WorldWideScience

Sample records for ethylene glycol dimethacrylate

  1. Poly(N-vinylimidazole/ethylene glycol dimethacrylate) for the purification and isolation of phenolic acids

    Energy Technology Data Exchange (ETDEWEB)

    Schemeth, Dieter; Noël, Jean-Christophe [Institute of Analytical Chemistry and Radiochemistry, Leopold-Franzens University of Innsbruck, CCB—Center of Chemistry and Biomedicine, Innrain 80-82, 6020 Innsbruck (Austria); Jakschitz, Thomas [Austrian Drug Screening Institute, Innrain 66a, 6020 Innsbruck (Austria); Rainer, Matthias, E-mail: m.rainer@uibk.ac.at [Institute of Analytical Chemistry and Radiochemistry, Leopold-Franzens University of Innsbruck, CCB—Center of Chemistry and Biomedicine, Innrain 80-82, 6020 Innsbruck (Austria); Tessadri, Richard [Institute of Mineralogy and Petrography, Leopold-Franzens University of Innsbruck, Innrain 52, 6020 Innsbruck (Austria); Huck, Christian W. [Institute of Analytical Chemistry and Radiochemistry, Leopold-Franzens University of Innsbruck, CCB—Center of Chemistry and Biomedicine, Innrain 80-82, 6020 Innsbruck (Austria); Bonn, Günther K. [Institute of Analytical Chemistry and Radiochemistry, Leopold-Franzens University of Innsbruck, CCB—Center of Chemistry and Biomedicine, Innrain 80-82, 6020 Innsbruck (Austria); Austrian Drug Screening Institute, Innrain 66a, 6020 Innsbruck (Austria)

    2015-07-23

    Highlights: • Free-radical polymerization of protonable vinylimidazole with EGMDA. • Polymer-optimization by maximum loading capacity of phenolic acids. • Performs better than SiO{sub 2} and Al{sub 2}O{sub 3} in normal phase mode using acetonitrile. • Performs equal or even better in anion-exchange mode compared to Oasis-MAX. • Efficient purification of phenolic compounds from crude extract. - Abstract: In this study we report the novel polymeric resin poly(N-vinyl imidazole/ethylene glycol dimethacrylate) for the purification and isolation of phenolic acids. The monomer to crosslinker ratio and the porogen composition were optimized for isolating phenolic acids diluted in acetonitrile at normal phase chromatography conditions, first. Acetonitrile serves as polar, aprotic solvent, dissolving phenolic acids but not interrupting interactions with the stationary phase due to the approved Hansen solubility parameters. The optimized resin demonstrated high loading capacities and adsorption abilities particularly for phenolic acids in both, acetonitrile and aqueous solutions. The adsorption behavior of aqueous standards can be attributed to ion exchange effects due to electrostatic interactions between protonated imidazole residues and deprotonated phenolic acids. Furthermore, adsorption experiments and subsequent curve fittings provide information of maximum loading capacities of single standards according to the Langmuir adsorption model. Recovery studies of the optimized polymer in the normal-phase and ion-exchange mode illustrate the powerful isolation properties for phenolic acids and are comparable or even better than typical, commercially available solid phase extraction materials. In order to prove the applicability, a highly complex extract of rosemary leaves was purified by poly(N-vinyl imidazole/ethylene glycol dimethacrylate) and the isolated compounds were identified using UHPLC–qTOF-MS.

  2. Poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate)/clay composites

    International Nuclear Information System (INIS)

    Marinovic, S.; Vukovic, Z.; Nastasovic, A.; Milutinovic-Nikolic, A.; Jovanovic, D.

    2011-01-01

    Highlights: → We synthesized macroporous composites of poly(GMA-co-EGDMA) and either raw or acid modified clay. → Morphological, textural and thermal properties of the composite with acid modified clay were significantly changed with retained macroporosity. → Composite with raw clay has enhanced thermal stability. - Abstract: In this study, macroporous composites of poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate) i.e. poly(GMA-co-EGDMA) and clay were prepared by radical suspension copolymerization. The composites with either raw (S 0 ) or acid-modified clay (S A ) were characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and thermogravimetric (TG) and textural analysis. The morphological, textural and thermal properties of the composite with raw clay (CP-S 0 ) differed slightly from those of the copolymer (CP), with exception of the thermal stability expressed in the shifting of the initial degradation temperature from 125 deg. C for CP to 210 deg. C for CP-S 0 . On the other hand, composite with modified clay (CP-S A ) was a material with significantly changed morphology, porous structure parameters and a qualitatively different thermal behavior in comparison to CP and CP-S 0 . CP-S A had mass residue, after heating at 600 deg. C, three times higher than the amount of S A introduced into the reaction system. This indicates a different manner of incorporation of S A , compared to S 0 , into the composite. Both the obtained composites retained their macroporosity and might be used in all applications that involve macroporous copolymers and, due to the altered thermal properties, their application may be extended.

  3. Preparation of poly(trimethyl-2-methacroyloxyethylammonium chloride-co-ethylene glycol dimethacrylate) monolith and its application in solid phase microextraction of brominated flame retardants.

    Science.gov (United States)

    Yang, Ting-ting; Zhou, Lin-feng; Qiao, Jun-qin; Lian, Hong-zhen; Ge, Xin; Chen, Hong-yuan

    2013-05-24

    A capillary poly(trimethyl-2-methacroyloxyethylammonium chloride-co-ethylene glycol dimethacrylate) monolith was in situ synthesized by thermally initiated free radical co-polymerization using trimethyl-2-methacroyloxyethylammonium chloride (MATE) and ethylene glycol dimethacrylate (EGDMA) as functional monomer and cross-linker, respectively. N,N-dimethylformamide and polyethylene glycol 6000 were used as solvent and porogen, respectively. The morphology and porous structure of the resulting monoliths were assessed by scanning electron microscope. In order to prepare practically useful poly(MATE-co-EGDMA) monoliths with low flow resistance and good mechanical strength, some parameters such as PEG-6000 to DMF ratio, total monomer to porogen ratio, and crosslinker to monomer ratio were optimized systematically. Moreover, the extraction mechanism was evaluated using two series of compounds, alkylbenzenes and weak acids, as model compounds on poly(MATE-co-EGDMA) monoliths as liquid chromatographic stationary phase. Finally, the monoliths were applied as the solid phase microextraction medium, and a simple off-line method for simultaneous determination of three brominated flame retardants, 2,4,6-tribromophenol (TBP), tetrabromobisphenol A (TBBPA) and 4,4'-dibrominated diphenyl ether (DBDPE), in environmental waters was developed by coupling the polymer monolith microextraction to HPLC with UV detection. The regression equations for these three brominated flame retardants showed good linearity from their limit of quantification to 5000ng/mL. The limits of detection were 0.20, 0.15 and 0.10ng/mL for TBP, TBBPA and DBDPE, respectively. The recovery of the proposed method was 78.7-106.1% with intra-day relative standard deviation of 1.3-4.4%. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Thermo-mechanical properties improvement of asphalt binder by using methylmethacrylate/ethylene glycol dimethacrylate

    Directory of Open Access Journals (Sweden)

    A.A. Ragab

    2016-09-01

    Full Text Available Various polymer-modified asphalt compositions for paving and roofing applications are known since several years ago. The degree to which a polymer improves the asphalt’s properties depends on the compatibility of the polymer and the asphalt. Highly compatible polymers are more effective in providing property improvements. In this research, the influence of in situ polymerization of methylmethacrylate monomer with asphalt in presence of ethylene glycol dimethacrylate (EGDM as a crosslinker on the rheological and thermal properties of asphalt binder of type penetration grade 60/70 was studied. To achieve this aim, MMA/EGDM(MC in different ratios as 5, 10 and 15% (w/w were used to modify the thermo-mechanical properties of asphalt via forming chemical bond, and the changing in mechanical and thermal properties, of the mixes as well as the storage stability were studied. Also, the morphology (SEM, thermal characterization (TGA, dynamic mechanical analysis (DMA, bending and rheological tests were detected. The obtained experimental results revealed that the addition of MC causes both the rheological and thermal properties of the binder to improve and the prepared PMAs has high temperature susceptibility and low curing time. The improvement in the properties of the virgin asphalt will be effective in using this soft type in coating applications instead of highly expensive oxidized one.

  5. Effect of silane coupling agents on the chemical and physical properties of photocrosslinked poly(dimethylsiloxane) dimethacrylate/poly(ethylene glycol) diacrylate hydrogel

    Science.gov (United States)

    Lim, K. W.; Hamid, Z. A. A.

    2017-07-01

    Inorganic-organic hydrogels based on dimethacrylated polydimethylsiloxane (PDMSMA) and diacrylated poly(ethylene glycol) (PEGDA) macromers were prepared via photocrosslinking method. Silane coupling agent was incorporated into the hydrogel formulations to overcome the phase incompatibility. Pure PEGDA (0:100) hydrogels showed the highest value of ESR %, while pure PDMSMA (100:0) hydrogels showed no swelling as we expected. Inclusion of more hydrophobic domains resulted in a lower value of ESR %, i.e. in 75:25 hybrid hydrogels. Beside, we had noticed 50:50 and 75:25 hybrid hydrogels disintegrate during swelling period. However, their integrity was improved and sustained after the coupling agent was added. Similarly, the value of E* for the hybrid hydrogels showed an increment after the coupling agent was incorporated, and this is in a good agreement with the SEM micrograph which display an improved interfacial adhesion.

  6. Preparation of a novel sorptive stir bar based on vinylpyrrolidone-ethylene glycol dimethacrylate monolithic polymer for the simultaneous extraction of diazepam and nordazepam from human plasma.

    Science.gov (United States)

    Torabizadeh, Mahsa; Talebpour, Zahra; Adib, Nuoshin; Aboul-Enein, Hassan Y

    2016-04-01

    A new monolithic coating based on vinylpyrrolidone-ethylene glycol dimethacrylate polymer was introduced for stir bar sorptive extraction. The polymerization step was performed using different contents of monomer, cross-linker and porogenic solvent, and the best formulation was selected. The quality of the prepared vinylpyrrolidone-ethylene glycol dimethacrylate stir bars was satisfactory, demonstrating good repeatability within batch (relative standard deviation < 3.5%) and acceptable reproducibility between batches (relative standard deviation < 6.0%). The prepared stir bar was utilized in combination with ultrasound-assisted liquid desorption, followed by high-performance liquid chromatography with ultraviolet detection for the simultaneous determination of diazepam and nordazepam in human plasma samples. To optimize the extraction step, a three-level, four-factor, three-block Box-Behnken design was applied. Under the optimum conditions, the analytical performance of the proposed method displayed excellent linear dynamic ranges for diazepam (36-1200 ng/mL) and nordazepam (25-1200 ng/mL), with correlation coefficients of 0.9986 and 0.9968 and detection limits of 12 and 10 ng/mL, respectively. The intra- and interday recovery ranged from 93 to 106%, and the relative standard deviations were less than 6%. Finally, the proposed method was successfully applied to the analysis of diazepam and nordazepam at their therapeutic levels in human plasma. The novelty of this study is the improved polarity of the stir bar coating and its application for the simultaneous extraction of diazepam and its active metabolite, nordazepam in human plasma sample. The method was more rapid than previously reported stir bar sorptive extraction techniques based on monolithic coatings, and exhibited lower detection limits in comparison with similar methods for the determination of diazepam and nordazepam in biological fluids. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Ethylene glycol blood test

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/003564.htm Ethylene glycol blood test To use the sharing features ... enable JavaScript. This test measures the level of ethylene glycol in the blood. Ethylene glycol is a ...

  8. Crosslinking polymerization of tetraethylene glycol dimethacrylate under high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Kaminski, K; Paluch, M; Ziolo, J [Institute of Physics, Silesian University, Uniwersytecka 4, 40-007 Katowice (Poland); Bogoslovov, R; Roland, C M [Chemistry Division, Code 6120, Naval Research Laboratory, Washington DC 20375-5342 (United States)], E-mail: kaminski@us.edu.pl

    2008-07-15

    The polymerization reaction of tetraethylene glycol dimethacrylate was induced by application of high pressure. Broadband dielectric spectroscopy was employed to investigate dielectric properties of the produced polymers. Additionally swelling experiment was performed to determine the degree of crossliniking of the polymers.

  9. [Carcinogenic activity of ethylene oxide and its reaction products 2-chloroethanol, 2-bromoethanol, ethylene glycol and diethylene glycol. III. Research on ethylene glycol and diethylene glycol for carcinogenic effects].

    Science.gov (United States)

    Dunkelberg, H

    1987-03-01

    Ethylene glycol and diethylene glycol were each administered once weekly subcutaneously to groups of 100 female NMRI mice at 3 dosages (30; 10 und 3 mg single dose per mouse). Tricaprylin was used as solvent. The mean total dosage per mouse was 2110.5; 707.0 and 196.2 mg for ethylene glycol and 2029.8; 671.7 and 213.3 mg for diethylene glycol. Neither ethylene glycol nor diethylene glycol induced tumors at the injection site or away from the point of administration.

  10. Molecular Mobility of n-Ethylene Glycol Dimethacrylate Glass Formers Upon Free Radical Polymerization

    Science.gov (United States)

    Plaza, Maria Teresa Viciosa

    When a liquid upon cooling avoids crystallization, it enters the supercooled state. If the temperature continues to decrease, the consequent increase of viscosity is reflected in the molecular mobility in such a way that the characteristic relaxation times of cooperative motions become of the same order of the experimentally accessible timescales. Further cooling finally transforms the highly viscous liquid into a glass, in which only local motions are allowed. The monomers n-ethylene glycol dimethacrylate (n-EGDMA) for n =1 to 4, that constitutes the object of this study, easily circumvent crystallization, being good candidates to study the molecular mobility in both supercooled and glassy states. Dielectric Relaxation Spectroscopy (DRS) was the technique chosen to obtain detailed information about their molecular mobility (Chapters 1 and 2). The first part of this work consisted in the dielectric characterization of the relaxation processes present above and below the glass transition temperature (Tg), which shifts to higher values with the molecular weight ( Mw), result confirmed by Differential Scanning Calorimetry (DSC). While the cooperative alpha-process associated to the glass transition, and the secondary beta process, depend on Mw, the other found secondary process, gamma, seems to be independent from this factor (Chapter 3). In the next Chapters different strategies were carried out in order to clarify the mechanisms in the origin of these two secondary relaxations (beta and gamma), and to learn about its respective relation with the main a relaxation. Monitoring the real time isothermal free radical polymerization of TrEGDMA by Temperature Modulated Differential Scanning Calorimetry (TMDSC), carried out at temperatures below the gamma T of the final polymer network, we shown among others two important features: i) the vitrification of the polymer in formation leads to relatively low degrees of conversion, and ii) the unreacted monomer is expelled from

  11. Ethylene Glycol, Hazardous Substance in the Household

    Directory of Open Access Journals (Sweden)

    Jiří Patočka

    2010-01-01

    Full Text Available Ethylene glycol is a colorless, odorless, sweet-tasting but poisonous type of alcohol found in many household products. The major use of ethylene glycol is as an antifreeze in, for example, automobiles, in air conditioning systems, in de-icing fluid for windshields, and else. People sometimes drink ethylene glycol mistakenly or on purpose as a substitute for alcohol. Ethylene glycol is toxic, and its drinking should be considered a medical emergency. The major danger from ethylene glycol is following ingestion. Due to its sweet taste, peoples and occasionally animals will sometimes consume large quantities of it if given access to antifreeze. While ethylene glycol itself has a relatively low degree of toxicity, its metabolites are responsible for extensive cellular damage to various tissues, especially the kidneys. This injury is caused by the metabolites, glycolic and oxalic acid and their respective salts, through crystal formation and possibly other mechanisms. Toxic metabolites of ethylene glycol can damage the brain, liver, kidneys, and lungs. The poisoning causes disturbances in the metabolism pathways, including metabolic acidosis. The disturbances may be severe enough to cause profound shock, organ failure, and death. Ethylene glycol is a common poisoning requiring antidotal treatment.

  12. [Quantitative analysis of urinary ethylene glycol in rats exposed to ethylene oxide].

    Science.gov (United States)

    Koga, M; Hori, H; Tanaka, I; Akiyama, T; Inoue, N

    1985-03-01

    A gas chromatographic method was used for determining ethylene glycol in urine. The analytical procedure is based on an azeotropic distillation and on esterification with n-butyl boronic acid. The linear calibration curve was obtained up to 500 micrograms/ml of ethylene glycol. The detection limit was estimated to be 10 micrograms/ml and relative standard deviation was 3.5% for 100 micrograms/ml of ethylene glycol. This method was applied to determine the urinary excretion of ethylene glycol in rats exposed to ethylene oxide at various concentrations (from 50 to 500 ppm). The excretion amounts of ethylene glycol were observed to be dependent on the concentration of ethylene oxide exposed.

  13. Intensification of ethylene glycol production process

    DEFF Research Database (Denmark)

    Wisutwattanaa, Apiwit; Frauzem, Rebecca; Suriyapraphadilok, Uthaiporn

    2017-01-01

    This study aims to generate an alternative design for ethylene glycol production process focusing on a reduction of operating cost and emissions. To achieve this, the phenomena-based method for process intensification was applied. 3 stages of process intensification were performed. First, the base......-case design was obtained, resulting in the production of ethylene glycol via two steps: ethylene oxidation synthesis followed by ethylene oxide hydration to produce ethylene glycol. Feasibility of the design was verified and the process was rigorously designed using a computer process simulation program...... solutions. As the result of intensification method, membrane separation was suggested and applied to the design. With the operation of the new equipment, the ethylene glycol production process was improved for 54.51 percent in terms of energy consumption....

  14. Sorption of different phenol derivatives on functionalized macroporous nanocomposite of poly (glycidyl methacrylate-co-ethylene glycol dimethacrylate and acid modified bentonite

    Directory of Open Access Journals (Sweden)

    Marinović Sanja R.

    2014-01-01

    Full Text Available Macroporous nanocomposite of poly (glycidyl methacrylate-co-ethylene glycol dimethacrylate and acid modified bentonite was prepared by radical suspension copolymerization. Nanocomposite was functionalized with diethylene triamine (deta, by ring-opening reaction of the pendant epoxy groups. Functionalization was performed in order to enable phenol derivatives sorption. This new, not sufficiently investigated material, with developed porous structure was denoted CP-SA-deta. In this study, the influence of temperature on 4-nitrophenol (4NP sorption on CP-SA-deta was investigated. The chemisorption was estimated as dominant process since activation energy of sorption of 4NP of 54.8 kJ mol-1 was obtained. After determining the optimal sorption conditions for 4NP, the sorption of 2-nitrophenol (2NP and 2-chloro 4-nitrophenol (2Cl4NP on CP-SA-deta was investigated with respect to pH, initial concentration and contact time. The 2NP sorption was seldom tested, while according to our knowledge, the 2Cl4NP sorption was not investigated. The isotherm data were best fitted with Langmuir model, while the sorption dynamics obeyed the pseudo-second-order kinetic model for all derivatives. [Projekat Ministarstva nauke Republike Srbije, br. III 45001 i br. III 43009

  15. Silica-coated poly(glycidyl methacrylate-ethylene dimethacrylate) beads containing organic phase change materials

    Czech Academy of Sciences Publication Activity Database

    Feczkó, T.; Trif, L.; Németh, B.; Horák, Daniel

    2016-01-01

    Roč. 641, 10 October (2016), s. 24-28 ISSN 0040-6031 Institutional support: RVO:61389013 Keywords : porous poly(glycidyl methacrylate-ethylene dimethacrylate) beads * paraffin * cetyl alcohol Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.236, year: 2016

  16. Physicochemical Characteristics and Slow Release Performances of Chlorpyrifos Encapsulated by Poly(butyl acrylate-co-styrene) with the Cross-Linker Ethylene Glycol Dimethacrylate.

    Science.gov (United States)

    Wang, Yu; Gao, Zideng; Shen, Feng; Li, Yang; Zhang, Sainan; Ren, Xueqin; Hu, Shuwen

    2015-06-03

    Chlorpyrifos' application and delivery to the target substrate needs to be controlled to improve its use. Herein, poly(butyl acrylate-co-styrene) (poly(BA/St)) and poly(BA/St/ethylene glycol dimethacrylate (EGDMA)) microcapsules loaded with chlorpyrifos as a slow release formulation were prepared by emulsion polymerization. The effects of structural characteristics on the chlorpyrifos microcapsule particle size, entrapment rate (ER), pesticide loading (PL), and release behaviors in ethyl alcohol were investigated. Fourier transform infrared and thermogravimetric analysis confirmed the successful entrapment of chlorpyrifos. The ER and PL varied with the BA/St monomer ratio, chlorpyrifos/monomer core-to-shell ratio, and EGDMA cross-linker content with consequence that suitable PL was estimated to be smaller than 3.09% and the highest ER was observed as 96.74%. The microcapsule particle size (88.36-101.8 nm) remained mostly constant. The extent of sustainable release decreased with increasing content of BA, St, or chlorpyrifos in the oil phase. Specifically, an adequate degree of cross-linking with EGMDA (0.5-2.5%) increased the extent of sustainable release considerably. However, higher levels of cross-linking with EGDMA (5-10%) reduced the extent of sustainable release. Chlorpyrifos release from specific microcapsules (monomer ratio 1:2 with 0.5% EGDMA or 5 g chlopyrifos) tended to be a diffusion-controlled process, while for others, the kinetics probably indicated the initial rupture release.

  17. Formation of carbonyl compounds in radiolysis of ethylene glycol in methanol

    International Nuclear Information System (INIS)

    Bezborodova, S.G.; Vetrov, V.S.; Kalyazin, E.P.; Korolev, V.M.; Salamatov, I.I.

    1977-01-01

    Radiolysis of diluted solutions of ethylene glycol has been investigated. It is shown that acetaldehyde, glycol aldehyde and formaldehyde are the main products of radiolysis of methanol solutions of ethylene glycol. Acetaldehyde and glycol aldehyde yields increase in radiolysis of methanol solutions of ethylene glycol with an increase of the original concentration of ethylene glycol and a temperature rise of radiolysis. Formaldehyde yields increase with the ethylene glycol concentration but decrease with a temperature rise (the formation of formaldehyde from methanol is taken into account). A mechanism of radiation-chemical transformations of ethylene glycol in methanol is explained. It is concluded that the main directions of ethylene glycol decomposition, detected in water solutions of ethylene glycol, are also realized in methanol solutions. However, a role of different directions of decomposition depends on the medium

  18. Structure/property relationships in methacrylate/dimethacrylate polymers for dental applications

    Science.gov (United States)

    Mehlem, Jeremy John

    Since its invention Bis-GMA or one of its analogs has been the main component of the polymer portion of composites for dental restorations. The need for dilution of Bis-GMA and its analogs to optimize its properties has long been recognized. Bis-GMA is a highly viscous monomer. This high viscosity leads to early vitrification, which limits conversion during cure. This viscosity also limits filler loading. Vitrification at low conversions leads to heterogeneous systems composed of low and high cross-link density phases. The low cross-link density phases behave as defects in the system; therefore, if the amount of low cross-link density phases in the system can be reduced and a more uniform network structure can be achieved, then the mechanical properties of the resin can be improved. Since the increase in viscosity during cure causes vitrification, it is logical that a system with a low initial viscosity will delay the onset of vitrification. Reactive diluents such as triethylene glycol dimethacrylate (TEGDMA) are effective at lower levels. However, large amounts negatively affect matrix properties by increasing polymerization shrinkage and water sorption. Shrinkage has been cited as one of the main deficiencies in dental composites. The goal of this project is to improve upon standard viscosity modifying comonomers such as triethylene glycol dimethacrylate. The comonomers that were explored were phenyloxyethyl methacrylate, cyclohexyl methacrylate, and tert-butylcylcohexyl methacrylate. Multicomponent systems based on analogs of ethylene glycol dimethacrylates with different length ethyl glycol chains were also examined. The substitution of monomethacrylates for TEGDMA as a comonomer resulted in enhanced or negligible affects on the mechanical properties of Bis-MEPP based polymer systems while reducing polymerization shrinkage. 129Xenon NMR and TappingMode(TM) AFM were used to characterize the heterogeneity of dimethacrylates systems during their cure cycle as well

  19. Poly(ethylene glycol) dicarboxylate/poly(ethylene oxide) hydrogel film co-crosslinked by electron beam irradiation as an anti-adhesion barrier

    International Nuclear Information System (INIS)

    Haryanto,; Singh, Deepti; Han, Sung Soo; Son, Jun Hyuk; Kim, Seong Cheol

    2015-01-01

    The cross-linked poly(ethylene glycol) dicarboxylate (PEGDC)/poly(ethylene oxide) (PEO) and poly(ethylene glycol) dimethacrylate (PEGDMA)/(PEO) hydrogels were developed for possible biomedical applications such as an anti-adhesion barrier. Various contents of PEGDC/PEO film were irradiated using an electron beam with various beam intensities in order to obtain various degrees of crosslinked hydrogels. The optimum dose (300 kGy) and total crosslinker content of 10% were used to prepare crosslinked hydrogel films with three different compositions (10% PEGDC, 10% PEGDMA, 5% PEGDC–5% PEGDMA). Among them, 10% PEGDC hydrogel film exhibited the highest elongation at break (69.33 ± 6.87%) with high mechanical strength. 10% PEGDC hydrogel film showed the lowest hemolysis activity (6.03 ± 0.01%) and the highest tissue adherence (75.67 ± 1.15 cN). The result also indicated that the carboxyl groups in PEGDC affect the tissue adherence of hydrogel films via H-bonding interactions. In animal studies, 10% PEGDC anti-adhesion hydrogel film degraded within 3 weeks and demonstrated better anti-adhesive effect compared to Guardix-SG®. - Highlights: • The crosslinked PEGDC/PEO hydrogel was developed by e-beam irradiation. • 10% PEGDC hydrogel film showed the highest elongation at break and tissue adhesion. • The COOH group enhanced the tissue adherence of hydrogel films on the intestine. • 10% PEGDC hydrogel film demonstrated a good anti-adhesive effect in animal study. • All of the hydrogel films with 10% PEGDC degraded in vivo within three weeks

  20. Engineering Pseudomonas putida KT2440 for efficient ethylene glycol utilization.

    Science.gov (United States)

    Franden, Mary Ann; Jayakody, Lahiru N; Li, Wing-Jin; Wagner, Neil J; Cleveland, Nicholas S; Michener, William E; Hauer, Bernhard; Blank, Lars M; Wierckx, Nick; Klebensberger, Janosch; Beckham, Gregg T

    2018-06-07

    Ethylene glycol is used as a raw material in the production of polyethylene terephthalate, in antifreeze, as a gas hydrate inhibitor in pipelines, and for many other industrial applications. It is metabolized by aerobic microbial processes via the highly toxic intermediates glycolaldehyde and glycolate through C2 metabolic pathways. Pseudomonas putida KT2440, which has been engineered for environmental remediation applications given its high toxicity tolerance and broad substrate specificity, is not able to efficiently metabolize ethylene glycol, despite harboring putative genes for this purpose. To further expand the metabolic portfolio of P. putida, we elucidated the metabolic pathway to enable ethylene glycol via systematic overexpression of glyoxylate carboligase (gcl) in combination with other genes. Quantitative reverse transcription polymerase chain reaction demonstrated that all of the four genes in genomic proximity to gcl (hyi, glxR, ttuD, and pykF) are transcribed as an operon. Where the expression of only two genes (gcl and glxR) resulted in growth in ethylene glycol, improved growth and ethylene glycol utilization were observed when the entire gcl operon was expressed. Both glycolaldehyde and glyoxal inhibit growth in concentrations of ethylene glycol above 50 mM. To overcome this bottleneck, the additional overexpression of the glycolate oxidase (glcDEF) operon removes the glycolate bottleneck and minimizes the production of these toxic intermediates, permitting growth in up to 2 M (~124 g/L) and complete consumption of 0.5 M (31 g/L) ethylene glycol in shake flask experiments. In addition, the engineered strain enables conversion of ethylene glycol to medium-chain-length polyhydroxyalkanoates (mcl-PHAs). Overall, this study provides a robust P. putida KT2440 strain for ethylene glycol consumption, which will serve as a foundational strain for further biocatalyst development for applications in the remediation of waste polyester plastics and

  1. The proton dynamics of ethylene glycol

    CERN Document Server

    Novikov, A G; Sobolev, O V

    2002-01-01

    The results of inelastic neutron scattering experiments on ethylene glycol at T=300 K, T=348 K and T=393 K by using the 'direct-geometry' double time-of-flight neutron-scattering spectrometer DIN-2PI (Frank Laboratory of Neutron Physics, JINR, Dubna) are presented. The quasi-elastic and inelastic components of the neutron scattering have been considered. The diffusion characteristics and generalized frequency distributions for protons of ethylene glycol molecules were obtained from the neutron-scattering spectra. (orig.)

  2. Electrorheology of silicone oil suspensions of urea-modified poly[(glycidyl methacrylate)-co-(ethylene dimethacrylate)] particles

    Czech Academy of Sciences Publication Activity Database

    Belza, T.; Pavlínek, V.; Sáha, P.; Beneš, Milan J.; Horák, Daniel; Quadrat, Otakar

    2007-01-01

    Roč. 385, č. 1 (2007), s. 1-8 ISSN 0378-4371 R&D Projects: GA MŠk 2B06053 Institutional research plan: CEZ:AV0Z40500505 Keywords : Electrorheology * Suspension * Poly(glycidyl methacrylate-co-(ethylene dimethacrylate) Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.430, year: 2007

  3. Molybdenum/alkali metal/ethylene glycol complexes useful as epoxidation catalysts

    International Nuclear Information System (INIS)

    Marquis, E.T.; Sanderson, J.R.; Keating, K.P.

    1987-01-01

    This patent describes a clear, storage stable solution of a molybdenum/alkali metal/ethylene glycol complex in ethylene glycol made by the process comprising: reacting at an elevated temperature between about 25 0 and 150 0 C a solid ammonium molybdate or a hydrate thereof and a solid alkali metal molybdate or a hydrate thereof with ethylene glycol, such that the ratio of moles of ethylene glycol to total gram atoms of molybdenum in the molybdates ranges from about 7:10 to 10:1, and the ratio of gram atoms of molybdenum in the ammonium molybdate or hydrate thereof to gram atoms of molybdenum in the alkali metal molybdate is from about 1:1 to about 20:1 to thereby provide a reaction product composed of a solution of an alkali metal-containing complex of molybdenum, alkali metal and ethylene glycol and by-products, including water, in the ethylene glycol and subsequently stripping the solution at a reduced pressure to remove from about 5 to about 25% of the reaction product, as distillate, to thereby provide a storage stable solution of the complex in the ethylene glycol having a molybdenum content of about 6 wt. % to about 20 wt. %, a water concentration of about 0.1 wt. % to about 6 wt. % and an acid number of more than about 60

  4. Ethylene glycol intercalation in smectites. molecular dynamics simulation studies

    International Nuclear Information System (INIS)

    Szczerba, Marek; Klapyta, Zenon; Kalinichev, Andrey

    2012-01-01

    Document available in extended abstract form only. Intercalation of ethylene glycol in smectites (glycolation) is widely used to discriminate smectites and vermiculites from other clays and among themselves. During this process, ethylene glycol molecules enter into the interlayer spaces of the swelling clays, leading to the formation of two-layer structure (∼17 A) in the case of smectites, or one-layer structure (∼14 A) in the case of vermiculites. In spite of the relatively broad literature on the understanding/characterization of ethylene glycol/water-clays complexes, the simplified structure of this complex presented by Reynolds (1965) is still used in the contemporary X-ray diffraction computer programs, which simulate structures of smectite and illite-smectite. The monolayer structure is only approximated using the assumption of the interlayer cation and ethylene glycol molecules lying in the middle of interlayer spaces. This study was therefore undertaken to investigate the structure of ethylene glycol/water-clays complex in more detail using molecular dynamics simulation. The structural models of smectites were built on the basis of pyrophyllite crystal structure (Lee and Guggenheim, 1981), with substitution of particular atoms. In most of simulations, the structural model assumed the following composition, considered as the most common in the mixed layer illite-smectites: EXCH 0.4 (Si 3.96 Al 0.04 )(Al 1.46 Fe 0.17 Mg 0.37 )O 10 (OH) 2 Atoms of the smectites were described with CLAYFF force field (Cygan et al., 2004), while atoms of water and ethylene glycol with flexible SPC and OPLS force fields, respectively. Ewald summation was used to calculate long range Coulombic interactions and the cutoff was set at 8.5 A. Results of the simulations show that in the two-layer glycolate the content of water is relatively small: up to 0.8 H 2 O per half of the smectite unit cell. Clear thermodynamic preference of mono- or two-layer structure of the complex is

  5. Ethylene glycol poisoning

    African Journals Online (AJOL)

    Ethylene glycol poisoning. A 22-year-old male presented to the emergency centre after drinking 300 ml of antifreeze. Clinical examination was unremarkable except for a respiratory rate of 28 bpm, GCS of 9 and slight nystagmus. Arterial blood gas revealed: pH 7.167, pCO2. 3.01 kPa, pO2 13.0 kPa (on room air), HCO3-.

  6. 40 CFR 180.1040 - Ethylene glycol; exemption from the requirement of a tolerance.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Ethylene glycol; exemption from the... Exemptions From Tolerances § 180.1040 Ethylene glycol; exemption from the requirement of a tolerance. Ethylene glycol as a component of pesticide formulations is exempt from the requirement of a tolerance when...

  7. Electrochemical corrosion behavior of AZ91D alloy in ethylene glycol

    Energy Technology Data Exchange (ETDEWEB)

    Fekry, A.M. [Chemistry Department, Faculty of Science, Cairo University, Giza 12613 (Egypt)], E-mail: hham4@hotmail.com; Fatayerji, M.Z. [Chemistry Department, Faculty of Science, Cairo University, Giza 12613 (Egypt)

    2009-11-01

    The effect of concentration on the corrosion behavior of Mg-based alloy AZ91D was investigated in ethylene glycol-water solutions using electrochemical techniques i.e. potentiodynamic polarization, electrochemical impedance measurements (EIS) and surface examination via scanning electron microscope (SEM) technique. This can provide a basis for developing new coolants for magnesium alloy engine blocks. Corrosion behavior of AZ91D alloy by coolant is important in the automotive industry. It was found that the corrosion rate of AZ91D alloy decreased with increasing concentration of ethylene glycol. For AZ91D alloy in chloride >0.05 M or fluoride <0.05 M containing 30% ethylene glycol solution, they are more corrosive than the blank (30% ethylene glycol-70% water). However, at concentrations <0.05 for chloride or >0.05 M for fluoride containing ethylene glycol solution, some inhibition effect has been observed. The corrosion of AZ91D alloy in the blank can be effectively inhibited by addition of 0.05 mM paracetamol that reacts with AZ91D alloy and forms a protective film on the surface at this concentration as confirmed by surface examination.

  8. Comparative Study of Structure-Property Relationships in Polymer Networks Based on Bis-GMA, TEGDMA and Various Urethane-Dimethacrylates

    Directory of Open Access Journals (Sweden)

    Izabela Barszczewska-Rybarek

    2015-03-01

    Full Text Available The effect of various dimethacrylates on the structure and properties of homo- and copolymer networks was studied. The 2,2-bis-[4-(2-hydroxy-3- methacryloyloxypropoxyphenyl]-propane (Bis-GMA, triethylene glycol dimethacrylate (TEGDMA and 1,6-bis-(methacryloyloxy-2-ethoxycarbonylamino-2,4,4-trimethylhexane (HEMA/TMDI, all popular in dentistry, as well as five urethane-dimethacrylate (UDMA alternatives of HEMA/TMDI were used as monomers. UDMAs were obtained from mono-, di- and tri(ethylene glycol monomethacrylates and various commercial diisocyanates. The chemical structure, degree of conversion (DC and scanning electron microscopy (SEM fracture morphology were related to the mechanical properties of the polymers: flexural strength and modulus, hardness, as well as impact strength. Impact resistance was widely discussed, being lower than expected in the case of poly(UDMAs. It was caused by the heterogeneous morphology of these polymers and only moderate strength of hydrogen bonds between urethane groups, which was not high enough to withstand high impact energy. Bis-GMA, despite having the highest polymer morphological heterogeneity, ensured fair impact resistance, due to having the strongest hydrogen bonds between hydroxyl groups. The TEGDMA homopolymer, despite being heterogeneous, produced the smoothest morphology, which resulted in the lowest brittleness. The UDMA monomer, having diethylene glycol monomethacrylate wings and the isophorone core, could be the most suitable HEMA/TMDI alternative. Its copolymer with Bis-GMA and TEGDMA had improved DC as well as all the mechanical properties.

  9. Inert Reassessment Document for Ethylene Glycol

    Science.gov (United States)

    Ethylene Glycol has many uses and are also used as antifreeze and deicers, as solvents, humectants, as chemical intermediates in the synthesis of other chemicals, and as components of many products such as brake fluids, lubricants, inks,and lacquers.

  10. Development of CuO–ethylene glycol nanofluids for efficient energy management: Assessment of potential for energy recovery

    International Nuclear Information System (INIS)

    Allen Zennifer, M.; Manikandan, S.; Suganthi, K.S.; Leela Vinodhan, V.; Rajan, K.S.

    2015-01-01

    Highlights: • CuO–ethylene glycol nanofluids prepared and characterized. • Maximum thermal conductivity enhancement of 14.1% at 50 °C for 1 vol% nanofluid. • Heat transfer performance in correspondence with improved transport properties. • 11.8% enhancement in heat transfer rate for 1 vol% nanofluid. - Abstract: Ethylene glycol (EG) plays an important role as coolant in sub-artic and artic regions owing to its low freezing point. However one of the limitations of ethylene glycol for energy management is its low thermal conductivity, which can be improved by addition of nanoparticles. In the present work, cupric oxide nanoparticles have been synthesized followed by dispersion in ethylene glycol through extended probe ultrasonication without addition of chemical dispersing agent. Temperature dependency of thermal conductivity of 1 vol% CuO–ethylene glycol nanofluid exhibited a minimum at a critical temperature corresponding to lower thickness of interfacial layers and negligible Brownian motion. The influence of liquid layering on thermal conductivity was predominant at temperatures below critical temperature leading to higher thermal conductivity at lower temperature. Brownian motion-induced microconvection resulted in thermal conductivity increase with temperature above the critical temperature. About 14.1% enhancement in thermal conductivity was obtained at 50 °C for 1 vol% CuO–ethylene glycol nanofluid. The viscosity of CuO–ethylene glycol nanofluid was lower than the viscosity of ethylene glycol at temperatures below 50 °C and 120 °C for 1 vol% and 0.5 vol% CuO–ethylene glycol nanofluids. Our data reveal that the CuO–ethylene glycol nanofluids are better coolants than ethylene glycol for transient cooling under constant heat flux conditions with 11.8% enhancement in heat transfer rate for 1 vol% CuO–ethylene glycol nanofluid. Hence the use of ethylene glycol-based nanofluids is a promising approach for energy management.

  11. A Case of Chronic Ethylene Glycol Intoxication Presenting without Classic Metabolic Derangements

    Directory of Open Access Journals (Sweden)

    Stephanie M. Toth-Manikowski

    2014-01-01

    Full Text Available Acute ethylene glycol ingestion classically presents with high anion gap acidosis, elevated osmolar gap, altered mental status, and acute renal failure. However, chronic ingestion of ethylene glycol is a challenging diagnosis that can present as acute kidney injury with subtle physical findings and without the classic metabolic derangements. We present a case of chronic ethylene glycol ingestion in a patient who presented with acute kidney injury and repeated denials of an exposure history. Kidney biopsy was critical to the elucidation of the cause of his worsening renal function.

  12. Ethylene Glycol Adsorption and Reaction over CeOX(111) Thin Films

    Energy Technology Data Exchange (ETDEWEB)

    T Chen; D Mullins

    2011-12-31

    This study reports the interaction of ethylene glycol with well-ordered CeO{sub x}(111) thin film surfaces. Ethylene glycol initially adsorbs on fully oxidized CeO{sub 2}(111) and reduced CeO{sub 2-x}(111) through the formation of one C-O-Ce bond and then forms a second alkoxy bond after annealing. On fully oxidized CeO{sub 2}(111) both recombination of ethylene glycol and water desorption occur at low temperature leaving stable -OCH{sub 2}CH{sub 2}O- (ethylenedioxy) intermediates and oxygen vacancies on the surface. This ethylenedioxy intermediate goes through C-C bond scission to produce formate species which then react to produce CO and CO{sub 2}. The formation of water results in the reduction of the ceria. On a reduced CeO{sub 2-x}(111) surface the reaction selectivity shifts toward a dehydration process. The ethylenedioxy intermediate decomposes by breaking a C-O bond and converts into an enolate species. Similar to the reaction of acetaldehyde on reduced CeO{sub 2-x}(111), the enolate reacts to produce acetaldehyde, acetylene, and ethylene. The loss of O from ethylene glycol leads to a small amount of oxidation of the reduced ceria.

  13. Ethylene- and diethylene glycol metabolism, toxicity and treatment

    International Nuclear Information System (INIS)

    Wiener, H.L.

    1986-01-01

    Each year numerous men and domestic animals suffer from ethylene glycol (EG) poisoning. The present approach to treating EG poisoning by administering ethanol is aimed at preventing the oxidation of EG to glycolate, the toxic mediator. When treatment is delayed or the amount of EG consumed is large, successful treatment is rarely obtained, since the concentration of glycolate becomes excessive. In an effort to develop a better approach to treating EG poisoning, studies were conducted to determine the feasibility of using pig liver glycolic acid oxidase (GAO) as a means of enzyme therapy in male rats receiving EG. Pig liver GAO was active in vitro in rat blood, oxidizing glycolate to glyoxylate. When injected intravenously into male rats, GAO had an approximate half-life of twenty five minutes and its elimination followed first order kinetics. Despite activity in vitro, native pig liver GAO did not display detectable activity in vivo. Diethylene glycol (DEG) when ingested also results in toxicity. The metabolism and toxicity of DEG was investigated in male Wistar rats using [ 14 C]-DEG synthesized from [U- 14 C]-EG and ethylene oxide and purified by high performance liquid chromatography. (2-Hydroxyethoxy)acetic acid (HEAA) was identified as the major product of DEG oxidation. These results suggest that the treatment of DEG poisoning should follow the same regimen as treatment for EG poisoning

  14. First report of suspected ethylene glycol poisoning in 2 dogs in South Africa : clinical communication

    Directory of Open Access Journals (Sweden)

    N. Keller

    2005-06-01

    Full Text Available Ethylene glycol (anti-freeze toxicity is a serious emergency in both veterinary and human medicine. Ethylene glycol (E/G is the active anti-freeze principle in radiator water additives. It is odourless, colourless and has a sweet taste. As little as 5 mℓ or 20 mℓ is sufficient to kill a cat or a dog, respectively. Ethylene glycol is rapidly absorbed and metabolised in the liver to oxalate, which is deposited as calcium oxalate in the kidneys causing irreversible damage. This report describes 2 dogs that were suspected to have ingested ethylene glycol. The report contains a description of the 3 stages of ethylene glycol toxicity as well as a short discussion of the treatment. Public awareness about the dangers of anti-freeze will help in limiting exposure of pets and humans to this potentially fatal toxin. Veterinarians need to be aware of anti-freeze toxicity as delayed recognition and treatment will lead to the death of the patient.

  15. Preparation and characterization of poly-(methacrylatoethyl trimethylammonium chloride-co-vinylbenzyl chloride-co-ethylene dimethacrylate monolith

    Directory of Open Access Journals (Sweden)

    Eko Malis

    2015-05-01

    Full Text Available A polymer monolithic column, poly-(methacrylatoethyltrimethylammonium chloride-co-vinylbenzyl chloride-co-ethylene dimethacrylate or poly-(MATE-co-VBC-co-EDMA was successfully prepared in the current study by one-step thermally initiated in situ polymerization, confined in a steel tubing of 0.5 mm i.d. and 1/16” o.d. The monoliths were prepared from methacrylatoethyltrimethylammonium chloride (MATE and vinylbenzyl chloride (VBC as monomer and ethylene dimethacrylate (EDMA as crosslinker using a binary porogen system of 1-propanol and 1,4-butanediol. The inner wall of steel tubing was pretreated with 3-methacryloxypropyl-trimethoxysilane (MAPS. In order to obtain monolith with adequate column efficiency and low flow resistance, some parameters such as total monomer concentration (%T and crosslinker concentration (%C were optimized. The morphology of this monolith was assessed by scanning electron microscopy (SEM. The properties of the monolithic column, such as permeability, binding capacity, and pore size distribution were also characterized in detail. From the results of the characterization of all monolith variation, monolith with %T 30 %C 50 and %T 35 %C 50 give the best characteristic. These monoliths have high permeability, adequate molecular recognition sites (represented with binding capacity value of over 20 mg/mL, and have over 80% flow through pores in their pore structure contribute to low flow resistance. The resulted monolithic columns have promising potential for dual mode liquid chromatography. MATE may contribute for anion-exchange while VBC may responsible for reversed-phase liquid chromatography.

  16. The beneficial effect of cynodon dactylon fractions on ethylene glycol-induced kidney calculi in rats.

    Science.gov (United States)

    Khajavi Rad, Abolfazl; Hadjzadeh, Mousa-Al-Reza; Rajaei, Ziba; Mohammadian, Nema; Valiollahi, Saleh; Sonei, Mehdi

    2011-01-01

    To assess the beneficial effect of different fractions of Cynodon dactylon (C. dactylon) on ethylene glycol-induced kidney calculi in rats. Male Wistar rats were randomly divided into control, ethylene glycol, curative, and preventive groups. The control group received tap drinking water for 35 days. Ethylene glycol, curative, and preventive groups received 1% ethylene glycol for induction of calcium oxalate (CaOx) calculus formation. Preventive and curative subjects also received different fractions of C. dactylon extract in drinking water at 12.8 mg/kg, since day 0 and day 14, respectively. After 35 days, the kidneys were removed and examined for histopathological findings and counting the CaOx deposits in 50 microscopic fields. In curative protocol, treatment of rats with C. dactylon N-butanol fraction and N-butanol phase remnant significantly reduced the number of the kidney CaOx deposits compared to ethylene glycol group. In preventive protocol, treatment of rats with C. dactylon ethyl acetate fraction significantly decreased the number of CaOx deposits compared to ethylene glycol group. Fractions of C. dactylon showed a beneficial effect on preventing and eliminating CaOx deposition in the rat kidney. These results provide a scientific rational for preventive and treatment roles of C. dactylon in human kidney stone disease.

  17. 40 CFR 63.63 - Deletion of ethylene glycol monobutyl ether from the list of hazardous air pollutants.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 9 2010-07-01 2010-07-01 false Deletion of ethylene glycol monobutyl... Quantity Designations, Source Category List § 63.63 Deletion of ethylene glycol monobutyl ether from the list of hazardous air pollutants. The substance ethylene glycol monobutyl ether (EGBE,2-Butoxyethanol...

  18. Prediction and validation of the duration of hemodialysis sessions for the treatment of acute ethylene glycol poisoning.

    Science.gov (United States)

    Iliuta, Ioan-Andrei; Lachance, Philippe; Ghannoum, Marc; Bégin, Yannick; Mac-Way, Fabrice; Desmeules, Simon; De Serres, Sacha A; Julien, Anne-Sophie; Douville, Pierre; Agharazii, Mohsen

    2017-08-01

    The duration of hemodialysis (HD) sessions for the treatment of acute ethylene glycol poisoning is dependent on concentration, the operational parameters used during HD, and the presence and severity of metabolic acidosis. Ethylene glycol assays are not readily available, potentially leading to undue extension or premature termination of HD. We report a prediction model for the duration of high-efficiency HD sessions based retrospectively on a cohort study of 26 cases of acute ethylene glycol poisoning in 24 individuals treated by alcohol dehydrogenase competitive inhibitors, cofactors and HD. Two patients required HD for more than 14 days, and two died. In 19 cases, the mean ethylene glycol elimination half-life during high-efficiency HD was 165 minutes (95% confidence interval of 151-180 minutes). In a training set of 12 patients with acute ethylene glycol poisoning, using the 90th percentile half-life (195 minutes) and a target ethylene glycol concentration of 2 mmol/l (12.4 mg/dl) allowed all cases to reach a safe ethylene glycol under 3 mmol/l (18.6 mg/dl). The prediction model was then validated in a set of seven acute ethylene glycol poisonings. Thus, the HD session time in hours can be estimated using 4.7 x (Ln [the initial ethylene glycol concentration (mmol/l)/2]), provided that metabolic acidosis is corrected. Copyright © 2017 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  19. Reduction of friction stress of ethylene glycol by attached hydrogen ions

    Science.gov (United States)

    Li, Jinjin; Zhang, Chenhui; Deng, Mingming; Luo, Jianbin

    2014-01-01

    In the present work, it is shown that the friction stress of ethylene glycol can decrease by an order of magnitude to achieve superlubricity if there are hydrogen ions attached on the friction surfaces. An ultra-low friction coefficient (μ = 0.004) of ethylene glycol between Si3N4 and SiO2 can be obtained with the effect of hydrogen ions. Experimental result indicates that the hydrogen ions adsorbed on the friction surfaces forming a hydration layer and the ethylene glycol in the contact region forming an elastohydrodynamic film are the two indispensable factors for the reduction of friction stress. The mechanism of superlubricity is attributed to the extremely low shear strength of formation of elastohydrodynamic film on the hydration layer. This finding may introduce a new approach to reduce friction coefficient of liquid by attaching hydrogen ions on friction surfaces. PMID:25428584

  20. Poly(ethylene glycol) interactions with proteins

    Czech Academy of Sciences Publication Activity Database

    Hašek, Jindřich

    2006-01-01

    Roč. 2, č. 23 (2006), s. 613-618 ISSN 0044-2968. [European Powder Diffraction Conference /9./. Prague, 02.09.2004-05.09.2004] R&D Projects: GA ČR(CZ) GA204/02/0843 Institutional research plan: CEZ:AV0Z40500505 Keywords : poly(ethylene glycol) * PEO * protein-polymer interaction Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.897, year: 2006

  1. Synthesis of nano-sized stereoselective imprinted polymer by copolymerization of (S)-2-(acrylamido) propanoic acid and ethylene glycol dimethacrylate in the presence of racemic propranolol and copper ion

    Energy Technology Data Exchange (ETDEWEB)

    Alizadeh, Taher, E-mail: talizadeh@ut.ac.ir [Department of Analytical Chemistry, Faculty of Chemistry, University College of Science, University of Tehran, P.O. Box 14155-6455, Tehran (Iran, Islamic Republic of); Bagherzadeh, Azam; Shamkhali, Amir Nasser [Department of Applied Chemistry, Faculty of Science, University of Mohaghegh Ardabili, Ardabil (Iran, Islamic Republic of)

    2016-06-01

    A new chiral functional monomer of (S)-2-(acrylamido) propanoic acid was obtained by reaction of (L)-alanine with acryloyl chloride. The resulting monomer was characterized by FT-IR and HNMR and then utilized for the preparation of chiral imprinted polymer (CIP). This was carried out by copolymerization of (L)-alanine-derived chiral monomer and ethylene glycol dimethacrylate, in the presence of racemic propranolol and copper nitrate, via precipitation polymerization technique, resulting in nano-sized networked polymer particles. The polymer obtained was characterized by scanning electron microscopy and FT-IR. The non-imprinted polymer was also synthesized and used as blank polymer. Density functional theory (DFT) was also employed to optimize the structures of two diasterometric ternary complexes, suspected to be created in the pre-polymerization step, by reaction of optically active isomers of propranolol, copper ion and (S)-2-(acrylamido) propanoic acid. Relative energies and other characteristics of the described complexes, calculated by the DFT, predicted the higher stability of (S)-propranolol involved complex, compared to (R)-propranolol participated complex. Practical batch extraction test which employed CIP as solid phase adsorbent, indicated that the CIP recognized selectively (S)-propranolol in the racemic mixture of propranolol; whereas, the non-imprinted polymer (NIP) showed no differentiation capability between two optically active isomers of propranolol. - Highlights: • A new chiral functional monomer of (S)-2-(acrylamido) propanoic acid was synthesized. • (S)-propranolol-selective imprinted polymer was synthesized using the chiral monomer. • Racemic propranolol mixed with Cu(II) was used as template in the imprinting. • Density functional theory was employed to clarify the imprinting mechanism. • (S)-propranolol-Cu(II) complex was shown to conduct the imprinting process.

  2. Hemodiafiltration efficacy in treatment of methanol and ethylene glycol poisoning in a 2-year-old girl.

    Science.gov (United States)

    Szmigielska, Agnieszka; Szymanik-Grzelak, Hanna; Kuźma-Mroczkowska, Elżbieta; Roszkowska-Blaim, Maria

    2015-01-01

    Every year about 2.4 million people in USA are exposed to toxic substances. Many of them are children below 6 years of age. Majority of poisonings in children are incidental and related to household products including for example drugs, cleaning products or antifreeze products. Antifreeze solutions contain ethylene glycol and methanol. Treatment of these toxic substances involves ethanol administration, fomepizole, hemodialysis and correction of metabolic acidosis. The aim of the study was to check the efficacy of continuous venovenous hemodiagiltration in intoxication with ethylene glycol and methanol. One year and 7 months old girl after intoxication with ethylene glycol and methanol was treated with continuous venovenous hemodiafiltration instead of hemodialysis because of technical problems (circulatory instability). Intravenous ethanol infusion with hemodialtration resulted in rapid elimination of methanol from the body and significantly reduced blood ethylene glycol level. Continuous venovenous hemodiafiltration can be helpful in treatment of ethylene glycol and methanol intoxication.

  3. Hydrolytically and reductively degradable high-molecular-weight poly(ethylene glycol)s

    Czech Academy of Sciences Publication Activity Database

    Braunová, Alena; Pechar, Michal; Laga, Richard; Ulbrich, Karel

    2007-01-01

    Roč. 208, č. 24 (2007), s. 2642-2653 ISSN 1022-1352 R&D Projects: GA AV ČR KAN200200651; GA MŠk 1M0505 Institutional research plan: CEZ:AV0Z40500505 Keywords : biodegradable * drug delivery systems * gene delivery vectors * poly(ethylene glycol) Subject RIV: CE - Biochemistry Impact factor: 2.046, year: 2007

  4. Preparation and Separation of Telechelic Carborane-Containing Poly(ethylene glycol)s

    Czech Academy of Sciences Publication Activity Database

    Matějíček, P.; Uchman, M.; Lepšík, Martin; Srnec, Martin; Zedník, J.; Kozlík, P.; Kalíková, K.

    2013-01-01

    Roč. 78, č. 6 (2013), s. 528-535 ISSN 2192-6506 R&D Projects: GA AV ČR IAAX00320901 Grant - others:GA ČR(CZ) GPP208/12/P236 Institutional support: RVO:61388963 Keywords : carboranes * click chemistry * poly(ethylene glycol) * quantum chemistry * reaction mechanisms Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.242, year: 2013

  5. Electrochemical corrosion behavior of AZ91D alloy in ethylene glycol

    International Nuclear Information System (INIS)

    Fekry, A.M.; Fatayerji, M.Z.

    2009-01-01

    The effect of concentration on the corrosion behavior of Mg-based alloy AZ91D was investigated in ethylene glycol-water solutions using electrochemical techniques i.e. potentiodynamic polarization, electrochemical impedance measurements (EIS) and surface examination via scanning electron microscope (SEM) technique. This can provide a basis for developing new coolants for magnesium alloy engine blocks. Corrosion behavior of AZ91D alloy by coolant is important in the automotive industry. It was found that the corrosion rate of AZ91D alloy decreased with increasing concentration of ethylene glycol. For AZ91D alloy in chloride >0.05 M or fluoride 0.05 M for fluoride containing ethylene glycol solution, some inhibition effect has been observed. The corrosion of AZ91D alloy in the blank can be effectively inhibited by addition of 0.05 mM paracetamol that reacts with AZ91D alloy and forms a protective film on the surface at this concentration as confirmed by surface examination.

  6. Outcome of patients in acute poisoning with ethylene glycol - factors which may have influence on evolution

    OpenAIRE

    Tanasescu, A; Macovei, RA; Tudosie, MS

    2014-01-01

    Introduction. Intoxication with ethylene glycol occurs as a result of intentional ingestion in suicide attempts or accidentally. Clinical ethylene glycol poisoning is not specific and occurs in many poisoning cases therefore the diagnosis is difficult. Early diagnostic and establishment of therapy are very important for a favorable evolution. The mortality rate of ethylene glycol intoxication ranges between 1 and 22% depending on the amount of alcohol ingestion and the time period between alc...

  7. Anti-inflammatory effects of royal jelly on ethylene glycol induced renal inflammation in rats

    Directory of Open Access Journals (Sweden)

    Zeyneb Aslan

    2015-10-01

    Full Text Available ABSTRACT Objective: In this study, anti-inflammatory effects of Royal Jelly were investigated by inducing renal inflammation in rats with the use of ethylene glycol. For this purpose, the calcium oxalate urolithiasis model was obtained by feeding rats with ethylene glycol in drinking water. Materials and Methods: The rats were divided in five study groups. The 1st group was determined as the control group. The rats in the 2nd group received ethylene glycol (1% in drinking water. The rats in the 3rd group were daily fed with Royal Jelly by using oral gavage. The 4th group was determined as the preventive group and the rats were fed with ethylene glycol (1% in drinking water while receiving Royal Jelly via oral gavage. The 5th group was determined as the therapeutic group and received ethylene glycol in drinking water during the first 2 weeks of the study and Royal Jelly via oral gavage during the last 2 weeks of the study. Results: At the end of the study, proinflammatory/anti-inflammatory cytokines, TNF-α, IL-1β and IL-18 levels in blood and renal tissue samples from the rats used in the application were measured. Conclusion: The results have shown that ethylene glycol does induce inflammation and renal damage. This can cause the formation of reactive oxygen species. Royal Jelly is also considered to have anti-inflammatory effects due to its possible antiradical and antioxidative effects. It can have positive effects on both the prevention of urolithiasis and possible inflammation during the existing urolithiasis and support the medical treatment.

  8. Unwell after drinking homemade alcohol – A case of ethylene glycol poisoning

    OpenAIRE

    Laher, A.E.; Goldstein, L.N.; Wells, M.D.; Dufourq, N.; Moodley, P.

    2013-01-01

    Introduction: Delayed treatment of ethylene glycol poisoning can have catastrophic consequences that may result in death. Case report: Three young men presented to the Emergency Centre (EC) with a main complaint of feeling unwell after consuming “homemade alcohol”. A fourth person had died at home an hour earlier. Blood analysis revealed a raised anion gap metabolic acidosis as well as a raised osmolar gap in all three patients. Discussion: The clinical presentation of ethylene glycol a...

  9. Soft and flexible poly(ethylene glycol) nanotubes for local drug delivery.

    Science.gov (United States)

    Newland, B; Taplan, C; Pette, D; Friedrichs, J; Steinhart, M; Wang, W; Voit, B; Seib, F P; Werner, C

    2018-05-10

    Nanotubes are emerging as promising materials for healthcare applications but the selection of clinically relevant starting materials for their synthesis remains largely unexplored. Here we present, for the first time, the synthesis of poly(ethylene glycol) (PEG) based nanotubes via the photopolymerization of poly(ethylene glycol) diacrylate and other diacrylate derivatives within the pores of anodized aluminum oxide templates. Template-assisted synthesis allowed the manufacture of a diverse set of polymeric nanotubes with tunable physical characteristics including diameter (∼200-400 nm) and stiffness (405-902 kPa). PEG nanotubes were subjected to cytotoxicty assessment in cell lines and primary stem cells and showed excellent cytocompatability (IC50 > 120 μg ml-1). Nanotubes were readily drug loaded but released the majority of the drug over 5 days. Direct administration of drug loaded nanotubes to human orthotopic breast tumors substantially reduced tumor growth and metastasis and outperformed i.v. administration at the equivalent dose. Overall, this nanotube templating platform is emerging as a facile route for the manufacture of poly(ethylene glycol) nanotubes.

  10. Validation of an analytical methodology for the determination of diethylene glycol and ethylene glycol as impurities in glycerin and propylene glycol

    International Nuclear Information System (INIS)

    Rosabal Cordovi, Ursula M; Fonseca Gola, Antonio; Cordovi Velazquez, Juan M; Morales Torres, Galina

    2014-01-01

    A methodology for the quantification of diethylene glycol (DEG) and the ethylene glycol (EG) impurities by gas Chromatography with flame ionization detector in glycerol and propylene glycol samples was developed and validated. It was selected dimethyl sulphoxide as internal standard. It was used hydrogen as carrier and auxiliary gas. The temperature program was 100°C holding one minute, then ramp to rate of 7.5°C/ min up to 200 °C. A Restek 624 column was used, with a flow in column of 4.20 ml/ min. Temperatures of the injector and detector were set at 220°C and 250 °C, respectively. The linearity was determined at 25-75 ?μg/ml as interval of concentrations for both impurities with correlation coefficients larger than 0.999. Detection Limits were settled down in 0.0350 μ?g/ml to the diethylene glycol, and 0.0572 μg/ml to ethylene glycol, while the quantitation limits were 0.1160 μ?g/ml to DEG and 0.1897 μg/ml to the EG. The recoveries were 99.98 % and 100.00 %, respectively; with RSD % 1.18 % to DEG, and 0.60 % to the EG. The obtained results demonstrated that the methodology was linear, accurate, robustness, sensitive and selective to be used in the determination of both impurities in the quality control of the glycerol and propylene glycol as raw materials

  11. Bipallidal haemorrhage after ethylene glycol intoxication

    Energy Technology Data Exchange (ETDEWEB)

    Caparros-Lefebvre, D.; Policard, J.; Rigal, M. [CHU Pointe a Pitre, Service de Neurologie, Lille (France); Sengler, C. [CHU Pointe a Pitre, Laboratoire de Pharmaco-Toxicologie, Guadeloupe (France); Benabdallah, E. [CHU Pointe a Pitre, Service de Radiologie, Guadeloupe (France); Colombani, S. [Centre d' Imagerie medicale, Martinique (France)

    2005-02-01

    Acute or subacute bipallidal lesion, an uncommon radiological feature produced by metabolic disorders or poisoning, has never been attributed to ethylene glycol (EG) intoxication. This 50-year-old Afro-Caribbean alcoholic man had unexplained loss of consciousness. Blood tests showed osmolar gap. Drug screening was positive for EG at 6.06 mmol/l. Brain CT revealed bilateral pallidal haemorrhage. Pallidal haematoma, which could be related to deposition of oxalate crystals issued from EG metabolism, should lead to toxicological screening. (orig.)

  12. Bipallidal haemorrhage after ethylene glycol intoxication

    International Nuclear Information System (INIS)

    Caparros-Lefebvre, D.; Policard, J.; Rigal, M.; Sengler, C.; Benabdallah, E.; Colombani, S.

    2005-01-01

    Acute or subacute bipallidal lesion, an uncommon radiological feature produced by metabolic disorders or poisoning, has never been attributed to ethylene glycol (EG) intoxication. This 50-year-old Afro-Caribbean alcoholic man had unexplained loss of consciousness. Blood tests showed osmolar gap. Drug screening was positive for EG at 6.06 mmol/l. Brain CT revealed bilateral pallidal haemorrhage. Pallidal haematoma, which could be related to deposition of oxalate crystals issued from EG metabolism, should lead to toxicological screening. (orig.)

  13. Multimeric, Multifunctional Derivatives of Poly(ethylene glycol

    Directory of Open Access Journals (Sweden)

    Gian Maria Bonora

    2011-07-01

    Full Text Available This article reviews the use of multifunctional polymers founded on high-molecular weight poly(ethylene glycol (PEG. The design of new PEG derivatives assembled in a dendrimer-like multimeric fashion or bearing different functionalities on the same molecule is described. Their use as new drug delivery systems based on the conjugation of multiple copies or diversely active drugs on the same biocompatible support is illustrated.

  14. Unwell after drinking homemade alcohol – A case of ethylene glycol poisoning

    Directory of Open Access Journals (Sweden)

    A.E. Laher

    2013-06-01

    Discussion: The clinical presentation of ethylene glycol and methanol poisoning is non-specific and can be difficult to differentiate from ethanol intoxication. Homemade alcohol preparations are commonly adulterated with ethylene glycol and methanol to improve their taste and sting. Toxic alcohol analysis is not routinely carried out by most laboratory services in South Africa, and when carried out, results are only made available a few days later. A high index of suspicion coupled with early blood gas analysis and a need for prompt and effective treatment whilst awaiting toxicology analysis may limit the associated high morbidity and mortality.

  15. Unusual calcium oxalate crystals in ethylene glycol poisoning.

    Science.gov (United States)

    Godolphin, W; Meagher, E P; Sanders, H D; Frohlich, J

    1980-06-01

    A patient poisoned with ethylene glycol exhibited the symptoms of (1) hysteria, (2) metabolic acidosis with both a large anion gap and osmolal gap, and (3) crystalluria. However, the shape of the urinary crystals was prismatic and resembled hippurate rather than the expected dipyramidal calcium oxalate dihydrate. X-ray crystallography positively identified them as calcium oxalate monohydrate.

  16. Temperature dependent viscosity of cobalt ferrite / ethylene glycol ferrofluids

    Science.gov (United States)

    Kharat, Prashant B.; Somvanshi, Sandeep B.; Kounsalye, Jitendra S.; Deshmukh, Suraj S.; Khirade, Pankaj P.; Jadhav, K. M.

    2018-04-01

    In the present work, cobalt ferrite / ethylene glycol ferrofluid is prepared in 0 to 1 (in the step of 0.2) volume fraction of cobalt ferrite nanoparticles synthesized by co-precipitation method. The XRD results confirmed the formation of single phase spinel structure. The Raman spectra have been deconvoluted into individual Lorentzian peaks. Cobalt ferrite has cubic spinel structure with Fd3m space group. FT-IR spectra consist of two major absorption bands, first at about 586 cm-1 (υ1) and second at about 392 cm-1 (υ2). These absorption bands confirm the formation of spinel-structured cobalt ferrite. Brookfield DV-III viscometer and programmable temperature-controlled bath was used to study the relationship between viscosity and temperature. Viscosity behavior with respect to temperature has been studied and it is revealed that the viscosity of cobalt ferrite / ethylene glycol ferrofluids increases with an increase in volume fraction of cobalt ferrite. The viscosity of the present ferrofluid was found to decrease with increase in temperature.

  17. Magnetic fluid poly(ethylene glycol) with moderate anticancer activity

    Energy Technology Data Exchange (ETDEWEB)

    Zavisova, Vlasta, E-mail: zavisova@saske.s [IEP SAS, Watsonova 47, Kosice 040 01 (Slovakia); Koneracka, Martina [IEP SAS, Watsonova 47, Kosice 040 01 (Slovakia); Muckova, Marta; Lazova, Jana [Hameln, rds a.s., Horna 36, Modra (Slovakia); Jurikova, Alena; Lancz, Gabor; Tomasovicova, Natalia; Timko, Milan; Kovac, Jozef [IEP SAS, Watsonova 47, Kosice 040 01 (Slovakia); Vavra, Ivo [IEE SAS, Dubravska cesta 9, 841 04 Bratislava (Slovakia); Fabian, Martin [IGT SAS, Watsonova 45, Kosice 040 01 (Slovakia); Feoktystov, Artem V. [FLNP JINR, Joliot-Curie 6, Dubna Moscow Reg. 141980 (Russian Federation); KNU, Academician Glushkov Ave. 2/1, 03187 Kyiv (Ukraine); Garamus, Vasil M. [GKSS research center, Max-Planck-Str.1, 21502 Geesthacht (Germany); Avdeev, Mikhail V. [FLNP JINR, Joliot-Curie 6, Dubna Moscow Reg. 141980 (Russian Federation); Kopcansky, Peter [IEP SAS, Watsonova 47, Kosice 040 01 (Slovakia)

    2011-05-15

    Poly(ethylene glycol) (PEG)-containing magnetic fluids - magnetite (Fe{sub 3}O{sub 4}) stabilized by sodium oleate - were prepared. Magnetic measurements confirmed superparamagnetic behaviour at room temperature. The structure of that kind of magnetic fluid was characterized using different techniques, including electron microscopy, photon cross correlation spectroscopy and small-angle neutron scattering, while the adsorption of PEG on magnetic particles was analyzed by differential scanning calorimetry and Fourier transform infrared spectroscopy. From the in vitro toxicity tests it was found that a magnetic fluid containing PEG (MFPEG) partially inhibited the growth of cancerous B16 cells at the highest tested dose (2.1 mg/ml of Fe{sub 3}O{sub 4} in MFPEG). - Research Highlights: A new type of biocompatible magnetic fluid (MF) with poly(ethylene glycol) was prepared. Structuralization effects of magnetite particles depend on PEG concentration. Large fractals of magnetite nanoparticles in MF were observed (SANS indication). MF partially inhibited (approximately 50%) the growth of cancerous B16 cells.

  18. Magnetic fluid poly(ethylene glycol) with moderate anticancer activity

    International Nuclear Information System (INIS)

    Zavisova, Vlasta; Koneracka, Martina; Muckova, Marta; Lazova, Jana; Jurikova, Alena; Lancz, Gabor; Tomasovicova, Natalia; Timko, Milan; Kovac, Jozef; Vavra, Ivo; Fabian, Martin; Feoktystov, Artem V.; Garamus, Vasil M.; Avdeev, Mikhail V.; Kopcansky, Peter

    2011-01-01

    Poly(ethylene glycol) (PEG)-containing magnetic fluids - magnetite (Fe 3 O 4 ) stabilized by sodium oleate - were prepared. Magnetic measurements confirmed superparamagnetic behaviour at room temperature. The structure of that kind of magnetic fluid was characterized using different techniques, including electron microscopy, photon cross correlation spectroscopy and small-angle neutron scattering, while the adsorption of PEG on magnetic particles was analyzed by differential scanning calorimetry and Fourier transform infrared spectroscopy. From the in vitro toxicity tests it was found that a magnetic fluid containing PEG (MFPEG) partially inhibited the growth of cancerous B16 cells at the highest tested dose (2.1 mg/ml of Fe 3 O 4 in MFPEG). - Research Highlights: → A new type of biocompatible magnetic fluid (MF) with poly(ethylene glycol) was prepared. → Structuralization effects of magnetite particles depend on PEG concentration. → Large fractals of magnetite nanoparticles in MF were observed (SANS indication). → MF partially inhibited (approximately 50%) the growth of cancerous B16 cells.

  19. Effect of monobutylether ethylene glycol on Mg/Al layered double hydroxide: a physicochemical and conductivity study

    International Nuclear Information System (INIS)

    Paulo, Maria Joao; Matos, Bruno Ribeiro de; Ntais, Spyridon; Coral Fonseca, Fabio; Tavares, Ana C.

    2013-01-01

    Mg–Al hydrotalcite-like compounds with OH − ions intercalated in the gallery and modified with monobutylether ethylene glycol (mbeeg) were prepared from Mg 6 Al 2 (CO 3 )(OH) 16 ·4H 2 O by the reconstruction method. The effect of the ethylene glycol, a moderate surfactant, on the textural properties and on the vapor water sorption of the layered double hydroxides was investigated by transmission electron microscopy and nitrogen and water sorption techniques. The ion conductivity of the samples was measured at 98 % RH up to 180 °C. The compounds are formed by nanoplatelets with a lateral size inferior to 20 nm. The addition of the ethylene glycol was found to increase the specific surface area, total pore volume, and water sorption capacity of the Mg–Al layered double hydroxide. However, it also decreased the average pore diameter, and the ion conductivity of the ethylene glycol modified layered double hydroxide was lower than expected based on the samples’ specific surface area and water content.

  20. Reaction mechanism of ethylene glycol decomposition on Pt model catalysts: A density functional theory study

    International Nuclear Information System (INIS)

    Lv, Cun-Qin; Yang, Bo; Pang, Xian-Yong; Wang, Gui-Chang

    2016-01-01

    Highlights: • DFT calculations were performed to study the ethylene glycol decomposition on Pt. • The final products are CO and H_2 on Pt(111), (100) and (211). • Ethylene glycol decomposition on Pt(111) undergoes via initial O−H bond scission and followed by C−H bond cleavage. • Ethylene glycol decomposition proceeds via initial O−H bond scission and followed by O−H bond cleavage on Pt(100)/(211). - Abstract: Understanding and controlling bond beak sequence is important in catalytic processes. The DFT-GGA method combined with slab model was performed to study the ethylene glycol decomposition on various Pt model catalysts such as close-packed Pt(111), stepped Pt(211) and a more open one, Pt(100). Calculation results show that the adsorption energies of ethylene glycol and other decomposition species depend on the coordination number of surface atom, that is, low coordination number correspond to high adsorption energy. Moreover, it was found that final products of ethylene glycol decomposition are CO and H_2 on all model catalysts, but the reaction mechanism varies: On Pt(111), the first step is O−H bond scission, followed by C−H bond cleavage, namely C_2H_6O_2 → HOCH_2CH_2O + H → HOCH_2CHO + 2H→ HOCH_2CO +3H → OCH_2CO + 4H → OCHCO + 5H → CO + HCO + 5H → 2CO + 6H→ 2CO + 3H_2; On Pt(211) and Pt(100), however, it is a second O−H bond cleavage that follows the initial O−H bond scission, that is, C_2H_6O_2 → HOCH_2CH_2O + H → OCH_2CH_2O + 2H → OCHCH_2O + 3H → OCHCHO + 4H → 2HCO + 4H → 2CO + 6H → 2CO + 3H_2  on Pt(211), and C_2H_6O_2 →HOCH_2CH_2O+ H → OCH_2CH_2O + 2H→OCHCH_2O+3H→OCCH_2O+4H→CO+H_2CO+4H→CO+HCO+5H→2CO+6H→2CO+3H_2 on Pt(100) For the catalytic order of ethylene glycol to form H_2, it may be determined based on the rate-controlling step, and it is Pt(111) > Pt(211) > Pt(100).

  1. (Vapour + liquid) equilibria in the ternary system (acetonitrile + n-propanol + ethylene glycol) and corresponding binary systems at 101.3 kPa

    International Nuclear Information System (INIS)

    Qian, Guo-fei; Liu, Wen; Wang, Li-tao; Wang, Dao-cai; Song, Hang

    2013-01-01

    Highlights: • We adopted a new extractive solvent “ethylene glycol” to separate the mixture. • We measured the VLE data of binary system n-propanol + ethylene glycol. • We reinforce the VLE data of binary system acetonitrile + ethylene glycol. • We predicted the VLE data for the ternary system successfully. -- Abstract: Experimental isobaric (Vapour + liquid) equilibrium (VLE) data at 101.3 kPa were determined for three binary systems, viz. {acetonitrile (1) + n-propanol (2)}, {acetonitrile (1) + ethylene glycol (3)} and {n-propanol (2) + ethylene glycol (3)} and for one ternary system {acetonitrile (1) + n-propanol (2) + ethylene glycol (3)}. The measurements were performed using an improved Rose equilibrium still. The VLE data of the binary systems passed thermodynamic consistency tests and were correlated by Wilson and NRTL models. Good results were achieved. The phase behaviour of the ternary system was predicted directly by the parameters of two models obtained from the experimental binary results. The results showed an excellent agreement with experimental values

  2. Synthesis of Monodispersed Tantalum(V) oxide Nanospheres by an Ethylene Glycol Mediated Route

    Science.gov (United States)

    Tantalum(V) oxide (Ta2O5) nanospheres have been synthesized by a very simple ethylene glycol mediated route. The two-step process involves the formation of glycolate nanoparticles and their subsequent hydrolysis and calcination to generate the final Ta2O5 nanospheres. The synthes...

  3. Hydrophilization of poly(caprolactone copolymers through introduction of oligo(ethylene glycol moieties.

    Directory of Open Access Journals (Sweden)

    Jonathan J Wurth

    Full Text Available In this study, a new family of poly(ε-caprolactone (PCL copolymers that bear oligo(ethylene glycol (OEG moieties is described. The synthesis of three different oligo(ethylene glycol functionalized epoxide monomers derived from 2-methyl-4-pentenoic acid, and their copolymerization with ε-caprolactone (CL to poly(CL-co-OEG-MPO copolymers is presented. The statistical copolymerization initiated with SnOct2/BnOH yielded the copolymers with varying OEG content and composition. The linear relationship between feed ratio and incorporation of the OEG co-monomer enables control over backbone functional group density. The introduction of OEG moieties influenced both the thermal and the hydrophilic characteristics of the copolymers. Both increasing OEG length and backbone content resulted in a decrease in static water contact angle. The introduction of OEG side chains in the PCL copolymers had no adverse influence on MC-3TE3-E1 cell interaction. However, changes to cell form factor (Φ were observed. While unmodified PCL promoted elongated (anisotropic morphologies (Φ = 0.094, PCL copolymer with tri-ethylene glycol side chains at or above seven percent backbone incorporation induced more isotropic cell morphologies (Φ = 0.184 similar to those observed on glass controls (Φ = 0.151.

  4. Electrodeposition of Fe_3O_4 layer from solution of Fe_2(SO_4)_3 with addition ethylene glycol

    International Nuclear Information System (INIS)

    Dahlan, Dahyunir; Asrar, Allan

    2016-01-01

    The electrodeposition of Fe_3O_4 layer from the solution Fe_2(SO_4)_3 with the addition of ethylene glycol on Indium Tin Oxide (ITO) substrate has been performed. The electrodeposition was carried out using a voltage of 5 volts for 120 seconds, with and without the addition of 2% wt ethylene glycol. Significant effects of temperature on the resulting the samples is observed when they are heated at 400 °C. Structural characterization using X-ray diffraction (XRD) shows that all samples produce a layer of Fe_3O_4 with particle size less than 50 nanometers. The addition of ethylene glycol and the heating of the sample causes a shrinkage in particle size. The scanning electron microscopy (SEM) characterization shows that Fe_3O_4 layer resulting from the process of electrodeposition of Fe_2(SO_4)_3 without ethylene glycol, independent of whether the sample is heated or not, is uneven and buildup. Layer produced by the addition of ethylene glycol without heating produces spherical particles. On contrary, when the layer is heated the spherical particles transform to irregularly-shaped particles with smaller size.

  5. Ethylene glycol, but not DMSO, could replace glycerol inclusion in soybean lecithin-based extenders in ram sperm cryopreservation.

    Science.gov (United States)

    Najafi, Abouzar; Daghigh-Kia, Hossein; Dodaran, Hossein Vaseghi; Mehdipour, Mahdieh; Alvarez-Rodriguez, Manuel

    2017-02-01

    The aim of this study was to evaluate the effects of glycerol, ethylene glycol or DMSO in a soybean lecithin extender for freezing ram semen. In this study, 20 ejaculates were collected from four Ghezel rams and diluted with soybean lecithin extender with glycerol (7%), ethylene glycol (3%, 5% and 7%) or DMSO (3%, 5% and 7%). Sperm motility (CASA), membrane integrity (HOS test), viability, total abnormality, mitochondrial activity (Rhodamine 123) and apoptotic features (Annexin V/Propidium iodide) were assessed after thawing. There was no significant difference between glycerol and ethylene glycol at different concentrations (3% and 5%) regarding sperm total and progressive motility, viability, and membrane integrity. The least percentages of mitochondrial functionality were observed in samples frozen with all different DMSO concentrations tested (Plecithin extender. We propose that glycerol in a soybean lecithin based extender could be replaced by ethylene glycol at 3% or 5% concentrations. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Acute oxalate nephropathy caused by ethylene glycol poisoning

    Directory of Open Access Journals (Sweden)

    Jung Woong Seo

    2012-12-01

    Full Text Available Ethylene glycol (EG is a sweet-tasting, odorless organic solvent found in many agents, such as anti-freeze. EG is composed of four organic acids: glycoaldehyde, glycolic acid, glyoxylic acid and oxalic acid in vivo. These metabolites are cellular toxins that can cause cardio-pulmonary failure, life-threatening metabolic acidosis, central nervous system depression, and kidney injury. Oxalic acid is the end product of EG, which can precipitate to crystals of calcium oxalate monohydrate in the tubular lumen and has been linked to acute kidney injury. We report a case of EG-induced oxalate nephropathy, with the diagnosis confirmed by kidney biopsy, which showed acute tubular injury of the kidneys with extensive intracellular and intraluminal calcium oxalate monohydrate crystal depositions.

  7. Poly(ethylene glycol)/carbon quantum dot composite solid films exhibiting intense and tunable blue–red emission

    International Nuclear Information System (INIS)

    Hao, Yanling; Gan, Zhixing; Xu, Jiaqing; Wu, Xinglong; Chu, Paul K.

    2014-01-01

    Highlights: • Poly(ethylene glycol)/carbon quantum dots (PEG/CQDs) composite solid films exhibiting strong and tunable blue–red emission were prepared. Successful preparation of tunable emitting CQDs solid films can extend the application of carbon quantum dots in photoelectric devices. • The mechanism of the tunable emission from the PEG/CQDs composite solid films was discussed. • On the basis of the characteristics of the PL from solid films in this work, the complex PL origins of CQDs were further defined. The PL mechanism provides insights into the fluorescence mechanism of CQDs and may promotes their applications. • Poly(ethylene glycol); carbon quantum dots; Strong and tunable blue-red emission; The fluorescent quantum yield of 12.6%. - Abstract: Although carbon quantum dots (CQDs) possess excellent luminescence properties, it is a challenge to apply water-soluble CQDs to tunable luminescent devices. Herein, quaternary CQDs are incorporated into poly(ethylene glycol) to produce poly(ethylene glycol)/CQD composite solid films which exhibit strong and tunable blue–red emission. The fluorescent quantum yield reaches 12.6% which is comparable to that of many liquid CQDs and the photoluminescence characteristics are determined to elucidate the fluorescence mechanism. The CQD solid films with tunable optical properties bode well for photoelectric devices especially displays

  8. Stereocomplexed 8-armed poly(ethylene glycol)-poly(lactide) star block copolymer hydrogels: Gelation mechanism, mechanical properties and degradation behavior

    NARCIS (Netherlands)

    Buwalda, S.J.; Calucci, L.; Forte, C.; Dijkstra, Pieter J.; Feijen, Jan

    2012-01-01

    Mixing aqueous poly(ethylene glycol)-poly(d-lactide) and poly(ethylene glycol)-poly(l-lactide) star block copolymer solutions resulted in the formation of stereocomplexed hydrogels within 1 min. A study towards the mechanism of the temperature dependent formation of stereocomplexes in the hydrogels

  9. Curcumin Encapsulated into Methoxy Poly(Ethylene Glycol) Poly(ε-Caprolactone) Nanoparticles Increases Cellular Uptake and Neuroprotective Effect in Glioma Cells.

    Science.gov (United States)

    Marslin, Gregory; Sarmento, Bruno Filipe Carmelino Cardoso; Franklin, Gregory; Martins, José Alberto Ribeiro; Silva, Carlos Jorge Ribeiro; Gomes, Andreia Ferreira Castro; Sárria, Marisa Passos; Coutinho, Olga Maria Fernandes Pereira; Dias, Alberto Carlos Pires

    2017-03-01

    Curcumin is a natural polyphenolic compound isolated from turmeric ( Curcuma longa ) with well-demonstrated neuroprotective and anticancer activities. Although curcumin is safe even at high doses in humans, it exhibits poor bioavailability, mainly due to poor absorption, fast metabolism, and rapid systemic elimination. To overcome these issues, several approaches, such as nanoparticle-mediated targeted delivery, have been undertaken with different degrees of success. The present study was conducted to compare the neuroprotective effect of curcumin encapsulated in poly( ε -caprolactone) and methoxy poly(ethylene glycol) poly( ε -caprolactone) nanoparticles in U251 glioblastoma cells. Prepared nanoparticles were physically characterized by laser doppler anemometry, transmission electron microscopy, and X-ray diffraction. The results from laser doppler anemometry confirmed that the size of poly( ε -caprolactone) and poly(ethylene glycol) poly( ε -caprolactone) nanoparticles ranged between 200-240 nm for poly( ε -caprolactone) nanoparticles and 30-70 nm for poly(ethylene glycol) poly( ε -caprolactone) nanoparticles, and transmission electron microscopy images revealed their spherical shape. Treatment of U251 glioma cells and zebrafish embryos with poly( ε -caprolactone) and poly(ethylene glycol) poly( ε -caprolactone) nanoparticles loaded with curcumin revealed efficient cellular uptake. The cellular uptake of poly(ethylene glycol) poly( ε -caprolactone) nanoparticles was higher in comparison to poly( ε -caprolactone) nanoparticles. Moreover, poly(ethylene glycol) poly( ε -caprolactone) di-block copolymer-loaded curcumin nanoparticles were able to protect the glioma cells against tBHP induced-oxidative damage better than free curcumin. Together, our results show that curcumin-loaded poly(ethylene glycol) poly( ε -caprolactone) di-block copolymer nanoparticles possess significantly stronger neuroprotective effect in U251 human glioma cells compared to

  10. Biomedical Applications of Gold Nanoparticles Functionalized Using Hetero-Bifunctional Poly(ethylene glycol) Spacer

    National Research Council Canada - National Science Library

    Fu, Wei; Shenoy, Dinesh; Li, Jane; Crasto, Curtis; Jones, Graham; Dimarzio, Charles; Sridhar, Srinivas; Amiji, Mansoor

    2005-01-01

    To increase the targeting potential, circulation time, and the flexibility of surface-attached biomedically-relevant ligands on gold nanoparticles, hetero-bifunctional poly(ethylene glycol) (PEG, MW 1,500...

  11. Novel Routes to Ethylene Glycol Synthesis via Acid-Catalyzed Carbonylation of Formaldehyde and Dimethoxymethane

    OpenAIRE

    Celik, Fuat Emin

    2010-01-01

    Carbon-carbon bond forming carbonylation reactions were investigated as candidates to replace ethene epoxidation as the major source of ethylene glycol production. This work was motivated by the potentially lower cost of carbon derived from synthesis gas as compared to ethylene. Synthesis gas can be produced from relatively abundant and cheap natural gas, coal, and biomass resources whereas ethylene is derived from increasingly scarce and expensive crude oil. From synthesis gas, a range of...

  12. Newly designed PdRuBi/N-Graphene catalysts with synergistic effects for enhanced ethylene glycol electro-oxidation

    International Nuclear Information System (INIS)

    Li, Tengfei; Huang, Yiyin; Ding, Kui; Wu, Peng; Abbas, Syed Comail; Ghausi, Muhammad Arsalan; Zhang, Teng; Wang, Yaobing

    2016-01-01

    Graphical abstract: We rationally design and synthesize a ternary PdRuBi/NG catalyst with significantly enhanced catalytic activity with synergetic effect of Ru and Bi towards ethylene glycol electro-oxidation. - Abstract: Palladium (Pd)-based catalysts are appealing electro-catalysts for alcohol oxidation reaction in fuel cell, but still not efficient as the complicated oxidation process and sluggish kinetic. Here we rationally design and synthesize a PdRuBi/NG tri-metallic catalyst with space synergetic effect for enhanced ethylene glycol electro-oxidation, in which both Ru and Bi in the catalyst are synergistic effective in promoting catalytic activity of Pd catalytic interlayer by electronic effect and surface modification mechanism respectively. It shows 4.2 times higher peak current density towards ethylene glycol electro-oxidation than commercial Pd/C catalyst, and the catalytic durability is also greatly improved.

  13. Electrochemical performance for the electro-oxidation of ethylene glycol on a carbon-supported platinum catalyst at intermediate temperature

    International Nuclear Information System (INIS)

    Kosaka, Fumihiko; Oshima, Yoshito; Otomo, Junichiro

    2011-01-01

    Highlights: → High oxidation current in ethylene glycol electro-oxidation at intermediate temperature. → High C-C bond dissociation ratio of ethylene glycol at intermediate temperature. → Low selectivity for CH 4 in ethylene glycol electro-oxidation. → High selectivity for CO 2 according to an increase in steam to carbon ratios. - Abstract: To determine the kinetic performance of the electro-oxidation of a polyalcohol operating at relatively high temperatures, direct electrochemical oxidation of ethylene glycol on a carbon supported platinum catalyst (Pt/C) was investigated at intermediate temperatures (235-255 o C) using a single cell fabricated with a proton-conducting solid electrolyte, CsH 2 PO 4 , which has high proton conductivity (>10 -2 S cm -1 ) in the intermediate temperature region. A high oxidation current density was observed, comparable to that for methanol electro-oxidation and also higher than that for ethanol electro-oxidation. The main products of ethylene glycol electro-oxidation were H 2 , CO 2 , CO and a small amount of CH 4 formation was also observed. On the other hand, the amounts of C 2 products such as acetaldehyde, acetic acid and glycolaldehyde were quite small and were lower by about two orders of magnitude than the gaseous reaction products. This clearly shows that C-C bond dissociation proceeds almost to completion at intermediate temperatures and the dissociation ratio reached a value above 95%. The present observations and kinetic analysis suggest the effective application of direct alcohol fuel cells operating at intermediate temperatures and indicate the possibility of total oxidation of alcohol fuels.

  14. Reproductive toxicity of the glycol ethers.

    Science.gov (United States)

    Hardin, B D

    1983-06-01

    The glycol ethers are an important and widely used class of solvents. Recent studies have demonstrated that ethylene glycol monomethyl ether (EGME), ethylene glycol dimethyl ether (EGdiME), ethylene glycol monoethyl ether (EGEE), and ethylene glycol monoethyl ether acetate (EGEEA) are teratogenic. Other studies have demonstrated that testicular atrophy or infertility follow treatment of males with EGME, ethylene glycol monomethyl ether acetate (EGMEA), EGEE, EGEEA, diethylene glycol dimethyl ether (diEGdiME), and diethylene glycol monoethyl ether (diEGEE). Experimental data are reviewed and structure-activity relationships are speculated upon.

  15. IRIS Toxicological Review of Ethylene Glycol Mono-Butyl ...

    Science.gov (United States)

    EPA released the draft report, Toxicological Review for Ethylene Glycol Mono-Butyl Ether , that was distributed to Federal agencies and White House Offices for comment during the Science Discussion step of the IRIS Assessment Development Process. Comments received from other Federal agencies and White House Offices are provided below with external peer review panel comments. EPA is conducting a peer review of the scientific basis supporting the human health hazard and dose-response assessment of EGBE that will appear on the Integrated Risk Information System (IRIS) database.

  16. Comparison of conventional freezing and vitrification with dimethylformamide and ethylene glycol for cryopreservation of ovine embryos.

    Science.gov (United States)

    Varago, F C; Moutacas, V S; Carvalho, B C; Serapião, R V; Vieira, F; Chiarini-Garcia, H; Brandão, F Z; Camargo, L S; Henry, M; Lagares, M A

    2014-10-01

    The aim of this work was to evaluate the efficiency of the cryoprotectants dimethylformamide and ethylene glycol for cryopreservation of ovine embryos using vitrification and conventional freezing. The recovered embryos were distributed randomly in three treatment groups: Gr. 1: conventional freezing (n = 44), Gr. 2: vitrification with ethylene glycol (n = 39) and Gr. 3: vitrification with dimethylformamide (n = 38). Quality of fresh embryos in control group as well as of frozen and vitrified embryos was examined by three methodologies: staining with propidium iodide and Hoechst 33258 and evaluation under fluorescent microscopy, evaluation of re-expansion and hatching rates after culture, and determination of apoptotic index with TUNEL technique. It was established that re-expansion rate in all treatment groups was similar. In the same time, hatching rates were higher in Gr. 1 (40.5%) and Gr. 2 (35.3%) in comparison with Gr. 3 (15.5%, p conventional freezing, 10.1 ± 8.5, p conventional freezing) and fresh embryos. In conclusion, the dimethylformamide and ethylene glycol used as cryoprotectant to vitrify ovine embryos, in the concentrations and exposition time tested in this work, were not as efficient as the conventional freezing for cryopreservation of ovine embryos Thus, the conventional freezing with ethylene glycol was the most efficient method to cryopreserve ovine embryos in comparison with vitrification. © 2014 Blackwell Verlag GmbH.

  17. Membrane permeability of the human granulocyte to water, dimethyl sulfoxide, glycerol, propylene glycol and ethylene glycol.

    Science.gov (United States)

    Vian, Alex M; Higgins, Adam Z

    2014-02-01

    Granulocytes are currently transfused as soon as possible after collection because they rapidly deteriorate after being removed from the body. This short shelf life complicates the logistics of granulocyte collection, banking, and safety testing. Cryopreservation has the potential to significantly increase shelf life; however, cryopreservation of granulocytes has proven to be difficult. In this study, we investigate the membrane permeability properties of human granulocytes, with the ultimate goal of using membrane transport modeling to facilitate development of improved cryopreservation methods. We first measured the equilibrium volume of human granulocytes in a range of hypo- and hypertonic solutions and fit the resulting data using a Boyle-van't Hoff model. This yielded an isotonic cell volume of 378 μm(3) and an osmotically inactive volume of 165 μm(3). To determine the permeability of the granulocyte membrane to water and cryoprotectant (CPA), cells were injected into well-mixed CPA solution while collecting volume measurements using a Coulter Counter. These experiments were performed at temperatures ranging from 4 to 37°C for exposure to dimethyl sulfoxide, glycerol, ethylene glycol, and propylene glycol. The best-fit water permeability was similar in the presence of all of the CPAs, with an average value at 21°C of 0.18 μmatm(-1)min(-1). The activation energy for water transport ranged from 41 to 61 kJ/mol. The CPA permeability at 21°C was 6.4, 1.0, 8.4, and 4.0 μm/min for dimethyl sulfoxide, glycerol, ethylene glycol, and propylene glycol, respectively, and the activation energy for CPA transport ranged between 59 and 68 kJ/mol. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. IRIS Toxicological Review of Ethylene Glycol Mono Butyl Ether (Egbe) (Final Report)

    Science.gov (United States)

    EPA has finalized the Toxicological Review of Ethylene Glycol Mono Butyl Ether: in support of the Integrated Risk Information System (IRIS). Now final, this assessment may be used by EPA’s program and regional offices to inform decisions to protect human health.

  19. Characterization of Tin/Ethylene Glycol Solar Nanofluids Synthesized by Femtosecond Laser Radiation.

    Science.gov (United States)

    Torres-Mendieta, Rafael; Mondragón, Rosa; Puerto-Belda, Verónica; Mendoza-Yero, Omel; Lancis, Jesús; Juliá, J Enrique; Mínguez-Vega, Gladys

    2017-05-05

    Solar energy is available over wide geographical areas and its harnessing is becoming an essential tool to satisfy the ever-increasing demand for energy with minimal environmental impact. Solar nanofluids are a novel solar receiver concept for efficient harvesting of solar radiation based on volumetric absorption of directly irradiated nanoparticles in a heat transfer fluid. Herein, the fabrication of a solar nanofluid by pulsed laser ablation in liquids was explored. This study was conducted with the ablation of bulk tin immersed in ethylene glycol with a femtosecond laser. Laser irradiation promotes the formation of tin nanoparticles that are collected in the ethylene glycol as colloids, creating the solar nanofluid. The ability to trap incoming electromagnetic radiation, thermal conductivity, and the stability of the solar nanofluid in comparison with conventional synthesis methods is enhanced. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Electrochemical performance for the electro-oxidation of ethylene glycol on a carbon-supported platinum catalyst at intermediate temperature

    Energy Technology Data Exchange (ETDEWEB)

    Kosaka, Fumihiko; Oshima, Yoshito [Department of Environment Systems, Graduate School of Frontier Sciences, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8563 (Japan); Otomo, Junichiro, E-mail: otomo@k.u-tokyo.ac.jp [Department of Environment Systems, Graduate School of Frontier Sciences, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8563 (Japan)

    2011-11-30

    Highlights: > High oxidation current in ethylene glycol electro-oxidation at intermediate temperature. > High C-C bond dissociation ratio of ethylene glycol at intermediate temperature. > Low selectivity for CH{sub 4} in ethylene glycol electro-oxidation. > High selectivity for CO{sub 2} according to an increase in steam to carbon ratios. - Abstract: To determine the kinetic performance of the electro-oxidation of a polyalcohol operating at relatively high temperatures, direct electrochemical oxidation of ethylene glycol on a carbon supported platinum catalyst (Pt/C) was investigated at intermediate temperatures (235-255 {sup o}C) using a single cell fabricated with a proton-conducting solid electrolyte, CsH{sub 2}PO{sub 4}, which has high proton conductivity (>10{sup -2} S cm{sup -1}) in the intermediate temperature region. A high oxidation current density was observed, comparable to that for methanol electro-oxidation and also higher than that for ethanol electro-oxidation. The main products of ethylene glycol electro-oxidation were H{sub 2}, CO{sub 2}, CO and a small amount of CH{sub 4} formation was also observed. On the other hand, the amounts of C{sub 2} products such as acetaldehyde, acetic acid and glycolaldehyde were quite small and were lower by about two orders of magnitude than the gaseous reaction products. This clearly shows that C-C bond dissociation proceeds almost to completion at intermediate temperatures and the dissociation ratio reached a value above 95%. The present observations and kinetic analysis suggest the effective application of direct alcohol fuel cells operating at intermediate temperatures and indicate the possibility of total oxidation of alcohol fuels.

  1. IRIS Toxicological Review of Ethylene Glycol Mono-Butyl Ether (Egbe) (External Review Draft)

    Science.gov (United States)

    EPA has conducted a peer review of the scientific basis supporting the human health hazard and dose-response assessment of ethylene glycol monobutyl ether that will appear on the Integrated Risk Information System (IRIS) database.

  2. Alginate-Poly(ethylene glycol Hybrid Microspheres for Primary Cell Microencapsulation

    Directory of Open Access Journals (Sweden)

    Redouan Mahou

    2014-01-01

    Full Text Available The progress of medical therapies, which rely on the transplantation of microencapsulated living cells, depends on the quality of the encapsulating material. Such material has to be biocompatible, and the microencapsulation process must be simple and not harm the cells. Alginate-poly(ethylene glycol hybrid microspheres (alg-PEG-M were produced by combining ionotropic gelation of sodium alginate (Na-alg using calcium ions with covalent crosslinking of vinyl sulfone-terminated multi-arm poly(ethylene glycol (PEG-VS. In a one-step microsphere formation process, fast ionotropic gelation yields spherical calcium alginate gel beads, which serve as a matrix for simultaneously but slowly occurring covalent cross-linking of the PEG-VS molecules. The feasibility of cell microencapsulation was studied using primary human foreskin fibroblasts (EDX cells as a model. The use of cell culture media as polymer solvent, gelation bath, and storage medium did not negatively affect the alg-PEG-M properties. Microencapsulated EDX cells maintained their viability and proliferated. This study demonstrates the feasibility of primary cell microencapsulation within the novel microsphere type alg-PEG-M, serves as reference for future therapy development, and confirms the suitability of EDX cells as control model.

  3. Solubilities, densities and refractive indices for the ternary systems ethylene glycol + MCl + H2O (M = Na, K, Rb, Cs) at (15 and 35) deg. C

    International Nuclear Information System (INIS)

    Zhou Yanhong; Li Shuni; Zhai Quanguo; Jiang Yucheng; Hu Mancheng

    2010-01-01

    The solubilities, densities and refractive indices data for the four ternary systems ethylene glycol + MCl + H 2 O (M = Na, K, Rb, Cs) at different temperatures were measured, with mass fractions of ethylene glycol in the range of 0 to 1.0. In all cases, the presence of ethylene glycol significantly reduces the solubility of the salts in aqueous solution. The experimental data of density, refractive index and solubility of saturated solutions for these systems were correlated using polynomial equations as a function of the mass fraction of ethylene glycol. On the other hand, the refractive index and density of unsaturated solutions was also determined for the four ternary systems with varied unsaturated salt concentrations. Values for both the properties were correlated with the salt concentrations and proportions of ethylene glycol in the solutions.

  4. Two new barium-copper-ethylene glycol complexes: Synthesis and structure of BaCu(C2H6O2)n(C2H4O2)2 (N = 3, 6)

    International Nuclear Information System (INIS)

    Love, C.P.; Page, C.J.; Torardi, C.C.

    1992-01-01

    Two crystalline barium-copper-ethylene glycol complexes have been isolated and structurally characterized by single-crystal x-ray diffraction. The solution-phase complex has also been investigated as a molecular precursor for use in sol-gel synthesis of high-temperature superconductors. The first crystalline form has the formula BaCu(C 2 H 6 O 2 ) 6 (C 2 H 4 O 2 ) 2 (1) and has been isolated directly from ethylene glycol solutions of the barium-copper salt. In this molecule, copper is coordinated to the four xygens of two ethylene glycolate ligands in a nearly square planar geometry. Barium is coordinated by three bidentate ethylene glycol molecules and three monodentate ethylene glycol molecules; the 9-fold coordination resembles a trigonal prism with each rectangular face capped. Copper and barium moieties do not share any ethylene glycol or glycolate oxygens; they are found by hydrogen bonding to form linear chains. The second crystal type has formula BaCu(C 2 H 6 O 2 ) 3 (C 2 H 4 O 2 ) 2 (2). It was prepared via crystallization of the mixed-metal alkoxide from an ethylene glycol/methyl ethyl ketone solution. As for 1, the copper is coordinated to four oxygen atoms of two ethylene glycolate ligands in a nearly square planar arrangement. Barium is 8-coordinate in a distorted cubic geometry. It is coordinated to three bidentate ethylene glycol molecules and shares two of the oxygen atoms bound to the copper (one from each coordinated ethylene glycol) to form a discrete molecular barium-copper complex

  5. Huge thermal conductivity enhancement in boron nitride – ethylene glycol nanofluids

    International Nuclear Information System (INIS)

    Żyła, Gaweł; Fal, Jacek; Traciak, Julian; Gizowska, Magdalena; Perkowski, Krzysztof

    2016-01-01

    Paper presents the results of experimental studies on thermophysical properties of boron nitride (BN) plate-like shaped particles in ethylene glycol (EG). Essentially, the studies were focused on the thermal conductivity of suspensions of these particles. Nanofluids were obtained with two-step method (by dispersing BN particles in ethylene glycol) and its’ thermal conductivity was analyzed at various mass concentrations, up to 20 wt. %. Thermal conductivity was measured in temperature range from 293.15 K to 338.15 K with 15 K step. The measurements of thermal conductivity of nanofluids were performed in the system based on a device using the transient line heat source method. Studies have shown that nanofluids’ thermal conductivity increases with increasing fraction of nanoparticles. The results of studies also presented that the thermal conductivity of nanofluids changes very slightly with the increase of temperature. - Highlights: • Huge thermal conductivity enhancement in BN-EG nanofluid was reported. • Thermal conductivity increase very slightly with increasing of the temperature. • Thermal conductivity increase linearly with volume concentration of particles.

  6. Huge thermal conductivity enhancement in boron nitride – ethylene glycol nanofluids

    Energy Technology Data Exchange (ETDEWEB)

    Żyła, Gaweł, E-mail: gzyla@prz.edu.pl [Department of Physics and Medical Engineering, Rzeszow University of Technology, Rzeszow, 35-905 (Poland); Fal, Jacek; Traciak, Julian [Department of Physics and Medical Engineering, Rzeszow University of Technology, Rzeszow, 35-905 (Poland); Gizowska, Magdalena; Perkowski, Krzysztof [Department of Nanotechnology, Institute of Ceramics and Building Materials, Warsaw, 02-676 (Poland)

    2016-09-01

    Paper presents the results of experimental studies on thermophysical properties of boron nitride (BN) plate-like shaped particles in ethylene glycol (EG). Essentially, the studies were focused on the thermal conductivity of suspensions of these particles. Nanofluids were obtained with two-step method (by dispersing BN particles in ethylene glycol) and its’ thermal conductivity was analyzed at various mass concentrations, up to 20 wt. %. Thermal conductivity was measured in temperature range from 293.15 K to 338.15 K with 15 K step. The measurements of thermal conductivity of nanofluids were performed in the system based on a device using the transient line heat source method. Studies have shown that nanofluids’ thermal conductivity increases with increasing fraction of nanoparticles. The results of studies also presented that the thermal conductivity of nanofluids changes very slightly with the increase of temperature. - Highlights: • Huge thermal conductivity enhancement in BN-EG nanofluid was reported. • Thermal conductivity increase very slightly with increasing of the temperature. • Thermal conductivity increase linearly with volume concentration of particles.

  7. 2D SnO2 Nanosheets: Synthesis, Characterization, Structures, and Excellent Sensing Performance to Ethylene Glycol

    Directory of Open Access Journals (Sweden)

    Wenjin Wan

    2018-02-01

    Full Text Available Two dimensional (2DSnO2 nanosheets were synthesized by a substrate-free hydrothermal route using sodium stannate and sodium hydroxide in a mixed solvent of absolute ethanol and deionized water at a lower temperature of 130 °C. The characterization results of the morphology, microstructure, and surface properties of the as-prepared products demonstrated that SnO2 nanosheets with a tetragonal rutile structure, were composed of oriented SnO2 nanoparticles with a diameter of 6–12 nm. The X-ray diffraction (XRD and high-resolution transmission electron microscope (FETEM results demonstrated that the dominant exposed surface of the SnO2 nanoparticles was (101, but not (110. The growth and formation was supposed to follow the oriented attachment mechanism. The SnO2 nanosheets exhibited an excellent sensing response toward ethylene glycol at a lower optimal operating voltage of 3.4 V. The response to 400 ppm ethylene glycol reaches 395 at 3.4 V. Even under the low concentration of 5, 10, and 20 ppm, the sensor exhibited a high response of 6.9, 7.8, and 12.0 to ethylene glycol, respectively. The response of the SnO2 nanosheets exhibited a linear dependence on the ethylene glycol concentration from 5 to 1000 ppm. The excellent sensing performance was attributed to the present SnO2 nanoparticles with small size close to the Debye length, the larger specific surface, the high-energy exposed facets of the (101 surface, and the synergistic effects of the SnO2 nanoparticles of the nanosheets.

  8. Zero-order release of lysozyme from (poly)ethylene glycol)/poly(butylene terephthalate) matrices

    NARCIS (Netherlands)

    Bezemer, J.M.; Radersma, R.; Grijpma, Dirk W.; Dijkstra, Pieter J.; Feijen, Jan; van Blitterswijk, Clemens

    2000-01-01

    Protein release from a series of biodegradable poly(ether ester) multiblock copolymers, based on poly(ethylene glycol) (PEG) and poly(butylene terephthalate) (PBT) was investigated. Lysozyme-containing PEG/PBT films and microspheres were prepared using an emulsion technique. Proteins were

  9. Thermodynamic and optical studies of some ethylene glycol ethers in aqueous solutions at T = 298.15 K

    International Nuclear Information System (INIS)

    Dhondge, Sudhakar S.; Pandhurnekar, Chandrashekhar P.; Parwate, Dilip V.

    2009-01-01

    Experimental results of density (ρ), speed of sound (u), and refractive index (n D ) have been obtained for aqueous solutions of ethylene glycol monomethyl ether (EGMME), ethylene glycol monoethyl ether (EGMEE), diethylene glycol monomethyl ether (DEGMME), and diethylene glycol monoethyl ether (DEGMEE) over the entire concentration range at T = 298.15 K. From these measurements, the derived parameters, apparent molar volume of solute (φ V ), excess molar volume (V E ), isentropic compressibility of solution (β S ), apparent molar isentropic compressibility of solute (φ KS ), deviation in isentropic compressibility (Δβ S ), molar refraction [R] 1,2 and deviation in refractive index of solution (Δn D ) have been calculated. The Redlich-Kister equation has been fitted to the calculated values of V E , Δβ S and Δn D for the solution. The results obtained are interpreted in terms of hydrogen bonding and various interactions among solute and solvent molecules

  10. Delayed ethylene glycol poisoning presenting with abdominal pain and multiple cranial and peripheral neuropathies: a case report

    Directory of Open Access Journals (Sweden)

    Sran Hersharan

    2010-07-01

    Full Text Available Abstract Introduction Ethylene glycol poisoning may pose diagnostic difficulties if the history of ingestion is not volunteered, or if the presentation is delayed. This is because the biochemical features of high anion-gap metabolic acidosis and an osmolar gap resolve within 24 to 72 hours as the ethylene glycol is metabolized to toxic metabolites. This case illustrates the less well-known clinical features of delayed ethylene glycol poisoning, including multiple cranial and peripheral neuropathies, and the clinical findings which may point towards this diagnosis in the absence of a history of ingestion. Case presentation A 53-year-old Afro-Caribbean man presented with vomiting, abdominal pain and oliguria, and was found to have acute renal failure requiring emergency hemofiltration, and raised inflammatory markers. Computed tomography imaging of the abdomen revealed the appearance of bilateral pyelonephritis, however he failed to improve with broad-spectrum antibiotics, and subsequently developed multiple cranial neuropathies and increasing obtundation, necessitating intubation and ventilation. Computed tomography of the brain showed no focal lesions, and a lumbar puncture revealed a raised cerebrospinal fluid opening pressure and cyto-albuminological dissociation. Nerve conduction studies revealed a sensorimotor radiculoneuropathy mimicking a Guillain-Barre type lesion with an atypical distribution. It was only about two weeks after presentation that the history of ethylene glycol ingestion one week before presentation was confirmed. He had a slow recovery on the intensive care unit, requiring renal replacement therapy for eight weeks, and complicated by acute respiratory distress syndrome, neuropathic pain and a slow neurological recovery requiring prolonged rehabilitation. Conclusions Although neuropathy as a result of ethylene glycol poisoning has been described in a few case reports, all of these were in the context of a known history of

  11. Hydrogen bonding interactions between ethylene glycol and water: density, excess molar volume, and spectral study

    Institute of Scientific and Technical Information of China (English)

    ZHANG JianBin; ZHANG PengYan; MA Kai; HAN Fang; CHEN GuoHua; WEI XiongHui

    2008-01-01

    Studies of the density and the excess molar volume of ethylene glycol (EG)-water mixtures were carried out to illustrate the hydrogen bonding interactions of EG with water at different temperatures, The re-sults suggest that a likely complex of 3 ethylene glycol molecules bonding with 4 water molecules in an ethylene glycol-water mixture (EGW) is formed at the maximal excess molar volume, which displays stronger absorption capabilities for SO2 when the concentration of SO2 reaches 400×106 (volume ratio) in the gas phase. Meanwhile, FTIR and UV spectra of EGWs were recorded at various EG concentra-tions to display the hydrogen bonding interactions of EG with water. The FTIR spectra show that the stretching vibrational band of hydroxyl in the EGWs shifts to a lower frequency and the bending vibra-tional band of water shifts to a higher frequency with increasing the EG concentration, respectively. Furthermore, the UV spectra show that the electron transferring band of the hydroxyl oxygen in EG shows red shift with increasing the EG concentration. The frequency shifts in FTIR spectra and the shifts of absorption bands in UV absorption spectra of EGWs are interpreted as the strong hydrogen bonding interactions of the hydrogen atoms in water with the hydroxyl oxygen atoms of EG.

  12. Hydrogen bonding interactions between ethylene glycol and water:density,excess molar volume,and spectral study

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Studies of the density and the excess molar volume of ethylene glycol (EG)-water mixtures were carried out to illustrate the hydrogen bonding interactions of EG with water at different temperatures. The re-sults suggest that a likely complex of 3 ethylene glycol molecules bonding with 4 water molecules in an ethylene glycol-water mixture (EGW) is formed at the maximal excess molar volume,which displays stronger absorption capabilities for SO2 when the concentration of SO2 reaches 400×10?6 (volume ratio) in the gas phase. Meanwhile,FTIR and UV spectra of EGWs were recorded at various EG concentra-tions to display the hydrogen bonding interactions of EG with water. The FTIR spectra show that the stretching vibrational band of hydroxyl in the EGWs shifts to a lower frequency and the bending vibra-tional band of water shifts to a higher frequency with increasing the EG concentration,respectively. Furthermore,the UV spectra show that the electron transferring band of the hydroxyl oxygen in EG shows red shift with increasing the EG concentration. The frequency shifts in FTIR spectra and the shifts of absorption bands in UV absorption spectra of EGWs are interpreted as the strong hydrogen bonding interactions of the hydrogen atoms in water with the hydroxyl oxygen atoms of EG.

  13. Aqueous phase reforming of ethylene glycol - Role of intermediates in catalyst performance

    NARCIS (Netherlands)

    de Vlieger, Dennis; Mojet, Barbara; Lefferts, Leonardus; Seshan, Kulathuiyer

    2012-01-01

    Liquid product formation during the aqueous catalytic reforming of ethylene glycol (EG) was studied up to 450 °C and 250 bar pressure. Methanol, ethanol, and acetic acid were the main liquid by-products during EG reforming in the presence of alumina-supported Pt and Pt–Ni catalysts. The effect of

  14. Ethylene glycol causes acyl chain disordering in liquid-crystalline, unsaturated phospholipid model membranes, as measured by 2H NMR

    International Nuclear Information System (INIS)

    Nicolay, K.; Kruijff, B. de; Smaal, E.B.

    1986-01-01

    2 H NMR has been used to probe the effects of ethylene glycol at the level of the acyl chains in liposomes prepared from dioleoylphosphatidic acid or dioleoylphosphatidylcholine, labeled with 2 H at the 11-position of both oleic acid chains. Increasing concentrations of ethylene glycol lead to a proportional and substantial decrease in the quadrupolar splittings, measured from the 2 H NMR spectra of both liposomal system, indicative of acyl chain disordering. (Auth.)

  15. The polymerisation of oligo(ethylene glycol methyl ether) methacrylate from a multifunctional poly(ethylene imine) derived amide : a stabiliser for the synthesis and dispersion of magnetite nanoparticles

    NARCIS (Netherlands)

    Kleine, A.; Altan, C.L.; Yarar, U.E.; Sommerdijk, N.A.J.M.; Bucak, S.; Holder, S.J.

    2014-01-01

    A facile synthetic route to poly(ethylene imine)-graft-poly(oligo(ethylene glycol methyl ether)) (PEI-graft-POEGMA) functionalised superparamagnetic magnetite nanoparticles is described. The polymerisation of OEGMA from a model molecular amide demonstrated the feasibility of POEGMA synthesis under

  16. Management of poisoning with ethylene glycol and methanol in the UK: a prospective study conducted by the National Poisons Information Service (NPIS).

    Science.gov (United States)

    Thanacoody, Ruben H K; Gilfillan, Claire; Bradberry, Sally M; Davies, Jeremy; Jackson, Gill; Vale, Allister J; Thompson, John P; Eddleston, Michael; Thomas, Simon H L

    2016-01-01

    Poisoning with methanol and ethylene glycol can cause serious morbidity and mortality. Specific treatment involves the use of antidotes (fomepizole or ethanol) with or without extracorporeal elimination techniques. A prospective audit of patients with methanol or ethylene glycol poisoning reported by telephone to the National Poisons Information Service (NPIS) in the UK was conducted during the 2010 calendar year and repeated during the 2012 calendar year. The study was conducted to determine the frequency of clinically significant systemic toxicity and requirement for antidote use and to compare outcomes and rates of adverse reaction and other problems in use between ethanol and fomepizole. The NPIS received 1315 enquiries involving methanol or ethylene glycol, relating to 1070 individual exposures over the 2-year period. Of the 548 enquiries originating from hospitals, 329 involved systemic exposures (enteral or parenteral as opposed to topical exposure), of which 216 (66%) received an antidote (204 for ethylene glycol and 12 for methanol), and 90 (27%) extracorporeal treatment (86 for ethylene glycol and 4 for methanol). Comparing ethanol with fomepizole, adverse reactions (16/131 vs. 2/125, p methanol results in hospitalisation at least 2-3 times per week on average in the UK. No difference in outcome was detected between ethanol and fomepizole-treated patients, but ethanol was associated with more frequent adverse reactions.

  17. Ethylene glycol or methanol intoxication : Which antidote should be used, fomepizole or ethanol?

    NARCIS (Netherlands)

    Rietjens, S. J.; de Lange, D. W.; Meulenbelt, J.

    2014-01-01

    Ethylene glycol (EG) and methanol poisoning can cause life-threatening complications. Toxicity of EG and methanol is related to the production of toxic metabolites by the enzyme alcohol dehydrogenase (ADH), which can lead to metabolic acidosis, renal failure (in EG poisoning), blindness (in methanol

  18. Ethylene glycol and propylene glycol ethers – Reproductive and developmental toxicity

    Directory of Open Access Journals (Sweden)

    Beata Starek-Świechowicz

    2015-10-01

    Full Text Available Both ethylene and propylene glycol alkyl ethers (EGAEs and PGAEs, respectively are widely used, mainly as solvents, in industrial and household products. Some EGAEs demonstrate gonadotoxic, embriotoxic, fetotoxic and teratogenic effects in both humans and experimental animals. Due to the noxious impact of these ethers on reproduction and development of organisms EGAEs are replaced for considerably less toxic PGAEs. The data on the mechanisms of testicular, embriotoxic, fetotoxic and teratogenic effects of EGAEs are presented in this paper. Our particular attention was focused on the metabolism of some EGAEs and their organ-specific toxicities, apoptosis of spermatocytes associated with changes in the expression of various genes that code for oxidative stress factors, protein kinases and nuclear hormone receptors. Med Pr 2015;66(5:725–737

  19. Effects of ethylene glycol ethers on diesel fuel properties and emissions in a diesel engine

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-Cuenca, F.; Gomez-Marin, M. [Compania Logistica de Hidrocarburos (CLH), Central Laboratory, Mendez Alvaro 44, 28045 Madrid (Spain); Folgueras-Diaz, M.B., E-mail: belenfd@uniovi.es [Department of Energy, University of Oviedo, Independencia 13, 33004 Oviedo (Spain)

    2011-08-15

    Highlights: {yields} Effect of ethylene glycol ethers on diesel fuel properties. {yields} Effect of ethylene glycol ethers on diesel engine specific consumption and emissions. {yields} Blends with {<=}4 wt.% of oxygen do not change substantially diesel fuel quality. {yields} Blends with 1 and 2.5 wt.% of oxygen reduce CO and HC emissions, but not smoke. - Abstract: The effect of ethylene glycol ethers on both the diesel fuel characteristics and the exhaust emissions (CO, NO{sub x}, smoke and hydrocarbons) from a diesel engine was studied. The ethers used were monoethylene glycol ethyl ether (EGEE), monoethylene glycol butyl ether (EGBE), diethylene glycol ethyl ether (DEGEE). The above effect was studied in two forms: first by determining the modification of base diesel fuel properties by using blends with oxygen concentration around 4 wt.%, and second by determining the emission reductions for blends with low oxygen content (1 wt.%) and with 2.5 wt.% of oxygen content. The addition of DEGEE enhances base diesel fuel cetane number, but EGEE and EGBE decrease it. For concentrations of {>=}4 wt.% of oxygen, EGEE and diesel fuel can show immiscibility problems at low temperatures ({<=}0 {sup o}C). Also, every oxygenated compound, according to its boiling point, modifies the distillation curve at low temperatures and the distillate percentage increases. These compounds have a positive effect on diesel fuel lubricity, and slightly decrease its viscosity. Blends with 1 and 2.5 wt.% oxygen concentrations were used in order to determine their influence on emissions at both full and medium loads and different engine speeds. Generally, all compounds help to reduce CO, and hydrocarbon emissions, but not smoke. The best results were obtained for blends with 2.5 wt.% of oxygen. At this concentration, the additive efficiency in decreasing order was EGEE > DEGEE > EGBE for CO emissions and DGEE > EGEE > EGBE for hydrocarbon emissions. For NO{sub x}, both its behaviour and the

  20. Ethylene glycol monolayer protected nanoparticles: synthesis, characterization, and interactions with biological molecules.

    Science.gov (United States)

    Zheng, Ming; Li, Zhigang; Huang, Xueying

    2004-05-11

    The usefulness of the hybrid materials of nanoparticles and biological molecules on many occasions depends on how well one can achieve a rational design based on specific binding and programmable assembly. Nonspecific binding between nanoparticles and biomolecules is one of the major barriers for achieving their utilities in a biological system. In this paper, we demonstrate a new approach to eliminate nonspecific interactions between nanoparticles and biological molecules by shielding the nanoparticle with a monolayer of ethylene glycol. A direct synthesis of di-, tri-, and tetra(ethylene glycol)-protected gold nanoparticles (Au-S-EGn, n = 2, 3, and 4) was achieved under the condition that the water content was optimized in the range of 9-18% in the reaction mixture. With controlled ratio of [HAuCl4]/[EGn-SH] at 2, the synthesized particles have an average diameter of 3.5 nm and a surface plasma resonance band around 510 nm. Their surface structures were confirmed by 1H NMR spectra. These gold nanoparticles are bonded with a uniform monolayer with defined lengths of 0.8, 1.2, and 1.6 nm for Au-S-EG2, Au-S-EG3, and Au-S-EG4, respectively. They have great stabilities in aqueous solutions with a high concentration of electrolytes as well as in organic solvents. Thermogravimetric analysis revealed that the ethylene glycol monolayer coating is ca. 14% of the total nanoparticle weight. Biological binding tests by using ion-exchange chromatography and gel electrophoresis demonstrated that these Au-S-EGn (n = 2, 3, or 4) nanoparticles are free of any nonspecific bindings with various proteins, DNA, and RNA. These types of nanoparticles provide a fundamental starting material for designing hybrid materials composed of metallic nanoparticles and biomolecules.

  1. Strong Stretching of Poly(ethylene glycol) Brushes Mediated by Ionic Liquid Solvation.

    Science.gov (United States)

    Han, Mengwei; Espinosa-Marzal, Rosa M

    2017-09-07

    We have measured forces between mica surfaces coated with a poly(ethylene glycol) (PEG) brush solvated by a vacuum-dry ionic liquid, 1-ethyl-3-methyl imidazolium bis(trifluoromethylsulfonyl)imide, with a surface forces apparatus. At high grafting density, the solvation mediated by the ionic liquid causes the brush to stretch twice as much as in water. Modeling of the steric repulsion indicates that PEG behaves as a polyelectrolyte; the hydrogen bonding between ethylene glycol and the imidazolium cation seems to effectively charge the polymer brush, which justifies the strong stretching. Importantly, under strong polymer compression, solvation layers are squeezed out at a higher rate than for the neat ionic liquid. We propose that the thermal fluctuations of the PEG chains, larger in the brush than in the mushroom configuration, maintain the fluidity of the ionic liquid under strong compression, in contrast to the solid-like squeezing-out behavior of the neat ionic liquid. This is the first experimental study of the behavior of a polymer brush solvated by an ionic liquid under nanoconfinement.

  2. Poly(ethylene glycol)-containing hydrogel surfaces for antifouling applications in marine and freshwater environments

    NARCIS (Netherlands)

    Ekblad, T.; Bergström, G.; Ederth, T.; Conlan, S.L.; Mutton, R.; Clare, A.S.; Wang, S.; Liu, Y.; Zhao, Q.; D'Souza, F.; Donnelly, G.T.; Willemsen, P.R.; Pettitt, M.E.; Callow, M.E.; Callow, J.A.; Liedberg, B.

    2008-01-01

    This work describes the fabrication, characterization, and biological evaluation of a thin protein-resistant poly(ethylene glycol) (PEG)-based hydrogel coating for antifouling applications. The coating was fabricated by free-radical polymerization on silanized glass and silicon and on

  3. IRIS Toxicological Review of Ethylene Glycol Mono-Butyl Ether (Egbe) (Interagency Science Discussion Draft)

    Science.gov (United States)

    EPA released the draft report, Toxicological Review for Ethylene Glycol Mono-Butyl Ether , that was distributed to Federal agencies and White House Offices for comment during the Science Discussion step of the IRIS Assessment Development Process. Comments received from ot...

  4. Structure and thermal performance of poly(ethylene glycol) alkyl ether (Brij)/porous silica (MCM-41) composites as shape-stabilized phase change materials

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Lingjian; Shi, Haifeng, E-mail: haifeng.shi@gmail.com; Li, Weiwei; Han, Xu; Zhang, Xingxiang, E-mail: zhangpolyu@gmail.com

    2013-10-20

    Graphical abstract: The maximum 50 wt% Brij58 is loaded into the porous MCM-41 networks, and a new peak at 18.8° in XRD patterns confirmed the changes of crystallization behavior of Brij58 against the bulk one. - Highlights: • Poly(ethylene glycol) hexadecyl ether and poly(ethylene glycol) octadecyl ether have the good thermal storage ability. • New peak at 18.8° proved the coexisted confined crystallization and nucleation-induced crystallization. • Poly(ethylene glycol) alkyl ether/MCM-41 PCMs exhibits the good thermal stability. - Abstract: A series of shape-stabilized phase change materials (PCMs), composed of poly(ethylene glycol) hexadecyl ether (Brij58) or poly(ethylene glycol) octadecyl ether (Brij76) and porous silica (MCM-41), were prepared by the physical mixing method. The structure, thermal stability, energy storage ability and crystallization behavior of these composites are deeply investigated and characterized by Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), wide-angle X-ray diffraction (WAXD) and thermogravimetric analysis (TGA). Obvious phase transition behavior and energy storage capability are observed for these Brij/MCM-41 composites, and the heat storage efficiency increased with the weight of Brij component. New peak at 18.8° demonstrated that the pore size and the surface adsorption ability of MCM-41 affect the crystallization behavior of Brij molecule. The crystalline structure and energy storage ability of these Brij/MCM-41 composites are discussed based on the crystallization process.

  5. STUDIES REGARDING THE CRIOPROTECTIVE PROPRIETIES OF THE VITRIFICATION MEDIA, WITH ETHYLENE GLYCOL, SUCROSE, FICOLL 70 AND GALACTOSE USED IN MAMMALIAN EMBRYO CRYOPRESERVATION

    Directory of Open Access Journals (Sweden)

    ADA CEAN

    2009-05-01

    Full Text Available Crioprotectors are the main component of any vitrification media. The penetrant crioprotectors are essential for cell dehydration and for the decrease of the freezing point of the solution, allowing a longer time for dehydration to set in. The aim of our paper was to make a series of experiments in order to determine the concentration at which four cryoprotectants (ethylene glycol, sucrose, Ficoll 70 and galactose singly and in pairs would vitrify on plunging into liquid nitrogen and remain vitreous when thawed in water bath. A total of 156 solutions were tested. During freezing, vitrification was evidenced by the formation of transparent glass when the unsealed straws were plunged into liquid nitrogen, at -196°C. Crystallization (ice formation resulted in a milky appearance. Solutions that vitrify on freezing were tested if they remain vitreous on thawing. For thawing we tested three temperatures 20°C, 25°C and 37°C. During thawing, solutions that did not devitrified were transformed from solid clear state to the liquid state without evidence of a milky appearance. From the combinations of two cryoprotectors were tested a number of 51 solutions vitrify on freezing (19 solutions with ethylene glycol and galactose; 19 solutions with ethylene glycol and sucrose; 13 solutions with ethylene glycol and Ficoll. The ethylene glycol and galacose pair give the best results on thawing (3 combinations remained vitreous on thawing at 37°C.

  6. Electrodeposition of Fe{sub 3}O{sub 4} layer from solution of Fe{sub 2}(SO{sub 4}){sub 3} with addition ethylene glycol

    Energy Technology Data Exchange (ETDEWEB)

    Dahlan, Dahyunir, E-mail: dahyunir@yahoo.com; Asrar, Allan [Department of Physics, Andalas University, Limau Manih Padang 25163, West Sumatera (Indonesia)

    2016-03-11

    The electrodeposition of Fe{sub 3}O{sub 4} layer from the solution Fe{sub 2}(SO{sub 4}){sub 3} with the addition of ethylene glycol on Indium Tin Oxide (ITO) substrate has been performed. The electrodeposition was carried out using a voltage of 5 volts for 120 seconds, with and without the addition of 2% wt ethylene glycol. Significant effects of temperature on the resulting the samples is observed when they are heated at 400 °C. Structural characterization using X-ray diffraction (XRD) shows that all samples produce a layer of Fe{sub 3}O{sub 4} with particle size less than 50 nanometers. The addition of ethylene glycol and the heating of the sample causes a shrinkage in particle size. The scanning electron microscopy (SEM) characterization shows that Fe{sub 3}O{sub 4} layer resulting from the process of electrodeposition of Fe{sub 2}(SO{sub 4}){sub 3} without ethylene glycol, independent of whether the sample is heated or not, is uneven and buildup. Layer produced by the addition of ethylene glycol without heating produces spherical particles. On contrary, when the layer is heated the spherical particles transform to irregularly-shaped particles with smaller size.

  7. A Comprehensive Study of Photorefractive Properties in Poly(ethylene glycol Dimethacrylate— Ionic Liquid Composites

    Directory of Open Access Journals (Sweden)

    Mostafa A. Ellabban

    2016-12-01

    Full Text Available A detailed investigation of the recording, as well as the readout of transmission gratings in composites of poly(ethylene glycol dimethacrylate (PEGDMA and ionic liquids is presented. Gratings with a period of about 5.8 micrometers were recorded using a two-wave mixing technique with a coherent laser beam of a 355-nm wavelength. A series of samples with grating thicknesses d 0 = 10 … 150 micrometers, each for two different exposure times, was prepared. The recording kinetics, as well as the post-exposure properties of the gratings were monitored by diffracting a low intensity probe beam at a wavelength of 633 nm for Bragg incidence. To obtain a complete characterization, two-beam coupling experiments were conducted to clarify the type and the strength of the recorded gratings. Finally, the diffraction efficiency was measured as a function of the readout angle at different post-exposure times. We found that, depending on the parameters, different grating types (pure phase and/or mixed are generated, and at elevated thicknesses, strong light-induced scattering develops. The measured angular dependence of the diffraction efficiency can be fitted using a five-wave coupling theory assuming an attenuation of the gratings along the thickness. For grating thicknesses larger than 85 microns, light-induced scattering becomes increasingly important. The latter is an obstacle for recording thicker holograms, as it destroys the recording interference pattern with increasing sample depth. The obtained results are valuable in particular when considering PEGDMA-ionic liquid composites in the synthesis of advanced polymer composites for applications, such as biomaterials, conductive polymers and holographic storage materials.

  8. Partial molar volumes of organic solutes in water. XXVIII. Three aliphatic poly(ethylene glycols) at temperatures T = 298 K–573 K and pressures up to 30 MPa

    International Nuclear Information System (INIS)

    Cibulka, Ivan

    2017-01-01

    Highlights: • Standard molar volumes of three poly(ethylene glycols) in water are presented. • Data were obtained in the range T from (298 to 573) K and p up to 30 MPa. • Data are analyzed and compared with those of similar solutes. - Abstract: Densities of dilute aqueous solutions of three poly(ethylene glycols): 3-oxapentane-1,5-diol (diethylene glycol), 3,6-dioxaoctane-1,8-diol (triethylene glycol), and 3,5,9-trioxaundecane-1,11-diol (tetraethylene glycol) measured in the temperature range from (298 to 573) K and at pressures up to 30 MPa using an automated flow vibrating-tube densimeter are reported. Standard molar volumes were evaluated from the measured data. Present data complement both the previous measurements performed at atmospheric pressure in the temperature range from (278 to 343) K and the data already available for the first member of the homologous series (ethylene glycol). A comparison with data previously measured for the homologous series of linear aliphatic polyethers (poly(ethylene glycol) dimethyl ethers, glymes), diethylene glycol monomethyl ether (3,6-dioxaheptan-1-ol), and selected alkane-α,ω-diols is presented.

  9. The Effect of Ethylene Glycol, Glycine Betaine, and Urea on Lysozyme Thermal Stability

    Science.gov (United States)

    Schwinefus, Jeffrey J.; Leslie, Elizabeth J.; Nordstrom, Anna R.

    2010-01-01

    The four-week student project described in this article is an extension of protein thermal denaturation experiments to include effects of added cosolutes ethylene glycol, glycine betaine, and urea on the unfolding of lysozyme. The transition temperatures and van't Hoff enthalpies for unfolding are evaluated for six concentrations of each cosolute,…

  10. Preparation of diesel emulsion using auxiliary emulsifier mono ethylene glycol and utilization in a turbocharged diesel engine

    International Nuclear Information System (INIS)

    Yilmaz, Emre; Solmaz, Hamit; Polat, Seyfi; Uyumaz, Ahmet; Şahin, Fatih; Salman, M. Sahir

    2014-01-01

    Highlights: • Mono-ethylene glycol was used as an auxiliary emulsifier. • Using mono ethylene glycol prolonged precipitation duration of emulsions. • With using E5 and E10 fuels engine torque averagely increased by 0.35% and 1.73% respectively. • It was found that specific fuel consumption of emulsions is lower than diesel. • Using E10 fuel reduced CO, NO x and soot emissions 44%, 47% and 5% respectively. - Abstract: Diesel engines are used widely as they have lower fuel consumption and higher thermal efficiency in transportation sector. However, the emitted high NO x , CO and soot emissions have led researchers to search different alternative fuels. At this point, diesel fuels emulsions help to reduce exhaust emissions. In this study, the effects of diesel fuel emulsions containing 5% (E5) and 10% (E10) water on engine performance an exhaust emissions has been investigated. Mono ethylene glycol was used as an auxiliary emulsifier in the preparation of the emulsion. Use of the mono ethylene glycol reduced the subsidence rate of the E5 and E10 about 34.5% and 47.1% respectively. The experiments were conducted at full load condition and at 2500, 3250 and 4000 rpm engine speeds. Engine torque and power increased according to diesel fuel between 2400 and 3600 engine speed range when emulsified fuels were used. But significant reductions were observed after that engine speed range. It was observed that the nitrogenoxide (NO x ) emission reduced 5.42% and 11.01% with using E5 and E10 fuel respectively according to diesel fuel at 2500 rpm. Also the soot emissions reduced 12.39% and 22.97% with using E5 and E10

  11. Molecular Dynamics Investigation of the Effects of Concentration on Hydrogen Bonding in Aqueous Solutions of Methanol, Ethylene Glycol and Glycerol

    International Nuclear Information System (INIS)

    Zhang, Ning; Li, Weizhong; Chen, Cong; Zuo, Jianguo; Weng, Lindong

    2013-01-01

    Hydrogen bonding interaction between alcohols and water molecules is an important characteristic in the aqueous solutions of alcohols. In this paper, a series of molecular dynamics simulations have been performed to investigate the aqueous solutions of low molecular weight alcohols (methanol, ethylene glycol and glycerol) at the concentrations covering a broad range from 1 to 90 mol %. The work focuses on studying the effect of the alcohols molecules on the hydrogen bonding of water molecules in binary mixtures. By analyzing the hydrogen bonding ability of the hydroxyl (-OH) groups for the three alcohols, it is found that the hydroxyl group of methanol prefers to form more hydrogen bonds than that of ethylene glycol and glycerol due to the intra-and intermolecular effects. It is also shown that concentration has significant effect on the ability of alcohol molecule to hydrogen bond water molecules. Understanding the hydrogen bonding characteristics of the aqueous solutions is helpful to reveal the cryoprotective mechanisms of methanol, ethylene glycol and glycerol in aqueous solutions

  12. Noncovalent pegylation by dansyl-poly(ethylene glycol)s as a new means against aggregation of salmon calcitonin.

    Science.gov (United States)

    Mueller, Claudia; Capelle, Martinus A H; Arvinte, Tudor; Seyrek, Emek; Borchard, Gerrit

    2011-05-01

    During all stages of protein drug development, aggregation is one of the most often encountered problems. Covalent conjugation of poly(ethylene glycol) (PEG), also called PEGylation, to proteins has been shown to reduce aggregation of proteins. In this paper, new excipients based on PEG are presented that are able to reduce aggregation of salmon calcitonin (sCT). Several PEG polymers consisting of a hydrophobic dansyl-headgroup attached to PEGs of different molecular weights have been synthesized and characterized physicochemically. After addition of dansyl-methoxypoly(ethylene glycol) (mPEG) 2 kDa to a 40 times molar excess of sCT resulted in an increase in dansyl-fluorescence and a decrease in 90° light scatter suggesting possible interactions. The aggregation of sCT in different buffer systems in presence or absence of the different dansyl-PEGs was measured by changes in Nile red fluorescence and turbidity. Dansyl-mPEG 2 kDa in a 1:1 molar ratio to sCT strongly reduced aggregation. Reduction of sCT aggregation was also measured for the bivalent dansyl-PEG 3 kDa in a 1:1 molar ratio. Dansyl-mPEG 5 kDa deteriorated sCT aggregation. Potential cytotoxicity and hemolysis were investigated. This paper shows that dansyl-PEGs are efficacious in reducing aggregation of sCT. Copyright © 2010 Wiley-Liss, Inc.

  13. Poly(ethylene glycol) grafted chitosan as new copolymer material for oral delivery of insulin

    International Nuclear Information System (INIS)

    Ho, Thanh Ha; Thanh Le, Thi Nu; Nguyen, Tuan Anh; Dang, Mau Chien

    2015-01-01

    A new scheme of grafting poly (ethylene glycol) onto chitosan was proposed in this study to give new material for delivery of insulin over oral pathway. First, methoxy poly(ethylene glycol) amine (mPEGa MW 2000) were grafted onto chitosan (CS) through multiples steps to synthesize the grafting copolymer PEG-g-CS. After each synthesis step, chitosan and its derivatives were characterized by FTIR, "1H NMR Then, insulin loaded PEG-g-CS nanoparticles were prepared by cross-linking of CS with sodium tripolyphosphate (TPP). Same insulin loaded nanoparticles using unmodified chitosan were also prepared in order to compare with the modified ones. Results showed better protecting capacity of the synthesized copolymer over original CS. CS nanoparticles (10 nm of size) were gel like and high sensible to temperature as well as acidic environment while PEG-g-CS nanoparticles (200 nm of size) were rigid and more thermo and pH stable. (paper)

  14. Poly(ethylene glycol)s as grinding additives in the mechanochemical preparation of highly functionalized 3,5-disubstituted hydantoins.

    Science.gov (United States)

    Mascitti, Andrea; Lupacchini, Massimiliano; Guerra, Ruben; Taydakov, Ilya; Tonucci, Lucia; d'Alessandro, Nicola; Lamaty, Frederic; Martinez, Jean; Colacino, Evelina

    2017-01-01

    The mechanochemical preparation of highly functionalized 3,5-disubstituted hydantoins was investigated in the presence of various poly(ethylene) glycols (PEGs), as safe grinding assisting agents (liquid-assisted grinding, LAG). A comparative study under dry-grinding conditions was also performed. The results showed that the cyclization reaction was influenced by the amount of the PEG grinding agents. In general, cleaner reaction profiles were observed in the presence of PEGs, compared to dry-grinding procedures.

  15. Enzyme-Catalyzed Modifications of Polysaccharides and Poly(ethylene glycol

    Directory of Open Access Journals (Sweden)

    H. N. Cheng

    2012-06-01

    Full Text Available Polysaccharides are used extensively in various industrial applications, such as food, adhesives, coatings, construction, paper, pharmaceuticals, and personal care. Many polysaccharide structures need to be modified in order to improve their end-use properties; this is mostly done through chemical reactions. In the past 20 years many enzyme-catalyzed modifications have been developed to supplement chemical derivatization methods. Typical reactions include enzymatic oxidation, ester formation, amidation, glycosylation, and molecular weight reduction. These reactions are reviewed in this paper, with emphasis placed on the work done by the authors. The polymers covered in this review include cellulosic derivatives, starch, guar, pectin, and poly(ethylene glycol.

  16. Formulation of polylactide-co-glycolic acid nanospheres for encapsulation and sustained release of poly(ethylene imine-poly(ethylene glycol copolymers complexed to oligonucleotides

    Directory of Open Access Journals (Sweden)

    Wheatley Margaret A

    2009-04-01

    Full Text Available Abstract Antisense oligonucleotides (AOs have been shown to induce dystrophin expression in muscles cells of patients with Duchenne Muscular Dystrophy (DMD and in the mdx mouse, the murine model of DMD. However, ineffective delivery of AOs limits their therapeutic potential. Copolymers of cationic poly(ethylene imine (PEI and non-ionic poly(ethylene glycol (PEG form stable nanoparticles when complexed with AOs, but the positive surface charge on the resultant PEG-PEI-AO nanoparticles limits their biodistribution. We adapted a modified double emulsion procedure for encapsulating PEG-PEI-AO polyplexes into degradable polylactide-co-glycolic acid (PLGA nanospheres. Formulation parameters were varied including PLGA molecular weight, ester end-capping, and sonication energy/volume. Our results showed successful encapsulation of PEG-PEI-AO within PLGA nanospheres with average diameters ranging from 215 to 240 nm. Encapsulation efficiency ranged from 60 to 100%, and zeta potential measurements confirmed shielding of the PEG-PEI-AO cationic charge. Kinetic measurements of 17 kDa PLGA showed a rapid burst release of about 20% of the PEG-PEI-AO, followed by sustained release of up to 65% over three weeks. To evaluate functionality, PEG-PEI-AO polyplexes were loaded into PLGA nanospheres using an AO that is known to induce dystrophin expression in dystrophic mdx mice. Intramuscular injections of this compound into mdx mice resulted in over 300 dystrophin-positive muscle fibers distributed throughout the muscle cross-sections, approximately 3.4 times greater than for injections of AO alone. We conclude that PLGA nanospheres are effective compounds for the sustained release of PEG-PEI-AO polyplexes in skeletal muscle and concomitant expression of dystrophin, and may have translational potential in treating DMD.

  17. Removal of Heavy Metal Ions by Using Composite of Cement Kiln Dust/Ethylene Glycol co Acrylic Acid Prepared by y-Irradiation

    International Nuclear Information System (INIS)

    Sokker, H.H.; Abdel-Rahman, H.A.; Khattab, M.M.; Ismail, M.R.

    2010-01-01

    Various composites of cement kiln dust (CKD) and poly(ethylene glycol co acrylic acid) using y-irradiation was investigated. The samples were prepared using three percentages of cement kiln dust namely, 20, 50 and 75 by wt % and mixed with an equimolar ratio (1:1) of ethylene glycol and acrylic acid then irradiated at doses; 10,20 and 30 kGy of gamma-irradiation. The results showed that (CKD) and poly(ethylene glycol co acrylic acid) composites were formed only at 30 kGy. In addition, CKD alone has the lowest degree of removal of heavy metal ions compared with the prepared composites. A composite containing 75% cement kiln dust by weight percentage, showed the highest degree of removal of cobalt ions, whereas, a composite of 20% CKD showed the highest degree for cadmium ion removal. While the composite of 75% CKD showed a higher selectivity of cobalt ion than cadmium ion in their mixed solution.

  18. Microarray analysis of the gene expression profile in triethylene glycol dimethacrylate-treated human dental pulp cells.

    Science.gov (United States)

    Torun, D; Torun, Z Ö; Demirkaya, K; Sarper, M; Elçi, M P; Avcu, F

    2017-11-01

    Triethylene glycol dimethacrylate (TEGDMA) is an important resin monomer commonly used in the structure of dental restorative materials. Recent studies have shown that unpolymerized resin monomers may be released into the oral environment and cause harmful biological effects. We investigated changes in the gene expression profiles of TEGDMA-treated human dental pulp cells (hDPCs) following short- (1-day) and long-term (7-days) exposure. HDPCs were exposed to a noncytotoxic concentration of TEGDMA, and gene expression profiles were evaluated by microarray analysis. The results were confirmed by quantitative reverse-transcriptase PCR (qRT PCR). In total, 1282 and 1319 genes (up- or down-regulated) were differentially expressed compared with control group after the 1- and 7-day incubation periods, respectively. Biological ontology-based analyses revealed that metabolic, cellular, and developmental processes constituted the largest groups of biological functional processes. qRT-PCR analysis on bone morphogenetic protein-2 (BMP-2), BMP-4, secreted protein, acidic, cysteine-rich, collagen type I alpha 1, oxidative stress-induced growth inhibitor 1, MMP3, interleukin-6, and heme oxygenase-1 genes confirmed the changes in expression observed in the microarray analysis. Our results suggest that TEGDMA can change the many functions of hDPCs through large changes in gene expression levels and complex interactions with different signaling pathways.

  19. Ethylene glycol oxidation on Pt and Pt-Ru nanoparticle decorated polythiophene/multiwalled carbon nanotube composites for fuel cell applications

    International Nuclear Information System (INIS)

    Selvaraj, Vaithilingam; Alagar, Muthukaruppan

    2008-01-01

    A novel supporting material containing polythiophene (PTh) and multiwalled carbon nanotubes (MWCNTs) (PTh-CNTs) is prepared by in situ polymerization of thiophene on carbon nanotubes using FeCl 3 as oxidizing agent under sonication. The prepared polythiophene/CNT composites are further decorated with Pt and Pt-Ru nanoparticles by chemical reduction of the corresponding metal salts using HCHO as reducing agent at pH = 11 (Pt/PTh-CNT and Pt-Ru/PTh-CNT). The fabricated composite films decorated with nanoparticles were investigated towards the electrochemical oxidation of ethylene glycol (EG). The presence of carbon nanotubes in conjugation with a conducting polymer produces a good catalytic effect, which might be due to the higher electrochemically accessible surface areas, electronic conductivity and easier charge-transfer at polymer/electrolyte interfaces, which allows higher dispersion of Pt and Pt-Ru nanoparticles. Such nanoparticle modified PTh-CNT electrodes exhibit better catalytic behavior towards ethylene glycol oxidation. Results show that Pt/PTh-CNT and Pt-Ru/PTh-CNT modified electrodes show enhanced electrocatalytic activity and stability towards the electro-oxidation of ethylene glycol than the Pt/PTh electrodes, which shows that the composite film is more promising for applications in fuel cells

  20. Evaluation of anti-urolithiatic effect of aqueous extract of Bryophyllum pinnatum (Lam. leaves using ethylene glycol-induced renal calculi

    Directory of Open Access Journals (Sweden)

    Apexa Bhanuprasad Shukla

    2014-05-01

    Full Text Available Objective: To investigate the anti-urolithiatic effect of aqueous extract of leaves of Bryophyllum pinnatum (B. pinnatum on ethylene glycol-induced renal calculi. Materials and Methods: Thirty-six Wistar male rats were randomly divided into six equal groups. group A animals received distilled water for 28 days. Group B to group F animals received 1% v/v ethylene glycol in distilled water for 28 days and group B served as ethylene glycol control. Groups C and D (preventive groups received aqueous extract of leaves of B. pinnatum 50 and 100 mg/kg intraperitoneally, respectively for 28 days. Groups E and F (treatment groups received aqueous extract of leaves of B. pinnatum 50 and 100 mg/kg intraperitoneally, respectively from 15th to 28th day. On days 0 and 28, 24 hrs urine samples were collected for urinary volume and urinary oxalate measurement. On day 28, blood was collected for serum creatinine and blood urea level monitoring. All animals were sacrificed and kidneys were removed, weighed, and histopathologically evaluated for calcium oxalate crystals deposition. Results: Administration of aqueous extract of leaves of B. pinnatum reduced urine oxalate level significantly, as compared with Group B (p

  1. Surface modification of poly(styrene-b-(ethylene-co-butylene)-b-styrene) elastomer via photo-initiated graft polymerization of poly(ethylene glycol)

    Energy Technology Data Exchange (ETDEWEB)

    Li Xiaomeng [State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Luan Shifang, E-mail: sfluan@ciac.jl.cn [State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Yang Huawei; Shi Hengchong; Zhao Jie; Jin Jing [State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Yin Jinghua, E-mail: yinjh@ciac.jl.cn [State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Stagnaro, Paola [Istituto per Io Studio delle Macromolecole, Consiglio Nazionale delle Ricerche, Via de Marini 6, 16149 Genova (Italy)

    2012-01-15

    Poly(styrene-b-(ethylene-co-butylene)-b-styrene) (SEBS) copolymer biomedical elastomer was covalently grafted with poly(ethylene glycol) methyl ether methacrylate (PEGMA) via a photo-initiated graft polymerization technique. The surface graft polymerization of SEBS with PEGMA was verified by ATR-FTIR and XPS. Effect of graft polymerization parameters, i.e., monomer concentration, UV irradiation time and initiator concentration on the grafting density was investigated. Comparing with the virgin SEBS film, the PEGMA-modified SEBS film presented an enhanced wettability and a larger surface energy. Besides, the surface grafting of PEGMA imparted excellent anti-platelet adhesion and anti-protein adsorption to the SEBS surface.

  2. Characterization of Titanium Oxide Nanoparticles Obtained by Hydrolysis Reaction of Ethylene Glycol Solution of Alkoxide

    Directory of Open Access Journals (Sweden)

    Naofumi Uekawa

    2012-01-01

    Full Text Available Transparent and stable sols of titanium oxide nanoparticles were obtained by heating a mixture of ethylene glycol solution of titanium tetraisopropoxide (TIP and a NH3 aqueous solution at 368 K for 24 h. The concentration of NH3 aqueous solution affected the structure of the obtained titanium oxide nanoparticles. For NH3 aqueous solution concentrations higher than 0.2 mol/L, a mixture of anatase TiO2 nanoparticles and layered titanic acid nanoparticles was obtained. The obtained sol was very stable without formation of aggregated precipitates and gels. Coordination of ethylene glycol to Ti4+ ions inhibited the rapid hydrolysis reaction and aggregation of the obtained nanoparticles. The obtained titanium oxide nanoparticles had a large specific surface area: larger than 350 m2/g. The obtained titanium oxide nanoparticles showed an enhanced adsorption towards the cationic dye molecules. The selective adsorption corresponded to presence of layered titanic acid on the obtained anatase TiO2 nanoparticles.

  3. Characterization of Titanium Oxide Nanoparticles Obtained by Hydrolysis Reaction of Ethylene Glycol Solution of Alkoxide

    International Nuclear Information System (INIS)

    Uekawa, N.; Endo, N.; Ishii, K.; Kojima, T.; Kakegawa, K.

    2012-01-01

    Transparent and stable sols of titanium oxide nanoparticles were obtained by heating a mixture of ethylene glycol solution of titanium tetraisopropoxide (TIP) and a NH 3 aqueous solution at 368 K for 24 h. The concentration of NH 3 aqueous solution affected the structure of the obtained titanium oxide nanoparticles. For NH 3 aqueous solution concentrations higher than 0.2 mol/L, a mixture of anatase TiO 2 nanoparticles and layered titanic acid nanoparticles was obtained. The obtained sol was very stable without formation of aggregated precipitates and gels. Coordination of ethylene glycol to Ti4+ ions inhibited the rapid hydrolysis reaction and aggregation of the obtained nanoparticles. The obtained titanium oxide nanoparticles had a large specific surface area: larger than 350 m2/g. The obtained titanium oxide nanoparticles showed an enhanced adsorption towards the cationic dye molecules. The selective adsorption corresponded to presence of layered titanic acid on the obtained anatase TiO 2 nanoparticles.

  4. Poly(ethylene glycol) and cyclodextrin-grafted chitosan: from methodologies to preparation and potential biotechnological applications

    Science.gov (United States)

    Campos, Estefânia V. R.; Oliveira, Jhones L.; Fraceto, Leonardo F.

    2017-11-01

    Chitosan, a polyaminosaccharide obtained by alkaline deacetylation of chitin, possesses useful properties including biodegradability, biocompatibility, low toxicity, and good miscibility with other polymers. It is extensively used in many applications in biology, medicine, agriculture, environmental protection, and the food and pharmaceutical industries. The amino and hydroxyl groups present in the chitosan backbone provide positions for modifications that are influenced by factors such as the molecular weight, viscosity, and type of chitosan, as well as the reaction conditions. The modification of chitosan by chemical methods is of interest because the basic chitosan skeleton is not modified and the process results in new or improved properties of the material. Among the chitosan derivatives, cyclodextrin-grafted chitosan and poly(ethylene glycol)-grafted chitosan are excellent candidates for a range of biomedical, environmental decontamination, and industrial purposes. This work discusses modifications including chitosan with attached cyclodextrin and poly(ethylene glycol), and the main applications of these chitosan derivatives in the biomedical field.

  5. Roles of ethylene glycol solvent and polymers in preparing uniformly distributed MgO nanoparticles

    Directory of Open Access Journals (Sweden)

    Chunxi Hai

    2017-06-01

    Full Text Available This study focus on specifying the roles of solvent ethylene glycol (EG and polymers for synthesis of uniformly distributed magnesium oxide (MgO nanoparticles with average crystallite size of around 50 nm through a modified polyol method. Based on different characterization results, it was concluded that, Mg2+ ions was precipitated by the −OH and CO32− ions decomposed from urea in ethylene glycol (EG medium (CO(NH22 → NH3 + HNCO, HNCO + H2O → NH3 + CO2, thus forming well crystallized Mg5(CO34(OH2 (H2O4 precursor which could be converted to MgO by calcination. Surface protectors PEG and PVP have no obvious influences on cyrtsal structure, morphology and size uniformity of as-prepared precursors and target MgO nanoparticles. In comparison with polymers PEG and PVP, solvent EG plays an important role in controlling the morphology and diameter uniformity of MgO nanoparticles.

  6. POLYCAPROLACTONE-POLY (ETHYLENE GLYCOL) BLOCK COPOLYMER Ⅲ DRUG RELEASE BEHAVIOR

    Institute of Scientific and Technical Information of China (English)

    BEI Jianzhong; WANG Zhifeng; WANG Shenguo

    1995-01-01

    The drug release behavior of degradable polymer - polycaprolactone-poly (ethylene glycol)block copolymer(PCE) in vitro was investigated by using 5-Fluoro-uracil (5-Fu) as a model drug under a condition of pH 7.4 at 37℃. It is found that the release rate of 5-Fu from PCE increased with increasing polyether content of the copolymer. The results show that the increasing polyether content of the copolymer caused increasing hydrophilicity and decreasing crystallinity of the PCE copolymer. Thus, the drug release behavior and the degradable property of the PCE can be controlled by adjusting the composition of the copolymer.

  7. STUDIES REGARDING THE CRIOPROTECTIVE PROPRIETIES OF THE VITRIFICATION MEDIA, WITH ETHYLENE GLYCOL, SUCROSE, FICOLL 70 AND GALACTOSE USED IN MAMMALIAN EMBRYO CRYOPRESERVATION

    Directory of Open Access Journals (Sweden)

    ALEXANDRA BOLEMAN

    2009-05-01

    Full Text Available Crioprotectors are the main component of any vitrification media. The penetrant crioprotectors areessential for cell dehydration and for the decrease of the freezing point of the solution, allowing a longertime for dehydration to set in. The aim of our paper was to make a series of experiments in order todetermine the concentration at which four cryoprotectants (ethylene glycol, sucrose, Ficoll 70 andgalactose singly and in pairs would vitrify on plunging into liquid nitrogen and remain vitreous whenthawed in water bath. A total of 156 solutions were tested. During freezing, vitrification was evidenced bythe formation of transparent glass when the unsealed straws were plunged into liquid nitrogen, at -196°C. Crystallization (ice formation resulted in a milky appearance. Solutions that vitrify on freezingwere tested if they remain vitreous on thawing. For thawing we tested three temperatures 20°C, 25°C and37°C. During thawing, solutions that did not devitrified were transformed from solid clear state to theliquid state without evidence of a milky appearance. From the combinations of two cryoprotectors weretested a number of 51 solutions vitrify on freezing (19 solutions with ethylene glycol and galactose; 19solutions with ethylene glycol and sucrose; 13 solutions with ethylene glycol and Ficoll. The ethyleneglycol and galacose pair give the best results on thawing (3 combinations remained vitreous on thawingat 37°C.

  8. Thermoresponsive self-assembly of short elastin-like polypentapeptides and their poly(ethylene glycol) derivatives

    Czech Academy of Sciences Publication Activity Database

    Pechar, Michal; Brus, Jiří; Kostka, Libor; Koňák, Čestmír; Urbanová, Martina; Šlouf, Miroslav

    2007-01-01

    Roč. 7, č. 1 (2007), s. 56-69 ISSN 1616-5187 R&D Projects: GA ČR GA204/05/2255; GA AV ČR IAA100500501 Institutional research plan: CEZ:AV0Z40500505 Keywords : elastin -like peptides * self-assembly * poly(ethylene glycol) Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.831, year: 2007

  9. Alkyne- and 1,6-elimination- succinimidyl carbonate – terminated heterobifunctional poly(ethylene glycol) for reversible "Click" PEGylation

    OpenAIRE

    Xie, Yumei; Duan, Shaofeng; Forrest, M. Laird

    2010-01-01

    A new heterobifunctional (succinimidyl carbonate, SC)-activated poly(ethylene glycol) (PEG) with a reversible 1,6-elimination linker and a terminal alkyne for "click" chemistry was synthesized with high efficiency and low polydispersity. The α-alkyne-ω-hydroxyl PEG was first prepared using trimethylsilyl-2-propargyl alcohol as an initiator for ring-opening polymerization of ethylene oxide followed by mild deprotection with tetrabutylammonium fluoride. The hydroxy end was then modified with di...

  10. Identification of Poly(ethylene glycol) and Poly(ethylene glycol)-Based Detergents Using Peptide Search Engines.

    Science.gov (United States)

    Ahmadi, Shiva; Winter, Dominic

    2018-06-05

    Poly(ethylene glycol) (PEG) is one of the most common polymer contaminations in mass spectrometry (MS) samples. At present, the detection of PEG and other polymers relies largely on manual inspection of raw data, which is laborious and frequently difficult due to sample complexity and retention characteristics of polymer species in reversed-phase chromatography. We developed a new strategy for the automated identification of PEG molecules from tandem mass spectrometry (MS/MS) data using protein identification algorithms in combination with a database containing "PEG-proteins". Through definition of variable modifications, we extend the approach for the identification of commonly used PEG-based detergents. We exemplify the identification of different types of polymers by static nanoelectrospray tandem mass spectrometry (nanoESI-MS/MS) analysis of pure detergent solutions and data analysis using Mascot. Analysis of liquid chromatography-tandem mass spectrometry (LC-MS/MS) runs of a PEG-contaminated sample by Mascot identified 806 PEG spectra originating from four PEG species using a defined set of modifications covering PEG and common PEG-based detergents. Further characterization of the sample for unidentified PEG species using error-tolerant and mass-tolerant searches resulted in identification of 3409 and 3187 PEG-related MS/MS spectra, respectively. We further demonstrate the applicability of the strategy for Protein Pilot and MaxQuant.

  11. Recycling Monoethylene Glycol (MEG from the Recirculating Waste of an Ethylene Oxide Unit

    Directory of Open Access Journals (Sweden)

    Moayed Mohsen

    2017-06-01

    Full Text Available In the ethylene glycol generation unit of petrochemical plants, first a reaction of ethylene oxide takes place which is then followed by other side reactions. These reactions include water absorption with ethylene oxide, which leads to the generation of formaldehyde and acetaldehyde. Over the lifetime of the alpha-alumina-based silver catalyst there is an increase in side reactions, increasing the amount of the formaldehyde and acetaldehyde generated by the ethylene oxide reactor which leads to reduced MEG product purity. Given the need of a petrochemical complex to further strip the aldehyde (formaldehyde and acetaldehyde to increase the quality of the MEG and increase the lifetime of the alpha-alumina-based silver catalyst, resin beds are designed and their surface absorption capacity is investigated to optimize aldehyde (formaldehyde and acetaldehyde removal in the recirculating water flow of the ethylene oxide unit. Experiments show that the ion exchange system based on strong anionic resin pre-treated with a sodium bisulfite solution can reduce the aldehyde level from about 300ppm to less than 5ppm. After the resin is saturated with aldehyde, the resin can be recycled using the sodium bisulfite solution which is a cheap chemical substance.

  12. Viscosity and density data for the ternary system water(1)–ethanol(2)–ethylene glycol(3) between 298.15 K and 328.15 K

    International Nuclear Information System (INIS)

    Quijada-Maldonado, E.; Meindersma, G.W.; Haan, A.B. de

    2013-01-01

    Highlights: ► We measure density and dynamic viscosity of pure ethylene glycol. ► We measure ternary densities with water and ethanol. ► We measure ternary dynamic viscosities with water and ethanol. ► The Eyring–Patel–Teja model correlate well ternary viscosities. ► We predict ternary dynamic viscosities with the ASOG-VISCO model. - Abstract: Ethylene glycol is an organic solvent used in extractive distillation to separate water–ethanol mixtures. An appropriate process description requires accurate physical property data. In this paper, experimental liquid densities and dynamic viscosities of pure ethylene glycol as well as the ternary system water–ethanol–ethylene glycol are presented over a wide temperature range (298.15 K to 328.15 K) at atmospheric pressure. A quadratic mixing rule was used to correlate the ternary liquid densities. The Eyring–Patel–Teja model with two Margules-type mixing rules for polar and aqueous systems is used to correlate the dynamic viscosity data over the measured ternary compositions and temperatures. An excellent agreement with experimental data is obtained. Additionally, the predictive ASOG-VISCO model demonstrated a good representation of the experimental data.

  13. Osteochondral repair in the rabbit model utilizing bilayered, degradable oligo(poly(ethylene glycol) fumarate) hydrogel scaffolds.

    NARCIS (Netherlands)

    Holland, T.A.; Bodde, E.W.H.; Baggett, L.S.; Tabata, Y.; Mikos, A.G.; Jansen, J.A.

    2005-01-01

    In this study, hydrogel scaffolds, based on the polymer oligo(poly(ethylene glycol) fumarate) (OPF), were implanted into osteochondral defects in the rabbit model. Scaffolds consisted of two layers-a bottom, bone forming layer and a top, cartilage forming layer. Three scaffold formulations were

  14. Phase Diagram of the Ethylene Glycol-Dimethylsulfoxide System

    Science.gov (United States)

    Solonina, I. A.; Rodnikova, M. N.; Kiselev, M. R.; Khoroshilov, A. V.; Shirokova, E. V.

    2018-05-01

    The phase diagram of ethylene glycol (EG)-dimethylsulfoxide (DMSO) system is studied in the temperature range of +25 to -140°C via differential scanning calorimetry. It is established that the EG-DMSO system is characterized by strong overcooling of the liquid phase, a glass transition at -125°C, and the formation of a compound with the composition of DMSO · 2EG. This composition has a melting temperature of -60°C, which is close to those of neighboring eutectics (-75 and -70°C). A drop in the baseline was observed in the temperature range of 8 to -5°C at DMSO concentrations of 5-50 mol %, indicating the existence of a phase separation area in the investigated system. The obtained data is compared to the literature data on the H2O-DMSO phase diagram.

  15. Antioxidants inhibition of high plasma androgenic markers in the pathogenesis of ethylene glycol (EG)-induced nephrolithiasis in Wistar rats.

    Science.gov (United States)

    Naghii, Mohammad Reza; Mofid, Mahmood; Hedayati, Mehdi; Khalagi, Kazem

    2014-04-01

    The association between serum gonadal steroids and urolithiasis in males received only limited attention. Calcium oxalate urolithiasis is induced by administration of ethylene glycol in drinking water. It appears that the administration of natural antioxidants has been used to protect against nephrolithiasis in human and experimental animals. The purpose is to study the potential role of antioxidants as inhibitors of high plasma androgenic markers or hyperandrogenicity in the pathogenesis of ethylene glycol-induced nephrolithiasis in Wistar rats. Male Wistar rats were studied in 4-week period. Group 1 (control) was fed a standard commercial diet. Group 2 received the same diet with 0.5 % of ethylene glycol. Group 3 received EG plus the diet and water added with antioxidant nutrients and lime juice as the dietary source of citrate. Group 4 and Group 5 were treated similar to Group 2 and Group 3 with 0.75 % of ethylene glycol. For antioxidant supplementation, the standard diet enriched with 4,000.0 μg vitamin E and 1,500.0 IU vitamin A for each rat per day added to the diet once a week, and provided daily with 5.0 mg vitamin C, 400.0 μg vitamin B6, 20.0 μg selenium, 12.0 mg zinc, and 2.0 mg boron for each rat per day in their drinking water. After treatment period, collection of blood was performed and kidneys were removed and used for histopathological examination. The results based on various assays, measuring size of crystal deposition, and histological examinations showed that high concentration of androgens acts as promoter for the formation of renal calculi due to ethylene glycol consumption and the inhibitory role of antioxidant complex in the formation of renal calculi disease. Data revealed that the size and the mean number of crystal deposits determined in EG 0.75 % treated groups (G4) were significantly higher than the EG-treated groups, added with antioxidant nutrients and lime juice (G5). The mean concentration of androgens in Group 4 increased after

  16. A study on IP2C actuators using ethylene glycol or EmI-Tf as solvent

    International Nuclear Information System (INIS)

    Di Pasquale, Giovanna; Pollicino, Antonino; Fortuna, Luigi; Graziani, Salvatore; Umana, Elena; La Rosa, Manuela

    2011-01-01

    Ionic polymer–polymer composites (IP 2 Cs) are a novel class of all-organic electroactive polymers that can operate both as electromechanical actuators and as sensors. They are an evolution of ionic polymer–metal composites (IPMCs), since the metallic layers, used to realize the electrodes, are substituted by using organic conductors based on PEDOT:PSS. For the IPMC based actuators it is generally reported that solvents different from water can be used to avoid the dehydration phenomenon. Here the possibility to use ethylene glycol and an ionic liquid, 1-ethyl-3-methylimidazolium trifluoromethanesulfonate, as diluents for the IP 2 C is investigated. Moreover, different materials have been used for the manufacture of the device electrodes and the performances of different organic transducers have been observed and compared. Reported results show that the use of both ethylene glycol and EmI-Tf as the solvent can have beneficial effects both on the working time duration of IP 2 C and on the corresponding transduction behaviors

  17. Kinetic and modelling studies of NAD+ and poly(ethylene glycol)-bound NAD+ in horse liver alcohol dehydrogenase

    NARCIS (Netherlands)

    Vanhommerig, S.A.M.; Sluyterman, L.A.A.E.; Meijer, E.M.

    1996-01-01

    Poly(ethylene glycol)-bound nicotinamide adenine dinucleotide (PEG-NAD+) has been successfully employed in the continuous production of L-amino acids from the corresponding alpha-keto acids by stereospecific reductive amination. Like many other dehydrogenases also horse liver alcohol dehydrogenase

  18. A new fluorinated urethane dimethacrylate with carboxylic groups for use in dental adhesive compositions

    Energy Technology Data Exchange (ETDEWEB)

    Buruiana, Tinca, E-mail: tbur@icmpp.ro [Polyaddition and Photochemistry Department, Petru Poni Institute of Macromolecular Chemistry, 41 A Grigore Ghica Voda Alley, 700487 Iasi (Romania); Melinte, Violeta [Polyaddition and Photochemistry Department, Petru Poni Institute of Macromolecular Chemistry, 41 A Grigore Ghica Voda Alley, 700487 Iasi (Romania); Aldea, Horia [Gr. T. Popa University of Medicine and Pharmacy, Faculty of Dentistry, 16 University Str., 700115 Iasi (Romania); Pelin, Irina M.; Buruiana, Emil C. [Polyaddition and Photochemistry Department, Petru Poni Institute of Macromolecular Chemistry, 41 A Grigore Ghica Voda Alley, 700487 Iasi (Romania)

    2016-05-01

    A urethane macromer containing hexafluoroisopropylidene, poly(ethylene oxide) and carboxylic moieties (UF-DMA) was synthesized and used in proportions varying between 15 and 35 wt.% (F1–F3) in dental adhesive formulations besides BisGMA, triethylene glycol dimethacrylate and 2-hydroxyethyl methacrylate. The FTIR and {sup 1}H ({sup 13}C) NMR spectra confirmed the chemical structure of the UF-DMA. The experimental adhesives were characterized with regard to the degree of conversion, water sorption/solubility, contact angle, diffusion coefficient, Vickers hardness, and morphology of the crosslinked networks and compared with the specimens containing 10 wt.% hydroxyapatite (HAP) or calcium phosphate (CaP). The conversion degree (after 180 s of irradiation with visible light) ranged from 59.5% (F1) to 74.8% (F3), whereas the water sorption was between 23.15 μg mm{sup −3} (F1) and 40.52 μg mm{sup −3} (F3). Upon the addition of HAP or CaP this parameter attained values of 37.82–49.14 μg mm{sup −3} (F1–F3-HAP) and 34.58–45.56 μg mm{sup −3}, respectively. Also, the formation of resin tags through the infiltration of a dental composition (F3) was visualized by SEM analysis. The results suggest that UF-DMA taken as co-monomer in dental adhesives of acrylic type may provide improved properties in the moist environment of the mouth. - Highlights: • Fluorinated urethane dimethacrylate with carboxylic units (UF-DMA) was proposed as co-monomer in dental adhesives. • UF-DMA exhibits good photoreactivity in mixture with commercial dental monomers. • Water sorption/solubility and diffusion coefficient depend on the amount of UF-DMA. • The infiltration of adhesive mixture into the dentin tubules was evidenced by SEM.

  19. Poly(ethylene glycol)-based thiol-ene hydrogel coatings: curing chemistry, aqueous stability, and potential marine antifouling applications

    NARCIS (Netherlands)

    Lundberg, P.; Bruin, A.; Klijnstra, J.W.; Nyström, A.M.; Johansson, M.; Malkoch, M.; Hult, A.

    2010-01-01

    Photocured thiol-ene hydrogel coatings based on poly(ethylene glycol) (PEG) were investigated for marine antifouling purposes. By varying the PEG length, vinylic end-group, and thiol cross-linker, a library of hydrogel coatings with different structural composition was efficiently accomplished, with

  20. Effect of temperature and aging time on the rheological behavior of aqueous poly(ethylene glycol)/Laponite RD dispersions.

    Science.gov (United States)

    Morariu, Simona; Bercea, Maria

    2012-01-12

    The viscoelastic properties of 2% poly(ethylene glycol) aqueous solutions containing Laponite RD from 1% to 4% were investigated by oscillatory and flow measurements in the temperature range of 15-40 °C. The enhancement of the clay content from mixture causes the increase of the viscoelastic moduli and the change of the flow from liquid-like behavior (Maxwellian fluid) to a solid-like one at a set temperature. The longest relaxation times (τ(1)) of the mixtures with low clay concentrations (1% and 2%) are not affected by changes in temperature unlike the samples having high content of clay at which τ(1) increases above 30 °C and below 17.5 °C. The characteristic behavior of the mixtures with the high clay concentration could be explained by considering the effect of Brownian motion on the network structure formed in these dispersions as well as by the poor solubility of poly(ethylene glycol) in water at high temperatures. The flow activation energy was determined and discussed. An abrupt increase of the flow activation energy was evidenced between 2% and 3% Laponite RD. The rheological measurements carried out at different rest times showed a decrease of the gelation time from 1 week to 2 h when the clay concentration increases from 2% to 4%. The aging kinetics of poly(ethylene glycol)/Laponite RD/water mixtures, investigated at 25 °C, revealed the increase of the viscosity-rate kinetic constant by increasing the clay concentration.

  1. Ethylene glycol poisoning in three dogs: Importance of early diagnosis and role of hemodialysis as a treatment option.

    Science.gov (United States)

    Schweighauser, A; Francey, T

    2016-02-01

    Poisoning with ethylene glycol as contained in antifreeze can rapidly lead to irreversible acute renal failure and other organ damage. It carries a grave prognosis unless diagnosed early and adequate treatment is initiated within 8 hours of ingestion. Toxicity of ethylene glycol is related to the production of toxic metabolites by the enzyme alcohol dehydrogenase (ADH), leading to early signs of severe polyuria (PU) and polydipsia (PD), gastritis, ataxia and central nervous depression, followed by progressive dehydration, and ultimately oligoanuric renal failure. In addition to general supportive care, therapeutic interventions must include either antidotes blocking ADH-mediated metabolism or blood purification techniques to remove both the parent compound and the toxic metabolites. The goal of this case report is to describe three cases of acute antifreeze intoxication in dogs, and to discuss treatment options available for this poisoning.

  2. Engineering of poly(ethylene glycol) chain-tethered surfaces to obtain high-performance bionanoparticles

    International Nuclear Information System (INIS)

    Nagasaki, Yukio

    2010-01-01

    A poly(ethylene glycol)-b-poly[2-(N,N-dimethylamino)ethyl methacrylate] block copolymer possessing a reactive acetal group at the end of the poly(ethylene glycol) (PEG) chain, that is, acetal-PEG-b-PAMA, was synthesized by a proprietary polymerization technique. Gold nanoparticles (GNPs) were prepared using the thus-synthesized acetal-PEG-b-PAMA block copolymer. The PEG-b-PAMA not only acted as a reducing agent of aurate ions but also attached to the nanoparticle surface. The GNPs obtained had controlled sizes and narrow size distributions. They also showed high dispersion stability owing to the presence of PEG tethering chains on the surface. The same strategy should also be applicable to the fabrication of semiconductor quantum dots and inorganic porous nanoparticles. The preparation of nanoparticles in situ, i.e. in the presence of acetal-PEG-b-PAMA, gave the most densely packed polymer layer on the nanoparticle surface; this was not observed when coating preformed nanoparticles. PEG/polyamine block copolymer was more functional on the metal surface than PEG/polyamine graft copolymer, as confirmed by angle-dependent x-ray photoelectron spectroscopy. We successfully solubilized the C 60 fullerene into aqueous media using acetal-PEG-b-PAMA. A C 60 /acetal-PEG-b-PAMA complex with a size below 5 nm was obtained by dialysis. The preparation and characterization of these materials are described in this review. (topical review)

  3. Prophylactic effect of coconut water (Cocos nucifera L.) on ethylene glycol induced nephrocalcinosis in male wistar rat.

    Science.gov (United States)

    Gandhi, M; Aggarwal, M; Puri, S; Singla, S K

    2013-01-01

    Many medicinal plants have been employed during ages to treat urinary stones though the rationale behind their use is not well established. Thus, the present study was proposed to evaluate the effect of coconut water as a prophylactic agent in experimentally induced nephrolithiasis in a rat model. The male Wistar rats were divided randomly into three groups. Animals of group I (control) were fed standard rat diet. In group II, the animals were administrated 0.75% ethylene glycol in drinking water for the induction of nephrolithiasis. Group III animals were administrated coconut water in addition to ethylene glycol. All the treatments were continued for a total duration of seven weeks. Treatment with coconut water inhibited crystal deposition in renal tissue as well as reduced the number of crystals in urine. Furthermore, coconut water also protected against impaired renal function and development of oxidative stress in the kidneys. The results indicate that coconut water could be a potential candidate for phytotherapy against urolithiasis.

  4. Thermal properties and physicochemical behavior in aqueous solution of pyrene-labeled poly(ethylene glycol-polylactide conjugate

    Directory of Open Access Journals (Sweden)

    Chen WL

    2015-04-01

    Full Text Available Wei-Lin Chen,1,2 Yun-Fen Peng,1,3 Sheng-Kuo Chiang,1 Ming-Hsi Huang1–3 1National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan; 2Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan; 3PhD Program in Tissue Engineering and Regenerative Medicine, National Chung Hsing University, Taichung, Taiwan Abstract: A fluorescence-labeled bioresorbable polymer was prepared by a coupling reaction of poly(ethylene glycol-polylactide (PEG-PLA with carboxyl pyrene, using N,N’-diisopropylcarbodiimide/1-hydroxy-7-azabenzotriazole (DIC/HOAt as a coupling agent and 4-dimethylaminopyridine (DMAP as a catalyst. The obtained copolymer, termed PEG-PLA-pyrene, was characterized using various analytical techniques, such as gel permeation chromatography (GPC, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS, proton nuclear magnetic resonance (1H-NMR, infrared spectroscopy (IR, differential scanning calorimetry (DSC, and thermogravimetric analysis (TGA, to identify the molecular structure and to monitor the thermal property changes before and after the reaction. The presence of a pyrene moiety at the end of polylactide (PLA did not alter the crystallization ability of the poly(ethylene glycol (PEG blocks, indicating that the conjugate preserved the inherent thermal properties of PEG-PLA. However, the presence of PEG-PLA blocks strongly reduced the melting of pyrene, indicating that the thermal characteristics were sensitive to PEG-PLA incorporation. Regarding the physicochemical behavior in aqueous solution, a higher concentration of PEG-PLA-pyrene resulted in a higher ultraviolet-visible (UV-vis absorbance and fluorescence emission intensity. This is of great interest for the use of this conjugate as a fluorescence probe to study the in vivo distribution as well as the internalization and intracellular localization of polymeric micelles

  5. Electrochemical corrosion study of Mg–Al–Zn–Mn alloy in aqueous ethylene glycol containing chloride ions

    Directory of Open Access Journals (Sweden)

    Harish Medhashree

    2017-01-01

    Full Text Available Nowadays most of the automobiles use magnesium alloys in the components of the engine coolant systems. These engine coolants used are mainly composed of aqueous ethylene glycol along with some inhibitors. Generally the engine coolants are contaminated by environmental anions like chlorides, which would enhance the rate of corrosion of the alloys used in the coolant system. In the present study, the corrosion behavior of Mg–Al–Zn–Mn alloy in 30% (v/v aqueous ethylene glycol containing chloride anions at neutral pH was investigated. Electrochemical techniques, such as potentiodynamic polarization method, cyclic polarization and electrochemical impedance spectroscopy (EIS were used to study the corrosion behavior of Mg–Al–Zn–Mn alloy. The surface morphology, microstructure and surface composition of the alloy were studied by using the scanning electron microscopy (SEM, optical microscopy and energy dispersion X-ray (EDX analysis, respectively. Electrochemical investigations show that the rate of corrosion increases with the increase in chloride ion concentration and also with the increase in medium temperature.

  6. The sensitizing capacity of multifunctional acrylates in the guinea pig.

    Science.gov (United States)

    Björkner, B

    1984-10-01

    The multifunctional acrylates used in ultraviolet (UV) curable resins act as cross-linkers and "diluents". They are usually based on di(meth)acrylate esters of dialcohols or tri- and tetra-acrylate esters of polyalcohols. In UV-curable coatings, the most commonly used are pentaerythritol triacrylate (PETA), trimethylolpropane triacrylate (TMPTA) and 1,6-hexanediol diacrylate (HDDA). In other uses, such as dental composite resin materials, the dimethacrylic monomers based on n-ethylene glycol are the most useful. The sensitizing capacity of various multifunctional acrylates and their cross-reactivity pattern have been investigated with the guinea pig maximization test. The tests show that BUDA (1,4-butanediol diacrylate) and HDDA are moderate to strong sensitizers and that they probably cross-react with each other. The n-ethylene glycol diacrylates and methacrylates tested are weak or non-sensitizers. Tripropylene glycol diacrylate (TPGDA) is a moderate and neopentyl glycol diacrylate (NPGDA) a strong sensitizer, whereas neopentyl glycol dimethacrylate is a non-sensitizer. The commercial PETA is a mixture of pentaerythritol tri- and tetra-acrylate (PETA-3 and PETA-4). PETA-3 is a much stronger sensitizer than PETA-4. Simultaneous reactions were seen between PETA-3, PETA-4 and TMPTA. The oligotriacrylate OTA 480 is a moderate sensitizer, but no concomitant reactions were seen with PETA-3, PETA-4 or TMPTA. Of the multifunctional acrylates tested, the di- and triacrylic compounds should be regarded as potent sensitizers. The methacrylated multifunctional acrylic compounds are weak or non-sensitizers.

  7. Textural properties of poly(glycidyl methacrylate) : acid-modified bentonite nanocomposites

    NARCIS (Netherlands)

    Zunic, M.; Milutinovic-Nikolic, A.; Nastasovic, A.; Vukovic, Z.; Loncarevic, D.; Vukovic, I.; Loos, K.; ten Brinke, G.; Jovanovic, D.; Sharma, Bhaskar; Ubaghs, Luc; Keul, Helmut; Höcker, Hartwig; Loontjens, Ton; Benthem, Rolf van; Žunić, M.; Milutinović-Nikolić, A.; Nastasović, A.; Vuković, Z.; Lončarević, D.; Vuković, I.; Jovanović, D.

    The aim of this study was to obtain enhanced textural properties of macroporous crosslinked copolymer poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate) by synthesizing nanocomposites with acid-modified bentonite. Nanocomposites were obtained by introducing various amounts of

  8. Unusual Clinical Presentation of Ethylene Glycol Poisoning: Unilateral Facial Nerve Paralysis

    Directory of Open Access Journals (Sweden)

    Eray Eroglu

    2013-01-01

    Full Text Available Ethylene glycol (EG may be consumed accidentally or intentionally, usually in the form of antifreeze products or as an ethanol substitute. EG is metabolized to toxic metabolites. These metabolites cause metabolic acidosis with increased anion gap, renal failure, oxaluria, damage to the central nervous system and cranial nerves, and cardiovascular instability. Early initiation of treatment can reduce the mortality and morbidity but different clinical presentations can cause delayed diagnosis and poor prognosis. Herein, we report a case with the atypical presentation of facial paralysis, hematuria, and kidney failure due to EG poisoning which progressed to end stage renal failure and permanent right peripheral facial nerve palsy.

  9. Preparation of various hydrogels based on poly (Vinyl pyrrolidone) and poly ethylene glycol using gamma and electron irradiation

    International Nuclear Information System (INIS)

    Ajji, Z.

    2006-11-01

    Different hydrogels have been prepared using gamma and electron irradiation; the hydrogels are composed of poly(vinyl pyrolidone) (PVP), poly(ethylene glycol) (PEG). The influence of some process parameters on the properties of the hydrogels has been investigated as: the gel fraction, maximum swelling, swelling kinetics, and mechanical properties. In the first part of this study, hydrogel dressings have been prepared using electron irradiation, and the dressings are composed of poly(vinyl pyrrolidone) (PVP), poly(ethylene glycol) (PEG) and agar. The gel fraction increases with increasing PVP concentration due to increased crosslink density, and decreases with increasing the PEG concentration. PEG seems to act not only as plasticizer but also to modify the gel properties as gelation% and maximum swelling. The prepared hydrogels dressings could be considered as a good barrier against microbes. In the second part, different hydrogels have been prepared based on different concentrations of poly(vinyl pyrrolidone) and using gamma irradiation. The gel fraction and maximum swelling of the hydrogels has been determined. In the third part of the study, different hydrogels have been prepared based on different concentrations of poly(vinyl pyrrolidone) and poly(ethylene glycol) (PEG) with various molecular weights, and using gamma irradiation. The gel fraction and maximum swelling of the hydrogels has been determined. The data show that PEG with low molecular weight needs a high dose for the gelation, and the presence of PVP lowers the needed gelation dose. The maximum swelling decreases with increasing irradiation dose and the PVP concentration, which is due to higher crosslinks between the polymer chains. (author)

  10. Live RB51 vaccine lyophilized hydrogel formulations with increased shelf life for practical ballistic delivery

    Science.gov (United States)

    Ballistic delivery capability is essential to delivering vaccines and other therapeutics effectively to both livestock and wildlife in many global scenarios. Here, lyophilized poly(ethylene glycol) (PEG)-glycolide dimethacrylate crosslinked but degradable hydrogels were assessed as payload vehicles ...

  11. Poly(vinyl-alcohol)/poly(ethylene-glycol)/poly(ethylene-imine) blend membranes - structure and CO2 facilitated transport

    International Nuclear Information System (INIS)

    Ben Hamouda, S.; Quang, Trong Nguyen; Langevin, D.; Sadok, Roudeslic

    2010-01-01

    Poly(vinyl-alcohol) (PVA)/poly(ethylene-imine) (PEI)/poly(ethylene-glycol) (PEG) blend membranes were prepared by solution casting followed by solvent evaporation. The effects of the blend polymer composition on the membrane structure and CO 2 /N 2 permeation characteristics were investigated. IR spectroscopy evidenced strong hydrogen bonding interactions between amorphous PVA and PEI, and weaker interactions between PVA and PEG. DSC studies showed that PVA crystallization was partially inhibited by the interactions between amorphous PVA and PEI blend, in which PEG separated into nodules. The CO 2 permeability decreased with an increase in CO 2 partial pressure in feed gas, while the N 2 permeability remained constant. This result indicated that only CO 2 was transported by the facilitated transport mechanism. The CO 2 and N 2 permeabilities increased monotonically with the PEI content in the blend membranes, whereas the ideal selectivity of CO 2 to N 2 transport showed a maximum. When CO 2 is humidified, its permeability through the blend membranes is much higher than that of dry CO 2 , but the change in permeability due to the presence of humidity is reversible. (authors)

  12. Dynamics of electrocatalytic oxidation of ethylene glycol, methanol and formic acid at MWCNT platform electrochemically modified with Pt/Ru nanoparticles

    CSIR Research Space (South Africa)

    Maxakato, NW

    2010-03-01

    Full Text Available Comparative electrocatalytic behavior of functionalized multiwalled carbon nanotubes (fMWCNTs) electrodecorated with Pt/Ru nanoparticles towards the oxidation of methanol (MeOH), ethylene glycol (EG) and formic acid (FA) has been investigated...

  13. Advances in hexitol and ethylene glycol production by one-pot hydrolytic hydrogenation and hydrogenolysis of cellulose

    International Nuclear Information System (INIS)

    Li, Yuping; Liao, Yuhe; Cao, Xiaofeng; Wang, Tiejun; Ma, Longlong; Long, Jinxing; Liu, Qiying; Xua, Ying

    2015-01-01

    In this review, recent advances in the one-pot hydrolytic hydrogenation and hydrogenolysis of cellulose to value-added polyols, including hexitols (sorbitol, mannitol, and isosorbide) and 1,2-alkanediols (ethylene glycol and 1,2-propylene glycol), are summarized. Methods for the generation of H + in the first step of cellulose hydrolysis to form intermediate sugars, such as the use of soluble acids (mineral acids and heteropoly acids) and H + produced in situ from functional supports and H 2 dissociation, are classified and analyzed, considering its combination with active metals for the subsequent hydrogenation or hydrogenolysis of sugars to polyols. The interaction of non-noble metals such as nickel, bimetals, and tungsten with support materials in the catalytic conversion of intermediate sugars to hexitols and ethylene glycol is reviewed. The corresponding reaction pathways and mechanisms are discussed, including the conversion process using basic supports and solution conditions. Major challenges and promising routes are also suggested for the future development of the chemocatalytic conversion of cellulose. - Highlights: • Advances in the one-pot hydrolytic hydrogenation/hydrogenolysis of cellulose are summarized. • The interaction of non-noble metals with support materials for cellulose conversion is reviewed. • Method for the generation of in situ H + and effects of the acidic groups on supports are discussed. • Incomplete identification of intermediates/products causes mechanism complications. • Efficient conversion, separation and purification are other concerns for cellulose degrading

  14. Short-term adhesion and long-term biofouling testing of polydopamine and poly(ethylene glycol) surface modifications of membranes and feed spacers for biofouling control

    KAUST Repository

    Miller, Daniel J.

    2012-08-01

    Ultrafiltration, nanofiltration membranes and feed spacers were hydrophilized with polydopamine and polydopamine- g-poly(ethylene glycol) surface coatings. The fouling propensity of modified and unmodified membranes was evaluated by short-term batch protein and bacterial adhesion tests. The fouling propensity of modified and unmodified membranes and spacers was evaluated by continuous biofouling experiments in a membrane fouling simulator. The goals of the study were: 1) to determine the effectiveness of polydopamine and polydopamine- g-poly(ethylene glycol) membrane coatings for biofouling control and 2) to compare techniques commonly used in assessment of membrane biofouling propensity with biofouling experiments under practical conditions. Short-term adhesion tests were carried out under static, no-flow conditions for 1 h using bovine serum albumin, a common model globular protein, and Pseudomonas aeruginosa, a common model Gram-negative bacterium. Biofouling tests were performed in a membrane fouling simulator (MFS) for several days under flow conditions similar to those encountered in industrial modules with the autochthonous drinking water population and acetate dosage as organic substrate. Polydopamine- and polydopamine- g-poly(ethylene glycol)-modified membranes showed significantly reduced adhesion of bovine serum albumin and P. aeruginosa in the short-term adhesion tests, but no reduction of biofouling was observed during longer biofouling experiments with modified membranes and spacers. These results demonstrate that short-term batch adhesion experiments using model proteins or bacteria under static conditions are not indicative of biofouling, while continuous biofouling experiments showed that membrane surface modification by polydopamine and polydopamine- g-poly(ethylene glycol) is not effective for biofouling control. © 2012 Elsevier Ltd.

  15. Development of controlled release formulations of azadirachtin-A employing poly(ethylene glycol) based amphiphilic copolymers.

    Science.gov (United States)

    Kumar, Jitendra; Shakil, Najam A; Singh, Manish K; Singh, Mukesh K; Pandey, Alka; Pandey, Ravi P

    2010-05-01

    Controlled release (CR) formulations of azadirachtin-A, a bioactive constituent derived from the seed of Azadirachta indica A. Juss (Meliaceae), have been prepared using commercially available polyvinyl chloride, polyethylene glycol (PEG) and laboratory synthesized poly ethylene glycol-based amphiphilic copolymers. Copolymers of polyethylene glycol and various dimethyl esters, which self assemble into nano micellar aggregates in aqueous media, have been synthesized. The kinetics of azadirachtin-A, release in water from the different formulations was studied. Release from the commercial polyethylene glycol (PEG) formulation was faster than the other CR formulations. The rate of release of encapsulated azadirachtin-A from nano micellar aggregates is reduced by increasing the molecular weight of PEG. The diffusion exponent (n value) of azadirachtin-A, in water ranged from 0.47 to 1.18 in the tested formulations. The release was diffusion controlled with a half release time (t(1/2)) of 3.05 to 42.80 days in water from different matrices. The results suggest that depending upon the polymer matrix used, the application rate of azadirachtin-A can be optimized to achieve insect control at the desired level and period.

  16. Effects of hydrophobic drug-polyesteric core interactions on drug loading and release properties of poly(ethylene glycol)-polyester-poly(ethylene glycol) triblock core-shell nanoparticles

    International Nuclear Information System (INIS)

    Khoee, Sepideh; Hassanzadeh, Salman; Goliaie, Bahram

    2007-01-01

    BAB amphiphilic triblock copolymers consisting of poly(ethylene glycol) (B) (PEG) as the hydrophilic segment and different polyesters (A) as the hydrophobic block were prepared by a polycondensation reaction as efficient model core-shell nanoparticles to assay the effect of interactions between the hydrophobic drug and the polyesteric core in terms of drug loading content and release profile. PEG-poly(hexylene adipate)-PEG (PEG-PHA-PEG) and PEG-poly(butylene adipate)-PEG (PEG-PBA-PEG) to PEG-poly(ethylene adipate)-PEG (PEG-PEA-PEG) core-shell type nanoparticles entrapping quercetin (an anticarcinogenic, allergy inhibitor and antibacterial agent), were prepared by a nanoprecipitation method and characterized by dynamic light scattering (DLS), transmission electron microscopy (TEM) and x-ray diffraction (XRD) techniques. It was found that the obtained nanoparticles showed a smooth surface and spherical shape with controllable sizes in the range of 64-74 nm, while drug loading varied from 7.24% to 19% depending on the copolymer composition and the preparation conditions. The in vitro release behaviour exhibited a sustained release and was affected by the polymer-drug interactions. UV studies revealed the presence of hydrogen bonding as the main existing interaction between quercetin and polyesters in the nanosphere cores

  17. Poly(ethylene glycol-Prodrug Conjugates: Concept, Design, and Applications

    Directory of Open Access Journals (Sweden)

    Shashwat S. Banerjee

    2012-01-01

    Full Text Available Poly(ethylene glycol (PEG is the most widely used polymer in delivering anticancer drugs clinically. PEGylation (i.e., the covalent attachment of PEG of peptides proteins, drugs, and bioactives is known to enhance the aqueous solubility of hydrophobic drugs, prolong circulation time, minimize nonspecific uptake, and achieve specific tumor targetability through the enhanced permeability and retention effect. Numerous PEG-based therapeutics have been developed, and several have received market approval. A vast amount of clinical experience has been gained which has helped to design PEG prodrug conjugates with improved therapeutic efficacy and reduced systemic toxicity. However, more efforts in designing PEG-based prodrug conjugates are anticipated. In light of this, the current paper highlights the synthetic advances in PEG prodrug conjugation methodologies with varied bioactive components of clinical relevance. In addition, this paper discusses FDA-approved PEGylated delivery systems, their intended clinical applications, and formulations under clinical trials.

  18. The influence of increased cross-linker chain length in thermosensitive microspheres on potential sun-protection activity

    OpenAIRE

    Musiał, Witold; Kokol, Vanja; Vončina, Bojana

    2012-01-01

    The sun protection should involve substances with protecting activity against both UVB and UVA radiation. In this research the evaluation of thermosensitive microspheres as potential molecules for sunscreen formulations was approached, using modified Boots star rating system. The microspheres, thermosensitive N-isopropylacrylamide derivatives, have potential protecting activity against UV radiation. The MX and DX microspheres, with ethylene glycol dimethacrylate and diethylene glycol dimethac...

  19. Prophylactic effect of coconut water (Cocos nucifera L. on ethylene glycol induced nephrocalcinosis in male wistar rat

    Directory of Open Access Journals (Sweden)

    M. Gandhi

    2013-01-01

    Full Text Available Purpose Many medicinal plants have been employed during ages to treat urinary stones though the rationale behind their use is not well established. Thus, the present study was proposed to evaluate the effect of coconut water as a prophylactic agent in experimentally induced nephrolithiasis in a rat model. Materials and Methods The male Wistar rats were divided randomly into three groups. Animals of group I (control were fed standard rat diet. In group II, the animals were administrated 0.75% ethylene glycol in drinking water for the induction of nephrolithiasis. Group III animals were administrated coconut water in addition to ethylene glycol. All the treatments were continued for a total duration of seven weeks. Results and Conclusion Treatment with coconut water inhibited crystal deposition in renal tissue as well as reduced the number of crystals in urine. Furthermore, coconut water also protected against impaired renal function and development of oxidative stress in the kidneys. The results indicate that coconut water could be a potential candidate for phytotherapy against urolithiasis.

  20. Elution behavior of poly(ethylene glycol) through poly(vinyl alcohol) gel column using several solvents as eluents

    International Nuclear Information System (INIS)

    Hirayama, Chuichi; Motozato, Yoshiaki; Matsumoto, Kazuaki.

    1983-01-01

    γ-Irradiated poly(vinyl alcohol) beads, which were sufficiently allowed to swell in water, were washed with methanol, and then were packed into column. Gel chromatography was performed using methanol, benzene, esters and ketones as eluents and poly(ethylene glycol) as a sample. When the elution was carried out using methanol and benzene as eluents, elution behavior of samples was ordinary. When ethyl formate, methyl acetate and ethyl propionate were used as eluents, samples were slightly adsorbed and the elution was delayed. In the case the elution was carried out using ethyl acetate, propyl acetate, butyl acetate and ethyl methyl ketone as eluents, samples were adsorbed strongly on the bed material, and the adsorption curve was analogous to the calibration curve using methanol as an eluent. Dried poly(vinyl alcohol) gel as a packing material, showed ordinary elution behaviors for the samples. The adsorption of poly(ethylene glycol) on the present bed material was attributed to the existence of hydrated water on poly(vinyl alcohol) gel matrix. (author)

  1. Acoustic Levitator Power Device: Study of Ethylene-Glycol Water Mixtures

    Science.gov (United States)

    Caccamo, M. T.; Cannuli, A.; Calabrò, E.; Magazù, S.

    2017-05-01

    Acoustic levitator power device is formed by two vertically and opposed high output acoustic transducers working at 22 kHz frequency and produces sound pressure levels of 160 dB. The acoustic waves are monitored from an oscilloscope using a signal amplifier. The ability to perform contactless measurements, avoidance of undesired contamination from the container, are some of advantages of this apparatus. Acoustic levitation can be also used for sample preparation of high concentrated mixtures starting from solutions. In the present paper, an acoustic levitator power device is employed to collect data on levitated water mixtures of Ethylene Glycol (EG) which are then analysed by Infra-Red spectroscopy. The study allows to follow the drying process versus time and to obtain a gel-like compound characterized by an extended chemical crosslinking.

  2. Quasielastic neutron scattering and microscopic dynamics of liquid ethylene glycol

    Energy Technology Data Exchange (ETDEWEB)

    Sobolev, O. [Laboratoire de Geophysique Interne et Tectonophysique, BP 53, Maison des Geosciences - Domaine Universitaire, 38041 Grenoble, Cedex 9 (France)], E-mail: Oleg.Sobolev@ujf-grenoble.fr; Novikov, A. [Institute for Physics and Power Engineering, Bondarenko Sq. 1, Obninsk, Kaluga Reg. 249033 (Russian Federation); Pieper, J. [Technische Universitaet Berlin, Strasse des 17, Juni 135, D-10623 Berlin (Germany)

    2007-04-20

    Quasielastic neutron scattering (QENS) by liquid ethylene glycol was analyzed using different model approaches. It was found that approximation of the QENS spectra by a set of Lorentzian functions corresponding to the translational and rotational motions produce physically unrealistic results. At the same time, the Fourier transform of the stretched-exponential function exp(-(t/{tau}){sup {beta}}) fits the experimental data well, and results of the fit are in good agreement with those obtained earlier for other systems. The stretching parameter {beta} was found Q independent and shows weak temperature dependence. The mean relaxation time as a function of Q departs strongly from the simple diffusion low and can be approximated by a power law <{tau}{sub w}> = {tau}{sub 0}Q{sup -{gamma}} with the exponent parameter {gamma} = 2.4.

  3. Exposure to glycols and their renal effects in motor servicing workers.

    Science.gov (United States)

    Laitinen, J; Liesivuori, J; Savolainen, H

    1995-10-01

    Ten car mechanics frequently exposed to glycol-based cooling liquids were followed during a workshift. Airborne ethylene and propylene glycol concentrations in the car mechanics' environment were measured. The car mechanics gave urine samples after the workshift and their excretion of ethylene glycol, propylene glycol, oxalic acid, calcium and ammonia was analysed and compared to that of unexposed office workers. Urinary succinate dehydrogenase activity and glycosaminoglycans were also measured in both groups. Airborne ethylene and propylene glycol concentrations in the car mechanics' environment were negligible. Urinary ethylene glycol excretion in exposed workers was significantly higher than that in unexposed workers, but propylene glycol excretion was at the same levels as in controls. In the exposed group, the excretion of the end metabolite of ethylene glycol, oxalic acid (47 +/- 11 mmol/mol creatinine, mean +/- SD, n = 10) differed slightly from that of controls (36 +/- 14 mmol/mol creatinine, mean +/- SD, n = 10). Urinary excretion of ammonia was higher among exposed workers than office workers. The excretion of calcium did not differ from that of controls. A marginally decreased urinary succinate dehydrogenase activity was found in the exposed men. The excretion of glycosaminoglycans was significantly lower in exposed workers. Therefore, it seems that ethylene glycol is absorbed by skin contact. The internal body burden is associated with oxaluria and increased ammoniagenesis typical of chronic acidosis.

  4. Towards benchmarking of multivariable controllers in chemical/biochemical industries: Plantwide control for ethylene glycol production

    DEFF Research Database (Denmark)

    Huusom, Jakob Kjøbsted; Bialas, Dawid Jan; Jørgensen, John Bagterp

    2011-01-01

    In this paper we discuss a simple yet realistic benchmark plant for evaluation and comparison of advanced multivariable control for chemical and biochemical processes. The benchmark plant is based on recycle-separator-recycle systems for ethylene glycol production and implemented in Matlab...... for education purposes (operator training, student education, etc) as well as scientific research into chemical process control where it enables rapid evaluation and comparison of advanced multivariable controllers as demonstrated in this study....

  5. Thermodynamic activity of saturated solutions of CsClO4 in ethylene glycol and its analogs of the HOCH2(CH2CH2O)nCH2OH series

    International Nuclear Information System (INIS)

    Krasnoperova, A.P.; Ivanova, E.F.; Kijko, S.M.; Yukhno, G.D.

    1997-01-01

    Solubility of CsClO 4 in ethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, polyethylene glycols with molar mass 300 and 400 in the temperature range of 273.15-318.15 K has been ascertained by the method of radioactive indicators. Dependence of saturated solutions activity on temperature, dielectric permittivity and the number of (CH 2 CH 2 O) ether groups in glycols is discussed

  6. Spectroscopic study of monitoring the kinetics of radical copolymerization of di(ethylene glycol) bis(allylcarbonate) and 2-naphthylmethacrylate

    Science.gov (United States)

    Barashkov, N. N.; Novikova, T. S.; Sakhno, T. V.; Bulgakova, L. M.

    1996-03-01

    The results of fluorescence monitoring in the radical copolymerization of di(ethylene glycol) bis(allylcarbonate) and 2-naphthylmethacrylate are discussed. Our studies suggest that data based on measurement of the intensity of the fluorescence band at 345 nm during copolymerization are in good agreement with the data obtained by the traditional dilatometric method.

  7. Immobilization of yeast cells with ionic hydrogel carriers by adhesion-multiplication.

    Science.gov (United States)

    Zhaoxin, L; Fujimura, T

    2000-12-01

    The mixture of an ionic monomer, 2-acrylamido 2-methylpropanesulfonic acid (TBAS), and a series of poly(ethylene glycol) dimethacrylate (nG) monomers were copolymerized with 60Co gamma-rays, and the produced ionic hydrogel polymers were used for immobilization of yeast cells. The cells were adhered onto the surface of the hydrogel polymers and intruded into the interior of the polymers with growing. The immobilized yeast cells with these hydrogel polymers had higher ethanol productivity than that of free cells. The yield of ethanol with poly(TBAS-14G) carrier was the highest and increased by 3.5 times compared to the free cells. It was found that the ethanol yield increased with the increase of glycol number in poly(ethylene glycol) dimethacrylate. The state of the immobilized cells was observed with microscope, and it was also found that the difference in the ethanol productivity is mainly due to the difference in the internal structure and properties of polymer carrier, such as surface charge, hydrophilicity, and swelling ability of polymer carrier.

  8. Etileno glicol na criopreservação de sêmen canino Ethylene glycol on canine semen cryopreservaton

    Directory of Open Access Journals (Sweden)

    Marcio Pereira Soares

    2002-08-01

    Full Text Available O objetivo deste trabalho foi avaliar a utilização do etileno glicol, adicionado ao meio Tris-gema, na criopreservação de sêmen canino, considerando os seus efeitos sobre a motilidade, o vigor e a morfologia espermática pré e pós-congelamento. Como doadores, utilizaram-se quatro cães da raça Pastor Alemão coletados por manipulação digital os quais no ejaculado apresentaram padrões mínimos de 90% de motilidade, cinco de vigor espermático (0 - 5 e no máximo 35% de defeitos morfológicos totais. As concentrações de etileno glicol testadas foram de 0, 25; 0,5 e 1,0M, sendo empregados como controle 0,8M de glicerol. Foram feitas cinco avaliações de motilidade e vigor, respectivamente, na obtenção da fração rica, depois da primeira diluição, ao atingir 4°C, após uma hora de estabilização a 4°C e no descongelamento. Avaliou-se a morfologia espermática em sêmen a fresco e após o descongelamento das amostras de cada tratamento. Não houve diferença na motilidade e na morfologia espermática dos grupos após o descongelamento. No vigor espermático pós- descongelamento, as concentrações de 0,25 e 0,5M de etileno glicol foram semelhantes entre si e com a concentração de 0,8M de glicerol (controle, mas diferiram da concentração de 1M, a qual apresentou vigor inferior ao controle. Conclui-se que, para a criopreservação de sêmen canino, o glicerol 0,8M pode ser substituído pelo etileno glicol nas concentrações de 0,25, 0,5 e 1,0M.The objective of the present work was to evaluate the efficiency of ethylene glycol on criopreservation of canine semen, considering its possible deleterious effects upon semen motility, vigor and morphology at the pre and post freezing stages, using a tris-egg yolk extender. Four adult german shepards were used as donors. Samples were obtained by digital manipulation, and only ejaculates presenting a minimum of 90% motility and 5 (0-5 vigor and no more than 35% of total morphological

  9. Thermodynamic modelling of phase equilibrium for water + poly(Ethylene glycol + salt aqueous two-phase systems

    Directory of Open Access Journals (Sweden)

    R.A.G. Sé

    2002-04-01

    Full Text Available The NRTL (nonrandom, two-liquid model, expressed in mass fraction instead of mole fraction, was used to correlate liquid-liquid equilibria for aqueous two-phase polymer-salt solutions. New interaction energy parameters for this model were determined using reported data on the water + poly(ethylene glycol + salt systems, with different molecular masses for PEG and the salts potassium phosphate, sodium sulfate, sodium carbonate and magnesium sulfate. The correlation of liquid-liquid equilibrium is quite satisfactory.

  10. Investigation on thermo physical characteristics of ethylene glycol based Al:ZnO nanofluids

    International Nuclear Information System (INIS)

    Kiruba, R.; George, Ritty; Gopalakrishnan, M.; Kingson Solomon Jeevaraj, A.

    2015-01-01

    The present work describes the experimental aspects of viscosity and thermal conductivity characteristics of nanofluids. Aluminium doped zinc oxide nanostructures were synthesized by chemical precipitation method. Ultrasonic technique is used to disperse the nanostructures in ethylene glycol. Structural and morphological properties of Al doped ZnO nanostructures are characterized using X-ray diffractometer and scanning electron microscopic technique. The effect of concentration and temperature on thermo-physical properties of Al/ZnO nanofluids is also investigated. The experimental results showed there is enhancement in thermal conductivity with rise in temperature which can be utilized for coolant application

  11. In situ forming poly(ethylene glycol)- Poly(L -lactide) hydrogels via michael addition: Mechanical properties, degradation, and protein release

    NARCIS (Netherlands)

    Buwalda, S.J.; Dijkstra, Pieter J.; Feijen, Jan

    2012-01-01

    Chemically crosslinked hydrogels are prepared at remarkably low macromonomer concentrations from 8-arm poly(ethylene glycol)-poly(L-lactide) star block copolymers bearing acrylate end groups (PEG-(PLLAn)8-AC, n = 4 or 12) and multifunctional PEG thiols (PEG-(SH)n, n = 2, 4, or 8) through a

  12. High-power direct ethylene glycol fuel cell (DEGFC) based on nanoporous proton-conducting membrane (NP-PCM)

    Science.gov (United States)

    Peled, E.; Livshits, V.; Duvdevani, T.

    We recently reported the development of a new nanoporous proton-conducting membrane (NP-PCM) and have applied it in a direct methanol fuel cell (DMFC) and in other direct oxidation fuel cells. The use of the NP-PCM in the DMFC offers several advantages over the Nafion-based DMFC including lower membrane cost, lower methanol crossover which leads to a much higher fuel utilization and higher conductivity. In this work, we found that the 90 °C swelling of the NP-PCM is only 5-8% and that the diffusion constant of methanol at 80-130 °C is higher by a factor of 1.5-3 than that of ethylene glycol (EG). The maximum power density of methanol/oxygen and EG/oxygen FCs equipped with a 100 μm thick NP-PCMs is 400 and 300 mW/cm 2 respectively, higher than that for a DMFC based on Nafion 115 (260 mW/cm 2 [Eletrochem. Solid-State Lett. 4 (4) (2001) A31]. This puts the DEGFC in direct competition with both DMFC and indirect methanol FC. Ethylene glycol (EG) is well known in the automobile industry and in contrast to methanol, its distribution infrastructure already exists, thus it is a promising candidate for practical electric vehicles.

  13. Evaluation of poly(ethylene glycol)-coated monodispersed magnetic poly(2-hydroxyethyl methacrylate) and poly(glycidyl methacrylate) microspheres by PCR

    Czech Academy of Sciences Publication Activity Database

    Horák, Daniel; Hlídková, Helena; Trachtová, Š.; Šlouf, Miroslav; Rittich, B.; Španová, A.

    2015-01-01

    Roč. 68, July (2015), s. 687-696 ISSN 0014-3057 R&D Projects: GA ČR GAP206/12/0381; GA MŠk(CZ) LH14318 Institutional support: RVO:61389013 Keywords : magnetic microspheres * poly(ethylene glycol) * real-time PCR Subject RIV: CD - Macromolecular Chemistry Impact factor: 3.485, year: 2015

  14. Cu(ll) mediated ATRP of MMA by using a novel tetradentate amine ligand with oligo(ethylene glycol) pendant groups

    NARCIS (Netherlands)

    Becer, C.R.; Hoogenboom, R.; Founier, D.; Schubert, U.S.

    2007-01-01

    A novel tetradentate amine ligand namely N,N,N,N,N;,N;-hexaoligo(ethylene glycol) triethylenetetramine (HOEGTETA) was employed in the homogenous ATRP of MMA in anisole using CuBr and CuBr2 as the catalyst and ethyl 2-bromoisobutyrate (EBiB) as an initiator. The effect of the polymerization

  15. Desorption of 3,3′-diindolylmethane from imprinted particles: An impact of cross-linker structure on binding capacity and selectivity

    Energy Technology Data Exchange (ETDEWEB)

    Klejn, Dorota; Luliński, Piotr; Maciejewska, Dorota, E-mail: dorota.maciejewska@wum.edu.pl

    2015-11-01

    Here, seven cross-linkers (six polar diacrylates or dimethacrylates of different lengths between double bonds, and one aromatic-divinylbenzene) were used to examine the impact of the cross-linker on binding capacity and selectivity of 3,3′-diindolylmethane (DIM) imprinted material. DIM participates in the suppression of viability of human ovarian and human breast cancer cell lines, but has low bioavailability. The investigations of novel imprinted polymer matrices for improvement of DIM release could allow to utilize not only a potency of DIM but also similar alkaloids, which are the important compounds with pharmacological activity. The bulk, thermal radical copolymerization of the cross-linkers in the presence of 3,3′-diindolylmethane (the template) and allylamine (the functional monomer) in dimethyl sulfoxide or in carbon tetrachloride (porogens) was carried out. The binding capacities of imprinted and non-imprinted polymers were compared, and two polymers (these were prepared using ethylene glycol dimethacrylate and polyethylene glycol dimethacrylate as the cross-linkers) with the highest selectivity and binding capacity were selected to desorption test. The desorption profile of polymer prepared using polyethylene glycol dimethacrylate as the cross-linker revealed sustained release of 3,3′-diindolylmethane, and this system was selected for further optimization of the cross-linker amounts. The morphology and structure of the selected particles were analyzed using SEM micrographs, {sup 13}C CP/MAS NMR spectroscopy, and BET measurements. The desorption of 3,3′-diindolylmethane from poly(allylamine-co-polyethylene glycol dimethacrylate) particles was in accordance with pseudo-second-order kinetics and the simplified Higuchi model indicated the diffusion controlled release of 3,3′-diindolylmethane. - Graphical abstract: Sustained release of 3,3′-diindolylmethane from cavity in imprinted poly(allylamine-co-polyethylene glycol dimethacrylate

  16. Desorption of 3,3′-diindolylmethane from imprinted particles: An impact of cross-linker structure on binding capacity and selectivity

    International Nuclear Information System (INIS)

    Klejn, Dorota; Luliński, Piotr; Maciejewska, Dorota

    2015-01-01

    Here, seven cross-linkers (six polar diacrylates or dimethacrylates of different lengths between double bonds, and one aromatic-divinylbenzene) were used to examine the impact of the cross-linker on binding capacity and selectivity of 3,3′-diindolylmethane (DIM) imprinted material. DIM participates in the suppression of viability of human ovarian and human breast cancer cell lines, but has low bioavailability. The investigations of novel imprinted polymer matrices for improvement of DIM release could allow to utilize not only a potency of DIM but also similar alkaloids, which are the important compounds with pharmacological activity. The bulk, thermal radical copolymerization of the cross-linkers in the presence of 3,3′-diindolylmethane (the template) and allylamine (the functional monomer) in dimethyl sulfoxide or in carbon tetrachloride (porogens) was carried out. The binding capacities of imprinted and non-imprinted polymers were compared, and two polymers (these were prepared using ethylene glycol dimethacrylate and polyethylene glycol dimethacrylate as the cross-linkers) with the highest selectivity and binding capacity were selected to desorption test. The desorption profile of polymer prepared using polyethylene glycol dimethacrylate as the cross-linker revealed sustained release of 3,3′-diindolylmethane, and this system was selected for further optimization of the cross-linker amounts. The morphology and structure of the selected particles were analyzed using SEM micrographs, 13 C CP/MAS NMR spectroscopy, and BET measurements. The desorption of 3,3′-diindolylmethane from poly(allylamine-co-polyethylene glycol dimethacrylate) particles was in accordance with pseudo-second-order kinetics and the simplified Higuchi model indicated the diffusion controlled release of 3,3′-diindolylmethane. - Graphical abstract: Sustained release of 3,3′-diindolylmethane from cavity in imprinted poly(allylamine-co-polyethylene glycol dimethacrylate). - Highlights:

  17. Ternary Vapor–Liquid Equilibrium Measurements and Modeling of Ethylene Glycol (1) + Water (2) + Methane (3) Systems at 6 and 12.5 MPa

    DEFF Research Database (Denmark)

    Kruger, Francois J.; Danielsen, Marie V.; Kontogeorgis, Georgios M.

    2018-01-01

    Novel technologies in the field of subsea gasprocessing include the development of natural gas dehydration facilities, which may operate at high pressure due to their proximity to reservoirs. For the qualification and design of these processing units, ternary vapor−liquid equilibrium data...... are required to validate the thermodynamic models used in the design process. For this purpose, 16 new ternary data points were measured for ethylene glycol (1) + water (2) + methane (3) at 6.0 and 12.5 MPa with temperatures ranging from 288to 323 K and glycol content above 90 wt %. Glycol in gas (y1),water...

  18. Effects of temperature and particles concentration on the dynamic viscosity of MgO-MWCNT/ethylene glycol hybrid nanofluid: Experimental study

    Science.gov (United States)

    Soltani, Omid; Akbari, Mohammad

    2016-10-01

    In this paper, the effects of temperature and particles concentration on the dynamic viscosity of MgO-MWCNT/ethylene glycol hybrid nanofluid is examined. The experiments carried out in the solid volume fraction range of 0 to 1.0% under the temperature ranging from 30 °C to 60 °C. The results showed that the hybrid nanofluid behaves as a Newtonian fluid for all solid volume fractions and temperatures considered. The measurements also indicated that the dynamic viscosity increases with increasing the solid volume fraction and decreases with the temperature rising. The relative viscosity revealed that when the solid volume fraction enhances from 0.1 to 1%, the dynamic viscosity increases up to 168%. Finally, using experimental data, in order to predict the dynamic viscosity of MgO-MWCNT/ethylene glycol hybrid nanofluids, a new correlation has been suggested. The comparisons between the correlation outputs and experimental results showed that the suggested correlation has an acceptable accuracy.

  19. Membranes of Polymers of Intrinsic Microporosity (PIM-1) Modified by Poly(ethylene glycol).

    Science.gov (United States)

    Bengtson, Gisela; Neumann, Silvio; Filiz, Volkan

    2017-06-05

    Until now, the leading polymer of intrinsic microporosity PIM-1 has become quite famous for its high membrane permeability for many gases in gas separation, linked, however, to a rather moderate selectivity. The combination with the hydrophilic and low permeable poly(ethylene glycol) (PEG) and poly(ethylene oxides) (PEO) should on the one hand reduce permeability, while on the other hand enhance selectivity, especially for the polar gas CO₂ by improving the hydrophilicity of the membranes. Four different paths to combine PIM-1 with PEG or poly(ethylene oxide) and poly(propylene oxide) (PPO) were studied: physically blending, quenching of polycondensation, synthesis of multiblock copolymers and synthesis of copolymers with PEO/PPO side chain. Blends and new, chemically linked polymers were successfully formed into free standing dense membranes and measured in single gas permeation of N₂, O₂, CO₂ and CH₄ by time lag method. As expected, permeability was lowered by any substantial addition of PEG/PEO/PPO regardless the manufacturing process and proportionally to the added amount. About 6 to 7 wt % of PEG/PEO/PPO added to PIM-1 halved permeability compared to PIM-1 membrane prepared under similar conditions. Consequently, selectivity from single gas measurements increased up to values of about 30 for CO₂/N₂ gas pair, a maximum of 18 for CO₂/CH₄ and 3.5 for O₂/N₂.

  20. Removal of fumonisin B1 and B2 from model solutions and red wine using polymeric substances.

    Science.gov (United States)

    Carrasco-Sánchez, Verónica; Kreitman, Gal Y; Folch-Cano, Christian; Elias, Ryan J; Laurie, V Felipe

    2017-06-01

    Fumonisins are a group of mycotoxins found in various foods whose consumption is known to be harmful for human health. In this study, we evaluated the ability of three polymers (Polyvinylpolypyrrolidone, PVPP; a resin of N-vinyl-2-pyrrolidinone with ethylene glycol dimethacrylate and triallyl isocyanurate, PVP-DEGMA-TAIC; and poly(acrylamide-co-ethylene glycol-dimethacrylate), PA-EGDMA) to remove fumonisin B 1 (FB1) and fumonisin B 2 (FB2) from model solutions and red wine. Various polymer concentrations (1, 5 and 10mgmL -1 ) and contact times (2, 8 and 24h) were tested, with all polymers exhibiting fumonisin removal capacities (monitored by LC-MS). The impact of all polymers on polyphenol removal was also assessed. PA-EGDMA showed to be the most promising polymer, removing 71% and 95% of FB 1 , and FB 2 , respectively, with only a 22.2% reduction in total phenolics. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Characterization of Titanium Oxide Nanoparticles Obtained by Hydrolysis Reaction of Ethylene Glycol Solution of Alkoxide

    OpenAIRE

    Naofumi Uekawa; Naoya Endo; Keisuke Ishii; Takashi Kojima; Kazuyuki Kakegawa

    2012-01-01

    Transparent and stable sols of titanium oxide nanoparticles were obtained by heating a mixture of ethylene glycol solution of titanium tetraisopropoxide (TIP) and a NH3 aqueous solution at 368 K for 24 h. The concentration of NH3 aqueous solution affected the structure of the obtained titanium oxide nanoparticles. For NH3 aqueous solution concentrations higher than 0.2 mol/L, a mixture of anatase TiO2 nanoparticles and layered titanic acid nanoparticles was obtained. The obtained sol was very...

  2. Thermodynamic and spectroscopic studies on binary mixtures of imidazolium ionic liquids in ethylene glycol

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Bhupinder [Department of Chemistry, Kurukshetra University, Kurukshetra 136119, Haryana (India); Singh, Tejwant; Rao, K. Srinivasa [Salt and Marine Chemicals Division, Central Salt and Marine Chemicals Research Institute, Council of Scientific and Industrial Research (CSIR), G.B. Marg, Bhavnagar 364002 (India); Pal, Amalendu, E-mail: palchem@sify.com [Department of Chemistry, Kurukshetra University, Kurukshetra 136119, Haryana (India); Kumar, Arvind, E-mail: arvind@csmcri.org [Salt and Marine Chemicals Division, Central Salt and Marine Chemicals Research Institute, Council of Scientific and Industrial Research (CSIR), G.B. Marg, Bhavnagar 364002 (India)

    2012-01-15

    Highlights: > Macroscopic and molecular level interactions of imidazolium ionic liquids in ethylene glycol have been determined. > V{sub m}{sup E} is positive over the whole composition range for all the investigated mixtures. > Multiple hydrogen bonding interactions are prevailing between unlike components in mixtures of varying strengths. > Microscopic level interactions are not reflected in the mixing macroscopic behaviour. - Abstract: The thermodynamic behaviour of imidazolium based ionic liquids (ILs), 1-butyl-3-methylimidazolium chloride [C{sub 4}mim][Cl]; 1-octyl-3-methylimidazolium chloride [C{sub 8}mim][Cl], and 1-butyl-3-methylimidazolium methylsulfate [C{sub 4}mim][C{sub 1}OSO{sub 3}] in ethylene glycol [HOCH{sub 2}CH{sub 2}OH] (EG) have been investigated over the whole composition range at T = (298.15 to 318.15) K to probe the interactions in bulk. For the purpose, volumetric properties such as excess molar volume, V{sub m}{sup E}, apparent molar volume, V{sub {phi},i}, and its limiting values at infinite dilution, V{sub {phi},i}{sup {infinity}}, have been calculated from the experimental density measurements. The molecular scale interactions between ionic liquids and EG have been investigated through Fourier transform infrared (FTIR) and {sup 1}H NMR spectroscopy. The shift in the vibrational frequency for C-H stretch of aromatic ring protons of ILs and O-H stretch of EG molecules has been analysed. The NMR chemical shifts for various protons of RTILS or EG molecules and their deviations show multiple hydrogen bonding interactions of varying strengths between RTILs and EG in their binary mixtures.

  3. Prediction of scale potential in ethylene glycol containing solutions

    Energy Technology Data Exchange (ETDEWEB)

    Sandengen, Kristian; Oestvold, Terje

    2006-03-15

    This work presents a method for scale prediction in MEG (Mono Ethylene Glycol / 1,2-ethane-diol) containing solutions. It is based on an existing PVT scale model using a Pitzer ion interaction model for the aqueous phase. The model is well suited for scale prediction in saline solutions, where the PVT part is necessary for calculating CO{sub 2} phase equilibria being critical for carbonate scale. MEG influences the equilibria contained in the model, and its effect has been added empirically. Thus the accuracy of the model is limited by the amount of available experimental data. The model is applicable in the range 0-99wt% MEG and includes a wide variety of salts. In addition to the aspects of scale modelling in MEG+water solutions, this work presents new experimental data on CaSO4 solubility (0-95wt% MEG and 22-80 deg.C). CaSO4 solubility is greatly reduced by MEG to an extent that ''Salting-out'' is possible. (author) (tk)

  4. Electrocatalytic oxidation of ethylene glycol at palladium-bimetallic nanocatalysts (PdSn and PdNi) supported on sulfonate-functionalised multi-walled carbon nanotubes

    CSIR Research Space (South Africa)

    Ramulifho, T

    2013-04-01

    Full Text Available Electrocatalytic oxidation of ethylene glycol (EG) in alkaline medium using nano-scaled palladium-based bimetallic catalysts (PdM, where M = Ni and Sn) supported on sulfonated multi-walled carbon nanotubes (SF-MWCNTs) is compared. The bimetallic...

  5. Synthesis and characterization of biodegradable poly (ethylene glycol) and poly (caprolactone diol) end capped poly (propylene fumarate) cross linked amphiphilic hydrogel as tissue engineering scaffold material.

    Science.gov (United States)

    Krishna, Lekshmi; Jayabalan, Muthu

    2009-12-01

    Biodegradable poly (caprolactone diol-co-propylene fumarate-co-ethylene glycol) amphiphilic polymer with poly (ethylene glycol) and poly (caprolactone diol) chain ends (PCL-PPF-PEG) was prepared. PCL-PPF-PEG undergoes fast setting with acrylamide (aqueous solution) by free radical polymerization and produces a crosslinked hydrogel. The cross linked and freeze-dried amphiphilic material has porous and interconnected network. It undergoes higher degree of swelling and water absorption to form hydrogel with hydrophilic and hydrophobic domains at the surface and appreciable tensile strength. The present hydrogel is compatible with L929 fibroblast cells. PCL-PPF-PEG/acrylamide hydrogel is a candidate scaffold material for tissue engineering applications.

  6. Dielectric Properties of Boron Nitride-Ethylene Glycol (BN-EG) Nanofluids

    Science.gov (United States)

    Fal, Jacek; Cholewa, Marian; Gizowska, Magdalena; Witek, Adam; ŻyŁa, GaweŁ

    2017-02-01

    This paper presents the results of experimental investigation of the dielectric properties of ethylene glycol (EG) with various load of boron nitride (BN) nanoparticles. The nanofuids were prepared by using a two-step method on the basis of commercially available BN nanoparticles. The measurements were carried out using the Concept 80 System (NOVOCONTROL Technologies GmbH & Co. KG, Montabaur, Germany) in a frequency range from 10 Hz to 10 MHz and temperatures from 278.15 K to 328.15 K. The frequency-dependent real (ɛ ^' }) and imaginary (ɛ ^' ' }) parts of the complex permittivity (ɛ ^*) and the alternating current (AC) conductivity are presented. Also, the effect of temperature and mass concentrations on the dielectric properties of BN-EG nanofluids are demonstrated. The results show that the most significant increase can be achieved for 20 wt.% of BN nanoparticles at 283.15 K and 288.15 K, that is eleven times larger than in the case of pure EG.

  7. Experimental investigation of heat transfer potential of Al2O3/Water-Mono Ethylene Glycol nanofluids as a car radiator coolant

    Directory of Open Access Journals (Sweden)

    Dattatraya G. Subhedar

    2018-03-01

    Full Text Available In this research, the heat transfer potential of Al2O3/Water-Mono Ethylene Glycol nanofluids is investigated experimentally as a coolant for car radiators. The base fluid was the mixture of water and mono ethylene glycol with 50:50 proportions by volume. The stable nanofluids obtained by ultra-sonication are used in all experiments. In this study nanoparticle volume fraction, coolant flow rate, inlet temperature used in the ranges of 0.2–0.8%, 4–9 l per minute and 65–85 °C. The results show that the heat transfer performance of radiator is enhanced by using nanofluids compared to conventional coolant. Nanofluid with lowest 0.2% volume fraction 30% rise in heat transfer is observed. Also the estimation of reduction in frontal area of radiator if base fluid is replaced by Nanofluid is done which will make lighter cooling system, produce less drag and save the fuel cost.

  8. Thermo-acoustical molecular interaction study in binary mixtures of glycerol and ethylene glycol

    Science.gov (United States)

    Kaur, Kirandeep; Juglan, K. C.; Kumar, Harsh

    2017-07-01

    Ultrasonic velocity, density and viscosity are measured over the entire composition range for binary liquid mixtures of glycerol (CH2OH-CHOH-CH2OH) and ethylene glycol (HOCH2CH2OH) at different temperatures and constant frequency of 2MHz using ultrasonic interferometer, specific gravity bottle and viscometer respectively. Measured experimental values are used to obtained various acoustical parameters such as adiabatic compressibility, acoustic impedance, intermolecular free length, relaxation time, ultrasonic attenuation, effective molar weight, free volume, available volume, molar volume, Wada's constant, Rao's constant, Vander Waal's constant, internal pressure, Gibb's free energy and enthalpy. The variation in acoustical parameters are interpreted in terms of molecular interactions between the components of molecules of binary liquid mixtures.

  9. The Effects of Triethylene Glycol Dimethacrylate (TEGDMA on the Protein of Human Dental Pulp Cells

    Directory of Open Access Journals (Sweden)

    Ratna Farida

    2013-07-01

    Full Text Available Triethylene glycol dimethacrylate (TEGDMA is a common component of the bonding agents and resin composites used in dentistry for restorative dentistry. However, TEGDMA could be released from composite resins following incomplete polymerization and degradation processes by salivary enzyme in the mouth. Subsequently, TEGDMA is available in saliva and diffuses toward and affects the dental pulp which contains various cells, and thus may cause severe cytotoxic effects. Objectives: To determine the total protein concentration of human dental ulp cells following exposure to TEGDMA. Materials and Methods: Dental pulp cells were isolated from the pulp of the freshly extracted teeth and cultured in DMEM for 48 h (37ºC, 5% CO2. Then, 2 mM and 4 mM, and 8 mM TEGDMA were added to these cells and incubated for 24 h. The total protein was measured by Bradford Protein Assay. Results: The total protein concentration of dental pulp cells after exposure to 4 mM, 8mM, and 12 mM TEGDMA were statistically lower (22762.27 µg/ml ± 3385.87; 20268.44 µg/ml ± 1701.14; 23706.51 µg/ml ± 3214.52; respectively than the control group (24253.77 µg/ml ± 3072.99. Furthermore, the total protein concentration of culture medium after exposure to 4 mM, 8 mM, and 2 mM TEGDMA, were statistically higher (28635.85 µg/ml ± 2373.4; 35288.41 µg/ml ± 3469.48; 38199.79 µg/ml ± 2752.47; respectively when compared with the controls (27073.83 µg/ml ± 2772.47. Conclusion: 2 mM, 4 mM, and 8 mM TEGDMA caused cytotoxity to human dental pulp cells chowed by decreasing the total protein of cells and increasing the total protein of the culture medium.DOI: 10.14693/jdi.v16i3.102

  10. Poly(Poly(Ethylene Glycol Methyl Ether Methacrylate Grafted Chitosan for Dye Removal from Water

    Directory of Open Access Journals (Sweden)

    Bryan Tsai

    2017-03-01

    Full Text Available As the demand for textile products and synthetic dyes increases with the growing global population, textile dye wastewater is becoming one of the most significant water pollution contributors. Azo dyes represent 70% of dyes used worldwide, and are hence a significant contributor to textile waste. In this work, the removal of a reactive azo dye (Reactive Orange 16 from water by adsorption with chitosan grafted poly(poly(ethylene glycol methyl ether methacrylate (CTS-GMA-g-PPEGMA was investigated. The chitosan (CTS was first functionalized with glycidyl methacrylate and then grafted with poly(poly(ethylene glycol methyl ether methacrylate using a nitroxide-mediated polymerization grafting to approach. Equilibrium adsorption experiments were carried out at different initial dye concentrations and were successfully fitted to the Langmuir and Freundlich adsorption isotherm models. Adsorption isotherms showed maximum adsorption capacities of CTS-g-GMA-PPEGMA and chitosan of 200 mg/g and 150 mg/g, respectively, while the Langmuir equations estimated 232 mg/g and 194 mg/g, respectively. The fundamental assumptions underlying the Langmuir model may not be applicable for azo dye adsorption, which could explain the difference. The Freundlich isotherm parameters, n and K, were determined to be 2.18 and 17.7 for CTS-g-GMA-PPEGMA and 0.14 and 2.11 for chitosan, respectively. An “n” value between one and ten generally indicates favorable adsorption. The adsorption capacities of a chitosan-PPEGMA 50/50 physical mixture and pure PPEGMA were also investigated, and both exhibited significantly lower adsorption capacities than pure chitosan. In this work, CTS-g-GMA-PPEGMA proved to be more effective than its parent chitosan, with a 33% increase in adsorption capacity.

  11. Short-term adhesion and long-term biofouling testing of polydopamine and poly(ethylene glycol) surface modifications of membranes and feed spacers for biofouling control

    KAUST Repository

    Miller, Daniel J.; Araú jo, Paula A.; Correia, Patrí cia B.; Ramsey, Matthew M.; Kruithof, Joop C.; van Loosdrecht, Mark C.M.; Freeman, Benny Dean; Paul, Donald; Whiteley, Marvin; Vrouwenvelder, Johannes S.

    2012-01-01

    simulator (MFS) for several days under flow conditions similar to those encountered in industrial modules with the autochthonous drinking water population and acetate dosage as organic substrate. Polydopamine- and polydopamine- g-poly(ethylene glycol)-modified

  12. The influence of increased cross-linker chain length in thermosensitive microspheres on potential sun-protection activity.

    Science.gov (United States)

    Musiał, Witold; Kokol, Vanja; Voncina, Bojana

    2010-01-01

    The sun protection should involve substances with protecting activity against both UVB and UVA radiation. In this research the evaluation of thermosensitive microspheres as potential molecules for sunscreen formulations was approached, using modified Boots star rating system. The microspheres, thermosensitive N-isopropylacrylamide derivatives, have potential protecting activity against UV radiation. The MX and DX microspheres, with ethylene glycol dimethacrylate and diethylene glycol dimethacrylate crosslinker respectively, due to theirs thermosensitivity exhibit increase in protecting activity against UV radiation when heated to 45 degrees C. The MX microspheres have higher increase in terms of UV absorbance, comparing to DX microspheres, when heated in the 25 degrees C to 45 degrees C range. Studied microspheres have high potential for application as components of sun-screens used in elevated temperatures.

  13. Hydrogels for in situ encapsulation of biomimetic membrane arrays

    DEFF Research Database (Denmark)

    Ibragimova, Sania; Jensen, Karin Bagger Stibius; Szewczykowski, Piotr Przemyslaw

    2012-01-01

    to chemically initiated hydrogels; however, for all hydrogels the permeability was several-fold higher than the water permeability of conventional reverse osmosis (RO) membranes. Lifetimes of freestanding BLM arrays in gel precursor solutions were short compared to arrays formed in buffer. However, polymerizing......Hydrogels are hydrophilic, porous polymer networks that can absorb up to thousands of times their own weight in water. They have many potential applications, one of which is the encapsulation of freestanding black lipid membranes (BLMs) for novel separation technologies or biosensor applications....... We investigated gels for in situ encapsulation of multiple BLMs formed across apertures in a hydrophobic ethylene tetrafluoroethylene (ETFE) support. The encapsulation gels consisted of networks of poly(ethylene glycol)-dimethacrylate or poly(ethylene glycol)-diacrylate polymerized using either...

  14. One pot synthesis of Ag nanoparticle modified ZnO microspheres in ethylene glycol medium and their enhanced photocatalytic performance

    International Nuclear Information System (INIS)

    Tian Chungui; Li Wei; Pan Kai; Zhang Qi; Tian Guohui; Zhou Wei; Fu Honggang

    2010-01-01

    Ag nanoparticles (NPs) modified ZnO microspheres (Ag/ZnO microspheres) were prepared by a facile one pot strategy in ethylene glycol (EG) medium. The EG played two important roles in the synthesis: it could act as a reaction media for the formation of ZnO and reduce Ag + to Ag 0 . A series of the characterizations indicated the successful combination of Ag NPs with ZnO microspheres. It was shown that Ag modification could greatly enhance the photocatalytic efficiency of ZnO microspheres by taking the photodegradation of Rhodamine B as a model reaction. With appropriate ratio of Ag and ZnO, Ag/ZnO microspheres showed the better photocatalytic performance than commercial Degussa P-25 TiO 2 . Photoluminescence and surface photovoltage spectra demonstrated that Ag modification could effectively inhibit the recombination of the photoinduced electron and holes of ZnO. This is responsible for the higher photocatalytic activity of Ag/ZnO composites. -- Graphical abstract: A 'one-pot' strategy was developed for preparing the Ag/ZnO microspheres in ethylene glycol. The composites exhibited superior photocatalytic performance for photodegradation of Rhodamine B dye in water. Display Omitted

  15. Hall effects on peristalsis of boron nitride-ethylene glycol nanofluid with temperature dependent thermal conductivity

    Science.gov (United States)

    Abbasi, F. M.; Gul, Maimoona; Shehzad, S. A.

    2018-05-01

    Current study provides a comprehensive numerical investigation of the peristaltic transport of boron nitride-ethylene glycol nanofluid through a symmetric channel in presence of magnetic field. Significant effects of Brownian motion and thermophoresis have been included in the energy equation. Hall and Ohmic heating effects are also taken into consideration. Resulting system of non-linear equations is solved numerically using NDSolve in Mathematica. Expressions for velocity, temperature, concentration and streamlines are derived and plotted under the assumption of long wavelength and low Reynolds number. Influence of various parameters on heat and mass transfer rates have been discussed with the help of bar charts.

  16. Highly open bowl-like PtAuAg nanocages as robust electrocatalysts towards ethylene glycol oxidation

    Science.gov (United States)

    Xu, Hui; Yan, Bo; Li, Shumin; Wang, Jin; Song, Pingping; Wang, Caiqin; Guo, Jun; Du, Yukou

    2018-04-01

    A novel combined seed mediated and galvanic replacement method has been demonstrated to synthesize a new class of trimetallic PtAuAg nanocatalysts with highly open bowl-like nanocage structure. The newly-generated PtAuAg nanocages catalysts exhibit superior electrocatalytic performances towards ethylene glycol oxidation with the mass activity of 6357.1 mA mg-1, 5.5 times higher than that of commercial Pt/C (1151.1 mA mg-1). This work demonstrates the first example of designing shape-controlled architectures of trimetallic bowl-like PtAuAg nanocages for liquid fuel electrooxidation.

  17. Towards bilirubin imprinted poly(methacrylic acid-co-ethylene glycol dimethylacrylate) for the specific binding of α-bilirubin

    International Nuclear Information System (INIS)

    Syu, M.-J.; Deng, J.-H.; Nian, Y.-M.

    2004-01-01

    With α-bilirubin as a molecular template, polymerization of methacrylic acid (MAA) was carried out with the aid of the initiator 2,2-azobisisobutyronitrile (AIBN) and the cross-linking agent ethylene glycol dimethylacrylate (EGDMA). Bulk polymerization was successfully carried out so that poly(methacrylic acid-co-ethylene glycol dimethylacrylate) (poly(MAA-EGDMA)) imprinted with α-bilirubin was first developed. UV irradiation polymerization and heated polymerization methods were compared. Effect of different ratios of monomer to EGDMA during the polymerization was also discussed. Proper solvent for better desorption of α-bilirubin from the imprinted poly(MAA-EGDMA) was investigated. In addition, SEM photos were provided for observing the differences between the surfaces of the imprinted poly(MAA-EGDMA) before and after extraction. The corresponding binding results of α-bilirubin imprinted poly(MAA-EGDMA) and non-imprinted poly(MAA-EGDMA) both after extraction were compared. How the pH values during extraction stage affected the binding capacities of the imprinted polymer as well as non-imprinted polymer were also discussed. Similar study and comparison were made for different binding pH values. Different compounds of similar molecular weight were used to show the specific binding of the imprinted polymer for bilirubin. The results further confirmed the successful binding as well as specificity of the imprinted poly(MAA-EGDMA) for α-bilirubin

  18. A subchronic dermal exposure study of diethylene glycol monomethyl ether and ethylene glycol monomethyl ether in the male guinea pig.

    Science.gov (United States)

    Hobson, D W; D'Addario, A P; Bruner, R H; Uddin, D E

    1986-02-01

    Diethylene glycol monomethyl ether (DEGME) has been selected as a replacement anti-icing additive for ethylene glycol monomethyl ether (EGME) in Navy jet aircraft fuel. This experiment was performed to determine whether DEGME produced similar toxicity to EGME following dermal exposure. Male guinea pigs were dermally exposed to 1.00, 0.20, 0.04, or 0 (control) g/kg/day DEGME for 13 weeks, 5 days/week, 6 hr/day. Another group of animals was similarly exposed to 1.00 g/kg/day EGME. Body weights as well as testicular and splenic weights were reduced as a result of exposure to EGME, DEGME-exposed animals exhibited decreased splenic weight in the high- and medium-dose (1.00 and 0.20 g/kg/day) exposure groups only. Hematologic changes in EGME-exposed animals included mild anemia with increased erythrocytic mean corpuscular volumes and a lymphopenia with increased neutrophils. Similar hematological changes were not observed in any animals exposed to DEGME. Serum creatine kinase activity was increased in animals exposed to EGME, and serum lactate dehydrogenase activity was increased in EGME and 1.00 g/kg/day DEGME-exposed animals. In general, DEGME produced minimal toxicological changes following dermal exposure, whereas the toxicological changes observed following similar exposure to EGME were much more profound.

  19. Amphiphilic poly{[α-maleic anhydride-ω-methoxypoly(ethylene glycol]-co-(ethyl cyanoacrylate} graft copolymer nanoparticles as carriers for transdermal drug delivery

    Directory of Open Access Journals (Sweden)

    Jinfeng Xing

    2009-10-01

    Full Text Available Jinfeng Xing, Liandong Deng, Jun Li, Anjie DongDepartment of Polymer Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, People’s Republic of ChinaAbstract: In this study, the transdermal drug delivery properties of D,L-tetrahydropalmatine (THP-loaded amphiphilic poly{[α-maleic anhydride-ω-methoxy-poly(ethylene glycol]-co-(ethyl cyanoacrylate} (PEGECA graft copolymer nanoparticles (PEGECAT NPs were evaluated by skin penetration experiments in vitro. The transdermal permeation experiments in vitro were carried out in Franz diffusion cells using THP-loaded PEGECAT NPs as the donor system. Transmission electron microscopy and Fourier transform infrared spectroscopy were used to characterize the receptor fluid. The results indicate that the THP-loaded PEGECAT NPs are able to penetrate the rat skin. Fluorescent microscopy measurements demonstrate that THP-loaded PEGECAT NPs can penetrate the skin not only via appendage routes but also via epidermal routes. This nanotechnology has potential application in transdermal drug delivery. Keywords: poly{[α-maleic anhydride-ω-methoxy-poly(ethylene glycol]-co-(ethyl cyanoacrylate}, nanoparticles, transdermal drug delivery, D,L-tetrahydropalmatine

  20. Weak intramolecular interaction effects on the torsional spectra of ethylene glycol, an astrophysical species

    Energy Technology Data Exchange (ETDEWEB)

    Boussessi, R., E-mail: rahma.boussesi@iem.cfmac.csic.es [Departamento de Química y Física Teóricas, I. Estructura de la Materia, IEM-CSIC, Serrano 121, Madrid 28006 (Spain); Laboratoire de Spectroscopie Atomique, Moléculaire et Applications-LSAMA LR01ES09, Faculté des sciences de Tunis, Université de Tunis El Manar, 2092 Tunis (Tunisia); Senent, M. L., E-mail: ml.senent@csic.es [Departamento de Química y Física Teóricas, I. Estructura de la Materia, IEM-CSIC, Serrano 121, Madrid 28006 (Spain); Jaïdane, N. [Laboratoire de Spectroscopie Atomique, Moléculaire et Applications-LSAMA LR01ES09, Faculté des sciences de Tunis, Université de Tunis El Manar, 2092 Tunis (Tunisia)

    2016-04-28

    An elaborate variational procedure of reduced dimensionality based on explicitly correlated coupled clusters calculations is applied to understand the far infrared spectrum of ethylene-glycol, an astrophysical species. This molecule can be classified in the double molecular symmetry group G{sub 8} and displays nine stable conformers, gauche and trans. In the gauche region, the effect of the potential energy surface anisotropy due to the formation of intramolecular hydrogen bonds is relevant. For the primary conformer, stabilized by a hydrogen bond, the ground vibrational state rotational constants are computed to be A{sub 0} = 15 369.57 MHz, B{sub 0} = 5579.87 MHz, and C{sub 0} = 4610.02 MHz corresponding to differences of 6.3 MHz, 7.2 MHz, and 3.5 MHz from the experimental parameters. Ethylene glycol displays very low torsional energy levels whose classification is not straightforward and requires a detailed analysis of the torsional wavefunctions. Tunneling splittings are significant and unpredictable due to the anisotropy of the potential energy surface PES. The ground vibrational state splits into 16 sublevels separated ∼142 cm{sup −1}. The splitting of the “G1 sublevels” was calculated to be ∼0.26 cm{sup −1} in very good agreement with the experimental data (0.2 cm{sup −1} = 6.95 MHz). Transitions corresponding to the three internal rotation modes allow assignment of previously observed Q branches. Band patterns, calculated between 362.3 cm{sup −1} and 375.2 cm{sup −1}, 504 cm{sup −1} and 517 cm{sup −1}, and 223.3 cm{sup −1} and 224.1 cm{sup −1}, that correspond to the tunnelling components of the v{sub 21} fundamental (v{sub 21} = OH-torsional mode), are assigned to the prominent experimental Q branches.

  1. Spectral Reflectance of Duckweed (Lemna Gibba L.) Fronds Exposed to Ethylene Glycol

    Science.gov (United States)

    Dong, Weijin; Carter, Gregory A.; Barber, John T.

    2001-01-01

    When duckweed (Lemna Gibba L.) fronds are exposed to ethylene glycol (EG) anatomy is altered, allowing an increase in water uptake that causes a darkening of frond appearance. Spectroradiometry was used to quantify changes in frond reflectance that occurred throughout the 400-850 nm spectrum under various EG concentrations and exposure times. The threshold concentration of EG at which a reflectance change could be detected was between 35 and 40 mM, approximately the same as by visual observation. EG-induced changes in frond reflectance were maximum at concentrations of 50 mM or greater. Reflectance changes were detectable within 24h of exposure to 100 mM EG,2-3 days prior to changes in frond appearance. The spectroradiometry of duckweed may serve as a rapid and sensitive technique for detection of ecosystem exposure to EG and perhaps other stress agents.

  2. IR Spectroscopy of Ethylene Glycol Solutions of Dimethylsulfoxide

    Science.gov (United States)

    Kononova, E. G.; Rodnikova, M. N.; Solonina, I. A.; Sirotkin, D. A.

    2018-07-01

    Features of ethylene glycol (EG) solutions of dimethylsulfoxide (DMSO) with low and moderate concentrations (from 2 to 50 mol % of DMSO) are studied by IR spectroscopy on a Bruker Tensor 37 FT-IR spectrometer in the wavenumber range of 400 to 4000 cm-1. The main monitored bands are the S=O stretching vibration band of DMSO (1057 cm-1) and the C-O (1086 and 1041 cm-1) and O-H (3350 cm-1) stretching vibration bands of EG. The obtained data show complex DMSO · 2EG to be present in all solutions with the studied concentrations due to formation of H-bonds between the S=O group of DMSO and the OH group of EG. In the concentration range of 6 to 25 mol % DMSO, the OH stretching vibration of EG is found to be broadened (by up to 70 cm-1), suggesting the strengthening of hydrogen bonds in the spatial network of the system due to the solvophobic effect of DMSO molecules and the formation of DMSO · 2EG. Starting from 25 mol % DMSO, narrowing of the OH stretching vibration is noted, and the bands of free DMSO appear along with the DMSO · 2EG complex, suggesting microseparation in the investigated system. At 50 mol % DMSO, the amounts of free and bound species in the system became comparable.

  3. Alkyne- and 1,6-elimination- succinimidyl carbonate - terminated heterobifunctional poly(ethylene glycol) for reversible "Click" PEGylation.

    Science.gov (United States)

    Xie, Yumei; Duan, Shaofeng; Forrest, M Laird

    2010-01-01

    A new heterobifunctional (succinimidyl carbonate, SC)-activated poly(ethylene glycol) (PEG) with a reversible 1,6-elimination linker and a terminal alkyne for "click" chemistry was synthesized with high efficiency and low polydispersity. The α-alkyne-ω-hydroxyl PEG was first prepared using trimethylsilyl-2-propargyl alcohol as an initiator for ring-opening polymerization of ethylene oxide followed by mild deprotection with tetrabutylammonium fluoride. The hydroxy end was then modified with diglycolic anhydride to generate α-alkyne-ω-carboxylic acid PEG. The reversible 1, 6-elimination linker was introduced by conjugation of a hydroxymethyl phenol followed by activation with N,N'-disuccinimidyl carbonate to generate the heterobifunctional α-alkyne-ω-SC PEG. The terminal alkyne is available for "click" conjugation to azido ligands via 1,3-dipolar cycloaddition, and the succinimidyl carbonate will form a reversible conjugate to amines (e.g. in proteins) that can release the unaltered amine after base or enzyme catalyzed cleavage of the 1,6-linker.

  4. Separation of alpha-, beta-, gamma-, delta-tocopherols and alpha-tocopherol acetate on a pentaerythritol diacrylate monostearate-ethylene dimethacrylate monolith by capillary electrochromatography.

    Science.gov (United States)

    Chaisuwan, Patcharin; Nacapricha, Duangjai; Wilairat, Prapin; Jiang, Zhengjin; Smith, Norman W

    2008-06-01

    This work reports the first use of a monolith with method development for the separation of tocopherol (TOH) compounds by CEC with UV detection. A pentaerythritol diacrylate monostearate-ethylene dimethacrylate (PEDAS-EDMA) monolithic column has been investigated for an optimised condition to separate alpha-, beta-, gamma- and delta-TOHs, and alpha-tocopherol acetate (TAc). The PEDAS-EDMA monolith showed a remarkably good selectivity for separation of the TOH isomers including the beta- and gamma-isomers which are not easily separated by standard C8 or C18 particle-packed columns. Retention studies indicated that an RP mechanism was involved in the separation on the PEDAS-EDMA column, but polar interactions with the underlying ester and hydroxyl groups enhanced the separation of the problematic beta- and gamma-isomers. Separation of all the compounds was achieved within 25 min using 3:10:87 v/v/v 100 mM Tris buffer (pH 9.3)/methanol/ACN as the mobile phase. The method was successfully applied to a pharmaceutical sample with recoveries from 93 to 99%. Intraday and interday precisions (%RSD) for peak area and retention time were less than 2.3. LODs for all four TOHs and TAc were below 1 ppm.

  5. Electrochemical deposition of Ni coating on Cu substrate in ethylene glycol + iCl/sub 2/.6H/sub 2/0 electrolyte characterization of Ni coatings

    International Nuclear Information System (INIS)

    Ghaffar, A.

    2011-01-01

    The primary objective of this work was to develop the technical know-how regarding the electrodeposition technique and the parameters affecting the quality of the electrodeposit such as electrolyte nature, its pH, current density, potential, substrate material etc. The ethylene glycol based organic electrolyte was employed to improve the aesthetics, surface and structural properties of nickel electroplatings. For the purpose of achieving improvements in nickel plating, a comparative work-study was carried out using aqueous and organic electrolytes. The voltammetric experiments were performed to find out the electroactive potential domain of ethylene glycol electrolyte, or in other words, to get the current density and potential ranges suitable for electrodeposition of nickel on copper substrate. Electroplating was carried out galvanostatically at different current densities and concentrations to find out the quality of Ni electrodeposit in both aqueous and organic electrolytes. The most suited electrolyte concentration (0.6 M hydrated nickel chloride dissolved in corresponding electrolytic solvent) and current density (1 mA/cm/sup 2/) were chosen to carry out nickel plating in aqueous electrolyte as well as in ethylene glycol electrolyte. Subsequently, current efficiencies were calculated for both electrolytes to find out the improvement in the quality of Ni deposit. Finally, the material characterization techniques such as X-ray diffraction, scanning electron microscopy, atomic force microscopy and adhesion testing were performed to fully access the composition, structure and surface morphology of nickel coating. (author)

  6. Plasticization of poly(lactic acid) using different molecular weight of Poly(ethylene glycol)

    Science.gov (United States)

    Septevani, Athanasia Amanda; Bhakri, Samsul

    2017-11-01

    Poly (lactic acid) (PLA) has been known as an excellent candidate for developing the future bioplastic due to its biodegradability and competitive price. However, inherent brittleness and low thermal stability of PLA have limited its applications. Considerable studies have been developed to improve the flexibility of PLA, in which blending PLA with various plasticizers has been identified as a cost-effective way to lower glass-transition temperature (Tg) and thus improve its elongation property. In this study, PLA was modified by incorporating poly(ethylene glycol) as a plasticizer with different molecular weights (M¯w 400, 1000, and 6000, called respectively as PEG 400, PEG 1000, and PEG 6000) via a solvent-casting blend method. FTIR was used for analyzing the chemical interaction while TGA and DSC measured the thermal behavior of PLA/PEG. The results indicated that the addition of lower M¯w (PEG 400 and PEG 1000) could reduce the Tg due to the enhancement of chain mobility of PLA with PEG and so driving into a more amorphous states resulted reduction of melting temperature (Tm) compared to the neat PLA. Further, at a higher M¯w of PEG 6000, the longer chain of ethylene glycol, in contrast, resulted a gradual increase in the Tg as well as Tm where the value went back to the point of neat PLA compared to the other lower molecular weight of PLA. This was due to the decrease in polymer miscibility with the increasing of M¯w. In terms of thermal stability, the addition of PEG exhibited two step degradation behavior while the neat PLA only possessed single step degradation. The presence of PEG could act as a protective barrier layer that could hinder the permeability of the volatile compound and product during decomposition reaction and thus could eventually delay and slower the degradation process. It was observed that the addition of PEG at higher M¯w (PEG1000 and PEG 6000) exhibited a higher second degradation temperature up to 380 °C.

  7. Ethylene Glycol Poisoning; an Unusual Cause of Hyperglycemia: A Case Report

    Directory of Open Access Journals (Sweden)

    Abdul Raoof Kunnummal Madathodi

    2015-03-01

    Full Text Available Background:Poisoning with ethylene glycol (EG can be fatal even if appropriate treatments are delivered. EG poisoning usually causes central nervous system depression, cardiovascular dysfunction, metabolic acidosis and acute renal failure (ARF. Case Report:A 33-year-old man was referred to the emergency department with reduced consciousness and dyspnea of four-hour duration due to unknown reason. The patient had no history of diabetes, hypertension, cardiac disease or asthma. He was tachycardic, tachypneic and hypertensive. Laboratory investigations revealed hyperglycemia, high serum creatinine, hyponatremia, hyperkalemia, leukocytosis and high anion gap metabolic acidosis (HAGMA. He was initially managed as diabetic ketoacidosis (DKA. Alternative diagnoses of toxic alcohols poisoning was considered as there was no improvement. EG ingestion was confirmed when the relatives found an empty bottle of automotive brake oil, a poly glycol-based product, in the patient’s room. Although he was treated with ethanol and hemodialysis, renal failure worsened and finally he succumbed to death due to severe sepsis on the seventh day of EG ingestion. Discussion: This case illustrates the difficulties posed by high toxicity as well as unraveled and delayed diagnosis of EG poisoning. High anion gap and high osmolal gap are characteristics of EG poisoning. Transient pancreatitis caused by EG and insulin resistance due to ARF are the possible explanations for hyperglycemia secondary to EG poisoning. Conclusion:EG poisoning may manifest with hyperglycemia and HAGMA resembling DKA. It is important for the clinician to have high degree of suspicion for EG poisoning in case of HAGMA and ARF refractory to common treatments.

  8. Bioactive poly(ethylene glycol) hydrogels to recapitulate the HSC niche and facilitate HSC expansion in culture.

    Science.gov (United States)

    Cuchiara, Maude L; Coşkun, Süleyman; Banda, Omar A; Horter, Kelsey L; Hirschi, Karen K; West, Jennifer L

    2016-04-01

    Hematopoietic stem cells (HSCs) have been used therapeutically for decades, yet their widespread clinical use is hampered by the inability to expand HSCs successfully in vitro. In culture, HSCs rapidly differentiate and lose their ability to self-renew. We hypothesize that by mimicking aspects of the bone marrow microenvironment in vitro we can better control the expansion and differentiation of these cells. In this work, derivatives of poly(ethylene glycol) diacrylate hydrogels were used as a culture substrate for hematopoietic stem and progenitor cell (HSPC) populations. Key HSC cytokines, stem cell factor (SCF) and interferon-γ (IFNγ), as well as the cell adhesion ligands RGDS and connecting segment 1 were covalently immobilized onto the surface of the hydrogels. With the use of SCF and IFNγ, we observed significant expansion of HSPCs, ∼97 and ∼104 fold respectively, while maintaining c-kit(+) lin(-) and c-kit(+) Sca1(+) lin(-) (KSL) populations and the ability to form multilineage colonies after 14 days. HSPCs were also encapsulated within degradable poly(ethylene glycol) hydrogels for three-dimensional culture. After expansion in hydrogels, ∼60% of cells were c-kit(+), demonstrating no loss in the proportion of these cells over the 14 day culture period, and ∼50% of colonies formed were multilineage, indicating that the cells retained their differentiation potential. The ability to tailor and use this system to support HSC growth could have implications on the future use of HSCs and other blood cell types in a clinical setting. © 2015 Wiley Periodicals, Inc.

  9. Protein adsorption and cell adhesion on nanoscale bioactive coatings formed from poly(ethylene glycol) and albumin microgels

    Science.gov (United States)

    Scott, Evan A.; Nichols, Michael D.; Cordova, Lee H.; George, Brandon J.; Jun, Young-Shin; Elbert, Donald L.

    2008-01-01

    Late-term thrombosis on drug-eluting stents is an emerging problem that might be addressed using extremely thin, biologically-active hydrogel coatings. We report a dip-coating strategy to covalently link poly(ethylene glycol) (PEG) to substrates, producing coatings with crosslinked microgels and deviation from Flory-Stockmayer theory. Before macrogelation, the reacting solutions were diluted and incubated with nucleophile-functionalized surfaces. Using optical waveguide lightmode spectroscopy (OWLS) and quartz crystal microbalance with dissipation (QCM-D), we identified a highly hydrated, protein-resistant layer with a thickness of approximately 75 nm. Atomic force microscopy in buffered water revealed the presence of coalesced spheres of various sizes but with diameters less than about 100 nm. Microgel-coated glass or poly(ethylene terephthalate) exhibited reduced protein adsorption and cell adhesion. Cellular interactions with the surface could be controlled by using different proteins to cap unreacted vinylsulfone groups within the coating. PMID:18771802

  10. Direct laser writing of synthetic poly(amino acid) hydrogels and poly(ethylene glycol) diacrylates by two-photon polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Käpylä, Elli, E-mail: elli.kapyla@tut.fi [Department of Electronics and Communications Engineering, Tampere University of Technology, P.O. Box 692, 33101 Tampere (Finland); BioMediTech, Biokatu 10, 33520 Tampere (Finland); Sedlačík, Tomáš [Institute of Macromolecular Chemistry of the Academy of Sciences of the Czech Republic, Heyrovského nám. 2, 162 06 Praha 6, Břevnov, Prague (Czech Republic); Aydogan, Dogu Baran [Department of Electronics and Communications Engineering, Tampere University of Technology, P.O. Box 692, 33101 Tampere (Finland); BioMediTech, Biokatu 10, 33520 Tampere (Finland); Viitanen, Jouko [VTT Technical Research Centre of Finland, P.O. Box 1300, 33101 Tampere (Finland); Rypáček, František [Institute of Macromolecular Chemistry of the Academy of Sciences of the Czech Republic, Heyrovského nám. 2, 162 06 Praha 6, Břevnov, Prague (Czech Republic); Kellomäki, Minna [Department of Electronics and Communications Engineering, Tampere University of Technology, P.O. Box 692, 33101 Tampere (Finland); BioMediTech, Biokatu 10, 33520 Tampere (Finland)

    2014-10-01

    The additive manufacturing technique of direct laser writing by two-photon polymerization (2PP-DLW) enables the fabrication of three-dimensional microstructures with superior accuracy and flexibility. When combined with biomimetic hydrogel materials, 2PP-DLW can be used to recreate the microarchitectures of the extracellular matrix. However, there are currently only a limited number of hydrogels applicable for 2PP-DLW. In order to widen the selection of synthetic biodegradable hydrogels, in this work we studied the 2PP-DLW of methacryloylated and acryloylated poly(α-amino acid)s (poly(AA)s). The performance of these materials was compared to widely used poly(ethylene glycol) diacrylates (PEGdas) in terms of polymerization and damage thresholds, voxel size, line width, post-polymerization swelling and deformation. We found that both methacryloylated and acryloylated poly(AA) hydrogels are suitable to 2PP-DLW with a wider processing window than PEGdas. The poly(AA) with the highest degree of acryloylation showed the greatest potential for 3D microfabrication. - Highlights: • Methacryloylated and acryloylated poly(α-amino acid)s (poly(AA)s) were synthesized. • Direct laser writing by two-photon polymerization (2PP-DLW) of poly(AA)s is shown. • Poly(AA)s have wider processing windows than poly(ethylene glycol) diacrylates. • 3D poly(AA) structures with 80% water content were fabricated.

  11. Direct laser writing of synthetic poly(amino acid) hydrogels and poly(ethylene glycol) diacrylates by two-photon polymerization

    International Nuclear Information System (INIS)

    Käpylä, Elli; Sedlačík, Tomáš; Aydogan, Dogu Baran; Viitanen, Jouko; Rypáček, František; Kellomäki, Minna

    2014-01-01

    The additive manufacturing technique of direct laser writing by two-photon polymerization (2PP-DLW) enables the fabrication of three-dimensional microstructures with superior accuracy and flexibility. When combined with biomimetic hydrogel materials, 2PP-DLW can be used to recreate the microarchitectures of the extracellular matrix. However, there are currently only a limited number of hydrogels applicable for 2PP-DLW. In order to widen the selection of synthetic biodegradable hydrogels, in this work we studied the 2PP-DLW of methacryloylated and acryloylated poly(α-amino acid)s (poly(AA)s). The performance of these materials was compared to widely used poly(ethylene glycol) diacrylates (PEGdas) in terms of polymerization and damage thresholds, voxel size, line width, post-polymerization swelling and deformation. We found that both methacryloylated and acryloylated poly(AA) hydrogels are suitable to 2PP-DLW with a wider processing window than PEGdas. The poly(AA) with the highest degree of acryloylation showed the greatest potential for 3D microfabrication. - Highlights: • Methacryloylated and acryloylated poly(α-amino acid)s (poly(AA)s) were synthesized. • Direct laser writing by two-photon polymerization (2PP-DLW) of poly(AA)s is shown. • Poly(AA)s have wider processing windows than poly(ethylene glycol) diacrylates. • 3D poly(AA) structures with 80% water content were fabricated

  12. Enhancing the in vivo transdermal delivery of gold nanoparticles using poly(ethylene glycol and its oleylamine conjugate

    Directory of Open Access Journals (Sweden)

    Hsiao PF

    2016-05-01

    Full Text Available Pa Fan Hsiao,1–3 Sydney Peng,4 Ting-Cheng Tang,4 Shuian-Yin Lin,5 Hsieh-Chih Tsai4 1Department of Dermatology, Mackay Memorial Hospital, 2Mackay Medicine, Nursing and Management College, 3Mackay Medical College, New Taipei City, 4Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei, 5National Applied Research Laboratories, Instrument Technology Research Center, Hsinchu, Taiwan Abstract: In this study, we investigated the effect of (ethylene glycol (PEG and PEG–oleylamine (OAm functionalization on the skin permeation property of gold nanoparticles (GNS in vivo. Chemisorption of polymers onto GNS was verified by a red shift in the ultraviolet–visible spectrum as well as by a change in the nanoparticle surface charge. The physicochemical properties of pristine and functionalized nanoparticles were analyzed by ultraviolet–visible spectroscopy, zeta potential analyzer, and transmission electron microscopy. Transmission electron microscopy revealed that the interparticle distance between nanoparticles increased after GNS functionalization. Comparing the skin permeation profile of pristine and functionalized GNS, the follicular deposition of GNS increased twofold after PEG–OAm functionalization. Moreover, PEG- and PEG–OAm-functionalized nanoparticles were able to overcome the skin barrier and deposit in the deeper subcutaneous adipose tissue. These findings demonstrate the potential of PEG- and PEG–OAm-functionalized GNS in serving a multitude of applications in transdermal pharmaceuticals. Keywords: skin penetration, amphiphilic copolymer, gold nanoparticle, oleylamine, poly(ethylene glycol

  13. Electrodeposition of amine-terminatedpoly(ethylene glycol) to titanium surface

    International Nuclear Information System (INIS)

    Tanaka, Yuta; Doi, Hisashi; Iwasaki, Yasuhiko; Hiromoto, Sachiko; Yoneyama, Takayuki; Asami, Katsuhiko; Imai, Hachiro; Hanawa, Takao

    2007-01-01

    The immobilization of poly(ethylene glycol), PEG, to a solid surface is useful to functionalize the surface, e.g., to prevent the adsorption of proteins. No successful one-stage technique for the immobilization of PEG to base metals has ever been developed. In this study, PEG in which both terminals or one terminal had been modified with amine bases was immobilized onto a titanium surface using electrodeposition. PEG was dissolved in a NaCl solution, and electrodeposition was carried out at 310 K with - 5 V for 300 min. The thickness of the deposited PEG layer was evaluated using ellipsometry, and the bonding manner of PEG to the titanium surface was characterized using X-ray photoelectron spectroscopy after electrodeposition. The results indicated that a certain amount of PEG was adsorbed on titanium through both electrodeposition and immersion when PEG was terminated by amine. However, terminated amines existed at the surface of titanium and were combined with titanium oxide as N-HO by electrodeposition, while amines randomly existed in the molecule and showed an ionic bond with titanium oxide by immersion. The electrodeposition of PEG was effective for the inhibition of albumin adsorption. This process is useful for materials that have electroconductivity and a complex morphology

  14. The effect of ethylene glycol monomethyl ether and diethylene glycol monomethyl ether on hepatic gamma-glutamyl transpeptidase.

    Science.gov (United States)

    Kawamoto, T; Matsuno, K; Kayama, F; Arashidani, K; Yoshikawa, M; Kodama, Y

    1992-11-22

    In this paper, we determined whether ethylene glycol monomethyl ether (EGME) and diethylene glycol monomethyl ether (diEGME) induce hepatic gamma-glutamyl transpeptidase activity. Male adult Wistar rats weighing 220 g were used as experimental animals. EGME (100, 300 mg/kg per day) and diEGME (500, 1000, 2000 mg/kg per day) were administered by gavage for 1, 2 or 5 days or 4 weeks. In the 4-week study, experimental animals were administered EGME or diEGME once a day orally, 5 days/week. EGME treatment increased the serum gamma-glutamyl transpeptidase (GGT) level significantly, however, diEGME did not. The activities of three other enzymes (SGOT, SGPT and ALP) in serum were not altered by EGME or diEGME treatment and thus there was no biochemical indices of hepatic damage by EGME or diEGME. EGME treatment increased the GGT activities in the liver and lungs. Of the organs examined, the induction of GGT was the greatest in the liver. The inducibility in the liver was 216% for the 5-day treatment and 460% for the 4-week treatment. A dose-dependent increase of hepatic microsomal GGT activity by EGME was observed. On the other hand, renal GGT activities were declined to 72% and 60% of control by the 5-day and 4-week EGME treatments, respectively. DiEGME did not affect the GGT activities in any of the tissues except those of the brain. In the histochemical study, most hepatocytes at the periportal zones were stained with GGT staining after the 4-week treatment. However, the hepatocytes at the central zones were negative.

  15. Experimental study on thermal conductivity of solution combustion synthesized MgO nanoparticles dispersed in water and ethylene glycol (50:50) binary mixture

    Science.gov (United States)

    Suseel Jai Krishnan, S.; P. K., Nagarajan

    2017-05-01

    In this present investigation, experiments were conducted on the magnesia nanoparticles (8-18 nm) synthesized by the solution combustion method, which was dispersed in the binary mixture of water-ethylene glycol (50:50) to prepare stable MgO-water-ethylene glycol (50:50) nanofluids through continuous 26h ultrasonication. The effect of nanoparticle concentration (0 to 0.2 vol%) and temperature (25°C to 60°C) on the thermal conductivity of the nanofluids was investigated. The results clearly indicate that an increase in the nanoparticle concentration increases the thermal conductivity of the nanofluid. Similarly the thermal conductivity of the nanofluid increases with increase in temperature. The enhanced thermal conductivity in the nanofluids may be due to either or both, the Brownian movement and the nano-interfacial layering. The maximum enhancement of 16% was obtained at 0.2 vol% nanoparticle concentration and at 60°C. An accurate correlation, modeling the thermal conductivity as a function of nanoparticle concentration and temperature was also proposed based on the experimental data.

  16. Comprehensive heat transfer correlation for water/ethylene glycol-based graphene (nitrogen-doped graphene) nanofluids derived by artificial neural network (ANN) and adaptive neuro-fuzzy inference system (ANFIS)

    Science.gov (United States)

    Savari, Maryam; Moghaddam, Amin Hedayati; Amiri, Ahmad; Shanbedi, Mehdi; Ayub, Mohamad Nizam Bin

    2017-10-01

    Herein, artificial neural network and adaptive neuro-fuzzy inference system are employed for modeling the effects of important parameters on heat transfer and fluid flow characteristics of a car radiator and followed by comparing with those of the experimental results for testing data. To this end, two novel nanofluids (water/ethylene glycol-based graphene and nitrogen-doped graphene nanofluids) were experimentally synthesized. Then, Nusselt number was modeled with respect to the variation of inlet temperature, Reynolds number, Prandtl number and concentration, which were defined as the input (design) variables. To reach reliable results, we divided these data into train and test sections to accomplish modeling. Artificial networks were instructed by a major part of experimental data. The other part of primary data which had been considered for testing the appropriateness of the models was entered into artificial network models. Finally, predictad results were compared to the experimental data to evaluate validity. Confronted with high-level of validity confirmed that the proposed modeling procedure by BPNN with one hidden layer and five neurons is efficient and it can be expanded for all water/ethylene glycol-based carbon nanostructures nanofluids. Finally, we expanded our data collection from model and could present a fundamental correlation for calculating Nusselt number of the water/ethylene glycol-based nanofluids including graphene or nitrogen-doped graphene.

  17. Poly(ethylene-co-acrylic acid)-g-poly(ethylene glycol) graft copolymer templated synthesis of mesoporous TiO{sub 2} thin films for quasi-solid-state dye sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Patel, Rajkumar; Jung, Ye Eun; Kim, Dong Jun; Kim, Sang Jin; Kim, Jong Hak, E-mail: jonghak@yonsei.ac.kr

    2014-02-03

    An amphiphilic graft copolymer, poly(ethylene-co-acrylic acid)-graft-poly(ethylene glycol) (PEAA-g-PEG), consisting of a PEAA backbone and PEG side chains was synthesized via an esterification reaction. {sup 1}H nuclear magnetic resonance and Fourier-transformed infrared analysis demonstrated esterification between carboxylic acid of PEAA and hydroxyl group of PEG. Small angle X-ray scattering results revealed that the crystalline domain spacing of PEAA increased from 11.3 to 12.8 nm upon using a more polar solvent with a higher affinity for poly(acrylic acid), while the crystalline domain spacing of PEAA disappeared with PEG grafting, indicating structural change to an amorphous state. Mesoporous TiO{sub 2} thin films were synthesized via a sol–gel reaction using PEAA-g-PEG graft copolymer as a structure-directing agent. The hydrophilically-preformed TiO{sub 2} nanoparticles were selectively confined in the hydrophilic PEG domains of the graft copolymer, and mesoporous TiO{sub 2} thin films were formed, as confirmed by scanning electron microscopy. The morphology of TiO{sub 2} films was tunable by varying the concentrations of polymer solutions and the amount of preformed TiO{sub 2}. A quasi-solid-state dye-sensitized solar cell fabricated with PEAA-g-PEG templated TiO{sub 2} film exhibited an energy conversion efficiency of 3.8% at 100 mW/cm{sup 2}, which was greater than that of commercially-available paste (2.6%) at a similar film thickness (3 μm). The improved performance was due to the larger surface area for high dye loading and organized structure with good interconnectivity. - Highlights: • Poly(ethylene-co-acrylic acid)-g-poly(ethylene glycol) (PEAA-g-PEG) graft copolymer is synthesized. • Amphiphilic PEAA-g-PEG acts as a structure directing agent. • Mesoporous TiO{sub 2} thin films are prepared by sol–gel reaction using PEAA-g-PEG template. • Efficiency of DSSC with templated TiO{sub 2} is greater than with commercial TiO{sub 2} paste.

  18. Injectable dual redox responsive diselenide-containing poly(ethylene glycol) hydrogel.

    Science.gov (United States)

    Gong, Chu; Shan, Meng; Li, Bingqiang; Wu, Guolin

    2017-09-01

    An injectable dual redox responsive diselenide-containing poly(ethylene glycol) (PEG) hydrogel was successfully developed by combining the conceptions of injectable hydrogels and dual redox responsive diselenides. In the first step, four-armed PEG was modified with N-hydroxysuccinimide (NHS)-activated esters and thereafter, crosslinked by selenocystamine crosslinkers to form injectable hydrogels via the rapid reaction between NHS-activated esters and amino groups. The cross-sectional morphology, mechanical properties, and crosslinking modes of hydrogels were well characterized via scanning electron microscope (SEM), rheological measurements, and Fourier transform infrared spectra, respectively. In addition, the oxidation- and reduction-responsive degradation behaviors of hydrogels were observed and analyzed. The model drug, rhodamine B, was encapsulated in the hydrogel. The drug-loaded hydrogel exhibited a dual redox responsive release profile, which was consistent with the degradation experiments. The results of all experiments indicated that the formulated injectable dual redox responsive diselenide-containing PEG hydrogel can have potential applications in various biomedical fields such as drug delivery and stimuli-responsive drug release. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2451-2460, 2017. © 2017 Wiley Periodicals, Inc.

  19. Thermo- and pH-Responsive Copolymers Bearing Cholic Acid and Oligo(ethylene glycol) Pendants: Self-Assembly and pH-Controlled Release.

    Science.gov (United States)

    Jia, Yong-Guang; Zhu, X X

    2015-11-11

    A family of block and random copolymers of norbornene derivatives bearing cholic acid and oligo(ethylene glycol) pendants were prepared in the presence of Grubbs' catalyst. The phase transition temperature of the copolymers in aqueous solutions may be tuned by the variation of comonomer ratios and pH values. Both types of copolymers formed micellar nanostructures with a hydrophilic poly(ethylene glycol) shell and a hydrophobic core containing cholic acid residues. The micellar size increased gradually with increasing pH due to the deprotonation of the carboxylic acid groups. These micelles were capable of encapsulating hydrophobic compounds such as Nile Red (NR). A higher hydrophobicity/hydrophilicity ratio in both copolymers resulted in a higher loading capacity for NR. With similar molecular weights and monomer compositions, the block copolymers showed a higher loading capacity for NR than the random copolymers. The NR-loaded micelles exhibited a pH-triggered release behavior. At pH 7.4 within 96 h, the micelles formed by the block and random of copolymers released 56 and 97% NR, respectively. Therefore, these micelles may have promise for use as therapeutic nanocarriers in drug delivery systems.

  20. Health Assessment Document for Ethylene Oxide

    Science.gov (United States)

    The largest single use of ethylene oxide is as an intermediate in the synthesis of ethylene glycol. However, small amounts of this epoxide are used as a sterilant or pesticide in commodities, pharmaceuticals, medical devices, tobacco, and other items, representing a considerable ...

  1. Influence of solvent on the poly (acrylic acid)-oligo-(ethylene glycol) polymer gel electrolyte and the performance of quasi-solid-state dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Wu, Jihuai; Lan, Zhang; Lin, Jianming; Huang, Miaoliang; Hao, Shancun; Fang, Leqing

    2007-01-01

    The influence of solvents on the property of poly (acrylic acid)-oligo-(ethylene glycol) polymer gel electrolyte and photovoltaic performance of quasi-solid-state dye-sensitized solar cells (DSSCs) were investigated. Solvents or mixed solvents with large donor number enhance the liquid electrolyte absorbency, which further influences the ionic conductivity of polymer gel electrolyte. A polymer gel electrolyte with ionic conductivity of 4.45 mS cm -1 was obtained by using poly (acrylic acid)-oligo-(ethylene glycol) as polymer matrix, and absorbing 30 vol.% N-methyl pyrrolidone and 70 vol.% γ-butyrolactone with 0.5 M NaI and 0.05 M I 2 . By using this polymer gel electrolyte coupling with 0.4 M pyridine additive, a quasi-solid-state dye-sensitized solar cell with conversion efficiency of 4.74% was obtained under irradiation of 100 mW cm -2 (AM 1.5)

  2. Novel one-component polymeric benzophenone photoinitiator containing poly (ethylene glycol) as hydrogen donor

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Kemin, E-mail: wangkm61@gmail.com; Lu, Yuhui; Chen, Penghui; Shi, Jingsong; Wang, Hongning; Yu, Qiang, E-mail: yuqiang@cczu.edu.cn

    2014-02-14

    Benzophenone (BP) is a common initiator which is often used in the UV-curing production and related fields. However, the shortcomings such as toxicity, odor, and migration always limit the development of the traditional BP photoinitiator. Polymeric benzophenone photoinitiator (PEG-BP) was synthesized basing on polyethylene glycol (PEG), succinic anhydride, 4-hydroxybenzophenone and epichlorohydrin. The structure of PEG-BP was characterized by IR and {sup 1}H NMR. The radiation absorption of PEG-BP was detected by UV spectrophotometer with the maximum absorption wavelength at 283 nm in acetonitrile solvent, undergone significant redshift corresponding to small molecule photoinitiator BP, thus enhanced the photosensitive efficiency of UV-curing system in the long wavelength region. Besides, PEG-BP has better water solubility than BP, thus could be used in both oil and aqueous solution. The obvious advantage of this initiator was the elimination of amine based hydrogen donors and to provide alternative hydrogen donors with easily availability and non-toxicity. The effects of molecular weights of PEG-BP, photoinitiator concentration, UV-radiation intensity and different monomers on photopolymerization kinetics were investigated in detail. The synthesized polymeric photoinitiators are attractive to be used as type II photoinitiators. - Highlights: • Novel one-component polymeric benzophenone photoinitiator was synthesized. • This photoinitiator contained poly (ethylene glycol) as hydrogen donor. • This photoinitiator was the elimination of amine based hydrogen donors.

  3. Liquid-Liquid Equilibrium data for mono ethylene glycol extraction from water with the new ionic liquid tetraoctyl ammonium 2-methyl-1-naphtoate as solvent

    NARCIS (Netherlands)

    Garcia Chavez, L.Y.; Schuur, Boelo; de Haan, A.B.

    2012-01-01

    Thermal recovery of mono ethylene glycol (MEG) from aqueous streams is one of the most energy demanding operations in industry, because of the large amount of water that needs to be evaporated. The use of alternative technologies such as liquid–liquid extraction could save energy. A new tailor made

  4. Liquid-liquid equilibrium data for mono ethylene glycol extraction from water with the new ionic liquid tetraoctyl ammonium 2-methyl-1-naphtoate as solvent

    NARCIS (Netherlands)

    Garcia Chavez, L.Y.; Schuur, B.; Haan, de A.B.

    2012-01-01

    Thermal recovery of mono ethylene glycol (MEG) from aqueous streams is one of the most energy demanding operations in industry, because of the large amount of water that needs to be evaporated. The use of alternative technologies such as liquid–liquid extraction could save energy. A new tailor made

  5. Self-assembly behavior of well-defined polymethylene-block-poly(ethylene glycol) copolymers in aqueous solution

    KAUST Repository

    Alkayal, Nazeeha

    2016-09-22

    A series of well-defined amphiphilic polymethylene-b-poly(ethylene glycol) (PM-b-PEG) diblock copolymers, with different hydrophobic chain length, were synthesized by combining Diels-Alder reaction with polyhomologation. The successful synthetic procedure was confirmed by size-exclusion chromatography (SEC) and 1H NMR spectroscopy. These block copolymers self-assembled into spherical micelles in aqueous solutions and exhibit low critical micelle concentration (CMC) of 2–4 mg/mL, as determined by fluorescence spectroscopy using pyrene as a probe. Measurements of the micelle hydrodynamic diameters, performed by dynamic light scattering (DLS), cryo-transmission electron microscopy (cryo-TEM) and atomic force microscopy (AFM), revealed a direct dependence of the micelle size from the polymethylene block length.

  6. Protein resistance of surfaces modified with oligo(ethylene glycol) aryl diazonium derivatives.

    Science.gov (United States)

    Fairman, Callie; Ginges, Joshua Z; Lowe, Stuart B; Gooding, J Justin

    2013-07-22

    Anti-fouling surfaces are of great importance for reducing background interference in biosensor signals. Oligo(ethylene glycol) (OEG) moieties are commonly used to confer protein resistance on gold, silicon and carbon surfaces. Herein, we report the modification of surfaces using electrochemical deposition of OEG aryl diazonium salts. Using electrochemical and contact angle measurements, the ligand packing density is found to be loose, which supports the findings of the fluorescent protein labelling that aryl diazonium OEGs confer resistance to nonspecific adsorption of proteins albeit lower than alkane thiol-terminated OEGs. In addition to protein resistance, aryl diazonium attachment chemistry results in stable modification. In common with OEG species on gold electrodes, OEGs with distal hydroxyl moieties do confer superior protein resistance to those with a distal methoxy group. This is especially the case for longer derivatives where superior coiling of the OEG chains is possible. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Assessment of reinforced poly(ethylene glycol) chitosan hydrogels as dressings in a mouse skin wound defect model

    International Nuclear Information System (INIS)

    Chen, Szu-Hsien; Tsao, Ching-Ting; Chang, Chih-Hao; Lai, Yi-Ting; Wu, Ming-Fung; Chuang, Ching-Nan; Chou, Hung-Chia; Wang, Chih-Kuang; Hsieh, Kuo-Haung

    2013-01-01

    Wound dressings of chitosan are biocompatible, biodegradable, antibacterial and hemostatic biomaterials. However, applications for chitosan are limited due to its poor mechanical properties. Here, we conducted an in vivo mouse angiogenesis study on reinforced poly(ethylene glycol) (PEG)-chitosan (RPC) hydrogels. RPC hydrogels were formed by cross-linking chitosan with PEGs of different molecular weights at various PEG to chitosan ratios in our previous paper. These dressings can keep the wound moist, had good gas exchange capacity, and was capable of absorbing or removing the wound exudate. We examined the ability of these RPC hydrogels and neat chitosan to heal small cuts and full-thickness skin defects on the backs of male Balb/c mice. Histological examination revealed that chitosan suppressed the infiltration of inflammatory cells and accelerated fibroblast proliferation, while PEG enhanced epithelial migration. The RPC hydrogels promoted wound healing in the small cuts and full layer wounds. The optimal RPC hydrogel had a swelling ratio of 100% and a water vapor transmission rate (WVTR) of about 2000 g/m 2 /day. In addition, they possess good mechanical property and appropriate degradation rates. Thus, the optimal RPC hydrogel formulation functioned effectively as a wound dressing and promoted wound healing. Highlights: ► Mouse angiogenesis study on reinforced poly(ethylene glycol)-chitosan (RPC) ► Water vapor transmission rate of about 2000 g/m 2 /day is characteristic of RPC. ► RPC suppressed inflammatory cells and accelerated fibroblast proliferation. ► RPC composed of 1000-RP10C90 can be used as a biomaterial for wound dressing

  8. Assessment of reinforced poly(ethylene glycol) chitosan hydrogels as dressings in a mouse skin wound defect model

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Szu-Hsien [Institute of Polymer Science and Engineering, College of Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei City 10617, Taiwan (China); Tsao, Ching-Ting [Institute of Polymer Science and Engineering, College of Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei City 10617, Taiwan (China); Epithelial Biology Laboratory/Transgenic Mice Core-Laboratory, Department of Anatomy, Chang Gung University, Taoyuan 33302, Taiwan (China); Chang, Chih-Hao [Department of Orthopedics, National Taiwan University Hospital, Taiwan (China); National Taiwan University College of Medicine, No. 1, Jen-Ai Road, Taipei City 10018, Taiwan (China); Lai, Yi-Ting [Department of Chemical Engineering, College of Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei City 10617, Taiwan (China); Wu, Ming-Fung [Animal Medicine Center, College of Medicine, National Taiwan University, No. 1, Jen-Ai Road, Taipei City 10018, Taiwan (China); Chuang, Ching-Nan [Institute of Polymer Science and Engineering, College of Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei City 10617, Taiwan (China); Chou, Hung-Chia [Department of Chemical Engineering, College of Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei City 10617, Taiwan (China); Wang, Chih-Kuang, E-mail: ckwang@kmu.edu.tw [Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, No. 100, Shih-Chuan 1st Road, Kaohsiung 80708, Taiwan (China); Hsieh, Kuo-Haung, E-mail: khhsieh@ntu.edu.tw [Institute of Polymer Science and Engineering, College of Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei City 10617, Taiwan (China)

    2013-07-01

    Wound dressings of chitosan are biocompatible, biodegradable, antibacterial and hemostatic biomaterials. However, applications for chitosan are limited due to its poor mechanical properties. Here, we conducted an in vivo mouse angiogenesis study on reinforced poly(ethylene glycol) (PEG)-chitosan (RPC) hydrogels. RPC hydrogels were formed by cross-linking chitosan with PEGs of different molecular weights at various PEG to chitosan ratios in our previous paper. These dressings can keep the wound moist, had good gas exchange capacity, and was capable of absorbing or removing the wound exudate. We examined the ability of these RPC hydrogels and neat chitosan to heal small cuts and full-thickness skin defects on the backs of male Balb/c mice. Histological examination revealed that chitosan suppressed the infiltration of inflammatory cells and accelerated fibroblast proliferation, while PEG enhanced epithelial migration. The RPC hydrogels promoted wound healing in the small cuts and full layer wounds. The optimal RPC hydrogel had a swelling ratio of 100% and a water vapor transmission rate (WVTR) of about 2000 g/m{sup 2}/day. In addition, they possess good mechanical property and appropriate degradation rates. Thus, the optimal RPC hydrogel formulation functioned effectively as a wound dressing and promoted wound healing. Highlights: ► Mouse angiogenesis study on reinforced poly(ethylene glycol)-chitosan (RPC) ► Water vapor transmission rate of about 2000 g/m{sup 2}/day is characteristic of RPC. ► RPC suppressed inflammatory cells and accelerated fibroblast proliferation. ► RPC composed of 1000-RP10C90 can be used as a biomaterial for wound dressing.

  9. Protein diffusion in photopolymerized poly(ethylene glycol) hydrogel networks

    International Nuclear Information System (INIS)

    Engberg, Kristin; Frank, Curtis W

    2011-01-01

    In this study, protein diffusion through swollen hydrogel networks prepared from end-linked poly(ethylene glycol)-diacrylate (PEG-DA) was investigated. Hydrogels were prepared via photopolymerization from PEG-DA macromonomer solutions of two molecular weights, 4600 Da and 8000 Da, with three initial solid contents: 20, 33 and 50 wt/wt% PEG. Diffusion coefficients for myoglobin traveling across the hydrogel membrane were determined for all PEG network compositions. The diffusion coefficient depended on PEG molecular weight and initial solid content, with the slowest diffusion occurring through lower molecular weight, high-solid-content networks (D gel = 0.16 ± 0.02 x 10 -8 cm 2 s -1 ) and the fastest diffusion occurring through higher molecular weight, low-solid-content networks (D gel = 11.05 ± 0.43 x 10 -8 cm 2 s -1 ). Myoglobin diffusion coefficients increased linearly with the increase of water content within the hydrogels. The permeability of three larger model proteins (horseradish peroxidase, bovine serum albumin and immunoglobulin G) through PEG(8000) hydrogel membranes was also examined, with the observation that globular molecules as large as 10.7 nm in hydrodynamic diameter can diffuse through the PEG network. Protein diffusion coefficients within the PEG hydrogels ranged from one to two orders of magnitude lower than the diffusion coefficients in free water. Network defects were determined to be a significant contributing factor to the observed protein diffusion.

  10. Modification of Carboxymethyl Chitosan Film by Blending with Poly(benzyl L-glutamate)-block-poly(ethylene glycol) Copolymer

    International Nuclear Information System (INIS)

    Zhu, G.Z.; Gao, Q.C.; Liu, Y.Y.

    2013-01-01

    A series of water-soluble carboxymethyl chitosan (CMCS)/poly(benzyl L-glutamate)-block-poly(ethylene glycol) (PBLG-b-PEG) blend films with various CMCS/PBLG-b-PEG mol ratios were prepared by pervaporation method. Morphologies of CMCS/PBLG-b-PEG blend films were researched by scanning electron microscopy (SEM). Thermal, mechanical, and chemical properties of CMCS/PBLG-b-PEG blend films were investigated by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), tensile tests, and contact angle tests. It was revealed that the introduction of PBLG-b-PEG segments could greatly affect the morphology and the properties of CMCS films. (author)

  11. Water activities of ternary mixtures of poly(ethylene glycol), NaCl and water over the temperature range of 293.15 K to 313.15 K

    International Nuclear Information System (INIS)

    Sadeghi, Rahmat; Ziamajidi, Fatemeh

    2006-01-01

    The improved isopiestic method has been used to obtain activities of water for aqueous solutions of poly(ethylene glycol) 400/NaCl at T = (293.15, 298.15, 303.15, 308.15, and 313.15) K. From these measurements, values of the vapour pressure of solutions were determined. The effect of temperature on the (vapour + liquid) equilibrium of {poly(ethylene glycol) + NaCl + H 2 O} systems has been studied. It was found that the slope of the constant activity lines for water increased with increasing temperature. The results have been discussed on the basis of the effect of temperature on the hydrophobicity of the polymer. Also it was found that the vapour pressure depression for an aqueous (PEG + NaCl) system is more than the sum of those for the corresponding binary solutions. Furthermore, the segment-based local composition Wilson model has been used for the correlation of the experimental water activity data. The agreement between the correlation and the experimental data are good

  12. Studies on chemically crosslinkable carboxy terminated-poly(propylene fumarate-co-ethylene glycol)-acrylamide hydrogel as an injectable biomaterial

    International Nuclear Information System (INIS)

    Kallukalam, B C; Jayabalan, M; Sankar, V

    2009-01-01

    Carboxy terminated-poly(propylene fumarate)-co-ethylene glycol) (CT-PPF-co-PEG) was prepared and set into crosslinked hydrogel material with acrylamide. The setting studies reveal that this copolymer system can be used as an injectable material. The hydrogel material exhibits a higher degree of swelling, good mechanical strength and flexibility. The hydrogel favours adhesion of L929 fibroblast cells without proliferation on the surface. However, cardiac fibroblast cells (isolated from new born rat (Wistar) hearts) adhere and proliferate on the hydrogel due to the formation of synergistic hydrophilic-hydrophobic surface-by-surface reorganization.

  13. Studies on chemically crosslinkable carboxy terminated-poly(propylene fumarate-co-ethylene glycol)-acrylamide hydrogel as an injectable biomaterial

    Energy Technology Data Exchange (ETDEWEB)

    Kallukalam, B C; Jayabalan, M [Polymer Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram 695 012 (India); Sankar, V, E-mail: muthujayabalan@rediffmail.co [Division of Cellular and Molecular Cardiology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram 695 012 (India)

    2009-02-15

    Carboxy terminated-poly(propylene fumarate)-co-ethylene glycol) (CT-PPF-co-PEG) was prepared and set into crosslinked hydrogel material with acrylamide. The setting studies reveal that this copolymer system can be used as an injectable material. The hydrogel material exhibits a higher degree of swelling, good mechanical strength and flexibility. The hydrogel favours adhesion of L929 fibroblast cells without proliferation on the surface. However, cardiac fibroblast cells (isolated from new born rat (Wistar) hearts) adhere and proliferate on the hydrogel due to the formation of synergistic hydrophilic-hydrophobic surface-by-surface reorganization.

  14. Dosimetry considerations in the enhanced sensitivity of male Wistar rats to chronic ethylene glycol-induced nephrotoxicity

    International Nuclear Information System (INIS)

    Corley, R.A.; Wilson, D.M.; Hard, G.C.; Stebbins, K.E.; Bartels, M.J.; Soelberg, J.J.; Dryzga, M.D.; Gingell, R.; McMartin, K.E.; Snellings, W.M.

    2008-01-01

    Male Wistar rats have been shown to be the most sensitive sex, strain and species to ethylene glycol-induced nephrotoxicity in subchronic studies. A chronic toxicity and dosimetry study was therefore conducted in male Wistar rats administered ethylene glycol via the diet at 0, 50, 150, 300, or 400 mg/kg/day for up to twelve months. Subgroups of animals were included for metabolite analysis and renal clearance studies to provide a quantitative basis for extrapolating dose-response relationships from this sensitive animal model in human health risk assessments. Mortality occurred in 5 of 20 rats at 300 mg/kg/day (days 111-221) and 4 of 20 rats at 400 mg/kg/day (days 43-193), with remaining rats at this dose euthanized early (day 203) due to excessive weight loss. Increased water consumption and urine volume with decreased specific gravity occurred at 300 mg/kg/day presumably due to osmotic diuresis. Calculi (calcium oxalate crystals) occurred in the bladder or renal pelvis at ≥ 300 mg/kg/day. Rats dying early at ≥ 300 mg/kg/day had transitional cell hyperplasia with inflammation and hemorrhage of the bladder wall. Crystal nephropathy (basophilic foci, tubule or pelvic dilatation, birefringent crystals in the pelvic fornix, or transitional cell hyperplasia) affected most rats at 300 mg/kg/day, all at 400 mg/kg/day, but none at ≤ 150 mg/kg/day. No significant differences in kidney oxalate levels, the metabolite responsible for renal toxicity, were observed among control, 50 and 150 mg/kg/day groups. At 300 and 400 mg/kg/day, oxalate levels increased proportionally with the nephrotoxicity score supporting the oxalate crystal-induced nephrotoxicity mode of action. No treatment-related effects on the renal clearance of intravenously infused 3 H-inulin, a marker for glomerular filtration, and 14 C-oxalic acid were observed in rats surviving 12 months of exposure to ethylene glycol up to 300 mg/kg/day. In studies with naive male Wistar and F344 rats (a less sensitive

  15. Amino acids and peptides. XXXII: A bifunctional poly(ethylene glycol) hybrid of fibronectin-related peptides.

    Science.gov (United States)

    Maeda, M; Izuno, Y; Kawasaki, K; Kaneda, Y; Mu, Y; Tsutsumi, Y; Lem, K W; Mayumi, T

    1997-12-18

    An amino acid type poly(ethylene glycol) (aaPPEG) was prepared and its application to a drug carrier was examined. The peptides, Arg-Gly-Asp (RGD) and Glu-Ile-Leu-Asp-Val (EILDV) which were reported as active fragments of Fibronectin (a cell adhesion protein), were conjugated with aaPEG (molecular weight, 10,000). The hybrid, RGD-aaPEG-EILDV, was prepared by a combination of the solid-phase method and the solution method. Antiadhesive activity of the peptides was not lost by its hybrid formation with the large aaPEG molecule. A mixture of RGD (0.43 mmol) and EILDV (0.43 mmol) did not demonstrate an antiadhesive effect, but the hybrid containing 0.43 mmol of each peptide did exhibit this effect.

  16. Ethylene glycol as bore fluid for hollow fiber membrane preparation

    KAUST Repository

    Le, Ngoc Lieu

    2017-03-31

    We proposed the use of ethylene glycol and its mixture with water as bore fluid for the preparation of poly(ether imide) (PEI) hollow fiber membranes and compared their performance and morphology with membranes obtained with conventional coagulants (water and its mixture with the solvent N-methylpyrrolidone (NMP)). Thermodynamics and kinetics of the systems were investigated. Water and 1:1 water:EG mixtures lead to fast precipitation rates. Slow precipitation is observed for both pure EG and 9:1 NMP:water mixture, but the reasons for that are different. While low osmotic driving force leads to slow NMP and water transport when NMP:water is used, the high EG viscosity is the reason for the slow phase separation when EG is the bore fluid. The NMP:water mixture produces fibers with mixed sponge-like and finger-like structure with large pores in the inner and outer layers; and hence leading to a high water permeance and a high MWCO suitable for separation of large-sized proteins. As compared to NMP:water, using EG as bore fluid provides fibers with a finger-like bilayered structure and sponge-like layers near the surfaces, and hence contributing to the higher water permeance. It also induces small pores for better protein rejection.

  17. Ethylene glycol as bore fluid for hollow fiber membrane preparation

    KAUST Repository

    Le, Ngoc Lieu; Nunes, Suzana Pereira

    2017-01-01

    We proposed the use of ethylene glycol and its mixture with water as bore fluid for the preparation of poly(ether imide) (PEI) hollow fiber membranes and compared their performance and morphology with membranes obtained with conventional coagulants (water and its mixture with the solvent N-methylpyrrolidone (NMP)). Thermodynamics and kinetics of the systems were investigated. Water and 1:1 water:EG mixtures lead to fast precipitation rates. Slow precipitation is observed for both pure EG and 9:1 NMP:water mixture, but the reasons for that are different. While low osmotic driving force leads to slow NMP and water transport when NMP:water is used, the high EG viscosity is the reason for the slow phase separation when EG is the bore fluid. The NMP:water mixture produces fibers with mixed sponge-like and finger-like structure with large pores in the inner and outer layers; and hence leading to a high water permeance and a high MWCO suitable for separation of large-sized proteins. As compared to NMP:water, using EG as bore fluid provides fibers with a finger-like bilayered structure and sponge-like layers near the surfaces, and hence contributing to the higher water permeance. It also induces small pores for better protein rejection.

  18. Initial solubility & density evaluation of Non-Aqueous system of amino acid salts for CO2 capture: potassium prolinate blended with ethanol and ethylene glycol

    Science.gov (United States)

    Murshid, Ghulam; Garg, Sahil

    2018-05-01

    Amine scrubbing is the state of the art technology for CO2 capture, and solvent selection can significantly reduce the capital and energy cost of the process. Higher energy requirement for aqueous amine based CO2 removal process is still a most important downside preventive its industrial deployment. Therefore, in this study, novel non-aqueous based amino acid salt system consisting of potassium prolinate, ethanol and ethylene glycol has been studied. This work presents initial CO2 solubility study and important physical properties i.e. density of the studied solvent system. Previous work showed that non-aqueous system of potassium prolinate and ethanol has good absorption rates and requires lower energy for solvent regeneration. However, during regeneration, solvent loss issues were found due to lower boiling point of the ethanol. Therefore, ethylene glycol was added into current studied system for enhancing the overall boiling point of the system. The good initial CO2 solubility and low density of studied solvent system offers several advantages as compared to conventional amine solutions.

  19. Synthesis, Characterization and Biocompatibility of Biodegradable Elastomeric Poly(ether-ester urethane)s Based on Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) and Poly(ethylene glycol) via Melting Polymerization

    DEFF Research Database (Denmark)

    Li, Zibiao; Yang, Xiaodi; Wu, Linping

    2009-01-01

    Poly(ether-ester urethane)s (PUs) multiblock co-polymers were synthesized from telechelic hydroxylated poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) and poly(ethylene glycol) (PEG) via a melting polymerization (MP) process using 1,6-hexamethylene diisocyanate (HDI) as a non-toxic couplin...

  20. Preparation, characterization, and application of poly(vinyl alcohol)-graft-poly(ethylene glycol) resins: novel polymer matrices for solid-phase synthesis.

    Science.gov (United States)

    Luo, Juntao; Pardin, Christophe; Zhu, X X; Lubell, William D

    2007-01-01

    Spherical crosslinked poly(vinyl alcohol) (PVA) beads with good mechanical stability were prepared by reverse-suspension polymerization, using dimethyl sulfoxide (DMSO) as a cosolvent in an aqueous phase. Poly(ethylene glycol)s with varying chain lengths were grafted onto the PVA beads by anionic polymerization of ethylene oxide. The thermal behavior, morphology, and swelling were evaluated for each of the new polymer matrices. High loading and good swelling in water and organic solvents were characteristic of the PEG-grafted PVA beads. The polymer beads also exhibited good mechanical and chemical stability and were unaffected by treatment with 6 N HCl and with 6 N NaOH. The hydroxyl groups of the PVA-PEG beads were converted into aldehyde, carboxylic acid, and isocyanate functions to provide scavenger resins and were extended by way of a benzyl alcohol in a Wang linker. The transglutaminase substrates dipeptides (Z-Gln-Gly) and heptapeptides (Pro-Asn-Pro-Gln-Leu-Pro-Phe) were synthesized on PVA-PEG_5, PVA-PEG_20, and the Wang linker-derivatized PVA-PEG resins. The cleavage of the peptides from the resins using MeOH/NH3 mixture at different temperatures (0 degrees C and room temp) and 50% TFA/DCM provided, respectively, peptide methyl esters, amides, and acids in good yields and purity as assessed by LC-MS analysis.

  1. Simple micro-patterning of high conductive polymer with UV-nano-imprinted patterned substrate and ethylene glycol-based second doping

    International Nuclear Information System (INIS)

    Takamatsu, Seiichi; Kurihara, Kazuma; Yamashita, Takahiro; Itoh, Toshihiro

    2014-01-01

    We have developed a simple micro-patterning process for high conductive polymer (i.e., poly (3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS)) with a patterned substrate by using an ultraviolet (UV) nano-imprint and an ethylene glycol-based second doping technique. In the patterning process, the PEDOT:PSS water dispersion is first coated only on the hydrophilic area, which is fabricated by UV nano-imprinting, forming patterned PEDOT:PSS on the substrate. The patterned PEDOT:PSS film is then immersed in the ethylene glycol as a second doping technique for increasing its conductivity. The proposed process provides simplicity in terms of shorter process steps of the UV nano-imprinting and PEDOT:PSS coating and higher conductivity of patterned PEDOT:PSS film than existing complicated micro-fabrication processes for organic materials. The 200 nm wide nano-imprinted pillar structures change the wettability of the substrate where the contact angle of the substrate is decreased from 66.8° to 33.3°. The patterning resolution with the nano-imprinted pattern substrate is down to 100 µm, which is useful for sensor applications. The conductivity increase delivers a low sheet resistance (120 Ω sq −1 ) of patterned PEDOT:PSS film. Then, the patterning of PEDOT:PSS sensor shapes with its 300 µm wide feature line and high conductivity are demonstrated. Therefore, our process leads to applications to a variety of PEDOT:PSS-based sensors. (paper)

  2. Electrical properties of a novel lead alkoxide precursor: Lead glycolate

    International Nuclear Information System (INIS)

    Tangboriboon, Nuchnapa; Pakdeewanishsukho, Kittikhun; Jamieson, Alexander; Sirivat, Anuvat; Wongkasemjit, Sujitra

    2006-01-01

    The reaction of lead acetate trihydrate Pb(CH 3 COO) 2 .3H 2 O and ethylene glycol, using triethylenetetramine (TETA) as a catalyst, provides in one step access to a polymer-like precursor of lead glycolate [-PbOCH 2 CH 2 O-]. On the basis of high-resolution mass spectroscopy, chemical analysis composition, FTIR, 13 C-solid state NMR and TGA, the lead glycolate precursor can be identified as a trimer structure. The FTIR spectrum demonstrates the characteristics of lead glycolate; the peaks at 1086 and 1042 cm -1 can be assigned to the C-O-Pb stretchings. The 13 C-solid state NMR spectrum gives notably only one peak at 68.639 ppm belonging to the ethylene glycol ligand. The phase transformations of lead glycolate and lead acetate trihydrate to lead oxide, their microstructures, and electrical properties were found to vary with increasing temperature. The lead glycolate precursor has superior electrical properties relative to those of lead acetate trihydrate, suggesting that the lead glycolate precursor can possibly be used as a starting material for producing electrical and semiconducting ceramics, viz. ferroelectric, anti-ferroelectric, and piezoelectric materials

  3. Densities, refractive indices, and viscosities of N,N-diethylethanol ammonium chloride–glycerol or –ethylene glycol deep eutectic solvents and their aqueous solutions

    International Nuclear Information System (INIS)

    Siongco, Kathrina R.; Leron, Rhoda B.; Li, Meng-Hui

    2013-01-01

    Highlights: • The densities, refractive indices, and viscosities of aqueous DES solutions were measured. • DES are made from N,N-diethylethanol ammonium chloride + glycerol or ethylene glycol. • The temperature studied was (298.15 to 343.15) K. • The measured data were reported as functions of temperature and composition. • The measured data were represented satisfactorily by the applied correlations. -- Abstract: In this work, we report new experimental data on density, ρ, refractive index, n D, and viscosity, η, of two deep eutectic solvents, N,N-diethylethanol ammonium chloride–glycerol (DEACG) and N,N-diethylethanol ammonium chloride–ethylene glycol (DEACEG), and their aqueous solutions, over the complete composition range, at temperatures from (298.15 to 343.15) K. Densities and viscosities were measured using the vibrating tube and the falling ball techniques, respectively, while the refractive index at the sodium D line was measured using an automatic refractometer. We aimed to represent the measured properties as a function of temperature and composition, and correlated them using the Redlich–Kister-type equation, for density, a polynomial function, for refractive index, and the Vogel–Fulcher–Tammann (VFT) equation, for viscosity

  4. Partition Coefficients of Amino Acids, Peptides, and Enzymes in Dextran + Poly(Ethylene Glycol) + Water Aqueous Two-Phase Systems

    Energy Technology Data Exchange (ETDEWEB)

    Kakisaka, Keijiro.; Shindo, Takashi.; Iwai, Yoshio.; Arai, Yasuhiko. [Kyushu University, Fukuoka (Japan). Department of Chemical Systems and Engineering

    1998-12-01

    Partition coefficients are measured for five amino acids(aspartic acid, asparagine, methionine, cysteine and histidine) and tow peptides(glycyl-glycine and hexa-glycine) in dextran + poly(ethylene glycol) + water aqueous two-phase system. The partition coefficients of the amino acids and peptides are aorrelated using the osmotic virial equation. The interaction coefficients contained in the equation can be calculated by hydrophilic group parameters. The partition coefficients of {alpha}-amylase calculated by the osmotic virial equation with the hydrophilic group parameters are in fairly good agreement with the experimental data, though a relatively large discrepancy is shown for {beta}-amylase. (author)

  5. Partition Coefficients of Amino Acids, Peptides, and Enzymes in Dextran + Poly(Ethylene Glycol) + Water Aqueous Two-Phase Systems

    Energy Technology Data Exchange (ETDEWEB)

    Kakisaka, Keijiro.; Shindo, Takashi.; Iwai, Yoshio.; Arai, Yasuhiko. (Kyushu University, Fukuoka (Japan). Department of Chemical Systems and Engineering)

    1998-12-01

    Partition coefficients are measured for five amino acids(aspartic acid, asparagine, methionine, cysteine and histidine) and tow peptides(glycyl-glycine and hexa-glycine) in dextran + poly(ethylene glycol) + water aqueous two-phase system. The partition coefficients of the amino acids and peptides are aorrelated using the osmotic virial equation. The interaction coefficients contained in the equation can be calculated by hydrophilic group parameters. The partition coefficients of [alpha]-amylase calculated by the osmotic virial equation with the hydrophilic group parameters are in fairly good agreement with the experimental data, though a relatively large discrepancy is shown for [beta]-amylase. (author)

  6. Effects of blending poly(D,L-lactide) with poly(ethylene glycol) on the higher-order crystalline structures of poly(ethylene glycol) as revealed by small-angle X-ray scattering

    International Nuclear Information System (INIS)

    Tien, N D; Kimura, G; Yamashiro, Y; Fujiwara, H; Sasaki, S; Sakurai, S; Hoa, T P; Mochizuki, M

    2011-01-01

    Effects of blending poly(lactic acid) (PLA) with poly(ethylene glycol) (PEG) on higher-order crystalline structures of PEG were examined using small-angle X-ray scattering (SAXS). For this purpose, the fact that two polymers are both crystalline makes situtation much complicated. To simplify, non-crystalline PLA is suitable. Thus, we used poly(D,L-lactic acid) (DLPLA), which is random copolymer comprising D- and L-lactic acid moieties. Multiple scattering peaks arising from the regular crystalline lamellar structure were observed for the PEG homopolymer and the blends. Surprisingly, the structure is much more regular for the blend DLPLA/PEG at composition of 20/80 wt.% than for the PEG homopolymer. Also for this blend sample as well as for a PEG homopolymer, very peculiar SAXS profiles were observed just 1 deg. C below T m of PEG. This is found to be a particle scattering of plate-like objects, which has never been reported for polymer blends or crystalline polymers. Futhermore, it was found that there was strong hysteresis of the higher-order structure formation.

  7. Semi-interpenetrating polymer networks composed of silk fibroin and poly(ethylene glycol) for wound dressing

    International Nuclear Information System (INIS)

    Kweon, HaeYong; Yeo, Joo-hong; Lee, Kwang-gill; Lee, Hyun Chul; Na, Hee Sam; Won, Young Ho; Cho, Chong Su

    2008-01-01

    Semi-interpenetrating polymer networks (SIPNs) composed of silk fibroin (SF) and poly(ethylene glycol) (PEG) were prepared by photopolymerization of a PEG macromer in the presence of SF to improve the mechanical properties of SF sponge as wound dressing. The morphological structure of the SF/PEG SIPNs was observed to be composed of an interconnected microporous surface and a cross-sectional area. SF/PEG SIPNs showed non-cytotoxicity evaluated by a cell proliferation method using L929 fibroblasts. Wound contraction treated with SF/PEG SIPNs sponges was faster than that of Vaseline gauze as a control. Histological observation confirmed that the deposition of collagen in the dermis was organized by covering the wound area with SF/PEG SIPNs. The above results indicated that SF/PEG SIPNs could be used as wound dressing

  8. Fabrication of anticoagulation layer on titanium surface by sequential immobilization of poly (ethylene glycol) and albumin.

    Science.gov (United States)

    Pan, Chang-Jiang; Hou, Yan-Hua; Zhang, Bin-Bin; Zhang, Lin-Cai

    2014-01-01

    This paper presents a simple method to sequentially immobilize poly (ethylene glycol) (PEG) and albumin on titanium surface to enhance the blood compatibility. Attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) analysis indicated that PEG and albumin were successfully immobilized on the titanium surface. Water contact angle results showed a better hydrophilic surface after the immobilization. The immobilized PEG or albumin can not only obviously prevent platelet adhesion and activation but also prolong activated partial thromboplastin time (APTT), leading to the improved anticoagulation. Moreover, immobilization of albumin on PEG-modified surface can further improve the anticoagulation. The approach in the present study provides an effective and efficient method to improve the anticoagulation of blood-contact biomedical devices such as coronary stents.

  9. Polyalkylene glycols, base fluids for special lubricants and hydraulic fluids; Polyalkylenglykole, Basisoele fuer Spezialschmierstoffe und Hydraulikfluessigkeiten

    Energy Technology Data Exchange (ETDEWEB)

    Poellmann, K. [Clariant GmbH (Germany)

    2004-08-01

    For many years polyalkylene glycols have been used as base fluids for special lubricants. In this matter they compete with polyol esters and polyalphaolefines. Synthesis of polyalkylen glycols is founded upon the anionic polymerisation of ethyleneoxid, propyleneoxid and if necessary of other oxigen-containing monomeres. The flexibility of this synthesis is the reason that polyalkylene glycole is a collective term, including a broad group of base fluids with partly extreme different properties. Typical for polyalkylene glycols is a high viscosity-index, watersolubility and adsorbing power for water, low friction numbers, but also the incompatibility with current mineral-oil-soluble additive systems. Because of this quality profile there has been developped specific niche-applications in the lubricant-area for polyalkylene glycols in the last 30 years, where each of the specific benefits has been used. Among them are watercontaining HFC hydraulicfluids, refrigerator oils, and oils for ethylene-compressors. HFC fluids are formulated with high-viscous, water-soluble polyalkylene glycols. For refrigerator oils in motor-car conditioning the R 134A compatibility of water-insoluble polyalkylene glycols is essential. For the use in ethylene-compressors the crucial point is the insolubility of polyalkylene glycol in ethylene. (orig.)

  10. Simulation of ethanol extractive distillation with mixed glycols as separating agent

    Directory of Open Access Journals (Sweden)

    I. D. Gil

    2014-03-01

    Full Text Available Extractive distillation is an alternative for ethanol dehydration processes that has been shown to be more effective than azeotropic distillation and, in close proximity, to be very competitive against the process that uses adsorption with molecular sieves. Glycols have been shown to be the most effective solvents in extractive distillation, mainly ethylene glycol and glycerol. In this work, an extractive distillation column was simulated with the Aspen Plus software platform, using the RadFrac module for distillation columns, to investigate the effect on the separation of the ethylene glycol-glycerol mixture composition, the separating agent feed stages, the separating agent split stream feed, and the azeotropic feed temperature. The NRTL model was used to calculate the phase equilibrium of these strongly polar mixtures. A rigorous simulation of the extractive distillation column finally established was also performed, including a secondary recovery column for the mixture of solvents and a recycle loop, to simulate an industrially relevant situation. This simulation allowed establishing the complete parameters to dehydrate ethanol: the optimal stage for separating agent feed is stage 4; the most adequate composition for the glycols mixture is 60 mol% ethylene glycol and 40 mol% glycerol. Finally, energetically efficient operating conditions for each one of the columns were established through a preliminary pinch analysis.

  11. Assessing the toxic effects of ethylene glycol ethers using Quantitative Structure Toxicity Relationship models

    International Nuclear Information System (INIS)

    Ruiz, Patricia; Mumtaz, Moiz; Gombar, Vijay

    2011-01-01

    Experimental determination of toxicity profiles consumes a great deal of time, money, and other resources. Consequently, businesses, societies, and regulators strive for reliable alternatives such as Quantitative Structure Toxicity Relationship (QSTR) models to fill gaps in toxicity profiles of compounds of concern to human health. The use of glycol ethers and their health effects have recently attracted the attention of international organizations such as the World Health Organization (WHO). The board members of Concise International Chemical Assessment Documents (CICAD) recently identified inadequate testing as well as gaps in toxicity profiles of ethylene glycol mono-n-alkyl ethers (EGEs). The CICAD board requested the ATSDR Computational Toxicology and Methods Development Laboratory to conduct QSTR assessments of certain specific toxicity endpoints for these chemicals. In order to evaluate the potential health effects of EGEs, CICAD proposed a critical QSTR analysis of the mutagenicity, carcinogenicity, and developmental effects of EGEs and other selected chemicals. We report here results of the application of QSTRs to assess rodent carcinogenicity, mutagenicity, and developmental toxicity of four EGEs: 2-methoxyethanol, 2-ethoxyethanol, 2-propoxyethanol, and 2-butoxyethanol and their metabolites. Neither mutagenicity nor carcinogenicity is indicated for the parent compounds, but these compounds are predicted to be developmental toxicants. The predicted toxicity effects were subjected to reverse QSTR (rQSTR) analysis to identify structural attributes that may be the main drivers of the developmental toxicity potential of these compounds.

  12. Radiation crosslinking of PVC with polyfunctional monomers

    International Nuclear Information System (INIS)

    Dobo, J.; Takacs, E.; Csato, P.

    1984-01-01

    The radiation crosslinking of PVC in the presence of ethylene glycol dimethacrylate (EGDM) and of trimethylol propane trimethacrylate (TMPTM) was investigated. The effect of PVC powders of different types on the polymerization rate of these monomers was studied by a Calvet-type microcalorimeter. In the milled PVC sheets containing 50 part EGDM a high concentration of trapped free radicals was found by ESR after 16 months storage. (author)

  13. Complexing blends of polyacrylic acid-polyethylene glycol and poly(ethylene-co-acrylic acid)-polyethylene glycol as shape stabilized phase change materials

    International Nuclear Information System (INIS)

    Alkan, Cemil; Günther, Eva; Hiebler, Stefan; Himpel, Michael

    2012-01-01

    Highlights: ► Complexing groups to PEGs in a polymer could stabilize PEG at different molecular weights. ► Shape stabilized PEGs for thermal energy storage are prepared using compounds with interacting groups. ► Phase change temperature of PEGs could be changed using a complexing copolymer with acid groups. - Abstract: Blends of poly(ethylene glycol) (PEG) at 1000, 6000, and 10,000 g/mole average molecular weights and poly(acrylic acid) (PAA) or poly(ethylene-co-acrylic acid) (EcoA) have been prepared by solution blending and accounted for thermal energy storage properties as shape stabilized polymer blends. The blends have been analyzed using Fourier transform infrared (FT-IR) spectroscopy and differential scanning calorimetry (DSC) techniques. Total thermal energy values of the complexes have been determined by the method of Mehling et al. As a result of the investigation it is found that polymers with acid groups form interpolymer complexes (IPCs) and miscible and immiscible IPC–PEG blends when blended with PEGs. PEGs formed IPCs with PAA and EcoA polymers in solutions and reach to saturation and turns to be blends of IPC and PEG polymer. PEGs in this work bleed out of the blends when its compositions reach to a degree of immiscibility. In the first range where blends are IPCs and in the third range where bleeding of PEG occurs, blends are not feasible for thermal energy storage applications. However, in the second range, the blends are potential materials for passive thermal energy storage applications.

  14. Molar mass fractionation in aqueous two-phase polymer solutions of dextran and poly(ethylene glycol).

    Science.gov (United States)

    Zhao, Ziliang; Li, Qi; Ji, Xiangling; Dimova, Rumiana; Lipowsky, Reinhard; Liu, Yonggang

    2016-06-24

    Dextran and poly(ethylene glycol) (PEG) in phase separated aqueous two-phase systems (ATPSs) of these two polymers, with a broad molar mass distribution for dextran and a narrow molar mass distribution for PEG, were separated and quantified by gel permeation chromatography (GPC). Tie lines constructed by GPC method are in excellent agreement with those established by the previously reported approach based on density measurements of the phases. The fractionation of dextran during phase separation of ATPS leads to the redistribution of dextran of different chain lengths between the two phases. The degree of fractionation for dextran decays exponentially as a function of chain length. The average separation parameters, for both dextran and PEG, show a crossover from mean field behavior to Ising model behavior, as the critical point is approached. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Characterization of dimethacrylate polymeric networks: a study of the crosslinked structure formed by monomers used in dental composites.

    Science.gov (United States)

    Pfeifer, Carmem S; Shelton, Zachary R; Braga, Roberto R; Windmoller, Dario; Machado, José C; Stansbury, Jeffrey W

    2011-02-01

    The resin phase of dental composites is mainly composed of combinations of dimethacrylate comonomers, with final polymeric network structure defined by monomer type/reactivity and degree of conversion. This fundamental study evaluates how increasing concentrations of the flexible triethylene glycol dimethacrylate (TEGDMA) influences void formation in bisphenol A diglycidyl dimethacrylate (BisGMA) co-polymerizations and correlates this aspect of network structure with reaction kinetic parameters and macroscopic volumetric shrinkage. Photopolymerization kinetics was followed in real-time by a near-infrared (NIR) spectroscopic technique, viscosity was assessed with a viscometer, volumetric shrinkage was followed with a linometer, free volume formation was determined by positron annihilation lifetime spectroscopy (PALS) and the sol-gel composition was determined by extraction with dichloromethane followed by (1)H-NMR analysis. Results show that, as expected, volumetric shrinkage increases with TEGDMA concentration and monomer conversion. Extraction/(1)H-NMR studies show increasing participation of the more flexible TEGDMA towards the limiting stages of conversion/crosslinking development. As the conversion progresses, either based on longer irradiation times or greater TEGDMA concentrations, the network becomes more dense, which is evidenced by the decrease in free volume and weight loss after extraction in these situations. For the same composition (BisGMA/TEGDMA 60-40 mol%) light-cured for increasing periods of time (from 10 to 600 s), free volume decreased and volumetric shrinkage increased, in a linear relationship with conversion. However, the correlation between free volume and macroscopic volumetric shrinkage was shown to be rather complex for variable compositions exposed for the same time (600 s). The addition of TEGDMA decreases free-volume up to 40 mol% (due to increased conversion), but above that concentration, in spite of the increase in conversion

  16. Thermodynamic studies of hydriodic acid in ethylene glycol-water mixtures from electromotive force measurements

    International Nuclear Information System (INIS)

    Elsemongy, M.M.; Abdel-Khalek, A.A.

    1983-01-01

    The standard potentials of the Ag-AgI electrode in twenty ethylene glycol-water mixtures covering the whole range of solvent composition have been determined from the e.m.f. measurements of the cell Pt|H 2 (g, 1atm)| HOAc(m 1 ), NaOAc(m 2 ), KI(m 3 ), solvent|AgI|Ag at nine different temperatures ranging from 15 to 55 0 C. The temperature variation of the standard e.m.f. has been utilized to compute the standard thermodynamic functions for the cell reaction, the primary medium effects of various solvents upon HI, and the standard thermodynamic quantities for the transfer of HI, from the standard state in water to the standard states in the respective solvent media. The chemical effects of solvents on the transfer process have been obtained by subtracting the electrostatic contributions from the total transfer quantities. The results have been discussed in the light of ion-solvent interactions as well as the structural changes of the solvents. (Author)

  17. Cyto- and genotoxicological assessment and functional characterization of N-vinyl-2-pyrrolidone-acrylic acid-based copolymeric hydrogels with potential for future use in wound healing applications

    International Nuclear Information System (INIS)

    Kirf, Dominik; Devery, Sinead M; Higginbotham, Clement L; Rowan, Neil J

    2010-01-01

    This study investigated the toxicity of N-vinyl-2-pyrrolidone-acrylic acid copolymer hydrogels crosslinked with ethylene glycol dimethacrylate or poly(ethylene glycol) dimethacrylate. There is a pressing need to establish the toxicity status of these new copolymers because they may find applications in future wound healing processes. Investigations revealed that the capacity of these hydrogels for swelling permitted the retention of high amounts of water yet still maintaining structural integrity. Reverse phase HPLC analysis suggested that unreacted monomeric base material was efficiently removed post-polymerization by applying an additional purification process. Subsequently, in vitro toxicity testing was performed utilizing direct and indirect contact exposure of the polymers to human keratinocytes (HaCaT) and human hepatoma (HepG2) cells. No indication of significant cell death was observed using the established MTT, neutral red (NR) and fluorescence-based toxicity endpoint indicators. In addition, the alkaline Comet assay showed no genotoxic effects following cell exposure to hydrogel extracts. Investigations at the nucleotide level using the Ames mutagenicity assay demonstrated no evidence of mutagenic activity associated with the polymers. Findings from this study demonstrated that these hydrogels are non-cytotoxic and further work can be carried out to investigate their potential as a wound-healing device that will impact positively on patient health and well-being.

  18. Cyto- and genotoxicological assessment and functional characterization of N-vinyl-2-pyrrolidone-acrylic acid-based copolymeric hydrogels with potential for future use in wound healing applications

    Energy Technology Data Exchange (ETDEWEB)

    Kirf, Dominik; Devery, Sinead M [Department of Life and Physical Science, Athlone Institute of Technology (Ireland); Higginbotham, Clement L [Materials Research Institute, Athlone Institute of Technology (Ireland); Rowan, Neil J, E-mail: sdevery@ait.i, E-mail: dkirf@ait.i, E-mail: chigginbotham@ait.i, E-mail: nrowan@ait.i [Department of Nursing and Health Science, Athlone Institute of Technology (Ireland)

    2010-06-01

    This study investigated the toxicity of N-vinyl-2-pyrrolidone-acrylic acid copolymer hydrogels crosslinked with ethylene glycol dimethacrylate or poly(ethylene glycol) dimethacrylate. There is a pressing need to establish the toxicity status of these new copolymers because they may find applications in future wound healing processes. Investigations revealed that the capacity of these hydrogels for swelling permitted the retention of high amounts of water yet still maintaining structural integrity. Reverse phase HPLC analysis suggested that unreacted monomeric base material was efficiently removed post-polymerization by applying an additional purification process. Subsequently, in vitro toxicity testing was performed utilizing direct and indirect contact exposure of the polymers to human keratinocytes (HaCaT) and human hepatoma (HepG2) cells. No indication of significant cell death was observed using the established MTT, neutral red (NR) and fluorescence-based toxicity endpoint indicators. In addition, the alkaline Comet assay showed no genotoxic effects following cell exposure to hydrogel extracts. Investigations at the nucleotide level using the Ames mutagenicity assay demonstrated no evidence of mutagenic activity associated with the polymers. Findings from this study demonstrated that these hydrogels are non-cytotoxic and further work can be carried out to investigate their potential as a wound-healing device that will impact positively on patient health and well-being.

  19. Polyhedral oligomeric silsesquioxane (POSS)–poly(ethylene glycol) (PEG) hybrids as injectable biomaterials

    International Nuclear Information System (INIS)

    Engstrand, Johanna; López, Alejandro; Engqvist, Håkan; Persson, Cecilia

    2012-01-01

    One of the major issues with the currently available injectable biomaterials for hard tissue replacement is the mismatch between their mechanical properties and those of the surrounding bone. Hybrid bone cements that combine the benefits of tough polymeric and bioactive ceramic materials could become a good alternative. In this work, polyhedral oligomeric silsesquioxane (POSS) was copolymerized with poly(ethylene glycol) (PEG) to form injectable in situ cross-linkable hybrid cements. The hybrids were characterized in terms of their mechanical, rheological, handling and in vitro bioactive properties. The results indicated that hybridization improves the mechanical and bioactive properties of POSS and PEG. The Young moduli of the hybrids were lower than those of commercial cements and more similar to those of cancellous bone. Furthermore, the strength of the hybrids was similar to that of commercial cements. Calcium deficient hydroxyapatite grew on the surface of the hybrids after 28 days in PBS, indicating bioactivity. The study showed that PEG–POSS-based hybrid materials are a promising alternative to commercial bone cements. (paper)

  20. Alteration in Oxidative/nitrosative imbalance, histochemical expression of osteopontin and antiurolithiatic efficacy of Xanthium strumarium (L.) in ethylene glycol induced urolithiasis.

    Science.gov (United States)

    Panigrahi, Padma Nibash; Dey, Sahadeb; Sahoo, Monalisa; Choudhary, Shyam Sundar; Mahajan, Sumit

    2016-12-01

    Xanthium strumarium has traditionally been used in the treatment of urolitiasis especially by the rural people in India, but its antiurolithiatic efficacy was not explored scientifically till now. Therefore, the present study was designed to validate the ethnic practice scientifically, and explore the possible antiurolithiatic effect to rationalize its medicinal use. Urolitiasis was induced in hyperoxaluric rat model by giving 0.75% ethylene glycol (EG) for 28days along with 1% ammonium chloride (AC) for first 14days. Antiurolithiatic effect of aqueous-ethanol extract of Xanthium strumarium bur (xanthium) was evaluated based on urine and serum biochemistry, oxidative/nitrosative stress indices, histopathology, kidney calcium and calcium oxalate content and immunohistochemical expression of matrix glycoprotein, osteopontin (OPN). Administration of EG and AC resulted in hyperoxaluria, crystalluria, hypocalciuria, polyurea, raised serum urea, creatinine, erythrocytic lipid peroxidise and nitric oxide, kidney calcium content as well as crystal deposition in kidney section in lithiatic group rats. However, xanthium treatment significantly restored the impairment in above kidney function test as that of standard treatment, cystone. The up-regulation of OPN was also significantly decreased after xanthium treatment. The present findings demonstrate the curative efficacy of xanthium in ethylene glycol induced urolithiasis, possibly mediated through inhibition of various pathways involved in renal calcium oxalate formation, antioxidant property and down regulation of matrix glycoprotein, OPN. Therefore, future studies may be established to evaluate its efficacy and safety for clinical use. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  1. Keratocyte behavior in three-dimensional photopolymerizable poly(ethylene glycol) hydrogels

    Science.gov (United States)

    Thibault, Richard; Ambrose, Winnette McIntosh; Schein, Oliver D.; Chakravarti, Shukti; Elisseeff, Jennifer

    2015-01-01

    The goal of this study was to evaluate three-dimensional (3-D) poly(ethylene glycol) (PEG) hydrogels as a culture system for studying corneal keratocytes. Bovine keratocytes were subcultured in DMEM/F-12 containing 10% fetal bovine serum (FBS) through passage 5. Primary keratocytes (P0) and corneal fibroblasts from passages 1 (P1) and 3 (P3) were photoencapsulated at various cell concentrations in PEG hydrogels via brief exposure to light. Additional hydrogels contained adhesive YRGDS and nonadhesive YRDGS peptides. Hydrogel constructs were cultured in DMEM/F-12 with 10% FBS for 2 and 4 weeks. Cell viability was assessed by DNA quantification and vital staining. Biglycan, type I collagen, type III collagen, keratocan and lumican expression were determined by reverse transcriptase–polymerase chain reaction. Deposition of type I collagen, type III collagen and keratan sulfate (KS)-containing matrix components was visualized using confocal microscopy. Keratocytes in a monolayer lost their stellate morphology and keratocan expression, displayed elongated cell bodies, and up-regulated biglycan, type I collagen and type III collagen characteristic of corneal fibroblasts. Encapsulated keratocytes remained viable for 4 weeks with spherical morphologies. Hydrogels supported production of KS, type I collagen and type III collagen matrix components. PEG-based hydrogels can support keratocyte viability and matrix production. 3-D hydrogel culture can stabilize but not restore the keratocyte phenotype. This novel application of PEG hydrogels has potential use in the study of corneal keratocytes in a 3-D environment. PMID:18567550

  2. Characterisation of lignins isolated from sugarcane bagasse pretreated with acidified ethylene glycol and ionic liquids

    International Nuclear Information System (INIS)

    Moghaddam, Lalehvash; Zhang, Zhanying; Wellard, R. Mark; Bartley, John P.; O'Hara, Ian M.; Doherty, William O.S.

    2014-01-01

    Sugarcane bagasse pretreatment processes using acidified aqueous ethylene glycol (EG) and ionic liquids (ILs) have been reported recently. In this study, recovery of lignins from these processes was conducted, as well as determination of their physico-chemical properties. The amount of lignins recovered from 1-butyl-3-methylimidazolium chloride ([bmim]Cl) with HCl as a catalyst and [bmim][CH 3 SO 3 ] was ∼42%, and ∼35%–36% by EG with HCl or H 2 SO 4 as a catalyst, respectively. The isolated lignins were characterised using wet chemistry, spectroscopy and thermogravimetry analysis (TGA), and the results compared to soda lignin from NaOH pretreatment of bagasse. The IL and EG lignins contained no or trace amounts of carbohydrates, slightly lower hydrogen content but slightly higher oxygen contents than soda lignin. The IL and EG lignins contained more C-3 and C-5 reactive sites for Mannich reaction and had more p-hydroxypheny propane unit structures than soda lignin. Two-dimensional heteronuclear single quantum coherence (2D HSQC) nuclear magnetic resonance (NMR) identified the major substructural units in the lignins, and allowed differences among them to be studied. As EG lignins were extracted in very reactive environment, intermediate enol ethers were formed and led to cleavage reactions which were not apparent in the other lignins. 31 P NMR and infra-red spectroscopy results showed that IL and EG lignins had lower total hydroxyl content than soda lignin, probably indicating that a higher degree of self-polymerisation occurred during bagasse pretreatment, despite the use of lower temperature and shorter reaction time. On the basis of the salient features of these lignins, potential applications were proposed. - Highlights: • Lignins were recovered from ethylene glycol (EG) and ionic liquid (IL) processes. • IL and EG lignins contained no or trace amounts of carbohydrates. • IL and EG lignin had more C-3 and C-5 sites for Mannich reaction than soda

  3. A Solid Binding Matrix/Mimic Receptor-Based Sensor System for Trace Level Determination of Iron Using Potential Measurements

    OpenAIRE

    Kamel, Ayman H.; Moreira, Felismina T. C.; Silva, Tamara I.; Sales, M. Goreti F.

    2011-01-01

    Iron(II)-(1,10-phenanthroline) complex imprinted membrane was prepared by ionic imprinting technology. In the first step, Fe(II) established a coordination linkage with 1,10-phenanthroline and functional monomer 2-vinylpyridine (2-VP). Next, the complex was copolymerized with ethylene glycol dimethacrylate (EGDMA) as a crosslinker in the presence of benzoyl peroxide (BPO) as an initiator. Potentiometric chemical sensors were designed by dispersing the iron(II)-imprinted polymer particles in 2...

  4. Síntese e caracterização de dispersões aquosas de poliuretanos à base de copolímeros em bloco de poli(glicol etilênico e poli(glicol propilênico Synthesis and characterization of polyurethane aquous dispersions based on poly(ethylene glycol and poly(propylene glycol block copolymers

    Directory of Open Access Journals (Sweden)

    Fernanda M. B. Coutinho

    2008-01-01

    Full Text Available Non-polluting polyurethane aqueous dispersions, with 40% of solids content, were synthesized based on block copolymers of poly(ethylene glycol and poly(propylene glycol (PEG-b-PPG, with PEG hydrophilic segments content of 7 and 25%, poly(propylene glycol (PPG, dimethylolpropionic acid (DMPA, isophorone diisocyanate (IPDI, and hydrazine. Different formulations were synthesized by varying the equivalent-grams ratios between isocyanate and hydroxyl groups (NCO/OH and PPG and (PEG-b-PPG. The presence of high amounts of PEG in the formulations provoked the formation of gels. Average particle size and viscosity of the dispersions were determined. Mechanical properties and water absorption resistance of cast films were evaluated.

  5. Modification of hydrophobic acrylic intraocular lens with poly(ethylene glycol) by atmospheric pressure glow discharge: A facile approach

    International Nuclear Information System (INIS)

    Lin Lin; Wang Yao; Huang Xiaodan; Xu Zhikang; Yao Ke

    2010-01-01

    To improve the anterior surface biocompatibility of hydrophobic acrylic intraocular lens (IOL) in a convenient and continuous way, poly(ethylene glycol)s (PEGs) were immobilized by atmospheric pressure glow discharge (APGD) treatment using argon as the discharge gas. The hydrophilicity and chemical changes on the IOL surface were characterized by static water contact angle and X-ray photoelectron spectroscopy to confirm the covalent binding of PEG. The morphology of the IOL surface was observed under field emission scanning electron microscopy and atomic force microscopy. The surface biocompatibility was evaluated by adhesion experiments with platelets, macrophages, and lens epithelial cells (LECs) in vitro. The results revealed that the anterior surface of the PEG-grafted IOL displayed significantly and permanently improved hydrophilicity. Cell repellency was observed, especially in the PEG-modified IOL group, which resisted the attachment of platelets, macrophages and LECs. Moreover, the spread and growth of cells were suppressed, which may be attributed to the steric stabilization force and chain mobility effect of the modified PEG. All of these results indicated that hydrophobic acrylic IOLs can be hydrophilic modified by PEG through APGD treatment in a convenient and continuous manner which will provide advantages for further industrial applications.

  6. Tunable separations based on a molecular size effect for biomolecules by poly(ethylene glycol) gel-based capillary electrophoresis.

    Science.gov (United States)

    Kubo, Takuya; Nishimura, Naoki; Furuta, Hayato; Kubota, Kei; Naito, Toyohiro; Otsuka, Koji

    2017-11-10

    We report novel capillary gel electrophoresis (CGE) with poly(ethylene glycol) (PEG)-based hydrogels for the effective separations of biomolecules containing sugars and DNAs based on a molecular size effect. The gel capillaries were prepared in a fused silica capillary modified with 3-(trimethoxysilyl)propylmethacrylate using a variety of the PEG-based hydrogels. After the fundamental evaluations in CGE regarding the separation based on the molecular size effect depending on the crosslinking density, the optimized capillary provided the efficient separation of glucose ladder (G1 to G20). In addition, another capillary showed the successful separation of DNA ladder in the range of 10-1100 base pair, which is superior to an authentic acrylamide-based gel capillary. For both glucose and DNA ladders, the separation ranges against the molecular size were simply controllable by alteration of the concentration and/or units of ethylene oxide in the PEG-based crosslinker. Finally, we demonstrated the separations of real samples, which included sugars carved out from monoclonal antibodies, mAbs, and then the efficient separations based on the molecular size effect were achieved. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Tuning of thermally induced sol-to-gel transitions of moderately concentrated aqueous solutions of doubly thermosensitive hydrophilic diblock copolymers poly(methoxytri(ethylene glycol) acrylate)-b-poly(ethoxydi(ethylene glycol) acrylate-co-acrylic acid).

    Science.gov (United States)

    Jin, Naixiong; Zhang, Hao; Jin, Shi; Dadmun, Mark D; Zhao, Bin

    2012-03-15

    We report in this article a method to tune the sol-to-gel transitions of moderately concentrated aqueous solutions of doubly thermosensitive hydrophilic diblock copolymers that consist of two blocks exhibiting distinct lower critical solution temperatures (LCSTs) in water. A small amount of weak acid groups is statistically incorporated into the lower LCST block so that its LCST can be tuned by varying solution pH. Well-defined diblock copolymers, poly(methoxytri(ethylene glycol) acrylate)-b-poly(ethoxydi(ethylene glycol) acrylate-co-acrylic acid) (PTEGMA-b-P(DEGEA-co-AA)), were prepared by reversible addition-fragmentation chain transfer polymerization and postpolymerization modification. PTEGMA and PDEGEA are thermosensitive water-soluble polymers with LCSTs of 58 and 9 °C, respectively, in water. A 25 wt % aqueous solution of PTEGMA-b-P(DEGEA-co-AA) with a molar ratio of DEGEA to AA units of 100:5.2 at pH = 3.24 underwent multiple phase transitions upon heating, from a clear, free-flowing liquid (sol-to-gel transition temperature (T(sol-gel)) shifted to higher values, while the gel-to-sol transition (T(gel-sol)) and the clouding temperature (T(clouding)) of the sample remained essentially the same. These transitions and the tunability of T(sol-gel) originated from the thermosensitive properties of two blocks of the diblock copolymer and the pH dependence of the LCST of P(DEGEA-co-AA), which were confirmed by dynamic light scattering and differential scanning calorimetry studies. Using the vial inversion test method, we mapped out the C-shaped sol-gel phase diagrams of the diblock copolymer in aqueous buffers in the moderate concentration range at three different pH values (3.24, 5.58, and 5.82, all measured at ~0 °C). While the upper temperature boundaries overlapped, the lower temperature boundary shifted upward and the critical gelation concentration increased with the increase of pH. The AA content in PTEGMA-b-P(DEGEA-co-AA) was found to have a significant

  8. Preparation and evaluation of poly(alkyl methacrylate-co-methacrylic acid-co-ethylene dimethacrylate) monolithic columns for separating polar small molecules by capillary liquid chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Shu-Ling; Wu, Yu-Ru; Lin, Tzuen-Yeuan; Fuh, Ming-Ren, E-mail: msfuh@scu.edu.tw

    2015-04-29

    Highlights: • Methacrylic acid (MAA) was used to increase hydrophilicity of polymeric monoliths. • Fast separation of phenol derivatives was achieved in 5 min using MAA-incorporated column. • Separations of aflatoxins and phenicol antibiotics were achieved using MAA-incorporated column. - Abstract: In this study, methacrylic acid (MAA) was incorporated with alkyl methacrylates to increase the hydrophilicity of the synthesized ethylene dimethacrylate-based (EDMA-based) monoliths for separating polar small molecules by capillary LC analysis. Different alkyl methacrylate–MAA ratios were investigated to prepare a series of 30% alkyl methacrylate–MAA–EDMA monoliths in fused-silica capillaries (250-μm i.d.). The porosity, permeability, and column efficiency of the synthesized MAA-incorporated monolithic columns were characterized. A mixture of phenol derivatives is employed to evaluate the applicability of using the prepared monolithic columns for separating small molecules. Fast separation of six phenol derivatives was achieved in 5 min with gradient elution using the selected poly(lauryl methacrylate-co-MAA-co-EDMA) monolithic column. In addition, the effect of acetonitrile content in mobile phase on retention factor and plate height as well as the plate height-flow velocity curves were also investigated to further examine the performance of the selected poly(lauryl methacrylate-co-MAA-co-EDMA) monolithic column. Moreover, the applicability of prepared polymer-based monolithic column for potential food safety applications was also demonstrated by analyzing five aflatoxins and three phenicol antibiotics using the selected poly(lauryl methacrylate-co-MAA-co-EDMA) monolithic column.

  9. Cu assisted synthesis of self-supported PdCu alloy nanowires with enhanced performances toward ethylene glycol electrooxidation

    Science.gov (United States)

    Yan, Bo; Xu, Hui; Zhang, Ke; Li, Shujin; Wang, Jin; Shi, Yuting; Du, Yukou

    2018-03-01

    Self-supported PdCu alloy nanowires fabricated by a facile one-pot method have been reported, which copper assists in the morphological transformation from graininess to nanowires. The copper incorporated with palladium to form alloy structures cannot only cut down the usage of noble metal but also enhance their catalytic performances. The catalysts with self-supported structure and proper ratio of palladium to copper show great activity and long-term stability for the electrooxidation of ethylene glycol in alkaline solution. Especially for Pd43Cu57, its mass activity reaches to 5570.83 mA mg-1, which is 3.12 times as high as commercial Pd/C. This study highlights an accessible strategy to prepare self-supported PdCu alloy nanowires and their potential applications in renewable energy fields.

  10. Millimeter and submillimeter wave spectroscopic investigations into the rotation-tunneling spectrum of gGg' ethylene glycol, HOCH 2CH 2OH

    Science.gov (United States)

    Müller, Holger S. P.; Christen, Dines

    2004-12-01

    The rotation-tunneling spectrum of the second most stable gGg' conformer of ethylene glycol (1,2-ethanediol) in its ground vibrational state has been studied in selected regions between 77 and 579 GHz. Compared to the study of the more stable aGg' conformer, a much larger frequency range was studied, resulting in a much extended frequency list covering similar quantum numbers, J⩽55 and Ka⩽19. While the input data were reproduced within experimental uncertainties up to moderately high values of J and Ka larger residuals remain at higher quantum numbers. The severe mixing of the states caused by the Coriolis interaction between the two tunneling substates is suggested to provide a considerable part of the explanation. In addition, a Coriolis interaction of the gGg' ground vibrational state with an excited state of the aGg' conformer may also contribute. Relative intensities of closely spaced lines have been investigated to determine the signs of the Coriolis constants between the two tunneling substates relative to the dipole moment components and to estimate the magnitudes of the dipole moment components and the energy difference between the gGg' and the aGg' conformers. Results of ab initio calculations on the total dipole moment and the vibrational spectrum were needed for these estimates. The current analysis is limited to transitions with quantum numbers J⩽40 and Ka⩽6 plus those having J⩽22 and Ka⩽17 which could be reproduced within experimental uncertainties. The results are aimed at aiding radioastronomers to search for gGg' ethylene glycol in comets and in interstellar space.

  11. Synthesis of Copper Nanoparticles in Ethylene Glycol by Chemical Reduction with Vanadium (+2 Salts

    Directory of Open Access Journals (Sweden)

    Andrea Pietro Reverberi

    2016-09-01

    Full Text Available Copper nanoparticles have been synthesized in ethylene glycol (EG using copper sulphate as a precursor and vanadium sulfate as an atypical reductant being active at room temperature. We have described a technique for a relatively simple preparation of such a reagent, which has been electrolytically produced without using standard procedures requiring an inert atmosphere and a mercury cathode. Several stabilizing agents have been tested and cationic capping agents have been discarded owing to the formation of complex compounds with copper ions leading to insoluble phases contaminating the metallic nanoparticles. The elemental copper nanoparticles, stabilized with polyvinylpyrrolidone (PVP and sodium dodecyl sulphate (SDS, have been characterized for composition by energy dispersive X-ray spectroscopy (EDS, and for size by dynamic light scattering (DLS, and transmission electron microscopy (TEM, giving a size distribution in the range of 40–50 nm for both stabilizing agents. From a methodological point of view, the process described here may represent an alternative to other wet-chemical techniques for metal nanoparticle synthesis in non-aqueous media based on conventional organic or inorganic reductants.

  12. Allergic contact dermatitis caused by nail acrylates in Europe. An EECDRG study

    DEFF Research Database (Denmark)

    Gonçalo, Margarida; Pinho, André; Agner, Tove

    2018-01-01

    BACKGROUND: Allergic contact dermatitis (ACD) caused by nail acrylates, also including methacrylates and cyanoacrylates here, is being increasingly reported. METHODS: A retrospective study in 11 European Environmental Contact Dermatitis Research Group (EECDRG) clinics collected information on cases......-hydroxypropyl methacrylate (88.6%), ethylene glycol dimethacrylate (69.2%), and ethyl cyanoacrylate (9.9%). CONCLUSIONS: Nail cosmetics were responsible for the majority of ACD cases caused by acrylates, affecting nail beauticians and consumers, and therefore calling for stricter regulation and preventive...

  13. Removal combined with reduction of hexavalent chromium from aqueous solution by Fe-ethylene glycol complex microspheres

    Science.gov (United States)

    Zhang, Yong-Xing; Jia, Yong

    2016-12-01

    Three-dimensional Fe-ethylene glycol (Fe-EG) complex microspheres were synthesized by a facile hydrothermal method, and were characterized by field emission scanning electron microscopy and transmission electron microscopy. The adsorption as well as reduction properties of the obtained Fe-EG complex microspheres towards Cr(VI) ions were studied. The experiment data of adsorption kinetic and isotherm were fitted by nonlinear regression approach. In neutral condition, the maximum adsorption capacity was 49.78 mg g-1 at room temperature, and was increased with the increasing of temperature. Thermodynamic parameters including the Gibbs free energy, standard enthalpy and standard entropy revealed that adsorption of Cr(VI) was a feasible, spontaneous and endothermic process. Spectroscopic analysis revealed the adsorption of Cr(VI) was a physical adsorption process. The adsorbed CrO42- ions were partly reduced to Cr(OH)3 by Fe(II) ions and the organic groups in the Fe-EG complex.

  14. Simultaneous determination of glycols based on fluorescence anisotropy

    International Nuclear Information System (INIS)

    Garcia Sanchez, F.; Navas Diaz, A.; Lopez Guerrero, M.M.

    2007-01-01

    Simultaneous determination of non-fluorescent glycols in mixtures without separation or chemical transformation steps is described. Two methods based in the measure of fluorescence anisotropy of a probe such as fluorescein dissolved in the analyte or analyte mixtures are described. In the first method, the anisotropy spectra of pure and mixtures of analytes are used to quantitative determination (if the fluorophor concentration is in a range where fluorescence intensity is proportional to concentration). In the second method, a calibration curve anisotropy-concentration based on the application of the Perrin equation is established. The methods presented here are capable of directly resolving binary mixtures of non-fluorescent glycols on the basis of differences on the fluorescence anisotropy of a fluorescence tracer. Best analytical performances were obtained by application of the method based on Perrin equation. This method is simple, rapid and allows the determination of mixtures of glycols with reasonable accuracy and precision. Detection limits are limited by the quantum yield and anisotropy values of the tracer in the solvents. Recovery values are related to the differences in anisotropy values of the tracer in the pure solvents. Mixtures of glycerine/ethylene glycol (GL/EG), ethylene glycol/1,2-propane diol (EG/1,2-PPD) and polyethylene glycol 400/1,2-propane diol (PEG 400/1,2-PPD) were analysed and recovery values are within 95-120% in the Perrin method. Relative standard deviation are in the range 1.3-2.9% and detection limits in the range 3.9-8.9%

  15. Drug loading optimization and extended drug delivery of corticoids from pHEMA based soft contact lenses hydrogels via chemical and microstructural modifications.

    Science.gov (United States)

    García-Millán, Eva; Koprivnik, Sandra; Otero-Espinar, Francisco Javier

    2015-06-20

    This paper proposes an approach to improve drug loading capacity and release properties of poly(2-hydroxyethyl methacrylate) (p(HEMA)) soft contact lenses based on the optimization of the hydrogel composition and microstructural modifications using water during the polymerization process. P(HEMA) based soft contact lenses were prepared by thermal or photopolymerization of 2-hydroxyethyl methacrylate (HEMA) solutions containing ethylene glycol di-methacrylate as crosslinker and different proportions of N-vinyl-2-pyrrolidone (NVP) or methacrylic acid (MA) as co-monomers. Transmittance, water uptake, swelling, microstructure, drug absorption isotherms and in vitro release were characterized using triamcinolone acetonide (TA) as model drug. Best drug loading ratios were obtained with lenses containing the highest amount (200 mM) of MA. Incorporation of 40% V/V of water during the polymerization increases the hydrogel porosity giving a better drug loading capacity. In vitro TA release kinetics shows that MA hydrogels released the drug significantly faster than NVP-hydrogels. Drug release was found to be diffusion controlled and kinetics was shown to be reproducible after consecutive drug loading/release processes. Results of p(HEMA) based soft contact lenses copolymerized with ethylene glycol dimethacrylate (EGDMA) and different co-monomers could be a good alternative to optimize the loading and ocular drug delivery of this corticosteroid drug. Copyright © 2015. Published by Elsevier B.V.

  16. Criopreservação de embriões de suínos adicionando trealose aos crioprotetores etilenoglicol ou glicerol Cryopreservation of swine embryos adding trehalose to ethylene glycol or glycerol cryoprotectors

    Directory of Open Access Journals (Sweden)

    Edmir da Silva Nicola

    1999-03-01

    . Após o cultivo in vitro, verificou-se que a porcentagem de embriões viáveis foi superior (pThe objectives of this study were to compare (a the effects of trehalose incorporated to ethylene glycol and (b the effect of ethylene glycol and glycerol associated to trehalose on the viability of frozen swine embryos. Treatment 1 consisted in 1.5 M ethylene glycol, treatment 2 in 1.5 M ethylene glycol plus 0.25 M trehalose and treatment 3 glycerol 1.5 M with 0.25 M trehalose. The embryos were frozen at expanded blastocyst stage. The rapid freezing method was used, with a cooling rate of 1°C/minute from the room temperature (± 25°C to seeding (-7°C, and of 0.3°C/minute to -35°C, when the straws were plunged into liquid nitrogen (-196°C. Thawing was carried out in air during 30 seconds and in a water bath at 37°C during 30 seconds. Cryoprotectors were removed by the step-wise method. Embryo viability was observed microscopicaly imediately after thawing and when they reexpanded after being cultured for 18-24h in Medium 199 with 20% bovine foetal serum in 60 mul drops covered with mineral oil and incubated at 37°C in air with 6% CO2. The viability was 17.2%, 37.5% and 42.8% immediately after thawing, and 6.9%, 28.1% e 28.5% after a culture period of 18-24h, for treatments 1, 2 and 3, respectively. The results showed no differences (p>0.05 in viability among treatments when observation was made immediately after thawing. After culturing, viability rate was higher (p<0.05 in ethylene glycol with 0.25 M trehalose than in ethylene glycol only. Ethylene glycol and glycerol associated to trehalose showed no differences to cryoprotect swine embryos.

  17. Fractionation separation of human plasma proteins using HPLC with a homemade iron porphyrin based monolithic column.

    Science.gov (United States)

    Zhang, Doudou; Zhao, Yu; Lan, Dandan; Pang, Xiaomin; Bai, Ligai; Liu, Haiyan; Yan, Hongyuan

    2017-11-15

    In this work a polymer monolithic column was fabricated within the confines of a stainless steel column (50×4.6mm i.d.) via radical polymerization by using iron porphyrin and butyl methacrylate as co-monomers, ethylene glycol dimethacrylate as crosslinking agent, ethylene glycol, isopropyl alcohol and N, N-dimethylformamide as tri-porogens, benzoyl peroxide and N,N-dimethylaniline as initiators. The resulting monolithic column was characterized by elemental analysis, scanning electron microscopy, nitrogen adsorption BET surface area, and mercury intrusion porosimetry, respectively. Results showed that the homemade monolith occupied relatively uniform pore structure, low back pressure, and enhanced selectivity for proteins in complex bio-samples. The present work described a simple and efficient method for "fractionation separation" of human plasma proteins, and it is a promising separation method for complex bio-samples in proteomic research. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Ruthenium complexing in sorption by granulated sorbents with ethylene diamine and diethyl amine groups

    International Nuclear Information System (INIS)

    Simanova, S.A.; Kolmakova, A.I.; Konovalov, L.V.; Kukushkin, Yu.N.; Kalalova, E.

    1986-01-01

    The sorption process of ruthenium (4) chlorocomplexes - K 2 (RuCl 6 ) macroporous granulated copolymers of glycidylmethacrylate ethylene dimethacrylate with ethylene diamine and diethyl amine has been studied. Sorption has been carried out under the static conditions (at 20 and 98 deg C) from 0.1-2.0 MxHCl and 1.0 M NaCl solutions. It is established that the sorption from acidic solutions proceeds according to anion exchange mechanism with formation of onium chlorocomplexes in the sorbent phase, subjecting to Anderson regrouping during the heating. During the sorption from neutral solutions the second-sphere coordination of polymer amino groups accirs near ruthenium atom and amino-chloride complexes are formed in the sorbent phase

  19. Surface characterization of poly(vinyl chloride) urinary catheters functionalized with acrylic acid and poly(ethylene glycol) methacrylate using gamma-radiation

    Energy Technology Data Exchange (ETDEWEB)

    Islas, Luisa [Departamento de Química de Radiaciones y Radioquímica, Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico D.F. 04510 (Mexico); Ruiz, Juan-Carlos [División de Ciencias Básicas e Ingeniería, Depto. de Ingeniería de Procesos e Hidráulica, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco No. 186, 09340 México D.F. (Mexico); Muñoz-Muñoz, Franklin [Facultad de Ingeniería, Arquitectura y Diseño, Universidad Autónoma de Baja California, Carretera Transpeninsular Ensenada-Tijuana 3917, Ensenada, B.C. C.P 22860 (Mexico); Isoshima, Takashi [Nano Medical Engineering Laboratory, RIKEN, 2-1Hirosawa, Wako, Saitama 351-0198 (Japan); Burillo, Guillermina, E-mail: burillo@nucleares.unam.mx [Departamento de Química de Radiaciones y Radioquímica, Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico D.F. 04510 (Mexico)

    2016-10-30

    Highlights: • Polymer grafting using gamma-radiation allowed for acrylic acid and poly(ethylene glycol) methacrylate to graft on the inner and outer surface of poly(vinyl chloride) urinary catheters. • HR-XPS revealed the different compositional percentages of the compounds present on the surface of the catheter. • Catheters that were grafted with PEGMA had the roughest surface as observed using scanning electron microscopy (SEM) and confocal laser microscopy (CLM). - Abstract: Poly(vinyl chloride) (PVC) urinary catheters were modified with either a single or binary graft of acrylic acid (AAc) and/or poly(ethylene glycol) methacrylate (PEGMA) using gamma-radiation from {sup 60}Co to obtain PVC-g-AAc, PVC-g-PEGMA, [PVC-g-AAc]-g-PEGMA, and [PVC-g-PEGMA]-g-AAc copolymers. The outer and inner surfaces of the modified catheters were characterized using scanning electron microscopy (SEM), confocal laser microscopy (CLM) and X-ray photoelectron spectroscopy (XPS). The XPS analyses, by examining the correlation between the variation of the C{sub 1s} and O{sub 1s} content at the catheter’s surface, revealed that the catheter’s surfaces were successfully grafted with the chosen compounds, with those that were binary grafted showing a slightly more covered surface as was evidenced by the disappearance of PVC’s Cl peak. The SEM and CLM analyses revealed that catheters that had been grafted with PEGMA had a rougher outer surface as compared to those that had only been grafted with AAc. In addition, these imaging techniques showed that the inner surface of the singly grafted catheters, whether they had been grafted with AAc or PEGMA, retained some smoothness at the analyzed grafting percentages, while the binary grafted catheters showed many protuberances and greater roughness on both outer and inner surfaces.

  20. Assessment of wood liquefaction in acidified ethylene glycol using experimental design methodology

    Energy Technology Data Exchange (ETDEWEB)

    Rezzoug, S.A. [Universite de La Rochelle, Lab. de Maitrise des Technologies Agro-Industrielles, La Rochelle, 17 (France); Capart, R. [Universite de Technologie de Compiegne, Dept. de Genie Chimique, Compiegne, 60 (France)

    2003-03-01

    The liquefaction of milled wood (Pinus pinaster) was effected in ethylene glycol acidified with small quantities of H{sub 2}SO{sub 4} as catalyst. The purpose of this paper is to evaluate the influence upon the liquefaction yield of the three operating variables, the maximal temperature (150-280 deg C), the reaction time at maximal temperature (20-60 min) and the amount of added H{sub 2}SO{sub 4} (0-1.5% on dry wood). The individual effects, as well as the interactions between operating variables, are investigated by using an experimental design methodology. From a Pareto chart, it appears that the most significant effects are clearly those of the maximum temperature and the interaction between acidity and temperature. Such effects can be graphically verified through response surfaces and contour line plots. From a regression analysis, the conversion rate of wood into liquid is simply expressed as a function of the operating variables by a polynomial containing quadratic terms. A statistical model seems particularly appropriate in the case of complex and multi-components, as wood, a kinetic model is nevertheless proposed for the liquefaction of micro-crystalline cellulose. This model accounts for the formation of a carbonaceous solid residue from the liquid product. Such an unwanted phenomenon obviously results in a lower yield in liquid product. (Author)

  1. Photopolymerization of highly filled dimethacrylate-based composites using Type I or Type II photoinitiators and varying co-monomer ratios.

    Science.gov (United States)

    Randolph, Luc D; Steinhaus, Johannes; Möginger, Bernhard; Gallez, Bernard; Stansbury, Jeffrey; Palin, William M; Leloup, Gaëtane; Leprince, Julian G

    2016-02-01

    The use of a Type I photoinitiator (monoacylphosphine oxide, MAPO) was described as advantageous in a model formulation, as compared to the conventional Type II photoinitiator (Camphorquinone, CQ). The aim of the present work was to study the kinetics of polymerization of various composite mixtures (20-40-60-80 mol%) of bisphenol A glycidyl dimethacrylate/triethylene glycol dimethacrylate (BisGMA/TegDMA) containing either CQ or MAPO, based on real-time measurements and on the characterization of various post-cure characteristics. Polymerization kinetics were monitored by Fourier-transform near-infrared spectroscopy (FT-NIRS) and dielectric analysis (DEA). A range of postcure properties was also investigated. FT-NIRS and DEA proved complementary to follow the fast kinetics observed with both systems. Autodecceleration occurred after ≈1 s irradiation for MAPO-composites and ≈5-10 s for CQ-composites. Conversion decreased with increasing initial viscosity for both photoinitiating systems. However despite shorter light exposure (3s for MAPO vs 20s for CQ-composites), MAPO-composites yielded higher conversions for all co-monomer mixtures, except at 20 mol% BisGMA, the less viscous material. MAPO systems were associated with increased amounts of trapped free radicals, improved flexural strength and modulus, and reduced free monomer release for all co-monomer ratios, except at 20 mol% BisGMA. This work confirms the major influence of the initiation system both on the conversion and network cross-linking of highly-filled composites, and further highlights the advantages of using MAPO photoinitiating systems in highly-filled dimethacrylate-based composites provided that sufficient BisGMA content (>40 mol%) and adapted light spectrum are used. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  2. Electron scavenging in ethylene glycol-water glass at 4 and 77 K: scavenging of trapped vs mobile electrons. [. gamma. -rays, x radiation

    Energy Technology Data Exchange (ETDEWEB)

    Lin, D P; Kevan, L [Wayne State Univ., Detroit, Mich. (USA). Dept. of Chemistry; Steen, H B

    1976-01-01

    Electron scavenging efficiencies have been measured at 77 and 4 K in ethylene glycol-water glass for the following scavengers which span a 250-fold range of scavenger efficiencies at 77 K: HCl, NaNO/sub 3/ and K/sub 2/Cr0/sub 4/. The range of scavenging efficiencies decreases to 62 at 4 K with the largest relative change occurring for the less efficient scavengers. These results are suggested to be most consistent with a model in which scavenging occurs by tunneling from shallowly and deeply trapped electrons at 4 and 77 K, respectively.

  3. Radiation vulcanization of ethylene-propylene rubber with polyfunctional monomers

    Energy Technology Data Exchange (ETDEWEB)

    Jinhua, Wang; Yoshii, Fumio; Makuuchi, Keizo

    2001-01-01

    This paper reports on the sensitizing efficiency of several polyfunctional monomers to radiation vulcanization of ethylene-propylene rubber. And the results show that triethyleneglycol dimethacrylate (TEGDMA) gave the best results. TEGDMA not only lowers the vulcanization dose (D{sub v}), but also increases the tensile strength greatly. The content of TEGDMA does not affect the D{sub v} of TEGDMA-EPM, but affects the tensile strength at the D{sub v}. At best content (0.04 mol/100 g EPM), the tensile strength is increased from 6.0 to 12 MPa, and the elongation is 790% at the D{sub v}. (author)

  4. MAGNOLOL ENTRAPPED ULTRA-FINE FIBROUS MATS ELECTROSPUN FROM POLY(ETHYLENE GLYCOL)-b-POLY(L-LACTIDE) AND IN VITRO RELEASE

    Institute of Scientific and Technical Information of China (English)

    Hao Wang; Hong-rui Song; Yong Cui; Ying-jie Deng; Xue-si Chen

    2011-01-01

    Ultra-fine fibrous mats with magnolol entrapped have been prepared by electrospinning biodegradable copolymer poly(ethylene glycol) blocked poly(L-lactide). Drug entrapment was perfect which was confirmed by scanning electron microscopy and differential scanning calorimetry. According to in vitro drug release investigation by high performance liquid chromatography, it was found that fibers with 10%, 20% and 30% drug entrapped respect to polymer (mass ratio) presented dramatically different drug release behavior and degradation behavior under the effect of proteinase K. The reason may be that fibers with 10% drug entrapped was more easily affected by enzyme while, to some degree, magnolol in fibers with 20% and 30% entrapped prevented polymer from being degraded by enzyme.

  5. Electrochemical sensor for dopamine based on a novel graphene-molecular imprinted polymers composite recognition element

    DEFF Research Database (Denmark)

    Mao, Yan; Bao, Yu; Gan, Shiyu

    2011-01-01

    A novel composite of graphene sheets/Congo red-molecular imprinted polymers (GSCR-MIPs) was synthesized through free radical polymerization (FRP) and applied as a molecular recognition element to construct dopamine (DA) electrochemical sensor. The template molecules (DA) were firstly absorbed...... at the GSCR surface due to their excellent affinity, and subsequently, selective copolymerization of methacrylic acid (MAA) and ethylene glycol dimethacrylate (EGDMA) was further achieved at the GSCR surface. Potential scanning was presented to extract DA molecules from the imprinted polymers film...

  6. Development of semi- and grafted interpenetrating polymer networks based on poly(ethylene glycol) diacrylate and collagen.

    Science.gov (United States)

    Madaghiele, Marta; Marotta, Francesco; Demitri, Christian; Montagna, Francesco; Maffezzoli, Alfonso; Sannino, Alessandro

    2014-12-30

    The objective of this work was to develop composite hydrogels based on poly(ethylene glycol) diacrylate (PEGDA) and collagen (Coll), potentially useful for biomedical applications. Semi-interpenetrating polymer networks (semi-IPNs) were obtained by photo-stabilizing aqueous solutions of PEGDA and acrylic acid (AA), in the presence of collagen. Further grafting of the collagen macromolecules to the PEGDA/poly(AA) network was achieved by means of a carbodiimide-mediated crosslinking reaction. The resulting hydrogels were characterized in terms of swelling capability, collagen content and mechanical properties. The grafting procedure was found to significantly improve the mechanical stability of the IPN hydrogels, due to the establishment of covalent bonding between the PEGDA/poly(AA) and the collagen networks. The suitability of the composite hydrogels to be processed by means of stereolithography (SLA) was also investigated, toward creating biomimetic constructs with complex shapes, which might be useful either as platforms for tissue engineering applications or as tissue mimicking phantoms.

  7. Adverse eff ects of polymeric nanoparticle poly(ethylene glycol- block-polylactide methyl ether (PEG-b-PLA on steroid hormone secretion by porcine granulosa cells

    Directory of Open Access Journals (Sweden)

    Scsukova Sona

    2017-04-01

    Full Text Available Objectives. Development of nanoparticles (NPs for biomedical applications, including medical imaging and drug delivery, is currently undergoing a dramatic expansion. Diverse effects of different type NPs relating to mammalian reproductive tissues have been demonstrated. Th e objective of this study was to explore the in vitro effects of polymeric nanoparticle poly(ethylene glycol-blockpolylactide methyl ether (PEG-b-PLA NPs on functional state and viability of ovarian granulosa cells (GCs, which play an important role in maintaining ovarian function and female fertility.

  8. Efficacy of Poly(D,L-Lactic Acid-co-Glycolic acid)-Poly(Ethylene Glycol)-Poly(D,L-Lactic Acid-co-Glycolic Acid) Thermogel As a Barrier to Prevent Spinal Epidural Fibrosis in a Postlaminectomy Rat Model.

    Science.gov (United States)

    Li, Xiangqian; Chen, Lin; Lin, Hong; Cao, Luping; Cheng, Ji'an; Dong, Jian; Yu, Lin; Ding, Jiandong

    2017-04-01

    Experimental animal study. The authors conducted a study to determine the efficacy and safety of the poly(D,L-lactic acid-co-glycolic acid)-poly(ethylene glycol)-poly(D,L-lactic acid-co-glycolic acid) (PLGA-PEG-PLGA) thermogel to prevent peridural fibrosis in an adult rat laminectomy model. Peridural fibrosis often occurs after spinal laminectomy. It might cause persistent back and/or leg pain postoperatively and make a reoperation more difficult and dangerous. Various materials have been used to prevent epidural fibrosis, but only limited success has been achieved. The PLGA-PEG-PLGA thermogel was synthesized by us. Total L3 laminectomies were performed on 24 rats. The PLGA-PEG-PLGA thermogel or chitosan (CHS) gel (a positive control group) was applied to the operative sites in a blinded manner. In the control group, the L3 laminectomy was performed and the defect was irrigated with the NS solution 3 times. All the rats were killed 4 weeks after the surgery. The cytotoxicity of this thermogel was evaluated in vitro and the result demonstrated that no evidence of cytotoxicity was observed. The extent of epidural fibrosis, the area of epidural fibrosis, and the density of the fibroblasts and blood vessel were evaluated histologically. There were statistical differences among the PLGA-PEG-PLGA thermogel or CHS gel group compared with the control group. Although there was no difference between the PLGA-PEG-PLGA thermogel and CHS gel, the efficiency of the PLGA-PEG-PLGA thermogel was shown to be slightly improved compared with the CHS gel. The biocompatibility of the PLGA-PEG-PLGA thermogel was proven well. The application of this thermogel effectively reduced epidural scarring and prevented the subsequent adhesion to the dura mater. No side effects were noted in the rats.

  9. Glycol-Substitute for High Power RF Water Loads

    CERN Document Server

    Ebert, Michael

    2005-01-01

    In water loads for high power rf applications, power is dissipated directly into the coolant. Loads for frequencies below approx. 1GHz are ordinarily using an ethylene glycol-water mixture as coolant. The rf systems at DESY utilize about 100 glycol water loads with powers ranging up to 600kW. Due to the increased ecological awareness, the use of glycol is now considered to be problematic. In EU it is forbidden to discharge glycol into the waste water system. In case of cooling system leakages one has to make sure that no glycol is lost. Since it is nearly impossible to avoid any glycol loss in large rf systems, a glycol-substitute was searched for and found. The found sodium-molybdate based substitute is actually a additive for corrosion protection in water systems. Sodium-molybdate is ecologically harmless; for instance, it is also used as fertilizer in agriculture. A homoeopathic dose of 0.4% mixed into deionised water gives better rf absorption characteristics than a 30% glycol mixture. The rf coolant feat...

  10. Effect of silica and water content on the glass transition of poly(ethylene glycol) monomethylether-silica gel-lithium perchlorate ormolytes

    International Nuclear Information System (INIS)

    Korwin, Rebecca S.; Masui, Hitoshi

    2005-01-01

    The effect of silica and water content on the glass transition temperature, T g , of MPEG2000-silica-LiClO 4 ormolytes was assessed by differential scanning calorimetry (DSC). The sol-gel synthesized ormolytes consisted of various amounts of poly(ethylene glycol) monomethylether (M.W. 2000 g/mol; i.e., MPEG2000) tethered to silica gel through the hydroxyl terminus via a urethane linkage. DSC features corresponding to physisorbed and hydrogen-bonded water, as well as the glass transition of the polyether, were identified. Both silica and LiClO 4 raise the T g and suppress crystallization of the polyether component. Water plasticizes the polyether and stoichiometrically solvates and sequesters Li + , thereby, lowering T g

  11. Gene expression change in human dental pulp cells exposed to a low-level toxic concentration of triethylene glycol dimethacrylate: an RNA-seq analysis.

    Science.gov (United States)

    Cho, Sung-Geun; Lee, Jin-Woo; Heo, Jung Sun; Kim, Sun-Young

    2014-09-01

    Dental composite resin restoration for defective tooth may lead unpolymerized resin monomers to be leached into dental pulp tissue. The aim of this study was to investigate the early gene expression change over time of human dental pulp cells (HDPCs) treated with a low-level toxic concentration of Triethylene Glycol Dimethacrylate (TEGDMA), a common dental resin monomer, by adopting the novel high-throughput transcriptome analysis of RNA-seq. The low-level toxic concentration of TEGDMA was determined through MTT assays with serially diluted concentrations. After the HDPCs were exposed to TEGDMA for 6, 12, 24 or 48 hr, the total RNA of the samples was prepared for RNA-seq. qRT-PCR for several genes was performed for validation of RNA-seq results. In the treated group, 1280 genes were differentially expressed compared with the control group. Five patterns of time-series gene expression profiles were identified through k-means clustering analysis. Angiogenesis, cell adhesion and migration, extracellular matrix organization, response to extracellular stimulus, inflammatory response and mineralization-related process were major gene ontology terms in functional annotation clustering. HMOX1, OSGIN1, SMN2, SRXN1 AKR1C1, SPP1 and TOMM40L were highly up-regulated genes, and WRAP53 and CCL2 were highly down-regulated genes over time. qRT-PCR for several genes exhibited a high level of agreement with RNA-seq. TEGDMA induced the HDPCs to show massive and dynamic gene expression changes over time. The previously suggested toxic mechanism of TEGDMA was not only verified, but new genes whose functions have yet to be determined were also found. © 2014 Nordic Association for the Publication of BCPT (former Nordic Pharmacological Society).

  12. Effects of surfactant micelles on viscosity and conductivity of poly(ethylene glycol) solutions

    Science.gov (United States)

    Wang, Shun-Cheng; Wei, Tzu-Chien; Chen, Wun-Bin; Tsao, Heng-Kwong

    2004-03-01

    The neutral polymer-micelle interaction is investigated for various surfactants by viscometry and electrical conductometry. In order to exclude the well-known necklace scenario, we consider aqueous solutions of low molecular weight poly(ethylene glycol) (2-20)×103, whose radial size is comparable to or smaller than micelles. The single-tail surfactants consist of anionic, cationic, and nonionic head groups. It is found that the viscosity of the polymer solution may be increased several times by micelles if weak attraction between a polymer segment and a surfactant exists, ɛ

  13. Influence of cellulose derivative and ethylene glycol on optimization of lornoxicam transdermal formulation.

    Science.gov (United States)

    Shahzad, Yasser; Khan, Qalandar; Hussain, Talib; Shah, Syed Nisar Hussain

    2013-10-01

    Lornoxicam containing topically applied lotions were formulated and optimized with the aim to deliver it transdermally. The formulated lotions were evaluated for pH, viscosity and in vitro permeation studies through silicone membrane using Franz diffusion cells. Data were fitted to linear, quadratic and cubic models and best fit model was selected to investigate the influence of variables, namely hydroxypropyl methylcellulose (HPMC) and ethylene glycol (EG) on permeation of lornoxicam from topically applied lotion formulations. The best fit quadratic model revealed that low level of HPMC and intermediate level of EG in the formulation was optimum for enhancing the drug flux across silicone membrane. FT-IR analysis confirmed absence of drug-polymer interactions. Selected optimized lotion formulation was then subjected to accelerated stability testing, sensatory perception testing and in vitro permeation across rabbit skin. The drug flux from the optimized lotion across rabbit skin was significantly better that that from the control formulation. Furthermore, sensatory perception test rated a higher acceptability while lotion was stable over stability testing period. Therefore, use of Box-Wilson statistical design successfully elaborated the influence of formulation variables on permeation of lornoxicam form topical formulations, thus, helped in optimization of the lotion formulation. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Complexes of poly(ethylene glycol)-based cationic random copolymer and calf thymus DNA: a complete biophysical characterization.

    Science.gov (United States)

    Nisha, C K; Manorama, Sunkara V; Ganguli, Munia; Maiti, Souvik; Kizhakkedathu, Jayachandran N

    2004-03-16

    Complete biophysical characterization of complexes (polyplexes) of cationic polymers and DNA is needed to understand the mechanism underlying nonviral therapeutic gene transfer. In this article, we propose a new series of synthesized random cationic polymers (RCPs) from methoxy poly(ethylene glycol) monomethacrylate (MePEGMA) and (3-(methacryloylamino)propyl)trimethylammonium chloride with different mole ratios (32:68, 11:89, and 6:94) which could be used as a model system to address and answer the basic questions relating to the mechanism of the interaction of calf thymus DNA (CT-DNA) and cationic polymers. The solubility of the complexes of CT-DNA and RCP was followed by turbidity measurements. It has been observed that complexes of RCP with 68 mol % MePEGMA precipitate near the charge neutralization point, whereas complexes of the other two polymers are water-soluble and stable at all compositions. Dnase 1 digestion experiments show that DNA is inaccessible when it forms complexes with RCP. Ethidium bromide exclusion and gel electrophoretic mobility show that both polymers are capable of binding with CT-DNA. Atomic force microscopy images in conjunction with light scattering experiments showed that the complexes are spherical in nature and 75-100 nm in diameter. Circular dichroism spectroscopy studies indicated that the secondary structure of DNA in the complexes is not perturbed due to the presence of poly(ethylene glycol) segments in the polymer. Furthermore, we used a combination of spectroscopic and calorimetric techniques to determine complete thermodynamic profiles accompanying the helix-coil transition of CT-DNA in the complexes. UV and differential scanning calorimetry melting experiments revealed that DNA in the complexes is more stable than in the free state and the extent of stability depends on the polymer composition. Isothermal titration calorimetry experiments showed that the binding of these RCPs to CT-DNA is associated with small exothermic

  15. Electrooxidation of methanol and ethylene glycol mixture on platinum and palladium in alkaline medium

    Energy Technology Data Exchange (ETDEWEB)

    Li, Z.Y.; Liang, Y.J.; Shan, X.D.; Lin, M.L.; Xu, C.W. [School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou (China); Jiang, S.P. [Department of Chemical Engineering, Faculty of Science and Engineering, Curtin University, Perth, WA (Australia)

    2012-08-15

    The performance of mixture of methanol and ethylene glycol (EG) oxidation has been studied on both Pt and Pd electrodes in alkaline medium. The activity of EG oxidation is better than that of methanol oxidation and the stability of EG oxidation is better than that of methanol and ethanol oxidation on the Pd electrode. The onset potential for ethanol oxidation is more negative 200 mV than that of EG, however the stability of EG oxidation on the Pd electrode is better than that of ethanol oxidation. The performance of methanol oxidation improves pronouncedly by adding a small amount of EG on both Pt and Pd electrodes. The onset potential and peak potential of mixture of methanol and EG oxidation are close to or more negative than that of sole methanol and EG oxidation on the Pd electrode. The mixture of methanol and EG is more easily to be electrochemically oxidized and gives a better performance than sole methanol and EG on the Pd electrode. The results show that the mixture of methanol and EG is a promising candidate as fuel in direct alcohol fuel cells. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. Electrosynthesis and characterization of Fe doped CdSe thin films from ethylene glycol bath

    International Nuclear Information System (INIS)

    Pawar, S.M.; Moholkar, A.V.; Rajpure, K.Y.; Bhosale, C.H.

    2007-01-01

    The CdSe and Fe doped CdSe (Fe:CdSe) thin films have been electrodeposited potentiostatically onto the stainless steel and fluorine doped tin oxide (FTO) glass substrates, from ethylene glycol bath containing (CH 3 COO) 2 .Cd.2H 2 O, SeO 2 , and FeCl 3 at room temperature. The doping concentration of Fe is optimized by using (photo) electrochemical (PEC) characterization technique. The deposition mechanism and Fe incorporation are studied by cyclic voltammetry. The structural, surface morphological and optical properties of the deposited CdSe and Fe:CdSe thin films have been studied by X-ray diffraction, scanning electron microscopy (SEM) and optical absorption techniques respectively. The PEC study shows that Fe:CdSe thin films are more photosensitive than that of undoped CdSe thin films. The X-ray diffraction analysis shows that the films are polycrystalline with hexagonal crystal structure. SEM studies reveal that the films with uniformly distributed grains over the entire surface of the substrate. The complete surface morphology has been changed after doping. Optical absorption study shows the presence of direct transition and a considerable decrease in bandgap, E g from 1.95 to 1.65 eV

  17. Steric Stabilization of “Charge-Free” Cellulose Nanowhiskers by Grafting of Poly(ethylene glycol

    Directory of Open Access Journals (Sweden)

    Jun Araki

    2014-12-01

    Full Text Available A sterically stabilized aqueous suspension of “charge-free” cellulose nanowhiskers was prepared by hydrochloric acid hydrolysis of cotton powders and subsequent surface grafting of monomethoxy poly(ethylene glycol (mPEG. The preparation scheme included carboxylation of the terminal hydroxyl groups in mPEG via oxidation with silica gel particles carrying 2,2,6,6-tetramethyl-1-pyperidinyloxyl (TEMPO moieties and subsequent esterification between terminal carboxyls in mPEG and surface hydroxyl groups of cellulose nanowhiskers, mediated by 1,1'-carbonyldiimidazole (CDI in dimethyl sulfoxide or dimethylacetamide. Some of the prepared PEG-grafted samples showed remarkable flow birefringence and enhanced stability after 24 h, even in 0.1 M NaCl, suggesting successful steric stabilization by efficient mPEG grafting. Actual PEG grafting via ester linkages was confirmed by attenuated total reflectance-Fourier transform infrared spectrometry. In a typical example, the amount of grafted mPEG was estimated as ca. 0.3 g/g cellulose by two measurements, i.e., weight increase after grafting and weight loss after alkali cleavage of ester linkages. Transmission electron microscopy indicated unchanged nanowhisker morphology after mPEG grafting.

  18. The ethylene glycol template assisted hydrothermal synthesis of Co3O4 nanowires; structural characterization and their application as glucose non-enzymatic sensor

    International Nuclear Information System (INIS)

    Khun, K.; Ibupoto, Z.H.; Liu, X.; Beni, V.; Willander, M.

    2015-01-01

    Highlights: • Ethylene glycol assisted Co 3 O 4 nanowires were synthesized by hydrothermal method. • The grown Co 3 O 4 nanowires were used for sensitive non-enzymatic glucose sensor. • The proposed glucose sensor shows a wide linear range with fast response. • The Co 3 O 4 modified electrode is a highly specific enzyme-less glucose sensor. - Abstract: In the work reported herein the ethylene glycol template assisted hydrothermal synthesis, onto Au substrate, of thin and highly dense cobalt oxide (Co 3 O 4 ) nanowires and their characterization and their application for non-enzymatic glucose sensing are reported. The structure and composition of Co 3 O 4 nanowires have been fully characterized using scanning electron microscopy, X-ray diffraction, high resolution transmission electron microscopy and X-ray photoelectron spectroscopy. The synthesized Co 3 O 4 nanowires resulted to have high purity and showed diameter of approximately 10 nm. The prepared Co 3 O 4 nanowires coated gold electrodes were applied to the non-enzymatic detection of glucose. The developed sensor showed high sensitivity (4.58 × 10 1 μA mM −1 cm −2 ), a wide linear range of concentration (1.00 × 10 −4 –1.2 × 10 1 mM) and a detection limit of 2.65 × 10 −5 mM. The developed glucose sensor has also shown to be very stable and selective over interferents such as uric acid and ascorbic acid. Furthermore, the proposed fabrication process was shown to be highly reproducible response (over nine electrodes)

  19. Surface grafting of poly(ethylene glycol) onto poly(acrylamide-co-vinyl amine) cross-linked films under mild conditions.

    Science.gov (United States)

    Yamamoto, Y; Sefton, M V

    1998-01-01

    Poly(ethylene glycol) (PEG) was grafted onto poly(acrylamide-co-vinyl amine) (poly(AM-co-VA)) film using tresylated PEG (TPEG) at 37 degrees C in aqueous buffers (pH 7.4) with a view to surface-modifying microencapsulated mammalian cells. Poly(AM-co-VA) film was synthesized by Hofmann degradation of a cross-linked poly(acrylamide) film. Conversion to vinyl amine on the surface of the film was approximately 50%, but bulk conversion was not observed; surface specificity was thought to be the result of cleavage of aminated polymer chains at the surface due to chain scission. Reaction between primary amine and TPEG gave a graft yield of 2 mol% (based on XPS) with respect to available surface amine groups, equivalent to 54 mol% ethylene oxide based on monomer units. Physical adsorption of non-activated polymer was done under identical conditions as a control and the difference in oxygen content was significant compared to TPEG. The type of buffer agent and buffer concentration did not influence graft yields. This graft reaction, which was completed in as little as 2 h was considered to be mild enough to be used for a surface modification of microcapsules containing cells without affecting their viability. Such a surface modification technique may prove to be a useful means of enhancing the biocompatibility of microcapsules (or any tissue engineering construct) even after cell encapsulation or seeding.

  20. Cryopreservation of mouse embryos by ethylene glycol-based vitrification.

    Science.gov (United States)

    Mochida, Keiji; Hasegawa, Ayumi; Taguma, Kyuichi; Yoshiki, Atsushi; Ogura, Atsuo

    2011-11-18

    Cryopreservation of mouse embryos is a technological basis that supports biomedical sciences, because many strains of mice have been produced by genetic modifications and the number is consistently increasing year by year. Its technical development started with slow freezing methods in the 1970s(1), then followed by vitrification methods developed in the late 1980s(2). Generally, the latter technique is advantageous in its quickness, simplicity, and high survivability of recovered embryos. However, the cryoprotectants contained are highly toxic and may affect subsequent embryo development. Therefore, the technique was not applicable to certain strains of mice, even when the solutions are cooled to 4°C to mitigate the toxic effect during embryo handling. At the RIKEN BioResource Center, more than 5000 mouse strains with different genetic backgrounds and phenotypes are maintained(3), and therefore we have optimized a vitrification technique with which we can cryopreserve embryos from many different strains of mice, with the benefits of high embryo survival after vitrifying and thawing (or liquefying, more precisely) at the ambient temperature(4). Here, we present a vitrification method for mouse embryos that has been successfully used at our center. The cryopreservation solution contains ethylene glycol instead of DMSO to minimize the toxicity to embryos(5). It also contains Ficoll and sucrose for prevention of devitrification and osmotic adjustment, respectively. Embryos can be handled at room temperature and transferred into liquid nitrogen within 5 min. Because the original method was optimized for plastic straws as containers, we have slightly modified the protocol for cryotubes, which are more easily accessible in laboratories and more resistant to physical damages. We also describe the procedure of thawing vitrified embryos in detail because it is a critical step for efficient recovery of live mice. These methodologies would be helpful to researchers and

  1. Effect of KOH added to ethylene glycol electrolyte on the self-organization of anodic ZrO2 nanotubes

    International Nuclear Information System (INIS)

    Rozana, Monna; Soaid, Nurul Izza; Lockman, Zainovia; Kawamura, Go; Kian, Tan Wai; Matsuda, Atsunori

    2016-01-01

    ZrO 2 nanotube arrays were formed by anodizing zirconium sheet in ethylene glycol (EG) and EG added to it KOH (EG/KOH) electrolytes. The effect of KOH addition into EG electrolyte to the morphology of nanotubes and their crystallinity was investigated. It was observed that the tubes with diameter of ∼80 nm were formed in EG electrolyte with <0.1 vol % water, but the wall smoothness is rather poor. When KOH was added into EG, the wall smoothness of the nanotubes improve, but the diameter of tubes is smaller (∼40 nm). Despite smoother wall and small tube diameter, the degradation of methyl orange (MO) on the tubes made in EG/KOH is less compared to the tubes made in EG only. This could be due to the less tetragonal ZrO 2 presence in the tubes made in EG/KOH.

  2. Synthesis and aqueous phase behavior of thermoresponsive biodegradable poly(D,L-3-methylglycolide)-block-poly(ethyelene glycol)-block-poly(D,L-3-methylglycolide) triblock copolymers

    NARCIS (Netherlands)

    Zhong, Zhiyuan; Dijkstra, Pieter J.; Feijen, Jan; Kwon, Young-Min; Bae, You Han; Kim, Sung Wan

    2002-01-01

    Novel biodegradable thermosensitive triblock copolymers of poly(D,L-3-methylglycolide)-block-poly(ethylene glycol)-block-poly(D,L-3-methylglycolide) (PMG-PEG-PMG) have been synthesized. Ring-opening polymerization of D,L-3-methyl-glycolide (MG) initiated with poly(ethylene glycol) (PEG) and

  3. Effect of polyethylene glycol in preparation of Eu3+ doped SnO2 nanoparticles using ethylene glycol and luminescence properties

    International Nuclear Information System (INIS)

    Singh, L.J.; Singh, R.K.H.; Ningthoujam, R.S.; Vatsa, R.K.

    2010-01-01

    Full text: Eu 3+ doped SnO 2 nanoparticles have been prepared by urea hydrolysis. The two different capping agents such as ethylene glycol (EG) and polyethylene glycol (PEG) are used. Particles prepared in EG shows the crystalline nature while in the presence of PEG, crystallinity decreases. In TEM study of 5 at.% Eu doped SnO 2 sample prepared in presence of EG and PEG, there is a particle size distribution from 2.5 to 5.5 nm and average particle size is found to be 4 nm. In order to see the particle morphology for small particles, HRTEM images are also recorded and average crystallite region is found to be 2.7 nm. From this, we can conclude that 4 nm smaller particle has crystallite region of 2.7 nm and surface region of 1.3 nm. Thus, with decrease of particle size, the contribution of surface to bulk increases. This reflects the broad peak in XRD pattern of samples prepared in EG-PEG. The excitation spectra of SnO 2 nanoparticles (prepared in EG-PEG) doped with 2, 5 and 10 at.% Eu 3+ monitoring emission at 614 nm is shown. The excitation peaks at 250, 325 and 395 nm are observed. The peak at 250 nm is due to Eu-O charge transfer. The broad peak centered at 325 nm is due to exciton formation from SnO 2 and the last peak at 395 nm due to Eu 3+ ( 7 F 0 → 5 L 6 ). The relative peak intensity of Eu 3+ (peak at 395 nm) with respect to SnO 2 (peak at 325 nm) decreases with increase of Eu 3+ content/dopant in SnO 2 . This suggests that energy transfer from SnO 2 to Eu 3+ increases with Eu 3+ content/dopant in SnO 2 . The emission spectra of SnO 2 nanoparticles doped with 5 at.% Eu 3+ (prepared in EG-PEG) after excitation at different wavelengths (250, 300, 320, 330, 340 and 395 nm) is also shown. The main emission peaks at 425 (broad), 578 (weak), 591 (sharp) and 614 nm (sharp) are observed

  4. Ethylene glycol modified 2-(2′-aminophenyl)benzothiazoles at the amino site: the excited-state N-H proton transfer reactions in aqueous solution, micelles and potential application in live-cell imaging

    International Nuclear Information System (INIS)

    Liu, Bo-Qing; Tsai, Yi-Hsuan; Li, Yi-Jhen; Chao, Chi-Min; Liu, Kuan-Miao; Chen, Yi-Ting; Chen, Yu-Wei; Chung, Kun-You; Tseng, Huan-Wei; Chou, Pi-Tai

    2016-01-01

    Triethylene glycol monomethyl ether and poly(ethylene glycol) monomethyl ether modified 2-(2′-aminophenyl)benzothiazoles, namely ABT-P3EG, ABT-P7EG and ABT-P12EG varied by different chain length of poly(ethylene glycol) at the amino site, were synthesized to probe their photophysical and bio-imaging properties. In polar, aprotic solvents such as CH 2 Cl 2 ultrafast excited-state intramolecular proton transfer (ESIPT) takes place, resulting in a large Stokes shifted tautomer emission in the green-yellow (550 nm) region. In neutral water, ABT-P12EG forms micelles with diameters of 15  ±  3 nm under a critical micelle concentration (CMC) of ∼80 μM, in which the tautomer emission is greatly enhanced free from water perturbation. Cytotoxicity experiments showed that all ABT-PnEGs have negligible cytotoxicity against HeLa cells even at doses as high as 1 mM. Live-cell imaging experiments were also performed, the results indicate that all ABT-PnEGs are able to enter HeLa cells. While the two-photon excitation emission of ABT-P3EG in cells cytoplasm shows concentration independence and is dominated by the anion blue fluorescence, ABT-P7EG and ABT-P12EG exhibit prominent green tautomer emission at  >  CMC and in part penetrate to the nuclei, adding an additional advantage for the cell imaging. (paper)

  5. Synthesis of novel bis(perfluorophenyl azides) coupling agents: Evaluation of their performance by crosslinking of poly(ethylene oxide)

    KAUST Repository

    Mehenni, Hakim; Bakr, Osman

    2011-01-01

    Novel bis(perfluorophenyl azides) coupling agents, containing spacer arms from ethylene or ethylene glycol subunits, were successfully synthesized. Nitrenes photogenerated from these novel bis(PFPA) coupling agents were applied successfully

  6. [Carcinogenic activity of ethylene oxide and its reaction products 2-chloroethanol, 2-bromoethanol, ethylene glycol and diethylene glycol. I. Carcinogenicity of ethylene oxide in comparison with 1,2-propylene oxide after subcutaneous administration in mice (author's transl)].

    Science.gov (United States)

    Dunkelberg, H

    1981-12-01

    Ethylene oxide is an important initial product for a number of organic compounds and, in addition, is used in the medical field for sterilization. The aim of our experiments was to test ethylene oxide and, as a comparative substance, 1,2-propylene oxide in respect to their cancerogenic effectiveness in animal experiments. Ethylene oxide was administered subcutaneously in three dosages (1.0; 0.3 and 0.1 mg single dosage per mouse) once per week to groups of 100 female NMRI mice respectively. In the case of 1,2-propylene oxide, four dosages were used (2.5; 1.0; 0.3 and 0.1 mg single dosage per mouse). The vehicle was tricaprylin. Administrations were carried out over a period of 95 weeks. The mean total dosage per mouse in the case of ethylene oxide amounted to 64.4; 22.7, and 7.3 mg and, in the case of propylene oxide, to 165.4; 72.8; 21.7 and 6.8 mg. Both substances induced local tumours depending upon the dosage. There were mostly fibrosarcomas. In the case of the groups treated with ethylene oxide the frequency was between 11 and 5% and in the case of the groups treated with 1,2-propylene oxide this was between 16 and 2%. The cancerogenic effect of ethylene oxide and 1,2-propylene oxide determined in animal experiments could, therefore, be confirmed statistically. On the basis of the results presented in this paper, new aspects have arisen for the medical evaluation of ethylene oxide residues in the field of manufacturing and use and in respect to the TLV.

  7. Antiurolithiatic and antioxidant efficacy of Musa paradisiaca pseudostem on ethylene glycol-induced nephrolithiasis in rat.

    Science.gov (United States)

    Panigrahi, Padma Nibash; Dey, Sahadeb; Sahoo, Monalisa; Dan, Ananya

    2017-01-01

    Musa paradisiaca has been used in the treatment of urolithiasis by the rural people in South India. Therefore, we plan to evaluate its efficacy and possible mechanism of antiurolithiatic effect to rationalize its medicinal use. Urolithiasis was induced in hyperoxaluric rat model by giving 0.75% ethylene glycol (EG) for 28 days along with 1% ammonium chloride (AC) for the first 14 days. Antiurolithiatic effect of aqueous-ethanol extract of M. paradisiaca pseudostem (MUSA) was evaluated based on urine and serum biochemistry, microscopy of urine, oxidative/nitrosative indices, kidney calcium content, and histopathology. Administration of EG and AC resulted in increased crystalluria and oxaluria, hypercalciuria, polyuria, crystal deposition in urine, raised serum urea, and creatinine as well as nitric oxide concentration and erythrocytic lipid peroxidation in lithiatic group. However, MUSA treatment significantly restored the impairment in above kidney function test as that of standard treatment, cystone in a dose-dependent manner. The present findings demonstrate the efficacy of MUSA in EG-induced urolithiasis, which might be mediated through inhibiting various pathways involved in renal calcium oxalate formation, antioxidant effect, and potential to inhibit biochemical markers of renal impairment.

  8. Electrochemical investigation of Li-Al anodes in oligo(ethylene glycol) dimethyl ether/LiPF6

    International Nuclear Information System (INIS)

    Zhou, Y.; Wang, X.; Lee, H.; Nam, K.; Haas, O.

    2011-01-01

    LiPF 6 dissolved in oligo(ethylene glycol) dimethyl ether with a molecular weight 5 g mol -1 was investigated as a new electrolyte (OEGDME5, 1 M LiPF 6 ) for metal deposition and battery applications. At 25 C a conductivity of .48 x 1 -3 S cm -1 was obtained and at 85 C, 3.78 x 1 -3 S cm -1 . The apparent activation barrier for ionic transport was evaluated to be 3.7 kJ mol -1 . OEGDME5, 1 M LiPF 6 allows operating temperature above 1 C with very attractive conductivity. The electrolyte shows excellent performance at negative and positive potentials. With this investigation, we report experimental results obtained with aluminum electrodes using this electrolyte. At low current densities lithium ion reduction and re-oxidation can be achieved on aluminum electrodes at potentials about 28 mV more positive than on lithium electrodes. In situ X-ray diffraction measurements collected during electrochemical lithium deposition on aluminum electrodes show that the shift to positive potentials is due to the negative Gibbs free energy change of the Li-Al alloy formation reaction.

  9. Facile phase transfer of hydrophobic nanoparticles with poly(ethylene glycol) grafted hyperbranched poly(amido amine)

    International Nuclear Information System (INIS)

    Ji Minglei; Yang Wuli; Ren Qingguang; Lu Daru

    2009-01-01

    In order to enhance the dispersion ability of hydrophobic nanoparticles in water while maintaining their unique properties, we utilized poly(ethylene glycol) grafted hyperbranched poly(amido amine) (h-PAMAM-g-PEG) to modify three types of hydrophobic nanoparticle, CdSe, Au, and Fe 3 O 4 , and transferred them into water to extend their applications in biology. Considering the large amounts of amino groups in hyperbranched poly(amido amine) (h-PAMAM) polymer, complexation interaction between h-PAMAM-g-PEG copolymer and nanoparticles was achieved and ligand exchange between the copolymers and original small molecules ligands occurred. The transferred nanoparticles could be easily dispersed in water with better stability, and their unique properties, such as fluorescence, surface plasmon resonance, and superparamagnetism, were well maintained in the ligand exchange process. In addition, increasing the number of grafted PEG showed a negative effect on the ligand exchange process. Due to the existence of h-PAMAM-g-PEG ligands, the stabilized nanoparticles have improved stability in aqueous and ionic solutions. In the case of CdSe nanoparticles, the h-PAMAM-g-PEG layer leads to a lower cytotoxicity when compared with bare CdSe particles, and they could be directly used in bioimaging.

  10. High dose Senna or Poly Ethylene Glycol (PEG for elective colonoscopy preparation: a prospective randomized investigator-blinded clinical trial

    Directory of Open Access Journals (Sweden)

    Ahmad Shavakhi

    2011-01-01

    Full Text Available Background: The aim of this study was to determine the efficacy of two methods of colon preparation for colon cleansing in a randomized controlled trial. Methods: In this prospective randomized investigator-blinded trial, consecutive outpatients indicated for elective colonoscopy were randomized into two groups. Patients in Senna group took 24 tablets of 11 mg Senna in two divided doses 24 hour before colonoscopy. In Poly Ethylene Glycol (PEG group they solved 4 sachets in 4 liters of water the day before the procedure and were asked to drink 250 ml every 15 minutes. The overall quality of colon cleansing was evaluated using the Aronchick scoring scale. Difficulty of the procedure, patients′ tolerance and compliance and adverse events were also evaluated. Results: 322 patients were enrolled in the study. There was no significant difference in the quality of colon cleansing, patients′ tolerance, compliance and the difficulty of the procedure between two groups (p > 0.05. The incidence of adverse effects was similar between two groups except for abdominal pain that was more severe in Senna group (p < 0.05 and nausea and vomiting that was more common in PEG group (p < 0.05 Conclusions: In conclusion we deduce that Senna has the same efficacy and patient′s acceptance as Polyethylene glycol-electrolyte solution (PEG-ES and it could be prescribed as an alternative method for bowel preparation.

  11. Influence of the Ti microstructure on anodic self-organized TiO{sub 2} nanotube layers produced in ethylene glycol electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Macak, J.M., E-mail: jan.macak@upce.cz [Center of Materials and Nanotechnologies, Faculty of Chemical Technology, University of Pardubice, Nam. Cs. Legii 565, 53002 Pardubice (Czech Republic); Jarosova, M. [Laboratory of Nanostructures and Nanomaterials, Institute of Physics of the CAS, v.v.i., Na Slovance 2, 18221 Prague 8 (Czech Republic); Jäger, A. [Department of Structure analysis, Institute of Physics of the CAS, v.v.i., Cukrovarnicka 10, 16200 Prague 6 (Czech Republic); Sopha, H. [Center of Materials and Nanotechnologies, Faculty of Chemical Technology, University of Pardubice, Nam. Cs. Legii 565, 53002 Pardubice (Czech Republic); Klementová, M. [Institute of Inorganic Chemistry of the CAS, v.v.i., Husinec-Rez 1001, Rez 25068 (Czech Republic)

    2016-05-15

    Highlights: • The microstructure of Ti substrates investigated by EBSD. • Comparison of polished vs. unpolished substrates was carried out. • Grain orientation influences the uniformity of self-organized TiO{sub 2} nanotubes. • Tubes with different average diameter grow on grains with different orientation. • Grain size and boundaries influence the number of flaws in the tube layers. - Abstract: The relationship between the microstructure of Ti substrates and the anodic growth of self-organized TiO{sub 2} nanotube layers obtained upon their anodization in the ethylene glycol based electrolytes on these substrates is reported for the first time. Polished Ti sheets with mirror-like surface as well as unpolished Ti foils were considered in this work. Grains with a wide range of crystallographic orientations and sizes were revealed by Electron Backscatter Diffraction (EBSD) and correlated with nanotube growth on both types of substrates. A preferred grain orientation with [0 0 0 1] axis perpendicular to the surface was observed on all substrates. Surfaces of all substrates were anodized for 18 h in ethylene glycol electrolytes containing 88 mM NH{sub 4}F and 1.5% water and thoroughly inspected by SEM. By a precise comparison of Ti substrates before and after anodization, the uniformity of produced self-organized TiO{sub 2} nanotube layers was evaluated in regard to the specific orientation of individual grains. Grains with [0 0 0 1] axis perpendicular to the surface turned out to be the most growth-promoting orientation on polished substrates. No orientation was found to be strictly growth-retarding, but sufficient anodization time (24 h) was needed to obtain uniform nanotube layers on all grains without remnant porous initial oxide. In contrast with polished Ti sheets, no specific orientation was found to significantly promote or retard the nanotube growth in the case of unpolished Ti foils. Finally, the difference between the average nanotube diameters of

  12. The chemotherapeutic potential of glycol alkyl ethers: structure-activity studies of nine compounds in a Fischer-rat leukemia transplant model.

    Science.gov (United States)

    Dieter, M P; Jameson, C W; Maronpot, R R; Langenbach, R; Braun, A G

    1990-01-01

    Structure-activity studies with nine glycol alkyl ethers were conducted with a cellular leukemia transplant model in male Fischer rats. This in vivo assay measures the effects of chemical treatment on neoplastic progression in transplant recipients. Chemicals were given ad libitum in the drinking water simultaneously with the transplants and continued throughout the study. In all, 20 million leukemic cells were injected s.c. into syngeneic rats, which after 60 days resulted in a 10-fold increase in relative spleen weights, a 100-fold increase in white blood cell counts, and a 50% reduction in red blood cell (RBC) indices and platelet counts. At this interval, ethylene glycol monomethyl ether (2-ME) given at a dose of 2.5 mg/ml in the drinking water completely eliminated all clinical, morphological, and histopathological evidence of leukemia, whereas the same dose of ethylene glycol monoethyl ether (2-EE) reduced these responses by about 50%. Seven of the glycol ethers were ineffective as anti-leukemic agents, including ethylene glycol, the monopropyl, monobutyl, and monophenyl ethylene glycol ethers, diethylene glycol, and the monomethyl and monoethyl diethylene glycol ethers. 2-ME more than doubled the latency period of leukemia expression and extended survival for at least 210 days. A minimal effective dose for a 50% reduction in the leukemic responses was 0.25 mg/ml 2-ME in the drinking water (15 mg/kg body weight), whereas a 10-fold higher dose of 2-EE was required for equivalent antileukemic activity. In addition, the in vitro exposure of a leukemic spleen mononuclear cell culture to 2-ME caused a dose- and time-dependent reduction in the number of leukemia cells after a single exposure to 1-100 microM concentrations, whereas the 2-ME metabolite, 2-methoxyacetic acid, was only half as effective. The two glycol alkyl ethers with demonstrable anti-leukemic activity, 2-ME and 2-EE, also exhibited a favorable efficacy-to-toxicity ratio and should be considered for

  13. Effect of ethylene glycol monomethyl ether and diethylene glycol monomethyl ether on hepatic metabolizing enzymes.

    Science.gov (United States)

    Kawamoto, T; Matsuno, K; Kayama, F; Hirai, M; Arashidani, K; Yoshikawa, M; Kodama, Y

    1990-06-01

    Glycol ethers have been extensively used in industry over the past 40-50 years. Numerous studies on the toxicity of glycol ethers have been performed, however, the effects of glycol ethers on the hepatic drug metabolizing enzymes are still unknown. We studied the changes of the putative metabolic enzymes, that is, the hepatic microsomal mixed function oxidase system and cytosolic alcohol dehydrogenase, by the oral administration of diEGME and EGME. Adult male Wistar rats were used. DiEGME was administered orally; 500, 1000, 2000 mg/kg for 1, 2, 5 or 20 days and EGME was 100, 300 mg/kg for 1, 2, 5 or 20 days. Decreases in liver weights were produced by highest doses of diEGME (2000 mg/kg body wt/day for 20 days) and EGME (300 mg/kg body wt/day for 20 days). DiEGME increased hepatic microsomal protein contents and induced cytochrome P-450, but not cytochrome b5 or NADPH-cytochrome c reductase. The activity of cytosolic ADH was not affected by diEGME administration. On the other hand, EGME did not change cytochrome P-450, cytochrome b5 or NADPH-cytochrome c reductase. The activity of cytosolic ADH was increased by repeated EGME treatment. Therefore it is suspected that the enzyme which takes part in the metabolism of diEGME is different from that of EGME, although diEGME is a structural homologue of EGME.

  14. Influence of H2O and H2S on the Composition, Activity, and Stability of Sulfided Mo, CoMo, and NiMo Supported on MgAl2O4 for Hydrodeoxygenation of Ethylene Glycol

    DEFF Research Database (Denmark)

    Dabros, Trine Marie Hartmann; Gaur, Abhijeet; Pintos, Delfina Garcia

    2018-01-01

    In this work, density functional theory (DFT), catalytic activity tests, and in-situ X-ray absorption spectroscopy (XAS) was performed to gain detailed insights into the activity and stability of MoS2, Ni-MoS2, and Co-MoS2 catalysts used for hydrodeoxygenation (HDO) of ethylene glycol upon...

  15. Thermomechanical properties of radiation hardened oligoesteracrylates

    International Nuclear Information System (INIS)

    Lomonosova, N.V.; Chikin, Yu.A.

    1984-01-01

    Thermomechanical properties of radiation hardened oligoesteracrylates are studied by the methods of isothermal heating and thermal mechanics. Films of dimethacrylate of ethylene glycol, triethylene glycol (TGM-3), tetraethylene glycol, tridecaethylene glycol and TGM-3 mixture with methyl methacrylate hardened by different doses (5-150 kGy) using Co 60 installation with a dose rate of 2x10 -3 kGy/s served as a subject of the research. During oligoesteracrylate hargening a space network is formed, chain sections between lattice points of which are in a stressed state. Maximum of deformation is observed at 210-220 deg C on thermomechanical curves of samples hardened by doses > 5 kGy, which form and intensity is dependent on an absorbed dose. Presence of a high-temperature maximum on diaqrams of isometric heating of spatially cross-linked oligoesteracrylates is discovered. High thermal stability of three-dimensional network of radiation hardened oligoesteracrylates provides satisfactory tensile properties (40% of initial strength) in sample testing an elevated temperatures (200-250 deg C)

  16. Salt-Induced Control of the Grafting Density in Poly(ethylene glycol) Brush Layers by a Grafting-to Approach

    DEFF Research Database (Denmark)

    Ortiz, Roberto; Olsen, Stefan; Thormann, Esben

    2018-01-01

    In this work, a method to obtain control of the grafting density during the formation of polymer brush layers by the grafting-to method of thiolated poly(ethylene glycol) onto gold is presented. The grafting density of the polymer chains was adjusted by adding Na2SO4 in concentrations between 0.......2 and 0.9 M to the aqueous polymer solution during the grafting process. The obtained grafting densities ranged from 0.26 to 1.60 chains nm-2, as determined by surface plasmon resonance. The kinetics of the grafting process were studied in situ by a quartz crystal microbalance with dissipation......, and a mushroom to brush conformational transition was observed when the polymer was grafted in the presence of Na2SO4. The transition from mushroom to brush was only observed for long periods of grafting, highlighting the importance of time to obtain high grafting densities. Finally, the prepared brush layer...

  17. Life test of DMFC using poly(ethylene glycol)bis(carboxymethyl)ether plasticized PVA/PAMPS proton-conducting semi-IPNs

    Energy Technology Data Exchange (ETDEWEB)

    Qiao, Jinli [National Institute of Advanced Industrial Science and Technology, Higashi 1-1-1, Central 5, Tsukuba, Ibaraki 305-8565 (Japan); New Energy Technology Research Center, Tongji University, Shanghai 201804 (China); Ikesaka, Shinya; Saito, Morihiro; Kuwano, Jun [Department of Industrial Chemistry, Faculty of Engineering, Tokyo University of Science, 12-1 Ichigayafunagawara-machi, Shinjuku-ku, Tokyo 162-0826 (Japan); Okada, Tatsuhiro [National Institute of Advanced Industrial Science and Technology, Higashi 1-1-1, Central 5, Tsukuba, Ibaraki 305-8565 (Japan)

    2007-08-15

    A novel, low-cost proton-conducting semi-IPN (semi-interpenetrating polymer network) has been successfully prepared from PVA/PAMPS (poly(vinyl alcohol) and poly(2-acrylamindo-2-methyl-1-propanesulfonic acid))blends by incorporating poly(ethylene glycol)bis(carboxymethyl)ether (PEGBCME) as a novel plasticizer. Although, the polymer is based on a relatively low content of PAMPS as a component of ion conducting sites, the resulting semi-IPN exhibited high proton conductivity (0.1 S cm{sup -1}) at 25 C, which afforded a higher power density of 51 mW cm{sup -2} at 80 C. A striking feature is that a long-term initial performance is achieved with a 130 h of stable fuel cell operation in DMFC mode due to effectively suppressed methanol crossover. This is a new record for a fully hydrocarbon membrane in DMFC, seeing that the PVA-PAMPS proton-conducting semi-IPNs are made simply of aliphatic skeletons. (author)

  18. Simulation of ethanol extractive distillation with mixed glycols as separating agent

    OpenAIRE

    Gil, I. D.; García, L. C.; Rodríguez, G.

    2014-01-01

    Extractive distillation is an alternative for ethanol dehydration processes that has been shown to be more effective than azeotropic distillation and, in close proximity, to be very competitive against the process that uses adsorption with molecular sieves. Glycols have been shown to be the most effective solvents in extractive distillation, mainly ethylene glycol and glycerol. In this work, an extractive distillation column was simulated with the Aspen Plus software platform, using the RadFr...

  19. Plotting of Ethylene Glycol Blood Concentrations Using Linear Regression before and during Hemodialysis in a Case of Intoxication and Pharmacokinetic Review.

    Science.gov (United States)

    Kim, Youngho

    2015-01-01

    Introduction. As blood concentration measurement of commonly abused alcohol is readily available, the equation was proposed in previous publication to predict the change of their concentration. The change of ethylene glycol (EG) concentrations was studied in a case of intoxication to estimate required time for hemodialysis (HD) using linear regression. Case Report. A 55-year-old female with past medical history of seizure disorder, bipolar disorder, and chronic pain was admitted due to severe agitation. The patient was noted to have metabolic acidosis with elevated anion gap and acute kidney injury, which prompted blood concentration measurement of commonly abused alcohol. Her initial EG concentration was 26.45 mmol/L. Fomepizole therapy was initiated, soon followed by HD to enhance clearance. Discussion. Plotting of natural logarithm of EG concentrations over time showed that EG elimination follows first-order kinetics and predicts the change of its concentration well. Pharmacokinetic review revealed minimal elimination of EG by alcohol dehydrogenase (ADH) which could be related to genetic predisposition for ADH activity and home medications as well as presence of propylene glycol. Pharmacokinetics of EG is relatively well studied with published parameters. Consideration and application of pharmacokinetics could assist in management of EG intoxication including HD planning.

  20. Drying and storage effects on poly(ethylene glycol) hydrogel mechanical properties and bioactivity.

    Science.gov (United States)

    Luong, P T; Browning, M B; Bixler, R S; Cosgriff-Hernandez, E

    2014-09-01

    Hydrogels based on poly(ethylene glycol) (PEG) are increasingly used in biomedical applications because of their ability to control cell-material interactions by tuning hydrogel physical and biological properties. Evaluation of stability after drying and storage are critical in creating an off-the-shelf biomaterial that functions in vivo according to original specifications. However, there has not been a study that systematically investigates the effects of different drying conditions on hydrogel compositional variables. In the first part of this study, PEG-diacrylate hydrogels underwent common processing procedures (vacuum-drying, lyophilizing, hydrating then vacuum-drying), and the effect of this processing on the mechanical properties and swelling ratios was measured. Significant changes in compressive modulus, tensile modulus, and swelling ratio only occurred for select processed hydrogels. No consistent trends were observed after processing for any of the formulations tested. The effect of storage conditions on cell adhesion and spreading on collagen- and streptococcal collagen-like protein (Scl2-2)-PEG-diacrylamide hydrogels was then evaluated to characterize bioactivity retention after storage. Dry storage conditions preserved bioactivity after 6 weeks of storage; whereas, storage in PBS significantly reduced bioactivity. This loss of bioactivity was attributed to ester hydrolysis of the protein linker, acrylate-PEG-N-hydroxysuccinimide. These studies demonstrate that these processing methods and dry storage conditions may be used to prepare bioactive PEG hydrogel scaffolds with recoverable functionality after storage. © 2013 Wiley Periodicals, Inc.

  1. Dynamic viscosity versus probe-reported microviscosity of aqueous mixtures of poly(ethylene glycol)

    International Nuclear Information System (INIS)

    Bhanot, Chhavi; Trivedi, Shruti; Gupta, Arti; Pandey, Shubha; Pandey, Siddharth

    2012-01-01

    Highlights: ► Aqueous polymer mixtures, non-toxic media of huge industrial importance, are investigated. ► Bulk viscosity of aqueous. PEG mixtures is shown to vary widely with composition and temperature. ► T-dependent viscosity follows Arrhenius behavior suggesting aqueous PEGs to be Newtonian fluids. ► Microviscosity sensed by a fluorescence ratiometric probe is estimated and correlated with viscosity. ► Microviscosity correlates well with bulk viscosity at higher PEG concentrations. - Abstract: Correlation between the dynamic viscosity (η) and the microviscosity of a hybrid green medium constituted of water and poly(ethylene glycol) (PEG) of average molar mass (200, 400, and 600) g · mol −1 , respectively, is explored over the temperatures range (10 to 90) °C across the complete composition regime. The microviscosity is obtained using a fluorescence probe 1,3-bis-(1-pyrenyl)propane (BPP), which is manifested through the ratio of the monomer-to-intramolecular excimer intensities (I M /I E ). Aqueous PEG mixtures are observed to behave similar to Newtonian fluids as the temperature dependence of dynamic viscosity follows Arrhenius-type behavior. Surprisingly, a simple and convenient linear dependence of ln η with wt% PEG of the mixture is established. The BPP I M /I E is observed, in general, to increase with the bulk dynamic viscosity of the mixture having >10 wt% PEG suggesting a good correlation between the bulk dynamic viscosity and BPP-reported microviscosity when the viscosity of the aqueous PEG mixture is relatively high.

  2. Design of a vascularized synthetic poly(ethylene glycol) macroencapsulation device for islet transplantation.

    Science.gov (United States)

    Weaver, Jessica D; Headen, Devon M; Hunckler, Michael D; Coronel, Maria M; Stabler, Cherie L; García, Andrés J

    2018-07-01

    The use of immunoisolating macrodevices in islet transplantation confers the benefit of safety and translatability by containing transplanted cells within a single retrievable device. To date, there has been limited development and characterization of synthetic poly(ethylene glycol) (PEG)-based hydrogel macrodevices for islet encapsulation and transplantation. Herein, we describe a two-component synthetic PEG hydrogel macrodevice system, designed for islet delivery to an extrahepatic islet transplant site, consisting of a hydrogel core cross-linked with a non-degradable PEG dithiol and a vasculogenic outer layer cross-linked with a proteolytically sensitive peptide to promote degradation and enhance localized vascularization. Synthetic PEG macrodevices exhibited equivalent passive molecular transport to traditional microencapsulation materials (e.g., alginate) and long-term stability in the presence of proteases in vitro and in vivo, out to 14 weeks in rats. Encapsulated islets demonstrated high viability within the device in vitro and the incorporation of RGD adhesive peptides within the islet encapsulating PEG hydrogel improved insulin responsiveness to a glucose challenge. In vivo, the implementation of a vasculogenic, degradable hydrogel layer at the outer interface of the macrodevice enhanced vascular density within the rat omentum transplant site, resulting in improved encapsulated islet viability in a syngeneic diabetic rat model. These results highlight the benefits of the facile PEG platform to provide controlled presentation of islet-supportive ligands, as well as degradable interfaces for the promotion of engraftment and overall graft efficacy. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. A pH and Redox Dual Responsive 4-Arm Poly(ethylene glycol-block-poly(disulfide histamine Copolymer for Non-Viral Gene Transfection in Vitro and in Vivo

    Directory of Open Access Journals (Sweden)

    Kangkang An

    2014-05-01

    Full Text Available A novel 4-arm poly(ethylene glycol-b-poly(disulfide histamine copolymer was synthesized by Michael addition reaction of poly(ethylene glycol (PEG vinyl sulfone and amine-capped poly(disulfide histamine oligomer, being denoted as 4-arm PEG-SSPHIS. This copolymer was able to condense DNA into nanoscale polyplexes (<200 nm in average diameter with almost neutral surface charge (+(5–10 mV. Besides, these polyplexes were colloidal stable within 4 h in HEPES buffer saline at pH 7.4 (physiological environment, but rapidly dissociated to liberate DNA in the presence of 10 mM glutathione (intracellular reducing environment. The polyplexes also revealed pH-responsive surface charges which markedly increased with reducing pH values from 7.4–6.3 (tumor microenvironment. In vitro transfection experiments showed that polyplexes of 4-arm PEG-SSPHIS were capable of exerting enhanced transfection efficacy in MCF-7 and HepG2 cancer cells under acidic conditions (pH 6.3–7.0. Moreover, intravenous administration of the polyplexes to nude mice bearing HepG2-tumor yielded high transgene expression largely in tumor rather other normal organs. Importantly, this copolymer and its polyplexes had low cytotoxicity against the cells in vitro and caused no death of the mice. The results of this study indicate that 4-arm PEG-SSPHIS has high potential as a dual responsive gene delivery vector for cancer gene therapy.

  4. Fluorinated polyimides grafted with poly(ethylene glycol) side chains by the RAFT-mediated process and their membranes

    International Nuclear Information System (INIS)

    Chen Yiwang; Chen Lie; Nie Huarong; Kang, E.T.; Vora, R.H.

    2005-01-01

    Graft polymerization of poly(ethylene glycol) methyl ether methacrylate (PEGMA) from fluorinated polyimide (FPI) was carried out by the reversible addition-fragmentation chain transfer (RAFT)-mediated process. The peroxides generated by the ozone treatment on FPI facilitated the thermally-initiated graft copolymerization from FPI backbone. The 'living' character of the graft chain growing was ascertained in the subsequent chain extension of PEGMA. Nuclear magnetic resonance (NMR) and molecular weight measurements were used to characterize the chemical composition and structure of the copolymers. Microfiltration (MF) membranes were fabricated from the FPI-g-PEGMA comb copolymers by phase inversion in aqueous media. Surface composition analysis of the membranes scanned by X-ray photoelectron spectroscopy (XPS) revealed a substantial surface enrichment of the hydrophilic components. The pore size distribution of the resulting membranes was found to be much more uniform than that of the corresponding membranes cast from FPI-g-PEGMA prepared by the conventional radical polymerization process in the absence of the chain transfer agent. The morphology of the membranes was characterized by scanning electron microscopy (SEM)

  5. HPLC analysis of potentially harmful substances released from dental filing aterials available on the EU market

    Directory of Open Access Journals (Sweden)

    Konrad Małkiewicz

    2014-03-01

    Full Text Available Introduction. Incomplete cross-linking of composite dental materials leads to their susceptibility to degradation in the environment of non-organic and organic solvents, contributing to the release of chemical compounds which are potentially harmful to living organisms. Objective. The aim of the study was an evaluation in in vitro conditions of releasing of potentially toxic substances from six dental composite materials available in EU countries. Materials and methods. The following compounds released from the samples stored in water were analyzed: bisphenol A (BPA, triethylene glycol-dimethacrylate (TEGDMA, urethane dimethacrylate (UDMA and ethylene glycol dimethacrylate (EDGMA. Analysis of the substances was performed with the use of high performance liquid chromatography, after the following incubation periods: 1 hour, 24 hours, 7 days and 30 days. Results. Among the analyzed substances, after 1 hour of incubation, the highest average concentration was found for TEGDMA – 2045 μg cm-3 (in Herculite XRV material, after 24 hours – for UDMA 4.402 μg cm-3 (in Gradia Direct Anterior material and after 7 and 30 days for TEGDMA: 8.112 and 6.458 μg•cm-3 respectively (in Charisma material. Conclusions. The examined composites used for reconstruction of hard tissues of teeth remain chemically unstable after polymerization, and release potentially harmful substances in conditions of the present study. The dynamics of the releasing of potentially harmful substances is correlated with the period of sample storage in water.

  6. Versatile Route to Synthesize Heterobifunctional Poly(ethylene glycol of Variable Functionality for Subsequent Pegylation

    Directory of Open Access Journals (Sweden)

    Redouan Mahou

    2012-02-01

    Full Text Available Pegylation using heterotelechelic poly(ethylene glycol (PEG offers many possibilities to create high-performance molecules and materials. A versatile route is proposed to synthesize heterobifunctional PEG containing diverse combinations of azide, amine, thioacetate, thiol, pyridyl disulfide, as well as activated hydroxyl end groups. Asymmetric activation of one hydroxyl end group enables the heterobifunctionalization while applying selective monotosylation of linear, symmetrical PEG as a key step. The azide function is introduced by reacting monotosyl PEG with sodium azide. A thiol end group is obtained by reaction with sodium hydrosulfide. The activation of the hydroxyl end group and subsequent reaction with potassium carbonate/thioacetic acid yields a thioacetate end group. The hydrolysis of the thioester end group by ammonia in presence of 2,2′-dipyridyl disulfide provides PEG pyridyl disulfide. Amine terminated PEG is prepared either by reduction of the azide or by nucleophilic substitution of mesylate terminated PEG using ammonia. In all cases, >95% functionalization of the PEG end groups is achieved. The PEG derivatives particularly support the development of materials for biomedical applications. For example, grafting up to 13% of the Na-alg monomer units with α-amine-ω-thiol PEG maintains the gelling capacity in presence of calcium ions but simultaneous, spontaneous disulfide bond formation reinforces the initial physical hydrogel.

  7. Removal combined with reduction of hexavalent chromium from aqueous solution by Fe-ethylene glycol complex microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yong-Xing [School of Physics and Electronic Information, Huaibei Normal University, Huaibei 235000 (China); Jia, Yong, E-mail: yjiaahedu@163.com [School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012 (China)

    2016-12-15

    Highlights: • Fe-EG complex microspheres were synthesized by a hydrothermal method. • The removal properties towards Cr(VI) ions were investigated. • The adsorption and reduction mechanism was revealed by FTIR and XPS. - Abstract: Three-dimensional Fe-ethylene glycol (Fe-EG) complex microspheres were synthesized by a facile hydrothermal method, and were characterized by field emission scanning electron microscopy and transmission electron microscopy. The adsorption as well as reduction properties of the obtained Fe-EG complex microspheres towards Cr(VI) ions were studied. The experiment data of adsorption kinetic and isotherm were fitted by nonlinear regression approach. In neutral condition, the maximum adsorption capacity was 49.78 mg g{sup −1} at room temperature, and was increased with the increasing of temperature. Thermodynamic parameters including the Gibbs free energy, standard enthalpy and standard entropy revealed that adsorption of Cr(VI) was a feasible, spontaneous and endothermic process. Spectroscopic analysis revealed the adsorption of Cr(VI) was a physical adsorption process. The adsorbed CrO{sub 4}{sup 2−} ions were partly reduced to Cr(OH){sub 3} by Fe(II) ions and the organic groups in the Fe-EG complex.

  8. Observation of a sequence of wetting transitions in the binary water+ethylene glycol monobutyl ether mixture

    Science.gov (United States)

    Wu, Chih-Kang; Chen, Li-Jen

    2005-08-01

    A homemade pendant drop/bubble tensiometer was assembled and applied to perform the surface-interfacial tension measurements for the binary water+ethylene glycol monobutyl ether (C4E1) mixture over the temperature range from 50to128°C at 10bar. The symbol CiEj is the abbreviation of a nonionic polyoxyethylene alcohol CiH2i+1(OCH2CH2)jOH. The wetting behavior of the C4E1-rich phase at the interface separating the gas and the aqueous phases was systematically examined according to the wetting coefficient calculated from the experimental results of surface/interfacial tensions. It was found that the C4E1-rich phase exhibits a sequence of wetting transitions, nonwetting→partial wetting→complete wetting, at the gas-water interface in the water+C4E1 system along with increasing the temperature, consistent with the conjecture of Kahlweit and Busse [J. Chem. Phys. 91, 1339 (1989)]. In addition, the relationship of the mutual solubility and the interfacial tension of the interface separating the C4E1-rich phase and the aqueous phase is discussed.

  9. Transparent Low Molecular Weight Poly(Ethylene Glycol Diacrylate-Based Hydrogels as Film Media for Photoswitchable Drugs

    Directory of Open Access Journals (Sweden)

    Théophile Pelras

    2017-11-01

    Full Text Available Hydrogels have shown a great potential as materials for drug delivery systems thanks to their usually excellent bio-compatibility and their ability to trap water-soluble organic molecules in a porous network. In this study, poly(ethylene glycol-based hydrogels containing a model dye were synthesized by ultraviolet (UV-A photopolymerization of low-molecular weight macro-monomers and the material properties (dye release ability, transparency, morphology, and polymerization kinetics were studied. Real-time infrared measurements revealed that the photopolymerization of the materials was strongly limited when the dye was added to the uncured formulation. Consequently, the procedure was adapted to allow for the formation of sufficiently cured gels that are able to capture and later on to release dye molecules in phosphate-buffered saline solution within a few hours. Due to the transparency of the materials in the 400–800 nm range, the hydrogels are suitable for the loading and excitation of photoactive molecules. These can be uptaken by and released from the polymer matrix. Therefore, such materials may find applications as cheap and tailored materials in photodynamic therapy (i.e., light-induced treatment of skin infections by bacteria, fungi, and viruses using photoactive drugs.

  10. Synthesis and Characterization of Soy-Based Polyurethane Foam with Utilization of Ethylene Glycol in Polyol

    Directory of Open Access Journals (Sweden)

    Flora Elvistia Firdaus

    2014-08-01

    Full Text Available The use of vegetable oils on replacing petroleum has attracted attention of many researchers. The chemical structure of vegetable oils are different from petrochemicals, so the structure of soybean oil has to be chemicallymodified through its unsaturated fatty acid chain in triglyceride. Atwo step process was conducted for the preparationof soy-polyol in designated temperatures; 50 °C, 60 °C, and 70 °C. Ethylene glycol (EG as co-reagent was taking part in soy-polyol synthesis, and the soy-polyol was used as a sole polyol for polyurethane synthesis. Referred to the previous study, the existence of EG in polyurethane synthesis can improved physical properties of polyurethane foam. The aim of this research is using soy-derived polyol for petro-polyol replacement aligned with drop-off of petro-derived reagent; EG. One step process was applied for the foam synthesis.The ingredients for foam synthesis; soy-polyol, Toluene diisocyanate (TDI: a mixture of 2.4 and 2.6 isomers in ratio of 80:20 (TDI T-80, surfactant, and distilled water. The synergize of stoichiometry ratio of co-reagent EG to soy-epoxide with best temperature, with the absence of EG in polyurethane formula can produce an ultimate property of polyurethane foam. 

  11. Biodegradable and biocompatible poly(ethylene glycol)-based hydrogel films for the regeneration of corneal endothelium.

    Science.gov (United States)

    Ozcelik, Berkay; Brown, Karl D; Blencowe, Anton; Ladewig, Katharina; Stevens, Geoffrey W; Scheerlinck, Jean-Pierre Y; Abberton, Keren; Daniell, Mark; Qiao, Greg G

    2014-09-01

    Corneal endothelial cells (CECs) are responsible for maintaining the transparency of the human cornea. Loss of CECs results in blindness, requiring corneal transplantation. In this study, fabrication of biocompatible and biodegradable poly(ethylene glycol) (PEG)-based hydrogel films (PHFs) for the regeneration and transplantation of CECs is described. The 50-μm thin hydrogel films have similar or greater tensile strengths to human corneal tissue. Light transmission studies reveal that the films are >98% optically transparent, while in vitro degradation studies demonstrate their biodegradation characteristics. Cell culture studies demonstrate the regeneration of sheep corneal endothelium on the PHFs. Although sheep CECs do not regenerate in vivo, these cells proliferate on the films with natural morphology and become 100% confluent within 7 d. Implantation of the PHFs into live sheep corneas demonstrates the robustness of the films for surgical purposes. Regular slit lamp examinations and histology of the cornea after 28 d following surgery reveal minimal inflammatory responses and no toxicity, indicating that the films are benign. The results of this study suggest that PHFs are excellent candidates as platforms for the regeneration and transplantation of CECs as a result of their favorable biocompatibility, degradability, mechanical, and optical properties. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Influence of ethylene glycol pretreatment on effectiveness of atmospheric pressure plasma treatment of polyethylene fibers

    International Nuclear Information System (INIS)

    Wen Ying; Li Ranxing; Cai Fang; Fu Kun; Peng Shujing; Jiang Qiuran; Yao Lan; Qiu Yiping

    2010-01-01

    For atmospheric pressure plasma treatments, the results of plasma treatments may be influenced by liquids adsorbed into the substrate. This paper studies the influence of ethylene glycol (EG) pretreatment on the effectiveness of atmospheric plasma jet (APPJ) treatment of ultrahigh molecular weight polyethylene (UHMWPE) fibers with 0.31% and 0.42% weight gain after soaked in EG/water solution with concentration of 0.15 and 0.3 mol/l for 24 h, respectively. Scanning electron microscopy (SEM) shows that the surface of fibers pretreated with EG/water solution does not have observable difference from that of the control group. The X-ray photoelectron spectroscopy (XPS) results show that the oxygen concentration on the surface of EG-pretreated fibers is increased less than the plasma directly treated fibers. The interfacial shear strength (IFSS) of plasma directly treated fibers to epoxy is increased almost 3 times compared with the control group while that of EG-pretreated fibers to epoxy does not change except for the fibers pretreated with lower EG concentration and longer plasma treatment time. EG pretreatment reduces the water contact angle of UHMWPE fibers. In conclusion, EG pretreatment can hamper the effect of plasma treatment of UHMWPE fibers and therefore longer plasma treatment duration is required for fibers pretreated with EG.

  13. Precipitation of calcium carbonate in aqueous solutions in presence of ethylene glycol and dodecane.

    Science.gov (United States)

    Natsi, Panagiota D.; Rokidi, Stamatia; Koutsoukos, Petros G.

    2015-04-01

    The formation of calcium carbonate (CaCO3) in aqueous supersaturated solutions has been intensively studied over the past decades, because of its significance for a number of processes of industrial and environmental interest. In the oil and gas production industry the deposition of calcium carbonate affects adversely the productivity of the wells. Calcium carbonate scale deposits formation causes serious problems in water desalination, CO2 sequestration in subsoil wells, in geothermal systems and in heat exchangers because of the low thermal coefficient of the salt. Amelioration of the operational conditions is possible only when the mechanisms underlying nucleation and crystal growth of calcium carbonate in the aqueous fluids is clarified. Given the fact that in oil production processes water miscible and immiscible hydrocarbons are present the changes of the dielectric constant of the fluid phase has serious impact in the kinetics of calcium carbonate precipitation, which remains largely unknown. The problem becomes even more complicated if polymorphism exhibited by calcium carbonate is also taken into consideration. In the present work, the stability of aqueous solutions supersaturated with respect to all calcium carbonate polymorphs and the subsequent kinetics of calcium carbonate precipitation were measured. The measurements included aqueous solutions and solutions in the presence of water miscible (ethylene glycol, MEG) and water immiscible organics (n-dodecane). All measurements were done at conditions of sustained supersaturation using the glass/ Ag/AgCl combination electrode as a probe of the precipitation and pH as the master variable for the addition of titrant solutions with appropriate concentration needed to maintenance the solution supersaturation. Initially, the metastable zone width was determined from measurements of the effect of the solution supersaturation on the induction time preceding the onset of precipitation at free-drift conditions. The

  14. Bimetallic ruthenium complexes bridged by divinylphenylene bearing oligo(ethylene glycol)methylether: synthesis, (spectro)electrochemistry and the lithium cation effect.

    Science.gov (United States)

    Tian, Li Yan; Liu, Yuan Mei; Tian, Guang-Xuan; Wu, Xiang Hua; Li, Zhen; Kou, Jun-Feng; Ou, Ya-Ping; Liu, Sheng Hua; Fu, Wen-Fu

    2014-03-14

    A series of 1,4-disubstituted ruthenium-vinyl complexes, (E,E)-[{(PMe3)3(CO)ClRu}2(μ-HC=CH-Ar-CH=CH)], in which the 1,4-diethenylphenylene bridge bears two oligo(ethylene glycol)methyl ether side chains at different positions (2,5- and 2,3-positions), were prepared. The respective products were characterized by elemental analyses and NMR spectroscopy. The structures of complexes 1b and 1e were established by X-ray crystallography. The electronic properties of the complexes were investigated by cyclic voltammetry, and IR and UV-vis/NIR spectroscopies. Electrochemical studies showed that the 2,5-substituents better stabilized the mixed-valence states; the electrochemical behavior was greatly affected by lithium cations, especially complex 1g with 2,3-substituents, which was further supported by IR and UV-vis/NIR spectra changes. Spectroelectrochemical studies showed that the redox chemistry was dominated by the non-innocent character of the bridging fragment.

  15. Unusual kinetics of poly(ethylene glycol) oxidation with cerium(IV) ions in sulfuric acid medium and implications for copolymer synthesis.

    Science.gov (United States)

    Szymański, Jan K; Temprano-Coleto, Fernando; Pérez-Mercader, Juan

    2015-03-14

    The cerium(IV)-alcohol couple in an acidic medium is an example of a redox system capable of initiating free radical polymerization. When the alcohol has a polymeric nature, the outcome of such a process is a block copolymer, a member of a class of compounds possessing many useful properties. The most common polymer with a terminal -OH group is poly(ethylene glycol) (PEG); however, the detailed mechanism of its reaction with cerium(IV) remains underexplored. In this paper, we report our findings for this reaction based on spectrophotometric measurements and kinetic modeling. We find that both the reaction order and the net rate constant for the oxidation process depend strongly on the nature of the acidic medium used. In order to account for the experimental observations, we postulate that protonation of PEG decreases its affinity for some of the cerium(IV)-sulfate complexes formed in the system.

  16. Ethylene glycol ethers induce apoptosis and disturb glucose metabolism in the rat brain.

    Science.gov (United States)

    Pomierny, Bartosz; Krzyżanowska, Weronika; Niedzielska, Ewa; Broniowska, Żaneta; Budziszewska, Bogusława

    2016-02-01

    Ethylene glycol ethers (EGEs) are compounds widely used in industry and household products, but their potential, adverse effect on brain is poorly understood, so far. The aim of the present study was to determine whether 4-week administration of 2-buthoxyethanol (BE), 2-phenoxyethanol (PHE), and 2-ethoxyethanol (EE) induces apoptotic process in the rat hippocampus and frontal cortex, and whether their adverse effect on the brain cells can result from disturbances in the glucose metabolism. Experiments were conducted on 40 rats, exposed to BE, PHE, EE, saline or sunflower oil for 4 weeks. Markers of apoptosis and glucose metabolism were determined in frontal cortex and hippocampus by western blot, ELISA, and fluorescent-based assays. BE and PHE, but not EE, increased expression of the active form of caspase-3 in the examined brain regions. BE and PHE increased caspase-9 level in the cortex and PHE also in the hippocampus. BE and PHE increased the level of pro-apoptotic proteins (Bax, Bak) and/or reduced the concentration of anti-apoptotic proteins (Bcl-2, Bcl-xL); whereas, the effect of BE was observed mainly in the cortex and that of PHE in the hippocampus. It has also been found that PHE increased brain glucose level, and both BE and PHE elevated pyruvate and lactate concentration. It can be concluded that chronic treatment with BE and PHE induced mitochondrial pathway of apoptosis, and disturbed glucose metabolism in the rat brain. Copyright © 2015 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  17. Biodegradable and thermosensitive monomethoxy poly(ethylene glycol)-poly(lactic acid) hydrogel as a barrier for prevention of post-operative abdominal adhesion.

    Science.gov (United States)

    Fu, Shao Zhi; Li, Zhi; Fan, Jun Ming; Meng, Xiao Hang; Shi, Kun; Qu, Ying; Yang, Ling Lin; Wu, Jing Bo; Fan, Juan; Luot, Feng; Qian, Zhi Yong

    2014-03-01

    Post-operative peritoneal adhesions are serious consequences of abdominal or pelvic surgery and cause severe bowel obstruction, chronic pelvic pain and infertility. In this study, a novel nano-hydrogel system based on a monomethoxy poly(ethylene glycol)-poly(lactic acid) (MPEG-PLA) di-block copolymer was studied for its ability to prevent abdominal adhesion in rats. The MPEG-PLA hydrogel at a concentration of 40% (w/v) was injected and was able to adhere to defect sites at body temperature. The ability of the hydrogel to inhibit adhesion of post-operative tissues was evaluated by utilizing a rat model of abdominal sidewall-cecum abrasion. It was possible to heal wounded tissue through regeneration of neo-peritoneal tissues ten days after surgery. Our data showed that this hydrogel system is equally as effective as current commercialized anti-adhesive products.

  18. Poly (Ethylene Glycol-Block-Brush Poly (L-Lysine Copolymer as an Efficient Nanocarrier for Human Hepatocyte Growth Factor with Enhanced Bioavailability and Anti-Ischemia Reperfusion Injury Efficacy

    Directory of Open Access Journals (Sweden)

    Fei Tong

    2017-08-01

    Full Text Available Background/Aims: The aim of this study was to assess the effect of human hepatocyte growth factor (hHGF-loaded poly (ethylene glycol-b-brush poly (l-lysine (PEG-b-P(ELG-g-PLL copolymer on ischemia/reperfusion (I/R injury to different organs. Methods: The isoelectric point (pI of hHGF is 5.5, and hHGF combined with PEG-b-P(ELG-g-PLL copolymer via electrostatic interactions at pH 7.4. The synthesized PEG-b-P(ELG-g-PLL copolymer was analyzed using 1H nuclear magnetic resonance (1H NMR and gel permeation chromatography (GPC. The hHGF/PEG-b-P(ELG-g-PLL complex was evaluated using a nanoparticle size instrument and transmission electron microscopy (TEM. In addition, vivo performance of hHGF/PEG-b-P(ELG-g-PLL complex was evaluated using plasma hHGF concentration and different organs ischemia reperfusion injury in rats. Results: An in vitro investigation showed that PEG-b-P(ELG-g-PLL could serve as a potential hHGF nanocarrier with efficient encapsulation and sustained release. An additional in vivo investigation revealed that the hHGF/PEG-b-P(ELG-g-PLL complex could prolong increases in plasma hHGF concentration and protect different organs (the brain, heart and kidney against I/R injury. Conclusion: Poly (ethylene glycol-block-brush poly (l-lysine copolymer as an efficient nanocarrier for human hepatocyte growth factor with enhanced bioavailability and anti-ischemia reperfusion injury efficacy.

  19. Effect of Copper Nanoparticles Dispersion on Catalytic Performance of Cu/SiO2 Catalyst for Hydrogenation of Dimethyl Oxalate to Ethylene Glycol

    Directory of Open Access Journals (Sweden)

    Yajing Zhang

    2013-01-01

    Full Text Available Cu/SiO2 catalysts, for the synthesis of ethylene glycol (EG from hydrogenation of dimethyl oxalate (DMO, were prepared by ammonia-evaporation and sol-gel methods, respectively. The structure, size of copper nanoparticles, copper dispersion, and the surface chemical states were investigated by X-ray diffraction (XRD, transmission electron microscopy (TEM, temperature-programmed reduction (TPR, and X-ray photoelectron spectroscopy (XPS and N2 adsorption. It is found the structures and catalytic performances of the catalysts were highly affected by the preparation method. The catalyst prepared by sol-gel method had smaller average size of copper nanoparticles (about 3-4 nm, better copper dispersion, higher Cu+/C0 ratio and larger BET surface area, and higher DMO conversion and EG selectivity under the optimized reaction conditions.

  20. Investigation on some thermophysical properties of poly(ethylene glycol) binary mixtures at different temperatures

    International Nuclear Information System (INIS)

    Moosavi, Mehrdad; Motahari, Ahmad; Omrani, Abdollah; Rostami, Abbas Ali

    2013-01-01

    Highlights: ► Measuring densities and viscosities for binary mixtures of PEG + water or alcohols. ► Finding excess molar volume, refractive index and coefficient of thermal expansion. ► Estimating binary coefficients using Redlich–Kister polynomial equation. ► Deducing excess Gibbs free energy of activation and other activation parameters. ► Correlation of viscosity data with Grunberg–Nissan and Tamura–Kurata equations. -- Abstract: Densities ρ and viscosities η for the binary mixtures of poly(ethylene glycol) + water, + 1,2-ethanediol, + 1,3-propanediol, + 1,4-butanediol over the entire concentration range were determined at temperatures (298.15 to 308.15) K with 5 K interval. The experimental data were used to calculate the excess molar volume V m E , coefficient of thermal expansion α, excess coefficient of thermal expansion α E , excess Gibbs free energy of activation ΔG ∗E , and other activation parameters (i.e., ΔG ∗ ,ΔH ∗ ,ΔS ∗ ). The values of excess properties were fitted to Redlich–Kister polynomial equation to estimate the binary coefficients. The excess refractive index n E and electronic polarizability α e of PEG + water binary mixtures were also determined from the experimental values of refractive indices. The viscosity data were correlated with Grunberg–Nissan and Tamura–Kurata equations. Moreover, the Prigogine–Flory–Patterson theory has been used to correlate the excess molar volumes of the studied mixtures

  1. Cartilage-like mechanical properties of poly (ethylene glycol)-diacrylate hydrogels.

    Science.gov (United States)

    Nguyen, Quynhhoa T; Hwang, Yongsung; Chen, Albert C; Varghese, Shyni; Sah, Robert L

    2012-10-01

    Hydrogels prepared from poly-(ethylene glycol) (PEG) have been used in a variety of studies of cartilage tissue engineering. Such hydrogels may also be useful as a tunable mechanical material for cartilage repair. Previous studies have characterized the chemical and mechanical properties of PEG-based hydrogels, as modulated by precursor molecular weight and concentration. Cartilage mechanical properties vary substantially, with maturation, with depth from the articular surface, in health and disease, and in compression and tension. We hypothesized that PEG hydrogels could mimic a broad range of the compressive and tensile mechanical properties of articular cartilage. The objective of this study was to characterize the mechanical properties of PEG hydrogels over a broad range and with reference to articular cartilage. In particular, we assessed the effects of PEG precursor molecular weight (508 Da, 3.4 kDa, 6 kDa, and 10 kDa) and concentration (10-40%) on swelling property, equilibrium confined compressive modulus (H(A0)), compressive dynamic stiffness, and hydraulic permeability (k(p0)) of PEG hydrogels in static/dynamic confined compression tests, and equilibrium tensile modulus (E(ten)) in tension tests. As molecular weight of PEG decreased and concentration increased, hydrogels exhibited a decrease in swelling ratio (31.5-2.2), an increase in H(A0) (0.01-2.46 MPa) and E(ten) (0.02-3.5 MPa), an increase in dynamic compressive stiffness (0.055-42.9 MPa), and a decrease in k(p0) (1.2 × 10(-15) to 8.5 × 10(-15) m(2)/(Pa s)). The frequency-dependence of dynamic compressive stiffness amplitude and phase, as well as the strain-dependence of permeability, were typical of the time- and strain-dependent mechanical behavior of articular cartilage. H(A0) and E(ten) were positively correlated with the final PEG concentration, accounting for swelling. These results indicate that PEG hydrogels can be prepared to mimic many of the static and dynamic mechanical

  2. Engineering Poly(ethylene glycol) Materials to Promote Cardiogenesis

    Science.gov (United States)

    Smith, Amanda Walker

    Heart failure is one of the leading causes of death worldwide, and the current costs of treatment put a significant economic burden on our societies. After an infarction, fibrotic tissue begins to form as part of the heart failure cascade. Current options to slow this process include a wide range of pharmaceutical agents, and ultimately the patient may require a heart transplant. Innovative treatment approaches are needed to bring down costs and improve quality of life. The possibility of regenerating or replacing damaged tissue with healthy cardiomyocytes is generating considerable excitement, but there are still many obstacles to overcome. First, while cell injections into the myocardium have demonstrated slight improvements in cardiac function, the actual engraftment of transplanted cells is very low. It is anticipated that improving engraftment will boost outcomes. Second, cellular differentiation and reprogramming protocols have not yet produced cells that are identical to adult cardiomyocytes, and immunogenicity continues to be a problem despite the advent of autologously derived induced pluripotent stem cells. This dissertation will explore biomaterials approaches to addressing these two obstacles. Tissue engineering scaffolds may improve cell engraftment by providing bioactive factors, preventing cell anoikis, and reducing cell washout by blood flow. Poly(ethylene glycol) (PEG) is often used as a coating to reduce implant rejection because it is highly resistant to protein adsorption. Because fibrosis of a material in contact with the myocardium could cause arrhythmias, PEG materials are highly relevant for cardiac tissue engineering applications. In Chapter 2, we describe a novel method for crosslinking PEG microspheres around cells to form a scaffold for tissue engineering. We then demonstrate that HL-1 cardiomyocyte viability and phenotype are retained throughout the fabrication process and during the first 7 weeks of culture. In the third chapter of the

  3. Investigation of Localized Delivery of Diclofenac Sodium from Poly(D,L-Lactic Acid-co-Glycolic Acid)/Poly(Ethylene Glycol) Scaffolds Using an In Vitro Osteoblast Inflammation Model

    Science.gov (United States)

    Sidney, Laura E.; Heathman, Thomas R.J.; Britchford, Emily R.; Abed, Arif; Rahman, Cheryl V.

    2015-01-01

    Nonunion fractures and large bone defects are significant targets for osteochondral tissue engineering strategies. A major hurdle in the use of these therapies is the foreign body response of the host. Herein, we report the development of a bone tissue engineering scaffold with the ability to release anti-inflammatory drugs, in the hope of evading this response. Porous, sintered scaffolds composed of poly(D,L-lactic acid-co-glycolic acid) (PLGA) and poly(ethylene glycol) (PEG) were prepared with and without the anti-inflammatory drug diclofenac sodium. Analysis of drug release over time demonstrated a profile suitable for the treatment of acute inflammation with ∼80% of drug released over the first 4 days and a subsequent release of around 0.2% per day. Effect of drug release was monitored using an in vitro osteoblast inflammation model, comprised of mouse primary calvarial osteoblasts stimulated with proinflammatory cytokines interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), and interferon-γ (IFN-γ). Levels of inflammation were monitored by cell viability and cellular production of nitric oxide (NO) and prostaglandin E2 (PGE2). The osteoblast inflammation model revealed that proinflammatory cytokine addition to the medium reduced cell viability to 33%, but the release of diclofenac sodium from scaffolds inhibited this effect with a final cell viability of ∼70%. However, releasing diclofenac sodium at high concentrations had a toxic effect on the cells. Proinflammatory cytokine addition led to increased NO and PGE2 production; diclofenac-sodium-releasing scaffolds inhibited NO release by ∼64% and PGE2 production by ∼52%, when the scaffold was loaded with the optimal concentration of drug. These observations demonstrate the potential use of PLGA/PEG scaffolds for localized delivery of anti-inflammatory drugs in bone tissue engineering applications. PMID:25104438

  4. Ultra-high mechanical properties of porous composites based on regenerated cellulose and cross-linked poly(ethylene glycol).

    Science.gov (United States)

    Teng, Jian; Yang, Biao; Zhang, Liang-Qing; Lin, Sheng-Qiang; Xu, Ling; Zhong, Gan-Ji; Tang, Jian-Hua; Li, Zhong-Ming

    2018-01-01

    The ultra-high mechanical, biocompatible and biodegradable porous regenerated cellulose/poly(ethylene glycol) (RC/PEG) composites with double network structure were fabricated via an simple method to dissolve cellulose followed by UV irradiation. The porous structure of RC/PEG was sensitively altered by PEG contents, which led to the porous structure morphology transition from 3D fibrillar network to close-grained sheet-like-network with the loading of cross-linked PEG. The porous RC/PEG showed excellent mechanical properties, i.e., the compressive strength can reach 33 times higher than that of neat RC (0.07MPa) at the compressive strain of 30%. Porous RC/PEG also displayed outstanding properties with openly porous structure and structural stabilization. Besides, porous RC/PEG exhibited good water absorbency, which the water absorbency ratio at equilibrium state was 83% higher than that of porous RC. This work provides an environmentally friendly and simple pathway to prepare non-toxic and biocompatible porous regenerated cellulose-based composites with high strength, structural stabilization and good water absorbency, which could be useful for packaging, biomedical applications, sewage purification, etc. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Multiscale approach for the construction of equilibrated all-atom models of a poly(ethylene glycol)-based hydrogel

    Science.gov (United States)

    Li, Xianfeng; Murthy, N. Sanjeeva; Becker, Matthew L.; Latour, Robert A.

    2016-01-01

    A multiscale modeling approach is presented for the efficient construction of an equilibrated all-atom model of a cross-linked poly(ethylene glycol) (PEG)-based hydrogel using the all-atom polymer consistent force field (PCFF). The final equilibrated all-atom model was built with a systematic simulation toolset consisting of three consecutive parts: (1) building a global cross-linked PEG-chain network at experimentally determined cross-link density using an on-lattice Monte Carlo method based on the bond fluctuation model, (2) recovering the local molecular structure of the network by transitioning from the lattice model to an off-lattice coarse-grained (CG) model parameterized from PCFF, followed by equilibration using high performance molecular dynamics methods, and (3) recovering the atomistic structure of the network by reverse mapping from the equilibrated CG structure, hydrating the structure with explicitly represented water, followed by final equilibration using PCFF parameterization. The developed three-stage modeling approach has application to a wide range of other complex macromolecular hydrogel systems, including the integration of peptide, protein, and/or drug molecules as side-chains within the hydrogel network for the incorporation of bioactivity for tissue engineering, regenerative medicine, and drug delivery applications. PMID:27013229

  6. Surface chemistry and size influence the release of model therapeutic nanoparticles from poly(ethylene glycol) hydrogels

    International Nuclear Information System (INIS)

    Hume, Stephanie L.; Jeerage, Kavita M.

    2013-01-01

    Nanoparticles have emerged as promising therapeutic and diagnostic tools, due to their unique physicochemical properties. The specific core and surface chemistries, as well as nanoparticle size, play critical roles in particle transport and interaction with biological tissue. Localized delivery of therapeutics from hydrogels is well established, but these systems generally release molecules with hydrodynamic radii less than ∼5 nm. Here, model nanoparticles with biologically relevant surface chemistries and diameters between 10 and 35 nm are analyzed for their release from well-characterized hydrogels. Functionalized gold nanoparticles or quantum dots were encapsulated in three-dimensional poly(ethylene glycol) hydrogels with varying mesh size. Nanoparticle size, surface chemistry, and hydrogel mesh size all influenced the release of particles from the hydrogel matrix. Size influenced nanoparticle release as expected, with larger particles releasing at a slower rate. However, citrate-stabilized gold nanoparticles were not released from hydrogels. Negatively charged carboxyl or positively charged amine-functionalized quantum dots were released from hydrogels at slower rates than neutrally charged PEGylated nanoparticles of similar size. Transmission electron microscopy images of gold nanoparticles embedded within hydrogel sections demonstrated uniform particle distribution and negligible aggregation, independent of surface chemistry. The nanoparticle-hydrogel interactions observed in this work will aid in the development of localized nanoparticle delivery systems.

  7. Effect of the Copaifera langsdorffii Desf. Leaf Extract on the Ethylene Glycol-Induced Nephrolithiasis in Rats

    Directory of Open Access Journals (Sweden)

    Rejane Barbosa de Oliveira

    2013-01-01

    Full Text Available The potential of the Copaifera langsdorffii leaves extract to prevent stone formation was analyzed by means of an ethylene glycol (EG animal model of nephrolithiasis and an in vitro crystallization assay. Different doses of the C. langsdorffii leaves extract were administered to rats treated with EG. Urine biochemical parameters were quantified. CaOx deposits count and analysis of osteopontin expression were conducted on kidneys fixed in formalin. The in vitro assay was performed by turbidimetry. Phytochemical analyses of the extract were accomplished by HPLC-UV-DAD, and several compounds were isolated. C. langsdorffii leaf extract was able to avoid stone formation. The number of deposits was 50.30±31.29 at the higher extract dose, compared to the value of 179.5±45.96 achieved with the EG control. Significantly lower oxalate levels and OPN expression and increased citrate levels were observed after extract administration. In the in vitro assay, the extract diluted the formed crystals. Phytochemical analyses showed that the extract is rich in phenolic compounds that are capable of preventing stone formation. Thus, on the basis of our results, we suggest that the C. langsdorffii leaf extract has potential application in the prevention of kidney stone formation.

  8. Volumetric and viscometric study of aqueous binary mixtures of some glycol ethers at T = (275.15 and 283.15) K

    International Nuclear Information System (INIS)

    Dhondge, Sudhakar S.; Pandhurnekar, Chandrashekhar P.; Sheikh, Shaziya; Deshmukh, Dinesh W.

    2011-01-01

    Graphical abstract: Highlights: → Study of aqueous solutions of glycol ethers at low temperatures is presented. → Glycol ethers are industrially important liquids. → Reduction in the volume was observed upon addition of all glycol ethers to water. → Glycol ethers act as structure makers in aqueous medium. - Abstract: The experimental data for the density (ρ) and viscosity (η) are reported for aqueous binary mixtures of different glycol ethers, namely ethylene glycol monomethyl ether (EGMME), ethylene glycol monoethyl ether (EGMEE), diethylene glycol monomethyl ether (DEGMME), and diethylene glycol monoethyl ether (DEGMEE), at different temperatures (T = 275.15 K and 283.15 K) within the concentration range 0 mol . kg -1 to 0.1 mol . kg -1 . The values of density (ρ) and viscosity (η) of the solutions were used to compute different derived parameters, such as apparent molar volume (φ V ) of the solute, excess molar volume (V E ) of the solution, viscosity B and D coefficients of solution and temperature coefficient of viscosity B-coefficient (dB/dT) of solution. The limiting apparent molar volume of the solutes (φ V 0 ) have been obtained for aqueous binary mixtures of these glycol ethers by smooth extrapolation of φ V -m curves to zero concentration. By using the values of φ V 0 , the limiting excess partial molar volumes (V-bar 2 0E ) have also been calculated. The results are interpreted in term of various interactions such as solute-solvent interactions and hydrogen bonding.

  9. The ethylene glycol template assisted hydrothermal synthesis of Co{sub 3}O{sub 4} nanowires; structural characterization and their application as glucose non-enzymatic sensor

    Energy Technology Data Exchange (ETDEWEB)

    Khun, K., E-mail: kimleang.khun@liu.se [Department of Science and Technology, Linköping University, SE-60174 Norrköping (Sweden); Ibupoto, Z.H. [Dr M.A. Kazi Institute of Chemistry, University of Sindh Jamshoro, Sindh Jamshoro (Pakistan); Liu, X. [Department of Physics, Chemistry and Biology, Linköping University, 58183 Linköping (Sweden); Beni, V. [Biosensors and Biolelectronics Centre, Department of Physics, Chemistry and Biology, Linköping University, 58183 Linköping (Sweden); Willander, M. [Department of Science and Technology, Linköping University, SE-60174 Norrköping (Sweden)

    2015-04-15

    Highlights: • Ethylene glycol assisted Co{sub 3}O{sub 4} nanowires were synthesized by hydrothermal method. • The grown Co{sub 3}O{sub 4} nanowires were used for sensitive non-enzymatic glucose sensor. • The proposed glucose sensor shows a wide linear range with fast response. • The Co{sub 3}O{sub 4} modified electrode is a highly specific enzyme-less glucose sensor. - Abstract: In the work reported herein the ethylene glycol template assisted hydrothermal synthesis, onto Au substrate, of thin and highly dense cobalt oxide (Co{sub 3}O{sub 4}) nanowires and their characterization and their application for non-enzymatic glucose sensing are reported. The structure and composition of Co{sub 3}O{sub 4} nanowires have been fully characterized using scanning electron microscopy, X-ray diffraction, high resolution transmission electron microscopy and X-ray photoelectron spectroscopy. The synthesized Co{sub 3}O{sub 4} nanowires resulted to have high purity and showed diameter of approximately 10 nm. The prepared Co{sub 3}O{sub 4} nanowires coated gold electrodes were applied to the non-enzymatic detection of glucose. The developed sensor showed high sensitivity (4.58 × 10{sup 1} μA mM{sup −1} cm{sup −2}), a wide linear range of concentration (1.00 × 10{sup −4}–1.2 × 10{sup 1} mM) and a detection limit of 2.65 × 10{sup −5} mM. The developed glucose sensor has also shown to be very stable and selective over interferents such as uric acid and ascorbic acid. Furthermore, the proposed fabrication process was shown to be highly reproducible response (over nine electrodes)

  10. Silver micro- and nano-particles obtained using different glycols as reducing agents and measurement of their conductivity

    Directory of Open Access Journals (Sweden)

    Moudir Naïma

    2016-01-01

    Full Text Available Synthesis of silver micro- and nano-particles for the preparation of conductive pastes for the metallization of solar cells was realized by chemical reduction in the presence and absence of poly(vinyl-pyrrolidone (PVP. Silver nitrate was used as a precursor in the presence of three polyols (ethylene glycol, di-ethylene glycol and propylene glycol tested at experimental temperatures near their boiling points. Six samples were obtained by this protocol. Three silver powders obtained without the use of PVP have a metallic luster appearance; however, the samples produced using an excess of PVP are in the form of stable colloidal dispersions of silver nano-particles. Structural characterizations of samples using a scanning electron microscope and X-ray diffractometer show a good crystallinity and spherical morphology. From DSC and TGA analyses, it was noticed that all the nano-silvers present in the colloidal suspension have the same thermal behavior.

  11. Tetraethylene glycol thermooxidation and the influence of certain compounds relevant to conserved archaeological wood

    DEFF Research Database (Denmark)

    Mortensen, Martin Nordvig; Egsgaard, Helge; Hvilsted, Søren

    2012-01-01

    The degradation of tetraethylene glycol (TEG) was studied at 70 °C under dry air and nitrogen. Degradation products were detected using gas chromatography-mass spectrometry (GC–MS). They were mono-, di- and tri-ethylene glycol, mono- and di-formates of mono-, di-, tri- and tetra-ethylene glycol...... and formic acid. The rate of TEG degradation was significantly decreased by approximately 10 mmol/l KI, FeCl3, Cu(CH3COO)2, MnO2 and CuSO4, small amounts of fresh oak wood sawdust and gypsum-containing scrapings from the wood surface of the Vasa ship in Stockholm. Thus certain salts and natural components...... of archaeological wood are able to inhibit oxidative degradation of TEG. NaFe3(SO4)2(OH)6 (Natrojarosite), FeS2 (pyrite), FeSO4, Fe2(SO4)3, NiCl2, NiSO4, Fe, Cu, Fe2O3, CuO, NaHSO4 and natrojarosite-containing scrapings from the Vasa had no major effect on the rate of oxidation....

  12. Synthesis and characterization of injectable, thermosensitive, and biocompatible acellular bone matrix/poly(ethylene glycol)-poly (ε-caprolactone)-poly(ethylene glycol) hydrogel composite.

    Science.gov (United States)

    Ni, Pei-Yan; Fan, Min; Qian, Zhi-Yong; Luo, Jing-Cong; Gong, Chang-Yang; Fu, Shao-Zhi; Shi, Shuai; Luo, Feng; Yang, Zhi-Ming

    2012-01-01

    In orthopedic tissue engineering, the extensively applied acellular bone matrix (ABM) can seldom be prefabricated just right to mold the cavity of the diverse defects, might induce severe inflammation on account of the migration of small granules and usually bring the patients great pain in the treatment. In this study, a new injectable thermosensitive ABM/PECE composite with good biocompatibility was designed and prepared by adding the ABM granules into the triblock copolymer poly(ethylene eglycol)-poly(ε-caprolactone)-poly(ethylene eglycol) (PEG-PCL-PEG, PECE). The PECE was synthesized by ring-opening copolymerization and characterized by ¹H NMR. The ABM was prepared by acellular treatment of natural bone and ground to fine granules. The obtained ABM/PECE composite showed the most important absorption bands of ABM and PECE copolymer in FT-IR spectroscopy and underwent sol-gel phage transition from solution to nonflowing hydrogel at 37°C. SEM results indicated that the ABM/PECE composite with different ABM contents all presented similar porous 3D structure. ABM/PECE composite presented mild cytotoxicity to rat MSCs in vitro and good biocompatibility in the BALB/c mice subcutis up to 4 weeks. In conclusion, all the results confirmed that the injectable thermosensitive ABM/PECE composite was a promising candidate for orthopedic tissue engineering in a minimally-invasive way. Copyright © 2011 Wiley Periodicals, Inc.

  13. Fermentative degradation of polyethylene glycol by a strictly anaerobic, gram-negative, nonsporeforming bacterium, Pelobacter venetianus sp. nov.

    Science.gov (United States)

    Schink, B; Stieb, M

    1983-06-01

    The synthetic polyether polyethylene glycol (PEG) with a molecular weight of 20,000 was anaerobically degraded in enrichment cultures inoculated with mud of limnic and marine origins. Three strains (Gra PEG 1, Gra PEG 2, and Ko PEG 2) of rod-shaped, gram-negative, nonsporeforming, strictly anaerobic bacteria were isolated in mineral medium with PEG as the sole source of carbon and energy. All strains degraded dimers, oligomers, and polymers of PEG up to a molecular weight of 20,000 completely by fermentation to nearly equal amounts of acetate and ethanol. The monomer ethylene glycol was not degraded. An ethylene glycol-fermenting anaerobe (strain Gra EG 12) isolated from the same enrichments was identified as Acetobacterium woodii. The PEG-fermenting strains did not excrete extracellular depolymerizing enzymes and were inhibited by ethylene glycol, probably owing to a blocking of the cellular uptake system. PEG, some PEG-containing nonionic detergents, 1,2-propanediol, 1,2-butanediol, glycerol, and acetoin were the only growth substrates utilized of a broad variety of sugars, organic acids, and alcohols. The isolates did not reduce sulfate, sulfur, thiosulfate, or nitrate and were independent of growth factors. In coculture with A. woodii or Methanospirillum hungatei, PEGs and ethanol were completely fermented to acetate (and methane). A marine isolate is described as the type strain of a new species, Pelobacter venetianus sp. nov. Its physiology and ecological significance, as well as the importance and possible mechanism of anaerobic polyether degradation, are discussed.

  14. Poly(mono/diethylene glycol n-tetradecyl ether vinyl ethers with Various Molecular Weights as Phase Change Materials

    Directory of Open Access Journals (Sweden)

    Dongfang Pei

    2018-02-01

    Full Text Available At present, research on the relationship of comb-like polymer phase change material structures and their heat storage performance is scarce. Therefore, this relationship from both micro and macro perspectives will be studied in this paper. In order to achieve a high phase change enthalpy, ethylene glycol segments were introduced between the vinyl and the alkyl side chains. A series of poly(mono/diethylene glycol n-tetradecyl ether vinyl ethers (PC14EnVEs (n = 1, 2 with various molecular weights were polymerized by living cationic polymerization. The results of PC14E1VE and PC14E2VE showed that the minimum number of carbon atoms required for side-chain crystallization were 7.7 and 7.2, which were lower than that reported in the literature. The phase change enthalpy 89 J/g (for poly(mono ethylene glycol n-tetradecyl ether vinyl ethers and 86 J/g (for poly(hexadecyl acrylate were approximately equal. With the increase of molecular weight, the melting temperature, the melting enthalpy, and the initial thermal decomposition temperature of PC14E1VE changed from 27.0 to 28.0 °C, from 95 to 89 J/g, and from 264 to 287 °C, respectively. When the number average molar mass of PC14EnVEs exceeded 20,000, the enthalpy values remained basically unchanged. The introduction of the ethylene glycol chain was conducive to the crystallization of alkyl side chains.

  15. [Contact dermatitis caused by acrylates among 8 workers in an elevator factory].

    Science.gov (United States)

    Pérez-Formoso, J L; de Anca-Fernández, J; Maraví-Cecilia, R; Díaz-Torres, J M

    2010-05-01

    Acrylates are widely used low-molecular-weight substances, initially introduced in industry in the 1930s and subsequently applied also in medicine and the home. One of their main features is the ability to undergo polymerization. The most commonly used acrylic compounds are cyanoacrylates, methacrylates, and acrylates. To confirm suspicion of occupational disease in a group of workers in an elevator factory. We studied 8 patients with dermatitis of the hands and finger pads. In their work, the patients came into contact with acrylates. Patch testing was applied with an acrylate panel (BIAL-Aristegui, Bilbao, Spain). Seven of the patients (87. 5%) had a positive result with 1% ethylene glycol dimethacrylate. Positive were also observed for 2% hydroxyethyl methacrylate (5 patients, 62. 5%), 1% triethylene glycol dimethacrylate (4 patients, 50%), 10% ethyl methacrylate monomer (3 patients, 37. 5%), 10% methyl methacrylate monomer (2 patients, 25%), 1% ethyl acrylate (1 patient, 12. 5%), and 0. 1% acrylic acid (1 patient, 12. 5%). We highlight the strong sensitizing capacity of acrylates and the importance of taking all necessary preventive measures in industries where these substances are used. Such measures should include avoidance of contact with the product in cases where sensitization has been confirmed.

  16. How the dispersion of magnesium oxide nanoparticles effects on the viscosity of water-ethylene glycol mixture: Experimental evaluation and correlation development

    Science.gov (United States)

    Afrand, Masoud; Abedini, Ehsan; Teimouri, Hamid

    2017-03-01

    In this paper, the effect of dispersion of magnesium oxide nanoparticles on viscosity of a mixture of water and ethylene glycol (50-50% vol.) was examined experimentally. Experiments were performed for various nanofluid samples at different temperatures and shear rates. Measurements revealed that the nanofluid samples with volume fractions of less than 1.5% had Newtonian behavior, while the sample with volume fraction of 3% showed non-Newtonian behavior. Results showed that the viscosity of nanofluids enhanced with increasing nanoparticles volume fraction and decreasing temperature. Results of sensitivity analysis revealed that the viscosity sensitivity of nanofluid samples to temperature at higher volume fractions is more than that of at lower volume fractions. Finally, because of the inability of the existing model to predict the viscosity of MgO/EG-water nanofluid, an experimental correlation has been proposed for predicting the viscosity of the nanofluid.

  17. Preparation of a Bis-GMA-Free Dental Resin System with Synthesized Fluorinated Dimethacrylate Monomers

    Directory of Open Access Journals (Sweden)

    Shuzhen Luo

    2016-12-01

    Full Text Available With the aim of reducing human exposure to Bisphenol A (BPA derivatives in dentistry, a fluorinated dimethacrylate monomer was synthesized to replace 2,2-bis[4-(2-hydroxy-3-methacryloy-loxypropyl-phenyl]propane (Bis-GMA as the base monomer of dental resin. After mixing with reactive diluent triethyleneglycol dimethacrylate (TEGDMA, fluorinated dimethacrylate (FDMA/TEGDMA was prepared and compared with Bis-GMA/TEGDMA in physicochemical properties, such as double bond conversion (DC, volumetric shrinkage (VS, water sorption (WS and solubility (WSL, flexural strength (FS and modulus (FM. The results showed that, when compared with Bis-GMA based resin, FDMA-based resin had several advantages, such as higher DC, lower VS, lower WS, and higher FS after water immersion. All of these revealed that FDMA had potential to be used as a substitute for Bis-GMA. Of course, many more studies, such as biocompatibility testing, should be undertaken to prove whether FDMA could be applied in clinic.

  18. Synthesis, characterization and properties of a glycol-coordinated ε-Keggin-type Al13 chloride

    KAUST Repository

    Gu, Bin; Sun, Chenglin; Fettinger, James C.; Casey, William H.; Dikhtiarenko, Alla; Gascon, Jorge; Koichumanova, Kamila; Babu Sai Sankar Gupta, Karthick; Jan Heeres, Hero; He, Songbo

    2018-01-01

    Herein we present the first example of a glycol-coordinated ε-Keggin Al13 chloride (gl-ε-Al13), which is the first chelated version since discovery of Al13 in 1960. The molecular structure consists of [AlO4Al12(OH)12(OC2H4OH)12]Cl7·H2O units with chelating mono-anionic ethylene glycol units replacing one bridging and one terminal oxygen site.

  19. Synthesis, characterization and properties of a glycol-coordinated ε-Keggin-type Al13 chloride

    KAUST Repository

    Gu, Bin

    2018-03-29

    Herein we present the first example of a glycol-coordinated ε-Keggin Al13 chloride (gl-ε-Al13), which is the first chelated version since discovery of Al13 in 1960. The molecular structure consists of [AlO4Al12(OH)12(OC2H4OH)12]Cl7·H2O units with chelating mono-anionic ethylene glycol units replacing one bridging and one terminal oxygen site.

  20. Electro-oxidation of ethanol and ethylene glycol on carbon-supported nano-Pt and -PtRu catalyst in acid solution

    International Nuclear Information System (INIS)

    Chatterjee, Moitrayee; Chatterjee, Abhik; Ghosh, Susanta; Basumallick, I.

    2009-01-01

    Present paper reports kinetics of electro-oxidation of ethanol (EtOH) and ethylene glycol (EG) onto Pt and PtRu nanocatalysts of different compositions in the temperature range of 298-318 K. These catalysts have been characterized by SEM, EDX, XRD, CV and amperometry. It has been observed that apparent activation energies for oxidation of EtOH and EG pass through a minimum at about 15-20 at.% of Ru in the PtRu alloy catalysts. Anodic peak current vs. composition curve also shows a maximum around this composition. The results have been explained by a geometric model, which proposes requirement of an ensemble of three Pt atoms with an adjacent Ru atom onto PtRu surface for an efficient electro-oxidation of EtOH or EG. This is further supported from statistical data analysis of probability of occurrence of such ensembles onto PtRu alloy surface. Present results also suggest that electro-oxidation of EG onto nano-PtRu catalyst surfaces follows a different path from that of EtOH at alloy composition less than 15 at.% of Ru.

  1. Electro-oxidation of ethanol and ethylene glycol on carbon-supported nano-Pt and -PtRu catalyst in acid solution

    Energy Technology Data Exchange (ETDEWEB)

    Chatterjee, Moitrayee; Chatterjee, Abhik; Ghosh, Susanta [Electrochemical Laboratory, Department of Chemistry, Visva-Bharati University, Santiniketan 731235 (India); Basumallick, I., E-mail: ibasumallick@yahoo.co.u [Electrochemical Laboratory, Department of Chemistry, Visva-Bharati University, Santiniketan 731235 (India)

    2009-12-01

    Present paper reports kinetics of electro-oxidation of ethanol (EtOH) and ethylene glycol (EG) onto Pt and PtRu nanocatalysts of different compositions in the temperature range of 298-318 K. These catalysts have been characterized by SEM, EDX, XRD, CV and amperometry. It has been observed that apparent activation energies for oxidation of EtOH and EG pass through a minimum at about 15-20 at.% of Ru in the PtRu alloy catalysts. Anodic peak current vs. composition curve also shows a maximum around this composition. The results have been explained by a geometric model, which proposes requirement of an ensemble of three Pt atoms with an adjacent Ru atom onto PtRu surface for an efficient electro-oxidation of EtOH or EG. This is further supported from statistical data analysis of probability of occurrence of such ensembles onto PtRu alloy surface. Present results also suggest that electro-oxidation of EG onto nano-PtRu catalyst surfaces follows a different path from that of EtOH at alloy composition less than 15 at.% of Ru.

  2. Experimental study on density, thermal conductivity, specific heat, and viscosity of water-ethylene glycol mixture dispersed with carbon nanotubes

    Directory of Open Access Journals (Sweden)

    Ganeshkumar Jayabalan

    2017-01-01

    Full Text Available This article presents the effect of adding multi wall carbon nanotubes (MWCNT in water – ethylene glycol mixture on density and various thermophysical properties such as thermal conductivity, specific heat and viscosity. Density of nanofluids was measured using standard volumetric flask method and the data showed a good agreement with the mixing theory. The maximum thermal conductivity enhancement of 11 % was noticed for the nanofluids with 0.9 wt. %. Due to lower specific heat of the MWCNT, the specific heat of the nanofluids decreased in proportion with the MWCNT concentration. The rheological analysis showed that the transition region from shear thinning to Newtonian extended to the higher shear stress range compared to that of base fluids. Viscosity ratio of the nanofluids augmented anomalously with respect to increase in temperature and about 2.25 fold increase was observed in the temperature range of 30 – 40 ˚C. The modified model of Maron and Pierce predicted the viscosity of the nanofluids with the inclusion of effect of aspect ratio of MWCNT and nanoparticle aggregates.

  3. Evaluation of the behavior of PtPd/MWCNT electrocatalysts as ethylene glycol-tolerant electrodes for oxygen oxidation reaction (ORR); Evaluacion del comportamiento de electrocatalizadores tipo PtPd/MWCNT como electrodos para la reaccion de oxidacion del oxigeno (ORR) tolerantes al etilenglicol

    Energy Technology Data Exchange (ETDEWEB)

    Morales-Acosta, D.; Arriaga, L.G. [Centro de Investigacion y Desarrollo Tecnologico en Electroquimica, Pedro Escobedo, Queretaro (Mexico)]. E-mail: dmorales@cideteq.mx; Alvarez-Contreras, L. [Centro de Investigacion en Materiales Avanzados S. C., Chihuahua, Chihuahua (Mexico); Fraire Luna, S.; Rodriguez Varela, F.J. [Cinvestav, Unidad Saltillo, Ramos Arizpe, Coahuila, (Mexico)

    2009-09-15

    Pt-Pd/MWCNTs (atomic ratio Pt:Pd 43:57) and Pt/MWCNTs electrocatalysts were synthesized and evaluated as cathodes for oxygen reduction reaction (ORR) with the application of direct ethylene glycol fuel cells (DEGFC). A commercial PtC material was also evaluated as a reference. It was found that Pt-Pd/MWCNT has a capability for high tolerance to ethylene glycol (EG) and higher selectivity for ORR compared to a single Pt- cathode. As a result, the change in onset potential of the ORR, Eonset, in Pt-Pd/MWCNTs was considerably less than the change in Pt/MWCNTs or Pt/C. The average particle size (XRD) was 3.5nm and 4nm for Pt/MWCNTs and Pt-Pd/MWCNTs, respectively. A moderate degree of alloying was determined for the material. The application of Pt-Pd electrocatalysts in DEGFCs should be advantageous. [Spanish] Electrocatalizadores Pt-Pd/MWCNTs (relacion atomic Pt:Pd 43:57) y Pt/MWCNTs fueron sintetizados y evaluados como catodos para la reaccion de reduccion del oxigeno (ORR) con aplicacion del celdas de consumo directo de etilenglicol (Direct Ethylene Glycol Fuel Cells, o DEGFC). Como referencia, un material comercial tipo Pt/C fue tambien evaluado. Se encontro que Pt-Pd/MWCNTs tiene una alta capacidad de tolerancia al etilenglicol (EG) y una selectividad mayor hacia la ORR comparado con el catodo basado en Pt-solo. Como resultado, el cambio en potencial de inicio de la ORR, Eonset, en Pt-Pd/MWCNTs fue considerablemente menor que el cambio en Pt/MWCNTs o Pt/C. La talla de particula promedio (de XRD) fue 3.5 nm y 4 nm para Pt/MWCNTs y Pt-Pd/MWCNTs, respectivamente. Un moderado grado de aleacion fue determinado para el material. Una aplicacion ventajosa para electrocatalizadores tipo Pt-Pd debe ser en DEGFCs.

  4. Design, Synthesis and Hydrolytic Behavior of Mutual Prodrugs of NSAIDs with Gabapentin Using Glycol Spacers

    Directory of Open Access Journals (Sweden)

    Hiba Najeh Alsaad

    2012-10-01

    Full Text Available The free –COOH present in NSAIDs is thought to be responsible for the GI irritation associated with all traditional NSAIDs. Exploitation of mutual prodrugs is an approach wherein the NSAID is covalently bounded to a second pharmacologically active carrier/drug with the ultimate aim of reducing the gastric irritation. In this study some NSAIDs were conjugated with gabapentin via ester bonds using glycol spacers with the expectation of reducing gastric adverse effects and obtaining synergistic analgesic effects. The kinetics of ester hydrolysis were studied in two different non enzymatic buffer solutions at pH 1.2 and 7.4, as well as in 80% human plasma using HPLC with chloroform -methanol as mobile phase. Compounds 9a–c with ethylene glycol spacers showed significant stability at buffer solutions with half lives ranging from about 8–25 h, while the underwent a reasonable plasma hydrolysis (49%–88% in 2 h. Compound 9d with a propylene glycol spacer shows a higher rate of enzymatic hydrolysis than the corresponding ethylene glycol compound 9c. The result of compounds 9a-c indicate that these compounds may be stable during their passage through the GIT until reaching the blood circulation.

  5. Synthesis of novel bis(perfluorophenyl azides) coupling agents: Evaluation of their performance by crosslinking of poly(ethylene oxide)

    KAUST Repository

    Mehenni, Hakim

    2011-11-01

    Novel bis(perfluorophenyl azides) coupling agents, containing spacer arms from ethylene or ethylene glycol subunits, were successfully synthesized. Nitrenes photogenerated from these novel bis(PFPA) coupling agents were applied successfully to the cross-linking of poly(ethylene oxide) (PEO10,000) in either aqueous medium or at the solid state, thus, we demonstrated the potential of these bis(PFPA) molecules as promising coupling agents in surface engineering. © 2011 Elsevier Ltd. All rights reserved.

  6. Improved thermal conductivity of TiO2-SiO2 hybrid nanofluid in ethylene glycol and water mixture

    Science.gov (United States)

    Hamid, K. A.; Azmi, W. H.; Nabil, M. F.; Mamat, R.

    2017-10-01

    The need to study hybrid nanofluid properties such as thermal conductivity has increased recently in order to provide better understanding on nanofluid thermal properties and behaviour. Due to its ability to improve heat transfer compared to conventional heat transfer fluids, nanofluids as a new coolant fluid are widely investigated. This paper presents the thermal conductivity of TiO2-SiO2 nanoparticles dispersed in ethylene glycol (EG)-water. The TiO2-SiO2 hybrid nanofluids is measured for its thermal conductivity using KD2 Pro Thermal Properties Analyzer for concentration ranging from 0.5% to 3.0% and temperature of 30, 50 and 70°C. The results show that the increasing in concentration and temperature lead to enhancement in thermal conductivity at range of concentration studied. The maximum enhancement is found to be 22.1% at concentration 3.0% and temperature 70°C. A new equation is proposed based on the experiment data and found to be in good agreement where the average deviation (AD), standard deviation (SD) and maximum deviation (MD) are 1.67%, 1.66% and 5.13%, respectively.

  7. Flow-based method for epinephrine determination using a solid reactor based on molecularly imprinted poly(FePP-MAA-EGDMA)

    International Nuclear Information System (INIS)

    Sartori, Lucas Rossi; Santos, Wilney de Jesus Rodrigues; Kubota, Lauro Tatsuo; Segatelli, Mariana Gava; Tarley, Cesar Ricardo Teixeira

    2011-01-01

    A solid phase reactor based on molecularly imprinted poly(iron (III) protoporphyrin-methacrylic acid-ethylene glycol dimethacrylate) (MIP-MAA) has been synthesized by bulk method and applied as an selective material for the epinephrine determination in the presence of hydrogen peroxide. In order to prove the selective behaviour of MIP, two blank polymers named non-imprinted polymer (NIP1), non-imprinted polymer in the absence of hemin (NIP2) as well as a poly(iron (III) protoporphyrin-4-vynilpyridine-ethylene glycol dimethacrylate) (MIP-4VPy) were synthesized. The epinephrine-selective MIP-MAA reactor was used in a flow injection system, in which an epinephrine solution (120 μL) at pH 8.0 percolates in the presence of hydrogen peroxide (300 μmol L -1 ) through MIP-MAA. The oxidation of epinephrine by hydrogen peroxide is increased by using MIP-MAA, being the product formed monitored by amperometry at 0.0 V vs. Ag/AgCl. The MIP-MAA showed better selective behaviour than NIP1, NIP2 and MIP-4VPy, demonstrating the effectiveness of molecular imprinting effect. Highly improved response was observed for epinephrine in detriment of similar substances (phenol, ascorbic acid, methyl-L-DOPA, p-aminophenol, catechol, L-DOPA and guaiacol). The method provided a calibration curve ranging from 10 to 500 μmol L -1 and a limit of detection of 5.2 μmol L -1 . Kinetic data indicated a value of maximum rate V max (0.993 μA) and apparent Michaelis-Menten constant of K m app (725.6 μmol L -1 ). The feasibility of biomimetic solid reactor was attested by its successful application for epinephrine determination in pharmaceutical formulation.

  8. In vivo evaluation of a conjugated poly(lactide-ethylene glycol nanoparticle depot formulation for prolonged insulin delivery in the diabetic rabbit model

    Directory of Open Access Journals (Sweden)

    Tomar L

    2013-02-01

    Full Text Available Lomas Tomar,1,2 Charu Tyagi,1,3 Manoj Kumar,2 Pradeep Kumar,1 Harpal Singh,2 Yahya E Choonara,1 Viness Pillay11University of the Witwatersrand, Faculty of Health Sciences, Department of Pharmacy and Pharmacology, Johannesburg, Gauteng, South Africa; 2Centre for Biomedical Engineering, Indian Institute of Technology, Delhi, India; 3VSPG College, Chaudhary Charan Singh University, Meerut, IndiaAbstract: Poly(ethylene glycol (PEG and polylactic acid (PLA-based copolymeric nanoparticles were synthesized and investigated as a carrier for prolonged delivery of insulin via the parenteral route. Insulin loading was simultaneously achieved with particle synthesis using a double emulsion solvent evaporation technique, and the effect of varied PEG chain lengths on particle size and insulin loading efficiency was determined. The synthesized copolymer and nanoparticles were analyzed by standard polymer characterization techniques of gel permeation chromatography, dynamic light scattering, nuclear magnetic resonance, and transmission electron microscopy. In vitro insulin release studies performed under simulated conditions provided a near zero-order release pattern up to 10 days. In vivo animal studies were undertaken with varied insulin loads of nanoparticles administered subcutaneously to fed diabetic rabbits and, of all doses administered, nanoparticles containing 50 IU of insulin load per kg body weight controlled the blood glucose level within the physiologically normal range of 90–140 mg/dL, and had a prolonged effect for more than 7 days. Histopathological evaluation of tissue samples from the site of injection showed no signs of inflammation or aggregation, and established the nontoxic nature of the prepared copolymeric nanoparticles. Further, the reaction profiles for PLA-COOH and NH2-PEGDA-NH2 were elucidated using molecular mechanics energy relationships in vacuum and in a solvated system by exploring the spatial disposition of various

  9. Thermal performance of Al{sub 2}O{sub 3} in water - ethylene glycol nanofluid mixture as cooling medium in mini channel

    Energy Technology Data Exchange (ETDEWEB)

    Zakaria, Irnie Azlin; Mohamed, Wan Ahmad Najmi Wan; Mamat, Aman Mohd Ihsan; Sainan, Khairul Imran; Talib, Siti Fatimah Abu [Alternative Energy Research Centre (AERC), Faculty of Mechanical Engineering, Universiti Teknologi Mara (UiTM), 40450 Shah Alam, Selangor (Malaysia)

    2015-08-28

    Continuous need for an optimum conversion efficiency of a Proton Exchange Membrane Fuel Cell (PEMFC) operation has triggered varieties of advancements namely on the thermal management engineering scope. Nanofluids as an innovative heat transfer fluid solution are expected to be a promising candidate for alternative coolant in mini channel cooling plate of PEMFC. In this work, heat transfer performance of low concentration of 0.1, 0.3 and 0.5 % Al{sub 2}O{sub 3} in water: Ethylene glycol (EG) mixtures of 100:0 and 50:50 nanofluids have been studied and compared against its base fluids at Re number ranging from 10 to 100. A steady, laminar and incompressible flow with constant heat flux is assumed in the channel of 140mm × 200mm. It was found that nanofluids have performed better than the base fluid but the demerit is on the pumping power due to the higher pressure drop across mini channel geometry as expected.

  10. Functionalization of Cadmium Selenide Quantum Dots with Poly(ethylene glycol): Ligand Exchange, Surface Coverage, and Dispersion Stability.

    Science.gov (United States)

    Wenger, Whitney Nowak; Bates, Frank S; Aydil, Eray S

    2017-08-22

    Semiconductor quantum dots synthesized using rapid mixing of precursors by injection into a hot solution of solvents and surfactants have surface ligands that sterically stabilize the dispersions in nonpolar solvents. Often, these ligands are exchanged to disperse the quantum dots in polar solvents, but quantitative studies of quantum dot surfaces before and after ligand exchange are scarce. We studied exchanging trioctylphosphine (TOP) and trioctylphosphine oxide (TOPO) ligands on as-synthesized CdSe quantum dots dispersed in hexane with a 2000 g/mol thiolated poly(ethylene glycol) (PEG) polymer. Using infrared spectroscopy we quantify the absolute surface concentration of TOP/TOPO and PEG ligands per unit area before and after ligand exchange. While 50-85% of the TOP/TOPO ligands are removed upon ligand exchange, only a few are replaced with PEG. Surprisingly, the remaining TOP/TOPO ligands outnumber the PEG ligands, but these few PEG ligands are sufficient to disperse the quantum dots in polar solvents such as chloroform, tetrahydrofuran, and water. Moreover, as-synthesized quantum dots once easily dispersed in hexane are no longer dispersible in nonpolar solvents after ligand exchange. A subtle coverage-dependent balance between attractive PEG-solvent interactions and repulsive TOP/TOPO-solvent interactions determines the dispersion stability.

  11. MALDI MS-based Composition Analysis of the Polymerization Reaction of Toluene Diisocyanate (TDI) and Ethylene Glycol (EG).

    Science.gov (United States)

    Ahn, Yeong Hee; Lee, Yeon Jung; Kim, Sung Ho

    2015-01-01

    This study describes an MS-based analysis method for monitoring changes in polymer composition during the polyaddition polymerization reaction of toluene diisocyanate (TDI) and ethylene glycol (EG). The polymerization was monitored as a function of reaction time using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI TOF MS). The resulting series of polymer adducts terminated with various end-functional groups were precisely identified and the relative compositions of those series were estimated. A new MALDI MS data interpretation method was developed, consisting of a peak-resolving algorithm for overlapping peaks in MALDI MS spectra, a retrosynthetic analysis for the generation of reduced unit mass peaks, and a Gaussian fit-based selection of the most prominent polymer series among the reconstructed unit mass peaks. This method of data interpretation avoids errors originating from side reactions due to the presence of trace water in the reaction mixture or MALDI analysis. Quantitative changes in the relative compositions of the resulting polymer products were monitored as a function of reaction time. These results demonstrate that the mass data interpretation method described herein can be a powerful tool for estimating quantitative changes in the compositions of polymer products arising during a polymerization reaction.

  12. Integrating valve-inspired design features into poly(ethylene glycol) hydrogel scaffolds for heart valve tissue engineering.

    Science.gov (United States)

    Zhang, Xing; Xu, Bin; Puperi, Daniel S; Yonezawa, Aline L; Wu, Yan; Tseng, Hubert; Cuchiara, Maude L; West, Jennifer L; Grande-Allen, K Jane

    2015-03-01

    The development of advanced scaffolds that recapitulate the anisotropic mechanical behavior and biological functions of the extracellular matrix in leaflets would be transformative for heart valve tissue engineering. In this study, anisotropic mechanical properties were established in poly(ethylene glycol) (PEG) hydrogels by crosslinking stripes of 3.4 kDa PEG diacrylate (PEGDA) within 20 kDa PEGDA base hydrogels using a photolithographic patterning method. Varying the stripe width and spacing resulted in a tensile elastic modulus parallel to the stripes that was 4.1-6.8 times greater than that in the perpendicular direction, comparable to the degree of anisotropy between the circumferential and radial orientations in native valve leaflets. Biomimetic PEG-peptide hydrogels were prepared by tethering the cell-adhesive peptide RGDS and incorporating the collagenase-degradable peptide PQ (GGGPQG↓IWGQGK) into the polymer network. The specific amounts of RGDS and PEG-PQ within the resulting hydrogels influenced the elongation, de novo extracellular matrix deposition and hydrogel degradation behavior of encapsulated valvular interstitial cells (VICs). In addition, the morphology and activation of VICs grown atop PEG hydrogels could be modulated by controlling the concentration or micro-patterning profile of PEG-RGDS. These results are promising for the fabrication of PEG-based hydrogels using anatomically and biologically inspired scaffold design features for heart valve tissue engineering. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  13. Poly (Ethylene Glycol)-Based Hydrogels as Self-Inflating Tissue Expanders with Tunable Mechanical and Swelling Properties.

    Science.gov (United States)

    Jamadi, Mahsa; Shokrollahi, Parvin; Houshmand, Behzad; Joupari, Mortaza Daliri; Mashhadiabbas, Fatemeh; Khademhosseini, Ali; Annabi, Nasim

    2017-08-01

    Tissue expansion is used by plastic/reconstructive surgeons to grow additional skin/tissue for replacing or repairing lost or damaged soft tissues. Recently, hydrogels have been widely used for tissue expansion applications. Herein, a self-inflating tissue expander blend composition from three different molecular weights (2, 6, and 10 kDa) of poly (ethylene glycol) diacrylate (PEGDA) hydrogel with tunable mechanical and swelling properties is presented. The in vitro results demonstrate that, of the eight studied compositions, P6 (PEGDA 6 kDa:10 kDa (50:50)) and P8 (PEGDA 6 kDa:10 kDa (35:65)) formulations provide a balance of mechanical property and swelling capability suitable for tissue expansion. Furthermore, these expanders can be compressed up to 60% of their original height and can be loaded and unloaded cyclically at least ten times with no permanent deformation. The in vivo results indicate that these two engineered blend compositions are capable to generate a swelling pressure sufficient to dilate the surrounding tissue while retaining their original shape. The histological analyses reveal the formation of fibrous capsule at the interface between the implant and the subcutaneous tissue with no signs of inflammation. Ultimately, controlling the PEGDA chain length shows potential for the development of self-inflating tissue expanders with tunable mechanical and swelling properties. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Prolonged menstrual cycles in female workers exposed to ethylene glycol ethers in the semiconductor manufacturing industry.

    Science.gov (United States)

    Hsieh, G-Y; Wang, J-D; Cheng, T-J; Chen, P-C

    2005-08-01

    It has been shown that female workers exposed to ethylene glycol ethers (EGEs) in the semiconductor industry have higher risks of spontaneous abortion, subfertility, and menstrual disturbances, and prolonged waiting time to pregnancy. To examine whether EGEs or other chemicals are associated with long menstrual cycles in female workers in the semiconductor manufacturing industry. Cross-sectional questionnaire survey during the annual health examination at a wafer manufacturing company in Taiwan in 1997. A three tiered exposure-assessment strategy was used to analyse the risk. A short menstrual cycle was defined to be a cycle less than 24 days and a long cycle to be more than 35 days. There were 606 valid questionnaires from 473 workers in fabrication jobs and 133 in non-fabrication areas. Long menstrual cycles were associated with workers in fabrication areas compared to those in non-fabrication areas. Using workers in non-fabrication areas as referents, workers in photolithography and diffusion areas had higher risks for long menstrual cycles. Workers exposed to EGEs and isopropanol, and hydrofluoric acid, isopropanol, and phosphorous compounds also showed increased risks of a long menstrual cycle. Exposure to multiple chemicals, including EGEs in photolithography, might be associated with long menstrual cycles, and may play an important role in a prolonged time to pregnancy in the wafer manufacturing industry; however, the prevalence in the design, possible exposure misclassification, and chance should be considered.

  15. Surfactant-assisted carbon doping in ZnO nanowires using Poly Ethylene Glycol (PEG)

    Energy Technology Data Exchange (ETDEWEB)

    Amanullah, Malik; Javed, Qurat-ul-Ain, E-mail: Quratulain@sns.nust.edu.pk; Rizwan, Syed

    2016-09-01

    Zinc Oxide (ZnO) provides unique properties owing to its wide bandgap, large resistivity range and possibility to tune the physical properties. The surfactant assisted carbon doping was made possible due to the lowering of surface energy. The ZnO and carbon doped ZnO (C-ZnO) nanowires fabricated by hydrothermal process, Poly Ethylene Glycol (PEG) is used as surfactant in hydrothermal synthesis followed by post growth annealing treatment at 600 °C–700 °C. At 5%–10% of diluted PEG carbon is doped in ZnO. The crystallinity, structural morphology and elemental composition analysis for ZnO and C-ZnO nanowires were carried out using X-ray diffraction, scanning electron microscopy and energy dispersive X-ray spectroscopy techniques respectively. Carbon doping in ZnO nanowires in the presence of different percentage of surfactant is explained by calculating the change in surface energy with respect to change in PEG molecule concentration. It was found that the surface energy per molecule modulates from 3.92 × 10{sup −8} J/m{sup 2} to 8.16 × 10{sup −7} J/m{sup 2} in the PEG concentration range between 5% and 10%. Our results provides a new theoretical calculations, implemented on real system, to observe the details of PEG-assisted Carbon doping in II-VI semiconductor nanowires. - Highlights: • ZnO and C-ZnO was synthesized by PEG assisted post growth annealing process. • At 5% and 10% of PEG successful synthesis of C-ZnO was found. • XRD, SEM and EDX characterizations confirm the successful synthesis of ZnO and C-ZnO. • Change in surface energy with respect to PEG molecule concentration was calculated.

  16. Effect of solvent on the charging mechanisms of poly(ethylene glycol) in droplets

    Science.gov (United States)

    Soltani, Sepideh; Oh, Myong In; Consta, Styliani

    2015-03-01

    We examine the effect of solvent on the charging mechanisms of a macromolecule in a droplet by using molecular dynamics simulations. The droplet contains excess charge that is carried by sodium ions. To investigate the principles of the charging mechanisms of a macromolecule in a droplet, we simulate aqueous and methanol droplets that contain a poly(ethylene glycol) (PEG) molecule. We find that the solvent plays a critical role in the charging mechanism and in the manner that the sodiated PEG emerges from a droplet. In the aqueous droplets, the sodiated PEG is released from the droplet while it is being charged at a droplet charge state below the Rayleigh limit. The charging of PEG occurs on the surface of the droplet. In contrast to the aqueous droplets, in the methanol droplet, the sodiated PEG resides in the interior of the droplet and it may become charged at any location in the droplet, interior or surface. The sodiated PEG emerges from the droplet by drying-out of the solvent. Even though these two mechanisms appear to be phenomenologically similar to the widely accepted ion-evaporation and charge-residue mechanisms, they have fundamental differences from those. An integral part of the mechanism that the macromolecular ions emerge from droplets is the droplet morphology. Droplet morphologies give rise to different solvation interactions between the solvent and the macromolecule. In the water-sodiated PEG system, we find the extrusion of the PEG morphology, while in methanol-sodiated droplet, we find the "pearl-on-the-necklace" morphology and the extrusion of the sodiated PEG in the last stage of the desolvation process. These findings provide insight into the mechanisms that macromolecules acquire their charge in droplets produced in electrospray ionization experiments.

  17. Solubility of methane and carbon dioxide in ethylene glycol at pressures up to 14 MPa and temperatures ranging from (303 to 423) K

    International Nuclear Information System (INIS)

    Galvao, A.C.; Francesconi, A.Z.

    2010-01-01

    This work reports solubility data of methane and carbon dioxide in ethylene glycol and the Henry's law constant of each solute in the studied solvent at saturation pressure. The measurements were performed at (303, 323, 373, 398, and 423.15) K and pressures up to 6.3 MPa for mixtures containing carbon dioxide and pressures up to 13.7 MPa for mixtures containing methane. The experiments were performed in an autoclave type phase equilibrium apparatus using the total pressure method (synthetic method). All investigated systems show an increase of gas solubility with the increase of pressure. A decrease of carbon dioxide solubility with the increase of temperature and an increase of methane solubility with the increase of temperature was observed. From the variation of solubility with temperature, the partial molar enthalpy, and entropy change are calculated.

  18. One-step extraction and quantitation of toxic alcohols and ethylene glycol in plasma by capillary gas chromatography (GC) with flame ionization detection (FID).

    Science.gov (United States)

    Orton, Dennis J; Boyd, Jessica M; Affleck, Darlene; Duce, Donna; Walsh, Warren; Seiden-Long, Isolde

    2016-01-01

    Clinical analysis of volatile alcohols (i.e. methanol, ethanol, isopropanol, and metabolite acetone) and ethylene glycol (EG) generally employs separate gas chromatography (GC) methods for analysis. Here, a method for combined analysis of volatile alcohols and EG is described. Volatile alcohols and EG were extracted with 2:1 (v:v) acetonitrile containing internal standards (IS) 1,2 butanediol (for EG) and n-propanol (for alcohols). Samples were analyzed on an Agilent 6890 GC FID. The method was evaluated for precision, accuracy, reproducibility, linearity, selectivity and limit of quantitation (LOQ), followed by correlation to existing GC methods using patient samples, Bio-Rad QC, and in-house prepared QC material. Inter-day precision was from 6.5-11.3% CV, and linearity was verified from down to 0.6mmol/L up to 150mmol/L for each analyte. The method showed good recovery (~100%) and the LOQ was calculated to be between 0.25 and 0.44mmol/L. Patient correlation against current GC methods showed good agreement (slopes from 1.03-1.12, and y-intercepts from 0 to 0.85mmol/L; R(2)>0.98; N=35). Carryover was negligible for volatile alcohols in the measuring range, and of the potential interferences tested, only toluene and 1,3 propanediol interfered. The method was able to resolve 2,3 butanediol, diethylene glycol, and propylene glycol in addition to the peaks quantified. Here we describe a simple procedure for simultaneous analysis of EG and volatile alcohols that comes at low cost and with a simple liquid-liquid extraction requiring no derivitization to obtain adequate sensitivity for clinical specimens. Copyright © 2015 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  19. Radiation preparation of interpenetrating polymer networks

    International Nuclear Information System (INIS)

    Sheikh, N.; Ahmadi, M.; Afshar Taromi, F.

    2002-01-01

    Sequential interpenetrating polymer netwoks were prepared using gamma radiation. Styrene-butadiene rubber (SBR) and polymethyl methacrylate (PMMA) were used as elastomer and plastomer components respectively. Dicumyl peroxide (DCP) and ethylene glycol dimethacrylate (EGDMA) were also used as the curing agent of SBR and crosslinker for MMA monomer. The resulting IPNs were characterized by evaluating their mechanical properties. The effect of the amount of DCP on the final properties of product was examined. It was found that amount of curing agent had an important role on the properties of obtained IPNS. The results of the mechanical properties of IPNs showed very good synergistic behavior. (Author)

  20. Preparation and properties of poly(ethylene oxide) gel filled polypropylene separators and their corresponding gel polymer electrolytes for Li-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Li Hao; Ma Xiaoting; Shi Junli; Yao Zhikan [Department of Polymer Science and Engineering, Engineering Center of Membrane and Water Treatment, Key Laboratory of Macromolecule Synthesis and Functionalization (EMC), Zhejiang University, Hangzhou 310027 (China); Zhu Baoku, E-mail: zhubk@zju.edu.c [Department of Polymer Science and Engineering, Engineering Center of Membrane and Water Treatment, Key Laboratory of Macromolecule Synthesis and Functionalization (EMC), Zhejiang University, Hangzhou 310027 (China); Zhu Liping [Department of Polymer Science and Engineering, Engineering Center of Membrane and Water Treatment, Key Laboratory of Macromolecule Synthesis and Functionalization (EMC), Zhejiang University, Hangzhou 310027 (China)

    2011-02-15

    Poly(ethylene oxide) (PEO) filled polypropylene separators (GFPSs) are designed by means of thermal cross-linking of entrapped poly(ethylene glycol) methyl ether acrylate (PEGMEA) and poly(ethylene glycol) diacrylate (PEGDA) as gel constituents. The intrinsic properties of GFPS and their corresponding gel polymer electrolytes (GPE) are characterized by DSC, SEM, contact angle and electrochemical methods. It is found the stability of liquid electrolyte uptake in GPE could be improved obviously. For the GPE prepared from GFPS with filled polyether content of 14.3 wt%, the ionic conductivity could reach 1.12 x 10{sup -3} S cm{sup -1} while the electrochemically stable window reach 5.0 V (vs. Li/Li{sup +}). These primary results show great promise of this simple method to prepare GPE for practical application in lithium ion batteries.

  1. Preparation and properties of poly(ethylene oxide) gel filled polypropylene separators and their corresponding gel polymer electrolytes for Li-ion batteries

    International Nuclear Information System (INIS)

    Li Hao; Ma Xiaoting; Shi Junli; Yao Zhikan; Zhu Baoku; Zhu Liping

    2011-01-01

    Poly(ethylene oxide) (PEO) filled polypropylene separators (GFPSs) are designed by means of thermal cross-linking of entrapped poly(ethylene glycol) methyl ether acrylate (PEGMEA) and poly(ethylene glycol) diacrylate (PEGDA) as gel constituents. The intrinsic properties of GFPS and their corresponding gel polymer electrolytes (GPE) are characterized by DSC, SEM, contact angle and electrochemical methods. It is found the stability of liquid electrolyte uptake in GPE could be improved obviously. For the GPE prepared from GFPS with filled polyether content of 14.3 wt%, the ionic conductivity could reach 1.12 x 10 -3 S cm -1 while the electrochemically stable window reach 5.0 V (vs. Li/Li + ). These primary results show great promise of this simple method to prepare GPE for practical application in lithium ion batteries.

  2. Modulation of friction dynamics in water by changing the combination of the loop- and graft-type poly(ethylene glycol) surfaces.

    Science.gov (United States)

    Seo, Ji-Hun; Tsutsumi, Yusuke; Kobari, Akinori; Shimojo, Masayuki; Hanawa, Takao; Yui, Nobuhiko

    2015-02-07

    A Velcro-like poly(ethylene glycol) (PEG) interface was prepared in order to control the friction dynamics of material surfaces. Graft- and loop-type PEGs were formed on mirror-polished Ti surfaces using an electrodeposition method with mono- and di-amine functionalized PEGs. The friction dynamics of various combinations of PEG surfaces (i.e., graft-on-graft, loop-on-loop, graft-on-loop, and loop-on-graft) were investigated by friction testing. Here, only the Velcro-like combinations (graft-on-loop and loop-on-graft) exhibited a reversible friction behavior (i.e., resetting the kinetic friction coefficient and the reappearance of the maximum static friction coefficient) during the friction tests. The same tendency was observed when the molecular weights of loop- and graft-type PEGs were tested at 1 k and 10 k, respectively. This indicates that a Velcro-like friction behavior could be induced by simply changing the conformation of PEGs, which suggests a novel concept of altering polymer surfaces for the effective control of friction dynamics.

  3. Antiurolithic effect of olive oil in a mouse model of ethylene glycol-induced urolithiasis

    Directory of Open Access Journals (Sweden)

    Mohammed Alenzi

    2017-05-01

    Full Text Available Purpose: At present, commercially available antiurolithic drugs have more adverse effects than potential therapeutic or preventive effects with chronic use. With this in mind, the present study was designed to assess the antiurolithic effect of olive oil in a mouse model of ethylene glycol (EG-induced urolithiasis. Materials and Methods: Adult albino mice were divided into 6 groups. Group I was fed the vehicle only. Group II was supplemented with 0.75% EG alone in drinking water during the experimental period to initiate deposition of calcium oxalate in kidneys, which leads to urolithiasis in animals. Groups III (olive oil control group through V were fed olive oil orally at various doses during the experimental period. Group VI received cystone (750 mg/kg. Groups IV–VI additionally received 0.75% EG in drinking water ad libitum. SPSS ver.17.0 was used for statistical analysis. Results: The study results showed significantly higher levels of serum urea, uric acid, and creatinine (p<0.05 in group II than in groups III–VI and I. Administration of olive oil at different doses restored the elevated serum parameters in groups IV and V compared with group II. Urine and kidney calcium, oxalate, and phosphate levels in groups IV–VI were significantly lower (p<0.05 than in animals with EG-induced urolithiasis (group II. Group V mice showed a significant restoration effect on serum as well as urine and kidney parameters compared with group II. Conclusions: Supplementation with olive oil (1.7 mL/kg body weight reduced and prevented the growth of urinary stones, possibly by inhibiting renal tubular membrane damage due to peroxidative stress induced by hyperoxaluria.

  4. Foamed oligo(poly(ethylene glycol)fumarate) hydrogels as versatile prefabricated scaffolds for tissue engineering.

    Science.gov (United States)

    Henke, Matthias; Baumer, Julia; Blunk, Torsten; Tessmar, Joerg

    2014-03-01

    Radically cross-linked hydrogels are frequently used as cell carriers due to their excellent biocompatibility and their tissue-like mechanical properties. Through frequent investigation, PEG-based polymers such as oligo(poly(ethylene glycol)fumarate [OPF] have proven to be especially suitable as cell carriers by encapsulating cells during hydrogel formation. In some cases, NaCl or biodegradable gelatin microparticles were added prior to cross-linking in order to provide space for the proliferating cells, which would otherwise stay embedded in the hydrogel matrix. However, all of these immediate cross-linking procedures involve time consuming sample preparation and sterilization directly before cell culture and often show notable swelling after their preparation. In this study, ready to use OPF-hydrogel scaffolds were prepared by gas foaming, freeze drying, individual packing into bags and subsequent γ-sterilization. The scaffolds could be stored and used "off-the-shelf" without any need for further processing prior to cell culture. Thus the handling was simplified and the sterility of the cell carrier was assured. Further improvement of the gel system was achieved using a two component injectable system, which may be used for homogenous injection molding in order to create individually shaped three dimensional scaffolds. In order to evaluate the suitability of the scaffolds for tissue engineering, constructs were seeded with juvenile bovine chondrocytes and cultured for 28 days. Cross-sections of the respective constructs showed an intense and homogenous red staining of GAG with safranin O, indicating a homogenous cell distribution within the scaffolds and the production of substantial amounts of GAG-rich matrix. Copyright © 2012 John Wiley & Sons, Ltd.

  5. Solid-state poly(ethylene glycol)-polyurethane/polymethylmethacrylate/rutile TiO2 nanofiber composite electrolyte-correlation between morphology and conducting properties

    International Nuclear Information System (INIS)

    Chilaka, Naresh; Ghosh, Sutapa

    2012-01-01

    Highlights: ► Semi IPN composite of PEG-PU/PMMA with different wt% of rutile TiO 2 is synthesized. ► Formation of nanocomposite is confirmed by SEM, XRD and IR spectroscopic analysis. ► DSC and TGA confirmed the enhanced thermal stability of the composite. ► Composite with 18 wt% rutile TiO 2 is found to be the best conducting material. - Abstract: A series of lithium electrolyte materials based on hybrid of semi Inter penetrating Polymer Network of [poly(ethylene glycol)-polyurethane-polymethylmethacrylate] [60:40] and TiO 2 nanofibers is described. TiO 2 nanofibers are made by simple solvothermal procedure. Rutile phase of TiO 2 and its fibrous morphology are confirmed by X-ray diffraction pattern and scanning electron microscopy image respectively. Semi Inter penetrating Polymer Network of polyethylene glycol-polyurethane/polymethylmethacrylate with LiClO 4 and its nanocomposite with different weight percent of TiO 2 nano fibers have been synthesized. The formation of Inter penetrating Polymer Network and its amorphous nature are confirmed by Fourier transform infrared spectra, X-ray diffraction pattern and differential scanning calorimetry results. Thermo gravimetric analysis shows enhanced thermal stability of the composite compared to the semi Inter penetrating Polymer Network system. The electrical characterizations of the nanocomposites are done by current–voltage (I–V) measurements and impedance spectroscopy. These results confirm that incorporation of TiO 2 nanofibers by 18% enhances the conductivity of the Inter penetrating Polymer Network system by ten times . The nanoscale structure of the inorganic material is found to be responsible for the bulk properties of the system, especially those that differ from the properties of similar, pure salt-in-polymer electrolytes. Further differential scanning calorimetry, scanning electron microscopy and impedance data confirm the presence of two polymeric phases in the semi Inter penetrating Polymer

  6. Continuous synthesis of methanol: heterogeneous hydrogenation of ethylene carbonate over Cu/HMS catalysts in a fixed bed reactor system.

    Science.gov (United States)

    Chen, Xi; Cui, Yuanyuan; Wen, Chao; Wang, Bin; Dai, Wei-Lin

    2015-09-18

    Continuous fixed-bed catalytic hydrogenation of ethylene carbonate (EC) to methanol and ethylene glycol (EG), an emerging synthetic process of methanol via indirect conversion of CO2, was successfully performed over Cu/HMS catalysts prepared by the ammonia evaporation (AE) method. The catalysts possessed superb performance with a conversion of 100% and a selectivity to methanol of 74%.

  7. Enhancement of the predicted drug hepatotoxicity in gel entrapped hepatocytes within polysulfone-g-poly (ethylene glycol) modified hollow fiber

    International Nuclear Information System (INIS)

    Shen Chong; Zhang Guoliang; Meng Qin

    2010-01-01

    Collagen gel-based 3D cultures of hepatocytes have been proposed for evaluation of drug hepatotoxicity because of their more reliability than traditional monolayer culture. The collagen gel entrapment of hepatocytes in hollow fibers has been proven to well reflect the drug hepatotoxicity in vivo but was limited by adsorption of hydrophobic drugs onto hollow fibers. This study aimed to investigate the impact of hollow fibers on hepatocyte performance and drug hepatotoxicity. Polysulfone-g-poly (ethylene glycol) (PSf-g-PEG) hollow fiber was fabricated and applied for the first time to suppress the drug adsorption. Then, the impact of hollow fibers was evaluated by detecting the hepatotoxicity of eight selected drugs to gel entrapped hepatocytes within PSf and PSf-g-PEG hollow fibers, or without hollow fibers. The hepatocytes in PSf-g-PEG hollow fiber showed the highest sensitivity to drug hepatotoxicity, while those in PSf hollow fiber and cylindrical gel without hollow fiber underestimated the hepatotoxicity due to either drug adsorption or low hepatic functions. Therefore, the 3D culture of gel entrapped hepatocytes within PSf-g-PEG hollow fiber would be a promising tool for investigation of drug hepatotoxicity in vitro.

  8. Effect of Aquo-glycolic Media and Added Anions on the Anodization of Zircaloy-4 in Sulphamic Acid

    Directory of Open Access Journals (Sweden)

    Viplav Duth Shukla

    2011-01-01

    Full Text Available Anodization of zircaloy-4 in 0.1 M sulphamic acid has been carried out. Kinetics of anodic oxidation of zircaloy-4 has been studied at a constant current density of 8 mA/cm2 and at room temperature. Thickness estimates were made from capacitance data. The plots of formation voltage vs. time, reciprocal capacitance vs. time, reciprocal capacitance vs. formation voltage and thickness vs. formation voltage were drawn and rate of formation, current efficiency and differential field were calculated. The addition of solvent (ethylene glycol showed better kinetic results. For 25%, 50% and 75% aquo-glycolic media, the dielectric constant values are low leading to a marked improvement in the kinetics. In 80% ethylene glycol, though the dielectric constant value of solution is less, the kinetics was slow which may be attributed to the fact that the electrolyte becomes highly non-polar. Improvement in the kinetics of oxide film formation was observed by the addition of millimolar concentration of anions (CO32-, SO42-, PO43-. The presence of phosphate ions improved the kinetics of anodization to better extent.

  9. Preparation of shape-stabilized co-crystallized poly (ethylene glycol) composites as thermal energy storage materials

    International Nuclear Information System (INIS)

    Qian, Yong; Wei, Ping; Jiang, Pingkai; Li, Zhi; Yan, Yonggang; Ji, Kejian; Deng, Weihua

    2013-01-01

    Highlights: • Shape-stabilized PEG composites were prepared by sol–gel process. • The increased energy storage ability of composite was from cocrystallization effect. • Diammonium phosphate improved flame retardancy properties of PEG composite. • PEG composites had potential to be used as thermal energy storage materials. - Abstract: Shape-stabilized co-crystallized poly (ethylene glycol) (PEG) composites were prepared by sol–gel process. Tetraethoxysilane was utilized as supporting matrix precursor. The crystallization property as well as thermal energy storage properties of PEG was influenced by silica network. The combination of PEG 2k and PEG 10k with suitable ratio (3:1 by weight) led to synergistically increased fusion enthalpy attributed to cocrystallization effect. Furthermore, halogen-free flame retarded PEG composites were obtained using diammonium phosphate as flame retardant. With suitable composition, the latent heat value of flame retarded PEG composite was 96.7 kJ/kg accompanied with good thermal stability and improved flame retardancy properties. Fourier transform infrared spectrum (FT-IR), X-ray diffraction (XRD), polarized optical microscope (POM) and scanning electron microscope (SEM) were used to characterize the structure of PEG composites. Thermal stability properties of PEG composites were investigated by thermogravimetric analyzer (TGA). Char residue obtained from muffle furnace of PEG composites was analyzed by SEM and FT-IR. Flame retardancy properties of PEG composites were estimated by pyrolysis combustion flow calorimeter. Results showed that it was potential for shape-stabilized halogen-free flame retarded PEG composite to be applied in thermal energy storage field

  10. Synthesis and evaluation of Pt-alloys supported on MWCNTS as ethylene glycol-tolerant ORR cathodes

    Energy Technology Data Exchange (ETDEWEB)

    Morales-Acosta, D.; Arriaga, L.G. [Centro de Investigacion y Desarrollo Tecnologico en Electroquimica, Pedro Escobedo, Queretaro (Mexico); Alvarez-Contreras, L. [Centro de Investigacion en Materiales Avanzados S. C., Chihuahua, Chihuahua (Mexico); Fraire Luna, S.; Rodriguez Varela, F.J. [Cinvestav, Unidad Saltillo, Ramos Arizpe, Coahuila (Mexico)]. E-mail: javier.varela@cinvestav.edu.mx

    2009-09-15

    In this work, a Pt-Co/MWCNT alloy (atomic ratio 70:30) was synthesized and evaluated as oxygen reduction reaction (ORR) cathode for Direct Ethylene Glycol Fuel Cells (DEGFC) applications. The alloy showed good performance for the ORR in acid medium, while in the presence of 0.125M EG (C{sub 2}H{sub 6}O{sub 2}) the MWCNTs-supported electrocatalyst showed a very high selectivity for the cathodic reaction and a high degree of tolerance to the organic fuel, i.e., a very small shift in the onset potential for the ORR, Eonset, and no peak current densities associated to the oxidation of EG, a detrimental effect of organic fuels normally observed in the case of Pt-alone electrocatalysts. [Spanish] En este trabajo, se sintetizo y evaluo una aleacion Pt-Co/NTCMP (razon atomica 70/30) como catodo de reaccion de reduccion de oxigeno (RRO) para aplicaciones de celdas de combustible de glicol de etileno directo (CCGED). La aleacion mostro buen desempeno para la RRO en medio acido, en tanto que la presencia de 0.125M de GE (C{sub 2}H{sub 6}O{sub 2}) del electrocatalizador soportado por NTCMP mostro una muy alta selectividad para la reaccion catodica y un alto grado de tolerancia al combustible organico, es decir, un corrimiento muy pequeno del potencial de inicio para la RRO, Einicio, y no densidades de corriente asociadas a la oxidacion del GE, efecto perjudicial de los combustibles organicos que se observa en el caso del electrocatalizadores solo de Pt.

  11. Efficacy of supermacroporous poly(ethylene glycol)–gelatin cryogel matrix for soft tissue engineering applications

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Archana [Department of Biological Sciences, Birla Institute of Technology and Science, Pilani-K.K Birla Goa Campus, 403726 Goa (India); Bhat, Sumrita [Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, 208016 UP (India); Nayak, Vijayashree, E-mail: vijayashree@goa.bits-pilani.ac.in [Department of Biological Sciences, Birla Institute of Technology and Science, Pilani-K.K Birla Goa Campus, 403726 Goa (India); Kumar, Ashok, E-mail: ashokkum@iitk.ac.in [Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, 208016 UP (India)

    2015-02-01

    Three dimensional scaffolds synthesized using natural or synthetic polymers act as an artificial niche for cell adherence and proliferation. In this study, we have fabricated cryogels employing blend of poly (ethylene glycol) (PEG) and gelatin using two different crosslinkers like, glutaraldehyde and EDC-NHS by cryogelation technique. Synthesized matrices possessed interconnected porous structure in the range of 60–100 μm diameter and regained their original length after 90% compression without deformation. Visco-elastic behavior was studied by rheology and unconfined compression analysis, elastic modulus of these cryogels was observed to be > 10{sup 5} Pa which showed their elasticity and mechanical strength. TGA and DSC also showed the stability of these cryogels at different temperatures. In vitro degradation capacity was analyzed for 4 weeks at 37 °C. IMR-32, C2C12 and Cos-7 cells proliferation and ECM secretion on PEG–gelatin cryogels were observed by SEM and fluorescent analysis. In vitro biocompatibility was analyzed by MTT assay for the period of 15 days. Furthermore, cell proliferation efficiency, metabolic activity and functionality of IMR-32 cells were analyzed by neurotransmitter assay and DNA quantification. The cell–matrix interaction, elasticity, mechanical strength, stability at different temperatures, biocompatible, degradable nature showed the potentiality of these cryogels towards soft tissue engineering such as neural, cardiac and skin. - Highlights: • PEG–gelatin cryogel matrices were produced by cryogelation technology. • Matrices showed suitable properties for tissue engineering applications. • Polymeric cryogels supported growth of IMR-32, C2C12 and Cos-7 cells in vitro.

  12. Effect of addition of Proline, ionic liquid [Choline][Pro] on CO2 separation properties of poly(amidoamine) dendrimer / poly(ethylene glycol) hybrid membranes

    Science.gov (United States)

    Duan, S. H.; Kai, T.; Chowdhury, F. A.; Taniguchi, I.; Kazama, S.

    2018-01-01

    Poly(amidoamine) (PAMAM) dendrimers were incorporated into cross-linked poly(ethylene glycol) (PEGDMA) matrix to improve carbon dioxide (CO2) separation performance at elevated pressures. In our previous studies, PAMAM/PEGDMA hybrid membranes showed high CO2 separation properties from CO2/H2 mixed gases. In this study, proline, choline and ionic liquid [Choline][Pro] compounds were selected as rate promoters that were used to prepare PAMAM/PEGDMA hybrid membranes. The effect of addition of proline, choline, IL [Choline][Pro] on separation performance of PAMAM/PEGDMA) hybrid membranes for CO2/H2 separation was investigated. Amino acid proline, choline, and IL [Choline][Pro] were used to promote CO2 and amine reaction. With the addition of [Choline][Pro] into PAMAM/PEG membrane, CO2 permeance of PAMAM/PEG hybrid membranes are increased up to 46% without any change of selectivity of membrane for CO2.

  13. Radiation grafting from binary mixtures of vinyl ether of mono ethanol amine with N-vinylpyrrolidone and vinyl ether of ethylene glycol onto polyolefins films and metallization of obtained films

    International Nuclear Information System (INIS)

    Al'-Saed Abdel' Aal'; Nurkeeva, Z.; Khutoryanskij, V.; Mun, G.; Sangajlo, M.

    2003-01-01

    Radiation grafting from binary mixtures of vinyl ether of mono ethanol amine with N-vinylpyrrolidone and vinyl ether of ethylene glycol onto polyolefins films using γ-radiation and accelerated electrons has been studied. IR-spectroscopy is used to confirm the structure of grafted films. A combination of and metallization of obtained films. A combination of gravimetric and potentiometric techniques is applied to determine the fraction of each monomer in graft copolymer. Water uptake and contact angle measurements confirmed that the grafting process improve the hydrophilic properties of obtained films. The obtained materials are metallized by electroless copper plating. The metallized films have good electro conductive properties. (author)

  14. Enhancing anticoagulation and endothelial cell proliferation of titanium surface by sequential immobilization of poly(ethylene glycol) and collagen

    International Nuclear Information System (INIS)

    Pan, Chang-Jiang; Hou, Yan-Hua; Ding, Hong-Yan; Dong, Yun-Xiao

    2013-01-01

    In the present study, poly(ethylene glycol) (PEG) and collagen I were sequentially immobilized on the titanium surface to simultaneously improve the anticoagulation and endothelial cell proliferation. Attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) and X-ray photoelectron spectroscopy analysis confirmed that PEG and collagen I were successfully immobilized on the titanium surface. Water contact angle results suggested the excellent hydrophilic surface after the immobilization. The anticoagulation experiments demonstrated that the immobilized PEG and collagen I on the titanium surface could not only obviously prevent platelet adhesion and aggregation but also prolong activated partial thromboplastin time (APTT), leading to the improved blood compatibility. Furthermore, immobilization of collagen to the end of PEG chain did not abate the anticoagulation. As compared to those on the pristine and PEG-modified titanium surfaces, endothelial cells exhibited improved proliferative profiles on the surface modified by the sequential immobilization of PEG and collagen in terms of CCK-8 assay, implying that the modified titanium may promote endothelialization without abating the blood compatibility. Our method may be used to modify the surface of blood-contacting biomaterials such as titanium to promote endothelialization and improve the anticoagulation, it may be helpful for development of the biomedical devices such as coronary stents, where endothelializaton and excellent anticoagulation are required.

  15. Cellulose Nanocrystal/Poly(ethylene glycol) Composite as an Iridescent Coating on Polymer Substrates: Structure-Color and Interface Adhesion.

    Science.gov (United States)

    Gu, Mingyue; Jiang, Chenyu; Liu, Dagang; Prempeh, Nana; Smalyukh, Ivan I

    2016-11-30

    The broad utility as an environmentally friendly and colorful coating of cellulose nanocrystal (CNC) was limited by its instability of coloration, brittleness, and lack of adhesion to a hydrophobic surface. In the present work, a neutral polymer, poly(ethylene glycol) (PEG) was introduced into CNC coatings through evaporation-induced self-assembly (EISA) on polymer matrices. The structure-color and mechanical properties of the composite coating or coating film were characterized by UV-vis spectroscopy, polarized light microscopy (PLM), scanning electron microscopy (SEM), wide-angle X-ray diffraction (WXRD), and tensile tests. Results showed that the reflective wavelength of the iridescent CNCs could be finely tuned by incorporation of PEG with varied loadings from 2.5 to 50 wt %, although the high loading content of PEG would produce some side effects because of the severe microphase separation. Second, PEG played an effective plasticizer to improve the ductility or flexibility of the CNC coating or coating film. Furthermore, as a compatibilizer, PEG could effectively and tremendously enhance the adhesion strength between CNCs and neutral polymer matrices without destroying the chiral nematic mesophases of CNCs. Environmentally friendly CNC/PEG composites with tunable iridescence, good flexibility, and high bonding strength to hydrophobic polymer matrices are expected to be promising candidates in the modern green paint industry.

  16. Partition of proteins in aqueous two-phase systems based on Cashew-nut tree gum and poly(ethylene glycol

    Directory of Open Access Journals (Sweden)

    Leonie Asfora Sarubbo

    2004-09-01

    Full Text Available The partitioning of two proteins, bovine serum albumin (BSA and trypsin was studied in an aqueous poly(ethylene glycol(PEG- Cashew-nut tree gum system. The phase diagram was provided for Cashew-nut tree gum and PEG molecular weight of 1500 at two different temperatures. The influence of several parameters including concentrations of polymers, pH, salt addition and temperature on the partitioning of these proteins were investigated.. The results of this research demonstrated the importance of the protein characteristics for partitioning in aqueous biphasic system.A partição de duas proteínas, albumina de soro bovino (BSA e tripsina foi estudada no sistema bifásico aquoso Polietileno glicol(PEG - Goma do cajueiro. O diagrama de fases foi estabelecido para a Goma do Cajueiro e para PEG de peso molecular 1500 em duas diferentes temperaturas. A influência de vários parâmetros na partição destas proteínas, incluindo concentração dos polímeros, pH, adição de sal e temperatura foi investigada. Os resultados desta pesquisa demonstraram a importância das características da proteína na partição em sistemas bifásicos aquosos.

  17. Micropatterning of a nanoporous alumina membrane with poly(ethylene glycol) hydrogel to create cellular micropatterns on nanotopographic substrates.

    Science.gov (United States)

    Lee, Hyun Jong; Kim, Dae Nyun; Park, Saemi; Lee, Yeol; Koh, Won-Gun

    2011-03-01

    In this paper, we describe a simple method for fabricating micropatterned nanoporous substrates that are capable of controlling the spatial positioning of mammalian cells. Micropatterned substrates were prepared by fabricating poly(ethylene glycol) (PEG) hydrogel microstructures on alumina membranes with 200 nm nanopores using photolithography. Because hydrogel precursor solution could infiltrate and become crosslinked within the nanopores, the resultant hydrogel micropatterns were firmly anchored on the substrate without the use of adhesion-promoting monolayers, thereby allow tailoring of the surface properties of unpatterned nanoporous areas. For mammalian cell patterning, arrays of microwells of different dimensions were fabricated. These microwells were composed of hydrophilic PEG hydrogel walls surrounding nanoporous bottoms that were modified with cell-adhesive Arg-Gly-Asp (RGD) peptides. Because the PEG hydrogel was non-adhesive towards proteins and cells, cells adhered selectively and remained viable within the RGD-modified nanoporous regions, thereby creating cellular micropatterns. Although the morphology of cell clusters and the number of cells inside one microwell were dependent on the lateral dimension of the microwells, adhered cells that were in direct contact with nanopores were able to penetrate into the nanopores by small extensions (filopodia) for all the different sizes of microwells evaluated. Copyright © 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  18. Corrosion behavior of AISI 4130 steel alloy in ethylene glycol–water mixture in presence of molybdate

    International Nuclear Information System (INIS)

    Danaee, I.; Niknejad Khomami, M.; Attar, A.A.

    2012-01-01

    The electrochemical behavior of steel alloy in ethylene glycol–water mixture with different concentrations was investigated by polarization curves, AC impedance measurements, current transient and atomic force microscopy. The results obtained showed that corrosion rate was decreased with increasing ethylene glycol concentration. The effect of molybdate as inhibitor was studied and high inhibition efficiency was obtained. It was found that surface passivation was occurred in presence of inhibitor. The inhibiting effect of the molybdate was explained on the basis of the competitive adsorption between the inorganic anions and the aggressive Cl − ions and the adsorption isotherm basically obeys the Langmuir adsorption isotherm. Thermodynamic parameters for steel corrosion and inhibitor adsorption were determined and reveal that the adsorption process is spontaneous. Also phenomenon of both physical and chemical adsorption is proposed. -- Highlights: ► Corrosion rate was decreased with increasing ethylene glycol concentration. ► High inhibition efficiency was obtained for molybdate. ► Surface passivation was occurred in presence of inhibitor. ► The adsorption isotherm basically obeys the Langmuir adsorption isotherm.

  19. Heat dissipation for the Intel Core i5 processor using multiwalled carbon-nanotube-based ethylene glycol

    Energy Technology Data Exchange (ETDEWEB)

    Thang, Bui Hung; Trinh, Pham Van; Quang, Le Dinh; Khoi, Phan Hong; Minh, Phan Ngoc [Vietnam Academy of Science and Technology, Ho Chi Minh CIty (Viet Nam); Huong, Nguyen Thi [Hanoi University of Science, Hanoi (Viet Nam); Vietnam National University, Hanoi (Viet Nam)

    2014-08-15

    Carbon nanotubes (CNTs) are some of the most valuable materials with high thermal conductivity. The thermal conductivity of individual multiwalled carbon nanotubes (MWCNTs) grown by using chemical vapor deposition is 600 ± 100 Wm{sup -1}K{sup -1} compared with the thermal conductivity 419 Wm{sup -1}K{sup -1} of Ag. Carbon-nanotube-based liquids - a new class of nanomaterials, have shown many interesting properties and distinctive features offering potential in heat dissipation applications for electronic devices, such as computer microprocessor, high power LED, etc. In this work, a multiwalled carbon-nanotube-based liquid was made of well-dispersed hydroxyl-functional multiwalled carbon nanotubes (MWCNT-OH) in ethylene glycol (EG)/distilled water (DW) solutions by using Tween-80 surfactant and an ultrasonication method. The concentration of MWCNT-OH in EG/DW solutions ranged from 0.1 to 1.2 gram/liter. The dispersion of the MWCNT-OH-based EG/DW solutions was evaluated by using a Zeta-Sizer analyzer. The MWCNT-OH-based EG/DW solutions were used as coolants in the liquid cooling system for the Intel Core i5 processor. The thermal dissipation efficiency and the thermal response of the system were evaluated by directly measuring the temperature of the micro-processor using the Core Temp software and the temperature sensors built inside the micro-processor. The results confirmed the advantages of CNTs in thermal dissipation systems for computer processors and other high-power electronic devices.

  20. Heat dissipation for the Intel Core i5 processor using multiwalled carbon-nanotube-based ethylene glycol

    International Nuclear Information System (INIS)

    Thang, Bui Hung; Trinh, Pham Van; Quang, Le Dinh; Khoi, Phan Hong; Minh, Phan Ngoc; Huong, Nguyen Thi

    2014-01-01

    Carbon nanotubes (CNTs) are some of the most valuable materials with high thermal conductivity. The thermal conductivity of individual multiwalled carbon nanotubes (MWCNTs) grown by using chemical vapor deposition is 600 ± 100 Wm -1 K -1 compared with the thermal conductivity 419 Wm -1 K -1 of Ag. Carbon-nanotube-based liquids - a new class of nanomaterials, have shown many interesting properties and distinctive features offering potential in heat dissipation applications for electronic devices, such as computer microprocessor, high power LED, etc. In this work, a multiwalled carbon-nanotube-based liquid was made of well-dispersed hydroxyl-functional multiwalled carbon nanotubes (MWCNT-OH) in ethylene glycol (EG)/distilled water (DW) solutions by using Tween-80 surfactant and an ultrasonication method. The concentration of MWCNT-OH in EG/DW solutions ranged from 0.1 to 1.2 gram/liter. The dispersion of the MWCNT-OH-based EG/DW solutions was evaluated by using a Zeta-Sizer analyzer. The MWCNT-OH-based EG/DW solutions were used as coolants in the liquid cooling system for the Intel Core i5 processor. The thermal dissipation efficiency and the thermal response of the system were evaluated by directly measuring the temperature of the micro-processor using the Core Temp software and the temperature sensors built inside the micro-processor. The results confirmed the advantages of CNTs in thermal dissipation systems for computer processors and other high-power electronic devices.

  1. Chitosan grafted methoxy poly(ethylene glycol)-poly(ε-caprolactone) nanosuspension for ocular delivery of hydrophobic diclofenac.

    Science.gov (United States)

    Shi, Shuai; Zhang, Zhaoliang; Luo, Zichao; Yu, Jing; Liang, Renlong; Li, Xingyi; Chen, Hao

    2015-06-12

    This study aimed to develop a cationic nanosuspension of chitosan (CS) and methoxy poly(ethylene glycol)-poly(ε-caprolactone) (MPEG-PCL) for ocular delivery of diclofenac (DIC). MPEG-PCL-CS block polymer was synthesized by covalent coupling of MPEG-PCL with CS. The critical micelle concentration of the MPEG-PCL-CS block polymer was 0.000692 g/L. DIC/MPEG-PCL-CS nanosuspension (mean particle size = 105 nm, zeta potential = 8 mV) was prepared and characterized by Fourier transform infrared spectroscopy, X-ray diffraction, and differential scanning calorimetry. The nanosuspension was very stable without apparent physical property changes after storage at 4 °C or 25 °C for 20 days, but it was unstable in the aqueous humor solution after 24 h incubation. Sustained release of the encapsulated DIC from the nanosuspension occurred over 8 h. Neither a blank MPEG-PCL-CS nanosuspension nor a 0.1% (mass fraction) DIC/MPEG-PCL-CS nanosuspension caused ocular irritation after 24 h of instillation. Enhanced penetration and retention in corneal tissue was achieved with a Nile red/MPEG-PCL-CS nanosuspension compared with a Nile red aqueous solution. In vivo pharmacokinetics studies showed enhanced pre-corneal retention and penetration of the DIC/MPEG-PCL-CS nanosuspension, which resulted in a higher concentration of DIC (Cmax) in the aqueous humor and better bioavailability compared with commercial DIC eye drops (P < 0.01).

  2. Fumigation of Folia belladonnae with 14C-labelled ethylene oxide to reduce the germ number - activity distributions in the drug and preparations made from it

    International Nuclear Information System (INIS)

    Strohmeier, H.

    1988-01-01

    The study described here provided evidence to prove that considerable quantities of ethylene oxide, ethylene chlorhydrin and ethylene glycol are retained, when a drug is fumigated with ethylene oxide under standard fumigation conditions in order to reduce the germ number. Ethylene oxide bound by adsorption may be eliminated from the drug by repeated aeration. If an aqueous-ethanolic percolate is prepared from a drug showing very high levels of ethylene chlorhydrin and then carefully distilled at 40 C using only little pressure, a dry extract can be obtained that contains no such residue. (orig.) [de

  3. Self-Assembly, Surface Activity and Structure of n-Octyl-β-D-thioglucopyranoside in Ethylene Glycol-Water Mixtures

    Directory of Open Access Journals (Sweden)

    Cristóbal Carnero Ruiz

    2013-02-01

    Full Text Available The effect of the addition of ethylene glycol (EG on the interfacial adsorption and micellar properties of the alkylglucoside surfactant n-octyl-β-D-thioglucopyranoside (OTG has been investigated. Critical micelle concentrations (cmc upon EG addition were obtained by both surface tension measurements and the pyrene 1:3 ratio method. A systematic increase in the cmc induced by the presence of the co-solvent was observed. This behavior was attributed to a reduction in the cohesive energy of the mixed solvent with respect to pure water, which favors an increase in the solubility of the surfactant with EG content. Static light scattering measurements revealed a decrease in the mean aggregation number of the OTG micelles with EG addition. Moreover, dynamic light scattering data showed that the effect of the surfactant concentration on micellar size is also controlled by the content of the co-solvent in the system. Finally, the effect of EG addition on the microstructure of OTG micelles was investigated using the hydrophobic probe Coumarin 153 (C153. Time-resolved fluorescence anisotropy decay curves of the probe solubilized in micelles were analyzed using the two-step model. The results indicate a slight reduction of the average reorientation time of the probe molecule with increasing EG in the mixed solvent system, thereby suggesting a lesser compactness induced by the presence of the co-solvent.

  4. Removal of diethyl phthalate from aqueous phase using magnetic poly(EGDMA-VP) beads

    Energy Technology Data Exchange (ETDEWEB)

    Tuemay Oezer, Elif [Department of Chemistry, Uludag University, Bursa (Turkey); Osman, Bilgen, E-mail: bilgeno@uludag.edu.tr [Department of Chemistry, Uludag University, Bursa (Turkey); Kara, Ali; Besirli, Necati; Guecer, Seref [Department of Chemistry, Uludag University, Bursa (Turkey); Soezeri, Hueseyin [TUBITAK-UME, National Metrology Institute, PO Box 54 TR-41470, Gebze/Kocaeli (Turkey)

    2012-08-30

    Highlights: Black-Right-Pointing-Pointer Magnetic beads were prepared for removal of diethyl phthalate (DEP). Black-Right-Pointing-Pointer Total capacity of the beads was determined as 98.9 mg DEP per gram polymer. Black-Right-Pointing-Pointer Magnetic beads were regenerated easily and reused for DEP adsorption. Black-Right-Pointing-Pointer Adsorption isotherms, kinetics and thermodynamics were elucidated. - Abstract: The barium hexaferrite (BaFe{sub 12}O{sub 19}) containing magnetic poly(ethylene glycol dimethacrylate-vinyl pyridine), (mag-poly(EGDMA-VP)) beads (average diameter = 53-212 {mu}m) were synthesized and characterized. Their use as an adsorbent in the removal of diethyl phthalate (DEP) from an aqueous solution was investigated. The mag-poly(EGDMA-VP) beads were prepared by copolymerizing of 4-vinyl pyridine (VP) with ethylene glycol dimethacrylate (EGDMA). The mag-poly(EGDMA-VP) beads were characterized by N{sub 2} adsorption/desorption isotherms (BET), vibrating sample magnetometer (VSM), X-ray powder diffraction (XRD), elemental analysis, scanning electron microscope (SEM) and swelling studies. At a fixed solid/solution ratio, the various factors affecting the adsorption of DEP from aqueous solutions such as pH, initial concentration, contact time and temperature were analyzed. The maximum DEP adsorption capacity of the mag-poly(EGDMA-VP) beads was determined as 98.9 mg/g at pH 3.0, 25 Degree-Sign C. All the isotherm data can be fitted with both the Langmuir and the Dubinin-Radushkevich isotherm models. The pseudo first-order, pseudo-second-order, Ritch-second-order and intraparticle diffusion models were used to describe the adsorption kinetics. The thermodynamic parameters obtained indicated the exothermic nature of the adsorption. The DEP adsorption capacity did not change after 10 batch successive reactions, demonstrating the usefulness of the magnetic beads in applications.

  5. Flow-based method for epinephrine determination using a solid reactor based on molecularly imprinted poly(FePP-MAA-EGDMA)

    Energy Technology Data Exchange (ETDEWEB)

    Sartori, Lucas Rossi [Programa de Pos-Graduacao em Ciencias Farmaceuticas, Universidade Federal de Alfenas (Unifal-MG), Rua Gabriel Monteiro da Silva, 714, 37130-000, Alfenas/MG (Brazil); Santos, Wilney de Jesus Rodrigues [Departamento de Quimica Analitica, Instituto de Quimica, Universidade Estadual de Campinas (Unicamp), Cidade Universitaria Zeferino Vaz s/n,13083-970, Campinas/SP (Brazil); Kubota, Lauro Tatsuo [Departamento de Quimica Analitica, Instituto de Quimica, Universidade Estadual de Campinas (Unicamp), Cidade Universitaria Zeferino Vaz s/n,13083-970, Campinas/SP (Brazil); Instituto Nacional de Ciencia e Tecnologia (INCT) de Bioanalitica, Universidade Estadual de Campinas (Unicamp), Instituto de Quimica, Departamento de Quimica Analitica, Cidade Universitaria Zeferino Vaz s/n, 13083-970, Campinas/SP (Brazil); Segatelli, Mariana Gava [Departamento de Quimica, Universidade Estadual de Londrina (UEL), Rod. Celso Garcia PR 445 Km 380, 86051-990, Londrina/PR (Brazil); Tarley, Cesar Ricardo Teixeira, E-mail: tarley@uel.br [Programa de Pos-Graduacao em Ciencias Farmaceuticas, Universidade Federal de Alfenas (Unifal-MG), Rua Gabriel Monteiro da Silva, 714, 37130-000, Alfenas/MG (Brazil); Instituto Nacional de Ciencia e Tecnologia (INCT) de Bioanalitica, Universidade Estadual de Campinas (Unicamp), Instituto de Quimica, Departamento de Quimica Analitica, Cidade Universitaria Zeferino Vaz s/n, 13083-970, Campinas/SP (Brazil)

    2011-03-12

    A solid phase reactor based on molecularly imprinted poly(iron (III) protoporphyrin-methacrylic acid-ethylene glycol dimethacrylate) (MIP-MAA) has been synthesized by bulk method and applied as an selective material for the epinephrine determination in the presence of hydrogen peroxide. In order to prove the selective behaviour of MIP, two blank polymers named non-imprinted polymer (NIP1), non-imprinted polymer in the absence of hemin (NIP2) as well as a poly(iron (III) protoporphyrin-4-vynilpyridine-ethylene glycol dimethacrylate) (MIP-4VPy) were synthesized. The epinephrine-selective MIP-MAA reactor was used in a flow injection system, in which an epinephrine solution (120 {mu}L) at pH 8.0 percolates in the presence of hydrogen peroxide (300 {mu}mol L{sup -1}) through MIP-MAA. The oxidation of epinephrine by hydrogen peroxide is increased by using MIP-MAA, being the product formed monitored by amperometry at 0.0 V vs. Ag/AgCl. The MIP-MAA showed better selective behaviour than NIP1, NIP2 and MIP-4VPy, demonstrating the effectiveness of molecular imprinting effect. Highly improved response was observed for epinephrine in detriment of similar substances (phenol, ascorbic acid, methyl-L-DOPA, p-aminophenol, catechol, L-DOPA and guaiacol). The method provided a calibration curve ranging from 10 to 500 {mu}mol L{sup -1} and a limit of detection of 5.2 {mu}mol L{sup -1}. Kinetic data indicated a value of maximum rate V{sub max} (0.993 {mu}A) and apparent Michaelis-Menten constant of K{sub m}{sup app}(725.6 {mu}mol L{sup -1}). The feasibility of biomimetic solid reactor was attested by its successful application for epinephrine determination in pharmaceutical formulation.

  6. CO2-Free Power Generation on an Iron Group Nanoalloy Catalyst via Selective Oxidation of Ethylene Glycol to Oxalic Acid in Alkaline Media

    Science.gov (United States)

    Matsumoto, Takeshi; Sadakiyo, Masaaki; Ooi, Mei Lee; Kitano, Sho; Yamamoto, Tomokazu; Matsumura, Syo; Kato, Kenichi; Takeguchi, Tatsuya; Yamauchi, Miho

    2014-07-01

    An Fe group ternary nanoalloy (NA) catalyst enabled selective electrocatalysis towards CO2-free power generation from highly deliverable ethylene glycol (EG). A solid-solution-type FeCoNi NA catalyst supported on carbon was prepared by a two-step reduction method. High-resolution electron microscopy techniques identified atomic-level mixing of constituent elements in the nanoalloy. We examined the distribution of oxidised species, including CO2, produced on the FeCoNi nanoalloy catalyst in the EG electrooxidation under alkaline conditions. The FeCoNi nanoalloy catalyst exhibited the highest selectivities toward the formation of C2 products and to oxalic acid, i.e., 99 and 60%, respectively, at 0.4 V vs. the reversible hydrogen electrode (RHE), without CO2 generation. We successfully generated power by a direct EG alkaline fuel cell employing the FeCoNi nanoalloy catalyst and a solid-oxide electrolyte with oxygen reduction ability, i.e., a completely precious-metal-free system.

  7. Synthesis, characterization and evaluation of uniformly sized core-shell imprinted microspheres for the separation trans-resveratrol from giant knotweed

    International Nuclear Information System (INIS)

    Zhang Zhaohui; Liu Li; Li Hui; Yao Shouzhuo

    2009-01-01

    A novel core-shell molecularly imprinting microspheres (MIMs) with trans-resveratrol as the template molecule; acrylamide (AA) as functional monomer and ethylene glycol dimethacrylate (EGDMA) as cross-linker, was prepared based on SiO 2 microspheres with surface imprinting technique. These core-shell trans-resveratrol imprinted microspheres were characterized by infrared spectra (IR), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), and high performance liquid chromatography (HPLC). The results showed that these core-shell imprinted microspheres, which take on perfect spherical shape with average shell thickness of 150 nm, exhibit especially selective recognition for trans-resveratrol. These imprinted microspheres were applied as solid-phase extraction materials for selective extraction of trans-resveratrol from giant knotweed extracting solution successfully.

  8. Synthesis, characterization and evaluation of uniformly sized core-shell imprinted microspheres for the separation trans-resveratrol from giant knotweed

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Zhaohui, E-mail: zhaohuizhang77@hotmail.com [College of Chemistry and Chemical Engineering, Jishou University, Jishou, 416000 (China); State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410082 (China); Liu Li; Li Hui [College of Chemistry and Chemical Engineering, Jishou University, Jishou, 416000 (China); Yao Shouzhuo [State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410082 (China)

    2009-09-15

    A novel core-shell molecularly imprinting microspheres (MIMs) with trans-resveratrol as the template molecule; acrylamide (AA) as functional monomer and ethylene glycol dimethacrylate (EGDMA) as cross-linker, was prepared based on SiO{sub 2} microspheres with surface imprinting technique. These core-shell trans-resveratrol imprinted microspheres were characterized by infrared spectra (IR), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), and high performance liquid chromatography (HPLC). The results showed that these core-shell imprinted microspheres, which take on perfect spherical shape with average shell thickness of 150 nm, exhibit especially selective recognition for trans-resveratrol. These imprinted microspheres were applied as solid-phase extraction materials for selective extraction of trans-resveratrol from giant knotweed extracting solution successfully.

  9. Tuning the Density of Poly(ethylene glycol Chains to Control Mammalian Cell and Bacterial Attachment

    Directory of Open Access Journals (Sweden)

    Ahmed Al-Ani

    2017-08-01

    Full Text Available Surface modification of biomaterials with polymer chains has attracted great attention because of their ability to control biointerfacial interactions such as protein adsorption, cell attachment and bacterial biofilm formation. The aim of this study was to control the immobilisation of biomolecules on silicon wafers using poly(ethylene glycol(PEG chains by a “grafting to” technique. In particular, to control the polymer chain graft density in order to capture proteins and preserve their activity in cell culture as well as find the optimal density that would totally prevent bacterial attachment. The PEG graft density was varied by changing the polymer solubility using an increasing salt concentration. The silicon substrates were initially modified with aminopropyl-triethoxysilane (APTES, where the surface density of amine groups was optimised using different concentrations. The results showed under specific conditions, the PEG density was highest with grafting under “cloud point” conditions. The modified surfaces were characterised with X-ray photoelectron spectroscopy (XPS, ellipsometry, atomic force microscopy (AFM and water contact angle measurements. In addition, all modified surfaces were tested with protein solutions and in cell (mesenchymal stem cells and MG63 osteoblast-like cells and bacterial (Pseudomonas aeruginosa attachment assays. Overall, the lowest protein adsorption was observed on the highest polymer graft density, bacterial adhesion was very low on all modified surfaces, and it can be seen that the attachment of mammalian cells gradually increased as the PEG grafting density decreased, reaching the maximum attachment at medium PEG densities. The results demonstrate that, at certain PEG surface coverages, mammalian cell attachment can be tuned with the potential to optimise their behaviour with controlled serum protein adsorption.

  10. Identification of a membrane-bound, glycol-stimulated phospholipase A2 located in the secretory granules of the adrenal medulla

    International Nuclear Information System (INIS)

    Hildebrandt, E.; Albanesi, J.P.

    1991-01-01

    Chromaffin granule membranes prepared from bovine adrenal medullae showed Ca 2+ -stimulated phospholipase A 2 (PLA 2 ) activity when assayed at pH 9.0 with phosphatidylcholine containing an [ 14 C]-arachidonyl group in the 2-position. However, the activity occurred in both soluble and particulate subcellular fractions, and did not codistribute with markers for the secretory granule. PLA 2 activity in the granule membrane preparation was stimulated dramatically by addition of glycerol, ethylene glycole, or poly(ethylene glycol). This glycol-stimulated PLA 2 activity codistributed with membrane-bound dopamine β-hydroxylase, a marker for the granule membranes, through the sequence of differential centrifugation steps employed to prepare the granule membrane fraction, as well as on a sucrose density gradient which resolved the granules from mitochondria, lysosomes, and plasma membrane. The glycol-stimulated PLA 2 of the chromaffin granule was membrane-bound, exhibited a pH optimum of 7.8, retained activity in the presence of EDTA, and was inactivated by p-bromophenacyl bromide. When different 14 C-labeled phospholipids were incorporated into diarachidonylphosphatidylcholine liposomes, 1-palmitoyl-2-arachidonylphosphatidylcholine was a better substrate for this enzyme than 1-palmitoyl-2-oleylphosphatidylcholine or 1-acyl-2-arachidonyl-phosphatidylethhanolamine, and distearoylphosphatidylcholine was not hydrolyzed

  11. Novel star-type methoxy-poly(ethylene glycol) (PEG)-poly({epsilon}-caprolactone) (PCL) copolymeric nanoparticles for controlled release of curcumin

    Energy Technology Data Exchange (ETDEWEB)

    Feng Runliang; Zhu Wenxia; Song Zhimei, E-mail: zhimei_song@126.com [University of Jinan, Shandong Academy of Medical Science, Department of Pharmaceutical Engineering, School of Medicine and Life Sciences (China); Zhao Liyan [Hebei North University, Department of Pharmacy (China); Zhai Guangxi [Shandong University, Department of Pharmaceutics, College of Pharmacy (China)

    2013-06-15

    To improve curcumin's (CURs) water solubility and release property, a novel star methoxy poly(ethylene glycol)-poly({epsilon}-caprolactone) (MPEG-PCL) copolymer was synthesized through O-alkylation, basic hydrolysis and ring-opening polymerization reaction with MPEG, epichlorohydrin, and {epsilon}-caprolactone as raw materials. The structure of the novel copolymer was characterized by {sup 1}H NMR, FT-IR, and GPC. The results of FT-IR and differential scanning calorimeter of CUR-loaded nanoparticles (NPs) prepared by dialysis method showed that CUR was successfully encapsulated into the SMP12 copolymeric NPs with 98.2 % of entrapment efficiency, 10.91 % of drug loading, and 88.4 {+-} 11.2 nm of mean particle diameter in amorphous forms. The dissolubility of nanoparticulate CUR was increased by 1.38 Multiplication-Sign 10{sup 5} times over CUR in water. The obtained blank copolymer showed no hemolysis. A sustained CUR release to a total of approximately 56.13 % was discovered from CUR-NPs in 40 % of ethanol saline solution within 72 h on the use of dialysis method. The release behavior fitted the ambiexponent and biphasic kinetics equation. In conclusion, the copolymeric NPs loading CUR might serve as a potential nanocarrier to improve the solubility and release property of CUR.

  12. Novel star-type methoxy-poly(ethylene glycol) (PEG)-poly(ɛ-caprolactone) (PCL) copolymeric nanoparticles for controlled release of curcumin

    Science.gov (United States)

    Feng, Runliang; Zhu, Wenxia; Song, Zhimei; Zhao, Liyan; Zhai, Guangxi

    2013-06-01

    To improve curcumin's (CURs) water solubility and release property, a novel star methoxy poly(ethylene glycol)-poly(ɛ-caprolactone) (MPEG-PCL) copolymer was synthesized through O-alkylation, basic hydrolysis and ring-opening polymerization reaction with MPEG, epichlorohydrin, and ɛ-caprolactone as raw materials. The structure of the novel copolymer was characterized by 1H NMR, FT-IR, and GPC. The results of FT-IR and differential scanning calorimeter of CUR-loaded nanoparticles (NPs) prepared by dialysis method showed that CUR was successfully encapsulated into the SMP12 copolymeric NPs with 98.2 % of entrapment efficiency, 10.91 % of drug loading, and 88.4 ± 11.2 nm of mean particle diameter in amorphous forms. The dissolubility of nanoparticulate CUR was increased by 1.38 × 105 times over CUR in water. The obtained blank copolymer showed no hemolysis. A sustained CUR release to a total of approximately 56.13 % was discovered from CUR-NPs in 40 % of ethanol saline solution within 72 h on the use of dialysis method. The release behavior fitted the ambiexponent and biphasic kinetics equation. In conclusion, the copolymeric NPs loading CUR might serve as a potential nanocarrier to improve the solubility and release property of CUR.

  13. Influence of Poly(ethylene glycol) Degradation on Voiding Sporadically Occurring in Solder Joints with Electroplated Cu

    Science.gov (United States)

    Wafula, F.; Yin, L.; Borgesen, P.; Andala, D.; Dimitrov, N.

    2012-07-01

    This paper presents a comprehensive study of the effect of poly(ethylene glycol) (PEG) degradation on the void formation known to take place sporadically at the interface between electroplated Cu and Pb-free solder. Thorough chemical analysis of our plating solution, carried out at different times of the deposition process by matrix-assisted laser desorption ionization time-of-flight mass spectroscopy, reveals a dramatic shift in the peaks to lower mass range with time. Scanning electron microscopy cross-sectional images of solder joints with Cu samples that have been plated at different times in the course of solution aging show a decrease in void formation. A decreasing magnitude of the deposition overpotential also seen during aging suggests that, breaking down to lower-molecular-weight fragments, PEG loses its suppression effect and likely has lower impact on the voiding propensity. This indirect correlation is confirmed further by the use of plating solutions containing PEG with preselected molecular weight. We also report on the effect of the surface area-to-solution volume ratio on PEG degradation studied by comparative experiments performed in a 50-mL bath with a rotating disc electrode and in a larger cell (Hull cell) with volume of 267 mL. The results show that, at fixed charge per unit volume, PEG degrades at a greatly accelerated rate in the Hull cell featuring higher electrode surface-to-solution volume ratio. Analysis of solder joints with accordingly grown Cu layers suggests that the voiding decreases faster with the accelerated rate of PEG degradation.

  14. Electrochemical investigation on the effects of sulfate ion concentration, temperature and medium pH on the corrosion behavior of Mg–Al–Zn–Mn alloy in aqueous ethylene glycol

    Directory of Open Access Journals (Sweden)

    H. Medhashree

    2017-03-01

    Full Text Available The effects of sulfate ion concentration, temperature and medium pH on the corrosion of Mg–Al–Zn–Mn alloy in 30% aqueous ethylene glycol solution have been investigated by electrochemical techniques such as potentiodynamic polarization and electrochemical impedance spectroscopy methods. Surface morphology of the alloy was examined before and after immersing in the corrosive media by scanning electron microscopy (SEM and energy dispersion X-ray (EDX analysis. Activation energy, enthalpy of activation and entropy of activation were calculated from Arrhenius equation and transition state theory equation. The obtained results indicate that, the rate of corrosion increases with the increase in sulfate ion concentration and temperature of the medium and decreases with the increase in the pH of the medium.

  15. SYNTHESIS, THERMAL STUDIES AND CONVERSION DEGREE OF DIMETHACRYLATE POLYMERS USING NEW NON-TOXIC COINITIATORS

    Directory of Open Access Journals (Sweden)

    Rafael Turra Alarcon

    Full Text Available The aim of this paper is to replace toxic coinitiators (tertiary amines by non-toxic compounds such as glycerol and inositol (polyalcohol in dimethacrylate resins. For this purpose, mid infrared spectroscopy (MIR was used to calculate the monomers' degree of conversion (%DC; as well as simultaneous Thermogravimetric Analysis – Differential Thermal Analysis (TGA-DTA and Differential Scanning Calorimetry (DSC were conducted to evaluate thermal stability, degradation steps, and thermal events. The use of different initiator systems did not modify the thermal events or the thermal stability of each of the dimethacrylate resins. Results show a substitution of system 2 (toxicity by system 3 (low toxicity, which had a good conversion velocity and total conversion in some monomers, is plausible.

  16. Controlled release of 9-nitro-20(S)-camptothecin from methoxy poly(ethylene glycol)-poly(D,L-lactide) micelles

    Energy Technology Data Exchange (ETDEWEB)

    Gao, J M [College of Material Science and Engineering, Southwest Jiaotong University, Chengdu 610031 (China); Ming, J [Department of Medicament, The Second People' s Hospital of Sichuan, Chengdu 610041 (China); He, B; Gu, Z W; Zhang, X D [National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064 (China)], E-mail: zwgu@scu.edu.cn

    2008-03-01

    9-nitro-20(S)-camptothecin (9-NC) is a potent topoisomerase-I inhibitor, and it was applied for clinical trials in cancer treatment. However, the applications of 9-NC were limited by its poor solubility and instability. In order to overcome these disadvantages, 9-NC was encapsulated in amphiphilic copolymer micelles composed of methoxy poly(ethylene glycol)-b-poly(D,L-lactide) (mPEG-PDLLA, PELA). Three diblock copolymers with different PDLLA chain lengths were synthesized. The critical micelle concentration was varied from 10{sup -4} g L{sup -1} to 10{sup -2} g L{sup -1}. The 9-NC loaded micelles were nanospheres with diameters ranging from 30 nm to 60 nm. The relationship between the composition of copolymers and the drug loading content was discussed. The encapsulation of micelles improved the solubility of 9-NC greatly. The solubility of 9-NC in micelle M1 was about 250 times higher than that of 9-NC in a phosphate buffer solution (PBS). The stability of 9-NC in micelles was also promoted. After being incubated in PBS for 160 min, 80% of 9-NC in micelles existed as an active lactone form, while 85% of 9-NC in PBS were transferred to an inactive carboxylate salt form. The release experiments were carried out in PBS and the results showed that the release processes were controllable.

  17. Poly(ethylene glycol)-grafted cyclic acetals based polymer networks with non-water-swellable, biodegradable and surface hydrophilic properties

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Ruixue, E-mail: qdruinyan@hotmail.com [Complex and Intelligent Research Center, School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai (China); Zhang, Nan; Wu, Wentao [School of Materials Science and Engineering, Changzhou University, Changzhou 213164 (China); Wang, Kemin, E-mail: kemin-wang@hotmail.com [School of Materials Science and Engineering, Changzhou University, Changzhou 213164 (China)

    2016-05-01

    Cyclic acetals based biomaterial without acidic products during hydrolytic degradation is a promising candidate for tissue engineering applications; however, low hydrophilicity is still one limitation for its biomedical application. In this work, we aim to achieve non-water-swellable cyclic acetal networks with improved hydrophilicity and surface wettability by copolymerization of cyclic acetal units based monomer, 5-ethyl-5-(hydroxymethyl)-β,β-dimethyl-1, 3-dioxane-2-ethanol diacrylate (EHD) and methoxy poly(ethylene glycol) monoacrylate (mPEGA) under UV irradiation, to avoid swelling of conventional hydrogels which could limit their applicability in particular of the mechanical properties and geometry integrity. Various EHD/mPEGA networks were fabricated with different concentrations of mPEGA from 0 to 30%, and the results showed photopolymerization behavior, mechanical property and thermal stability could not be significantly affected by addition of mPEGA, while the surface hydrophilicity was dramatically improved with the increase of mPEGA and could achieve a water contact angle of 37° with 30% mPEGA concentration. The obtained EHD/mPEGA network had comparative degradation rate to the PECA hydrogels reported previously, and MTT assay indicated it was biocompatible to L929 cells. - Highlights: • Cyclic acetals contained EHD/mPEGA networks were fabricated by photopolymerization. • It can be degraded under simulated physiological condition without acidic products. • Surface hydrophilicity was increased without swelling in water.

  18. Conjugation of diisocyanate side chains to dimethacrylate reduces polymerization shrinkage and increases the hardness of composite resins.

    Science.gov (United States)

    Jan, Yih-Dean; Lee, Bor-Shiunn; Lin, Chun-Pin; Tseng, Wan-Yu

    2014-04-01

    Polymerization shrinkage is one of the main causes of dental restoration failure. This study tried to conjugate two diisocyanate side chains to dimethacrylate resins in order to reduce polymerization shrinkage and increase the hardness of composite resins. Diisocyanate, 2-hydroxyethyl methacrylate, and bisphenol A dimethacrylate were reacted in different ratios to form urethane-modified new resin matrices, and then mixed with 50 wt.% silica fillers. The viscosities of matrices, polymerization shrinkage, surface hardness, and degrees of conversion of experimental composite resins were then evaluated and compared with a non-modified control group. The viscosities of resin matrices increased with increasing diisocyanate side chain density. Polymerization shrinkage and degree of conversion, however, decreased with increasing diisocyanate side chain density. The surface hardness of all diisocyanate-modified groups was equal to or significantly higher than that of the control group. Conjugation of diisocyanate side chains to dimethacrylate represents an effective means of reducing polymerization shrinkage and increasing the surface hardness of dental composite resins. Copyright © 2012. Published by Elsevier B.V.

  19. Detoxification of gold nanorods by conjugation with thiolated poly(ethylene glycol) and their assessment as SERS-active carriers of Raman tags

    Energy Technology Data Exchange (ETDEWEB)

    Boca, Sanda C; Astilean, Simion, E-mail: sboca@phys.ubbcluj.ro, E-mail: sastil@phys.ubbcluj.ro [Nanobiophotonics Center, Institute for Interdisciplinary Research in Nanobioscience, Babes-Bolyai University, Treboniu Laurian Street 42, 400271 Cluj-Napoca (Romania)

    2010-06-11

    We present an effective, low cost protocol to reduce the toxicity of gold nanorods induced by the presence of cetyltrimethylammonium bromide (CTAB) on their lateral surface as a result of the synthesis process. Here, we use thiolated methoxy-poly(ethylene) glycol (mPEG-SH) polymer to displace most of the CTAB bilayer cap from the particle surface. The detoxification process, chemical and structural stability of as-prepared mPEG-SH-conjugated gold nanorods were characterized using a number of techniques including localized surface plasmon resonance (LSPR), transmission electron microscopy (TEM) and surface-enhanced Raman spectroscopy (SERS). In view of future applications as near-infrared (NIR) nanoheaters in localized photothermal therapy of cancer, we investigated the thermal behaviour of mPEG-SH-conjugated gold nanorods above room temperature. We found a critical temperature at around 40 deg. C at which the adsorbed polymer layer is susceptible to undergo conformational changes. Additionally, we believe that such plasmonic nanoprobes could act as SERS-active carriers of Raman tags for application in cellular imaging. In this sense we successfully tested them as effective SERS substrates at 785 nm laser line with p-aminothiophenol (pATP) as a tag molecule.

  20. Detoxification of gold nanorods by conjugation with thiolated poly(ethylene glycol) and their assessment as SERS-active carriers of Raman tags

    Science.gov (United States)

    Boca, Sanda C.; Astilean, Simion

    2010-06-01

    We present an effective, low cost protocol to reduce the toxicity of gold nanorods induced by the presence of cetyltrimethylammonium bromide (CTAB) on their lateral surface as a result of the synthesis process. Here, we use thiolated methoxy-poly(ethylene) glycol (mPEG-SH) polymer to displace most of the CTAB bilayer cap from the particle surface. The detoxification process, chemical and structural stability of as-prepared mPEG-SH-conjugated gold nanorods were characterized using a number of techniques including localized surface plasmon resonance (LSPR), transmission electron microscopy (TEM) and surface-enhanced Raman spectroscopy (SERS). In view of future applications as near-infrared (NIR) nanoheaters in localized photothermal therapy of cancer, we investigated the thermal behaviour of mPEG-SH-conjugated gold nanorods above room temperature. We found a critical temperature at around 40 °C at which the adsorbed polymer layer is susceptible to undergo conformational changes. Additionally, we believe that such plasmonic nanoprobes could act as SERS-active carriers of Raman tags for application in cellular imaging. In this sense we successfully tested them as effective SERS substrates at 785 nm laser line with p-aminothiophenol (pATP) as a tag molecule.

  1. Detoxification of gold nanorods by conjugation with thiolated poly(ethylene glycol) and their assessment as SERS-active carriers of Raman tags

    International Nuclear Information System (INIS)

    Boca, Sanda C; Astilean, Simion

    2010-01-01

    We present an effective, low cost protocol to reduce the toxicity of gold nanorods induced by the presence of cetyltrimethylammonium bromide (CTAB) on their lateral surface as a result of the synthesis process. Here, we use thiolated methoxy-poly(ethylene) glycol (mPEG-SH) polymer to displace most of the CTAB bilayer cap from the particle surface. The detoxification process, chemical and structural stability of as-prepared mPEG-SH-conjugated gold nanorods were characterized using a number of techniques including localized surface plasmon resonance (LSPR), transmission electron microscopy (TEM) and surface-enhanced Raman spectroscopy (SERS). In view of future applications as near-infrared (NIR) nanoheaters in localized photothermal therapy of cancer, we investigated the thermal behaviour of mPEG-SH-conjugated gold nanorods above room temperature. We found a critical temperature at around 40 deg. C at which the adsorbed polymer layer is susceptible to undergo conformational changes. Additionally, we believe that such plasmonic nanoprobes could act as SERS-active carriers of Raman tags for application in cellular imaging. In this sense we successfully tested them as effective SERS substrates at 785 nm laser line with p-aminothiophenol (pATP) as a tag molecule.

  2. The phase equilibria of multicomponent gas hydrate in methanol/ethylene glycol solution based formation water

    International Nuclear Information System (INIS)

    Xu, Shurui; Fan, Shuanshi; Yao, Haiyuan; Wang, Yanhong; Lang, Xuemei; Lv, Pingping; Fang, Songtian

    2017-01-01

    Highlights: • The equilibrium data in THI solution based formation water is first investigated. • The 0.55 mass fraction concentration of EG 0.55 mass fraction fills the vacancy of this area. • The testing pressure range from 4.22 MPa to 34.72 MPa was rare in published data. - Abstract: In this paper, the three-phase coexistence points are generated for multicomponent gas hydrate in methanol (MeOH) solution for (0.05, 0.10, 0.15, and 0.35) mass fraction and ethylene glycol (EG) solution for (0.05, 0.10, 0.15, 0.35, 0.40 and 0.55) mass fraction. The phase equilibrium curves of different system were obtained by an isochoric pressure-search method on high pressure apparatus. The phase equilibrium regions of multicomponent gas hydrate were measured using the same composition of natural gas distributed in the South China Sea. And the different concentration solutions were prepared based formation water. The experimental data were measured in a wide range temperature from 267.74 to 298.53 K and a wide range pressure from 4.22 MPa to 34.72 MPa. The results showed that the hydrate phase equilibrium curves shifted to the inhibition region in accordance with the increased inhibitor concentration. In addition, the equilibrium temperature would decrease about 2.7 K when the concentration of MeOH increased 0.05 mass fraction. Besides, the suppression temperature was 1.25 K with the 0.05 mass fraction increase of EG concentration in the range of 0.05 mass fraction to 0.15 mass fraction. While in high EG concentration region, the suppression temperature was 3.3 K with the same increase of EG concentration (0.05 mass fraction).

  3. Poly(ethylene glycol) (PEG)-lactic acid nanocarrier-based degradable hydrogels for restoring the vaginal microenvironment

    Science.gov (United States)

    Rajan, Sujata Sundara; Turovskiy, Yevgeniy; Singh, Yashveer; Chikindas, Michael L.; Sinko, Patrick J.

    2014-01-01

    Women with bacterial vaginosis (BV) display reduced vaginal acidity, which make them susceptible to associated infections such as HIV. In the current study, poly(ethylene glycol) (PEG) nanocarrier-based degradable hydrogels were developed for the controlled release of lactic acid in the vagina of BV-infected women. PEG-lactic acid (PEG-LA) nanocarriers were prepared by covalently attaching lactic acid to 8-arm PEG-SH via cleavable thioester bonds. PEG-LA nanocarriers with 4 copies of lactic acid per molecule provided controlled release of lactic acid with a maximum release of 23% and 47% bound lactic acid in phosphate buffered saline (PBS, pH 7.4) and acetate buffer (AB, pH 4.3), respectively. The PEG nanocarrier-based hydrogels were formed by cross-linking the PEG-LA nanocarriers with 4-arm PEG-NHS via degradable thioester bonds. The nanocarrier-based hydrogels formed within 20 min under ambient conditions and exhibited an elastic modulus that was 100-fold higher than the viscous modulus. The nanocarrier-based degradable hydrogels provided controlled release of lactic acid for several hours; however, a maximum release of only 10%–14% bound lactic acid was observed possibly due to steric hindrance of the polymer chains in the cross-linked hydrogel. In contrast, hydrogels with passively entrapped lactic acid showed burst release with complete release within 30 min. Lactic acid showed antimicrobial activity against the primary BV pathogen Gardnerella vaginalis with a minimum inhibitory concentration (MIC) of 3.6 mg/ml. In addition, the hydrogels with passively entrapped lactic acid showed retained antimicrobial activity with complete inhibition G. vaginalis growth within 48 h. The results of the current study collectively demonstrate the potential of PEG nanocarrier-based hydrogels for vaginal administration of lactic acid for preventing and treating BV. PMID:25223229

  4. Steam Reforming of Ethylene Glycol over Ni/Al2O3 Catalysts: Effect of the Preparation Method and Reduction Temperature

    International Nuclear Information System (INIS)

    Choi, Dong Hyuck; Park, Jung Eun; Park, Eun Duck

    2015-01-01

    The effect of preparation method on the catalytic activities of the Ni/Al 2 O 3 catalysts on steam reforming of ethylene glycol was investigated. The catalysts were prepared with various preparation methods such as an incipient wetness impregnation, wet impregnation, and coprecipitation method. In the case of coprecipitation method, various precipitants such as KOH, K 2 CO 3 , and NH 4 OH were compared. The prepared catalysts were characterized by using N 2 physisorption, inductively coupled plasma-atomic emission spectroscopy, X-ray diffraction, temperature programmed reduction, pulsed H 2 chemisorption, temperature-programmed oxidation, scanning electron microscopy, and thermogravimetric analysis. Among the catalysts reduced at 773 K, the Ni/Al 2 O 3 catalyst prepared by a coprecipitation with KOH or K 2 CO 3 as precipitants showed the best catalytic performance. The preparation method affected the particle size of Ni, reducibility of nickel oxides, catalytic performance (activity and stability), and types of coke formed during the reaction. The Ni/Al 2 O 3 catalyst prepared by a coprecipitation with KOH showed the increasing catalytic activity with an increase in the reduction temperature from 773 to 1173 K because of an increase in the reduction degree of Ni oxide species even though the particle size of Ni increased with increasing reduction temperature

  5. Novel star-type methoxy-poly(ethylene glycol) (PEG)–poly(ε-caprolactone) (PCL) copolymeric nanoparticles for controlled release of curcumin

    International Nuclear Information System (INIS)

    Feng Runliang; Zhu Wenxia; Song Zhimei; Zhao Liyan; Zhai Guangxi

    2013-01-01

    To improve curcumin’s (CURs) water solubility and release property, a novel star methoxy poly(ethylene glycol)–poly(ε-caprolactone) (MPEG–PCL) copolymer was synthesized through O-alkylation, basic hydrolysis and ring-opening polymerization reaction with MPEG, epichlorohydrin, and ε-caprolactone as raw materials. The structure of the novel copolymer was characterized by 1 H NMR, FT-IR, and GPC. The results of FT-IR and differential scanning calorimeter of CUR-loaded nanoparticles (NPs) prepared by dialysis method showed that CUR was successfully encapsulated into the SMP12 copolymeric NPs with 98.2 % of entrapment efficiency, 10.91 % of drug loading, and 88.4 ± 11.2 nm of mean particle diameter in amorphous forms. The dissolubility of nanoparticulate CUR was increased by 1.38 × 10 5 times over CUR in water. The obtained blank copolymer showed no hemolysis. A sustained CUR release to a total of approximately 56.13 % was discovered from CUR-NPs in 40 % of ethanol saline solution within 72 h on the use of dialysis method. The release behavior fitted the ambiexponent and biphasic kinetics equation. In conclusion, the copolymeric NPs loading CUR might serve as a potential nanocarrier to improve the solubility and release property of CUR.

  6. Mixed DNA/Oligo(ethylene glycol) Functionalized Gold Surface Improve DNA Hybridization in Complex Media

    International Nuclear Information System (INIS)

    Lee, C.; Gamble, L.; Grainger, D.; Castner, D.

    2006-01-01

    Reliable, direct 'sample-to-answer' capture of nucleic acid targets from complex media would greatly improve existing capabilities of DNA microarrays and biosensors. This goal has proven elusive for many current nucleic acid detection technologies attempting to produce assay results directly from complex real-world samples, including food, tissue, and environmental materials. In this study, we have investigated mixed self-assembled thiolated single-strand DNA (ssDNA) monolayers containing a short thiolated oligo(ethylene glycol) (OEG) surface diluent on gold surfaces to improve the specific capture of DNA targets from complex media. Both surface composition and orientation of these mixed DNA monolayers were characterized with x-ray photoelectron spectroscopy (XPS) and near-edge x-ray absorption fine structure (NEXAFS). XPS results from sequentially adsorbed ssDNA/OEG monolayers on gold indicate that thiolated OEG diluent molecules first incorporate into the thiolated ssDNA monolayer and, upon longer OEG exposures, competitively displace adsorbed ssDNA molecules from the gold surface. NEXAFS polarization dependence results (followed by monitoring the N 1s→π* transition) indicate that adsorbed thiolated ssDNA nucleotide base-ring structures in the mixed ssDNA monolayers are oriented more parallel to the gold surface compared to DNA bases in pure ssDNA monolayers. This supports ssDNA oligomer reorientation towards a more upright position upon OEG mixed adlayer incorporation. DNA target hybridization on mixed ssDNA probe/OEG monolayers was monitored by surface plasmon resonance (SPR). Improvements in specific target capture for these ssDNA probe surfaces due to incorporation of the OEG diluent were demonstrated using two model biosensing assays, DNA target capture from complete bovine serum and from salmon genomic DNA mixtures. SPR results demonstrate that OEG incorporation into the ssDNA adlayer improves surface resistance to both nonspecific DNA and protein

  7. (Pressure + volume + temperature) properties for binary oligomeric solutions of poly(ethylene glycol mono-4-octylphenyl ether) with 1-octanol or acetophenone at pressures up to 50 MPa

    International Nuclear Information System (INIS)

    Lee, M.-J.; Ku, T.-J.; Lin Homu

    2009-01-01

    Densities were measured with a high-pressure densitometer for two binary oligomeric systems of poly(ethylene glycol mono-4-octylphenyl ether) (PEGOPE) with 1-octanol or acetophenone at temperatures from 298.15 K to 348.15 K and pressures up to 50 MPa. While the excess volumes are negative in (acetophenone + PEGOPE) over the entire composition range, those are found to change from positive to negative with increasing mole fraction of the solvent in (1-octanol + PEGOPE). The pressure-effect on the liquid densities can be represented accurately by the Tait equation. Moreover, an empirical equation with two characteristic parameters correlates well the PVT data over the entire experimental conditions for each binary system. The experimental specific volumes were also correlated with the Flory-Orwoll-Vrij (FOV) and the Schotte equations of state to within the experimental uncertainty.

  8. Radiation-grafting of 2-hydroxyethylmethacrylate and oligo (ethylene glycol) methyl ether methacrylate onto polypropylene films by one step method

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez-Jimenez, Alejandro [Departamento de Quimica de Radiaciones y Radioquimica, Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, Circuito Exterior, Ciudad Universitaria, Mexico DF 04510 (Mexico); Alvarez-Lorenzo, Carmen; Concheiro, Angel [Departamento de Farmacia y Tecnologia Farmaceutica, Universidad de Santiago de Compostela, 15782-Santiago de Compostela (Spain); Bucio, Emilio, E-mail: ebucio@nucleares.unam.mx [Departamento de Quimica de Radiaciones y Radioquimica, Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, Circuito Exterior, Ciudad Universitaria, Mexico DF 04510 (Mexico)

    2012-01-15

    Polypropylene films were modified with 2-hydroxyethylmethacrylate (HEMA) and oligo (ethylene glycol) methyl ether methacrylate (OEGMA) using the pre-irradiation method with gamma-rays (one step method). The effect of absorbed dose from 10 to 100 kGy, temperature (50, 60, and 70 {sup o}C), monomer concentration between 12.5% and 62.5%, monomers ratio from 10% to 90% and reaction time from 5 to 50 h; on the degree of grafting was determined. The grafted samples were analyzed by FTIR-ATR, TGA, DSC, swelling, and contact angle. Grafts onto polymeric films between 3% and 109% were obtained at doses from 10 to 100 kGy and a dose rate around 7.4 kGy/h. The graft percent increased with the content in HEMA in the HEMA:OEGMA feed mixture, which indicates a lower reactivity of OEGMA compared to HEMA. The hydrogel layer grafted on the polypropylene substrate increases the hydrophilicity of the surface and also provides certain temperature-responsiveness, which may be of interest for biomedical applications. - Highlights: > PP was grafted with a hydrogel layer applying the {gamma}-ray pre-irradiation method. > Effects of radiation dose, time, temperature and monomers concentration were evaluated. > Grafted layer increases the hydrophilicity of PP films. > HEMA and OEGMA grafted onto PP may be of interest for biomedical applications.

  9. Synthesis of bioactive poly(ethylene glycol)/SiO2-CaO-P2O5 hybrids for bone regeneration

    International Nuclear Information System (INIS)

    Liu Wei; Wu Xiaohong; Zhan Hongbing; Yan Fuhua

    2012-01-01

    Poly(ethylene glycol) (PEG)/SiO 2 -CaO-P 2 O 5 hybrid xerogels were prepared using a room temperature sol-gel process. The advantage of this hybrid material over conventional composites is the molecular scale interactions between the bioactive inorganic components and the biodegradable organic components. Since PEG was added into the sol when the hydrolysis of tetraethoxysilane occurred, the molecular chain of PEG was penetrated into the SiO 2 networks to form a semi-IPN structure. Due to the excellent biocompatibility and aqueous solubility of PEG molecules, as well as the bioactivity of the inorganic components, the biological and mechanical properties of this hybrid xerogel exhibit great potential for bone regeneration applications. The formation of hydroxyapatite was observed when the xerogel was immersed into simulated body fluid, demonstrating good bioactivity of the hybrid. The cell toxicity test also demonstrated that the hybrid material is suitable for the proliferation of MC3T3-E1 cells. Thus, the PEG/SiO 2 -CaO-P 2 O 5 hybrid xerogel has great potential to meet the demands of bone regeneration materials. - Highlights: ► PEG was penetrated into the SiO 2 networks to form a semi-IPN structure. ► This hybrid xerogel exhibit great potential for bone regeneration applications. ► SEM micrographs confirm the bioactivity of the samples.

  10. Exploring Poly(ethylene glycol-Polyzwitterion Diblock Copolymers as Biocompatible Smart Macrosurfactants Featuring UCST-Phase Behavior in Normal Saline Solution

    Directory of Open Access Journals (Sweden)

    Noverra M. Nizardo

    2018-03-01

    Full Text Available Nonionic-zwitterionic diblock copolymers are designed to feature a coil-to-globule collapse transition with an upper critical solution temperature (UCST in aqueous media, including physiological saline solution. The block copolymers that combine presumably highly biocompatible blocks are synthesized by chain extension of a poly(ethylene glycol (PEG macroinitiator via atom transfer radical polymerization (ATRP of sulfobetaine and sulfabetaine methacrylates. Their thermoresponsive behavior is studied by variable temperature turbidimetry and 1H NMR spectroscopy. While the polymers with polysulfobetaine blocks exhibit phase transitions in the physiologically interesting window of 30–50 °C only in pure aqueous solution, the polymers bearing polysulfabetaine blocks enabled phase transitions only in physiological saline solution. By copolymerizing a pair of structurally closely related sulfo- and sulfabetaine monomers, thermoresponsive behavior can be implemented in aqueous solutions of both low and high salinity. Surprisingly, the presence of the PEG blocks can affect the UCST-transitions of the polyzwitterions notably. In specific cases, this results in “schizophrenic” thermoresponsive behavior displaying simultaneously an UCST and an LCST (lower critical solution temperature transition. Exploratory experiments on the UCST-transition triggered the encapsulation and release of various solvatochromic fluorescent dyes as model “cargos” failed, apparently due to the poor affinity even of charged organic compounds to the collapsed state of the polyzwitterions.

  11. In Vitro Maturation and Fertilization of Cryopreserved Germinal Vesicle Stage Oocytes in NMRI Mice, Using Ethylene Glycol and DMSO

    Directory of Open Access Journals (Sweden)

    O Mayahi

    2011-10-01

    Full Text Available Background & Aim: Cryopreservation of oocytes is an essential part of reproductive biotechnology. The objective of the present study was to investigate the effects of exposure to combination of cryoprotectants and vitrification on immature mouse oocytes with or without cumulus cells. Methods: This was an experimental study conducted at Yasouj University of Medical Sciences in 2010. Immature oocytes with and without cumulus cells were isolated from ovaries of mice 4-6 weeks of age. They were vitrified in conventional straw using ethylene glycol (EG, dimethyl sulfoxide (DMSO and sucrose as vitrification solution or exposed to vitrification solution without subjected to liquid nitrogen. After warming, oocytes were assessed for nuclear maturation and fertilization. The collected data were analyzed with one-way ANOVA and Tukey test. Results: Survival and fertilization rates in vitrified oocytes with cumulus cells were significantly lower than the control group (p<0.05. Maturation rates in exposure groups were significantly lower than the vitrified and control groups (p<0.05. The fertilization rate increased significantly in all experiment and control groups with cumulus cells in comparison with denuded oocytes (p<0.05. Conclusion: Germinal vesicle stage oocytes in the presence or absence of cumulus cells can be vitrified successfully. Exposure to cryoprotectants can decrease the developmental competence of GV oocytes. Presence of cumulus cells can increase the fertilization rate in IVF procedure.

  12. Phase equilibria of hydrogen sulfide and carbon dioxide simple hydrates in the presence of methanol, (methanol + NaCl) and (ethylene glycol + NaCl) aqueous solutions

    International Nuclear Information System (INIS)

    Mohammadi, Amir H.; Richon, Dominique

    2012-01-01

    Highlights: → Dissociation conditions of H 2 S or CO 2 hydrate + inhibitor aqueous solution are reported. → Methanol, methanol + NaCl and EG + NaCl aqueous solutions are considered as inhibitors. → Comparisons are made between our experimental data and the corresponding literature data. - Abstract: This work aims at reporting the dissociation pressures of hydrogen sulfide and carbon dioxide simple hydrates in the presence of methanol, (methanol + NaCl) and (ethylene glycol + NaCl) aqueous solutions at different temperatures and various concentrations of inhibitor in aqueous solution. The equilibrium results were generated using an isochoric pressure-search method. These values are compared with some selected experimental data from the literature on the dissociation conditions of hydrogen sulfide and carbon dioxide simple hydrates in the presence of pure water to show the inhibition effects of the above mentioned aqueous solutions. Comparisons are finally made between our experimental values and the corresponding literature data. Some disagreements among the literature data and our data are found.

  13. In-Situ Immobilization of Ni Complex on Amine-Grafted SiO₂ for Ethylene Polymerization.

    Science.gov (United States)

    Lee, Sang Yun; Ko, Young Soo

    2018-02-01

    The results on the In-Situ synthesis of Ni complex on amine-grafted SiO2 and its ethylene polymerization were explained. SiO2/2NS/(DME)NiBr2 and SiO2/3NS/(DME)NiBr2(Ni(II) bromide ethylene glycol dimethyl ether) catalysts were active for ethylene polymerization. The highest activity was shown at the polymerization temperature of 25 °C, and SiO2/2NS/(DME)NiBr2 exhibited higher activity than SiO2/3NS/(DME)NiBr2. The PDI values of SiO2/2NS/(DME)NiBr2 were in the range of 8~18. The aminosilane compounds and Ni were evenly grafted and distributed in the silica. It was proposed that DME ligand was mostly removed during the supporting process, and only NiBr2 was complexed with the amine group of 2NS based on the results of FT-IR and ethylene polymerization.

  14. Molecularly Imprinted Microrods via Mesophase Polymerization.

    Science.gov (United States)

    Parisi, Ortensia Ilaria; Scrivano, Luca; Candamano, Sebastiano; Ruffo, Mariarosa; Vattimo, Anna Francesca; Spanedda, Maria Vittoria; Puoci, Francesco

    2017-12-28

    The aim of the present research work was the synthesis of molecularly imprinted polymers (MIPs) with a rod-like geometry via "mesophase polymerization". The ternary lyotropic system consisting of sodium dodecyl sulfate (SDS), water, and decanol was chosen to prepare a hexagonal mesophase to direct the morphology of the synthesized imprinted polymers using theophylline, methacrylic acid, and ethylene glycol dimethacrylate as a drug model template, a functional monomer, and a crosslinker, respectively. The obtained molecularly imprinted microrods (MIMs) were assessed by performing binding experiments and in vitro release studies, and the obtained results highlighted good selective recognition abilities and sustained release properties. In conclusion, the adopted synthetic strategy involving a lyotropic mesophase system allows for the preparation of effective MIPs characterized by a rod-like morphology.

  15. A Solid Binding Matrix/Mimic Receptor-Based Sensor System for Trace Level Determination of Iron Using Potential Measurements

    Directory of Open Access Journals (Sweden)

    Ayman H. Kamel

    2011-01-01

    Full Text Available Iron(II-(1,10-phenanthroline complex imprinted membrane was prepared by ionic imprinting technology. In the first step, Fe(II established a coordination linkage with 1,10-phenanthroline and functional monomer 2-vinylpyridine (2-VP. Next, the complex was copolymerized with ethylene glycol dimethacrylate (EGDMA as a crosslinker in the presence of benzoyl peroxide (BPO as an initiator. Potentiometric chemical sensors were designed by dispersing the iron(II-imprinted polymer particles in 2-nitrophenyloctyl ether (o-NPOE plasticizer and then embedded in poly vinyl chloride (PVC matrix. The sensors showed a Nernstian response for [Fe(phen3]2+ with limit of detection 3.15 ng mL−1 and a Nernstian slope of 35.7 mV per decade.

  16. Synthesis of Molecularly Imprinted Polymer for Sterol Separation

    Directory of Open Access Journals (Sweden)

    Yuangsawad Ratanaporn

    2016-01-01

    Full Text Available Molecular imprinted polymer (MIP was prepared by bulk polymerization in acetone using acrylamide as a functional monomer, ethylene glycol dimethacrylate as a crosslinker, stigmasterol as a template and benzoyl peroxide as an initiator. The obtained MIPs were characterized using a scanning electron microscope and a fourier transform infrared spectrophotometer. Performance in sterol adsorption of MIPs prepared under various conditions was investigated using a model solution of phytosterols in heptane, comparing with a nonimprinted polymer (NIP. Statistical analysis revealed that the amounts of crosslinker and template strongly affected the performance of MIP while the amount of solvent slightly affected the performance of MIP. MIP synthesized under the optimal condition had adsorption capacity of 1.28 mgsterols/gads which were 1.13 times of NIP.

  17. Preparation of well-defined erythromycin imprinted non-woven fabrics via radiation-induced RAFT-mediated grafting

    Science.gov (United States)

    Söylemez, Meshude Akbulut; Barsbay, Murat; Güven, Olgun

    2018-01-01

    Radiation-induced RAFT polymerization technique was applied to synthesize well-defined molecularly imprinted polymers (MIPs) of erythromycin (ERY). Methacrylic acid (MAA) was grafted onto porous polyethylene (PE)/polypropylene (PP) nonwoven fabrics, under γ-irradiation by employing 2-pheny-2-propyl benzodithioate as the RAFT agent and ethylene glycol dimethacrylate (EGDMA) as the crosslinker. MAA/erythromycin ratios of 2/1, 4/1, 6/1 were tested to optimize the synthesis of MIPs. The highest binding capacity was encountered at a MAA/ERY ratio of 4/1. Non-imprinted polymers (NIPs) were also synthesized in the absence of ERY. The MIPs synthesized by RAFT method presented a better binding capacity compared to those prepared by conventional method where no RAFT agent was employed.

  18. A bacterium that degrades and assimilates poly(ethylene terephthalate).

    Science.gov (United States)

    Yoshida, Shosuke; Hiraga, Kazumi; Takehana, Toshihiko; Taniguchi, Ikuo; Yamaji, Hironao; Maeda, Yasuhito; Toyohara, Kiyotsuna; Miyamoto, Kenji; Kimura, Yoshiharu; Oda, Kohei

    2016-03-11

    Poly(ethylene terephthalate) (PET) is used extensively worldwide in plastic products, and its accumulation in the environment has become a global concern. Because the ability to enzymatically degrade PET has been thought to be limited to a few fungal species, biodegradation is not yet a viable remediation or recycling strategy. By screening natural microbial communities exposed to PET in the environment, we isolated a novel bacterium, Ideonella sakaiensis 201-F6, that is able to use PET as its major energy and carbon source. When grown on PET, this strain produces two enzymes capable of hydrolyzing PET and the reaction intermediate, mono(2-hydroxyethyl) terephthalic acid. Both enzymes are required to enzymatically convert PET efficiently into its two environmentally benign monomers, terephthalic acid and ethylene glycol. Copyright © 2016, American Association for the Advancement of Science.

  19. Intermolecular interactions in mixtures of poly (ethylene glycol) with methoxybenzene and ethoxybenzene: Volumetric and viscometric studies

    International Nuclear Information System (INIS)

    Zafarani-Moattar, Mohammed Taghi; Dehghanian, Saeedeh

    2014-01-01

    Highlights: • Density and viscosity values of PEG400 + methoxybenzene or + ethoxybenzene were measured. • The excess molar volume and thermodynamic functions of activation were calculated. • The results were interpreted in light of polymer–solvent interactions. • The changes in activation function indicate the viscous flow process. • The thermodynamic functions were correlated with the suitable equations. -- Abstract: The density and viscosity values of the binary mixtures of {poly (ethylene glycol) (PEG400) + methoxybenzene, or + ethoxybenzene} have been measured at T = (298.15, 308.15, and 318.15) K. From these experimental values, the excess molar volume, apparent specific volume, partial specific volume of solute, partial specific volume of solvent and excess Gibbs free energy of activation have been computed over the entire range of composition at three temperatures. From the experimental data, the thermodynamic functions of activation have been estimated for each binary mixture. The obtained results have been interpreted in light of polymer–solvent interactions and packing effects. The signs of excess molar volume and deviations of excess Gibbs free energy of activation have been used to obtain some information in regard to existence of specific interactions between PEG400 and solvents molecules. The changes in entropy and enthalpy of activation from the initial state to the transition state were also calculated in order to see which one of these functions controls viscous flow process in the studied polymer solutions. The excess molar volume and excess Gibbs free energy of activation values have been adequately fitted to the Redlich–Kister polynomial. Apparent specific volume values were correlated with the suitable equation. The different models proposed for correlating the viscosity of polymer solutions or liquid mixtures (segment-based-Eyring–NRTL, segment-based-Eyring–Wilson, Grunbreg–Nissan, Frenkel, Hind et al., Katti

  20. Tuning mechanical performance of poly(ethylene glycol) and agarose interpenetrating network hydrogels for cartilage tissue engineering.

    Science.gov (United States)

    Rennerfeldt, Deena A; Renth, Amanda N; Talata, Zsolt; Gehrke, Stevin H; Detamore, Michael S

    2013-11-01

    Hydrogels are attractive for tissue engineering applications due to their incredible versatility, but they can be limited in cartilage tissue engineering applications due to inadequate mechanical performance. In an effort to address this limitation, our team previously reported the drastic improvement in the mechanical performance of interpenetrating networks (IPNs) of poly(ethylene glycol) diacrylate (PEG-DA) and agarose relative to pure PEG-DA and agarose networks. The goal of the current study was specifically to determine the relative importance of PEG-DA concentration, agarose concentration, and PEG-DA molecular weight in controlling mechanical performance, swelling characteristics, and network parameters. IPNs consistently had compressive and shear moduli greater than the additive sum of either single network when compared to pure PEG-DA gels with a similar PEG-DA content. IPNs withstood a maximum stress of up to 4.0 MPa in unconfined compression, with increased PEG-DA molecular weight being the greatest contributing factor to improved failure properties. However, aside from failure properties, PEG-DA concentration was the most influential factor for the large majority of properties. Increasing the agarose and PEG-DA concentrations as well as the PEG-DA molecular weight of agarose/PEG-DA IPNs and pure PEG-DA gels improved moduli and maximum stresses by as much as an order of magnitude or greater compared to pure PEG-DA gels in our previous studies. Although the viability of encapsulated chondrocytes was not significantly affected by IPN formulation, glycosaminoglycan (GAG) content was significantly influenced, with a 12-fold increase over a three-week period in gels with a lower PEG-DA concentration. These results suggest that mechanical performance of IPNs may be tuned with partial but not complete independence from biological performance of encapsulated cells. © 2013 Elsevier Ltd. All rights reserved.

  1. pH-Responsive Shape Memory Poly(ethylene glycol)-Poly(ε-caprolactone)-based Polyurethane/Cellulose Nanocrystals Nanocomposite.

    Science.gov (United States)

    Li, Ying; Chen, Hongmei; Liu, Dian; Wang, Wenxi; Liu, Ye; Zhou, Shaobing

    2015-06-17

    In this study, we developed a pH-responsive shape-memory polymer nanocomposite by blending poly(ethylene glycol)-poly(ε-caprolactone)-based polyurethane (PECU) with functionalized cellulose nanocrystals (CNCs). CNCs were functionalized with pyridine moieties (CNC-C6H4NO2) through hydroxyl substitution of CNCs with pyridine-4-carbonyl chloride and with carboxyl groups (CNC-CO2H) via 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) mediated surface oxidation, respectively. At a high pH value, the CNC-C6H4NO2 had attractive interactions from the hydrogen bonding between pyridine groups and hydroxyl moieties; at a low pH value, the interactions reduced or disappeared due to the protonation of pyridine groups, which are a Lewis base. The CNC-CO2H responded to pH variation in an opposite manner. The hydrogen bonding interactions of both CNC-C6H4NO2 and CNC-CO2H can be readily disassociated by altering pH values, endowing the pH-responsiveness of CNCs. When these functionalized CNCs were added in PECU polymer matrix to form nanocomposite network which was confirmed with rheological measurements, the mechanical properties of PECU were not only obviously improved but also the pH-responsiveness of CNCs could be transferred to the nanocomposite network. The pH-sensitive CNC percolation network in polymer matrix served as the switch units of shape-memory polymers (SMPs). Furthermore, the modified CNC percolation network and polymer molecular chains also had strong hydrogen bonding interactions among hydroxyl, carboxyl, pyridine moieties, and isocyanate groups, which could be formed or destroyed through changing pH value. The shape memory function of the nanocomposite network was only dependent on the pH variation of the environment. Therefore, this pH-responsive shape-memory nancomposite could be potentially developed into a new smart polymer material.

  2. Improved surface hydrophilicity and antifouling property of polysulfone ultrafiltration membrane with poly(ethylene glycol) methyl ether methacrylate grafted graphene oxide nanofillers

    Science.gov (United States)

    Wang, Haidong; Lu, Xiaofei; Lu, Xinglin; Wang, Zhenghui; Ma, Jun; Wang, Panpan

    2017-12-01

    In this study, the GO-g-P(PEGMA) nanoplates were first synthesized by grafting hydrophilic poly (poly (ethylene glycol) methyl ether methacrylate) via surface-initiated atom transfer radical polymerization (SI-ATRP) method. A novel polysulfone (PSF) nanocomposite membrane using GO-g-P(PEGMA) nanoplates as nanofillers was fabricated. FTIR, TGA, 1H NMR, GPC and TEM were applied to verify the successful synthesis of the prepared nanoplates, while SEM, AFM, XPS, contact angle goniometry and filtration experiments were used to characterize the fabricated nanocomposite membranes. It was found that the new prepared nanofillers were well dispersed in organic PSF matrix, and the PSF/GO-g-P(PEGMA) nanocomposite membrane showed significant improvements in water flux and flux recovery rate. Based on the results of resistance-in-series model, the nanocomposite membrane exhibited superior resistance to the irreversible fouling. The excellent filtration and antifouling performance are attributed to the segregation of GO-g-P(PEMGA) nanofillers toward the membrane surface and the pore walls. Notably, the blended nanofillers appeared a stable retention in/on nanocomposite membrane after 30 days of washing time. The demonstrated method of synthesis GO-g-P(PEGMA) in this study can also be extended to preparation of other nanocomposite membrane in future.

  3. Effect of mitochondrial potassium channel on the renal protection mediated by sodium thiosulfate against ethylene glycol induced nephrolithiasis in rat model

    Directory of Open Access Journals (Sweden)

    N. Baldev

    2015-12-01

    Full Text Available Purpose: Sodium thiosulfate (STS is clinically reported to be a promising drug in preventing nephrolithiasis. However, its mechanism of action remains unclear. In the present study, we investigated the role of mitochondrial KATP channel in the renal protection mediated by STS. Materials and Methods: Nephrolithiasis was induced in Wistar rats by administrating 0.4% ethylene glycol (EG along with 1% ammonium chloride for one week in drinking water followed by only 0.75% EG for two weeks. Treatment groups received STS, mitochondrial KATP channel opener and closer exclusively or in combination with STS for two weeks. Results: Animals treated with STS showed normal renal tissue architecture, supported by near normal serum creatinine, urea and ALP activity. Diazoxide (mitochondria KATP channel opening treatment to the animal also showed normal renal tissue histology and improved serum chemistry. However, an opposite result was shown by glibenclamide (mitochondria KATP channel closer treated rats. STS administered along with diazoxide negated the renal protection rendered by diazoxide alone, while it imparted protection to the glibenclamide treated rats, formulating a mitochondria modulated STS action. Conclusion: The present study confirmed that STS render renal protection not only through chelation and antioxidant effect but also by modulating the mitochondrial KATP channel for preventing urolithiasis.

  4. Conjugation of diisocyanate side chains to dimethacrylate reduces polymerization shrinkage and increases the hardness of composite resins

    Directory of Open Access Journals (Sweden)

    Yih-Dean Jan

    2014-04-01

    Conclusion: Conjugation of diisocyanate side chains to dimethacrylate represents an effective means of reducing polymerization shrinkage and increasing the surface hardness of dental composite resins.

  5. Urea dimethacrylates functionalized with bisphosphonate/bisphosphonic acid for improved dental materials

    OpenAIRE

    Güven, Melek Naz; Guven, Melek Naz; Akyol, Ece; Duman, Fatma Demir; Acar, Havva Yağcı; Acar, Havva Yagci; Karahan, Özlem; Karahan, Ozlem; Avcı, Duygu; Avci, Duygu

    2017-01-01

    Incorporation of bisphosphonate/bisphosphonic acid groups in dental monomer structures should increase interaction of these monomers with dental tissue as these groups have strong affinity for hydroxyapatite. Therefore, new urea dimethacrylates functionalized with bisphosphonate (1a, 1b) and bisphosphonic acid (2a, 2b) groups are synthesized and evaluated for dental applications. Monomers 1a and 1b are synthesized from 2isocyanatoethyl methacrylate (IEM) and two bisphosphonated amines (BPA1 a...

  6. Spectroscopic study on the intermolecular interaction of SO{sub 2} absorption in poly-ethylene glycol+H{sub 2}O systems

    Energy Technology Data Exchange (ETDEWEB)

    He, Zhiqiang; Liu, Jinrong; Zhang, Jianbin; Zhang, Na [Inner Mongolia University of Technology, Huhhot (China)

    2014-03-15

    Poly-Ethylene Glycol (PEG) 300+H{sub 2}O solutions (PEGWs) has been used as a promising medium for the absorption of SO{sub 2}. We investigated the UV, FTIR, {sup 1}H-NMR, and fluorescence spectra in the absorption processes of SO{sub 2} in PEGWs to present an important absorption mechanism. Based on the spectral results, the possibility of intermolecular hydrogen bond formation by hydroxyl oxygen atom in the PEG molecule with hydrogen atom in H{sub 2}O and S…O interaction formation by the oxygen atoms in PEG with the sulfur atom in SO{sub 2} are discussed. This shows that the spectral changes may be due to the formation of -CH{sub 2}CH{sub 2}O(H)…HOH… and -CH{sub 2}-CH{sub 2}-O(CH{sub 2}-CH{sub 2}-)…HOH… in PEGWs and the formation of -CH{sub 2}CH{sub 2}OH…OSO…, and intermolecular S…O interaction between PEG and SO{sub 2} as the formation of -CH{sub 2}CH{sub 2}OCH{sub 2}CH{sub 2}O(H)…(O)S(O)… and -CH{sub 2}-CH{sub 2}-O(CH{sub 2}-CH{sub 2}-) …(O)S(O)…. The existence of these bonds benefits the absorption and desorption processes of SO{sub 2} in PEGWs.

  7. Catalytic steam reforming of tar derived from steam gasification of sunflower stalk over ethylene glycol assisting prepared Ni/MCM-41

    International Nuclear Information System (INIS)

    Karnjanakom, Surachai; Guan, Guoqing; Asep, Bayu; Du, Xiao; Hao, Xiaogang; Samart, Chanatip; Abudula, Abuliti

    2015-01-01

    Highlights: • Ni/MCM-41 was prepared by EG-assisted co-impregnation method. • EG-assisted co-impregnation method resulted in Ni particles well dispersed on MCM-41. • Ni/MCM-41-EG catalyst had high catalytic activity for tar reforming. • The highest H 2 gas yield was obtained when using 20 wt.% Ni/MCM-41-EG. • The catalysts were reused up to 5 cycles without any serious deactivation. - Abstract: Ethylene glycol (EG) assisted impregnation of nickel catalyst on MCM-41 (Ni/MCM-41-EG) was performed and applied for steam reforming of tar derived from biomass. The catalyst was characterized by SEM–EDX, BET, XRD, and TPR. It is found that smaller nickel particles were well dispersed on MCM-41 and better catalytic activity was shown for the Ni/MCM-41-EG when compared with the catalyst of Ni/MCM-41 prepared by using the conventional impregnation method. H 2 yield increased approximately 8% when using 20 wt.% Ni/MCM-41-EG instead of 20 wt.% Ni/MCM-41 for the steam reforming of tar derived from sunflower stalk. The catalyst reusability was also tested up to five cycles, and no obvious activity reduction was observed. It indicates that EG assisted impregnation method is a good way to prepare metal loaded porous catalyst with high catalytic activity, high loading amount and long-term stability for the tar reforming

  8. Derivation of a chemical-specific adjustment factor (CSAF) for use in the assessment of risk from chronic exposure to ethylene glycol: Application of international programme for chemical safety guidelines

    International Nuclear Information System (INIS)

    Palmer, Robert B.; Brent, Jeffrey

    2005-01-01

    The International Programme for Chemical Safety (IPCS) has developed a set of guidelines ('the Guidance') for the establishment of Chemical-Specific Adjustment Factors (CSAFs) for in the assessment of toxicity risk to the human population as a result of chemical exposure. The development of case studies is encouraged in the Guidance document and comments on them have been encouraged by the IPCS. One provision in the Guidance is for the determination of CSAFs based on human data. We present a case study of the use of the Guidance for the determination of the CSAF for ethylene glycol (EG) primarily utilizing clinically obtained data. The most relevant endpoint for this analysis was deemed to be acute renal injury. These data were applied based on an assessment of the known pharmaco/toxico-kinetic properties of EG. Because of the lack of both bioaccumulation of EG and reports of chronic or progressive renal injury from EG, it was concluded that the most appropriate model of chronic exposure is one of repeated acute episodes. The most relevant exposure metric was determined to be plasma glycolate concentration. Based on a prospective human study of EG-poisoned patients, the NOAEL for glycolate was found to be 10.1 mM. This value is similar to that obtained from animal data. The application of the Guidelines to this data resulted in a CSAF of 10.24, corresponding to a daily EG dose of 43.7 mg/kg/day. In 2000, Health Canada (HC) produced an animal data-based analysis of the maximum tolerated dose of EG. The results of our analysis are compared with those of HC, and the strengths and weaknesses of these two data types related to EG are discussed

  9. The improvement of the mechanical properties of PMMA denture base by Al2O3 particles with nitrile rubber

    Science.gov (United States)

    Alhareb, Ahmed Omran; Akil, Hazizan Md; Ahmad, Zainal Arifin

    2017-07-01

    Poly methyl methacrylate (PMMA) is mostly used for fabrication of denture base by heat-curing technique. Therefore, the purpose of this study is to investigate the effect of Al2O3 filler as toughening particles together with nitrile butadiene rubber (NBR) particles as impact modifier were used to reinforce PMMA denture base materials on the impact strength (IS) and fracture toughness (KIC). PMMA powder was mixed with liquid methyl methacrylate (MMA) and ethylene glycol dimethacrylate (EGDMA) as crosslinking agent. The powder components are PMMA, benzoyl peroxide, NBR (5, 7.5 and 10 wt%), and Al2O3 filler (5 wt%) treated by silane. The liquid components are 90% of methyl methacrylate and 10 % ethylene glycol dimethacryate. FTIR analyses confirmed that the Al2O3 filler was successfully treated with silane as coupling agent. The morphology of fracture surfaces was characterized using field emission scanning electron microscopy (FESEM). The results shown that IS and KIC improved significantly when using treated the Al2O3 filler. IS has increased to 56% (8.26 KJ/m2) and 73% (2.77 MPa.m1/2) for KIC when treated Al2O3 filler compared to unreinforced PMMA matrix. Statistical analyses of data results were significantly improved (PNBR with treated Al2O3 filler compared to other the compositions.

  10. Photocurable surgical tissue adhesive glues composed of photoreactive gelatin and poly(ethylene glycol) diacrylate.

    Science.gov (United States)

    Nakayama, Y; Matsuda, T

    1999-01-01

    This article presents a novel photochemically driven surgical tissue adhesive technology using photoreactive gelatins and a water-soluble difunctional macromer (poly(ethylene glycol) diacrylate: PEGDA).The gelatins were partially derivatized with photoreactive groups, such as ultraviolet light (UV)-reactive benzophenone and visible light-reactive xanthene dye (e.g., fluorescein sodium salt, eosin Y, and rose bengal). A series of the prepared photocurable tissue adhesive glues, consisting of the photoreactive gelatin, PEGDA, and a saline solution with or without ascorbic acid as a reducing agent, were viscous solutions under warming, and their effectiveness was evaluated as hemostasis- and anastomosis-aid in cardiovascular surgery. Regardless of the type of photoreactive groups, the irradiation of the photocurable tissue adhesive glues by UV or visible light within 1 min produced water-swollen gels, which had a high adhesive strength to wet collagen film. These were due to the synergistic action of photoreactive group-initiated photo-cross-linking and photograft polymerization. An increase in the irradiation time resulted in increased gel yield and reduced water swellability. A decrease in the molecular weight of PEGDA and an increase in concentration of both gelatin and PEGDA resulted in reduced water swellability and increased tensile and burst strengths of the resultant gels. In rats whose livers were injured with a trephine in laparotomy, the bleeding spots were coated with the photocurable adhesive glue and irradiated through an optical fiber. The coated solution was immediately converted to a swollen gel. The gel was tightly adhered to the liver tissue presumably by interpenetration, and concomitantly hemostasis was completed. The anastomosis treatment with the photocurable glue in the canine abdominal or thoracic aortas incised with a knife resulted in little bleeding under pulsatile flow after declamping. Histological examination showed that the glues

  11. Inhibition of β-bungarotoxin binding to brain membranes by mast cell degranulating peptide, toxin I, and ethylene glycol bis(β-aminoethyl ether)-N,N,N',N'-tetraacetic acid

    International Nuclear Information System (INIS)

    Schmidt, R.R.; Betz, H.; Rehm, H.

    1988-01-01

    The presynaptically active snake venom neurotoxin β-bungarotoxin (β-Butx) is known to affect neurotransmitter release by binding to a subtype of voltage-activated K + channels. Here the authors show that mast cell degranulating (MCD) peptide from bee venom inhibits the binding of 125 I-labeled β-Butx to chick and rat brain membranes with apparent K/sub i/ values of 180 nM and 1100 nM, respectively. The mechanisms of inhibition of MCD peptide is noncompetitive, as is inhibition of 125 I-β-Butx binding by the protease inhibitor homologue from mamba venom, toxin I. β-Butx and its binding antagonists thus bind to different sites of the same membrane protein. Removal of Ca 2+ by ethylene glycol bis(β-aminoethyl ether)-N,N,N',N'-tetraacetic acid inhibits the binding of 125 I-β-Butx by lowering its affinity to brain membranes

  12. Validated determination of losartan and valsartan in human plasma by stir bar sorptive extraction based on acrylate monolithic polymer, liquid chromatographic analysis and experimental design methodology.

    Science.gov (United States)

    Babarahimi, Vida; Talebpour, Zahra; Haghighi, Farideh; Adib, Nuoshin; Vahidi, Hamed

    2018-05-10

    In our previous work, a new monolithic coating based on vinylpyrrolidone-ethylene glycol dimethacrylate polymer was introduced for stir bar sorptive extraction. The formulation of the prepared vinylpyrrolidone-ethylene glycol dimethacrylate monolithic polymer was optimized and the satisfactory quality of prepared coated stir bar was demonstrated. In this work, the prepared stir bar was utilized in combination with ultrasound-assisted liquid desorption, followed by high-performance liquid chromatography with ultraviolet detection for the simultaneous determination of losartan (LOS) and valsartan (VAS) in human plasma samples. In a comparison study, the extraction efficiency of the prepared stir bar was accompanied much higher extraction efficiency than the two commercial stir bars (polydimethylsiloxand and polyacrylate) for both target compounds. In order to improve the desorption efficiency of LOS and VAS, the best values for effective parameters on desorption step were selected systematically. Also, the effective parameters on extraction step were optimized using a Box-Behnken design. Under the optimum conditions, the analytical performance of the proposed method displayed excellent linear dynamic ranges for LOS (24-1000 ng mL -1 ) and VAS (91-1000 ng mL -1 ), with correlation coefficients of 0.9998 and 0.9971 and detection limits of 7 and 27 ng mL -1 , respectively. The intra- and inter-day recovery ranged from 98 to 117%, and the relative standard deviations were less than 8%. Finally, the proposed technique was successfully applied to the analysis of LOS and VAS at their therapeutic levels in volunteer patient plasma sample. The obtained results were confirmed using liquid chromatography-mass spectrometry. The proposed technique was more rapid than previously reported stir bar sorptive extraction techniques based on monolithic coatings, and exhibited lower detection limits in comparison with similar methods for the determination of LOS and VLS in

  13. Analysis of chemical warfare agents in organic liquid samples with magnetic dispersive solid phase extraction and gas chromatography mass spectrometry for verification of the chemical weapons convention.

    Science.gov (United States)

    Singh, Varoon; Purohit, Ajay Kumar; Chinthakindi, Sridhar; Goud, Raghavender D; Tak, Vijay; Pardasani, Deepak; Shrivastava, Anchal Roy; Dubey, Devendra Kumar

    2016-05-27

    A simple, sensitive and low temperature sample preparation method is developed for detection and identification of Chemical Warfare Agents (CWAs) and scheduled esters in organic liquid using magnetic dispersive solid phase extraction (MDSPE) followed by gas chromatography-mass spectrometry analysis. The method utilizes Iron oxide@Poly(methacrylic acid-co-ethylene glycol dimethacrylate) resin (Fe2O3@Poly(MAA-co-EGDMA)) as sorbent. Variants of these sorbents were prepared by precipitation polymerization of methacrylic acid-co-ethylene glycol dimethacrylate (MAA-co-EGDMA) onto Fe2O3 nanoparticles. Fe2O3@poly(MAA-co-EGDMA) with 20% MAA showed highest recovery of analytes. Extractions were performed with magnetic microspheres by MDSPE. Parameters affecting the extraction efficiency were studied and optimized. Under the optimized conditions, method showed linearity in the range of 0.1-3.0μgmL(-1) (r(2)=0.9966-0.9987). The repeatability and reproducibility (relative standard deviations (RSDs) %) were in the range of 4.5-7.6% and 3.4-6.2% respectively for organophosphorous esters in dodecane. Limits of detection (S/N=3/1) and limit of quantification (S/N=10/1) were found to be in the range of 0.05-0.1μgmL(-1) and 0.1-0.12μgmL(-1) respectively in SIM mode for selected analytes. The method was successfully validated and applied to the extraction and identification of targeted analytes from three different organic liquids i.e. n-hexane, dodecane and silicon oil. Recoveries ranged from 58.7 to 97.3% and 53.8 to 95.5% at 3μgmL(-1) and 1μgmL(-1) spiking concentrations. Detection of diethyl methylphosphonate (DEMP) and O-Ethyl S-2-diisopropylaminoethyl methylphosphonothiolate (VX) in samples provided by the Organization for Prohibition of Chemical Weapons Proficiency Test (OPCW-PT) proved the utility of the developed method for the off-site analysis of CWC relevant chemicals. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. New association schemes for mono-ethylene glycol: Cubic-Plus-Association parameterization and uncertainty analysis

    DEFF Research Database (Denmark)

    Kruger, Francois; Kontogeorgis, Georgios M.; von Solms, Nicolas

    2018-01-01

    Accurate thermodynamic predictions for systems containing glycols are essential for the design and commissioning of novel subsea natural gas dehydration units. Previously it has been shown that the Cubic-Plus-Association (CPA) equation of state can be used to model VLE, SLE and LLE for mixtures...

  15. Vorinostat with sustained exposure and high solubility in poly(ethylene glycol)-b-poly(DL-lactic acid) micelle nanocarriers: characterization and effects on pharmacokinetics in rat serum and urine.

    Science.gov (United States)

    Mohamed, Elham A; Zhao, Yunqi; Meshali, Mahasen M; Remsberg, Connie M; Borg, Thanaa M; Foda, Abdel Monem M; Takemoto, Jody K; Sayre, Casey L; Martinez, Stephanie E; Davies, Neal M; Forrest, M Laird

    2012-10-01

    The histone deacetylase inhibitor suberoylanilide hydroxamic acid, known as vorinostat, is a promising anticancer drug with a unique mode of action; however, it is plagued by low water solubility, low permeability, and suboptimal pharmacokinetics. In this study, poly(ethylene glycol)-b-poly(DL-lactic acid) (PEG-b-PLA) micelles of vorinostat were developed. Vorinostat's pharmacokinetics in rats was investigated after intravenous (i.v.) (10 mg/kg) and oral (p.o.) (50 mg/kg) micellar administrations and compared with a conventional polyethylene glycol 400 solution and methylcellulose suspension. The micelles increased the aqueous solubility of vorinostat from 0.2 to 8.15 ± 0.60 and 10.24 ± 0.92 mg/mL at drug to nanocarrier ratios of 1:10 and 1:15, respectively. Micelles had nanoscopic mean diameters of 75.67 ± 7.57 and 87.33 ± 8.62 nm for 1:10 and 1:15 micelles, respectively, with drug loading capacities of 9.93 ± 0.21% and 6.91 ± 1.19%, and encapsulation efficiencies of 42.74 ± 1.67% and 73.29 ± 4.78%, respectively. The micelles provided sustained exposure and improved pharmacokinetics characterized by a significant increase in serum half-life, area under curve, and mean residence time. The micelles reduced vorinostat clearance particularly after i.v. dosing. Thus, PEG-b-PLA micelles significantly improved the p.o. and i.v. pharmacokinetics and bioavailability of vorinostat, which warrants further investigation. Copyright © 2012 Wiley Periodicals, Inc.

  16. Effect of molecular weight and ratio of poly ethylene glycols' derivatives in combination with trehalose on stability of freeze-dried IgG.

    Science.gov (United States)

    Mohammad Zadeh, Amir Hossein; Rouholamini Najafabadi, Abdolhosein; Vatanara, Alireza; Faghihi, Homa; Gilani, Kambiz

    2017-12-01

    The influence of poly ethylene glycol (PEG) at different molecular weights (MWs) and ratios was studied on the stability of freeze-dried immune globulin G (IgG). PEGs (600-4000 Dalton) at concentrations of 0.5 and 5% W/V were applied in the presence of 40 and 60% W/W of trehalose to prepare freeze-dried IgG formulations. Size-exclusion chromatography, infra-red spectroscopy, differential scanning calorimeter, and gel electrophoresis were performed to characterize lyophilized samples. Pure IgG demonstrated the highest aggregation of 5.77 ± 0.10% after process and 12.66 ± 0.50% as well as 44.69 ± 0.50% upon 1 and 2 months of storage at 45 °C, respectively. 5% W/V of PEGs 4000 in combination with 40% W/W trehalose, significantly suppressed aggregation, 0.05 ± 0.01%, with minimum aggregation rate constant of 0.32 (1/month). The integrity of IgG molecules and secondary conformation were properly preserved in all formulations comparing native IgG. It could be concluded that appropriate concentration and MW of PEGs, prominently augmented stabilizing effect of trehalose on freeze-dried antibody through inserting additional supportive mechanisms of actions.

  17. Molecularly Imprinted Microrods via Mesophase Polymerization

    Directory of Open Access Journals (Sweden)

    Ortensia Ilaria Parisi

    2017-12-01

    Full Text Available The aim of the present research work was the synthesis of molecularly imprinted polymers (MIPs with a rod-like geometry via “mesophase polymerization”. The ternary lyotropic system consisting of sodium dodecyl sulfate (SDS, water, and decanol was chosen to prepare a hexagonal mesophase to direct the morphology of the synthesized imprinted polymers using theophylline, methacrylic acid, and ethylene glycol dimethacrylate as a drug model template, a functional monomer, and a crosslinker, respectively. The obtained molecularly imprinted microrods (MIMs were assessed by performing binding experiments and in vitro release studies, and the obtained results highlighted good selective recognition abilities and sustained release properties. In conclusion, the adopted synthetic strategy involving a lyotropic mesophase system allows for the preparation of effective MIPs characterized by a rod-like morphology.

  18. Metabolism and disposition of ethylene carbonate in male Fischer 344 rats

    International Nuclear Information System (INIS)

    Hanley, T.R. Jr.; Schumann, A.M.; Langvardt, P.W.; Rusek, T.F.; Watanabe, P.G.

    1989-01-01

    Ethylene carbonate (EC) has a toxicity profile which resembles that of ethylene glycol (EG). To determine whether the toxicity of EC could be explained on the basis of its metabolism to EG, male Fischer 344 rats were given 200 mg/kg of uniformly labeled [ 14 C]EC in water by gavage and the disposition of the radiolabel was then followed for 72 hr. EC was rapidly metabolized, with approximately 57 and 27% of the administered dose eliminated in the expired air as 14CO2 and in the urine, respectively; the remainder was found in the carcass. Separation of the urinary metabolites using liquid chromatography revealed a single radioactive peak. This metabolite was unequivocally identified as ethylene glycol via gas chromatography-mass spectrometry with the aid of 13C enrichment of the EC dose. Measurement of whole blood levels of EC and EG in rats given 200 mg/kg of EC by gavage revealed blood levels of EG approximately 100-fold higher than the levels of EC in these same animals, with a half-life of EG in blood of 2 hr, indicating rapid conversion of EC to EG. In a separate group of animals administered an equimolar dose of [ 14 C]EG (141 mg/kg), approximately 37% of the dose was expired as 14 CO 2 and 42% was excreted in the urine as parent compound. When expressed on the basis of the ethanediol moiety, the disposition of EC was identical to that of EG. In view of the rapid and extensive biotransformation of EC to EG and the similarity of the existing (though limited) toxicity data base of EC compared to EG, utilization of the extensive EG systemic toxicity data base for assessing the safety of EC appears justified

  19. In vitro degradation of nanoparticles prepared from polymers based on DL-lactide, glycolide and poly(ethylene oxide)

    NARCIS (Netherlands)

    Zweers, M.L.T.; Engbers, G.H.M.; Grijpma, Dirk W.; Feijen, Jan

    2004-01-01

    Nanoparticles of poly(DL-lactic acid) (PDLLA), poly(DL-lactic-co-glycolic acid) (PLGA) and poly(ethylene oxide)–PLGA diblock copolymer (PEO–PLGA) were prepared by the salting-out method. The in vitro degradation of PDLLA, PLGA and PEO–PLGA nanoparticles in PBS (pH 7.4) at 37 °C was studied. The

  20. Combination of ethylene glycol with sucrose increases survival rate after vitrification of somatic tissue of collared peccaries (Pecari tajacu Linnaeus, 1758

    Directory of Open Access Journals (Sweden)

    Alana A. Borges

    Full Text Available ABSTRACT: The cryopreservation of somatic tissue in collared peccaries promotes an alternative source of genetic material of this specie. The solid-surface vitrification (SSV is a great option for tissue conservation; nevertheless, the optimization of SSV requirements is necessary, especially when referred to cryoprotectants that will compose the vitrification solution. Therefore, the aim was to evaluate the effect of the presence of 0.25 M sucrose in addition to different combinations (only or association and concentrations (1.5 M or 3.0 M of ethylene glycol (EG and/or dimethyl sulfoxide (DMSO in the somatic tissue vitrification of collared peccaries. Subsequently, we tested six combinations of cryoprotectants with or without sucrose in Dulbecco modified Eagle medium (DMEM plus 10% fetal bovine serum (FBS. Thus, 3.0 M EG with sucrose was able to maintain normal tissue characteristics compared with non-vitrified (control, especially for the volumetric ratio of epidermis (61.2 vs. 58.7% and dermis (34.5 vs. 36.6%, number of fibroblast (90.3 vs. 127.0, argyrophilic nucleolar organizer region (AgNOR ratio (0.09 vs. 0.17% and nucleus area (15.4 vs. 14.5 μm2 respectively. In conclusion, 3.0 M EG with 0.25 M sucrose and 10% FBS resulted in a better cryoprotectant composition in the SSV for somatic tissue of collared peccaries.

  1. Non-ideal behaviour of imidazolium based room temperature ionic liquids in ethylene glycol at T = (298.15 to 318.15) K

    International Nuclear Information System (INIS)

    Singh, Tejwant; Kumar, Arvind; Kaur, Mandeep; Kaur, Gurpreet; Kumar, H.

    2009-01-01

    Non-ideal behaviour of the room temperature ionic liquids (RTILs), 1-butyl-3-methylimidazolium tetrafluoroborate [bmim][BF 4 ]; 1-octyl-3-methylimidazolium tetrafluoroborate [omim][BF 4 ] and 1-butyl-3-methylimidazolium octylsulfate [bmim][C 8 OSO 3 ] in ethylene glycol [HOCH 2 CH 2 OH] (EG) have been investigated over the whole composition range at T = (298.15 to 318.15) K. For the purpose, volumetric properties such as excess molar volumes, V m E , apparent molar volumes, V φ,i , partial molar volumes, V-bar m,i , excess partial molar volumes, V-bar m,i E , and their limiting values at infinite dilution, V φ,i ∞ , V-bar m,i ∞ , and V-bar m,i E,∞ respectively have been calculated from the experimental density measurements. The V m E results have been analyzed using the Prigogine-Flory-Patterson (PFP) theory. PFP theory has satisfactorily explained the volumetric behaviour of the binary mixtures. Refractive index measurements at 298.15 K have been used to calculate the deviations in refractive indices Δ φ n and the deviation of molar refraction Δ x R from their respective ideal values. Refractive index results have been correlated with volumetric results, and have been interpreted in terms of molecular interactions. Excess properties are fitted to the Redlich-Kister polynomial equation to obtain the binary coefficients and the standard errors.

  2. Development of sodium acetate trihydrate-ethylene glycol composite phase change materials with enhanced thermophysical properties for thermal comfort and therapeutic applications.

    Science.gov (United States)

    Kumar, Rohitash; Vyas, Sumita; Kumar, Ravindra; Dixit, Ambesh

    2017-07-12

    The heat packs using phase change materials (PCMs) are designed for possible applications such as body comfort and medical applications under adverse situations. The development and performance of such heat packs rely on thermophysical properties of PCMs such as latent heat, suitable heat releasing temperature, degree of supercooling, effective heat releasing time, crystallite size, stability against spontaneous nucleation in metastable supercooled liquid state and thermal stability during heating and cooling cycles. Such PCMs are rare and the available PCMs do not exhibit such properties simultaneously to meet the desired requirements. The present work reports a facile approach for the design and development of ethylene glycol (EG) and aqueous sodium acetate trihydrate (SAT) based composite phase change materials, showing these properties simultaneously. The addition of 2-3 wt% EG in aqueous SAT enhances the softness of SAT crystallites, its degree of supercooling and most importantly the effective heat releasing time by ~10% with respect to aqueous SAT material. In addition, the maximum heat releasing temperature of aqueous SAT has been tailored from 56.5 °C to 55 °C, 54.9 °C, 53.5 °C, 51.8 °C and 43.2 °C using 2%, 3%, 5%, 7% and 10 wt% EG respectively, making the aqueous SAT-EG composite PCMs suitable for desired thermal applications.

  3. Effect of oxygen on the photopolymerization of a mixture of two dimethacrylates

    Energy Technology Data Exchange (ETDEWEB)

    Ramis, X. [Laboratori de Termodinamica, Departament de Maquines i Motors Termics, ETSEIB, Universitat Politecnica de Catalunya, Diagonal 647, 08028 Barcelona (Spain); Morancho, J.M. [Laboratori de Termodinamica, Departament de Maquines i Motors Termics, ETSEIB, Universitat Politecnica de Catalunya, Diagonal 647, 08028 Barcelona (Spain)], E-mail: morancho@mmt.upc.edu; Cadenato, A.; Salla, J.M.; Fernandez-Francos, X. [Laboratori de Termodinamica, Departament de Maquines i Motors Termics, ETSEIB, Universitat Politecnica de Catalunya, Diagonal 647, 08028 Barcelona (Spain)

    2007-10-25

    In this work we study the influence of the presence of oxygen in the photocuring of a system obtained by mixing two dimethacrylates. Using an isoconversional method we have found the kinetic parameters with different atmospheres: nitrogen, air and oxygen. The inhibition effect of oxygen has been compensated by adding a greater proportion of initiator and increasing the intensity of the ultraviolet radiation. We have seen that the latter had more influence.

  4. Effect of oxygen on the photopolymerization of a mixture of two dimethacrylates

    International Nuclear Information System (INIS)

    Ramis, X.; Morancho, J.M.; Cadenato, A.; Salla, J.M.; Fernandez-Francos, X.

    2007-01-01

    In this work we study the influence of the presence of oxygen in the photocuring of a system obtained by mixing two dimethacrylates. Using an isoconversional method we have found the kinetic parameters with different atmospheres: nitrogen, air and oxygen. The inhibition effect of oxygen has been compensated by adding a greater proportion of initiator and increasing the intensity of the ultraviolet radiation. We have seen that the latter had more influence

  5. One-pot synthesis of star-shaped macromolecules containing polyglycidol and poly(ethylene oxide) arms.

    Science.gov (United States)

    Lapienis, Grzegorz; Penczek, Stanislaw

    2005-01-01

    Synthesis of fully hydrophilic star-shaped macromolecules with different kinds of arms (A(x)B(y)C(z)) based on polyglycidol (PGL, A(x)) and poly(ethylene oxide) (PEO, C(z)) arms and diepoxy compounds (diglycidyl ethers of ethylene glycol (DGEG) or neopentyl glycol (DGNG) in the core, B(y)) forming the core is described. Precursors of arms were prepared by polymerization of glycidol with protected -OH groups. The first-generation stars were formed in the series of consecutive-parallel reactions of arms A(x) with diepoxy compounds (B). These first-generation stars (A(x)B(y)), having approximately O-, Mt+ groups on the cores, were used as multianionic initiators for the second generation of arms (C(z)) built by polymerization of ethylene oxide. The products with M(n) up to 10(5) and having up to approximately 40 arms were obtained. The number of arms (f) was determined by direct measurements of M(n) of the first-generation stars (M(n) of arms A(x) is known), compared with f calculated from the branching index g, determined from R(g) measured with size-exclusion chromatography (SEC) triple detection with TriSEC software. The progress of the star formation was monitored by 1H NMR and SEC. These novel water-soluble stars, having a large number of hydroxyl groups, both at the ends of PEO arms as well as within the PGL arms, can be functionalized and further used for attaching compounds of interest. This approach opens, therefore, a new way of "multiPEGylation".

  6. Preservation of human ovarian follicles within tissue frozen by vitrification in a xeno-free closed system using only ethylene glycol as a permeating cryoprotectant.

    Science.gov (United States)

    Sheikhi, Mona; Hultenby, Kjell; Niklasson, Boel; Lundqvist, Monalill; Hovatta, Outi

    2013-07-01

    To study the preservation of follicles within ovarian tissue vitrified using only one or a combination of three permeating cryoprotectants. Experimental study. University hospital. Ovarian tissue was donated by consenting women undergoing elective cesarean section. Ovarian tissue was vitrified in closed sealed vials using either a combination of dimethyl sulfoxide, 1,2-propanediol, and ethylene glycol (EG), or only EG as permeating cryoprotectants. Ovarian tissue was vitrified with the use of two vitrification methods. Tissue from the same donor was used for comparison of two different solutions. The morphology of the follicles was evaluated after vitrification, warming, and culture by light microscopy and transmission electron microscopy. Apoptosis was assessed by immunohistochemistry for active caspase-3 in fresh and vitrified tissue. Light and electron microscopic analysis showed equally well preserved morphology of oocytes, granulosa cells, and ovarian stroma when either of the vitrification solutions was used. No apoptosis was observed in primordial and primary follicles. Using only EG as a permeating cryoprotectant in a closed tube gives as good ultrastructural preservation of ovarian follicles as a more complicated system using several cryoprotectants. Copyright © 2013 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  7. Preparation and characterization of photocured poly (ε-caprolactone) diacrylate/poly (ethylene glycol) diacrylate/chitosan for photopolymerization-type 3D printing tissue engineering scaffold application.

    Science.gov (United States)

    Cheng, Yih-Lin; Chen, Freeman

    2017-12-01

    Because of its biocompatible, biodegradable and antimicrobial properties, chitosan is an attractive biomaterial for use in tissue engineering scaffolds. This work builds on previous research by incorporating 95% DD chitosan into a visible-light curable resin which is compatible with a digital light processing (DLP™) projection additive manufacturing (3D printing) system. Different concentrations of chitosan were added to a poly (ε-caprolactone)-diacrylate/poly (ethylene glycol)-diacrylate baseline resin and the samples were extensively characterized. Thermal and mechanical analysis conformed to established scaffold requirements. L929 cells were cultured on the photo-crosslinked films and MTT assays were performed at 1, 3, and 5days to assess cytocompatibility of the resins. Data and SEM images verified a correlation between the concentration of chitosan in the photocurable resin and the adhesion, proliferation, and viability of cell cultures. Finally, the processability of the resins with the dynamic masking DLP system was demonstrated by constructing multi-layer scaffolds with actual measurements that were consistent with the CAD models. These findings encourage the use of chitosan as an additive in visible-light curable resins to improve desired properties in tissue engineering scaffolds. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Pregnancy and conception rate after two intravaginal inseminations with dog semen frozen either with 5% glycerol or 5% ethylene glycol.

    Science.gov (United States)

    Rota, Ada; Milani, C; Romagnoli, S; Zucchini, P; Mollo, A

    2010-03-01

    The primary goal of this study was to compare the effects of 5% ethylene glycol (EG) and 5% glycerol (G) on fertility of frozen-thawed dog semen following intravaginal insemination. The sperm-rich fraction of the ejaculate of three male dogs was collected, pooled and divided into two aliquots, and then frozen with a Tris-glucose-egg yolk-citric acid extender containing either 5% G or 5% EG. A total of 10 bitches were inseminated twice, five with G-frozen-thawed semen and five with EG-frozen-thawed semen; intravaginal inseminations were performed the 4th and the 5th day after the estimated LH peak; four straws, thawed in a 37 degrees C water bath for 1 min and diluted in a Tris buffer, were used for insemination (200 x 10(6) spermatozoa); the insemination dose was introduced in the cranial vagina of the bitch using a sterile plastic catheter. Ovariohysterectomy was performed in all bitches between days 29 and 31 after the calculated LH surge, and pregnancy status, and the number of conceptuses and corpora lutea were recorded. All bitches were pregnant. Neither the number of conceptuses, nor the ratio of conceptuses to corpora lutea (conception rate) was significantly different between groups. In this first screening, with a limited number of bitches, EG-frozen semen did not show a higher fertility than G-frozen semen when used for two intravaginal inseminations. Irrespective of the semen used, conception rate was 0.50.

  9. In-situ polymerized PLOT columns III: divinylbenzene copolymers and dimethacrylate homopolymers

    Science.gov (United States)

    Shen, T. C.; Fong, M. M.

    1994-01-01

    Studies of divinylbenzene copolymers and dimethacrylate homopolymers indicate that the polymer pore size controls the separation of water and ammonia on porous-layer-open-tubular (PLOT) columns. To a lesser degree, the polarity of the polymers also affects the separation of a water-ammonia gas mixture. Our results demonstrate that the pore size can be regulated by controlling the cross-linking density or the chain length between the cross-linking functional groups. An optimum pore size will provide the best separation of water and ammonia.

  10. Formation of Underbrushes on thiolated Poly (ethylene glycol) PEG monolayers by Oligoethylene glycol (OEG) terminated Alkane Thiols on Gold

    DEFF Research Database (Denmark)

    Lokanathan, Arcot R.

    2011-01-01

    Adding underbrushes of oligoethylene glycol (OEG) to monolayers of long chain PEG molecules on a surface is one of the strategies [1] in designing a suitable platform for antifouling purpose, where it is possible to have high graft density and molecular conformational freedom[4] simultaneously......, there by maximal retention of activity of covalently immobilised antifouling enzyme [2] on PEG surfaces along with resistance to protein adsorption[3]. Here we present some our studies on the addition of OEG thiol molecules over a self assembled monolayer of PEG thiol on gold. The kinetics of addition of OEG thiol...

  11. Determination of the quaternary phase diagram of the water-ethylene glycol-sucrose-NaCl system and a comparison between two theoretical methods for synthetic phase diagrams.

    Science.gov (United States)

    Han, Xu; Liu, Yang; Critser, John K

    2010-08-01

    Characterization of the thermodynamic properties of multi-solute aqueous solutions is of critical importance for biological and biochemical research. For example, the phase diagrams of aqueous systems, containing salts, saccharides, and plasma membrane permeating solutes, are indispensible in the field of cryobiology and pharmacology. However, only a few ternary phase diagrams are currently available for these systems. In this study, an auto-sampler differential scanning calorimeter (DSC) was used to determine the quaternary phase diagram of the water-ethylene glycol-sucrose-NaCl system. To improve the accuracy of melting point measurement, a "mass-redemption" method was also applied for the DSC technique. Base on the analyses of these experimental data, a comparison was made between the two practical approaches to generate phase diagrams of multi-solute solutions from those of single-solute solutions: the summation of cubic polynomial melting point equations versus the use of osmotic virial equations with cross coefficients. The calculated values of the model standard deviations suggested that both methods are satisfactory for characterizing this quaternary system. (c) 2010 Elsevier Inc. All rights reserved.

  12. System-size corrections for self-diffusion coefficients calculated from molecular dynamics simulations: The case of CO{sub 2}, n-alkanes, and poly(ethylene glycol) dimethyl ethers

    Energy Technology Data Exchange (ETDEWEB)

    Moultos, Othonas A.; Economou, Ioannis G. [Chemical Engineering Program, Texas A& M University at Qatar, P.O. Box 23847, Doha (Qatar); Zhang, Yong; Maginn, Edward J., E-mail: ed@nd.edu [Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556 (United States); Tsimpanogiannis, Ioannis N. [Chemical Engineering Program, Texas A& M University at Qatar, P.O. Box 23847, Doha (Qatar); Environmental Research Laboratory, National Center for Scientific Research “Demokritos,” 15310 Aghia Paraskevi Attikis (Greece)

    2016-08-21

    Molecular dynamics simulations were carried out to study the self-diffusion coefficients of CO{sub 2}, methane, propane, n-hexane, n-hexadecane, and various poly(ethylene glycol) dimethyl ethers (glymes in short, CH{sub 3}O–(CH{sub 2}CH{sub 2}O){sub n}–CH{sub 3} with n = 1, 2, 3, and 4, labeled as G1, G2, G3, and G4, respectively) at different conditions. Various system sizes were examined. The widely used Yeh and Hummer [J. Phys. Chem. B 108, 15873 (2004)] correction for the prediction of diffusion coefficient at the thermodynamic limit was applied and shown to be accurate in all cases compared to extrapolated values at infinite system size. The magnitude of correction, in all cases examined, is significant, with the smallest systems examined giving for some cases a self-diffusion coefficient approximately 15% lower than the infinite system-size extrapolated value. The results suggest that finite size corrections to computed self-diffusivities must be used in order to obtain accurate results.

  13. Nanofiber mats composed of a chitosan-poly(d,l-lactic-co-glycolic acid)-poly(ethylene oxide) blend as a postoperative anti-adhesion agent.

    Science.gov (United States)

    Ko, Jae Eok; Ko, Young-Gwang; Kim, Won Il; Kwon, Oh Kyoung; Kwon, Oh Hyeong

    2017-10-01

    Postoperative tissue adhesion causes serious complications and suffering in 90% of patients after peritoneum surgery, while commercial anti-adhesion agents cannot completely prevent postoperative peritoneal adhesions. This study demonstrates electrospining of a blended solution of chitosan, poly(d,l-lactic-co-glycolic acid) (PLGA), and poly(ethylene oxide) (PEO) to fabricate a chitosan-based nanofibrous mat as a postoperative anti-adhesion agent. Rheological studies combined with scanning electron microscopy reveal that the spinnability of the chitosan-PLGA solution could be controlled by adjusting the blend ratio and concentration with average fiber diameter from 634 to 913 nm. Biodegradation of the nanofiber specimens showed accelerated hydrolysis by chitosan. Proliferation of fibroblasts and antimicrobial activity of nanofibers containing chitosan was analyzed. Abdominal defects with cecum adhesion in rats demonstrated that the blend nanofiber mats were effective in preventing tissue adhesion as a barrier (4 weeks after abdominal surgery) by coverage of exfoliated peritoneum and insufficient wound sites at the beginning of the wound healing process. Chitosan-PLGA-PEO blend nanofiber mats will provide a promising key as a postoperative anti-adhesion agent. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1906-1915, 2017. © 2016 Wiley Periodicals, Inc.

  14. Structural insight into molecular mechanism of poly(ethylene terephthalate) degradation.

    Science.gov (United States)

    Joo, Seongjoon; Cho, In Jin; Seo, Hogyun; Son, Hyeoncheol Francis; Sagong, Hye-Young; Shin, Tae Joo; Choi, So Young; Lee, Sang Yup; Kim, Kyung-Jin

    2018-01-26

    Plastics, including poly(ethylene terephthalate) (PET), possess many desirable characteristics and thus are widely used in daily life. However, non-biodegradability, once thought to be an advantage offered by plastics, is causing major environmental problem. Recently, a PET-degrading bacterium, Ideonella sakaiensis, was identified and suggested for possible use in degradation and/or recycling of PET. However, the molecular mechanism of PET degradation is not known. Here we report the crystal structure of I. sakaiensis PETase (IsPETase) at 1.5 Å resolution. IsPETase has a Ser-His-Asp catalytic triad at its active site and contains an optimal substrate binding site to accommodate four monohydroxyethyl terephthalate (MHET) moieties of PET. Based on structural and site-directed mutagenesis experiments, the detailed process of PET degradation into MHET, terephthalic acid, and ethylene glycol is suggested. Moreover, other PETase candidates potentially having high PET-degrading activities are suggested based on phylogenetic tree analysis of 69 PETase-like proteins.

  15. Synthesis and characterization of polyester copolymers based on poly(butylene succinate) and poly(ethylene glycol)

    International Nuclear Information System (INIS)

    Zhou, Xiao-Ming

    2012-01-01

    A series of polyester copolymers was synthesized from 1,4-succinic acid with 1,4-butanediol and poly(ethylene glycol) through a two-step process of esterification and polycondensation in this article. The composition and physical properties of copolyesters were investigated via GPC, 1 HNMR, DSC and PLM. The copolymer composition was in good agreement with that expected from the feed composition of the reactants. The melting temperature (T m ), crystallization temperature (T c ), and crystallinity (X c ) of these copolyesters decreased gradually as the content of PEG unit increased. Otherwise, experimental results also showed that the contents of PEG in copolymers had an effect on the molecular weight, distribution, thermal properties, hydrolysis degradation properties, and crystalline morphology of polyester copolymers. - Graphical abstract: The composition of polyester copolymer was determined from the 1 H NMR spectra using the relative intensities of the proton peaks. As a sample, the 1 H NMR spectrum of polyester copolymer with 10 mol% of PEG is shown in Fig. 2: CO-(CH 2 ) 2 -CO; O-CH 2 - and C-(CH 2 ) 2 -C from the SA and BD unit at δ2.59; δ 4.08 and δ1.67; O-(CH 2 CH 2 ) n -O from the PEG unit at δ 3.61. The molar composition of polyester copolymer was measured as the area ratio of δ3.61/(δ4.08 + δ1.67) peak. The PEG unit is incorporated into the copolymers in an amount of about 9.12mol% less than that of the feed proportion. These results showed that the composition of the copolymers is in good agreement with that expected from the feed proportion. Highlights: ► The introduction of PEG unit changed the flexibility of PBS main chain. ► PEG unit did not alter the crystal form of PBS in copolymers. ► PEG unit hindered the formation of ring-banded spherulite morphology in copolymers. ► The copolyesters had good in vitro degradation performance. ► The composition ratio of PEG unit can adjust the in vitro degradation performance.

  16. The in vitro effects of macrophages on the osteogenic capabilities of MC3T3-E1 cells encapsulated in a biomimetic poly(ethylene glycol) hydrogel.

    Science.gov (United States)

    Saleh, Leila S; Carles-Carner, Maria; Bryant, Stephanie J

    2018-04-15

    Poly(ethylene glycol) PEG-based hydrogels are promising for cell encapsulation and tissue engineering, but are known to elicit a foreign body response (FBR) in vivo. The goal of this study was to investigate the impact of the FBR, and specifically the presence of inflammatory macrophages, on encapsulated cells and their ability to synthesize new extracellular matrix. This study employed an in vitro co-culture system with murine macrophages and MC3T3-E1 pre-osteoblasts encapsulated in a bone-mimetic hydrogel, which were cultured in transwell inserts, and exposed to an inflammatory stimulant, lipopolysaccharide (LPS). The co-culture was compared to mono-cultures of the cell-laden hydrogels alone and with LPS over 28 days. Two macrophage cell sources, RAW 264.7 and primary derived, were investigated. The presence of LPS-stimulated primary macrophages led to significant changes in the cell-laden hydrogel by a 5.3-fold increase in percent apoptotic osteoblasts at day 28, 4.2-fold decrease in alkaline phosphatase activity at day 10, and 7-fold decrease in collagen deposition. The presence of LPS-stimulated RAW macrophages led to significant changes in the cell-laden hydrogel by 5-fold decrease in alkaline phosphatase activity at day 10 and 4-fold decrease in collagen deposition. Mineralization, as measured by von Kossa stain or quantified by calcium content, was not sensitive to macrophages or LPS. Elevated interleukin-6 and tumor necrosis factor-α secretion were detected in mono-cultures with LPS and co-cultures. Overall, primary macrophages had a more severe inhibitory effect on osteoblast differentiation than the macrophage cell line, with greater apoptosis and collagen I reduction. In summary, this study highlights the detrimental effects of macrophages on encapsulated cells for bone tissue engineering. Poly(ethylene glycol) (PEG)-based hydrogels are promising for cell encapsulation and tissue engineering, but are known to elicit a foreign body response (FBR) in

  17. Copolymerization of poly (ethylene oxide) and poly (methyl methacrylate) initiated by ceric ammonium nitrate

    International Nuclear Information System (INIS)

    Gomes, A.S.; Ferreira, A.A.; Coutinho, F.M.B.; Marinho, J.R.D.

    1984-01-01

    Cerium (IV) salts such as the ceric ammonium nitrate and ceric ammonium sulfate in aqueous acid solution with reducing agents such as alcohols, thiols, glycols, aldehydes and amines are well known initiators of vinyl polymerization. In this work, the polymerization of methyl methacrylate initiated by ceric ammonium nitrate/HNO 3 -poly(ethylene oxide) with hydroxyl end group system was studied in aqueous solution at 25 0 C to obtain block copolymers. (Author) [pt

  18. Effect of inorganic inhibitors on the corrosion behavior of 1018 carbon steel in the LiBr + ethylene glycol + H2O mixture

    International Nuclear Information System (INIS)

    Samiento-Bustos, E.; Rodriguez, J.G. Gonzalez; Uruchurtu, J.; Dominguez-Patino, G.; Salinas-Bravo, V.M.

    2008-01-01

    The effect of inorganic inhibitors on the corrosion behavior of 1018 carbon steel in the mixture LiBr (55%) + ethylene glycol + H 2 O at room temperature has been evaluated. Used inhibitors included LiNO 3 (Lithium Nitrate), Li 2 MoO 4 (Lithium Molybdate) and Li 2 CrO 4 (Lithium Chromate) at concentrations of 5, 20 and 50 ppm. Electrochemical techniques included potentiodynamic polarization curves, electrochemical noise resistance (EN) and electrochemical impedance spectroscopy (EIS) measurements. Additionally, adsorption isotherms were calculated. The results obtained showed that both, the corrosion rate and the passive current density decreased with inhibitors, and, in general terms, inhibitors efficiency increased with inhibitor concentration, except in the case of Li 2 CrO 4, where the highest efficiency was obtained with 20 ppm of inhibitor. Pitting potential with 5 ppm of inhibitor, regardless its chemical composition, was more active than in absence of inhibitor, increased at 20 ppm, especially with Li 2 CrO 4 , and remained unaltered with 50 ppm. EN measurements showed that at 5 ppm of inhibitor, the number of film rupture/repassivation events was higher than that obtained at 20 or 50 ppm. Adsorption isotherms suggested a different adsorption mechanism for each inhibitor, whereas EIS results suggested that the corrosion process when nitrates were added was under charge transfer control, but in the case of molybdates or chromates was under diffusion control

  19. Micrometer and nanometer scale photopatterning of proteins on glass surfaces by photo-degradation of films formed from oligo(ethylene glycol) terminated silanes.

    Science.gov (United States)

    Tizazu, Getachew; el Zubir, Osama; Patole, Samson; McLaren, Anna; Vasilev, Cvetelin; Mothersole, David J; Adawi, Ali; Hunter, C Neil; Lidzey, David G; Lopez, Gabriel P; Leggett, Graham J

    2012-12-01

    Exposure of films formed by the adsorption of oligo(ethylene glycol) (OEG) functionalized trichlorosilanes on glass to UV light from a frequency-doubled argon ion laser (244 nm) causes photodegradation of the OEG chain. Although the rate of degradation is substantially slower than for monolayers of OEG terminated thiolates on gold, it is nevertheless possible to form micrometer-scale patterns by elective adsorption of streptavidin to exposed regions. A low density of aldehyde functional groups is produced, and this enables derivatization with nitrilotriacetic acid via an amine linker. Complexation with nickel enables the site-specific immobilization of histidine-tagged yellow and green fluorescent proteins. Nanometer-scale patterns may be fabricated using a Lloyd's mirror interferometer, with a sample and mirror set at right angles to each other. At low exposures, partial degradation of the OEG chains does not remove the protein-resistance of the surface, even though friction force microscopy reveals the formation of patterns. At an exposure of ca. 18 J cm(-2), the modified regions became adhesive to proteins in a narrow region ca. 30 nm (λ/8) wide. As the exposure is increased further the lines quickly broaden to ca. 90 nm. Adjustment of the angle between the sample and mirror enables the fabrication of lines of His-tagged green fluorescent protein at a period of 340 nm that could be resolved using a confocal microscope.

  20. Influence of Ethylene Glycol Methacrylate to the Hydration and Transition Behaviors of Thermo-Responsive Interpenetrating Polymeric Network Hydrogels

    Directory of Open Access Journals (Sweden)

    Bing Li

    2018-01-01

    Full Text Available The influence of ethylene glycol methacrylate (EGMA to the hydration and transition behaviors of thermo-responsive interpenetrating polymeric network (IPN hydrogels containing sodium alginate, N-isopropylacrylamide (NIPAAm, and EGMA were investigated. The molar ratios of NIPAAm and EGMA were varied from 20:0 to 19.5:0.5 and 18.5:1.5 in the thermo-responsive alginate-Ca2+/P(NIPAAm-co-EGMA IPN hydrogels. Due to the more hydrophilicity and high flexibility of EGMA, the IPN hydrogels exhibited higher lower critical solution temperature (LCST and lower glass transition temperature (Tg when the ratio of EGMA increases. The swelling/deswelling kinetics of the IPN hydrogels could be controlled by adjusting the NIPAAm/EGMA molar ratio. A faster water uptake rate and a slower water loss rate could be realized by increase the amount of EGMA in the IPN hydrogel (the shrinking rate constant was decreased from 0.01207 to 0.01195 and 0.01055 with the changing of NIPAAm/EGMA ratio from 20:0, 19.5:0.5 to 18.5:1.5. By using 2-Isopropylthioxanthone (ITX as a photo initiator, the obtained alginate-Ca2+/P(NIPAAm-co-EGMA360 IPN hydrogels were successfully immobilized on cotton fabrics. The surface and cross section of the hydrogel were probed by scanning electron microscopy (SEM. They all exhibited a porous structure, and the pore size was increased with the amount of EGMA. Moreover, the LCST values of the fabric-grafted hydrogels were close to those of the pure IPN hydrogels. Their thermal sensitivity remained unchanged. The cotton fabrics grafted with hydrogel turned out to be much softer with the continuous increase of EGMA amount. Therefore, compared with alginate-Ca2+/PNIPAAm hydrogel, alginate-Ca2+/P(NIPAAm-co-EGMA360 hydrogel is a more promising candidate for wound dressing in the field of biomedical textile.

  1. Scattering Study of Conductive-Dielectric Nano/Micro-Grained Single Crystals Based on Poly(ethylene glycol, Poly(3-hexyl thiophene and Polyaniline

    Directory of Open Access Journals (Sweden)

    Samira Agbolaghi

    2017-12-01

    Full Text Available Two types of rod-coil block copolymers including poly(3-hexylthiophene-block-poly(ethylene glycol (P3HT-b-PEG and PEG-block-polyaniline (PANI were synthesized using Grignard metathesis polymerization, Suzuki coupling, and interfacial polymerization. Afterward, two types of single crystals were grown by self-seeding methodology to investigate the coily and rod blocks in grafted brushes and ordered crystalline configurations. The conductive P3HT fibrillar single crystals covered by the dielectric coily PEG oligomers were grown from toluene, xylene, and anisole, and characterized by atomic force microscopy (AFM and grazing wide angle X-ray scattering (GIWAXS. Longer P3HT backbones resulted in folding, whereas shorter ones had a high tendency towards backbone lamination. The effective factors on folding of long P3HT backbones in the single crystal structures were the solvent quality and crystallization temperature. Better solvents due to decelerating the growth condition led to a higher number of foldings. Via increasing the crystallization temperature, the system decreased the folding number to maintain its stability. Poorer solvents also reflected a higher stacking in hexyl side chain and π-π stacking directions. The dielectric lamellar PEG single crystals sandwiched between the PANI nanorods were grown from amyl acetate, and analyzed using the interface distribution function (IDF of SAXS and AFM. The molecular weights of PANI and PEG blocks and crystallization temperature were focused while studying the grown single crystals.

  2. Fabrication of honeycomb-structured poly(ethylene glycol)-block-poly(lactic acid) porous films and biomedical applications for cell growth

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Bingjian [Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250199 (China); College of chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014 (China); Zhu, Qingzeng, E-mail: qzzhu@sdu.edu.cn [Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250199 (China); Yao, Linli [Key Laboratory of the Ministry of Education for Experimental Teratology, Department of Histology and Embryology, Shandong University School of Medicine, 250012 Jinan (China); Hao, Jingcheng [Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250199 (China)

    2015-03-30

    Graphical abstract: - Highlights: • Honeycomb-structured PEG-PLA porous films were fabricated. • The organization of pores depends on molecular weight ratio of PEG-to-PLA block. • The pores in the film were internally decorated with a layer of PEG. • The honeycomb-structured PEG-PLA film was suitable as a substrate for cell growth. - Abstract: A series of poly(ethylene glycol)-block-poly(lactic acid) (PEG-PLA) copolymers with a hydrophobic PLA block of different molecular weights and a fixed length hydrophilic PEG were synthesized successfully and characterized. These amphiphilic block copolymers were used to fabricate honeycomb-structured porous films using the breath figure (BF) templating technique. The surface topology and composition of the highly ordered pattern film were further characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and fluorescence microscopy. The results indicated that the PEG-to-PLA block molecular weight ratio influenced the BF film surface topology. The film with the best ordered pores was obtained with a PEG-to-PLA ratio of 2.0 × 10{sup 3}:3.0 × 10{sup 4}. The self-organization of the hydrophilic PEG chains within the pores was confirmed by XPS and fluorescence labeled PEG. A model is proposed to elucidate the stabilization process of the amphiphilic PEG-PLA aggregated architecture on the water droplet-based templates. In addition, GFP-U87 cell viability has been investigated by MTS test and the cell morphology on the honeycomb-structured PEG-PLA porous film has been evaluated using phase-contrast microscope. This porous film is shown to be suitable as a matrix for cell growth.

  3. Fabrication of honeycomb-structured poly(ethylene glycol)-block-poly(lactic acid) porous films and biomedical applications for cell growth

    International Nuclear Information System (INIS)

    Yao, Bingjian; Zhu, Qingzeng; Yao, Linli; Hao, Jingcheng

    2015-01-01

    Graphical abstract: - Highlights: • Honeycomb-structured PEG-PLA porous films were fabricated. • The organization of pores depends on molecular weight ratio of PEG-to-PLA block. • The pores in the film were internally decorated with a layer of PEG. • The honeycomb-structured PEG-PLA film was suitable as a substrate for cell growth. - Abstract: A series of poly(ethylene glycol)-block-poly(lactic acid) (PEG-PLA) copolymers with a hydrophobic PLA block of different molecular weights and a fixed length hydrophilic PEG were synthesized successfully and characterized. These amphiphilic block copolymers were used to fabricate honeycomb-structured porous films using the breath figure (BF) templating technique. The surface topology and composition of the highly ordered pattern film were further characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and fluorescence microscopy. The results indicated that the PEG-to-PLA block molecular weight ratio influenced the BF film surface topology. The film with the best ordered pores was obtained with a PEG-to-PLA ratio of 2.0 × 10 3 :3.0 × 10 4 . The self-organization of the hydrophilic PEG chains within the pores was confirmed by XPS and fluorescence labeled PEG. A model is proposed to elucidate the stabilization process of the amphiphilic PEG-PLA aggregated architecture on the water droplet-based templates. In addition, GFP-U87 cell viability has been investigated by MTS test and the cell morphology on the honeycomb-structured PEG-PLA porous film has been evaluated using phase-contrast microscope. This porous film is shown to be suitable as a matrix for cell growth

  4. Disintegration and cancer immunotherapy efficacy of a squalane-in-water delivery system emulsified by bioresorbable poly(ethylene glycol)-block-polylactide.

    Science.gov (United States)

    Chen, Wei-Lin; Liu, Shih-Jen; Leng, Chih-Hsiang; Chen, Hsin-Wei; Chong, Pele; Huang, Ming-Hsi

    2014-02-01

    Vaccine adjuvant is conferred on the substance that helps to enhance antigen-specific immune response. Here we investigated the disintegration characteristics and immunotherapy potency of an emulsified delivery system comprising bioresorbable polymer poly(ethylene glycol)-polylactide (PEG-PLA), phosphate buffer saline (PBS), and metabolizable oil squalane. PEG-PLA-stabilized oil-in-water emulsions show good stability at 4 °C and at room temperature. At 37 °C, squalane/PEG-PLA/PBS emulsion with oil/aqueous weight ratio of 7/3 (denominated PELA73) was stable for 6 weeks without phase separation. As PEG-PLA being degraded, 30% of free oil at the surface layer and 10% of water at the bottom disassociated from the PELA73 emulsion were found after 3 months. A MALDI-TOF MS study directly on the DIOS plate enables us to identify low molecular weight components released during degradation. Our results confirm the loss of PLA moiety of the emulsifier PEG-PLA directly affected the stability of PEG-PLA-stabilized emulsion, leading to emulsion disintegration and squalane/water phase separation. As adjuvant for cancer immunotherapeutic use, an HPV16 E7 peptide antigen formulated with PELA73 plus immunostimulatory CpG molecules could strongly enhance antigen-specific T-cell responses as well as anti-tumor ability with respected to non-formulated or Alum-formulated peptide. Accordingly, these advances may be a potential immunoregulatory strategy in manipulating the immune responses induced by tumor-associated antigens. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. Evaluation of Ethylene Glycol as a cryoprotectant in the sperm cryopreservation of trans-Andean shovel nose Catfish (Sorubim cuspicaudus, Pimelodidae)

    International Nuclear Information System (INIS)

    Atencio Garcia, Victor J; Dorado, Maria; Navarro, Emilio; Perez, Francisco; Herrera, Briner; Movilla, Jorge; Espinosa Araujo, Jose A

    2014-01-01

    The Catfish Sorubim cuspicaudus cryopreservation semen was evaluated using three levels (5, 10, 15 %) of ethylene glycol (ETG). Males (n = 13) undergoing spermiation and in final maturation females (n = 6) were induced with 0.4 ml ovaprim /Kg, after 12 and 14 post-induction the semen was collected in 2 ml Eppendorf vials. The different cryoprotectants solutions were prepared with glucose 6 % (w/v) skimmed milk powder 5 % (w/v) and distilled water. The semen was diluted in ratio 1:3 (semen:extender), packed in macrotubes of 2.5 ml and frozen in liquid nitrogen (NL) vapor for 30 minutes, then the macrotubes were stored in cryogenic tanks submerged directly in NL (-196 Celsius degrade). The sperm were thawed in serological bath to 35 Celsius degrade for 90 seconds. The total motility, total progressivity and velocities in fresh and thawed semen were analyzed with the sperm class analyzer software (SCA Microptic SL, Spain). Fertility and hatching rates were assessed with 1.0-1.5 g of oocytes in experimental up flow incubators 2L, a completely randomized design was used. The hatching rate of fresh semen was 51,8 Celsius degrade 21 %, with no significant differences with semen cryopreserved with ETG 5 % (38.6 ± 13.9 %) (P > 0,05), while ETG 15 % (9.6 +/- 2.9 %), recorded the lower hatching rate (P< 0.05). the results suggest that the cryoprotectant solution composed of ETG 5 %, glucose 6 % and powdered milk 5 % is a viable alternative for semen cryopreservation of the catfish Sorubim cuspicaudus.

  6. Construction and characterization of Gal-chitosan graft methoxy poly (ethylene glycol) (Gal-CS-mPEG) nanoparticles as efficient gene carrier

    Science.gov (United States)

    Jin, Jiting; Fu, Wandong; Liao, Miaofei; Han, Baoqin; Chang, Jing; Yang, Yan

    2017-10-01

    In the present study, galactosylated chitosan (Gal-CS) was conjugated with methoxy poly(ethylene glycol) (mPEG) as a hydrophilic group. The structure of Gal-CS-mPEG polymer was characterized and the nanoparticles (NPs) were prepared using ironic gelation method. The study was designed to investigate the characteristics and functions of Gal-CS-mPEG NPs. The morphology of Gal-CS-mPEG NPs was observed by SEM and it was a compact and spherical shape. The size of the NPs was approximately 200 nm in diameter under the ideal process parameters. The interaction between Gal-CS-mPEG NPs and pDNA, and the protection of pDNA against DNase I and serum degradation by Gal-CS-mPEG NPs were evaluated. Agarose gel electrophoresis results showed that Gal-CS-mPEG NPs had strong interaction with pDNA at the weight ratio of 12:1, 4:1 and 2:1 and could protect pDNA from DNase I and serum degradation. Gal-CS-mPEG NPs exhibited high loading efficiency and sustainable in vitro release. The blood compatibility studies demonstrated that Gal-CS-mPEG NPs had superior compatibility with erythrocytes in terms of aggregation degree and hemolysis level. Gal-CS-mPEG NPs showed no cytotoxicity on L929 cells, which is a normal mouse connective tissue fibroblast, but showed inhibitory effects on the proliferation of Bel-7402 cells, which is a liver cancer cell line. In conclusion, Gal-CS-mPEG NP is a bio-safe and efficient gene carrier with potential application in gene delivery.

  7. Investigation of the role of hydrophilic chain length in amphiphilic perfluoropolyether/poly(ethylene glycol) networks: towards high-performance antifouling coatings

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yapei; Pitet, Louis M.; Finlay, John A.; Brewer, Lenora H.; Cone, Gemma; Betts, Douglas E.; Callow, Maureen E.; Callow, James A.; Wendt, Dean E.; Hillmyer, Marc A.; DeSimone, Joseph M. (Birmingham UK); (NCSU); (UNC); (Cal. Polytech.); (UMM)

    2013-03-07

    The facile preparation of amphiphilic network coatings having a hydrophobic dimethacryloxy-functionalized perfluoropolyether (PFPE-DMA; M{sub w} = 1500 g mol{sup -1}) crosslinked with hydrophilic monomethacryloxy functionalized poly(ethylene glycol) macromonomers (PEG-MA; M{sub w} = 300, 475, 1100 g mol{sup -1}), intended as non-toxic high-performance marine coatings exhibiting antifouling characteristics is demonstrated. The PFPE-DMA was found to be miscible with the PEG-MA. Photo-cured blends of these materials containing 10 wt% of PEG-MA oligomers did not swell significantly in water. PFPE-DMA crosslinked with the highest molecular weight PEG oligomer (ie PEG1100) deterred settlement (attachment) of algal cells and cypris larvae of barnacles compared to a PFPE control coating. Dynamic mechanical analysis of these networks revealed a flexible material. Preferential segregation of the PEG segments at the polymer/air interface resulted in enhanced antifouling performance. The cured amphiphilic PFPE/PEG films showed decreased advancing and receding contact angles with increasing PEG chain length. In particular, the PFPE/PEG1100 network had a much lower advancing contact angle than static contact angle, suggesting that the PEG1100 segments diffuse to the polymer/water interface quickly. The preferential interfacial aggregation of the larger PEG segments enables the coating surface to have a substantially enhanced resistance to settlement of spores of the green seaweed Ulva, cells of the diatom Navicula and cypris larvae of the barnacle Balanus amphitrite as well as low adhesion of sporelings (young plants) of Ulva, adhesion being lower than to a polydimethyl elastomer, Silastic T2.

  8. Investigation of the role of hydrophilic chain length in amphiphilic perfluoropolyether/poly(ethylene glycol) networks: towards high-performance antifouling coatings.

    Science.gov (United States)

    Wang, Yapei; Pitet, Louis M; Finlay, John A; Brewer, Lenora H; Cone, Gemma; Betts, Douglas E; Callow, Maureen E; Callow, James A; Wendt, Dean E; Hillmyer, Marc A; DeSimonea, Joseph M

    2011-01-01

    The facile preparation of amphiphilic network coatings having a hydrophobic dimethacryloxy-functionalized perfluoropolyether (PFPE-DMA; M(w) = 1500 g mol(-1)) crosslinked with hydrophilic monomethacryloxy functionalized poly(ethylene glycol) macromonomers (PEG-MA; M(w) = 300, 475, 1100 g mol(-1)), intended as non-toxic high-performance marine coatings exhibiting antifouling characteristics is demonstrated. The PFPE-DMA was found to be miscible with the PEG-MA. Photo-cured blends of these materials containing 10 wt% of PEG-MA oligomers did not swell significantly in water. PFPE-DMA crosslinked with the highest molecular weight PEG oligomer (ie PEG1100) deterred settlement (attachment) of algal cells and cypris larvae of barnacles compared to a PFPE control coating. Dynamic mechanical analysis of these networks revealed a flexible material. Preferential segregation of the PEG segments at the polymer/air interface resulted in enhanced antifouling performance. The cured amphiphilic PFPE/PEG films showed decreased advancing and receding contact angles with increasing PEG chain length. In particular, the PFPE/PEG1100 network had a much lower advancing contact angle than static contact angle, suggesting that the PEG1100 segments diffuse to the polymer/water interface quickly. The preferential interfacial aggregation of the larger PEG segments enables the coating surface to have a substantially enhanced resistance to settlement of spores of the green seaweed Ulva, cells of the diatom Navicula and cypris larvae of the barnacle Balanus amphitrite as well as low adhesion of sporelings (young plants) of Ulva, adhesion being lower than to a polydimethyl elastomer, Silastic T2.

  9. [Synthesis and Study on Adsorption Property of Congo Red Molecularly Imprinted Polymer Nanospheres].

    Science.gov (United States)

    Chang, Zi-qiang; Chen, Fu-bin; Zhang, Yu; Shi, Zuo-long; Yang, Chun-yan; Zhang, Zhu-jun

    2015-07-01

    Molecularly imprinted polymer nanospheres (MIP) were prepared with Congo red as the template, methacrylic acid (MAA) as a functional monomer, ethylene glycol dimethacrylate (EGDMA) as the cross linker, azodiisobutyronitrile (AIBN) as an initiator, and acetonitrile as the porogen by precipitation polymerization. The morphology of MIP was characterized by SEM and TEM which showed that the diameter of MIP was nanometer grade (90 nm) and the shape was homogeneous. The specific surface area and pore volumes of MIP and NIP were examined through Brunauer-Emett-Teller method of nitrogen adsorption experiments. Then, the adsorption and selective recognition ability of MIPs were evaluated using the equilibrium rebinding experiments. The results indicated that the prepared MIP showed a good selectivity recognition ability to its template. It concluded that MIP could be employed as an effective material for removing Congo red from waste water.

  10. Carprofen-imprinted monolith prepared by reversible addition-fragmentation chain transfer polymerization in room temperature ionic liquids.

    Science.gov (United States)

    Ban, Lu; Han, Xu; Wang, Xian-Hua; Huang, Yan-Ping; Liu, Zhao-Sheng

    2013-10-01

    To obtain fast separation, ionic liquids were used as porogens first in combination with reversible addition-fragmentation chain transfer (RAFT) polymerization to prepare a new type of molecularly imprinted polymer (MIP) monolith. The imprinted monolithic column was synthesized using a mixture of carprofen (template), 4-vinylpyridine, ethylene glycol dimethacrylate, [BMIM]BF4, and chain transfer agent (CTA). Some polymerization factors, such as template-monomer molar ratio, the degree of crosslinking, the composition of the porogen, and the content of CTA, on the column efficiency and imprinting effect of the resulting MIP monolith were systematically investigated. Affinity screening of structurally similar compounds with the template can be achieved in 200 s on the MIP monolith due to high column efficiency (up to 12,070 plates/m) and good column permeability. Recognition mechanism of the imprinted monolith was also investigated.

  11. Preparation of MIP grafts for quercetin by tandem aryl diazonium surface chemistry and photopolymerization

    International Nuclear Information System (INIS)

    Salmi, Zakaria; Benmehdi, Houcine; Lamouri, Aazdine; Decorse, Philippe; Jouini, Mohamed; Chehimi, Mohamed M.; Yagci, Yusuf

    2013-01-01

    The food antioxidant quercetin was used as a template in an ultrathin molecularly imprinted polymer (MIP) film prepared by photopolymerization. Indium tin oxide (ITO) plates were electrografted with aryl layers via a diazonium salt precursor bearing two terminal hydroxyethyl groups. The latter act as hydrogen donors for the photosensitizer isopropylthioxanthone and enabled the preparation of MIP grafts through radical photopolymerization of methacrylic acid (the functional monomer) and ethylene glycol dimethacrylate (the crosslinker) in the presence of quercetin (the template) on the ITO. The template was extracted, and the remaining ITO electrode used for the amperometric determination of quercetin at a working potential of 0.26 V (vs. SCE). The analytical range is from 5.10 −8 to 10 −4 mol L −1 , and the detection limit is 5.10 −8 mol L −1 . (author)

  12. Synthesis and characterization of magnetic and non-magnetic core-shell polyepoxide micrometer-sized particles of narrow size distribution.

    Science.gov (United States)

    Omer-Mizrahi, Melany; Margel, Shlomo

    2009-01-15

    Core polystyrene microspheres of narrow size distribution were prepared by dispersion polymerization of styrene in a mixture of ethanol and 2-methoxy ethanol. Uniform polyglycidyl methacrylate/polystyrene core-shell micrometer-sized particles were prepared by emulsion polymerization at 73 degrees C of glycidyl methacrylate in the presence of the core polystyrene microspheres. Core-shell particles with different properties (size, surface morphology and composition) have been prepared by changing various parameters belonging to the above seeded emulsion polymerization process, e.g., volumes of the monomer glycidyl methacrylate and the crosslinker monomer ethylene glycol dimethacrylate. Magnetic Fe(3)O(4)/polyglycidyl methacrylate/polystyrene micrometer-sized particles were prepared by coating the former core-shell particles with magnetite nanoparticles via a nucleation and growth mechanism. Characterization of the various particles has been accomplished by routine methods such as light microscopy, SEM, FTIR, BET and magnetic measurements.

  13. A study on optical properties of poly (ethylene oxide) based polymer electrolyte with different alkali metal iodides

    Science.gov (United States)

    Rao, B. Narasimha; Suvarna, R. Padma

    2016-05-01

    Polymer electrolytes were prepared by adding poly (ethylene glycol) dimethyl ether (PEGDME), TiO2 (nano filler), different alkali metal iodide salts RI (R+=Li+, Na+, K+, Rb+, Cs+) and I2 into Acetonitrile gelated with Poly (ethylene oxide) (PEO). Optical properties of poly (ethylene oxide) based polymer electrolytes were studied by FTIR, UV-Vis spectroscopic techniques. FTIR spectrum reveals that the alkali metal cations were coordinated to ether oxygen of PEO. The optical absorption studies were made in the wavelength range 200-800 nm. It is observed that the optical absorption increases with increase in the radius of alkali metal cation. The optical band gap for allowed direct transitions was evaluated using Urbach-edges method. The optical properties such as optical band gap, refractive index and extinction coefficient were determined. The studied polymer materials are useful for solar cells, super capacitors, fuel cells, gas sensors etc.

  14. The dependence of MG63 osteoblast responses to (meth)acrylate-based networks on chemical structure and stiffness.

    Science.gov (United States)

    Smith, Kathryn E; Hyzy, Sharon L; Sunwoo, Moonhae; Gall, Ken A; Schwartz, Zvi; Boyan, Barbara D

    2010-08-01

    The cell response to an implant is regulated by the implant's surface properties including topography and chemistry, but less is known about how the mechanical properties affect cell behavior. The objective of this study was to evaluate how the surface stiffness and chemistry of acrylate-based copolymer networks affect the in vitro response of human MG63 pre-osteoblast cells. Networks comprised of poly(ethylene glycol) dimethacrylate (PEGDMA; Mn approximately 750) and diethylene glycol dimethacrylate (DEGDMA) were photopolymerized at different concentrations to produce three compositions with moduli ranging from 850 to 60 MPa. To further decouple chemistry and stiffness, three networks comprised of 2-hydroxyethyl methacrylate (2HEMA) and PEGDMA or DEGDMA were also designed that exhibited a range of moduli similar to the PEGDMA-DEGDMA networks. MG63 cells were cultured on each surface and tissue culture polystyrene (TCPS), and the effect of copolymer composition on cell number, osteogenic markers (alkaline phosphatase specific activity and osteocalcin), and local growth factor production (OPG, TGF-beta1, and VEGF-A) were assessed. Cells exhibited a more differentiated phenotype on the PEGDMA-DEGDMA copolymers compared to the 2HEMA-PEGDMA copolymers. On the PEGDMA-DEGDMA system, cells exhibited a more differentiated phenotype on the stiffest surface indicated by elevated osteocalcin compared with TCPS. Conversely, cells on 2HEMA-PEGDMA copolymers became more differentiated on the less stiff 2HEMA surface. Growth factors were regulated in a differential manner. These results indicate that copolymer chemistry is the primary regulator of osteoblast differentiation, and the effect of stiffness is secondary to the surface chemistry. 2010 Elsevier Ltd. All rights reserved.

  15. Inhibition of. beta. -bungarotoxin binding to brain membranes by mast cell degranulating peptide, toxin I, and ethylene glycol bis(. beta. -aminoethyl ether)-N,N,N',N'-tetraacetic acid

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, R.R.; Betz, H.; Rehm, H.

    1988-02-09

    The presynaptically active snake venom neurotoxin ..beta..-bungarotoxin (..beta..-Butx) is known to affect neurotransmitter release by binding to a subtype of voltage-activated K/sup +/ channels. Here the authors show that mast cell degranulating (MCD) peptide from bee venom inhibits the binding of /sup 125/I-labeled ..beta..-Butx to chick and rat brain membranes with apparent K/sub i/ values of 180 nM and 1100 nM, respectively. The mechanisms of inhibition of MCD peptide is noncompetitive, as is inhibition of /sup 125/I-..beta..-Butx binding by the protease inhibitor homologue from mamba venom, toxin I. ..beta..-Butx and its binding antagonists thus bind to different sites of the same membrane protein. Removal of Ca/sup 2 +/ by ethylene glycol bis(..beta..-aminoethyl ether)-N,N,N',N'-tetraacetic acid inhibits the binding of /sup 125/I-..beta..-Butx by lowering its affinity to brain membranes.

  16. One-pot synthesis of zeolitic imidazolate framework-8/poly (methyl methacrylate-ethyleneglycol dimethacrylate) monolith coating for stir bar sorptive extraction of phytohormones from fruit samples followed by high performance liquid chromatography-ultraviolet detection.

    Science.gov (United States)

    You, Linna; He, Man; Chen, Beibei; Hu, Bin

    2017-11-17

    In this work, zeolitic imidazolate framework-8 (ZIF-8)/poly (methyl methacrylate-ethyleneglycol dimethacrylate) (MMA-EGDMA) composite monolith was in situ synthesized on stir bar by one-pot polymerization. Compared with the neat monolith, ZIF-8/poly(MMA-EGDMA) composite monolith has larger surface area and pore volume. It also exhibits higher extraction efficiency for target phytohormones than poly(MMA-EGDMA) monolith and commercial polyethylene glycol (PEG) coated stir bar. Based on it, a method of ZIF-8/poly(MMA-EGDMA) monolith coated stir bar sorptive extraction (SBSE)-high performance liquid chromatography-ultraviolet detection (HPLC-UV) was established for the analysis of five phytohormones in apple and pear samples. The developed method exhibited low limits of detection (0.11-0.51μg/L), wide linear range (0.5-500μg/L) and good recoveries (82.7-111%), which demonstrated good application potential of the ZIF-8/monolith coated stir bar in trace analysis of organic compounds. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Final report on the safety assessment of Triethylene Glycol and PEG-4.

    Science.gov (United States)

    2006-01-01

    Triethylene Glycol and PEG-4 (polyethylene glycol) are polymers of ethylene oxide alcohol. Triethylene Glycol is a specific three-unit chain, whereas PEG-4 is a polymer with an average of four units, but may contain polymers ranging from two to eight ethylene oxide units. In the same manner, other PEG compounds, e.g., PEG-6, are mixtures and likely contain some Triethylene Glycol and PEG-4. Triethylene Glycol is a fragrance ingredient and viscosity decreasing agent in cosmetic formulations, with a maximum concentration of use of 0.08% in skin-cleansing products. Following oral doses, Triethylene Glycol and its metabolites are excreted primarily in urine, with small amounts released in feces and expired air. With oral LD50 values in rodents from 15 to 22 g/kg, this compound has little acute toxicity. Rats given short term oral doses of 3% in water showed no signs of toxicity, whereas all rats given 10% died by the 12th day of exposure. At levels up to 1 g/m3, rats exposed to aerosolized Triethylene Glycol for 6 h per day for 9 days showed no signs of toxicity. Rats fed a diet containing 4% Triethylene Glycol for 2 years showed no signs of toxicity. There were no treatment-related effects on rats exposed to supersaturated Triethylene Glycol vapor for 13 months nor in rats that consumed 0.533 cc Triethylene Glycol per day in drinking water for 13 months. Triethylene Glycol was not irritating to the skin of rabbits and produced only minimal injury to the eye. In reproductive and developmental toxicity studies in rats and mice, Triethylene Glycol did not produce biologically significant embryotoxicity or teratogenicity. However, some maternal toxicity was seen in dams given 10 ml/kg/day during gestation. Triethylene Glycol was not mutagenic or genotoxic in Ames-type assays, the Chinese hamster ovary mutation assay, and the sister chromatid exchange assays. PEG-4 is a humectant and solvent in cosmetic products, with a maximum concentration of use of 20% in the "other

  18. Surface-Initiated Atom Transfer Radical Polymerization of Magnetite Nanoparticles with Statistical Poly(tert-butyl acrylate-poly(poly(ethylene glycol methyl ether methacrylate Copolymers

    Directory of Open Access Journals (Sweden)

    Patcharin Kanhakeaw

    2015-01-01

    Full Text Available This work presented the surface modification of magnetite nanoparticle (MNP with poly[(t-butyl acrylate-stat-(poly(ethylene glycol methyl ether methacrylate] copolymers (P[(t-BA-stat-PEGMA] via a surface-initiated “grafting from” atom transfer radical polymerization (ATRP. Loading molar ratio of t-BA to PEGMA was systematically varied (100 : 0, 75 : 25, 50 : 50, and 25 : 75, resp. such that the degree of hydrophilicity of the copolymers, affecting the particle dispersibility in water, can be fine-tuned. The reaction progress in each step of the synthesis was monitored via Fourier transform infrared spectroscopy (FTIR. The studies in the reaction kinetics indicated that PEGMA had higher reactivity than that of t-BA in the copolymerizations. Gel permeation chromatography (GPC indicated that the molecular weights of the copolymers increased with the increase of the monomer conversion. Transmission electron microscopy (TEM revealed that the particles were spherical with averaged size of 8.1 nm in diameter. Dispersibility of the particles in water was apparently improved when the copolymers were coated as compared to P(t-BA homopolymer coating. The percentages of MNP and the copolymer in the composites were determined via thermogravimetric analysis (TGA and their magnetic properties were investigated via vibrating sample magnetometry (VSM.

  19. Final report of the safety assessment of methacrylate ester monomers used in nail enhancement products.

    Science.gov (United States)

    2005-01-01

    Triethylene Glycol Dimethacrylate are not sensitizers. Ethylene Glycol Dimethacrylate was not a sensitizer in one guinea pig study, but was a strong sensitizer in another. There is cross-reactivity between various methacrylate esters in some sensitization tests. Inhaled Butyl Methacrylate, HEMA, Hydroxypropyl Methacrylate, and Trimethylolpropane Trimethacrylate can be developmental toxicants at high exposure levels (1000 mg/kg/day). None of the methacrylate ester monomers that were tested were shown to have any endocrine disrupting activity. These methacrylate esters are mostly non-mutagenic in bacterial test systems, but weak mutagenic responses were seen in mammalian cell test systems. Chronic dermal exposure of mice to PEG-4 Dimethacrylate (25 mg, 2 x weekly for 80 weeks) or Trimethylolpropane Trimethacrylate (25 mg, 2 x weekly for 80 weeks) did not result in increased incidence of skin or visceral tumors. The carcinogenicity of Triethylene Glycol Dimethacrylate (5, 25, or 50%) was assessed in a mouse skin painting study (50 microl for 5 days/week for 78 weeks), but was not carcinogenic at any dose level tested. The Expert Panel was concerned about the strong sensitization and crossor co-reactivity potential of the methacrylate esters reviewed in this report. However, data demonstrated the rates of polymerization of these Methacrylates were similar to that of Ethyl Methacrylate and there would be little monomer available exposure to the skin. In consideration of the animal toxicity data, the CIR Expert Panel decided that these methacrylate esters should be restricted to the nail and must not be in contact with the skin. Accordingly, these methacrylate esters are safe as used in nail enhancement products when skin contact is avoided.

  20. Threshold photoelectron--photonion coincidence mass spectrometric study of ethylene and ethylene-d4

    International Nuclear Information System (INIS)

    Stockbauer, R.; Inghram, M.G.

    1975-01-01

    Experimental curves have been obtained for the fragmentation of ethylene and ethylene-d 4 ions as a function of the internal energy of those ions using threshold photoelectron--photoion coincidence mass spectrometry. The results are compared with the previous results of photoionization mass spectrometry, He I photoelectron--photoion coicidence, charge exchange experiments, and with quasiequilibrium theory (QET) calculations. The discrepancies between results of these previous experiments and QET calculations do not appear in the present data. It is suggested that ion--molecule reactions competing with charge exchange has led to erroneous conclusions in the interpretation of the charge exchange data. It is concluded that QET does describe the fragmentation of ethylene and ethylene-d 4 within the limits of the data and calculations available. The secondary ion fragmentation C 2 H 4 + → C 2 H 3 + +H → C 2 H 2 + +2H is discussed in detail with regard to the C 2 H 3 + fragment ion internal energy distribution