclear magnetic resonance or x-ray crystallography.

  12. X-Ray Reflectometry of DMPS Monolayers on a Water Substrate

    Science.gov (United States)

    Tikhonov, A. M.; Asadchikov, V. E.; Volkov, Yu. O.; Roshchin, B. S.; Ermakov, Yu. A.

    2017-12-01

    The molecular structure of dimyristoyl phosphatidylserine (DMPS) monolayers on a water substrate in different phase states has been investigated by X-ray reflectometry with a photon energy of 8 keV. According to the experimental data, the transition from a two-dimensional expanded liquid state to a solid gel state (liquid crystal) accompanied by the ordering of the hydrocarbon tails C14H27 of the DMPS molecule occurs in the monolayer as the surface pressure rises. The monolayer thickness is 20 ± 3 and 28 ± 2 Å in the liquid and solid phases, respectively, with the deflection angle of the molecular tail axis from the normal to the surface in the gel phase being 26° ± 8°. At least a twofold decrease in the degree of hydration of the polar lipid groups also occurs under two-dimensional monolayer compression. The reflectometry data have been analyzed using two approaches: under the assumption about the presence of two layers with different electron densities in the monolayer and without any assumptions about the transverse surface structure. Both approaches demonstrate satisfactory agreement between themselves in describing the experimental results.

  13. A sensitive and selective electrochemical biosensor for the determination of beta-amyloid oligomer by inhibiting the peptide-triggered in situ assembly of silver nanoparticles

    Directory of Open Access Journals (Sweden)

    Xing Y

    2017-04-01

    Full Text Available Yun Xing,1,2 Xiao-Zhen Feng,2 Lipeng Zhang,1 Jiating Hou,2 Guo-Cheng Han,2 Zhencheng Chen2 1Henan Province of Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, 2School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, Guangxi, People’s Republic of China Abstract: Soluble beta-amyloid (Aβ oligomer is believed to be the most important toxic species in the brain of Alzheimer’s disease (AD patients. Thus, it is critical to develop a simple method for the selective detection of Aβ oligomer with low cost and high sensitivity. In this paper, we report an electrochemical method for the detection of Aβ oligomer with a peptide as the bioreceptor and silver nanoparticle (AgNP aggregates as the redox reporters. This strategy is based on the conversion of AgNP-based colorimetric assay into electrochemical analysis. Specifically, the peptide immobilized on the electrode surface and presented in solution triggered together the in situ formation of AgNP aggregates, which produced a well-defined electrochemical signal. However, the specific binding of Aβ oligomer to the immobilized peptide prevented the in situ assembly of AgNPs. As a result, a poor electrochemical signal was observed. The detection limit of the method was found to be 6 pM. Furthermore, the amenability of this method for the analysis of Aβ oligomer in serum and artificial cerebrospinal fluid (aCSF samples was demonstrated. Keywords: electrochemical biosensors, Alzheimer’s disease, beta-amyloid oligomer, peptide, silver nanoparticles

  14. Electronic characteristics of p-type transparent SnO monolayer with high carrier mobility

    International Nuclear Information System (INIS)

    Du, Juan; Xia, Congxin; Liu, Yaming; Li, Xueping; Peng, Yuting; Wei, Shuyi

    2017-01-01

    Graphical abstract: SnO monolayer is a p-type transparent semiconducting oxide with high hole mobility (∼641 cm 2 V −1 s −1 ), which is much higher than that of MoS 2 monolayer, which indicate that it can be a promising candidate for high-performance nanoelectronic devices. Display Omitted - Highlights: • SnO monolayer is a p-type transparent semiconducting oxide. • The transparent properties can be still maintained under the strain 8%. • It has a high hole mobility (∼641 cm 2 V −1 s −1 ), which is higher than that of MoS 2 monolayer. - Abstract: More recently, two-dimensional (2D) SnO nanosheets are attaching great attention due to its excellent carrier mobility and transparent characteristics. Here, the stability, electronic structures and carrier mobility of SnO monolayer are investigated by using first-principles calculations. The calculations of the phonon dispersion spectra indicate that SnO monolayer is dynamically stable. Moreover, the band gap values are decreased from 3.93 eV to 2.75 eV when the tensile strain is applied from 0% to 12%. Interestingly, SnO monolayer is a p-type transparent semiconducting oxide with hole mobility of 641 cm 2 V −1 s −1 , which is much higher than that of MoS 2 monolayer. These findings make SnO monolayer becomes a promising 2D material for applications in nanoelectronic devices.

  15. KARAKTERISASI ENZIM KITOSANASE DAR] ISOLAT BAKTERI KPU 2123 DAN APLIKASINYA UNTUK PRODUKS1 OLIGOMER KITOSAN

    Directory of Open Access Journals (Sweden)

    Yusro Nuri Fawzya

    2009-06-01

    Full Text Available Penelitian ini merupakan sebagian dari rangkaian penelitian mengenai eksplorasi enzim kitinolitik dari mikroba lingkungan laut, khususnya dari limbah udang. Tujuan penelitian ini adalah untuk mengidentifikasi isolat bakteri KPU 2123 dari limbah udang, mengkarakterisasi dan mengaplikasikan enzim kitosanase yang dihasilkan oleh bakteri tersebut untuk produksi oligomer kitosan dan menguji bioaktivitas oligomer kitosan tersebut sebagai antitumor dan antibakteri. Karakterisasi enzim dilakukan dengan menguji aktivitas enzim pada berbagai suhu dan pH. Selain itu juga ditentukan besarnya aktivitas yang tersisa setelah enzim diinkubasi pada suhu dan lama waktu tertentu. Pengaruh ion logam terhadap aktivitas enzim juga dilihat dengan mereaksikan enzim dengan 1 mM ion logam dalam bentuk larutan khlorida. Hasil penelitian menunjukkan bahwa berdasarkan analisis gen 16S-rRNA, isolat bakteri KPU 2123 memiliki kemiripan 95% dengan Stanotrophomonas maltophilia. Enzim kitosanase dari isolat ini bekerja optimal pada suhu 50 ºC dan pH 6. Enzim ini cukup stabil pada suhu 37 ºC selama 120 menit. Penambahan ion logam berpengaruh terhadap aktivitas enzim. Ion logam Zn²+ (sebagai garam klorida 1 mM menghambat 100% aktivitas enzim tersebut. Penggunaan enzim kitosanase dalam menghidrolisis substrat kitosan, menghasilkan oligomer kitosan yang mengandung tetramer, pentamer dan heksamer Oligor kitosan tersebut mampu menghambat pertumbuhan bakteri Staphylococcus aureus sebesar 10,06% dan dapat menyebabkan kematian sel HeLa dengan LC50 pada dosis 120 ppm.

  16. Strain-mediated electronic properties of pristine and Mn-doped GaN monolayers

    Science.gov (United States)

    Sharma, Venus; Srivastava, Sunita

    2018-04-01

    Graphene-like two-dimensional (2D) monolayer structures GaN has gained enormous amount of interest due to high thermal stability and inherent energy band gap for practical applications. First principles calculations are performed to investigate the electronic structure and strain-mediated electronic properties of pristine and Mn-doped GaN monolayer. Binding energy of Mn dopant at various adsorption site is found to be nearly same indicating these sites to be equally favorable for adsorption of foreign atom. Depending on the adsorption site, GaN monolayer can act as p-type or n-type magnetic semiconductor. The tensile strength of both pristine and doped GaN monolayer (∼24 GPa) at ultimate tensile strain of 34% is comparable with the tensile strength of graphene. The in-plane biaxial strain modulate the energy band gap of both pristine and doped-monolayer from direct to indirect gap semiconductor and finally retendered theme into metal at critical value of applied strain. These characteristics make GaN monolayer to be potential candidate for the future applications in tunable optoelectronics.

  17. Monolayer MoSe 2 Grown by Chemical Vapor Deposition for Fast Photodetection

    KAUST Repository

    Chang, Yung-Huang

    2014-08-26

    Monolayer molybdenum disulfide (MoS2) has become a promising building block in optoelectronics for its high photosensitivity. However, sulfur vacancies and other defects significantly affect the electrical and optoelectronic properties of monolayer MoS2 devices. Here, highly crystalline molybdenum diselenide (MoSe2) monolayers have been successfully synthesized by the chemical vapor deposition (CVD) method. Low-temperature photoluminescence comparison for MoS2 and MoSe 2 monolayers reveals that the MoSe2 monolayer shows a much weaker bound exciton peak; hence, the phototransistor based on MoSe2 presents a much faster response time (<25 ms) than the corresponding 30 s for the CVD MoS2 monolayer at room temperature in ambient conditions. The images obtained from transmission electron microscopy indicate that the MoSe exhibits fewer defects than MoS2. This work provides the fundamental understanding for the differences in optoelectronic behaviors between MoSe2 and MoS2 and is useful for guiding future designs in 2D material-based optoelectronic devices. © 2014 American Chemical Society.

  18. Neutrophil-endothelial cell interactions on endothelial monolayers grown on micropore filters.

    Science.gov (United States)

    Taylor, R F; Price, T H; Schwartz, S M; Dale, D C

    1981-01-01

    We have developed a technique for growing endothelial monolayers on micropore filters. These monolayers demonstrate confluence by phase and electron microscopy and provide a functional barrier to passage of radiolabeled albumin. Neutrophils readily penetrate the monolayer in response to chemotaxin, whereas there is little movement in the absence of chemotaxin. This system offers unique advantages over available chemotaxis assays and may have wider applications in the study of endothelial function. Images PMID:7007441

  19. Proton and hydrogen transport through two-dimensional monolayers

    International Nuclear Information System (INIS)

    Seel, Max; Pandey, Ravindra

    2016-01-01

    Diffusion of protons and hydrogen atoms in representative two-dimensional materials is investigated. Specifically, density functional calculations were performed on graphene, hexagonal boron nitride (h-BN), phosphorene, silicene, and molybdenum disulfide (MoS 2 ) monolayers to study the surface interaction and penetration barriers for protons and hydrogen atoms employing finite cluster models. The calculated barrier heights correlate approximately with the size of the opening formed by the three-fold open sites in the monolayers considered. They range from 1.56 eV (proton) and 4.61 eV (H) for graphene to 0.12 eV (proton) and 0.20 eV (H) for silicene. The results indicate that only graphene and h-BN monolayers have the potential for membranes with high selective permeability. The MoS 2 monolayer behaves differently: protons and H atoms become trapped between the outer S layers in the Mo plane in a well with a depth of 1.56 eV (proton) and 1.5 eV (H atom), possibly explaining why no proton transport was detected, suggesting MoS 2 as a hydrogen storage material instead. For graphene and h-BN, off-center proton penetration reduces the barrier to 1.38 eV for graphene and 0.11 eV for h-BN. Furthermore, Pt acting as a substrate was found to have a negligible effect on the barrier height. In defective graphene, the smallest barrier for proton diffusion (1.05 eV) is found for an oxygen-terminated defect. Therefore, it seems more likely that thermal protons can penetrate a monolayer of h-BN but not graphene and defects are necessary to facilitate the proton transport in graphene. (paper)

  20. Proton and hydrogen transport through two-dimensional monolayers

    Science.gov (United States)

    Seel, Max; Pandey, Ravindra

    2016-06-01

    Diffusion of protons and hydrogen atoms in representative two-dimensional materials is investigated. Specifically, density functional calculations were performed on graphene, hexagonal boron nitride (h-BN), phosphorene, silicene, and molybdenum disulfide (MoS2) monolayers to study the surface interaction and penetration barriers for protons and hydrogen atoms employing finite cluster models. The calculated barrier heights correlate approximately with the size of the opening formed by the three-fold open sites in the monolayers considered. They range from 1.56 eV (proton) and 4.61 eV (H) for graphene to 0.12 eV (proton) and 0.20 eV (H) for silicene. The results indicate that only graphene and h-BN monolayers have the potential for membranes with high selective permeability. The MoS2 monolayer behaves differently: protons and H atoms become trapped between the outer S layers in the Mo plane in a well with a depth of 1.56 eV (proton) and 1.5 eV (H atom), possibly explaining why no proton transport was detected, suggesting MoS2 as a hydrogen storage material instead. For graphene and h-BN, off-center proton penetration reduces the barrier to 1.38 eV for graphene and 0.11 eV for h-BN. Furthermore, Pt acting as a substrate was found to have a negligible effect on the barrier height. In defective graphene, the smallest barrier for proton diffusion (1.05 eV) is found for an oxygen-terminated defect. Therefore, it seems more likely that thermal protons can penetrate a monolayer of h-BN but not graphene and defects are necessary to facilitate the proton transport in graphene.

  1. Simulations of absorption spectra of conjugated oligomers: role of planar conformation and aggregation in condensed phase

    Science.gov (United States)

    Yuan, Xiang-Ai; Wen, Jin; Zheng, Dong; Ma, Jing

    2018-04-01

    This Review highlights the structure/property relationship underlying the morphology modulation through various factors towards the exploration of light-absorbing materials for efficient utilisation of solar power. Theoretical study using a combination of molecular dynamics imulations and the time-dependent density functional theory demonstrated that the planarity plays an important role in tuning spectral properties of oligomer aggregates. The aggregation-induced blue-shift in absorption spectra of oligothiophenes and the red-shift for oligofluorenols were rationalised in a unified way from the reduced (and increased) content of planar conformations in molecular aggregates. The planarity versus non-planarity of oligomers can be modulated by introduction of alkyl side chain or steric bulky substituents. The substitution with various groups in the ortho-position of azobenzene leads to the distorted backbone, breaking symmetry, and hence the red-shift in spectra, expanding the application in biological systems with visible light absorption. The donor-acceptor substituent groups in conjugated oligomers can increase the degree of planarity, electron delocalisation and polarisation, and charge separation, giving rise to the red-shift in spectra and enhancement in polarisability and charge mobility for device applications. The solvent dependent and pH-sensitive properties and intramolecular hydrogen bonds also caused the shift of absorption spectra with the appearance of planar conformers.

  2. Studies of the structure and properties of organic monolayers, multilayers and superlattices

    International Nuclear Information System (INIS)

    Dutta, P.; Ketterson, J.B.

    1990-01-01

    Organic monolayers and multilayers are both scientifically fascinating and technologically promising; they are, however, both complex systems and relatively inaccessible to experimental probes. In this progress report, we describe our x-ray diffraction studies, which have given us substantial new information about the structures and phase transitions in monolayers on the surface of water; our use of these monolayers as a unique probe of the dynamics of wetting and spreading; and our studies of monolayer mechanical properties using a simple but effective technique available to anyone using the Wilhelmy method to measure surface tension. 20 refs., 11 figs

  3. Langmuir monolayer formation of metal complexes from polymerizable amphiphilic ligands

    NARCIS (Netherlands)

    Werkman, P.J; Schouten, A.J.

    1996-01-01

    The monolayer behaviour of 4-(10,12-pentacosadiynoicamidomethyl)-pyridine at the air-water interface was studied by measuring the surface pressure-area isotherms. The amphiphile formed stable monolayers with a clear liquid-expanded (LE) to liquid-condensed phase transition at various temperatures.

  4. Wavepacket revivals in monolayer and bilayer graphene rings.

    Science.gov (United States)

    García, Trinidad; Rodríguez-Bolívar, Salvador; Cordero, Nicolás A; Romera, Elvira

    2013-06-12

    We have studied the existence of quantum revivals in graphene quantum rings within a simplified model. The time evolution of a Gaussian-populated wavepacket shows revivals in monolayer and bilayer graphene rings. We have also studied this behavior for quantum rings in a perpendicular magnetic field. We have found that revival time is an observable that shows different values for monolayer and bilayer graphene quantum rings. In addition, the revival time shows valley degeneracy breaking.

  5. Electronic characteristics of p-type transparent SnO monolayer with high carrier mobility

    Energy Technology Data Exchange (ETDEWEB)

    Du, Juan [College of Physics and Materials Science, Henan Normal University, Xinxiang, Henan 453007 (China); Xia, Congxin, E-mail: xiacongxin@htu.edu.cn [College of Physics and Materials Science, Henan Normal University, Xinxiang, Henan 453007 (China); Liu, Yaming [Henan Institute of Science and Technology, Xinxiang 453003 (China); Li, Xueping [College of Physics and Materials Science, Henan Normal University, Xinxiang, Henan 453007 (China); Peng, Yuting [Department of Physics, University of Texas at Arlington, TX 76019 (United States); Wei, Shuyi [College of Physics and Materials Science, Henan Normal University, Xinxiang, Henan 453007 (China)

    2017-04-15

    Graphical abstract: SnO monolayer is a p-type transparent semiconducting oxide with high hole mobility (∼641 cm{sup 2} V{sup −1} s{sup −1}), which is much higher than that of MoS{sub 2} monolayer, which indicate that it can be a promising candidate for high-performance nanoelectronic devices. Display Omitted - Highlights: • SnO monolayer is a p-type transparent semiconducting oxide. • The transparent properties can be still maintained under the strain 8%. • It has a high hole mobility (∼641 cm{sup 2} V{sup −1} s{sup −1}), which is higher than that of MoS{sub 2} monolayer. - Abstract: More recently, two-dimensional (2D) SnO nanosheets are attaching great attention due to its excellent carrier mobility and transparent characteristics. Here, the stability, electronic structures and carrier mobility of SnO monolayer are investigated by using first-principles calculations. The calculations of the phonon dispersion spectra indicate that SnO monolayer is dynamically stable. Moreover, the band gap values are decreased from 3.93 eV to 2.75 eV when the tensile strain is applied from 0% to 12%. Interestingly, SnO monolayer is a p-type transparent semiconducting oxide with hole mobility of 641 cm{sup 2} V{sup −1} s{sup −1}, which is much higher than that of MoS{sub 2} monolayer. These findings make SnO monolayer becomes a promising 2D material for applications in nanoelectronic devices.

  6. Lower lattice thermal conductivity in SbAs than As or Sb monolayers: a first-principles study.

    Science.gov (United States)

    Guo, San-Dong; Liu, Jiang-Tao

    2017-12-06

    Phonon transport in group-VA element (As, Sb and Bi) monolayer semiconductors has been widely investigated in theory, and, of them, monolayer Sb (antimonene) has recently been synthesized. In this work, phonon transport in monolayer SbAs is investigated with a combination of first-principles calculations and the linearized phonon Boltzmann equation. It is found that the lattice thermal conductivity of monolayer SbAs is lower than those of both monolayer As and Sb, and the corresponding sheet thermal conductance is 28.8 W K -1 at room temperature. To understand the lower lattice thermal conductivity in monolayer SbAs than those in monolayer As and Sb, the group velocities and phonon lifetimes of monolayer As, SbAs and Sb are calculated. The calculated results show that the group velocities of monolayer SbAs are between those of monolayer As and Sb, but that the phonon lifetimes of SbAs are smaller than those of both monolayer As and Sb. Hence, the low lattice thermal conductivity in monolayer SbAs is attributed to very small phonon lifetimes. Unexpectedly, the ZA branch has very little contribution to the total thermal conductivity, only 2.4%, which is obviously different from those of monolayer As and Sb with very large contributions. This can be explained by very small phonon lifetimes for the ZA branch of monolayer SbAs. The lower lattice thermal conductivity of monolayer SbAs compared to that of monolayer As or Sb can be understood by the alloying of As (Sb) with Sb (As), which should introduce phonon point defect scattering. We also consider the isotope and size effects on the lattice thermal conductivity. It is found that isotope scattering produces a neglectful effect, and the lattice thermal conductivity with a characteristic length smaller than 30 nm can reach a decrease of about 47%. These results may offer perspectives on tuning the lattice thermal conductivity by the mixture of multiple elements for applications of thermal management and

  7. Emergence of Dirac and quantum spin Hall states in fluorinated monolayer As and AsSb

    KAUST Repository

    Zhang, Qingyun

    2016-01-21

    Using first-principles calculations, we investigate the electronic and vibrational properties of monolayer As and AsSb. While the pristine monolayers are semiconductors (direct band gap at the Γ point), fluorination results in Dirac cones at the K points. Fluorinated monolayer As shows a band gap of 0.16 eV due to spin-orbit coupling, and fluorinated monolayer AsSb a larger band gap of 0.37 eV due to inversion symmetry breaking. Spin-orbit coupling induces spin splitting similar to monolayer MoS2. Phonon calculations confirm that both materials are dynamically stable. Calculations of the edge states of nanoribbons by the tight-binding method demonstrate that fluorinated monolayer As is topologically nontrivial in contrast to fluorinated monolayer AsSb.

  8. Surface chemistry of lipid raft and amyloid Aβ (1-40) Langmuir monolayer.

    Science.gov (United States)

    Thakur, Garima; Pao, Christine; Micic, Miodrag; Johnson, Sheba; Leblanc, Roger M

    2011-10-15

    Lipid rafts being rich in cholesterol and sphingolipids are considered to provide ordered lipid environment in the neuronal membranes, where it is hypothesized that the cleavage of amyloid precursor protein (APP) to Aβ (1-40) and Aβ (1-42) takes place. It is highly likely that the interaction of lipid raft components like cholesterol, sphingomylein or GM1 leads to nucleation of Aβ and results in aggregation or accumulation of amyloid plaques. One has investigated surface pressure-area isotherms of the lipid raft and Aβ (1-40) Langmuir monolayer. The compression-decompression cycles and the stability of the lipid raft Langmuir monolayer are crucial parameters for the investigation of interaction of Aβ (1-40) with the lipid raft Langmuir monolayer. It was revealed that GM1 provides instability to the lipid raft Langmuir monolayer. Adsorption of Aβ (1-40) onto the lipid raft Langmuir monolayer containing neutral (POPC) or negatively charged phospholipid (DPPG) was examined. The adsorption isotherms revealed that the concentration of cholesterol was important for adsorption of Aβ (1-40) onto the lipid raft Langmuir monolayer containing POPC whereas for the lipid raft Langmuir monolayer containing DPPG:cholesterol or GM1 did not play any role. In situ UV-vis absorption spectroscopy supported the interpretation of results for the adsorption isotherms. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Electrochemical Properties of Alkanethiol Monolayers Adsorbed on Nanoporous Au Surfaces

    International Nuclear Information System (INIS)

    Chu, Yeon Yi; Seo, Bora; Kim, Jong Won

    2010-01-01

    We investigated the electrochemical properties of alkanethiol monolayers adsorbed on NPG surfaces by cyclic voltammetry and electrochemical impedance spectroscopy, and the results are compared to those on flat Au surfaces. The reductive desorption of alkanethiols on NPG surfaces is observed in more negative potential regions than that on flat Au surfaces due the stronger S-Au interaction on NPG surfaces. While the electron transfer through alkanethiol monolayers on flat Au surfaces occurs via a tunneling process through the monolayer films, the redox species can permeate through the monolayers on NPG surfaces to transfer the electrons to the Au surfaces. The results presented here will help to elucidate the intrinsic electrochemical properties of alkanethiol monolayers adsorbed on curved Au surfaces, particularly on the surface of AuNPs. Self-assembled monolayers (SAMs) of thiolate molecules on Au surfaces have been the subject of intensive research for the last few decades due to their unique physical and chemical properties. The well-organized surface structures of thiolate SAMs with various end-group functionalities can be further utilized for many applications in biology and nanotechnology. In addition to the practical applications, SAMs of thiolate molecules on Au surfaces also provide unique opportunities to address fundamental issues in surface chemistry such as self-organized surface structures, electron transfer behaviors, and moleculesubstrate interactions. Although there have been numerous reports on the fundamental physical and chemical properties of thiolate SAMs on Au surfaces, most of them were investigated on flat Au surfaces, typically on well-defined Au(111) surfaces

  10. Disorder-derived, strong tunneling attenuation in bis-phosphonate monolayers

    Science.gov (United States)

    Pathak, Anshuma; Bora, Achyut; Liao, Kung-Ching; Schmolke, Hannah; Jung, Antje; Klages, Claus-Peter; Schwartz, Jeffrey; Tornow, Marc

    2016-03-01

    Monolayers of alkyl bisphosphonic acids (bisPAs) of various carbon chain lengths (C4, C8, C10, C12) were grown on aluminum oxide (AlO x ) surfaces from solution. The structural and electrical properties of these self-assembled monolayers (SAMs) were compared with those of alkyl monophosphonic acids (monoPAs). Through contact angle (CA) and Kelvin-probe (KP) measurements, ellipsometry, and infrared (IR) and x-ray photoelectron (XPS) spectroscopies, it was found that bisPAs form monolayers that are relatively disordered compared to their monoPA analogs. Current-voltage (J-V) measurements made with a hanging Hg drop top contact show tunneling to be the prevailing transport mechanism. However, while the monoPAs have an observed decay constant within the typical range for dense monolayers, β mono  =  0.85  ±  0.03 per carbon atom, a surprisingly high value, β bis  =  1.40  ±  0.05 per carbon atom, was measured for the bisPAs. We attribute this to a strong contribution of ‘through-space’ tunneling, which derives from conformational disorder in the monolayer due to strong interactions of the distal phosphonic acid groups; they likely form a hydrogen-bonding network that largely determines the molecular layer structure. Since bisPA SAMs attenuate tunnel currents more effectively than do the corresponding monoPA SAMs, they may find future application as gate dielectric modification in organic thin film devices.

  11. Synthetic oligomer analysis using atmospheric pressure photoionization mass spectrometry at different photon energies

    International Nuclear Information System (INIS)

    Desmazières, Bernard; Legros, Véronique; Giuliani, Alexandre; Buchmann, William

    2014-01-01

    Graphical abstract: Atmospheric pressure photoIonization mass spectra of synthetic oligomers were recorded in the negative mode by varying the photon energy using synchrotron radiation. Photon energy required for an efficient ionization of the polymer was correlated to ionization potential of the solvent (for example 9.4 eV for tetrahydrofuran). -- Highlights: •Atmospheric pressure photoionization was performed using synchrotron radiation. •Photoionization of oligomers in THF with 10% CH 2 Cl 2 produces intact [M + Cl] − ions. •The photon energy required corresponds to ionization potential of the solvent. •Polymer distributions depend on source parameters such T °C and applied voltages. •Liquid chromatography was coupled to MS using an APPI interface for polymer analysis. -- Abstract: Atmospheric pressure photoionization (APPI) followed by mass spectrometric detection was used to ionize a variety of polymers: polyethylene glycol, polymethyl methacrylate, polystyrene, and polysiloxane. In most cases, whatever the polymer or the solvent used (dichloromethane, tetrahydrofuran, hexane, acetone or toluene), only negative ion mode produced intact ions such as chlorinated adducts, with no or few fragmentations, in contrast to the positive ion mode that frequently led to important in-source fragmentations. In addition, it was shown that optimal detection of polymer distributions require a fine tuning of other source parameters such as temperature and ion transfer voltage. Series of mass spectra were recorded in the negative mode, in various solvents (dichloromethane, tetrahydrofuran, hexane, toluene, and acetone), by varying the photon energy from 8 eV up to 10.6 eV using synchrotron radiation. To these solvents, addition of a classical APPI dopant (toluene or acetone) was not necessary. Courtesy of the synchrotron radiation, it was demonstrated that the photon energy required for an efficient ionization of the polymer was correlated to the ionization energy

  12. Synthetic oligomer analysis using atmospheric pressure photoionization mass spectrometry at different photon energies

    Energy Technology Data Exchange (ETDEWEB)

    Desmazières, Bernard [Global Bioenergies, 5 rue Henri Desbruyeres, 91030 Evry (France); Legros, Véronique [CNRS, UMR8587, Université d’Evry-Val-d’Essonne, Laboratoire Analyse et Modélisation pour la Biologie et l’Environnement, F-91025 Evry (France); Giuliani, Alexandre [Synchrotron SOLEIL, L’Orme des Merisiers, Saint-Aubin, 91192 Gif-sur-Yvette (France); UAR1008, CEPIA, INRA, Rue de la Geraudiere, F-44316 Nantes (France); Buchmann, William, E-mail: william.buchmann@univ-evry.fr [CNRS, UMR8587, Université d’Evry-Val-d’Essonne, Laboratoire Analyse et Modélisation pour la Biologie et l’Environnement, F-91025 Evry (France)

    2014-01-15

    Graphical abstract: Atmospheric pressure photoIonization mass spectra of synthetic oligomers were recorded in the negative mode by varying the photon energy using synchrotron radiation. Photon energy required for an efficient ionization of the polymer was correlated to ionization potential of the solvent (for example 9.4 eV for tetrahydrofuran). -- Highlights: •Atmospheric pressure photoionization was performed using synchrotron radiation. •Photoionization of oligomers in THF with 10% CH{sub 2}Cl{sub 2} produces intact [M + Cl]{sup −} ions. •The photon energy required corresponds to ionization potential of the solvent. •Polymer distributions depend on source parameters such T °C and applied voltages. •Liquid chromatography was coupled to MS using an APPI interface for polymer analysis. -- Abstract: Atmospheric pressure photoionization (APPI) followed by mass spectrometric detection was used to ionize a variety of polymers: polyethylene glycol, polymethyl methacrylate, polystyrene, and polysiloxane. In most cases, whatever the polymer or the solvent used (dichloromethane, tetrahydrofuran, hexane, acetone or toluene), only negative ion mode produced intact ions such as chlorinated adducts, with no or few fragmentations, in contrast to the positive ion mode that frequently led to important in-source fragmentations. In addition, it was shown that optimal detection of polymer distributions require a fine tuning of other source parameters such as temperature and ion transfer voltage. Series of mass spectra were recorded in the negative mode, in various solvents (dichloromethane, tetrahydrofuran, hexane, toluene, and acetone), by varying the photon energy from 8 eV up to 10.6 eV using synchrotron radiation. To these solvents, addition of a classical APPI dopant (toluene or acetone) was not necessary. Courtesy of the synchrotron radiation, it was demonstrated that the photon energy required for an efficient ionization of the polymer was correlated to the

  13. Carbonization of aniline oligomers to electrically polarizable particles and their use in electrorheology

    Czech Academy of Sciences Publication Activity Database

    Plachý, T.; Sedlačík, M.; Pavlínek, V.; Trchová, Miroslava; Morávková, Zuzana; Stejskal, Jaroslav

    2014-01-01

    Roč. 256, 15 November (2014), s. 398-406 ISSN 1385-8947 R&D Projects: GA ČR GAP205/12/0911; GA ČR(CZ) GA13-08944S Institutional support: RVO:61389013 Keywords : aniline * aniline oligomers * carbonization Subject RIV: CD - Macromolecular Chemistry Impact factor: 4.321, year: 2014

  14. Landau levels in biased graphene structures with monolayer-bilayer interfaces

    Science.gov (United States)

    Mirzakhani, M.; Zarenia, M.; Vasilopoulos, P.; Ketabi, S. A.; Peeters, F. M.

    2017-09-01

    The electron energy spectrum in monolayer-bilayer-monolayer and in bilayer-monolayer-bilayer graphene structures is investigated and the effects of a perpendicular magnetic field and electric bias are studied. Different types of monolayer-bilayer interfaces are considered as zigzag (ZZ) or armchair (AC) junctions which modify considerably the bulk Landau levels (LLs) when the spectra are plotted as a function of the center coordinate of the cyclotron orbit. Far away from the two interfaces, one obtains the well-known LLs for extended monolayer or bilayer graphene. The LL structure changes significantly at the two interfaces or junctions where the valley degeneracy is lifted for both types of junctions, especially when the distance between them is approximately equal to the magnetic length. Varying the nonuniform bias and the width of this junction-to-junction region in either structure strongly influence the resulting spectra. Significant differences exist between ZZ and AC junctions in both structures. The densities of states (DOSs) for unbiased structures are symmetric in energy whereas those for biased structures are asymmetric. An external bias creates interface LLs in the gaps between the LLs of the unbiased system in which the DOS can be quite small. Such a pattern of LLs can be probed by scanning tunneling microscopy.

  15. Intracerebroventricular Administration of Amyloid β-protein Oligomers Selectively Increases Dorsal Hippocampal Dialysate Glutamate Levels in the Awake Rat

    Directory of Open Access Journals (Sweden)

    Sean D. O’Shea

    2008-11-01

    Full Text Available Extensive evidence supports an important role for soluble oligomers of the amyloid β-protein (Aβ in Alzheimer’s Disease pathogenesis. In the present study we combined intracerebroventricular (icv injections with brain microdialysis technology in the fully conscious rat to assess the effects of icv administered SDS-stable low-n Aβ oligomers (principally dimers and trimers on excitatory and inhibitory amino acid transmission in the ipsilateral dorsal hippocampus. Microdialysis was employed to assess the effect of icv administration of Aβ monomers and Aβ oligomers on dialysate glutamate, aspartate and GABA levels in the dorsal hippocampus. Administration of Aβ oligomers was associated with a +183% increase (p<0.0001 vs. Aβ monomer-injected control in dorsal hippocampal glutamate levels which was still increasing at the end of the experiment (260 min, whereas aspartate and GABA levels were unaffected throughout. These findings demonstrate that icv administration and microdialysis technology can be successfully combined in the awake rat and suggests that altered dorsal hippocampal glutamate transmission may be a useful target for pharmacological intervention in Alzheimer’s Disease.

  16. Wavepacket revivals in monolayer and bilayer graphene rings

    International Nuclear Information System (INIS)

    García, Trinidad; Rodríguez-Bolívar, Salvador; Cordero, Nicolás A; Romera, Elvira

    2013-01-01

    We have studied the existence of quantum revivals in graphene quantum rings within a simplified model. The time evolution of a Gaussian-populated wavepacket shows revivals in monolayer and bilayer graphene rings. We have also studied this behavior for quantum rings in a perpendicular magnetic field. We have found that revival time is an observable that shows different values for monolayer and bilayer graphene quantum rings. In addition, the revival time shows valley degeneracy breaking. (paper)

  17. Molecular printboards: monolayers of beta-cyclodextrins on silicon oxide surfaces

    NARCIS (Netherlands)

    Onclin, S.; Mulder, A.; Huskens, Jurriaan; Ravoo, B.J.; Reinhoudt, David

    2004-01-01

    Monolayers of β-cyclodextrin host molecules have been prepared on SiO2 surfaces. An ordered and stable cyano-terminated monolayer was modified in three consecutive surface reactions. First, the cyanide groups were reduced to their corresponding free amines using Red Al as a reducing agent. Second,

  18. A self-assembled monolayer-assisted surface microfabrication and release technique

    NARCIS (Netherlands)

    Kim, B.J.; Liebau, M.; Huskens, Jurriaan; Reinhoudt, David; Brugger, J.P.

    2001-01-01

    This paper describes a method of thin film and MEMS processing which uses self-assembled monolayers as ultra-thin organic surface coating to enable a simple removal of microfabricated devices off the surface without wet chemical etching. A 1.5-nm thick self-assembled monolayer of

  19. Infrared spectroscopy of self-assembled monolayer films on silicon

    Science.gov (United States)

    Rowell, N. L.; Tay, Lilin; Boukherroub, R.; Lockwood, D. J.

    2007-07-01

    Infrared vibrational spectroscopy in an attenuated total reflection (ATR) geometry has been employed to investigate the presence of organic thin layers on Si-wafer surfaces. The phenomena have been simulated to show there can be a field enhancement with the presented single-reflection ATR (SR-ATR) approach which is substantially larger than for conventional ATR or specular reflection. In SR-ATR, a discontinuity of the field normal to the film contributes a field enhancement in the lower index thin film causing a two order of magnitude increase in sensitivity. SR-ATR was employed to characterize a single monolayer of undecylenic acid self-assembled on Si(1 1 1) and to investigate a two monolayer system obtained by adding a monolayer of bovine serum albumin protein.

  20. Triptycene-terminated thiolate and selenolate monolayers on Au(111

    Directory of Open Access Journals (Sweden)

    Jinxuan Liu

    2017-04-01

    Full Text Available To study the implications of highly space-demanding organic moieties on the properties of self-assembled monolayers (SAMs, triptycyl thiolates and selenolates with and without methylene spacers on Au(111 surfaces were comprehensively studied using ultra-high vacuum infrared reflection absorption spectroscopy, X-ray photoelectron spectroscopy, near-edge X-ray absorption fine structure spectroscopy and thermal desorption spectroscopy. Due to packing effects, the molecules in all monolayers are substantially tilted. In the presence of a methylene spacer the tilt is slightly less pronounced. The selenolate monolayers exhibit smaller defect densities and therefore are more densely packed than their thiolate analogues. The Se–Au binding energy in the investigated SAMs was found to be higher than the S–Au binding energy.

  1. Controlled electrodeposition of Au monolayer film on ionic liquid

    Science.gov (United States)

    Ma, Qiang; Pang, Liuqing; Li, Man; Zhang, Yunxia; Ren, Xianpei; Liu, Shengzhong Frank

    2016-05-01

    Gold (Au) nanoparticles have been attractive for centuries for their vibrant appearance enhanced by their interaction with sunlight. Nowadays, there have been tremendous research efforts to develop them for high-tech applications including therapeutic agents, sensors, organic photovoltaics, medical applications, electronics and catalysis. However, there remains to be a challenge to fabricate a monolayer Au coating with complete coverage in controlled fashion. Here we present a facile method to deposit a uniform Au monolayer (ML) film on the [BMIM][PF6] ionic liquid substrate using an electrochemical deposition process. It demonstrates that it is feasible to prepare a solid phase coating on the liquid-based substrate. Moreover, the thickness of the monolayer coating can be controlled to a layer-by-layer accuracy.

  2. Active cell-matrix coupling regulates cellular force landscapes of cohesive epithelial monolayers

    Science.gov (United States)

    Zhao, Tiankai; Zhang, Yao; Wei, Qiong; Shi, Xuechen; Zhao, Peng; Chen, Long-Qing; Zhang, Sulin

    2018-03-01

    Epithelial cells can assemble into cohesive monolayers with rich morphologies on substrates due to competition between elastic, edge, and interfacial effects. Here we present a molecularly based thermodynamic model, integrating monolayer and substrate elasticity, and force-mediated focal adhesion formation, to elucidate the active biochemical regulation over the cellular force landscapes in cohesive epithelial monolayers, corroborated by microscopy and immunofluorescence studies. The predicted extracellular traction and intercellular tension are both monolayer size and substrate stiffness dependent, suggestive of cross-talks between intercellular and extracellular activities. Our model sets a firm ground toward a versatile computational framework to uncover the molecular origins of morphogenesis and disease in multicellular epithelia.

  3. Producing air-stable monolayers of phosphorene and their defect engineering.

    Science.gov (United States)

    Pei, Jiajie; Gai, Xin; Yang, Jiong; Wang, Xibin; Yu, Zongfu; Choi, Duk-Yong; Luther-Davies, Barry; Lu, Yuerui

    2016-01-22

    It has been a long-standing challenge to produce air-stable few- or monolayer samples of phosphorene because thin phosphorene films degrade rapidly in ambient conditions. Here we demonstrate a new highly controllable method for fabricating high quality, air-stable phosphorene films with a designated number of layers ranging from a few down to monolayer. Our approach involves the use of oxygen plasma dry etching to thin down thick-exfoliated phosphorene flakes, layer by layer with atomic precision. Moreover, in a stabilized phosphorene monolayer, we were able to precisely engineer defects for the first time, which led to efficient emission of photons at new frequencies in the near infrared at room temperature. In addition, we demonstrate the use of an electrostatic gate to tune the photon emission from the defects in a monolayer phosphorene. This could lead to new electronic and optoelectronic devices, such as electrically tunable, broadband near infrared lighting devices operating at room temperature.

  4. Monolayer II-VI semiconductors: A first-principles prediction

    Science.gov (United States)

    Zheng, Hui; Chen, Nian-Ke; Zhang, S. B.; Li, Xian-Bin

    A systematic study of 32 honeycomb monolayer II-VI semiconductors is carried out by first-principles methods. It appears that BeO, MgO, CaO, ZnO, CdO, CaS, SrS, SrSe, BaTe, and HgTe honeycomb monolayers have a good dynamic stability which is revealed by phonon calculations. In addition, from the molecular dynamic (MD) simulation of other unstable candidates, we also find two extra monolayers dynamically stable, which are tetragonal BaS and orthorhombic HgS. The honeycomb monolayers exist in form of either a planar perfect honeycomb or a low-buckled 2D layer, all of which possess a band gap and most of them are in the ultraviolet region. Interestingly, the dynamically stable SrSe has a gap near visible light, and displays exotic electronic properties with a flat top of the valence band, and hence has a strong spin polarization upon hole doping. The honeycomb HgTe has been reported to achieve a topological nontrivial phase under appropriate in-plane tensile strain and spin-orbital coupling (SOC). Some II-VI partners with less than 5% lattice mismatch may be used to design novel 2D heterojunction devices. If synthesized, potential applications of these 2D II-VI families could include optoelectronics, spintronics, and strong correlated electronics. Distinguished Student (DS) Program of APS FIP travel funds.

  5. Design, synthesis, and characterization of biomimetic oligomers

    DEFF Research Database (Denmark)

    Laursen, Jonas Striegler

    a helical arrangement found by DFT calculations. The designed oligomer indeed proved the existence of a ß-peptoid helical conformation by X-ray. Further studies of these compounds indicated a structured display in solution. These helices thus definitively show that the ß-peptoids should be considered......Peptides and proteins made from the 20 canonical amino acids are responsible for many processes necessary for organisms to function. Beside their composition, proteins obtain their activity and unique selectivity through an ability to display functionalities accurately in the three......, for their ability to mimic the structural elements seen in proteins. Two prominent peptidomimetics are ß-peptides and a-peptoids (N-alkylglycines), which have been shown to fold into helical and sheet-like arrangements. To expand the chemical space available for mimicking protein structure their features have been...

  6. Shaking alone induces de novo conversion of recombinant prion proteins to β-sheet rich oligomers and fibrils.

    Directory of Open Access Journals (Sweden)

    Carol L Ladner-Keay

    Full Text Available The formation of β-sheet rich prion oligomers and fibrils from native prion protein (PrP is thought to be a key step in the development of prion diseases. Many methods are available to convert recombinant prion protein into β-sheet rich fibrils using various chemical denaturants (urea, SDS, GdnHCl, high temperature, phospholipids, or mildly acidic conditions (pH 4. Many of these methods also require shaking or another form of agitation to complete the conversion process. We have identified that shaking alone causes the conversion of recombinant PrP to β-sheet rich oligomers and fibrils at near physiological pH (pH 5.5 to pH 6.2 and temperature. This conversion does not require any denaturant, detergent, or any other chemical cofactor. Interestingly, this conversion does not occur when the water-air interface is eliminated in the shaken sample. We have analyzed shaking-induced conversion using circular dichroism, resolution enhanced native acidic gel electrophoresis (RENAGE, electron microscopy, Fourier transform infrared spectroscopy, thioflavin T fluorescence and proteinase K resistance. Our results show that shaking causes the formation of β-sheet rich oligomers with a population distribution ranging from octamers to dodecamers and that further shaking causes a transition to β-sheet fibrils. In addition, we show that shaking-induced conversion occurs for a wide range of full-length and truncated constructs of mouse, hamster and cervid prion proteins. We propose that this method of conversion provides a robust, reproducible and easily accessible model for scrapie-like amyloid formation, allowing the generation of milligram quantities of physiologically stable β-sheet rich oligomers and fibrils. These results may also have interesting implications regarding our understanding of prion conversion and propagation both within the brain and via techniques such as protein misfolding cyclic amplification (PMCA and quaking induced conversion (QuIC.

  7. An Open-Circuit Voltage and Power Conversion Efficiency Study of Fullerene Ternary Organic Solar Cells Based on Oligomer/Oligomer and Oligomer/Polymer.

    Science.gov (United States)

    Zhang, Guichuan; Zhou, Cheng; Sun, Chen; Jia, Xiaoe; Xu, Baomin; Ying, Lei; Huang, Fei; Cao, Yong

    2017-07-01

    Variations in the open-circuit voltage (V oc ) of ternary organic solar cells are systematically investigated. The initial study of these devices consists of two electron-donating oligomers, S2 (two units) and S7 (seven units), and the electron-accepting [6,6]-phenyl C71 butyric acid methyl ester (PC 71 BM) and reveals that the V oc is continuously tunable due to the changing energy of the charge transfer state (E ct ) of the active layers. Further investigation suggests that V oc is also continuously tunable upon change in E ct in a ternary blend system that consists of S2 and its corresponding polymer (P11):PC 71 BM. It is interesting to note that higher power conversion efficiencies can be obtained for both S2:S7:PC 71 BM and S2:P11:PC 71 BM ternary systems compared with their binary systems, which can be ascribed to an improved V oc due to the higher E ct and an improved fill factor due to the improved film morphology upon the incorporation of S2. These findings provide a new guideline for the future design of conjugated polymers for achieving higher performance of ternary organic solar cells. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Liquid-Phase Exfoliation into Monolayered BiOBr Nanosheets for Photocatalytic Oxidation and Reduction

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Hongjian [Beijing; Huang, Hongwei [Beijing; Xu, Kang [Center; Hao, Weichang [Center; Guo, Yuxi [Beijing; Wang, Shuobo [Beijing; Shen, Xiulin [Beijing; Pan, Shaofeng [Beijing; Zhang, Yihe [Beijing

    2017-09-26

    Monolayered photocatalytic materials have attracted huge research interests in terms of their large specific surface area and ample active sites. Sillén-structured layered BiOX (X = Cl, Br, I) casts great prospects owing to their strong photo-oxidation ability and high stability. Fabrication of monolayered BiOX by a facile, low-cost, and scalable approach is highly challenging and anticipated. Herein, we describe the large-scale preparation of monolayered BiOBr nanosheets with a thickness of ~0.85 nm via a readily achievable liquid-phase exfoliation strategy with assistance of formamide at ambient conditions. The as-obtained monolayered BiOBr nanosheets are allowed diverse superiorities, such as enhanced specific surface area, promoted band structure, and strengthened charge separation. Profiting from these benefits, the advanced BiOBr monolayers not only show excellent adsorption and photodegradation performance for treating contaminants, but also demonstrate a greatly promoted photocatalytic activity for CO2 reduction into CO and CH4. Additionally, monolayered BiOI nanosheets have also been obtained by the same synthetic approach. Our work offers a mild and general approach for preparation of monolayered BiOX, and may have huge potential to be extended to the synthesis of other single-layer two-dimensional materials.

  9. Strongly bound excitons in monolayer PtS2 and PtSe2

    KAUST Repository

    Sajjad, M.

    2018-01-22

    Based on first-principles calculations, the structural, electronic, and optical properties of monolayers PtS2 and PtSe2 are investigated. The bond stiffnesses and elastic moduli are determined by means of the spring constants and strain-energy relations, respectively. Dynamic stability is confirmed by calculating the phonon spectra, which shows excellent agreement with experimental reports for the frequencies of the Raman-active modes. The Heyd-Scuseria-Ernzerhof functional results in electronic bandgaps of 2.66 eV for monolayer PtS2 and 1.74 eV for monolayer PtSe2. G0W0 calculations combined with the Bethe-Salpeter equation are used to predict the optical spectra and exciton binding energies (0.78 eV for monolayer PtS2 and 0.60 eV for monolayer PtSe2). It turns out that the excitons are strongly bound and therefore very stable against external perturbations.

  10. Disorder-derived, strong tunneling attenuation in bis-phosphonate monolayers

    International Nuclear Information System (INIS)

    Pathak, Anshuma; Bora, Achyut; Tornow, Marc; Liao, Kung-Ching; Schwartz, Jeffrey; Schmolke, Hannah; Jung, Antje; Klages, Claus-Peter

    2016-01-01

    Monolayers of alkyl bisphosphonic acids (bisPAs) of various carbon chain lengths (C4, C8, C10, C12) were grown on aluminum oxide (AlO x ) surfaces from solution. The structural and electrical properties of these self-assembled monolayers (SAMs) were compared with those of alkyl monophosphonic acids (monoPAs). Through contact angle (CA) and Kelvin-probe (KP) measurements, ellipsometry, and infrared (IR) and x-ray photoelectron (XPS) spectroscopies, it was found that bisPAs form monolayers that are relatively disordered compared to their monoPA analogs. Current–voltage (J–V) measurements made with a hanging Hg drop top contact show tunneling to be the prevailing transport mechanism. However, while the monoPAs have an observed decay constant within the typical range for dense monolayers, β mono   =  0.85  ±  0.03 per carbon atom, a surprisingly high value, β bis   =  1.40  ±  0.05 per carbon atom, was measured for the bisPAs. We attribute this to a strong contribution of ‘through-space’ tunneling, which derives from conformational disorder in the monolayer due to strong interactions of the distal phosphonic acid groups; they likely form a hydrogen-bonding network that largely determines the molecular layer structure. Since bisPA SAMs attenuate tunnel currents more effectively than do the corresponding monoPA SAMs, they may find future application as gate dielectric modification in organic thin film devices. (paper)

  11. Defect Structure of Localized Excitons in a WSe2 Monolayer

    KAUST Repository

    Zhang, Shuai

    2017-07-26

    The atomic and electronic structure of intrinsic defects in a WSe2 monolayer grown on graphite was revealed by low temperature scanning tunneling microscopy and spectroscopy. Instead of chalcogen vacancies that prevail in other transition metal dichalcogenide materials, intrinsic defects in WSe2 arise surprisingly from single tungsten vacancies, leading to the hole (p-type) doping. Furthermore, we found these defects to dominate the excitonic emission of the WSe2 monolayer at low temperature. Our work provided the first atomic-scale understanding of defect excitons and paved the way toward deciphering the defect structure of single quantum emitters previously discovered in the WSe2 monolayer.

  12. Methods for top-down fabrication of wafer scale TMDC monolayers

    Science.gov (United States)

    Das, Saptarshi; Bera, Mrinal K.; Roelofs, Andreas K; Antonio, Mark

    2017-11-07

    A method of forming a TMDC monolayer comprises providing a multi-layer transition metal dichalcogenide (TMDC) film. The multi-layer TMDC film comprises a plurality of layers of the TMDC. The multi-layer TMDC film is positioned on a conducting substrate. The conducting substrate is contacted with an electrolyte solution. A predetermined electrode potential is applied on the conducting substrate and the TMDC monolayer for a predetermined time. A portion of the plurality of layers of the TMDC included in the multi-layer TMDC film is removed by application of the predetermined electrode potential, thereby leaving a TMDC monolayer film positioned on the conducting substrate.

  13. Current Transport Properties of Monolayer Graphene/n-Si Schottky Diodes

    Science.gov (United States)

    Pathak, C. S.; Garg, Manjari; Singh, J. P.; Singh, R.

    2018-05-01

    The present work reports on the fabrication and the detailed macroscopic and nanoscale electrical characteristics of monolayer graphene/n-Si Schottky diodes. The temperature dependent electrical transport properties of monolayer graphene/n-Si Schottky diodes were investigated. Nanoscale electrical characterizations were carried out using Kelvin probe force microscopy and conducting atomic force microscopy. Most the values of ideality factor and barrier height are found to be in the range of 2.0–4.4 and 0.50–0.70 eV for monolayer graphene/n-Si nanoscale Schottky contacts. The tunneling of electrons is found to be responsible for the high value of ideality factor for nanoscale Schottky contacts.

  14. SYNCHROTRON X-RAY OBSERVATIONS OF A MONOLAYER TEMPLATE FOR MINERALIZATION

    International Nuclear Information System (INIS)

    Dimasi, E.; Gower, L.B.

    2000-01-01

    Mineral nucleation at a Langmuir film interface has been studied by synchrotron x-ray scattering. Diluted calcium bicarbonate solutions were used as subphases for arachidic and stearic acid monolayers, compressed in a Langmuir trough. Self-assembly of the monolayer template is observed directly, and subsequent crystal growth monitored in-situ

  15. ENVIRONMENTAL ENRICHMENT STRENGTHENS CORTICOCORTICAL INTERACTIONS AND REDUCES AMYLOID-β OLIGOMERS IN AGED MICE

    Directory of Open Access Journals (Sweden)

    Marco eMainardi

    2014-01-01

    Full Text Available Brain aging is characterized by global changes which are thought to underlie age-related cognitive decline. These include variations in brain activity and the progressive increase in the concentration of soluble amyloid-β (Aβ oligomers, directly impairing synaptic function and plasticity even in the absence of any neurodegenerative disorder. Considering the high social impact of the decline in brain performance associated to aging, there is an urgent need to better understand how it can be prevented or contrasted. Lifestyle components, such as social interaction, motor exercise and cognitive activity, are thought to modulate brain physiology and its susceptibility to age-related pathologies. However, the precise functional and molecular factors that respond to environmental stimuli and might mediate their protective action again pathological aging still need to be clearly identified. To address this issue, we exploited environmental enrichment (EE, a reliable model for studying the effect of experience on the brain based on the enhancement of cognitive, social and motor experience, in aged wild-type mice. We analyzed the functional consequences of EE on aged brain physiology by performing in vivo local field potential (LFP recordings with chronic implants. In addition, we also investigated changes induced by EE on molecular markers of neural plasticity and on the levels of soluble Aβ oligomers. We report that EE induced profound changes in the activity of the primary visual and auditory cortices and in their functional interaction. At the molecular level, EE enhanced plasticity by an upward shift of the cortical excitation/inhibition balance. In addition, EE reduced brain Aβ oligomers and increased synthesis of the Aβ-degrading enzyme neprilysin. Our findings strengthen the potential of EE procedures as a non-invasive paradigm for counteracting brain aging processes.

  16. Self-renewing Monolayer of Primary Colonic or Rectal Epithelial CellsSummary

    Directory of Open Access Journals (Sweden)

    Yuli Wang

    2017-07-01

    Full Text Available Background & Aims: Three-dimensional organoid culture has fundamentally changed the in vitro study of intestinal biology enabling novel assays; however, its use is limited because of an inaccessible luminal compartment and challenges to data gathering in a three-dimensional hydrogel matrix. Long-lived, self-renewing 2-dimensional (2-D tissue cultured from primary colon cells has not been accomplished. Methods: The surface matrix and chemical factors that sustain 2-D mouse colonic and human rectal epithelial cell monolayers with cell repertoires comparable to that in vivo were identified. Results: The monolayers formed organoids or colonoids when placed in standard Matrigel culture. As with the colonoids, the monolayers exhibited compartmentalization of proliferative and differentiated cells, with proliferative cells located near the peripheral edges of growing monolayers and differentiated cells predominated in the central regions. Screening of 77 dietary compounds and metabolites revealed altered proliferation or differentiation of the murine colonic epithelium. When exposed to a subset of the compound library, murine organoids exhibited similar responses to that of the monolayer but with differences that were likely attributable to the inaccessible organoid lumen. The response of the human primary epithelium to a compound subset was distinct from that of both the murine primary epithelium and human tumor cells. Conclusions: This study demonstrates that a self-renewing 2-D murine and human monolayer derived from primary cells can serve as a physiologically relevant assay system for study of stem cell renewal and differentiation and for compound screening. The platform holds transformative potential for personalized and precision medicine and can be applied to emerging areas of disease modeling and microbiome studies. Keywords: Colonic Epithelial Cells, Monolayer, Organoids, Compound Screening

  17. Conformations and orientations of a signal peptide interacting with phospholipid monolayers

    International Nuclear Information System (INIS)

    Cornell, D.G.; Dluhy, R.A.; Briggs, M.S.; McKnight, C.J.; Gierasch, L.M.

    1989-01-01

    The interaction of a chemically synthesized 25-residue signal peptide of LamB protein from Escherichia coli with phospholipids has been studied with a film balance technique. The conformation, orientation, and concentration of the peptides in lipid monolayers have been determined from polarized infrared spectroscopy, ultraviolet spectroscopy, and assay of 14 C-labeled peptide in transferred films. When the LamB signal peptide in injected into the subphase under a phosphatidylethanolamine-phosphatidylglycerol monolayer at low initial pressure, insertion of a portion of the peptide into the lipid film is evidenced by a rapid rise in film pressure. Spectroscopic results obtained on films transferred to quartz plates and Ge crystals show that the peptide is a mixture of α-helix and β-conformation where the long axis of the α-helix penetrates the monolayer plane and the β-structure which is coplanar with the film. By contrast, when peptide is injected under lipid at high initial pressure, no pressure rise is observed, and the spectroscopic results show the presence of only β-structure which is coplanar with the monolayer. The spectroscopic and radioassay results are all consistent with the picture of a peptide anchored to the monolayer through electrostatic binding with a helical portion inserted into the lipid region of the monolayer and a β-structure portion resident in the aqueous phase. The negative charges on the lipid molecules are roughly neutralized by the positive charges of the peptide

  18. InSe monolayer: synthesis, structure and ultra-high second-harmonic generation

    Science.gov (United States)

    Zhou, Jiadong; Shi, Jia; Zeng, Qingsheng; Chen, Yu; Niu, Lin; Liu, Fucai; Yu, Ting; Suenaga, Kazu; Liu, Xinfeng; Lin, Junhao; Liu, Zheng

    2018-04-01

    III–IV layered materials such as indium selenide have excellent photoelectronic properties. However, synthesis of materials in such group, especially with a controlled thickness down to monolayer, still remains challenging. Herein, we demonstrate the successful synthesis of monolayer InSe by physical vapor deposition (PVD) method. The high quality of the sample was confirmed by complementary characterization techniques such as Raman spectroscopy, atomic force microscopy (AFM) and high resolution annular dark field scanning transmission electron microscopy (ADF-STEM). We found the co-existence of different stacking sequence (β- and γ-InSe) in the same flake with a sharp grain boundary in few-layered InSe. Edge reconstruction is also observed in monolayer InSe, which has a distinct atomic structure from the bulk lattice. Moreover, we discovered that the second-harmonic generation (SHG) signal from monolayer InSe shows large optical second-order susceptibility that is 1–2 orders of magnitude higher than MoS2, and even 3 times of the largest value reported in monolayer GaSe. These results make atom-thin InSe a promising candidate for optoelectronic and photosensitive device applications.

  19. Platinum Monolayer Electrocatalysts for Anodic Oxidation of Alcohols.

    Science.gov (United States)

    Li, Meng; Liu, Ping; Adzic, Radoslav R

    2012-12-06

    The slow, incomplete oxidation of methanol and ethanol on platinum-based anodes as well as the high price and limited reserves of Pt has hampered the practical application of direct alcohol fuel cells. We describe the electrocatalysts consisting of one Pt monolayer (one atom thick layer) placed on extended or nanoparticle surfaces having the activity and selectivity for the oxidation of alcohol molecules that can be controlled with platinum-support interaction. The suitably expanded Pt monolayer (i.e., Pt/Au(111)) exhibits a factor of 7 activity increase in catalyzing methanol electrooxidation relative to Pt(111). Sizable enhancement is also observed for ethanol electrooxidation. Furthermore, a correlation between substrate-induced lateral strain in a Pt monolayer and its activity/selectivity is established and rationalized by experimental and theoretical studies. The knowledge we gained with single-crystal model catalysts was successfully applied in designing real nanocatalysts. These findings for alcohols are likely to be applicable for the oxidation of other classes of organic molecules.

  20. Measuring the Edge Recombination Velocity of Monolayer Semiconductors.

    Science.gov (United States)

    Zhao, Peida; Amani, Matin; Lien, Der-Hsien; Ahn, Geun Ho; Kiriya, Daisuke; Mastandrea, James P; Ager, Joel W; Yablonovitch, Eli; Chrzan, Daryl C; Javey, Ali

    2017-09-13

    Understanding edge effects and quantifying their impact on the carrier properties of two-dimensional (2D) semiconductors is an essential step toward utilizing this material for high performance electronic and optoelectronic devices. WS 2 monolayers patterned into disks of varying diameters are used to experimentally explore the influence of edges on the material's optical properties. Carrier lifetime measurements show a decrease in the effective lifetime, τ effective , as a function of decreasing diameter, suggesting that the edges are active sites for carrier recombination. Accordingly, we introduce a metric called edge recombination velocity (ERV) to characterize the impact of 2D material edges on nonradiative carrier recombination. The unpassivated WS 2 monolayer disks yield an ERV ∼ 4 × 10 4 cm/s. This work quantifies the nonradiative recombination edge effects in monolayer semiconductors, while simultaneously establishing a practical characterization approach that can be used to experimentally explore edge passivation methods for 2D materials.

  1. Photo-induced travelling waves in condensed Langmuir monolayers

    Energy Technology Data Exchange (ETDEWEB)

    Tabe, Y [Yokoyama Nano-Structured Liquid Crystal Project, ERATO, Japan Science and Technology Corporation, 5-9-9 Tokodai, Tsukuba, Ibaraki 300-2635, Japan (Japan); Yamamoto, T [Yokoyama Nano-Structured Liquid Crystal Project, ERATO, Japan Science and Technology Corporation, 5-9-9 Tokodai, Tsukuba, Ibaraki 300-2635, Japan (Japan); Yokoyama, H [Yokoyama Nano-Structured Liquid Crystal Project, ERATO, Japan Science and Technology Corporation, 5-9-9 Tokodai, Tsukuba, Ibaraki 300-2635, Japan (Japan)

    2003-06-01

    We report the detailed properties of photo-induced travelling waves in liquid crystalline Langmuir monolayers composed of azobenzene derivatives. When the monolayer, in which the constituent rodlike molecules are coherently tilted from the layer normal, is weakly illuminated to undergo the trans-cis photo-isomerization, spatio-temporal periodic oscillations of the molecular azimuth begin over the entire excited area and propagate as a two-dimensional orientational wave. The wave formation takes place only when the film is formed at an asymmetric interface with broken up-down symmetry and when the chromophores are continuously excited near the long-wavelength edge of absorption to induce repeated photo-isomerizations between the trans and cis forms. Under proper illumination conditions, Langmuir monolayers composed of a wide variety of azobenzene derivatives have been confirmed to exhibit similar travelling waves with velocity proportional to the excitation power irrespective of the degree of amphiphilicity. The dynamics can be qualitatively explained by the modified reaction-diffusion model proposed by Reigada, Sagues and Mikhailov.

  2. Pressure-dependent optical and vibrational properties of monolayer molybdenum disulfide

    KAUST Repository

    Nayak, Avinash P.

    2015-01-14

    Controlling the band gap by tuning the lattice structure through pressure engineering is a relatively new route for tailoring the optoelectronic properties of two-dimensional (2D) materials. Here, we investigate the electronic structure and lattice vibrational dynamics of the distorted monolayer 1T-MoS2 (1T′) and the monolayer 2H-MoS2 via a diamond anvil cell (DAC) and density functional theory (DFT) calculations. The direct optical band gap of the monolayer 2H-MoS2 increases by 11.7% from 1.85 to 2.08 eV, which is the highest reported for a 2D transition metal dichalcogenide (TMD) material. DFT calculations reveal a subsequent decrease in the band gap with eventual metallization of the monolayer 2H-MoS2, an overall complex structure-property relation due to the rich band structure of MoS2. Remarkably, the metastable 1T′-MoS2 metallic state remains invariant with pressure, with the J2, A1g, and E2g modes becoming dominant at high pressures. This substantial reversible tunability of the electronic and vibrational properties of the MoS2 family can be extended to other 2D TMDs. These results present an important advance toward controlling the band structure and optoelectronic properties of monolayer MoS2 via pressure, which has vital implications for enhanced device applications.

  3. Growth of cells superinoculated onto irradiated and nonirradiated confluent monolayers

    International Nuclear Information System (INIS)

    Matsuoka, H.; Ueo, H.; Sugimachi, K.

    1990-01-01

    We prepared confluent monolayers of normal BALB/c 3T3 cells and compared differences in the growth of four types of cells superinoculated onto these nonirradiated and irradiated monolayers. The test cells were normal BALB/c 3T3 A31 cells, a squamous cell carcinoma from a human esophageal cancer (KSE-1), human fetal fibroblasts, and V-79 cells from Chinese hamster lung fibroblasts. Cell growth was checked by counting the cell number, determining [3H]thymidine incorporation and assessing colony formation. We found that on nonirradiated monolayers, colony formation of human fetal fibroblasts and normal BALB/c 3T3 cells was completely inhibited. On irradiated cells, test cells did exhibit some growth. KSE-1 cells, which had a low clonogenic efficiency on plastic surfaces, formed colonies on both irradiated and nonirradiated cells. On these monolayers, the clonogenic efficiency of V-79 cells was also higher than that on plastic surfaces. We conclude that the nonirradiated monolayer of BALB/c 3T3 cells completely inhibits the growth of superinoculated normal BALB/c 3T3 and human fetal fibroblasts, while on the other hand, they facilitate the growth of neoplastic KSE-1 and V-79 cells by providing a surface for cell adherence and growth, without affecting the presence of normal cells in co-cultures

  4. Controlled synthesis of high-quality crystals of monolayer MoS2 for nanoelectronic device application

    DEFF Research Database (Denmark)

    Yang, Xiaonian; Li, Qiang; Hu, Guofeng

    2016-01-01

    . Monolayer MoS2 so far can be obtained by mechanical exfoliation or chemical vapor deposition (CVD). However, controllable synthesis of large area monolayer MoS2 with high quality needs to be improved and their growth mechanism requires more studies. Here we report a systematical study on controlled...... synthesis of high-quality monolayer MoS2 single crystals using low pressure CVD. Large-size monolayer MoS2 triangles with an edge length up to 405 mu m were successfully synthesized. The Raman and photoluminescence spectroscopy studies indicate high homogenous optical characteristic of the synthesized...... monolayer MoS2 triangles. The transmission electron microscopy results demonstrate that monolayer MoS2 triangles are single crystals. The back-gated field effect transistors (FETs) fabricated using the as-grown monolayer MoS2 show typical n-type semiconductor behaviors with carrier mobility up to 21.8 cm(2...

  5. Interpenetrating polymer networks based on cyanate ester and fluorinated ethynyl-terminated imide oligomers

    Directory of Open Access Journals (Sweden)

    Y. Wen

    2017-12-01

    Full Text Available Highly soluble fluorinated ethynyl-terminated imide (FETI oligomers were prepared via a conventional one-step method in m-cresol, using 4, 4′-(hexafluoroisopropylidene diphthalic anhydride and 2, 2′-bis(trifluoromethyl benzidine as the monomers, and ethynylphthalic anhydride as the end-capper; then interpenetrating polymer networks (IPN were formulated from FETI oligomers and bisphenol A dicyanate ester (BADCy through a solvent-free procedure, and their thermal, mechanical, and dielectric properties were fully characterized. The curing mechanism was studied by model reactions using nitrogen nuclear magnetic resonance. As evidenced by differential scanning calorimetry analysis and rheological measurements, the FETI/BADCy blends exhibited lower curing temperature and shorter gelation time in comparison with pure BADCy due to the catalytic effects of ethynyl and residue amic acid groups. The properties of IPNs were fully compared with those of polycyanurate, and the results revealed that the incorporation of FETI into cyanate ester resins could significantly improve the toughness, glass transition temperatures, mechanical and dielectric properties of the resultant IPNs.

  6. A simple method to tune graphene growth between monolayer and bilayer

    Directory of Open Access Journals (Sweden)

    Xiaozhi Xu

    2016-02-01

    Full Text Available Selective growth of either monolayer or bilayer graphene is of great importance. We developed a method to readily tune large area graphene growth from complete monolayer to complete bilayer. In an ambient pressure chemical vapor deposition process, we used the sample temperature at which to start the H2 flow as the control parameter and realized the change from monolayer to bilayer growth of graphene on Cu foil. When the H2 starting temperature was above 700°C, continuous monolayer graphene films were obtained. When the H2 starting temperature was below 350°C, continuous bilayer films were obtained. Detailed characterization of the samples treated under various conditions revealed that heating without the H2 flow caused Cu oxidation. The more the Cu substrate oxidized, the less graphene bilayer could form.

  7. Penetration of Milk-Derived Antimicrobial Peptides into Phospholipid Monolayers as Model Biomembranes

    Directory of Open Access Journals (Sweden)

    Wanda Barzyk

    2013-01-01

    Full Text Available Three antimicrobial peptides derived from bovine milk proteins were examined with regard to penetration into insoluble monolayers formed with 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC or 1,2-dipalmitoyl-sn-glycero-3-phospho-rac-(1-glycerol sodium salt (DPPG. Effects on surface pressure (Π and electric surface potential (ΔV were measured, Π with a platinum Wilhelmy plate and ΔV with a vibrating plate. The penetration measurements were performed under stationary diffusion conditions and upon the compression of the monolayers. The two type measurements showed greatly different effects of the peptide-lipid interactions. Results of the stationary penetration show that the peptide interactions with DPPC monolayer are weak, repulsive, and nonspecific while the interactions with DPPG monolayer are significant, attractive, and specific. These results are in accord with the fact that antimicrobial peptides disrupt bacteria membranes (negative while no significant effect on the host membranes (neutral is observed. No such discrimination was revealed from the compression isotherms. The latter indicate that squeezing the penetrant out of the monolayer upon compression does not allow for establishing the penetration equilibrium, so the monolayer remains supersaturated with the penetrant and shows an under-equilibrium orientation within the entire compression range, practically.

  8. Pressure-area isotherm of a lipid monolayer from molecular dynamics simulations

    NARCIS (Netherlands)

    Baoukina, Svetlana; Monticelli, Luca; Marrink, Siewert J.; Tieleman, D. Peter

    2007-01-01

    We calculated the pressure-area isotherm of a dipalmitoyl-phosphatidylcholine (DPPC) lipid monolayer from molecular dynamics simulations using a coarse-grained molecular model. We characterized the monolayer structure, geometry, and phases directly from the simulations and compared the calculated

  9. Inactivation of lipoprotein lipase occurs on the surface of THP-1 macrophages where oligomers of angiopoietin-like protein 4 are formed

    International Nuclear Information System (INIS)

    Makoveichuk, Elena; Sukonina, Valentina; Kroupa, Olessia; Thulin, Petra; Ehrenborg, Ewa; Olivecrona, Thomas; Olivecrona, Gunilla

    2012-01-01

    Highlights: ► Lipoprotein lipase (LPL) activity is controlled by ANGPTL4 in THP-1 macrophages. ► Both LPL and ANGPTL4 bind to THP-1 macrophages in a heparin-releasable fashion. ► Only monomers of ANGPTL4 are present within THP-1 macrophages. ► Covalent oligomers of ANGPTL4 appear on cell surface and in medium. ► Inactivation of LPL coincide with ANGPTL4 oligomer formation on cell surfaces. -- Abstract: Lipoprotein lipase (LPL) hydrolyzes triglycerides in plasma lipoproteins causing release of fatty acids for metabolic purposes in muscles and adipose tissue. LPL in macrophages in the artery wall may, however, promote foam cell formation and atherosclerosis. Angiopoietin-like protein (ANGPTL) 4 inactivates LPL and ANGPTL4 expression is controlled by peroxisome proliferator-activated receptors (PPAR). The mechanisms for inactivation of LPL by ANGPTL4 was studied in THP-1 macrophages where active LPL is associated with cell surfaces in a heparin-releasable form, while LPL in the culture medium is mostly inactive. The PPARδ agonist GW501516 had no effect on LPL mRNA, but increased ANGPTL4 mRNA and caused a marked reduction of the heparin-releasable LPL activity concomitantly with accumulation of inactive, monomeric LPL in the medium. Intracellular ANGPTL4 was monomeric, while dimers and tetramers of ANGPTL4 were present in the heparin-releasable fraction and medium. GW501516 caused an increase in the amount of ANGPTL4 oligomers on the cell surface that paralleled the decrease in LPL activity. Actinomycin D blocked the effects of GW501516 on ANGPTL4 oligomer formation and prevented the inactivation of LPL. Antibodies against ANGPTL4 interfered with the inactivation of LPL. We conclude that inactivation of LPL in THP-1 macrophages primarily occurs on the cell surface where oligomers of ANGPTL4 are formed.

  10. Amyloid β oligomers in Alzheimer's disease pathogenesis, treatment, and diagnosis.

    Science.gov (United States)

    Viola, Kirsten L; Klein, William L

    2015-02-01

    Protein aggregation is common to dozens of diseases including prionoses, diabetes, Parkinson's and Alzheimer's. Over the past 15 years, there has been a paradigm shift in understanding the structural basis for these proteinopathies. Precedent for this shift has come from investigation of soluble Aβ oligomers (AβOs), toxins now widely regarded as instigating neuron damage leading to Alzheimer's dementia. Toxic AβOs accumulate in AD brain and constitute long-lived alternatives to the disease-defining Aβ fibrils deposited in amyloid plaques. Key experiments using fibril-free AβO solutions demonstrated that while Aβ is essential for memory loss, the fibrillar Aβ in amyloid deposits is not the agent. The AD-like cellular pathologies induced by AβOs suggest their impact provides a unifying mechanism for AD pathogenesis, explaining why early stage disease is specific for memory and accounting for major facets of AD neuropathology. Alternative ideas for triggering mechanisms are being actively investigated. Some research favors insertion of AβOs into membrane, while other evidence supports ligand-like accumulation at particular synapses. Over a dozen candidate toxin receptors have been proposed. AβO binding triggers a redistribution of critical synaptic proteins and induces hyperactivity in metabotropic and ionotropic glutamate receptors. This leads to Ca(2+) overload and instigates major facets of AD neuropathology, including tau hyperphosphorylation, insulin resistance, oxidative stress, and synapse loss. Because different species of AβOs have been identified, a remaining question is which oligomer is the major pathogenic culprit. The possibility has been raised that more than one species plays a role. Despite some key unknowns, the clinical relevance of AβOs has been established, and new studies are beginning to point to co-morbidities such as diabetes and hypercholesterolemia as etiological factors. Because pathogenic AβOs appear early in the disease, they

  11. Epitaxially Grown Ultra-Flat Self-Assembling Monolayers with Dendrimers

    Directory of Open Access Journals (Sweden)

    Takane Imaoka

    2018-02-01

    Full Text Available Mono-molecular films formed by physical adsorption and dendrimer self-assembly were prepared on various substrate surfaces. It was demonstrated that a uniform dendrimer-based monolayer on the subnanometer scale can be easily constructed via simple dip coating. Furthermore, it was shown that an epitaxially grown monolayer film reflecting the crystal structure of the substrate (highly ordered pyrolytic graphite (HOPG can also be formed by aligning specific conditions.

  12. Atomic defects and doping of monolayer NbSe2

    OpenAIRE

    Nguyen, Lan; Komsa, Hannu-Pekka; Khestanova, Ekaterina; Kashtiban, Reza J; Peters, Jonathan J.P.; Lawlor, Sean; Sanchez, Ana M.; Sloan, Jeremy; Gorbachev, Roman; Grigorieva, Irina; Krasheninnikov, Arkady V.; Haigh, Sarah

    2017-01-01

    We have investigated the structure of atomic defects within monolayer NbSe2 encapsulated in graphene by combining atomic resolution transmission electron microscope imaging, density functional theory (DFT) calculations, and strain mapping using geometric phase analysis. We demonstrate the presence of stable Nb and Se monovacancies in monolayer material and reveal that Se monovacancies are the most frequently observed defects, consistent with DFT calculations of their formation energy. We reve...

  13. A nontoxic polypeptide oligomer with a fungicide potency under agricultural conditions which is equal or greater than that of their chemical counterparts.

    Directory of Open Access Journals (Sweden)

    Sara Monteiro

    Full Text Available There are literally hundreds of polypeptides described in the literature which exhibit fungicide activity. Tens of them have had attempted protection by patent applications but none, as far as we are aware, have found application under real agricultural conditions. The reasons behind may be multiple where the sensitivity to the Sun UV radiation can come in first place. Here we describe a multifunctional glyco-oligomer with 210 kDa which is mainly composed by a 20 kDa polypeptide termed Blad that has been previously shown to be a stable intermediary product of β-conglutin catabolism. This oligomer accumulates exclusively in the cotyledons of Lupinus species, between days 4 and 12 after the onset of germination. Blad-oligomer reveals a plethora of biochemical properties, like lectin and catalytic activities, which are not unusual per si, but are remarkable when found to coexist in the same protein molecule. With this vast range of chemical characteristics, antifungal activity arises almost as a natural consequence. The biological significance and potential technological applications of Blad-oligomer as a plant fungicide to agriculture, its uniqueness stems from being of polypeptidic in nature, and with efficacies which are either equal or greater than the top fungicides currently in the market are addressed.

  14. Effect of lipid composition and packing on the adsorption of apolipoproteins to lipid monolayers

    International Nuclear Information System (INIS)

    Ibdah, J.A.; Lund-Katz, S.; Phillips, M.C.

    1987-01-01

    The monolayer system has been used to study the effects of lipoprotein surface lipid composition and packing on the affinities of apolipoproteins for the surfaces of lipoprotein particles. The adsorption of apolipoproteins injected beneath lipid monolayers prepared with pure lipids or lipoprotein surface lipids is evaluated by monitoring the surface pressure of the film and the surface concentration (Gamma) of 14 C-labelled apolipoprotein. At a given initial film pressure (π/sub i/) there is a higher adsorption of human apo A-I to unsaturated phosphatidylcholine (PC) monolayers compared to saturated PC monolayers (e.g., at π/sub i/ = 10 mN/m, Gamma = 0.35 and 0.06 mg/m 2 for egg PC and distearoyl PC, respectively, with 3 x 10 -4 mg/ml apo A-I in the subphase). In addition, adsorption of apo A-I is less to an egg sphingomyelin monolayer than to an egg PC monolayer. The adsorption of apo A-I to PC monolayers is decreased by addition of cholesterol. Generally, apo A-I adsorption diminishes as the lipid molecular area decreases. Apo A-I adsorbs more to monolayers prepared with HDL 3 surface lipids than with LDL surface lipids. These studies suggest that lipoprotein surface lipid composition and packing are crucial factors influencing the transfer and exchange of apolipoproteins among various lipoprotein classes during metabolism of lipoprotein particles

  15. Electrochemical behavior of monolayer and bilayer graphene.

    Science.gov (United States)

    Valota, Anna T; Kinloch, Ian A; Novoselov, Kostya S; Casiraghi, Cinzia; Eckmann, Axel; Hill, Ernie W; Dryfe, Robert A W

    2011-11-22

    Results of a study on the electrochemical properties of exfoliated single and multilayer graphene flakes are presented. Graphene flakes were deposited on silicon/silicon oxide wafers to enable fast and accurate characterization by optical microscopy and Raman spectroscopy. Conductive silver paint and silver wires were used to fabricate contacts; epoxy resin was employed as a masking coating in order to expose a stable, well-defined area of graphene. Both multilayer and monolayer graphene microelectrodes showed quasi-reversible behavior during voltammetric measurements in potassium ferricyanide. However, the standard heterogeneous charge transfer rate constant, k°, was estimated to be higher for monolayer graphene flakes. © 2011 American Chemical Society

  16. Low temperature photoresponse of monolayer tungsten disulphide

    Directory of Open Access Journals (Sweden)

    Bingchen Cao

    2014-11-01

    Full Text Available High photoresponse can be achieved in monolayers of transition metal dichalcogenides. However, the response times are inconveniently limited by defects. Here, we report low temperature photoresponse of monolayer tungsten disulphide prepared by exfoliation and chemical vapour deposition (CVD method. The exfoliated device exhibits n-type behaviour; while the CVD device exhibits intrinsic behaviour. In off state, the CVD device has four times larger ratio of photoresponse for laser on/off and photoresponse decay–rise times are 0.1 s (limited by our setup, while the exfoliated device has few seconds. These findings are discussed in terms of charge trapping and localization.

  17. Modulation of hematopoietic progenitor cell fate in vitro by varying collagen oligomer matrix stiffness in the presence or absence of osteoblasts.

    Science.gov (United States)

    Chitteti, Brahmananda Reddy; Kacena, Melissa A; Voytik-Harbin, Sherry L; Srour, Edward F

    2015-10-01

    To recreate the in vivo hematopoietic cell microenvironment or niche and to study the impact of extracellular matrix (ECM) biophysical properties on hematopoietic progenitor cell (HPC) proliferation and function, mouse bone-marrow derived HPC (Lin-Sca1+cKit+/(LSK) were cultured within three-dimensional (3D) type I collagen oligomer matrices. To generate a more physiologic milieu, 3D cultures were established in both the presence and absence of calvariae-derived osteoblasts (OB). Collagen oligomers were polymerized at varying concentration to give rise to matrices of different fibril densities and therefore matrix stiffness (shear storage modulus, 50-800 Pa). Decreased proliferation and increased clonogenicity of LSK cells was associated with increase of matrix stiffness regardless of whether OB were present or absent from the 3D culture system. Also, regardless of whether OB were or were not added to the 3D co-culture system, LSK within 800 Pa collagen oligomer matrices maintained the highest percentage of Lin-Sca1+ cells as well as higher percentage of cells in quiescent state (G0/G1) compared to 50 Pa or 200Pa matrices. Collectively, these data illustrate that biophysical features of collagen oligomer matrices, specifically fibril density-induced modulation of matrix stiffness, provide important guidance cues in terms of LSK expansion and differentiation and therefore maintenance of progenitor cell function. Copyright © 2015. Published by Elsevier B.V.

  18. Electrically tunable magnetic configuration on vacancy-doped GaSe monolayer

    Science.gov (United States)

    Tang, Weiqing; Ke, Congming; Fu, Mingming; Wu, Yaping; Zhang, Chunmiao; Lin, Wei; Lu, Shiqiang; Wu, Zhiming; Yang, Weihuang; Kang, Junyong

    2018-03-01

    Group-IIIA metal-monochalcogenides with the enticing properties have attracted tremendous attention across various scientific disciplines. With the aim to satisfy the multiple demands of device applications, here we report a design framework on GaSe monolayer in an effort to tune the electronic and magnetic properties through a dual modulation of vacancy doping and electric field. A half-metallicity with a 100% spin polarization is generated in a Ga vacancy doped GaSe monolayer due to the nonbonding 4p electronic orbital of the surrounding Se atoms. The stability of magnetic moment is found to be determined by the direction of applied electric field. A switchable magnetic configuration in Ga vacancy doped GaSe monolayer is achieved under a critical electric field of 0.6 V/Å. Electric field induces redistribution of the electronic states. Finally, charge transfers are found to be responsible for the controllable magnetic structure in this system. The magnetic modulation on GaSe monolayer in this work offers some references for the design and fabrication of tunable two-dimensional spintronic device.

  19. Theory of lithium islands and monolayers: Electronic structure and stability

    International Nuclear Information System (INIS)

    Quassowski, S.; Hermann, K.

    1995-01-01

    Systematic calculations on planar clusters and monolayers of lithium are performed to study geometries and stabilities of the clusters as well as their convergence behavior with increasing cluster size. The calculations are based on ab initio methods using density-functional theory within the local-spin-density approximation for exchange and correlation. The optimized nearest-neighbor distances d NN of the Li n clusters, n=1,...,25, of both hexagonal and square geometry increase with cluster size, converging quite rapidly towards the monolayer results. Further, the cluster cohesive energies E c increase with cluster size and converge towards the respective monolayer values that form upper bounds. Clusters of hexagonal geometry are found to be more stable than square clusters of comparable size, consistent with the monolayer results. The size dependence of the cluster cohesive energies can be described approximately by a coordination model based on the concept of pairwise additive nearest-neighbor binding. This indicates that the average binding in the Li n clusters and their relative stabilities can be explained by simple geometric effects which derive from the nearest-neighbor coordination

  20. Nanotubes based on monolayer blue phosphorus

    KAUST Repository

    Montes Muñ oz, Enrique; Schwingenschlö gl, Udo

    2016-01-01

    We demonstrate structural stability of monolayer zigzag and armchair blue phosphorus nanotubes by means of molecular dynamics simulations. The vibrational spectrum and electronic band structure are determined and analyzed as functions of the tube

  1. Expression of enzymes in yeast for lignocellulose derived oligomer CBP

    Science.gov (United States)

    McBride, John E.; Wiswall, Erin; Shikhare, Indraneel; Xu, Haowen; Thorngren, Naomi; Hau, Heidi H.; Stonehouse, Emily

    2017-08-29

    The present invention provides a multi-component enzyme system that hydrolyzes hemicellulose oligomers from hardwood which can be expressed, for example, in yeast such as Saccharomyces cerevisiae. In some embodiments, this invention provides for the engineering of a series of biocatalysts combining the expression and secretion of components of this enzymatic system with robust, rapid xylose utilization, and ethanol fermentation under industrially relevant process conditions for consolidated bioprocessing. In some embodiments, the invention utilizes co-cultures of strains that can achieve significantly improved performance due to the incorporation of additional enzymes in the fermentation system.

  2. Supramolecular domains in mixed peptide self-assembled monolayers on gold nanoparticles.

    Science.gov (United States)

    Duchesne, Laurence; Wells, Geoff; Fernig, David G; Harris, Sarah A; Lévy, Raphaël

    2008-09-01

    Self-organization in mixed self-assembled monolayers of small molecules provides a route towards nanoparticles with complex molecular structures. Inspired by structural biology, a strategy based on chemical cross-linking is introduced to probe proximity between functional peptides embedded in a mixed self-assembled monolayer at the surface of a nanoparticle. The physical basis of the proximity measurement is a transition from intramolecular to intermolecular cross-linking as the functional peptides get closer. Experimental investigations of a binary peptide self-assembled monolayer show that this transition happens at an extremely low molar ratio of the functional versus matrix peptide. Molecular dynamics simulations of the peptide self-assembled monolayer are used to calculate the volume explored by the reactive groups. Comparison of the experimental results with a probabilistic model demonstrates that the peptides are not randomly distributed at the surface of the nanoparticle, but rather self-organize into supramolecular domains.

  3. Overcrowding drives the unjamming transition of gap-free monolayers

    Science.gov (United States)

    Lan, Ganhui; Su, Tao

    Collective cell motility plays central roles in various biological phenomena such as wound healing, cancer metastasis and embryogenesis. These are demonstrations of the unjamming transition in biology. However, contradictory to the typical density-driven jamming in particulate assemblies, cellular systems often get unjammed in highly packed, sometimes overcrowding environments. Here, we investigate monolayers' collective behaviors when cell number changes under the gap-free constraint. We report that overcrowding can unjam gap-free monolayers through increasing isotropic compression. We show that the transition boundary is determined by the isotropic compression and the cell-cell adhesion. Furthermore, we construct the free energy landscape for the T1 topological transition during monolayer rearrangement, and discover that the landscape evolves from single-barrier W shape to double-barrier M shape during the unjamming process. We also discover a distributed-to-disordered morphological transition of cells' geometry, coinciding with the unjamming transition. Our analyses reveal that the overcrowding and adhesion induced unjamming reflects the mechanical yielding of the highly deformable monolayer, suggesting an alternative mechanism that cells may robustly gain collective mobility through proliferation in confined environments, which differs from those caused by loosing up a packed particulate assembly. This work is supported by the GWU College Facilitating Funds.

  4. Vertical uniformity of cells and nuclei in epithelial monolayers.

    Science.gov (United States)

    Neelam, Srujana; Hayes, Peter Robert; Zhang, Qiao; Dickinson, Richard B; Lele, Tanmay P

    2016-01-22

    Morphological variability in cytoskeletal organization, organelle position and cell boundaries is a common feature of cultured cells. Remarkable uniformity and reproducibility in structure can be accomplished by providing cells with defined geometric cues. Cells in tissues can also self-organize in the absence of directing extracellular cues; however the mechanical principles for such self-organization are not understood. We report that unlike horizontal shapes, the vertical shapes of the cell and nucleus in the z-dimension are uniform in cells in cultured monolayers compared to isolated cells. Apical surfaces of cells and their nuclei in monolayers were flat and heights were uniform. In contrast, isolated cells, or cells with disrupted cell-cell adhesions had nuclei with curved apical surfaces and variable heights. Isolated cells cultured within micron-sized square wells displayed flat cell and nuclear shapes similar to cells in monolayers. Local disruption of nuclear-cytoskeletal linkages resulted in spatial variation in vertical uniformity. These results suggest that competition between cell-cell pulling forces that expand and shorten the vertical cell cross-section, thereby widening and flattening the nucleus, and the resistance of the nucleus to further flattening results in uniform cell and nuclear cross-sections. Our results reveal the mechanical principles of self-organized vertical uniformity in cell monolayers.

  5. Photocarrier dynamics in monolayer phosphorene and bulk black phosphorus.

    Science.gov (United States)

    Zereshki, Peymon; Wei, Yaqing; Ceballos, Frank; Bellus, Matthew Z; Lane, Samuel D; Pan, Shudi; Long, Run; Zhao, Hui

    2018-06-13

    We report a combined theoretical and experimental study on photocarrier dynamics in monolayer phosphorene and bulk black phosphorus. Samples of monolayer phosphorene and bulk black phosphorus were fabricated by mechanical exfoliation, identified according to their reflective contrasts, and protected by covering them with hexagonal boron nitride layers. Photocarrier dynamics in these samples was studied by an ultrafast pump-probe technique. The photocarrier lifetime of monolayer phosphorene was found to be about 700 ps, which is about 9 times longer than that of bulk black phosphorus. This trend was reproduced in our calculations based on ab initio nonadiabatic molecular dynamics combined with time-domain density functional theory in the Kohn-Sham representation, and can be attributed to the smaller bandgap and stronger nonadiabatic coupling in bulk. The transient absorption response was also found to be dependent on the sample orientation with respect to the pump polarization, which is consistent with the previously reported anisotropic absorption of phosphorene. In addition, an oscillating component of the differential reflection signal at early probe delays was observed in the bulk sample and was attributed to the layer-breathing phonon mode with an energy of about 1 meV and a decay time of about 1.35 ps. These results provide valuable information for application of monolayer phosphorene in optoelectronics.

  6. Phase transitions in polymer monolayers

    NARCIS (Netherlands)

    Deschênes, Louise; Lyklema, J.; Danis, Claude; Saint-Germain, François

    2015-01-01

    In this paper we investigate the application of the two-dimensional Clapeyron law to polymer monolayers. This is a largely unexplored area of research. The main problems are (1) establishing if equilibrium is reached and (2) if so, identifying and defining phases as functions of the temperature.

  7. Nonadiabatic excited-state molecular dynamics: On-the-fly limiting of essential excited states

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Tammie [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Naumov, Artem [Skolkovo Institute of Science and Technology, Moscow 143026 (Russian Federation); Fernandez-Alberti, Sebastian [Universidad Nacional de Quilmes, Roque Saenz Pea 352, B1876BXD Bernal (Argentina); Tretiak, Sergei, E-mail: serg@lanl.gov [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2016-12-20

    The simulation of nonadiabatic dynamics in extended molecular systems involving hundreds of atoms and large densities of states is particularly challenging. Nonadiabatic coupling terms (NACTs) represent a significant numerical bottleneck in surface hopping approaches. Rather than using unreliable NACT cutting schemes, here we develop “on-the-fly” state limiting methods to eliminate states that are no longer essential for the non-radiative relaxation dynamics as a trajectory proceeds. We propose a state number criteria and an energy-based state limit. The latter is more physically relevant by requiring a user-imposed energy threshold. For this purpose, we introduce a local kinetic energy gauge by summing contributions from atoms within the spatial localization of the electronic wavefunction to define the energy available for upward hops. The proposed state limiting schemes are implemented within the nonadiabatic excited-state molecular dynamics framework to simulate photoinduced relaxation in poly-phenylene vinylene (PPV) and branched poly-phenylene ethynylene (PPE) oligomers for benchmark evaluation.

  8. Interactions of phospholipid monolayer with single-walled carbon nanotube wrapped by lysophospholipid

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Siwool; Kim, Hyungsu, E-mail: hkim@dku.edu

    2012-10-01

    In this study, we prepared single-walled carbon nanotubes (SWNTs) wrapped by 1-stearoyl-2-hydroxy-sn-glycero-3-phospho-(1 Prime -rac-glycerol) (LPG), leading to a complex of SWNT-LPG. In an attempt to investigate the interactions of SWNT-LPG with a mimicked cell surface, SWNT-LPG solution was injected into the sub-phase of Langmuir trough to form a mixed monolayer with dipalmitoylphosphatidylcholine (DPPC) and dipalmitoylphosphatidylglycerol (DPPG), respectively. In addition to the measurement of typical surface pressure-area isotherms under compression mode, area changes occurring during insertion of SWNT-LPG into the monolayer were recorded at various surface pressures. Changes in surface potential were also measured for evident tracing of the degree of interactions between sub-phase and monolayer. A systematic comparison of relaxation patterns and insertion behavior along with surface potential data provided a rational basis to distinguish the degree of interactions between SWNT-LPG and the designated monolayer. The observed tendencies were found to be in accordance with the surface topography as revealed by the tapping mode atomic force microscopy. It was consistently observed that SWNT-LPG interacted with DPPC to a greater extent than with DPPG, when the sufficient coverage of nanotube surface by LPG molecules was assured. - Highlights: Black-Right-Pointing-Pointer Complex of single-walled carbon nanotubes and lysophospholipid (SWNT-LPG) is formed. Black-Right-Pointing-Pointer Composite monolayer is formed by inserting SWNT-LPG into the phospholipid monolayer. Black-Right-Pointing-Pointer We measure area-pressure responses and dipole potentials during the insertion process. Black-Right-Pointing-Pointer Properties of composite monolayer depend on the kind of phospholipid and LPG content.

  9. The langmuir monolayer: an efficient model for studying interfacial properties of biomembranes

    International Nuclear Information System (INIS)

    Cirak, J.; Sokolsky, M.; Dobrocka, E.; Weis, M.

    2012-01-01

    In this communication, we describe aspects of monolayer technology by focusing on effects of calcium ions on physical properties of phospholipid monolayers using results of measurements of surface pressure, x-ray reflectivity and AFM. These experiments are motivated by the search for lipid-DNA complexes with high transfection efficiency but without toxicity which might be a promising tool in gene therapy. In each part methodological importance is stressed and its specificity for studying molecular interactions at a lipid monolayer. (authors)

  10. Quantification of stromal vascular cell mechanics with a linear cell monolayer rheometer

    Energy Technology Data Exchange (ETDEWEB)

    Elkins, Claire M., E-mail: cma9@stanford.edu; Fuller, Gerald G. [Department of Chemical Engineering, Stanford University, Stanford, California 94305 (United States); Shen, Wen-Jun; Khor, Victor K.; Kraemer, Fredric B. [Division of Endocrinology, Gerontology and Metabolism, Stanford University, Stanford, California 94305 and Veterans Affairs Palo Alto Health Care System, Palo Alto, California 94304 (United States)

    2015-01-15

    Over the past few decades researchers have developed a variety of methods for measuring the mechanical properties of whole cells, including traction force microscopy, atomic force microscopy (AFM), and single-cell tensile testing. Though each of these techniques provides insight into cell mechanics, most also involve some nonideal conditions for acquiring live cell data, such as probing only one portion of a cell at a time, or placing the cell in a nonrepresentative geometry during testing. In the present work, we describe the development of a linear cell monolayer rheometer (LCMR) and its application to measure the mechanics of a live, confluent monolayer of stromal vascular cells. In the LCMR, a monolayer of cells is contacted on both top and bottom by two collagen-coated plates and allowed to adhere. The top plate then shears the monolayer by stepping forward to induce a predetermined step strain, while a force transducer attached to the top plate collects stress information. The stress and strain data are then used to determine the maximum relaxation modulus recorded after step-strain, G{sub r}{sup 0}, referred to as the zero-time relaxation modulus of the cell monolayer. The present study validates the ability of the LCMR to quantify cell mechanics by measuring the change in G{sub r}{sup 0} of a confluent cell monolayer upon the selective inhibition of three major cytoskeletal components (actin microfilaments, vimentin intermediate filaments, and microtubules). The LCMR results indicate that both actin- and vimentin-deficient cells had ∼50% lower G{sub r}{sup 0} values than wild-type, whereas tubulin deficiency resulted in ∼100% higher G{sub r}{sup 0} values. These findings constitute the first use of a cell monolayer rheometer to quantitatively distinguish the roles of different cytoskeletal elements in maintaining cell stiffness and structure. Significantly, they are consistent with results obtained using single-cell mechanical testing methods

  11. Simulation studies of pore and domain formation in a phospholipid monolayer

    NARCIS (Netherlands)

    Knecht, Volker; Muller, M; Bonn, M; Marrink, SJ; Mark, AE

    2005-01-01

    Despite extensive study the phase behavior of phospholipid monolayers at an air-water interface is still not fully understood. In particular recent vibrational sum-frequency generation (VSFG) spectra of DPPC monolayers as a function of area density show a sharp transition in the order of the lipid

  12. Conformation, orientation and interaction in molecular monolayers

    International Nuclear Information System (INIS)

    Superfine, R.; Huang, J.Y.; Shen, Y.R.

    1989-01-01

    Knowledge of the conformation and ordering of molecular monolayers is essential for a detailed understanding of a wide variety of surface and interfacial phenomena. Over the past several years, surface second harmonic generation (SHG) has proven to be a valuable and versatile probe of monolayer systems. Our group has recently extended the technique to infrared-visible sum frequency generation (SFG) which has unique capabilities for surface vibrational spectroscopy. Like second harmonic generation, SFG is highly surface specific with submonolayer sensitivity at all interfaces accessible by light. The orientation of individual groups within an adsorbate molecule can be deduced by a polarization analysis of the SFG signal from the vibrational modes of the groups. The authors have used SHG and SFG to study orientations and conformations of surfactant and liquid crystal (LC) monolayers and their interaction on a substrate. The interfacial properties of LC are of great interest to many researchers for both basic science understanding and practical application to LC devices. It is well known that the bulk alignment of a liquid crystal in a cell is strongly affected by the surface treatment of the cell walls. The reason behind it is not yet clear. The theoretical background and experimental arrangement of SHG and SFG have been described elsewhere. In the setup, a 30 psec. Nd:YAG mode-locked laser system together with nonlinear accessories generates a visible beam at .532μm and an infrared beam tunable about 3.4μm. Both beams are focused to a common spot of 300μm dia. The typical signal off the surface from a compact ordered alkyl chain monolayer is ∼500 photons per pulse, easily detected with a photomultiplier tube

  13. Nanoparticle for delivery of antisense γPNA oligomers targeting CCR5

    OpenAIRE

    Bahal, Raman; McNeer, Nicole Ali; Ly, Danith H.; Saltzman, W. Mark; Glazer, Peter M.

    2013-01-01

    The development of a new class of peptide nucleic acids (PNAs), i.e., gamma PNAs (γPNAs), creates the need for a general and effective method for its delivery into cells for regulating gene expression in mammalian cells. Here we report the antisense activity of a recently developed hydrophilic and biocompatible diethylene glycol (miniPEG)-based gamma peptide nucleic acid called MPγPNAs via its delivery by poly(lactide-co-glycolide) (PLGA)-based nanoparticle system. We show that MPγPNA oligome...

  14. Detergent-Resistant Membrane Microdomains Facilitate Ib Oligomer Formation and Biological Activity of Clostridium perfringens Iota-Toxin

    National Research Council Canada - National Science Library

    Hale, Martha

    2004-01-01

    ...) were extracted with cold Triton X-100. Western blotting revealed that Ib oligomers localized in DRMs extracted from Vero, but not MRC-5, cells while monomeric Ib was detected in the detergent-soluble fractions of both cell types...

  15. Microchannel-flowed-plasma modification of octadecyltrichlorosilane self-assembled-monolayers for liquid crystal alignment

    International Nuclear Information System (INIS)

    Zheng, W.; Chiang, C.-Y.; Underwood, I.

    2013-01-01

    We report that a chemical patterning technique based on local plasma modification of self-assembled monolayers has been utilized to fabricate surfaces for domain liquid crystal alignment. Highly hydrophobic octadecyltrichlorosilane monolayers deposited on glass substrates coated with Indium-Tin-Oxide were brought into contact with elastomeric stamps comprising trenches on a micro scale, and then exposed to an oxygen plasma. In the regions exposed to the plasma the monolayer was etched away leaving a patterned surface that exhibited surface energy differences between surface domains. The surfaces that bear the micropatterns have been shown to be capable of producing patterned alignment of nematic liquid crystal. - Highlights: • Chemical surface-patterning is used to fabricate liquid crystal alignment surface. • Highly hydrophobic octadecyltrichlorosilane monolayer is deposited on substrate. • O 2 plasma flow is used to etch the monolayer to form patterned surface. • The patterned surface exhibits surface energy differences between surface domains. • The surface borne the micropatterns is capable of domain liquid crystal alignment

  16. Lateral electron transport in monolayers of short chains at interfaces: A Monte Carlo study

    International Nuclear Information System (INIS)

    George, Christopher B.; Szleifer, Igal; Ratner, Mark A.

    2010-01-01

    Graphical abstract: Electron hopping between electroactive sites in a monolayer composed of redox-active and redox-passive molecules. - Abstract: Using Monte Carlo simulations, we study lateral electronic diffusion in dense monolayers composed of a mixture of redox-active and redox-passive chains tethered to a surface. Two charge transport mechanisms are considered: the physical diffusion of electroactive chains and electron hopping between redox-active sites. Results indicate that by varying the monolayer density, the mole fraction of electroactive chains, and the electron hopping range, the dominant charge transport mechanism can be changed. For high density monolayers in a semi-crystalline phase, electron diffusion proceeds via electron hopping almost exclusively, leading to static percolation behavior. In fluid monolayers, the diffusion of chains may contribute more to the overall electronic diffusion, reducing the observed static percolation effects.

  17. Disrupting self-assembly and toxicity of amyloidogenic protein oligomers by "molecular tweezers" - from the test tube to animal models.

    Science.gov (United States)

    Attar, Aida; Bitan, Gal

    2014-01-01

    Despite decades of research, therapy for diseases caused by abnormal protein folding and aggregation (amyloidoses) is limited to treatment of symptoms and provides only temporary and moderate relief to sufferers. The failure in developing successful disease-modifying drugs for amyloidoses stems from the nature of the targets for such drugs - primarily oligomers of amyloidogenic proteins, which are distinct from traditional targets, such as enzymes or receptors. The oligomers are metastable, do not have well-defined structures, and exist in dynamically changing mixtures. Therefore, inhibiting the formation and toxicity of these oligomers likely will require out-of-the-box thinking and novel strategies. We review here the development of a strategy based on targeting the combination of hydrophobic and electrostatic interactions that are key to the assembly and toxicity of amyloidogenic proteins using lysine (K)-specific "molecular tweezers" (MTs). Our discussion includes a survey of the literature demonstrating the important role of K residues in the assembly and toxicity of amyloidogenic proteins and the development of a lead MT derivative called CLR01, from an inhibitor of protein aggregation in vitro to a drug candidate showing effective amelioration of disease symptoms in animal models of Alzheimer's and Parkinson's diseases.

  18. Interferon induction in bovine and feline monolayer cultures by four bluetongue virus serotypes.

    OpenAIRE

    Fulton, R W; Pearson, N J

    1982-01-01

    The interferon inducing ability of bluetongue viruses was studied in bovine and feline monolayer cultures inoculated with each of four bluetongue virus serotypes. Interferon was assayed by a plaque reduction method in monolayer cultures with vesicular stomatitis virus as challenge virus. Interferon was produced by bovine turbinate, Georgia bovine kidney, and Crandell feline kidney monolayer cultures in response to bluetongue virus serotypes 10, 11, 13 and 17. The antiviral substances produced...

  19. Investigation on gallium ions impacting monolayer graphene

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Xin; Zhao, Haiyan, E-mail: hyzhao@tsinghua.edu.cn; Yan, Dong; Pei, Jiayun [State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, P. R. Chinaand Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China)

    2015-06-15

    In this paper, the physical phenomena of gallium (Ga{sup +}) ion impacting monolayer graphene in the nanosculpting process are investigated experimentally, and the mechanisms are explained by using Monte Carlo (MC) and molecular dynamics (MD) simulations. Firstly, the MC method is employed to clarify the phenomena happened to the monolayer graphene target under Ga{sup +} ion irradiation. It is found that substrate has strong influence on the damage mode of graphene. The mean sputtering yield of graphene under 30 keV Ga{sup +} ion irradiation is 1.77 and the least ion dose to completely remove carbon atoms in graphene is 21.6 ion/nm{sup 2}. Afterwards, the focused ion beam over 21.6 ion/nm{sup 2} is used for the irradiation on a monolayer graphene supported by SiO2 experimentally, resulting in the nanostructures, i.e., nanodot and nanowire array on the graphene. The performances of the nanostructures are characterized by atomic force microscopy and Raman spectrum. A plasma plume shielding model is put forward to explain the nanosculpting results of graphene under different irradiation parameters. In addition, two damage mechanisms are found existing in the fabrication process of the nanostructures by using empirical MD simulations. The results can help us open the possibilities for better control of nanocarbon devices.

  20. Electric field effect of GaAs monolayer from first principles

    Directory of Open Access Journals (Sweden)

    Jiongyao Wu

    2017-03-01

    Full Text Available Using first-principle calculations, we investigate two-dimensional (2D honeycomb monolayer structures composed of group III-V binary elements. It is found that such compound like GaAs should have a buckled structure which is more stable than graphene-like flat structure. This results a polar system with out-of-plane dipoles arising from the non-planar structure. Here, we optimized GaAs monolayer structure, then calculated the electronic band structure and the change of buckling height under external electric field within density functional theory using generalized gradient approximation method. We found that the band gap would change proportionally with the electric field magnitude. When the spin-orbit coupling (SOC is considered, we revealed fine spin-splitting at different points in the reciprocal space. Furthermore, the valence and conduction bands spin-splitting energies due to SOC at the K point of buckled GaAs monolayers are found to be weakly dependent on the electric field strength. Finally electric field effects on the spin texture and second harmonic generation are discussed. The present work sheds light on the control of physical properties of GaAs monolayer by the applied electric field.

  1. Parkinson's disease in the spotlight: unraveling nanoscale α-Synuclein oligomers using ultrasensitive single-molecule spectroscopy

    NARCIS (Netherlands)

    Zijlstra, Niels

    2014-01-01

    During the last 15 years, we have witnessed a major shift in the research focus to understand the cause of amyloid diseases. The attention has shifted from the fully matured amyloid fibrils to the nanometer sized aggregation intermediates called oligomers as the potentially cytotoxic species that

  2. Interfacial and thermal energy driven growth and evolution of Langmuir-Schaefer monolayers of Au-nanoparticles.

    Science.gov (United States)

    Mukhopadhyay, Mala; Hazra, S

    2018-01-03

    Structures of Langmuir-Schaefer (LS) monolayers of thiol-coated Au-nanoparticles (DT-AuNPs) deposited on H-terminated and OTS self-assembled Si substrates (of different hydrophobic strength and stability) and their evolution with time under ambient conditions, which plays an important role for their practical use as 2D-nanostructures over large areas, were investigated using the X-ray reflectivity technique. The strong effect of substrate surface energy (γ) on the initial structures and the competitive role of room temperature thermal energy (kT) and the change in interfacial energy (Δγ) at ambient conditions on the evolution and final structures of the DT-AuNP LS monolayers are evident. The strong-hydrophobic OTS-Si substrate, during transfer, seems to induce strong attraction towards hydrophobic DT-AuNPs on hydrophilic (repulsive) water to form vertically compact partially covered (with voids) monolayer structures (of perfect monolayer thickness) at low pressure and nearly covered buckled monolayer structures (of enhanced monolayer thickness) at high pressure. After transfer, the small kT-energy (in absence of repulsive water) probably fluctuates the DT-AuNPs to form vertically expanded monolayer structures, through systematic exponential growth with time. The effect is prominent for the film deposited at low pressure, where the initial film-coverage and film-thickness are low. On the other hand, the weak-hydrophobic H-Si substrate, during transfer, appears to induce optimum attraction towards DT-AuNPs to better mimic the Langmuir monolayer structures on it. After transfer, the change in the substrate surface nature, from weak-hydrophobic to weak-hydrophilic with time (i.e. Δγ-energy, apart from the kT-energy), enhances the size of the voids and weakens the monolayer/bilayer structure to form a similar expanded monolayer structure, the thickness of which is probably optimized by the available thermal energy.

  3. Regulation of endothelial cell shape and monolayer permeability by atrial natriuretic peptide

    International Nuclear Information System (INIS)

    Lofton-Day, C.E.

    1989-01-01

    Atrial natriuretic peptide (ANP), considered to be an important regulator of intravascular fluid volume, binds specifically to receptors on endothelial cells. In this study, the role of ANP-specific binding was investigated by examining the effect of ANP on the morphology and macromolecular permeability of monolayer cultures of bovine aortic endothelial cells. ANP alone had no observable effect on the monolayers. However, incubation of monolayers with ANP antagonized thrombin- or glucose oxidase-induced cell shape changes and intercellular gap formation. ANP pretreatment also opposed the effect of thrombin and glucose oxidase on actin filament distribution as observed by rhodamine-phalloidin staining and digital image analysis of F0actin staining. In addition, ANP reversed cell shape changes and cytoskeletal alterations induced by thrombin treatment but did not reverse alternations induced by glucose oxidase treatment. ANP significantly reduced increases in monolayer permeability to albumin resulting from thrombin or glucose oxidases treatment. Thrombin caused a 2-fold increase in monolayer permeability to 125 I-labeled albumin, which was abolished by 10 -8 -10 -6 M ANP pretreatment. Glucose oxidase caused similar increases in permeability and was inhibited by ANP at slightly shorter time periods

  4. 11-Hydroxyundecyl octadecyl disulfide self-assembled monolayers on Au(1 1 1)

    Energy Technology Data Exchange (ETDEWEB)

    Albayrak, Erol [Department of Materials and Metallurgical Engineering, Ahi Evran University, Kırşehir 40000 (Turkey); Karabuga, Semistan [Department of Chemistry, Kahramanmaraş Sütçü İmam University, Kahramanmaraş 46030 (Turkey); Bracco, Gianangelo [CNR-IMEM and Department of Physics, University of Genoa, via Dodecaneso 33, Genoa 16146 (Italy); Danışman, M. Fatih, E-mail: danisman@metu.edu.tr [Department of Chemistry, Middle East Technical University, Ankara 06800 (Turkey)

    2014-08-30

    Highlights: • 11-Hydroxyundecyl octadecyl disulfide self-assembled monolayers on Au(1 1 1) surface were grown by supersonic molecular beam deposition. • Two different lying down monolayer phases were observed depending on the substrate temperature. • High temperature monolayer phase has a diffraction pattern similar to that of mercaptoundecanol SAMs. • Desorption from several different chemisorbed and physisorbed states were observed. - Abstract: Here, we report a helium atom diffraction study of 11-hydroxyundecyl octadecyl disulfide (CH{sub 3}-(CH{sub 2}){sub 17}-S-S-(CH{sub 2}){sub 11}-OH, HOD) self-assembled monolayers (SAMs) produced by supersonic molecular beam deposition (SMBD). Two different lying down monolayer phases were observed depending on the substrate temperature. At low temperatures a poorly ordered phase was observed, while the diffraction patterns of the film grown at high temperatures were similar to that of mercaptoundecanol (MUD) SAMs reported previously in the literature. The transition from the low temperature phase to the high temperature phase is due to S-S bond cleavage at the surface. Desorption from several different chemisorbed and physisorbed states were observed with energies in the same range as observed for MUD and octadecanelthiol (ODT) SAMs.

  5. The titration of carboxyl-terminated monolayers revisited: in situ calibrated fourier transform infrared study of well-defined monolayers on silicon.

    Science.gov (United States)

    Aureau, D; Ozanam, F; Allongue, P; Chazalviel, J-N

    2008-09-02

    The acid-base equilibrium at the surface of well-defined mixed carboxyl-terminated/methyl-terminated monolayers grafted on silicon (111) has been investigated using in situ calibrated infrared spectroscopy (attenuated total reflectance (ATR)) in the range of 900-4000 cm (-1). Spectra of surfaces in contact with electrolytes of various pH provide a direct observation of the COOH COO (-) conversion process. Quantitative analysis of the spectra shows that ionization of the carboxyl groups starts around pH 6 and extends over more than 6 pH units: approximately 85% ionization is measured at pH 11 (at higher pH, the layers become damaged). Observations are consistently accounted for by a single acid-base equilibrium and discussed in terms of change in ion solvation at the surface and electrostatic interactions between surface charges. The latter effect, which appears to be the main limitation, is qualitatively accounted for by a simple model taking into account the change in the Helmholtz potential associated with the surface charge. Furthermore, comparison of calculated curves with experimental titration curves of mixed monolayers suggests that acid and alkyl chains are segregated in the monolayer.

  6. Chemical evolution. XXI - The amino acids released on hydrolysis of HCN oligomers

    Science.gov (United States)

    Ferris, J. P.; Wos, J. D.; Nooner, D. W.; Oro, J.

    1974-01-01

    Major amino acids released by hydrolysis of acidic and basic HCN oligomers are identified by chromatography as Gly, Asp, and diaminosuccinic acid. Smaller amounts of Ala, Ile and alpha-aminoisobutyric acid are also detected. The amino acids released did not change appreciably when the hydrolysis medium was changed from neutral to acidic or basic. The presence of both meso and d, l-diaminosuccinic acids was established by paper chromatography and on an amino acid analyzer.

  7. GaAs monolayer: Excellent SHG responses and semi metallic to metallic transition modulated by vacancy effect

    Science.gov (United States)

    Rozahun, Ilmira; Bahti, Tohtiaji; He, Guijie; Ghupur, Yasenjan; Ablat, Abduleziz; Mamat, Mamatrishat

    2018-05-01

    Monolayer materials are considered as a promising candidate for novel applications due to their attractive magnetic, electronic and optical properties. Investigation on nonlinear optical (NLO) properties and effect of vacancy on monolayer materials are vital to property modulations of monolayers and extending their applications. In this work, with the aid of first-principles calculations, the crystal structure, electronic, magnetic, and optical properties of GaAs monolayers with the vacancy were investigated. The result shows gallium arsenic (GaAs) monolayer produces a strong second harmonic generation (SHG) response. Meanwhile, the vacancy strongly affects structural, electronic, magnetic and optical properties of GaAs monolayers. Furthermore, arsenic vacancy (VAs) brings semi metallic to metallic transition, while gallium vacancy (VGa) causes nonmagnetic to magnetic conversion. Our result reveals that GaAs monolayer possesses application potentials in Nano-amplifying modulator and Nano-optoelectronic devices, and may provide useful guidance in designing new generation of Nano-electronic devices.

  8. Strain and electric field induced metallization in the GaX (X = N, P, As & Sb) monolayer

    Science.gov (United States)

    Bahuguna, Bhagwati Prasad; Saini, L. K.; Sharma, Rajesh O.; Tiwari, Brajesh

    2018-05-01

    We investigate the strain and electric field dependent electronic properties of two dimensional Ga-based group III-V monolayer from the first-principles approach within density functional theory. The energy bandgap of GaX monolayer increases upto the certain value of compressive strain and then decreases. On the other hand, the energy bandgap of GaX monolayer is monotonically decreased with increasing tensile strain and become metallic at the higher value. Furthermore, the perpendicular electric field decreases the energy band gap of unstrained GaX monolayer and shows semiconductor to metal transition. These results suggest that the nature of energy bands and value of energy bandgap in GaX monolayer can be tuned by the biaxial mechanical strain or perpendicular electrical field. Additionally, we have also studied the optical response of unstrained GaX monolayer in term of optical conductivity. These findings may provide valuable information to develop the Ga-based optoelectronic devices and further the understanding of the GaX monolayer.

  9. Preparation of porous monolayer film by immersing the stearic acid Langmuir-Blodgett monolayer on mica in salt solution

    Energy Technology Data Exchange (ETDEWEB)

    Wang, S. [Institute of Near-Field Optics and Nano Technology, School of Physics and Optoelectronic Technology, Dalian University of Technology, Street No. 2 Linggong Road, Dalian 116024 (China); Li, Y.L.; Zhao, H.L.; Liang, H. [Institute of Photo-Biophysics, School of Physics and Electronic, Henan University, Jinming, Kaifeng 475004, Henan (China); Liu, B., E-mail: boliu@henu.edu.cn [Institute of Photo-Biophysics, School of Physics and Electronic, Henan University, Jinming, Kaifeng 475004, Henan (China); Pan, S., E-mail: span@dlut.edu.cn [Institute of Near-Field Optics and Nano Technology, School of Physics and Optoelectronic Technology, Dalian University of Technology, Street No. 2 Linggong Road, Dalian 116024 (China)

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer Porous film has been prepared by immersing the stearic acid Langmuir-Blodgett monolayer on mica in salt solution. Black-Right-Pointing-Pointer The mechanism relies on the electrostatic screening effect of the cations in salt solution. Black-Right-Pointing-Pointer The factors influencing the size and area of the pores were investigated. - Abstract: Porous materials have drawn attention from scientists in many fields such as life sciences, catalysis and photonics since they can be used to induce some materials growth as expected. Especially, porous Langmuir-Blodgett (LB) film is an ideal material with controlled thickness and flat surface. In this paper, stearic acid (SA), which has been extensively explored in LB film technique, is chosen as the template material with known parameters to prepare the LB film, and then the porous SA monolayer film is obtained by means of etching in salt solution. The main etching mechanism is suggested that the cations in the solution block the electrostatic interaction between the polar carboxyl group of SA and the electronegative mica surface. The influencing factors (such as concentration of salt solution, valence of cation and surface pressure) of the porous SA film are systematically studied in this work. The novel method proposed in this paper makes it convenient to prepare porous monolayer film for designed material growth or cell culture.

  10. Self-Healable and Reprocessable Polysulfide Sealants Prepared from Liquid Polysulfide Oligomer and Epoxy Resin.

    Science.gov (United States)

    Gao, Wentong; Bie, Mengyao; Liu, Fu; Chang, Pengshan; Quan, Yiwu

    2017-05-10

    Polysulfide sealants have been commercially applied in many industrial fields. In this article, we study the self-healing property of the epoxy resin-cured polysulfide sealants for the first time. The obtained sealants showed a flexible range of ultimate elongation of 157-478% and a tensile strength of 1.02-0.75 MPa corresponding to different polysulfide oligomers. By taking advantage of the dynamic reversible exchange of disulfide bonds, polysulfide sealants exhibited good self-healing ability under a moderate thermal stimulus. A higher molecular weight and a lower degree of cross-linking of polysulfide oligomer were helpful in improving the ultimate elongation and healing efficiency of the polysulfide sealants. After subjecting to a temperature of 75 °C for 60 min, both the tensile strength and ultimate elongation of a fully cut sample, LP55-F, were restored to 91% of the original values, without affecting the sealing property. Furthermore, the sample exhibited excellent reshaping and reprocessing abilities. These outcomes offer a paradigm toward sustainable industrial applications of the polysulfide-based sealants.

  11. Aging Enables Ca2+ Overload and Apoptosis Induced by Amyloid-β Oligomers in Rat Hippocampal Neurons: Neuroprotection by Non-Steroidal Anti-Inflammatory Drugs and R-Flurbiprofen in Aging Neurons.

    Science.gov (United States)

    Calvo-Rodríguez, María; García-Durillo, Mónica; Villalobos, Carlos; Núñez, Lucía

    2016-07-22

    The most important risk factor for Alzheimer's disease (AD) is aging. Neurotoxicity in AD has been linked to dyshomeostasis of intracellular Ca2+ induced by small aggregates of the amyloid-β peptide 1-42 (Aβ42 oligomers). However, how aging influences susceptibility to neurotoxicity induced by Aβ42 oligomers is unknown. In this study, we used long-term cultures of rat hippocampal neurons, a model of neuronal in vitro aging, to investigate the contribution of aging to Ca2+ dishomeostasis and neuron cell death induced by Aβ42 oligomers. In addition, we tested whether non-steroidal anti-inflammatory drugs (NSAIDs) and R-flurbiprofen prevent apoptosis acting on subcellular Ca2+ in aged neurons. We found that Aβ42 oligomers have no effect on young hippocampal neurons cultured for 2 days in vitro (2 DIV). However, they promoted apoptosis modestly in mature neurons (8 DIV) and these effects increased dramatically after 13 DIV, when neurons display many hallmarks of in vivo aging. Consistently, cytosolic and mitochondrial Ca2+ responses induced by Aβ42 oligomers increased dramatically with culture age. At low concentrations, NSAIDs and the enantiomer R-flurbiprofen lacking anti-inflammatory activity prevent Ca2+ overload and neuron cell death induced by Aβ42 oligomers in aged neurons. However, at high concentrations R-flurbiprofen induces apoptosis. Thus, Aβ42 oligomers promote Ca2+ overload and neuron cell death only in aged rat hippocampal neurons. These effects are prevented by low concentrations of NSAIDs and R-flurbiprofen acting on mitochondrial Ca2+ overload.

  12. Chiral hierarchical self-assembly in Langmuir monolayers of diacetylenic lipids

    KAUST Repository

    Basnet, Prem B.

    2013-01-01

    When compressed in the intermediate temperature range below the chain-melting transition yet in the low-pressure liquid phase, Langmuir monolayers made of chiral lipid molecules form hierarchical structures. Using Brewster angle microscopy to reveal this structure, we found that as the liquid monolayer is compressed, an optically anisotropic condensed phase nucleates in the form of long, thin claws. These claws pack closely to form stripes. This appears to be a new mechanism for forming stripes in Langmuir monolayers. In the lower temperature range, these stripes arrange into spirals within overall circular domains, while near the chain-melting transition, the stripes arrange into target patterns. We attributed this transition to a change in boundary conditions at the core of the largest-scale circular domains. © 2013 The Royal Society of Chemistry.

  13. Chirality-dependent anisotropic elastic properties of a monolayer graphene nanosheet.

    Science.gov (United States)

    Guo, Jian-Gang; Zhou, Li-Jun; Kang, Yi-Lan

    2012-04-01

    An analytical approach is presented to predict the elastic properties of a monolayer graphene nanosheet based on interatomic potential energy and continuum mechanics. The elastic extension and torsional springs are utilized to simulate the stretching and angle variation of carbon-carbon bond, respectively. The constitutive equation of the graphene nanosheet is derived by using the strain energy density, and the analytical formulations for nonzero elastic constants are obtained. The in-plane elastic properties of the monolayer graphene nanosheet are proved to be anisotropic. In addition, Young's moduli, Poisson's ratios and shear modulus of the monolayer graphene nanosheet are calculated according to the force constants derived from Morse potential and AMBER force field, respectively, and they were proved to be chirality-dependent. The comparison with experimental results shows a very agreement.

  14. Photoluminescence inhomogeneity and excitons in CVD-grown monolayer WS2

    Science.gov (United States)

    Ren, Dan-Dan; Qin, Jing-Kai; Li, Yang; Miao, Peng; Sun, Zhao-Yuan; Xu, Ping; Zhen, Liang; Xu, Cheng-Yan

    2018-06-01

    Transition metal dichalcogenides two-dimensional materials are of great importance for future electronic and optoelectronic applications. In this work, triangular WS2 monolayers with size up to 130 μm were prepared via chemical vapor deposition method. WS2 monolayers presented uniform Raman intensity, while quenched photoluminescence (PL) was observed in the center. The PL quenching in the central part of WS2 monolayer flakes was attributed to the gradually increasing sulfur vacancies toward the center. The proportion of negative trion (X-) in PL spectrum increases with increasing sulfur vacancies in WS2. The enhanced binding energy of X- suggests higher Fermi level and n-doping level with larger sulfur vacancy concentration. Our findings may be beneficial to the development of integrated devices, and also explore the defect-induced optical and electrical properties for nanophotonics.

  15. Inactivation of lipoprotein lipase occurs on the surface of THP-1 macrophages where oligomers of angiopoietin-like protein 4 are formed

    Energy Technology Data Exchange (ETDEWEB)

    Makoveichuk, Elena; Sukonina, Valentina; Kroupa, Olessia [Department of Medical Biosciences, Physiological Chemistry Umea University, SE-901 87 Umea (Sweden); Thulin, Petra; Ehrenborg, Ewa [Atherosclerosis Research Unit, Department of Medicine, Karolinska Institutet, SE-171 76 Stockholm (Sweden); Olivecrona, Thomas [Department of Medical Biosciences, Physiological Chemistry Umea University, SE-901 87 Umea (Sweden); Olivecrona, Gunilla, E-mail: Gunilla.Olivecrona@medbio.umu.se [Department of Medical Biosciences, Physiological Chemistry Umea University, SE-901 87 Umea (Sweden)

    2012-08-24

    Highlights: Black-Right-Pointing-Pointer Lipoprotein lipase (LPL) activity is controlled by ANGPTL4 in THP-1 macrophages. Black-Right-Pointing-Pointer Both LPL and ANGPTL4 bind to THP-1 macrophages in a heparin-releasable fashion. Black-Right-Pointing-Pointer Only monomers of ANGPTL4 are present within THP-1 macrophages. Black-Right-Pointing-Pointer Covalent oligomers of ANGPTL4 appear on cell surface and in medium. Black-Right-Pointing-Pointer Inactivation of LPL coincide with ANGPTL4 oligomer formation on cell surfaces. -- Abstract: Lipoprotein lipase (LPL) hydrolyzes triglycerides in plasma lipoproteins causing release of fatty acids for metabolic purposes in muscles and adipose tissue. LPL in macrophages in the artery wall may, however, promote foam cell formation and atherosclerosis. Angiopoietin-like protein (ANGPTL) 4 inactivates LPL and ANGPTL4 expression is controlled by peroxisome proliferator-activated receptors (PPAR). The mechanisms for inactivation of LPL by ANGPTL4 was studied in THP-1 macrophages where active LPL is associated with cell surfaces in a heparin-releasable form, while LPL in the culture medium is mostly inactive. The PPAR{delta} agonist GW501516 had no effect on LPL mRNA, but increased ANGPTL4 mRNA and caused a marked reduction of the heparin-releasable LPL activity concomitantly with accumulation of inactive, monomeric LPL in the medium. Intracellular ANGPTL4 was monomeric, while dimers and tetramers of ANGPTL4 were present in the heparin-releasable fraction and medium. GW501516 caused an increase in the amount of ANGPTL4 oligomers on the cell surface that paralleled the decrease in LPL activity. Actinomycin D blocked the effects of GW501516 on ANGPTL4 oligomer formation and prevented the inactivation of LPL. Antibodies against ANGPTL4 interfered with the inactivation of LPL. We conclude that inactivation of LPL in THP-1 macrophages primarily occurs on the cell surface where oligomers of ANGPTL4 are formed.

  16. Characterisation of phase transition in adsorbed monolayers at the air/water interface.

    Science.gov (United States)

    Vollhardt, D; Fainerman, V B

    2010-02-26

    Recent work has provided experimental and theoretical evidence that a first order fluid/condensed (LE/LC) phase transition can occur in adsorbed monolayers of amphiphiles and surfactants which are dissolved in aqueous solution. Similar to Langmuir monolayers, also in the case of adsorbed monolayers, the existence of a G/LE phase transition, as assumed by several authors, is a matter of question. Representative studies, at first performed with a tailored amphiphile and later with numerous other amphiphiles, also with n-dodecanol, provide insight into the main characteristics of the adsorbed monolayer during the adsorption kinetics. The general conditions necessary for the formation of a two-phase coexistence in adsorbed monolayers can be optimally studied using dynamic surface pressure measurements, Brewster angle microscopy (BAM) and synchrotron X-ray diffraction at grazing incidence (GIXD). A characteristic break point in the time dependence of the adsorption kinetics curves indicates the phase transition which is largely affected by the concentration of the amphiphile in the aqueous solution and on the temperature. Formation and growth of condensed phase domains after the phase transition point are visualised by BAM. As demonstrated by a tailored amphiphile, various types of morphological textures of the condensed phase can occur in different temperature regions. Lattice structure and tilt angle of the alkyl chains in the condensed phase of the adsorbed monolayer are determined using GIXD. The main growth directions of the condensed phase textures are correlated with the two-dimensional lattice structure. The results, obtained for the characteristics of the condensed phase after a first order main transition, are supported by experimental bridging to the Langmuir monolayers. Phase transition of adsorbing trace impurities in model surfactants can strongly affect the characteristics of the main component. Dodecanol present as minor component in aqueous sodium

  17. Chemically Transformable Configurations of Mercaptohexadecanoic Acid Self-Assembled Monolayers Adsorbed on Au(111)

    International Nuclear Information System (INIS)

    van Buuren, T; Bostedt, C; Nelson, A J; Terminello, L J; Vance, A L; Fadley, C S; Willey, T M

    2003-01-01

    Carboxyl terminated Self-Assembled Monolayers (SAMs) are commonly used in a variety of applications, with the assumption that the molecules form well ordered monolayers. In this work, NEXAFS verifies well ordered monolayers can be formed using acetic acid in the solvent. Disordered monolayers with unbound molecules present in the result using only ethanol. A stark reorientation occurs upon deprotonation of the endgroup by rinsing in a KOH solution. This reorientation of the endgroup is reversible with tilted over, hydrogen bound carboxyl groups while carboxylate-ion endgroups are upright. C1s photoemission shows that SAMs formed and rinsed with acetic acid in ethanol, the endgroups are protonated, while without, a large fraction of the molecules on the surface are carboxylate terminated

  18. Enhanced photoresponse of monolayer molybdenum disulfide (MoS2) based on microcavity structure

    Science.gov (United States)

    Lu, Yanan; Yang, Guofeng; Wang, Fuxue; Lu, Naiyan

    2018-05-01

    There is an increasing interest in using monolayer molybdenum disulfide (MoS2) for optoelectronic devices because of its inherent direct band gap characteristics. However, the weak absorption of monolayer MoS2 restricts its applications, novel concepts need to be developed to address the weakness. In this work, monolayer MoS2 monolithically integrates with plane microcavity structure, which is formed by the top and bottom chirped distributed Bragg reflector (DBR), is demonstrated to improve the absorption of MoS2. The optical absorption is 17-fold enhanced, reaching values over 70% at work wavelength. Moreover, the monolayer MoS2-based photodetector device with microcavity presents a significantly increased photoresponse, demonstrating its promising prospects in MoS2-based optoelectronic devices.

  19. Ultralow lattice thermal conductivity in monolayer C3N as compared to graphene

    KAUST Repository

    Sarath Kumar, S. R.

    2017-09-21

    Using density functional theory and the Boltzmann transport equation for phonons, we demonstrate that the thermal conductivity is massively reduced in monolayer CN as compared to isostructural graphene. We show that larger phase space for three-phonon scattering processes is available in monolayer CN, which results in much shorter phonon life-times. Although both materials are characterized by sp hybridisation, anharmonicity effects are found to be enhanced for the C-N and C-C bonds in monolayer CN, reflected by a Grüneisen parameter of -8.5 as compared to -2.2 in graphene. The combination of these properties with the fact that monolayer CN is organic, non-toxic, and built of earth abundant elements gives rise to great potential in thermoelectric applications.

  20. Fullerene monolayer formation by spray coating

    NARCIS (Netherlands)

    Cervenka, J.; Flipse, C.F.J.

    2010-01-01

    Many large molecular complexes are limited in thin film applications by their insufficient thermal stability, which excludes deposition via commonly used vapour phase deposition methods. Here we demonstrate an alternative way of monolayer formation of large molecules by a simple spray coating method

  1. Molecular tilt on monolayer-protected nanoparticles

    KAUST Repository

    Giomi, L.

    2012-02-01

    The structure of the tilted phase of monolayer-protected nanoparticles is investigated by means of a simple Ginzburg-Landau model. The theory contains two dimensionless parameters representing the preferential tilt angle and the ratio ε between the energy cost due to spatial variations in the tilt of the coating molecules and that of the van der Waals interactions which favors the preferential tilt. We analyze the model for both spherical and octahedral particles. On spherical particles, we find a transition from a tilted phase, at small ε, to a phase where the molecules spontaneously align along the surface normal and tilt disappears. Octahedral particles have an additional phase at small ε characterized by the presence of six topological defects. These defective configurations provide preferred sites for the chemical functionalization of monolayer-protected nanoparticles via place-exchange reactions and their consequent linking to form molecules and bulk materials. Copyright © EPLA, 2012.

  2. Molecular tilt on monolayer-protected nanoparticles

    KAUST Repository

    Giomi, L.; Bowick, M. J.; Ma, X.; Majumdar, A.

    2012-01-01

    The structure of the tilted phase of monolayer-protected nanoparticles is investigated by means of a simple Ginzburg-Landau model. The theory contains two dimensionless parameters representing the preferential tilt angle and the ratio ε between the energy cost due to spatial variations in the tilt of the coating molecules and that of the van der Waals interactions which favors the preferential tilt. We analyze the model for both spherical and octahedral particles. On spherical particles, we find a transition from a tilted phase, at small ε, to a phase where the molecules spontaneously align along the surface normal and tilt disappears. Octahedral particles have an additional phase at small ε characterized by the presence of six topological defects. These defective configurations provide preferred sites for the chemical functionalization of monolayer-protected nanoparticles via place-exchange reactions and their consequent linking to form molecules and bulk materials. Copyright © EPLA, 2012.

  3. Morphology, defect evolutions and nano-mechanical anisotropy of behenic acid monolayer

    International Nuclear Information System (INIS)

    Yang Guanghong; Jiang Xiaohong; Dai Shuxi; Cheng Gang; Zhang Xingtang; Du Zuliang

    2010-01-01

    Langmuir-Blodgett monolayers of behenic acid (BA) were prepared by the vertical deposition method and their morphological evolutions and nano-mechanical anisotropy were studied by atomic force microscopy (AFM) and lateral force microscopy. Results show that there are platforms in the differential surface pressure-area (π-A) isotherm presenting linear relations between the chain tilting angles and surface pressures. The reorganization, appearance and disappearance of defects such as pinholes and holes can strongly affect the profile of π-A isotherm; AFM images reflect evolution rules from pinholes to holes, and from monolayer to bilayers along with compression and relaxation of structures in BA monolayer. Due to higher molecule density and larger real contact area, the tip-monolayer contacts at 15 and 25 mN/m correspond to the Derjaguin-Muller-Toporov (DMT) model showing long-ranged interaction forces. But owing to more easily-deformed conformations, contacts at 5 and 35 mN/m accord with the Johnson-Kendall-Robert and DMT transition cases exhibiting short-ranged interface interactions. A little higher friction is proved in the direction perpendicular to the deposition.

  4. Al-Doped ZnO Monolayer as a Promising Transparent Electrode Material: A First-Principles Study

    Directory of Open Access Journals (Sweden)

    Mingyang Wu

    2017-03-01

    Full Text Available Al-doped ZnO has attracted much attention as a transparent electrode. The graphene-like ZnO monolayer as a two-dimensional nanostructure material shows exceptional properties compared to bulk ZnO. Here, through first-principle calculations, we found that the transparency in the visible light region of Al-doped ZnO monolayer is significantly enhanced compared to the bulk counterpart. In particular, the 12.5 at% Al-doped ZnO monolayer exhibits the highest visible transmittance of above 99%. Further, the electrical conductivity of the ZnO monolayer is enhanced as a result of Al doping, which also occurred in the bulk system. Our results suggest that Al-doped ZnO monolayer is a promising transparent conducting electrode for nanoscale optoelectronic device applications.

  5. Characterization of radiation modified κ-carrageenan oligomers for bio-based materials development

    International Nuclear Information System (INIS)

    Abad, Lucille V.; Relleve, Lorna S.; Aranilla, Charito T.; Racadio, Darwin T.; Dela Rosa, Alumanda M.

    2011-01-01

    κ-carrageenan oligomers are known to have several biological activities such as anti-HIV, anti-herpes, antitumor and antioxidant properties. Recent progress in the development of radiation modified κ-carrageenan has resulted in new applications such as plant growth promoter, radiation dose indicator and hydrogels for wound dressing. This presentation would touch on the changes in chemical structure, gelation and conformational transition behavior and molecular size of κ-carrageenan at doses from 0 to 200 kGy and would be correlated to these functions for the development of bio-based materials. Chemical and spectral analyses were carried out using UV-Vis spectroscopy, FT-IR spectroscopy, NMR spectroscopy, reducing sugar analysis, free sulfate and carboxylic acid analysis. The chemical and spectral analyses of the radiolytic products indicated increasing reducing sugars, carbonyl, carboxylic acids, and sulfates with increasing doses which reached a maximum level at a certain dose depending on the irradiation condition. Values were very much lower in solid irradiation (in vacuum and in air) as compared to aqueous irradiation. NMR data also revealed an intact structure of the oligomer irradiated at 100 kGy in the specific fraction that contains an Mw = (3-10) kDa. κ-carrageenan oligomers exhibited antioxidant properties as determined by hydroxyl radical scavenging activity, reducing power and DPPH radical scavenging capacity assay. The degree of oxidative inhibition increased with increasing dose which can be attributed to higher reducing sugar. Dynamic light scattering (DLS) experiments showed that a dose of up to 50 kGy, sol-gelation transition was still observed. Beyond 50 kGy, no gelation took place, instead appearance of fast relax-carrageenan mode in characteristic decay time function was observed at doses of (75-150) kGy. Optimum peak intensity was found at 100 kGy (mol wt. 5-10 kDa) which coincides with the optimum plant growth promoter effect in κ

  6. NO2 decreases paracellular resistance to ion and solute flow in alveolar epithelial monolayers

    International Nuclear Information System (INIS)

    Cheek, J.M.; Kim, K.J.; Crandall, E.D.

    1990-01-01

    Primary cultured monolayers of rat alveolar epithelial cells grown on tissue culture-treated Nuclepore filters were exposed to 2.5 ppm nitrogen dioxide NO 2 for 2-20 min. Changes in monolayer bioelectric properties and solute permeabilities were subsequently measured. Exposure to NO 2 produced a dose-dependent decrease in monolayer transepithelial electrical resistance (Rt), whereas monolayer short-circuit current was unaffected. Post-exposure monolayer permeability to 14 C-sucrose (which primarily crosses alveolar epithelium via the paracellular pathway) increased markedly. That for 3 H-glycerol (which permeates through both paracellular and transcellular pathways) increased to a lesser extent. Partial recovery of Rt and solute permeabilities was noted by 48-h post-exposure. The time courses of the decrease in Rt and increase in solute permeabilities were similar. These results suggest that NO 2 primarily impairs passive alveolar epithelial barrier functions in vitro, probably by altering intercellular junctions, and does not appear to directly affect cell membrane active ion transport processes. When correlated with results obtained from experimental approaches, studies of in vitro alveolar epithelial monolayers may facilitate investigations of dosimetry, sites, and mechanisms of oxidant injury in the lung

  7. Functionalizable self-assembled trichlorosilyl-based monolayer for application in biosensor technology

    Energy Technology Data Exchange (ETDEWEB)

    De La Franier, Brian; Jankowski, Alexander; Thompson, Michael, E-mail: mikethom@chem.utoronto.ca

    2017-08-31

    This paper describes the design and synthesis of 3-(3-(trichlorosilyl)propoxy)propanoyl chloride (MEG-Cl), a compound capable of forming functionalizable monolayers on hydroxylated surfaces. The compound was synthesized in high purity, as suggested by nuclear magnetic resonance analysis, and in moderate overall yield. Contact angle measurement and X-ray photoelectron spectroscopy confirm the binding of MEG-Cl to an amorphous glass substrate and the further modification of the monolayer with a nickel (II)-binding ligand for the purpose of binding polyhistidine-tagged proteins. The compound will be useful in biosensing applications due to its ability to be easily modified with any number of nucleophilic functional groups subsequent to substrate monolayer formation.

  8. Development and Characterization of a Human and Mouse Intestinal Epithelial Cell Monolayer Platform

    Directory of Open Access Journals (Sweden)

    Kenji Kozuka

    2017-12-01

    Full Text Available Summary: We describe the development and characterization of a mouse and human epithelial cell monolayer platform of the small and large intestines, with a broad range of potential applications including the discovery and development of minimally systemic drug candidates. Culture conditions for each intestinal segment were optimized by correlating monolayer global gene expression with the corresponding tissue segment. The monolayers polarized, formed tight junctions, and contained a diversity of intestinal epithelial cell lineages. Ion transport phenotypes of monolayers from the proximal and distal colon and small intestine matched the known and unique physiology of these intestinal segments. The cultures secreted serotonin, GLP-1, and FGF19 and upregulated the epithelial sodium channel in response to known biologically active agents, suggesting intact secretory and absorptive functions. A screen of over 2,000 pharmacologically active compounds for inhibition of potassium ion transport in the mouse distal colon cultures led to the identification of a tool compound. : Siegel and colleagues describe their development of a human and mouse intestinal epithelial cell monolayer platform that maintains the cellular, molecular, and functional characteristics of tissue for each intestinal segment. They demonstrate the platform's application to drug discovery by screening a library of over 2,000 compounds to identify an inhibitor of potassium ion transport in the mouse distal colon. Keywords: intestinal epithelium, organoids, monolayer, colon, small intestine, phenotype screening assays, enteroid, colonoid

  9. A Route to Permanent Valley Polarization in Monolayer MoS2

    KAUST Repository

    Singh, Nirpendra

    2016-10-24

    Realization of permanent valley polarization in Cr-doped monolayer MoS2 is found to be unfeasible because of extended moment formation. Introduction of an additional hole is suggested as a viable solution. V-doped monolayer MoS2 is demonstrated to sustain permanent valley polarization and therefore can serve as a prototype material for valleytronics.

  10. N-Type self-assembled monolayer field-effect transistors for flexible organic electronics

    NARCIS (Netherlands)

    Ringk, A.; Roelofs, Christian; Smits, E.C.P.; van der Marel, C.; Salzmann, I.; Neuhold, A.; Gelinck, G.H.; Resel, R.; de Leeuw, D.M.; Strohriegl, P.

    Within this work we present n-type self-assembled monolayer field-effect transistors (SAMFETs) based on a novel perylene bisimide. The molecule spontaneously forms a covalently fixed monolayer on top of an aluminium oxide dielectric via a phosphonic acid anchor group. Detailed studies revealed an

  11. Complexation of phospholipids and cholesterol by triterpenic saponins in bulk and in monolayers.

    Science.gov (United States)

    Wojciechowski, Kamil; Orczyk, Marta; Gutberlet, Thomas; Geue, Thomas

    2016-02-01

    The interactions between three triterpene saponins: α-hederin, hederacoside C and ammonium glycyrrhizate with model lipids: cholesterol and dipalmitoylphosphatidylcholine (DPPC) are described. The oleanolic acid-type saponins (α-hederin and hederacoside C) were shown to form 1:1 complexes with lipids in bulk, characterized by stability constants in the range (4.0±0.2)·10(3)-(5.0±0.4)·10(4) M(-1). The complexes with cholesterol are generally stronger than those with DPPC. On the contrary, ammonium glycyrrhizate does not form complexes with any of the lipids in solution. The saponin-lipid interactions were also studied in a confined environment of Langmuir monolayers of DPPC and DPPC/cholesterol with the saponins present in the subphase. A combined monolayer relaxation, surface dilational rheology, fluorescence microscopy and neutron reflectivity (NR) study showed that all three saponins are able to penetrate pure DPPC and mixed DPPC/cholesterol monolayers. Overall, the effect of the saponins on the model lipid monolayers does not fully correlate with the lipid-saponin complex formation in the homogeneous solution. The best correlation was found for α-hederin, for which even the preference for cholesterol over DPPC observed in bulk is well reflected in the monolayer studies and the literature data on its membranolytic activity. Similarly, the lack of interaction of ammonium glycyrrhizate with both lipids is evident equally in bulk and monolayer experiments, as well as in its weak membranolytic activity. The combined bulk and monolayer results are discussed in view of the role of confinement in modulating the saponin-lipid interactions and possible mechanism of membranolytic activity of saponins. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Dynamic conformations of nucleophosmin (NPM1 at a key monomer-monomer interface affect oligomer stability and interactions with granzyme B.

    Directory of Open Access Journals (Sweden)

    Wei D Duan-Porter

    Full Text Available Nucleophosmin (NPM1 is an abundant, nucleolar tumor antigen with important roles in cell proliferation and putative contributions to oncogenesis. Wild-type NPM1 forms pentameric oligomers through interactions at the amino-terminal core domain. A truncated form of NPM1 found in some hepatocellular carcinoma tissue formed an unusually stable oligomer and showed increased susceptibility to cleavage by granzyme B. Initiation of translation at the seventh methionine generated a protein (M7-NPM that shared all these properties. We used deuterium exchange mass spectrometry (DXMS to perform a detailed structural analysis of wild-type NPM1 and M7-NPM, and found dynamic conformational shifts or local "unfolding" at a specific monomer-monomer interface which included the β-hairpin "latch." We tested the importance of interactions at the β-hairpin "latch" by replacing a conserved tyrosine in the middle of the β-hairpin loop with glutamic acid, generating Y67E-NPM. Y67E-NPM did not form stable oligomers and further, prevented wild-type NPM1 oligomerization in a dominant-negative fashion, supporting the critical role of the β-hairpin "latch" in monomer-monomer interactions. Also, we show preferential cleavage by granzyme B at one of two available aspartates (either D161 or D122 in M7-NPM and Y67E-NPM, whereas wild-type NPM1 was cleaved at both sites. Thus, we observed a correlation between the propensity to form oligomers and granzyme B cleavage site selection in nucleophosmin proteins, suggesting that a small change at an important monomer-monomer interface can affect conformational shifts and impact protein-protein interactions.

  13. Substoichiometric cobalt oxide monolayer on Ir(100)-(1 x 1)

    International Nuclear Information System (INIS)

    Gubo, M; Ebensperger, C; Meyer, W; Hammer, L; Heinz, K

    2009-01-01

    A substoichiometric monolayer of cobalt oxide has been prepared by deposition and oxidation of slightly less than one monolayer of cobalt on the unreconstructed surface of Ir(100). The ultrathin film was investigated by scanning tunnelling microscopy (STM) and quantitative low-energy electron diffraction (LEED). The cobalt species of the film reside in or near hollow positions of the substrate with, however, unoccupied sites (vacancies) in a 3 x 3 arrangement. In the so-formed 3 x 3 supercell the oxide's oxygen species are both threefold and fourfold coordinated to cobalt, forming pyramids with a triangular and square cobalt basis, respectively. These pyramids are the building blocks of the oxide. Due to the reduced coordination as compared to the sixfold one in the bulk of rock-salt-type CoO, the Co-O bond lengths are smaller than in the latter. For the threefold coordination they compare very well with the bond length in oxygen terminated CoO(111) films investigated recently. The substoichiometric 3 x 3 oxide monolayer phase transforms to a stoichiometric c(10 x 2)-periodic oxide monolayer under oxygen exposure, in which, however, cobalt and oxygen species are in (111) orientation and so form a CoO(111) layer.

  14. Thermodynamic and real-space structural evidence of a 2D critical point in phospholipid monolayers

    DEFF Research Database (Denmark)

    Nielsen, Lars K.; Bjørnholm, Thomas; Mouritsen, Ole G.

    2007-01-01

    The two-dimensional phase diagram of phospholipid monolayers at air-water interfaces has been constructed from Langmuir compression isotherms. The coexistence region between the solid and fluid phases of the monolayer ends at the critical temperature of the transition. The small-scale lateral...... structure of the monolayers has been imaged by atomic force microscopy in the nm to mu m range at distinct points in the phase diagram. The lateral structure is immobilized by transferring the monolayer from an air-water interface to a solid mica support using Langmuir-Blodgett techniques. A transfer...

  15. Disorder-dependent valley properties in monolayer WSe2

    KAUST Repository

    Tran, Kha

    2017-07-19

    We investigate the effect of disorder on exciton valley polarization and valley coherence in monolayer WSe2. By analyzing the polarization properties of photoluminescence, the valley coherence (VC) and valley polarization (VP) are quantified across the inhomogeneously broadened exciton resonance. We find that disorder plays a critical role in the exciton VC, while affecting VP less. For different monolayer samples with disorder characterized by their Stokes shift (SS), VC decreases in samples with higher SS while VP does not follow a simple trend. These two methods consistently demonstrate that VC as defined by the degree of linearly polarized photoluminescence is more sensitive to disorder, motivating further theoretical studies.

  16. Temperature-dependent surface density of alkylthiol monolayers on gold nanocrystals

    Science.gov (United States)

    Liu, Xuepeng; Lu, Pin; Zhai, Hua; Wu, Yucheng

    2018-03-01

    Atomistic molecular dynamics (MD) simulations are performed to study the surface density of passivating monolayers of alkylthiol chains on gold nanocrystals at temperatures ranging from 1 to 800 K. The results show that the surface density of alkylthiol monolayer reaches a maximum value at near room temperature (200-300 K), while significantly decreases with increasing temperature in the higher temperature region (> 300 {{K}}), and slightly decreases with decreasing temperature at low temperature (< 200 {{K}}). We find that the temperature dependence of surface ligand density in the higher temperature region is attributed to the substantial ligand desorption induced by the thermal fluctuation, while that at low temperature results from the reduction in entropy caused by the change in the ordering of passivating monolayer. These results are expected helpful to understand the temperature-dependent surface coverage of gold nanocrystals.

  17. Vapor-transport growth of high optical quality WSe2 monolayers

    Directory of Open Access Journals (Sweden)

    Genevieve Clark

    2014-10-01

    Full Text Available Monolayer transition metal dichalcogenides are atomically thin direct-gap semiconductors that show a variety of novel electronic and optical properties with an optically accessible valley degree of freedom. While they are ideal materials for developing optical-driven valleytronics, the restrictions of exfoliated samples have limited exploration of their potential. Here, we present a physical vapor transport growth method for triangular WSe2 sheets of up to 30 μm in edge length on insulating SiO2 substrates. Characterization using atomic force microscopy and optical microscopy reveals that they are uniform, monolayer crystals. Low temperature photoluminescence shows well resolved and electrically tunable excitonic features similar to those in exfoliated samples, with substantial valley polarization and valley coherence. The monolayers grown using this method are therefore of high enough optical quality for routine use in the investigation of optoelectronics and valleytronics.

  18. A class of monolayer metal halogenides MX{sub 2}: Electronic structures and band alignments

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Feng; Wang, Weichao; Luo, Xiaoguang; Cheng, Yahui; Dong, Hong; Liu, Hui; Wang, Wei-Hua, E-mail: whwangnk@nankai.edu.cn [Department of Electronics and Tianjin Key Laboratory of Photo-Electronic Thin Film Device and Technology, Nankai University, Tianjin 300071 (China); Xie, Xinjian [School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130 (China)

    2016-03-28

    With systematic first principles calculations, a class of monolayer metal halogenides MX{sub 2} (M = Mg, Ca, Zn, Cd, Ge, Pb; M = Cl, Br, I) has been proposed. Our study indicates that these monolayer materials are semiconductors with the band gaps ranging from 2.03 eV of ZnI{sub 2} to 6.08 eV of MgCl{sub 2}. Overall, the band gap increases with the increase of the electronegativity of the X atom or the atomic number of the metal M. Meanwhile, the band gaps of monolayer MgX{sub 2} (X = Cl, Br) are direct while those of other monolayers are indirect. Based on the band edge curvatures, the derived electron (m{sub e}) and hole (m{sub h}) effective masses of MX{sub 2} monolayers are close to their corresponding bulk values except that the m{sub e} of CdI{sub 2} is three times larger and the m{sub h} for PbI{sub 2} is twice larger. Finally, the band alignments of all the studied MX{sub 2} monolayers are provided using the vacuum level as energy reference. These theoretical results may not only introduce the monolayer metal halogenides family MX{sub 2} into the emerging two-dimensional materials, but also provide insights into the applications of MX{sub 2} in future electronic, visible and ultraviolet optoelectronic devices.

  19. Method to synthesize metal chalcogenide monolayer nanomaterials

    Science.gov (United States)

    Hernandez-Sanchez, Bernadette A.; Boyle, Timothy J.

    2016-12-13

    Metal chalcogenide monolayer nanomaterials can be synthesized from metal alkoxide precursors by solution precipitation or solvothermal processing. The synthesis routes are more scalable, less complex and easier to implement than other synthesis routes.

  20. Overall and specific migration from multilayer high barrier food contact materials - kinetic study of cyclic polyester oligomers migration.

    Science.gov (United States)

    Úbeda, Sara; Aznar, Margarita; Vera, Paula; Nerín, Cristina; Henríquez, Luis; Taborda, Laura; Restrepo, Claudia

    2017-10-01

    Most multilayer high barrier materials used in food packaging have a polyurethane adhesive layer in their structures. In order to assess the safety of these materials, it is important to determine the compounds intentionally added to the adhesives (IAS) as well as those non-intentionally added substances (NIAS). During the manufacture of polyurethane adhesives, some by-products can be formed, such as cyclic polyester oligomers coming from the reaction between dicarboxylic acids and glycols. Since these compounds are not listed in the Regulation 10/2011/EU, they should not be found in migration above 0.01 mg/kg of simulant. In this study two flexible multilayer packaging materials were used and migration was evaluated in simulant A (ethanol 10% v/v), simulant B (acetic acid 3% w/v) and simulant ethanol 95% v/v during 10 days at 60ºC. Identification and quantification of non-volatile compounds was carried out by UPLC-MS-QTOF. Most of migrants were oligomers such as cyclic polyesters and caprolactam oligomers. Overall migration and specific migration of adipic acid-diethylene glycol and phthalic acid-diethylene glycol were monitored over time and analysed by UPLC-MS-TQ. In most cases, ethanol 95% v/v was the simulant with the highest concentration values. Overall migration kinetics followed a similar pattern than specific migration kinetics.

  1. Monolayer MoSe 2 Grown by Chemical Vapor Deposition for Fast Photodetection

    KAUST Repository

    Chang, Yung-Huang; Zhang, Wenjing; Zhu, Yihan; Han, Yu; Pu, Jiang; Chang, Jan-Kai; Hsu, Wei-Ting; Huang, Jing-Kai; Hsu, Chang-Lung; Chiu, Ming-Hui; Takenobu, Taishi; Li, Henan; Wu, Chih-I; Chang, Wen-Hao; Wee, Andrew Thye Shen; Li, Lain-Jong

    2014-01-01

    that the MoSe2 monolayer shows a much weaker bound exciton peak; hence, the phototransistor based on MoSe2 presents a much faster response time (<25 ms) than the corresponding 30 s for the CVD MoS2 monolayer at room temperature in ambient conditions

  2. Peptide nucleic acid (PNA) cell penetrating peptide (CPP) conjugates as carriers for cellular delivery of antisense oligomers

    DEFF Research Database (Denmark)

    Shiraishi, Takehiko; Nielsen, Peter E

    2012-01-01

    We have explored the merits of a novel delivery strategy for the antisense oligomers based on cell penetrating peptide (CPP) conjugated to a carrier PNA with sequence complementary to part of the antisense oligomer. The effect of these carrier CPP-PNAs was evaluated by using antisense PNA targeting......-PNA (cPNA1(7)-(D-Arg)8) and hexamer carrier decanoyl-CPP-PNA (Deca-cPNA1(6)-(D-Arg)8), respectively, without showing significant additional cellular toxicity. Most interestingly, the activity reached the same level obtained by enhancement with endosomolytic chloroquine (CQ) treatment, suggesting...... that the carrier might facilitate endosomal escape. Furthermore, 50% downregulation of luciferase expression at 60 nM siRNA was obtained using this carrier CPP-PNA delivery strategy (with CQ co-treatment) for a single stranded antisense RNA targeting normal luciferase mRNA. These results indicated that CPP...

  3. Synthesis of Vertically Aligned Carbon Nanotubes on Silicalite-1 Monolayer-Supported Substrate

    Directory of Open Access Journals (Sweden)

    Wei Zhao

    2014-01-01

    Full Text Available Monodisperse magnetic Fe3O4 nanoparticles (NPs with the size of ca. 3.5 nm were prepared and used as the catalysts for the synthesis of vertically aligned carbon nanotube (VACNT arrays. A silicalite-1 microcrystal monolayer was used as the support layer between catalyst NPs and the silicon substrate. Compared to our previous report which used radio-frequency- (rf- sputtered Fe2O3 film as the catalyst, Fe3O4 NPs that were synthesized by wet chemical method showed an improved catalytic ability with less agglomeration. The silicalite-1 crystal monolayer acted as an effective “buffer” layer to prevent the catalyst NPs from agglomerating during the reaction process. It is believed that this is the first report that realizes the vertical alignment of CNTs over the zeolite monolayer, namely, silicalite-1 microcrystal monolayer, instead of using the intermediate anodic aluminum oxide (AAO scaffold to regulate the growth direction of CNT products.

  4. Monolayered Bi2WO6 nanosheets mimicking heterojunction interface with open surfaces for photocatalysis

    Science.gov (United States)

    Zhou, Yangen; Zhang, Yongfan; Lin, Mousheng; Long, Jinlin; Zhang, Zizhong; Lin, Huaxiang; Wu, Jeffrey C.-S.; Wang, Xuxu

    2015-09-01

    Two-dimensional-layered heterojunctions have attracted extensive interest recently due to their exciting behaviours in electronic/optoelectronic devices as well as solar energy conversion systems. However, layered heterojunction materials, especially those made by stacking different monolayers together by strong chemical bonds rather than by weak van der Waal interactions, are still challenging to fabricate. Here the monolayer Bi2WO6 with a sandwich substructure of [BiO]+-[WO4]2--[BiO]+ is reported. This material may be characterized as a layered heterojunction with different monolayer oxides held together by chemical bonds. Coordinatively unsaturated Bi atoms are present as active sites on the surface. On irradiation, holes are generated directly on the active surface layer and electrons in the middle layer, which leads to the outstanding performances of the monolayer material in solar energy conversion. Our work provides a general bottom-up route for designing and preparing novel monolayer materials with ultrafast charge separation and active surface.

  5. Structures of sub-monolayered silicon carbide films

    International Nuclear Information System (INIS)

    Baba, Y.; Sekiguchi, T.; Shimoyama, I.; Nath, Krishna G.

    2004-01-01

    The electronic and geometrical structures of silicon carbide thin films are presented. The films were deposited on graphite by ion-beam deposition using tetramethylsilane (TMS) as an ion source. In the Si K-edge near-edge X-ray absorption fine structure (NEXAFS) spectra for sub-monolayered film, sharp peaks due to the resonance from Si 1s to π*-like orbitals were observed, suggesting the existence of Si=C double bonds. On the basis of the polarization dependencies of the Si 1s → π* peak intensities, it is elucidated that the direction of the π*-like orbitals is just perpendicular to the surface. We conclude that the sub-monolayered SiC x film has a flat-lying hexagonal structure of which configuration is analogous to the single sheet of graphite

  6. Plasmonic light-sensitive skins of nanocrystal monolayers

    Science.gov (United States)

    Akhavan, Shahab; Gungor, Kivanc; Mutlugun, Evren; Demir, Hilmi Volkan

    2013-04-01

    We report plasmonically coupled light-sensitive skins of nanocrystal monolayers that exhibit sensitivity enhancement and spectral range extension with plasmonic nanostructures embedded in their photosensitive nanocrystal platforms. The deposited plasmonic silver nanoparticles of the device increase the optical absorption of a CdTe nanocrystal monolayer incorporated in the device. Controlled separation of these metallic nanoparticles in the vicinity of semiconductor nanocrystals enables optimization of the photovoltage buildup in the proposed nanostructure platform. The enhancement factor was found to depend on the excitation wavelength. We observed broadband sensitivity improvement (across 400-650 nm), with a 2.6-fold enhancement factor around the localized plasmon resonance peak. The simulation results were found to agree well with the experimental data. Such plasmonically enhanced nanocrystal skins hold great promise for large-area UV/visible sensing applications.

  7. Cavity plasmon polaritons in monolayer graphene

    International Nuclear Information System (INIS)

    Kotov, O.V.; Lozovik, Yu.E.

    2011-01-01

    Plasmon polaritons in a new system, a monolayer doped graphene embedded in optical microcavity, are studied here. The dispersion law for lower and upper cavity plasmon polaritons is obtained. Peculiarities of Rabi splitting for the system are analyzed; particularly, role of Dirac-like spinor (envelope) wave functions in graphene and corresponding angle factors are considered. Typical Rabi frequencies for maximal (acceptable for Dirac-like electron spectra) Fermi energy and frequencies of polaritons near polariton gap are estimated. The plasmon polaritons in considered system can be used for high-speed information transfer in the THz region. -- Highlights: → Plasmon polaritons in a monolayer doped graphene embedded in optical microcavity, are studied here. → The dispersion law for lower and upper cavity plasmon polaritons is obtained. → Peculiarities of Rabi splitting for the system are analyzed. → Role of Dirac-like wave functions in graphene and corresponding angle factors are considered. → Typical Rabi frequencies and frequencies of polaritons near polariton gap are estimated.

  8. Collective cell motion in endothelial monolayers

    International Nuclear Information System (INIS)

    Szabó, A; Ünnep, R; Méhes, E; Czirók, A; Twal, W O; Argraves, W S; Cao, Y

    2010-01-01

    Collective cell motility is an important aspect of several developmental and pathophysiological processes. Despite its importance, the mechanisms that allow cells to be both motile and adhere to one another are poorly understood. In this study we establish statistical properties of the random streaming behavior of endothelial monolayer cultures. To understand the reported empirical findings, we expand the widely used cellular Potts model to include active cell motility. For spontaneous directed motility we assume a positive feedback between cell displacements and cell polarity. The resulting model is studied with computer simulations and is shown to exhibit behavior compatible with experimental findings. In particular, in monolayer cultures both the speed and persistence of cell motion decreases, transient cell chains move together as groups and velocity correlations extend over several cell diameters. As active cell motility is ubiquitous both in vitro and in vivo, our model is expected to be a generally applicable representation of cellular behavior

  9. Indirect photopatterning of functionalized organic monolayers via copper-catalyzed "click chemistry"

    Science.gov (United States)

    Williams, Mackenzie G.; Teplyakov, Andrew V.

    2018-07-01

    Solution-based lithographic surface modification of an organic monolayer on a solid substrate is attained based on selective area photo-reduction of copper (II) to copper (I) to catalyze the azide-alkyne dipolar cycloaddition "click" reaction. X-ray photoelectron spectroscopy is used to confirm patterning, and spectroscopic results are analyzed and supplemented with computational models to confirm the surface chemistry. It is determined that this surface modification approach requires irradiation of the solid substrate with all necessary components present in solution. This method requires only minutes of irradiation to result in spatial and temporal control of the covalent surface functionalization of a monolayer and offers the potential for wavelength tunability that may be desirable in many applications utilizing organic monolayers.

  10. Combined HILIC-ELSD/ESI-MSn enables the separation, identification and quantification of sugar beet pectin derived oligomers

    NARCIS (Netherlands)

    Remoroza, C.A.; Cord-Landwehr, S.; Leijdekkers, A.G.M.; Moerschbacher, B.M.; Schols, H.A.; Gruppen, H.

    2012-01-01

    The combined action of endo-polygalacturonase (endo-PGII), pectin lyase (PL), pectin methyl esterase (fungal PME) and RG-I degrading enzymes enabled the extended degradation of methylesterified and acetylated sugar beet pectins (SBPs). The released oligomers were separated, identified and quantified

  11. Fullerene monolayer formation by spray coating

    Czech Academy of Sciences Publication Activity Database

    Červenka, Jiří; Flipse, C.F.J.

    2010-01-01

    Roč. 21, č. 6 (2010), 065302/1-065302/7 ISSN 0957-4484 Institutional research plan: CEZ:AV0Z10100521 Keywords : monolayer * spray coating * fullerene * atomic force microscopy * scanning tunnelling microscopy * electronic structure * graphite * gold Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.644, year: 2010

  12. Influence of calcium on ceramide-1-phosphate monolayers

    Directory of Open Access Journals (Sweden)

    Joana S. L. Oliveira

    2016-02-01

    Full Text Available Ceramide-1-phosphate (C1P plays an important role in several biological processes, being identified as a key regulator of many protein functions. For instance, it acts as a mediator of inflammatory responses. The mediation of the inflammation process happens due to the interaction of C1P with the C2 domain of cPLA2α, an effector protein that needs the presence of submicromolar concentrations of calcium ions. The aim of this study was to determine the phase behaviour and structural properties of C1P in the presence and absence of millimolar quantities of calcium in a well-defined pH environment. For that purpose, we used monomolecular films of C1P at the soft air/liquid interface with calcium ions in the subphase. The pH was varied to change the protonation degree of the C1P head group. We used surface pressure versus molecular area isotherms coupled with other monolayer techniques as Brewster angle microscopy (BAM, infrared reflection–absorption spectroscopy (IRRAS and grazing incidence X-ray diffraction (GIXD. The isotherms indicate that C1P monolayers are in a condensed state in the presence of calcium ions, regardless of the pH. At higher pH without calcium ions, the monolayer is in a liquid-expanded state due to repulsion between the negatively charged phosphate groups of the C1P molecules. When divalent calcium ions are added, they are able to bridge the highly charged phosphate groups, enhancing the regular arrangement of the head groups. Similar solidification of the monolayer structure can be seen in the presence of a 150 times larger concentration of monovalent sodium ions. Therefore, calcium ions have clearly a strong affinity for the phosphomonoester of C1P.

  13. Morphology of compressed dipalmitoyl phosphatidylcholine monolayers investigated by atomic force microscopy

    International Nuclear Information System (INIS)

    Yang, Y.-P.; Tsay, R.-Y.

    2007-01-01

    The effectiveness of a substitute of natural lung surfactants on replacement therapy strongly depends on the stability of the monolayer of those substitute molecules. An atomic force microscope is utilized to investigate the microstructure of the films of the major components of natural lung surfactants, dipalmitoyl phosphatidylcholine-DPPC, which are transferred to mica substrates by the Langmuir-Blodgett film technique. A concave deformation structure was first observed for DPPC in solid phase. The depth of the concave domain was about 6 nm and was remarkably uniform. For a collapsed DPPC monolayer, the surface film consists of a granular convex multilayer structure and a disc-like concave structure. Dynamic cyclic compression-expansion experiments indicate that the formation of the concave domain is a reversible process while the process for convex multilayer formation is irreversible. This gives direct evidence that convex grain is the collapsed structure of DPPC monolayer and the concave shallow disc corresponds to the elastic deformation of a DPPC solid film. Results of atomic force microscopy indicate that the nucleation and growth model instead of the fracture model can better describe the collapse behavior of a DPPC monolayer

  14. Cation effects on phosphatidic acid monolayers at various pH conditions.

    Science.gov (United States)

    Zhang, Ting; Cathcart, Matthew G; Vidalis, Andrew S; Allen, Heather C

    2016-10-01

    The impact of pH and cations on phase behavior, stability, and surface morphology for dipalmitoylphosphatidic acid (DPPA) monolayers was investigated. At pHCations are found to expand and stabilize the monolayer in the following order of increasing magnitude at pH 5.6: Na + >K + ∼Mg 2+ >Ca 2+ . Additionally, cation complexation is tied to the pH and protonation state of DPPA, which are the primary factors controlling the monolayer surface behavior. The binding affinity of cations to the headgroup and thus deprotonation capability of the cation, ranked in the order of Ca 2+ >Mg 2+ >Na + >K + , is found to be well explained by the law of matching water affinities. Nucleation of surface 3D lipid structures is observed from Ca 2+ , Mg 2+ , and Na + , but not from K + , consistent with the lowest binding affinity of K + . Unraveling cation and pH effects on DPPA monolayers is useful in further understanding the surface properties of complex systems such as organic-coated marine aerosols where organic films are directly influenced by the pH and ionic composition of the underlying aqueous phase. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  15. Exploration work function and optical properties of monolayer SnSe allotropes

    Science.gov (United States)

    Cui, Zhen; Wang, Xia; Ding, Yingchun; Li, Meiqin

    2018-02-01

    The work function and optical properties are investigated with density functional theory for three monolayer SnSe allotropes. The calculated results indicate that the α-SnSe, δ-SnSe, ε-SnSe are semiconductor with the band gaps of 0.90, 1.25, and 1.50 eV, respectively. Meanwhile, the work function of δ-SnSe is lower than α-SnSe and ε-SnSe, which indicates that the δ-SnSe can be prepared of photoemission and field emission nanodevices. More importantly, the α-SnSe, δ-SnSe, ε-SnSe with the large static dielectric constants are 4.22, 5.48, and 3.61, which demonstrate that the three monolayer SnSe allotropes can be fabricated the capacitor. In addition, the static refractive index of δ-SnSe is larger than α-SnSe and ε-SnSe. The different optical properties with three monolayer SnSe allotropes reveal that the allotropes can regulate the properties of the materials. Moreover, our researched results show that the three monolayer SnSe allotropes are sufficient for fabrication of optoelectronic nanodevices.

  16. Antibiotic interaction with phospholipid monolayers

    International Nuclear Information System (INIS)

    Gambinossi, F.; Mecheri, B.; Caminati, G.; Nocentini, M.; Puggelli, M.; Gabrielli, G.

    2002-01-01

    We studied the interactions of tetracycline (TC) antibiotic molecules with phospholipid monolayers with the two-fold aim of elucidating the mechanism of action and providing a first step for the realization of bio-mimetic sensors for such drugs by means of the Langmuir-Blodgett technique. We examined spreading monolayers of three phospholipids in the presence of tetracycline in the subphase by means of surface pressure-area and surface potential-area isotherms as a function of bulk pH. We selected phospholipids with hydrophobic chains of the same length but polar head groups differing either in dimensions and protonation equilibria, i.e. dipalmitoylphosphatidylcholine (DPPC), dipalmitoylphosphatidylethanolamine (DPPE) and dipalmitoylphosphatidic acid (DPPA). The interaction of tetracycline with the three phospholipids was found to be highly dependent on the electric charge of the antibiotic and on the ionization state of the lipid. Significant interactions are established between the negatively charged form of dipalmitoylphosphatidic acid and the zwitterionic form of tetracycline. The drug was found to migrate at the interface where it is adsorbed underneath or/and among the head groups, depending on the surface pressure of the film, whereas penetration through the hydrophobic layer was excluded for all the three phospholipids

  17. Antibiotic interaction with phospholipid monolayers

    Energy Technology Data Exchange (ETDEWEB)

    Gambinossi, F.; Mecheri, B.; Caminati, G.; Nocentini, M.; Puggelli, M.; Gabrielli, G

    2002-12-01

    We studied the interactions of tetracycline (TC) antibiotic molecules with phospholipid monolayers with the two-fold aim of elucidating the mechanism of action and providing a first step for the realization of bio-mimetic sensors for such drugs by means of the Langmuir-Blodgett technique. We examined spreading monolayers of three phospholipids in the presence of tetracycline in the subphase by means of surface pressure-area and surface potential-area isotherms as a function of bulk pH. We selected phospholipids with hydrophobic chains of the same length but polar head groups differing either in dimensions and protonation equilibria, i.e. dipalmitoylphosphatidylcholine (DPPC), dipalmitoylphosphatidylethanolamine (DPPE) and dipalmitoylphosphatidic acid (DPPA). The interaction of tetracycline with the three phospholipids was found to be highly dependent on the electric charge of the antibiotic and on the ionization state of the lipid. Significant interactions are established between the negatively charged form of dipalmitoylphosphatidic acid and the zwitterionic form of tetracycline. The drug was found to migrate at the interface where it is adsorbed underneath or/and among the head groups, depending on the surface pressure of the film, whereas penetration through the hydrophobic layer was excluded for all the three phospholipids.

  18. Self-Assembled Monolayers of CdSe Nanocrystals on Doped GaAs Substrates

    DEFF Research Database (Denmark)

    Marx, E.; Ginger, D.S.; Walzer, Karsten

    2002-01-01

    This letter reports the self-assembly and analysis of CdSe nanocrystal monolayers on both p- and a-doped GaAs substrates. The self-assembly was performed using a 1,6-hexanedithiol self-assembled monolayer (SAM) to link CdSe nanocrystals to GaAs substrates. Attenuated total reflection Fourier tran...

  19. Atomic Scale Simulation on the Anti-Pressure and Friction Reduction Mechanisms of MoS2 Monolayer

    Directory of Open Access Journals (Sweden)

    Yang Liu

    2018-04-01

    Full Text Available MoS2 nanosheets can be used as solid lubricants or additives of lubricating oils to reduce friction and resist wear. However, the atomic scale mechanism still needs to be illustrated. Herein, molecular simulations on the indentation and scratching process of MoS2 monolayer supported by Pt(111 surface were conducted to study the anti-pressure and friction reduction mechanisms of the MoS2 monolayer. Three deformation stages of Pt-supported MoS2 monolayer were found during the indentation process: elastic deformation, plastic deformation and finally, complete rupture. The MoS2 monolayer showed an excellent friction reduction effect at the first two stages, as a result of enhanced load bearing capacity and reduced deformation degree of the substrate. Unlike graphene, rupture of the Pt-supported MoS2 monolayer was related primarily to out-of-plane compression of the monolayer. These results provide a new insight into the relationship between the mechanical properties and lubrication properties of 2D materials.

  20. Self-assembled silver nanoparticles monolayers on mica-AFM, SEM, and electrokinetic characteristics

    International Nuclear Information System (INIS)

    Oćwieja, Magdalena; Morga, Maria; Adamczyk, Zbigniew

    2013-01-01

    A monodisperse silver particle suspension was produced by a chemical reduction method in an aqueous medium using sodium citrate. The average particle size determined by dynamic light scattering (DLS), transmission electron microscopy (TEM), and atomic force microscopy (AFM) was 28.5 nm. The DLS measurements confirmed that the suspension was stable for the ionic strength up to 3 × 10 −2 M NaCl. The electrophoretic mobility measurements revealed that the electrokinetic charge of particles was negative for pH range 3–10, assuming −50 e for pH = 9 and 0.01 M NaCl. Using the suspension, silver particle monolayers on mica modified by poly(allylamine hydrochloride) were produced under diffusion-controlled transport. Monolayer coverage, quantitatively determined by AFM and SEM, was regulated within broad limits by adjusting the nanoparticle deposition time. This allowed one to uniquely express the zeta potential of silver monolayers, determined by the in situ streaming potential measurements, in terms of particle coverage. Such dependencies obtained for various ionic strengths and pH, were successfully interpreted in terms of the 3D electrokinetic model. A universal calibrating graph was produced in this way, enabling one to determine silver monolayer coverage from the measured value of the streaming potential. Our experimental data prove that it is feasible to produce uniform and stable silver particle monolayers of well-controlled coverage and defined electrokinetic properties.

  1. Monolayer structures of alkyl aldehydes: Odd-membered homologues

    International Nuclear Information System (INIS)

    Phillips, T.K.; Clarke, S.M.; Bhinde, T.; Castro, M.A.; Millan, C.; Medina, S.

    2011-01-01

    Crystalline monolayers of three aldehydes with an odd number of carbon atoms in the alkyl chain (C 7 , C 9 and C 11 ) at low coverages are observed by a combination of X-ray and neutron diffraction. Analysis of the diffraction data is discussed and possible monolayer crystal structures are proposed; although unique structures could not be ascertained for all molecules. We conclude that the structures are flat on the surface, with the molecules lying in the plane of the layer. The C 11 homologue is determined to have a plane group of either p2, pgb or pgg, and for the C 7 homologue the p2 plane group is preferred.

  2. Multivariate analysis of TOF-SIMS spectra of monolayers on scribed silicon.

    Science.gov (United States)

    Yang, Li; Lua, Yit-Yian; Jiang, Guilin; Tyler, Bonnie J; Linford, Matthew R

    2005-07-15

    Static time-of-flight secondary ion mass spectrometry (TOF-SIMS) was performed on monolayers on scribed silicon (Si(scr)) derived from 1-alkenes, 1-alkynes, 1-holoalkanes, aldehydes, and acid chlorides. To rapidly determine the variation in the data without introducing user bias, a multivariate analysis was performed. First, principal components analysis (PCA) was done on data obtained from silicon scribed with homologous series of aldehydes and acid chlorides. For this study, the positive ion spectra, the negative ion spectra, and the concatentated (linked) positive and negative ion spectra were preprocessed by normalization, mean centering, and autoscaling. The mean centered data consistently showed the best correlations between the scores on PC1 and the number of carbon atoms in the adsorbate. These correlations were not as strong for the normalized and autoscaled data. After reviewing these methods, it was concluded that mean centering is the best preprocessing method for TOF-SIMS spectra of monolayers on Si(scr). A PCA analysis of all of the positive ion spectra revealed a good correlation between the number of carbon atoms in all of the adsorbates and the scores on PC1. PCA of all of the negative ion spectra and the concatenated positive and negative ion spectra showed a correlation based on the number of carbon atoms in the adsorbate and the class of the adsorbate. These results imply that the positive ion spectra are most sensitive to monolayer thickness, while the negative ion spectra are sensitive to the nature of the substrate-monolayer interface and the monolayer thickness. Loadings show an inverse relationship between (inorganic) fragments that are expected from the substrate and (organic) fragments expected from the monolayer. Multivariate peak intensity ratios were derived. It is also suggested that PCA can be used to detect outlier surfaces. Partial least squares showed a strong correlation between the number of carbon atoms in the adsorbate and the

  3. Strain engineering on transmission carriers of monolayer phosphorene.

    Science.gov (United States)

    Zhang, Wei; Li, Feng; Hu, Junsong; Zhang, Ping; Yin, Jiuren; Tang, Xianqiong; Jiang, Yong; Wu, Bozhao; Ding, Yanhuai

    2017-11-22

    The effects of uniaxial strain on the structure, band gap and transmission carriers of monolayer phosphorene were investigated by first-principles calculations. The strain induced semiconductor-metal as well as direct-indirect transitions were studied in monolayer phosphorene. The position of CBM which belonged to indirect gap shifts along the direction of the applied strain. We have concluded the change rules of the carrier effective mass when plane strains are applied. In band structure, the sudden decrease of band gap or the new formation of CBM (VBM) causes the unexpected change in carrier effective mass. The effects of zigzag and armchair strain on the effective electron mass in phosphorene are different. The strain along zigzag direction has effects on the electrons effective mass along both zigzag and armchair direction. By contrast, armchair-direction strain seems to affect only on the free electron mass along zigzag direction. For the holes, the effective masses along zigzag direction are largely affected by plane strains while the effective mass along armchair direction exhibits independence in strain processing. The carrier density of monolayer phosphorene at 300 K is calculated about [Formula: see text] cm -2 , which is greatly influenced by the temperature and strain. Strain engineering is an efficient method to improve the carrier density in phosphorene.

  4. Large-area snow-like MoSe2 monolayers: synthesis, growth mechanism, and efficient electrocatalyst application.

    Science.gov (United States)

    Huang, Jingwen; Liu, Huiqiang; Jin, Bo; Liu, Min; Zhang, Qingchun; Luo, Liqiong; Chu, Shijin; Chu, Sheng; Peng, Rufang

    2017-07-07

    This study explores the large-area synthesis of controllable morphology, uniform, and high-quality monolayer. MoSe 2 is essential for its potential application in optoelectronics, photocatalysis, and renewable energy sources. In this study, we successfully synthesized snow-like MoSe 2 monolayers using a simple chemical vapor deposition method. Results reveal that snow-like MoSe 2 is a single crystal with a hexagonal structure, a thickness of ∼0.9 nm, and a lateral dimension of up to 20 μm. The peak position of the photoluminescence spectra is ∼1.52 eV corresponding to MoSe 2 monolayer. The growth mechanism of the snow-like MoSe 2 monolayer was investigated and comprised a four-step process during growth. Finally, we demonstrate that the snow-like MoSe 2 monolayers are ideal electrocatalysts for hydrogen evolution reactions (HERs), reflected by a low Tafel slope of ∼68 mV/decade. Compared with the triangular-shaped MoSe 2 monolayer, the hexangular snow-like shape with plentiful edges is superior for perfect electrocatalysts for HERs or transmission devices of optoelectronic signals.

  5. UV-induced reaction kinetics in dilinoleoylphosphatidylcholine monolayers with incorporated photosensitizers

    Directory of Open Access Journals (Sweden)

    DEJAN MARKOVIC

    2006-04-01

    Full Text Available Mixed insoluble monolayers (Langmuir films of 1,2-di-O-linoleoyl-3-sn-phosphatidylcholine (1,2-DLPC and incorporated benzophenone-type photosensitizers at an air-water interface were exposed to prolonged UV-irradiation. The irradiation was initiated at a particular fixed molecular packing value. Changes of the surface pressure during the UV-induced photolysis of the sensitizers were plotted against the irradiation time and the results were interpreted in terms of themolecular lipid / sensitizer ratios inside the monolayers.

  6. First-principles study on the electronic, optical, and transport properties of monolayer α - and β -GeSe

    Science.gov (United States)

    Xu, Yuanfeng; Zhang, Hao; Shao, Hezhu; Ni, Gang; Li, Jing; Lu, Hongliang; Zhang, Rongjun; Peng, Bo; Zhu, Yongyuan; Zhu, Heyuan; Soukoulis, Costas M.

    2017-12-01

    The extraordinary properties and the novel applications of black phosphorene induce the research interest in the monolayer group-IV monochalcogenides. Here using first-principles calculations, we systematically investigate the electronic, transport, and optical properties of monolayer α - and β -GeSe, revealing a direct band gap of 1.61 eV for monolayer α -GeSe and an indirect band gap of 2.47 eV for monolayer β -GeSe. For monolayer β -GeSe, the electronic/hole transport is anisotropic, with an extremely high electron mobility of 2.93 ×104cm2/Vs along the armchair direction, comparable to that of black phosphorene. Furthermore, for β -GeSe, robust band gaps nearly independent of the applied tensile strain along the armchair direction are observed. Both monolayer α - and β -GeSe exhibit anisotropic optical absorption in the visible spectrum.

  7. Epitaxial growth by monolayer restricted galvanic displacement

    Directory of Open Access Journals (Sweden)

    Vasilić Rastko

    2012-01-01

    Full Text Available The development of a new method for epitaxial growth of metals in solution by galvanic displacement of layers pre-deposited by underpotential deposition (UPD was discussed and experimentally illustrated throughout the lecture. Cyclic voltammetry (CV and scanning tunneling microscopy (STM are employed to carry out and monitor a “quasi-perfect”, two-dimensional growth of Ag on Au(111, Cu on Ag(111, and Cu on Au(111 by repetitive galvanic displacement of underpotentially deposited monolayers. A comparative study emphasizes the displacement stoichiometry as an efficient tool for thickness control during the deposition process and as a key parameter that affects the deposit morphology. The excellent quality of layers deposited by monolayer-restricted galvanic displacement is manifested by a steady UPD voltammetry and ascertained by a flat and uniform surface morphology maintained during the entire growth process.

  8. Thermal stability and molecular ordering of organic semiconductor monolayers: effect of an anchor group.

    Science.gov (United States)

    Jones, Andrew O F; Knauer, Philipp; Resel, Roland; Ringk, Andreas; Strohriegl, Peter; Werzer, Oliver; Sferrazza, Michele

    2015-06-08

    The thermal stability and molecular order in monolayers of two organic semiconductors, PBI-PA and PBI-alkyl, based on perylene derivatives with an identical molecular structure except for an anchor group for attachment to the substrate in PBI-PA, are reported. In situ X-ray reflectivity measurements are used to follow the stability of these monolayers in terms of order and thickness as temperature is increased. Films have thicknesses corresponding approximately to the length of one molecule; molecules stand upright on the substrate with a defined structure. PBI-PA monolayers have a high degree of order at room temperature and a stable film exists up to 250 °C, but decomposes rapidly above 300 °C. In contrast, stable physisorbed PBI-alkyl monolayers only exist up to 100 °C. Above the bulk melting point at 200 °C no more order exists. The results encourage using anchor groups in monolayers for various applications as it allows enhanced stability at the interface with the substrate. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Molecular diffusion in monolayer and submonolayer nitrogen

    DEFF Research Database (Denmark)

    Hansen, Flemming Yssing; Bruch, Ludwig Walter

    2001-01-01

    The orientational and translational motions in a monolayer fluid of physisorbed molecular nitrogen are treated using molecular dynamics simulations. Dynamical response functions and several approximations to the coefficient of translational diffusion are determined for adsorption on the basal plane...

  10. Dark excitations in monolayer transition metal dichalcogenides

    DEFF Research Database (Denmark)

    Deilmann, Thorsten; Thygesen, Kristian Sommer

    2017-01-01

    Monolayers of transition metal dichalcogenides (TMDCs) possess unique optoelectronic properties, including strongly bound excitons and trions. To date, most studies have focused on optically active excitations, but recent experiments have highlighted the existence of dark states, which are equally...

  11. Well-ordered monolayers of alkali-doped coronene and picene: Molecular arrangements and electronic structures

    Energy Technology Data Exchange (ETDEWEB)

    Yano, M.; Endo, M.; Hasegawa, Y.; Okada, R.; Yamada, Y., E-mail: yamada@bk.tsukuba.ac.jp; Sasaki, M. [Institute of Applied Physics, University of Tsukuba, Tsukuba, Ibaraki 305-8573 (Japan)

    2014-07-21

    Adsorptions of alkali metals (such as K and Li) on monolayers of coronene and picene realize the formation of ordered phases, which serve as well-defined model systems for metal-intercalated aromatic superconductors. Upon alkali-doping of the monolayers of coronene and picene, scanning tunneling microscopy and X-ray absorption spectroscopy revealed the rearrangement of the entire molecular layer. The K-induced reconstruction of both monolayers resulted in the formation of a structure with a herringbone-like arrangement of molecules, suggesting the intercalation of alkali metals between molecular planes. Upon reconstruction, a shift in both the vacuum level and core levels of coronene was observed as a result of a charge transfer from alkali metals to coronene. In addition, a new density of states near the Fermi level was formed in both the doped coronene and the doped picene monolayers. This characteristic electronic feature of the ordered monolayer has been also reported in the multilayer picene films, ensuring that the present monolayer can model the properties of the metal-intercalated aromatic hydrocarbons. It is suggested that the electronic structure near the Fermi level is sensitive to the molecular arrangement, and that both the strict control and determinations of the molecular structure in the doped phase should be important for the determination of the electronic structure of these materials.

  12. First-Principles Investigation of Phase Stability, Electronic Structure and Optical Properties of MgZnO Monolayer

    Directory of Open Access Journals (Sweden)

    Changlong Tan

    2016-10-01

    Full Text Available MgZnO bulk has attracted much attention as candidates for application in optoelectronic devices in the blue and ultraviolet region. However, there has been no reported study regarding two-dimensional MgZnO monolayer in spite of its unique properties due to quantum confinement effect. Here, using density functional theory calculations, we investigated the phase stability, electronic structure and optical properties of MgxZn1−xO monolayer with Mg concentration x range from 0 to 1. Our calculations show that MgZnO monolayer remains the graphene-like structure with various Mg concentrations. The phase segregation occurring in bulk systems has not been observed in the monolayer due to size effect, which is advantageous for application. Moreover, MgZnO monolayer exhibits interesting tuning of electronic structure and optical properties with Mg concentration. The band gap increases with increasing Mg concentration. More interestingly, a direct to indirect band gap transition is observed for MgZnO monolayer when Mg concentration is higher than 75 at %. We also predict that Mg doping leads to a blue shift of the optical absorption peaks. Our results may provide guidance for designing the growth process and potential application of MgZnO monolayer.

  13. Synthesis, Characterization, and Properties of the Two-Dimensional Chalcogenides: Monolayers, Alloys, and Heterostructures

    Science.gov (United States)

    Cain, Jeffrey D.

    Inspired by the triumphs of graphene, and motivated by its limitations, the science and engineering community is rapidly exploring the landscape of other layered materials in their atomically-thin forms. Dominating this landscape are the layered chalcogenides; diverse in chemistry, crystal structure, and properties, there are well over 100 primary members of this material family. Driven by quantum confinement, single layers (or few, in some cases) of these materials exhibit electronic, optical, and mechanical properties that diverge dramatically from their bulk counterparts. While initially isolated in monolayer form via mechanical exfoliation, the field of two-dimensional (2D) materials is being forced evolve to more scalable and reliable methods. Focusing on the chalcogenides (e.g. MoS2, Bi 2Se3, etc.), this dissertation introduces and mechanistically examines multiple novel synthetic approaches for the direct growth of monolayers, heterostructures, and alloys with the desired quality, reproducibility and generality. The first methods described in this thesis are physical vapor transport (PVT) and evaporative thinning (ET): a facile, top-down synthesis approach for creating ultrathin specimens of layered materials down to the two-dimensional limit. Evaporative thinning, applied in this study to the fabrication of A2X3 (Bi2Se3 and Sb2Te3) monolayers, is based on the controlled evaporation of material from initially thick specimens until the 2D limit is reached. The resultant flakes are characterized with a suite of imaging and spectroscopic techniques and the mechanism of ET is investigated via in-situ heating within a transmission electron microscope. Additionally, the basic transport properties of the resultant flakes are probed. The growth of ultrathin GeSe flakes is explored using PVT and the material's basic structure, properties, and stability are addressed. Second, oxide precursor based chemical vapor deposition (CVD) is presented for the direct growth of

  14. Fabrication of P3HT/gold nanoparticle LB films by P3HT templating Langmuir monolayer

    International Nuclear Information System (INIS)

    Chen, Liang-Huei; Hsu, Wen-Ping; Chan, Han-Wen; Lee, Yuh-Lang

    2014-01-01

    Highlights: • Addition of ODA into the P3HT monolayer can significantly improve the dispersion ability of P3HT molecules. • The adsorption ability of the P3HT monolayer to the dispersed AuNPs can also be enhanced by the presence of ODA. - Abstract: Regioregular poly(3-hexyl thiophene) (rr-P3HT) and mixed P3HT/octadecyl amine (ODA) were used as template monolayers to adsorb the gold nanoparticles (AuNPs) dispersed in subphase. The behaviors of P3HT and P3HT/ODA monolayers were investigated by surface pressure area per molecule (π–A) isotherms, transmission electron microscopy (TEM) and atomic force microscopy (AFM). The experimental results show that P3HT does not form a homogeneous film and tends to aggregate at the air/water interface. Meanwhile, the amount of AuNPs adsorbed by the P3HT monolayers is low, attributable to the weak interaction between AuNPs and P3HT. By introduction of ODA molecules into the P3HT monolayer, the spreading of P3HT molecules at the air/water interface is improved and the aggregation of P3HT is significantly inhibited. A nearly uniform and homogeneously mixed P3HT/ODA monolayer can be obtained when 50% of ODA is introduced. It is also found that the introduction of ODA can significantly increase the adsorption of AuNPs. For the mixed monolayer with low ratio of ODA (P3HT/ODA = 1/0.2), a higher concentration of adsorbed AuNPs was observed on the corresponding monolayer. However, when the ODA/P3HT ratio increases to 1/1, the AuNPs tend to form three-dimensional (3D) aggregates and the AuNPs cannot distribute well as a homogeneous monolayer. This result is ascribed to the increasing hydrophobicity of the adsorbed AuNPs because of capping of more ODA molecules

  15. Solvent Effect on Redox Properties of Hexanethiolate Monolayer-Protected Gold Nanoclusters

    OpenAIRE

    Su, B; Zhang, M; Shao, Y; Girault, HH

    2006-01-01

    The capacitance of monolayer-protected gold nanoclusters (MPCs), CMPC, in solution has been theoretically reconsidered from an electrostatic viewpoint, in which an MPC is considered as an isolated charged sphere within two dielectric layers, the intrinsic coating monolayer, and the bulk solvent. The model predicts that the bulk solvent provides an important contribution to CMPC and influences the redox properties of MPCs. This theoretical prediction is then examined experimentally by comparin...

  16. Topological Phase Diagrams of Bulk and Monolayer TiS2−xTex

    KAUST Repository

    Zhu, Zhiyong

    2013-02-12

    With the use of ab initio calculations, the topological phase diagrams of bulk and monolayer TiS2−xTex are established. Whereas bulk TiS2−xTex shows two strong topological phases [1;(000)] and [1;(001)] for 0.44monolayer is topologically nontrivial for 0.48monolayer, TiS2−xTex is a unique system for studying topological phases in three and two dimensions simultaneously.

  17. Topological Phase Diagrams of Bulk and Monolayer TiS2−xTex

    KAUST Repository

    Zhu, Zhiyong; Cheng, Yingchun; Schwingenschlö gl, Udo

    2013-01-01

    With the use of ab initio calculations, the topological phase diagrams of bulk and monolayer TiS2−xTex are established. Whereas bulk TiS2−xTex shows two strong topological phases [1;(000)] and [1;(001)] for 0.44monolayer is topologically nontrivial for 0.48monolayer, TiS2−xTex is a unique system for studying topological phases in three and two dimensions simultaneously.

  18. Sub-wavelength patterning of organic monolayers via nonlinear processing with continuous-wave lasers

    Energy Technology Data Exchange (ETDEWEB)

    Mathieu, Mareike; Hartmann, Nils, E-mail: nils.hartmann@uni-due.de [Fakultaet fuer Chemie, Universitaet Duisburg-Essen, 45117 Essen (Germany); CeNIDE-Center for Nanointegration Duisburg-Essen, 47048 Duisburg (Germany); NETZ-NanoEnergieTechnikZentrum, 47048 Duisburg (Germany)

    2010-12-15

    In recent years, nonlinear processing with continuous-wave lasers has been demonstrated to be a facile means of rapid nanopatterning of organic monolayers down to the sub-100 nm range. In this study, we report on laser patterning of thiol-based organic monolayers with sub-wavelength resolution. Au-coated silicon substrates are functionalized with 1-hexadecanethiol. Irradiation with a focused beam of an Ar{sup +} laser operating at {lambda}=514 nm allows one to locally remove the monolayer. Subsequently, the patterns are transferred into the Au film via selective etching in a ferri-/ferrocyanide solution. Despite a 1/e{sup 2} spot diameter of about 2.8 {mu}m, structures with lateral dimensions down to 250 nm are fabricated. The underlying nonlinear dependence of the patterning process on laser intensity is traced back to the interplay between the laser-induced transient local temperature rise and the thermally activated desorption of the thiol molecules. A simple thermokinetic analysis of the data allows us to determine the effective kinetic parameters. These results complement our previous work on photothermal laser patterning of ultrathin organic coatings, such as silane-based organic monolayers, organo/silicon interfaces and supported membranes. A general introduction to nonlinear laser processing of organic monolayers is presented.

  19. Doping effect on monolayer MoS2 for visible light dye degradation - A DFT study

    Science.gov (United States)

    Cheriyan, Silpa; Balamurgan, D.; Sriram, S.

    2018-04-01

    The electronic and optical properties of, Nitrogen (N), Cobalt (Co), and Co-N co-doped monolayers of MoS2 has been studied by using density functional theory (DFT) for visible light photocatalytic activity. From the calculations, it has been observed that the band gap of monolayer MoS2 has been reduced while doping. However, the band gaps of pristine and N doped MoS2 monolayers only falls in the visible region while for Co and Co-N co-doped systems, the band gap shifted to IR region. The optical calculation also confirms the results. The formation energy values of the doped system reaveal that MoS2 monolayer drops its stability while doping. To evaluate the photocatalytic response, band edge potentials of pristine and N-MoS2 are calculated, and the observed results show that compared to N-doped MoS2 monolayer, pure MoS2 is highly suitable for visible light photocatalytic dye degradation.

  20. Theoretical perspective on the electronic, magnetic and optical properties of Zn-doped monolayer SnS{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Lili; Zhou, Wei; Liu, Yanyu; Yu, Dandan [Department of Applied Physics, Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, Faculty of Science, Tianjin University, Tianjin 300072 (China); Liang, Yinghua [College of Chemical Engineering, North China University of Science and Technology, Tangshan 063009 (China); Wu, Ping, E-mail: pingwu@tju.edu.cn [Department of Applied Physics, Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, Faculty of Science, Tianjin University, Tianjin 300072 (China)

    2016-12-15

    Highlights: • The Zn doping in monolayer SnS{sub 2} is energetically favored under S-rich condition. • The room temperature ferromagnetism can be realized in Zn-doped monolayer SnS{sub 2}. • The Zn doping enhances the effective utilization in the near-infrared light region. • The Zn doping could lead to the red shift of absorption edge in monolayer SnS{sub 2}. • The Zn-doped monolayer SnS{sub 2} is active for both the oxygen and hydrogen evolution. - Abstract: The electronic, magnetic and optical properties of Zn-doped monolayer SnS{sub 2} have been theoretically investigated with the density functional theory. Numerical results reveal that monolayer SnS{sub 2} can be easily synthesized by cleaving its bulk crystal. Besides, the Zn doping in monolayer SnS{sub 2} is energetically favored under the S-rich with respect to the Sn-rich condition. The doped system exhibits the magnetic ground states due to the formation of defect states above the Fermi level, which are introduced by the hybridization between S-3p states and a small amount of Sn-4d states. The room temperature ferromagnetism can also be realized in Zn-doped monolayer SnS{sub 2}. The injection of Zn can enhance the absorption efficiency of solar spectrum, especially in the near-infrared light region. Moreover, the Zn doping can enhance the photocatalytic activity for both the oxygen and hydrogen evolution reactions in the monolayer SnS{sub 2}.

  1. Reversible alterations in cultured pulmonary artery endothelial cell monolayer morphology and albumin permeability induced by ionizing radiation

    International Nuclear Information System (INIS)

    Friedman, M.; Ryan, U.S.; Davenport, W.C.; Chaney, E.L.; Strickland, D.L.; Kwock, L.

    1986-01-01

    The effects of ionizing irradiation (0, 600, 1500, or 3000 rads) on the permeability of pulmonary endothelial monolayers to albumin were studied. Pulmonary endothelial cells were grown to confluence on gelatin-coated polycarbonate filters, placed in serum-free medium, and exposed to a 60 Co source. The monolayers were placed in modified flux chambers 24 hours after irradiation; 125 I-albumin was added to the upper well, and both the upper and lower wells were serially sampled over 4 hours. The amount of albumin transferred from the upper well/hour over the period of steady-state clearance (90-240 min after addition of 125 I-albumin) was 2.8 +/- 0.2% in control monolayers and was increased in monolayers exposed to 1500 or 3000 rads (increase of 63 +/- 10% and 61 +/- 10%, respectively, P less than 0.01). No increase was found in monolayers exposed to 600 rads. The increases in endothelial albumin transfer rates were associated with morphologic evidence of monolayer disruption and endothelial injury which paralleled the changes in albumin permeability. Dose-dependent alterations in endothelial actin filament organization were also found. Incubation of the monolayers exposed to 3000 rads with medium supplemented with 10% fetal calf serum for 24 hours resulted in normalization of albumin permeability, improvement in morphologic appearance of the monolayers, and reorganization of the actin filament structure. These studies demonstrate that ionizing radiation is an active principle in the reversible disorganization of cultured pulmonary endothelial cell monolayers without the need of other cell types or serum components

  2. The additional phase transition of DPPC monolayers at high surface pressure confirmed by GIXD study

    DEFF Research Database (Denmark)

    Shen, Chen; Serna, Jorge B. de la; Struth, Bernd

    Pulmonary surfactant forms the alveolar monolayer at the air/aqueous interface within the lung. During the breathing process, the surface pressure periodically varies from ~40mN/m up to ~70mN/m. The film is mechanically stable during this rapid and reversible expansion. The monolayer consists...... of the alveolae monolayer and at the same time allows reduction of the interfacial tension to ~0mN/m....

  3. Self-assembled silver nanoparticles monolayers on mica-AFM, SEM, and electrokinetic characteristics.

    Science.gov (United States)

    Oćwieja, Magdalena; Morga, Maria; Adamczyk, Zbigniew

    2013-03-01

    A monodisperse silver particle suspension was produced by a chemical reduction method in an aqueous medium using sodium citrate. The average particle size determined by dynamic light scattering (DLS), transmission electron microscopy (TEM), and atomic force microscopy (AFM) was 28.5 nm. The DLS measurements confirmed that the suspension was stable for the ionic strength up to 3 × 10 -2  M NaCl. The electrophoretic mobility measurements revealed that the electrokinetic charge of particles was negative for pH range 3-10, assuming -50  e for pH = 9 and 0.01 M NaCl. Using the suspension, silver particle monolayers on mica modified by poly(allylamine hydrochloride) were produced under diffusion-controlled transport. Monolayer coverage, quantitatively determined by AFM and SEM, was regulated within broad limits by adjusting the nanoparticle deposition time. This allowed one to uniquely express the zeta potential of silver monolayers, determined by the in situ streaming potential measurements, in terms of particle coverage. Such dependencies obtained for various ionic strengths and pH, were successfully interpreted in terms of the 3D electrokinetic model. A universal calibrating graph was produced in this way, enabling one to determine silver monolayer coverage from the measured value of the streaming potential. Our experimental data prove that it is feasible to produce uniform and stable silver particle monolayers of well-controlled coverage and defined electrokinetic properties.

  4. Comparison of nitric oxide binding to different pure and mixed protoporphyrin IX monolayers

    NARCIS (Netherlands)

    Knoben, W.; Crego-Calama, M.; Brongersma, S.H.

    2012-01-01

    The nitric oxide (NO) binding properties of monolayers of four different protoporphyrins IX adsorbed on aluminum oxide surfaces have been investigated. XPS and AFM results are consistent with the presence of a monolayer of porphyrins, bound to the surface by their carboxylic acid groups and with the

  5. Nanotubes based on monolayer blue phosphorus

    KAUST Repository

    Montes Muñoz, Enrique

    2016-07-08

    We demonstrate structural stability of monolayer zigzag and armchair blue phosphorus nanotubes by means of molecular dynamics simulations. The vibrational spectrum and electronic band structure are determined and analyzed as functions of the tube diameter and axial strain. The nanotubes are found to be semiconductors with a sensitive indirect band gap that allows flexible tuning.

  6. Kinetic properties of two Rhizopus exo-polygalacturonase enzymes hydrolyzing galacturonic acid oligomers using isothermal titration calorimetry

    Science.gov (United States)

    The kinetic characteristics of two Rhizopus oryzae exo-polygalacturonases acting on galacturonic acid oligomers (GalpA) were determined using isothermal titration calorimetry (ITC). RPG15 hydrolyzing (GalpA)2 demonstrated a Km of 55 uM and kcat of 10.3 s^-1^ while RPG16 was shown to have greater af...

  7. Cholesterol Depletion from a Ceramide/Cholesterol Mixed Monolayer: A Brewster Angle Microscope Study

    KAUST Repository

    Mandal, Pritam

    2016-06-01

    Cholesterol is crucial to the mechanical properties of cell membranes that are important to cells’ behavior. Its depletion from the cell membranes could be dramatic. Among cyclodextrins (CDs), methyl beta cyclodextrin (MβCD) is the most efficient to deplete cholesterol (Chol) from biomembranes. Here, we focus on the depletion of cholesterol from a C16 ceramide/cholesterol (C16-Cer/Chol) mixed monolayer using MβCD. While the removal of cholesterol by MβCD depends on the cholesterol concentration in most mixed lipid monolayers, it does not depend very much on the concentration of cholesterol in C16-Cer/Chol monolayers. The surface pressure decay during depletion were described by a stretched exponential that suggested that the cholesterol molecules are unable to diffuse laterally and behave like static traps for the MβCD molecules. Cholesterol depletion causes morphology changes of domains but these disrupted monolayers domains seem to reform even when cholesterol level was low.

  8. Molecular Monolayers for Electrical Passivation and Functionalization of Silicon-Based Solar Energy Devices.

    Science.gov (United States)

    Veerbeek, Janneke; Firet, Nienke J; Vijselaar, Wouter; Elbersen, Rick; Gardeniers, Han; Huskens, Jurriaan

    2017-01-11

    Silicon-based solar fuel devices require passivation for optimal performance yet at the same time need functionalization with (photo)catalysts for efficient solar fuel production. Here, we use molecular monolayers to enable electrical passivation and simultaneous functionalization of silicon-based solar cells. Organic monolayers were coupled to silicon surfaces by hydrosilylation in order to avoid an insulating silicon oxide layer at the surface. Monolayers of 1-tetradecyne were shown to passivate silicon micropillar-based solar cells with radial junctions, by which the efficiency increased from 8.7% to 9.9% for n + /p junctions and from 7.8% to 8.8% for p + /n junctions. This electrical passivation of the surface, most likely by removal of dangling bonds, is reflected in a higher shunt resistance in the J-V measurements. Monolayers of 1,8-nonadiyne were still reactive for click chemistry with a model catalyst, thus enabling simultaneous passivation and future catalyst coupling.

  9. Platinum monolayer electrocatalysts for oxygen reduction: effect of substrates, and long-term stability

    Directory of Open Access Journals (Sweden)

    J. ZHANG

    2005-03-01

    Full Text Available We describe a novel concept for a Ptmonolayer electrocatalyst and present the results of our electrochemical, X-ray absorption spectroscopy, and scanning tunneling microscopy studies. The electrocatalysts were prepared by a new method for depositing Pt monolayers involving the galvanic displacement by Pt of an underpotentially deposited Cu monolayer on substrates of Au (111, Ir(111, Pd(111, Rh(111 and Ru(0001 single crylstals, and Pd nanoparticles. The kinetics of O2 reduction showed significant enhancement with Pt monolayers on Pd(111 and Pd nanoparticle surfaces in comparisonwith the reaction on Pt(111 and Pt nanoparticles, respectively. This increase in catalytic activity is attributed partly to the decreased formation of PtOH, as shown by in situ X-ray absorption spectroscopy. The results illustrate that placing a Pt monolayer on a suitable substrate of metal nanoparticles is an attractive way of designing better O2 reduction electrocatalysts with very low Pt contents.

  10. Imidazolide monolayers for versatile reactive microcontact printing

    NARCIS (Netherlands)

    Hsu, S.H.; Reinhoudt, David; Huskens, Jurriaan; Velders, Aldrik

    2008-01-01

    Imidazolide monolayers prepared from the reaction of amino SAMs with N,N-carbonyldiimidazole (CDI) are used as a versatile platform for surface patterning with amino-, carboxyl- and alcohol-containing compounds through reactive microcontact printing (µCP). To demonstrate the surface reactivity of

  11. Atomic scattering from an adsorbed monolayer solid with a helium beam that penetrates to the substrate

    DEFF Research Database (Denmark)

    Hansen, Flemming Yssing; Bruch, L.W.; Dammann, Bernd

    2013-01-01

    Diffraction and one-phonon inelastic scattering of a thermal energy helium atomic beam are evaluated in the situation that the target monolayer lattice is so dilated that the atomic beam penetrates to the interlayer region between the monolayer and the substrate. The scattering is simulated......(1 × 1) commensurate monolayer solid of H2/KCl(001). For the latter, there are cases where part of the incident beam is trapped in the interlayer region for times exceeding 50 ps, depending on the spacing between the monolayer and the substrate and on the angle of incidence. The feedback effect...

  12. Nanoscale Trapping and Squeeze-Out of Confined Alkane Monolayers.

    Science.gov (United States)

    Gosvami, N N; O'Shea, S J

    2015-12-01

    We present combined force curve and conduction atomic force microscopy (AFM) data for the linear alkanes CnH2n+2 (n = 10, 12, 14, 16) confined between a gold-coated AFM tip and a graphite surface. Solvation layering is observed in the force curves for all liquids, and conduction AFM is used to study in detail the removal of the confined (mono)layer closest to the graphite surface. The squeeze-out behavior of the monolayer can be very different depending upon the temperature. Below the monolayer melting transition temperatures the molecules are in an ordered state on the graphite surface, and fast and complete removal of the confined molecules is observed. However, above the melting transition temperature the molecules are in a disordered state, and even at large applied pressure a few liquid molecules are trapped within the tip-sample contact zone. These findings are similar to a previous study for branched alkanes [ Gosvami Phys. Rev. Lett. 2008, 100, 076101 ], but the observation for the linear alkane homologue series demonstrates clearly the dependence of the squeeze-out and trapping on the state of the confined material.

  13. Triazolobithiophene Light Absorbing Self-Assembled Monolayers: Synthesis and Mass Spectrometry Applications

    Directory of Open Access Journals (Sweden)

    Denis Séraphin

    2011-10-01

    Full Text Available The synthesis of five light absorbing triazolobithiophenic thiols, which were utilized for producing self-assembled monolayers (SAMs on gold surfaces, is presented. The monolayer formation was monitored by cyclic voltammetry, indicating excellent surface coverage. The new triazolobithiophenic compounds exhibited an absorption maximum around 340 nm, which is close to the emission wavelength of a standard nitrogen laser. Consequently these compounds could be used to aid ionization in laser desorption mass spectrometry (MS.

  14. MgO monolayer epitaxy on Ni (100)

    Science.gov (United States)

    Sarpi, B.; Putero, M.; Hemeryck, A.; Vizzini, S.

    2017-11-01

    The growth of two-dimensional oxide films with accurate control of their structural and electronic properties is considered challenging for engineering nanotechnological applications. We address here the particular case of MgO ultrathin films grown on Ni (100), a system for which neither crystallization nor extended surface ordering has been established previously in the monolayer range. Using Scanning Tunneling Microscopy and Auger Electron Spectroscopy, we report on experiments showing MgO monolayer (ML) epitaxy on a ferromagnetic nickel surface, down to the limit of atomic thickness. Alternate steps of Mg ML deposition, O2 gas exposure, and ultrahigh vacuum thermal treatment enable the production of a textured film of ordered MgO nano-domains. This study could open interesting prospects for controlled epitaxy of ultrathin oxide films with a high magneto-resistance ratio on ferromagnetic substrates, enabling improvement in high-efficiency spintronics and magnetic tunnel junction devices.

  15. Controllable Growth of Monolayer MoS2 and MoSe2 Crystals Using Three-temperature-zone Furnace

    Science.gov (United States)

    Zheng, Binjie; Chen, Yuanfu

    2017-12-01

    Monolayer molybdenum disulfide (MoS2) and molybdenum diselenide (MoSe2) have attracted a great attention for their exceptional electronic and optoelectronic properties among the two dimensional family. However, controllable synthesis of monolayer crystals with high quality needs to be improved urgently. Here we demonstrate a chemical vapor deposition (CVD) growth of monolayer MoS2 and MoSe2 crystals using three-temperature-zone furnace. Systematical study of the effects of growth pressure, temperature and time on the thickness, morphology and grain size of crystals shows the good controllability. The photoluminescence (PL) characterizations indicate that the as-grown monolayer MoS2 and MoSe2 crystals possess excellent optical qualities with very small full-width-half-maximum (FWHM) of 96 me V and 57 me V, respectively. It is comparable to that of exfoliated monolayers and reveals their high crystal quality. It is promising that our strategy should be applicable for the growth of other transition metal dichalcogenides (TMDs) monolayer crystals.

  16. Effect of surface charge of immortalized mouse cerebral endothelial cell monolayer on transport of charged solutes.

    Science.gov (United States)

    Yuan, Wei; Li, Guanglei; Gil, Eun Seok; Lowe, Tao Lu; Fu, Bingmei M

    2010-04-01

    Charge carried by the surface glycocalyx layer (SGL) of the cerebral endothelium has been shown to significantly modulate the permeability of the blood-brain barrier (BBB) to charged solutes in vivo. The cultured monolayer of bEnd3, an immortalized mouse cerebral endothelial cell line, is becoming a popular in vitro BBB model due to its easy growth and maintenance of many BBB characteristics over repeated passages. To test whether the SGL of bEnd3 monolayer carries similar charge as that in the intact BBB and quantify this charge, which can be characterized by the SGL thickness (L(f)) and charge density (C(mf)), we measured the solute permeability of bEnd3 monolayer to neutral solutes and to solutes with similar size but opposite charges: negatively charged alpha-lactalbumin (-11) and positively charged ribonuclease (+3). Combining the measured permeability data with a transport model across the cell monolayer, we predicted the L(f) and the C(mf) of bEnd3 monolayer, which is approximately 160 nm and approximately 25 mEq/L, respectively. We also investigated whether orosomucoid, a plasma glycoprotein modulating the charge of the intact BBB, alters the charge of bEnd3 monolayer. We found that 1 mg/mL orosomucoid would increase SGL charge density of bEnd3 monolayer to approximately 2-fold of its control value.

  17. Tribology of monolayer films: comparison between n-alkanethiols on gold and n-alkyl trichlorosilanes on silicon.

    Science.gov (United States)

    Booth, Brandon D; Vilt, Steven G; McCabe, Clare; Jennings, G Kane

    2009-09-01

    This Article presents a quantitative comparison of the frictional performance for monolayers derived from n-alkanethiolates on gold and n-alkyl trichlorosilanes on silicon. Monolayers were characterized by pin-on-disk tribometry, contact angle analysis, ellipsometry, and electrochemical impedance spectroscopy (EIS). Pin-on-disk microtribometry provided frictional analysis at applied normal loads from 10 to 1000 mN at a speed of 0.1 mm/s. At low loads (10 mN), methyl-terminated n-alkanethiolate self-assembled monolayers (SAMs) exhibited a 3-fold improvement in coefficient of friction over SAMs with hydroxyl- or carboxylic-acid-terminated surfaces. For monolayers prepared from both n-alkanethiols on gold and n-alkyl trichlorosilanes on silicon, a critical chain length of at least eight carbons is required for beneficial tribological performance at an applied load of 9.8 mN. Evidence for disruption of chemisorbed alkanethiolate SAMs with chain lengths n tribology wear tracks. The direct comparison between the tribological stability of alkanethiolate and silane monolayers shows that monolayers prepared from n-octadecyl dimethylchlorosilane and n-octadecyl trichlorosilane withstood normal loads at least 30 times larger than those that damaged octadecanethiolate SAMs. Collectively, our results show that the tribological properties of monolayer films are dependent on their internal stabilities, which are influenced by cohesive chain interactions (van der Waals) and the adsorbate-substrate bond.

  18. Atomic-Monolayer MoS2 Band-to-Band Tunneling Field-Effect Transistor

    KAUST Repository

    Lan, Yann Wen

    2016-09-05

    The experimental observation of band-to-band tunneling in novel tunneling field-effect transistors utilizing a monolayer of MoS2 as the conducting channel is demonstrated. Our results indicate that the strong gate-coupling efficiency enabled by two-dimensional materials, such as monolayer MoS2, results in the direct manifestation of a band-to-band tunneling current and an ambipolar transport.

  19. Unprecedented Self-Organized Monolayer of a Ru(II) Complex by Diazonium Electroreduction.

    Science.gov (United States)

    Nguyen, Van Quynh; Sun, Xiaonan; Lafolet, Frédéric; Audibert, Jean-Frédéric; Miomandre, Fabien; Lemercier, Gilles; Loiseau, Frédérique; Lacroix, Jean-Christophe

    2016-08-03

    A new heteroleptic polypyridyle Ru(II) complex was synthesized and deposited on surface by the diazonium electroreduction process. It yields to the covalent grafting of a monolayer. The functionalized surface was characterized by XPS, electrochemistry, AFM, and STM. A precise organization of the molecules within the monolayer is observed with parallel linear stripes separated by a distance of 3.8 nm corresponding to the lateral size of the molecule. Such organization suggests a strong cooperative process in the deposition process. This strategy is an original way to obtain well-controlled and stable functionalized surfaces for potential applications related to the photophysical properties of the grafted chromophore. As an exciting result, it is the first example of a self-organized monolayer (SOM) obtained using diazonium electroreduction.

  20. Effect of side chain length and degree of polymerization on the decomposition and crystallization behaviour of chlorinated poly(vinyl ester) oligomers

    International Nuclear Information System (INIS)

    Heinze, D.; Mang, Th.; Popescu, C.; Weichold, O.

    2016-01-01

    Highlights: • Thermal behaviour of telomerized polyvinyl esters is investigated. • Thermal stability relies mainly on the contribution of side chains. • At equal molecular weights thermal stability is dictated by length of side chain. • Increasing the length of side chains improves also the packing degree of polymer. - Abstract: Four members of a homologous series of chlorinated poly(vinyl ester) oligomers CCl_3–(CH_2CH (OCO(CH_2)_mCH_3))_n–Cl with degrees of polymerization of 10 and 20 were prepared by telomerisation using carbon tetrachloride. The number of side chain carbon atoms ranges from 2 (poly(vinyl acetate) to 18 (poly(vinyl stearate)). The effect of the n-alkyl side chain length and of the degree of polymerization on the thermal stability and crystallization behaviour of the synthesized compounds was investigated. All oligomers degrade in two major steps by first losing HCl and side chains with subsequent breakdown of the backbone. The members with short side chains, up to poly(vinyl octanoate), are amorphous and show internal plasticization, whereas those with high number of side chain carbon atoms are semi-crystalline due to side-chain crystallization. A better packing for poly(vinyl stearate) is also noticeable. The glass transition and melting temperatures as well as the onset temperature of decomposition are influenced to a larger extent by the side chain length than by the degree of polymerization. Thermal stability is improved if both the size and number of side chains increase, but only a long side chain causes a significant increase of the resistance to degradation. This results in a stabilization of PVAc so that oligomers from poly(vinyl octanoate) on are stable under atmospheric conditions. Thus, the way to design stable, chlorinated PVEs oligomers is to use a long n-alkyl side chain.

  1. Effect of side chain length and degree of polymerization on the decomposition and crystallization behaviour of chlorinated poly(vinyl ester) oligomers

    Energy Technology Data Exchange (ETDEWEB)

    Heinze, D.; Mang, Th. [Aachen University of Applied Sciences, Heinrich-Mussmann-Str. 1, 52428 Jülich (Germany); Popescu, C., E-mail: crisan.popescu@kao.com [KAO Germany GmbH, Pfungstädterstr. 98-100, 64297 Darmstadt (Germany); Weichold, O., E-mail: weichold@ibac.rwth-aachen.de [Institute of Building Materials Research, Schinkelstr. 3, 52062 Aachen (Germany)

    2016-08-10

    Highlights: • Thermal behaviour of telomerized polyvinyl esters is investigated. • Thermal stability relies mainly on the contribution of side chains. • At equal molecular weights thermal stability is dictated by length of side chain. • Increasing the length of side chains improves also the packing degree of polymer. - Abstract: Four members of a homologous series of chlorinated poly(vinyl ester) oligomers CCl{sub 3}–(CH{sub 2}CH (OCO(CH{sub 2}){sub m}CH{sub 3})){sub n}–Cl with degrees of polymerization of 10 and 20 were prepared by telomerisation using carbon tetrachloride. The number of side chain carbon atoms ranges from 2 (poly(vinyl acetate) to 18 (poly(vinyl stearate)). The effect of the n-alkyl side chain length and of the degree of polymerization on the thermal stability and crystallization behaviour of the synthesized compounds was investigated. All oligomers degrade in two major steps by first losing HCl and side chains with subsequent breakdown of the backbone. The members with short side chains, up to poly(vinyl octanoate), are amorphous and show internal plasticization, whereas those with high number of side chain carbon atoms are semi-crystalline due to side-chain crystallization. A better packing for poly(vinyl stearate) is also noticeable. The glass transition and melting temperatures as well as the onset temperature of decomposition are influenced to a larger extent by the side chain length than by the degree of polymerization. Thermal stability is improved if both the size and number of side chains increase, but only a long side chain causes a significant increase of the resistance to degradation. This results in a stabilization of PVAc so that oligomers from poly(vinyl octanoate) on are stable under atmospheric conditions. Thus, the way to design stable, chlorinated PVEs oligomers is to use a long n-alkyl side chain.

  2. Eckmaxol, a Phlorotannin Extracted from Ecklonia maxima, Produces Anti-β-amyloid Oligomer Neuroprotective Effects Possibly via Directly Acting on Glycogen Synthase Kinase 3β.

    Science.gov (United States)

    Wang, Jialing; Zheng, Jiachen; Huang, Chunhui; Zhao, Jiaying; Lin, Jiajia; Zhou, Xuezhen; Naman, C Benjamin; Wang, Ning; Gerwick, William H; Wang, Qinwen; Yan, Xiaojun; Cui, Wei; He, Shan

    2018-04-10

    Alzheimer's disease is a progressive neurodegenerative disorder that mainly affects the elderly. Soluble β-amyloid oligomer, which can induce neurotoxicity, is generally regarded as the main neurotoxin in Alzheimer's disease. Here we report that eckmaxol, a phlorotannin extracted from the brown alga Ecklonia maxima, could produce neuroprotective effects in SH-SY5Y cells. Eckmaxol effectively prevented but did not rescue β-amyloid oligomer-induced neuronal apoptosis and increase of intracellular reactive oxygen species. Eckmaxol also significantly reversed the decreased expression of phospho-Ser9-glycogen synthase kinase 3β and increased expression of phospho-extracellular signal-regulated kinase, which was induced by Aβ oligomer. Moreover, both glycogen synthase kinase 3β and mitogen activated protein kinase inhibitors produced neuroprotective effects in SH-SY5Y cells. Furthermore, eckmaxol showed favorable interaction in the ATP binding site of glycogen synthase kinase 3β and mitogen activated protein kinase. These results suggested that eckmaxol might produce neuroprotective effects via concurrent inhibition of glycogen synthase kinase 3β and extracellular signal-regulated kinase pathways, possibly via directly acting on glycogen synthase kinase 3β and mitogen activated protein kinase. Based on the central role that β-amyloid oligomers play in the pathogenesis of Alzheimer's disease and the high annual production of Ecklonia maxima for alginate and other nutritional ingredients, this report represents a new candidate for the treatment of Alzheimer's disease, and also expands the potential application of Ecklonia maxima and its constituents in the field of pharmacology.

  3. SiP monolayers: New 2D structures of group IV-V compounds for visible-light photohydrolytic catalysts

    Science.gov (United States)

    Ma, Zhinan; Zhuang, Jibin; Zhang, Xu; Zhou, Zhen

    2018-06-01

    Because of graphene and phosphorene, two-dimensional (2D) layered materials of group IV and group V elements arouse great interest. However, group IV-V monolayers have not received due attention. In this work, three types of SiP monolayers were computationally designed to explore their electronic structure and optical properties. Computations confirm the stability of these monolayers, which are all indirect-bandgap semiconductors with bandgaps in the range 1.38-2.21 eV. The bandgaps straddle the redox potentials of water at pH = 0, indicating the potential of the monolayers for use as watersplitting photocatalysts. The computed optical properties demonstrate that certain monolayers of SiP 2D materials are absorbers of visible light and would serve as good candidates for optoelectronic devices.

  4. Lanthanide-based NMR: a tool to investigate component distribution in mixed-monolayer-protected nanoparticles.

    Science.gov (United States)

    Guarino, Gaetano; Rastrelli, Federico; Scrimin, Paolo; Mancin, Fabrizio

    2012-05-02

    Gd(3+) ions, once bound to the monolayer of organic molecules coating the surface of gold nanoparticles, produce a paramagnetic relaxation enhancement (PRE) that broadens and eventually cancels the signals of the nuclear spins located nearby (within 1.6 nm distance). In the case of nanoparticles coated with mixed monolayers, the signals arising from the different coating molecules experience different PRE, depending on their distance from the binding site. As a consequence, observation of the signal broadening patterns provides direct information on the monolayer organization. © 2012 American Chemical Society

  5. Synthesis, electrochemistry, STM investigation of oligothiophene self-assemblies with superior structural order and electronic properties

    Energy Technology Data Exchange (ETDEWEB)

    Kuo, Cheng-Yu [C-PCS, Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Liu, Yinghao; Yarotski, Dmitry [Center of Integrated Nanotechnologies, Materials Physics and Application Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Li, Hao [Theory Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Xu, Ping; Yen, Hung-Ju [C-PCS, Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Tretiak, Sergei, E-mail: serg@lanl.gov [Theory Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Wang, Hsing-Lin, E-mail: hwang@lanl.gov [C-PCS, Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2016-12-20

    Graphical abstract: STM imaging reveals differently oriented domains of self-assembled tetrathiophene molecules. - Highlights: • Optical and redox properties of oligothiophene derivatives are studied. • Packing pattern of self-assembly monolayer depends on the conjugation length. • Strong electronic coupling and three redox couples in cyclic voltamogram are observed in the hierarchical self-assembly. - Abstract: Three oligothiophene (terthiophene, tetrathiophene and pentathiophene) derivatives are synthesized and their monolayer self-assemblies on gold (Au) are prepared via Au–S covalent bond. Our UV–Vis experimental characterization of solution reveals the dependence of the optical properties on the conjugation length of the oligothiophenes, which compares well with Time-Dependent Density Functional Theory (TDDFT) simulations of spectra of individual chromophores. Photoluminescent spectra of thin films show pronounced red shifts compared to that of solutions, suggesting strong inter-oligomer interactions. The comparative studies of cyclic voltammograms of tetrathiophene from solution, cast film and self-assembled monolayer (SAM) indicate presence of one, two, and three oxidized species in these samples, respectively, suggesting a very strong electronic coupling between tetrathiophene molecules in the SAM. Scanning tunneling microscopy (STM) imaging of SAMs of the tetrathiophene on an atomically flat Au surface exhibits formation of monolayer assemblies with molecular order, and the molecular packing appears to show an overlay of oligothiophene molecules on top of another one. In contrast, the trimer and pentamer images show only aggregated species lacking long-range order on the molecular level. Such trends in going from disordered–ordered–disordered monolayer assemblies are mainly due to a delicate balance between inter-chromophore π–π couplings, hydrophobic interaction and the propensity to form Au–S covalent bond. Such hypothesis has been

  6. Shadow mask evaporation through monolayer modified nanostencils

    NARCIS (Netherlands)

    Kolbel, M.; Tjerkstra, R.W.; Brugger, J.P.; van Rijn, C.J.M.; Nijdam, W.; Huskens, Jurriaan; Reinhoudt, David

    2002-01-01

    Gradual clogging of the apertures of nanostencils used as miniature shadow masks in metal evaporations can be reduced by coating the stencil with self-assembled monolayers (SAM). This is quantified by the dimensions (height and volume) of gold features obtained by nanostencil evaporation as measured

  7. An approach for degradation of grape seed and skin proanthocyanidin polymers into oligomers by sulphurous acid.

    Science.gov (United States)

    Luo, Lanxin; Cui, Yan; Cheng, Jinhui; Fang, Bairui; Wei, Zongmin; Sun, Baoshan

    2018-08-01

    To develop an efficient method for degradation of grape seed and skin proanthocyanidins polymers into oligomers, an optimized sulphurous acid degradation conditions for grape seed with the temperature of 60 °C, reaction time of 60 min and sample-sulphurous acid ratio of 1:0.2, and for grape skin with the temperature of 40 °C, reaction time of 60 min and sample-sulphurous acid ratio of 1:0.2, were established. Afterwards, HSCCC and prep-HPLC were used to fractionate and isolate individual proanthocyanidin oligomers from the degradation products. Total of ten dimeric or trimeric procyanidins were obtained, and most of them presented high yield (from 0.7 mg to 13.6 mg per run in grape seed and from 0.5 mg to 4.1 mg per run in grape skin) and high purity (over 90%). The proposed method provides a new way for large preparation of oligomeric proanthocyanidins from naturally abundant and wasted polymeric ones. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Analysis of the induction of the myelin basic protein binding to the plasma membrane phospholipid monolayer

    International Nuclear Information System (INIS)

    Zhang Lei; Hao Changchun; Feng Ying; Gao Feng; Lu Xiaolong; Li Junhua; Sun Runguang

    2016-01-01

    Myelin basic protein (MBP) is an essential structure involved in the generation of central nervous system (CNS) myelin. Myelin shape has been described as liquid crystal structure of biological membrane. The interactions of MBP with monolayers of different lipid compositions are responsible for the multi-lamellar structure and stability of myelin. In this paper, we have designed MBP-incorporated model lipid monolayers and studied the phase behavior of MBP adsorbed on the plasma membrane at the air/water interface by thermodynamic method and atomic force microscopy (AFM). By analyzing the pressure–area ( π – A ) and pressure–time ( π – T ) isotherms, univariate linear regression equation was obtained. In addition, the elastic modulus, surface pressure increase, maximal insertion pressure, and synergy factor of monolayers were detected. These parameters can be used to modulate the monolayers binding of protein, and the results show that MBP has the strongest affinity for 1,2-dipalmitoyl-sn-glycero-3- phosphoserine (DPPS) monolayer, followed by DPPC/DPPS mixed and 1,2-dipalmitoyl-sn-glycero-3-phospho-choline (DPPC) monolayers via electrostatic and hydrophobic interactions. AFM images of DPPS and DPPC/DPPS mixed monolayers in the presence of MBP (5 nM) show a phase separation texture at the surface pressure of 20 mN/m and the incorporation of MBP put into the DPPC monolayers has exerted a significant effect on the domain structure. MBP is not an integral membrane protein but, due to its positive charge, interacts with the lipid head groups and stabilizes the membranes. The interaction between MBP and phospholipid membrane to determine the nervous system of the disease has a good biophysical significance and medical value. (special topic)

  9. Identification of chlorinated oligomers formed during anodic oxidation of phenol in the presence of chloride

    International Nuclear Information System (INIS)

    Chen, Linxi; Campo, Pablo; Kupferle, Margaret J.

    2015-01-01

    Graphical abstract: - Highlights: • By-products from anodic oxidation of phenol in the presence of chloride are investigated. • Chlorinated oligomer formation is demonstrated by LC-QTOF-MS. • They have structures similar to triclosan and polychlorinated dibenzo-p-dioxins. - Abstract: Chlorinated oligomer intermediates formed during the anodic electrochemical oxidation of phenol with a boron-doped diamond electrode were studied at two different concentrations of chloride (5 mM and 50 mM). Under the same ionic strength, with sodium sulfate being the make-up ion, a 10-fold increase in Cl − led to removal rates 10.8, 1.5, and 1.4 times higher for phenol, TOC, and COD, respectively. Mono-, di- and trichlorophenols resulting from electrophilic substitution were the identified by-products. Nevertheless, discrepancies between theoretical and measured TOC values along with gaps in the mass balance of chlorine-containing species indicated the formation of unaccounted-for chlorinated by-products. Accurate mass measurements by liquid chromatography quadrupole time-of-flight mass spectrometry and MS-MS fragmentation spectra showed that additional compounds formed were dimers and trimers of phenol with structures similar to triclosan and polychlorinated dibenzo-p-dioxins

  10. Morpholino oligomer-mediated exon skipping averts the onset of dystrophic pathology in the mdx mouse.

    Science.gov (United States)

    Fletcher, Sue; Honeyman, Kaite; Fall, Abbie M; Harding, Penny L; Johnsen, Russell D; Steinhaus, Joshua P; Moulton, Hong M; Iversen, Patrick L; Wilton, Stephen D

    2007-09-01

    Duchenne and Becker muscular dystrophies are allelic disorders arising from mutations in the dystrophin gene. Duchenne muscular dystrophy is characterized by an absence of functional protein, whereas Becker muscular dystrophy, commonly caused by in-frame deletions, shows synthesis of partially functional protein. Anti-sense oligonucleotides can induce specific exon removal during processing of the dystrophin primary transcript, while maintaining or restoring the reading frame, and thereby overcome protein-truncating mutations. The mdx mouse has a non-sense mutation in exon 23 of the dystrophin gene that precludes functional dystrophin production, and this model has been used in the development of treatment strategies for dystrophinopathies. A phosphorodiamidate morpholino oligomer (PMO) has previously been shown to exclude exon 23 from the dystrophin gene transcript and induce dystrophin expression in the mdxmouse, in vivo and in vitro. In this report, a cell-penetrating peptide (CPP)-conjugated oligomer targeted to the mouse dystrophin exon 23 donor splice site was administered to mdxmice by intraperitoneal injection. We demonstrate dystrophin expression and near-normal muscle architecture in all muscles examined, except for cardiac muscle. The CPP greatly enhanced uptake of the PMO, resulting in widespread dystrophin expression.

  11. Identification of chlorinated oligomers formed during anodic oxidation of phenol in the presence of chloride

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Linxi; Campo, Pablo; Kupferle, Margaret J., E-mail: margaret.kupferle@uc.edu

    2015-02-11

    Graphical abstract: - Highlights: • By-products from anodic oxidation of phenol in the presence of chloride are investigated. • Chlorinated oligomer formation is demonstrated by LC-QTOF-MS. • They have structures similar to triclosan and polychlorinated dibenzo-p-dioxins. - Abstract: Chlorinated oligomer intermediates formed during the anodic electrochemical oxidation of phenol with a boron-doped diamond electrode were studied at two different concentrations of chloride (5 mM and 50 mM). Under the same ionic strength, with sodium sulfate being the make-up ion, a 10-fold increase in Cl{sup −} led to removal rates 10.8, 1.5, and 1.4 times higher for phenol, TOC, and COD, respectively. Mono-, di- and trichlorophenols resulting from electrophilic substitution were the identified by-products. Nevertheless, discrepancies between theoretical and measured TOC values along with gaps in the mass balance of chlorine-containing species indicated the formation of unaccounted-for chlorinated by-products. Accurate mass measurements by liquid chromatography quadrupole time-of-flight mass spectrometry and MS-MS fragmentation spectra showed that additional compounds formed were dimers and trimers of phenol with structures similar to triclosan and polychlorinated dibenzo-p-dioxins.

  12. Exciton-dominant Electroluminescence from a Diode of Monolayer MoS2

    Science.gov (United States)

    2014-05-14

    injected electrons and holes, is a reliable technique to study exciton recombination processes in monolayer MoS2, including val- ley and spin excitation...temperature. After superimposing a white light scattering image of the de - vice, we find that the electroluminescence is localized at the edge of the...We find the emerged feature (labeled NX) peaks at 550 nm with energy of 2.255 eV. In low dimensional system, like monolayer MoS2, Coulomb interactions

  13. Improved organic thin-film transistor performance using novel self-assembled monolayers

    Science.gov (United States)

    McDowell, M.; Hill, I. G.; McDermott, J. E.; Bernasek, S. L.; Schwartz, J.

    2006-02-01

    Pentacene-based organic thin-film transistors have been fabricated using a phosphonate-linked anthracene self-assembled monolayer as a buffer between the silicon dioxide gate dielectric and the active pentacene channel region. Vast improvements in the subthreshold slope and threshold voltage are observed compared to control devices fabricated without the buffer. Both observations are consistent with a greatly reduced density of charge trapping states at the semiconductor-dielectric interface effected by introduction of the self-assembled monolayer.

  14. Connexin 26-mediated gap junctional intercellular communication suppresses paracellular permeability of human intestinal epithelial cell monolayers

    International Nuclear Information System (INIS)

    Morita, Hidekazu; Katsuno, Tatsuro; Hoshimoto, Aihiro; Hirano, Noriaki; Saito, Yasushi; Suzuki, Yasuo

    2004-01-01

    In some cell types, gap junctional intercellular communication (GJIC) is associated with tight junctions. The present study was performed to determine the roles of GJIC in regulation of the barrier function of tight junctions. Caco-2 human colonic cells were used as a monolayer model, and barrier function was monitored by measuring mannitol permeability and transepithelial electrical resistance (TER). The monolayers were chemically disrupted by treatment with oleic acid and taurocholic acid. Western blotting analyses were performed to evaluate the protein levels of connexins, which are components of gap junctional intercellular channels. Cx26 expression was detected in preconfluent Caco-2 cells, and its level increased gradually after the monolayer reached confluency. These results prompted us to examine whether overexpression of Cx26 affects barrier function. Monolayers of Caco-2 cells stably expressing Cx26 showed significantly lower mannitol permeability and higher TER than mock transfectants when the monolayers were chemically disrupted. The levels of claudin-4, an important component of tight junctions, were significantly increased in the stable Cx26 transfectant. These results suggest that Cx26-mediated GJIC may play a crucial role in enhancing the barrier function of Caco-2 cell monolayers

  15. Rectification of current responds to incorporation of fullerenes into mixed-monolayers of alkanethiolates in tunneling junctions.

    Science.gov (United States)

    Qiu, Li; Zhang, Yanxi; Krijger, Theodorus L; Qiu, Xinkai; Hof, Patrick Van't; Hummelen, Jan C; Chiechi, Ryan C

    2017-03-01

    This paper describes the rectification of current through molecular junctions comprising self-assembled monolayers of decanethiolate through the incorporation of C 60 fullerene moieties bearing undecanethiol groups in junctions using eutectic Ga-In (EGaIn) and Au conducting probe AFM (CP-AFM) top-contacts. The degree of rectification increases with increasing exposure of the decanethiolate monolayers to the fullerene moieties, going through a maximum after 24 h. We ascribe this observation to the resulting mixed-monolayer achieving an optimal packing density of fullerene cages sitting above the alkane monolayer. Thus, the degree of rectification is controlled by the amount of fullerene present in the mixed-monolayer. The voltage dependence of R varies with the composition of the top-contact and the force applied to the junction and the energy of the lowest unoccupied π-state determined from photoelectron spectroscopy is consistent with the direction of rectification. The maximum value of rectification R = | J (+)/ J (-)| = 940 at ±1 V or 617 at ±0.95 V is in agreement with previous studies on pure monolayers relating the degree of rectification to the volume of the head-group on which the frontier orbitals are localized.

  16. Calculated electronic structure of chromium surfaces and chromium monolayers on iron

    International Nuclear Information System (INIS)

    Victora, R.H.; Falicov, L.M.

    1985-01-01

    A self-consistent calculation of the magnetic and electronic properties of the chromium (100) and (110) surfaces and of a chromium monolayer on the (100) and (110) iron surfaces is presented. It is found that (i) the (100) chromium surface is ferromagnetic with a greatly enhanced spin polarization (3.00 electrons); (ii) a substantial enhancement of the spin imbalance exists several (>5) layers into the bulk; (iii) the (110) chromium surface is antiferromagnetic with a large (2.31) spin imbalance; (iv) the (100) chromium monolayer on ferromagnetic iron is ferromagnetic, with a huge spin imbalance (3.63), and aligned antiferromagnetically with respect to the bulk iron; (v) the (110) chromium monolayer on ferromagnetic iron is also ferromagnetic, with a spin imbalance of 2.25 and antiferromagnetically aligned to the iron. The spin imbalance of chromium on iron (100) is possibly the largest of any transition-metal system

  17. Phosphatidylcholine-fatty Alcohols Equilibria in Monolayers at the Air/Water Interface.

    Science.gov (United States)

    Serafin, Agnieszka; Figaszewski, Zbigniew Artur; Petelska, Aneta Dorota

    2015-08-01

    Monolayers of phosphatidylcholine (PC), tetradecanol (TD), hexadecanol (HD), octadecanol (OD) and eicosanol (E) and their binary mixtures were investigated at the air/water interface. The surface tension values of pure and mixed monolayers were used to calculate π-A isotherms. The surface tension measurements were carried out at 22 °C using a Teflon trough and a Nima 9000 tensiometer. The interactions between phosphatidylcholine and fatty alcohols (tetradecanol, hexadecanol, octadecanol, eicosanol) result in significant deviations from the additivity rule. An equilibrium theory to describe the behavior of monolayer components at the air/water interface was developed in order to obtain the stability constants, Gibbs free energy values and areas occupied by one molecules of PC-TD, PC-HD, PC-OD and PC-E complexes. We considered the equilibrium between the individual components and the complex and established that phosphatidylcholine and fatty alcohols formed highly stable 1:1 complexes.

  18. Interactions between an anticancer drug - edelfosine - and cholesterol in Langmuir monolayers

    International Nuclear Information System (INIS)

    Wiecek, Agata; Dynarowicz-Latka, Patrycja; Minones, J.; Conde, Olga; Casas, Matilde

    2008-01-01

    Edelfosine (1-O-octadecyl-2-O-methyl-rac-glycero-3-phosphocholine, abbr. Et-18-OCH 3 ) is a new generation anticancer drug based on a phospholipids-like structure. Since its mechanism of action is believed to be related to the lipids of cellular membrane, we have investigated the interactions between edelfosine and main mammalian sterol: cholesterol, using the Langmuir monolayer technique. The interactions have been analyzed by comparing the experimental curves with theoretical ones, obtained basing on the additivity rule. The observed contraction together with negative deviations from ideality observed on the mean molecular area (A 12 ) vs film composition plots proves the existence of strong attractive forces between edelfosine and cholesterol, which have been quantified with the excess free energy of mixing (ΔG exc ) values, calculated from the surface pressure-area isotherms datapoints. The most negative values of ΔG exc have been found for the mixture of equimolar composition, proving its highest thermodynamic stability and the existence of the strongest interactions between film components. Thus, it has been postulated that at the surface edelfosine and cholesterol form stable complexes of 1:1 stoichiometry. The analysis of the collapse pressure values for the investigated mixed monolayers proves that films of edelfosine mole fraction ≤ 0.5 are miscible within the whole range of surface pressures, while monolayers richer in edelfosine mix in the pressure region below ca. 37.6 mN/m, which corresponds to the collapse of pure edelfosine monolayer. At this very surface pressure, edelfosine is expelled from the mixed monolayer and the remaining film is composed by surface complexes of high stability. The hypothesis of complex formation explains the results performed in vitro on cell cultures, indicating that the increase of cholesterol content significantly reduces the uptake of edelfosine

  19. Intact penetratin metabolite permeates across Caco-2 monolayers

    DEFF Research Database (Denmark)

    Birch, Ditlev; Christensen, Malene Vinther; Stærk, Dan

    . Previous studies have demonstrated that cell-penetrating peptides (CPPs) may be used as carriers in order to improve the bioavailability of a therapeutic cargo like insulin after oral administration. Penetratin, a commonly used CPP, has been shown to increase the uptake of insulin across Caco-2 cell......-2 cells cultured on permeable filter inserts and in cell lysates, respectively. The epithelial permeation of penetratin and the formed metabolites was assessed by using Caco-2 monolayers cultured on permeable filter inserts. Results Preliminary data revealed that at least one specific metabolite...... is formed upon both intracellular and extracellular degradation of penetratin (figure 1A). Following incubation with epithelium for 4 hours, the metabolite permeated the Caco-2 monolayer and the concentration increased approximately 10-fold when compared to a sample collected following 15 minutes...

  20. Monolayers and thin films of dextran hydrophobically modified

    International Nuclear Information System (INIS)

    Leiva, Angel; Munoz, Natalia; Gargallo, Ligia; Radic, Deodato; Urzua, Marcela

    2010-01-01

    A series of biodegradable graft copolymers were synthesized by grafting e-caprolactone over dextran of different molecular weights. The obtained copolymers were characterized by Fourier transform infrared spectroscopy FTIR, proton nuclear magnetic resonance 1H NMR, thermogravimetry and elemental analysis. Stable monolayers at the air-water interface and spin coated thin films were prepared and characterized by the Langmuir technique and by contact angle measurements respectively. The compressibility and static surface elasticity of the monolayers and the surface energy of copolymer thin films show dependence with the e-caprolactone content. >From these results it can be concluded that the surface properties of grafted copolymers can be modulated by their composition. Additionally, according to the obtained results, e-caprolactone grafted-dextrans show potential for being used in different applications where surface properties are important. (author)