WorldWideScience

Sample records for ethyl pyruvate reduces

  1. Ethyl pyruvate protects colonic anastomosis from ischemia-reperfusion injury.

    Science.gov (United States)

    Unal, B; Karabeyoglu, M; Huner, T; Canbay, E; Eroglu, A; Yildirim, O; Dolapci, M; Bilgihan, A; Cengiz, O

    2009-03-01

    Ethyl pyruvate is a simple derivative in Ca(+2)- and K(+)-containing balanced salt solution of pyruvate to avoid the problems associated with the instability of pyruvate in solution. It has been shown to ameliorate the effects of ischemia-reperfusion (I/R) injury in many organs. It has also been shown that I/R injury delays the healing of colonic anastomosis. In this study, the effect of ethyl pyruvate on the healing of colon anastomosis and anastomotic strength after I/R injury was investigated. Anastomosis of the colon was performed in 32 adult male Wistar albino rats divided into 4 groups of 8 individuals: (1) sham-operated control group (group 1); (2) 30 minutes of intestinal I/R by superior mesenteric artery occlusion (group 2); (3) I/R+ ethyl pyruvate (group 3), ethyl pyruvate was administered as a 50-mg/kg/d single dose; and (4) I/R+ ethyl pyruvate (group 4), ethyl pyruvate administration was repeatedly (every 6 hours) at the same dose (50 mg/kg). On the fifth postoperative day, animals were killed. Perianastomotic tissue hydroxyproline contents and anastomotic bursting pressures were measured in all groups. When the anastomotic bursting pressures and tissue hydroxyproline contents were compared, it was found that they were decreased in group 2 when compared with groups 1, 3, and 4 (P .05). Ethyl pyruvate significantly prevents the delaying effect of I/R injury on anastomotic strength and healing independent from doses of administration.

  2. Ethyl pyruvate ameliorates hepatic injury following blunt chest trauma and hemorrhagic shock by reducing local inflammation, NF-kappaB activation and HMGB1 release.

    Science.gov (United States)

    Wagner, Nils; Dieteren, Scott; Franz, Niklas; Köhler, Kernt; Mörs, Katharina; Nicin, Luka; Schmidt, Julia; Perl, Mario; Marzi, Ingo; Relja, Borna

    2018-01-01

    The treatment of patients with multiple trauma including blunt chest/thoracic trauma (TxT) and hemorrhagic shock (H) is still challenging. Numerous studies show detrimental consequences of TxT and HS resulting in strong inflammatory changes, organ injury and mortality. Additionally, the reperfusion (R) phase plays a key role in triggering inflammation and worsening outcome. Ethyl pyruvate (EP), a stable lipophilic ester, has anti-inflammatory properties. Here, the influence of EP on the inflammatory reaction and liver injury in a double hit model of TxT and H/R in rats was explored. Female Lewis rats were subjected to TxT followed by hemorrhage/H (60 min, 35±3 mm Hg) and resuscitation/R (TxT+H/R). Reperfusion was performed by either Ringer`s lactated solution (RL) alone or RL supplemented with EP (50 mg/kg). Sham animals underwent all surgical procedures without TxT+H/R. After 2h, blood and liver tissue were collected for analyses, and survival was assessed after 24h. Resuscitation with EP significantly improved haemoglobin levels and base excess recovery compared with controls after TxT+H/R, respectively (ptrauma and hemorrhagic shock is associated with NF-κB. In particular, the beneficial anti-inflammatory effects of ethyl pyruvate seem to be regulated by the HMGB1/NF-κB axis in the liver, thereby, restraining inflammatory responses and liver injury after double hit trauma in the rat.

  3. Binding of ethyl pyruvate to bovine serum albumin: Calorimetric, spectroscopic and molecular docking studies

    Energy Technology Data Exchange (ETDEWEB)

    Pathak, Mallika [Department of Chemistry, Miranda House, University of Delhi, Delhi 11007 (India); Mishra, Rashmi; Agarwala, Paban K. [Department of Radiation Genetics and Epigenetics, Division of Radioprotective Drug Development Research, Institute of Nuclear Medicine and Allied Sciences, Delhi 110054 (India); Ojha, Himanshu, E-mail: himanshu.drdo@gmail.com [Department of Radiation Genetics and Epigenetics, Division of Radioprotective Drug Development Research, Institute of Nuclear Medicine and Allied Sciences, Delhi 110054 (India); Singh, Bhawna [Department of Radiation Genetics and Epigenetics, Division of Radioprotective Drug Development Research, Institute of Nuclear Medicine and Allied Sciences, Delhi 110054 (India); Singh, Anju; Kukreti, Shrikant [Nucleic Acid Research Laboratory, Department of Chemistry, University of Delhi, Delhi 11007 (India)

    2016-06-10

    Highlights: • ITC study showed binding of ethyl pyruvate with BSA with high binding affinity. • Ethyl pyruvate binding caused conformation alteration of BSA. • Fluorescence quenching mechanism is static in nature. • Electrostatic, hydrogen bonding and hydrophobic forces involved in binding. • Docking confirmed role of electrostatic, hydrogen bonding and hydrophobic forces. - Abstract: Various in vitro and in vivo studies have shown the anti-inflammatory and anticancer potential role of ethyl pyruvate. Bio-distribution of drugs is significantly influenced by the drug-serum protein binding. Therefore, the binding mechanism of the ethyl pyruvate with bovine serum albumin was investigated using UV–vis absorption, fluorescence, circular dichroism, isothermal titration calorimetry and molecular docking techniques. Absorption and fluorescence quenching studies indicated the binding of ethyl pyruvate with protein. Circular dichroism spectra of bovine serum albumin confirmed significant change in the conformation of protein upon binding. Thermodynamic data confirmed that ethyl pyruvate binds to bovine serum albumin at the two different sites with high affinity. Binding of ethyl pyruvate to bovine serum albumin involves hydrogen bonding, van der Waal and hydrophobic interactions. Further, docking studies indicated that ethyl pyruvate could bind significantly at the three binding sites. The results will definitely contribute to the development of ethyl pyruvate as drug.

  4. Ethyl pyruvate inhibits proliferation and induces apoptosis of hepatocellular carcinoma via regulation of the HMGB1–RAGE and AKT pathways

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Ping; Dai, Weiqi; Wang, Fan; Lu, Jie; Shen, Miao; Chen, Kan; Li, Jingjing; Zhang, Yan; Wang, Chengfen; Yang, Jing; Zhu, Rong; Zhang, Huawei; Zheng, Yuanyuan; Guo, Chuan-Yong, E-mail: guochuanyong@hotmail.com; Xu, Ling, E-mail: xuling606@sina.com

    2014-01-24

    Highlights: • Ethyl pyruvate inhibits liver cancer. • Promotes apoptosis. • Decreased the expression of HMGB1, p-Akt. - Abstract: Ethyl pyruvate (EP) was recently identified as a stable lipophilic derivative of pyruvic acid with significant antineoplastic activities. The high mobility group box-B1 (HMGB1)–receptor for advanced glycation end-products (RAGE) and the protein kinase B (Akt) pathways play a crucial role in tumorigenesis and development of many malignant tumors. We tried to observe the effects of ethyl pyruvate on liver cancer growth and explored its effects in hepatocellular carcinoma model. In this study, three hepatocellular carcinoma cell lines were treated with ethyl pyruvate. An MTT colorimetric assay was used to assess the effects of EP on cell proliferation. Flow cytometry and TUNEL assays were used to analyze apoptosis. Real-time PCR, Western blotting and immunofluorescence demonstrated ethyl pyruvate reduced the HMGB1–RAGE and AKT pathways. The results of hepatoma orthotopic tumor model verified the antitumor effects of ethyl pyruvate in vivo. EP could induce apoptosis and slow the growth of liver cancer. Moreover, EP decreased the expression of HMGB1, RAGE, p-AKT and matrix metallopeptidase-9 (MMP9) and increased the Bax/Bcl-2 ratio. In conclusion, this study demonstrates that ethyl pyruvate induces apoptosis and cell-cycle arrest in G phase in hepatocellular carcinoma cells, plays a critical role in the treatment of cancer.

  5. Pyruvate reduces 4-aminophenol in vitro toxicity

    International Nuclear Information System (INIS)

    Harmon, R. Christopher; Kiningham, Kinsley K.; Valentovic, Monica A.

    2006-01-01

    Pyruvate has been observed to reduce the nephrotoxicity of some agents by maintaining glutathione status and preventing lipid peroxidation. This study examined the mechanism for pyruvate protection of p-aminophenol (PAP) nephrotoxicity. Renal cortical slices from male Fischer 344 rats were incubated for 30-120 min with 0, 0.1, 0.25 or 0.5 mM PAP in oxygenated Krebs buffer containing 0 or 10 mM pyruvate or glucose (1.28 or 5.5 mM). LDH leakage was increased above control by 0.25 and 0.5 mM PAP beginning at 60 min and by 0.1 mM PAP at 120 min. Pyruvate prevented an increase in LDH leakage at 60- and 120-min exposure to 0.1 and 0.25 mM PAP. Pyruvate also prevented a decline in ATP levels. Glucose (1.28 and 5.5 mM) provided less protection than pyruvate from PAP toxicity. Total glutathione levels were diminished by 0.1 and 0.25 mM PAP within 60 and 30 min, respectively. Pyruvate prevented the decline in glutathione by 0.1 mM PAP at both time periods and at 30 min for 0.25 mM PAP. Pyruvate reduced the magnitude of glutathione depletion by 0.25 mM PAP following a 60-min incubation. Glutathione disulfide (GSSG) levels in renal slices were increased at 60 min by exposure to 0.25 mM PAP, while pyruvate prevented increased GSSG levels by PAP. Pyruvate also reduced the extent of 4-hydroxynonenal (4-HNE)-adducted proteins present after a 90-min incubation with PAP. These results indicate that pyruvate provided protection for PAP toxicity by providing an energy substrate and reducing oxidative stress

  6. Ethyl Pyruvate Emerges as a Safe and Fast Acting Agent against Trypanosoma brucei by Targeting Pyruvate Kinase Activity.

    Directory of Open Access Journals (Sweden)

    Netsanet Worku

    Full Text Available Human African Trypanosomiasis (HAT also called sleeping sickness is an infectious disease in humans caused by an extracellular protozoan parasite. The disease, if left untreated, results in 100% mortality. Currently available drugs are full of severe drawbacks and fail to escape the fast development of trypanosoma resistance. Due to similarities in cell metabolism between cancerous tumors and trypanosoma cells, some of the current registered drugs against HAT have also been tested in cancer chemotherapy. Here we demonstrate for the first time that the simple ester, ethyl pyruvate, comprises such properties.The current study covers the efficacy and corresponding target evaluation of ethyl pyruvate on T. brucei cell lines using a combination of biochemical techniques including cell proliferation assays, enzyme kinetics, phasecontrast microscopic video imaging and ex vivo toxicity tests. We have shown that ethyl pyruvate effectively kills trypanosomes most probably by net ATP depletion through inhibition of pyruvate kinase (Ki = 3.0±0.29 mM. The potential of ethyl pyruvate as a trypanocidal compound is also strengthened by its fast acting property, killing cells within three hours post exposure. This has been demonstrated using video imaging of live cells as well as concentration and time dependency experiments. Most importantly, ethyl pyruvate produces minimal side effects in human red cells and is known to easily cross the blood-brain-barrier. This makes it a promising candidate for effective treatment of the two clinical stages of sleeping sickness. Trypanosome drug-resistance tests indicate irreversible cell death and a low incidence of resistance development under experimental conditions.Our results present ethyl pyruvate as a safe and fast acting trypanocidal compound and show that it inhibits the enzyme pyruvate kinase. Competitive inhibition of this enzyme was found to cause ATP depletion and cell death. Due to its ability to easily cross

  7. Ethyl Pyruvate Ameliorates Hepatic Ischemia-Reperfusion Injury by Inhibiting Intrinsic Pathway of Apoptosis and Autophagy

    Directory of Open Access Journals (Sweden)

    Miao Shen

    2013-01-01

    Full Text Available Background. Hepatic ischemia-reperfusion (I/R injury is a pivotal clinical problem occurring in many clinical conditions such as transplantation, trauma, and hepatic failure after hemorrhagic shock. Apoptosis and autophagy have been shown to contribute to cell death in hepatic I/R injury. Ethyl pyruvate, a stable and simple lipophilic ester, has been shown to have anti-inflammatory properties. In this study, the purpose is to explore both the effect of ethyl pyruvate on hepatic I/R injury and regulation of intrinsic pathway of apoptosis and autophagy. Methods. Three doses of ethyl pyruvate (20 mg/kg, 40 mg/kg, and 80 mg/kg were administered 1 h before a model of segmental (70% hepatic warm ischemia was established in Balb/c mice. All serum and liver tissues were obtained at three different time points (4 h, 8 h, and 16 h. Results. Alanine aminotransferase (ALT, aspartate aminotransferase (AST, and pathological features were significantly ameliorated by ethyl pyruvate (80 mg/kg. The expression of Bcl-2, Bax, Beclin-1, and LC3, which play an important role in the regulation of intrinsic pathway of apoptosis and autophagy, was also obviously decreased by ethyl pyruvate (80 mg/kg. Furthermore, ethyl pyruvate inhibited the HMGB1/TLR4/ NF-κb axis and the release of cytokines (TNF-α and IL-6. Conclusion. Our results showed that ethyl pyruvate might attenuate to hepatic I/R injury by inhibiting intrinsic pathway of apoptosis and autophagy, mediated partly through downregulation of HMGB1/TLR4/ NF-κb axis and the competitive interaction with Beclin-1 of HMGB1.

  8. Protective effect of ethyl pyruvate on mice sperm parameters in phenylhydrazine induced hemolytic anemia.

    Science.gov (United States)

    Mozafari, Ali Akbar; Shahrooz, Rasoul; Ahmadi, Abbas; Malekinjad, Hassan; Mardani, Karim

    2016-01-01

    The aim of the present study was to assess the protective effect of ethyl pyruvate (EP) on sperm quality parameters, testosterone level and malondialdehyde (MDA) in phenylhydrazine (PHZ) treated mice. For this purpose, 32 NMRI mice with the age range of 8 to 10 weeks, weight average 26.0 ± 2.0 g, were randomly divided into four equal groups. The control group (1) received normal saline (0. 1 mL per day) by intraperitoneal injection (IP). Group 2 (PHZ group) was treated with initial dose of PHZ (8 mg 100 g(-1), IP) followed by 6 mg 100 g(-1) , IP every 48 hr. Group 3, (Group PHZ+EP) received PHZ (according to the previous prescription) with EP (40 mg kg(-1), daily, IP). Ethyl pyruvate group (4) received only EP (40 mg kg(-1), daily, IP). Treatment period was 35 days. After euthanasia, sperms from caudal region of epididymis were collected and the total mean sperm count, sperm viability, motility and morphology were determined. Testis tissue MDA and serum testosterone levels of all experimental groups were also evaluated. A considerable reduction in mean percentage of number, natural morphology of sperm, sperm motility and viability and serum testosterone concentration besides DNA injury increment among mice treating with PHZ in comparison with control group were observed. However, in PHZ+EP group the above mentioned parameters were improved. This study showed that PHZ caused induction of toxicity on sperm parameters and reduction of testosterone as well as the increment of MDA level and EP as an antioxidant could reduce destructive effects of PHZ on sperm parameters, testosterone level and lipid peroxidation.

  9. Ameliorative effect of ethyl pyruvate in neuropathic pain induced by chronic constriction injury of sciatic nerve

    Directory of Open Access Journals (Sweden)

    Varsha J. Bansode

    2014-01-01

    Full Text Available Objective: The present study was designed to investigate the ameliorative effects of ethyl pyruvate (EP in chronic constriction injury (CCI-induced painful neuropathy in rats. Materials and Methods: EP 50 and 100 mg/kg was administered for 21 consecutive days starting from the day of surgery. The effects of EP in the paw pressure, acetone drop, and tail heat immersion tests were assessed, reflecting the degree of mechanical hyperalgesia, cold allodynia, and spinal thermal sensation, respectively. Axonal degeneration of the sciatic nerve was assessed histopathologically. The levels of thiobarbituric acid reactive species, reduced glutathione (GSH, catalase (CAT, and superoxide dismutase (SOD were determined to assess oxidative stress. Key Findings: Administration of 50 and 100 mg/kg EP attenuated the reduction of nociceptive threshold in the paw pressure, acetone drop, and tail heat immersion tests. EP 100 mg/kg significantly attenuated reactive changes in histopathology and increase in oxidative stress. Conclusion: EP 100 mg/kg showed beneficial activity against nerve trauma-induced neuropathy. Hence, it can be used as a better treatment option in neuropathic pain (NP. The observed antinociceptive effects of EP may possibly be attributed to its antioxidant and anti-inflammatory activity.

  10. Study on the protective effect of ethyl pyruvate on mouse models of sepsis-induced lung injury

    International Nuclear Information System (INIS)

    Ti Dongdong; Deng Zihui; Xue Hui; Wang Luhuan; Lin Ji; Yan Guangtao

    2008-01-01

    Objective: To investigate the protective role of ethyl pyruvate on mouse models of lung injury from sepsis. Methods: Mouse sepsis models were established by cecal ligation-perforation. Four enzyme parameters related to synthesis of free radicals in lung homogenized fluids namely malonaldehyde (MDA), pyruvate acid, lactic acid and total anti-oxidative capacity (TAOC) were determined with spectrophotometry, and serum leptin levels were detected with radioimmunoassay at 3, 6, 9, 12h after operation in these models. Half of the models were treated with intraperitoneal injection of ethyl pyruvate (EP) (75mg/kg). Results: In the models treated with ethyl pyruvate injection, the activity of malonaldehyde, pyruvate acid, lactic acid and total anti-oxidative capacity were affected to certain extent, at some time frames but the results were not unanimously inhibitive or promotive. Serum leptin levels in EP injection models at 6h and 12h after sepsis were significantly higher than those in non-treated models. Conclusion: Ethyl pyruvate perhaps exerted its protective effect on sepsis-induced lung injury through increase of leptin levels in the models. (authors)

  11. Attenuation of Methotrexate-Induced Embryotoxicity and Oxidative Stress by Ethyl Pyruvate

    Directory of Open Access Journals (Sweden)

    Najafi Gholamreza

    2016-07-01

    Full Text Available Background Methotrexate (MTX, as an anti-folate agent, is widely used in the treatment of rheumatic disorders and malignant tumors, however it damages reproductive sys- tem in mice. The aim of this research was to study the effects of ethyl pyruvate (EP on embryo development and oxidative stress changes in the testis of mice treated with MTX. Materials and Methods In this experimental study, thirty-two adult male Naval Medical Research Institute mice, with average weight of 26 ± 2 g, were divided into four groups. The first group (control received distilled water (0.1 ml/mice/day, while the second group was intraperitoneally (IP treated with 20 mg/kg MTX once per week. The third group was IP treated with 40 mg/kg/day EP, and the fourth group was IP treated with both 20 mg/kg MTX and 40 mg/kg/day EP for 30 days. At the end of treatment fertilization rate and embryonic development were evaluated. Differences between these groups were assessed by ANOVA using the SPSS software package for Windows with a Tukey-Kramer multiple post-hoc comparison test. Results MTX treatment caused significant (P<0.05 increase in malondialdehyde (MDA and reduced catalase (CAT, as well as leading to in vitro fertilization (IVF and embryonic development. The improved effects of EP on the IVF were determined by the reduced level of MDA (index of oxidative stress and significant increased level of CAT (a key antioxidant. We observed significant increase in fertilization rate and embryonic development in the treated group with both MTX and EP. Conclusion It is suggested that EP can be useful in ameliorating testicular damages and embryotoxicity induced by MTX. These effects could be attributed to its antioxidant properties.

  12. Preventing intraperitoneal adhesions with ethyl pyruvate and hyaluronic acid/carboxymethylcellulose: a comparative study in an experimental model.

    Science.gov (United States)

    Caglayan, E Kıyak; Caglayan, K; Erdogan, N; Cinar, H; Güngör, B

    2014-10-01

    To compare the effectiveness of ethyl pyruvate (EP) with that of hyaluronic acid+carboxymethyl cellulose (Seprafilm) for the prevention of intraperitoneal adhesions. Seprafilm has been shown to be effective in many experimental and clinical studies. Thirty rats were divided into three groups at random, and uterine horn abrasion was performed by laparotomy. One group received no treatment (control group), one group received a single intraperitoneal dose of EP 50mg/kg (EP group), and a 2×1-cm patch of Seprafilm was applied in the third group (Seprafilm group). All rats were killed 14 days after surgery. Macroscopic and histopathological evaluation were performed by a surgeon and a pathologist who were blinded to group allocation. Histopathologically, inflammation, fibroblastic activity, foreign body reaction, collagen proliferation, vascular proliferation, Masson-Trichrome score, matrix metalloproteinase-2 score and vascular endothelial growth factor score were studied. Median macroscopic intraperitoneal adhesion scores for the control, EP and Seprafilm groups were 2.8, 1.2 and 1.1, respectively. Multiple comparisons between groups showed a significant difference (p0.05). After histopathological evaluation, significant differences in all parameters were found between the groups (p0.0167). In comparison with the untreated control group, EP and Seprafilm were found to reduce the formation of intraperitoneal adhesions. No significant difference was found between EP and Seprafilm. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  13. The effect of ethyl pyruvate on oxidative stress in intestine and bacterial translocation after thermal injury.

    Science.gov (United States)

    Karabeyoğlu, Melih; Unal, Bülent; Bozkurt, Betül; Dolapçi, Iştar; Bilgihan, Ayşe; Karabeyoğlu, Işil; Cengiz, Omer

    2008-01-01

    Thermal injury causes a breakdown in the intestinal mucosal barrier due to ischemia reperfusion injury, which can induce bacterial translocation (BT), sepsis, and multiple organ failure in burn patients. The aim of this study was to investigate the effect of ethyl pyruvate (EP) on intestinal oxidant damage and BT in burn injury. Thirty-two rats were randomly divided into four groups. The sham group was exposed to 21 degrees C water and injected intraperitoneal with saline (1 mL/100 g). The sham + EP group received EP (40 mg/kg) intraperitoneally 6 h after the sham procedure. The burn group was exposed to thermal injury and given intraperitoneal saline injection (1 mL/100 g). The burn + EP group received EP (40 mg/kg) intraperitoneally 6 h after thermal injury. Twenty-four hours later, tissue samples were obtained from mesenteric lymph nodes, spleen, and liver for microbiological analysis and ileum samples were harvested for biochemical analysis. Thermal injury caused severe BT in burn group. EP supplementation decreased BT in mesenteric lymph nodes and spleen in the burn + EP group compared with the burn group (P < 0.05). Also, burn caused BT in liver, but this finding was not statistically significant among all groups. Thermal injury caused a statistically significant increase in malondialdehyde and myeloperoxidase levels, and EP prevented this effects in the burn + EP group compared with the burn group (P < 0.05). Our data suggested that EP can inhibit the BT and myeloperoxidase and malondialdehyde production in intestine following thermal injury, suggesting anti-inflammatory and anti-oxidant properties of EP.

  14. Pyruvate administration reduces recurrent/moderate hypoglycemia-induced cortical neuron death in diabetic rats.

    Directory of Open Access Journals (Sweden)

    Bo Young Choi

    Full Text Available Recurrent/moderate (R/M hypoglycemia is common in type 1 diabetes patients. Moderate hypoglycemia is not life-threatening, but if experienced recurrently it may present several clinical complications. Activated PARP-1 consumes cytosolic NAD, and because NAD is required for glycolysis, hypoglycemia-induced PARP-1 activation may render cells unable to use glucose even when glucose availability is restored. Pyruvate, however, can be metabolized in the absence of cytosolic NAD. We therefore hypothesized that pyruvate may be able to improve the outcome in diabetic rats subjected to insulin-induced R/M hypoglycemia by terminating hypoglycemia with glucose plus pyruvate, as compared with delivering just glucose alone. In an effort to mimic juvenile type 1 diabetes the experiments were conducted in one-month-old young rats that were rendered diabetic by streptozotocin (STZ, 50mg/kg, i.p. injection. One week after STZ injection, rats were subjected to moderate hypoglycemia by insulin injection (10 U/kg, i.p. without anesthesia for five consecutive days. Pyruvate (500 mg/kg was given by intraperitoneal injection after each R/M hypoglycemia. Three hours after last R/M hypoglycemia, zinc accumulation was evaluated. Three days after R/M hypoglycemia, neuronal death, oxidative stress, microglial activation and GSH concentrations in the cerebral cortex were analyzed. Sparse neuronal death was observed in the cortex. Zinc accumulation, oxidative injury, microglial activation and GSH loss in the cortex after R/M hypoglycemia were all reduced by pyruvate injection. These findings suggest that when delivered alongside glucose, pyruvate may significantly improve the outcome after R/M hypoglycemia by circumventing a sustained impairment in neuronal glucose utilization resulting from PARP-1 activation.

  15. Creatine and creatine pyruvate reduce hypoxia-induced effects on phrenic nerve activity in the juvenile mouse respiratory system.

    Science.gov (United States)

    Scheer, Monika; Bischoff, Anna M; Kruzliak, Peter; Opatrilova, Radka; Bovell, Douglas; Büsselberg, Dietrich

    2016-08-01

    Adequate concentrations of ATP are required to preserve physiological cell functions and protect tissue from hypoxic damage. Decreased oxygen concentration results in ATP synthesis relying increasingly on the presence of phosphocreatine. The lack of ATP through hypoxic insult to neurons that generate or regulate respiratory function, would lead to the cessation of breathing (apnea). It is not clear whether creatine plays a role in maintaining respiratory phrenic nerve (PN) activity during hypoxic challenge. The aim of the study was to test the effects of exogenously applied creatine or creatine pyruvate in maintaining PN induced respiratory rhythm against the deleterious effects of severe hypoxic insult using Working Heart-Brainstem (WHB) preparations of juvenile Swiss type mice. WHB's were perfused with control perfusate or perfusate containing either creatine [100μM] or creatine pyruvate [100μM] prior to hypoxic challenge and PN activity recorded throughout. Results showed that severe hypoxic challenge resulted in an initial transient increase in PN activity, followed by a reduction in that activity leading to respiratory apnea. The results demonstrated that perfusing the WHB preparation with creatine or creatine pyruvate, significantly reduced the onset of apnea compared to control conditions, with creatine pyruvate being the more effective substance. Overall, creatine and creatine pyruvate each produced time-dependent degrees of protection against severe hypoxic-induced disturbances of PN activity. The underlying protective mechanisms are unknown and need further investigations. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Physical exercise reduces pyruvate carboxylase (PCB) and contributes to hyperglycemia reduction in obese mice.

    Science.gov (United States)

    Muñoz, Vitor Rosetto; Gaspar, Rafael Calais; Crisol, Barbara Moreira; Formigari, Guilherme Pedron; Sant'Ana, Marcella Ramos; Botezelli, José Diego; Gaspar, Rodrigo Stellzer; da Silva, Adelino S R; Cintra, Dennys Esper; de Moura, Leandro Pereira; Ropelle, Eduardo Rochete; Pauli, José Rodrigo

    2018-07-01

    The present study evaluated the effects of exercise training on pyruvate carboxylase protein (PCB) levels in hepatic tissue and glucose homeostasis control in obese mice. Swiss mice were distributed into three groups: control mice (CTL), fed a standard rodent chow; diet-induced obesity (DIO), fed an obesity-inducing diet; and a third group, which also received an obesity-inducing diet, but was subjected to an exercise training protocol (DIO + EXE). Protocol training was carried out for 1 h/d, 5 d/wk, for 8 weeks, performed at an intensity of 60% of exhaustion velocity. An insulin tolerance test (ITT) was performed in the last experimental week. Twenty-four hours after the last physical exercise session, the animals were euthanized and the liver was harvested for molecular analysis. Firstly, DIO mice showed increased epididymal fat and serum glucose and these results were accompanied by increased PCB and decreased p-Akt in hepatic tissue. On the other hand, physical exercise was able to increase the performance of the mice and attenuate PCB levels and hyperglycemia in DIO + EXE mice. The above findings show that physical exercise seems to be able to regulate hyperglycemia in obese mice, suggesting the participation of PCB, which was enhanced in the obese condition and attenuated after a treadmill running protocol. This is the first study to be aimed at the role of exercise training in hepatic PCB levels, which may be a novel mechanism that can collaborate to reduce the development of hyperglycemia and type 2 diabetes in DIO mice.

  17. Growth hormone-induced insulin resistance in human subjects involves reduced pyruvate dehydrogenase activity

    DEFF Research Database (Denmark)

    Nellemann, B.; Vendelbo, M.H.; Nielsen, Thomas Svava

    2014-01-01

    Insulin resistance induced by growth hormone (GH) is linked to promotion of lipolysis by unknown mechanisms. We hypothesized that suppression of the activity of pyruvate dehydrogenase in the active form (PDHa) underlies GH-induced insulin resistance similar to what is observed during fasting....

  18. Sodium Pyruvate Reduced Hypoxic-Ischemic Injury to Neonatal Rat Brain

    OpenAIRE

    Pan, Rui; Rong, Zhihui; She, Yun; Cao, Yuan; Chang, Li-Wen; Lee, Wei-Hua

    2012-01-01

    Background Neonatal hypoxia-ischemia (HI) remains a major cause of severe brain damage and is often associated with high mortality and lifelong disability. Immature brains are extremely sensitive to hypoxia-ischemia, shown as prolonged mitochondrial neuronal death. Sodium pyruvate (SP), a substrate of the tricarboxylic acid cycle and an extracellular antioxidant, has been considered as a potential treatment for hypoxic-ischemic encephalopathy (HIE), but its effects have not been evaluated in ...

  19. Beneficial Effects of Ethyl Pyruvate through Inhibiting High-Mobility Group Box 1 Expression and TLR4/NF-κB Pathway after Traumatic Brain Injury in the Rat

    Directory of Open Access Journals (Sweden)

    Xingfen Su

    2011-01-01

    Full Text Available Ethyl pyruvate (EP has demonstrated neuroprotective effects against acute brain injury through its anti-inflammatory action. The nuclear protein high-mobility group box 1 (HMGB1 can activate inflammatory pathways when released from dying cells. This study was designed to investigate the protective effects of EP against secondary brain injury in rats after Traumatic Brain Injury (TBI. Adult male rats were randomly divided into three groups: (1 Sham + vehicle group, (2 TBI + vehicle group, and (3 TBI + EP group (n=30 per group. Right parietal cortical contusion was made by using a weight-dropping TBI method. In TBI + EP group, EP was administered intraperitoneally at a dosage of 75 mg/kg at 5 min, 1 and 6 h after TBI. Brain samples were harvested at 24 h after TBI. We found that EP treatment markedly inhibited the expressions of HMGB1 and TLR4, NF-κB DNA binding activity and inflammatory mediators, such as IL-1β, TNF-α and IL-6. Also, EP treatment significantly ameliorated beam walking performance, brain edema, and cortical apoptotic cell death. These results suggest that the protective effects of EP may be mediated by the reduction of HMGB1/TLR4/NF-κB-mediated inflammatory response in the injured rat brain.

  20. Impaired hippocampal glucose metabolism during and after flurothyl-induced seizures in mice: Reduced phosphorylation coincides with reduced activity of pyruvate dehydrogenase.

    Science.gov (United States)

    McDonald, Tanya S; Borges, Karin

    2017-07-01

    To determine changes in glucose metabolism and the enzymes involved in the hippocampus ictally and postictally in the acute mouse flurothyl seizure model. [U- 13 C]-Glucose was injected (i.p.) prior to, or following a 5 min flurothyl-induced seizure. Fifteen minutes later, mice were killed and the total metabolite levels and % 13 C enrichment were analyzed in the hippocampal formation using gas chromatography-mass spectrometry. Activities of key metabolic and antioxidant enzymes and the phosphorylation status of pyruvate dehydrogenase were measured, along with lipid peroxidation. During seizures, total lactate levels increased 1.7-fold; however, [M + 3] enrichment of both lactate and alanine were reduced by 30% and 43%, respectively, along with a 28% decrease in phosphofructokinase activity. Postictally the % 13 C enrichments of all measured tricarboxylic acid (TCA) cycle intermediates and the amino acids were reduced by 46-93%. At this time, pyruvate dehydrogenase (PDH) activity was 56% of that measured in controls, and there was a 1.9-fold increase in the phosphorylation of PDH at ser232. Phosphorylation of PDH is known to decrease its activity. Here, we show that the increase of lactate levels during flurothyl seizures is from a source other than [U- 13 C]-glucose, such as glycogen. Surprisingly, although we saw a reduction in phosphofructokinase activity during the seizure, metabolism of [U- 13 C]-glucose into the TCA cycle seemed unaffected. Similar to our recent findings in the chronic phase of the pilocarpine model, postictally the metabolism of glucose by glycolysis and the TCA cycle was impaired along with reduced PDH activity. Although this decrease in activity may be a protective mechanism to reduce oxidative stress, which is observed in the flurothyl model, ATP is critical to the recovery of ion and neurotransmitter balance and return to normal brain function. Thus we identified promising novel strategies to enhance energy metabolism and recovery from

  1. Insulin-induced inhibition of gluconeogenesis genes, including glutamic pyruvic transaminase 2, is associated with reduced histone acetylation in a human liver cell line.

    Science.gov (United States)

    Honma, Kazue; Kamikubo, Michiko; Mochizuki, Kazuki; Goda, Toshinao

    2017-06-01

    Hepatic glutamic pyruvic transaminase (GPT; also known as alanine aminotransferase) is a gluconeogenesis enzyme that catalyzes conversions between alanine and pyruvic acid. It is also used as a blood biomarker for hepatic damage. In this study, we investigated whether insulin regulates GPT expression, as it does for other gluconeogenesis genes, and if this involves the epigenetic modification of histone acetylation. Human liver-derived HepG2 cells were cultured with 0.5-100nM insulin for 8h, and the mRNA expression of GPT, glutamic-oxaloacetic transaminase (GOT), γ-glutamyltransferase (GGT), PCK1, G6PC and FBP1 was measured. We also investigated the extent of histone acetylation around these genes. Insulin suppressed the mRNA expression of gluconeogenesis genes (GPT2, GOT1, GOT2, GGT1, GGT2, G6PC, and PCK1) in HepG2 cells in a dose-dependent manner. mRNA levels of GPT2, but not GPT1, were decreased by insulin. Histone acetylation was also reduced around GPT2, G6PC, and PCK1 in response to insulin. The expression of GPT2 and other gluconeogenesis genes such as G6PC and PCK1 was suppressed by insulin, in association with decreases in histone H3 and H4 acetylation surrounding these genes. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Microorganisms and methods for producing pyruvate, ethanol, and other compounds

    Energy Technology Data Exchange (ETDEWEB)

    Reed, Jennifer L.; Zhang, Xiaolin

    2017-12-26

    Microorganisms comprising modifications for producing pyruvate, ethanol, and other compounds. The microorganisms comprise modifications that reduce or ablate activity of one or more of pyruvate dehydrogenase, 2-oxoglutarate dehydrogenase, phosphate acetyltransferase, acetate kinase, pyruvate oxidase, lactate dehydrogenase, cytochrome terminal oxidase, succinate dehydrogenase, 6-phosphogluconate dehydrogenase, glutamate dehydrogenase, pyruvate formate lyase, pyruvate formate lyase activating enzyme, and isocitrate lyase. The microorganisms optionally comprise modifications that enhance expression or activity of pyruvate decarboxylase and alcohol dehydrogenase. The microorganisms are optionally evolved in defined media to enhance specific production of one or more compounds. Methods of producing compounds with the microorganisms are provided.

  3. CAR1 deletion by CRISPR/Cas9 reduces formation of ethyl carbamate from ethanol fermentation by Saccharomyces cerevisiae.

    Science.gov (United States)

    Chin, Young-Wook; Kang, Woo-Kyung; Jang, Hae Won; Turner, Timothy L; Kim, Hyo Jin

    2016-11-01

    Enormous advances in genome editing technology have been achieved in recent decades. Among newly born genome editing technologies, CRISPR/Cas9 is considered revolutionary because it is easy to use and highly precise for editing genes in target organisms. CRISPR/Cas9 technology has also been applied for removing unfavorable target genes. In this study, we used CRISPR/Cas9 technology to reduce ethyl carbamate (EC), a potential carcinogen, which was formed during the ethanol fermentation process by yeast. Because the yeast CAR1 gene encoding arginase is the key gene to form ethyl carbamate, we inactivated the yeast CAR1 gene by the complete deletion of the gene or the introduction of a nonsense mutation in the CAR1 locus using CRISPR/Cas9 technology. The engineered yeast strain showed a 98 % decrease in specific activity of arginase while displaying a comparable ethanol fermentation performance. In addition, the CAR1-inactivated mutants showed reduced formation of EC and urea, as compared to the parental yeast strain. Importantly, CRISPR/Cas9 technology enabled generation of a CAR1-inactivated yeast strains without leaving remnants of heterologous genes from a vector, suggesting that the engineered yeast by CRISPR/Cas9 technology might sidestep GMO regulation.

  4. Pyruvate kinase blood test

    Science.gov (United States)

    ... medlineplus.gov/ency/article/003357.htm Pyruvate kinase blood test To use the sharing features on this page, ... energy when oxygen levels are low. How the Test is Performed A blood sample is needed. In the laboratory, white blood ...

  5. Carbohydrate metabolism during prolonged exercise and recovery: interactions between pyruvate dehydrogenase, fatty acids, and amino acids

    DEFF Research Database (Denmark)

    Mourtzakis, Marina; Saltin, B.; Graham, T.

    2006-01-01

    During prolonged exercise, carbohydrate oxidation may result from decreased pyruvate production and increased fatty acid supply and ultimately lead to reduced pyruvate dehydrogenase (PDH) activity. Pyruvate also interacts with the amino acids alanine, glutamine, and glutamate, whereby the decline...... amino acid taken up during exercise and recovery. Alanine and glutamine were also associated...... with pyruvate metabolism, and they comprised 68% of total amino-acid release during exercise and recovery. Thus reduced pyruvate production was primarily associated with reduced carbohydrate oxidation, whereas the greatest production of pyruvate was related to glutamate, glutamine, and alanine metabolism...

  6. Loss of Mitochondrial Pyruvate Carrier 2 in Liver Leads to Defects in Gluconeogenesis and Compensation via Pyruvate-Alanine Cycling

    Science.gov (United States)

    McCommis, Kyle S.; Chen, Zhouji; Fu, Xiaorong; McDonald, William G.; Colca, Jerry R.; Kletzien, Rolf F.; Burgess, Shawn C.; Finck, Brian N.

    2015-01-01

    SUMMARY Pyruvate transport across the inner mitochondrial membrane is believed to be a prerequisite step for gluconeogenesis in hepatocytes, which is important for maintenance of normoglycemia during prolonged food deprivation, but also contributes to hyperglycemia in diabetes. To determine the requirement for mitochondrial pyruvate import in gluconeogenesis, mice with liver-specific deletion of mitochondrial pyruvate carrier 2 (LS-Mpc2−/−) were generated. Loss of MPC2 impaired, but did not completely abolish, hepatocyte pyruvate metabolism, labelled pyruvate conversion to TCA cycle intermediates and glucose, and glucose production from pyruvate. Unbiased metabolomic analyses of livers from fasted LS-Mpc2−/− mice suggested that alterations in amino acid metabolism, including pyruvate-alanine cycling, might compensate for loss of MPC2. Indeed, inhibition of pyruvate-alanine transamination further reduced mitochondrial pyruvate metabolism and glucose production by LS-Mpc2−/− hepatocytes. These data demonstrate an important role for MPC2 in controlling hepatic gluconeogenesis and illuminate a compensatory mechanism for circumventing a block in mitochondrial pyruvate import. PMID:26344101

  7. Crystal structure of Cryptosporidium parvum pyruvate kinase.

    Directory of Open Access Journals (Sweden)

    William J Cook

    Full Text Available Pyruvate kinase plays a critical role in cellular metabolism of glucose by serving as a major regulator of glycolysis. This tetrameric enzyme is allosterically regulated by different effector molecules, mainly phosphosugars. In response to binding of effector molecules and substrates, significant structural changes have been identified in various pyruvate kinase structures. Pyruvate kinase of Cryptosporidium parvum is exceptional among known enzymes of protozoan origin in that it exhibits no allosteric property in the presence of commonly known effector molecules. The crystal structure of pyruvate kinase from C. parvum has been solved by molecular replacement techniques and refined to 2.5 Å resolution. In the active site a glycerol molecule is located near the γ-phosphate site of ATP, and the protein structure displays a partially closed active site. However, unlike other structures where the active site is closed, the α6' helix in C. parvum pyruvate kinase unwinds and assumes an extended conformation. In the crystal structure a sulfate ion is found at a site that is occupied by a phosphate of the effector molecule in many pyruvate kinase structures. A new feature of the C. parvum pyruvate kinase structure is the presence of a disulfide bond cross-linking the two monomers in the asymmetric unit. The disulfide bond is formed between cysteine residue 26 in the short N-helix of one monomer with cysteine residue 312 in a long helix (residues 303-320 of the second monomer at the interface of these monomers. Both cysteine residues are unique to C. parvum, and the disulfide bond remained intact in a reduced environment. However, the significance of this bond, if any, remains unknown at this time.

  8. The Role of Pyruvate Dehydrogenase Kinase in Diabetes and Obesity

    Directory of Open Access Journals (Sweden)

    In-Kyu Lee

    2014-06-01

    Full Text Available The pyruvate dehydrogenase complex (PDC is an emerging target for the treatment of metabolic syndrome. To maintain a steady-state concentration of adenosine triphosphate during the feed-fast cycle, cells require efficient utilization of fatty acid and glucose, which is controlled by the PDC. The PDC converts pyruvate, coenzyme A (CoA, and oxidized nicotinamide adenine dinucleotide (NAD+ into acetyl-CoA, reduced form of nicotinamide adenine dinucleotide (NADH, and carbon dioxide. The activity of the PDC is up- and down-regulated by pyruvate dehydrogenase kinase and pyruvate dehydrogenase phosphatase, respectively. In addition, pyruvate is a key intermediate of glucose oxidation and an important precursor for the synthesis of glucose, glycerol, fatty acids, and nonessential amino acids.

  9. An improved method for the assay of platelet pyruvate dehydrogenase

    International Nuclear Information System (INIS)

    Schofield, P.J.; Griffiths, L.R.; Rogers, S.H.

    1980-01-01

    An improved method for the assay of human platelet pyruvate dehydrogenase is described. By generating the substrate [1- 14 C]pyruvate in situ from [1- 14 C]lactate plus L-lactate dehydrogenase, the rate of spontaneous decarboxylation is dramatically reduced, allowing far greater sensitivity in the assay of low activities of pyruvate dehydrogenase. In addition, no special precautions are required for the storage and use of [1- 14 C]lactate, in contrast to those for [1- 14 C]pyruvate. These factors allow a 5-10-fold increase in sensitivity compared with current methods. The pyruvate dehydrogenase activity of normal subjects as determined by the [1- 14 C]lactate system was 215+-55 pmol min -1 mg -1 protein (n=18). The advantages of this assay system are discussed. (Auth.)

  10. n-3 PUFA Esterified to Glycerol or as Ethyl Esters Reduce Non-Fasting Plasma Triacylglycerol in Subjects with Hypertriglyceridemia

    DEFF Research Database (Denmark)

    Hedengran, Anne; Szecsi, Pal B; Dyerberg, Jørn

    2015-01-01

    To date, treatment of hypertriglyceridemia with long-chain n-3 polyunsaturated fatty acids (n-3 PUFA) has been investigated solely in fasting and postprandial subjects. However, non-fasting triacylglycerols are more strongly associated with risk of cardiovascular disease. The objective of this st......To date, treatment of hypertriglyceridemia with long-chain n-3 polyunsaturated fatty acids (n-3 PUFA) has been investigated solely in fasting and postprandial subjects. However, non-fasting triacylglycerols are more strongly associated with risk of cardiovascular disease. The objective...... of this study was to investigate the effect of long-chain n-3 PUFA on non-fasting triacylglycerol levels and to compare the effects of n-3 PUFA formulated as acylglycerol (AG-PUFA) or ethyl esters (EE-PUFA). The study was a double-blinded randomized placebo-controlled interventional trial, and included 120...... subjects with non-fasting plasma triacylglycerol levels of 1.7-5.65 mmol/L (150-500 mg/dL). The participants received approximately 3 g/day of AG-PUFA, EE-PUFA, or placebo for a period of eight weeks. The levels of non-fasting plasma triacylglycerols decreased 28 % in the AG-PUFA group and 22 % in the EE...

  11. Improved sake metabolic profile during fermentation due to increased mitochondrial pyruvate dissimilation.

    Science.gov (United States)

    Agrimi, Gennaro; Mena, Maria C; Izumi, Kazuki; Pisano, Isabella; Germinario, Lucrezia; Fukuzaki, Hisashi; Palmieri, Luigi; Blank, Lars M; Kitagaki, Hiroshi

    2014-03-01

    Although the decrease in pyruvate secretion by brewer's yeasts during fermentation has long been desired in the alcohol beverage industry, rather little is known about the regulation of pyruvate accumulation. In former studies, we developed a pyruvate under-secreting sake yeast by isolating a strain (TCR7) tolerant to ethyl α-transcyanocinnamate, an inhibitor of pyruvate transport into mitochondria. To obtain insights into pyruvate metabolism, in this study, we investigated the mitochondrial activity of TCR7 by oxigraphy and (13) C-metabolic flux analysis during aerobic growth. While mitochondrial pyruvate oxidation was higher, glycerol production was decreased in TCR7 compared with the reference. These results indicate that mitochondrial activity is elevated in the TCR7 strain with the consequence of decreased pyruvate accumulation. Surprisingly, mitochondrial activity is much higher in the sake yeast compared with CEN.PK 113-7D, the reference strain in metabolic engineering. When shifted from aerobic to anaerobic conditions, sake yeast retains a branched mitochondrial structure for a longer time than laboratory strains. The regulation of mitochondrial activity can become a completely novel approach to manipulate the metabolic profile during fermentation of brewer's yeasts. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  12. Pyruvate Dehydrogenase and Pyruvate Dehydrogenase Kinase Expression in Non Small Cell Lung Cancer and Tumor-Associated Stroma

    Directory of Open Access Journals (Sweden)

    Michael I. Koukourakis

    2005-01-01

    Full Text Available Pyruvate dehydrogenase (PDH catalyzes the conversion of pyruvate to acetyl-coenzyme A, which enters into the Krebs cycle, providing adenosine triphosphate (ATP to the cell. PDH activity is under the control of pyruvate dehydrogenase kinases (PDKs. Under hypoxic conditions, conversion of pyruvate to lactate occurs, a reaction catalyzed by lactate dehydrogenase 5 (LDH5. In cancer cells, however, pyruvate is transformed to lactate occurs, regardless of the presence of oxygen (aerobic glycolysis/Warburg effect. Although hypoxic intratumoral conditions account for HIFia stabilization and induction of anaerobic metabolism, recent data suggest that high pyruvate concentrations also result in HIFia stabilization independently of hypoxia. In the present immunohistochemical study, we provide evidence that the PDH/PDK pathway is repressed in 73% of non small cell lung carcinomas, which may be a key reason for HIFia stabilization and “aerobic glycolysis.” However, about half of PDHdeficient carcinomas are not able to switch on the HIF pathway, and patients harboring these tumors have an excellent postoperative outcome. A small subgroup of clinically aggressive tumors maintains a coherent PDH and HIF/LDH5 expression. In contrast to cancer cells, fibroblasts in the tumor-supporting stroma exhibit an intense PDH but reduced PDK1 expression favoring maximum PDH activity. This means that stroma may use lactic acid produced by tumor cells, preventing the creation of an intolerable intratumoral acidic environment at the same time.

  13. Metabolic engineering of the regulators in nitrogen catabolite repression to reduce the production of ethyl carbamate in a model rice wine system.

    Science.gov (United States)

    Zhao, Xinrui; Zou, Huijun; Fu, Jianwei; Zhou, Jingwen; Du, Guocheng; Chen, Jian

    2014-01-01

    Rice wine has been one of the most popular traditional alcoholic drinks in China. However, the presence of potentially carcinogenic ethyl carbamate (EC) in rice wine has raised a series of food safety issues. During rice wine production, the key reason for EC formation is urea accumulation, which occurs because of nitrogen catabolite repression (NCR) in Saccharomyces cerevisiae. NCR represses urea utilization by retaining Gln3p in the cytoplasm when preferred nitrogen sources are present. In order to increase the nuclear localization of Gln3p, some possible phosphorylation sites on the nuclear localization signal were mutated and the nuclear localization regulation signal was truncated, and the disruption of URE2 provided an additional method of reducing urea accumulation. By combining these strategies, the genes involved in urea utilization (DUR1,2 and DUR3) could be significantly activated in the presence of glutamine. During shake flask fermentations of the genetically modified strains, very little urea accumulated in the medium. Furthermore, the concentrations of urea and EC were reduced by 63% and 72%, respectively, in a model rice wine system. Examination of the normal nutrients in rice wine indicated that there were few differences in fermentation characteristics between the wild-type strain and the genetically modified strain. These results show that metabolic engineering of the NCR regulators has great potential as a method for eliminating EC during rice wine production.

  14. Metabolic Engineering of the Regulators in Nitrogen Catabolite Repression To Reduce the Production of Ethyl Carbamate in a Model Rice Wine System

    Science.gov (United States)

    Zhao, Xinrui; Zou, Huijun; Fu, Jianwei; Chen, Jian

    2014-01-01

    Rice wine has been one of the most popular traditional alcoholic drinks in China. However, the presence of potentially carcinogenic ethyl carbamate (EC) in rice wine has raised a series of food safety issues. During rice wine production, the key reason for EC formation is urea accumulation, which occurs because of nitrogen catabolite repression (NCR) in Saccharomyces cerevisiae. NCR represses urea utilization by retaining Gln3p in the cytoplasm when preferred nitrogen sources are present. In order to increase the nuclear localization of Gln3p, some possible phosphorylation sites on the nuclear localization signal were mutated and the nuclear localization regulation signal was truncated, and the disruption of URE2 provided an additional method of reducing urea accumulation. By combining these strategies, the genes involved in urea utilization (DUR1,2 and DUR3) could be significantly activated in the presence of glutamine. During shake flask fermentations of the genetically modified strains, very little urea accumulated in the medium. Furthermore, the concentrations of urea and EC were reduced by 63% and 72%, respectively, in a model rice wine system. Examination of the normal nutrients in rice wine indicated that there were few differences in fermentation characteristics between the wild-type strain and the genetically modified strain. These results show that metabolic engineering of the NCR regulators has great potential as a method for eliminating EC during rice wine production. PMID:24185848

  15. Isolated tumoral pyruvate dehydrogenase can synthesize acetoin which inhibits pyruvate oxidation as well as other aldehydes.

    Science.gov (United States)

    Baggetto, L G; Lehninger, A L

    1987-05-29

    Oxidation of 1 mM pyruvate by Ehrlich and AS30-D tumor mitochondria is inhibited by acetoin, an unusual and important metabolite of pyruvate utilization by cancer cells, by acetaldehyde, methylglyoxal and excess pyruvate. The respiratory inhibition is reversed by other substrates added to pyruvate and also by 0.5 mM ATP. Kinetic properties of pyruvate dehydrogenase complex isolated from these tumor mitochondria have been studied. This complex appears to be able to synthesize acetoin from acetaldehyde plus pyruvate and is competitively inhibited by acetoin. The role of a new regulatory pattern for tumoral pyruvate dehydrogenase is presented.

  16. Pyruvate kinase deficiency

    Science.gov (United States)

    ... anemia may need blood transfusions. Removing the spleen ( splenectomy ) may help reduce the destruction of red blood ... donor blood or plasma. Someone who had a splenectomy should receive the pneumococcal vaccine at recommended intervals. ...

  17. Metabolic fate of glucose in rats with traumatic brain injury and pyruvate or glucose treatments: A NMR spectroscopy study.

    Science.gov (United States)

    Shijo, Katsunori; Sutton, Richard L; Ghavim, Sima S; Harris, Neil G; Bartnik-Olson, Brenda L

    2017-01-01

    Administration of sodium pyruvate (SP; 9.08 μmol/kg, i.p.), ethyl pyruvate (EP; 0.34 μmol/kg, i.p.) or glucose (GLC; 11.1 μmol/kg, i.p.) to rats after unilateral controlled cortical impact (CCI) injury has been reported to reduce neuronal loss and improve cerebral metabolism. In the present study these doses of each fuel or 8% saline (SAL; 5.47 nmoles/kg) were administered immediately and at 1, 3, 6 and 23 h post-CCI. At 24 h all CCI groups and non-treated Sham injury controls were infused with [1,2 13 C] glucose for 68 min 13 C nuclear magnetic resonance (NMR) spectra were obtained from cortex + hippocampus tissues from left (injured) and right (contralateral) hemispheres. All three fuels increased lactate labeling to a similar degree in the injured hemisphere. The amount of lactate labeled via the pentose phosphate and pyruvate recycling (PPP + PR) pathway increased in CCI-SAL and was not improved by SP, EP, and GLC treatments. Oxidative metabolism, as assessed by glutamate labeling, was reduced in CCI-SAL animals. The greatest improvement in oxidative metabolism was observed in animals treated with SP and fewer improvements after EP or GLC treatments. Compared to SAL, all three fuels restored glutamate and glutamine labeling via pyruvate carboxylase (PC), suggesting improved astrocyte metabolism following fuel treatment. Only SP treatments restored the amount of [4 13 C] glutamate labeled by the PPP + PR pathway to sham levels. Milder injury effects in the contralateral hemisphere appear normalized by either SP or EP treatments, as increases in the total pool of 13 C lactate and labeling of lactate in glycolysis, or decreases in the ratio of PC/PDH labeling of glutamine, were found only for CCI-SAL and CCI-GLC groups compared to Sham. The doses of SP, EP and GLC examined in this study all enhanced lactate labeling and restored astrocyte-specific PC activity but differentially affected neuronal metabolism after CCI injury. The restoration of

  18. A pyruvate-buffered dialysis fluid induces less peritoneal angiogenesis and fibrosis than a conventional solution

    NARCIS (Netherlands)

    van Westrhenen, Roos; Zweers, Machteld M.; Kunne, Cindy; de Waart, Dirk R.; van der Wal, Allard C.; Krediet, Raymond T.

    2008-01-01

    BACKGROUND: Conventional lactate-buffered peritoneal dialysis (PD) fluids containing glucose and glucose degradation products are believed to contribute to the development of fibrosis and angiogenesis in the dialyzed peritoneum. To reduce potential negative effects of lactate, pyruvate was

  19. Protective effect of ethyl acetate fraction of Rhododendron arboreum flowers against carbon tetrachloride-induced hepatotoxicity in experimental models.

    Science.gov (United States)

    Verma, Neeraj; Singh, Anil P; Amresh, G; Sahu, P K; Rao, Ch V

    2011-05-01

    To evaluate the hepatoprotective potential of ethyl acetate fraction of Rhododendron arboreum (Family: Ericaceae) in Wistar rats against carbon tetrachloride (CCl(4))-induced liver damage in preventive and curative models. Fraction at a dose of 100, 200, and 400 mg/kg was administered orally once daily for 14 days in CCl(4)-treated groups (II, III, IV, V and VI). The serum levels of glutamic oxaloacetic transaminase (SGOT), glutamate pyruvate transaminase (SGPT), alkaline phosphatase (SALP), γ-glutamyltransferase (γ -GT), and bilirubin were estimated along with activities of glutathione S-transferase (GST), glutathione reductase, hepatic malondialdehyde formation, and glutathione content. The substantially elevated serum enzymatic activities of SGOT, SGPT, SALP, γ-GT, and bilirubin due to CCl(4) treatment were restored toward normal in a dose-dependent manner. Meanwhile, the decreased activities of GST and glutathione reductase were also restored toward normal. In addition, ethyl acetate fraction also significantly prevented the elevation of hepatic malondialdehyde formation and depletion of reduced glutathione content in the liver of CCl(4)-intoxicated rats in a dose-dependent manner. Silymarin used as standard reference also exhibited significant hepatoprotective activity on post-treatment against CCl(4)-induced hepatotoxicity in rats. The biochemical observations were supplemented with histopathological examination of rat liver sections. The results of this study strongly indicate that ethyl acetate fraction has a potent hepatoprotective action against CCl(4)-induced hepatic damage in rats.

  20. Mitochondrial Pyruvate Carrier 2 Hypomorphism in Mice Leads to Defects in Glucose-Stimulated Insulin Secretion

    Directory of Open Access Journals (Sweden)

    Patrick A. Vigueira

    2014-06-01

    Full Text Available Carrier-facilitated pyruvate transport across the inner mitochondrial membrane plays an essential role in anabolic and catabolic intermediary metabolism. Mitochondrial pyruvate carrier 2 (Mpc2 is believed to be a component of the complex that facilitates mitochondrial pyruvate import. Complete MPC2 deficiency resulted in embryonic lethality in mice. However, a second mouse line expressing an N-terminal truncated MPC2 protein (Mpc2Δ16 was viable but exhibited a reduced capacity for mitochondrial pyruvate oxidation. Metabolic studies demonstrated exaggerated blood lactate concentrations after pyruvate, glucose, or insulin challenge in Mpc2Δ16 mice. Additionally, compared with wild-type controls, Mpc2Δ16 mice exhibited normal insulin sensitivity but elevated blood glucose after bolus pyruvate or glucose injection. This was attributable to reduced glucose-stimulated insulin secretion and was corrected by sulfonylurea KATP channel inhibitor administration. Collectively, these data are consistent with a role for MPC2 in mitochondrial pyruvate import and suggest that Mpc2 deficiency results in defective pancreatic β cell glucose sensing.

  1. Pyruvate metabolism: A therapeutic opportunity in radiation-induced skin injury

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Hyun; Kang, Jeong Wook [Department of Radiation Oncology, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-752 (Korea, Republic of); Lee, Dong Won [Department of Plastic Surgery, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-752 (Korea, Republic of); Oh, Sang Ho [Department of Dermatology, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-752 (Korea, Republic of); Lee, Yun-Sil [College of Pharmacy & Division of Life and Pharmaceutical Sciences, Ewah Womans University, Seoul 120-750 (Korea, Republic of); Lee, Eun-Jung [Department of Radiation Oncology, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-752 (Korea, Republic of); Cho, Jaeho, E-mail: jjhmd@yuhs.ac [Department of Radiation Oncology, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-752 (Korea, Republic of)

    2015-05-08

    Ionizing radiation is used to treat a range of cancers. Despite recent technological progress, radiation therapy can damage the skin at the administration site. The specific molecular mechanisms involved in this effect have not been fully characterized. In this study, the effects of pyruvate, on radiation-induced skin injury were investigated, including the role of the pyruvate dehydrogenase kinase 2 (PDK2) signaling pathway. Next generation sequencing (NGS) identified a wide range of gene expression differences between the control and irradiated mice, including reduced expression of PDK2. This was confirmed using Q-PCR. Cell culture studies demonstrated that PDK2 overexpression and a high cellular pyruvate concentration inhibited radiation-induced cytokine expression. Immunohistochemical studies demonstrated radiation-induced skin thickening and gene expression changes. Oral pyruvate treatment markedly downregulated radiation-induced changes in skin thickness and inflammatory cytokine expression. These findings indicated that regulation of the pyruvate metabolic pathway could provide an effective approach to the control of radiation-induced skin damage. - Highlights: • The effects of radiation on skin thickness in mice. • Next generation sequencing revealed that radiation inhibited pyruvate dehydrogenase kinase 2 expression. • PDK2 inhibited irradiation-induced cytokine gene expression. • Oral pyruvate treatment markedly downregulated radiation-induced changes in skin thickness.

  2. Dynamics of pyruvate metabolism in Lactococcus lactis

    DEFF Research Database (Denmark)

    Melchiorsen, Claus Rix; Jensen, Niels B.S.; Christensen, Bjarke

    2001-01-01

    The pyruvate metabolism in the lactic acid bacterium Lactococcus lactis was studied in anaerobic cultures under transient conditions. During growth of L. lactis in continuous culture at high dilution rate, homolactic product formation was observed, i.e., lactate was produced as the major end...... product. At a lower dilution rate, the pyruvate metabolism shifted towards mixed acid-product formation where formate, acetate, and ethanol were produced in addition to lactate. The regulation of the shift in pyruvate metabolism was investigated by monitoring the dynamic behavior of L. lactis...

  3. Cultivation of parasitic leptospires: effect of pyruvate.

    Science.gov (United States)

    Johnson, R C; Walby, J; Henry, R A; Auran, N E

    1973-07-01

    Sodium pyruvate (100 mug/ml) is a useful addition to the Tween 80-albumin medium for the cultivation of parasitic serotypes. It is most effective in promoting growth from small inocula and growth of the nutritionally fastidious serotypes.

  4. Pyruvate transport by thermogenic-tissue mitochondria.

    OpenAIRE

    Proudlove, M O; Beechey, R B; Moore, A L

    1987-01-01

    1. Mitochondria isolated from the thermogenic spadices of Arum maculatum and Sauromatum guttatum plants oxidized external NADH, succinate, citrate, malate, 2-oxoglutarate and pyruvate without the need to add exogenous cofactors. 2. Oxidation of substrates was virtually all via the alternative oxidase, the cytochrome pathway constituting only 10-20% of the total activity, depending on the stage of spadix development. 3. During later stages of spadix development, pyruvate oxidation was enhanced...

  5. Phosphorylation site on yeast pyruvate dehydrogenase complex

    International Nuclear Information System (INIS)

    Uhlinger, D.J.

    1986-01-01

    The pyruvate dehydrogenase complex was purified to homogeneity from baker's yeast (Saccharomyces cerevisiae). Yeast cells were disrupted in a Manton-Gaulin laboratory homogenizer. The pyruvate dehydrogenase complex was purified by fractionation with polyethylene glycol, isoelectric precipitation, ultracentrifugation and chromatography on hydroxylapatite. Final purification of the yeast pyruvate dehydrogenase complex was achieved by cation-exchange high pressure liquid chromatography (HPLC). No endogenous pyruvate dehydrogenase kinase activity was detected during the purification. However, the yeast pyruvate dehydrogenase complex was phosphorylated and inactivated with purified pyruvate dehydrogenase kinase from bovine kidney. Tryptic digestion of the 32 P-labeled complex yielded a single phosphopeptide which was purified to homogeniety. The tryptic digest was subjected to chromatography on a C-18 reverse phase HPLC column with a linear gradient of acetonitrile. Radioactive fractions were pooled, concentrated, and subjected to anion-exchange HPLC. The column was developed with a linear gradient of ammonium acetate. Final purification of the phosphopeptide was achieved by chromatography on a C-18 reverse phase HPLC column developed with a linear gradient of acetonitrile. The amino acid sequence of the homogeneous peptide was determined by manual modified Edman degradation

  6. PDK4 Inhibits Cardiac Pyruvate Oxidation in Late Pregnancy.

    Science.gov (United States)

    Liu, Laura X; Rowe, Glenn C; Yang, Steven; Li, Jian; Damilano, Federico; Chan, Mun Chun; Lu, Wenyun; Jang, Cholsoon; Wada, Shogo; Morley, Michael; Hesse, Michael; Fleischmann, Bernd K; Rabinowitz, Joshua D; Das, Saumya; Rosenzweig, Anthony; Arany, Zoltan

    2017-12-08

    Pregnancy profoundly alters maternal physiology. The heart hypertrophies during pregnancy, but its metabolic adaptations, are not well understood. To determine the mechanisms underlying cardiac substrate use during pregnancy. We use here 13 C glucose, 13 C lactate, and 13 C fatty acid tracing analyses to show that hearts in late pregnant mice increase fatty acid uptake and oxidation into the tricarboxylic acid cycle, while reducing glucose and lactate oxidation. Mitochondrial quantity, morphology, and function do not seem altered. Insulin signaling seems intact, and the abundance and localization of the major fatty acid and glucose transporters, CD36 (cluster of differentiation 36) and GLUT4 (glucose transporter type 4), are also unchanged. Rather, we find that the pregnancy hormone progesterone induces PDK4 (pyruvate dehydrogenase kinase 4) in cardiomyocytes and that elevated PDK4 levels in late pregnancy lead to inhibition of PDH (pyruvate dehydrogenase) and pyruvate flux into the tricarboxylic acid cycle. Blocking PDK4 reverses the metabolic changes seen in hearts in late pregnancy. Taken together, these data indicate that the hormonal environment of late pregnancy promotes metabolic remodeling in the heart at the level of PDH, rather than at the level of insulin signaling. © 2017 American Heart Association, Inc.

  7. Increased superoxide accumulation in pyruvate dehydrogenase complex deficient fibroblasts.

    Science.gov (United States)

    Glushakova, Lyudmyla G; Judge, Sharon; Cruz, Alex; Pourang, Deena; Mathews, Clayton E; Stacpoole, Peter W

    2011-11-01

    The pyruvate dehydrogenase complex (PDC) oxidizes pyruvate to acetyl CoA and is critically important in maintaining normal cellular energy homeostasis. Loss-of-function mutations in PDC give rise to congenital lactic acidosis and to progressive cellular energy failure. However, the subsequent biochemical consequences of PDC deficiency that may contribute to the clinical manifestations of the disorder are poorly understood. We postulated that altered flux through PDC would disrupt mitochondrial electron transport, resulting in oxidative stress. Compared to cells from 4 healthy subjects, primary cultures of skin fibroblasts from 9 patients with variable mutations in the gene encoding the alpha subunit (E1α) of pyruvate dehydrogenase (PDA1) demonstrated reduced growth and viability. Superoxide (O(2)(.-)) from the Qo site of complex III of the electron transport chain accumulated in these cells and was associated with decreased activity of manganese superoxide dismutase. The expression of uncoupling protein 2 was also decreased in patient cells, but there were no significant changes in the expression of cellular markers of protein or DNA oxidative damage. The expression of hypoxia transcription factor 1 alpha (HIF1α) also increased in PDC deficient fibroblasts. We conclude that PDC deficiency is associated with an increase in O(2)(.-) accumulation coupled to a decrease in mechanisms responsible for its removal. Increased HIF1α expression may contribute to the increase in glycolytic flux and lactate production in PDC deficiency and, by trans-activating pyruvate dehydrogenase kinase, may further suppress residual PDC activity through phosphorylation of the E1α subunit. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. Pyruvate incubation enhances glycogen stores and sustains neuronal function during subsequent glucose deprivation.

    Science.gov (United States)

    Shetty, Pavan K; Sadgrove, Matthew P; Galeffi, Francesca; Turner, Dennis A

    2012-01-01

    The use of energy substrates, such as lactate and pyruvate, has been shown to improve synaptic function when administered during glucose deprivation. In the present study, we investigated whether prolonged incubation with monocarboxylate (pyruvate or lactate) prior rather than during glucose deprivation can also sustain synaptic and metabolic function. Pyruvate pre-incubation(3-4h) significantly prolonged (>25 min) the tolerance of rat hippocampal slices to delayed glucose deprivation compared to control and lactate pre-incubated slices, as revealed by field excitatory post synaptic potentials (fEPSPs); pre-incubation with pyruvate also reduced the marked decrease in NAD(P)H fluorescence resulting from glucose deprivation. Moreover, pyruvate exposure led to the enhancement of glycogen stores with time, compared to glucose alone (12 μmol/g tissue at 4h vs. 3.5 μmol/g tissue). Prolonged resistance to glucose deprivation following exogenous pyruvate incubation was prevented by glycogenolysis inhibitors, suggesting that enhanced glycogen mediates the delay in synaptic activity failure. The application of an adenosine A1 receptor antagonist enhanced glycogen utilization and prolonged the time to synaptic failure, further confirming this hypothesis of the importance of glycogen. Moreover, tissue levels of ATP were also significantly maintained during glucose deprivation in pyruvate pretreated slices compared to control and lactate. In summary, these experiments indicate that pyruvate exposure prior to glucose deprivation significantly increased the energy buffering capacity of hippocampal slices, particularly by enhancing internal glycogen stores, delaying synaptic failure during glucose deprivation by maintaining ATP levels, and minimizing the decrease in the levels of NAD(P)H. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. Supplementation of pyruvate prevents palmitate-induced impairment of glucose uptake in C2 myotubes.

    Science.gov (United States)

    Jung, Jong Gab; Choi, Sung-E; Hwang, Yoon-Jung; Lee, Sang-A; Kim, Eun Kyoung; Lee, Min-Seok; Han, Seung Jin; Kim, Hae Jin; Kim, Dae Jung; Kang, Yup; Lee, Kwan-Woo

    2011-10-15

    Elevated fatty acid levels have been thought to contribute to insulin resistance. Repression of the glucose transporter 4 (GLUT4) gene as well as impaired GLUT4 translocation may be a mediator for fatty acid-induced insulin resistance. This study was initiated to determine whether palmitate treatment repressed GLUT4 expression, whether glucose/fatty acid metabolism influenced palmitate-induced GLUT4 gene repression (PIGR), and whether attempts to prevent PIGR restored palmitate-induced impairment of glucose uptake (PIIGU) in C2 myotubes. Not only stimulators of fatty acid oxidation, such as bezafibrate, AICAR, and TOFA, but also TCA cycle substrates, such as pyruvate, leucine/glutamine, and α-ketoisocaproate/monomethyl succinate, significantly prevented PIGR. In particular, supplementing with pyruvate through methyl pyruvate resulted in nearly complete prevention of PIIGU, whereas palmitate treatment reduced the intracellular pyruvate level. These results suggest that pyruvate depletion plays a critical role in PIGR and PIIGU; thus, pyruvate supplementation may help prevent obesity-induced insulin resistance in muscle cells. Crown Copyright © 2011. Published by Elsevier Ireland Ltd. All rights reserved.

  10. Metabolic responses to pyruvate kinase deletion in lysine producing Corynebacterium glutamicum

    Directory of Open Access Journals (Sweden)

    Wittmann Christoph

    2008-03-01

    Full Text Available Abstract Background Pyruvate kinase is an important element in flux control of the intermediate metabolism. It catalyzes the irreversible conversion of phosphoenolpyruvate into pyruvate and is under allosteric control. In Corynebacterium glutamicum, this enzyme was regarded as promising target for improved production of lysine, one of the major amino acids in animal nutrition. In pyruvate kinase deficient strains the required equimolar ratio of the two lysine precursors oxaloacetate and pyruvate can be achieved through concerted action of the phosphotransferase system (PTS and phosphoenolpyruvate carboxylase (PEPC, whereby a reduced amount of carbon may be lost as CO2 due to reduced flux into the tricarboxylic acid (TCA cycle. In previous studies, deletion of pyruvate kinase in lysine-producing C. glutamicum, however, did not yield a clear picture and the exact metabolic consequences are not fully understood. Results In this work, deletion of the pyk gene, encoding pyruvate kinase, was carried out in the lysine-producing strain C. glutamicum lysCfbr, expressing a feedback resistant aspartokinase, to investigate the cellular response to deletion of this central glycolytic enzyme. Pyk deletion was achieved by allelic replacement, verified by PCR analysis and the lack of in vitro enzyme activity. The deletion mutant showed an overall growth behavior (specific growth rate, glucose uptake rate, biomass yield which was very similar to that of the parent strain, but differed in slightly reduced lysine formation, increased formation of the overflow metabolites dihydroxyacetone and glycerol and in metabolic fluxes around the pyruvate node. The latter involved a flux shift from pyruvate carboxylase (PC to PEPC, by which the cell maintained anaplerotic supply of the TCA cycle. This created a metabolic by-pass from PEP to pyruvate via malic enzyme demonstrating its contribution to metabolic flexibility of C. glutamicum on glucose. Conclusion The metabolic

  11. Cultivation of Parasitic Leptospires: Effect of Pyruvate

    Science.gov (United States)

    Johnson, R. C.; Walby, J.; Henry, R. A.; Auran, N. E.

    1973-01-01

    Sodium pyruvate (100 μg/ml) is a useful addition to the Tween 80-albumin medium for the cultivation of parasitic serotypes. It is most effective in promoting growth from small inocula and growth of the nutritionally fastidious serotypes. Images PMID:4580191

  12. MCT1 Modulates Cancer Cell Pyruvate Export and Growth of Tumors that Co-express MCT1 and MCT4

    OpenAIRE

    Hong, Candice Sun; Graham, Nicholas A.; Gu, Wen; Espindola Camacho, Carolina; Mah, Vei; Maresh, Erin L.; Alavi, Mohammed; Bagryanova, Lora; Krotee, Pascal A.L.; Gardner, Brian K.; Behbahan, Iman Saramipoor; Horvath, Steve; Chia, David; Mellinghoff, Ingo K.; Hurvitz, Sara A.

    2016-01-01

    Monocarboxylate Transporter 1 (MCT1) inhibition is thought to block tumor growth through disruption of lactate transport and glycolysis. Here we show MCT1 inhibition impairs proliferation of glycolytic breast cancer cells co-expressing MCT1 and MCT4 via disruption of pyruvate rather than lactate export. MCT1 expression is elevated in glycolytic breast tumors, and high MCT1 expression predicts poor prognosis in breast and lung cancer patients. Acute MCT1 inhibition reduces pyruvate export but ...

  13. 21 CFR 584.200 - Ethyl alcohol containing ethyl acetate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Ethyl alcohol containing ethyl acetate. 584.200 Section 584.200 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD SUBSTANCES AFFIRMED AS GENERALLY RECOGNIZED AS...

  14. Compartmented pyruvate in perfused working heart

    International Nuclear Information System (INIS)

    Buenger, R.

    1985-01-01

    Pyruvate compartmentation and lactate dehydrogenase (LDH) were studied in isolated perfused working guinea pig hearts. The mean intracellular pyruvate (Pyr) contents increased with perfusate Pyr (0-2 mM) but varied only slightly with glucose (0-10 mM) and additional insulin (0.04-5 U/l), respectively. With 5-10 mM glucose plus 5 U/l insulin, but not with Pyr or lactate (Lac) as substrates, a near equilibrium between the LDH and the glycerol-3-phosphate dehydrogenase seemed to exist. Evidence for an inhibitory effect of Pyr on the activity of the LDH system of the perfused hearts was not obtained. With [U- 14 C]glucose as sole substrate, the specific activity of coronary venous Lac was near half that of precursor glucose. 14 CO 2 production was thus in quantitative agreement with rates of pyruvate oxidation that were determined as glucose uptake minus (Pyr + Lac) release. In contrast, with 0.2 mM [1- 14 C]Pyr plus 5 mM glucose, the ratio of 14 CO 2 production to specific activity of Lac overestimated Pyr oxidation judged from myocardial substrate balances and O 2 uptake, respectively; here, at least three pools of [ 14 C]HCO-3 and [ 14 C]lac, respectively, were kinetically demonstrable during washout of trace amounts of 14 C-labeled Pyr. Evidently, the specific activity of Lac was equivalent to that of mitochondrial oxidized Pyr provided [ 14 C]glucose was the sole or major precursor of cellular pyruvate. However, exogenously applied [1- 14 C]Pyr of high specific activity seemed to induce intracellular formation of both a highly and lowly labeled Pyr; the latter Pyr compartment did not seem in ready equilibrium with the cell physiologically prevailing highly labeled Pyr pool

  15. A novel mechanism for the pyruvate protection against zinc-induced cytotoxicity: mediation by the chelating effect of citrate and isocitrate.

    Science.gov (United States)

    Sul, Jee-Won; Kim, Tae-Youn; Yoo, Hyun Ju; Kim, Jean; Suh, Young-Ah; Hwang, Jung Jin; Koh, Jae-Young

    2016-08-01

    Intracellular accumulation of free zinc contributes to neuronal death in brain injuries such as ischemia and epilepsy. Pyruvate, a glucose metabolite, has been shown to block zinc neurotoxicity. However, it is largely unknown how pyruvate shows such a selective and remarkable protective effect. In this study, we sought to find a plausible mechanism of pyruvate protection against zinc toxicity. Pyruvate almost completely blocked cortical neuronal death induced by zinc, yet showed no protective effects against death induced by calcium (ionomycin, NMDA) or ferrous iron. Of the TCA cycle intermediates, citrate, isocitrate, and to a lesser extent oxaloacetate, protected against zinc toxicity. We then noted with LC-MS/MS assay that exposure to pyruvate, and to a lesser degree oxaloacetate, increased levels of citrate and isocitrate, which are known zinc chelators. While pyruvate added only during zinc exposure did not reduce zinc toxicity, citrate and isocitrate added only during zinc exposure, as did extracellular zinc chelator CaEDTA, completely blocked it. Furthermore, addition of pyruvate after zinc exposure substantially reduced intracellular zinc levels. Our results suggest that the remarkable protective effect of pyruvate against zinc cytotoxicity may be mediated indirectly by the accumulation of intracellular citrate and isocitrate, which act as intracellular zinc chelators.

  16. Ethyl methanesulfonate mutagenesis in Schizosaccharomyces pombe

    DEFF Research Database (Denmark)

    Ekwall, Karl; Thon, Genevieve

    2017-01-01

    Here we provide an ethyl methanesulfonate (EMS) mutagenesis protocol for Schizosaccharomyces pombe cells.......Here we provide an ethyl methanesulfonate (EMS) mutagenesis protocol for Schizosaccharomyces pombe cells....

  17. Studies to enhance the hyperpolarization level in PHIP-SAH-produced C13-pyruvate

    Science.gov (United States)

    Cavallari, Eleonora; Carrera, Carla; Aime, Silvio; Reineri, Francesca

    2018-04-01

    The use of [1-13C]pyruvate, hyperpolarized by dissolution-Dynamic Nuclear Polarization (d-DNP), in in vivo metabolic studies has developed quickly, thanks to the imaging probe's diagnostic relevance. Nevertheless, the cost of a d-DNP polarizer is quite high and the speed of hyperpolarization process is relatively slow, meaning that its use is limited to few research laboratories. ParaHydrogen Induced Polarization Side Arm Hydrogenation (PHIP-SAH) (Reineri et al., 2015) is a cost effective and easy-to-handle method that produces 13C-MR hyperpolarization in [1-13C]pyruvate and other metabolites. This work aims to identify the main determinants of the hyperpolarization levels observed in C13-pyruvate using this method. By dissecting the various steps of the PHIP-SAH procedure, it has been possible to assess the role of several experimental parameters whose optimization must be pursued if this method is to be made suitable for future translational steps. The search for possible solutions has led to improvements in the polarization of sodium [1-13C]pyruvate from 2% to 5%. Moreover, these results suggest that observed polarization levels could be increased considerably by an automatized procedure which would reduce the time required for the work-up passages that are currently carried out manually. The results reported herein mean that the attainment of polarization levels suitable for the metabolic imaging applications of these hyperpolarized substrates show significant promise.

  18. Embryonic Lethality of Mitochondrial Pyruvate Carrier 1 Deficient Mouse Can Be Rescued by a Ketogenic Diet

    Science.gov (United States)

    Krznar, Petra; Hörl, Manuel; Ammar, Zeinab; Montessuit, Sylvie; Pierredon, Sandra; Zamboni, Nicola; Martinou, Jean-Claude

    2016-01-01

    Mitochondrial import of pyruvate by the mitochondrial pyruvate carrier (MPC) is a central step which links cytosolic and mitochondrial intermediary metabolism. To investigate the role of the MPC in mammalian physiology and development, we generated a mouse strain with complete loss of MPC1 expression. This resulted in embryonic lethality at around E13.5. Mouse embryonic fibroblasts (MEFs) derived from mutant mice displayed defective pyruvate-driven respiration as well as perturbed metabolic profiles, and both defects could be restored by reexpression of MPC1. Labeling experiments using 13C-labeled glucose and glutamine demonstrated that MPC deficiency causes increased glutaminolysis and reduced contribution of glucose-derived pyruvate to the TCA cycle. Morphological defects were observed in mutant embryonic brains, together with major alterations of their metabolome including lactic acidosis, diminished TCA cycle intermediates, energy deficit and a perturbed balance of neurotransmitters. Strikingly, these changes were reversed when the pregnant dams were fed a ketogenic diet, which provides acetyl-CoA directly to the TCA cycle and bypasses the need for a functional MPC. This allowed the normal gestation and development of MPC deficient pups, even though they all died within a few minutes post-delivery. This study establishes the MPC as a key player in regulating the metabolic state necessary for embryonic development, neurotransmitter balance and post-natal survival. PMID:27176894

  19. Pyruvate carboxylase is expressed in human skeletal muscle

    DEFF Research Database (Denmark)

    Minet, Ariane D; Gaster, Michael

    2010-01-01

    Pyruvate carboxylase (PC) is a mitochondrial enzyme that catalyses the carboxylation of pyruvate to oxaloacetate thereby allowing supplementation of citric acid cycle intermediates. The presence of PC in skeletal muscle is controversial. We report here, that PC protein is easily detectable...

  20. Production and Recovery of Pyruvic Acid: Recent Advances

    Science.gov (United States)

    Pal, Dharm; Keshav, Amit; Mazumdar, Bidyut; Kumar, Awanish; Uslu, Hasan

    2017-12-01

    Pyruvic acid is an important keto-carboxylic acid and can be manufactured by both chemical synthesis and biotechnological routes. In the present paper an overview of recent developments and challenges in various existing technique for the production and recovery of pyruvic acid from fermentation broth or from waste streams has been presented. The main obstacle in biotechnological production of pyruvic acid is development of suitable microorganism which can provide high yield and selectivity. On the other hand, technical limitation in recovery of pyruvic acid from fermentation broth is that, it could not be separated as other carboxylic acid in the form of salts by addition of alkali. Besides, pyruvic acid cannot be crystallized. Commercial separation by distillation is very expensive because pyruvic acid decomposes at higher temperature. It is also chemically reactive due to its peculiar molecular structure and has tendency to polymerize. Thus, at high concentration the various type of reaction leads to lower yield of the product, and hence, conventional methods are not favorable. Alternate separation technologies viable to both synthetic and biological routes are the current research areas. Latest techniques such as reactive extraction is new to the field of recovery of pyruvic acid. Recent development and future prospects in downstream processing of biochemically produced pyruvic acids has been discussed in this review article.

  1. Neuron-astrocyte interactions, pyruvate carboxylation and the pentose phosphate pathway in the neonatal rat brain.

    Science.gov (United States)

    Morken, Tora Sund; Brekke, Eva; Håberg, Asta; Widerøe, Marius; Brubakk, Ann-Mari; Sonnewald, Ursula

    2014-01-01

    Glucose and acetate metabolism and the synthesis of amino acid neurotransmitters, anaplerosis, glutamate-glutamine cycling and the pentose phosphate pathway (PPP) have been extensively investigated in the adult, but not the neonatal rat brain. To do this, 7 day postnatal (P7) rats were injected with [1-(13)C]glucose and [1,2-(13)C]acetate and sacrificed 5, 10, 15, 30 and 45 min later. Adult rats were injected and sacrificed after 15 min. To analyse pyruvate carboxylation and PPP activity during development, P7 rats received [1,2-(13)C]glucose and were sacrificed 30 min later. Brain extracts were analysed using (1)H- and (13)C-NMR spectroscopy. Numerous differences in metabolism were found between the neonatal and adult brain. The neonatal brain contained lower levels of glutamate, aspartate and N-acetylaspartate but similar levels of GABA and glutamine per mg tissue. Metabolism of [1-(13)C]glucose at the acetyl CoA stage was reduced much more than that of [1,2-(13)C]acetate. The transfer of glutamate from neurons to astrocytes was much lower while transfer of glutamine from astrocytes to glutamatergic neurons was relatively higher. However, transport of glutamine from astrocytes to GABAergic neurons was lower. Using [1,2-(13)C]glucose it could be shown that despite much lower pyruvate carboxylation, relatively more pyruvate from glycolysis was directed towards anaplerosis than pyruvate dehydrogenation in astrocytes. Moreover, the ratio of PPP/glucose-metabolism was higher. These findings indicate that only the part of the glutamate-glutamine cycle that transfers glutamine from astrocytes to neurons is operating in the neonatal brain and that compared to adults, relatively more glucose is prioritised to PPP and pyruvate carboxylation. Our results may have implications for the capacity to protect the neonatal brain against excitotoxicity and oxidative stress.

  2. Protective effect of pyruvate against ethanol-induced apoptotic neurodegeneration in the developing rat brain.

    Science.gov (United States)

    Ullah, Najeeb; Naseer, Muhammad Imran; Ullah, Ikram; Lee, Hae Young; Koh, Phil Ok; Kim, Myeong Ok

    2011-12-01

    Exposure to alcohol during the early stages of brain development can lead to neurological disorders in the CNS. Apoptotic neurodegeneration due to ethanol exposure is a main feature of alcoholism. Exposure of developing animals to alcohol (during the growth spurt period in particular) elicits apoptotic neuronal death and causes fetal alcohol effects (FAE) or fetal alcohol syndrome (FAS). A single episode of ethanol intoxication (at 5 g/kg) in a seven-day-old developing rat can activate the apoptotic cascade, leading to widespread neuronal death in the brain. In the present study, we investigated the potential protective effect of pyruvate against ethanol-induced neuroapoptosis. After 4h, a single dose of ethanol induced upregulation of Bax, release of mitochondrial cytochrome-c into the cytosol, activation of caspase-3 and cleavage of poly (ADP-ribose) polymerase (PARP-1), all of which promote apoptosis. These effects were all reversed by co-treatment with pyruvate at a well-tolerated dosage (1000 mg/kg). Histopathology performed at 24 and 48 h with Fluoro-Jade-B and cresyl violet stains showed that pyruvate significantly reduced the number of dead cells in the cerebral cortex, hippocampus and thalamus. Immunohistochemical analysis at 24h confirmed that ethanol-induced cell death is both apoptotic and inhibited by pyruvate. These findings suggest that pyruvate treatment attenuates ethanol-induced neuronal cell loss in the developing rat brain and holds promise as a safe therapeutic and neuroprotective agent in the treatment of neurodegenerative disorders in newborns and infants. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Extraction, Separation, and Purification of Blueberry Anthocyanin Using Ethyl Alcohol

    Directory of Open Access Journals (Sweden)

    Zhe Gao

    2017-11-01

    Full Text Available Blueberry contains many substances that are important to the human body and can prevent cardiovascular diseases, protect the retina, and soften blood vessels. Anthocyanin, which is extracted from blueberry, can activate the retina, strengthen vision, reduce serum cholesterol, triglyceride and high-density lipoprotein, and protect cell nucleus tissues from radical oxidation; hence, blueberry is of importance to scientists from different countries. In this study, anthocyanin was extracted and separated from blueberry using ethyl alcohol to investigate the effects of factors, such as ethyl alcohol volume ratio on anthocyanin extraction and separation technologies. The extracting solution was then purified using the macroreticular resin purification method to investigate the effects of ethyl alcohol concentration and eluent dosage on anthocyanin extraction during purification. The research results demonstrated that 60 % ethyl alcohol volume fraction, 1 : 10 mass ratio of solid to liquid, and 60 °C ultrasonic temperature were the best conditions for anthocyanin extraction. The best purification conditions were 95 % ethyl alcohol, which had been acidized by 0.3 % hydrochloric acid and 70 ml of eluent. This work provides a reference for the application of ethyl alcohol in anthocyanin extraction.

  4. Ethyl diazoacetate synthesis in flow

    Directory of Open Access Journals (Sweden)

    Mariëlle M. E. Delville

    2013-09-01

    Full Text Available Ethyl diazoacetate is a versatile compound in organic chemistry and frequently used on lab scale. Its highly explosive nature, however, severely limits its use in industrial processes. The in-line coupling of microreactor synthesis and separation technology enables the synthesis of this compound in an inherently safe manner, thereby making it available on demand in sufficient quantities. Ethyl diazoacetate was prepared in a biphasic mixture comprising an aqueous solution of glycine ethyl ester, sodium nitrite and dichloromethane. Optimization of the reaction was focused on decreasing the residence time with the smallest amount of sodium nitrite possible. With these boundary conditions, a production yield of 20 g EDA day−1 was achieved using a microreactor with an internal volume of 100 μL. Straightforward scale-up or scale-out of microreactor technology renders this method viable for industrial application.

  5. Cerebrospinal fluid lactate and pyruvate concentrations and their ratio.

    Science.gov (United States)

    Zhang, Wan-Ming; Natowicz, Marvin R

    2013-05-01

    Determinations of cerebrospinal fluid (CSF) lactate and pyruvate concentrations and CSF lactate:pyruvate (L/P) ratios are important in several clinical settings, yet published normative data have significant limitations. We sought to determine a large dataset of stringently-defined normative data for CSF lactate and pyruvate concentrations and CSF L/P ratios. We evaluated data from 627 patients who had determinations of CSF lactate and/or CSF pyruvate from 2001 to 2011 at the Cleveland Clinic. Inclusion in the normal reference population required normal CSF cell counts, glucose and protein and routine serum chemistries and absence of progressive brain disorder, epilepsy, or seizure within 24h. Brain MRI, if done, showed no evidence of tumor, acute changes or basal ganglia abnormality. CSF cytology, CSF alanine and immunoglobulin levels, and oligoclonal band analysis were required to be normal, if done. Various inclusion/exclusion criteria were compared. 92 patients fulfilled inclusion/exclusion criteria for a reference population. The 95% central intervals (2.5%-97.5%) for CSF lactate and pyruvate levels were 1.01-2.09mM and 0.03-0.15mM, respectively, and 9.05-26.37 for CSF L/P. There were no significant gender-related differences of CSF lactate or pyruvate concentrations or of CSF L/P. Weak positive correlations between the concentration of CSF lactate or pyruvate and age were noted. Using stringent inclusion/exclusion criteria, we determined normative data for CSF lactate and pyruvate concentrations and CSF L/P ratios in a large, well-characterized reference population. Normalcy of routine CSF and blood analytes are the most important parameters in determining reference intervals for CSF lactate and pyruvate. Copyright © 2012 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  6. Role of pyruvate dehydrogenase inhibition in the development of hypertrophy in the hyperthyroid rat heart: a combined magnetic resonance imaging and hyperpolarized magnetic resonance spectroscopy study.

    Science.gov (United States)

    Atherton, Helen J; Dodd, Michael S; Heather, Lisa C; Schroeder, Marie A; Griffin, Julian L; Radda, George K; Clarke, Kieran; Tyler, Damian J

    2011-06-07

    Hyperthyroidism increases heart rate, contractility, cardiac output, and metabolic rate. It is also accompanied by alterations in the regulation of cardiac substrate use. Specifically, hyperthyroidism increases the ex vivo activity of pyruvate dehydrogenase kinase, thereby inhibiting glucose oxidation via pyruvate dehydrogenase. Cardiac hypertrophy is another effect of hyperthyroidism, with an increase in the abundance of mitochondria. Although the hypertrophy is initially beneficial, it can eventually lead to heart failure. The aim of this study was to use hyperpolarized magnetic resonance spectroscopy to investigate the rate and regulation of in vivo pyruvate dehydrogenase flux in the hyperthyroid heart and to establish whether modulation of flux through pyruvate dehydrogenase would alter cardiac hypertrophy. Hyperthyroidism was induced in 18 male Wistar rats with 7 daily intraperitoneal injections of freshly prepared triiodothyronine (0.2 mg x kg(-1) x d(-1)). In vivo pyruvate dehydrogenase flux, assessed with hyperpolarized magnetic resonance spectroscopy, was reduced by 59% in hyperthyroid animals (0.0022 ± 0.0002 versus 0.0055 ± 0.0005 second(-1); P=0.0003), and this reduction was completely reversed by both short- and long-term delivery of dichloroacetic acid, a pyruvate dehydrogenase kinase inhibitor. Hyperpolarized [2-(13)C]pyruvate was also used to evaluate Krebs cycle metabolism and demonstrated a unique marker of anaplerosis, the level of which was significantly increased in the hyperthyroid heart. Cine magnetic resonance imaging showed that long-term dichloroacetic acid treatment significantly reduced the hypertrophy observed in hyperthyroid animals (100 ± 20 versus 200 ± 30 mg; P=0.04) despite no change in the increase observed in cardiac output. This work has demonstrated that inhibition of glucose oxidation in the hyperthyroid heart in vivo is mediated by pyruvate dehydrogenase kinase. Relieving this inhibition can increase the metabolic

  7. 49 CFR 173.322 - Ethyl chloride.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Ethyl chloride. 173.322 Section 173.322 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY... SHIPMENTS AND PACKAGINGS Gases; Preparation and Packaging § 173.322 Ethyl chloride. Ethyl chloride must be...

  8. 21 CFR 573.420 - Ethyl cellulose.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Ethyl cellulose. 573.420 Section 573.420 Food and... Listing § 573.420 Ethyl cellulose. The food additive ethyl cellulose may be safely used in animal feed in accordance with the following prescribed conditions: (a) The food additive is a cellulose ether containing...

  9. 21 CFR 172.868 - Ethyl cellulose.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ethyl cellulose. 172.868 Section 172.868 Food and... Multipurpose Additives § 172.868 Ethyl cellulose. The food additive ethyl cellulose may be safely used in food in accordance with the following prescribed conditions: (a) The food additive is a cellulose ether...

  10. Phenotypic and molecular genetic analysis of Pyruvate Kinase ...

    African Journals Online (AJOL)

    Jaouani Mouna

    2015-09-26

    Sep 26, 2015 ... to several mutations at the Pyruvate Kinase gene (PKLR) located on chromosome .... Tunisians (Fig. 2) [21]. The screening of whole PKLR gene revealed the presence of ..... newborns: the pitfalls of diagnosis. J Pediatr 2007 ...

  11. Phenotypic and molecular genetic analysis of Pyruvate Kinase ...

    African Journals Online (AJOL)

    Phenotypic and molecular genetic analysis of Pyruvate Kinase deficiency in a Tunisian family. Jaouani Mouna, Hamdi Nadia, Chaouch Leila, Kalai Miniar, Mellouli Fethi, Darragi Imen, Boudriga Imen, Chaouachi Dorra, Bejaoui Mohamed, Abbes Salem ...

  12. Anaerobic survival of Pseudomonas aeruginosa by pyruvate fermentation requires an Usp-type stress protein

    DEFF Research Database (Denmark)

    Schreiber, K; Boes, N; Escbach, M

    2006-01-01

    the induced synthesis of three enzymes involved in arginine fermentation, ArcA, ArcB, and ArcC, and the outer membrane protein OprL. Moreover, formation of two proteins of unknown function, PA3309 and PA4352, increased by factors of 72- and 22-fold, respectively. Both belong to the group of universal stress...... proteins (Usp). Long-term survival of a PA3309 knockout mutant by pyruvate fermentation was found drastically reduced. The oxygen-sensing regulator Anr controls expression of the PPA3309-lacZ reporter gene fusion after a shift to anaerobic conditions and further pyruvate fermentation. PA3309 expression...... was also found induced during the anaerobic and aerobic stationary phases. This aerobic stationary-phase induction is independent of the regulatory proteins Anr, RpoS, RelA, GacA, RhlR, and LasR, indicating a currently unknown mechanism of stationary-phase-dependent gene activation. PA3309 promoter...

  13. Supercritical antisolvent co-precipitation of rifampicin and ethyl cellulose.

    Science.gov (United States)

    Djerafi, Rania; Swanepoel, Andri; Crampon, Christelle; Kalombo, Lonji; Labuschagne, Philip; Badens, Elisabeth; Masmoudi, Yasmine

    2017-05-01

    Rifampicin-loaded submicron-sized particles were prepared through supercritical anti-solvent process using ethyl cellulose as polymeric encapsulating excipient. Ethyl acetate and a mixture of ethyl acetate/dimethyl sulfoxide (70/30 and 85/15) were used as solvents for both drug and polymeric excipient. When ethyl acetate was used, rifampicin was crystallized separately without being embedded within the ethyl cellulose matrix while by using the ethyl acetate/dimethyl sulfoxide mixture, reduced crystallinity of the active ingredient was observed and a simultaneous precipitation of ethyl cellulose and drug was achieved. The effect of solvent/CO 2 molar ratio and polymer/drug mass ratio on the co-precipitates morphology and drug loading was investigated. Using the solvent mixture, co-precipitates with particle sizes ranging between 190 and 230nm were obtained with drug loading and drug precipitation yield from respectively 8.5 to 38.5 and 42.4 to 77.2% when decreasing the ethyl cellulose/rifampicin ratio. Results show that the solvent nature and the initial drug concentrations affect morphology and drug precipitation yield of the formulations. In vitro dissolution studies revealed that the release profile of rifampicin was sustained when co-precipitation was carried out with the solvent mixture. It was demonstrated that the drug to polymer ratio influenced amorphous content of the SAS co-precipitates. Differential scanning calorimetry thermograms and infrared spectra revealed that there is neither interaction between rifampicin and the polymer nor degradation of rifampicin during co-precipitation. In addition, stability stress tests on SAS co-precipitates were carried out at 75% relative humidity and room temperature in order to evaluate their physical stability. SAS co-precipitates were X-ray amorphous and remained stable after 6months of storage. The SAS co-precipitation process using a mixture of ethyl acetate/dimethyl sulfoxide demonstrates that this strategy can

  14. Functional pyruvate formate lyase pathway expressed with two different electron donors in Saccharomyces cerevisiae at aerobic growth

    DEFF Research Database (Denmark)

    Zhang, Yiming; Dai, Zongjie; Krivoruchko, Anastasia

    2015-01-01

    pyruvate decarboxylase and having a reduced glucose uptake rate due to a mutation in the transcriptional regulator Mth1, IMI076 (Pdc-MTH1-ΔT ura3-52). PFL was expressed with two different electron donors, reduced ferredoxin or reduced flavodoxin, respectively, and it was found that the coexpression...

  15. Anaplerotic roles of pyruvate carboxylase in mammalian tissues.

    Science.gov (United States)

    Jitrapakdee, S; Vidal-Puig, A; Wallace, J C

    2006-04-01

    Pyruvate carboxylase (PC) catalyzes the ATP-dependent carboxylation of pyruvate to oxaloacetate. PC serves an anaplerotic role for the tricarboxylic acid cycle, when intermediates are removed for different biosynthetic purposes. In liver and kidney, PC provides oxaloacetate for gluconeogenesis. In adipocytes PC is involved in de novo fatty acid synthesis and glyceroneogenesis, and is regulated by the peroxisome proliferator-activated receptor-gamma, suggesting that PC is involved in the metabolic switch controlling fuel partitioning toward lipogenesis. In islets, PC is necessary for glucose-induced insulin secretion by providing oxaloacetate to form malate that participates in the 'pyruvate/malate cycle' to shuttle 3C or 4C between mitochondria and cytoplasm. Hyperglycemia and hyperlipidemia impair this cycle and affect glucose-stimulated insulin release. In astrocytes, PC is important for de novo synthesis of glutamate, an important excitatory neurotransmitter supplied to neurons. Transcriptional studies of the PC gene pinpoint some transcription factors that determine tissue-specific expression.

  16. Exogenous pyruvate facilitates cancer cell adaptation to hypoxia by serving as an oxygen surrogate.

    Science.gov (United States)

    Yin, Chengqian; He, Dan; Chen, Shuyang; Tan, Xiaoling; Sang, Nianli

    2016-07-26

    Molecular oxygen is the final electron acceptor in cellular metabolism but cancer cells often become adaptive to hypoxia, which promotes resistance to chemotherapy and radiation. The reduction of endogenous glycolytic pyruvate to lactate is known as an adaptive strategy for hypoxic cells. Whether exogenous pyruvate is required for hypoxic cell proliferation by either serving as an electron acceptor or a biosynthetic substrate remains unclear. By using both hypoxic and ρ0 cells defective in electron transfer chain, we show that exogenous pyruvate is required to sustain proliferation of both cancer and non-cancer cells that cannot utilize oxygen. Particularly, we show that absence of pyruvate led to glycolysis inhibition and AMPK activation along with decreased NAD+ levels in ρ0 cells; and exogenous pyruvate increases lactate yield, elevates NAD+/NADH ratio and suppresses AMPK activation. Knockdown of lactate dehydrogenase significantly inhibits the rescuing effects of exogenous pyruvate. In contrast, none of pyruvate-derived metabolites tested (including acetyl-CoA, α-ketoglutarate, succinate and alanine) can replace pyruvate in supporting ρ0 cell proliferation. Knockdown of pyruvate carboxylase, pyruvate dehydrogenase and citrate synthase do not impair exogenous pyruvate to rescue ρ0 cells. Importantly, we show that exogenous pyruvate relieves ATP insufficiency and mTOR inhibition and promotes proliferation of hypoxic cells, and that well-oxygenated cells release pyruvate, providing a potential in vivo source of pyruvate. Taken together, our data support a novel pyruvate cycle model in which oxygenated cells release pyruvate for hypoxic cells as an oxygen surrogate. The pyruvate cycle may be targeted as a new therapy of hypoxic cancers.

  17. Pyruvate decarboxylases from the petite-negative yeast Saccharomyces kluyveri

    DEFF Research Database (Denmark)

    Møller, Kasper; Langkjær, Rikke Breinhold; Nielsen, Jens

    2004-01-01

    was controlled by variations in the amount of mRNA. The mRNA level and the pyruvate decarboxylase activity responded to anaerobiosis and growth on different carbon sources in essentially the same fashion as in S. cerevisiae. This indicates that the difference in ethanol formation between these two yeasts...... is not due to differences in the regulation of pyruvate decarboxylase(s), but rather to differences in the regulation of the TCA cycle and the respiratory machinery. However, the PDC genes of Saccharomyces/Kluyveromyces yeasts differ in their genetic organization and phylogenetic origin. While S. cerevisiae...

  18. Characterization of ethyl cellulose polymer.

    Science.gov (United States)

    Mahnaj, Tazin; Ahmed, Salah U; Plakogiannis, Fotios M

    2013-01-01

    Ethyl cellulose (EC) polymer was characterized for its property before considering the interactions with the plasicizer. Ethocel Std.10 FP Premium from Dow chemical company USA was tested for its solubility, morphology and thermal properties. Seven percentage of EC solution in ethanol was found to be the right viscosity used to prepare the film. The EC polymer and EC film without any plasticizers showed almost identical thermal behavior, but in X-ray diffraction showed different arrangements of crystallites and amorphous region. Dynamic mechanical analysis of film showed that without a plasticizer, EC film was not flexible and had very low elongation with high applied force. The aim of the work was to avoid using the commercially available EC dispersions Surelease® and Aquacoat®; both already have additives on it. Instead, Ethocel EC polymer (powder) was characterized in our laboratory in order to find out the properties of polymer before considering the interactions of the polymer with various plasticizers.

  19. Novel mutations associated with pyruvate kinase deficiency in Brazil

    Directory of Open Access Journals (Sweden)

    Maria Carolina Costa Melo Svidnicki

    2018-01-01

    Full Text Available Background: Pyruvate kinase deficiency is a hereditary disease that affects the glycolytic pathway of the red blood cell, causing nonspherocytic hemolytic anemia. The disease is transmitted as an autosomal recessive trait and shows a marked variability in clinical expression. This study reports on the molecular characterization of ten Brazilian pyruvate kinase-deficient patients and the genotype–phenotype correlations. Method: Sanger sequencing and in silico analysis were carried out to identify and characterize the genetic mutations. A non-affected group of Brazilian individuals were also screened for the most commonly reported variants (c.1456C>T and c.1529G>A. Results: Ten different variants were identified in the PKLR gene, of which three are reported here for the first time: p.Leu61Gln, p.Ala137Val and p.Ala428Thr. All the three missense variants involve conserved amino acids, providing a rationale for the observed enzyme deficiency. The allelic frequency of c.1456C>T was 0.1% and the 1529G>A variant was not found. Conclusion: This is the first comprehensive report on molecular characterization of pyruvate kinase deficiency from South America. The results allowed us to correlate the severity of the clinical phenotype with the identified variants. Keywords: Red cell disorder, Pyruvate kinase, Mutation, Hemolytic anemia, PKLR gene

  20. Characterization of a C 4 maize pyruvate orthophosphate dikinase ...

    African Journals Online (AJOL)

    Pyruvate orthophosphate dikinase (PPDK) is a key enzyme in plants that utilize the C4 photosynthetic pathway to fix CO2. The enzymatic reaction catalyzed by PPDK is critically controlled by light and is one of the rate-limiting steps of the C4 pathway. The intact maize (Zea mays) C4-PPDK gene, containing its own promoter, ...

  1. Modulation of Malaria Phenotypes by Pyruvate Kinase (PKLR Variants in a Thai Population.

    Directory of Open Access Journals (Sweden)

    Rebekah van Bruggen

    Full Text Available Pyruvate kinase (PKLR is a critical erythrocyte enzyme that is required for glycolysis and production of ATP. We have shown that Pklr deficiency in mice reduces the severity (reduced parasitemia, increased survival of blood stage malaria induced by infection with Plasmodium chabaudi AS. Likewise, studies in human erythrocytes infected ex vivo with P. falciparum show that presence of host PK-deficiency alleles reduces infection phenotypes. We have characterized the genetic diversity of the PKLR gene, including haplotype structure and presence of rare coding variants in two populations from malaria endemic areas of Thailand and Senegal. We investigated the effect of PKLR genotypes on rich longitudinal datasets including haematological and malaria-associated phenotypes. A coding and possibly damaging variant (R41Q was identified in the Thai population with a minor allele frequency of ~4.7%. Arginine 41 (R41 is highly conserved in the pyruvate kinase family and its substitution to Glutamine (R41Q affects protein stability. Heterozygosity for R41Q is shown to be associated with a significant reduction in the number of attacks with Plasmodium falciparum, while correlating with an increased number of Plasmodium vivax infections. These results strongly suggest that PKLR protein variants may affect the frequency, and the intensity of malaria episodes induced by different Plasmodium parasites in humans living in areas of endemic malaria.

  2. Amperometric pyruvate sensor based on a pyruvate dehydrogenase-immobilized carbon paste electrode containing vitamin K3 as a mediator

    Energy Technology Data Exchange (ETDEWEB)

    Miki, K. [Nara National College of Technology, Nara (Japan); Kinoshita, H. [Kawassui Women`s College, Nagasaki (Japan); Yamamoto, Y. [Kyoto Municipal Junior College of Nursing, Kyoto (Japan); Taniguchi, N. [Kyoto Research Center for Hygiene, Kyoto (Japan); Ikeda, T. [Kyoto University, Kyoto (Japan). Faculty of Agriculture

    1995-12-05

    Pyruvate dehydrogenase (PDH) was immobilized on the surface of a carbon paste electrode containing vitamin K3 (2-Methyl-1,4-naphthoquinone, VK), and the electrode surface was covered with a dialysis membrane. The enzyme electrode produced an anodic current starting from -0.2 V to reach a limiting current at +0.1 V vs. Ag/AgCl due to the enzyme-catalyzed oxidation of pyruvate in a phosphate buffer solution of pH 7.0. The current response to pyruvate depended on the amounts of both the immobilized-PDH and VK mixed in the carbon paste electrode at low amount of the enzyme and VK, and became independent at above 0.15 mg PDH and 0.65% (w/w) VK. The electrode with 0.15mg PDH and 0.65% (w/w) VK could be used as a pyruvate sensor to measure in the range of 2 ,{mu}M to 3mM. The response time was about 60 sec, and the current was independent of pH in the range of 5.7 - 7.2. The presence of L-ascorbic acid didn`t interfere with this measurement. Phosphate ion could also be determined with this electrode in a citrate buffer solution. 14 refs., 6 figs., 1 tab.

  3. Environmental effect of rapeseed oil ethyl ester

    International Nuclear Information System (INIS)

    Makareviciene, V.; Janulis, P.

    2003-01-01

    Exhaust emission tests were conducted on rapeseed oil methyl ester (RME), rapeseed oil ethyl ester (REE) and fossil diesel fuel as well as on their mixtures. Results showed that when considering emissions of nitrogen oxides (NO x ), carbon monoxide (CO) and smoke density, rapeseed oil ethyl ester had less negative effect on the environment in comparison with that of rapeseed oil methyl ester. When fuelled with rapeseed oil ethyl ester, the emissions of NO x showed an increase of 8.3% over those of fossil diesel fuel. When operated on 25-50% bio-ester mixed with fossil diesel fuel, NO x emissions marginally decreased. When fuelled with pure rapeseed oil ethyl ester, HC emissions decreased by 53%, CO emissions by 7.2% and smoke density 72.6% when compared with emissions when fossil diesel fuel was used. Carbon dioxide (CO 2 ) emissions, which cause greenhouse effect, decreased by 782.87 g/kWh when rapeseed oil ethyl ester was used and by 782.26 g/kWh when rapeseed oil methyl ester was used instead of fossil diesel fuel. Rapeseed oil ethyl ester was more rapidly biodegradable in aqua environment when compared with rapeseed oil methyl ester and especially with fossil diesel fuel. During a standard 21 day period, 97.7% of rapeseed oil methyl ester, 98% of rapeseed oil ethyl ester and only 61.3% of fossil diesel fuel were biologically decomposed. (author)

  4. Enzymatic synthesis of 11C-pyruvic acid and 11C-L-lactic acid

    International Nuclear Information System (INIS)

    Cohen, M.B.; Spolter, L.; Chang, C.C.; Cook, J.S.; Macdonald, N.S.

    1980-01-01

    L-Lactic acid is formed as the end product of glycolysis under anaerobic conditions in all cells, but this reaction is of special significance in the myocardium. L-Lactic acid is reversibly formed from and is in equilibrium with myocardial pyruvic acid, which is its sole metabolic pathway. 11 C-Pyruvic acid is synthesized from 11 C carbon dioxide using pyruvate-ferredoxin oxidoreductase and coenzymes. The 11 C-pyruvic acid is then converted to 11 -L-lactic acid by lactic acid dehydrogenase. The availability of 11 C-pyruvic acid and 11 C-L-lactic acid will permit the in vivo investigation of lactate metabolism. (author)

  5. Pyruvate decarboxylase provides growing pollen tubes with a competitive advantage in petunia.

    Science.gov (United States)

    Gass, Nathalie; Glagotskaia, Tatiana; Mellema, Stefan; Stuurman, Jeroen; Barone, Mario; Mandel, Therese; Roessner-Tunali, Ute; Kuhlemeier, Cris

    2005-08-01

    Rapid pollen tube growth places unique demands on energy production and biosynthetic capacity. The aim of this work is to understand how primary metabolism meets the demands of such rapid growth. Aerobically grown pollen produce ethanol in large quantities. The ethanolic fermentation pathway consists of two committed enzymes: pyruvate decarboxylase (PDC) and alcohol dehydrogenase (ADH). Because adh mutations do not affect male gametophyte function, the obvious question is why pollen synthesize an abundant enzyme if they could do just as well without. Using transposon tagging in Petunia hybrida, we isolated a null mutant in pollen-specific Pdc2. Growth of the mutant pollen tubes through the style is reduced, and the mutant allele shows reduced transmission through the male, when in competition with wild-type pollen. We propose that not ADH but rather PDC is the critical enzyme in a novel, pollen-specific pathway. This pathway serves to bypass pyruvate dehydrogenase enzymes and thereby maintain biosynthetic capacity and energy production under the unique conditions prevailing during pollen-pistil interaction.

  6. Biofiltration of high loads of ethyl acetate in the presence of toluene.

    Science.gov (United States)

    Deshusses, M; Johnson, C T; Leson, G

    1999-08-01

    To date, biofilters have been used primarily to control dilute, usually odorous, off-gases with relatively low volatile organic compound (VOC) concentrations (elimination capacities for ethyl acetate were typically in the range of 200 g m-3 hr-1. Despite the presence of toluene degraders, the removal of toluene was inhibited by high loads of ethyl acetate. Several byproducts, particularly ethanol, were formed. Short-term dry-out and temperature excursions resulted in reduced performance.

  7. Hydrocracking of ethyl laurate on bifunctional micro-/mesoporous composite materials

    Energy Technology Data Exchange (ETDEWEB)

    Adam, M.; Busse, O.; Reschetilowski, W. [Technische Univ. Dresden (Germany). Inst. for Industrial Chemistry

    2011-07-01

    Hydrocracking of ethyl laurate (dodecanoic acid ethyl ester) as a representative model compound of vegetable oil has been investigated in a fixed bed reactor under integral conditions. A synthesized micro-/mesoporous composite support material Al-MCM-41/ZSM-5 modified by different metal loadings (NiMo, NiW, PtNiW) was used as catalyst system. It could be demonstrated that the metal loading and reducibility influence product selectivity as well as deactivation behavior of catalyst samples. (orig.)

  8. Optic neuropathy in a patient with pyruvate dehydrogenase deficiency

    Energy Technology Data Exchange (ETDEWEB)

    Small, Juan E. [Massachusetts General Hospital and Harvard Medical School, Department of Radiology, Boston, MA (United States); Gonzalez, Guido E. [Massachusetts Eye and Ear Infirmary and Harvard Medical School, Department of Radiology, Boston, MA (United States); Clinica Alemana de Santiago, Departmento de Imagenes, Santiago (Chile); Nagao, Karina E.; Walton, David S. [Massachusetts Eye and Ear Infirmary and Harvard Medical School, Department of Ophthalmology, Boston, MA (United States); Caruso, Paul A. [Massachusetts Eye and Ear Infirmary and Harvard Medical School, Department of Radiology, Boston, MA (United States)

    2009-10-15

    Pyruvate dehydrogenase (PDH) deficiency is a genetic disorder of mitochondrial metabolism. The clinical manifestations range from severe neonatal lactic acidosis to chronic neurodegeneration. Optic neuropathy is an uncommon clinical sequela and the imaging findings of optic neuropathy in these patients have not previously been described. We present a patient with PDH deficiency with bilateral decreased vision in whom MRI demonstrated bilateral optic neuropathy and chiasmopathy. (orig.)

  9. Optic neuropathy in a patient with pyruvate dehydrogenase deficiency

    International Nuclear Information System (INIS)

    Small, Juan E.; Gonzalez, Guido E.; Nagao, Karina E.; Walton, David S.; Caruso, Paul A.

    2009-01-01

    Pyruvate dehydrogenase (PDH) deficiency is a genetic disorder of mitochondrial metabolism. The clinical manifestations range from severe neonatal lactic acidosis to chronic neurodegeneration. Optic neuropathy is an uncommon clinical sequela and the imaging findings of optic neuropathy in these patients have not previously been described. We present a patient with PDH deficiency with bilateral decreased vision in whom MRI demonstrated bilateral optic neuropathy and chiasmopathy. (orig.)

  10. MCT1 modulates cancer cell pyruvate export and growth of tumors that co-express MCT1 and MCT4

    Science.gov (United States)

    Hong, Candice Sun; Graham, Nicholas A.; Gu, Wen; Camacho, Carolina Espindola; Mah, Vei; Maresh, Erin L.; Alavi, Mohammed; Bagryanova, Lora; Krotee, Pascal A. L.; Gardner, Brian K.; Behbahan, Iman Saramipoor; Horvath, Steve; Chia, David; Mellinghoff, Ingo K.; Hurvitz, Sara A.; Dubinett, Steven M.; Critchlow, Susan E.; Kurdistani, Siavash K.; Goodglick, Lee; Braas, Daniel; Graeber, Thomas G.; Christofk, Heather R.

    2016-01-01

    SUMMARY Monocarboxylate Transporter 1 (MCT1) inhibition is thought to block tumor growth through disruption of lactate transport and glycolysis. Here we show MCT1 inhibition impairs proliferation of glycolytic breast cancer cells co-expressing MCT1 and MCT4 via disruption of pyruvate rather than lactate export. MCT1 expression is elevated in glycolytic breast tumors, and high MCT1 expression predicts poor prognosis in breast and lung cancer patients. Acute MCT1 inhibition reduces pyruvate export but does not consistently alter lactate transport or glycolytic flux in breast cancer cells that co-express MCT1 and MCT4. Despite the lack of glycolysis impairment, MCT1 loss-of-function decreases breast cancer cell proliferation and blocks growth of mammary fat pad xenograft tumors. Our data suggest MCT1 expression is elevated in glycolytic cancers to promote pyruvate export, which when inhibited enhances oxidative metabolism and reduces proliferation. This study presents an alternative molecular consequence of MCT1 inhibitors further supporting their use as anti-cancer therapeutics. PMID:26876179

  11. Solid acid catalysed formation of ethyl levulinate and ethyl glucopyranoside from mono- and disaccharides

    DEFF Research Database (Denmark)

    Shunmugavel, Saravanamurugan; Riisager, Anders

    2012-01-01

    Sulfonic acid functionalised SBA-15 (SO3H-SBA-15), sulfated zirconia and beta, Y, ZSM-5 and mordenite zeolite catalysts have been applied for the dehydration of sugars to ethyl levulinate and ethyl-D-glucopyranoside (EDGP) using ethanol as solvent and reactant. The SO3H-SBA-15 catalyst showed...

  12. Embryonic Lethality of Mitochondrial Pyruvate Carrier 1 Deficient Mouse Can Be Rescued by a Ketogenic Diet

    OpenAIRE

    Vanderperre, Beno?t; Herzig, S?bastien; Krznar, Petra; H?rl, Manuel; Ammar, Zeinab; Montessuit, Sylvie; Pierredon, Sandra; Zamboni, Nicola; Martinou, Jean-Claude

    2016-01-01

    Mitochondrial import of pyruvate by the mitochondrial pyruvate carrier (MPC) is a central step which links cytosolic and mitochondrial intermediary metabolism. To investigate the role of the MPC in mammalian physiology and development, we generated a mouse strain with complete loss of MPC1 expression. This resulted in embryonic lethality at around E13.5. Mouse embryonic fibroblasts (MEFs) derived from mutant mice displayed defective pyruvate-driven respiration as well as perturbed metabolic p...

  13. An ancestral role for the mitochondrial pyruvate carrier in glucose-stimulated insulin secretion

    OpenAIRE

    McCommis, Kyle S.; Hodges, Wesley T.; Bricker, Daniel K.; Wisidagama, Dona R.; Compan, Vincent; Remedi, Maria S.; Thummel, Carl S.; Finck, Brian N.

    2016-01-01

    Objective: Transport of pyruvate into the mitochondrial matrix by the Mitochondrial Pyruvate Carrier (MPC) is an important and rate-limiting step in its metabolism. In pancreatic β-cells, mitochondrial pyruvate metabolism is thought to be important for glucose sensing and glucose-stimulated insulin secretion. Methods: To evaluate the role that the MPC plays in maintaining systemic glucose homeostasis, we used genetically-engineered Drosophila and mice with loss of MPC activity in insulin-prod...

  14. The mitochondrial pyruvate carrier mediates high fat diet-induced increases in hepatic TCA cycle capacity

    OpenAIRE

    Rauckhorst, Adam J.; Gray, Lawrence R.; Sheldon, Ryan D.; Fu, Xiaorong; Pewa, Alvin D.; Feddersen, Charlotte R.; Dupuy, Adam J.; Gibson-Corley, Katherine N.; Cox, James E.; Burgess, Shawn C.; Taylor, Eric B.

    2017-01-01

    Objective: Excessive hepatic gluconeogenesis is a defining feature of type 2 diabetes (T2D). Most gluconeogenic flux is routed through mitochondria. The mitochondrial pyruvate carrier (MPC) transports pyruvate from the cytosol into the mitochondrial matrix, thereby gating pyruvate-driven gluconeogenesis. Disruption of the hepatocyte MPC attenuates hyperglycemia in mice during high fat diet (HFD)-induced obesity but exerts minimal effects on glycemia in normal chow diet (NCD)-fed conditions. T...

  15. Topical ethyl chloride fine spray. Does it have any antimicrobial activity?

    Energy Technology Data Exchange (ETDEWEB)

    Burney, K.; Bowker, K.; Reynolds, R.; Bradley, M

    2006-12-15

    Aim: The aim of this study was to assess whether ethyl chloride fine spray (Cryogesic[reg]) has antimicrobial activity. Material and methods: Blood agar plates supplemented with 5% horse blood were inoculated with five different organisms, coagulase-negative staphylococci (CNS), methicillin-sensitive Staphylococcus aureus (MSSA), methicillin-resistant S. aureus (MRSA), Streptococcus pyogenes and Enterococcus faecalis. The plates were assessed for growth inhibition at 24 and 48 h by the microbiologist and compared with the non-sprayed control plates. Results: The model showed a highly significant (p < 0.0001) reduction in bacterial count for the plates treated with fine ethyl chloride spray. The estimate of the percentage of bacteria remaining after spraying with ethyl chloride was 42.7%, with a 95% confidence interval of 35.9-50.9%. There was no evidence that the effect of ethyl chloride fine spray was different for the different organisms (p = 0.49). Conclusion: The use of ethyl chloride shows bacterial count reduction but the clinical implication of this needs to be determined. The authors postulate that any statistically significant reduction can only be helpful in reducing the infection rates. This coupled with the already proven local anaesthetic effects of ethyl chloride will make it an important tool for procedures like arthrocentesis and venepunctures.

  16. Topical ethyl chloride fine spray. Does it have any antimicrobial activity?

    International Nuclear Information System (INIS)

    Burney, K.; Bowker, K.; Reynolds, R.; Bradley, M.

    2006-01-01

    Aim: The aim of this study was to assess whether ethyl chloride fine spray (Cryogesic[reg]) has antimicrobial activity. Material and methods: Blood agar plates supplemented with 5% horse blood were inoculated with five different organisms, coagulase-negative staphylococci (CNS), methicillin-sensitive Staphylococcus aureus (MSSA), methicillin-resistant S. aureus (MRSA), Streptococcus pyogenes and Enterococcus faecalis. The plates were assessed for growth inhibition at 24 and 48 h by the microbiologist and compared with the non-sprayed control plates. Results: The model showed a highly significant (p < 0.0001) reduction in bacterial count for the plates treated with fine ethyl chloride spray. The estimate of the percentage of bacteria remaining after spraying with ethyl chloride was 42.7%, with a 95% confidence interval of 35.9-50.9%. There was no evidence that the effect of ethyl chloride fine spray was different for the different organisms (p = 0.49). Conclusion: The use of ethyl chloride shows bacterial count reduction but the clinical implication of this needs to be determined. The authors postulate that any statistically significant reduction can only be helpful in reducing the infection rates. This coupled with the already proven local anaesthetic effects of ethyl chloride will make it an important tool for procedures like arthrocentesis and venepunctures

  17. Pyruvate Dehydrogenase Kinase as a Novel Therapeutic Target in Oncology

    Directory of Open Access Journals (Sweden)

    Gopinath eSutendra

    2013-03-01

    Full Text Available Current drug development in oncology is non-selective as it typically focuses on pathways essential for the survival of all dividing cells. The unique metabolic profile of cancer, which is characterized by increased glycolysis and suppressed mitochondrial glucose oxidation provides cancer cells with a proliferative advantage, conducive with apoptosis resistance and even increased angiogenesis. Recent evidence suggests that targeting the cancer-specific metabolic and mitochondrial remodeling may offer selectivity in cancer treatment. Pyruvate dehydrogenase kinase (PDK is a mitochondrial enzyme that is activated in a variety of cancers and results in the selective inhibition of pyruvate dehydrogenase (PDH, a complex of enzymes that converts cytosolic pyruvate to mitochondrial acetyl-CoA, the substrate for the Krebs’ cycle. Inhibition of PDK with either small interfering RNAs or the orphan drug dichloroacetate (DCA shifts the metabolism of cancer cells from glycolysis to glucose oxidation and reverses the suppression of mitochondria-dependent apoptosis. In addition, this therapeutic strategy increases the production of diffusible Krebs’ cycle intermediates and mitochondria-derived reactive oxygen species (mROS, activating p53 or inhibiting pro-proliferative and pro-angiogenic transcription factors like nuclear factor of activated T-cells (NFAT and hypoxia-inducible factor 1α (HIF1α. These effects result in decreased tumor growth and angiogenesis in a variety of cancers with high selectivity. In a small but mechanistic clinical trial in patients with glioblastoma, a highly aggressive and vascular form of brain cancer, DCA decreased tumor angiogenesis and tumor growth, suggesting that metabolic targeting therapies can be translated directly to patients. Therefore, reversing the mitochondrial suppression with metabolic-modulating drugs, like PDK inhibitors holds promise in the rapidly expanding field of metabolic oncology.

  18. Microbial community dynamics during the bioremediation process of chlorimuron-ethyl-contaminated soil by Hansschlegelia sp. strain CHL1.

    Directory of Open Access Journals (Sweden)

    Liqiang Yang

    Full Text Available Long-term and excessive application of chlorimuron-ethyl has led to a series of environmental problems. Strain Hansschlegelia sp. CHL1, a highly efficient chlorimuron-ethyl degrading bacterium isolated in our previous study, was employed in the current soil bioremediation study. The residues of chlorimuron-ethyl in soils were detected, and the changes of soil microbial communities were investigated by phospholipid fatty acid (PLFA analysis. The results showed that strain CHL1 exhibited significant chlorimuron-ethyl degradation ability at wide range of concentrations between 10μg kg-1 and 1000μg kg-1. High concentrations of chlorimuron-ethyl significantly decreased the total concentration of PLFAs and the Shannon-Wiener indices and increased the stress level of microbes in soils. The inoculation with strain CHL1, however, reduced the inhibition on soil microbes caused by chlorimuron-ethyl. The results demonstrated that strain CHL1 is effective in the remediation of chlorimuron-ethyl-contaminated soil, and has the potential to remediate chlorimuron-ethyl contaminated soils in situ.

  19. Microbial Community Dynamics during the Bioremediation Process of Chlorimuron-Ethyl-Contaminated Soil by Hansschlegelia sp. Strain CHL1

    Science.gov (United States)

    Yang, Liqiang; Li, Xinyu; Li, Xu; Su, Zhencheng; Zhang, Chenggang; Zhang, Huiwen

    2015-01-01

    Long-term and excessive application of chlorimuron-ethyl has led to a series of environmental problems. Strain Hansschlegelia sp. CHL1, a highly efficient chlorimuron-ethyl degrading bacterium isolated in our previous study, was employed in the current soil bioremediation study. The residues of chlorimuron-ethyl in soils were detected, and the changes of soil microbial communities were investigated by phospholipid fatty acid (PLFA) analysis. The results showed that strain CHL1 exhibited significant chlorimuron-ethyl degradation ability at wide range of concentrations between 10μg kg-1 and 1000μg kg-1. High concentrations of chlorimuron-ethyl significantly decreased the total concentration of PLFAs and the Shannon-Wiener indices and increased the stress level of microbes in soils. The inoculation with strain CHL1, however, reduced the inhibition on soil microbes caused by chlorimuron-ethyl. The results demonstrated that strain CHL1 is effective in the remediation of chlorimuron-ethyl-contaminated soil, and has the potential to remediate chlorimuron-ethyl contaminated soils in situ. PMID:25689050

  20. Synthesis of carbon-14 labelled ethyl chloride

    International Nuclear Information System (INIS)

    Kanski, R.

    1976-01-01

    A new efficient method of synthesis of ethyl chloride (1,2- 14 C), based on the Ba 14 CO 3 and dry hydrogen chloride as starting materials has been developed and described. Addition of the hydrogen chloride to ethylene (1,2- 14 C), obtained from Ba 14 CO 3 , has been carried out in the presence of the AlCl 3 as catalyst. The outlined method leads to ethyl chloride (1,2- 14 C) of high specific activity. The radiochemical yield of the reaction based on the activity of barium carbonate used was 72%. (author)

  1. Effect of Potent Ethyl Acetate Fraction of Stereospermum suaveolens Extract in Streptozotocin-Induced Diabetic Rats

    Directory of Open Access Journals (Sweden)

    T. Balasubramanian

    2012-01-01

    Full Text Available To evaluate the antihyperglycemic effect of ethyl acetate fraction of ethanol extract of Stereospermum suaveolens in streptozotocin-(STZ- induced diabetic rats by acute and subacute models. In this paper, various fractions of ethanol extract of Stereospermum suaveolens were prepared and their effects on blood glucose levels in STZ-induced diabetic rats were studied after a single oral administration (200?mg/kg. Administration of the ethyl acetate fraction at 200?mg/kg once daily for 14 days to STZ-induced diabetic rats was also carried out. The parameters such as the fasting blood glucose, hepatic glycogen content, and pancreatic antioxidant levels were monitored. In the acute study, the ethyl acetate fraction is the most potent in reducing the fasting serum glucose levels of the STZ-induced diabetic rats. The 14-day repeated oral administration of the ethyl acetate fraction significantly reduced the fasting blood glucose and pancreatic TBARS level and significantly increased the liver glycogen, pancreatic superoxide dismutase, and catalase activities as well as reduced glutathione levels. The histopathological studies during the subacute treatment have been shown to ameliorate the STZ-induced histological damage of pancreas. This paper concludes that the ethyl acetate fraction from ethanol extract of Stereospermum suaveolens possesses potent antihyperglycemic and antioxidant properties, thereby substantiating the use of plant in the indigenous system of medicine.

  2. Effects of IL-6 on pyruvate dehydrogenase regulation in mouse skeletal muscle

    DEFF Research Database (Denmark)

    Biensø, Rasmus Sjørup; Knudsen, Jakob Grunnet; Brandt, Nina

    2014-01-01

    Skeletal muscle regulates substrate choice according to demand and availability and pyruvate dehydrogenase (PDH) is central in this regulation. Circulating interleukin (IL)-6 increases during exercise and IL-6 has been suggested to increase whole body fat oxidation. Furthermore, IL-6 has been...... reported to increase AMP-activated protein kinase (AMPK) phosphorylation and AMPK suggested to regulate PDHa activity. Together, this suggests that IL-6 may be involved in regulating PDH. The aim of this study was to investigate the effect of a single injection of IL-6 on PDH regulation in skeletal muscle...... in fed and fasted mice. Fed and 16-18 h fasted mice were injected with either 3 ng · g(-1) recombinant mouse IL-6 or PBS as control. Fasting markedly reduced plasma glucose, muscle glycogen, muscle PDHa activity, as well as increased PDK4 mRNA and protein content in skeletal muscle. IL-6 injection did...

  3. Pyruvate carboxylase deficiency: An underestimated cause of lactic acidosis

    Directory of Open Access Journals (Sweden)

    F. Habarou

    2015-03-01

    Full Text Available Pyruvate carboxylase (PC is a biotin-containing mitochondrial enzyme that catalyzes the conversion of pyruvate to oxaloacetate, thereby being involved in gluconeogenesis and in energy production through replenishment of the tricarboxylic acid (TCA cycle with oxaloacetate. PC deficiency is a very rare metabolic disorder. We report on a new patient affected by the moderate form (the American type A. Diagnosis was nearly fortuitous, resulting from the revision of an initial diagnosis of mitochondrial complex IV (C IV defect. The patient presented with severe lactic acidosis and pronounced ketonuria, associated with lethargy at age 23 months. Intellectual disability was noted at this time. Amino acids in plasma and organic acids in urine did not show patterns of interest for the diagnostic work-up. In skin fibroblasts PC showed no detectable activity whereas biotinidase activity was normal. We had previously reported another patient with the severe form of PC deficiency and we show that she also had secondary C IV deficiency in fibroblasts. Different anaplerotic treatments in vivo and in vitro were tested using fibroblasts of both patients with 2 different types of PC deficiency, type A (patient 1 and type B (patient 2. Neither clinical nor biological effects in vivo and in vitro were observed using citrate, aspartate, oxoglutarate and bezafibrate. In conclusion, this case report suggests that the moderate form of PC deficiency may be underdiagnosed and illustrates the challenges raised by energetic disorders in terms of diagnostic work-up and therapeutical strategy even in a moderate form.

  4. Pyruvate kinase M2: a potential target for regulating inflammation

    Directory of Open Access Journals (Sweden)

    Jose Carlos eAlves-Filho

    2016-04-01

    Full Text Available Pyruvate kinase (PK is the enzyme responsible for catalyzing the last step of glycolysis. Of the four PK isoforms expressed in mammalian cells, PKM2 has generated the most interest due to its impact on changes in cellular metabolism observed in cancer as well as in activated immune cells. As our understanding of dysregulated metabolism in cancer develops, and in light of the growing field of immunometabolism, intense efforts are in place to define the mechanism by which PKM2 regulates the metabolic profile of cancer as well as of immune cells. The enzymatic activity of PKM2 is heavily regulated by endogenous allosteric effectors as well as by intracellular signalling pathways, affecting both the enzymatic activity of PKM2 as a pyruvate kinase and the regulation of the recently described non-canonical nuclear functions of PKM2. We here review the current literature on PKM2 and its regulation, and discuss the potential for PKM2 as a therapeutic target in inflammatory and metabolic disorders.

  5. 21 CFR 184.1293 - Ethyl alcohol.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ethyl alcohol. 184.1293 Section 184.1293 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) DIRECT FOOD SUBSTANCES AFFIRMED AS GENERALLY RECOGNIZED AS SAFE Listing of Specific...

  6. Directed evolution of pyruvate decarboxylase-negative Saccharomyces cerevisiae, yielding a C2-independent, glucose-tolerant, and pyruvate-hyperproducing yeast

    NARCIS (Netherlands)

    A.J. van Maris; J.M. Geertman; A. Vermeulen; M.K. Groothuizen; A.A. Winkler; M.D. Piper; J.P. van Dijken; J.T. Pronk

    2004-01-01

    textabstractThe absence of alcoholic fermentation makes pyruvate decarboxylase-negative (Pdc(-)) strains of Saccharomyces cerevisiae an interesting platform for further metabolic engineering of central metabolism. However, Pdc(-) S. cerevisiae strains have two growth defects:

  7. Field dependence of T1 for hyperpolarized [1-13C]pyruvate

    DEFF Research Database (Denmark)

    Chattergoon, N.; Martnez-Santiesteban, F.; Handler, W. B.

    2013-01-01

    conformation and properties of the dissolution media such as buffer composition, solution pH, temperature and magnetic field. We have measured the magnetic field dependence of the spin–lattice relaxation time of hyperpolarized [1-13C]pyruvate using field-cycled relaxometry. [1-13C]pyruvate was hyperpolarized...

  8. Relations between fatty acid synthesis, pyruvate concentration and cell concentration of suspensions of isolated rat hepatocytes

    NARCIS (Netherlands)

    Beynen, A.C.; Geelen, M.J.H.

    1984-01-01

    1. 1. The cell concentration of suspensions of isolated rat hepatocytes affects both the rate of pyruvate accumulation in the incubation medium and the rate of fatty acid synthesis. 2. 2. At low cell concentrations pyruvate accumulation is directly related to the cell concentration but levels off

  9. Apparent rate constant mapping using hyperpolarized [1-(13) C]pyruvate

    DEFF Research Database (Denmark)

    Khegai, O.; Schulte, R. F.; Janich, M. A.

    2014-01-01

    Hyperpolarization of [1-13C]pyruvate in solution allows real-time measurement of uptake and metabolism using MR spectroscopic methods. After injection and perfusion, pyruvate is taken up by the cells and enzymatically metabolized into downstream metabolites such as lactate, alanine, and bicarbona...

  10. A Patient With Pyruvate Carboxylase Deficiency and Nemaline Rods on Muscle Biopsy

    DEFF Research Database (Denmark)

    Unal, Ozlem; Orhan, Diclehan; Ostergaard, Elsebet

    2013-01-01

    Nemaline rods are the pathologic hallmark of nemaline myopathy, but they have also been described as a secondary phenomenon in a variety of other disorders. Nemaline rods have not been reported in pyruvate carboxylase deficiency before. Here we present a patient with pyruvate carboxylase deficiency...

  11. The moonlighting function of pyruvate carboxylase resides in the non-catalytic end of the TIM barrel.

    NARCIS (Netherlands)

    Huberts, D.H.; Venselaar, H.; Vriend, G.; Veenhuis, M.; Klei, I.J. van der

    2010-01-01

    Pyruvate carboxylase is a highly conserved enzyme that functions in replenishing the tricarboxylic acid cycle with oxaloacetate. In the yeast Hansenulapolymorpha, the pyruvate carboxylase protein is also required for import and assembly of the peroxisomal enzyme alcohol oxidase. This additional

  12. Detection of myocardial ischemia before infarction, based on accumulation of labeled pyruvate

    International Nuclear Information System (INIS)

    Goldstein, R.A.; Klein, M.S.; Sobel, B.E.

    1980-01-01

    To determine whether ischemic, but not irreversibly injured myocardium, can be differentiated from normal tissue based on accumulation of labeled pyruvate, isolated hearts were perfused with buffer containing [ 14 C]pyruvate under conditions of normal or low flow. Fifteen minutes after the hearts were exposed to labeled material, myocardial radioactivity was fourfold greater in ischemic compared to control hearts, due to accumulation of label in sequestered lactate produced from the pyruvate. Open-chest rabbits subjected to coronary occlusion exhibited a 1.73:1 ratio of radioactivity in ischemic compared with normal myocardium 15 min after systemic injection of [ 14 C]pyruvate. The results obtained suggest that zones of myocardial ischemia should be detectable in vivo by positron tomography after systemic administration of [ 11 C]pyruvate as well

  13. 21 CFR 177.1320 - Ethylene-ethyl acrylate copolymers.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ethylene-ethyl acrylate copolymers. 177.1320... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1320 Ethylene-ethyl acrylate copolymers. Ethylene-ethyl acrylate copolymers may be safely used to produce packaging materials, containers...

  14. MMT promises: how the Ethyl Corporation beat the federal ban

    International Nuclear Information System (INIS)

    Schneiderman, S.

    1999-01-01

    The manganese-based MMT has been blended in gasoline fuel sold in Canada for almost 20 years. Invoking environmental health and consumer protection grounds, the federal government moved to prohibit the importation and inter-provincial trade of MMT in June 1997. Ethyl Corporation of Richmond, Virginia, the sole producers of MMT, claimed discriminatory treatment under NAFTA and sought $ 250 million in damages as compensation for alleged 'expropriation' of the company's investment interests. A stunning reversal of the Canadian government's decision occurred one year later. Canada agreed to pay Ethyl Corporation $ 13 million (representing legal fees and lost profits) and agreed to rescind the legislation and admit publicly that the use of MMT poses no environmental risk. The reversal was the result of the little-known Agreement on Internal Trade (AIT), a federal-provincial government agreement, intended to reduce 'non-tariff' barriers to inter-provincial trade and create greater economic union. The AIT is modelled on NAFTA and the Uruguay-round GATT, and treats relations between the Canadian provinces as if they were relations among sovereign states. In cases of conflict, provinces are entitled to seek resolution of complaints before dispute resolution panels. Some of the provinces voiced objection to the MMT legislation and Alberta, supported by three other provinces, filed an AIT complaint against the federal government for prohibiting the inter-provincial trade of MMT. The AIT dispute panel upheld Alberta's complaint. The decision was hailed as a 'triumph of principle over bad science'. It was an unmitigated success for Ethyl Corporation, and a humiliating defeat for the federal government. In this author's view, the MMT story is a clear example of yet another instrument by which corporate power can limit the capacity of democratically elected governments to act on behalf of the public good

  15. Triiodothyronine increases myocardial function and pyruvate entry into the citric acid cycle after reperfusion in a model of infant cardiopulmonary bypass

    Science.gov (United States)

    Olson, Aaron K.; Bouchard, Bertrand; Ning, Xue-Han; Isern, Nancy; Rosiers, Christine Des

    2012-01-01

    Triiodothyronine (T3) supplementation improves clinical outcomes in infants after cardiac surgery using cardiopulmonary bypass by unknown mechanisms. We utilized a translational model of infant cardiopulmonary bypass to test the hypothesis that T3 modulates pyruvate entry into the citric acid cycle (CAC), thereby providing the energy support for improved cardiac function after ischemia-reperfusion (I/R). Neonatal piglets received intracoronary [2-13Carbon(13C)]pyruvate for 40 min (8 mM) during control aerobic conditions (control) or immediately after reperfusion (I/R) from global hypothermic ischemia. A third group (I/R-Tr) received T3 (1.2 μg/kg) during reperfusion. We assessed absolute CAC intermediate levels and flux parameters into the CAC through oxidative pyruvate decarboxylation (PDC) and anaplerotic carboxylation (PC) using [2-13C]pyruvate and isotopomer analysis by gas and liquid chromatography-mass spectrometry and 13C-nuclear magnetic resonance spectroscopy. When compared with I/R, T3 (group I/R-Tr) increased cardiac power and oxygen consumption after I/R while elevating flux of both PDC and PC (∼4-fold). Although neither I/R nor I/R-Tr modified absolute CAC levels, T3 inhibited I/R-induced reductions in their molar percent enrichment. Furthermore, 13C-labeling of CAC intermediates suggests that T3 may decrease entry of unlabeled carbons at the level of oxaloacetate through anaplerosis or exchange reaction with asparate. T3 markedly enhances PC and PDC fluxes, thereby providing potential substrate for elevated cardiac function after reperfusion. This T3-induced increase in pyruvate fluxes occurs with preservation of the CAC intermediate pool. Our labeling data raise the possibility that T3 reduces reliance on amino acids for anaplerosis after reperfusion. PMID:22180654

  16. The crystal structure of Toxoplasma gondii pyruvate kinase 1.

    Directory of Open Access Journals (Sweden)

    Rebecca Bakszt

    2010-09-01

    Full Text Available Pyruvate kinase (PK, which catalyzes the final step in glycolysis converting phosphoenolpyruvate to pyruvate, is a central metabolic regulator in most organisms. Consequently PK represents an attractive therapeutic target in cancer and human pathogens, like Apicomplexans. The phylum Aplicomplexa, a group of exclusively parasitic organisms, includes the genera Plasmodium, Cryptosporidium and Toxoplasma, the etiological agents of malaria, cryptosporidiosis and toxoplasmosis respectively. Toxoplasma gondii infection causes a mild illness and is a very common infection affecting nearly one third of the world's population.We have determined the crystal structure of the PK1 enzyme from T. gondii, with the B domain in the open and closed conformations. We have also characterized its enzymatic activity and confirmed glucose-6-phosphate as its allosteric activator. This is the first description of a PK enzyme in a closed inactive conformation without any bound substrate. Comparison of the two tetrameric TgPK1 structures indicates a reorientation of the monomers with a concomitant change in the buried surface among adjacent monomers. The change in the buried surface was associated with significant B domain movements in one of the interacting monomers.We hypothesize that a loop in the interface between the A and B domains plays an important role linking the position of the B domain to the buried surface among monomers through two α-helices. The proposed model links the catalytic cycle of the enzyme with its domain movements and highlights the contribution of the interface between adjacent subunits. In addition, an unusual ordered conformation was observed in one of the allosteric binding domains and it is related to a specific apicomplexan insertion. The sequence and structural particularity would explain the atypical activation by a mono-phosphorylated sugar. The sum of peculiarities raises this enzyme as an emerging target for drug discovery.

  17. The crystal structure of Toxoplasma gondii pyruvate kinase 1.

    Science.gov (United States)

    Bakszt, Rebecca; Wernimont, Amy; Allali-Hassani, Abdellah; Mok, Man Wai; Hills, Tanya; Hui, Raymond; Pizarro, Juan C

    2010-09-14

    Pyruvate kinase (PK), which catalyzes the final step in glycolysis converting phosphoenolpyruvate to pyruvate, is a central metabolic regulator in most organisms. Consequently PK represents an attractive therapeutic target in cancer and human pathogens, like Apicomplexans. The phylum Aplicomplexa, a group of exclusively parasitic organisms, includes the genera Plasmodium, Cryptosporidium and Toxoplasma, the etiological agents of malaria, cryptosporidiosis and toxoplasmosis respectively. Toxoplasma gondii infection causes a mild illness and is a very common infection affecting nearly one third of the world's population. We have determined the crystal structure of the PK1 enzyme from T. gondii, with the B domain in the open and closed conformations. We have also characterized its enzymatic activity and confirmed glucose-6-phosphate as its allosteric activator. This is the first description of a PK enzyme in a closed inactive conformation without any bound substrate. Comparison of the two tetrameric TgPK1 structures indicates a reorientation of the monomers with a concomitant change in the buried surface among adjacent monomers. The change in the buried surface was associated with significant B domain movements in one of the interacting monomers. We hypothesize that a loop in the interface between the A and B domains plays an important role linking the position of the B domain to the buried surface among monomers through two α-helices. The proposed model links the catalytic cycle of the enzyme with its domain movements and highlights the contribution of the interface between adjacent subunits. In addition, an unusual ordered conformation was observed in one of the allosteric binding domains and it is related to a specific apicomplexan insertion. The sequence and structural particularity would explain the atypical activation by a mono-phosphorylated sugar. The sum of peculiarities raises this enzyme as an emerging target for drug discovery.

  18. The Crystal Structure of Toxoplasma gondii Pyruvate Kinase 1

    Energy Technology Data Exchange (ETDEWEB)

    Bakszt, R.; Wernimont, A; Allali-Hassani, A; Mok, M; Hills, T; Hui, R; Pizarro, J

    2010-01-01

    Pyruvate kinase (PK), which catalyzes the final step in glycolysis converting phosphoenolpyruvate to pyruvate, is a central metabolic regulator in most organisms. Consequently PK represents an attractive therapeutic target in cancer and human pathogens, like Apicomplexans. The phylum Aplicomplexa, a group of exclusively parasitic organisms, includes the genera Plasmodium, Cryptosporidium and Toxoplasma, the etiological agents of malaria, cryptosporidiosis and toxoplasmosis respectively. Toxoplasma gondii infection causes a mild illness and is a very common infection affecting nearly one third of the world's population. We have determined the crystal structure of the PK1 enzyme from T. gondii, with the B domain in the open and closed conformations. We have also characterized its enzymatic activity and confirmed glucose-6-phosphate as its allosteric activator. This is the first description of a PK enzyme in a closed inactive conformation without any bound substrate. Comparison of the two tetrameric TgPK1 structures indicates a reorientation of the monomers with a concomitant change in the buried surface among adjacent monomers. The change in the buried surface was associated with significant B domain movements in one of the interacting monomers. We hypothesize that a loop in the interface between the A and B domains plays an important role linking the position of the B domain to the buried surface among monomers through two {alpha}-helices. The proposed model links the catalytic cycle of the enzyme with its domain movements and highlights the contribution of the interface between adjacent subunits. In addition, an unusual ordered conformation was observed in one of the allosteric binding domains and it is related to a specific apicomplexan insertion. The sequence and structural particularity would explain the atypical activation by a mono-phosphorylated sugar. The sum of peculiarities raises this enzyme as an emerging target for drug discovery.

  19. Effect of Trinexapac-Ethyl and Traffic Stress on Physiological and Morphological Characteristics of Wheat Grass(Agropyron desertorum

    Directory of Open Access Journals (Sweden)

    M. H. Sheikh Mohamadi

    2015-06-01

    Full Text Available In order to evaluate the effect of trinexapac ethyl concentrations (0, 250 and 500 g/h and traffic stress (traffic and non traffic treatments on wheat grass physiological and morphological traits, an experiment was conducted on research farm of Isfahan University of Technology in 2011 - 2012 as factorial in completely randomized designs with three replications. The studied traits involved plant height and plant density, shoot dry weight and fresh weights, tillering, chlorophyll level, roots and shoot dissolved carbohydrates. Results showed that Trinexapac ethyl reduced plant height, fresh weight and dry weight of cut parts significantly. Application of 250 and 500 g/h Trinexapac ethyl decreased plant height by 21.23 percent and 31.85 percent respectively. Application of Trinexapac ethyl improved plant height, tillering and chlorophyll level. In contrast, chlorophyll level was decreased substantially under traffic treatment and this treatment did not affect wheat grass density and tillering significantly. Under 500 g/h Trinexapac ethyl treatment, tillering was increased by 36 percent compared with under control condition one. Results showed that Trinexapac ethyl application and traffic increased dissolved carbohydrates of root and shoot significantly. As a result, it was found that wheat grass is a traffic resistant plant and it seems that the use of Trinexapac ethyl increases plant resistance to traffic stress

  20. Protective Effect of Ethyl Acetate Fraction of Stereospermum Suaveolens Against Hepatic Oxidative Stress in STZ Diabetic Rats.

    Science.gov (United States)

    Balasubramanian, Thirumalaiswamy; Senthilkumar, G P; Karthikeyan, M; Chatterjee, Tapan Kumar

    2013-07-01

    Stereospermum suaveolens is a folk remedy for the treatment of diabetes and liver disorders in southern parts of India. In the present study, the protective effect of the ethyl acetate fraction of ethanol extract from S. suaveolens against hepatic oxidative stress was evaluated in streptozotocin (STZ)-induced diabetic rats for 14 days. The ethyl acetate fraction was administered orally to the STZ diabetic rats at the doses of 200 and 400 mg/kg. Blood glucose level was measured according to glucose oxidase method. In order to determine hepatoprotective activity, changes in the levels of serum biomarker enzymes such as aspartate transaminase (AST), alanine transaminase (ALT), and serum alkaline phosphatase (SALP) were assessed in the ethyl acetate fraction treated diabetic rats and were compared with the levels in diabetic control rats. In addition, the antioxidant activity of ethyl acetate fraction was evaluated using various hepatic parameters such as thiobarbituric acid reactive substances (TBARS), reduced glutathione (GSH), superoxide dismutase (SOD), and catalase (CAT). It was found that administration of ethyl acetate fraction (200 and 400 mg/kg) produced a significant (P SALP, while elevating the GSH levels, and SOD and CAT activities in diabetic rats. Histopathologic studies also revealed the protective effect of ethyl acetate fraction on the liver tissues of diabetic rats. It was concluded from this study that the ethyl acetate fraction from ethanol extract of S. suaveolens modulates the activity of enzymatic and nonenzymatic antioxidants and enhances the defense against hepatic oxidative stress in STZ-induced diabetic rats.

  1. Lipid Effects of Icosapent Ethyl in Women with Diabetes Mellitus and Persistent High Triglycerides on Statin Treatment: ANCHOR Trial Subanalysis.

    Science.gov (United States)

    Brinton, Eliot A; Ballantyne, Christie M; Guyton, John R; Philip, Sephy; Doyle, Ralph T; Juliano, Rebecca A; Mosca, Lori

    2018-03-27

    High triglycerides (TG) and diabetes mellitus type 2 (DM2) are stronger predictors of cardiovascular disease (CVD) in women than in men, but few randomized, controlled clinical trials have investigated lipid-lowering interventions in women and none have reported results specifically in women with high TG and DM2. Icosapent ethyl (Vascepa) is pure prescription eicosapentaenoic acid (EPA) ethyl ester approved at 4 g/day as an adjunct to diet to reduce TG ≥500 mg/dL. The 12-week ANCHOR trial randomized 702 statin-treated patients (73% with DM; 39% women) at increased CVD risk with TG 200-499 mg/dL despite controlled low-density lipoprotein cholesterol (LDL-C; 40-99 mg/dL) to receive icosapent ethyl 2 g/day, 4 g/day, or placebo. This post hoc analysis included 146 women with DM2 (97% white, mean age 62 years) randomized to icosapent ethyl 4 g/day (n = 74) or placebo (n = 72). Icosapent ethyl significantly reduced TG (-21.5%; p women with DM2 at high CVD risk with persistently high TG on statins, icosapent ethyl 4 g/day reduced potentially atherogenic parameters with safety and tolerability comparable to placebo. Potential CVD benefits of icosapent ethyl are being tested in ∼8000 men and women at high CVD risk with high TG on statins in the ongoing Reduction of Cardiovascular Events with Icosapent Ethyl - Intervention Trial (REDUCE-IT) cardiovascular (CV) outcome trial.

  2. Production of ethyl alcohol from bananas

    Energy Technology Data Exchange (ETDEWEB)

    Jones, R.L.; Towns, T.

    1983-12-01

    The production of ethyl alcohol from waste bananas presents many special problems. During cooking, matting of the latex fibers from the banana peel recongeal when cooled and left untreated. This problem has been addressed by Alfaro by the use of CaC1/sub 2/. Separation of solids prior to distillation of the mashes in an economical fashion and use of the by product are also of concern to banana processors.

  3. Pyruvate dehydrogenase complex and lactate dehydrogenase as targets for therapy of acute liver failure.

    Science.gov (United States)

    Ferriero, Rosa; Nusco, Edoardo; De Cegli, Rossella; Carissimo, Annamaria; Manco, Giuseppe; Brunetti-Pierri, Nicola

    2018-03-23

    Acute liver failure is a rapidly progressive deterioration of hepatic function resulting in high mortality and morbidity. Metabolic enzymes can translocate in the nucleus to regulate histone acetylation and gene expression. Levels and activities of pyruvate dehydrogenase complex (PDHC) and lactate dehydrogenase (LDH) were evaluated in nuclear fractions of livers of mice exposed to various hepatotoxins including CD95-Ab, α-amanitin, and acetaminophen. Whole-genome gene expression profiling by RNA-seq was performed in livers of mice with acute liver failure and analyzed by Gene Ontology Enrichment Analysis. Efficacy of histone acetyltransferase inhibitor garcinol and LDH inhibitor galloflavin at reducing liver damage was evaluated in mice with induced hepatotoxicity. Levels and activities of PDHC and LDH were increased in cytoplasmatic and nuclear fractions of livers of mice with acute liver failure. The increase of nuclear PDHC and LDH was associated with increased concentrations of acetyl-coA and lactate in nuclear fractions, and histone H3 hyper-acetylation. Gene expression in livers of mice with acute liver failure suggested that increased histone H3 acetylation induces the expression of genes related to response to damage. Reduced histone acetylation by the histone acetyltransferase inhibitor garcinol decreased liver damage and improved survival in mice with acute liver failure. Knock-down of PDHC or LDH improved viability in cells exposed to a pro-apoptotic stimulus. Treatment with the LDH inhibitor galloflavin that was also found to inhibit PDHC, reduced hepatic necrosis, apoptosis, and expression of pro-inflammatory cytokines in mice with acute liver failure. Mice treated with galloflavin also showed a dose-response increase in survival. PDHC and LDH translocate to the nucleus and are targets for therapy of acute liver failure. Acute liver failure is a rapidly progressive and life-threatening deterioration of liver function resulting in high mortality and

  4. Single pyruvate intake induces blood alkalization and modification of resting metabolism in humans.

    Science.gov (United States)

    Olek, Robert A; Luszczyk, Marcin; Kujach, Sylwester; Ziemann, Ewa; Pieszko, Magdalena; Pischel, Ivo; Laskowski, Radoslaw

    2015-03-01

    Three separate studies were performed with the aim to 1) determine the effect of a single sodium pyruvate intake on the blood acid-base status in males and females; 2) compare the effect of sodium and calcium pyruvate salts and establish their role in the lipolysis rate; and 3) quantify the effect of single pyruvate intake on the resting energy metabolism. In all, 48 individuals completed three separate studies. In all the studies, participants consumed a single dose of pyruvate 0.1 g/kg 60 min before commencing the measurements. The whole blood pH, bicarbonate concentration, base excess or plasma glycerol, free fatty acids, glucose concentrations, or resting energy expenditure and calculated respiratory exchange ratio were determined. The analysis of variance for repeated measurements was performed to examine the interaction between treatment and time. The single dose of sodium pyruvate induced blood alkalization, which was more marked in the male than in the female participants. Following the ingestion of sodium or calcium pyruvate, the blood acid-base parameters were higher than in the placebo trial. Furthermore, 3-h postingestion glycerol was lower in both pyruvate trials than in placebo. Resting energy expenditure did not differ between the trials; however, carbohydrate oxidation was increased after sodium pyruvate ingestion. Pyruvate intake induced mild alkalization in a sex-dependent fashion. Moreover, it accelerated carbohydrate metabolism and delayed the rate of glycerol appearance in the blood, but had no effect on the resting energy expenditure. Furthermore, sodium salt seems to have had a greater effect on the blood buffering level than calcium salt. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Gluconeogenesis is associated with high rates of tricarboxylic acid and pyruvate cycling in fasting northern elephant seals.

    Science.gov (United States)

    Champagne, Cory D; Houser, Dorian S; Fowler, Melinda A; Costa, Daniel P; Crocker, Daniel E

    2012-08-01

    Animals that endure prolonged periods of food deprivation preserve vital organ function by sparing protein from catabolism. Much of this protein sparing is achieved by reducing metabolic rate and suppressing gluconeogenesis while fasting. Northern elephant seals (Mirounga angustirostris) endure prolonged fasts of up to 3 mo at multiple life stages. During these fasts, elephant seals maintain high levels of activity and energy expenditure associated with breeding, reproduction, lactation, and development while maintaining rates of glucose production typical of a postabsorptive mammal. Therefore, we investigated how fasting elephant seals meet the requirements of glucose-dependent tissues while suppressing protein catabolism by measuring the contribution of glycogenolysis, glycerol, and phosphoenolpyruvate (PEP) to endogenous glucose production (EGP) during their natural 2-mo postweaning fast. Additionally, pathway flux rates associated with the tricarboxylic acid (TCA) cycle were measured specifically, flux through phosphoenolpyruvate carboxykinase (PEPCK) and pyruvate cycling. The rate of glucose production decreased during the fast (F(1,13) = 5.7, P = 0.04) but remained similar to that of postabsorptive mammals. The fractional contributions of glycogen, glycerol, and PEP did not change with fasting; PEP was the primary gluconeogenic precursor and accounted for ∼95% of EGP. This large contribution of PEP to glucose production occurred without substantial protein loss. Fluxes through the TCA cycle, PEPCK, and pyruvate cycling were higher than reported in other species and were the most energetically costly component of hepatic carbohydrate metabolism. The active pyruvate recycling fluxes detected in elephant seals may serve to rectify gluconeogeneic PEP production during restricted anaplerotic inflow in these fasting-adapted animals.

  6. Interação de glyphosate com carfentrazone-ethyl Glyphosate - carfentrazone-ethyl interaction

    Directory of Open Access Journals (Sweden)

    R.C. Werlang

    2002-04-01

    Full Text Available Foi conduzido um experimento em condições controladas para determinar a interação do carfentrazone-ethyl em mistura no tanque com o herbicida glyphosate, no controle de seis espécies de plantas daninhas. Glyphosate aplicado isoladamente na dose de 720 g ha-1 foi eficaz no controle de Amaranthus hybridus (100%, Desmodium tortuosum (100%, Bidens pilosa (99%, Eleusine indica (96%, Digitaria horizontalis (100% e Commelina benghalensis (93% aos 21 DAA. Carfentrazone-ethyl aplicado isoladamente controlou eficazmente C. benghalensis. As misturas de glyphosate nas doses de 252 e 720 g ha-1 com carfentrazone-ethyl nas doses de 15 e 30 g ha¹ demonstraram efeito aditivo no controle de A. hybridus, D. tortuosum e Bidens pilosa, à exceção das misturas de glyphosate na dose de 252 g ha-1 com as doses de 15 e 30 g ha-1 de carfentrazone-ethyl, que proporcionam efeito sinergístico no controle de D. tortuosum. A adição das duas doses de carfentrazone-ethyl antagonizou o efeito de glyphosate na menor dose (252 g ha-1 no controle de E. indica, apresentando, no entanto, efeito aditivo com o glyphosate na maior dose (720 g ha-1. Já para D. horizontalis, as misturas de carfentrazone-ethyl com glyphosate na menor dose (252 g ha-1 apresentaram efeito sinergístico no controle dessa espécie, demonstrando, ainda, efeito aditivo na mistura com glyphosate na dose de 720 g ha-1. A mistura de carfentrazone-ethyl com glyphosate proporcionou efeito aditivo no controle de C. benghalensis, independentemente das combinações de doses avaliadas. Os resultados deste experimento indicam que carfentrazone-ethyl apresenta comportamento diferenciado quanto à interação com glyphosate, dependendo da espécie de planta daninha e da dose dos herbicidas utilizados na mistura em tanque, sendo complementar na mistura em tanque com glyphosate, pois demonstrou efeito antagônico em poucas das combinações estudadas, prevalecendo seu efeito aditivo na mistura com glyphosate, no

  7. Effects of pyruvate dose on in vivo metabolism and quantification of hyperpolarized 13C spectra

    DEFF Research Database (Denmark)

    Janich, M. A.; Menzel, M. I.; Wiesinger, F.

    2012-01-01

    Real‐time in vivo measurements of metabolites are performed by signal enhancement of [1‐13C]pyruvate using dynamic nuclear polarization, rapid dissolution and intravenous injection, acquisition of free induction decay signals and subsequent quantification of spectra. The commonly injected dose...... uptake and metabolic conversion. The goal of this study was to examine the effects of a [1‐13C]pyruvate bolus on metabolic conversion in vivo. Spectra were quantified by three different methods: frequency‐domain fitting with LCModel, time‐domain fitting with AMARES and simple linear least‐squares fitting...... in the time domain. Since the simple linear least‐squares approach showed bleeding artifacts and LCModel produced noisier time signals. AMARES performed best in the quantification of in vivo hyperpolarized pyruvate spectra. We examined pyruvate doses of 0.1–0.4 mmol/kg (body mass) in male Wistar rats...

  8. Molecular structure of the pyruvate dehydrogenase complex from Escherichia coli K-12.

    Science.gov (United States)

    Vogel, O; Hoehn, B; Henning, U

    1972-06-01

    The pyruvate dehydrogenase core complex from E. coli K-12, defined as the multienzyme complex that can be obtained with a unique polypeptide chain composition, has a molecular weight of 3.75 x 10(6). All results obtained agree with the following numerology. The core complex consists of 48 polypeptide chains. There are 16 chains (molecular weight = 100,000) of the pyruvate dehydrogenase component, 16 chains (molecular weight = 80,000) of the dihydrolipoamide dehydrogenase component, and 16 chains (molecular weight = 56,000) of the dihydrolipoamide dehydrogenase component. Usually, but not always, pyruvate dehydrogenase complex is produced in vivo containing at least 2-3 mol more of dimers of the pyruvate dehydrogenase component than the stoichiometric ratio with respect to the core complex. This "excess" component is bound differently than are the eight dimers in the core complex.

  9. Effect of hexoses on the levels of pyruvate decarboxylase in Mucor rouxii.

    OpenAIRE

    Barrera, C R; Corral, J

    1980-01-01

    Pyruvate decarboxylase activity in the dimorphic fungus Mucor rouxii increased 25- to 35-fold in yeastlike and mycelial cells grown in the presence of glucose as compared to the activity observed in mycelial cultures grown in the absence of glucose.

  10. Changes in myocardial lactate, pyruvate and lactate-pyruvate ratio during cardiopulmonary bypass for elective adult cardiac surgery: Early indicator of morbidity

    Directory of Open Access Journals (Sweden)

    P M Kapoor

    2011-01-01

    Full Text Available Background: Myocardial lactate assays have been established as a standard method to compare various myocardial protection strategies. This study was designed to test whether coronary sinus (CS lactates, pyruvate and lactate-pyruvate (LP ratio correlates with myocardial dysfunction and predict postoperative outcomes. Materials and Methods: This prospective observational study was conducted on 40 adult patients undergoing elective cardiac surgery with the aid of cardiopulmonary bypass (CPB. CS blood sampling was done for estimation of myocardial lactate (ML, pyruvate (MP and lactate-pyruvate ratio (MLPR namely: pre-CPB (T 1 , after removal of aortic cross clamp (T 2 and 30 minutes post-CPB (T 3 . Results: Baseline myocardial LPR strongly correlated with Troponin-I at T1 (s: 0.6. Patients were sub grouped according to the median value of myocardial lactate (2.9 at baseline T1 into low myocardial lactate (LML group, mean (2.39±0.4 mmol/l, n=19 and a high myocardial lactate (HML group, mean (3.65±0.9 mmol/l, n=21. A significant increase in PL, ML, MLPR and TropI occurred in both groups as compared to baseline. Patients in HML group had significant longer period of ICU stay. Patients with higher inotrope score had significantly higher ML (T2, T3. ML with a baseline value of 2.9 mmol/l had 70.83% sensitivity and 62.5% specificity (ROC area: 0.7109 Std error: 0.09 while myocardial pyruvate with a baseline value of 0.07 mmol/l has 79.17% sensitivity and 68.75% specificity (ROC area: 0.7852, Std error: 0.0765 for predicting inotrope requirement after CPB. Conclusion: CS lactate, pyruvate and LP ratio correlate with myocardial function and can predict postoperative outcome.

  11. [Intravenous ethyl alcohol in metabolic resuscitation].

    Science.gov (United States)

    Agolini, G; Lipartiti, T; Zaffiri, O; Musso, L; Belloni, G P

    1980-11-01

    Intravenously administered ethyl alcohol may be effective as analgesic and hypotensive peripheric vasoactive drug. In the Intensive Care Departments parenteral ethanol administration is infrequent because no "sure dosage" can be suggested in adults and children. Liver, kidney and C.N.S. diseases can worsen; foetopathy can follow. Drug-ethanol interaction may be particularly important for some patients admitted in Intensive Care Departments. Often the potential caloric support cannot be fully utilized ("empty" calories) and seldom hyperventilation, hyperlactacidemia and impaired protein synthesis can follow.

  12. in Binary Liquid Mixtures of Ethyl benzoate

    Directory of Open Access Journals (Sweden)

    Shaik Babu

    2012-01-01

    Full Text Available Ultrasonic velocity is measured at 2MHz frequency in the binary mixtures of Ethyl Benzoate with 1-Propanol, 1-Butanol, 1-Pentanol and theoretical values of ultrasonic velocity have been evaluated at 303K using Nomoto's relation, Impedance relation, Ideal mixture relation, Junjie's method and free length theory. Theoretical values are compared with the experimental values and the validity of the theories is checked by applying the chi-square test for goodness of fit and by calculating the average percentage error (APE. A good agreement has been found between experimental and Nomoto’s ultrasonic velocity.

  13. Biotransformation and Production from Hansenula Anomala to Natural Ethyl Phenylacetate

    Directory of Open Access Journals (Sweden)

    Tian Xun

    2015-01-01

    Full Text Available Ethyl phenylacetate can be widely applied in many industries, such as food, medicines, cosmetics and medicinal herbs. At the moment, the production of natural ethyl phenylacetate is very limited. However, the biotransformation production of natural ethyl phenylacetate has an very extensive application prospect. This paper is written by taking the phenylacetic acid tolerance and the esterifying enzyme activity as the two indexes for screening the HA14 strain of hansenula anomala mutagenic which is regarded as the microorganism of ethyl phenylacetate production through biotransformation. By optimizing the production condition of phenylacetic acid and the esterification condition of ethyl phenylacetate, the production of ethyl phenylacetate accomplished through biotransformation within 72 hours can reach 864mg/L which is 171% of that of the initial bacterial strain.

  14. Cancer metabolism meets systems biology: Pyruvate kinase isoform PKM2 is a metabolic master regulator

    OpenAIRE

    Fabian V Filipp

    2013-01-01

    Pyruvate kinase activity is controlled by a tightly woven regulatory network. The oncofetal isoform of pyruvate kinase (PKM2) is a master regulator of cancer metabolism. PKM2 engages in parallel, feed-forward, positive and negative feedback control contributing to cancer progression. Besides its metabolic role, non-metabolic functions of PKM2 as protein kinase and transcriptional coactivator for c-MYC and hypoxia-inducible factor 1-alpha are essential for epidermal growth factor receptor acti...

  15. Glycerol transesterification with ethyl acetate to synthesize acetins using ethyl acetate as reactant and entrainer

    Directory of Open Access Journals (Sweden)

    Amin Shafiei

    2017-03-01

    Full Text Available Transesterification of glycerol with ethyl acetate was performed over acidic catalysts in the batch and semi-batch systems. Ethyl acetate was used as reactant and entrainer to remove the produced ethanol during the reaction, through azeotrope formation. Since the azeotrope of ethyl acetate and ethanol forms at 70 oC, all the experiments were performed at this temperature. Para-toluene sulfonic acid, sulfuric acid, and Amberlyst 36 were used as catalyst. The effect of process parameters including ethyl acetate to glycerol molar ratio (6-12, reaction time (3-9 h, and the catalyst to glycerol weight (2.5-9.0%, on the conversion and products selectivities were investigated. Under reflux conditions, 100% glycerol conversion was obtained with 45%, 44%, and 11% selectivity to monoacetin, diacetin, and triacetin, respectively. Azeotropic reactive distillation led to 100% conversion of glycerol with selectivities of 3%, 48% and 49% for monoacetin, diacetin, and triacetin. During the azeotropic reactive distillation, it was possible to remove ethanol to shift the equilibrium towards diacetin and triacetin. Therefore, the total selectivity to diacetin and triacetin was increased from 55% to 97% through azeotropic distillation.

  16. Protective effect of indole-3-pyruvate against ultraviolet b-induced damage to cultured HaCaT keratinocytes and the skin of hairless mice.

    Directory of Open Access Journals (Sweden)

    Reiji Aoki

    Full Text Available Previous investigations demonstrated that pyruvate protects human keratinocytes against cell damage stemming from exposure to ultraviolet B (UVB radiation. This study endeavoured to elucidate the protective capacity of aromatic pyruvates (e.g., phenylpyruvate (PPyr, 4-hydroxyphenylpyruvate (HPPyr, and indole-3-pyruvate (IPyr against UVB-induced injury to skin cells, both in vitro and in vivo. Cultured human HaCaT keratinocytes were irradiated with UVB light (60 mJ/cm2 and maintained with or without test compounds (1-25 mM.In addition, the dorsal skin of hairless mice (HR-1 was treated with test compounds (10 μmol and exposed to UVB light (1 J/cm2 twice [corrected]. The ability of the test compounds to ameliorate UVB-induced cytotoxicity and inflammation was then assessed. Aromatic pyruvates reduced cytotoxicity in UVB-irradiated HaCaT keratinocytes, and also diminished the expression of interleukin 1β (IL-1β and interleukin 6 (IL-6. IPyr was more efficacious than either PPyr or HPPyr. Furthermore, only IPyr inhibited cyclooxygenase-2 (Cox-2 expression at both the mRNA and the protein level in UVB-treated keratinocytes. Topical application of IPyr to the dorsal skin of hairless mice reduced the severity of UVB-induced skin lesions, the augmentation of dermal thickness, and transepithelial water loss. Overproduction of IL-1β and IL-6 in response to UVB radiation was also suppressed in vivo by the topical administration of IPyr. These data strongly suggest that IPyr might find utility as a UVB-blocking reagent in therapeutic strategies to lessen UVB-induced inflammatory skin damage.

  17. 21 CFR 172.872 - Methyl ethyl cellulose.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Methyl ethyl cellulose. 172.872 Section 172.872... CONSUMPTION Multipurpose Additives § 172.872 Methyl ethyl cellulose. The food additive methyl ethyl cellulose... a cellulose ether having the general formula [C6H(10 -x-y)O5(CH3)x(C2H5)y]n, where x is the number...

  18. Pyruvate Decarboxylase Activity Assay in situ of Different Industrial Yeast Strains

    Directory of Open Access Journals (Sweden)

    Dorota Kręgiel

    2009-01-01

    Full Text Available Cytoplasmic pyruvate decarboxylase (PDC, EC 4.1.1.1 is one of the key enzymes of yeast fermentative metabolism. PDC is the first enzyme which, under anaerobic conditions, leads to decarboxylation of pyruvate with acetaldehyde as the end product. The aim of this study is to develop a suitable method for PDC activity assay in situ for different industrial yeast strains. Saccharomyces sp. and Debaryomyces sp. yeast strains grew in fermentative medium with 12 % of glucose. Enzymatic assay was conducted in cell suspension treated with digitonin as permeabilisation agent, and with sodium pyruvate as a substrate, at temperature of 30 °C. Metabolites of PDC pathway were detected using gas chromatographic (GC technique. Various parameters like type and molar concentration of the substrate, minimal effective mass fraction of digitonin, cell concentration, reaction time and effect of pyrazole (alcohol dehydrogenase inhibitor were monitored to optimize PDC enzymatic assay in situ. In the concentration range of yeast cells from 1⋅10^7 to 1⋅10^8 per mL, linear correlation between the produced acetaldehyde and cell density was noticed. Only pyruvate was the specific substrate for pyruvate decarboxylase. In the presence of 0.05 M sodium pyruvate and 0.05 % digitonin, the enzymatic reaction was linear up to 20 min of the assay. During incubation, there was no formation of ethanol and, therefore, pyrazole was not necessary for the assay.

  19. Pyruvate dehydrogenase kinase inhibition: Reversing the Warburg effect in cancer therapy

    Directory of Open Access Journals (Sweden)

    Hayden Bell

    2016-06-01

    Full Text Available The poor efficacy of many cancer chemotherapeutics, which are often non-selective and highly toxic, is attributable to the remarkable heterogeneity and adaptability of cancer cells. The Warburg effect describes the up regulation of glycolysis as the main source of adenosine 5’-triphosphate in cancer cells, even under normoxic conditions, and is a unique metabolic phenotype of cancer cells. Mitochondrial suppression is also observed which may be implicated in apoptotic suppression and increased funneling of respiratory substrates to anabolic processes, conferring a survival advantage. The mitochondrial pyruvate dehydrogenase complex is subject to meticulous regulation, chiefly by pyruvate dehydrogenase kinase. At the interface between glycolysis and the tricarboxylic acid cycle, the pyruvate dehydrogenase complex functions as a metabolic gatekeeper in determining the fate of glucose, making pyruvate dehydrogenase kinase an attractive candidate in a bid to reverse the Warburg effect in cancer cells. The small pyruvate dehydrogenase kinase inhibitor dichloroacetate has, historically, been used in conditions associated with lactic acidosis but has since gained substantial interest as a potential cancer chemotherapeutic. This review considers the Warburg effect as a unique phenotype of cancer cells in-line with the history of and current approaches to cancer therapies based on pyruvate dehydrogenase kinase inhibition with particular reference to dichloroacetate and its derivatives.

  20. Decarboxylation of oxalacetate to pyruvate by purified avian liver phosphoenolpyruvate carboxykinase

    Energy Technology Data Exchange (ETDEWEB)

    Noce, P S; Utter, M F

    1975-01-01

    Phosphoenolpyruvate carboxykinase, which has been isolated from chicken liver mitochondria in essentially homogenous form, carries out the irreversible decarboxylation of oxalacetate to pyruvate in the presence of catalytic amounts of GDP or IDP, as well as the reversible decarboxylation of oxalacetate to phosphoenolpyruvate in the presence of substrate amounts of GTP or ITP. The pyruvate- and phosphoenolpyruvate-forming reactions are similar in their nucleoside specificity and appear to be carried out by the same protein. However, the two activities vary markedly in their response to added metal ions and sulfhydryl reagents. Phosphoenolpyruvate formation is completely dependent on the presence of a divalent metal ion, with Mn/sup 2 +/ the most effective species. This reaction is also stimulated by sulfhydryl reagents such as 2-mercaptoethanol. In contrast, the pyruvate-forming reaction is strongly inhibited by divalent metal ions, including Mn/sup 2 +/, and also by moderate concentrations of sulfhydryl reagents. These observations and the demonstration that pyruvate kinase-like activity is very low or absent make it unlikely that pyruvate formation proceeds via phosphoenolpyruvate as an intermediate. Although the pyruvate-forming reaction is inhibited by added metal ions, the reaction is also inhibited by metal-chelating agents such as 8-hydroxyquinoline and o-phenanthroline, suggesting that the reaction is dependent on the presence of a metal ion. It has not been possible, however, to demonstrate that the enzyme is a metalloprotein.

  1. Effect of Pyruvate Decarboxylase Knockout on Product Distribution Using Pichia pastoris (Komagataella phaffii) Engineered for Lactic Acid Production.

    Science.gov (United States)

    Melo, Nadiele T M; Mulder, Kelly C L; Nicola, André Moraes; Carvalho, Lucas S; Menino, Gisele S; Mulinari, Eduardo; Parachin, Nádia S

    2018-02-16

    Lactic acid is the monomer unit of the bioplastic poly-lactic acid (PLA). One candidate organism for lactic acid production is Pichia pastoris , a yeast widely used for heterologous protein production. Nevertheless, this yeast has a poor fermentative capability that can be modulated by controlling oxygen levels. In a previous study, lactate dehydrogenase (LDH) activity was introduced into P. pastoris, enabling this yeast to produce lactic acid. The present study aimed to increase the flow of pyruvate towards the production of lactic acid in P. pastoris . To this end, a strain designated GLp was constructed by inserting the bovine lactic acid dehydrogenase gene (LDHb) concomitantly with the interruption of the gene encoding pyruvate decarboxylase (PDC). Aerobic fermentation, followed by micro-aerophilic culture two-phase fermentations, showed that the GLp strain achieved a lactic acid yield of 0.65 g/g. The distribution of fermentation products demonstrated that the acetate titer was reduced by 20% in the GLp strain with a concomitant increase in arabitol production: arabitol increased from 0.025 g/g to 0.174 g/g when compared to the GS115 strain. Taken together, the results show a significant potential for P. pastoris in producing lactic acid. Moreover, for the first time, physiological data regarding co-product formation have indicated the redox balance limitations of this yeast.

  2. miR-378 Activates the Pyruvate-PEP Futile Cycle and Enhances Lipolysis to Ameliorate Obesity in Mice

    Directory of Open Access Journals (Sweden)

    Yong Zhang

    2016-03-01

    Full Text Available Obesity has been linked to many health problems, such as diabetes. However, there is no drug that effectively treats obesity. Here, we reveal that miR-378 transgenic mice display reduced fat mass, enhanced lipolysis, and increased energy expenditure. Notably, administering AgomiR-378 prevents and ameliorates obesity in mice. We also found that the energy deficiency seen in miR-378 transgenic mice was due to impaired glucose metabolism. This impairment was caused by an activated pyruvate-PEP futile cycle via the miR-378-Akt1-FoxO1-PEPCK pathway in skeletal muscle and enhanced lipolysis in adipose tissues mediated by miR-378-SCD1. Our findings demonstrate that activating the pyruvate-PEP futile cycle in skeletal muscle is the primary cause of elevated lipolysis in adipose tissues of miR-378 transgenic mice, and it helps orchestrate the crosstalk between muscle and fat to control energy homeostasis in mice. Thus, miR-378 may serve as a promising agent for preventing and treating obesity in humans.

  3. Going the distance with ethyl alcohol

    International Nuclear Information System (INIS)

    Hairston, D.W.

    1995-01-01

    If all had gone according to plan, ethyl alcohol would be in the driver's seat now, cruising down the highway and getting ready to speed into high gear. Instead, this renewable fuel, chemical reagent and solvent is navigating a complex obstacle course, watching warily for sharp turns and mixed signals. Globally, the supply and demand for all grades of ethyl alcohol is awry. Production of industrial-grade material is running at full throttle and prices are going up. Much of the upheaval over ethanol can be traced to the US Environmental Protection Agency and the renewable oxygenate standard (ROS) of the Clean Air Act. Under ROS, 15% of oxygenates used in gasoline sold this year was to be derived from a renewable source. Next month, that percentage was to have been doubled to 30%. Enticed by projections of upwards of 2 billion gal/yr of fermentation alcohol to comply with ROS, producers rushed to expand capacity. But to the producers' dismay, EPA was forced to backpedal on ROS. When representatives of the petroleum industry filed suit and won a stay, EPA rescinded its ROS regulation and ethanol producers were left in the lurch. High prices for corn is also putting the squeeze on inventories of industrial alcohol. Synthetic ethanol production, from ethylene for example, is booming, however. This paper discusses the ethanol market factors

  4. The combustion kinetics of the lignocellulosic biofuel, ethyl levulinate

    KAUST Repository

    Ghosh, Manik Kumer; Howard, Mí cheá l Sé amus; Zhang, Yingjia; Djebbi, Khalil; Capriolo, Gianluca; Farooq, Aamir; Curran, Henry J.; Dooley, Stephen

    2018-01-01

    Ethyl levulinate (Ethyl 4-oxopentanoate) is a liquid molecule at ambient temperature, comprising of ketone and ethyl ester functionalities and is one of the prominent liquid fuel candidates that may be easily obtained from lignocellulosic biomass. The combustion kinetics of ethyl levulinate have been investigated. Shock tube and rapid compression machine apparatuses are utilised to acquire gas phase ignition delay measurements of 0.5% ethyl levulinate/O2 mixtures at ϕ = 1.0 and ϕ = 0.5 at ∼ 10 atm over the temperature range 1000–1400 K. Ethyl levulinate is observed not to ignite at temperatures lower than ∼1040 K in the rapid compression machine. The shock tube and rapid compression machine data are closely consistent and show ethyl levulinate ignition delay to exhibit an Arrhenius dependence to temperature. These measurements are explained by the construction and analysis of a detailed chemical kinetic model. The kinetic model is completed by establishing thermochemical-kinetic analogies to 2-butanone, for the ethyl levulinate ketone functionality, and to ethyl propanoate for the ethyl ester functionality. The so constructed model is observed to describe the shock tube data very accurately, but computes the rapid compression machine data set to a lesser but still applicable fidelity. Analysis of the model suggests the autooxidation mechanism of ethyl levulinate to be entirely dominated by the propensity for the ethyl ester functionality to unimolecularly decompose to form levulinic acid and ethylene. The subsequent reaction kinetics of these species is shown to dictate the overall rate of the global combustion reaction. This model is then use to estimate the Research and Motored Octane Numbers of ethyl levulinate to be ≥97.7 and ≥ 93, respectively. With this analysis ethyl levulinate would be best suited as a gasoline fuel component, rather than as a diesel fuel as suggested in the literature. Indeed it may be considered to be useful as an

  5. The combustion kinetics of the lignocellulosic biofuel, ethyl levulinate

    KAUST Repository

    Ghosh, Manik Kumer

    2018-04-04

    Ethyl levulinate (Ethyl 4-oxopentanoate) is a liquid molecule at ambient temperature, comprising of ketone and ethyl ester functionalities and is one of the prominent liquid fuel candidates that may be easily obtained from lignocellulosic biomass. The combustion kinetics of ethyl levulinate have been investigated. Shock tube and rapid compression machine apparatuses are utilised to acquire gas phase ignition delay measurements of 0.5% ethyl levulinate/O2 mixtures at ϕ = 1.0 and ϕ = 0.5 at ∼ 10 atm over the temperature range 1000–1400 K. Ethyl levulinate is observed not to ignite at temperatures lower than ∼1040 K in the rapid compression machine. The shock tube and rapid compression machine data are closely consistent and show ethyl levulinate ignition delay to exhibit an Arrhenius dependence to temperature. These measurements are explained by the construction and analysis of a detailed chemical kinetic model. The kinetic model is completed by establishing thermochemical-kinetic analogies to 2-butanone, for the ethyl levulinate ketone functionality, and to ethyl propanoate for the ethyl ester functionality. The so constructed model is observed to describe the shock tube data very accurately, but computes the rapid compression machine data set to a lesser but still applicable fidelity. Analysis of the model suggests the autooxidation mechanism of ethyl levulinate to be entirely dominated by the propensity for the ethyl ester functionality to unimolecularly decompose to form levulinic acid and ethylene. The subsequent reaction kinetics of these species is shown to dictate the overall rate of the global combustion reaction. This model is then use to estimate the Research and Motored Octane Numbers of ethyl levulinate to be ≥97.7 and ≥ 93, respectively. With this analysis ethyl levulinate would be best suited as a gasoline fuel component, rather than as a diesel fuel as suggested in the literature. Indeed it may be considered to be useful as an

  6. miR-122 targets pyruvate kinase M2 and affects metabolism of hepatocellular carcinoma.

    Directory of Open Access Journals (Sweden)

    Angela M Liu

    Full Text Available In contrast to normal differentiated cells that depend on mitochondrial oxidative phosphorylation for energy production, cancer cells have evolved to utilize aerobic glycolysis (Warburg's effect, with benefit of providing intermediates for biomass production. MicroRNA-122 (miR-122 is highly expressed in normal liver tissue regulating a wide variety of biological processes including cellular metabolism, but is reduced in hepatocellular carcinoma (HCC. Overexpression of miR-122 was shown to inhibit cancer cell proliferation, metastasis, and increase chemosensitivity, but its functions in cancer metabolism remains unknown. The present study aims to identify the miR-122 targeted genes and to investigate the associated regulatory mechanisms in HCC metabolism. We found the ectopic overexpression of miR-122 affected metabolic activities of HCC cells, evidenced by the reduced lactate production and increased oxygen consumption. Integrated gene expression analysis in a cohort of 94 HCC tissues revealed miR-122 level tightly associated with a battery of glycolytic genes, in which pyruvate kinase (PK gene showed the strongest anti-correlation coefficient (Pearson r = -0.6938, p = <0.0001. In addition, reduced PK level was significantly associated with poor clinical outcomes of HCC patients. We found isoform M2 (PKM2 is the dominant form highly expressed in HCC and is a direct target of miR-122, as overexpression of miR-122 reduced both the mRNA and protein levels of PKM2, whereas PKM2 re-expression abrogated the miR-122-mediated glycolytic activities. The present study demonstrated the regulatory role of miR-122 on PKM2 in HCC, having an implication of therapeutic intervention targeting cancer metabolic pathways.

  7. Mitochondrial pyruvate carrier function determines cell stemness and metabolic reprogramming in cancer cells

    Science.gov (United States)

    Li, Xiaoran; Kan, Quancheng; Fan, Zhirui; Li, Yaqing; Ji, Yasai; Zhao, Jing; Zhang, Mingzhi; Grigalavicius, Mantas; Berge, Viktor; Goscinski, Mariusz Adam; M. Nesland, Jahn; Suo, Zhenhe

    2017-01-01

    One of the remarkable features of cancer cells is aerobic glycolysis, a phenomenon known as the “Warburg Effect”, in which cells rely preferentially on glycolysis instead of oxidative phosphorylation (OXPHOS) as the main energy source even in the presence of high oxygen tension. Cells with dysfunctional mitochondria are unable to generate sufficient ATP from mitochondrial OXPHOS, and then are forced to rely on glycolysis for ATP generation. Here we report our results in a prostate cancer cell line in which the mitochondrial pyruvate carrier 1 (MPC1) gene was knockout. It was discovered that the MPC1 gene knockout cells revealed a metabolism reprogramming to aerobic glycolysis with reduced ATP production, and the cells became more migratory and resistant to both chemotherapy and radiotherapy. In addition, the MPC1 knockout cells expressed significantly higher levels of the stemness markers Nanog, Hif1α, Notch1, CD44 and ALDH. To further verify the correlation of MPC gene function and cell stemness/metabolic reprogramming, MPC inhibitor UK5099 was applied in two ovarian cancer cell lines and similar results were obtained. Taken together, our results reveal that functional MPC may determine the fate of metabolic program and the stemness status of cancer cells in vitro. PMID:28624784

  8. Assessing the transport rate of hyperpolarized pyruvate and lactate from the intra- to the extracellular space.

    Science.gov (United States)

    Reineri, Francesca; Daniele, Valeria; Cavallari, Eleonora; Aime, Silvio

    2016-08-01

    The use of [1-(13) C]pyruvate hyperpolarized by means of dynamic nuclear polarization provides a direct way to track the metabolic transformations of this metabolite in vivo and in cell cultures. The identification of the intra- and extracellular contributions to the (13) C NMR resonances is not straightforward. In order to obtain information about the rate of pyruvate and lactate transport through the cellular membrane, we set up a method that relies on the sudden 'quenching' of the extracellular metabolites' signal. The paramagnetic Gd-tetraazacyclododecane triacetic acid (Gd-DO3A) complex was used to dramatically decrease the longitudinal relaxation time constants of the (13) C-carboxylate resonances of both pyruvate and lactate. When Gd-DO3A was added to an MCF-7 cellular culture, which had previously received a dose of hyperpolarized [1-(13) C]pyruvate, the contributions of the extracellular pyruvate and lactate signals were deleted. From the analysis of the decay curves of the (13) C-carboxylate resonances of pyruvate and lactate it was possible to extract information about the exchange rate of the two metabolites across the cellular membrane. In particular, it was found that, in the reported experimental conditions, the lactate transport from the intra- to the extracellular space is not much lower than the rate of lactate formation. The method reported herein is non-destructive and it could be translated to in vivo studies. It opens a route for the use of hyperpolarized pyruvate to assess altered activity of carboxylate transporter proteins that may occur in pathological conditions. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  9. 2,6-Bis(9-ethyl-9H-carbazolylmethylenecyclohexanone

    Directory of Open Access Journals (Sweden)

    Abdullah M. Asiri

    2009-10-01

    Full Text Available The title compound, 2,6-bis(ethyl-9-ethyl-9H-carbazolylmethylenecyclohexanone has been synthesized by condensation of 9-ethylcarbazole-3-aldehyde and cyclohexanone in ethanol in the presence of pyridine. The structure of this new compound was confirmed by elemental analysis, IR, 1H NMR, 13C NMR and EI-MS spectral analysis.

  10. Cyclohexenones Through Addition of Ethyl Acetoacetate to 3-Aryl-1 ...

    African Journals Online (AJOL)

    Chalcone derivatives 3a–i containing a thiophene ring were prepared by the condensation of 1-(thiophen-3-yl)ethanone with aromatic aldehydes in excellent yields. The Michael addition of ethyl acetoacetate 4 to chalcone derivatives 3a–i resulted in the formation of nine novel ethyl 6-aryl ...

  11. SYNTHESIS OF FATTY ACID ETHYL ESTER FROM CHICKEN FAT ...

    African Journals Online (AJOL)

    eobe

    synthesis of fatty acid ethyl ester from chicken fat waste using ZnO/SiO fatty acid ethyl ester ... obtained in the range of 56−88%and a second order quadratic polynomial regression model that established the ... Transesterification is a chemical.

  12. [Diagnostic value of detection of blood levels of lactate, pyruvate and 2,3-diphosphoglycerate in children with diabetes mellitus].

    Science.gov (United States)

    Marchenko, L F; Baturin, A A; Terent'eva, E A

    1991-01-01

    Measurements were made of lactate, pyruvate and 2,3-diphosphoglycerate in 69 children admitted to the hospital in a state of diabetic ketoacidosis of different intensity. Depending on the intensity of metabolic abnormalities, the content of lactate and pyruvate was found to be increased, whereas that of 2,3-diphosphoglycerate to be lowered. Measurements of the content of lactate and the lactate/pyruvate ratio enables carrying out differential diagnosis between the ketoacidotic and lactacidotic varieties of diabetic coma.

  13. Acetic acid removal from corn stover hydrolysate using ethyl acetate and the impact on Saccharomyces cerevisiae bioethanol fermentation.

    Science.gov (United States)

    Aghazadeh, Mahdieh; Ladisch, Michael R; Engelberth, Abigail S

    2016-07-08

    Acetic acid is introduced into cellulose conversion processes as a consequence of composition of lignocellulose feedstocks, causing significant inhibition of adapted, genetically modified and wild-type S. cerevisiae in bioethanol fermentation. While adaptation or modification of yeast may reduce inhibition, the most effective approach is to remove the acetic acid prior to fermentation. This work addresses liquid-liquid extraction of acetic acid from biomass hydrolysate through a pathway that mitigates acetic acid inhibition while avoiding the negative effects of the extractant, which itself may exhibit inhibition. Candidate solvents were selected using simulation results from Aspen Plus™, based on their ability to extract acetic acid which was confirmed by experimentation. All solvents showed varying degrees of toxicity toward yeast, but the relative volatility of ethyl acetate enabled its use as simple vacuum evaporation could reduce small concentrations of aqueous ethyl acetate to minimally inhibitory levels. The toxicity threshold of ethyl acetate, in the presence of acetic acid, was found to be 10 g L(-1) . The fermentation was enhanced by extracting 90% of the acetic acid using ethyl acetate, followed by vacuum evaporation to remove 88% removal of residual ethyl acetate along with 10% of the broth. NRRL Y-1546 yeast was used to demonstrate a 13% increase in concentration, 14% in ethanol specific production rate, and 11% ethanol yield. This study demonstrated that extraction of acetic acid with ethyl acetate followed by evaporative removal of ethyl acetate from the raffinate phase has potential to significantly enhance ethanol fermentation in a corn stover bioethanol facility. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:929-937, 2016. © 2016 American Institute of Chemical Engineers.

  14. Photoisomerization of ethyl ferulate: A solution phase transient absorption study

    Science.gov (United States)

    Horbury, Michael D.; Baker, Lewis A.; Rodrigues, Natércia D. N.; Quan, Wen-Dong; Stavros, Vasilios G.

    2017-04-01

    Ethyl ferulate (ethyl 4-hydroxy-3-methoxycinnamate) is currently used as a sunscreening agent in commercial sunscreen blends. Recent time-resolved gas-phase measurements have demonstrated that it possesses long-lived (>ns) electronic excited states, counterintuitive to what one might anticipate for an effective sunscreening agent. In the present work, the photodynamics of ethyl ferulate in cyclohexane, are explored using time-resolved transient electronic absorption spectroscopy, upon photoexcitation to the 11ππ∗ and 21ππ∗ states. We demonstrate that ethyl ferulate undergoes efficient non-radiative decay to repopulate the electronic ground state, mediated by trans-cis isomerization. These results strongly suggest that even mild perturbations induced by a non-polar solvent, as may be found in a closer-to-market sunscreen blend, may contribute to our understanding of ethyl ferulate's role as a sunscreening agent.

  15. Chronic pyruvate supplementation increases exploratory activity and brain energy reserves in young and middle-aged mice

    DEFF Research Database (Denmark)

    Koivisto, Hennariikka; Leinonen, Henri; Puurula, Mari

    2016-01-01

    to brain and thereby attenuate aging- or AD-related cognitive impairment. Mice received ~800 mg/kg/day Na-pyruvate in their chow for 2-6 months. In middle-aged wild-type mice and in 6.5-month-old APP/PS1 mice, pyruvate facilitated spatial learning and increased exploration of a novel odor. However......, in passive avoidance task for fear memory, the treatment group was clearly impaired. Independent of age, long-term pyruvate increased explorative behavior, which likely explains the paradoxical impairment in passive avoidance. We also assessed pyruvate effects on body weight, muscle force, and endurance...

  16. Phosphorylation status of pyruvate dehydrogenase distinguishes metabolic phenotypes of cultured rat brain astrocytes and neurons.

    Science.gov (United States)

    Halim, Nader D; Mcfate, Thomas; Mohyeldin, Ahmed; Okagaki, Peter; Korotchkina, Lioubov G; Patel, Mulchand S; Jeoung, Nam Ho; Harris, Robert A; Schell, Michael J; Verma, Ajay

    2010-08-01

    Glucose metabolism in nervous tissue has been proposed to occur in a compartmentalized manner with astrocytes contributing largely to glycolysis and neurons being the primary site of glucose oxidation. However, mammalian astrocytes and neurons both contain mitochondria, and it remains unclear why in culture neurons oxidize glucose, lactate, and pyruvate to a much larger extent than astrocytes. The objective of this study was to determine whether pyruvate metabolism is differentially regulated in cultured neurons versus astrocytes. Expression of all components of the pyruvate dehydrogenase complex (PDC), the rate-limiting step for pyruvate entry into the Krebs cycle, was determined in cultured astrocytes and neurons. In addition, regulation of PDC enzymatic activity in the two cell types via protein phosphorylation was examined. We show that all components of the PDC are expressed in both cell types in culture, but that PDC activity is kept strongly inhibited in astrocytes through phosphorylation of the pyruvate dehydrogenase alpha subunit (PDH alpha). In contrast, neuronal PDC operates close to maximal levels with much lower levels of phosphorylated PDH alpha. Dephosphorylation of astrocytic PDH alpha restores PDC activity and lowers lactate production. Our findings suggest that the glucose metabolism of astrocytes and neurons may be far more flexible than previously believed. (c) 2010 Wiley-Liss, Inc.

  17. An ancestral role for the mitochondrial pyruvate carrier in glucose-stimulated insulin secretion

    Directory of Open Access Journals (Sweden)

    Kyle S. McCommis

    2016-08-01

    Full Text Available Objective: Transport of pyruvate into the mitochondrial matrix by the Mitochondrial Pyruvate Carrier (MPC is an important and rate-limiting step in its metabolism. In pancreatic β-cells, mitochondrial pyruvate metabolism is thought to be important for glucose sensing and glucose-stimulated insulin secretion. Methods: To evaluate the role that the MPC plays in maintaining systemic glucose homeostasis, we used genetically-engineered Drosophila and mice with loss of MPC activity in insulin-producing cells. Results: In both species, MPC deficiency results in elevated blood sugar concentrations and glucose intolerance accompanied by impaired glucose-stimulated insulin secretion. In mouse islets, β-cell MPC-deficiency resulted in decreased respiration with glucose, ATP-sensitive potassium (KATP channel hyperactivity, and impaired insulin release. Moreover, treatment of pancreas-specific MPC knockout mice with glibenclamide, a sulfonylurea KATP channel inhibitor, improved defects in islet insulin secretion and abnormalities in glucose homeostasis in vivo. Finally, using a recently-developed biosensor for MPC activity, we show that the MPC is rapidly stimulated by glucose treatment in INS-1 insulinoma cells suggesting that glucose sensing is coupled to mitochondrial pyruvate carrier activity. Conclusions: Altogether, these studies suggest that the MPC plays an important and ancestral role in insulin-secreting cells in mediating glucose sensing, regulating insulin secretion, and controlling systemic glycemia. Keywords: Stimulus-coupled secretion, Insulin, β-Cell, Diabetes, Pyruvate, Mitochondria, Drosophila

  18. The mitochondrial pyruvate carrier mediates high fat diet-induced increases in hepatic TCA cycle capacity.

    Science.gov (United States)

    Rauckhorst, Adam J; Gray, Lawrence R; Sheldon, Ryan D; Fu, Xiaorong; Pewa, Alvin D; Feddersen, Charlotte R; Dupuy, Adam J; Gibson-Corley, Katherine N; Cox, James E; Burgess, Shawn C; Taylor, Eric B

    2017-11-01

    Excessive hepatic gluconeogenesis is a defining feature of type 2 diabetes (T2D). Most gluconeogenic flux is routed through mitochondria. The mitochondrial pyruvate carrier (MPC) transports pyruvate from the cytosol into the mitochondrial matrix, thereby gating pyruvate-driven gluconeogenesis. Disruption of the hepatocyte MPC attenuates hyperglycemia in mice during high fat diet (HFD)-induced obesity but exerts minimal effects on glycemia in normal chow diet (NCD)-fed conditions. The goal of this investigation was to test whether hepatocyte MPC disruption provides sustained protection from hyperglycemia during long-term HFD and the differential effects of hepatocyte MPC disruption on TCA cycle metabolism in NCD versus HFD conditions. We utilized long-term high fat feeding, serial measurements of postabsorptive blood glucose and metabolomic profiling and 13 C-lactate/ 13 C-pyruvate tracing to investigate the contribution of the MPC to hyperglycemia and altered hepatic TCA cycle metabolism during HFD-induced obesity. Hepatocyte MPC disruption resulted in long-term attenuation of hyperglycemia induced by HFD. HFD increased hepatic mitochondrial pyruvate utilization and TCA cycle capacity in an MPC-dependent manner. Furthermore, MPC disruption decreased progression of fibrosis and levels of transcript markers of inflammation. By contributing to chronic hyperglycemia, fibrosis, and TCA cycle expansion, the hepatocyte MPC is a key mediator of the pathophysiology induced in the HFD model of T2D. Copyright © 2017 The Authors. Published by Elsevier GmbH.. All rights reserved.

  19. An internal deletion in MTH1 enables growth on glucose of pyruvate-decarboxylase negative, non-fermentative Saccharomyces cerevisiae.

    Science.gov (United States)

    Oud, Bart; Flores, Carmen-Lisset; Gancedo, Carlos; Zhang, Xiuying; Trueheart, Joshua; Daran, Jean-Marc; Pronk, Jack T; van Maris, Antonius J A

    2012-09-15

    Pyruvate-decarboxylase negative (Pdc⁻) strains of Saccharomyces cerevisiae combine the robustness and high glycolytic capacity of this yeast with the absence of alcoholic fermentation. This makes Pdc⁻S. cerevisiae an interesting platform for efficient conversion of glucose towards pyruvate-derived products without formation of ethanol as a by-product. However, Pdc⁻ strains cannot grow on high glucose concentrations and require C₂-compounds (ethanol or acetate) for growth under conditions with low glucose concentrations, which hitherto has limited application in industry. Genetic analysis of a Pdc⁻ strain previously evolved to overcome these deficiencies revealed a 225 p in-frame internal deletion in MTH1, encoding a transcriptional regulator involved in glucose sensing. This internal deletion contains a phosphorylation site required for degradation, thereby hypothetically resulting in increased stability of the protein. Reverse engineering of this alternative MTH1 allele into a non-evolved Pdc⁻ strain enabled growth on 20 g l⁻¹ glucose and 0.3% (v/v) ethanol at a maximum specific growth rate (0.24 h⁻¹) similar to that of the evolved Pdc⁻ strain (0.23 h⁻¹). Furthermore, the reverse engineered Pdc⁻ strain grew on glucose as sole carbon source, albeit at a lower specific growth rate (0.10 h⁻¹) than the evolved strain (0.20 h⁻¹). The observation that overexpression of the wild-type MTH1 allele also restored growth of Pdc⁻S. cerevisiae on glucose is consistent with the hypothesis that the internal deletion results in decreased degradation of Mth1. Reduced degradation of Mth1 has been shown to result in deregulation of hexose transport. In Pdc⁻ strains, reduced glucose uptake may prevent intracellular accumulation of pyruvate and/or redox problems, while release of glucose repression due to the MTH1 internal deletion may contribute to alleviation of the C₂-compound auxotrophy. In this study we have discovered and characterised a

  20. An internal deletion in MTH1 enables growth on glucose of pyruvate-decarboxylase negative, non-fermentative Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Oud Bart

    2012-09-01

    Full Text Available Abstract Background Pyruvate-decarboxylase negative (Pdc- strains of Saccharomyces cerevisiae combine the robustness and high glycolytic capacity of this yeast with the absence of alcoholic fermentation. This makes Pdc-S. cerevisiae an interesting platform for efficient conversion of glucose towards pyruvate-derived products without formation of ethanol as a by-product. However, Pdc- strains cannot grow on high glucose concentrations and require C2-compounds (ethanol or acetate for growth under conditions with low glucose concentrations, which hitherto has limited application in industry. Results Genetic analysis of a Pdc- strain previously evolved to overcome these deficiencies revealed a 225bp in-frame internal deletion in MTH1, encoding a transcriptional regulator involved in glucose sensing. This internal deletion contains a phosphorylation site required for degradation, thereby hypothetically resulting in increased stability of the protein. Reverse engineering of this alternative MTH1 allele into a non-evolved Pdc- strain enabled growth on 20 g l-1 glucose and 0.3% (v/v ethanol at a maximum specific growth rate (0.24 h-1 similar to that of the evolved Pdc- strain (0.23 h-1. Furthermore, the reverse engineered Pdc- strain grew on glucose as sole carbon source, albeit at a lower specific growth rate (0.10 h-1 than the evolved strain (0.20 h-1. The observation that overexpression of the wild-type MTH1 allele also restored growth of Pdc-S. cerevisiae on glucose is consistent with the hypothesis that the internal deletion results in decreased degradation of Mth1. Reduced degradation of Mth1 has been shown to result in deregulation of hexose transport. In Pdc- strains, reduced glucose uptake may prevent intracellular accumulation of pyruvate and/or redox problems, while release of glucose repression due to the MTH1 internal deletion may contribute to alleviation of the C2-compound auxotrophy. Conclusions In this study we have discovered and

  1. Evaluation of hyperpolarized [1-¹³C]-pyruvate by magnetic resonance to detect ionizing radiation effects in real time.

    Science.gov (United States)

    Sandulache, Vlad C; Chen, Yunyun; Lee, Jaehyuk; Rubinstein, Ashley; Ramirez, Marc S; Skinner, Heath D; Walker, Christopher M; Williams, Michelle D; Tailor, Ramesh; Court, Laurence E; Bankson, James A; Lai, Stephen Y

    2014-01-01

    Ionizing radiation (IR) cytotoxicity is primarily mediated through reactive oxygen species (ROS). Since tumor cells neutralize ROS by utilizing reducing equivalents, we hypothesized that measurements of reducing potential using real-time hyperpolarized (HP) magnetic resonance spectroscopy (MRS) and spectroscopic imaging (MRSI) can serve as a surrogate marker of IR induced ROS. This hypothesis was tested in a pre-clinical model of anaplastic thyroid carcinoma (ATC), an aggressive head and neck malignancy. Human ATC cell lines were utilized to test IR effects on ROS and reducing potential in vitro and [1-¹³C] pyruvate HP-MRS/MRSI imaging of ATC orthotopic xenografts was used to study in vivo effects of IR. IR increased ATC intra-cellular ROS levels resulting in a corresponding decrease in reducing equivalent levels. Exogenous manipulation of cellular ROS and reducing equivalent levels altered ATC radiosensitivity in a predictable manner. Irradiation of ATC xenografts resulted in an acute drop in reducing potential measured using HP-MRS, reflecting the shunting of reducing equivalents towards ROS neutralization. Residual tumor tissue post irradiation demonstrated heterogeneous viability. We have adapted HP-MRS/MRSI to non-invasively measure IR mediated changes in tumor reducing potential in real time. Continued development of this technology could facilitate the development of an adaptive clinical algorithm based on real-time adjustments in IR dose and dose mapping.

  2. Evaluation of hyperpolarized [1-¹³C]-pyruvate by magnetic resonance to detect ionizing radiation effects in real time.

    Directory of Open Access Journals (Sweden)

    Vlad C Sandulache

    Full Text Available Ionizing radiation (IR cytotoxicity is primarily mediated through reactive oxygen species (ROS. Since tumor cells neutralize ROS by utilizing reducing equivalents, we hypothesized that measurements of reducing potential using real-time hyperpolarized (HP magnetic resonance spectroscopy (MRS and spectroscopic imaging (MRSI can serve as a surrogate marker of IR induced ROS. This hypothesis was tested in a pre-clinical model of anaplastic thyroid carcinoma (ATC, an aggressive head and neck malignancy. Human ATC cell lines were utilized to test IR effects on ROS and reducing potential in vitro and [1-¹³C] pyruvate HP-MRS/MRSI imaging of ATC orthotopic xenografts was used to study in vivo effects of IR. IR increased ATC intra-cellular ROS levels resulting in a corresponding decrease in reducing equivalent levels. Exogenous manipulation of cellular ROS and reducing equivalent levels altered ATC radiosensitivity in a predictable manner. Irradiation of ATC xenografts resulted in an acute drop in reducing potential measured using HP-MRS, reflecting the shunting of reducing equivalents towards ROS neutralization. Residual tumor tissue post irradiation demonstrated heterogeneous viability. We have adapted HP-MRS/MRSI to non-invasively measure IR mediated changes in tumor reducing potential in real time. Continued development of this technology could facilitate the development of an adaptive clinical algorithm based on real-time adjustments in IR dose and dose mapping.

  3. Biotin deficiency in the rat as a model for reduced pyruvate carboxylase activity

    NARCIS (Netherlands)

    Schrijver, Jacobus

    1978-01-01

    The investigations described in this thesis are a contribution to the study of Leigh's disease (Subacute Necrotizing Encephalomyelopathy, SNE). SNE resembles in neuropathology Wernicke's encephalopathy, which is caused by thiamine deficiency. The scope and the purpose of the present study is given

  4. A new synthesis of [3-11C]pyruvic acid using alanine racemase

    International Nuclear Information System (INIS)

    Ikemoto, M.; Okamoto, E.; Sasaki, M.; Haradahira, T.; Omura, H.; Furuya, Y.; Suzuki, K.; Watanabe, Y.

    1998-01-01

    The synthesis of [3- 11 C]pyruvic acid was attempted by two reaction systems (A: alanine racemase and D-amino acid oxidase, B: alanine racemase and L-alanine dehydrogenase) utilizing a new thermostable enzyme, alanine racemase. Conversion rates from D,L-[3- 11 C]alanine to [3- 11 C]pyruvic acid were almost 100% in both methods. Similar results were obtained with immobilized enzymes packed in a single column. Furthermore, the same column could be used repeatedly without a remarkable decrease of the [3- 11 C]pyruvic acid yield. Various matrices were tested for the immobilizing enzyme, and Aminopropyl-CPG was concluded to be the most suitable since the loss of the enzyme activity was the least in the studied matrices

  5. Inactivation of pyruvate dehydrogenase kinase 2 by mitochondrial reactive oxygen species.

    Science.gov (United States)

    Hurd, Thomas R; Collins, Yvonne; Abakumova, Irina; Chouchani, Edward T; Baranowski, Bartlomiej; Fearnley, Ian M; Prime, Tracy A; Murphy, Michael P; James, Andrew M

    2012-10-12

    Reactive oxygen species are byproducts of mitochondrial respiration and thus potential regulators of mitochondrial function. Pyruvate dehydrogenase kinase 2 (PDHK2) inhibits the pyruvate dehydrogenase complex, thereby regulating entry of carbohydrates into the tricarboxylic acid (TCA) cycle. Here we show that PDHK2 activity is inhibited by low levels of hydrogen peroxide (H(2)O(2)) generated by the respiratory chain. This occurs via reversible oxidation of cysteine residues 45 and 392 on PDHK2 and results in increased pyruvate dehydrogenase complex activity. H(2)O(2) derives from superoxide (O(2)(.)), and we show that conditions that inhibit PDHK2 also inactivate the TCA cycle enzyme, aconitase. These findings suggest that under conditions of high mitochondrial O(2)(.) production, such as may occur under nutrient excess and low ATP demand, the increase in O(2)() and H(2)O(2) may provide feedback signals to modulate mitochondrial metabolism.

  6. Protective Effect of Ethyl Acetate Fraction of Stereospermum Suaveolens Against Hepatic Oxidative Stress in STZ Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Thirumalaiswamy Balasubramanian

    2013-07-01

    Full Text Available Stereospermum suaveolens is a folk remedy for the treatment of diabetes and liver disorders in southern parts of India. In the present study, the protective effect of the ethyl acetate fraction of ethanol extract from S. suaveolens against hepatic oxidative stress was evaluated in streptozotocin (STZ-induced diabetic rats for 14 days. The ethyl acetate fraction was administered orally to the STZ diabetic rats at the doses of 200 and 400 mg/kg. Blood glucose level was measured according to glucose oxidase method. In order to determine hepatoprotective activity, changes in the levels of serum biomarker enzymes such as aspartate transaminase (AST, alanine transaminase (ALT, and serum alkaline phosphatase (SALP were assessed in the ethyl acetate fraction treated diabetic rats and were compared with the levels in diabetic control rats. In addition, the antioxidant activity of ethyl acetate fraction was evaluated using various hepatic parameters such as thiobarbituric acid reactive substances (TBARS, reduced glutathione (GSH, superoxide dismutase (SOD, and catalase (CAT. It was found that administration of ethyl acetate fraction (200 and 400 mg/kg produced a significant (P<0.001 fall in fasting blood glucose level, TBARS, bilirubin, AST, ALT, and SALP, while elevating the GSH levels, and SOD and CAT activities in diabetic rats. Histopathologic studies also revealed the protective effect of ethyl acetate fraction on the liver tissues of diabetic rats. It was concluded from this study that the ethyl acetate fraction from ethanol extract of S. suaveolens modulates the activity of enzymatic and nonenzymatic antioxidants and enhances the defense against hepatic oxidative stress in STZ-induced diabetic rats.

  7. Metabolic Imaging of Patients with Prostate Cancer Using Hyperpolarized [1-13C]Pyruvate

    Science.gov (United States)

    Nelson, Sarah J.; Kurhanewicz, John; Vigneron, Daniel B.; Larson, Peder E. Z.; Harzstark, Andrea L.; Ferrone, Marcus; van Criekinge, Mark; Chang, Jose W.; Bok, Robert; Park, Ilwoo; Reed, Galen; Carvajal, Lucas; Small, Eric J.; Munster, Pamela; Weinberg, Vivian K.; Ardenkjaer-Larsen, Jan Henrik; Chen, Albert P.; Hurd, Ralph E.; Odegardstuen, Liv-Ingrid; Robb, Fraser J.; Tropp, James; Murray, Jonathan A.

    2014-01-01

    This first-in-man imaging study evaluated the safety and feasibility of hyperpolarized [1-13C]pyruvate as an agent for noninvasively characterizing alterations in tumor metabolism for patients with prostate cancer. Imaging living systems with hyperpolarized agents can result in more than 10,000-fold enhancement in signal relative to conventional magnetic resonance (MR) imaging. When combined with the rapid acquisition of in vivo 13C MR data, it is possible to evaluate the distribution of agents such as [1-13C]pyruvate and its metabolic products lactate, alanine, and bicarbonate in a matter of seconds. Preclinical studies in cancer models have detected elevated levels of hyperpolarized [1-13C]lactate in tumor, with the ratio of [1-13C]lactate/[1-13C]pyruvate being increased in high-grade tumors and decreased after successful treatment. Translation of this technology into humans was achieved by modifying the instrument that generates the hyperpolarized agent, constructing specialized radio frequency coils to detect 13C nuclei, and developing new pulse sequences to efficiently capture the signal. The study population comprised patients with biopsy-proven prostate cancer, with 31 subjects being injected with hyperpolarized [1-13C]pyruvate. The median time to deliver the agent was 66 s, and uptake was observed about 20 s after injection. No dose-limiting toxicities were observed, and the highest dose (0.43 ml/kg of 230 mM agent) gave the best signal-to-noise ratio for hyperpolarized [1-13C]pyruvate. The results were extremely promising in not only confirming the safety of the agent but also showing elevated [1-13C]lactate/[1-13C]pyruvate in regions of biopsy-proven cancer. These findings will be valuable for noninvasive cancer diagnosis and treatment monitoring in future clinical trials. PMID:23946197

  8. Efeitos do trinexapac-ethyl sobre o crescimento e florescimento da grama-batatais Effects of trinexapac-ethyl on the growth and flowering of the bahiagrass

    Directory of Open Access Journals (Sweden)

    F.C.L. Freitas

    2002-12-01

    Full Text Available O objetivo deste trabalho foi avaliar a eficiência de doses do trinexapac-ethyl, bem como dos intervalos de aplicação após o corte no crescimento vegetativo e florescimento da grama-batatais (Paspalum notatum, na redução de cortes e na melhoria da qualidade do gramado. O ensaio foi conduzido no campus da Universidade Federal de Viçosa, em Viçosa-MG, entre os meses de dezembro de 1998 e março de 1999, em gramado estabelecido. O delineamento experimental foi o de blocos ao acaso, com 13 tratamentos e quatro repetições, distribuídos em esquema fatorial (6 x 2 + 1, com seis doses de trinexapac-ethyl (0,00; 0,25; 0,50; 0,75; 1,00; e 1,25 kg ha-1, aplicadas aos dois e cinco dias após o corte do gramado, e uma testemunha com cortes a cada três semanas. Foram efetuadas avaliações a três, seis, nove e doze semanas após o corte, para produção de biomassa seca total, altura e número de inflorescências. Verificou-se, para todas as características avaliadas, relação direta entre o aumento da dose do regulador de crescimento trinexapac-ethyl e o período de controle do crescimento vegetativo e do florescimento, evitando-se, com isso, cortes no gramado pelo período de até 12 semanas com a aplicação de 0,75 kg ha-1. Não se constatou efeito da época de aplicação e também de doses do trinexapac-ethyl sobre a coloração do gramado.The objective of this work was to evaluate the efficiency of doses and application intervals of trinexapac-ethyl on the vegetative growth and flowering of bahiagrass, to reduce clips and improve lawn quality. The experiment was conducted on the campus of the Federal University of Viçosa, in Viçosa-MG - Brazil, from December 1998 to March 1999, in an established lawn. The experiment was arranged in a randomized complete block design, with 13 treatments and four repetitions, distributed in a factorial scheme (6 x 2 + 1, with six doses of trinexapac-ethyl (0.00; 0.25; 0.50; 0.75; 1.00 and 1.25 kg ha-1

  9. Improved purification, crystallization and primary structure of pyruvate:ferredoxin oxidoreductase from Halobacterium halobium.

    Science.gov (United States)

    Plaga, W; Lottspeich, F; Oesterhelt, D

    1992-04-01

    An improved purification procedure, including nickel chelate affinity chromatography, is reported which resulted in a crystallizable pyruvate:ferredoxin oxidoreductase preparation from Halobacterium halobium. Crystals of the enzyme were obtained using potassium citrate as the precipitant. The genes coding for pyruvate:ferredoxin oxidoreductase were cloned and their nucleotide sequences determined. The genes of both subunits were adjacent to one another on the halobacterial genome. The derived amino acid sequences were confirmed by partial primary structure analysis of the purified protein. The structural motif of thiamin-diphosphate-binding enzymes was unequivocally located in the deduced amino acid sequence of the small subunit.

  10. Pyruvate sensitizes pancreatic tumors to hypoxia-activated prodrug TH-302.

    Science.gov (United States)

    Wojtkowiak, Jonathan W; Cornnell, Heather C; Matsumoto, Shingo; Saito, Keita; Takakusagi, Yoichi; Dutta, Prasanta; Kim, Munju; Zhang, Xiaomeng; Leos, Rafael; Bailey, Kate M; Martinez, Gary; Lloyd, Mark C; Weber, Craig; Mitchell, James B; Lynch, Ronald M; Baker, Amanda F; Gatenby, Robert A; Rejniak, Katarzyna A; Hart, Charles; Krishna, Murali C; Gillies, Robert J

    2015-01-01

    Hypoxic niches in solid tumors harbor therapy-resistant cells. Hypoxia-activated prodrugs (HAPs) have been designed to overcome this resistance and, to date, have begun to show clinical efficacy. However, clinical HAPs activity could be improved. In this study, we sought to identify non-pharmacological methods to acutely exacerbate tumor hypoxia to increase TH-302 activity in pancreatic ductal adenocarcinoma (PDAC) tumor models. Three human PDAC cell lines with varying sensitivity to TH-302 (Hs766t > MiaPaCa-2 > SU.86.86) were used to establish PDAC xenograft models. PDAC cells were metabolically profiled in vitro and in vivo using the Seahorse XF system and hyperpolarized (13)C pyruvate MRI, respectively, in addition to quantitative immunohistochemistry. The effect of exogenous pyruvate on tumor oxygenation was determined using electroparamagnetic resonance (EPR) oxygen imaging. Hs766t and MiaPaCa-2 cells exhibited a glycolytic phenotype in comparison to TH-302 resistant line SU.86.86. Supporting this observation is a higher lactate/pyruvate ratio in Hs766t and MiaPaCa xenografts as observed during hyperpolarized pyruvate MRI studies in vivo. Coincidentally, response to exogenous pyruvate both in vitro (Seahorse oxygen consumption) and in vivo (EPR oxygen imaging) was greatest in Hs766t and MiaPaCa models, possibly due to a higher mitochondrial reserve capacity. Changes in oxygen consumption and in vivo hypoxic status to pyruvate were limited in the SU.86.86 model. Combination therapy of pyruvate plus TH-302 in vivo significantly decreased tumor growth and increased survival in the MiaPaCa model and improved survival in Hs766t tumors. Using metabolic profiling, functional imaging, and computational modeling, we show improved TH-302 activity by transiently increasing tumor hypoxia metabolically with exogenous pyruvate. Additionally, this work identified a set of biomarkers that may be used clinically to predict which tumors will be most responsive to

  11. Methyl and ethyl soybean esters production

    Energy Technology Data Exchange (ETDEWEB)

    Pighinelli, Anna Leticia Montenegro Turtelli; Park, Kil Jin; Zorzeto, Thais Queiroz [Universidade Estadual de Campinas (FEAGRI/UNICAMP), SP (Brazil). Fac. de Engenharia Agricola], E-mail: annalets@feagri.unicamp.br; Bevilaqua, Gabriela [Universidade Estadual de Campinas (IQ/UNICAMP), SP (Brazil). Inst. de Quimica

    2008-07-01

    Biodiesel is a fuel obtained from triglycerides found in nature, like vegetable oils and animal fats. Nowadays it has been the subject of many researches impulses by the creation of the Brazilian law that determined the blend of 2% of biodiesel with petrodiesel. Basically, there are no limitations on the oilseed type for chemical reaction, but due to high cost of this major feedstock, it is important to use the grain that is available in the region of production. Soybean is the oilseed mostly produced in Brazil and its oil is the only one that is available in enough quantity to supply the current biodiesel demand. The objective of this work was to study the effects of reaction time and temperature on soybean oil transesterification reaction with ethanol and methanol. A central composite experimental design with five variation levels was used and response surface methodology applied for the data analysis. The statistical analysis of the results showed that none of the factors affected the ethyl esters production. However, the methyl esters production suffered the influence of temperature (linear effect), reaction time (linear and quadratic) and interaction of these two variables. None of the generated models showed significant regression consequently it was not possible to build the response surface. The experiments demonstrated that methanol is the best alcohol for transesterification reactions and the ester yield was up to 85%. (author)

  12. The moonlighting function of pyruvate carboxylase resides in the non-catalytic end of the TIM barrel

    NARCIS (Netherlands)

    Huberts, Daphne H. E. W.; Venselaar, Hanka; Vriend, Gert; Veenhuis, Marten; van der Klei, Ida J.

    Pyruvate carboxylase is a highly conserved enzyme that functions in replenishing the tricarboxylic acid cycle with oxaloacetate. In the yeast Hansenula polymorpha, the pyruvate carboxylase protein is also required for import and assembly of the peroxisomal enzyme alcohol oxidase. This additional

  13. Chronic pyruvate supplementation increases exploratory activity and brain energy reserves in young and middle-aged mice

    Directory of Open Access Journals (Sweden)

    Hennariikka eKoivisto

    2016-03-01

    Full Text Available Numerous studies have reported neuroprotective effects of pyruvate when given in systemic injections. Impaired glucose uptake and metabolism are found in Alzheimer's disease (AD and in AD mouse models. We tested whether dietary pyruvate supplementation is able to provide added energy supply to brain and thereby attenuate aging- or AD-related cognitive impairment. Mice received ~ 800 mg/kg/day Na-pyruvate in their chow for 2- 6 months. In middle-aged wild-type mice and in 6.5-month-old APP/PS1 mice, pyruvate facilitated spatial learning and increased exploration of a novel odor. However, in passive avoidance task for fear memory, the treatment group was clearly impaired. Independent of age, long-term pyruvate increased explorative behavior, which likely explains the paradoxical impairment in passive avoidance. We also assessed pyruvate effects on body weight, muscle force and endurance, and found no effects. Metabolic post-mortem assays revealed increased energy compounds in nuclear magnetic resonance spectroscopy as well as increased brain glycogen storages in the pyruvate group. Pyruvate supplementation may counteract aging-related behavioral impairment but its beneficial effect seems related to increased explorative activity rather than direct memory enhancement.

  14. Antinociceptive activities of crude methanolic extract and phases, n-butanolic, chloroformic and ethyl acetate from Caulerpa racemosa (Caulerpaceae

    Directory of Open Access Journals (Sweden)

    Everton T. Souza

    Full Text Available In this study, we attempted to identify the possible antinociceptive actions of n-butanolic phase, chloroformic phase, ethyl acetate phase and crude methanolic extract obtained from Caulerpa racemosa. This seaweed is cosmopolitan in world, mainly in tropical regions. The n-butanolic, chloroformic, ethyl acetate phases and crude methanolic extract, all administered orally in the concentration of 100 mg/kg, reduced the nociception produced by acetic acid by 47.39%, 70.51%, 76.11% and 72.24%, respectively. In the hotplate test the chloroformic and ethyl acetate phase were activite in this models. In the neurogenic phase on formalin test, were observed that crude methanolic extract (51.77%, n-butanolic phase (35.12%, chloroformic phase (32.70% and indomethacin (32.06% were effective in inhibit the nociceptive response. In the inflammatory phase, only the ethyl acetate phase (75.43% and indomethacin (47.83% inhibited significantly the nociceptive response. Based on these data, we can infer that the ethyl acetate phase shows a significant anti-inflammatory profile, whose power has not yet been determined. However, pharmacological and chemical studies are continuing in order to characterize the mechanism(s responsible for the antinociceptive action and also to identify other active principles present in Caulerpa racemosa.

  15. The safe operation zone of the spark ignition engine working with dual renewable supplemented fuels (hydrogen+ethyl alcohol)

    Energy Technology Data Exchange (ETDEWEB)

    Al-Baghdadi, Maher Abdul-Resul Sadiq [Babylon Univ., Dept. of Mechanical Engineering, Babylon (Iraq)

    2001-04-01

    The effect of the amount of hydrogen/ethyl alcohol addition on the performance and pollutant emission of a four-stroke spark ignition engine has been studied. The results of the study show that all engine performance parameters have been improved when operating the gasoline spark ignition engine with dual addition of hydrogen and ethyl alcohol. The important improvements of alcohol addition are to reduce the NOx emission while increasing the higher useful compression ratio and output power of hydrogen-supplemented engine. An equation has been derived from experimental data to specify the least quantity of ethyl alcohol blended with gasoline and satisfying constant NOx emission when hydrogen is added. A chart limiting the safe operation zone of the engine fueled with dual renewable supplemented fuel, (hydrogen and ethyl alcohol) has been produced. The safe zone provides lower NOx and CO emission, lower s.f.c. and higher brake power compared to an equivalent gasoline engine. When ethyl alcohol is increased over 30%, it causes unstable engine operation which can be related to the fact that the fuel is not vaporized, and this causes a reduction in both brake power and efficiency. (Author)

  16. N-[2-(maleimido)ethyl]-3-(trimethylstannyl)benzamide, a molecule for radiohalogenation of proteins and peptides

    DEFF Research Database (Denmark)

    Aneheim, Emma; Foreman, Mark R StJ; Jensen, Holger

    2015-01-01

    In this work a new coupling reagent, N-[2-(maleimido)ethyl]-3-(trimethylstannyl)benzamide, for radiohalogenation has been synthesized and characterized. The reagent is intended to either be attached to reduced disulfide bridges of proteins (making the halogenation site-specific) or to free termin...

  17. Phosphate-Catalyzed Hydrogen Peroxide Formation from Agar, Gellan, and κ-Carrageenan and Recovery of Microbial Cultivability via Catalase and Pyruvate.

    Science.gov (United States)

    Kawasaki, Kosei; Kamagata, Yoichi

    2017-11-01

    Previously, we reported that when agar is autoclaved with phosphate buffer, hydrogen peroxide (H 2 O 2 ) is formed in the resulting medium (PT medium), and the colony count on the medium inoculated with environmental samples becomes much lower than that on a medium in which agar and phosphate are autoclaved separately (PS medium) (T. Tanaka et al., Appl Environ Microbiol 80:7659-7666, 2014, https://doi.org/10.1128/AEM.02741-14). However, the physicochemical mechanisms underlying this observation remain largely unknown. Here, we determined the factors affecting H 2 O 2 formation in agar. The H 2 O 2 formation was pH dependent: H 2 O 2 was formed at high concentrations in an alkaline or neutral phosphate buffer but not in an acidic buffer. Ammonium ions enhanced H 2 O 2 formation, implying the involvement of the Maillard reaction catalyzed by phosphate. We found that other gelling agents (e.g., gellan and κ-carrageenan) also produced H 2 O 2 after being autoclaved with phosphate. We then examined the cultivability of microorganisms from a fresh-water sample to test whether catalase and pyruvate, known as H 2 O 2 scavengers, are effective in yielding high colony counts. The colony count on PT medium was only 5.7% of that on PS medium. Catalase treatment effectively restored the colony count of PT medium (to 106% of that on PS medium). In contrast, pyruvate was not as effective as catalase: the colony count on sodium pyruvate-supplemented PT medium was 58% of that on PS medium. Given that both catalase and pyruvate can remove H 2 O 2 from PT medium, these observations indicate that although H 2 O 2 is the main cause of reduced colony count on PT medium, other unknown growth-inhibiting substances that cannot be removed by pyruvate (but can be by catalase) may also be involved. IMPORTANCE The majority of bacteria in natural environments are recalcitrant to laboratory culture techniques. Previously, we demonstrated that one reason for this is the formation of high H 2 O

  18. Effects of Ultrasound Irradiation on the Preparation of Ethyl Cellulose Nanocapsules Containing Spirooxazine Dye

    Directory of Open Access Journals (Sweden)

    Julija Volmajer Valh

    2017-01-01

    Full Text Available This article presents the influence of low frequency, high intensity ultrasonic irradiation on the characteristics (average size, polydispersity index of ethyl cellulose nanocapsules encapsulating a photochromic dye. Photochromic nanocapsules were prepared by the emulsion-solvent evaporation method. The acoustic densities entering the system were systematically studied with respect to their abilities to modify and reduce the average sizes and polydispersity indexes of the nanocapsules. Scanning electron microscope, confocal laser microscope, and dynamic light scattering were utilised to characterise the structure, shape, size, and polydispersity of ethyl cellulose photochromic nanocapsules. We were able to tailor the size of the photochromic nanocapsules simply by varying the acoustic densities entering the system. At an acoustic density of 1.5 W/mL and 60 s of continuous irradiation, we were able to prepare an almost monodispersed population of the nanocapsules with an average size of 193 nm.

  19. Influence of prohexadione-calcium, trinexapac-ethyl and ...

    African Journals Online (AJOL)

    ethyl (TNE) and hexaconazole (HX) on lodging and gibberellin (GA) biosynthesis pathway of rice cultivar, Hwayeongbyeo. It was observed that these novel synthetic growth retardants suppressed lodging of rice under field conditions through ...

  20. Novel recombinant ethyl ferulate esterase from Burkholderia multivorans

    CSIR Research Space (South Africa)

    Rashamuse, KJ

    2007-11-01

    Full Text Available Isolation and identification of bacterial isolates with specific ferulic acid (FA) esterase activity and cloning of a gene encoding activity. A micro-organism with ethyl ferulate hydrolysing (EFH) activity was isolated by culture enrichment...

  1. Starmerella bombicola influences the metabolism of Saccharomyces cerevisiae at pyruvate decarboxylase and alcohol dehydrogenase level during mixed wine fermentation

    Science.gov (United States)

    2012-01-01

    Background The use of a multistarter fermentation process with Saccharomyces cerevisiae and non-Saccharomyces wine yeasts has been proposed to simulate natural must fermentation and to confer greater complexity and specificity to wine. In this context, the combined use of S. cerevisiae and immobilized Starmerella bombicola cells (formerly Candida stellata) was assayed to enhance glycerol concentration, reduce ethanol content and to improve the analytical composition of wine. In order to investigate yeast metabolic interaction during controlled mixed fermentation and to evaluate the influence of S. bombicola on S. cerevisiae, the gene expression and enzymatic activity of two key enzymes of the alcoholic fermentation pathway such as pyruvate decarboxylase (Pdc1) and alcohol dehydrogenase (Adh1) were studied. Results The presence of S. bombicola immobilized cells in a mixed fermentation trial confirmed an increase in fermentation rate, a combined consumption of glucose and fructose, an increase in glycerol and a reduction in the production of ethanol as well as a modification in the fermentation of by products. The alcoholic fermentation of S. cerevisiae was also influenced by S. bombicola immobilized cells. Indeed, Pdc1 activity in mixed fermentation was lower than that exhibited in pure culture while Adh1 activity showed an opposite behavior. The expression of both PDC1 and ADH1 genes was highly induced at the initial phase of fermentation. The expression level of PDC1 at the end of fermentation was much higher in pure culture while ADH1 level was similar in both pure and mixed fermentations. Conclusion In mixed fermentation, S. bombicola immobilized cells greatly affected the fermentation behavior of S. cerevisiae and the analytical composition of wine. The influence of S. bombicola on S. cerevisiae was not limited to a simple additive contribution. Indeed, its presence caused metabolic modifications during S. cerevisiae fermentation causing variation in the gene

  2. Starmerella bombicola influences the metabolism of Saccharomyces cerevisiae at pyruvate decarboxylase and alcohol dehydrogenase level during mixed wine fermentation

    Directory of Open Access Journals (Sweden)

    Milanovic Vesna

    2012-02-01

    Full Text Available Abstract Background The use of a multistarter fermentation process with Saccharomyces cerevisiae and non-Saccharomyces wine yeasts has been proposed to simulate natural must fermentation and to confer greater complexity and specificity to wine. In this context, the combined use of S. cerevisiae and immobilized Starmerella bombicola cells (formerly Candida stellata was assayed to enhance glycerol concentration, reduce ethanol content and to improve the analytical composition of wine. In order to investigate yeast metabolic interaction during controlled mixed fermentation and to evaluate the influence of S. bombicola on S. cerevisiae, the gene expression and enzymatic activity of two key enzymes of the alcoholic fermentation pathway such as pyruvate decarboxylase (Pdc1 and alcohol dehydrogenase (Adh1 were studied. Results The presence of S. bombicola immobilized cells in a mixed fermentation trial confirmed an increase in fermentation rate, a combined consumption of glucose and fructose, an increase in glycerol and a reduction in the production of ethanol as well as a modification in the fermentation of by products. The alcoholic fermentation of S. cerevisiae was also influenced by S. bombicola immobilized cells. Indeed, Pdc1 activity in mixed fermentation was lower than that exhibited in pure culture while Adh1 activity showed an opposite behavior. The expression of both PDC1 and ADH1 genes was highly induced at the initial phase of fermentation. The expression level of PDC1 at the end of fermentation was much higher in pure culture while ADH1 level was similar in both pure and mixed fermentations. Conclusion In mixed fermentation, S. bombicola immobilized cells greatly affected the fermentation behavior of S. cerevisiae and the analytical composition of wine. The influence of S. bombicola on S. cerevisiae was not limited to a simple additive contribution. Indeed, its presence caused metabolic modifications during S. cerevisiae fermentation

  3. Substoichiometric determination of selenium with potassium ethyl xanthate

    International Nuclear Information System (INIS)

    Chandrasekhar Reddy, P.; Polaiah, B.; Rangamannar, B.

    1989-01-01

    A substoichiometric radiochemical method was developed for the determination of selenium with potassium ethyl xanthate. The selenium ethyl xanthate complex formed was extracted into chloroform from borate buffer at pH 5. The effect of foreign ions on the extraction was studied. Microgram quantities of selenium could be conveniently determined with a fair degree of accuracy. The method was successfully applied for the determination of selenium content in food stuffs such as 'Jaggery' and 'Wheat powder'. (author) 4 refs.; 3 figs

  4. Ethylic or methylic route to soybean biodiesel? Tracking environmental answers through life cycle assessment

    International Nuclear Information System (INIS)

    Alejos Altamirano, Carlos Alberto; Yokoyama, Lídia; Medeiros, José Luiz de; Queiroz Fernandes Araújo, Ofélia de

    2016-01-01

    Highlights: • Life cycle of biodiesel using alternative transesterification routes is analyzed. • Bioethanol can potentially decrease CO_2 emissions of methanol biodiesel. • Contrarily, equivalent CO_2 emissions are retained and renewability is reduced. • Water footprint increases from 37.12 (methanol) to 44.88 m"3/GJ biodiesel (ethanol). • Energy efficiency is reduced from 79.37% (methanol) to 75.19 (ethanol %). - Abstract: Biodiesel is a renewable fuel produced by transesterification of triacylglicerides (TAG) contained in vegetable oils and animal fats, to yield alkyl esters (biodiesel) and glycerin. Methanol is the main transesterification agent employed resulting in FAME (fatty acid methyl esters), which is primarily obtained from natural gas reforming (fossil source). Substitution of methanol by ethanol produces FAEE (fatty acid ethyl esters) and has the potential to render biodiesel a fully renewable fuel. Although renewability is a significant driving force for the proposed alcohol replacement, environmental performance of the alternative transesterification is questioned. The answer is herein sought through a comparative Life Cycle Assessment (LCA) of the two production chains. The study tracks CO_2 emissions, energy efficiency, water and resources consumption, and environmental impacts (Acidification Potential – AP, Global Warming Potential – GWP, Eutrophication Potential – EP, and Human Toxicity Potential – TP). The boundaries of the biodiesel production chains extend from the extraction of raw-materials to its final use as transportation fuel in buses, applied to the Brazilian scenario. Results show that substitution of the methylic route with the ethylic route does not attribute significant environmental benefits. Furthermore, the ethylic route presents competitive advantages only in the category of GWP, and exhibits inferior performance in the remaining evaluated impact categories. Finally, a greater consumption of water and energy

  5. Icosapent ethyl: a review of its use in severe hypertriglyceridemia.

    Science.gov (United States)

    Kim, Esther S; McCormack, Paul L

    2014-12-01

    Icosapent ethyl (Vascepa®) is a high-purity ethyl ester of eicosapentaenoic acid (EPA) that is de-esterified to EPA following oral administration. Both EPA and docosahexaenoic acid (DHA) are long-chain omega-3 fatty acids that have been associated with triglyceride (TG)-lowering. However, DHA has been associated with increased low-density lipoprotein cholesterol (LDL-C) levels. Icosapent ethyl contains ≥96 % of the EPA ethyl ester, does not contain DHA, and is approved in the USA for use as an adjunct to diet to lower TG levels in adult patients with severe (≥500 mg/dL [≥5.65 mmol/L]) hypertriglyceridemia. In a pivotal phase III trial, oral icosapent ethyl 4 g/day significantly decreased the placebo-corrected median TG levels by 33.1 %. It did not increase LDL-C, had favorable effects on other lipid parameters, and had a tolerability profile similar to that of placebo. Therefore, icosapent ethyl is an effective and well-tolerated agent for the treatment of severe hypertriglyceridemia in adults.

  6. Multi site Kinetic Modeling of 13C Metabolic MR Using [1-13C]Pyruvate

    International Nuclear Information System (INIS)

    Damian, P.A.G.; Sperl, J.I.; Janich, M.A.; Wiesinger, F.; Schulte, R.F.; Menzel, M.I.; Damian, P.A.G.; Damian, P.A.G.; Haase, A.; Janich, M.A.; Schwaiger, M.; Janich, M.A.; Khegai, O.; Glaser, S.J.

    2014-01-01

    Hyperpolarized 13 C imaging allows real-time in vivo measurements of metabolite levels. Quantification of metabolite conversion between [1- 13 C]pyruvate and downstream metabolites [1- 13 C]alanine, [1- 13 C]lactate, and [ 13 C] bicarbonate can be achieved through kinetic modeling. Since pyruvate interacts dynamically and simultaneously with its downstream metabolites, the purpose of this work is the determination of parameter values through a multi site, dynamic model involving possible biochemical pathways present in MR spectroscopy. Kinetic modeling parameters were determined by fitting the multi site model to time-domain dynamic metabolite data. The results for different pyruvate doses were compared with those of different two-site models to evaluate the hypothesis that for identical data the uncertainty of a model and the signal-to-noise ratio determine the sensitivity in detecting small physiological differences in the target metabolism. In comparison to the two-site exchange models, the multi site model yielded metabolic conversion rates with smaller bias and smaller standard deviation, as demonstrated in simulations with different signal-to-noise ratio. Pyruvate dose effects observed previously were confirmed and quantified through metabolic conversion rate values. Parameter interdependency allowed an accurate quantification and can therefore be useful for monitoring metabolic activity in different tissues

  7. Dissociative electron attachment and anion-induced dimerization in pyruvic acid

    Czech Academy of Sciences Publication Activity Database

    Zawadzki, Mateusz; Ranković, Miloš; Kočišek, Jaroslav; Fedor, Juraj

    2018-01-01

    Roč. 20, č. 10 (2018), s. 6838-6844 ISSN 1463-9076 R&D Projects: GA ČR GA17-04844S; GA ČR GJ16-10995Y Institutional support: RVO:61388955 Keywords : pyruvic acid * electron attachment * dimerization Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry Impact factor: 4.123, year: 2016

  8. Mitochondrial metabolism of pyruvate is essential for regulating glucose-stimulated insulin secretion.

    Science.gov (United States)

    Patterson, Jessica N; Cousteils, Katelyn; Lou, Jennifer W; Manning Fox, Jocelyn E; MacDonald, Patrick E; Joseph, Jamie W

    2014-05-09

    It is well known that mitochondrial metabolism of pyruvate is critical for insulin secretion; however, we know little about how pyruvate is transported into mitochondria in β-cells. Part of the reason for this lack of knowledge is that the carrier gene was only discovered in 2012. In the current study, we assess the role of the recently identified carrier in the regulation of insulin secretion. Our studies show that β-cells express both mitochondrial pyruvate carriers (Mpc1 and Mpc2). Using both pharmacological inhibitors and siRNA-mediated knockdown of the MPCs we show that this carrier plays a key role in regulating insulin secretion in clonal 832/13 β-cells as well as rat and human islets. We also show that the MPC is an essential regulator of both the ATP-regulated potassium (KATP) channel-dependent and -independent pathways of insulin secretion. Inhibition of the MPC blocks the glucose-stimulated increase in two key signaling molecules involved in regulating insulin secretion, the ATP/ADP ratio and NADPH/NADP(+) ratio. The MPC also plays a role in in vivo glucose homeostasis as inhibition of MPC by the pharmacological inhibitor α-cyano-β-(1-phenylindol-3-yl)-acrylate (UK5099) resulted in impaired glucose tolerance. These studies clearly show that the newly identified mitochondrial pyruvate carrier sits at an important branching point in nutrient metabolism and that it is an essential regulator of insulin secretion.

  9. Magnetic resonance and fluorescence studies on pyruvate dehydrogenase complexes and their small molecular weight constituents

    NARCIS (Netherlands)

    Grande, H.J.

    1976-01-01

    The articles presented in this thesis do not describe at first glance one well-defined subject. They are, however, in fact connected by one central theme: the study of large enzyme aggregates by molecular physical methods. Chosen was the pyruvate dehydrogenase complex (PDC) because of its

  10. Pyruvate Oxidase Influences the Sugar Utilization Pattern and Capsule Production in Streptococcus pneumoniae

    NARCIS (Netherlands)

    Carvalho, Sandra M.; Farshchi Andisi, Vahid; Gradstedt, Henrik; Neef, Jolanda; Kuipers, Oscar P.; Neves, Ana R.; Bijlsma, Jetta J. E.

    2013-01-01

    Pyruvate oxidase is a key function in the metabolism and lifestyle of many lactic acid bacteria and its activity depends on the presence of environmental oxygen. In Streptococcus pneumoniae the protein has been suggested to play a major role in metabolism and has been implicated in virulence,

  11. Multisite Kinetic Modeling of 13C Metabolic MR Using [1-13C]Pyruvate

    Directory of Open Access Journals (Sweden)

    Pedro A. Gómez Damián

    2014-01-01

    Full Text Available Hyperpolarized 13C imaging allows real-time in vivo measurements of metabolite levels. Quantification of metabolite conversion between [1-13C]pyruvate and downstream metabolites [1-13C]alanine, [1-13C]lactate, and [13C]bicarbonate can be achieved through kinetic modeling. Since pyruvate interacts dynamically and simultaneously with its downstream metabolites, the purpose of this work is the determination of parameter values through a multisite, dynamic model involving possible biochemical pathways present in MR spectroscopy. Kinetic modeling parameters were determined by fitting the multisite model to time-domain dynamic metabolite data. The results for different pyruvate doses were compared with those of different two-site models to evaluate the hypothesis that for identical data the uncertainty of a model and the signal-to-noise ratio determine the sensitivity in detecting small physiological differences in the target metabolism. In comparison to the two-site exchange models, the multisite model yielded metabolic conversion rates with smaller bias and smaller standard deviation, as demonstrated in simulations with different signal-to-noise ratio. Pyruvate dose effects observed previously were confirmed and quantified through metabolic conversion rate values. Parameter interdependency allowed an accurate quantification and can therefore be useful for monitoring metabolic activity in different tissues.

  12. NH4+ triggers the release of astrocytic lactate via mitochondrial pyruvate shunting

    Science.gov (United States)

    Lerchundi, Rodrigo; Fernández-Moncada, Ignacio; Contreras-Baeza, Yasna; Sotelo-Hitschfeld, Tamara; Mächler, Philipp; Wyss, Matthias T.; Stobart, Jillian; Baeza-Lehnert, Felipe; Alegría, Karin; Weber, Bruno; Barros, L. Felipe

    2015-01-01

    Neural activity is accompanied by a transient mismatch between local glucose and oxygen metabolism, a phenomenon of physiological and pathophysiological importance termed aerobic glycolysis. Previous studies have proposed glutamate and K+ as the neuronal signals that trigger aerobic glycolysis in astrocytes. Here we used a panel of genetically encoded FRET sensors in vitro and in vivo to investigate the participation of NH4+, a by-product of catabolism that is also released by active neurons. Astrocytes in mixed cortical cultures responded to physiological levels of NH4+ with an acute rise in cytosolic lactate followed by lactate release into the extracellular space, as detected by a lactate-sniffer. An acute increase in astrocytic lactate was also observed in acute hippocampal slices exposed to NH4+ and in the somatosensory cortex of anesthetized mice in response to i.v. NH4+. Unexpectedly, NH4+ had no effect on astrocytic glucose consumption. Parallel measurements showed simultaneous cytosolic pyruvate accumulation and NADH depletion, suggesting the involvement of mitochondria. An inhibitor-stop technique confirmed a strong inhibition of mitochondrial pyruvate uptake that can be explained by mitochondrial matrix acidification. These results show that physiological NH4+ diverts the flux of pyruvate from mitochondria to lactate production and release. Considering that NH4+ is produced stoichiometrically with glutamate during excitatory neurotransmission, we propose that NH4+ behaves as an intercellular signal and that pyruvate shunting contributes to aerobic lactate production by astrocytes. PMID:26286989

  13. NH4(+) triggers the release of astrocytic lactate via mitochondrial pyruvate shunting.

    Science.gov (United States)

    Lerchundi, Rodrigo; Fernández-Moncada, Ignacio; Contreras-Baeza, Yasna; Sotelo-Hitschfeld, Tamara; Mächler, Philipp; Wyss, Matthias T; Stobart, Jillian; Baeza-Lehnert, Felipe; Alegría, Karin; Weber, Bruno; Barros, L Felipe

    2015-09-01

    Neural activity is accompanied by a transient mismatch between local glucose and oxygen metabolism, a phenomenon of physiological and pathophysiological importance termed aerobic glycolysis. Previous studies have proposed glutamate and K(+) as the neuronal signals that trigger aerobic glycolysis in astrocytes. Here we used a panel of genetically encoded FRET sensors in vitro and in vivo to investigate the participation of NH4(+), a by-product of catabolism that is also released by active neurons. Astrocytes in mixed cortical cultures responded to physiological levels of NH4(+) with an acute rise in cytosolic lactate followed by lactate release into the extracellular space, as detected by a lactate-sniffer. An acute increase in astrocytic lactate was also observed in acute hippocampal slices exposed to NH4(+) and in the somatosensory cortex of anesthetized mice in response to i.v. NH4(+). Unexpectedly, NH4(+) had no effect on astrocytic glucose consumption. Parallel measurements showed simultaneous cytosolic pyruvate accumulation and NADH depletion, suggesting the involvement of mitochondria. An inhibitor-stop technique confirmed a strong inhibition of mitochondrial pyruvate uptake that can be explained by mitochondrial matrix acidification. These results show that physiological NH4(+) diverts the flux of pyruvate from mitochondria to lactate production and release. Considering that NH4(+) is produced stoichiometrically with glutamate during excitatory neurotransmission, we propose that NH4(+) behaves as an intercellular signal and that pyruvate shunting contributes to aerobic lactate production by astrocytes.

  14. Metabolic imaging of patients with prostate cancer using hyperpolarized [1-¹³C]pyruvate

    DEFF Research Database (Denmark)

    Nelson, Sarah J; Kurhanewicz, John; Vigneron, Daniel B

    2013-01-01

    This first-in-man imaging study evaluated the safety and feasibility of hyperpolarized [1-¹³C]pyruvate as an agent for noninvasively characterizing alterations in tumor metabolism for patients with prostate cancer. Imaging living systems with hyperpolarized agents can result in more than 10,000-f...

  15. Pyruvate Kinase Triggers a Metabolic Feedback Loop that Controls Redox Metabolism in Respiring Cells

    NARCIS (Netherlands)

    Grüning, N.M.; Rinnerthaler, M.; Bluemlein, K.; Mulleder, M.; Wamelink, M.M.C.; Lehrach, H.; Jakobs, C.A.J.M.; Breitenbach, M.; Ralser, M.

    2011-01-01

    In proliferating cells, a transition from aerobic to anaerobic metabolism is known as the Warburg effect, whose reversal inhibits cancer cell proliferation. Studying its regulator pyruvate kinase (PYK) in yeast, we discovered that central metabolism is self-adapting to synchronize redox metabolism

  16. Hyperpolarized 1-13C Pyruvate Imaging of Porcine Cardiac Metabolism shift by GIK Intervention

    DEFF Research Database (Denmark)

    Søvsø Szocska Hansen, Esben; Tougaard, Rasmus Stilling; Mikkelsen, Emmeli

    to evaluate the general feasibility to detect an imposed shift in metabolic substrate utilization during metabolic modulation with glucose, insulin and potassium (GIK) infusion. This study demonstrates that hyperpolarized 13C-pyruvate, in a large animal, is a feasible method for cardiac studies, and...

  17. Exercise-induced pyruvate dehydrogenase activation is not affected by 7 days of bed rest

    DEFF Research Database (Denmark)

    Kiilerich, Kristian; Jørgensen, Stine Ringholm; Biensø, Rasmus Sjørup

    2011-01-01

    To test the hypothesis that physical inactivity impairs the exercise-induced modulation of pyruvate dehydrogenase (PDH), 6 healthy normally physically active male subjects completed 7 days of bed rest. Before and immediately after the bed rest, the subjects completed an OGTT and a one-legged knee...

  18. Molecular and Physiological Logics of the Pyruvate-Induced Response of a Novel Transporter in Bacillus subtilis.

    Science.gov (United States)

    Charbonnier, Teddy; Le Coq, Dominique; McGovern, Stephen; Calabre, Magali; Delumeau, Olivier; Aymerich, Stéphane; Jules, Matthieu

    2017-10-03

    At the heart of central carbon metabolism, pyruvate is a pivotal metabolite in all living cells. Bacillus subtilis is able to excrete pyruvate as well as to use it as the sole carbon source. We herein reveal that ysbAB (renamed pftAB ), the only operon specifically induced in pyruvate-grown B. subtilis cells, encodes a hetero-oligomeric membrane complex which operates as a facilitated transport system specific for pyruvate, thereby defining a novel class of transporter. We demonstrate that the LytST two-component system is responsible for the induction of pftAB in the presence of pyruvate by binding of the LytT response regulator to a palindromic region upstream of pftAB We show that both glucose and malate, the preferred carbon sources for B. subtilis , trigger the binding of CcpA upstream of pftAB , which results in its catabolite repression. However, an additional CcpA-independent mechanism represses pftAB in the presence of malate. Screening a genome-wide transposon mutant library, we find that an active malic enzyme replenishing the pyruvate pool is required for this repression. We next reveal that the higher the influx of pyruvate, the stronger the CcpA-independent repression of pftAB , which suggests that intracellular pyruvate retroinhibits pftAB induction via LytST. Such a retroinhibition challenges the rational design of novel nature-inspired sensors and synthetic switches but undoubtedly offers new possibilities for the development of integrated sensor/controller circuitry. Overall, we provide evidence for a complete system of sensors, feed-forward and feedback controllers that play a major role in environmental growth of B. subtilis IMPORTANCE Pyruvate is a small-molecule metabolite ubiquitous in living cells. Several species also use it as a carbon source as well as excrete it into the environment. The bacterial systems for pyruvate import/export have yet to be discovered. Here, we identified in the model bacterium Bacillus subtilis the first import

  19. 13C NMR study of effects of fasting and diabetes on the metabolism of pyruvate in the tricarboxylic acid cycle and of the utilization of pyruvate and ethanol in lipogenesis in perfused rat liver

    International Nuclear Information System (INIS)

    Cohen, S.M.

    1987-01-01

    13 C NMR has been used to study the competition of pyruvate dehydrogenase with pyruvate carboxylase for entry of pyruvate into the tricarboxylic acid (TCA) cycle in perfused liver from streptozotocin-diabetic and normal donor rats. The relative proportion of pyruvate entering the TCA cycle by these two routes was estimated from the 13 C enrichments at the individual carbons of glutamate when [3- 13 C]alanine was the only exogenous substrate present. In this way, the proportion of pyruvate entering by the pyruvate dehydrogenase route relative to the pyruvate carboxylase route was determined to be 1:1.2 +/- 0.1 in liver from fed controls, 1:7.7 +/- 2 in liver from 24-fasted controls, and 1:2.6 +/- 0.3 in diabetic liver. Pursuant to this observation that conversion of pyruvate to acetyl coenzyme A (acetyl-CoA) was greatest in perfused liver from fed controls, the incorporation of 13 C label into fatty acids was monitored in this liver preparation. With the exception of the repeating methylene carbons, fatty acyl carbons labeled by [1- 13 C]acetyl-CoA (from [2- 13 C]pyruvate) gave rise to resonances distinguishable on the basis of chemical shift from those observed when label was introduced by [3- 13 C]alanine plus [2- 13 C]ethanol, which are converted to [2- 13 C]acetyl-CoA. Thus, measurement of 13 C enrichment at several specific sites in the fatty acyl chains in time-resolved spectra of perfused liver offers a novel way of monitoring the kinetics of the biosynthesis of fatty acids. In addition to obtaining the rate of lipogenesis, it was possible to distinguish the contributions of chain elongation from those of the de novo synthesis pathway and to estimate the average chain length of the 13 C-labeled fatty acids produced

  20. Experimental study of the density and viscosity of 1-ethyl-3-methylimidazolium ethyl sulfate

    International Nuclear Information System (INIS)

    Schmidt, H.; Stephan, M.; Safarov, J.; Kul, I.; Nocke, J.; Abdulagatov, I.M.; Hassel, E.

    2012-01-01

    Highlights: ► Density of the ionic liquid [EMIM][EtSO 4 ]. ► Viscosity of the ionic liquid [EMIM][EtSO 4 ]. ► Thermodynamic properties of ionic liquid [EMIM][EtSO 4 ]. ► Equation of state of ionic liquid [EMIM][EtSO 4 ]. - Abstract: Density and viscosity of 1-ethyl-3-methylimidazolium ethyl sulfate [EMIM][EtSO 4 ] have been measured over the temperature range from (283.15 to 413.15) K and at pressures up to 140 MPa and in the temperature range from (283.15 to 373.15) K at 0.1 MPa, respectively. The expanded uncertainty of the density, pressure, temperature, and viscosity measurements at the 95% confidence level with a coverage factor of k = 2 is estimated to be (0.01 to 0.08)%, 0.1%, 15 mK, and 0.35%, respectively. The measurements were carried out with an Anton–Paar DMA HPM vibration-tube densimeter and a fully automated SVM 3000 Anton–Paar rotational Stabinger viscometer. The vibration-tube densimeter was calibrated using various reference fluids, double-distilled water, methanol, toluene, and aqueous NaCl solutions. An empiric equation of state for [EMIM][EtSO 4 ] has been developed using the measured (p, ρ, T) data. This equation was used to calculate the various thermodynamic properties of the IL and for compare with measured properties (speed of sound and enthalpy). Theoretically based Arrhenius–Andrade and Vogel–Tamman–Fulcher type equations were use to describe of the temperature dependence of measured viscosities for [EMIM][EtSO 4 ]. All measured properties were detailed compared with the reported data by other author.

  1. Effect of thiamine deficiency, pyrithiamine and oxythiamine on pyruvate metabolism in rat liver and brain in vivo

    International Nuclear Information System (INIS)

    Meghal, S.K.; O'Neal, R.M.; Koeppe, R.E.

    1977-01-01

    Rats were fed either a thiamine-deficient diet or diets containing pyrithiamine or oxythiamine. When symptoms of thiamine deficiency appeared, the animals were injected intraperitoneally with [2- 14 C] pyruvate six to twelve minutes prior to sacrifice. Free glutamic and aspartic acids were isolated from liver and brain and degraded. The results indicate that, in thiamine-deficient or oxythiamine-treated rats, pyruvate metabolism in liver and brain is similar to that in normal animals. In contrast, pyrithinamine drastically decreases the oxidative decarboxylation of pyruvate by rat liver. (auth.)

  2. Density, viscosity, and saturated vapor pressure of ethyl trifluoroacetate

    International Nuclear Information System (INIS)

    Huang, Zhixian; Jiang, Haiming; Li, Ling; Wang, Hongxing; Qiu, Ting

    2015-01-01

    Highlights: • Density of ethyl trifluoroacetate was measured and its thermal expansion coefficient was determined. • Viscosity of ethyl trifluoroacetate was measured and fitted to the Andrade equation. • Saturated vapor pressure of ethyl trifluoroacetate was reported. • The Clausius–Clapeyron equation was used to calculate the molar evaporation enthalpy of ethyl trifluoroacetate. - Abstract: The properties of ethyl trifluoroacetate (CF 3 COOCH 2 CH 3 ) were measured as a function of temperature: density (278.08 to 322.50) K, viscosity (293.45 to 334.32) K, saturated vapor pressure (293.35 to 335.65) K. The density data were fitted to a quadratic polynomial equation, and the viscosity data were regressed to the Andrade equation. The correlation coefficient (R 2 ) of equations for density and viscosity are 0.9997 and 0.9999, respectively. The correlation between saturated vapor pressures and temperatures was achieved with a maximum absolute relative deviation of 0.142%. In addition, the molar evaporation enthalpy in the range of T = (293.35 to 335.65) K was estimated by the Clausius–Clapeyron equation

  3. Regulation of pyruvate oxidation in blowfly flight muscle mitochondria: requirement for ADP.

    Science.gov (United States)

    Bulos, B A; Thomas, B J; Shukla, S P; Sacktor, B

    1984-11-01

    Blowfly (Phormia regina) flight muscle mitochondria oxidized pyruvate ( + proline) in the presence of either ADP (coupled respiration) or carbonylcyanide-p-trifluoromethoxyphenylhydrazone (FCCP-uncoupled respiration). There was an absolute requirement for ADP (Km = 8.0 microM) when pyruvate oxidation was stimulated by FCCP in the presence of oligomycin. This requirement for ADP was limited to the oxidation of pyruvate; uncoupled alpha-glycerolphosphate oxidation proceeded maximally even in the absence of added ADP. Atractylate inhibited uncoupled pyruvate oxidation whether added before (greater than 99%) or after (95%) initiation of respiration with FCCP. In the presence of FCCP, oligomycin, and limiting concentrations of ADP (less than 110 microM), there was a shutoff in the uptake of oxygen. This inhibition of respiration was completely reversed by the addition of more ADP. Plots of net oxygen uptake as a function of the limiting ADP concentration were linear; the observed ADP/O ratio was 0.22 +/- 0.025. An ADP/O ratio of 0.2 was predicted if phosphorylation occurred only at the succinyl-CoA synthetase step of the tricarboxylate cycle. Experiments performed in the presence of limiting concentrations of ADP, and designed to monitor changes in the mitochondrial content of ADP and ATP, demonstrated that the shutoff in oxygen uptake was not due to the presence of a high intramitochondrial concentration of ATP. Indeed, ATP, added to the medium prior to the addition of FCCP, inhibited uncoupled pyruvate oxidation; the apparent KI was 0.8 mM. These results are consistent with the hypothesis that it is the intramitochondrial ATP/ADP ratio that is one of the controlling factors in determining the rate of flux through the tricarboxylate cycle. Changes in the mitochondrial content of citrate, isocitrate, alpha-ketoglutarate, and malate during uncoupled pyruvate oxidation in the presence of a limiting concentration of ADP were consistent with the hypothesis that the

  4. Reprint of "How do components of real cloud water affect aqueous pyruvate oxidation?"

    Science.gov (United States)

    Boris, Alexandra J.; Desyaterik, Yury; Collett, Jeffrey L.

    2015-01-01

    Chemical oxidation of dissolved volatile or semi-volatile organic compounds within fog and cloud droplets in the atmosphere could be a major pathway for secondary organic aerosol (SOA) formation. This proposed pathway consists of: (1) dissolution of organic chemicals from the gas phase into a droplet; (2) reaction with an aqueous phase oxidant to yield low volatility products; and (3) formation of particle phase organic matter as the droplet evaporates. The common approach to simulating aqueous SOA (aqSOA) reactions is photo-oxidation of laboratory standards in pure water. Reactions leading to aqSOA formation should be studied within real cloud and fog water to determine whether additional competing processes might alter apparent rates of reaction as indicated by rates of reactant loss or product formation. To evaluate and identify the origin of any cloud water matrix effects on one example of observed aqSOA production, pyruvate oxidation experiments simulating aqSOA formation were monitored within pure water, real cloud water samples, and an aqueous solution of inorganic salts. Two analysis methods were used: online electrospray ionization high-resolution time-of-flight mass spectrometry (ESI-HR-ToF-MS), and offline anion exchange chromatography (IC) with quantitative conductivity and qualitative ESI-HR-ToF-MS detection. The apparent rate of oxidation of pyruvate was slowed in cloud water matrices: overall measured degradation rates of pyruvate were lower than in pure water. This can be at least partially accounted for by the observed formation of pyruvate from reactions of other cloud water components. Organic constituents of cloud water also compete for oxidants and/or UV light, contributing to the observed slowed degradation rates of pyruvate. The oxidation of pyruvate was not significantly affected by the presence of inorganic anions (nitrate and sulfate) at cloud-relevant concentrations. Future bulk studies of aqSOA formation reactions using simplified

  5. Toxic Effects of Ethyl Cinnamate on the Photosynthesis and Physiological Characteristics of Chlorella vulgaris Based on Chlorophyll Fluorescence and Flow Cytometry Analysis

    Science.gov (United States)

    Jiao, Yang; Ouyang, Hui-Ling; Jiang, Yu-Jiao; Kong, Xiang-Zhen; He, Wei; Liu, Wen-Xiu; Yang, Bin; Xu, Fu-Liu

    2015-01-01

    The toxic effects of ethyl cinnamate on the photosynthetic and physiological characteristics of Chlorella vulgaris were studied based on chlorophyll fluorescence and flow cytometry analysis. Parameters, including biomass, F v/F m (maximal photochemical efficiency of PSII), ФPSII (actual photochemical efficiency of PSII in the light), FDA, and PI staining fluorescence, were measured. The results showed the following: (1) The inhibition on biomass increased as the exposure concentration increased. 1 mg/L ethyl cinnamate was sufficient to reduce the total biomass of C. vulgaris. The 48-h and 72-h EC50 values were 2.07 mg/L (1.94–2.20) and 1.89 mg/L (1.82–1.97). (2) After 24 h of exposure to 2–4 mg/L ethyl cinnamate, the photosynthesis of C. vulgaris almost ceased, manifesting in ФPSII being close to zero. After 72 h of exposure to 4 mg/L ethyl cinnamate, the F v/F m of C. vulgaris dropped to zero. (3) Ethyl cinnamate also affected the cellular physiology of C. vulgaris, but these effects resulted in the inhibition of cell yield rather than cell death. Exposure to ethyl cinnamate resulted in decreased esterase activities in C. vulgaris, increased average cell size, and altered intensities of chlorophyll a fluorescence. Overall, esterase activity was the most sensitive variable. PMID:26101784

  6. Carbon-14 tracer studies in rat-liver perfusion experiments under conditions of gluconeogenesis from lactate and pyruvate

    International Nuclear Information System (INIS)

    Muellhofer, G.; Schwab, A.; Mueller, C.; Stetten, C. von; Gruber, E.

    1977-01-01

    The intracellular events in the metabolic pathway of gluconeogenesis from lactate and pyruvate in liver tissue were assumed to be understood. Nevertheless the results of several 14 C-tracer experiments gave rise to the postulation of still unknown intracellular interactions under this condition. A contribution was made to the solution of this problem by using different 14 C labelled tracers such as [1- 14 C]lactate or pyruvate and [2- 14 C]lactate or pyruvate. [ 14 C]bicarbonate and [1- 14 C]-octanoate in perfusion experiments with livers from rats under conditions of gluconeogenesis from lactate and pyruvate. The 14 C labelling patterns of intracellular metabolities such as malate, citrate, phosphoenolpyruvate, phosphoglycerate and newly synthesized glucose were analysed under different conditions. A comparison with values calculated by using metabolic models based on the generally accepted concepts of intracellular interactions showed some fundamental discrepancies which justify the postulation. (orig./MG) [de

  7. Investigating tumor perfusion and metabolism using multiple hyperpolarized 13C compounds: HP001, pyruvate and urea

    DEFF Research Database (Denmark)

    von Morze, Cornelius; Larson, Peder E.Z.; Hu, Simon

    2012-01-01

    The metabolically inactive hyperpolarized agents HP001 (bis-1,1-(hydroxymethyl)-[1-13C]cyclopropane-d8) and urea enable a new type of perfusion magnetic resonance imaging based on a direct signal source that is background-free. The addition of perfusion information to metabolic information obtained...... (T1=95 s ex vivo, 32 s in vivo at 3 T) using a pulse sequence with balanced steady-state free precession and ramped flip angle over time for efficient utilization of the hyperpolarized magnetization and three-dimensional echo-planar spectroscopic imaging of urea copolarized with [1-13C...... of separate dynamic HP001 imaging and copolarized pyruvate/urea imaging were compared. A strong and significant correlation (R=0.73, P=.02) detected between the urea and HP001 data confirmed the value of copolarizing urea with pyruvate for simultaneous assessment of perfusion and metabolism....

  8. Propionate Increases Hepatic Pyruvate Cycling and Anaplerosis and Alters Mitochondrial Metabolism

    DEFF Research Database (Denmark)

    Perry, Rachel J; Borders, Candace B; Cline, Gary W

    2016-01-01

    /tandem-mass spectrometry (LC-MS/MS) method to directly assess pyruvate cycling relative to mitochondrial pyruvate metabolism (VPyr-Cyc/VMito) in vivo using [3-(13)C]lactate as a tracer. Using this approach, VPyr-Cyc/VMito was only 6% in overnight fasted rats. In contrast, when propionate was infused simultaneously...... at doses previously used as a tracer, it increased VPyr-Cyc/VMito by 20-30-fold, increased hepatic TCA metabolite concentrations 2-3-fold, and increased endogenous glucose production rates by 20-100%. The physiologic stimuli, glucagon and epinephrine, both increased hepatic glucose production, but only...... tracer to assess hepatic glycolytic, gluconeogenic, and mitochondrial metabolism in vivo....

  9. Expression of Aeromonas caviae ST pyruvate dehydrogenase complex components mediate tellurite resistance in Escherichia coli

    International Nuclear Information System (INIS)

    Castro, Miguel E.; Molina, Roberto C.; Diaz, Waldo A.; Pradenas, Gonzalo A.; Vasquez, Claudio C.

    2009-01-01

    Potassium tellurite (K 2 TeO 3 ) is harmful to most organisms and specific mechanisms explaining its toxicity are not well known to date. We previously reported that the lpdA gene product of the tellurite-resistant environmental isolate Aeromonas caviae ST is involved in the reduction of tellurite to elemental tellurium. In this work, we show that expression of A. caviae ST aceE, aceF, and lpdA genes, encoding pyruvate dehydrogenase, dihydrolipoamide transacetylase, and dihydrolipoamide dehydrogenase, respectively, results in tellurite resistance and decreased levels of tellurite-induced superoxide in Escherichia coli. In addition to oxidative damage resulting from tellurite exposure, a metabolic disorder would be simultaneously established in which the pyruvate dehydrogenase complex would represent an intracellular tellurite target. These results allow us to widen our vision regarding the molecular mechanisms involved in bacterial tellurite resistance by correlating tellurite toxicity and key enzymes of aerobic metabolism.

  10. Enzyme mechanisms for pyruvate-to-lactate flux attenuation: a study of Sherpas, Quechuas, and hummingbirds.

    Science.gov (United States)

    Hochachka, P W; Stanley, C; McKenzie, D C; Villena, A; Monge, C

    1992-10-01

    During incremental exercise to fatigue under hypobaric hypoxia, Andean Quechua natives form and accumulate less plasma lactate than do lowlanders under similar conditions. This phenomenon of low lactate accumulation despite hypobaric hypoxia, first discovered some half century ago, is known in Quechuas to be largely unaffected by acute exposure to hypoxia or by acclimatization to sea level conditions. Earlier Nuclear Magnetic Resonance (NMR) spectroscopy and metabolic biochemistry studies suggest that closer coupling of energy demand and energy supply in Quechuas allows given changes in work rate with relatively modest changes in muscle adenylate and phosphagen concentrations, thus tempering the activation of glycolytic flux to pyruvate--a coarse control mechanism operating at the level of overall pathway flux. Later studies of enzyme activities in skeletal muscles of Quechuas and of Sherpas have identified a finely-tuned control mechanism which by adaptive modifications of a few key enzymes apparently serves to specifically attenuate pyruvate flux to lactate.

  11. MCA Vmean and the arterial lactate-to-pyruvate ratio correlate during rhythmic handgrip

    DEFF Research Database (Denmark)

    Rasmussen, Peter; Plomgaard, Peter; Krogh-Madsen, Rikke

    2006-01-01

    /P ratio at two plasma lactate levels. MCA Vmean was determined by ultrasound Doppler sonography at rest, during 10 min of rhythmic handgrip exercise at approximately 65% of maximal voluntary contraction force, and during 20 min of recovery in seven healthy male volunteers during control...... and a approximately 15 mmol/l hyperglycemic clamp. Cerebral arteriovenous differences for metabolites were obtained by brachial artery and retrograde jugular venous catheterization. Control resting arterial lactate was 0.78 +/- 0.09 mmol/l (mean +/- SE) and pyruvate 55.7 +/- 12.0 micromol/l (L/P ratio 16.4 +/- 1......Regulation of cerebral blood flow during physiological activation including exercise remains unknown but may be related to the arterial lactate-to-pyruvate (L/P) ratio. We evaluated whether an exercise-induced increase in middle cerebral artery mean velocity (MCA Vmean) relates to the arterial L...

  12. Adaptive mutations in sugar metabolism restore growth on glucose in a pyruvate decarboxylase negative yeast strain

    DEFF Research Database (Denmark)

    Zhang, Yiming; Liu, Guodong; Engqvist, Martin K. M.

    2015-01-01

    Background: A Saccharomyces cerevisiae strain carrying deletions in all three pyruvate decarboxylase (PDC) genes (also called Pdc negative yeast) represents a non-ethanol producing platform strain for the production of pyruvate derived biochemicals. However, it cannot grow on glucose as the sole...... DNA sequencing. Among these genetic changes, 4 genes were found to carry point mutations in at least two of the evolved strains: MTH1 encoding a negative regulator of the glucose-sensing signal transduction pathway, HXT2 encoding a hexose transporter, CIT1 encoding a mitochondrial citrate synthase...... further increased the maximum specific growth rate to 0.069 h-1. Conclusions: In this study, possible evolving mechanisms of Pdc negative strains on glucose were investigated by genome sequencing and reverse engineering. The non-synonymous mutations in MTH1 alleviated the glucose repression by repressing...

  13. Regulation of pyruvate dehydrogenase kinase expression by the farnesoid X receptor

    International Nuclear Information System (INIS)

    Savkur, Rajesh S.; Bramlett, Kelli S.; Michael, Laura F.; Burris, Thomas P.

    2005-01-01

    The pyruvate dehydrogenase complex (PDC) functions as an important junction in intermediary metabolism by influencing the utilization of fat versus carbohydrate as a source of fuel. Activation of PDC is achieved by phosphatases, whereas, inactivation is catalyzed by pyruvate dehydrogenase kinases (PDKs). The expression of PDK4 is highly regulated by the glucocorticoid and peroxisome proliferator-activated receptors. We demonstrate that the farnesoid X receptor (FXR; NR1H4), which regulates a variety of genes involved in lipoprotein metabolism, also regulates the expression of PDK4. Treatment of rat hepatoma cells as well as human primary hepatocytes with FXR agonists stimulates the expression of PDK4 to levels comparable to those obtained with glucocorticoids. In addition, treatment of mice with an FXR agonist significantly increased hepatic PDK4 expression, while concomitantly decreasing plasma triglyceride levels. Thus, activation of FXR may suppress glycolysis and enhance oxidation of fatty acids via inactivation of the PDC by increasing PDK4 expression

  14. Spectroscopic characterization of the ethyl radical-water complex.

    Science.gov (United States)

    Lin, Chen; Finney, Brian A; Laufer, Allan H; Anglada, Josep M; Francisco, Joseph S

    2016-10-14

    An ab initio investigation has been employed to determine the structural and spectroscopic parameters, such as rotational constants, vibrational frequencies, vertical excitation energies, and the stability of the ethyl-water complex. The ethyl-water complex has a binding energy of 1.15 kcal⋅mol -1 . The interaction takes place between the hydrogen of water and the unpaired electron of the radical. This interaction is found to produce a red shift in the OH stretching bands of water of ca. 84 cm -1 , and a shift of all UV absorption bands to higher energies.

  15. Iron may induce both DNA synthesis and repair in rat hepatocytes stimulated by EGF/pyruvate

    Energy Technology Data Exchange (ETDEWEB)

    Chenoufi, N.; Loreal, O.; Cariou, S.; Hubert, N.; Lescoat, G. [Univ. Hospital Pontchaillou, Unite de Recherches Hepatologiques, INSERM U 49, Rennes (France); Drenou, B. [Univ. Hospital Pontchaillou, Lab. d`Hematologie et d`Immunologie, Rennes (France); Leroyer, P.; Brissot, P. [Univ. Hospital Pontchaillou, Clinique des Maladies du Foie, Rennes (France)

    1997-03-01

    Background/Aims: Hepatocellular carcinoma develops frequently in the course of genetic hemochromatosis, and a role of iron overload in hepatic carcinogenesis is strongly suggested. Methods: The aim of our study was to investigate the effect of iron exposure on DNA synthesis of adult rat hepatocytes maintained in primary culture stimulated or not by EGF/pyruvate and exposed to iron-citrate complex. Results: In EGF/pyruvate-stimulated cultures, the level of [{sup 3}H] methyl thymidine incorporation was strongly increased as compared to unstimulated cultures. The addition of iron to stimulated cultures increased [{sup 3}H] methyl thymidine incorporation. The mitotic index was also significantly higher at 72 h. However,the number of cells found in the cell layer was not significantly different from iron-citrate free culture. By flow cytometry, no difference in cell ploidy was found between iron-treated and untreated EGF/pyruvate-stimulated cultures. A significant increase in LDH leakage reflecting a toxic effect of iron was found in the cell medium 48 h after cell seeding. In addition, [{sup 3}H] methyl thymidine incorporation in the presence of hydroxyurea was increased in iron-treated compared to untreated cultures. Conclusions: Our results show that DNA synthesis is increased in the presence of iron in rat hepatocyte cultures stimulated by EGF/pyruvate, and they suggest that DNA synthesis is likely to be related both to cell proliferation and to DNA repair. These observations may allow better understanding of the role of iron overload in the development of hepatocellular carcinoma. (au) 61 refs.

  16. Erythrocyte pyruvate kinase deficiency in the Ohio Amish: origin and characterization of the mutant enzyme.

    OpenAIRE

    Muir, W A; Beutler, E; Wasson, C

    1984-01-01

    We have identified eight individuals in an Amish population in Geauga County, Ohio, who have a congenital hemolytic anemia and red cell pyruvate kinase (PK) deficiency. The mutant enzyme is a low Km phosphoenolpyruvate (PEP) variant associated with a slower (77.5% of normal) electrophoretic mobility in starch gel. Because of the high consanguinity in this population, we assume the affected individuals are homozygous for the mutant gene. Genealogical records allow us to trace all eight cases b...

  17. Establishment of mitochondrial pyruvate carrier 1 (MPC1) gene knockout mice with preliminary gene function analyses

    Science.gov (United States)

    Li, Xiaoli; Li, Yaqing; Han, Gaoyang; Li, Xiaoran; Ji, Yasai; Fan, Zhirui; Zhong, Yali; Cao, Jing; Zhao, Jing; Mariusz, Goscinski; Zhang, Mingzhi; Wen, Jianguo; Nesland, Jahn M.; Suo, Zhenhe

    2016-01-01

    Pyruvate plays a critical role in the mitochondrial tricarboxylic acid (TCA) cycle, and it is the center product for the synthesis of amino acids, carbohydrates and fatty acids. Pyruvate transported across the inner mitochondrial membrane appears to be essential in anabolic and catabolic intermediary metabolism. The mitochondrial pyruvate carrier (MPC) mounted in the inner membrane of mitochondria serves as the channel to facilitate pyruvate permeating. In mammals, the MPC is formed by two paralogous subunits, MPC1 and MPC2. It is known that complete ablation of MPC2 in mice causes death on the 11th or 12th day of the embryonic period. However, MPC1 deletion and the knowledge of gene function in vivo are lacking. Using the new technology of gene manipulation known as Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated 9 (CRISPR/Cas9) systems, we gained stable MPC1 gene heterozygous mutation mice models, and the heterozygous mutations could be stably maintained in their offsprings. Only one line with homozygous 27 bases deletion in the first exon was established, but no offsprings could be obtained after four months of mating experiments, indicating infertility of the mice with such homozygous deletion. The other line of MPC1 knockout (KO) mice was only heterozygous, which mutated in the first exon with a terminator shortly afterwards. These two lines of MPC1 KO mice showed lower fertility and significantly higher bodyweight in the females. We concluded that heterozygous MPC1 KO weakens fertility and influences the metabolism of glucose and fatty acid and bodyweight in mice. PMID:27835892

  18. Beneficial effect of pyruvate therapy on Leigh syndrome due to a novel mutation in PDH E1α gene.

    Science.gov (United States)

    Koga, Yasutoshi; Povalko, Nataliya; Katayama, Koujyu; Kakimoto, Noriko; Matsuishi, Toyojiro; Naito, Etsuo; Tanaka, Masashi

    2012-02-01

    Leigh syndrome (LS) is a progressive untreatable degenerating mitochondrial disorder caused by either mitochondrial or nuclear DNA mutations. A patient was a second child of unconsanguineous parents. On the third day of birth, he was transferred to neonatal intensive care units because of severe lactic acidosis. Since he was showing continuous lactic acidosis, the oral supplementation of dichloroacetate (DCA) was introduced on 31st day of birth at initial dose of 50 mg/kg, followed by maintenance dose of 25 mg/kg/every 12 h. The patient was diagnosed with LS due to a point mutation of an A-C at nucleotide 599 in exon 6 in the pyruvate dehydrogenase E1α gene, resulting in the substitution of aspartate for threonine at position 200 (N200T). Although the concentrations of lactate and pyruvate in blood were slightly decreased, his clinical conditions were deteriorating progressively. In order to overcome the mitochondrial or cytosolic energy crisis indicated by lactic acidosis as well as clinical symptoms, we terminated the DCA and administered 0.5 g/kg/day TID of sodium pyruvate orally. We analyzed the therapeutic effects of DCA or sodium pyruvate in the patient, and found that pyruvate therapy significantly decreased lactate, pyruvate and alanine levels, showed no adverse effects such as severe neuropathy seen in DCA, and had better clinical response on development and epilepsy. Though the efficacy of pyruvate on LS will be evaluated by randomized double-blind placebo-controlled study design in future, pyruvate therapy is a possible candidate for therapeutic choice for currently incurable mitochondrial disorders such as LS. Copyright © 2011 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  19. Single Sodium Pyruvate Ingestion Modifies Blood Acid-Base Status and Post-Exercise Lactate Concentration in Humans

    Directory of Open Access Journals (Sweden)

    Robert A. Olek

    2014-05-01

    Full Text Available This study examined the effect of a single sodium pyruvate ingestion on a blood acid-base status and exercise metabolism markers. Nine active, but non-specifically trained, male subjects participated in the double-blind, placebo-controlled, crossover study. One hour prior to the exercise, subjects ingested either 0.1 g·kg−1 of body mass of a sodium pyruvate or placebo. The capillary blood samples were obtained at rest, 60 min after ingestion, and then three and 15 min after completing the workout protocol to analyze acid-base status and lactate, pyruvate, alanine, glucose concentrations. The pulmonary gas exchange, minute ventilation and the heart rate were measured during the exercise at a constant power output, corresponding to ~90% O2max. The blood pH, bicarbonate and the base excess were significantly higher after sodium pyruvate ingestion than in the placebo trial. The blood lactate concentration was not different after the ingestion, but the post-exercise was significantly higher in the pyruvate trial (12.9 ± 0.9 mM than in the placebo trial (10.6 ± 0.3 mM, p < 0.05 and remained elevated (nonsignificant after 15 min of recovery. The blood pyruvate, alanine and glucose concentrations, as well as the overall pulmonary gas exchange during the exercise were not affected by the pyruvate ingestion. In conclusion, the sodium pyruvate ingestion one hour before workout modified the blood acid-base status and the lactate production during the exercise.

  20. Molecular and Physiological Logics of the Pyruvate-Induced Response of a Novel Transporter in Bacillus subtilis

    Directory of Open Access Journals (Sweden)

    Teddy Charbonnier

    2017-10-01

    Full Text Available At the heart of central carbon metabolism, pyruvate is a pivotal metabolite in all living cells. Bacillus subtilis is able to excrete pyruvate as well as to use it as the sole carbon source. We herein reveal that ysbAB (renamed pftAB, the only operon specifically induced in pyruvate-grown B. subtilis cells, encodes a hetero-oligomeric membrane complex which operates as a facilitated transport system specific for pyruvate, thereby defining a novel class of transporter. We demonstrate that the LytST two-component system is responsible for the induction of pftAB in the presence of pyruvate by binding of the LytT response regulator to a palindromic region upstream of pftAB. We show that both glucose and malate, the preferred carbon sources for B. subtilis, trigger the binding of CcpA upstream of pftAB, which results in its catabolite repression. However, an additional CcpA-independent mechanism represses pftAB in the presence of malate. Screening a genome-wide transposon mutant library, we find that an active malic enzyme replenishing the pyruvate pool is required for this repression. We next reveal that the higher the influx of pyruvate, the stronger the CcpA-independent repression of pftAB, which suggests that intracellular pyruvate retroinhibits pftAB induction via LytST. Such a retroinhibition challenges the rational design of novel nature-inspired sensors and synthetic switches but undoubtedly offers new possibilities for the development of integrated sensor/controller circuitry. Overall, we provide evidence for a complete system of sensors, feed-forward and feedback controllers that play a major role in environmental growth of B. subtilis.

  1. Volumetric spiral chemical shift imaging of hyperpolarized [2-(13) c]pyruvate in a rat c6 glioma model.

    Science.gov (United States)

    Park, Jae Mo; Josan, Sonal; Jang, Taichang; Merchant, Milton; Watkins, Ron; Hurd, Ralph E; Recht, Lawrence D; Mayer, Dirk; Spielman, Daniel M

    2016-03-01

    MRS of hyperpolarized [2-(13)C]pyruvate can be used to assess multiple metabolic pathways within mitochondria as the (13)C label is not lost with the conversion of pyruvate to acetyl-CoA. This study presents the first MR spectroscopic imaging of hyperpolarized [2-(13)C]pyruvate in glioma-bearing brain. Spiral chemical shift imaging with spectrally undersampling scheme (1042 Hz) and a hard-pulse excitation was exploited to simultaneously image [2-(13)C]pyruvate, [2-(13)C]lactate, and [5-(13)C]glutamate, the metabolites known to be produced in brain after an injection of hyperpolarized [2-(13)C]pyruvate, without chemical shift displacement artifacts. A separate undersampling scheme (890 Hz) was also used to image [1-(13)C]acetyl-carnitine. Healthy and C6 glioma-implanted rat brains were imaged at baseline and after dichloroacetate administration, a drug that modulates pyruvate dehydrogenase kinase activity. The baseline metabolite maps showed higher lactate and lower glutamate in tumor as compared to normal-appearing brain. Dichloroacetate led to an increase in glutamate in both tumor and normal-appearing brain. Dichloroacetate-induced %-decrease of lactate/glutamate was comparable to the lactate/bicarbonate decrease from hyperpolarized [1-(13)C]pyruvate studies. Acetyl-carnitine was observed in the muscle/fat tissue surrounding the brain. Robust volumetric imaging with hyperpolarized [2-(13)C]pyruvate and downstream products was performed in glioma-bearing rat brains, demonstrating changes in mitochondrial metabolism with dichloroacetate. © 2015 Wiley Periodicals, Inc.

  2. Monitoring Mitochondrial Pyruvate Carrier Activity in Real Time Using a BRET-Based Biosensor: Investigation of the Warburg Effect

    OpenAIRE

    Compan V; Pierredon S; Vanderperre B; Krznar P; Marchiq I; Zamboni N; Pouyssegur J; Martinou JC

    2015-01-01

    The transport of pyruvate into mitochondria requires a specific carrier the mitochondrial pyruvate carrier (MPC). The MPC represents a central node of carbon metabolism and its activity is likely to play a key role in bioenergetics. Until now investigation of the MPC activity has been limited. However the recent molecular identification of the components of the carrier has allowed us to engineer a genetically encoded biosensor and to monitor the activity of the MPC in real time in a cell popu...

  3. MPC1-like Is a Placental Mammal-specific Mitochondrial Pyruvate Carrier Subunit Expressed in Postmeiotic Male Germ Cells

    OpenAIRE

    Vanderperre, Benoît; Cermakova, Kristina; Escoffier Breancon, Jessica; Kaba, Mayis; Bender, Tom; Nef, Serge; Martinou, Jean-Claude

    2016-01-01

    Selective transport of pyruvate across the inner mitochondrial membrane by the mitochondrial pyruvate carrier (MPC) is a fundamental step that couples cytosolic and mitochondrial metabolism. The recent molecular identification of the MPC complex has revealed two interacting subunits, MPC1 and MPC2. Although in yeast, an additional subunit, MPC3, can functionally replace MPC2, no alternative MPC subunits have been described in higher eukaryotes. Here, we report for the first time the existence...

  4. Breast Cancer-Derived Lung Metastases Show Increased Pyruvate Carboxylase-Dependent Anaplerosis

    Directory of Open Access Journals (Sweden)

    Stefan Christen

    2016-10-01

    Full Text Available Cellular proliferation depends on refilling the tricarboxylic acid (TCA cycle to support biomass production (anaplerosis. The two major anaplerotic pathways in cells are pyruvate conversion to oxaloacetate via pyruvate carboxylase (PC and glutamine conversion to α-ketoglutarate. Cancers often show an organ-specific reliance on either pathway. However, it remains unknown whether they adapt their mode of anaplerosis when metastasizing to a distant organ. We measured PC-dependent anaplerosis in breast-cancer-derived lung metastases compared to their primary cancers using in vivo 13C tracer analysis. We discovered that lung metastases have higher PC-dependent anaplerosis compared to primary breast cancers. Based on in vitro analysis and a mathematical model for the determination of compartment-specific metabolite concentrations, we found that mitochondrial pyruvate concentrations can promote PC-dependent anaplerosis via enzyme kinetics. In conclusion, we show that breast cancer cells proliferating as lung metastases activate PC-dependent anaplerosis in response to the lung microenvironment.

  5. Kinetic and Thermodynamic Analysis of Acetyl-CoA Activation of Staphylococcus aureus Pyruvate Carboxylase.

    Science.gov (United States)

    Westerhold, Lauren E; Bridges, Lance C; Shaikh, Saame Raza; Zeczycki, Tonya N

    2017-07-11

    Allosteric regulation of pyruvate carboxylase (PC) activity is pivotal to maintaining metabolic homeostasis. In contrast, dysregulated PC activity contributes to the pathogenesis of numerous diseases, rendering PC a possible target for allosteric therapeutic development. Recent research efforts have focused on demarcating the role of acetyl-CoA, one of the most potent activators of PC, in coordinating catalytic events within the multifunctional enzyme. Herein, we report a kinetic and thermodynamic analysis of acetyl-CoA activation of the Staphylococcus aureus PC (SaPC)-catalyzed carboxylation of pyruvate to identify novel means by which acetyl-CoA synchronizes catalytic events within the PC tetramer. Kinetic and linked-function analysis, or thermodynamic linkage analysis, indicates that the substrates of the biotin carboxylase and carboxyl transferase domain are energetically coupled in the presence of acetyl-CoA. In contrast, both kinetic and energetic coupling between the two domains is lost in the absence of acetyl-CoA, suggesting a functional role for acetyl-CoA in facilitating the long-range transmission of substrate-induced conformational changes within the PC tetramer. Interestingly, thermodynamic activation parameters for the SaPC-catalyzed carboxylation of pyruvate are largely independent of acetyl-CoA. Our results also reveal the possibility that global conformational changes give rise to observed species-specific thermodynamic activation parameters. Taken together, our kinetic and thermodynamic results provide a possible allosteric mechanism by which acetyl-CoA coordinates catalysis within the PC tetramer.

  6. Stem Cell Metabolism in Cancer and Healthy Tissues: Pyruvate in the Limelight

    Directory of Open Access Journals (Sweden)

    Cyril Corbet

    2018-01-01

    Full Text Available Normal and cancer stem cells (CSCs share the remarkable potential to self-renew and differentiate into many distinct cell types. Although most of the stem cells remain under quiescence to maintain their undifferentiated state, they can also undergo cell divisions as required to regulate tissue homeostasis. There is now a growing evidence that cell fate determination from stem cells implies a fine-tuned regulation of their energy balance and metabolic status. Stem cells can shift their metabolic substrate utilization, between glycolysis and mitochondrial oxidative metabolism, during specification and/or differentiation, as well as in order to adapt their microenvironmental niche. Pyruvate appears as a key metabolite since it is at the crossroads of cytoplasmic glycolysis and mitochondrial oxidative phosphorylation. This Review describes how metabolic reprogramming, focusing on pyruvate utilization, drives the fate of normal and CSCs by modulating their capacity for self-renewal, clonal expansion/differentiation, as well as metastatic potential and treatment resistance in cancer. This Review also explores potential therapeutic strategies to restore or manipulate stem cell function through the use of small molecules targeting the pyruvate metabolism.

  7. Increased production of pyruvic acid by Escherichia coli RNase G mutants in combination with cra mutations.

    Science.gov (United States)

    Sakai, Taro; Nakamura, Naoko; Umitsuki, Genryou; Nagai, Kazuo; Wachi, Masaaki

    2007-08-01

    The Escherichia coli RNase G is known as an endoribonuclease responsible for the 5'-end maturation of 16S rRNA and degradation of several specific mRNAs such as adhE and eno mRNAs. In this study, we found that an RNase G mutant derived from the MC1061 strain did not grow on a glucose minimal medium. Genetic analysis revealed that simultaneous defects of cra and ilvIH, encoding a transcriptional regulator of glycolysis/gluconeogenesis and one of isozymes of acetohydroxy acid synthase, respectively, were required for this phenomenon to occur. The results of additional experiments presented here indicate that the RNase G mutation, in combination with cra mutation, caused the increased production of pyruvic acid from glucose, which was then preferentially converted to valine due to the ilvIH mutation, resulting in depletion of isoleucine. In fact, the rng cra double mutant produced increased amount of pyruvate in the medium. These results suggest that the RNase G mutation could be applied in the breeding of producer strains of pyruvate and its derivatives such as valine.

  8. Pyruvate cycle increases aminoglycoside efficacy and provides respiratory energy in bacteria.

    Science.gov (United States)

    Su, Yu-Bin; Peng, Bo; Li, Hui; Cheng, Zhi-Xue; Zhang, Tian-Tuo; Zhu, Jia-Xin; Li, Dan; Li, Min-Yi; Ye, Jin-Zhou; Du, Chao-Chao; Zhang, Song; Zhao, Xian-Liang; Yang, Man-Jun; Peng, Xuan-Xian

    2018-02-13

    The emergence and ongoing spread of multidrug-resistant bacteria puts humans and other species at risk for potentially lethal infections. Thus, novel antibiotics or alternative approaches are needed to target drug-resistant bacteria, and metabolic modulation has been documented to improve antibiotic efficacy, but the relevant metabolic mechanisms require more studies. Here, we show that glutamate potentiates aminoglycoside antibiotics, resulting in improved elimination of antibiotic-resistant pathogens. When exploring the metabolic flux of glutamate, it was found that the enzymes that link the phosphoenolpyruvate (PEP)-pyruvate-AcCoA pathway to the TCA cycle were key players in this increased efficacy. Together, the PEP-pyruvate-AcCoA pathway and TCA cycle can be considered the pyruvate cycle (P cycle). Our results show that inhibition or gene depletion of the enzymes in the P cycle shut down the TCA cycle even in the presence of excess carbon sources, and that the P cycle operates routinely as a general mechanism for energy production and regulation in Escherichia coli and Edwardsiella tarda These findings address metabolic mechanisms of metabolite-induced potentiation and fundamental questions about bacterial biochemistry and energy metabolism.

  9. Inhibition of the pentose phosphate shunt by 2,3-diphosphoglycerate in erythrocyte pyruvate kinase deficiency.

    Science.gov (United States)

    Tomoda, A; Lachant, N A; Noble, N A; Tanaka, K R

    1983-07-01

    Pentose phosphate shunt activity was studied by the release of 14CO2 from 14C-1-glucose and 14C-2-glucose in the red cells of five patients with pyruvate kinase deficiency and found to be significantly decreased after new methylene blue stimulation when compared to high reticulocyte controls. Incubated Heinz body formation was increased and the ascorbate cyanide test was positive in blood from these patients. The activity of glucose-6-phosphate dehydrogenase (G6PD) as well as that of 6-phosphogluconate dehydrogenase (6PGD) was inhibited to 20% of baseline in normal red cell haemolysate by 4 mM 2,3-diphosphoglycerate at pH 7.1. 2,3-Diphosphoglycerate was a competitive inhibitor with 6-phosphogluconate (Ki=1.05 mM) and a noncompetitive inhibitor with NADP (Ki=3.3 mM) for 6PGD. Since the intracellular concentrations of glucose-6-phosphate, 6-phosphogluconate and NADP are below their Kms for G6PD and 6PGD, the kinetic data suggest that increased concentrations of 2,3-diphosphoglycerate in pyruvate kinase deficient red cells are sufficiently high to suppress pentose phosphate shunt activity. This suppression may be an additional factor contributing to the haemolytic anaemia of pyruvate kinase deficiency, particularly during periods of infection or metabolic stress.

  10. Attraction of Mosquitoes to Diethyl Methylbenzamide and Ethyl Hexanediol

    Science.gov (United States)

    1990-09-01

    tant to the biting midges Culicoides pulicaris that 8% ethyl acetate was attractant to the Linn. and Culicoides puncticoUis Becker (Cera- vinegar fly...Drosoph- finding by mosquitoes (Diptera: Culcidae): a review. ila melanogaster Meigen to the products of ferment - Bull. Entomol. Res. 70:525-532. ing banana

  11. Supercritical antisolvent co-precipitation of rifampicin and ethyl cellulose

    CSIR Research Space (South Africa)

    Djerafi, R

    2017-05-01

    Full Text Available . Using the solvent mixture, co-precipitates with particle sizes ranging between 190 and 230 nm were obtained with drug loading and drug precipitation yield from respectively 8.5 to 38.5 and 42.4 to 77.2% when decreasing the ethyl cellulose...

  12. Effects of ethyl acetate leaf extracts of Vitex simplicifolia on ...

    African Journals Online (AJOL)

    The effects of oral administration of ethyl acetate leaf extract of Vitex simplicifolia on vitamins A, E and C, Superoxide dismutase (SOD) and lipid profile levels in alloxan induced diabetic Wistar rats were investigated. The study was conducted with 30 Wistar rats, assigned into six groups of five rats each, and daily ...

  13. Hypolipidemic activity of ethyl acetate fraction of methanolic seed ...

    African Journals Online (AJOL)

    Parts of Persea americana Mill are used for various ethnomedicinal purposes. The aqueous seed extract is used locally by herbalists for the treatment of hyperlipidemia. In this study, our objective was to investigate the possible hypolipidemic effect of ethyl acetate fraction (EAF) of the methanolic seed extract on olive oil- ...

  14. Ethyl Alcohol Extract of Hizikia fusiforme Induces Caspase ...

    African Journals Online (AJOL)

    Ethyl Alcohol Extract of Hizikia fusiforme Induces Caspase-dependent Apoptosis in Human Leukemia U937 Cells by Generation of Reactive Oxygen Species. C-H Kang, S-H Kang, S-H Boo, S-Y Park, D-O Moon, G-Y Kim ...

  15. Kinetics of Ethyl Acetate Synthesis Catalyzed by Acidic Resins

    Science.gov (United States)

    Antunes, Bruno M.; Cardoso, Simao P.; Silva, Carlos M.; Portugal, Ines

    2011-01-01

    A low-cost experiment to carry out the second-order reversible reaction of acetic acid esterification with ethanol to produce ethyl acetate is presented to illustrate concepts of kinetics and reactor modeling. The reaction is performed in a batch reactor, and the acetic acid concentration is measured by acid-base titration versus time. The…

  16. High-temperature unimolecular decomposition of ethyl propionate

    KAUST Repository

    Giri, Binod; Alabbad, Mohammed; Farooq, Aamir

    2016-01-01

    This work reports rate coefficients of the thermal unimolecular decomposition reaction of ethyl propionate (EP) behind reflected shock waves over the temperature range of 976–1300 K and pressures of 825–1875 Torr. The reaction progress was monitored

  17. short communication reaction of ethyl acetoacetate and 2

    African Journals Online (AJOL)

    Preferred Customer

    starting materials. Thus, we describe in this paper a facile procedure for the synthesis of 9- phenyl-6H-benzo[c]chromen-6-ones involving the reaction of ethyl acetoacetate and chalcones derived from the condensation of salicylaldehyde and acetophenone derivatives. RESULTS AND DISCUSSIONS. The conditions for the ...

  18. Effects of Piliostigma thonningii ethyl acetate leaf extract on ...

    African Journals Online (AJOL)

    Recent research findings extol the medicinal significance of the different parts of Piliostigma thonningii. The present study investigated the hepatoprotective effect of its ethyl acetate leaf extract against AlCl3-induced hepatocellular derangement in mature male rats. Thirty male Wistar rats (mean weight, 207 ± 11.01g) were ...

  19. Catalytic Synthesis of Ethyl Ester From Some Common Oils ...

    African Journals Online (AJOL)

    Catalytic conversion of ethanol to fatty acid ethyl esters (FAEE) was carried out by homogeneous and heterogeneous transesterification of melon seed, shea butter and neem seed oils using NaOH, KOH and 5wt%CaO/Al2O3 catalyst systems respectively. Oil content of the seeds from n-hexane or hot water extract ranged ...

  20. Ethyl ester purpurine-18 from Gossypium mustelinum (Malvaceae)

    International Nuclear Information System (INIS)

    Silva, Tania Maria Sarmento; Camara, Celso Amorim; Barbosa-Filho, Jose Maria; Giulietti, Ana Maria

    2010-01-01

    The phaeophorbide ethyl ester named Purpurine-18 and the flavonoids quercetin and kaempferol were obtained by chromatographic procedures from the chloroform fraction of aerial parts of Gossypium mustelinum. The structure of these compound was determined by NMR, IR and mass spectra data analysis. This is the first occurrence of this compound in Angiosperm. (author)

  1. Ethyl Alcohol Extract of Hizikia fusiforme Induces Caspase ...

    African Journals Online (AJOL)

    Erah

    In this study, the role of the ethyl alcohol extract of H. fusiforme (EAHF) in the induction of apoptosis in ... closely related to the induction of apoptosis via the downregulation of IAP family members such as IAP-. 1, IAP-2 ... induces apoptosis in a variety of cancer cells through ... Total cell extracts were prepared using PRO-.

  2. Antidiarrheal Activity of the Ethyl Acetate Extract of Morinda ...

    African Journals Online (AJOL)

    Methods: The ethyl acetate extract of Morinda morindoides (250, 500, and 1000 mg/kg body weight) was administered orally to three groups of rats (five animals per group) in order to evaluate the activity of the extract against castor oil-induced diarrhea model in rat. Two other groups received normal saline (5mg/kg) and ...

  3. Radio-sensitizing effect of ethyl caffeate on nasopharyngeal ...

    African Journals Online (AJOL)

    3Department of Clinical Laboratory, The 5th People's Hospital of Ji'nan, Ji'nan ... Purpose: To investigate the radio-sensitizing effect of ethyl caffeate (ETF) on naso-pharyngeal ... malignant solid tumors of head and neck which ... Excess irradiation could result in severe side .... protein bands were probed with corresponding.

  4. Synthesis of Ethyl Nalidixate: A Medicinal Chemistry Experiment

    Science.gov (United States)

    Leslie, Ray; Leeb, Elaine; Smith, Robert B.

    2012-01-01

    A series of laboratory experiments that complement a medicinal chemistry lecture course in drug design and development have been developed. The synthesis of ethyl nalidixate covers three separate experimental procedures, all of which can be completed in three, standard three-hour lab classes and incorporate aspects of green chemistry such as…

  5. Effects of pesticide (Chlorpyrifos Ethyl) on the fingerlings of catfish ...

    African Journals Online (AJOL)

    Acute toxicity bioassay of the organophosphate pesticide chlorpyrifos ethyl on the fingerlings of Clarias gariepinus was evaluated to determine its effect on the survival, body morphology and the lethal concentration (LC50). Following a preliminary bioassay in mg/l concentration which showed 100% mortality, fish were ...

  6. Ethyl tertiary-butyl ether: a toxicological review.

    Science.gov (United States)

    McGregor, Douglas

    2007-05-01

    A number of oxygenated compounds (oxygenates) are available for use in gasoline to reduce vehicle exhaust emissions, reduce the aromatic compound content, and avoid the use of organo-lead compounds, while maintaining high octane numbers. Ethyl tertiary-butyl ether (ETBE) is one such compound. The current use of ETBE in gasoline or petrol is modest but increasing, with consequently similar trends in the potential for human exposure. Inhalation is the most likely mode of exposure, with about 30% of inhaled ETBE being retained by the lungs and distributed around the body. Following cessation of exposure, the blood concentration of ETBE falls rapidly, largely as a result of its metabolism to tertiary-butyl alcohol (TBA) and acetaldehyde. TBA may be further metabolized, first to 2-methyl-1,2-propanediol and then to 2-hydroxyisobutyrate, the two dominant metabolites found in urine of volunteers and rats. The rapid oxidation of acetaldehyde suggests that its blood concentration is unlikely to rise above normal as a result of human exposure to sources of ETBE. Single-dose toxicity tests show that ETBE has low toxicity and is essentially nonirritant to eyes and skin; it did not cause sensitization in a maximization test in guinea pigs. Neurological effects have been observed only at very high exposure concentrations. There is evidence for an effect of ETBE on the kidney of rats. Increases in kidney weight were seen in both sexes, but protein droplet accumulation (with alpha(2u)-globulin involvement) and sustained increases in cell proliferation occurred only in males. In liver, centrilobular necrosis was induced in mice, but not rats, after exposure by inhalation, although this lesion was reported in some rats exposed to very high oral doses of ETBE. The proportion of liver cells engaged in S-phase DNA synthesis was increased in mice of both sexes exposed by inhalation. ETBE has no specific effects on reproduction, development, or genetic material. Carcinogenicity studies

  7. Skeletal Muscle Pyruvate Dehydrogenase Phosphorylation and Lactate Accumulation During Sprint Exercise in Normoxia and Severe Acute Hypoxia: Effects of Antioxidants

    Directory of Open Access Journals (Sweden)

    David Morales-Alamo

    2018-03-01

    Full Text Available Compared to normoxia, during sprint exercise in severe acute hypoxia the glycolytic rate is increased leading to greater lactate accumulation, acidification, and oxidative stress. To determine the role played by pyruvate dehydrogenase (PDH activation and reactive nitrogen and oxygen species (RNOS in muscle lactate accumulation, nine volunteers performed a single 30-s sprint (Wingate test on four occasions: two after the ingestion of placebo and another two following the intake of antioxidants, while breathing either hypoxic gas (PIO2 = 75 mmHg or room air (PIO2 = 143 mmHg. Vastus lateralis muscle biopsies were obtained before, immediately after, 30 and 120 min post-sprint. Antioxidants reduced the glycolytic rate without altering performance or VO2. Immediately after the sprints, Ser293- and Ser300-PDH-E1α phosphorylations were reduced to similar levels in all conditions (~66 and 91%, respectively. However, 30 min into recovery Ser293-PDH-E1α phosphorylation reached pre-exercise values while Ser300-PDH-E1α was still reduced by 44%. Thirty minutes after the sprint Ser293-PDH-E1α phosphorylation was greater with antioxidants, resulting in 74% higher muscle lactate concentration. Changes in Ser293 and Ser300-PDH-E1α phosphorylation from pre to immediately after the sprints were linearly related after placebo (r = 0.74, P < 0.001; n = 18, but not after antioxidants ingestion (r = 0.35, P = 0.15. In summary, lactate accumulation during sprint exercise in severe acute hypoxia is not caused by a reduced activation of the PDH. The ingestion of antioxidants is associated with increased PDH re-phosphorylation and slower elimination of muscle lactate during the recovery period. Ser293 re-phosphorylates at a faster rate than Ser300-PDH-E1α during the recovery period, suggesting slightly different regulatory mechanisms.

  8. In silico screening, genotyping, molecular dynamics simulation and activity studies of SNPs in pyruvate kinase M2.

    Directory of Open Access Journals (Sweden)

    Ponnusamy Kalaiarasan

    Full Text Available Role of, 29-non-synonymous, 15-intronic, 3-close to UTR, single nucleotide polymorphisms (SNPs and 2 mutations of Human Pyruvate Kinase (PK M2 were investigated by in-silico and in-vitro functional studies. Prediction of deleterious substitutions based on sequence homology and structure based servers, SIFT, PANTHER, SNPs&GO, PhD-SNP, SNAP and PolyPhen, depicted that 19% emerged common between all the mentioned programs. SNPeffect and HOPE showed three substitutions (C31F, Q310P and S437Y in-silico as deleterious and functionally important. In-vitro activity assays showed C31F and S437Y variants of PKM2 with reduced activity, while Q310P variant was catalytically inactive. The allosteric activation due to binding of fructose 1-6 bisphosphate (FBP was compromised in case of S437Y nsSNP variant protein. This was corroborated through molecular dynamics (MD simulation study, which was also carried out in other two variant proteins. The 5 intronic SNPs of PKM2, associated with sporadic breast cancer in a case-control study, when subjected to different computational analyses, indicated that 3 SNPs (rs2856929, rs8192381 and rs8192431 could generate an alternative transcript by influencing splicing factor binding to PKM2. We propose that these, potentially functional and important variations, both within exons and introns, could have a bearing on cancer metabolism, since PKM2 has been implicated in cancer in the recent past.

  9. Novel binding motif and new flexibility revealed by structural analyses of a pyruvate dehydrogenase-dihydrolipoyl acetyltransferase subcomplex from the Escherichia coli pyruvate dehydrogenase multienzyme complex.

    Science.gov (United States)

    Arjunan, Palaniappa; Wang, Junjie; Nemeria, Natalia S; Reynolds, Shelley; Brown, Ian; Chandrasekhar, Krishnamoorthy; Calero, Guillermo; Jordan, Frank; Furey, William

    2014-10-24

    The Escherichia coli pyruvate dehydrogenase multienzyme complex contains multiple copies of three enzymatic components, E1p, E2p, and E3, that sequentially carry out distinct steps in the overall reaction converting pyruvate to acetyl-CoA. Efficient functioning requires the enzymatic components to assemble into a large complex, the integrity of which is maintained by tethering of the displaced, peripheral E1p and E3 components to the E2p core through non-covalent binding. We here report the crystal structure of a subcomplex between E1p and an E2p didomain containing a hybrid lipoyl domain along with the peripheral subunit-binding domain responsible for tethering to the core. In the structure, a region at the N terminus of each subunit in the E1p homodimer previously unseen due to crystallographic disorder was observed, revealing a new folding motif involved in E1p-E2p didomain interactions, and an additional, unexpected, flexibility was discovered in the E1p-E2p didomain subcomplex, both of which probably have consequences in the overall multienzyme complex assembly. This represents the first structure of an E1p-E2p didomain subcomplex involving a homodimeric E1p, and the results may be applicable to a large range of complexes with homodimeric E1 components. Results of HD exchange mass spectrometric experiments using the intact, wild type 3-lipoyl E2p and E1p are consistent with the crystallographic data obtained from the E1p-E2p didomain subcomplex as well as with other biochemical and NMR data reported from our groups, confirming that our findings are applicable to the entire E1p-E2p assembly. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Novel Binding Motif and New Flexibility Revealed by Structural Analyses of a Pyruvate Dehydrogenase-Dihydrolipoyl Acetyltransferase Subcomplex from the Escherichia coli Pyruvate Dehydrogenase Multienzyme Complex*

    Science.gov (United States)

    Arjunan, Palaniappa; Wang, Junjie; Nemeria, Natalia S.; Reynolds, Shelley; Brown, Ian; Chandrasekhar, Krishnamoorthy; Calero, Guillermo; Jordan, Frank; Furey, William

    2014-01-01

    The Escherichia coli pyruvate dehydrogenase multienzyme complex contains multiple copies of three enzymatic components, E1p, E2p, and E3, that sequentially carry out distinct steps in the overall reaction converting pyruvate to acetyl-CoA. Efficient functioning requires the enzymatic components to assemble into a large complex, the integrity of which is maintained by tethering of the displaced, peripheral E1p and E3 components to the E2p core through non-covalent binding. We here report the crystal structure of a subcomplex between E1p and an E2p didomain containing a hybrid lipoyl domain along with the peripheral subunit-binding domain responsible for tethering to the core. In the structure, a region at the N terminus of each subunit in the E1p homodimer previously unseen due to crystallographic disorder was observed, revealing a new folding motif involved in E1p-E2p didomain interactions, and an additional, unexpected, flexibility was discovered in the E1p-E2p didomain subcomplex, both of which probably have consequences in the overall multienzyme complex assembly. This represents the first structure of an E1p-E2p didomain subcomplex involving a homodimeric E1p, and the results may be applicable to a large range of complexes with homodimeric E1 components. Results of HD exchange mass spectrometric experiments using the intact, wild type 3-lipoyl E2p and E1p are consistent with the crystallographic data obtained from the E1p-E2p didomain subcomplex as well as with other biochemical and NMR data reported from our groups, confirming that our findings are applicable to the entire E1p-E2p assembly. PMID:25210042

  11. 19 CFR 10.99 - Importation of ethyl alcohol for nonbeverage purposes.

    Science.gov (United States)

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Importation of ethyl alcohol for nonbeverage purposes. 10.99 Section 10.99 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION, DEPARTMENT OF HOMELAND... Provisions Ethyl Alcohol § 10.99 Importation of ethyl alcohol for nonbeverage purposes. (a) If claim is made...

  12. Hyperpolarized [1-(13) C]pyruvate MRI for noninvasive examination of placental metabolism and nutrient transport: A feasibility study in pregnant guinea pigs.

    Science.gov (United States)

    Friesen-Waldner, Lanette J; Sinclair, Kevin J; Wade, Trevor P; Michael, Banoub; Chen, Albert P; de Vrijer, Barbra; Regnault, Timothy R H; McKenzie, Charles A

    2016-03-01

    To test the feasibility of hyperpolarized [1-(13) C]pyruvate magnetic resonance imaging (MRI) for noninvasive examination of guinea pig fetoplacental metabolism and nutrient transport. Seven pregnant guinea pigs with a total of 30 placentae and fetuses were anesthetized and scanned at 3T. T1 -weighted (1) H images were obtained from the maternal abdomen. An 80 mM solution of hyperpolarized [1-(13) C]pyruvate (hereafter referred to as pyruvate) was injected into a vein in the maternal foot. Time-resolved 3D (13) C images were acquired starting 10 seconds after the beginning of bolus injection and every 10 seconds after to 50 seconds. The pregnant guinea pigs were recovered after imaging. Regions of interest (ROIs) were drawn around the maternal heart and each placenta and fetal liver in all slices in the (1) H images. These ROIs were copied to the (13) C images and were used to calculate the sum of the pyruvate and lactate signal intensities for each organ. The signal intensities were normalized by the volume of the organ and the maximum signal in the maternal heart. No adverse events were observed in the pregnant guinea pigs and natural pupping occurred at term (∼68 days). Pyruvate signal was observed in all 30 placentae, and lactate, a by-product of pyruvate metabolism, was also observed in all placentae. The maximum pyruvate and lactate signals in placentae occurred at 20 seconds. In addition to the observation of pyruvate and lactate signals in the placentae, both pyruvate and lactate signals were observed in all fetal livers. The maximum pyruvate and lactate signals in the fetal livers occurred at 10 seconds and 20 seconds, respectively. This work demonstrates the feasibility of using hyperpolarized [1-(13) C]pyruvate MRI to noninvasively examine fetoplacental metabolism and transport of pyruvate in guinea pigs. Hyperpolarized (13) C MRI may provide a novel method for longitudinal studies of fetoplacental abnormalities. © 2015 Wiley Periodicals, Inc.

  13. Phaleria macrocarpa Boerl. (Thymelaeaceae Leaves Increase SR-BI Expression and Reduce Cholesterol Levels in Rats Fed a High Cholesterol Diet

    Directory of Open Access Journals (Sweden)

    Yosie Andriani

    2015-03-01

    Full Text Available In vitro and in vivo studies of the activity of Phaleria macrocarpa Boerl (Thymelaeaceae leaves against the therapeutic target for hypercholesterolemia were done using the HDL receptor (SR-BI and hypercholesterolemia-induced Sprague Dawley rats. The in vitro study showed that the active fraction (CF6 obtained from the ethyl acetate extract (EMD and its component 2',6',4-trihydroxy-4'-methoxybenzophenone increased the SR-BI expression by 95% and 60%, respectively. The in vivo study has proven the effect of EMD at 0.5 g/kgbw dosage in reducing the total cholesterol level by 224.9% and increasing the HDL cholesterol level by 157% compared to the cholesterol group. In the toxicity study, serum glutamate oxalate transaminase (SGOT and serum glutamate pyruvate transaminase (SGPT activity were observed to be at normal levels. The liver histology also proved no toxicity and abnormalities in any of the treatment groups, so it can be categorized as non-toxic to the rat liver. The findings taken together show that P. macrocarpa leaves are safe and suitable as an alternative control and prevention treatment for hypercholesterolemia in Sprague Dawley rats.

  14. Decaffeination process characteristic of Robusta coffee in single column reactor using ethyl acetate solvent

    Directory of Open Access Journals (Sweden)

    Sukrisno Widyotomo

    2009-08-01

    Full Text Available Consumers drink coffee not as nutrition source, but as refreshment drink. For coffee consumers who have high tolerance for caffeine, coffee may warm up and refresh their bodies. High caffeine content in coffee beans may cause several complaints to consumers who are susceptible to caffeine. One of the efforts, for coffee market expansion is product diversification to decaffeinated coffee. Decaffeination process is one of process to reduce caffeine content from agricultural products. Indonesian Coffee and Cocoa Research Institute in collaboration with Bogor Agricultural University has developed a single column reactor for coffee beans decaffeination. The aim of this research is to study process characteristic of coffee decaffeination in single column reactor using ethyl acetate (C4H8O2 solvent. Treatments applicated in the research were time and temperature process. Temperature treatment were 50—60OC, 60—70OC, 70—80OC, 80—90OC and 90—100OC. Time treatment were 2 h, 4 h, 6 h, 8 h, 10 h, and 12 h Size of Robusta coffee beans used were less than 5.5 mm (A4, between 5.5 mm and 6.5 mm (A3, between 6.5 mm and 7.5 mm (A2, and more than 7.5 mm (A1. The result showed that decaffeination process with ethyl acetate solvent will be faster when its temperature was higher and smaller bean size. For bean size less than 5,5 mm, decaffeination process by 10% ethyl acetat can be done 8—10 hours in 90—100OC solvent temperature or 12 hours in 60—70OC solvent temperature for 0.3% caffein content. Organoleptic test showed that 90—100OC temperature solvent treatment decreased coffee flavor, which aroma, bitterness and body values were 1.9 each . Key words : Coffee, caffeine, decaffeination, quality, single column.

  15. Combined Hyperpolarized 13C-pyruvate MRS and 18F-FDG PET (HyperPET) Estimates of Glycolysis in Canine Cancer Patients

    DEFF Research Database (Denmark)

    Hansen, Adam E.; Gutte, Henrik; Holst, Pernille

    2018-01-01

    13C Magnetic Resonance Spectroscopy (MRS) using hyperpolarized 13C-labeled pyruvate as a substrate offers a measure of pyruvate-lactate interconversion and is thereby a marker of the elevated aerobic glycolysis (Warburg effect) generally exhibited by cancer cells. Here, we aim to compare hyperpol......13C Magnetic Resonance Spectroscopy (MRS) using hyperpolarized 13C-labeled pyruvate as a substrate offers a measure of pyruvate-lactate interconversion and is thereby a marker of the elevated aerobic glycolysis (Warburg effect) generally exhibited by cancer cells. Here, we aim to compare...

  16. Comparison the effectiveness of pyruvic acid 50% and salicylic acid 30% in the treatment of acne

    Directory of Open Access Journals (Sweden)

    Fariba Jaffary

    2016-01-01

    Full Text Available Background: Acne vulgaris is a chronic inflammatory disease of the pilosebaceous follicles and one of the most common skin diseases. The peeling method has been recently found to be effective for acne treatment. This study aimed to compare the efficacy of pyruvic acid 50% and salicylic acid 30% peeling in the treatment of mild to moderate acne. Materials and Methods: In a prospective single-blinded clinical trial, 86 patients with acne were randomly assigned into two groups. In both groups, the routine treatment of acne (topical solution of erythromycin 4%, triclorocarban soap, and sunscreen were used twice a day for 8 weeks. In addition, salicylic acid 30% for the control group and pyruvic acid 50% for the case group were used. In both groups, acne severity index (ASI was calculated before and at week 2, 4, 6, and 8 of the treatment. Patient satisfaction was assessed at the end of the treatment. Side effects were recorded using a checklist. Results: In both groups, the reduction in the number of comedones, papules, and ASI were statistically significant (P < 0.001 in the course of treatment. However, it was not significant regarding the number of pustules (P = 0.09. None of the number of comedone, papules, pustules, and ASI was statistically different between study groups. Both treatment groups had similar side effects except for scaling in the fifth session, which was significantly lower in salicylic acid - treated patients (P = 0.015. Conclusion: Both pyruvic acid 50% and salicylic acid 30% are effective in the improvement of mild to moderate acne with no significant difference in efficacy and side effects.

  17. Comparison the effectiveness of pyruvic acid 50% and salicylic acid 30% in the treatment of acne.

    Science.gov (United States)

    Jaffary, Fariba; Faghihi, Gita; Saraeian, Sara; Hosseini, Sayed Mohsen

    2016-01-01

    Acne vulgaris is a chronic inflammatory disease of the pilosebaceous follicles and one of the most common skin diseases. The peeling method has been recently found to be effective for acne treatment. This study aimed to compare the efficacy of pyruvic acid 50% and salicylic acid 30% peeling in the treatment of mild to moderate acne. In a prospective single-blinded clinical trial, 86 patients with acne were randomly assigned into two groups. In both groups, the routine treatment of acne (topical solution of erythromycin 4%, triclorocarban soap, and sunscreen) were used twice a day for 8 weeks. In addition, salicylic acid 30% for the control group and pyruvic acid 50% for the case group were used. In both groups, acne severity index (ASI) was calculated before and at week 2, 4, 6, and 8 of the treatment. Patient satisfaction was assessed at the end of the treatment. Side effects were recorded using a checklist. In both groups, the reduction in the number of comedones, papules, and ASI were statistically significant ( P < 0.001) in the course of treatment. However, it was not significant regarding the number of pustules ( P = 0.09). None of the number of comedone, papules, pustules, and ASI was statistically different between study groups. Both treatment groups had similar side effects except for scaling in the fifth session, which was significantly lower in salicylic acid - treated patients ( P = 0.015). Both pyruvic acid 50% and salicylic acid 30% are effective in the improvement of mild to moderate acne with no significant difference in efficacy and side effects.

  18. Maturation of pig oocytes in vitro in a medium with pyruvate

    Directory of Open Access Journals (Sweden)

    H. Gonzales-Figueroa

    2005-06-01

    Full Text Available The aim of in vitro maturation oocyte systems is to produce oocytes of comparable quality to those derived in vivo. The present study was designed to examine the surface morphological changes of the cumulus-oocyte complex (COC and nuclear maturation in a culture system containing pyruvate. Ovaries were obtained from a slaughterhouseand transported to the laboratory within 2 h at 35-39ºC,and rinsed three times in 0.9% NaCl. The COCs were harvested from the ovaries and in vitro maturation was evaluated in San Marcos (SM medium, a chemically defined culture system containing 22.3 mM sodium pyruvate. Oocytes were cultured in SM, SM + porcine follicular fluid (pFF and in SM + pFF + gonadotropins (eCG and hCG for 20-22 h and then without hormonal supplements for an additional 20-22 h. After culture, the degree of cumulus expansion and frequency of nuclear maturation were determined. Oocytes matured in SM (40.9% and SM + pFF (42.9% showed moderate cumulus expansion, whereas oocytes matured in SM + pFF + gonadotropins (54.6% showed high cumulus expansion. The maturation rate of cultured oocytes, measured in function of the presence of the polar corpuscle, did not differ significantly between SM (40.9 ± 3.6% and SM + pFF (42.9 ± 3.7%. These results indicate that pig oocytes can be successfully matured in a chemically definedmedium and suggest a possible bifunctional role of pyruvate as an energy substrate and as an antioxidant protecting oocytes against the stress of the in vitro environment.

  19. Protective Effect of Pyruvate Against Radiation-Induced Damage in Collagenized Tissues

    Science.gov (United States)

    Griko, Y. V.; Yan, Xiaoli

    2016-01-01

    Exposure to high doses of ionizing radiation produces both acute and late effects on the collagenized tissues and have profound effects on wound healing. Because of the crucial practical importance for new radioprotective agents, our study has been focused on evaluation of the efficacy of non-toxic naturally occurring compounds to protect tissue integrity against high-dose gamma radiation. Here, we demonstrate that molecular integrity of collagen may serve as a sensitive biological marker for quantitative evaluation of molecular damage to collagenized tissue and efficacy of radioprotective agents. Increasing doses of gamma radiation (0-50kGy) result in progressive destruction of the native collagen fibrils, which provide a structural framework, strength, and proper milieu for the regenerating tissue. The strategy used in this study involved the thermodynamic specification of all structural changes in collagenized matrix of skin, aortic heart valve, and bone tissue induced by different doses and conditions of g-irradiation. This study describes a simple biophysical approach utilizing the Differential Scanning Calorimetry (DSC) to characterize the structural resistance of the aortic valve matrix exposed to different doses of g-irradiation. It allows us to identify the specific response of each constituent as well as to determine the influence of the different treatments on the characteristic parameters of protein structure. We found that pyruvate, a substance that naturally occurs in the body, provide significant protection (up to 80%) from biochemical and biomechanical damage to the collagenized tissue through the effective targeting of reactive oxygen species. The recently discovered role of pyruvate in the cell antioxidant defense to O2 oxidation, and its essential constituency in the daily human diet, indicate that the administration of pyruvate-based radioprotective formulations may provide safe and effective protection from deleterious effects of ionizing

  20. A comparison of quantitative methods for clinical imaging with hyperpolarized (13)C-pyruvate.

    Science.gov (United States)

    Daniels, Charlie J; McLean, Mary A; Schulte, Rolf F; Robb, Fraser J; Gill, Andrew B; McGlashan, Nicholas; Graves, Martin J; Schwaiger, Markus; Lomas, David J; Brindle, Kevin M; Gallagher, Ferdia A

    2016-04-01

    Dissolution dynamic nuclear polarization (DNP) enables the metabolism of hyperpolarized (13)C-labelled molecules, such as the conversion of [1-(13)C]pyruvate to [1-(13)C]lactate, to be dynamically and non-invasively imaged in tissue. Imaging of this exchange reaction in animal models has been shown to detect early treatment response and correlate with tumour grade. The first human DNP study has recently been completed, and, for widespread clinical translation, simple and reliable methods are necessary to accurately probe the reaction in patients. However, there is currently no consensus on the most appropriate method to quantify this exchange reaction. In this study, an in vitro system was used to compare several kinetic models, as well as simple model-free methods. Experiments were performed using a clinical hyperpolarizer, a human 3 T MR system, and spectroscopic imaging sequences. The quantitative methods were compared in vivo by using subcutaneous breast tumours in rats to examine the effect of pyruvate inflow. The two-way kinetic model was the most accurate method for characterizing the exchange reaction in vitro, and the incorporation of a Heaviside step inflow profile was best able to describe the in vivo data. The lactate time-to-peak and the lactate-to-pyruvate area under the curve ratio were simple model-free approaches that accurately represented the full reaction, with the time-to-peak method performing indistinguishably from the best kinetic model. Finally, extracting data from a single pixel was a robust and reliable surrogate of the whole region of interest. This work has identified appropriate quantitative methods for future work in the analysis of human hyperpolarized (13)C data. © 2016 The Authors. NMR in Biomedicine published by John Wiley & Sons Ltd.

  1. Domain interaction in rabbit muscle pyruvate kinase. II. Small angle neutron scattering and computer simulation.

    Science.gov (United States)

    Consler, T G; Uberbacher, E C; Bunick, G J; Liebman, M N; Lee, J C

    1988-02-25

    The effects of ligands on the structure of rabbit muscle pyruvate kinase were studied by small angle neutron scattering. The radius of gyration, RG, decreases by about 1 A in the presence of the substrate phosphoenolpyruvate, but increases by about the same magnitude in the presence of the allosteric inhibitor phenylalanine. With increasing pH or in the absence of Mg2+ and K+, the RG of pyruvate kinase increases. Hence, there is a 2-A difference in RG between two alternative conformations. Length distribution analysis indicates that, under all experimental conditions which increase the radius of gyration, there is a pronounced increase observed in the probability for interatomic distance between 80 and 110 A. These small angle neutron scattering results indicate a "contraction" and "expansion" of the enzyme when it transforms between its active and inactive forms. Using the alpha-carbon coordinates of crystalline cat muscle pyruvate kinase, a length distribution profile was calculated, and it matches the scattering profile of the inactive form. These observations are expected since the crystals were grown in the absence of divalent cations (Stuart, D. I., Levine, M., Muirhead, H., and Stammers, D. K. (1979) J. Mol. Biol. 134, 109-142). Hence, results from neutron scattering, x-ray crystallographic, and sedimentation studies (Oberfelder, R. W., Lee, L. L.-Y., and Lee, J.C. (1984) Biochemistry 23, 3813-3821) are totally consistent with each other. With the aid of computer modeling, the crystal structure has been manipulated in order to effect changes that are consistent with the conformational change described by the solution scattering data. The structural manipulation involves the rotation of the B domain relative to the A domain, leading to the closure of the cleft between these domains. These manipulations resulted in the generation of new sets of atomic (C-alpha) coordinates, which were utilized in calculations, the result of which compared favorably with the

  2. Modeling of the pyruvate production with Escherichia coli: comparison of mechanistic and neural networks-based models.

    Science.gov (United States)

    Zelić, B; Bolf, N; Vasić-Racki, D

    2006-06-01

    Three different models: the unstructured mechanistic black-box model, the input-output neural network-based model and the externally recurrent neural network model were used to describe the pyruvate production process from glucose and acetate using the genetically modified Escherichia coli YYC202 ldhA::Kan strain. The experimental data were used from the recently described batch and fed-batch experiments [ Zelić B, Study of the process development for Escherichia coli-based pyruvate production. PhD Thesis, University of Zagreb, Faculty of Chemical Engineering and Technology, Zagreb, Croatia, July 2003. (In English); Zelić et al. Bioproc Biosyst Eng 26:249-258 (2004); Zelić et al. Eng Life Sci 3:299-305 (2003); Zelić et al Biotechnol Bioeng 85:638-646 (2004)]. The neural networks were built out of the experimental data obtained in the fed-batch pyruvate production experiments with the constant glucose feed rate. The model validation was performed using the experimental results obtained from the batch and fed-batch pyruvate production experiments with the constant acetate feed rate. Dynamics of the substrate and product concentration changes was estimated using two neural network-based models for biomass and pyruvate. It was shown that neural networks could be used for the modeling of complex microbial fermentation processes, even in conditions in which mechanistic unstructured models cannot be applied.

  3. Neuron-astrocyte interactions, pyruvate carboxylation and the pentose phosphate pathway in the neonatal rat brain

    OpenAIRE

    Morken, Tora Sund; Brekke, Eva Mari Førland; Håberg, Asta; Widerøe, Marius; Brubakk, Ann-Mari; Sonnewald, Ursula

    2014-01-01

    Glucose and acetate metabolism and the synthesis of amino acid neurotransmitters, anaplerosis, glutamate-glutamine cycling and the pentose phosphate pathway (PPP) have been extensively investigated in the adult, but not the neonatal rat brain. To do this, 7 day postnatal (P7) rats were injected with [1-(13)C]glucose and [1,2-(13)C]acetate and sacrificed 5, 10, 15, 30 and 45 min later. Adult rats were injected and sacrificed after 15 min. To analyse pyruvate carboxylation and PPP activity duri...

  4. Inborn Errors of Metabolism with Acidosis: Organic Acidemias and Defects of Pyruvate and Ketone Body Metabolism.

    Science.gov (United States)

    Schillaci, Lori-Anne P; DeBrosse, Suzanne D; McCandless, Shawn E

    2018-04-01

    When a child presents with high-anion gap metabolic acidosis, the pediatrician can proceed with confidence by recalling some basic principles. Defects of organic acid, pyruvate, and ketone body metabolism that present with acute acidosis are reviewed. Flowcharts for identifying the underlying cause and initiating life-saving therapy are provided. By evaluating electrolytes, blood sugar, lactate, ammonia, and urine ketones, the provider can determine the likelihood of an inborn error of metabolism. Freezing serum, plasma, and urine samples during the acute presentation for definitive diagnostic testing at the provider's convenience aids in the differential diagnosis. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Micellar phase boundaries under the influence of ethyl alcohol

    International Nuclear Information System (INIS)

    Bergeron, Denis E.

    2016-01-01

    The Compton spectrum quenching technique is used to monitor the effect of ethyl alcohol (EtOH) additions on phase boundaries in two systems. In toluenic solutions of the nonionic surfactant, Triton X-100, EtOH shifts the boundary separating the first clear phase from the first turbid phase to higher water:surfactant ratios. In a commonly used scintillant, Ultima Gold AB, the critical micelle concentration is not shifted. The molecular interactions behind the observations and implications for liquid scintillation counting are discussed. - Highlights: • Compton spectrum quenching technique applied to find micellar phase boundaries. • Toluenic Triton X-100 and Ultima Gold AB investigated. • Ethyl alcohol affects phase boundaries in Triton X-100, not in Ultima Gold AB. • Phase boundary observations discussed in terms of relevant molecular interactions.

  6. SPECTROSCOPIC CHARACTERIZATION AND DETECTION OF ETHYL MERCAPTAN IN ORION

    International Nuclear Information System (INIS)

    Kolesniková, L.; Alonso, J. L.; Daly, A. M.; Tercero, B.; Cernicharo, J.; Gordon, B. P.; Shipman, S. T.

    2014-01-01

    New laboratory data of ethyl mercaptan, CH 3 CH 2 SH, in the millimeter- and submillimeter-wave domains (up to 880 GHz) provided very precise values of the spectroscopic constants that allowed the detection of gauche-CH 3 CH 2 SH toward Orion KL. This identification is supported by 77 unblended or slightly blended lines plus no missing transitions in the range 80-280 GHz. A detection of methyl mercaptan, CH 3 SH, in the spectral survey of Orion KL is reported as well. Our column density results indicate that methyl mercaptan is ≅ 5 times more abundant than ethyl mercaptan in the hot core of Orion KL

  7. Contact dermatitis to ethyl-cyanoacrylate-containing glue.

    Science.gov (United States)

    Belsito, D V

    1987-10-01

    3 patients with contact dermatitis to an ethyl cyanoacrylate glue are presented. Although reactions to cyanoacrylate glues are considered rare, more widespread use of these products by nail salons is likely to be associated with an increased incidence of positive reactions. All 3 of our patients came into contact with the glue during "nail wrapping". In this process, ethyl cyanoacrylate or another "instant glue" is used to adhere glue-impregnated silk or linen to the nail plate which is then filed to shape the nail. This procedure creates fine acrylic-containing dust which may facilitate an allergic response. Fine particulate matter may be transferred to other distant cutaneous sites, such as the eyelids, resulting in more widespread cutaneous eruptions. Dermatologists in areas where nail wrapping is becoming more fashionable are advised to be alert to potential cyanoacrylate glue allergies which present as periungual eczema which may be associated with eyelid dermatitis and features of nummular dermatitis particularly over the dorsal hand.

  8. SPECTROSCOPIC CHARACTERIZATION AND DETECTION OF ETHYL MERCAPTAN IN ORION

    Energy Technology Data Exchange (ETDEWEB)

    Kolesniková, L.; Alonso, J. L.; Daly, A. M. [Grupo de Espectroscopía Molecular (GEM), Edificio Quifima, Laboratorios de Espectroscopía y Bioespectroscopía, Parque Científico UVa, Unidad Asociada CSIC, Universidad de Valladolid, E-47011 Valladolid (Spain); Tercero, B.; Cernicharo, J. [Departamento de Astrofísica, Centro de Astrobiología CAB, CSIC-INTA, Ctra. de Torrejón a Ajalvir km 4, E-28850 Madrid (Spain); Gordon, B. P.; Shipman, S. T., E-mail: lucie.kolesnikova@uva.es, E-mail: jlalonso@qf.uva.es, E-mail: adammichael.daly@uva.es, E-mail: terceromb@cab.inta-csic.es, E-mail: jcernicharo@cab.inta-csic.es, E-mail: brittany.gordon@ncf.edu, E-mail: shipman@ncf.edu [Division of Natural Sciences, New College of Florida, Sarasota, FL 34243 (United States)

    2014-03-20

    New laboratory data of ethyl mercaptan, CH{sub 3}CH{sub 2}SH, in the millimeter- and submillimeter-wave domains (up to 880 GHz) provided very precise values of the spectroscopic constants that allowed the detection of gauche-CH{sub 3}CH{sub 2}SH toward Orion KL. This identification is supported by 77 unblended or slightly blended lines plus no missing transitions in the range 80-280 GHz. A detection of methyl mercaptan, CH{sub 3}SH, in the spectral survey of Orion KL is reported as well. Our column density results indicate that methyl mercaptan is ≅ 5 times more abundant than ethyl mercaptan in the hot core of Orion KL.

  9. 3-Chloro-2-ethyl-6-nitro-2H-indazole

    Directory of Open Access Journals (Sweden)

    Mohamed Mokhtar Mohamed Abdelahi

    2017-05-01

    Full Text Available In the title compound, C9H8ClN3O2, the orientation of the ethyl substituent is partly determined by an intramolecular C—H...Cl hydrogen bond. The indazole moiety is slightly folded with an angle of 0.70 (8° between the five- and six-membered rings. In the crystal, molecules pack in layers parallel to [100] through C—H...π(ring and N...;O...π(ring interactions.

  10. Synthesis of new radiotracers based of Ethyl Ester

    International Nuclear Information System (INIS)

    Trabelsi, Donia

    2008-01-01

    The in vivo study of a biochemical or physiological process requires the synthesis of specific radiotracers but also the targeting of these compounds so that they can reach their target tissue. Methodologies original synthesis associated with radioisotopes used, the quantities and chemical forms often have to be available developed. The chemistry of metal complexes booming, we were able to use the ethyl ester combined with technetium, forming a stable radiotracer. Finally, a counting of radioactivity in different rat's organs completed our study. (Author)

  11. Chemical study of ethyl Acetate fraction of Picrasma Javanica Bl.

    Directory of Open Access Journals (Sweden)

    Sri Hainil

    2015-12-01

    Full Text Available N-1 main compound from ethyl acetate fraction of kayu pahit bark (Picrasma Javanica B1 has been isolated and characterized with colom chromatography and continued with preparative chromatography. According to analized from spectrum data used ultraviolet (UV spectroscopy, infra red (IR, 1H RMI (Resonansi Magnet Inti, 13 C RMI, Massa , COSY (Correlated Spectroscopy, HSQC (Heteronuclear Single Quantum Correlation, HMBC ( Heteronuclear Multiple Bond Correlation and literature study showed that the compound of isolation was javanicin A.

  12. Evaluation and Characterization of Biodiesels Obtained Through Ethylic or Methylic Transesterification of Tryacylglicerides in Corn Oil

    Directory of Open Access Journals (Sweden)

    Douglas Queiroz Santos

    2014-06-01

    Full Text Available This work was devoted to the transesterification of corn oil either with methyl or ethyl alcohol and to the characterization of the biodiesels (composed by FAME—fatty acid methyl esters—or FAEE—fatty acid ethyl esters, respectively produced. As an initial hypothesis, it was argued whether or not the two alcohols, both with short molecular chains, would impart significant differences to the chemical characteristics of the two biodiesels from corn oil. The most common properties of the biodiesels were evaluated by determining corresponding parameters for acid value, peroxide value, water content, oxidative stability, free and total glycerin, kinematic viscosity at 40 ℃ and density at 20 ℃, for both chemical routes, FAME and FAEE. In general, values were found to be well within the recommended limits for commercial biodiesel, in accordance with the Brazilian, European and American standard recommendations, except only for the oxidative stability. The methyl biodiesel presented acidity of 0.08 mg KOH/g; peroxide index, 23.77 meq/kg; oxidation stability, 3.10 h; water content, 297.1 mg/kg; total glycerin, 0.092 %; free glycerin, 0.009 %; viscosity, 4.05 mm2/s and density, 878.7 kg/m. The methyl biodiesel presented acidity of 0.11 mg/ KOH; peroxide index, 22.39 meq/kg; oxidation stability, 2.13 h; water content, 264.8 mg/kg; total glycerin, 0.25 %; free glycerin, 0.02 %; viscosity, 4.37 mm2/s and density, 874.0 kg/m. From a direct inspection of chemical data for the two products prepared via the two chemical routes, it can be drawn that values of the physical and chemical parameters for both, methyl and ethyl biodiesels, are essentially similar, except for the oxidative stability. However, the oxidative stability can be suitably adjusted by adding an anti-oxidizing agent to the ethyl biodiesel medium. The two biodiesels are thus promising alternatives to fully replace or to be admixed to the mineral diesel. Relatively to the pure petrol

  13. Sensory reception of the primer pheromone ethyl oleate

    Science.gov (United States)

    Muenz, Thomas S.; Maisonnasse, Alban; Plettner, Erika; Le Conte, Yves; Rössler, Wolfgang

    2012-05-01

    Social work force distribution in honeybee colonies critically depends on subtle adjustments of an age-related polyethism. Pheromones play a crucial role in adjusting physiological and behavioral maturation of nurse bees to foragers. In addition to primer effects of brood pheromone and queen mandibular pheromone—both were shown to influence onset of foraging—direct worker-worker interactions influence adult behavioral maturation. These interactions were narrowed down to the primer pheromone ethyl oleate, which is present at high concentrations in foragers, almost absent in young bees and was shown to delay the onset of foraging. Based on chemical analyses, physiological recordings from the antenna (electroantennograms) and the antennal lobe (calcium imaging), and behavioral assays (associative conditioning of the proboscis extension response), we present evidence that ethyl oleate is most abundant on the cuticle, received by olfactory receptors on the antenna, processed in glomeruli of the antennal lobe, and learned in olfactory centers of the brain. The results are highly suggestive that the primer pheromone ethyl oleate is transmitted and perceived between individuals via olfaction at close range.

  14. Analysis and interpretation of specific ethanol metabolites, ethyl sulfate, and ethyl glucuronide in sewage effluent for the quantitative measurement of regional alcohol consumption.

    Science.gov (United States)

    Reid, Malcolm J; Langford, Katherine H; Mørland, Jørg; Thomas, Kevin V

    2011-09-01

    The quantitative measurement of urinary metabolites in sewage streams and the subsequent estimation of consumption rates of the parent compounds have previously been demonstrated for pharmaceuticals and narcotics. Ethyl sulfate and ethyl glucuronide are excreted in urine following the ingestion of alcohol, and are useful biomarkers for the identification of acute alcohol consumption. This study reports a novel ion-exchange-mediated chromatographic method for the quantitative measurement of ethyl sulfate and ethyl glucuronide in sewage effluent, and presents a novel calculation method for the purposes of relating the resulting sewage concentrations with rates of alcohol consumption in the region. A total of 100 sewage samples covering a 25-day period were collected from a treatment plant servicing approximately 500,000 people, and analyzed for levels of ethyl sulfate and ethyl glucuronide. The resulting data were then used to estimate combined alcohol consumption rates for the region, and the results were compared with alcohol related sales statistics for the same region. Ethyl glucuronide was found to be unstable in sewage effluent. Ethyl sulfate was stable and measurable in all samples at concentrations ranging from 16 to 246 nM. The highest concentrations of the alcohol biomarker were observed during weekend periods. Sixty one percent of the total mass of ethyl sulfate in sewage effluent corresponds to alcohol consumption on Friday and Saturday. Sales statistics for alcohol show that consumption in the region is approximately 6,750 kg/d. The quantity of ethyl sulfate passing through the sewage system is consistent with consumption of 4,900 to 7,800 kg/d.   Sewage epidemiology assessments of ethyl sulfate can provide accurate estimates of community alcohol consumption, and detailed examination of the kinetics of this biomarker in sewage streams can also identify time-dependent trends in alcohol consumption patterns. 2011 by the Research Society on Alcoholism.

  15. Effect of gamma radiation on the concentration of pyruvate and lactate in erythrocytes of healthy men after submaximal physical exercise

    International Nuclear Information System (INIS)

    Zagorski, T.; Dudek, I.; Berkan, L.; Chmielewski, H.; Kedziora, J.

    1993-01-01

    The aim of this work was to study the effect of gamma radiation and submaximal physical exercise on the concentration of final products of anaerobic glycolytic pathway in erythrocytes of healthy men. Twenty one men aged 20-22 were examined. They underwent physical exercise at doses of 2 w/kg body weight for 15 min. Erythrocytes were taken in the rest and after physical exercise and were exposed to gamma radiation (500 Gy doses) from 60 Co source. The concentration of pyruvate was estimated by Fermognost tests and the concentration of lactate by Boehringer Mannheim tests. The submaximal physical exercise was found to cause a significantly increased concentration of pyruvate and lactate in the non-radiated and irradiated erythrocytes. Gamma radiation at 500 Gy dose was found to increase concentration of pyruvate in erythrocytes (in the rest and after physical exercise) with simultaneous decrease of lactate concentration. (author). 17 refs, 1 tab

  16. Recovery of Pyruvic Acid using Tri-n-butylamine Dissolved in Non-Toxic Diluent (Rice Bran Oil)

    Science.gov (United States)

    Pal, Dharm; Keshav, Amit

    2016-04-01

    An attempt has been made to investigate the effectiveness of the vegetable oil based biocompatible solvent for the separation of pyruvic acid from fermentation broth, by using rice bran oil as natural, non-toxic diluent. Reactive extraction of pyruvic acid (0.1-0.5 k mol/m3) from aqueous solutions has been studied using tri-n-butylamine (TBA; 10-70 %) as an extractant dissolved in non toxic rice bran oil at T = 30 ± 1 °C. Results were presented in terms of distribution coefficient (Kd), extraction efficiency (E %), loading ratio (Z), and complexation constant (\\varphi_{α β }). Extraction equilibrium was interpreted using mass action modeling approach. Based on the extent of loading (Z < 0.5) only (1:1), pyruvic acid: TBA complex was proposed. Equilibrium complexation constant was evaluated to 1.22 m3/k mol. Results obtained are useful in understanding the extraction mechanism.

  17. Phase diagram measurements by Heat-flux DSC and thermodynamic calculations of the mixture of the Esters Ethyl undecanoate (C13H26O2) and Ethyl tridecanoate (C15H30O2)

    NARCIS (Netherlands)

    Schaftenaar, H.P.C.

    2006-01-01

    In this report a phase diagram is determined by heat flux DSC of the binary mixture Ethyl undecanoate and Ethyl tridecanoate. Our hypothesis for equilibrium phase behaviour is that the components Ethyl undecanoate and Ethyl tridecanoate do have the same crystal form and they have restricted

  18. Pyruvate oxidase influences the sugar utilization pattern and capsule production in Streptococcus pneumoniae.

    Directory of Open Access Journals (Sweden)

    Sandra M Carvalho

    Full Text Available Pyruvate oxidase is a key function in the metabolism and lifestyle of many lactic acid bacteria and its activity depends on the presence of environmental oxygen. In Streptococcus pneumoniae the protein has been suggested to play a major role in metabolism and has been implicated in virulence, oxidative stress survival and death in stationary phase. Under semi-aerobic conditions, transcriptomic and metabolite profiling analysis of a spxB mutant grown on glucose showed minor changes compared to the wild type, apart from the significant induction of two operons involved in carbohydrate uptake and processing. This induction leads to a change in the sugar utilization capabilities of the bacterium, as indicated by the analysis of the growth profiles of the D39 parent and spxB mutant on alternative carbohydrates. Metabolic analysis and growth experiments showed that inactivation of SpxB has no effect on the glucose fermentation pattern, except under aerobic conditions. More importantly, we show that mutation of spxB results in the production of increased amounts of capsule, the major virulence factor of S. pneumoniae. Part of this increase can be attributed to induction of capsule operon (cps transcription. Therefore, we propose that S. pneumoniae utilizes pyruvate oxidase as an indirect sensor of the oxygenation of the environment, resulting in the adaption of its nutritional capability and the amount of capsule to survive in the host.

  19. Characterization of cDNAs encoding human pyruvate dehydrogenase α subunit

    International Nuclear Information System (INIS)

    Ho, Lap; Wexler, I.D.; Liu, Techung; Thekkumkara, T.J.; Patel, M.S.

    1989-01-01

    A cDNA clone (1,423 base pairs) comprising the entire coding region of the precursor form of the α subunit of pyruvate dehydrogenase (E 1 α) has been isolated from a human liver cDNA library in phage λgt11. The first 29 amino acids deduced from the open reading frame correspond to a typical mitochondrial targeting leader sequence. The remaining 361 amino acids, starting at the N terminus with phenylalanine, represent the mature mitochondrial E 1 α peptide. The cDNA has 43 base pairs in the 5' untranslated region and 210 base pairs in the 3' untranslated region, including a polyadenylylation signal and a short poly(A) tract. The nucleotide sequence of human liver E 1 α cDNA was confirmed by the nucleotide sequences of three overlapping fragments generated from human liver and fibroblast RNA by reverse transcription and DNA amplification by the polymerase chain reaction. This consensus nucleotide sequence of human liver E 1 α cDNA resolves existing discrepancies among three previously reported human E 1 α cDNAs and provides the unambiguous reference sequence needed for the characterization of genetic mutations in pyruvate dehydrogenase-deficient patients

  20. Heavy-atom isotope effects on binding of reactants to lactate dehydrogenase and pyruvate kinase

    International Nuclear Information System (INIS)

    Gawlita, E.

    1993-04-01

    18 O and 13 C kinetic isotope effects have been measured on the reaction of pyruvate kinase with phospho-enol-pyruvate and ADP using a remote label technique. The magnitude of both investigated isotope effects showed a dependence on the concentration of ADP. However, while the carbon effect was simply 'washed out' to unity at high ATP concentration, the oxygen effect becomes inverse and reached 0.9928 at the highest used concentration of ADP. Such a result testifies that the assumption of the negligible effect of isotopic substitution on enzyme-substrate associations remains correct only for carbon effects. An equilibrium 18 O isotope effect on association of oxalate with lactate dehydrogenase in the presence of NADHP has been evaluated by both experimental and theoretical means. Experimental methods, which involved equilibrium dialysis and gas chromatographic/mass spectrometric measurement of isotopic ration, yielded an inverse value of 0.9840. Semiempirical methods involved vibrational analysis of oxalate in two different environments. The comparison of calculated values with the experimentally determined isotope effect indicated that the AM 1 Hamiltonian proved superior to its PM 3 counterpart in this modelling. 160 refs, 8 figs, 18 tabs

  1. n-Octyl gallate as inhibitor of pyruvate carboxylation and lactate gluconeogenesis.

    Science.gov (United States)

    Eler, Gabrielle Jacklin; Santos, Israel Souza; de Moraes, Amarilis Giaretta; Comar, Jurandir Fernando; Peralta, Rosane Marina; Bracht, Adelar

    2015-04-01

    The alkyl gallates are found in several natural and industrial products. In the latter products, these compounds are added mainly for preventing oxidation. In the present work, the potencies of methyl gallate, n-propyl gallate, n-pentyl gallate, and n-octyl gallate as inhibitors of pyruvate carboxylation and lactate gluconeogenesis were evaluated. Experiments were done with isolated mitochondria and the isolated perfused rat liver. The potency of the gallic acid esters as inhibitors of pyruvate carboxylation in isolated mitochondria obeyed the following decreasing sequence: n-octyl gallate > n-pentyl gallate > n-propyl gallate > methyl gallate. A similar sequence of decreasing potency for lactate gluconeogenesis inhibition in the perfused liver was found in terms of the portal venous concentration. Both actions correlate with the lipophilicity of the compounds. The effects are harmful at high concentrations. At appropriate concentrations, however, octyl gallate should act therapeutically because its inhibitory action on gluconeogenesis will contribute further to its proposed antihyperglycemic effects. © 2014 Wiley Periodicals, Inc.

  2. Gluconeogenesis in Leishmania mexicana: contribution of glycerol kinase, phosphoenolpyruvate carboxykinase, and pyruvate phosphate dikinase.

    Science.gov (United States)

    Rodriguez-Contreras, Dayana; Hamilton, Nicklas

    2014-11-21

    Gluconeogenesis is an active pathway in Leishmania amastigotes and is essential for their survival within the mammalian cells. However, our knowledge about this pathway in trypanosomatids is very limited. We investigated the role of glycerol kinase (GK), phosphoenolpyruvate carboxykinase (PEPCK), and pyruvate phosphate dikinase (PPDK) in gluconeogenesis by generating the respective Leishmania mexicana Δgk, Δpepck, and Δppdk null mutants. Our results demonstrated that indeed GK, PEPCK, and PPDK are key players in the gluconeogenesis pathway in Leishmania, although stage-specific differences in their contribution to this pathway were found. GK participates in the entry of glycerol in promastigotes and amastigotes; PEPCK participates in the entry of aspartate in promastigotes, and PPDK is involved in the entry of alanine in amastigotes. Furthermore, the majority of alanine enters into the pathway via decarboxylation of pyruvate in promastigotes, whereas pathway redundancy is suggested for the entry of aspartate in amastigotes. Interestingly, we also found that l-lactate, an abundant glucogenic precursor in mammals, was used by Leishmania amastigotes to synthesize mannogen, entering the pathway through PPDK. On the basis of these new results, we propose a revision in the current model of gluconeogenesis in Leishmania, emphasizing the differences between amastigotes and promastigotes. This work underlines the importance of studying the trypanosomatid intracellular life cycle stages to gain a better understanding of the pathologies caused in humans. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Pyruvate carboxylase is required for glutamine-independent growth of tumor cells

    Science.gov (United States)

    Cheng, Tzuling; Sudderth, Jessica; Yang, Chendong; Mullen, Andrew R.; Jin, Eunsook S.; Matés, José M.; DeBerardinis, Ralph J.

    2011-01-01

    Tumor cells require a constant supply of macromolecular precursors, and interrupting this supply has been proposed as a therapeutic strategy in cancer. Precursors for lipids, nucleic acids, and proteins are generated in the tricarboxylic acid (TCA) cycle and removed from the mitochondria to participate in biosynthetic reactions. Refilling the pool of precursor molecules (anaplerosis) is therefore crucial to maintain cell growth. Many tumor cells use glutamine to feed anaplerosis. Here we studied how “glutamine-addicted” cells react to interruptions of glutamine metabolism. Silencing of glutaminase (GLS), which catalyzes the first step in glutamine-dependent anaplerosis, suppressed but did not eliminate the growth of glioblastoma cells in culture and in vivo. Profiling metabolic fluxes in GLS-suppressed cells revealed induction of a compensatory anaplerotic mechanism catalyzed by pyruvate carboxylase (PC), allowing the cells to use glucose-derived pyruvate rather than glutamine for anaplerosis. Although PC was dispensable when glutamine was available, forcing cells to adapt to low-glutamine conditions rendered them absolutely dependent on PC for growth. Furthermore, in other cell lines, measuring PC activity in nutrient-replete conditions predicted dependence on specific anaplerotic enzymes. Cells with high PC activity were resistant to GLS silencing and did not require glutamine for survival or growth, but displayed suppressed growth when PC was silenced. Thus, PC-mediated, glucose-dependent anaplerosis allows cells to achieve glutamine independence. Induction of PC during chronic suppression of glutamine metabolism may prove to be a mechanism of resistance to therapies targeting glutaminolysis. PMID:21555572

  4. Methylobacterium sp. isolated from a Finnish paper machine produces highly pyruvated galactan exopolysaccharide.

    Science.gov (United States)

    Verhoef, René; de Waard, Pieter; Schols, Henk A; Siika-aho, Matti; Voragen, Alphons G J

    2003-09-01

    The slime-forming bacterium Methylobacterium sp. was isolated from a Finnish paper machine and its exopolysaccharide (EPS) was produced on laboratory scale. Sugar compositional analysis revealed a 100% galactan (EPS). However, FT-IR showed a very strong peak at 1611 cm(-1) showing the presence of pyruvate. Analysis of the pyruvate content revealed that, based on the sugar composition, the EPS consists of a trisaccharide repeating unit consisting of D-galactopyranose and [4,6-O-(1-carboxyethylidene)]-D-galactopyranose with a molar ratio of 1:2, respectively. Both linkage analysis and 2D homo- and heteronuclear 1H and 13C NMR spectroscopy revealed the following repeating unit: -->3)-[4,6-O-(1-carboxyethylidene)]-alpha-D-Galp-(1-->3)[4,6-O-(1-carboxyethylidene)]-alpha-D-Galp-(1-->3)-alpha-D-Galp-(1-->. By enrichment cultures from various ground and compost heap samples a polysaccharide-degrading culture was obtained that produced an endo acting enzyme able to degrade the EPS described. The enzyme hydrolysed the EPS to a large extent, releasing oligomers that mainly consisted out of two repeating units.

  5. Pyruvate oxidase influences the sugar utilization pattern and capsule production in Streptococcus pneumoniae.

    Science.gov (United States)

    Carvalho, Sandra M; Farshchi Andisi, Vahid; Gradstedt, Henrik; Neef, Jolanda; Kuipers, Oscar P; Neves, Ana R; Bijlsma, Jetta J E

    2013-01-01

    Pyruvate oxidase is a key function in the metabolism and lifestyle of many lactic acid bacteria and its activity depends on the presence of environmental oxygen. In Streptococcus pneumoniae the protein has been suggested to play a major role in metabolism and has been implicated in virulence, oxidative stress survival and death in stationary phase. Under semi-aerobic conditions, transcriptomic and metabolite profiling analysis of a spxB mutant grown on glucose showed minor changes compared to the wild type, apart from the significant induction of two operons involved in carbohydrate uptake and processing. This induction leads to a change in the sugar utilization capabilities of the bacterium, as indicated by the analysis of the growth profiles of the D39 parent and spxB mutant on alternative carbohydrates. Metabolic analysis and growth experiments showed that inactivation of SpxB has no effect on the glucose fermentation pattern, except under aerobic conditions. More importantly, we show that mutation of spxB results in the production of increased amounts of capsule, the major virulence factor of S. pneumoniae. Part of this increase can be attributed to induction of capsule operon (cps) transcription. Therefore, we propose that S. pneumoniae utilizes pyruvate oxidase as an indirect sensor of the oxygenation of the environment, resulting in the adaption of its nutritional capability and the amount of capsule to survive in the host.

  6. Ketogenic diet in pyruvate dehydrogenase complex deficiency: short- and long-term outcomes.

    Science.gov (United States)

    Sofou, Kalliopi; Dahlin, Maria; Hallböök, Tove; Lindefeldt, Marie; Viggedal, Gerd; Darin, Niklas

    2017-03-01

    Our aime was to study the short- and long-term effects of ketogenic diet on the disease course and disease-related outcomes in patients with pyruvate dehydrogenase complex deficiency, the metabolic factors implicated in treatment outcomes, and potential safety and compliance issues. Pediatric patients diagnosed with pyruvate dehydrogenase complex deficiency in Sweden and treated with ketogenic diet were evaluated. Study assessments at specific time points included developmental and neurocognitive testing, patient log books, and investigator and parental questionnaires. A systematic literature review was also performed. Nineteen patients were assessed, the majority having prenatal disease onset. Patients were treated with ketogenic diet for a median of 2.9 years. All patients alive at the time of data registration at a median age of 6 years. The treatment had a positive effect mainly in the areas of epilepsy, ataxia, sleep disturbance, speech/language development, social functioning, and frequency of hospitalizations. It was also safe-except in one patient who discontinued because of acute pancreatitis. The median plasma concentration of ketone bodies (3-hydroxybutyric acid) was 3.3 mmol/l. Poor dietary compliance was associated with relapsing ataxia and stagnation of motor and neurocognitive development. Results of neurocognitive testing are reported for 12 of 19 patients. Ketogenic diet was an effective and safe treatment for the majority of patients. Treatment effect was mainly determined by disease phenotype and attainment and maintenance of ketosis.

  7. Differential regulation of mitochondrial pyruvate carrier genes modulates respiratory capacity and stress tolerance in yeast.

    Directory of Open Access Journals (Sweden)

    Alba Timón-Gómez

    Full Text Available Mpc proteins are highly conserved from yeast to humans and are necessary for the uptake of pyruvate at the inner mitochondrial membrane, which is used for leucine and valine biosynthesis and as a fuel for respiration. Our analysis of the yeast MPC gene family suggests that amino acid biosynthesis, respiration rate and oxidative stress tolerance are regulated by changes in the Mpc protein composition of the mitochondria. Mpc2 and Mpc3 are highly similar but functionally different: Mpc2 is most abundant under fermentative non stress conditions and important for amino acid biosynthesis, while Mpc3 is the most abundant family member upon salt stress or when high respiration rates are required. Accordingly, expression of the MPC3 gene is highly activated upon NaCl stress or during the transition from fermentation to respiration, both types of regulation depend on the Hog1 MAP kinase. Overexpression experiments show that gain of Mpc2 function leads to a severe respiration defect and ROS accumulation, while Mpc3 stimulates respiration and enhances tolerance to oxidative stress. Our results identify the regulated mitochondrial pyruvate uptake as an important determinant of respiration rate and stress resistance.

  8. Differential regulation of mitochondrial pyruvate carrier genes modulates respiratory capacity and stress tolerance in yeast.

    Science.gov (United States)

    Timón-Gómez, Alba; Proft, Markus; Pascual-Ahuir, Amparo

    2013-01-01

    Mpc proteins are highly conserved from yeast to humans and are necessary for the uptake of pyruvate at the inner mitochondrial membrane, which is used for leucine and valine biosynthesis and as a fuel for respiration. Our analysis of the yeast MPC gene family suggests that amino acid biosynthesis, respiration rate and oxidative stress tolerance are regulated by changes in the Mpc protein composition of the mitochondria. Mpc2 and Mpc3 are highly similar but functionally different: Mpc2 is most abundant under fermentative non stress conditions and important for amino acid biosynthesis, while Mpc3 is the most abundant family member upon salt stress or when high respiration rates are required. Accordingly, expression of the MPC3 gene is highly activated upon NaCl stress or during the transition from fermentation to respiration, both types of regulation depend on the Hog1 MAP kinase. Overexpression experiments show that gain of Mpc2 function leads to a severe respiration defect and ROS accumulation, while Mpc3 stimulates respiration and enhances tolerance to oxidative stress. Our results identify the regulated mitochondrial pyruvate uptake as an important determinant of respiration rate and stress resistance.

  9. 3-Bromopyruvate antagonizes effects of lactate and pyruvate, synergizes with citrate and exerts novel anti-glioma effects.

    Science.gov (United States)

    El Sayed, S M; El-Magd, R M Abou; Shishido, Y; Chung, S P; Diem, T H; Sakai, T; Watanabe, H; Kagami, S; Fukui, K

    2012-02-01

    Oxidative stress-energy depletion therapy using oxidative stress induced by D-amino acid oxidase (DAO) and energy depletion induced by 3-bromopyruvate (3BP) was reported recently (El Sayed et al., Cancer Gene Ther., 19, 1-18, 2012). Even in the presence of oxygen, cancer cells oxidize glucose preferentially to produce lactate (Warburg effect) which seems vital for cancer microenvironment and progression. 3BP is a closely related structure to lactate and pyruvate and may antagonize their effects as a novel mechanism of its action. Pyruvate exerted a potent H(2)O(2) scavenging effect to exogenous H(2)O(2), while lactate had no scavenging effect. 3BP induced H(2)O(2) production. Pyruvate protected against H(2)O(2)-induced C6 glioma cell death, 3BP-induced C6 glioma cell death but not against DAO/D-serine-induced cell death, while lactate had no protecting effect. Lactate and pyruvate protected against 3BP-induced C6 glioma cell death and energy depletion which were overcome with higher doses of 3BP. Lactate and pyruvate enhanced migratory power of C6 glioma which was blocked by 3BP. Pyruvate and lactate did not protect against C6 glioma cell death induced by other glycolytic inhibitors e.g. citrate (inhibitor of phosphofructokinase) and sodium fluoride (inhibitor of enolase). Serial doses of 3BP were synergistic with citrate in decreasing viability of C6 glioma cells and spheroids. Glycolysis subjected to double inhibition using 3BP with citrate depleted ATP, clonogenic power and migratory power of C6 glioma cells. 3BP induced a caspase-dependent cell death in C6 glioma. 3BP was powerful in decreasing viability of human glioblastoma multiforme cells (U373MG) and C6 glioma in a dose- and time-dependent manner.

  10. Differences between magnesium-activated and manganese-activated pyruvate kinase from the muscle of Concholepas concholepas.

    Science.gov (United States)

    González, R; Carvajal, N; Morán, A

    1984-01-01

    In contrast to the Mg2+-activated enzyme, in the presence of Mn2+ pyruvate kinase exhibits hyperbolic kinetics with respect to the substrate phosphoenolpyruvate and is insensitive to fructose 1,6-biphosphate, phenylalanine and alanine. However, with both metal activated species inhibition by excess ADP is observed. In contrast with Mg2+, which affords significant protection against inactivation caused by 5,5'-dithiobis (2-nitrobenzoic acid), the rate of inactivation by this reagent is increased in the presence of Mn2+. Differences in conformational changes induced by combination of pyruvate kinase with Mg2+ or Mn2+ were indicated by u.v. difference spectra.

  11. Preparation of C-II labeled pyruvic acid for use in assessment of hypoxia in tumors. Project 4

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    Of the three methods of synthesis of C-II-labeled pyruvic acid that we had proposed to investigate in order to determine the best and most appropriate synthesis of C-II-labeled pyruvate, the cold chemistry of Method A, via an isocyanide intermediate, has been verified. Similarly, the cold chemistry of Method B, via the 1,3-dithiane derivative, has been verified up to the deprotection and last step of the synthesis. The difficulties which have been encountered with the biochemistry of Method C from ribulose 1,5-diphosphate, have yet to be resolved. 12 refs., 6 figs

  12. Effect of Trinexapac-ethyl on Increased Resistance to Drought Stress in Wheatgrass (Agropyron desertorum L.

    Directory of Open Access Journals (Sweden)

    mohamad hossein sheikh mohamadi

    2017-10-01

    Full Text Available Introduction: Drought is one of the most detrimental abiotic stresses for turfgrass growth across a wide range of geographic locations. Most cool-season grass species are not well adapted to extended periods of drought, particularly during summer months. Decline in turf quality caused by drought stress is a major concern in turfgrass culture. Therefore, developing management practices for improving drought resistance of turfgrasses has become essential in arid and semi-arid regions, especially during water use restriction. One strategy to improve plant drought resistance is to promote drought avoidance by reducing water loss during drought, which may be achieved by slowing growth rate of shoots and lowering leaf area canopy to reduce demand for water. Application of growth regulators is one of the methods for increasing resistance of plants to biotic and abiotic stresses. Trinexapac-ethyl (TE is one of the most widely used PGRs in the management of cool-season and warm-season turfgrass species. TE absorbed quickly by foliage and slow cell elongation through inhibiting of converting one form of gibberellic acid (GA20 to another (GA1. Most studies conducted under non-stressed conditions found that TE application increased chlorophyll content, turf quality, turf density and reduced shoot extension rate. We hypothesized that TE may influence plant tolerance to drought stress. Limited available data─ as reported in the above referred studies─ suggest that TE application may be beneficial for plant tolerance to stresses, but the effectiveness varies with turfgrass species, dose and duration of TE treatment, and type of stress. The main aim of this research is to evaluate the effect of Trinexapac-ethyl on increased resistance to drought stress in wheatgrass. Materials and Methods: Wheatgrass (Agropyron desertorum L. was used in this study. This study was conducted in field conditions at Isfahan University of Technology, Isfahan, Iran.. Wheatgrass

  13. Enhancing the [13C]bicarbonate signal in cardiac hyperpolarized [1‐13C]pyruvate MRS studies by infusion of glucose, insulin and potassium

    DEFF Research Database (Denmark)

    Lauritzen, Mette Hauge; Laustsen, Christoffer; Butt, Sadia Asghar

    2013-01-01

    A change in myocardial metabolism is a known effect of several diseases. MRS with hyperpolarized 13C‐labelled pyruvate is a technique capable of detecting changes in myocardial pyruvate metabolism, and has proven to be useful for the evaluation of myocardial ischaemia in vivo. However, during fas...

  14. Persistent changes in the initial rate of pyruvate transport by isolated rat liver mitochondria after preincubation with adenine nucleotides and calcium ions

    NARCIS (Netherlands)

    Vaartjes, W.J.; Breejen, J.N. den; Geelen, M.J.H.; Bergh, S.G. van den

    1980-01-01

    1. Preincubation of isolated rat-liver mitochondria in the presence of adenine nucleotides or Ca2+ results in definite and persistent changes in the initial rate of pyruvate transport. 2. These changes in the rate of pyruvate transport are accompanied by equally persistent changes in the opposite

  15. Gas chromatography-mass spectrometry of ethyl palmitate calibration and resolution with ethyl oleate as biomarker ethanol sub acute in urine application study

    Science.gov (United States)

    Suaniti, Ni Made; Manurung, Manuntun

    2016-03-01

    Gas Chromatography-Mass Spectrometry is used to separate two and more compounds and identify fragment ion specific of biomarker ethanol such as palmitic acid ethyl ester (PAEE), as one of the fatty acid ethyl esters as early detection through conyugated reaction. This study aims to calibrate ethyl palmitate and develop analysis with oleate acid. This methode can be used analysis ethanol and its chemistry biomarker in ethanol sub-acute consumption as analytical forensic toxicology. The result show that ethanol level in urine rats Wistar were 9.21 and decreased 6.59 ppm after 48 hours consumption. Calibration curve of ethyl palmitate was y = 0.2035 x + 1.0465 and R2 = 0.9886. Resolution between ethyl palmitate and oleate were >1.5 as good separation with fragment ion specific was 88 and the retention time was 18 minutes.

  16. H2S-induced S-sulfhydration of pyruvate carboxylase contributes to gluconeogenesis in liver cells.

    Science.gov (United States)

    Ju, YoungJun; Untereiner, Ashley; Wu, Lingyun; Yang, Guangdong

    2015-11-01

    Cystathionine gamma-lyase (CSE)-derived hydrogen sulfide (H(2)S) possesses diverse roles in the liver, affecting lipoprotein synthesis, insulin sensitivity, and mitochondrial biogenesis. H(2)S S-sulfhydration is now proposed as a major mechanism for H(2)S-mediated signaling. Pyruvate carboxylase (PC) is an important enzyme for gluconeogenesis. S-sulfhydration regulation of PC by H(2)S and its implication in gluconeogenesis in the liver have been unknown. Gene expressions were analyzed by real-time PCR and western blotting, and protein S-sulfhydration was assessed by both modified biotin switch assay and tag switch assay. Glucose production and PC activity was measured with coupled enzyme assays, respectively. Exogenously applied H(2)S stimulates PC activity and gluconeogenesis in both HepG2 cells and mouse primary liver cells. CSE overexpression enhanced but CSE knockout reduced PC activity and gluconeogenesis in liver cells, and blockage of PC activity abolished H(2)S-induced gluconeogenesis. H(2)S had no effect on the expressions of PC mRNA and protein, while H(2)S S-sulfhydrated PC in a dithiothreitol-sensitive way. PC S-sulfhydration was significantly strengthened by CSE overexpression but attenuated by CSE knockout, suggesting that H(2)S enhances glucose production through S-sulfhydrating PC. Mutation of cysteine 265 in human PC diminished H(2)S-induced PC S-sulfhydration and activity. In addition, high-fat diet feeding of mice decreased both CSE expression and PC S-sulfhydration in the liver, while glucose deprivation of HepG2 cells stimulated CSE expression. CSE/H(2)S pathway plays an important role in the regulation of glucose production through S-sulfhydrating PC in the liver. Tissue-specific regulation of CSE/H(2)S pathway might be a promising therapeutic target of diabetes and other metabolic syndromes. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Impact of the Staphylococcus epidermidis LytSR two-component regulatory system on murein hydrolase activity, pyruvate utilization and global transcriptional profile

    Directory of Open Access Journals (Sweden)

    Yu Fangyou

    2010-11-01

    Full Text Available Abstract Background Staphylococcus epidermidis has emerged as one of the most important nosocomial pathogens, mainly because of its ability to colonize implanted biomaterials by forming a biofilm. Extensive studies are focused on the molecular mechanisms involved in biofilm formation. The LytSR two-component regulatory system regulates autolysis and biofilm formation in Staphylococcus aureus. However, the role of LytSR played in S. epidermidis remained unknown. Results In the present study, we demonstrated that lytSR knock-out in S. epidermidis did not alter susceptibility to Triton X-100 induced autolysis. Quantitative murein hydrolase assay indicated that disruption of lytSR in S. epidermidis resulted in decreased activities of extracellular murein hydrolases, although zymogram showed no apparent differences in murein hydrolase patterns between S. epidermidis strain 1457 and its lytSR mutant. Compared to the wild-type counterpart, 1457ΔlytSR produced slightly more biofilm, with significantly decreased dead cells inside. Microarray analysis showed that lytSR mutation affected the transcription of 164 genes (123 genes were upregulated and 41 genes were downregulated. Specifically, genes encoding proteins responsible for protein synthesis, energy metabolism were downregulated, while genes involved in amino acid and nucleotide biosynthesis, amino acid transporters were upregulated. Impaired ability to utilize pyruvate and reduced activity of arginine deiminase was observed in 1457ΔlytSR, which is consistent with the microarray data. Conclusions The preliminary results suggest that in S. epidermidis LytSR two-component system regulates extracellular murein hydrolase activity, bacterial cell death and pyruvate utilization. Based on the microarray data, it appears that lytSR inactivation induces a stringent response. In addition, LytSR may indirectly enhance biofilm formation by altering the metabolic status of the bacteria.

  18. Disruption of the pdhB pyruvate dehydrogenase [corrected] gene affects colony morphology, in vitro growth and cell invasiveness of Mycoplasma agalactiae.

    Directory of Open Access Journals (Sweden)

    Shivanand Hegde

    Full Text Available The utilization of available substrates, the metabolic potential and the growth rates of bacteria can play significant roles in their pathogenicity. This study concentrates on Mycoplasma agalactiae, which causes significant economic losses through its contribution to contagious agalactia in small ruminants by as yet unknown mechanisms. This lack of knowledge is primarily due to its fastidious growth requirements and the scarcity of genetic tools available for its manipulation and analysis. Transposon mutagenesis of M. agalactiae type strain PG2 resulted in several disruptions throughout the genome. A mutant defective in growth in vitro was found to have a transposon insertion in the pdhB gene, which encodes a component of the pyruvate dehydrogenase complex. This growth difference was quite significant during the actively dividing logarithmic phase but a gradual recovery was observed as the cells approached stationary phase. The mutant also exhibited a different and smaller colony morphology compared to the wild type strain PG2. For complementation, pdhAB was cloned downstream of a strong vpma promoter and upstream of a lacZ reporter gene in a newly constructed complementation vector. When transformed with this vector the pdhB mutant recovered its normal growth and colony morphology. Interestingly, the pdhB mutant also had significantly reduced invasiveness in HeLa cells, as revealed by double immunofluorescence staining. This deficiency was recovered in the complemented strain, which had invasiveness comparable to that of PG2. Taken together, these data indicate that pyruvate dehydrogenase might be an important player in infection with and colonization by M. agalactiae.

  19. Pyruvate induces transient tumor hypoxia by enhancing mitochondrial oxygen consumption and potentiates the anti-tumor effect of a hypoxia-activated prodrug TH-302.

    Directory of Open Access Journals (Sweden)

    Yoichi Takakusagi

    Full Text Available BACKGROUND: TH-302 is a hypoxia-activated prodrug (HAP of bromo isophosphoramide mustard that is selectively activated within hypoxic regions in solid tumors. Our recent study showed that intravenously administered bolus pyruvate can transiently induce hypoxia in tumors. We investigated the mechanism underlying the induction of transient hypoxia and the combination use of pyruvate to potentiate the anti-tumor effect of TH-302. METHODOLOGY/RESULTS: The hypoxia-dependent cytotoxicity of TH-302 was evaluated by a viability assay in murine SCCVII and human HT29 cells. Modulation in cellular oxygen consumption and in vivo tumor oxygenation by the pyruvate treatment was monitored by extracellular flux analysis and electron paramagnetic resonance (EPR oxygen imaging, respectively. The enhancement of the anti-tumor effect of TH-302 by pyruvate treatment was evaluated by monitoring the growth suppression of the tumor xenografts inoculated subcutaneously in mice. TH-302 preferentially inhibited the growth of both SCCVII and HT29 cells under hypoxic conditions (0.1% O2, with minimal effect under aerobic conditions (21% O2. Basal oxygen consumption rates increased after the pyruvate treatment in SCCVII cells in a concentration-dependent manner, suggesting that pyruvate enhances the mitochondrial respiration to consume excess cellular oxygen. In vivo EPR oxygen imaging showed that the intravenous administration of pyruvate globally induced the transient hypoxia 30 min after the injection in SCCVII and HT29 tumors at the size of 500-1500 mm(3. Pretreatment of SCCVII tumor bearing mice with pyruvate 30 min prior to TH-302 administration, initiated with small tumors (∼ 550 mm(3, significantly delayed tumor growth. CONCLUSIONS/SIGNIFICANCE: Our in vitro and in vivo studies showed that pyruvate induces transient hypoxia by enhancing mitochondrial oxygen consumption in tumor cells. TH-302 therapy can be potentiated by pyruvate pretreatment if started at the

  20. Pyruvate induces transient tumor hypoxia by enhancing mitochondrial oxygen consumption and potentiates the anti-tumor effect of a hypoxia-activated prodrug TH-302.

    Science.gov (United States)

    Takakusagi, Yoichi; Matsumoto, Shingo; Saito, Keita; Matsuo, Masayuki; Kishimoto, Shun; Wojtkowiak, Jonathan W; DeGraff, William; Kesarwala, Aparna H; Choudhuri, Rajani; Devasahayam, Nallathamby; Subramanian, Sankaran; Munasinghe, Jeeva P; Gillies, Robert J; Mitchell, James B; Hart, Charles P; Krishna, Murali C

    2014-01-01

    TH-302 is a hypoxia-activated prodrug (HAP) of bromo isophosphoramide mustard that is selectively activated within hypoxic regions in solid tumors. Our recent study showed that intravenously administered bolus pyruvate can transiently induce hypoxia in tumors. We investigated the mechanism underlying the induction of transient hypoxia and the combination use of pyruvate to potentiate the anti-tumor effect of TH-302. The hypoxia-dependent cytotoxicity of TH-302 was evaluated by a viability assay in murine SCCVII and human HT29 cells. Modulation in cellular oxygen consumption and in vivo tumor oxygenation by the pyruvate treatment was monitored by extracellular flux analysis and electron paramagnetic resonance (EPR) oxygen imaging, respectively. The enhancement of the anti-tumor effect of TH-302 by pyruvate treatment was evaluated by monitoring the growth suppression of the tumor xenografts inoculated subcutaneously in mice. TH-302 preferentially inhibited the growth of both SCCVII and HT29 cells under hypoxic conditions (0.1% O2), with minimal effect under aerobic conditions (21% O2). Basal oxygen consumption rates increased after the pyruvate treatment in SCCVII cells in a concentration-dependent manner, suggesting that pyruvate enhances the mitochondrial respiration to consume excess cellular oxygen. In vivo EPR oxygen imaging showed that the intravenous administration of pyruvate globally induced the transient hypoxia 30 min after the injection in SCCVII and HT29 tumors at the size of 500-1500 mm(3). Pretreatment of SCCVII tumor bearing mice with pyruvate 30 min prior to TH-302 administration, initiated with small tumors (∼ 550 mm(3)), significantly delayed tumor growth. Our in vitro and in vivo studies showed that pyruvate induces transient hypoxia by enhancing mitochondrial oxygen consumption in tumor cells. TH-302 therapy can be potentiated by pyruvate pretreatment if started at the appropriate tumor size and oxygen concentration.

  1. Anti-inflammatory activity of methyl palmitate and ethyl palmitate in different experimental rat models

    Energy Technology Data Exchange (ETDEWEB)

    Saeed, Noha M. [Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Cairo (Egypt); El-Demerdash, Ebtehal [Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo (Egypt); Abdel-Rahman, Hanaa M. [Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Cairo (Egypt); Algandaby, Mardi M. [Department of Biology (Botany), Faculty of Science, King Abdulaziz University, Jeddah (Saudi Arabia); Al-Abbasi, Fahad A. [Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah (Saudi Arabia); Abdel-Naim, Ashraf B., E-mail: abnaim@pharma.asu.edu.eg [Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo (Egypt)

    2012-10-01

    Methyl palmitate (MP) and ethyl palmitate (EP) are naturally occurring fatty acid esters reported as inflammatory cell inhibitors. In the current study, the potential anti-inflammatory activity of MP and EP was evaluated in different experimental rat models. Results showed that MP and EP caused reduction of carrageenan-induced rat paw edema in addition to diminishing prostaglandin E2 (PGE2) level in the inflammatory exudates. In lipopolysaccharide (LPS)-induced endotoxemia in rats, MP and EP reduced plasma levels of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6). MP and EP decreased NF-κB expression in liver and lung tissues and ameliorated histopathological changes caused by LPS. Topical application of MP and EP reduced ear edema induced by croton oil in rats. In the same animal model, MP and EP reduced neutrophil infiltration, as indicated by decreased myeloperoxidase (MPO) activity. In conclusion, this study demonstrates the effectiveness of MP and EP in combating inflammation in several experimental models. -- Highlights: ► Efficacy of MP and EP in combating inflammation was displayed in several models. ► MP and EP reduced carrageenan-induced rat paw edema and prostaglandin E2 level. ► MP and EP decreased TNF-α and IL-6 levels in experimental endotoxemia. ► MP and EP reduced NF-κB expression and histological changes in rat liver and lung. ► MP and EP reduced croton oil-induced ear edema and neutrophil infiltration.

  2. Cytotoxic constituents of ethyl acetate fraction from Dianthus superbus.

    Science.gov (United States)

    Ding, Chengli; Zhang, Wu; Li, Jie; Lei, Jiachuan; Yu, Jianqing

    2013-01-01

    The ethyl acetate fraction (EE-DS) from Dianthus superbus was found to possess the cytotoxic activity against cancer cells in previous study. To investigate cytotoxic constituents, the bioassay-guided isolation of compounds from EE-DS was performed. Two dianthramides (1 and 2), three flavonoids (3-5), two coumarins (6 and 7) and three other compounds (8-10) were obtained. Structures of isolated compounds were identified by spectroscopic analysis. Cytotoxicity of the compounds against HepG2 cells was evaluated. Compound 1 showed the strongest cytotoxicity, compounds 10, 4, 3 and 5 had moderate cytotoxicity.

  3. Degradation of ethyl alcohol on niobium hydraxide compounds

    International Nuclear Information System (INIS)

    Artem'eva, M.A.; Maslova, E.S.; Artem'ev, Yu.M.

    1992-01-01

    Samples of niobium hydroxide were prepared from niobium(5) chloride solutions in anhydrous ethanol. Niobium hydroxide groups were applied on the surface of dispersed silica-airsilogel. Pulse microcatalytic method was used to reveal, that synthesized hydroxide catalysed ethanol decomposition at 573 K only along the direction of dehydration with formation of ethylene. Ethylene was also the main product of alcohol degradation on applied samples, and procedure of dehydration reactions was noticeable. Spectra of temperature programmed surface reactions demonstrate the similarity of acidic surface properties of these two types of samples. Hydroxide compounds of niobium and bismuth were tested for correlation. They were active during ethyl alcohol dehydrogenation

  4. Simultaneous hyperpolarized 13C-pyruvate MRI and 18F-FDG-PET in cancer (hyperPET)

    DEFF Research Database (Denmark)

    Gutte, Henrik; Hansen, Adam E.; Henriksen, Sarah T.

    2015-01-01

    named this concept hyper PET. Intravenous injection of the hyperpolarized 13C-pyruvate results in an increase of 13C-lactate, 13C-alanine and 13CCO2 (13C-HCO3) resonance peaks relative to the tissue, disease and the metabolic state probed. Accordingly, with dynamic nuclear polarization (DNP) and use......In this paper we demonstrate, for the first time, the feasibility of a new imaging concept - combined hyperpolarized 13C-pyruvate magnetic resonance spectroscopic imaging (MRSI) and 18F-FDG-PET imaging. This procedure was performed in a clinical PET/MRI scanner with a canine cancer patient. We have...... of 13C-pyruvate it is now possible to directly study the Warburg Effect through the rate of conversion of 13C-pyruvate to 13C-lactate. In this study, we combined it with 18F-FDG-PET that studies uptake of glucose in the cells. A canine cancer patient with a histology verified local recurrence...

  5. “Scanning mutagenesis” of the amino acid sequences flanking phosphorylation site 1 of the mitochondrial pyruvate dehydrogenase complex

    Science.gov (United States)

    The mitochondrial pyruvate dehydrogenase complex is regulated by reversible seryl-phosphorylation of the E1alpha subunit by a dedicated, intrinsic kinase. The phospho-complex is reactivated when dephosphorylated by an intrinsic PP2C-type protein phosphatase. Both the position of the phosphorylated...

  6. An internal deletion in MTH1 enables growth on glucose of pyruvate-decarboxylase negative, non-fermentative Saccharomyces cerevisiae

    NARCIS (Netherlands)

    Oud, B.; Flores, C.L.; Gancedo, C.; Zhang, X.; Trueheart, J.; Daran, J.M.; Pronk, J.T.; Van Maris, A.J.A.

    2012-01-01

    Background Pyruvate-decarboxylase negative (Pdc-) strains of Saccharomyces cerevisiae combine the robustness and high glycolytic capacity of this yeast with the absence of alcoholic fermentation. This makes Pdc-S. cerevisiae an interesting platform for efficient conversion of glucose towards

  7. Leigh syndrome associated with a deficiency of the pyruvate dehydrogenase complex: results of treatment with a ketogenic diet

    NARCIS (Netherlands)

    Wijburg, F. A.; Barth, P. G.; Bindoff, L. A.; Birch-Machin, M. A.; van der Blij, J. F.; Ruitenbeek, W.; TURNBULL, D. M.; Schutgens, R. B.

    1992-01-01

    A one-year-old boy suffering from intermittent lactic acidosis, muscular hypotonia, horizontal gaze paralysis and spasticity in both legs had low activity of the pyruvate dehydrogenase complex associated with low amounts of immunoreactive E 1 alpha and E 1 beta. Leigh syndrome was diagnosed on the

  8. Detection and formation scenario of citric acid, pyruvic acid, and other possible metabolism precursors in carbonaceous meteorites

    Science.gov (United States)

    Cooper, George; Reed, Chris; Nguyen, Dang; Carter, Malika; Wang, Yi

    2011-01-01

    Carbonaceous meteorites deliver a variety of organic compounds to Earth that may have played a role in the origin and/or evolution of biochemical pathways. Some apparently ancient and critical metabolic processes require several compounds, some of which are relatively labile such as keto acids. Therefore, a prebiotic setting for any such individual process would have required either a continuous distant source for the entire suite of intact precursor molecules and/or an energetic and compact local synthesis, particularly of the more fragile members. To date, compounds such as pyruvic acid, oxaloacetic acid, citric acid, isocitric acid, and α-ketoglutaric acid (all members of the citric acid cycle) have not been identified in extraterrestrial sources or, as a group, as part of a “one pot” suite of compounds synthesized under plausibly prebiotic conditions. We have identified these compounds and others in carbonaceous meteorites and/or as low temperature (laboratory) reaction products of pyruvic acid. In meteorites, we observe many as part of three newly reported classes of compounds: keto acids (pyruvic acid and homologs), hydroxy tricarboxylic acids (citric acid and homologs), and tricarboxylic acids. Laboratory syntheses using 13C-labeled reactants demonstrate that one compound alone, pyruvic acid, can produce several (nonenzymatic) members of the citric acid cycle including oxaloacetic acid. The isotopic composition of some of the meteoritic keto acids points to interstellar or presolar origins, indicating that such compounds might also exist in other planetary systems. PMID:21825143

  9. Modeling non-linear kinetics of hyperpolarized [1-(13)C] pyruvate in the crystalloid-perfused rat heart

    NARCIS (Netherlands)

    Mariotti, E.; Orton, M. R.; Eerbeek, O.; Ashruf, J. F.; Zuurbier, C. J.; Southworth, R.; Eykyn, T. R.

    2016-01-01

    Hyperpolarized (13)C MR measurements have the potential to display non-linear kinetics. We have developed an approach to describe possible non-first-order kinetics of hyperpolarized [1-(13)C] pyruvate employing a system of differential equations that agrees with the principle of conservation of mass

  10. Serum Glutamic-Oxaloacetic Transaminase (GOT) and Glutamic-Pyruvic Transaminase (GPT) Levels in Children and Adolescents with Intellectual Disabilities

    Science.gov (United States)

    Lin, Jin-Ding; Lin, Pei-Ying; Chen, Li-Mei; Fang, Wen-Hui; Lin, Lan-Ping; Loh, Ching-Hui

    2010-01-01

    The elevated serum glutamic-oxaloacetic transaminase (GOT) and glutamic-pyruvic transaminase (GPT) rate among people with intellectual disabilities (ID) is unknown and have not been sufficiently studies. The present paper aims to provide the profile of GOT and GPT, and their associated relationship with other biochemical levels of children or…

  11. The anaerobic chytridiomycete fungus Piromyces sp. E2 produces ethanol via pyruvate:formate lyase and an alcohol dehydrogenase E.

    NARCIS (Netherlands)

    Boxma, B.; Voncken, F.L.M.; Jannink, S.A.; Alen, T.A. van; Akhmanova, A.S.; Weelden, S.W. van; Hellemond, J.J. van; Ricard, G.N.S.; Huynen, M.A.; Tielens, A.G.; Hackstein, J.H.P.

    2004-01-01

    Anaerobic chytridiomycete fungi possess hydrogenosomes, which generate hydrogen and ATP, but also acetate and formate as end-products of a prokaryotic-type mixed-acid fermentation. Notably, the anaerobic chytrids Piromyces and Neocallimastix use pyruvate:formate lyase (PFL) for the catabolism of

  12. The pyruvate kinase of Stigmatella aurantiaca is an indole binding protein and essential for development.

    Science.gov (United States)

    Stamm, Irmela; Lottspeich, Friedrich; Plaga, Wulf

    2005-06-01

    Myxospore formation of the myxobacterium Stigmatella aurantiaca can be uncoupled from the cooperative development i.e. fruiting body formation, by low concentrations of indole. Two putative indole receptor proteins were isolated by their capacity to bind indole and identified as pyruvate kinase (PK) and aldehyde dehydrogenase. The PK activity of Stigmatella crude extracts was stimulated by indole. Cloning of the PK gene (pykA) and the construction of a pykA disruption mutant strikingly revealed that PK is essential for multicellular development: Fruiting body formation was abolished in the mutant strain and indole-induced spore formation was delayed. The developmental defects could be complemented by insertion of the pykA gene at the mtaB locus of the Stigmatella genome excluding any polar effects of the pykA disruption.

  13. The effects of creatine pyruvate and creatine citrate on performance during high intensity exercise

    Directory of Open Access Journals (Sweden)

    Purpura Martin

    2008-02-01

    Full Text Available Abstract Background A double-blind, placebo-controlled, randomized study was performed to evaluate the effect of oral creatine pyruvate (Cr-Pyr and creatine citrate (Cr-Cit supplementation on exercise performance in healthy young athletes. Methods Performance during intermittent handgrip exercise of maximal intensity was evaluated before (pretest and after (posttest 28 days of Cr-Pyr (5 g/d, n = 16, Cr-Cit (5 g/d, n = 16 or placebo (pla, 5 g/d, n = 17 intake. Subjects performed ten 15-sec exercise intervals, each followed by 45 sec rest periods. Results Cr-Pyr (p Conclusion It is concluded that four weeks of Cr-Pyr and Cr-Cit intake significantly improves performance during intermittent handgrip exercise of maximal intensity and that Cr-Pyr might benefit endurance, due to enhanced activity of the aerobic metabolism.

  14. Novel Mutations in the PC Gene in Patients with Type B Pyruvate Carboxylase Deficiency

    DEFF Research Database (Denmark)

    Ostergaard, Elsebet; Duno, Morten; Møller, Lisbeth Birk

    2013-01-01

    We have investigated seven patients with the type B form of pyruvate carboxylase (PC) deficiency. Mutation analysis revealed eight mutations, all novel. In a patient with exon skipping on cDNA analysis, we identified a homozygous mutation located in a potential branch point sequence, the first...... possible branch point mutation in PC. Two patients were homozygous for missense mutations (with normal protein amounts on western blot analysis), and two patients were homozygous for nonsense mutations. In addition, a duplication of one base pair was found in a patient who also harboured a splice site...... mutation. Another splice site mutation led to the activation of a cryptic splice site, shown by cDNA analysis.All patients reported until now with at least one missense mutation have had the milder type A form of PC deficiency. We thus report for the first time two patients with homozygous missense...

  15. Monovalent Cation Activation of the Radical SAM Enzyme Pyruvate Formate-Lyase Activating Enzyme.

    Science.gov (United States)

    Shisler, Krista A; Hutcheson, Rachel U; Horitani, Masaki; Duschene, Kaitlin S; Crain, Adam V; Byer, Amanda S; Shepard, Eric M; Rasmussen, Ashley; Yang, Jian; Broderick, William E; Vey, Jessica L; Drennan, Catherine L; Hoffman, Brian M; Broderick, Joan B

    2017-08-30

    Pyruvate formate-lyase activating enzyme (PFL-AE) is a radical S-adenosyl-l-methionine (SAM) enzyme that installs a catalytically essential glycyl radical on pyruvate formate-lyase. We show that PFL-AE binds a catalytically essential monovalent cation at its active site, yet another parallel with B 12 enzymes, and we characterize this cation site by a combination of structural, biochemical, and spectroscopic approaches. Refinement of the PFL-AE crystal structure reveals Na + as the most likely ion present in the solved structures, and pulsed electron nuclear double resonance (ENDOR) demonstrates that the same cation site is occupied by 23 Na in the solution state of the as-isolated enzyme. A SAM carboxylate-oxygen is an M + ligand, and EPR and circular dichroism spectroscopies reveal that both the site occupancy and the identity of the cation perturb the electronic properties of the SAM-chelated iron-sulfur cluster. ENDOR studies of the PFL-AE/[ 13 C-methyl]-SAM complex show that the target sulfonium positioning varies with the cation, while the observation of an isotropic hyperfine coupling to the cation by ENDOR measurements establishes its intimate, SAM-mediated interaction with the cluster. This monovalent cation site controls enzyme activity: (i) PFL-AE in the absence of any simple monovalent cations has little-no activity; and (ii) among monocations, going down Group 1 of the periodic table from Li + to Cs + , PFL-AE activity sharply maximizes at K + , with NH 4 + closely matching the efficacy of K + . PFL-AE is thus a type I M + -activated enzyme whose M + controls reactivity by interactions with the cosubstrate, SAM, which is bound to the catalytic iron-sulfur cluster.

  16. Mechanistic photodecarboxylation of pyruvic acid: Excited-state proton transfer and three-state intersection

    Science.gov (United States)

    Chang, Xue-Ping; Fang, Qiu; Cui, Ganglong

    2014-10-01

    Photodissociation dynamics of pyruvic acid experimentally differs from that of commonly known ketones. We have employed the complete active space self-consistent field and its multi-state second-order perturbation methods to study its photodissociation mechanism in the S0, T1, and S1 states. We have uncovered four nonadiabatic photodecarboxylation paths. (i) The S1 system relaxes via an excited-state intramolecular proton transfer (ESIPT) to a hydrogen-transferred tautomer, near which an S1/S0 conical intersection funnels the S1 to S0 state. Then, some trajectories continue completing the decarboxylation reaction in the S0 state; the remaining trajectories via a reverse hydrogen transfer return to the S0 minimum, from which a thermal decarboxylation reaction occurs. (ii) Due to a small S1 -T1 energy gap and a large S1/T1 spin-orbit coupling, an efficient S1 → T1 intersystem crossing process happens again near this S1/S0 conical intersection. When decaying to T1 state, a direct photodecarboxylation proceeds. (iii) Prior to ESIPT, the S1 system first decays to the T1 state via an S1 → T1 intersystem crossing; then, the T1 system evolves to a hydrogen-transferred tautomer. Therefrom, an adiabatic T1 decarboxylation takes place due to a small barrier of 7.7 kcal/mol. (iv) Besides the aforementioned T1 ESIPT process, there also exists a comparable Norrish type I reaction in the T1 state, which forms the ground-state products of CH3CO and COOH. Finally, we have found that ESIPT plays an important role. It closes the S1-T1 and S1-S0 energy gaps, effecting an S1/T1/S0 three-state intersection region, and mediating nonadiabatic photodecarboxylation reactions of pyruvic acid.

  17. In vitro bioconversion of chitin to pyruvate with thermophilic enzymes.

    Science.gov (United States)

    Honda, Kohsuke; Kimura, Keisuke; Ninh, Pham Huynh; Taniguchi, Hironori; Okano, Kenji; Ohtake, Hisao

    2017-09-01

    Chitin is the second most abundant organic compound on the planet and thus has been regarded as an alternative resource to petroleum feedstocks. One of the key challenges in the biological conversion of biomass-derived polysaccharides, such as cellulose and chitin, is to close the gap between optimum temperatures for enzymatic saccharification and microbial fermentation and to implement them in a single bioreactor. To address this issue, in the present study, we aimed to perform an in vitro, one-pot bioconversion of chitin to pyruvate, which is a precursor of a wide range of useful metabolites. Twelve thermophilic enzymes, including that for NAD + regeneration, were heterologously produced in Escherichia coli and semi-purified by heat treatment of the crude extract of recombinant cells. When the experimentally decided concentrations of enzymes were incubated with 0.5 mg mL -1 colloidal chitin (equivalent to 2.5 mM N-acetylglucosamine unit) and an adequate set of cofactors at 70°C, 0.62 mM pyruvate was produced in 5 h. Despite the use of a cofactor-balanced pathway, determination of the pool sizes of cofactors showed a rapid decrease in ATP concentration, most probably due to the thermally stable ATP-degrading enzyme(s) derived from the host cell. Integration of an additional enzyme set of thermophilic adenylate kinase and polyphosphate kinase led to the deceleration of ATP degradation, and the final product titer was improved to 2.1 mM. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  18. Growth of glycine ethyl ester hydrochloride and its characterizations

    Energy Technology Data Exchange (ETDEWEB)

    Venkatesan, G.; Pari, S., E-mail: sparimyur@gmail.com

    2016-11-15

    Single crystal of glycine ethyl ester hydrochloride by slow evaporation method is reported. The grown crystal characterized by single crystal X-ray diffraction, FT-IR, UV–Vis–NIR and fluorescence spectroscopy. It is established that the crystal falls under the monoclinic system and space group P21/c with the cell parameters as: a=8.565 Å, b=12.943 Å, c=6.272 Å, α=γ=90°, β=103.630º. UV–Vis–NIR spectrum shows indirect allowed transition with a band gap of 5.21 eV and other optical properties are measured. The crystal is also shown to have a high transmittance in the visible region. The third order nonlinear property and optical limiting have been investigated using Z-Scan technique. Complex impedance spectrum measured at the dc conductivity. Dependence of dielectric constant, dielectric loss and ac conductivity on frequency at different temperature of applied ac field is analyzed. The mechanical behavior has been assessed by Vickers microhardness indenter. The thermal behavior of glycine ethyl ester hydrochloride was analyzed using TG/DTA thermal curves. From the thermal study, the material was found to possess thermal stability up to 174 °C. The predicted NLO properties, UV–Vis transmittance and Z-scan studies indicate that is an attractive material for photonics optical limiting applications.

  19. On the high-temperature unimolecular decomposition of ethyl levulinate

    KAUST Repository

    Alabbad, Mohammed; Giri, Binod; Szőri, Milá n; Farooq, Aamir

    2016-01-01

    The pyrolysis of ethyl levulinate (EL) was studied behind reflected shock waves over the temperature range of 1015-1325K and pressures of 750-1650Torr. The reaction progress was followed by measuring ethylene mole fraction using CO2 gas laser absorption near 10.532 μm. The rate coefficients for the unimolecular dissociation of EL were extracted from the initial slope method and further ascertained by using a complete kinetic model. Our data exhibited no discernible pressure dependence under the current experimental conditions. To rationalize our results further, high-level quantum chemical and master equation calculations were employed to calculate the pressure- and temperature-dependence of the reaction. Our calculations revealed that unimolecular dissociation of EL involves simultaneous 1,5-hydrogen shift of the β-hydrogen to the carbonyl group, rupture of the O-C ester bond and formation of the π-bond (C α -C β ). Our results present evidences that the C2H4 elimination from EL occurs in a concerted manner. To our knowledge, this work represents the first experimental and theoretical study of the thermal unimolecular dissociation of ethyl levulinate. © 2016 The Combustion Institute.

  20. On the high-temperature unimolecular decomposition of ethyl levulinate

    KAUST Repository

    Alabbad, Mohammed

    2016-09-20

    The pyrolysis of ethyl levulinate (EL) was studied behind reflected shock waves over the temperature range of 1015-1325K and pressures of 750-1650Torr. The reaction progress was followed by measuring ethylene mole fraction using CO2 gas laser absorption near 10.532 μm. The rate coefficients for the unimolecular dissociation of EL were extracted from the initial slope method and further ascertained by using a complete kinetic model. Our data exhibited no discernible pressure dependence under the current experimental conditions. To rationalize our results further, high-level quantum chemical and master equation calculations were employed to calculate the pressure- and temperature-dependence of the reaction. Our calculations revealed that unimolecular dissociation of EL involves simultaneous 1,5-hydrogen shift of the β-hydrogen to the carbonyl group, rupture of the O-C ester bond and formation of the π-bond (C α -C β ). Our results present evidences that the C2H4 elimination from EL occurs in a concerted manner. To our knowledge, this work represents the first experimental and theoretical study of the thermal unimolecular dissociation of ethyl levulinate. © 2016 The Combustion Institute.

  1. 76 FR 82320 - Ethyl Alcohol for Fuel Use: Determination of the Base Quantity of Imports

    Science.gov (United States)

    2011-12-30

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 332-288] Ethyl Alcohol for Fuel Use: Determination of the Base Quantity of Imports AGENCY: United States International Trade Commission. [[Page 82321

  2. Influence of ethyl-trinexapac on 15N accumulation and distribution and on highland rice yield

    International Nuclear Information System (INIS)

    Alvarez, Rita de Cassia Felix; Crusciol, Carlos Alexandre Costa; Alvarez, Angela Cristina Camarim; Trivelin, Paulo Cesar Ocheuze; Rodrigues, Joao Domingos

    2007-01-01

    The high rice grain yields ensured by sprinkler irrigation have encouraged the use of higher fertilizer doses, mainly the nitrogen fertilizers. However, an improper management of nitrogen fertilization may result in plant lodging. Application of plant regulators may redirect assimilates to grain production while limiting the vegetative growth. This study aimed to: evaluate the influence of the growth regulator Ethyl-trinexapac on plant growth parameters and on 15 N accumulation and distribution in the whole plant and plant components, and determine the contribution of nitrogen taken up in different developmental stages in panicle formation, yield components and rice yield. The experiment was carried out under controlled greenhouse conditions. The treatments consisted of application or not of a plant growth regulator (0 and 200 g active ingredient ha-1 of ethyl-trinexapac) at four plant development stages (beginning to end of tillering; end of tillering and flower differentiation; flower differentiation to flowering; flowering until physiological maturation). The experimental design was arranged in random blocks, in a 2 x 4 factorial scheme, with three replications. The plants were placed in a group of 48 pots. In a group of 24 pots with nutrient solution containing 15 NH 4 SO 4 , plants were collected and separated in parts in the beginning of each pre-established plant development stage and at the end of each stage. In a second group (24 pots), pre-labeled plants were left to grow in nutrient solution with 14 NH 4 SO 4 and harvested at the end of each cycle in order to access 15 N redistribution.. The growth regulator reduced plant height and 15 N accumulation in the panicle and promoted redistribution of the absorbed 15 N, and increased accumulated 15 N in root, stem+sheats and leaves. The contribution of absorbed 15 N to panicle formation in each stage increased with the plant development, though in a lower proportion in the presence of the growth regulator

  3. A review of omega-3 ethyl esters for cardiovascular prevention and treatment of increased blood triglyceride levels

    Directory of Open Access Journals (Sweden)

    Clemens von Schacky

    2006-09-01

    Full Text Available Clemens von SchackyMedizinische Klinik and Poliklinik Innenstadt, University of Munich, Munich, GermanyAbstract: The two marine omega-3 fatty acids eicosapentaenoic acid (EPA and docosahexaenoic acid (DHA, prevalent in fish and fish oils, have been investigated as a strategy towards prophylaxis of atherosclerosis. While the results with fish and fish oils have been not as clear cut, the data generated with the purified ethyl ester forms of these two fatty acids are consistent. Although slight differences in biological activity exist between EPA and DHA, both exert a number of positive actions against atherosclerosis and its complications. EPA and DHA as ethyl esters inhibit platelet aggregability, and reduce serum triglycerides, while leaving other serum lipids essentially unaltered. Glucose metabolism has been studied extensively, and no adverse effects were seen. Pro-atherogenic cytokines are reduced, as are markers of endothelial activation. Endothelial function is improved, vascular occlusion is reduced, and the course of coronary atherosclerosis is mitigated. Heart rate is reduced, and heart rate variability is increased by EPA and DHA. An antiarrhythmic effect can be demonstrated on the supraventricular and the ventricular level. More importantly, two large studies showed reductions in clinical endpoints like sudden cardiac death or major adverse cardiac events. As a consequence, relevant cardiac societies recommend using 1 g/day of EPA and DHA for cardiovascular prevention, after a myocardial infarction and for prevention of sudden cardiac death.Keywords: sudden cardiac death, major adverse cardiac events, cardiovascular prevention, eicosapentaenoic acid, docosahexaenoic acid

  4. Effect of the Ethyl Acetate Fraction of Eugenia uniflora on Proteins Global Expression during Morphogenesis in Candida albicans.

    Science.gov (United States)

    Silva-Rocha, Walicyranison P; de Azevedo, Matheus F; Ferreira, Magda R A; da Silva, Julhiany de Fátima; Svidzinski, Terezinha I E; Milan, Eveline P; Soares, Luiz A L; Rocha, Keyla B F; Uchôa, Adriana F; Mendes-Giannini, Maria J S; Fusco Almeida, Ana M; Chaves, Guilherme M

    2017-01-01

    Candida albicans is able to switch from yeast to hyphal growth and this is an essential step for tissue invasion and establishment of infection. Due to the limited drug arsenal used to treat fungal infections and the constant emergence of resistant strains, it is important to search for new therapeutic candidates. Therefore, this study aimed to investigate by proteomic analysis the role of a natural product ( Eugenia uniflora ) in impairing hypha formation in C. albicans . We also tested the potential action of E. uniflora to prevent and treat oral candidiasis induced in a murine model of oral infection and the ability of polymorphonuclear neutrophils to phagocytize C. albicans cells treated with the ethyl acetate fraction of the extract. We found that this fraction greatly reduced hypha formation after morphogenesis induction in the presence of serum. Besides, several proteins were differentially expressed in cells treated with the fraction. Surprisingly, the ethyl acetate fraction significantly reduced phagocytosis in C. albicans (Mean 120.36 ± 36.71 yeasts/100 PMNs vs. 44.68 ± 19.84 yeasts/100 PMNs). Oral candidiasis was attenuated when C. albicans cells were either pre-incubated in the presence of E. uniflora or when the fraction was applied to the surface of the oral cavity after infection. These results were consistent with the reduction in CFU counts (2.36 vs. 1.85 Log10 CFU/ml) and attenuation of tissue damage observed with histopathological analysis of animals belonging to treated group. We also observed shorter true hyphae by direct examination and histopathological analysis, when cells were treated with the referred natural product. The E. uniflora ethyl acetate fraction was non-toxic to human cells. E. uniflora may act on essential proteins mainly related to cellular structure, reducing the capacity of filamentation and attenuating infection in a murine model, without causing any toxic effect on human cells, suggesting that it may be a future

  5. Persistent changes in the initial rate of pyruvate transport by isolated rat liver mitochondria after preincubation with adenine nucleotides and calcium ions

    OpenAIRE

    Vaartjes, W.J.; Breejen, J.N. den; Geelen, M.J.H.; Bergh, S.G. van den

    1980-01-01

    1. Preincubation of isolated rat-liver mitochondria in the presence of adenine nucleotides or Ca2+ results in definite and persistent changes in the initial rate of pyruvate transport. 2. These changes in the rate of pyruvate transport are accompanied by equally persistent changes in the opposite direction of the activity of pyruvate dehydrogenase (EC. 1.2.4.1). 3. Changes of the transmembrane pH gradient and of the membrane potential, brought about by the pretreatments of the mitochondria, c...

  6. The reduction of plutonium (IV) and neptunium (VI) ions by N,N-ethyl (hydroxyethyl) hydroxylamine in nitric acid

    International Nuclear Information System (INIS)

    Koltunov, V.S.; Baranov, S.M.; Mezhov, E.A.; Taylor, R.J.; May, I.

    1999-01-01

    The kinetics of the reduction of neptunium (VI) and plutonium (IV) ions in nitric acid solution by a new rapid salt free reductant, N,N-ethyl (hydroxyethyl) hydroxylamine, have been studied and rate equations determined. Under equivalent conditions, both Np(VI) and Pu(IV) are reduced faster than by the related reagent, N,N-diethyl hydroxylamine, and it is suggested that this is due to the introduction of the hydroxy group into the reductant molecule. Possible reaction mechanisms have been suggested to account for the observed reaction stoichiometry. (orig.)

  7. In vitro activity of kombucha tea ethyl acetate fraction against Malassezia species isolated from seborrhoeic dermatitis.

    Science.gov (United States)

    Mahmoudi, E; Saeidi, M; Marashi, M A; Moafi, A; Mahmoodi, V; Zeinolabedini Zamani, M

    2016-12-01

    Seborrheic dermatitis is a chronic and recurrent superficial dermatitis in which Malassezia species play an important role. There are different Malassezia species, which have been recently reported to be resistant to common antifungals. Natural sources can be useful alternatives to reduce the emergence of this resistance. Kombucha tea is believed to have potential antimicrobial properties. Regarding this, the present study aimed to investigate the antifungal activity of Kombucha tea ethyl acetate fraction (KEAF) against Malassezia species obtained from the patients with seborrheic dermatitis. A total of 23 clinical isolates were identified by direct microscopic examination and Tween assimilation, and then confirmed by DNA sequencing of ITS regions for Malassezia species. Kombucha tea was fractionated using ethyl acetate (1:2 v/v). The minimum inhibitory concentration (MIC) microdilution assay was used to evaluate the anti- Malssezia activity of KEAF at three concentrations of 10, 40, and 80 mg/mL. The results of the DNA sequence analysis indicated that M. furfur (39.13%) was the predominant species, followed by M. globosa (30.43%), M. sloofie (13.04%), M. sympodialis (13.04%), and M. restricta (4.34%), respectively. Furthermore, KEAF showed inhibitory activity against Malassezia species. Accordingly, KEAF had the lowest and highest MIC value against M. sloofie and M. restricta , respectively. Moreover, the inhibitory effect of the extract was equivalent to that of ketoconazole at 4.8 µg/mL. The findings of the current study highlighted the antifungal properties of KEAF. Therefore, this extract can be promoted as complementary medicine for the treatment of the infections caused by Malassezia .

  8. Performance study of a four-stroke spark ignition engine working with both of hydrogen and ethyl alcohol as supplementary fuel

    Energy Technology Data Exchange (ETDEWEB)

    Al-Baghdadi, M.A.-R.S. [Babylon Univ. (Iraq). Dept. of Mechanical Engineering

    2000-10-01

    The effect of the amount of hydrogen/ethyl alcohol addition on the performance and pollutant emission of a four-stroke spark ignition engine has been studied. The results of the study show that all engine performance parameters have been improved when operating the gasoline spark ignition engine with dual addition of hydrogen and ethyl alcohol. The important improvements of alcohol addition are to reduce the NO{sub x} emission with increase in the higher useful compression ratio and output power of hydrogen-supplemented engine. The addition of 8 mass% of hydrogen, with 30 vol% of ethyl alcohol into a gasoline engine operating at 9 compression ratio and 1500 rpm causes a 48.5% reduction in CO emission, 31.1% reduction in NO{sub x} emission and 58.5% reduction in specific fuel consumption. Moreover, the engine thermal efficiency and output power increased by 10.1 and 4.72%, respectively. When ethyl alcohol is increased over 30%, it causes unstable engine operation which can be related to the fact that the fuel is not vaporized, and this causes a reduction in both the break power and efficiency. (Author)

  9. Reduced TCA Flux in Diabetic Myotubes

    DEFF Research Database (Denmark)

    Gaster, Michael

    2012-01-01

    The diabetic phenotype is complex, requiring elucidation of key initiating defects. Diabetic myotubes express a primary reduced tricarboxylic acid (TCA) cycle flux but at present it is unclear in which part of the TCA cycle the defect is localised. In order to localise the defect we studied ATP p...... production of investigated substrate combinations was significantly reduced in mitochondria isolated from type 2 diabetic subjects compared to lean. However, when ATP synthesis rates at different substrate combinations were normalized to the corresponding individual pyruvate-malate rate...

  10. Development of 68Ga ethyl cysteinate dimer for PET studies

    International Nuclear Information System (INIS)

    Alireza Mirzaei; Jalilian, A.R.; Gholamali Shabani; Ashraf Fakhari; Mehdi Akhlaghi; Davood Beiki

    2016-01-01

    In this work development of 68 Ga-ethyl cysteinate dimer ( 68 Ga-ECD) a 68 Ga tracer for possible cerebral blood flow based on 99m Tc ECD homolog is reported. 68 Ga-ECD was prepared using generator-based 68 GaCl 3 and ECD at optimized conditions. Quality control, stability, partition co-efficient and the biodistribution of the tracer (by tissue counting and PET/CT in rats) was studied. Significant metabolism of the lipophilic tracer into water soluble metabolite(s) led to urinary excretion of the tracer, un-comparable to that of homologous 99m Tc-compound. Cardiac uptake of the complex suggests formation of a possible lipophil cationic complex and/or metabolite. (author)

  11. Hydroxide as general base in the saponification of ethyl acetate.

    Science.gov (United States)

    Mata-Segreda, Julio F

    2002-03-13

    The second-order rate constant for the saponification of ethyl acetate at 30.0 degrees C in H(2)O/D(2)O mixtures of deuterium atom fraction n (a proton inventory experiment) obeys the relation k(2)(n) = 0.122 s(-1) M(-1) (1 - n + 1.2n) (1 - n + 0.48n)/(1 - n + 1.4n) (1 - n + 0.68n)(3). This result is interpreted as a process where formation of the tetrahedral intermediate is the rate-determining step and the transition-state complex is formed via nucleophilic interaction of a water molecule with general-base assistance from hydroxide ion, opposite to the direct nucleophilic collision commonly accepted. This mechanistic picture agrees with previous heavy-atom kinetic isotope effect data of Marlier on the alkaline hydrolysis of methyl formate.

  12. Reactions of ethyl diazoacetate catalyzed by methylrhenium trioxide

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Z.; Espenson, H. [Iowa State Univ., Ames, IA (United States)

    1995-11-03

    Methylrhenium trioxide (CH{sub 3}ReO{sub 3} or MTO) has found wise use in catalysis, including the epoxidation and metathesis of olefins, aldehyde olefination, and oxygen transfer. Extensive reports have now appeared in the area of MTO-catalyzed substrate oxidations with hydrogen peroxide. Certain catalytic applications of MTO for organic reactions that do not utilize peroxide have now been realized. In particular, a catalytic amount of MTO with ethyl diazoacetate (EDA) will convert aromatic imines to aziridines and convert aldehydes and ketones to epoxides. The aziridine preparation proceeds in high yields under anaerobic conditions more conveniently than with existing methods. Compounds with a three-membered heterocyclic ring can be obtained with the EDA/MTO catalytic system. Aromatic imines undergo cycloaddition reactions to give aziridines under mild conditions.

  13. High-temperature unimolecular decomposition of ethyl propionate

    KAUST Repository

    Giri, Binod

    2016-10-09

    This work reports rate coefficients of the thermal unimolecular decomposition reaction of ethyl propionate (EP) behind reflected shock waves over the temperature range of 976–1300 K and pressures of 825–1875 Torr. The reaction progress was monitored by detecting CH near 10.532 μm using CO gas laser absorption. In addition, G3//MP2/aug-cc-pVDZ and master equation calculations were performed to assess the pressure- and temperature-dependence of the reaction. Our calculations revealed that CH elimination occurs via a six-centered retro-ene transition state. Our measured rate data are close to the high-pressure limit and showed no discernable temperature fall off.

  14. Correlation and prediction of mixing thermodynamic properties of ester-containing systems: Ester + alkane and ester + ester binary systems and the ternary dodecane + ethyl pentanoate + ethyl ethanoate

    International Nuclear Information System (INIS)

    Pérez, Noelia; Fernández, Luís; Ortega, Juan; Toledo, Francisco J.; Wisniak, Jaime

    2012-01-01

    Highlights: ► Excess enthalpies and volumes were measured for ester–ester–alkane. ► Mixing behaviour for ester–ester, ester–alkane and ester–ester–alkane are analyzed. ► Correlations with a new polynomial model reproduce well the mixing properties. ► UNIFAC predictions for h E result acceptable excluding the ester–ester mixtures. - Abstract: Excess thermodynamic properties V m E and H m E , have been measured for the ternary mixture dodecane + ethyl pentanoate + ethyl ethanoate and for the corresponding binaries dodecane + ethyl pentanoate, dodecane + ethyl ethanoate, ethyl pentanoate + ethyl ethanoate at 298.15 K. All mixtures show endothermic and expansive effects. Experimental results are correlated with a suitable equation whose final form for the excess ternary quantity M E contains the particular contributions of the three binaries (i–j) and a last term corresponding to the ternary, all of them obtained considering fourth-order interactions. The fit goodness for all mixtures is good and comparable to others equations taken from the literature. In this work the dissolution model for the binaries and ternary is analyzed with a special attention to ester–ester binaries whose behaviour is discussed. The application of the UNIFAC group contribution model to estimate the H m E yields acceptable results for the binaries (with the exception of ester–ester) and for the ternary mixture.

  15. Synthesis, Analgesic and Anti-inflammatory Activities of 3- Ethyl-2 ...

    African Journals Online (AJOL)

    4(3H)-ones and evaluate them for their analgesic and anti-inflammatory activities. Methods: The compounds, 3-ethyl-2-substituted amino-quinazolin-4(3H)-ones, were synthesized by reacting the amino group of 3-ethyl-2-hydrazino ...

  16. Biodegradation and detoxification of chlorimuron-ethyl by Enterobacter ludwigii sp. CE-1.

    Science.gov (United States)

    Pan, Xiong; Wang, Saige; Shi, Nan; Fang, Hua; Yu, Yunlong

    2018-04-15

    The application of the herbicide chlorimuron-ethyl has a lasting toxic effect on some succession crops. Here, a bacterium capable of utilizing chlorimuron-ethyl as the sole source of nitrogen was isolated from the contaminated soil and was identified as Enterobacter ludwigii sp. CE-1, and its detoxification and degradation of the herbicide were then examined. The biodegradation of chlorimuron-ethyl by the isolate CE-1 was significantly accelerated with increasing concentration (1-10mg/l) and temperature (20-40°C). The optimal pH for the degradation of chlorimuron-ethyl by the isolate CE-1 was pH 7.0. A pathway for the biodegradation of chlorimuron-ethyl by the isolate CE-1 was proposed, in which it could be first converted into 2-amino-4-chloro-6-methoxypyrimidine and an intermediate product by the cleavage of the sulfonylurea bridge and then transformed into saccharin via hydrolysis and amidation. The plant height and fresh weight of corn that had been incubated in nutrient solution containing 0.2mg/l of chlorimuron-ethyl significantly recovered to 83.9% and 83.1% compared with those in the uninoculated control, although the root growth inhibition of chlorimuron-ethyl could not be alleviated after inoculation for 14 d. The results indicate that the isolate CE-1 is a promising bacterial resource for the biodegradation and detoxification of chlorimuron-ethyl. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Differential susceptibility of rats and guinea pigs to the ototoxic effects of ethyl benzene

    NARCIS (Netherlands)

    Cappaert, N.L.M.; Klis, S.F.L.; Muijser, H.; Kulig, B.M.; Ravensberg, L.C.; Smoorenburg, G.F.

    2002-01-01

    The present study was designed to compare the ototoxic effects of volatile ethyl benzene in guinea pigs and rats. Rats showed deteriorated auditory thresholds in the mid-frequency range, based on electrocochleography, after 550-ppm ethyl benzene (8 h/day, 5 days). Outer hair cell (OHC) loss was

  18. Simultaneous exposure to ethyl benzene and noise : synergistic effects on outer hair cells

    NARCIS (Netherlands)

    Cappaert, N.L.M.; Klis, S.F.L.; Muijser, H.; Kulig, B.M.; Smoorenburg, G.F.

    2001-01-01

    The effects on hearing of simultaneous exposure to the ototoxic organic solvent ethyl benzene and broad-band noise were evaluated in rats. The effects of three ethyl benzene concentrations (0, 300 or 400 ppm) and three noise levels (95 or 105 dBlin SPL or background noise at 65 dBlin SPL) and all

  19. Biomonitoring of N-ethyl-2-pyrrolidone in automobile varnishers.

    Science.gov (United States)

    Koslitz, Stephan; Meier, Swetlana; Schindler, Birgit Karin; Weiss, Tobias; Koch, Holger Martin; Brüning, Thomas; Käfferlein, Heiko Udo

    2014-12-01

    N-alkyl-2-pyrrolidones are important organic solvents for varnishes in industry. This study investigates exposure to N-ethyl-2-pyrrolidone (NEP) in varnishing of hard plastic components in an automobile plant. Two specific biomarkers of exposure, 5-hydroxy-N-ethyl-2-pyrrolidone (5-HNEP) and 2-hydroxy-N-ethylsuccinimide (2-HESI), were analyzed in urine samples of 14 workers. For this purpose, pre-shift, post-shift and next day pre-shift urine samples were collected midweek. Twelve workers performed regular work tasks (loading, wiping and packing), whereas two workers performed special work tasks including cleaning the sprayer system with organic solvents containing N-alkyl-2-pyrrolidones. Spot urine samples of nine non-exposed persons of the same plant served as controls. Median post-shift urinary levels of workers with regular work tasks (5-HNEP: 0.15 mg/L; 2-HESI: 0.19 mg/L) were ∼5-fold higher compared to the controls (0.03 mg/L each). Continuously increasing metabolite levels, from pre-shift via post-shift to pre-shift samples of the following day, were observed in particular for the two workers with the special working tasks. Maximum levels were 31.01 mg/L (5-HNEP) and 8.45 mg/L (2-HESI). No clear trend was evident for workers with regular working tasks. In summary, we were able to show that workers can be exposed to NEP during varnishing tasks in the automobile industry. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  20. Searching for trans ethyl methyl ether in Orion KL.

    Science.gov (United States)

    Tercero, B; Cernicharo, J; López, A; Brouillet, N; Kolesniková, L; Motiyenko, R A; Margulès, L; Alonso, J L; Guillemin, J-C

    2015-10-01

    We report on the tentative detection of trans ethyl methyl ether (tEME), t-CH 3 CH 2 OCH 3 , through the identification of a large number of rotational lines from each one of the spin states of the molecule towards Orion KL. We also search for gauche-trans-n-propanol, Gt-n-CH 3 CH 2 CH 2 OH, an isomer of tEME in the same source. We have identified lines of both species in the IRAM 30 m line survey and in the ALMA Science Verification data. We have obtained ALMA maps to establish the spatial distribution of these species. Whereas tEME mainly arises from the compact ridge component of Orion, Gt-n-propanol appears at the emission peak of ethanol (south hot core). The derived column densities of these species at the location of their emission peaks are ≤(4.0 ± 0.8) × 10 15 cm -2 and ≤(1.0 ± 0.2)× 10 15 cm -2 for tEME and Gt-n-propanol, respectively. The rotational temperature is ~100 K for both molecules. We also provide maps of CH 3 OCOH, CH 3 CH 2 OCOH, CH 3 OCH 3 , CH 3 OH, and CH 3 CH 2 OH to compare the distribution of these organic saturated O-bearing species containing methyl and ethyl groups in this region. Abundance ratios of related species and upper limits to the abundances of non-detected ethers are provided. We derive an abundance ratio N (CH 3 OCH 3 )/ N (tEME) ≥ 150 in the compact ridge of Orion.

  1. Icosapent ethyl for the treatment of severe hypertriglyceridemia

    Directory of Open Access Journals (Sweden)

    Fares H

    2014-06-01

    Full Text Available Hassan Fares,1 Carl J Lavie,2,3 James J DiNicolantonio,4 James H O'Keefe,5 Richard V Milani2 1Department of Hospital Medicine, Ochsner Medical Center, New Orleans, LA, 2Department of Cardiovascular Diseases, John Ochsner Heart and Vascular Institute, Ochsner Clinical School, University of Queensland School of Medicine, New Orleans, LA, 3Department of Preventive Medicine, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, 4Mid America Heart Institute at Saint Luke's Hospital, Kansas City, MO, 5Mid America Heart Institute, University of Missouri–Kansas City, Kansas City, MO, USA Abstract: Hypertriglyceridemia is a highly prevalent lipid abnormality and it is associated with atherosclerosis, with a growing body of evidence linking elevated triglycerides (TGs with cardiovascular disease. The current major omega-3 polyunsaturated fatty acids, eicosapentaenoic acid (EPA/docosahexaenoic acid (DHA combination, lowers serum TGs while often increasing levels of low-density lipoprotein cholesterol. Icosapent ethyl is an omega-3 polyunsaturated fatty acid with a 96% pure ethyl ester of EPA that has been recently approved for lowering TG levels in patients with very high TGs (≥500 mg/dL, and it does so without significantly affecting serum low-density lipoprotein cholesterol. The potential benefits of omega-3 fatty acid therapy for dyslipidemias will be discussed, including the potential pros and cons of EPA alone versus the more common and readily available EPA/DHA combination therapy. Keywords: triglycerides, low-density lipoprotein, eicosapentaenoic acid, docosahexaenoic acid

  2. Mechanistic photodecarboxylation of pyruvic acid: Excited-state proton transfer and three-state intersection

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Xue-Ping; Fang, Qiu, E-mail: fangqiu917@bnu.edu.cn; Cui, Ganglong, E-mail: ganglong.cui@bnu.edu.cn [Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875 (China)

    2014-10-21

    Photodissociation dynamics of pyruvic acid experimentally differs from that of commonly known ketones. We have employed the complete active space self-consistent field and its multi-state second-order perturbation methods to study its photodissociation mechanism in the S{sub 0}, T{sub 1}, and S{sub 1} states. We have uncovered four nonadiabatic photodecarboxylation paths. (i) The S{sub 1} system relaxes via an excited-state intramolecular proton transfer (ESIPT) to a hydrogen-transferred tautomer, near which an S{sub 1}/S{sub 0} conical intersection funnels the S{sub 1} to S{sub 0} state. Then, some trajectories continue completing the decarboxylation reaction in the S{sub 0} state; the remaining trajectories via a reverse hydrogen transfer return to the S{sub 0} minimum, from which a thermal decarboxylation reaction occurs. (ii) Due to a small S{sub 1} −T{sub 1} energy gap and a large S{sub 1}/T{sub 1} spin-orbit coupling, an efficient S{sub 1} → T{sub 1} intersystem crossing process happens again near this S{sub 1}/S{sub 0} conical intersection. When decaying to T{sub 1} state, a direct photodecarboxylation proceeds. (iii) Prior to ESIPT, the S{sub 1} system first decays to the T{sub 1} state via an S{sub 1} → T{sub 1} intersystem crossing; then, the T{sub 1} system evolves to a hydrogen-transferred tautomer. Therefrom, an adiabatic T{sub 1} decarboxylation takes place due to a small barrier of 7.7 kcal/mol. (iv) Besides the aforementioned T{sub 1} ESIPT process, there also exists a comparable Norrish type I reaction in the T{sub 1} state, which forms the ground-state products of CH{sub 3}CO and COOH. Finally, we have found that ESIPT plays an important role. It closes the S{sub 1}-T{sub 1} and S{sub 1}-S{sub 0} energy gaps, effecting an S{sub 1}/T{sub 1}/S{sub 0} three-state intersection region, and mediating nonadiabatic photodecarboxylation reactions of pyruvic acid.

  3. Inhalation but not transdermal resorption of hand sanitizer ethanol causes positive ethyl glucuronide findings in urine.

    Science.gov (United States)

    Arndt, Torsten; Schröfel, Stefanie; Güssregen, Brunhilde; Stemmerich, Karsten

    2014-04-01

    Ethyl glucuronide (EtG) in urine is considered a specific marker of recent ethanol consumption. There is an ongoing debate about whether inhalation or transdermal resorption of sanitizer ethanol is the underlying cause for positive EtG findings after hand disinfection. Desderman(®) pure (Schülke & Mayr GmbH, Norderstedt) with 78.2g 96% (v/v) ethanol/100g and approx. 10% 2-propanol was used for multiple hand disinfection without and under an exhauster. Simulating a common working day in a clinic, 5 co-workers of our lab used the sanitizer 32 fold within 8h and 2 persons were merely exposed to the sanitizer vapor but without any dermal sanitizer contact. Any additional ethanol intake or exposition was reliably excluded. Spot urine was collected at baseline, after 1, 2, 4, 6 … 14, and finally 24h after the first sanitizer use. A validated LC-MS/MS was used for MRM and MS(3) of EtG and qualitative analyses of ethyl sulfate and 2-propyl glucuronide. Multiple hand disinfection caused positive EtG findings of up to 2.1mg/L or 1.7mg/g creatinine in 4 out of 5 test persons and even of 0.6mg/L or 0.8mg/g for 2 controls which were merely exposed to the sanitizer vapor but without any sanitizer contact. EtG results between the clinical (0.5mg/g) and the forensic (0.1mg/g) cut-off were obtained even 6h after the last sanitizer exposition. An exhauster prevented the sanitizer vapor inhalation and reduced the EtG excretion to mostly below the detection limit of 0.02mg/g. The maximum value was 0.09mg/g. Ethyl sulfate and 2-propyl glucuronide (2-PpG) were detectable only in the EtG positive samples. 2-PpG is a metabolite of 2-propanol, which is quite frequently used in disinfectants. Thus, the detection of this substance can be used in cases of odd EtG results as an indicator of (unintended) sanitizer exposition. Ethanol from hand sanitizers is predominantly incorporated by the respiratory tract but not via the skin. It can cause a distinct ethyl glucuronide excretion and thus

  4. Biodegradation of Ethyl Carbamate and Urea with Lysinibacillus sphaericus MT33 in Chinese Liquor Fermentation.

    Science.gov (United States)

    Cui, Kaixiang; Wu, Qun; Xu, Yan

    2018-02-14

    It is important to reduce the concentration of ethyl carbamate (EC) in fermented foods. However, controlling the formation of EC and its precursor urea is difficult in spontaneous food fermentation because urea is a natural product of nitrogen metabolism. Biodegradation is a better solution to reduce the concentration of EC. This study aimed to reduce the concentration of EC in Chinese liquor via an indigenous strain Lysinibacillus sphaericus MT33. This strain produced urethanase (940 U/L) and urease (1580 U/L) and degraded 76.52% of EC and 56.48% of urea. After inoculation in liquor fermentation, the maximal relative abundance of Lysinibacillus increased from 0.02% to 8.46%, the final EC and urea contents decreased by 41.77% and 28.15%. Moreover, the concentration of EC decreased by 63.32% in liquor. The negative correlation between abundance of Lysinibacillus and contents of EC and urea indicated the effect of L. sphaericus on EC and urea degradation.

  5. Data regarding the growth of Lactobacillus acidophilus NCFM on different carbohydrates and recombinant production of elongation factor G and pyruvate kinase

    DEFF Research Database (Denmark)

    Celebioglu, Hasan Ufuk; Olesen, Sita Vaag; Prehn, Kennie

    2017-01-01

    The present study describes the growth of the very well-known probiotic bacterium Lactobacillus acidophilus NCFM on different carbohydrates. Furthermore, recombinant production of putative moonlighting proteins elongation factor G and pyruvate kinase from this bacterium is described. For further...

  6. Increased expression of pyruvate carboxylase and biotin protein ligase increases lysine production in a biotin prototrophic Corynebacterium glutamicum strain

    DEFF Research Database (Denmark)

    Wang, Zhihao; Moslehi-Jenabian, Soloomeh; Solem, Christian

    2015-01-01

    , and achieved biotin prototrophy. We found that AHP-3, containing pBIO, was able to produce lysine in a medium lacking biotin and that the lysine yield on glucose was similar to what is obtained when using a medium containing biotin. However, there was a decrease in specific growth rate of 20% when the strain...... pimeloyl-Acyl Carrier Protein [ACP]) formation. Pyruvate carboxylase (pycA), a biotin-dependent enzyme needed for lysine biosynthesis and biotin ligase (birA), which is responsible for attaching biotin to pyruvate carboxylase, were overexpressed by replacing the native promoters with the strong superoxide...... dismutase (sod) promoter, to see whether growth could be restored. Neither pycA nor birA overexpression, whether alone or in combination, had an effect on specific growth rate, but they did have a positive effect on lysine yield, which increased by 55% in the strain overexpressing both enzymes....

  7. Formation and utilization of acetoin, an unusual product of pyruvate metabolism by Ehrlich and AS30-D tumor mitochondria.

    Science.gov (United States)

    Baggetto, L G; Lehninger, A L

    1987-07-15

    [14C]Pyruvate was rapidly non-oxidatively decarboxylated by Ehrlich tumor mitochondria at a rate of 40 nmol/min/mg of protein in the presence or absence of ADP. A search for decarboxylation products led to significant amounts of acetoin formed when Ehrlich tumor mitochondria were incubated with 1 mM [14C] pyruvate in the presence of ATP. Added acetoin to aerobic tumor mitochondria was rapidly utilized in the presence of ATP at a rate of 65 nmol/min/mg of protein. Citrate has been found as a product of acetoin utilization and was exported from the tumor mitochondria. Acetoin has been found in the ascitic liquid of Ehrlich and AS30-D tumor-bearing animals. These unusual reactions were not observed in control rat liver mitochondria.

  8. Blood glucose, lactate, pyruvate, glycerol, 3-hydroxybutyrate and acetoacetate measurements in man using a centrifugal analyser with a fluorimetric attachment.

    Science.gov (United States)

    Harrison, J; Hodson, A W; Skillen, A W; Stappenbeck, R; Agius, L; Alberti, K G

    1988-03-01

    Methods are described for the analysis of glucose, lactate, pyruvate, alanine, glycerol, 3-hydroxybutyrate and acetoacetate in perchloric acid extracts of human blood, using the Cobas Bio centrifugal analyser fitted with a fluorimetric attachment. Intra-assay and inter-assay coefficients of variation ranged from 1.9 to 7.9% and from 1.0 to 7.2% respectively. Correlation coefficients ranged from 0.96 to 0.99 against established continuous-flow and manual spectrophotometric methods. All seven metabolites can be measured using a single perchloric acid extract of 20 microliter of blood. The versatility of the assays is such that as little as 100 pmol pyruvate, 3-hydroxybutyrate or as much as 15 nmol glucose can be measured in the same 20 microliter extract.

  9. Ethyl glucuronide, ethyl sulfate, and ethanol in urine after sustained exposure to an ethanol-based hand sanitizer.

    Science.gov (United States)

    Reisfield, Gary M; Goldberger, Bruce A; Crews, Bridgit O; Pesce, Amadeo J; Wilson, George R; Teitelbaum, Scott A; Bertholf, Roger L

    2011-03-01

    To assess the degree of ethanol absorption and subsequent formation of urinary ethyl glucuronide (EtG) and ethyl sulfate (EtS) following sustained application of hand sanitizer, 11 volunteers cleansed their hands with Purell(™) hand sanitizer (62% ethanol) every 5 min for 10 h on three consecutive days. Urine specimens were obtained at the beginning and end of each day of the study, and on the morning of the fourth day. Urinary creatinine, ethanol, EtG, and EtS concentrations were measured. EtG was undetectable in all pre-study urine specimens, but two pre-study specimens had detectable EtS (73 and 37 ng/mL). None of the pre-study specimens had detectable ethanol. The maximum EtG and EtS concentrations over the course of the study were 2001 and 84 ng/mL, respectively, and nearly all EtG- and EtS-positive urine specimens were collected at the conclusion of the individual study days. Only two specimens had detectable EtG at the beginning of any study day (96 and 139 ng/mL), and only one specimen had detectable EtS at the beginning of a study day (64 ng/mL), in addition to the two with detectable EtS prior to the study. Creatinine-adjusted maximum EtG and EtS concentrations were 1998 and 94 μg/g creatinine, respectively. In patients being monitored for ethanol use by urinary EtG concentrations, currently accepted EtG cutoffs do not distinguish between ethanol consumption and incidental exposures, particularly when urine specimens are obtained shortly after sustained use of ethanolcontaining hand sanitizer. Our data suggest that EtS may be an important complementary biomarker in distinguishing ethanol consumption from dermal exposure.

  10. 9-Hydroxyfurodysinin-O-ethyl Lactone: A New Sesquiterpene Isolated from the Tropical Marine Sponge Dysidea arenaria

    Directory of Open Access Journals (Sweden)

    P. Karuso

    2005-10-01

    Full Text Available A new sesquiterpene, 9-hydroxyfurodysinin-O-ethyl lactone, has been isolated from a New Caledonian Dysidea arenaria, along with three known compounds. The possible incorporation of the ethyl ether from the extraction solvent is discussed.

  11. Molecular association of glucose-6-phosphate isomerase and pyruvate kinase M2 with glyceraldehyde-3-phosphate dehydrogenase in cancer cells

    International Nuclear Information System (INIS)

    Das, Mahua R.; Bag, Arup K.; Saha, Shekhar; Ghosh, Alok; Dey, Sumit K.; Das, Provas; Mandal, Chitra; Ray, Subhankar; Chakrabarti, Saikat; Ray, Manju; Jana, Siddhartha S.

    2016-01-01

    For a long time cancer cells are known for increased uptake of glucose and its metabolization through glycolysis. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a key regulatory enzyme of this pathway and can produce ATP through oxidative level of phosphorylation. Previously, we reported that GAPDH purified from a variety of malignant tissues, but not from normal tissues, was strongly inactivated by a normal metabolite, methylglyoxal (MG). Molecular mechanism behind MG mediated GAPDH inhibition in cancer cells is not well understood. GAPDH was purified from Ehrlich ascites carcinoma (EAC) cells based on its enzymatic activity. GAPDH associated proteins in EAC cells and 3-methylcholanthrene (3MC) induced mouse tumor tissue were detected by mass spectrometry analysis and immunoprecipitation (IP) experiment, respectively. Interacting domains of GAPDH and its associated proteins were assessed by in silico molecular docking analysis. Mechanism of MG mediated GAPDH inactivation in cancer cells was evaluated by measuring enzyme activity, Circular dichroism (CD) spectroscopy, IP and mass spectrometry analyses. Here, we report that GAPDH is associated with glucose-6-phosphate isomerase (GPI) and pyruvate kinase M2 (PKM2) in Ehrlich ascites carcinoma (EAC) cells and also in 3-methylcholanthrene (3MC) induced mouse tumor tissue. Molecular docking analyses suggest C-terminal domain preference for the interaction between GAPDH and GPI. However, both C and N termini of PKM2 might be interacting with the C terminal domain of GAPDH. Expression of both PKM2 and GPI is increased in 3MC induced tumor compared with the normal tissue. In presence of 1 mM MG, association of GAPDH with PKM2 or GPI is not perturbed, but the enzymatic activity of GAPDH is reduced to 26.8 ± 5 % in 3MC induced tumor and 57.8 ± 2.3 % in EAC cells. Treatment of MG to purified GAPDH complex leads to glycation at R399 residue of PKM2 only, and changes the secondary structure of the protein complex. PKM2

  12. Pyruvic Oxime Nitrification and Copper and Nickel Resistance by a Cupriavidus pauculus, an Active Heterotrophic Nitrifier-Denitrifier

    OpenAIRE

    Ramirez, Miguel; Obrzydowski, Jennifer; Ayers, Mary; Virparia, Sonia; Wang, Meijing; Stefan, Kurtis; Linchangco, Richard; Castignetti, Domenic

    2014-01-01

    Heterotrophic nitrifiers synthesize nitrogenous gasses when nitrifying ammonium ion. A Cupriavidus pauculus, previously thought an Alcaligenes sp. and noted as an active heterotrophic nitrifier-denitrifier, was examined for its ability to produce nitrogen gas (N2) and nitrous oxide (N2O) while heterotrophically nitrifying the organic substrate pyruvic oxime [CH3–C(NOH)–COOH]. Neither N2 nor N2O were produced. Nucleotide and phylogenetic analyses indicated that the organism is a member of a g...

  13. Performance during a strenuous swimming session is associated with high blood lactate: pyruvate ratio and hypoglycemia in fasted rats.

    Science.gov (United States)

    Travassos, P B; Godoy, G; De Souza, H M; Curi, R; Bazotte, R B

    2018-03-26

    The aim of this study was to investigate the effect of lactatemia elevation and glycemia reduction on strenuous swimming performance in fasted rats. Three rats were placed in a swimming tank at the same time. The first rat was removed immediately (control group) and the remaining ones were submitted to a strenuous swimming session. After the second rat was exhausted (Exh group), the third one was immediately removed from the water (Exe group). According to the period of time required for exhaustion, the rats were divided into four groups: low performance (3-7 min), low-intermediary performance (8-12 min), high-intermediary performance (13-17 min), and high performance (18-22 min). All rats were removed from the swimming tanks and immediately killed by decapitation for blood collection or anesthetized for liver perfusion experiments. Blood glucose, lactate, and pyruvate concentrations, blood lactate/pyruvate ratio, and liver lactate uptake and its conversion to glucose were evaluated. Exhaustion in low and low-intermediary performance were better associated with higher lactate/pyruvate ratio. On the other hand, exhaustion in high-intermediary and high performance was better associated with hypoglycemia. Lactate uptake and glucose production from lactate in livers from the Exe and Exh groups were maintained. We concluded that there is a time sequence in the participation of lactate/pyruvate ratio and hypoglycemia in performance during an acute strenuous swimming section in fasted rats. The liver had an important participation in preventing hyperlactatemia and hypoglycemia during swimming through lactate uptake and its conversion to glucose.

  14. Effects of insulin on perfused liver from streptozotocin-diabetic and untreated rats: 13C NMR assay of pyruvate kinase flux

    International Nuclear Information System (INIS)

    Cohen, S.M.

    1987-01-01

    The effects of insulin in vitro on perfused liver from streptozotocin-diabetic rats and their untreated littermates during gluconeogenesis from either [3- 13 C]alanine + ethanol or [2- 13 C]pyruvate + NH 4 Cl + ethanol were studied by 13 C NMR. A 13 C NMR determination of the rate of pyruvate kinase flux under steady-state conditions of active gluconeogenesis was developed; this assay includes a check on the reuse of recycled pyruvate. The preparations studied provided gradations of pyruvate kinase flux within the confines of the assay's requirement of active gluconeogenesis. By this determination, the rate of pyruvate kinase flux was 0.74 +/- 0.04 of the gluconeogenic rate in liver from 24-h-fasted controls; in liver from 12-h fasted controls, relative pyruvate kinase flux increased to 1.0 +/- 0.2. In diabetic liver, this flux was undetectable by the authors NMR method. Insulin's hepatic influence in vitro was greatest in the streptozotocin model of type 1 diabetes: upon treatment of diabetic liver with 7 nM insulin in vitro, a partial reversal of many of the differences noted between diabetic and control liver was demonstrated by 13 C NMR. A major effect of insulin in vitro upon diabetic liver was the induction of a large increase in the rate of pyruvate kinase flux, bringing relative and absolute fluxes up to the levels measured in 24-h-fasted controls. By way of comparison, the effects of ischemia on diabetic liver were studied by 13 C NMR to test whether changes in allosteric effectors under these conditions could also increase pyruvate kinase flux. A large increase in this activity was demonstrated in ischemic diabetic liver

  15. Identification of the protein responsible for pyruvate transport into rat liver and heart mitochondria by specific labelling with [3H]N-phenylmaleimide.

    OpenAIRE

    Thomas, A P; Halestrap, A P

    1981-01-01

    1. N-Phenylmaleimide irreversibly inhibits pyruvate transport into rat heart and liver mitochondria to a much greater extent than does N-ethylmaleimide, iodoacetate or bromopyruvate. alpha-Cyanocinnamate protects the pyruvate transporter from attack by this thiol-blocking reagent. 2. In both heart and liver mitochondria alpha-cyanocinnamate diminishes labelling by [3H]N-phenylmaleimide of a membrane protein of subunit mol.wt. 15000 on sodium dodecyl sulphate/polyacrylamide-gel electrophoresis...

  16. Application of mitochondrial pyruvate carrier blocker UK5099 creates metabolic reprogram and greater stem-like properties in LnCap prostate cancer cells in vitro

    OpenAIRE

    Zhong, Yali; Li, Xiaoran; Yu, Dandan; Li, Xiaoli; Li, Yaqing; Long, Yuan; Yuan, Yuan; Ji, Zhenyu; Zhang, Mingzhi; Wen, Jian-Guo; Nesland, Jahn M.; Suo, Zhenhe

    2015-01-01

    Aerobic glycolysis is one of the important hallmarks of cancer cells and eukaryotic cells. In this study, we have investigated the relationship between blocking mitochondrial pyruvate carrier (MPC) with UK5099 and the metabolic alteration as well as stemness phenotype of prostatic cancer cells. It was found that blocking pyruvate transportation into mitochondrial attenuated mitochondrial oxidative phosphorylation (OXPHOS) and increased glycolysis. The UK5099 treated cells showed significantly...

  17. Optimized methods to measure acetoacetate, 3-hydroxybutyrate, glycerol, alanine, pyruvate, lactate and glucose in human blood using a centrifugal analyser with a fluorimetric attachment

    OpenAIRE

    Stappenbeck, R.; Hodson, A. W.; Skillen, A. W.; Agius, L.; Alberti, K. G. M. M.

    1990-01-01

    Optimized methods are described for the analysis of glucose, lactate, pyruvate, alanine, glycerol, D-3-hydroxybutyrate and acetoacetate in perchloric acid extracts of human blood using the Cobas Bio centrifugal analyser. Glucose and lactate are measured using the photometric mode and other metabolites using the fluorimetric mode. The intra-assay coefficients of variation ranged from 0.7 to 4.1%, except with very low levels of pyruvate and acetoacetate where the coefficients of variation were ...

  18. Ethyl group as matrix modifier and inducer of ordered domains in hybrid xerogels synthesised in acidic media using ethyltriethoxysilane (ETEOS) and tetraethoxysilane (TEOS) as precursors

    International Nuclear Information System (INIS)

    Rios, Xabier; Moriones, Paula; Echeverría, Jesús C.; Luquin, Asunción; Laguna, Mariano; Garrido, Julián J.

    2013-01-01

    Hybrid silica xerogels favourably combine the properties of organic and inorganic components in one material; consequently these materials are useful for multiple applications. The versatility and mild synthetic conditions provided by the sol-gel process are ideal for the synthesis of hybrid materials. The specific aims of this study were to synthesise hybrid xerogels in acidic media using tetraethoxysilane (TEOS) and ethyltriethoxysilane (ETEOS) as silica precursors, and to assess the role of the ethyl group as a matrix modifier and inducer of ordered domains in xerogels. All xerogels were synthesised at pH 4.5, at 60 °C, with 1:4.75:5.5 TEOS:EtOH:H 2 O molar ratio. Gelation time exponentially increased with the ETEOS molar ratio. Incorporation of the ethyl groups into the structure of xerogels reduced cross-linking, increased the average siloxane bond length, and promoted the formation of ordered domains. As a result, a transition from Q n to T n signals detected in the 29 Si NMR spectra, the Si–O structural band in the FTIR spectra shifted to lower wavelength, and a new peak in the XRD pattern at 2θ < 10° appeared in the XRD patterns. Mass spectroscopy detected fragments with high numbers of silicon atoms and a polymeric distribution. - Graphical abstract: Display Omitted - Highlights: • Hybrid xerogels were synthesised for ETEOS/TEOS mixtures up to 80% ETEOS. • The gelification time exponentially increased with ETEOS content. • FTIR, XRD and MAS NMR demonstrated the presence of ethyl groups into xerogels. • For ETEOS contents ≤30%, ethyl group acted as matrix modifier. • For ETEOS contents ≥30%, ethyl groups induced the formation of ordered domains

  19. Crystallization and preliminary X-ray analysis of dihydrodipicolinate synthase from Clostridium botulinum in the presence of its substrate pyruvate

    International Nuclear Information System (INIS)

    Atkinson, Sarah C.; Dobson, Renwick C. J.; Newman, Janet M.; Gorman, Michael A.; Dogovski, Con; Parker, Michael W.; Perugini, Matthew A.

    2009-01-01

    Dihydrodipicolinate synthase (DHDPS) catalyzes an important step in lysine biosynthesis. Here, the crystallization and preliminary diffraction analysis to 1.2 Å resolution of DHDPS from C. botulinum in the presence of its substrate pyruvate is reported. In this paper, the crystallization and preliminary X-ray diffraction analysis to near-atomic resolution of DHDPS from Clostridium botulinum crystallized in the presence of its substrate pyruvate are presented. The enzyme crystallized in a number of forms using a variety of PEG precipitants, with the best crystal diffracting to 1.2 Å resolution and belonging to space group C2, in contrast to the unbound form, which had trigonal symmetry. The unit-cell parameters were a = 143.4, b = 54.8, c = 94.3 Å, β = 126.3°. The crystal volume per protein weight (V M ) was 2.3 Å 3 Da −1 (based on the presence of two monomers in the asymmetric unit), with an estimated solvent content of 46%. The high-resolution structure of the pyruvate-bound form of C. botulinum DHDPS will provide insight into the function and stability of this essential bacterial enzyme

  20. Scanning mutagenesis of the amino acid sequences flanking phosphorylation site 1 of the mitochondrial pyruvate dehydrogenase complex

    Directory of Open Access Journals (Sweden)

    Nagib eAhsan

    2012-07-01

    Full Text Available The mitochondrial pyruvate dehydrogenase complex is regulated by reversible seryl-phosphorylation of the E1α subunit by a dedicated, intrinsic kinase. The phospho-complex is reactivated when dephosphorylated by an intrinsic PP2C-type protein phosphatase. Both the position of the phosphorylated Ser-residue and the sequences of the flanking amino acids are highly conserved. We have used the synthetic peptide-based kinase client assay plus recombinant pyruvate dehydrogenase E1α and E1α-kinase to perform scanning mutagenesis of the residues flanking the site of phosphorylation. Consistent with the results from phylogenetic analysis of the flanking sequences, the direct peptide-based kinase assays tolerated very few changes. Even conservative changes such as Leu, Ile, or Val for Met, or Glu for Asp, gave very marked reductions in phosphorylation. Overall the results indicate that regulation of the mitochondrial pyruvate dehydrogenase complex by reversible phosphorylation is an extreme example of multiple, interdependent instances of co-evolution.

  1. Pyruvate remediation of cell stress and genotoxicity induced by haloacetic acid drinking water disinfection by-products.

    Science.gov (United States)

    Dad, Azra; Jeong, Clara H; Pals, Justin A; Wagner, Elizabeth D; Plewa, Michael J

    2013-10-01

    Monohaloacetic acids (monoHAAs) are a major class of drinking water disinfection by-products (DBPs) and are cytotoxic, genotoxic, mutagenic, and teratogenic. We propose a model of toxic action based on monoHAA-mediated inhibition of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) as a target cytosolic enzyme. This model predicts that GAPDH inhibition by the monoHAAs will lead to a severe reduction of cellular ATP levels and repress the generation of pyruvate. A loss of pyruvate will lead to mitochondrial stress and genomic DNA damage. We found a concentration-dependent reduction of ATP in Chinese hamster ovary cells after monoHAA treatment. ATP reduction per pmol monoHAA followed the pattern of iodoacetic acid (IAA) > bromoacetic acid (BAA) > chloroacetic acid (CAA), which is the pattern of potency observed with many toxicological endpoints. Exogenous supplementation with pyruvate enhanced ATP levels and attenuated monoHAA-induced genomic DNA damage as measured with single cell gel electrophoresis. These data were highly correlated with the SN 2 alkylating potentials of the monoHAAs and with the induction of toxicity. The results from this study strongly support the hypothesis that GAPDH inhibition and the possible subsequent generation of reactive oxygen species is linked with the cytotoxicity, genotoxicity, teratogenicity, and neurotoxicity of these DBPs. Copyright © 2013 Wiley Periodicals, Inc.

  2. Coordination of manganous ion at the active site of pyruvate, phosphate dikinase: the complex of oxalate with the phosphorylated enzyme

    International Nuclear Information System (INIS)

    Kofron, J.L.; Ash, D.E.; Reed, G.H.

    1988-01-01

    Electron paramagnetic resonance spectroscopy has been used to investigate the structure of the complex of manganous ion with the phosphorylated form of pyruvate, phosphate dikinase (E/sub p/) and the inhibitor oxalate. Oxalate, an analogue of the enolate of pyruvate, is competitive with respect to pyruvate in binding to the phosphorylated form of the enzyme. Superhyperfine coupling between the unpaired electrons of Mn(I) and ligands specifically labeled with 17 O has been used to identify oxygen ligands to Mn(II) in the complex with oxalate and the phosphorylated form of the enzyme. Oxalate binds at the active site as a bidentate chelate with Mn(II). An oxygen from the 3'-N-phosphohistidyl residue of the protein is in the coordination sphere of Mn(II), and at least two water molecules are also bound to Mn(II) in the complex. Oxalate also binds directly to Mn(II) in a complex with nonphosphorylated enzyme. The structure for the E/sub p/-Mn(II)-oxalate complex implies that simultaneous coordination of a phospho group and of the attacking nucleophile to the divalent cation is likely an important factor in catalysis of this phospho-transfer reaction

  3. Identification of a mitochondrial target of thiazolidinedione insulin sensitizers (mTOT--relationship to newly identified mitochondrial pyruvate carrier proteins.

    Directory of Open Access Journals (Sweden)

    Jerry R Colca

    Full Text Available Thiazolidinedione (TZD insulin sensitizers have the potential to effectively treat a number of human diseases, however the currently available agents have dose-limiting side effects that are mediated via activation of the transcription factor PPARγ. We have recently shown PPARγ-independent actions of TZD insulin sensitizers, but the molecular target of these molecules remained to be identified. Here we use a photo-catalyzable drug analog probe and mass spectrometry-based proteomics to identify a previously uncharacterized mitochondrial complex that specifically recognizes TZDs. These studies identify two well-conserved proteins previously known as brain protein 44 (BRP44 and BRP44 Like (BRP44L, which recently have been renamed Mpc2 and Mpc1 to signify their function as a mitochondrial pyruvate carrier complex. Knockdown of Mpc1 or Mpc2 in Drosophila melanogaster or pre-incubation with UK5099, an inhibitor of pyruvate transport, blocks the crosslinking of mitochondrial membranes by the TZD probe. Knockdown of these proteins in Drosophila also led to increased hemolymph glucose and blocked drug action. In isolated brown adipose tissue (BAT cells, MSDC-0602, a PPARγ-sparing TZD, altered the incorporation of (13C-labeled carbon from glucose into acetyl CoA. These results identify Mpc1 and Mpc2 as components of the mitochondrial target of TZDs (mTOT and suggest that understanding the modulation of this complex, which appears to regulate pyruvate entry into the mitochondria, may provide a viable target for insulin sensitizing pharmacology.

  4. Hepatic Mitochondrial Pyruvate Carrier 1 Is Required for Efficient Regulation of Gluconeogenesis and Whole-Body Glucose Homeostasis.

    Science.gov (United States)

    Gray, Lawrence R; Sultana, Mst Rasheda; Rauckhorst, Adam J; Oonthonpan, Lalita; Tompkins, Sean C; Sharma, Arpit; Fu, Xiaorong; Miao, Ren; Pewa, Alvin D; Brown, Kathryn S; Lane, Erin E; Dohlman, Ashley; Zepeda-Orozco, Diana; Xie, Jianxin; Rutter, Jared; Norris, Andrew W; Cox, James E; Burgess, Shawn C; Potthoff, Matthew J; Taylor, Eric B

    2015-10-06

    Gluconeogenesis is critical for maintenance of euglycemia during fasting. Elevated gluconeogenesis during type 2 diabetes (T2D) contributes to chronic hyperglycemia. Pyruvate is a major gluconeogenic substrate and requires import into the mitochondrial matrix for channeling into gluconeogenesis. Here, we demonstrate that the mitochondrial pyruvate carrier (MPC) comprising the Mpc1 and Mpc2 proteins is required for efficient regulation of hepatic gluconeogenesis. Liver-specific deletion of Mpc1 abolished hepatic MPC activity and markedly decreased pyruvate-driven gluconeogenesis and TCA cycle flux. Loss of MPC activity induced adaptive utilization of glutamine and increased urea cycle activity. Diet-induced obesity increased hepatic MPC expression and activity. Constitutive Mpc1 deletion attenuated the development of hyperglycemia induced by a high-fat diet. Acute, virally mediated Mpc1 deletion after diet-induced obesity decreased hyperglycemia and improved glucose tolerance. We conclude that the MPC is required for efficient regulation of gluconeogenesis and that the MPC contributes to the elevated gluconeogenesis and hyperglycemia in T2D. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. The E1 beta-subunit of pyruvate dehydrogenase is surface-expressed in Lactobacillus plantarum and binds fibronectin.

    Science.gov (United States)

    Vastano, Valeria; Salzillo, Marzia; Siciliano, Rosa A; Muscariello, Lidia; Sacco, Margherita; Marasco, Rosangela

    2014-01-01

    Lactobacillus plantarum is among the species with a probiotic activity. Adhesion of probiotic bacteria to host tissues is an important principle for strain selection, because it represents a crucial step in the colonization process of either pathogens or commensals. Most bacterial adhesins are proteins, and a major target for them is fibronectin, an extracellular matrix glycoprotein. In this study we demonstrate that PDHB, a component of the pyruvate dehydrogenase complex, is a factor contributing to fibronectin-binding in L. plantarum LM3. By means of fibronectin overlay immunoblotting assay, we identified a L. plantarum LM3 surface protein with apparent molecular mass of 35 kDa. Mass spectrometric analysis shows that this protein is the pyruvate dehydrogenase E1 beta-subunit (PDHB). The corresponding pdhB gene is located in a 4-gene cluster encoding pyruvate dehydrogenase. In LM3-B1, carrying a null mutation in pdhB, the 35 kDa adhesin was not anymore detectable by immunoblotting assay. Nevertheless, the pdhB null mutation did not abolish pdhA, pdhC, and pdhD transcription in LM3-B1. By adhesion assays, we show that LM3-B1 cells bind to immobilized fibronectin less efficiently than wild type cells. Moreover, we show that pdhB expression is negatively regulated by the CcpA protein and is induced by bile. Copyright © 2013. Published by Elsevier GmbH.

  6. A case of pyruvate dehydrogenase deficiency with low density areas in white matter noticed by CT scan

    International Nuclear Information System (INIS)

    Kimura, Akiko; Kyoya, Seizo; Matsushima, Akihiro; Irimichi, Hideki; Koike, Yoshiko.

    1985-01-01

    The patient was a 4-month-old boy, the first child of healthy, non-consanguineous patient. He was mildly asphyxiated at birth and developed severe convulsions at two days of age. At 4 months of age, he was referred to us because of infantile spasms and motor retardation. The EEG showed hypsarhythmia, ACTH and anticonvulsants were started, but his seizures were not controlled completely. At 8 months of age, the CT scan demonstrated a cerebral atrophy with enlarged ventricles and a diffuse low density of cerebral white matter, and lactic acidosis was first noticed. The glucose, glucagon, fructose, and alanine tolerance tests revealed almost normal responses in blood glucose levels and elevation of lactate levels above the initial value. Enzyme studies revealed a severe deficiency of pyruvate dehydrogenase complex and pyruvate dehydrogenase (E 1 ), and a normal activity of pyruvate carboxylase in liver obtained by biopsy. In biopsied muscle, mitochondria appeared normal. Treatment with thiamine, lipoic acid and anticonvulsants was not effective. The clinical picture of PDC deficiency has been correlated with the amount of the residual activity, and this case confirmed to the ''severe'' category. Several pathologic entities may be associated with PDHC deficiency, and CT findings in our case demonstrated the demyelinating condition. The precise relationship between the defect and the pathogenesis remains to be elucidated. (author)

  7. Improvement of ethanol yield from glycerol via conversion of pyruvate to ethanol in metabolically engineered Saccharomyces cerevisiae.

    Science.gov (United States)

    Yu, Kyung Ok; Jung, Ju; Ramzi, Ahmad Bazli; Kim, Seung Wook; Park, Chulhwan; Han, Sung Ok

    2012-02-01

    The conversion of low-priced glycerol to higher value products has been proposed as a way to improve the economic viability of the biofuels industry. In a previous study, the conversion of glycerol to ethanol in a metabolically engineered strain of Saccharomyces cerevisiae was accomplished by minimizing the synthesis of glycerol, the main by-product in ethanol fermentation processing. To further improve ethanol production, overexpression of the native genes involved in conversion of pyruvate to ethanol in S. cerevisiae was successfully accomplished. The overexpression of an alcohol dehydrogenase (adh1) and a pyruvate decarboxylase (pdc1) caused an increase in growth rate and glycerol consumption under fermentative conditions, which led to a slight increase of the final ethanol yield. The overall expression of the adh1 and pdc1 genes in the modified strains, combined with the lack of the fps1 and gpd2 genes, resulted in a 1.4-fold increase (about 5.4 g/L ethanol produced) in fps1Δgpd2Δ (pGcyaDak, pGupCas) (about 4.0 g/L ethanol produced). In summary, it is possible to improve the ethanol yield by overexpression of the genes involved in the conversion of pyruvate to ethanol in engineered S. cerevisiae using glycerol as substrate.

  8. Regulation of Muscle Pyruvate Dehydrogenase Complex in Insulin Resistance: Effects of Exercise and Dichloroacetate

    Directory of Open Access Journals (Sweden)

    Dumitru Constantin-Teodosiu

    2013-10-01

    Full Text Available Since the mitochondrial pyruvate dehydrogenase complex (PDC controls the rate of carbohydrate oxidation, impairment of PDC activity mediated by high-fat intake has been advocated as a causative factor for the skeletal muscle insulin resistance, metabolic syndrome, and the onset of type 2 diabetes (T2D. There are also situations where muscle insulin resistance can occur independently from high-fat dietary intake such as sepsis, inflammation, or drug administration though they all may share the same underlying mechanism, i.e., via activation of forkhead box family of transcription factors, and to a lower extent via peroxisome proliferator-activated receptors. The main feature of T2D is a chronic elevation in blood glucose levels. Chronic systemic hyperglycaemia is toxic and can lead to cellular dysfunction that may become irreversible over time due to deterioration of the pericyte cell's ability to provide vascular stability and control to endothelial proliferation. Therefore, it may not be surprising that T2D's complications are mainly macrovascular and microvascular related, i.e., neuropathy, retinopathy, nephropathy, coronary artery, and peripheral vascular diseases. However, life style intervention such as exercise, which is the most potent physiological activator of muscle PDC, along with pharmacological intervention such as administration of dichloroacetate or L-carnitine can prove to be viable strategies for treating muscle insulin resistance in obesity and T2D as they can potentially restore whole body glucose disposal.

  9. Role of plastidic pyruvate dehydrogenase complex (pl. PDC) in chloroplast metabolism of spinach

    International Nuclear Information System (INIS)

    Schulze-Siebert, D.; Homeyer, U.; Schultz, G.

    1986-01-01

    Labeling experiments of chloroplasts in the light ( 14 CO 2 , 2- 14 C-pyruvate etc.) revealed that pl. PDC is predominantly involved in the synthesis of branched chain amino acids and pl. isoprenoids (carotenes, PQ, α-T). In this context, pl. phosphoglycerate mutase as missing link in the C 3 → C 2 metabolism of chloroplasts was identified by latency experiments. This indicates a direct pathway from Calvin cycle to pl. PDC. Using protoplasts, maximal rates in pl. PDC metabolism were obtained. On the other hand, mitochondrial PDC in protoplasts is mainly involved in fatty acid synthesis by known mechanism. Additionally, cytosolic-ER-isoprenoids were formed (e.g. sterols). When 14 CO 2 was simultaneously applied with unlabeled acetate to protoplasts in the light an isotopic dilution of fatty acids were found but not of pl. isoprenoids. This may indicate an partially channeling of pl. PDC and mevalonate pathway for pl. isoprenoid synthesis. Inhibitory studies with DCMU point in the same direction

  10. An improved strategy for the crystallization of Leishmania mexicana pyruvate kinase

    International Nuclear Information System (INIS)

    Morgan, Hugh P.; McNae, Iain W.; Hsin, Kun-Yi; Michels, Paul A. M.; Fothergill-Gilmore, Linda A.; Walkinshaw, Malcolm D.

    2010-01-01

    The first crystal structure of Leishmania mexicana pyruvate kinase (LmPYK) obtained at a neutral pH. LmPYK was co-crystallized with the small molecule 1,3,6,8-pyrenetetrasulfonic acid, which provides a helpful intermolecular bridge between macromolecules. The inclusion of novel small molecules in crystallization experiments has provided very encouraging results and this method is now emerging as a promising alternative strategy for crystallizing ‘problematic’ biological macromolecules. These small molecules have the ability to promote lattice formation through stabilizing intermolecular interactions in protein crystals. Here, the use of 1,3,6,8-pyrenetetrasulfonic acid (PTS), which provides a helpful intermolecular bridge between Leishmania mexicana PYK (LmPYK) macromolecules in the crystal, is reported, resulting in the rapid formation of a more stable crystal lattice at neutral pH and greatly improved X-ray diffraction results. The refined structure of the LmPYK–PTS complex revealed the negatively charged PTS molecule to be stacked between positively charged (surface-exposed) arginine side chains from neighbouring LmPYK molecules in the crystal lattice

  11. A catalyzing phantom for reproducible dynamic conversion of hyperpolarized [1-¹³C]-pyruvate.

    Science.gov (United States)

    Walker, Christopher M; Lee, Jaehyuk; Ramirez, Marc S; Schellingerhout, Dawid; Millward, Steven; Bankson, James A

    2013-01-01

    In vivo real time spectroscopic imaging of hyperpolarized ¹³C labeled metabolites shows substantial promise for the assessment of physiological processes that were previously inaccessible. However, reliable and reproducible methods of measurement are necessary to maximize the effectiveness of imaging biomarkers that may one day guide personalized care for diseases such as cancer. Animal models of human disease serve as poor reference standards due to the complexity, heterogeneity, and transient nature of advancing disease. In this study, we describe the reproducible conversion of hyperpolarized [1-¹³C]-pyruvate to [1-¹³C]-lactate using a novel synthetic enzyme phantom system. The rate of reaction can be controlled and tuned to mimic normal or pathologic conditions of varying degree. Variations observed in the use of this phantom compare favorably against within-group variations observed in recent animal studies. This novel phantom system provides crucial capabilities as a reference standard for the optimization, comparison, and certification of quantitative imaging strategies for hyperpolarized tracers.

  12. A catalyzing phantom for reproducible dynamic conversion of hyperpolarized [1-¹³C]-pyruvate.

    Directory of Open Access Journals (Sweden)

    Christopher M Walker

    Full Text Available In vivo real time spectroscopic imaging of hyperpolarized ¹³C labeled metabolites shows substantial promise for the assessment of physiological processes that were previously inaccessible. However, reliable and reproducible methods of measurement are necessary to maximize the effectiveness of imaging biomarkers that may one day guide personalized care for diseases such as cancer. Animal models of human disease serve as poor reference standards due to the complexity, heterogeneity, and transient nature of advancing disease. In this study, we describe the reproducible conversion of hyperpolarized [1-¹³C]-pyruvate to [1-¹³C]-lactate using a novel synthetic enzyme phantom system. The rate of reaction can be controlled and tuned to mimic normal or pathologic conditions of varying degree. Variations observed in the use of this phantom compare favorably against within-group variations observed in recent animal studies. This novel phantom system provides crucial capabilities as a reference standard for the optimization, comparison, and certification of quantitative imaging strategies for hyperpolarized tracers.

  13. Metabolic modeling of energy balances in Mycoplasma hyopneumoniae shows that pyruvate addition increases growth rate.

    Science.gov (United States)

    Kamminga, Tjerko; Slagman, Simen-Jan; Bijlsma, Jetta J E; Martins Dos Santos, Vitor A P; Suarez-Diez, Maria; Schaap, Peter J

    2017-10-01

    Mycoplasma hyopneumoniae is cultured on large-scale to produce antigen for inactivated whole-cell vaccines against respiratory disease in pigs. However, the fastidious nutrient requirements of this minimal bacterium and the low growth rate make it challenging to reach sufficient biomass yield for antigen production. In this study, we sequenced the genome of M. hyopneumoniae strain 11 and constructed a high quality constraint-based genome-scale metabolic model of 284 chemical reactions and 298 metabolites. We validated the model with time-series data of duplicate fermentation cultures to aim for an integrated model describing the dynamic profiles measured in fermentations. The model predicted that 84% of cellular energy in a standard M. hyopneumoniae cultivation was used for non-growth associated maintenance and only 16% of cellular energy was used for growth and growth associated maintenance. Following a cycle of model-driven experimentation in dedicated fermentation experiments, we were able to increase the fraction of cellular energy used for growth through pyruvate addition to the medium. This increase in turn led to an increase in growth rate and a 2.3 times increase in the total biomass concentration reached after 3-4 days of fermentation, enhancing the productivity of the overall process. The model presented provides a solid basis to understand and further improve M. hyopneumoniae fermentation processes. Biotechnol. Bioeng. 2017;114: 2339-2347. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  14. Role of isoenzyme M2 of pyruvate kinase in urothelial tumorigenesis.

    Science.gov (United States)

    Zhou, Haiping; Wang, Xing; Mo, Lan; Liu, Yan; He, Feng; Zhang, Fenglin; Huang, Kuo-How; Wu, Xue-Ru

    2016-04-26

    The conversion of precancerous lesions to full-fledged cancers requires the affected cells to surpass certain rate-limiting steps. We recently showed that activation of HRAS proto-oncogene in urothelial cells of transgenic mice causes simple urothelial hyperplasia (SUH) which is persistent and whose transition to low-grade papillary urothelial carcinoma (UC) must undergo nodular urothelial hyperplasia (NUH). We hypothesized that NUH, which has acquired fibrovascular cores, plays critical roles in mesenchymal-to-epithelial signaling, breaching the barriers of urothelial tumor initiation. Using proteomics involving two-dimensional gel electrophoresis, immunoblotting with pan-phosphotyrosine antibody and MALDI-mass spectrometry, we identified isoform 2 of pyruvate kinase (PKM2) as the major tyrosine-phosphorylated protein switched on during NUH. We extended this finding using specimens from transgenic mice, human UC and UC cell lines, establishing that PKM2, but not its spliced variant PKM1, was over-expressed in low-grade and, more prominently, high-grade UC. In muscle-invasive UC, PKM2 was co-localized with cytokeratins 5 and 14, UC progenitor markers. Specific inhibition of PKM2 by siRNA or shRNA suppressed UC cell proliferation via increased apoptosis, autophagy and unfolded protein response. These results strongly suggest that PKM2 plays an important role in the genesis of low-grade non-invasive and high-grade invasive urothelial carcinomas.

  15. Pyruvate dehydrogenase subunit β of Lactobacillus plantarum is a collagen adhesin involved in biofilm formation.

    Science.gov (United States)

    Salzillo, Marzia; Vastano, Valeria; Capri, Ugo; Muscariello, Lidia; Marasco, Rosangela

    2017-04-01

    Multi-functional surface proteins have been observed in a variety of pathogenic bacteria, where they mediate host cell adhesion and invasion, as well as in commensal bacterial species, were they mediate positive interaction with the host. Among these proteins, some glycolytic enzymes, expressed on the bacterial cell surface, can bind human extracellular matrix components (ECM). A major target for them is collagen, an abundant glycoprotein of connective tissues. We have previously shown that the enolase EnoA1 of Lactobacillus plantarum, one of the most predominant species in the gut microbiota of healthy individuals, is involved in binding with collagen type I (CnI). In this study, we found that PDHB, a component of the pyruvate dehydrogenase complex, contributes to the L. plantarum LM3 adhesion to CnI. By a cellular adhesion assay to immobilized CnI, we show that LM3-B1 cells, carrying a null mutation in the pdhB gene, bind to CnI - coated surfaces less efficiently than wild-type cells. Moreover, we show that the PDHB-CnI interaction requires a native state for PDHB. We also analyzed the ability to develop biofilm in wild-type and mutant strains and we found that the lack of the PDHB on cell surface generates cells partially impaired in biofilm development. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Integrative proteomics and biochemical analyses define Ptc6p as the Saccharomyces cerevisiae pyruvate dehydrogenase phosphatase.

    Science.gov (United States)

    Guo, Xiao; Niemi, Natalie M; Coon, Joshua J; Pagliarini, David J

    2017-07-14

    The pyruvate dehydrogenase complex (PDC) is the primary metabolic checkpoint connecting glycolysis and mitochondrial oxidative phosphorylation and is important for maintaining cellular and organismal glucose homeostasis. Phosphorylation of the PDC E1 subunit was identified as a key inhibitory modification in bovine tissue ∼50 years ago, and this regulatory process is now known to be conserved throughout evolution. Although Saccharomyces cerevisiae is a pervasive model organism for investigating cellular metabolism and its regulation by signaling processes, the phosphatase(s) responsible for activating the PDC in S. cerevisiae has not been conclusively defined. Here, using comparative mitochondrial phosphoproteomics, analyses of protein-protein interactions by affinity enrichment-mass spectrometry, and in vitro biochemistry, we define Ptc6p as the primary PDC phosphatase in S. cerevisiae Our analyses further suggest additional substrates for related S. cerevisiae phosphatases and describe the overall phosphoproteomic changes that accompany mitochondrial respiratory dysfunction. In summary, our quantitative proteomics and biochemical analyses have identified Ptc6p as the primary-and likely sole- S. cerevisiae PDC phosphatase, closing a key knowledge gap about the regulation of yeast mitochondrial metabolism. Our findings highlight the power of integrative omics and biochemical analyses for annotating the functions of poorly characterized signaling proteins. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Posttranslational Modifications of Pyruvate Kinase M2: Tweaks that Benefit Cancer

    Directory of Open Access Journals (Sweden)

    Gopinath Prakasam

    2018-02-01

    Full Text Available Cancer cells rewire metabolism to meet biosynthetic and energetic demands. The characteristic increase in glycolysis, i.e., Warburg effect, now considered as a hallmark, supports cancer in various ways. To attain such metabolic reshuffle, cancer cells preferentially re-express the M2 isoform of pyruvate kinase (PKM2, M2-PK and alter its quaternary structure to generate less-active PKM2 dimers. The relatively inactive dimers cause the accumulation of glycolytic intermediates that are redirected into anabolic pathways. In addition, dimeric PKM2 also benefits cancer cells through various non-glycolytic moonlight functions, such as gene transcription, protein kinase activity, and redox balance. A large body of data have shown that several distinct posttranslation modifications (PTMs regulate PKM2 in a way that benefits cancer growth, e.g., formation of PKM2 dimers. This review discusses the recent advancements in our understanding of various PTMs and the benefits they impart to the sustenance of cancer. Understanding the PTMs in PKM2 is crucial to assess their therapeutic potential and to design novel anticancer strategies.

  18. Crystallization and preliminary X-ray analysis of pyruvate kinase from Bacillus stearothermophilus

    International Nuclear Information System (INIS)

    Suzuki, Kenichiro; Ito, Sohei; Shimizu-Ibuka, Akiko; Sakai, Hiroshi

    2005-01-01

    This report describes the crystallization and X-ray diffraction data collection of three types (wild-type, W416F/V435W and C9S/C268S) of B. stearothermophilus. Crystals of C9S/C268S belonged to space group P6 2 22 and diffracted to a resolution of 2.4 Å. Pyruvate kinase (PK) from a moderate thermophile, Bacillus stearothermophilus (BstPK), is an allosteric enzyme activated by AMP and ribose 5-phosphate but not by fructose 1,6-bisphosphate (FBP). However, almost all other PKs are activated by FBP. The wild-type and W416F/V435W mutant BstPKs were crystallized by the hanging-drop vapour-diffusion method. However, they were unsuitable for structural analysis because their data sets exhibited low completeness. A crystal suitable for structural analysis was obtained using C9S/C268S enzyme. The crystal belonged to space group P6 2 22, with unit-cell parameters a = b = 145.97, c = 118.03 Å

  19. Inhibition effects of furfural on alcohol dehydrogenase, aldehyde dehydrogenase and pyruvate dehydrogenase.

    Science.gov (United States)

    Modig, Tobias; Lidén, Gunnar; Taherzadeh, Mohammad J

    2002-01-01

    The kinetics of furfural inhibition of the enzymes alcohol dehydrogenase (ADH; EC 1.1.1.1), aldehyde dehydrogenase (AlDH; EC 1.2.1.5) and the pyruvate dehydrogenase (PDH) complex were studied in vitro. At a concentration of less than 2 mM furfural was found to decrease the activity of both PDH and AlDH by more than 90%, whereas the ADH activity decreased by less than 20% at the same concentration. Furfural inhibition of ADH and AlDH activities could be described well by a competitive inhibition model, whereas the inhibition of PDH was best described as non-competitive. The estimated K(m) value of AlDH for furfural was found to be about 5 microM, which was lower than that for acetaldehyde (10 microM). For ADH, however, the estimated K(m) value for furfural (1.2 mM) was higher than that for acetaldehyde (0.4 mM). The inhibition of the three enzymes by 5-hydroxymethylfurfural (HMF) was also measured. The inhibition caused by HMF of ADH was very similar to that caused by furfural. However, HMF did not inhibit either AlDH or PDH as severely as furfural. The inhibition effects on the three enzymes could well explain previously reported in vivo effects caused by furfural and HMF on the overall metabolism of Saccharomyces cerevisiae, suggesting a critical role of these enzymes in the observed inhibition. PMID:11964178

  20. Influence of 120 kDa Pyruvate:Ferredoxin Oxidoreductase on Pathogenicity of Trichomonas vaginalis.

    Science.gov (United States)

    Song, Hyun-Ouk

    2016-02-01

    Trichomonas vaginalis is a flagellate protozoan parasite and commonly infected the lower genital tract in women and men. Iron is a known nutrient for growth of various pathogens, and also reported to be involved in establishment of trichomoniasis. However, the exact mechanism was not clarified. In this study, the author investigated whether the 120 kDa protein of T. vaginalis may be involved in pathogenicity of trichomonads. Antibodies against 120 kDa protein of T. vaginalis, which was identified as pyruvate:ferredoxin oxidoreductase (PFOR) by peptide analysis of MALDI-TOF-MS, were prepared in rabbits. Pretreatment of T. vaginalis with anti-120 kDa Ab decreased the proliferation and adherence to vaginal epithelial cells (MS74) of T. vaginalis. Subcutaneous tissue abscess in anti-120 kDa Ab-treated T. vaginalis-injected mice was smaller in size than that of untreated T. vaginalis-infected mice. Collectively, the 120 kDa protein expressed by iron may be involved in proliferation, adhesion to host cells, and abscess formation, thereby may influence on the pathogenicity of T. vaginalis.

  1. Control of biotin biosynthesis in mycobacteria by a pyruvate carboxylase dependent metabolic signal.

    Science.gov (United States)

    Lazar, Nathaniel; Fay, Allison; Nandakumar, Madhumitha; Boyle, Kerry E; Xavier, Joao; Rhee, Kyu; Glickman, Michael S

    2017-12-01

    Biotin is an essential cofactor utilized by all domains of life, but only synthesized by bacteria, fungi and plants, making biotin biosynthesis a target for antimicrobial development. To understand biotin biosynthesis in mycobacteria, we executed a genetic screen in Mycobacterium smegmatis for biotin auxotrophs and identified pyruvate carboxylase (Pyc) as required for biotin biosynthesis. The biotin auxotrophy of the pyc::tn strain is due to failure to transcriptionally induce late stage biotin biosynthetic genes in low biotin conditions. Loss of bioQ, the repressor of biotin biosynthesis, in the pyc::tn strain reverted biotin auxotrophy, as did reconstituting the last step of the pathway through heterologous expression of BioB and provision of its substrate DTB. The role of Pyc in biotin regulation required its catalytic activities and could be supported by M. tuberculosis Pyc. Quantitation of the kinetics of depletion of biotinylated proteins after biotin withdrawal revealed that Pyc is the most rapidly depleted biotinylated protein and metabolomics revealed a broad metabolic shift in wild type cells upon biotin withdrawal which was blunted in cell lacking Pyc. Our data indicate that mycobacterial cells monitor biotin sufficiency through a metabolic signal generated by dysfunction of a biotinylated protein of central metabolism. © 2017 John Wiley & Sons Ltd.

  2. Functional Characterization of Waterlogging and Heat Stresses Tolerance Gene Pyruvate decarboxylase 2 from Actinidia deliciosa

    Directory of Open Access Journals (Sweden)

    Hui-Ting Luo

    2017-11-01

    Full Text Available A previous report showed that both Pyruvate decarboxylase (PDC genes were significantly upregulated in kiwifruit after waterlogging treatment using Illumina sequencing technology, and that the kiwifruit AdPDC1 gene was required during waterlogging, but might not be required during other environmental stresses. Here, the function of another PDC gene, named AdPDC2, was analyzed. The expression of the AdPDC2 gene was determined using qRT-PCR, and the results showed that the expression levels of AdPDC2 in the reproductive organs were much higher than those in the nutritive organs. Waterlogging, NaCl, and heat could induce the expression of AdPDC2. Overexpression of kiwifruit AdPDC2 in transgenic Arabidopsis enhanced resistance to waterlogging and heat stresses in five-week-old seedlings, but could not enhance resistance to NaCl and mannitol stresses at the seed germination stage and in early seedlings. These results suggested that the kiwifruit AdPDC2 gene may play an important role in waterlogging resistance and heat stresses in kiwifruit.

  3. Brain Glycogenolysis, Adrenoceptors, Pyruvate Carboxylase, Na+,K+-ATPase and Marie E. Gibbs’ Pioneering Learning Studies

    Directory of Open Access Journals (Sweden)

    Leif eHertz

    2013-04-01

    Full Text Available The involvement of glycogenolysis, occurring in astrocytes but not in neurons, in learning is undisputed (Duran et al., JCBFM, in press. According to one school of thought the role of astrocytes for learning is restricted to supply of substrate for neuronal oxidative metabolism. The present ‘perspective’ suggests a more comprehensive and complex role, made possible by lack of glycogen degradation, unless specifically induced by either i activation of astrocytic receptors, perhaps especially beta-adrenergic, or ii even small increases in extracellular K+ concentration above its normal resting level. It discusses i the known importance of glycogenolysis for glutamate formation, requiring pyruvate carboxylation; ii the established role of K+-stimulated glycogenolysis for K+ uptake in cultured astrocytes, which probably indicates that astrocytes are an integral part of cellular K+ homeostasis in the brain in vivo; and iii the plausible role of transmitter-induced glycogenolysis, stimulating Na+,K+-ATPase/NKCC1 activity and thereby contributing both to the post-excitatory undershoot in extracellular K+ concentration and the memory-enhancing effect of transmitter-mediated reduction of slow neuronal afterhyperpolarization (sAHP.

  4. Acute hypertensive stress imaged by cardiac hyperpolarized [1-C]pyruvate magnetic resonance

    DEFF Research Database (Denmark)

    Tougaard, Rasmus Stilling; Hansen, Esben Søvsø Szocska; Laustsen, Christoffer

    2018-01-01

    PURPOSE: Deranged metabolism is now recognized as a key causal factor in a variety of heart diseases, and is being studied extensively. However, invasive methods may alter metabolism, and conventional imaging techniques measure tracer uptake but not downstream metabolism. These challenges may...... be overcome by hyperpolarized MR, a noninvasive technique currently crossing the threshold into human trials. The aim of this study was to image metabolic changes in the heart in response to endogastric glucose bolus and to acute hypertension. METHODS: Five postprandial pigs were scanned with hyperpolarized.......008) and ejection fraction decreased from 54 ± 2% to 47 ± 6% (P = 0.03) The hemodynamic changes were accompanied by increases in the hyperpolarized [1-13C]pyruvate MR derived ratios of lactate/alanine (from 0.58 ± 0.13 to 0.78 ± 0.06, P = 0.03) and bicarbonate/alanine (from 0.55 ± 0.12 to 0.91 ± 0.14, P = 0...

  5. SH2 domain-containing phosphatase 1 regulates pyruvate kinase M2 in hepatocellular carcinoma.

    Science.gov (United States)

    Tai, Wei-Tien; Hung, Man-Hsin; Chu, Pei-Yi; Chen, Yao-Li; Chen, Li-Ju; Tsai, Ming-Hsien; Chen, Min-Husan; Shiau, Chung-Wai; Boo, Yin-Pin; Chen, Kuen-Feng

    2016-04-19

    Pyruvate kinase M2 (PKM2) is known to promote tumourigenesis through dimer formation of p-PKM2Y105. Here, we investigated whether SH2-containing protein tyrosine phosphatase 1 (SHP-1) decreases p-PKM2Y105 expression and, thus, determines the sensitivity of sorafenib through inhibiting the nuclear-related function of PKM2. Immunoprecipitation and immunoblot confirmed the effect of SHP-1 on PKM2Y105 dephosphorylation. Lactate production was assayed in cells and tumor samples to determine whether sorafenib reversed the Warburg effect. Clinical hepatocellular carcinoma (HCC) tumor samples were assessed for PKM2 expression. SHP-1 directly dephosphorylated PKM2 at Y105 and further decreased the proliferative activity of PKM2; similar effects were found in sorafenib-treated HCC cells. PKM2 was also found to determine the sensitivity of targeted drugs, such as sorafenib, brivanib, and sunitinib, by SHP-1 activation. Significant sphere-forming activity was found in HCC cells stably expressing PKM2. Clinical findings suggest that PKM2 acts as a predicting factor of early recurrence in patients with HCC, particularly those without known risk factors (63.6%). SHP-1 dephosphorylates PKM2 at Y105 to inhibit nuclear function of PKM2 and determines the efficacy of targeted drugs. Targeting PKM2 by SHP-1 might provide new therapeutic insights for patients with HCC.

  6. Expression, purification, crystallization and preliminary X-ray diffraction analysis of dihydrodipicolinate synthase from Bacillus anthracis in the presence of pyruvate

    International Nuclear Information System (INIS)

    Voss, Jarrod E.; Scally, Stephen W.; Taylor, Nicole L.; Dogovski, Con; Alderton, Malcolm R.; Hutton, Craig A.; Gerrard, Juliet A.; Parker, Michael W.; Dobson, Renwick C. J.; Perugini, Matthew A.

    2009-01-01

    Dihydrodipicolinate synthase (DHDPS) catalyses an important step in lysine biosynthesis. Here, the expression, purification, crystallization and preliminary diffraction analysis to 2.15 Å resolution of DHDPS from B. anthracis soaked with the substrate pyruvate are reported. Dihydrodipicolinate synthase (DHDPS) catalyses the first committed step in the lysine-biosynthesis pathway in bacteria, plants and some fungi. In this study, the expression of DHDPS from Bacillus anthracis (Ba-DHDPS) and the purification of the recombinant enzyme in the absence and presence of the substrate pyruvate are described. It is shown that DHDPS from B. anthracis purified in the presence of pyruvate yields greater amounts of recombinant enzyme with more than 20-fold greater specific activity compared with the enzyme purified in the absence of substrate. It was therefore sought to crystallize Ba-DHDPS in the presence of the substrate. Pyruvate was soaked into crystals of Ba-DHDPS prepared in 0.2 M sodium fluoride, 20%(w/v) PEG 3350 and 0.1 M bis-tris propane pH 8.0. Preliminary X-ray diffraction data of the recombinant enzyme soaked with pyruvate at a resolution of 2.15 Å are presented. The pending crystal structure of the pyruvate-bound form of Ba-DHDPS will provide insight into the function and stability of this essential bacterial enzyme

  7. Effect of gallic and protocatechuic acids on the metabolism of ethyl carbamate in Chinese yellow rice wine brewing.

    Science.gov (United States)

    Zhou, Wanyi; Fang, Ruosi; Chen, Qihe

    2017-10-15

    It was studied that gallic and protocatechuic acids played important roles in ethyl carbamate (EC) forming. Gallic and protocatechuic acids can reduce the arginine consumption through inhibiting the arginine deiminase enzyme. Therefore, they are generally added to regulate EC catabolism in the course of yellow rice wine leavening at the third day. In this work, gallic and protocatechuic acids made little influence on the growth of Saccharomyces cerevisiae. Besides, the addition of 200mg/L gallic or protocatechuic acid could prevent the transformation from urea/citrulline to EC. Gallic acid showed better inhibiting effect that the content of EC could be reduced by 91.9% at most. Furthermore, the production of amino acids and volatile flavor compounds are not markedly affected by phenolic compounds. The discoveries reveal that EC can be reduced by supplying gallic acid or protocatechuic acid while yellow rice wine leavening. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Joint stress of chlorimuron-ethyl and cadmium on wheat Triticum aestivum at biochemical levels

    International Nuclear Information System (INIS)

    Wang, M.-E; Zhou, Q.-X.

    2006-01-01

    Biochemical responses to joint stress of chlorimuron-ethyl and cadmium (Cd) in wheat Triticum aestivum were examined. The joint action of chlorimuron-ethyl and Cd weakened the inhibition of Cd or chlorimuron-ethyl on the formation of chlorophyll. It was deduced that wheat plants had the capability to protect themselves by increasing the activity of the antioxidant enzyme peroxidase (POD) with the exposure time. The joint effect of chlorimuron-ethyl and Cd on the superoxide dismutase (SOD) activity in leaves was additive, while the joint effect on the SOD activity in roots was determined by the interaction of chlorimuron-ethyl and Cd in wheat. It was also concluded that the change of malondialdehyde (MDA) content in wheat might not be a good biomarker in the oxidative damage by chlorimuron-ethyl, while a decrease in the soluble protein content and POD activity in roots could be considered as a biomarker in the damage of wheat by chlorimuron-ethyl and Cd. - Soluble protein content and peroxidase activity in seedlings were the biomarkers indicating joint stress of chemicals

  9. Effects of ethyl cellulose on the crystallization and mechanical properties of poly(β-hydroxybutyrate).

    Science.gov (United States)

    Chen, Jianxiang; Wu, Defeng; Pan, Keren

    2016-07-01

    Ethyl cellulose (EC) was blended with poly(β-hydroxybutyrate) (PHB), aiming at controlling crystallization and mechanical properties of PHB. The obtained PHB/EC blend is an immiscible system, and the discrete EC phase behaves dual characteristics in the PHB matrix, as the viscoelastic droplets during processing, and as the rigid filler particles during shear flow. This is confirmed by the rheological tests. The presence of EC domains acts as the tackifier, sharply increasing system viscosity from 1000Pas to 5000Pas, and as a result, has large influence on the spherulite morphology of PHB and its crystallization kinetics. The PHB spherulite growth rate reduces in the presence of inert EC, accompanied by decreased degree of crystallinity and reduced lamella defects. These affect the mechanical properties of PHB strongly, together with reinforcing effect of EC itself. At the lower content level, EC can act as both reinforcement and toughener. The presence of 1wt% EC enhances the tensile strength of PHB by about 22%, from 27.5MPa to 33.3MPa, accompanied by 15% increase of impact strength. This work provide an easy way to control the structure and properties of PHB using EC. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Production of ethyl ester from crude palm oil by two-step reaction using continuous microwave system

    Directory of Open Access Journals (Sweden)

    Sukritthira Ratanawilai

    2011-02-01

    Full Text Available The esterification of free fatty acids (FFA in vegetable oils with alcohol using an acid catalyst is a promising methodto convert FFA into valuable ester and obtain a FFA-free oil that can be further transesterified using alkali bases. In thiswork, the direct esterification reaction of FFA in crude palm oil to ethyl ester by continuous microwave was studied and theeffects of the main variables involved in the process, amount of catalyst, reaction time and the molar ratio oil/ alcohol, wereanalyzed. The optimum condition for the continuous esterification process was carried out with a molar ratio of oil to ethanol1:6, using 1.25%wt of H2SO4/oil as a catalyst, microwave power of 78 W and a reaction time 90 min. This esterification processshows that the amount of FFA was reduced from 7.5%wt to values around 1.4 %wt. Similar results were obtained followingconventional heating at 70°C, but only after a reaction time of 240 min. The esterified crude palm oil is suitable to perform thetransesterification process. Transesterification of the esterified palm oil has been accomplished with a molar ratio of oil toethanol of 1:8.5, 2.5%wt of KOH as a catalyst, a microwave power of 78 W, and a reaction time of 7 min. In addition, theproblem of glycerin separation was solved by mixing 10%wt of pure glycerin into the ethyl ester to induce the glycerin fromthe reaction to separated. This two-step esterification and transesterification process provided a yield of 78%wt with anester content of 97.4%wt. The final ethyl ester product met with the specifications stipulated by ASTM D6751-02.

  11. Quantification of fatty acid ethyl esters (FAEE) and ethyl glucuronide (EtG) in meconium for detection of alcohol abuse during pregnancy: Correlation study between both biomarkers.

    Science.gov (United States)

    Cabarcos, Pamela; Tabernero, María Jesús; Otero, José Luís; Míguez, Martha; Bermejo, Ana María; Martello, Simona; De Giovanni, Nadia; Chiarotti, Marcello

    2014-11-01

    This article presents results from 47 meconium samples, which were analyzed for fatty acid ethyl esters (FAEE) and ethyl glucuronide (EtG) for detection of gestational alcohol consumption. A validated microwave assisted extraction (MAE) method in combination with GC-MS developed in the Institute of Forensic Science (Santiago de Compostela) was used for FAEE and the cumulative concentration of ethyl myristate, ethyl palmitate and ethyl stearate with a cut-off of 600ng/g was applied for interpretation. A simple method for identification and quantification of EtG has been evaluated by ultrasonication followed solid phase extraction (SPE). Successful validation parameters were obtained for both biochemical markers of alcohol intake. FAEE and EtG concentrations in meconium ranged between values lower than LOD and 32,892ng/g or 218ng/g respectively. We have analyzed FAEE and EtG in the same meconium aliquot, enabling comparison of the efficiency of gestational ethanol exposure detection. Certain agreement between the two biomarkers was found as they are both a very specific alcohol markers, making it a useful analysis for confirmation. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Ethyl alcohol: high risk toxin for human healt socially accepted

    Directory of Open Access Journals (Sweden)

    Jairo Téllez Mosquera

    2006-01-01

    Full Text Available Alcohol is the most widely used drugs in World wide so it is in Colombia too. The United Nations Organization (UN report on substance abuse 2004, esteem that 2.6000 millions of persons used alcohol occasional, habitual, abuse or addictive way. In Colombia, RUMBOS, the presidential office for drugs addictions esteem that 89.7 % of the students in universities were habitual consumer of alcohol. Alcohol is the first psicoactivas substances use for people than after use illegal substances. When ethyl alcohol is used in permanent and frequent way produced acute and chronic adverses effect on the health. The long run alcohol abusers has adverse effect in the nutricions, neurological, hepatic and teratogenic. The neurological, gastrointestinal, endocrine and acid-base equilibrium area affected in acute ways principally. The social aspects in quite important too alcohol has been related to interfamiliar violence, traffic accidents and violence in general. The high incidence in use and consumption, its toxic effect over human health, its negative social effect and the fact that it´s a legal and social accept substance made alcohol and real public health problem. Its necessary to say "be careful with alcohol in general"

  13. Infrared laser transient absorption spectroscopy of the ethyl radical

    International Nuclear Information System (INIS)

    Sears, T.J.; Johnson, P.M.; Jin, P.; Oatis, S.

    1996-01-01

    The observation and analysis of the high resolution spectrum of the CH 2 rocking fundamental of the ethyl radical, C 2 H 5 , at wavelengths close to 18.9 μm is reported. The band origin is found to be at 528.1 cm -1 . The spectrum shows evidence for a very low barrier to internal rotation, or torsion, in this species. A simple model Hamiltonian, based on an assumed structure with G 12 symmetry, qualitatively reproduces the observations and implies a torsional barrier of approximately 20 cm -1 in both the zero point and excited vibrational states. The Hamiltonian cannot reproduce the observations to the level of the experimental accuracy and the importance of several neglected terms is tested and discussed. The observed torsional splittings imply that, within the confines of the model, the a-inertial and internal rotation axes in the molecule are coincident to within 1 degree. In addition to their intrinsic interest, the spectra will be useful for future state resolved studies of the kinetics of chemical reactions involving the radical. copyright 1996 American Institute of Physics

  14. Membrane Separation of 2-Ethyl Hexyl Amine/1-Decene

    KAUST Repository

    Bawareth, Bander

    2012-12-01

    1-Decene is a valuable product in linear alpha olefins plants that is contaminated with 2-EHA (2-ethyl hexyl amine). Using organic solvent nanofiltration membranes for this separation is quite challengeable. A membrane has to be a chemically stable in this environment with reasonable and stable separation factor. This paper shows that Teflon AF 2400 and cellulose acetate produced interesting results in 1-decene/2-EHA separation. The separation factor of Teflon AF 2400 is 3 with a stable permeance of 1.1x10-2 L/(m2·h·bar). Likewise, cellulose acetate gave 2-EHA/1-decene separation factor of 2 with a lower permeance of 3.67x10-3 L/(m2·h·bar). A series of hydrophilic membranes were tested but they did not give any separation due to high degree of swelling of 2-EHA with these polymers. The large swelling causes the membrane to lose its diffusivity selectivity because of an increase in the polymer\\'s chain mobility.

  15. Successful topical dissolution of cholesterol gallbladder stones using ethyl propionate.

    Science.gov (United States)

    Hofmann, A F; Amelsberg, A; Esch, O; Schteingart, C D; Lyche, K; Jinich, H; Vansonnenberg, E; D'Agostino, H B

    1997-06-01

    Topical dissolution of cholesterol gallbladder stones using methyl tert-butyl ether (MTBE) is useful in symptomatic patients judged too ill for surgery. Previous studies showed that ethyl propionate (EP), a C5 ester, dissolves cholesterol gallstones rapidly in vitro, but differs from MTBE in being eliminated so rapidly by the liver that blood levels remain undetectable. Our aim was to test EP as a topical dissolution agent for cholesterol gallbladder stones. Five high-risk patients underwent topical dissolution of gallbladder stones by EP. In three patients, the solvent was instilled via a cholecystostomy tube placed previously to treat acute cholecystitis; in two patients, a percutaneous transhepatic catheter was placed in the gallbladder electively. Gallstone dissolution was assessed by chromatography, by gravimetry, and by catheter cholecystography. Total dissolution of gallstones was obtained in four patients after 6-10 hr of lavage; in the fifth patient, partial gallstone dissolution facilitated basketing of the stones. In two patients, cholesterol dissolution was measured and averaged 30 mg/min. Side effects were limited to one episode of transient hypotension and pain at the infusion site; no patient developed somnolence or nausea. Gallstone elimination was associated with relief of symptoms. EP is an acceptable alternative to MTBE for topical dissolution of cholesterol gallbladder stones in high-risk patients. The lower volatility and rapid hepatic extraction of EP suggest that it may be preferable to MTBE in this investigational procedure.

  16. Molecular dosimetry of the chemical mutagen ethyl methanesulfonate

    International Nuclear Information System (INIS)

    Zeeland, A.A. van; Aaron, C.S.; Mohn, G.R.; Hung, C.Y.; Brockman, H.E.

    1983-01-01

    Extending previous work with E. coli and mammalian cells in culture, forward-mutation frequencies induced by ethyl methanesulfonate (EMS) were quantitatively compared in Neurospora crassa and Saccharomyces cerevisiae under standardized conditions. Concomitantly, the actual dose to DNA was measured by determining the amount of radioactivity bound to DNA after treatment with tritium-labeled EMS. After exposure to EMS (2.5-50 mM), alkylation levels in N. crassa and S. cerevisiae were similar to those previously determined in E. coli and cultured mammalian cells. Consistently, there was a slightly less than proportional increase of the DNA alkylation level with the exposure concentration of the mutagen. Forward mutagenesis induced in yeast and N. crassa showed exponential kinetics with exponents of 1.5 and 2.6, respectively. These results are similar to those previously reported with E. coli, which differed from the results with cultured mammalian cells, where a linear dose-effect relationship between exposure and genetic effect was observed. These differences may reflect differences in the fate of EMS-induced adducts by cellular DNA repair systems, but are not due to initial differences in DNA alkylation levels. The fate and persistence of specific DNA adducts potentially responsible for pre-mutagenic changes are under investigation. (orig.)

  17. Determination of acetone and methyl ethyl ketone in water

    Science.gov (United States)

    Tai, D.Y.

    1978-01-01

    Analytical procedures for the determination of acetone and methyl ethyl ketone in water samples were developed. Concentrations in the milligram-per-liter range were determined by injecting an aqueous sample into the analysis system through an injection port, trapping the organics on Tenax-GC at room temperature, and thermally desorbing the organics into a gas chromatograph with a flame ionization detector for analysis. Concentrations in the microgram-per-liter range were determined by sweeping the headspace vapors over a water sample at 50C, trapping on Tenax-GC, and thermally desorbing the organics into the gas chromatograph. The precision for two operators of the milligram-per-liter concentration procedure, expressed as the coefficient of variation, was generally less than 2 percent for concentrations ranging from 16 to 160 milligrams per liter. The precision from two operators of the microgram-per-liter concentration procedure was between 2 and 4 percent for concentrations of 20 and 60 micrograms per liter. (Woodard-USGS)

  18. Multiple roles of mobile active center loops in the E1 component of the Escherichia coli pyruvate dehydrogenase complex - Linkage of protein dynamics to catalysis

    Science.gov (United States)

    Jordan, Frank; Arjunan, Palaniappa; Kale, Sachin; Nemeria, Natalia S.; Furey, William

    2009-01-01

    The region encompassing residues 401–413 on the E1 component of the pyruvate dehydrogenase multienzyme complex from Escherichia coli comprises a loop (the inner loop) which was not seen in the X-ray structure in the presence of thiamin diphosphate, the required cofactor for the enzyme. This loop is seen in the presence of a stable analogue of the pre-decarboxylation intermediate, the covalent adduct between the substrate analogue methyl acetylphosphonate and thiamin diphosphate, C2α-phosphonolactylthiamin diphosphate. It has been shown that the residue H407 and several other residues on this loop are required to reduce the mobility of the loop so electron density corresponding to it can be seen once the pre-decarboxylation intermediate is formed. Concomitantly, the loop encompassing residues 541–557 (the outer loop) appears to work in tandem with the inner loop and there is a hydrogen bond between the two loops ensuring their correlated motion. The inner loop was shown to: a) sequester the active center from carboligase side reactions; b) assist the interaction between the E1 and the E2 components, thereby affecting the overall reaction rate of the entire multienzyme complex; c) control substrate access to the active center. Using viscosity effects on kinetics it was shown that formation of the pre-decarboxylation intermediate is specifically affected by loop movement. A cysteine-less variant was created for the E1 component, onto which cysteines were substituted at selected loop positions. Introducing an electron spin resonance spin label and an 19F NMR label onto these engineered cysteines, the loop mobility was examined: a) both methods suggested that in the absence of ligand, the loop exists in two conformations; b) line-shape analysis of the NMR signal at different temperatures, enabled estimation of the rate constant for loop movement, and this rate constant was found to be of the same order of magnitude as the turnover number for the enzyme under the

  19. Combined use of fatty acid ethyl esters and ethyl glucuronide in hair for diagnosis of alcohol abuse: interpretation and advantages.

    Science.gov (United States)

    Pragst, F; Rothe, M; Moench, B; Hastedt, M; Herre, S; Simmert, D

    2010-03-20

    In this study the combined use of fatty acid ethyl esters (FAEE) and ethyl glucuronide (EtG) for diagnoses of chronically excessive alcohol abuse is investigated at 174 hair samples from driving ability examination, workplace testing and child custody cases for family courts and evaluated with respect to the basics of interpretation. Using the cut-off values of 0.50 ng/mg for FAEE and 25 pg/mg for EtG, both markers were in agreement in 75% of the cases with 103 negative and 28 positive results and there were 30 cases with FAEE positive and EtG negative and 13 cases with FAEE negative and EtG positive. As the theoretical basis of interpretation, the pharmacokinetics of FAEE and EtG is reviewed for all steps between drinking of ethanol to incorporation in hair with particular attention to relationships between alcohol dose and concentrations in hair. It is shown that the concentrations of both markers are essentially determined by the area under the ethanol concentration in blood vs. time curve AUC(EtOH), despite large inter-individual variations. It is demonstrated by calculation of AUC(EtOH) on monthly basis for moderate, risky and heavy drinking that AUC(EtOH) increases very strongly in the range between 60 and 120 g ethanol per day. This specific feature which is caused by the zero-order elimination of ethanol is a favorable prerequisite for a high discrimination power of the hair testing for alcohol abuse. From the consideration of the different profiles of FAEE and EtG along the hair and in agreement with the literature survey, a standardized hair segment 0-3 cm is proposed with cut-off values of 0.5 ng/mg for FAEE and 30 pg/mg for EtG. This improves also the agreement between FAEE and EtG results in the cases of the present study. A scheme for combined interpretation of FAEE and EtG is proposed which uses the levels of abstinence and the double of the cut-off values as criteria in addition to the cut-off's. Considering the large variations in the relationship

  20. Alkylation of deoxyribonucleic acid by carcinogens dimethyl sulphate, ethyl methanesulphonate, N-ethyl-N-nitrosourea and N-methyl-N-nitrosourea

    International Nuclear Information System (INIS)

    Swenson, D.H.; Lawley, P.D.

    1978-01-01

    The ethyl phosphotriester of thymidylyl(3'-5')thymidine, dTp((Et) dT, was identified as a product from the reaction of DNA with N-ethyl-N-nitrosourea. Enzymic degradation to yield alkyl phosphotriesters from DNA alkylated by this carcinogen, and by N-methyl-N-nitrosourea, dimethyl sulphate and ethyl methanesulphonate was studied quantitatively, and the relative yields of the triesters dTp(Alk)dT were determined. The relative reactivity of the phosphodiester group dTpdT to each of the four carcinogens was thus obtained, and compared with that of DNA overall, or with that of the N-7 atom of guanine in DNA. The results are related to steric factors, and the electrophilic character of each carcinogen. (author)

  1. An allostatic mechanism for M2 pyruvate kinase as an amino-acid sensor.

    Science.gov (United States)

    Yuan, Meng; McNae, Iain W; Chen, Yiyuan; Blackburn, Elizabeth A; Wear, Martin A; Michels, Paul A M; Fothergill-Gilmore, Linda A; Hupp, Ted; Walkinshaw, Malcolm D

    2018-05-10

    We have tested the effect of all 20 proteinogenic amino acids on the activity of the M2 isoenzyme of pyruvate kinase (M2PYK) and show that within physiologically relevant concentrations, phenylalanine, alanine, tryptophan, methionine, valine, and proline act as inhibitors while histidine and serine act as activators. Size exclusion chromatography has been used to show that all amino acids, whether activators or inhibitors, stabilise the tetrameric form of M2PYK. In the absence of amino-acid ligands an apparent tetramer-monomer dissociation K d is estimated to be ~0.9 µM with a slow dissociation rate (t 1/2 ~ 15 min). X-ray structures of M2PYK complexes with alanine, phenylalanine, and tryptophan show the M2PYK locked in an inactive T-state conformation, while activators lock the M2PYK tetramer in the active R-state conformation. Amino-acid binding in the allosteric pocket triggers rigid body rotations (11°) stabilising either T or R-states. The opposing inhibitory and activating effects of the non-essential amino acids serine and alanine suggest that M2PYK could act as a rapid-response nutrient sensor to rebalance cellular metabolism. This competition at a single allosteric site between activators and inhibitors provides a novel regulatory mechanism by which M2PYK activity is finely tuned by the relative (but not absolute) concentrations of activator and inhibitor amino acids. Such 'allostatic' regulation may be important in metabolic reprogramming and influencing cell fate. ©2018 The Author(s).

  2. Characterization of the distal promoter of the human pyruvate carboxylase gene in pancreatic beta cells.

    Directory of Open Access Journals (Sweden)

    Ansaya Thonpho

    Full Text Available Pyruvate carboxylase (PC is an enzyme that plays a crucial role in many biosynthetic pathways in various tissues including glucose-stimulated insulin secretion. In the present study, we identify promoter usage of the human PC gene in pancreatic beta cells. The data show that in the human, two alternative promoters, proximal and distal, are responsible for the production of multiple mRNA isoforms as in the rat and mouse. RT-PCR analysis performed with cDNA prepared from human liver and islets showed that the distal promoter, but not the proximal promoter, of the human PC gene is active in pancreatic beta cells. A 1108 bp fragment of the human PC distal promoter was cloned and analyzed. It contains no TATA box but possesses two CCAAT boxes, and other putative transcription factor binding sites, similar to those of the distal promoter of rat PC gene. To localize the positive regulatory region in the human PC distal promoter, 5'-truncated and the 25-bp and 15-bp internal deletion mutants of the human PC distal promoter were generated and used in transient transfections in INS-1 832/13 insulinoma and HEK293T (kidney cell lines. The results indicated that positions -340 to -315 of the human PC distal promoter serve as (an activator element(s for cell-specific transcription factor, while the CCAAT box at -71/-67, a binding site for nuclear factor Y (NF-Y, as well as a GC box at -54/-39 of the human PC distal promoter act as activator sequences for basal transcription.

  3. Dealing with the sulfur part of cysteine: four enzymatic steps degrade l-cysteine to pyruvate and thiosulfate in Arabidopsis mitochondria.

    Science.gov (United States)

    Höfler, Saskia; Lorenz, Christin; Busch, Tjorven; Brinkkötter, Mascha; Tohge, Takayuki; Fernie, Alisdair R; Braun, Hans-Peter; Hildebrandt, Tatjana M

    2016-07-01

    Amino acid catabolism is essential for adjusting pool sizes of free amino acids and takes part in energy production as well as nutrient remobilization. The carbon skeletons are generally converted to precursors or intermediates of the tricarboxylic acid cycle. In the case of cysteine, the reduced sulfur derived from the thiol group also has to be oxidized in order to prevent accumulation to toxic concentrations. Here we present a mitochondrial sulfur catabolic pathway catalyzing the complete oxidation of l-cysteine to pyruvate and thiosulfate. After transamination to 3-mercaptopyruvate, the sulfhydryl group from l-cysteine is transferred to glutathione by sulfurtransferase 1 and oxidized to sulfite by the sulfur dioxygenase ETHE1. Sulfite is then converted to thiosulfate by addition of a second persulfide group by sulfurtransferase 1. This pathway is most relevant during early embryo development and for vegetative growth under light-limiting conditions. Characterization of a double mutant produced from Arabidopsis thaliana T-DNA insertion lines for ETHE1 and sulfurtransferase 1 revealed that an intermediate of the ETHE1 dependent pathway, most likely a persulfide, interferes with amino acid catabolism and induces early senescence. © 2016 Scandinavian Plant Physiology Society.

  4. The metabolism of [3-(13)C]lactate in the rat brain is specific of a pyruvate carboxylase-deprived compartment.

    Science.gov (United States)

    Bouzier, A K; Thiaudiere, E; Biran, M; Rouland, R; Canioni, P; Merle, M

    2000-08-01

    Lactate metabolism in the adult rat brain was investigated in relation with the concept of lactate trafficking between astrocytes and neurons. Wistar rats were infused intravenously with a solution containing either [3-(13)C]lactate (534 mM) or both glucose (750 mM) and [3-(13)C]lactate (534 mM). The time courses of both the concentration and (13)C enrichment of blood glucose and lactate were determined. The data indicated the occurrence of [3-(13)C]lactate recycling through liver gluconeogenesis. The yield of glucose labeling was, however, reduced when using the glucose-containing infusate. After a 20-min or 1-h infusion, perchloric acid extracts of the brain tissue were prepared and subsequently analyzed by (13)C- and (1)H-observed/(13)C-edited NMR spectroscopy. The (13)C labeling of amino acids indicated that [3-(13)C]lactate was metabolized in the brain. Based on the alanine C3 enrichment, lactate contribution to brain metabolism amounted to 35% under the most favorable conditions used. By contrast with what happens with [1-(13)C]glucose metabolism, no difference in glutamine C2 and C3 labeling was evidenced, indicating that lactate was metabolized in a compartment deprived of pyruvate carboxylase activity. This result confirms, for the first time from an in vivo study, that lactate is more specifically a neuronal substrate.

  5. Vapour pressures and osmotic coefficients of binary mixtures of 1-ethyl-3-methylimidazolium ethylsulfate and 1-ethyl-3-methylpyridinium ethylsulfate with alcohols at T = 323.15 K

    International Nuclear Information System (INIS)

    Calvar, Noelia; Gonzalez, Begona; Dominguez, Angeles; Macedo, Eugenia A.

    2009-01-01

    Osmotic coefficients of binary mixtures containing alcohols (ethanol, 1-propanol, and 2-propanol) and the ionic liquids 1-ethyl-3-methylimidazolium ethylsulfate and 1-ethyl-3-methylpyridinium ethylsulfate were determined at T = 323.15 K. Vapour pressure and activity coefficients of the studied systems were calculated from experimental data. The extended Pitzer model modified by Archer, and the modified NRTL model (MNRTL) were used to correlate the experimental data, obtaining standard deviations lower than 0.012 and 0.031, respectively. The mean molal activity coefficients and the excess Gibbs free energy of the studied binary mixtures were calculated from the parameters obtained with the extended Pitzer model of Archer.

  6. Synthesis and Fungicidal activity of some sulphide derivatives of O-Ethyl-N-substituted phenylcarbamates

    International Nuclear Information System (INIS)

    Imeokparia, F.A.

    2006-01-01

    Monosulphides of O-ethyl-N-substituted phenylcarbamates were prepared by the reaction between O-ethyl-N-substituted phenylcarbamates and sulphur dichloride, while the corresponding disulphides were prepared by the reaction between O-ethyl-N-substituted phenylcarbamates and sulphur monochloride. The synthesized compounds were characterized by elemental analysis, thin layer chromatography (TLC), Fourier-transform infrared, and /sup 1/H and /sup 13/C nuclear magnetic resonance spectroscopic techniques. In vitro fungicidal assay of these sulphides against Fusarium oxysporum, Aspergillus niger, Aspergillus flavus and Rhizopus stolonifer showed that they had Greater fungicidal activity than their parent carbamates. The synthesized sulphides were more active towards A. Niger and A. flavus. Unlike the parent carbamates, the type of substituents attached to the aromatic nucleus of these sulphides had little or no effect on their fungicidal activity as there was insignificant variation in the fungicidal activity of the monosulphide and the disulphide derivatives of O-ethyl-N-substituted phenylcarbamates. (author)

  7. Hydrogen Production via Steam Reforming of Ethyl Alcohol over Palladium/Indium Oxide Catalyst

    Directory of Open Access Journals (Sweden)

    Tetsuo Umegaki

    2009-01-01

    Full Text Available We report the synergetic effect between palladium and indium oxide on hydrogen production in the steam reforming reaction of ethyl alcohol. The palladium/indium oxide catalyst shows higher hydrogen production rate than indium oxide and palladium. Palladium/indium oxide affords ketonization of ethyl alcohol with negligible by-product carbon monoxide, while indium oxide mainly affords dehydration of ethyl alcohol, and palladium affords decomposition of ethyl alcohol with large amount of by-product carbon monoxide. The catalytic feature of palladium/indium oxide can be ascribed to the formation of palladium-indium intermetallic component during the reaction as confirmed by X-ray diffraction and X-ray photoelectron spectroscopic measurements.

  8. The synthesis of 5-[1-11C]ethyl barbiturates from labelled malonic esters

    International Nuclear Information System (INIS)

    Gee, A.; Laangstroem, B.

    1991-01-01

    The synthesis of [ 11 C]phenobarbital, [ 11 C]pentobarbital and[ 11 C]amobarbital labelled in the 5-[1- 11 C]ethyl position is reported. The malonic esters R- CH(CO 2 Et) 2 [R phenyl-, 1-methylbutyl-, and 3- methylbutyl- were alkylated with [1- 11 C]ethyl iodide prepared from [ 11 C]carbon dioxide. Ring closure of the 2-[1- 11 C]ethyl-labelled malonic esters with urea afforded 5-[1- 11 C]ethyl-phenobarbital,-phenobarbital, -pentobarbital and -amobarbital synthesis times of 42-47 min, counted from [ 11 C] carbon dioxide. In typical syntheses starting with 3 GBq pentobarbitol and (81 mCi) [ 11 C]carbon dioxide, 150-215 MBq (4-6 mCi) were produced in 25-30% decay corrected -amobarbital radiochemical yields with radiochemical purities greater than 98%. (author)

  9. A Theoretical Analysis of the Reaction Between Ethyl and Molecular Oxygen

    National Research Council Canada - National Science Library

    Miller, James A; Klippenstein, Stephen J; Robertson, Struan H

    2000-01-01

    Using a combination of electronic-structure theory, variational transition-state theory, and solutions to the time-dependent master equation, we have studied the kinetics of the reaction between ethyl...

  10. Solid–liquid phase equilibrium and dissolution properties of ethyl vanillin in pure solvents

    International Nuclear Information System (INIS)

    Wu, Hao; Wang, Jingkang; Zhou, Yanan; Guo, Nannan; Liu, Qi; Zong, Shuyi; Bao, Ying; Hao, Hongxun

    2017-01-01

    Highlights: • Solubility of ethyl vanillin in eight pure solvents were determined by a static analytical method. • The experimental solubility data of ethyl vanillin were correlated and analyzed by four thermodynamic models. • Dissolution thermodynamic properties of ethyl vanillin were calculated and discussed. - Abstract: The solubility of ethyl vanillin (EVA) in eight pure solvents were determined in different temperature ranges from (273.15 to 318.15) K by a static analytical method. In the temperature ranges investigated, it was found that the solubility of EVA in all the selected solvents increased with the rising of temperature. Furthermore, four thermodynamic models were used to correlate the experimental solubility data and the calculation results showed that selected models can be used to correlate the solubility data with satisfactory accuracy. Finally, the dissolution thermodynamic properties, including dissolution Gibbs energy, dissolution enthalpy and dissolution entropy of EVA in the eight selected solvents were calculated.

  11. Production and Characterization of Ethyl Ester from Crude Jatropha curcas Oil having High Free Fatty Acid Content

    Science.gov (United States)

    Kumar, Rajneesh; Dixit, Anoop; Singh, Shashi Kumar; Singh, Gursahib; Sachdeva, Monica

    2015-09-01

    The two step process was carried out to produce biodiesel from crude Jatropha curcas oil. The pretreatment process was carried out to reduce the free fatty acid content by (≤2 %) acid catalyzed esterification. The optimum reaction conditions for esterification were reported to be 5 % H2SO4, 20 % ethanol and 1 h reaction time at temperature of 65 °C. The pretreatment process reduced the free fatty acid of oil from 7 to 1.85 %. In second process, alkali catalysed transesterification of pretreated oil was carried and the effects of the varying concentrations of KOH and ethanol: oil ratios on percent ester recovery were investigated. The optimum reaction conditions for transesterification were reported to be 3 % KOH (w/v of oil) and 30 % (v/v) ethanol: oil ratio and reaction time 2 h at 65 °C. The maximum percent recovery of ethyl ester was reported to be 60.33 %.

  12. Efficacy of scalp hair decontamination following exposure to vapours of sulphur mustard simulants 2-chloroethyl ethyl sulphide and methyl salicylate.

    Science.gov (United States)

    Spiandore, Marie; Piram, Anne; Lacoste, Alexandre; Prevost, Philippe; Maloni, Pascal; Torre, Franck; Asia, Laurence; Josse, Denis; Doumenq, Pierre

    2017-04-01

    Chemical warfare agents are an actual threat and victims' decontamination is a main concern when mass exposure occurs. Skin decontamination with current protocols has been widely documented, as well as surface decontamination. However, considering hair ability to trap chemicals in vapour phase, we investigated hair decontamination after exposure to sulphur mustard simulants methyl salicylate and 2-chloroethyl ethyl sulphide. Four decontamination protocols were tested on hair, combining showering and emergency decontamination (use of Fuller's earth or Reactive Skin Decontamination Lotion RSDL ® ). Both simulants were recovered from hair after treatment, but contents were significantly reduced (42-85% content allowance). Showering alone was the least efficient protocol. Concerning 2-chloroethyl ethyl sulphide, protocols did not display significant differences in decontamination efficacy. For MeS, use of emergency decontaminants significantly increased showering efficacy (10-20% rise), underlining their usefulness before thorough decontamination. Our results highlighted the need to extensively decontaminate hair after chemical exposure. Residual amounts after decontamination are challenging, as their release from hair could lead to health issues. Copyright © 2016. Published by Elsevier B.V.

  13. Characterization of [8-ethyl]-chlorophyll c3 from Emiliania huxleyi.

    Science.gov (United States)

    Álvarez, Susana; Zapata, Manuel; Garrido, José L; Vaz, Belén

    2012-06-04

    We report herein the isolation and complete characterization of a member of the chlorophyll c family, designated as [8-ethyl]-chlorophyll c(3) ([8-ethyl]-chl c(3)). Structural elucidation of this pigment rested on the analysis of mono- and bidimensional NMR, UV-VIS spectroscopy and ESI-MS data, and the configuration at the 13(2) position on chiral HPLC analysis.

  14. ETHYL CYANIDE ON TITAN: SPECTROSCOPIC DETECTION AND MAPPING USING ALMA

    Energy Technology Data Exchange (ETDEWEB)

    Cordiner, M. A.; Palmer, M. Y.; Nixon, C. A.; Charnley, S. B.; Mumma, M. J.; Serigano, J. [NASA Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt, MD 20771 (United States); Irwin, P. G. J. [Atmospheric, Oceanic and Planetary Physics, Clarendon Laboratory, University of Oxford, Parks Road, Oxford, OX1 3PU (United Kingdom); Teanby, N. A. [School of Earth Sciences, University of Bristol, Wills Memorial Building, Queen’s Road, Bristol, BS8 1RJ (United Kingdom); Kisiel, Z. [Institute of Physics, Polish Academy of Sciences, Al. Lotnikøw 32/46, 02-668 Warszawa (Poland); Kuan, Y.-J.; Chuang, Y.-L. [National Taiwan Normal University, Taipei 116, Taiwan (China); Wang, K.-S., E-mail: martin.cordiner@nasa.gov [Institute of Astronomy and Astrophysics, Academia Sinica, Taipei 106, Taiwan (China)

    2015-02-10

    We report the first spectroscopic detection of ethyl cyanide (C{sub 2}H{sub 5}CN) in Titan’s atmosphere, obtained using spectrally and spatially resolved observations of multiple emission lines with the Atacama Large Millimeter/submillimeter Array (ALMA). The presence of C{sub 2}H{sub 5}CN in Titan’s ionosphere was previously inferred from Cassini ion mass spectrometry measurements of C{sub 2}H{sub 5}CNH{sup +}. Here we report the detection of 27 rotational lines from C{sub 2}H{sub 5}CN (in 19 separate emission features detected at >3σ confidence) in the frequency range 222–241 GHz. Simultaneous detections of multiple emission lines from HC{sub 3}N, CH{sub 3}CN, and CH{sub 3}CCH were also obtained. In contrast to HC{sub 3}N, CH{sub 3}CN, and CH{sub 3}CCH, which peak in Titan’s northern (spring) hemisphere, the emission from C{sub 2}H{sub 5}CN is found to be concentrated in the southern (autumn) hemisphere, suggesting a distinctly different chemistry for this species, consistent with a relatively short chemical lifetime for C{sub 2}H{sub 5}CN. Radiative transfer models show that C{sub 2}H{sub 5}CN is most concentrated at altitudes ≳200 km, suggesting production predominantly in the stratosphere and above. Vertical column densities are found to be in the range (1–5) × 10{sup 14} cm{sup −2}.

  15. Spontaneous inflammatory pain model from a mouse line with N-ethyl-N-nitrosourea mutagenesis

    Directory of Open Access Journals (Sweden)

    Chen Tsung-Chieh

    2012-05-01

    Full Text Available Abstract Background N-ethyl-N-nitrosourea mutagenesis was used to induce a point mutation in C57BL/6 J mice. Pain-related phenotype screening was performed in 915 G3 mice. We report the detection of a heritable recessive mutant in meiotic recombinant N1F1 mice that caused an abnormal pain sensitivity phenotype with spontaneous skin inflammation in the paws and ears. Methods We investigated abnormal sensory processing, neuronal peptides, and behavioral responses after the induction of autoinflammatory disease. Single-nucleotide polymorphism (SNP markers and polymerase chain reaction product sequencing were used to identify the mutation site. Results All affected mice developed paw inflammation at 4–8 weeks. Histological examinations revealed hyperplasia of the epidermis in the inflamed paws and increased macrophage expression in the spleen and paw tissues. Mechanical and thermal nociceptive response thresholds were reduced in the affected mice. Locomotor activity was decreased in affected mice with inflamed hindpaws, and this reduction was attributable to the avoidance of contact of the affected paw with the floor. Motor strength and daily activity in the home cage in the affected mice did not show any significant changes. Although Fos immunoreactivity was normal in the dorsal horn of affected mice, calcitonin gene-related peptide immunoreactivity significantly increased in the deep layer of the dorsal horn. The number of microglia increased in the spinal cord, hippocampus, and cerebral cortex in affected mice, and the proliferation of microglia was maintained for a couple of months. Two hundred eighty-five SNP markers were used to reveal the affected gene locus, which was found on the distal part of chromosome 18. A point mutation was detected at A to G in exon 8 of the pstpip2 gene, resulting in a conserved tyrosine residue at amino acid 180 replaced by cysteine (Y180 C. Conclusions The data provide definitive evidence that a mutation

  16. Introduction of sample tubes with sodium azide as a preservative for ethyl glucuronide in urine.

    Science.gov (United States)

    Luginbühl, Marc; Weinmann, Wolfgang; Al-Ahmad, Ali

    2017-09-01

    Ethyl glucuronide (EtG) is a direct alcohol marker, which is widely used for clinical and forensic applications, mainly for abstinence control. However, the instability of EtG in urine against bacterial degradation or the post-collectional synthesis of EtG in contaminated samples may cause false interpretation of EtG results in urine samples. This study evaluates the potential of sodium azide in tubes used for urine collection to hinder degradation of ethyl glucuronide by bacterial metabolism taking place during growth of bacterial colonies. The tubes are part of a commercial oral fluid collection device. The sampling system was tested with different gram-positive and gram-negative bacterial species previously observed in urinary tract infections, such as Escherichia coli, Staphylococcus aureus, Enterecoccus faecalis, Staphylococcus epidermidis, Klebsiella pneumoniae, Enterobacter cloacae, and Pseudomonas aeruginosa. Inhibition of bacterial growth by sodium azide, resulting in lower numbers of colony forming units compared to control samples, was observed for all tested bacterial species. To test the prevention of EtG degradation by the predominant pathogen in urinary tract infection, sterile-filtered urine and deficient medium were spiked with EtG, and inoculated with E. coli prior to incubation for 4 days at 37 °C in tubes with and without sodium azide. Samples were collected every 24 hours, during four consecutive days, whereby the colony forming units (CFU) were counted on Columbia blood agar plates, and EtG was analyzed by LC-MS/MS. As expected, EtG degradation was observed when standard polypropylene tubes were used for the storage of contaminated samples. However, urine specimens collected in sodium azide tubes showed no or very limited bacterial growth and no EtG degradation. As a conclusion, sodium azide is useful to reduce bacterial growth of gram-negative and gram-positive bacteria. It inhibits the degradation of EtG by E. coli and can be used for

  17. Photocatalytic degradation of paraoxon-ethyl in aqueous solution using titania nanoparticulate film

    International Nuclear Information System (INIS)

    Prasad, G.K.; Ramacharyulu, P.V.R.K.; Kumar, J. Praveen; Srivastava, A.R.; Singh, Beer

    2012-01-01

    Photocatalytic degradation of paraoxon-ethyl (o,o-diethyl o-(4-nitrophenyl) phosphate), a well known surrogate of chemical warfare agents, in aqueous solution was studied by using titania nanoparticulate film. Reaction followed pseudo first order behaviour. Photolytic degradation reaction of paraoxon-ethyl demonstrated relatively low rate with a value of rate constant of 2.5 × 10 −3 min −1 . Whereas, degradation reaction in the presence of titania nanoparticulate film and UV light displayed enhanced rate with a value of rate constant of 6.9 × 10 −3 min −1 due to photocatalysis. Gas chromatography–mass spectrometry analysis showed the formation of p-nitrophenol, o,o-diethyl phosphonic acid, o-ethyl, diphosphonic acid, phosphoric acid, dimerized product of o,o-diethyl phosphonic acid, acetaldehyde, and carbon dioxide due to photocatalytic degradation of paraoxon-ethyl. It indicates that, photocatalytic degradation reaction begins with destruction of P–O–C bonds. Subsequently, P, C atoms were found to be oxidized gradually, and contributed to its photocatalytic degradation. - Highlights: ► Synthesis of titania nanoparticles by sol–gel method. ► Fabrication of titania nanoparticulate film by dip coating. ► Paraoxon ethyl degradation reactions followed pseudo first order behaviour. ► Paraoxon-ethyl degraded to non toxic compounds like CO 2 , acetaldehyde, and nitrophenol.

  18. TRANSPORT PROPERTIES FOR 1-ETHYL-3-METHYLIMIDAZOLIUM n-ALKYL SULFATES: POSSIBLE EVIDENCE OF GROTTHUSS MECHANISM

    International Nuclear Information System (INIS)

    García-Garabal, S.; Vila, J.; Rilo, E.; Domínguez-Pérez, M.; Segade, L.; Tojo, E.; Verdía, P.; Varela, L.M.; Cabeza, O.

    2017-01-01

    The objective of this work was to study the effect of the temperature and the lengthening of the linear alkyl chain of the anion in the transport physical properties of the pure ionic liquids 1-ethyl-3-methyl imidazolium n-alkyl sulphate (being n = 0, 1, 2, 4, 6 and 8). Density, viscosity and electrical conductivities were measured at atmospheric pressure in a wide temperature range. In the bibliography, data existed for these magnitudes for all ionic liquids studied but none of these had information about the electrical conductivity of 1-ethyl-3-methyl imidazolium n-alkyl sulfate whith n = 0, 4, 6 and 8. The experimental results show clearly 1-ethyl-3-methyl imidazolium hydrogen sulphate cannot be considered part of the 1-ethyl-3-methyl imidazolium n-alkyl sulphate family because of its hydrogen bonding ability. Results of density and viscosity behave as expected. However, in the case of the electrical conductivity due to the lack of alkyl chain in the hydrogen sulfate we expected to get extreme values but in practise, we obtained intermediate values between 1-ethyl-3-methyl imidazolium butyl sulphate and 1-ethyl-3-methyl imidazolium hexyl sulphate. This suggests that a Grotthus mechanism exists as result of a protonic current in addition to ionic conductivity, being Waldeńs plot consistent with this idea.

  19. Behaviour of solid phase ethyl cyanide in simulated conditions of Titan

    Science.gov (United States)

    Couturier-Tamburelli, I.; Toumi, A.; Piétri, N.; Chiavassa, T.

    2018-01-01

    In order to simulate different altitudes in the atmosphere of Titan, we investigated using infrared spectrometry and mass spectrometry the photochemistry of ethyl cyanide (CH3CH2CN) ices at different temperatures. Heating experiments of the solid phase until complete desorption showed up three phase transitions with a first one appearing to be approximately at the temperature of Titan's surface (94 K), measured by the Huygens probe. Ethyl cyanide, whose presence has been suggested in solid phase in Titan, can be considered as another nitrile for photochemical models of the Titan atmosphere after our first study (Toumi et al., 2016) concerning vinyl cyanide (CH2CHCN). The desorption energy of ethyl cyanide has been calculated to be 36.75 ( ± 0.55) kJ mol-1 using IRTF and mass spectroscopical techniques. High energetic photolysis (λ > 120 nm) have been performed and we identified ethyl isocyanide, vinyl cyanide, cyanoacetylene, ethylene, acetylene, cyanhydric acid and a methylketenimine form as photoproducts from ethyl cyanide. The branching ratios of the primary products were determined at characteristic temperatures of Titan thanks to the value of the νCN stretching band strength of ethyl cyanide that has been calculated to be 4.12 × 10-18 cm molecule-1. We also report here for the first time the values of the photodissociation cross sections of C2H5CN for different temperatures.

  20. Photocatalytic degradation of paraoxon-ethyl in aqueous solution using titania nanoparticulate film

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, G.K., E-mail: gkprasad2001@yahoo.com; Ramacharyulu, P.V.R.K.; Kumar, J. Praveen; Srivastava, A.R.; Singh, Beer

    2012-06-30

    Photocatalytic degradation of paraoxon-ethyl (o,o-diethyl o-(4-nitrophenyl) phosphate), a well known surrogate of chemical warfare agents, in aqueous solution was studied by using titania nanoparticulate film. Reaction followed pseudo first order behaviour. Photolytic degradation reaction of paraoxon-ethyl demonstrated relatively low rate with a value of rate constant of 2.5 Multiplication-Sign 10{sup -3} min{sup -1}. Whereas, degradation reaction in the presence of titania nanoparticulate film and UV light displayed enhanced rate with a value of rate constant of 6.9 Multiplication-Sign 10{sup -3} min{sup -1} due to photocatalysis. Gas chromatography-mass spectrometry analysis showed the formation of p-nitrophenol, o,o-diethyl phosphonic acid, o-ethyl, diphosphonic acid, phosphoric acid, dimerized product of o,o-diethyl phosphonic acid, acetaldehyde, and carbon dioxide due to photocatalytic degradation of paraoxon-ethyl. It indicates that, photocatalytic degradation reaction begins with destruction of P-O-C bonds. Subsequently, P, C atoms were found to be oxidized gradually, and contributed to its photocatalytic degradation. - Highlights: Black-Right-Pointing-Pointer Synthesis of titania nanoparticles by sol-gel method. Black-Right-Pointing-Pointer Fabrication of titania nanoparticulate film by dip coating. Black-Right-Pointing-Pointer Paraoxon ethyl degradation reactions followed pseudo first order behaviour. Black-Right-Pointing-Pointer Paraoxon-ethyl degraded to non toxic compounds like CO{sub 2}, acetaldehyde, and nitrophenol.

  1. New Look at odorization levels for propane gas. [Ethyl mercaptan; thiophane; equilibrium K values

    Energy Technology Data Exchange (ETDEWEB)

    Whisman, M.L.; Goetzinger, J.W.; Cotton, F.O.; Brinkman, D.W.; Thompson, C.J.

    1977-09-01

    Nearly 4,000 persons participated in a study to evaluate three odorant systems in four test modes and at 24 different test sites. Participants included trained panels, untrained ERDA employees, and several thousand untrained volunteer evaluators. The classical testing technique and three modified test modes were used to represent a spectrum of conditions that would define the effect of environmental familiarity and mental distractions upon olfactory responses to LP-gas. Significant efforts were directed toward determination of odorant levels that not only can be detected but also will be detected. The study showed that in addition to defects of the nasal anatomy, psychological factors also affect olfactory responses, and that unfamiliarity with a given environment as well as anxieties or mental distractions can produce reduced awareness to odorants intended to warn individuals of the presence of LP-gas. A second part of the study involved a laboratory determination of equilibrium K-values for both ethyl mercaptan and thiophane at three temperatures. Novel sample handling and gas chromatographic techniques provided reproducible results which were in close agreement with theoretical predictions. (28 tables, 29 tables)

  2. Pengaruh Ethyl Methane Sulphonate (EMS Terhadap Pertumbuhan dan Variasi Tanaman Marigold (Tagetes sp.

    Directory of Open Access Journals (Sweden)

    NI MADE DIAN PRATIWI

    2015-09-01

    Full Text Available The Effect of Ethyl Methane Sulphonate (EMS on Growth and Variations of Marigold (Tagetes sp. The aims of this research are to determine the variation of marigold (Tagetes sp derived from seed treated with EMS and to recommend the EMS concentrations that are able to induce varietion. Seeds of marigold cv Narai Orange were soaked in water for 6 hours, followed by soaking in EMS at concentration of 0%, 0.3%, 0.6% and 0.9% for 4 hours. This study employed Randomized Complete Blok Design with 10 replicates and each replicate consisted of 10 plants. Six plants were randomly chosen for measurements. The total number of samples observed were 240 plants. Observations were made on the percentage of the growth, plant height, number of leaves, number of branches, diameter and weight of flowers. Data obtained from the observations were analyzed using Analysis of Variance (ANOVA, followed by DMRT (Duncan’s Multiple Range Test if there is a significant difference between treatments. The EMS treatment reduced all characters observed. The EMS concentration of 0.6% showed plant that had yellow flowers. The 0.9% EMS treatment resulted in one plant with chimera, 6 dwarf plants, 2 plants with thin stems, and 1 short plant with many branches. Untreated plants did not show any variation.

  3. Ternary Phase-Separation Investigation of Sol-Gel Derived Silica from Ethyl Silicate 40

    Science.gov (United States)

    Wang, Shengnan; Wang, David K.; Smart, Simon; Diniz da Costa, João C.

    2015-01-01

    A ternary phase-separation investigation of the ethyl silicate 40 (ES40) sol-gel process was conducted using ethanol and water as the solvent and hydrolysing agent, respectively. This oligomeric silica precursor underwent various degrees of phase separation behaviour in solution during the sol-gel reactions as a function of temperature and H2O/Si ratios. The solution composition within the immiscible region of the ES40 phase-separated system shows that the hydrolysis and condensation reactions decreased with decreasing reaction temperature. A mesoporous structure was obtained at low temperature due to weak drying forces from slow solvent evaporation on one hand and formation of unreacted ES40 cages in the other, which reduced network shrinkage and produced larger pores. This was attributed to the concentration of the reactive sites around the phase-separated interface, which enhanced the condensation and crosslinking. Contrary to dense silica structures obtained from sol-gel reactions in the miscible region, higher microporosity was produced via a phase-separated sol-gel system by using high H2O/Si ratios. This tailoring process facilitated further condensation reactions and crosslinking of silica chains, which coupled with stiffening of the network, made it more resistant to compression and densification. PMID:26411484

  4. Potentiation of 2,5-hexanedione neurotoxicity by methyl ethyl ketone

    International Nuclear Information System (INIS)

    Ralston, W.H.; Hilderbrand, R.L.; Uddin, D.E.; Andersen, M.E.; Gardier, R.W.

    1985-01-01

    Chronic oral administration of a combination of 2.2 mmol methyl ethyl ketone (MEK) and 2.2 mmol 2,5-hexanedione (2,5-HD)/kg/day, 5 days/week resulted in more rapid onset of motor deficits than did chronic dosing with 2.2 mmol 2,5-HD/kg/day alone. In kinetic studies blood time courses of 2,5-HD were determined in rats in the presence and absence of MEK. Concomitant administration of MEK reduced blood 2,5-HD clearance and increased the area under the curve (AUC) for the blood 2,5-HD. In companion experiments with 2,5-[1,6- 14 C]HD as a tracer, neural and nonneural tissues were examined 72 hr following the last treatment at Weeks 1, 2, and 3 of chronic administration of 2,5-HD alone or in combination with an equimolar dose of MEK. Rats treated with 2,5-[ 14 C]HD alone or in combination with MEK demonstrated no difference in total or trichloroacetic acid-precipitable radioactivity in blood, in liver homogenates, or in neurofilament-enriched fractions from sciatic nerve and spinal cord. The data support a suggestion that the potentiation of hexacarbon neurotoxicity by MEK is the result of the persistence of the neurotoxic metabolite in the blood and not the enhanced metabolism of parent hexacarbon to 2,5-HD

  5. Gastroprotective activity of the hydroethanolic extract and ethyl acetate fraction from Kalanchoe pinnata (Lam. Pers.

    Directory of Open Access Journals (Sweden)

    Flávia Sobreira

    2017-04-01

    Full Text Available ABSTRACT Peptic ulcers are an important pathology, and the search for safer and more effective treatment methods is of paramount importance. In this study, we assess the gastroprotective effects of the hydroethanolic extract (HE and ethyl acetate fraction (EAF from Kalanchoe pinnata leaves against an ethanol/HCl-induced ulcer model in rats. The HE reduced gastric lesions by approximately 47% (400 mg/kg. A significant inhibition of the gastric lesions by 50% was observed after pretreatment with the EAF (200 mg/kg. Quercetrin and quercetin 3-O-α-L-arabinopyranosyl-(1→2-α-L-rhamnopyranoside were isolated and identified in the flavonoid fraction (EAF by HPLC and NMR analyses because this fraction showed the highest gastroprotective effect. This fraction demonstrated high antioxidant activities (CE50=41.91 µg/mL by DPPH in comparison with Trolox(r and 11.33 mmol Trolox(r equivalent by ORAC. In conclusion, the HE and FAE from K. pinnata displayed gastroprotective activity in rats, most likely due to the presence of flavonoids.

  6. ­Characterization of pyruvate kinase from the anoxia tolerant turtle, Trachemys scripta elegans: a potential role for enzyme methylation during metabolic rate depression

    Directory of Open Access Journals (Sweden)

    Amanda M.S. Mattice

    2018-06-01

    Full Text Available Background Pyruvate kinase (PK is responsible for the final reaction in glycolysis. As PK is a glycolytic control point, the analysis of PK posttranslational modifications (PTM and kinetic changes reveals a key piece of the reorganization of energy metabolism in an anoxia tolerant vertebrate. Methods To explore PK regulation, the enzyme was isolated from red skeletal muscle and liver of aerobic and 20-hr anoxia-exposed red eared-slider turtles (Trachemys scripta elegans. Kinetic analysis and immunoblotting were used to assess enzyme function and the corresponding covalent modifications to the enzymes structure during anoxia. Results Both muscle and liver isoforms showed decreased affinity for phosphoenolpyruvate substrate during anoxia, and muscle PK also had a lower affinity for ADP. I50 values for the inhibitors ATP and lactate were lower for PK from both tissues after anoxic exposure while I50 L-alanine was only reduced in the liver. Both isozymes showed significant increases in threonine phosphorylation (by 42% in muscle and 60% in liver and lysine methylation (by 43% in muscle and 70% in liver during anoxia which have been linked to suppression of PK activity in other organisms. Liver PK also showed a 26% decrease in tyrosine phosphorylation under anoxia. Discussion Anoxia responsive changes in turtle muscle and liver PK coordinate with an overall reduced activity state. This reduced affinity for the forward glycolytic reaction is likely a key component of the overall metabolic rate depression that supports long term survival in anoxia tolerant turtles. The coinciding methyl- and phospho- PTM alterations present the mechanism for tissue specific enzyme modification during anoxia.

  7. ­Characterization of pyruvate kinase from the anoxia tolerant turtle, Trachemys scripta elegans: a potential role for enzyme methylation during metabolic rate depression

    Science.gov (United States)

    2018-01-01

    Background Pyruvate kinase (PK) is responsible for the final reaction in glycolysis. As PK is a glycolytic control point, the analysis of PK posttranslational modifications (PTM) and kinetic changes reveals a key piece of the reorganization of energy metabolism in an anoxia tolerant vertebrate. Methods To explore PK regulation, the enzyme was isolated from red skeletal muscle and liver of aerobic and 20-hr anoxia-exposed red eared-slider turtles (Trachemys scripta elegans). Kinetic analysis and immunoblotting were used to assess enzyme function and the corresponding covalent modifications to the enzymes structure during anoxia. Results Both muscle and liver isoforms showed decreased affinity for phosphoenolpyruvate substrate during anoxia, and muscle PK also had a lower affinity for ADP. I50 values for the inhibitors ATP and lactate were lower for PK from both tissues after anoxic exposure while I50 L-alanine was only reduced in the liver. Both isozymes showed significant increases in threonine phosphorylation (by 42% in muscle and 60% in liver) and lysine methylation (by 43% in muscle and 70% in liver) during anoxia which have been linked to suppression of PK activity in other organisms. Liver PK also showed a 26% decrease in tyrosine phosphorylation under anoxia. Discussion Anoxia responsive changes in turtle muscle and liver PK coordinate with an overall reduced activity state. This reduced affinity for the forward glycolytic reaction is likely a key component of the overall metabolic rate depression that supports long term survival in anoxia tolerant turtles. The coinciding methyl- and phospho- PTM alterations present the mechanism for tissue specific enzyme modification during anoxia. PMID:29900073

  8. -Characterization of pyruvate kinase from the anoxia tolerant turtle, Trachemys scripta elegans: a potential role for enzyme methylation during metabolic rate depression.

    Science.gov (United States)

    Mattice, Amanda M S; MacLean, Isabelle A; Childers, Christine L; Storey, Kenneth B

    2018-01-01

    Pyruvate kinase (PK) is responsible for the final reaction in glycolysis. As PK is a glycolytic control point, the analysis of PK posttranslational modifications (PTM) and kinetic changes reveals a key piece of the reorganization of energy metabolism in an anoxia tolerant vertebrate. To explore PK regulation, the enzyme was isolated from red skeletal muscle and liver of aerobic and 20-hr anoxia-exposed red eared-slider turtles ( Trachemys scripta elegans ). Kinetic analysis and immunoblotting were used to assess enzyme function and the corresponding covalent modifications to the enzymes structure during anoxia. Both muscle and liver isoforms showed decreased affinity for phosphoenolpyruvate substrate during anoxia, and muscle PK also had a lower affinity for ADP. I 50 values for the inhibitors ATP and lactate were lower for PK from both tissues after anoxic exposure while I 50 L-alanine was only reduced in the liver. Both isozymes showed significant increases in threonine phosphorylation (by 42% in muscle and 60% in liver) and lysine methylation (by 43% in muscle and 70% in liver) during anoxia which have been linked to suppression of PK activity in other organisms. Liver PK also showed a 26% decrease in tyrosine phosphorylation under anoxia. Anoxia responsive changes in turtle muscle and liver PK coordinate with an overall reduced activity state. This reduced affinity for the forward glycolytic reaction is likely a key component of the overall metabolic rate depression that supports long term survival in anoxia tolerant turtles. The coinciding methyl- and phospho- PTM alterations present the mechanism for tissue specific enzyme modification during anoxia.

  9. Insights into the carboxyltransferase reaction of pyruvate carboxylase from the structures of bound product and intermediate analogues

    Science.gov (United States)

    Lietzan, Adam D.; St. Maurice, Martin

    2014-01-01

    Pyruvate carboxylase (PC) is a biotin-dependent enzyme that catalyzes the MgATP- and bicarbonate-dependent carboxylation of pyruvate to oxaloacetate, an important anaplerotic reaction in central metabolism. The carboxyltransferase (CT) domain of PC catalyzes the transfer of a carboxyl group from carboxybiotin to the accepting substrate, pyruvate. It has been hypothesized that the reactive enolpyruvate intermediate is stabilized through a bidentate interaction with the metal ion in the CT domain active site. Whereas bidentate ligands are commonly observed in enzymes catalyzing reactions proceeding through an enolpyruvate intermediate, no bidentate interaction has yet been observed in the CT domain of PC. Here, we report three X-ray crystal structures of the Rhizobium etli PC CT domain with the bound inhibitors oxalate, 3-hydroxypyruvate, and 3-bromopyruvate. Oxalate, a stereoelectronic mimic of the enolpyruvate intermediate, does not interact directly with the metal ion. Instead, oxalate is buried in a pocket formed by several positively charged amino acid residues and the metal ion. Furthermore, both 3-hydroxypyruvate and 3-bromopyruvate, analogs of the reaction product oxaloacetate, bind in an identical manner to oxalate suggesting that the substrate maintains its orientation in the active site throughout catalysis. Together, these structures indicate that the substrates, products and intermediates in the PC-catalyzed reaction are not oriented in the active site as previously assumed. The absence of a bidentate interaction with the active site metal appears to be a unique mechanistic feature among the small group of biotin-dependent enzymes that act on α-keto acid substrates. PMID:24157795

  10. GABAergic transmission and chloride equilibrium potential are not modulated by pyruvate in the developing optic tectum of Xenopus laevis tadpoles.

    Directory of Open Access Journals (Sweden)

    Arseny S Khakhalin

    Full Text Available In the developing mammalian brain, gamma-aminobutyric acid (GABA is thought to play an excitatory rather than an inhibitory role due to high levels of intracellular Cl(- in immature neurons. This idea, however, has been questioned by recent studies which suggest that glucose-based artificial cerebrospinal fluid (ACSF may be inadequate for experiments on immature and developing brains. These studies suggest that immature neurons may require alternative energy sources, such as lactate or pyruvate. Lack of these other energy sources is thought to result in artificially high intracellular Cl(- concentrations, and therefore a more depolarized GABA receptor (GABAR reversal potential. Since glucose metabolism can vary widely among different species, it is important to test the effects of these alternative energy sources on different experimental preparations. We tested whether pyruvate affects GABAergic transmission in isolated brains of developing wild type Xenopus tadpoles in vitro by recording the responsiveness of tectal neurons to optic nerve stimulation, and by measuring currents evoked by local GABA application in a gramicidin perforated patch configuration. We found that, in contrast with previously reported results, the reversal potential for GABAR-mediated currents does not change significantly between developmental stages 45 and 49. Partial substitution of glucose by pyruvate had only minor effects on both the GABA reversal potential, and the responsiveness of tectal neurons at stages 45 and 49. Total depletion of energy sources from the ACSF did not affect neural responsiveness. We also report a strong spatial gradient in GABA reversal potential, with immature cells adjacent to the lateral and caudal proliferative zones having more positive reversal potentials. We conclude that in this experimental preparation standard glucose-based ACSF is an appropriate extracellular media for in vitro experiments.

  11. Exploration of swapping enzymatic function between two proteins: A simulation study of chorismate mutase and isochorismate pyruvate lyase

    Science.gov (United States)

    Choutko, Alexandra; Eichenberger, Andreas P; Gunsteren, Wilfred F; Dolenc, Jožica

    2013-01-01

    The enzyme chorismate mutase EcCM from Escherichia coli catalyzes one of the few pericyclic reactions in biology, the transformation of chorismate to prephenate. The isochorismate pyruvate lyase PchB from Pseudomonas aeroginosa catalyzes another pericyclic reaction, the isochorismate to salicylate transformation. Interestingly, PchB possesses weak chorismate mutase activity as well thus being able to catalyze two distinct pericyclic reactions in a single active site. EcCM and PchB possess very similar folds, despite their low sequence identity. Using molecular dynamics simulations of four combinations of the two enzymes (EcCM and PchB) with the two substrates (chorismate and isochorismate) we show that the electrostatic field due to EcCM at atoms of chorismate favors the chorismate to prephenate transition and that, analogously, the electrostatic field due to PchB at atoms of isochorismate favors the isochorismate to salicylate transition. The largest differences between EcCM and PchB in electrostatic field strengths at atoms of the substrates are found to be due to residue side chains at distances between 0.6 and 0.8 nm from particular substrate atoms. Both enzymes tend to bring their non-native substrate in the same conformation as their native substrate. EcCM and to a lower extent PchB fail in influencing the forces on and conformations of the substrate such as to favor the other chemical reaction (isochorismate pyruvate lyase activity for EcCM and chorismate mutase activity for PchB). These observations might explain the difficulty of engineering isochorismate pyruvate lyase activity in EcCM by solely mutating active site residues. PMID:23595942

  12. Exploration of swapping enzymatic function between two proteins: a simulation study of chorismate mutase and isochorismate pyruvate lyase.

    Science.gov (United States)

    Choutko, Alexandra; Eichenberger, Andreas P; van Gunsteren, Wilfred F; Dolenc, Jožica

    2013-06-01

    The enzyme chorismate mutase EcCM from Escherichia coli catalyzes one of the few pericyclic reactions in biology, the transformation of chorismate to prephenate. The isochorismate pyruvate lyase PchB from Pseudomonas aeroginosa catalyzes another pericyclic reaction, the isochorismate to salicylate transformation. Interestingly, PchB possesses weak chorismate mutase activity as well thus being able to catalyze two distinct pericyclic reactions in a single active site. EcCM and PchB possess very similar folds, despite their low sequence identity. Using molecular dynamics simulations of four combinations of the two enzymes (EcCM and PchB) with the two substrates (chorismate and isochorismate) we show that the electrostatic field due to EcCM at atoms of chorismate favors the chorismate to prephenate transition and that, analogously, the electrostatic field due to PchB at atoms of isochorismate favors the isochorismate to salicylate transition. The largest differences between EcCM and PchB in electrostatic field strengths at atoms of the substrates are found to be due to residue side chains at distances between 0.6 and 0.8 nm from particular substrate atoms. Both enzymes tend to bring their non-native substrate in the same conformation as their native substrate. EcCM and to a lower extent PchB fail in influencing the forces on and conformations of the substrate such as to favor the other chemical reaction (isochorismate pyruvate lyase activity for EcCM and chorismate mutase activity for PchB). These observations might explain the difficulty of engineering isochorismate pyruvate lyase activity in EcCM by solely mutating active site residues. © 2013 The Protein Society.

  13. Pyruvate dehydrogenase complexes from the equine nematode, Parascaris equorum, and the canine cestode, Dipylidium caninum, helminths exhibiting anaerobic mitochondrial metabolism.

    Science.gov (United States)

    Diaz, F; Komuniecki, R W

    1994-10-01

    The pyruvate dehydrogenase complex (PDC) has been purified to apparent homogeneity from 2 parasitic helminths exhibiting anaerobic mitochondrial metabolism, the equine nematode, Parascaris equorum, and the canine cestode, Dipylidium caninum. The P. equorum PDC yielded 7 major bands when separated by SDS-PAGE. The bands of 72, 55-53.5, 41 and 36 kDa corresponded to E2, E3, E1 alpha and E1 beta, respectively. The complex also contained additional unidentified proteins of 43 and 45 kDa. Incubation of the complex with [2-14C]pyruvate resulted in the acetylation of only E2. These results suggest that the P. equorum PDC lacks protein X and exhibits an altered subunit composition, as has been described previously for the PDC of the related nematode, Ascaris suum. In contrast, the D. caninum PDC yielded only four major bands after SDS-PAGE of 59, 58, 39 and 34 kDa, which corresponded to E3, E2, E1 alpha and E1 beta, respectively. Incubation of the D. caninum complex with [2-14C]pyruvate resulted in the acetylation of E2 and a second protein which comigrated with E3, suggesting that the D. caninum complex contained protein X and had a subunit composition similar to PDCs from other eukaryotic organisms. Both helminth complexes appeared less sensitive to inhibition by elevated NADH/NAD+ ratios than complexes isolated from aerobic organisms, as would be predicted for PDCs from organisms exploiting microaerobic habitats. These results suggest that although these helminths have similar anaerobic mitochondrial pathways, they contain significantly different PDCs.

  14. Effects of hypoxia and pyruvate infusion on myocardial fatty acid oxidation measured with 123I heptadecanoic acid

    International Nuclear Information System (INIS)

    Comans, E.F.I.; Visser, F.C.; Elzinga, Gijs

    1993-01-01

    Radio-iodinated fatty acids like 123 I heptadecanoic acid (HDA) can be used for the non-invasive delineation of myocardial non-esterified fatty acid (FA) metabolism. In this study the quantitative value of HDA was assessed for the measurement of myocardial FA oxidation. In an isolated saline perfused rat heart preparation myocardial time-activity curves were made during control perfusion and after inhibition of FA oxidation by hypoxia and infusion of 10.0 mM pyruvate, respectively. Control experiments were performed using 1- 14 C palmitate as the 'golden standard' for myocardial FA oxidation. Myocardial HDA oxidation was calculated from the amplitude of the third exponential term of the time-activity curve. During control perfusion no differences were observed between the calculated oxygen equivalents (from HDA oxidation) and the measured (A-V oxygen content difference) and the estimated ( 14 CO 2 production) values. Inhibition of palmitate oxidation with pyruvate was accurately detected with HDA. During hypoxic perfusion, an overestimation of palmitate oxidation was calculated on the basic of HDA oxidation. Infusion of pyruvate did not influence the time constants of the time-activity curves, whereas during hypoxic perfusion an increase of the time constant of the third exponential term was observed, probably caused by the presence of back-diffusion of non-metabolized HDA. We conclude that HDA can be used as a quantitative tool for the measurement of myocardial FA oxidation under various metabolic conditions. During periods of a decreased oxygen availability back-diffusion of FA needs to be taken into account for the interpretation of the myocardial time-activity curves. (author)

  15. Quantification of in vivo metabolic kinetics of hyperpolarized pyruvate in rat kidneys using dynamic 13C MRSI.

    Science.gov (United States)

    Xu, Tao; Mayer, Dirk; Gu, Meng; Yen, Yi-Fen; Josan, Sonal; Tropp, James; Pfefferbaum, Adolf; Hurd, Ralph; Spielman, Daniel

    2011-10-01

    With signal-to-noise ratio enhancements on the order of 10,000-fold, hyperpolarized MRSI of metabolically active substrates allows the study of both the injected substrate and downstream metabolic products in vivo. Although hyperpolarized [1-(13)C]pyruvate, in particular, has been used to demonstrate metabolic activities in various animal models, robust quantification and metabolic modeling remain important areas of investigation. Enzyme saturation effects are routinely seen with commonly used doses of hyperpolarized [1-(13)C]pyruvate; however, most metrics proposed to date, including metabolite ratios, time-to-peak of metabolic products and single exchange rate constants, fail to capture these saturation effects. In addition, the widely used small-flip-angle excitation approach does not correctly model the inflow of fresh downstream metabolites generated proximal to the target slice, which is often a significant factor in vivo. In this work, we developed an efficient quantification framework employing a spiral-based dynamic spectroscopic imaging approach. The approach overcomes the aforementioned limitations and demonstrates that the in vivo (13)C labeling of lactate and alanine after a bolus injection of [1-(13)C]pyruvate is well approximated by saturatable kinetics, which can be mathematically modeled using a Michaelis-Menten-like formulation, with the resulting estimated apparent maximal reaction velocity V(max) and apparent Michaelis constant K(M) being unbiased with respect to critical experimental parameters, including the substrate dose, bolus shape and duration. Although the proposed saturatable model has a similar mathematical formulation to the original Michaelis-Menten kinetics, it is conceptually different. In this study, we focus on the (13)C labeling of lactate and alanine and do not differentiate the labeling mechanism (net flux or isotopic exchange) or the respective contribution of various factors (organ perfusion rate, substrate transport

  16. Cloning of affecting pyruvate decarboxylase gene in the production bioethanol of agricultural waste in the E.coli bacteria

    Directory of Open Access Journals (Sweden)

    Masome Zeinali

    2016-09-01

    Full Text Available Introduction: Ethanol made by a biomass is one of the useful strategies in terms of economic and environmental and as a clean and safe energy to replace fossil fuels considered and examined. Materials and methods: In this study, key enzyme in the production of ethanol (Pyruvate decarboxylase from Zymomonas mobilis bacteria was isolated and cloned at E. coli bacteria by freeze and thaw method. For gene cloning, we used specific primers of pdc and PCR reaction and then pdc gene isolated and pET 28a plasmid double digested with (Sal I and Xho I enzymes. Digestion Products were ligated by T4 DNA ligase in 16 °C for 16 hours. Results: Results of bacteria culture showed that a few colonies containing pET 28a plasmid could grow. Result of colony pcr of pdc gene with specific primers revealed 1700 bp bands in 1% agarose gel electrophoresis. The results of PCR with T7 promotor forward primer and pdc revers primer have proved the accurate direction of integration of pdc gene into plasmid and revealed 1885 bp band. Double digestion of recombinant plasmid with SalI and XhoI enzymes revealed same bands. Finally, RT showed the expected band of 1700 bp that implies the desired gene expression in the samples. Discussion and conclusion: Due to the increased production of ethanol via pyruvate decarboxylase gene cloning in expression plasmids with a strong promoter upstream of the cloning site can conclude that, pyruvate decarboxylase cloning as a key gene would be useful and according to beneficial properties of E. coli bacteria, transfering the gene to bacteria appears to be reasonable.

  17. Synthesis of enantiomerically pure (R)- and (S)-2-sulfanylpropanoic acids (‘thiolactic acid’) from ethyl (S)-lactate using pig liver esterase

    NARCIS (Netherlands)

    Hof, Robert P.; Kellogg, Richard M.

    1995-01-01

    The methanesulfonates of optically pure ethyl (S)-lactate or ethyl (R)-2-chloropropanoate 5, obtained with inversion of configuration from ethyl (S)-lactate on treatment with SOCl2, can be substituted by caesium thiolates with inversion of configuration to yield (R) and (S) ethyl

  18. SYNTHESIS OF ENANTIOMERICALLY PURE (R)-2-SULFANYLPROPANOIC AND (S)-2-SULFANYLPROPANOIC ACIDS (THIOLACTIC ACID) FROM ETHYL (S)-LACTATE USING PIG-LIVER ESTERASE

    NARCIS (Netherlands)

    HOF, RP; KELLOGG, RM

    1995-01-01

    The methanesulfonates of optically pure ethyl (S)-lactate or ethyl (R)-2-chloropropanoate 5, obtained with inversion of configuration from ethyl (S)-lactate on treatment with SOCl2, can be substituted by caesium thiolates with inversion of configuration to yield (R) and (S) ethyl

  19. The pkI gene encoding pyruvate kinase I links to the luxZ gene which enhances bioluminescence of the lux operon from Photobacterium leiognathi.

    Science.gov (United States)

    Lin, J W; Lu, H C; Chen, H Y; Weng, S F

    1997-10-09

    Partial 3'-end nucleotide sequence of the pkI gene (GenBank accession No. AF019143) from Photobacterium leiognathi ATCC 25521 has been determined, and the encoded pyruvate kinase I is deduced. Pyruvate kinase I is the key enzyme of glycolysis, which converts phosphoenol pyruvate to pyruvate. Alignment and comparison of pyruvate kinase Is from P. leiognathi, E. coli and Salmonella typhimurium show that they are homologous. Nucleotide sequence reveals that the pkI gene is linked to the luxZ gene that enhances bioluminescence of the lux operon from P. leiognathi. The gene order of the pkI and luxZ genes is-pk1-ter-->-R&R"-luxZ-ter"-->, whereas ter is transcriptional terminator for the pkI and related genes, and R&R" is the regulatory region and ter" is transcriptional terminator for the luxZ gene. It clearly elicits that the pkI gene and luxZ gene are divided to two operons. Functional analysis confirms that the potential hairpin loop omega T is the transcriptional terminator for the pkI and related genes. It infers that the pkI and related genes are simply linked to the luxZ gene in P. leiognathi genome.

  20. A Comparison between Radiolabeled Fluorodeoxyglucose Uptake and Hyperpolarized 13C-Labeled Pyruvate Utilization as Methods for Detecting Tumor Response to Treatment

    Directory of Open Access Journals (Sweden)

    Timothy H. Witney

    2009-06-01

    Full Text Available Detection of early tumor responses to treatment can give an indication of clinical outcome. Positron emission tomography measurements of the uptake of the glucose analog, [18F] 2-fluoro-2-deoxy-d-glucose (FDG, have demonstrated their potential for detecting early treatment response in the clinic. We have shown recently that 13C magnetic resonance spectroscopy and spectroscopic imaging measurements of the uptake and conversion of hyperpolarized [1-13C]pyruvate into [1-13C]lactate can be used to detect treatment response in a murine lymphoma model. The present study compares these magnetic resonance measurements with changes in FDG uptake after chemotherapy. A decrease in FDG uptake was found to precede the decrease in flux of hyperpolarized 13C label between pyruvate and lactate, both in tumor cells in vitro and in tumors in vivo. However, the magnitude of the decrease in FDG uptake and the decrease in pyruvate to lactate flux was comparable at 24 hours after drug treatment. In cells, the decrease in FDG uptake was shown to correlate with changes in plasma membrane expression of the facilitative glucose transporters, whereas the decrease in pyruvate to lactate flux could be explained by an increase in poly(ADP-ribose polymerase activity and subsequent depletion of the NAD(H pool. These results show that measurement of flux between pyruvate and lactate may be an alternative to FDG-positron emission tomography for imaging tumor treatment response in the clinic.

  1. The progression from a lower to a higher invasive stage of bladder cancer is associated with severe alterations in glucose and pyruvate metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Conde, Vanessa R. [CICS-UBI–Health Sciences Research Centre, University of Beira Interior, Covilhã (Portugal); Oliveira, Pedro F. [CICS-UBI–Health Sciences Research Centre, University of Beira Interior, Covilhã (Portugal); Department of Microscopy, Laboratory of Cell Biology and Unit for Multidisciplinary Research in Biomedicine, Abel Salazar Institute of Biomedical Sciences, University of Porto – UMIB/ICBAS/UP (Portugal); Nunes, Ana R.; Rocha, Cátia S. [CICS-UBI–Health Sciences Research Centre, University of Beira Interior, Covilhã (Portugal); Ramalhosa, Elsa; Pereira, José A. [Mountain Research Centre (CIMO), School of Agriculture, Polytechnic Institute of Bragança (Portugal); Alves, Marco G., E-mail: alvesmarc@gmail.com [CICS-UBI–Health Sciences Research Centre, University of Beira Interior, Covilhã (Portugal); Silva, Branca M., E-mail: bmcms@ubi.pt [CICS-UBI–Health Sciences Research Centre, University of Beira Interior, Covilhã (Portugal)

    2015-07-01

    Cancer cells present a particular metabolic behavior. We hypothesized that the progression of bladder cancer could be accompanied by changes in cells glycolytic profile. We studied two human bladder cancer cells, RT4 and TCCSUP, in which the latter represents a more invasive stage. The levels of glucose, pyruvate, alanine and lactate in the extracellular media were measured by Proton Nuclear Magnetic Resonance. The protein expression levels of glucose transporters 1 (GLUT1) and 3 (GLUT3), monocarboxylate transporter 4 (MCT4), phosphofructokinase-1 (PFK1), glutamic-pyruvate transaminase (GPT) and lactate dehydrogenase (LDH) were determined. Our data showed that glucose consumption and GLUT3 levels were similar in both cell lines, but TCCSUP cells displayed lower levels of GLUT1 and PFK expression. An increase in pyruvate consumption, concordant with the higher levels of lactate and alanine production, was also detected in TCCSUP cells. Moreover, TCCSUP cells presented lower protein expression levels of GPT and LDH. These results illustrate that bladder cancer progression is associated with alterations in cells glycolytic profile, namely the switch from glucose to pyruvate consumption in the more aggressive stage. This may be useful to develop new therapies and to identify biomarkers for cancer progression. - Highlights: • Metabolic phenotype of less and high invasive bladder cancer cells was studied. • Bladder cancer progression involves alterations in cells glycolytic profile. • More invasive bladder cancer cells switch from glucose to pyruvate consumption. • Our results may help to identify metabolic biomarkers of bladder cancer progression.

  2. Growth of Campylobacter incubated aerobically in fumarate-pyruvate media or media supplemented with dairy, meat, or soy extracts and peptones.

    Science.gov (United States)

    Hinton, Arthur

    2016-09-01

    The ability of Campylobacter to grow aerobically in media supplemented with fumarate-pyruvate or with dairy, meat, or soy extracts or peptones was examined. Optical densities (OD) of Campylobacter cultured in basal media, media supplemented with fumarate-pyruvate or with 1.0, 2.5, 5.0, or 7.5% beef extract was measured. Growth was also compared in media supplemented with other extracts or peptones. Finally, cfu/mL of Campylobacter recovered from basal media or media supplemented with fumarate-pyruvate, casamino acids, beef extract, soytone, or beef extract and soytone was determined. Results indicated that OD of cultures grown in media supplemented with fumarate-pyruvate or with 5.0 or 7.5% beef extract were higher than OD of isolates grown in basal media or media supplemented with lower concentrations of beef extract. Highest OD were produced by isolates grown in media supplemented with beef extract, peptone from meat, polypeptone, proteose peptone, or soytone. Also, more cfu/mL were recovered from media with fumarate-pyruvate, beef extract, soytone, or beef extract-soytone than from basal media or media with casamino acids. Findings indicate that media supplemented with organic acids, vitamins, and minerals and media supplemented with extracts or peptones containing these metabolites can support aerobic growth of Campylobacter. Published by Elsevier Ltd.

  3. Structure of the oxalate-ATP complex with pyruvate kinase: ATP as a bridging ligand for the two divalent cations

    International Nuclear Information System (INIS)

    Lodato, D.T.; Reed, G.H.

    1987-01-01

    The 2 equiv of divalent cation that are required cofactors for pyruvate kinase reside in sites of different affinities for different species of cation. The intrinsic selectivity of the protein-based site for Mn(II) and of the nucleotide-based site for Mg(II) has been exploited in electron paramagnetic resonance (EOR) investigations of ligands for Mn(II) at the protein-based site. Oxalate, a structural analogue of the enolate of pyruvate, has been used as a surrogate for the reactive form of pyruvate in complexes with enzyme, Mn(II), Mg(II), and ATP. Superhyperfine coupling between the unpaired electron spin of Mn(II) and the nuclear spin of 17 O, specifically incorporated into oxalate, shows that oxalate is bound at the active site as a bidentate chelate with Mn(II). Coordination of the γ-phosphate of ATP to this same Mn(II) center is revealed by observation of superhyperfine coupling from 17 O regiospecifically incorporated into the γ-phosphate group of ATP. By contrast, 17 O in the α-phosphate or in the β-phosphate groups of ATP does not influence the spectrum. Experiments in 17 O-enriched water show that there is also a single water ligand bound to the Mn(II). These data indicate that ATP bridges Mn(II) and Mg(II) at the active site. A close spacing of the two divalent cations is also evident from the occurrence of magnetic interactions for complexes in which 2 equiv of Mn(II) are present at the active site. The structure for the enzyme-Mn(II)-oxalate-Mg(II)-ATP complex suggests a scheme for the normal reverse reaction of pyruvate kinase in which the divalent cation at the protein-based site activates the keto acid substrate through chelation and promotes phospho transfer by simultaneous coordination to the enolate oxygen and to a pendant oxygen from the γ-phosphate of ATP

  4. Neonatal pyruvate dehydrogenase deficiency due to a R302H mutation in the PDHA1 gene: MRI findings

    International Nuclear Information System (INIS)

    Soares-Fernandes, Joao P.; Ribeiro, Manuel; Magalhaes, Zita; Rocha, Jaime F.; Teixeira-Gomes, Roseli; Cruz, Romeu; Leijser, Lara M.

    2008-01-01

    Pyruvate dehydrogenase (PDH) deficiency is one of the most common causes of congenital lactic acidosis. Correlations between the genetic defect and neuroimaging findings are lacking. We present conventional and diffusion-weighted MRI findings in a 7-day-old male neonate with PDH deficiency due to a mosaicism for the R302H mutation in the PDHA1 gene. Corpus callosum dysgenesis, widespread increased diffusion in the white matter, and bilateral subependymal cysts were the main features. Although confirmation of PDH deficiency depends on specialized biochemical analyses, neonatal MRI plays a role in evaluating the pattern and extent of brain damage, and potentially in early diagnosis and clinical decision making. (orig.)

  5. Coupling between the blood lactate-to-pyruvate ratio and MCA Vmean at the onset of exercise in humans

    DEFF Research Database (Denmark)

    Rasmussen, Peter; Madsen, Camilla A; Nielsen, Henning B

    2009-01-01

    Activation-induced increase in cerebral blood flow is coupled to enhanced metabolic activity, maybe with brain tissue redox state and oxygen tension as key modulators. To evaluate this hypothesis at the onset of exercise in humans, blood was sampled at 0.1 to 0.2 Hz from the radial artery and right...... internal jugular vein, while middle cerebral artery mean flow velocity (MCA V(mean)) was recorded. Both the arterial and venous lactate-to-pyruvate ratio increased after 10 s (P capillary...... state and oxygenation as potential modulators of an increase in cerebral blood flow at the onset of exercise....

  6. Effect of the Ethyl Acetate Fraction of Eugenia uniflora on Proteins Global Expression during Morphogenesis in Candida albicans

    Directory of Open Access Journals (Sweden)

    Walicyranison P. Silva-Rocha

    2017-09-01

    Full Text Available Candida albicans is able to switch from yeast to hyphal growth and this is an essential step for tissue invasion and establishment of infection. Due to the limited drug arsenal used to treat fungal infections and the constant emergence of resistant strains, it is important to search for new therapeutic candidates. Therefore, this study aimed to investigate by proteomic analysis the role of a natural product (Eugenia uniflora in impairing hypha formation in C. albicans. We also tested the potential action of E. uniflora to prevent and treat oral candidiasis induced in a murine model of oral infection and the ability of polymorphonuclear neutrophils to phagocytize C. albicans cells treated with the ethyl acetate fraction of the extract. We found that this fraction greatly reduced hypha formation after morphogenesis induction in the presence of serum. Besides, several proteins were differentially expressed in cells treated with the fraction. Surprisingly, the ethyl acetate fraction significantly reduced phagocytosis in C. albicans (Mean 120.36 ± 36.71 yeasts/100 PMNs vs. 44.68 ± 19.84 yeasts/100 PMNs. Oral candidiasis was attenuated when C. albicans cells were either pre-incubated in the presence of E. uniflora or when the fraction was applied to the surface of the oral cavity after infection. These results were consistent with the reduction in CFU counts (2.36 vs. 1.85 Log10 CFU/ml and attenuation of tissue damage observed with histopathological analysis of animals belonging to treated group. We also observed shorter true hyphae by direct examination and histopathological analysis, when cells were treated with the referred natural product. The E. uniflora ethyl acetate fraction was non-toxic to human cells. E. uniflora may act on essential proteins mainly related to cellular structure, reducing the capacity of filamentation and attenuating infection in a murine model, without causing any toxic effect on human cells, suggesting that it may be a

  7. Decreased expression of pyruvate dehydrogenase A1 predicts an unfavorable prognosis in ovarian carcinoma.

    Science.gov (United States)

    Li, Yaqing; Huang, Ruixia; Li, Xiaoli; Li, Xiaoran; Yu, Dandan; Zhang, Mingzhi; Wen, Jianguo; Goscinski, Mariusz Adam; Trope, Claes G; Nesland, Jahn M; Suo, Zhenhe

    2016-01-01

    Pyruvate dehydrogenase A1 (PDHA1) serves as a gate-keeper enzyme link between glycolysis and the mitochondrial citric acid cycle. The inhibition of PDHA1 in cancer cells can result in an increased Warburg effect and a more aggressive phenotype in cancer cells. This study was conducted to investigate the expression of PDHA1 in ovarian cancer and the correlation between PDHA1 expression and the prognosis of patients. The PDHA1 protein expression in 3 ovarian cancer cell lines (OVCAR-3, SKOV-3 and ES-2) and 248 surgically removed ovarian carcinoma samples was immunocytochemically examined. Statistical analyses were performed to evaluate the correlations between PDHA1 expression and the clinicopathological characteristics of the patients as well as the predictive value of PDHA1. The results showed the presence of variable expression of PDHA1 in the three ovarian cancer cell lines. Of the 248 ovarian cancer tissue specimens, 45 cases (18.1%) were negative in tumor cells for PDHA1, 162 cases (65.3%) displayed a low expression level, and 41 cases (16.5%) had a relatively high PDHA1 staining. The expression of PDHA1 was associated with the histological subtype ( P =0.004) and FIGO stage ( P =0.002). The median OS time in the PDHA1 negative group, low expression group and high expression group were 0.939 years, 1.443 years and 9.900 years, respectively. The median PFS time in the above three groups were 0.287 years, 0.586 years and 9.900 years, respectively. Furthermore, the high expression of PDHA1 in ovarian carcinoma cells was significantly associated with better OS and PFS by statistical analyses. Multivariate analyses showed that PDHA1 expression was also an independent prognostic factor for higher OS in ovarian cancer patients (HR=0.705, 95% CI 0.541-0.918, P =0.01). Our study indicated that the decreased expression of PDHA1 might be an independent prognostic factor in unfavorable outcomes.

  8. Plasticity of the Pyruvate Node Modulates Hydrogen Peroxide Production and Acid Tolerance in Multiple Oral Streptococci.

    Science.gov (United States)

    Cheng, Xingqun; Redanz, Sylvio; Cullin, Nyssa; Zhou, Xuedong; Xu, Xin; Joshi, Vrushali; Koley, Dipankar; Merritt, Justin; Kreth, Jens

    2018-01-15

    Commensal Streptococcus sanguinis and Streptococcus gordonii are pioneer oral biofilm colonizers. Characteristic for both is the SpxB-dependent production of H 2 O 2 , which is crucial for inhibiting competing biofilm members, especially the cariogenic species Streptococcus mutans H 2 O 2 production is strongly affected by environmental conditions, but few mechanisms are known. Dental plaque pH is one of the key parameters dictating dental plaque ecology and ultimately oral health status. Therefore, the objective of the current study was to characterize the effects of environmental pH on H 2 O 2 production by S. sanguinis and S. gordonii S. sanguinis H 2 O 2 production was not found to be affected by moderate changes in environmental pH, whereas S. gordonii H 2 O 2 production declined markedly in response to lower pH. Further investigation into the pyruvate node, the central metabolic switch modulating H 2 O 2 or lactic acid production, revealed increased lactic acid levels for S. gordonii at pH 6. The bias for lactic acid production at pH 6 resulted in concomitant improvement in the survival of S. gordonii at low pH and seems to constitute part of the acid tolerance response of S. gordonii Differential responses to pH similarly affect other oral streptococcal species, suggesting that the observed results are part of a larger phenomenon linking environmental pH, central metabolism, and the capacity to produce antagonistic amounts of H 2 O 2 IMPORTANCE Oral biofilms are subject to frequent and dramatic changes in pH. S. sanguinis and S. gordonii can compete with caries- and periodontitis-associated pathogens by generating H 2 O 2 Therefore, it is crucial to understand how S. sanguinis and S. gordonii adapt to low pH and maintain their competitiveness under acid stress. The present study provides evidence that certain oral bacteria respond to environmental pH changes by tuning their metabolic output in favor of lactic acid production, to increase their acid survival

  9. Enhanced pyruvate dehydrogenase activity improves cardiac outcomes in a murine model of cardiac arrest.

    Directory of Open Access Journals (Sweden)

    Lin Piao

    Full Text Available Post-ischemic changes in cellular metabolism alter myocardial and neurological function. Pyruvate dehydrogenase (PDH, the limiting step in mitochondrial glucose oxidation, is inhibited by increased expression of PDH kinase (PDK during ischemia/reperfusion injury. This results in decreased utilization of glucose to generate cellular ATP. Post-cardiac arrest (CA hypothermia improves outcomes and alters metabolism, but its influence on PDH and PDK activity following CA are unknown. We hypothesized that therapeutic hypothermia (TH following CA is associated with the inhibition of PDK activity and increased PDH activity. We further hypothesized that an inhibitor of PDK activity, dichloroacetate (DCA, would improve PDH activity and post-CA outcomes.Anesthetized and ventilated adult female C57BL/6 wild-type mice underwent a 12-minute KCl-induced CA followed by cardiopulmonary resuscitation. Compared to normothermic (37°C CA controls, administering TH (30°C improved overall survival (72-hour survival rate: 62.5% vs. 28.6%, P<0.001, post-resuscitation myocardial function (ejection fraction: 50.9±3.1% vs. 27.2±2.0%, P<0.001; aorta systolic pressure: 132.7±7.3 vs. 72.3±3.0 mmHg, P<0.001, and neurological scores at 72-hour post CA (9.5±1.3 vs. 5.4±1.3, P<0.05. In both heart and brain, CA increased lactate concentrations (1.9-fold and 3.1-fold increase, respectively, P<0.01, decreased PDH enzyme activity (24% and 50% reduction, respectively, P<0.01, and increased PDK protein expressions (1.2-fold and 1.9-fold, respectively, P<0.01. In contrast, post-CA treatment with TH normalized lactate concentrations (P<0.01 and P<0.05 and PDK expressions (P<0.001 and P<0.05, while increasing PDH activity (P<0.01 and P<0.01 in both the heart and brain. Additionally, treatment with DCA (0.2 mg/g body weight 30 min prior to CA improved both myocardial hemodynamics 2 hours post-CA (aortic systolic pressure: 123±3 vs. 96±4 mmHg, P<0.001 and 72-hour survival rates

  10. Expression of pyruvate dehydrogenase is an independent prognostic marker in gastric cancer

    Science.gov (United States)

    Sun, Xu-Ren; Sun, Zhe; Zhu, Zhi; Guan, Hai-Xia; Li, Chen-Yan; Zhang, Jun-Yan; Zhang, Yi-Ning; Zhou, Huan; Zhang, Hui-Jing; Xu, Hui-Mian; Sun, Ming-Jun

    2015-01-01

    AIM: To investigate the expression and prognostic role of pyruvate dehydrogenase (PDH) in gastric cancer (GC). METHODS: This study included 265 patients (194 male, 71 female, mean age 59 years (range, 29-81 years) with GC who underwent curative surgery at the First Affiliated Hospital of China Medical University from January 2006 to May 2007. All patients were followed up for more than 5 years. Patient-derived paraffin embedded GC specimens were collected for tissue microarrays (TMAs). We examined PDH expression by immunohistochemistry in TMAs containing tumor tissue and matched non-neoplastic mucosa. Immunoreactivity was evaluated independently by two researchers. Overall survival (OS) rates were determined using the Kaplan-Meier estimator. Correlations with other clinicopathologic factors were evaluated by two-tailed χ2 tests or a two-tailed t-test. The Cox proportional-hazard model was used in univariate analysis and multivariate analysis to identify factors significantly correlated with prognosis. RESULTS: Immunohistochemistry showed that 35.47% of total cancer tissue specimens had cytoplasmic PDH staining. PDH expression was much higher in normal mucosa specimens (75.09%; P = 0.001). PDH expression was correlated with Lauren grade (70.77% in intestinal type vs 40.0% in diffuse type; P = 0.001), lymph node metastasis (65.43% with no metastasis vs 51.09% with metastasis; P = 0.033), lymphatic invasion (61.62% with no invasion vs 38.81% with invasion; P = 0.002), histologic subtypes (70.77% in intestinal type vs 40.0% in diffuse type; P = 0.001) and tumor-node-metastasis (TNM) stage (39% in poorly differentiated vs 65.91% in well differentiated and 67.11% in moderately differentiated; P = 0.001) in GC. PDH expression in cancer tissue was significantly associated with higher OS (P < 0.001). The multivariate analysis adjusted for age, Lauren classification, TNM stage, lymph node metastasis, histological type, tumor size, depth of invasion and lymphatic invasion

  11. The role of Val-265 for flavin adenine dinucleotide (FAD) binding in pyruvate oxidase: FTIR, kinetic, and crystallographic studies on the enzyme variant V265A.

    Science.gov (United States)

    Wille, Georg; Ritter, Michaela; Weiss, Manfred S; König, Stephan; Mäntele, Werner; Hübner, Gerhard

    2005-04-05

    In pyruvate oxidase (POX) from Lactobacillus plantarum, valine 265 participates in binding the cofactor FAD and is responsible for the strained conformation of its isoalloxazine moiety that is visible in the crystal structure of POX. The contrasting effects of the conservative amino acid exchange V265A on the enzyme's catalytic properties, cofactor affinity, and protein structure were investigated. The most prominent effect of the exchange was observed in the 2.2 A crystal structure of the mutant POX. While the overall structures of the wild-type and the variant are similar, flavin binding in particular is clearly different. Local disorder at the isoalloxazine binding site prevents modeling of the complete FAD cofactor and two protein loops of the binding site. Only the ADP moiety shows well-defined electron density, indicating an "anchor" function for this part of the molecule. This notion is corroborated by competition experiments where ADP was used to displace FAD from the variant enzyme. Despite the fact that the affinity of FAD binding in the variant is reduced, the catalytic properties are very similar to the wild-type, and the redox potential of the bound flavin is the same for both proteins. The rate of electron transfer toward the flavin during turnover is reduced to one-third compared to the wild-type, but k(cat) remains unchanged. Redox-triggered FTIR difference spectroscopy of free FAD shows the nu(C(10a)=N(1)) band at 1548 cm(-)(1). In POX-V265A, this band is found at 1538 cm(-)(1) and thus shifted less strongly than in wild-type POX where it is found at 1534 cm(-)(1). Taking these observations together, the conservative exchange V265A in POX has a surprisingly small effect on the catalytic properties of the enzyme, whereas the effect on the three-dimensional structure is rather big.

  12. Effects of adrenergic agents on intracellular ca(2+) homeostasis and metabolism of glucose in astrocytes with an emphasis on pyruvate carboxylation, oxidative decarboxylation and recycling

    DEFF Research Database (Denmark)

    Obel, Linea Lykke Frimodt; Andersen, Karen M H; Bak, Lasse Kristoffer

    2012-01-01

    and oxidative decarboxylation in astrocytic glucose metabolism. Importantly, pyruvate carboxylation was best visualized at 10 min of incubation. The abundance and pattern of labeling in lactate and alanine indicated not only an extensive activity of malic enzyme (initial step for pyruvate recycling) but also...... a high degree of compartmentalization of the pyruvate pool. Stimulating with 1 µM NE had no effect on labeling patterns and glycogen metabolism, whereas 100 µM NE increased glutamate labeling and decreased labeling in alanine, the latter supposedly due to dilution from degradation of non-labeled glycogen....... It is suggested that further experiments uncovering the correlation between adrenergic and glutamatergic pathways should be performed in order to gain further insight into the role of astrocytes in brain function and dysfunction, the latter including excitotoxicity....

  13. Overexpression of pyruvate decarboxylase in the yeast Hansenula polymorpha results in increased ethanol yield in high-temperature fermentation of xylose.

    Science.gov (United States)

    Ishchuk, Olena P; Voronovsky, Andriy Y; Stasyk, Oleh V; Gayda, Galina Z; Gonchar, Mykhailo V; Abbas, Charles A; Sibirny, Andriy A

    2008-11-01

    Improvement of xylose fermentation is of great importance to the fuel ethanol industry. The nonconventional thermotolerant yeast Hansenula polymorpha naturally ferments xylose to ethanol at high temperatures (48-50 degrees C). Introduction of a mutation that impairs ethanol reutilization in H. polymorpha led to an increase in ethanol yield from xylose. The native and heterologous (Kluyveromyces lactis) PDC1 genes coding for pyruvate decarboxylase were expressed at high levels in H. polymorpha under the control of the strong constitutive promoter of the glyceraldehyde-3-phosphate dehydrogenase gene (GAPDH). This resulted in increased pyruvate decarboxylase activity and improved ethanol production from xylose. The introduction of multiple copies of the H. polymorpha PDC1 gene driven by the strong constitutive promoter led to a 20-fold increase in pyruvate decarboxylase activity and up to a threefold elevation of ethanol production.

  14. Intraperitoneal lactate/pyruvate ratio and the level of glucose and glycerol concentration differ between patients surgically treated for upper and lower perforations of the gastrointestinal tract

    DEFF Research Database (Denmark)

    Sabroe, Jonas E; Axelsen, Anne R; Ellebæk, Mark B

    2017-01-01

    collected every 4th hour for up to 7 postoperative days. Samples were analysed for concentrations of glucose, lactate, pyruvate and glycerol. RESULTS: Microdialysis results showed that patients with upper gastrointestinal tract lesions had significantly higher levels of postoperative intraperitoneal glucose...... and glycerol concentrations, as well as lower lactate/pyruvate ratios and lactate/glucose ratios. In the group with perforation of the lower gastrointestinal tract, those patients with a complicated course showed lower levels of postoperative intraperitoneal glucose concentration and glycerol concentration...... and higher lactate/pyruvate ratios and lactate/glucose ratios than those patients with an uncomplicated course. CONCLUSION: Patients with upper and lower gastrointestinal tract lesions showed differences in postoperative biomarker levels. A difference was also seen between patients with complicated...

  15. Molecular identification and characterization of the pyruvate decarboxylase gene family associated with latex regeneration and stress response in rubber tree.

    Science.gov (United States)

    Long, Xiangyu; He, Bin; Wang, Chuang; Fang, Yongjun; Qi, Jiyan; Tang, Chaorong

    2015-02-01

    In plants, ethanolic fermentation occurs not only under anaerobic conditions but also under aerobic conditions, and involves carbohydrate and energy metabolism. Pyruvate decarboxylase (PDC) is the first and the key enzyme of ethanolic fermentation, which branches off the main glycolytic pathway at pyruvate. Here, four PDC genes were isolated and identified in a rubber tree, and the protein sequences they encode are very similar. The expression patterns of HbPDC4 correlated well with tapping-simulated rubber productivity in virgin rubber trees, indicating it plays an important role in regulating glycometabolism during latex regeneration. HbPDC1, HbPDC2 and HbPDC3 had striking expressional responses in leaves and bark to drought, low temperature and high temperature stresses, indicating that the HbPDC genes are involve in self-protection and defense in response to various abiotic and biotic stresses during rubber tree growth and development. To understand ethanolic fermentation in rubber trees, it will be necessary to perform an in-depth study of the regulatory pathways controlling the HbPDCs in the future. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  16. Mitochondrial pyruvate carrier function is negatively linked to Warburg phenotype in vitro and malignant features in esophageal squamous cell carcinomas

    Science.gov (United States)

    Li, Yaqing; Li, Xiaoran; Kan, Quancheng; Zhang, Mingzhi; Li, Xiaoli; Xu, Ruiping; Wang, Junsheng; Yu, Dandan; Goscinski, Mariusz Adam; Wen, Jian-Guo; Nesland, Jahn M.; Suo, Zhenhe

    2017-01-01

    Aerobic glycolysis is one of the emerging hallmarks of cancer cells. In this study, we investigated the relationship between blocking mitochondrial pyruvate carrier (MPC) with MPC blocker UK5099 and the metabolic alteration as well as aggressive features of esophageal squamous carcinoma. It was found that blocking pyruvate transportation into mitochondria attenuated mitochondrial oxidative phosphorylation (OXPHOS) and triggered aerobic glycolysis, a feature of Warburg effect. In addition, the HIF-1α expression and ROS production were also activated upon UK5099 application. It was further revealed that the UK5099-treated cells became significantly more resistant to chemotherapy and radiotherapy, and the UK5099-treated tumor cells also exhibited stronger invasive capacity compared to the parental cells. In contrast to esophageal squamous epithelium cells, decreased MPC protein expression was observed in a series of 157 human squamous cell carcinomas, and low/negative MPC1 expression predicted an unfavorable clinical outcome. All these results together revealed the potential connection of altered MPC expression/activity with the Warburg metabolic reprogramming and tumor aggressiveness in cell lines and clinical samples. Collectively, our findings highlighted a therapeutic strategy targeting Warburg reprogramming of human esophageal squamous cell carcinomas. PMID:27911865

  17. Escherichia coli pyruvate dehydrogenase complex: particle masses of the complex and component enzymes measured by scanning transmission electron microscopy

    International Nuclear Information System (INIS)

    CaJacob, C.A.; Frey, P.A.; Hainfeld, J.F.; Wall, J.S.; Yang, H.

    1985-01-01

    Particle masses of the Escherichia coli pyruvate dehydrogenase (PDH) complex and its component enzymes have been measured by scanning transmission electron microscopy (STEM). The particle mass of PDH complex measured by STEM is 5.28 X 10(6) with a standard deviation of 0.40 X 10(6). The masses of the component enzymes are 2.06 X 10(5) for the dimeric pyruvate dehydrogenase (E1), 1.15 X 10(5) for dimeric dihydrolipoyl dehydrogenase (E3), and 2.20 X 10(6) for dihydrolipoyl transacetylase (E2), the 24-subunit core enzyme. STEM measurements on PDH complex incubated with excess E3 or E1 failed to detect any additional binding of E3 but showed that the complex would bind additional E1 under forcing conditions. The additional E1 subunits were bound too weakly to represent binding sites in an isolated or isolable complex. The mass measurements by STEM are consistent with the subunit composition 24:24:12 when interpreted in the light of the flavin content of the complex and assuming 24 subunits in the core enzyme (E2)

  18. Next-Gen Sequencing-Based Mapping and Identification of Ethyl Methanesulfonate-Induced Mutations in Arabidopsis thaliana.

    Science.gov (United States)

    Zhang, Xue-Cheng; Millet, Yves; Ausubel, Frederick M; Borowsky, Mark

    2014-10-01

    Forward genetic analysis using ethyl methanesulfonate (EMS) mutagenesis has proven to be a powerful tool in biological research, but identification and cloning of causal mutations by conventional genetic mapping approaches is a painstaking process. Recent advances in next-gen sequencing have greatly invigorated the process of identifying EMS-induced mutations corresponding to a specific phenotype in model genetic hosts, including the plant Arabidopsis thaliana and the nematode Caenorhabditis elegans. Next-gen sequencing of bulked F2 mutant recombinants produces a wealth of high-resolution genetic data, provides enhanced delimitation of the genomic location of mutations, and greatly reduces hands-on time while maintaining high accuracy and reproducibility. In this unit, a detailed procedure to simultaneously map and identify EMS mutations in Arabidopsis is described. Copyright © 2014 John Wiley & Sons, Inc.

  19. Comparative kinetic studies of Mn2+-activated and fructose-1,6-P-modified Mg2+-activated pyruvate kinase from Concholepas concholepas.

    Science.gov (United States)

    Carvajal, N; González, R; Morán, A; Oyarce, A M

    1985-01-01

    Initial velocity and product inhibition studies of Mn2+-activated and FDP-modified Mg2+-activated pyruvate kinase from Concholepas concholepas, were performed. Evidence is presented to show that the Mn2+-enzyme catalyzes an ordered sequential mechanism, with ADP being the first substrate and pyruvate the last product. The results presented are consistent with a random combination of reactants with the FDP-modified Mg2+-activated enzyme and the formation of the dead-end complexes enzyme ADP-ATP and enzyme-PEP-ATP.

  20. Copper(II) catalysis in cyanide conversion into ethyl carbamate in spirits and relevant reactions.

    Science.gov (United States)

    Aresta, M; Boscolo, M; Franco, D W

    2001-06-01

    The role of copper(II) species in the oxidation of inorganic cyanide to cyanate and in the conversion of cyanate or urea into ethyl carbamate was investigated. The oxidation process has been shown to be independent from the dissolved oxygen. Elemental analysis and infrared spectroscopy have shown the formation of a mixed copper carbonate/hydroxide in the process of oxidation of cyanide to cyanate in water/ethanol. The complexation to Cu(II) of cyanate formed upon cyanide oxidation makes the former more susceptible to nucleophilic attack from ethanol, with conversion into ethyl carbamate. Comparatively, urea has a minor role with respect to cyanide in the formation of ethyl carbamate. Therefore, the urea present in some samples of Brazilian sugar cane spirit (cachaça) has been shown to have almost no influence on the ethyl carbamate content of cachaças, which comes essentially from cyanide. Fe(II,III) affords results similar to those found with Cu(II). Some suggestions are presented to avoid ethyl carbamate formation in spirits during distillation.

  1. Enzymatic production of biodiesel from microalgal oil using ethyl acetate as an acyl acceptor.

    Science.gov (United States)

    Alavijeh, Razieh Shafiee; Tabandeh, Fatemeh; Tavakoli, Omid; Karkhane, Aliasghar; Shariati, Parvin

    2015-01-01

    Microalgae have become an important source of biomass for biodiesel production. In enzymatic transesterification reaction, the enzyme activity is decreased in presence of alcohols. The use of different acyl acceptors such as methyl/ethyl acetate is suggested as an alternative and effective way to overcome this problem. In this study, ethyl acetate was used for the first time in the enzymatic production of biodiesel by using microalga, Chlorella vulgaris, as a triglyceride source. Enzymatic conversion of such fatty acids to biodiesel was catalyzed by Novozym 435 as an efficient immobilized lipase which is extensively used in biodiesel production. The best conversion yield of 66.71% was obtained at the ethyl acetate to oil molar ratio of 13:1 and Novozym 435 concentration of 40%, based on the amount of oil, and a time period of 72 h at 40℃. The results showed that ethyl acetate have no adverse effect on lipase activity and the biodiesel amount was not decreased even after seven transesterification cycles, so ethyl acetate has a great potential to be substituted for short-chain alcohols in transesterification reaction.

  2. Assessment of Ethyl Carbamate Contamination in Cachaça (Brazilian Sugar Cane Spirit

    Directory of Open Access Journals (Sweden)

    Aline M. Bortoletto

    2016-10-01

    Full Text Available Cachaça is a sugar cane spirit produced in Brazil. Ethyl carbamate (EC, a potential carcinogenic compound, may be present in cachaça above the limit established by law. The purpose of this study was to determine the concentration of ethyl carbamate in cachaças recently produced in Brazil in order to verify their compliance with the law. The concentration of ethyl carbamate was determined in 376 samples of cachaça through gas chromatography coupled to a mass spectrometer (GC-MS. The mean value of ethyl carbamate in the cachaças analyzed was 145 µg/L, and 24% of them were not in compliancy with the law (EC < 210 µg/L. However, compared to previous studies, advances have been observed regarding the adjustment of cachaças to the legal limit. Cachaças produced in large distilleries through continuous column distillation presented a mean value of 200 µg/L of ethyl carbamate. Cachaças produced in small distilleries using pot still distillation presented a mean content of 74 µg/L. Small producers have been more engaged in using good manufacturing practices to guarantee the quality of cachaças.

  3. Hydrogenation of ethyl acetate on Re/γ-A12O3 catalyst

    International Nuclear Information System (INIS)

    Minachev, K.M.; Avaev, V.I.; Ryashentseva, M.A.

    1986-01-01

    This paper presents a study of the catalytic properties of 5% Re/gamma-A1 2 O 3 contact in the hydrogenation reaction of ethyl acetate (EA). To clarify the paths of formation of the by products, experiments were also carried out with ethanol under the conditions of hydrogenation of EA. It is shown that the main product of the hydrogenation of EA is ethanol. In addition, Et 2 O, water, and traces of acetaldehyde were found in the catalyzate. In the range of conditions studied, the maximal conversion of ethyl acetate into ethanol is 49%. Increase in the temperature and molar ratio, and also decrease in pressure leads to a decrease in the selectivity of hydrogenation of ethyl acetate into ethanol. Byproducts of the hydrogenation of ethyl acetate - diethyl ether and hydrocarbons - are formed not only as a result of dehydration of ethanol on gamma-A1 2 O 3 , but also directly from ethyl acetate (diethyl ether) and also by the hydrogenolysis of the C-O bond in ethanol on rhenium (hydrocarbons)

  4. Determination of fatty acid ethyl esters (FAEE) and ethyl glucuronide (EtG) in hair: a promising way for retrospective detection of alcohol abuse during pregnancy?

    Science.gov (United States)

    Pragst, Fritz; Yegles, Michel

    2008-04-01

    The retrospective detection of alcohol consumption during pregnancy is an important part of the diagnosis of the fetal alcohol syndrome. A promising way to solve this problem can be the determination of fatty acid ethyl esters (FAEE) or/and ethyl glucuronide (EtG) in hair of the mothers. In this article, the present state in analytical determination and interpretation of FAEE and EtG concentrations in hair are reviewed. Both FAEE and EtG are minor metabolites of ethanol and as direct alcohol markers very specific for alcohol. They are durably deposited in hair, which enables taking advantage of the long diagnostic time window of this sample material. In the last years, specific and sensitive methods for determination of both alcohol markers in hair were developed. Headspace solid phase microextraction in combination with gas chromatography-mass spectroscopy after hair extraction with an n-heptane/dimethylsulfoxide mixture proved to be a favorable technique for determination of four characteristic FAEE (ethyl myristate, ethyl palmitate, ethyl oleate, and ethyl stearate). EtG is extracted from hair by water and analyzed either by gas chromatography-mass spectroscopy with negative chemical ionization after cleanup with solid phase extraction and derivatization with pentafluoropropionic anhydride or by liquid chromatography-mass spectroscopy-mass spectroscopy. The detection limits of the single FAEE as well as of EtG are in the range of 1 to 10 pg/mg. FAEE as well as EtG were determined in a larger number of hair samples of teetotalers, social drinkers, patients in alcohol withdrawal treatment, and death cases with previous known heavy drinking. From the results, the following criteria were derived: strict abstinence is excluded or improbable at C FAEE >0.2 ng/mg or C EtG >7 pg/mg. Moderate social drinkers should have C FAEE alcohol abuse is probable. Until now, there has been no evaluation in context of FAS diagnosis; however, a successful application for this purpose

  5. Novel one-pot process for the synthesis of ethyl 2-imino-4-methyl-2,3-dihydrothiazole-5-carboxylates

    Directory of Open Access Journals (Sweden)

    Beyzaei Hamid

    2015-01-01

    Full Text Available A facile one-pot two-step process for the synthesis of ethyl 2-imino-4-methyl-2,3-dihydrothiazole-5-carboxylates via the cyclocondensation of ethyl 2-thiocyanatoacetoacetate with a variety of hydrazine and hydrazide derivatives has been developed. Ethyl 2-thiocyanatoacetoacetate itself has been synthesized as intermediate from the reaction of ethyl 2-chloroacetoacetate with potassium thiocyanate (KSCN. The molecular structures of these newly synthesized compounds were elucidated on the basis of elemental analysis and spectral data.

  6. Solubility of daidzin in different organic solvents and (ethyl alcohol + water) mixed solvents

    International Nuclear Information System (INIS)

    Fan, Jie-Ping; Yang, Dan; Xu, Xiao-Kang; Guo, Xiao-Jie; Zhang, Xue-Hong

    2015-01-01

    Highlights: • The solubilities of daidzin were measured in various solvents. • The solubility data were correlated by three models. • The thermodynamic properties of the dissolution process were also determined. - Abstract: The solubility of daidzin in different organic solvents and (ethyl alcohol + water) mixed solvents was measured by high performance liquid chromatography (HPLC) analysis method from T = (283.2 to 323.2) K at atmosphere pressure. The results show that at higher temperature more daidzin dissolves, and moreover, the solubility increases with the ethyl alcohol mole fraction increase in the (ethyl alcohol + water) mixed solvents. The experimental solubility values were correlated by a simplified thermodynamic equation, λh equation and modified Apelblat equation. Based on the solubility of daidzin, the enthalpy and entropy of solution were also evaluated by van’t Hoff equation. The results illustrated that the dissolution process of daidzin is endothermic and entropy driven

  7. Microalgae wet extraction using N-ethyl butylamine for fatty acid production

    Directory of Open Access Journals (Sweden)

    Ying Du

    2016-04-01

    Full Text Available Microalgae are considered a promising feedstock for the production of food ingredients, cosmetics, pharmaceutical products and biofuels. The energy intensity of drying and cell breaking of algae and solvent recovery afterwards hindered the route of algae biorefinery. In this work the influences of freeze drying and cell breaking to the extraction efficiency of crude lipid yield and fatty acid yield were investigated. Results showed that drying and cell breaking are not necessary for N-ethyl butylamine extraction, because good yields were obtained without. Crude lipid yield and fatty acid yield using N-ethyl butylamine were comparable with Bligh & Dyer extraction, making N-ethyl butylamine a candidate for further development of an energy efficient lipid extraction technology for non-broken microalgae. Keywords: Microalgae, Lipids, Extraction, Switchable solvent, Secondary amine

  8. Optimization of the production of ethyl esters by ultrasound assisted reaction of soybean oil and ethanol

    Directory of Open Access Journals (Sweden)

    S. Rodrigues

    2009-06-01

    Full Text Available Biodiesel is a renewable liquid fuel that can be produced by a transesterification reaction between a vegetable oil and an alcohol. This paper evaluates and optimizes the production of ethyl esters (biodiesel from soybean oil and ethanol. The reaction was carried out by applying ultrasound under atmospheric pressure and ambient temperature. Response surface methodology was used to evaluate the influence of alcohol to oil molar ratio and catalyst concentration on the yield of conversion of soybean oil into ethyl esters. The process resulted in a maximum yield of 91.8% after 30 minutes of reaction. The process variables alcohol to oil ratio and catalyst to oil ratio were statistically significant regarding the yield of ethyl esters. The optimal operating condition was obtained applying an alcohol to oil molar ratio of 10.2 and a catalyst to oil weight ratio of 0.0035.

  9. Characterization and Antioxidant Properties of Six Algerian Propolis Extracts: Ethyl Acetate Extracts Inhibit Myeloperoxidase Activity

    Directory of Open Access Journals (Sweden)

    Yasmina Mokhtaria Boufadi

    2014-02-01

    Full Text Available Because propolis contains many types of antioxidant compounds such as polyphenols and flavonoids, it can be useful in preventing oxidative damages. Ethyl acetate extracts of propolis from several Algerian regions show high activity by scavenging free radicals, preventing lipid peroxidation and inhibiting myeloperoxidase (MPO. By fractioning and assaying ethyl acetate extracts, it was observed that both polyphenols and flavonoids contribute to these activities. A correlation was observed between the polyphenol content and the MPO inhibition. However, it seems that kaempferol, a flavonoid, contributes mainly to the MPO inhibition. This molecule is in a high amount in the ethyl acetate extract and demonstrates the best efficiency towards the enzyme with an inhibiting concentration at 50% of 4 ± 2 µM.

  10. Crystal structure of the tetragonal polymorph of bis(1-ethyl-3-methylimidazolium tetrabromidocadmate

    Directory of Open Access Journals (Sweden)

    Tamara Đorđević

    2016-07-01

    Full Text Available Both unique Cd atoms in the tetragonal polymorph of bis(1-ethyl-3-methylimidazolium tetrabromidocadmate, (C6H11N22[CdBr4], occupy special positions (site symmetry -4. The crystal structure consists of isolated tetrahedral [CdBr4]2− anions which are surrounded by 1-ethyl-3-methylimidazolium cations. The methyl and ethyl side chains of the cations show positional disorder in a 0.590 (11:0.410 (11 ratio. In the crystal, (C6H11N2+ cations display three weak C—H...Br hydrogen-bond interactions through the imidazolium ring H atoms with the Br− ligands of the surrounding complex anions. The alkyl groups of the side chains are not involved in hydrogen bonding.

  11. Direct Conversion of Cellulose into Ethyl Lactate in Supercritical Ethanol-Water Solutions.

    Science.gov (United States)

    Yang, Lisha; Yang, Xiaokun; Tian, Elli; Lin, Hongfei

    2016-01-08

    Biomass-derived ethyl lactate is a green solvent with a growing market as the replacement for petroleum-derived toxic organic solvents. Here we report, for the first time, the production of ethyl lactate directly from cellulose with the mesoporous Zr-SBA-15 silicate catalyst in a supercritical mixture of ethanol and water. The relatively strong Lewis and weak Brønsted acid sites on the catalyst, as well as the surface hydrophobicity, were beneficial to the reaction and led to synergy during consecutive reactions, such as depolymerization, retro-aldol condensation, and esterification. Under the optimum reaction conditions, ∼33 % yield of ethyl lactate was produced from cellulose with the Zr-SBA-15 catalyst at 260 °C in supercritical 95:5 (w/w) ethanol/water. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Extraction of lanthanides and actinides (III) by DI-2 ethyl dithiophosphoric acid and DI-2 ethyl hexyl monothiophosphoric acid. Structure of the complexes in the organic phase

    International Nuclear Information System (INIS)

    Pattee, D.; Musikas, C.; Faure, A.; Chachaty, C.

    1986-09-01

    To operate a trivalent actinide-lanthanide (III) group chemical separation from low pH nitric solutions we studied the extractive properties of the di-2 ethyl hexyl dithiophosphoric acid (HDEHDTP); this bidentate ligand which possesses a sulfur donor atom is a good extractant of soft acids. We so expect a better selectivity for the actinides (III) extraction. We also have investigated extractive properties of di-2 ethyl hexyl monothiophosphoric acid (HDEHTP) for trivalent actinides and lanthanides; HDEHDTP is a bidentate ligand with one oxygen donor atom and so is a better extractant for hard acids like actinides and lanthanides (III); but its selectivity is weak. The addition of TBP (tri-n butyl phosphate) to HDEHDTP deals to strong synergistic organic complexes with a great selectivity for Am(III). We explicited this phenomenon. When the metal is macroconcentrated the organic complexes aggregate and form inverted micelles

  13. Additive effects of clofibric acid and pyruvate dehydrogenase kinase isoenzyme 4 (PDK4) deficiency on hepatic steatosis in mice fed a high saturated fat diet.

    Science.gov (United States)

    Hwang, Byounghoon; Wu, Pengfei; Harris, Robert A

    2012-05-01

    Although improving glucose metabolism by inhibition of pyruvate dehydrogenase kinase 4 (PDK4) may prove beneficial in the treatment of type 2 diabetes or diet-induced obesity, it may have detrimental effects by inhibiting fatty acid oxidation. Peroxisome proliferator-activated receptor α (PPARα) agonists are often used to treat dyslipidemia in patients, especially in type 2 diabetes. Combinational treatment using a PDK4 inhibitor and PPARα agonists may prove beneficial. However, PPARα agonists may be less effective in the presence of a PDK4 inhibitor because PPARα agonists induce PDK4 expression. In the present study, the effects of clofibric acid, a PPARα agonist, on blood and liver lipids were determined in wild-type and PDK4 knockout mice fed a high-fat diet. As expected, treatment of wild-type mice with clofibric acid resulted in less body weight gain, smaller epididymal fat pads, greater insulin sensitivity, and lower levels of serum and liver triacylglycerol. Surprisingly, rather than decreasing the effectiveness of clofibric acid, PDK4 deficiency enhanced the beneficial effects of clofibric acid on hepatic steatosis, reduced blood glucose levels, and did not prevent the positive effects of clofibric acid on serum triacylglycerols and free fatty acids. The metabolic effects of clofibric acid are therefore independent of the induction of PDK4 expression. The additive beneficial effects on hepatic steatosis may be due to induction of increased capacity for fatty acid oxidation and partial uncoupling of oxidative phosphorylation by clofibric acid, and a reduction in the capacity for fatty acid synthesis as a result of PDK4 deficiency. Journal compilation © 2012 FEBS. No claim to original US government works.

  14. Evaluation Lactogenic Activity of Ethyl Acetate Fraction of Torbangun (Coleus amboinicus L.) Leaves

    Science.gov (United States)

    Damanik, R. M.; Kustiyah, L.; Hanafi, M.; Iwansyah, A. C.

    2017-12-01

    This study aimed to assess the lactogenic property of ethyl acetate fraction of torbangun (Coleus amboinicus L.) leaves and to identify the compounds that responsibility as ‘milk booster’ using LC- MS approach. Lactagogue activity was evaluated in terms of quantity of milk produced from the rats treated with commercial milk booster (AF), ethyl acetate fraction of torbangun leaves (EA), water extraction of torbangun (AQ) and kaempferol (KP). The feed was given orally every two days and starting from Day 2 after giving birth until Day 28. The performance of milk production was measured along the experimental period by weight-suckle-weight method. The level of prolactin serum was determined by ELISA methods. Histopathological analysis of mammary gland, liver, intestines and kidney tissues was carried out. Moreover, in order to profiling and identification of compounds of ethyl acetate fraction, ultra-performance liquid chromatography quadrupole time of flight to electrospray ionization mass spectrometry (UPLC-QTOF-ESI-MS) in the positive-ion mode was performed. The ethyl acetate fraction of torbangun leaves (EA) was induced milk production about 17%, and AF 22% and KP 51% compared to the control group. Meanwhile, the EA was not significantly stimulate the synthesis of serum prolactin at Day 14 and Day 28 (p>0.05). Administration of EA did not cause any signs or symptoms of toxicity. In addition, a total of ten compounds was identified by UPLC-QTOF-ESI/MS in the ethyl acetate fraction of the leaves of C. amboinicus, mostly phenolic compounds, flavonols and some of their glycoside derivatives, such as: digiprolatone, and kaempferol-3-7-O-di-rhamnopyranoside. The present study reveals the ethyl acetate fraction of torbangun leaves and its bioactive compounds has the potency as a remedy for stimulating and improving milk production.

  15. Randomized controlled trial of ethyl-eicosapentaenoic acid in Huntington disease: the TREND-HD study.

    Science.gov (United States)

    2008-12-01

    To determine whether ethyl-eicosapentaenoic acid (ethyl-EPA), an omega-3 fatty acid, improves the motor features of Huntington disease. Six-month multicenter, randomized, double-blind, placebo-controlled trial followed by a 6-month open-label phase without disclosing initial treatment assignments. Forty-one research sites in the United States and Canada. Three hundred sixteen adults with Huntington disease, enriched for a population with shorter trinucleotide (cytosine-adenine-guanine) repeat length expansions. Random assignment to placebo or ethyl-EPA, 1 g twice a day, followed by open-label treatment with ethyl-EPA. Six-month change in the Total Motor Score 4 component of the Unified Huntington's Disease Rating Scale analyzed for all research participants and those with shorter cytosine-adenine-guanine repeat length expansions (<45). At 6 months, the Total Motor Score 4 point change for patients receiving ethyl-EPA did not differ from that for those receiving placebo. No differences were found in measures of function, cognition, or global impression. Before public disclosure of the 6-month placebo-controlled results, 192 individuals completed the open-label phase. The Total Motor Score 4 change did not worsen for those who received active treatment for 12 continuous months compared with those who received active treatment for only 6 months (2.0-point worsening; P=.02). Ethyl-EPA was not beneficial in patients with Huntington disease during 6 months of placebo-controlled evaluation. Clinical Trial Registry clinicaltrials.gov Identifier: NCT00146211.

  16. Brahmarasayana protects against Ethyl methanesulfonate or Methyl methanesulfonate induced chromosomal aberrations in mouse bone marrow cells

    Directory of Open Access Journals (Sweden)

    Guruprasad Kanive

    2012-08-01

    Full Text Available Abstract Background Ayurveda, the traditional Indian system of medicine has given great emphasis to the promotion of health. Rasayana is one of the eight branches of Ayurveda which refers to rejuvenant therapy. It has been reported that rasayanas have immuno-modulatory, antioxidant and antitumor functions, however, the genotoxic potential and modulation of DNA repair of many rasayanas have not been evaluated. Methods The present study assessed the role of Brahmarasayana (BR on Ethyl methanesulfonate (EMS-and Methyl methanesulfonate (MMS-induced genotoxicity and DNA repair in in vivo mouse test system. The mice were orally fed with BR (5 g or 8 mg / day for two months and 24 h later EMS or MMS was given intraperitoneally. The genotoxicity was analyzed by chromosomal aberrations, sperm count, and sperm abnormalities. Results The results have revealed that BR did not induce significant chromosomal aberrations when compared to that of the control animals (p >0.05. On the other hand, the frequencies of chromosomal aberrations induced by EMS (240 mg / kg body weight or MMS (125 mg / kg body weight were significantly higher (p Conclusion The effect of BR, as it relates to antioxidant activity was not evident in liver tissue however rasayana treatment was observed to increase constitutive DNA base excision repair and reduce clastogenicity. Whilst, the molecular mechanisms of such repair need further exploration, this is the first report to demonstrate these effects and provides further evidence for the role of brahmarasayana in the possible improvement of quality of life.

  17. Fast detoxication of 2-chloro ethyl ethyl sulfide by p-type Ag_2O semiconductor nanoparticle-loaded Al_2O_3-based supports

    International Nuclear Information System (INIS)

    Ma, Meng-Wei; Kuo, Dong-Hau

    2016-01-01

    Highlights: • Detoxication of CWA surrogate of 2-chloro ethyl ethyl sulfide is investigated. • A small amount of Ag_2O on Al_2O_3-base support is sufficient to degrade 2-CEES. • Detoxication conversion >82% in 15 min is achieved for >2.5% Ag_2O/Na_2SiO_3/Al_2O_3. • Na_2SiO_3 modified Al_2O_3 to have the valley-like line pattern for depositing Ag_2O. • 2-CEES oxidation is initiated from the dominant electronic holes in p-type Ag_2O. - Abstract: p-type Ag_2O semiconductor nanoparticle-loaded Al_2O_3 or Na_2SiO_3/Al_2O_3 powders used for detoxicating the surrogate of sulfur mustard of 2-chloro ethyl ethyl sulfide (C_2H_5SCH_2CH_2Cl, 2-CEES) were investigated. Different amounts of Ag_2O and Na_2SiO_3 on catalyst supports were evaluated. Gas chromatography with a pulsed flame photometric detector (GC–PFPD) and gas chromatography coupled with a mass spectroscopy (GC–MS) were used to monitor and identify the catalytic reactions, together with reaction products analysis. The GC analyses showed that the decontamination of 2-CEES in isopropanol solvent for 15 min was above 82% efficiency for the 0.5% Na_2SiO_3/Al_2O_3 support deposited with a Ag_2O content above 2.5%. 2-(ethylthio)ethanol and 2-(ethylthio)ethanoic acid were identified as the major products after catalytic reactions. The electronic holes dominating in p-type Ag_2O is proposed to provide the key component and to initiate the catalytic reactions. The electronic hole-based detoxication mechanism is proposed.

  18. Conducting polymers of octanoic acid 2-thiophen-3-yl-ethyl ester and their electrochromic properties

    International Nuclear Information System (INIS)

    Camurlu, Pinar; Cirpan, Ali; Toppare, Levent

    2005-01-01

    Octanoic acid 2-thiophen-3-yl-ethyl ester was synthesized via the reaction of 3-thiophene ethanol with octanoyl chloride. The resulting monomer was electrochemically homopolymerized in the presence of tetrabutylammonium tetrafluoroborate as the supporting electrolyte, in the acetonitrile/borontrifluoride ethyl ether solvent system. The resulting polymer was characterized using various experimental techniques. Spectroelectrochemistry analysis of the homopolymer reflects electronic transitions at 434, ∼800 and ∼1100 nm, revealing π-π* transition, polaron and bipolaron band formation, respectively, leading to esthetically pleasing color changes between transmissive yellow and blue, with reasonable switching times

  19. Microstructural characterization of a novel methyl acrylate-ethyl acrylate copolymer system

    Energy Technology Data Exchange (ETDEWEB)

    Olivares, M.; Castano, V.M. [Instituto de Fisica, UNAM, A.P. 1-1010, Queretaro, Mexico (Mexico); Molina, J.P.; Vazquez, F. [Facultad de Quimica UAEMex, Paseo Tollocan esq. Paseo Colon, Toluca, Estado de Mexico (Mexico)

    1998-12-31

    A number of different compositions of a novel methyl acrylate-ethyl acrylate copolymer were prepared by emulsion polymerization with potassium persulfate as initiator. The compositions synthesized were: 100/0, 75/25, 50/50, 25/75 and 0/100 on weight of methyl acrylate/ethyl acrylate at different temperatures and concentrations of initiators. The effect of other conditions were also studied. The samples were analyzed by Transmission Electron Microscopy. It was found that the size of aggregates and dispersion on sizes are controlled by the synthesis conditions, result partially supported by light scattering. (Author)

  20. Microstructural characterization of a novel methyl acrylate-ethyl acrylate copolymer system

    International Nuclear Information System (INIS)

    Olivares, M.; Castano, V.M.; Molina, J.P.; Vazquez, F.

    1998-01-01

    A number of different compositions of a novel methyl acrylate-ethyl acrylate copolymer were prepared by emulsion polymerization with potassium persulfate as initiator. The compositions synthesized were: 100/0, 75/25, 50/50, 25/75 and 0/100 on weight of methyl acrylate/ethyl acrylate at different temperatures and concentrations of initiators. The effect of other conditions were also studied. The samples were analyzed by Transmission Electron Microscopy. It was found that the size of aggregates and dispersion on sizes are controlled by the synthesis conditions, result partially supported by light scattering. (Author)

  1. (Z-Ethyl 3-(4-chlorophenyl-2-cyano-3-(2,6-difluorobenzamidoacrylate

    Directory of Open Access Journals (Sweden)

    Zhang Xiaoyan

    2008-12-01

    Full Text Available The title compound, C19H13ClF2N2O3, was prepared by the reaction of (Z-ethyl 3-amino-3-(4-chlorophenyl-2-cyanoacrylate and 2,6-difluorobenzoyl chloride. The dihedral angle between the chlorobenzene and fluorobenzene rings is 37.0 (1°. The ethyl group is disordered over two positions [occupancies = 0.52 (2:0.48 (2]. In addition to intramolecular N—H...O and N—H...F hydrogen bonds, the crystal packing shows the molecules to be connected by intermolecular C—H...O and C—H...N hydrogen bonds.

  2. A New Phenyl Ethyl Glycoside from the Twigs of Acer tegmentosum.

    Science.gov (United States)

    Park, Seonju; Lee, Hwa Young; Nhiem, Nguyen Xuan; Lee, Taek Hwan; Kim, Nanyoung; Cho, Seung Hun; Kim, Seung Hyun

    2015-07-01

    One new phenyl ethyl glycoside, 2-(4-hydroxyphenyl)ethyl-O-α-L-arabinofuranosyl-(1 --> 6)-O-β-D-glucopyranoide (1) and 11 known compounds (2-12) were isolated from the twigs of Acer tegmentosum. Compound 6 showed potent anti-neuroinflammatory activity against the LPS-stimulated BV-2 microglial cells with tNO production of 25.0 ± 2.5 μM and TNF-α concentration of 617.6 ± 47.1 pg/mL at 30 μM.

  3. Ethyl 4-chloro-2′-fluoro-3-hydroxy-5-methylbiphenyl-2-carboxylate

    Directory of Open Access Journals (Sweden)

    Muhammad Adeel

    2011-09-01

    Full Text Available In the title compound, C16H14ClFO3, the dihedral angle between the mean planes of the two benzene rings is 71.50 (5°. Due to an intramolecular O—H...O hydrogen bond between the hydroxy group and the carbonyl O atom of the ethyl ester group, the ethyl ester group lies within the ring plane. The crystal structure is consolidated by intermolecular C—H...O and C—H...F interactions.

  4. Ethyl carbamate levels in wine and spirits from markets in Hebei Province, China.

    Science.gov (United States)

    Liu, Y P; Dong, B; Qin, Z S; Yang, N J; Lu, Y; Yang, L X; Chang, F Q; Wu, Y N

    2011-01-01

    Ethyl carbamate (EC) in wine, grain spirits and wine sauce (145 samples) was analysed using solid-phase extraction and stable isotope dilution GC/MS. Samples were obtained from markets in eight areas (Shijiazhuang, Baoding, Handan, Qinhuangdao, Langfang, Zhangjiakou, Xingtai and Cangzhou) of Hebei Province, China. The method had a limit of detection of 2 µg kg⁻¹, with recoveries varying from 95.7 to 102% and RSD ranging 2.3-5.6%. The average concentrations of ethyl carbamate in wines, grain spirits and wine sauce were 14.7 (wines.

  5. Comparative substoichiometric extraction of cadmium with potassium salts of ethyl, propyl, butyl, pentyl and benzyl xanthates

    International Nuclear Information System (INIS)

    Chandrasekhar Reddy, P.; Rangamannar, B.

    1995-01-01

    A comparative study of the extractability of cadmium with potassium salts of ethyl, propyl, butyl, pentyl and benzyl xanthates into chloroform and a mixture of 1:4 pyridine and ethyl acetate from pH 1-7 buffers and sodium formate media, respectively, has been carried out employing an accurate and highly sensitive substoichiometric radiochemical method. The effect of foreign ions on the extractability was studied. The method developed was utilized for the determination of cadmium content in standard as well as in geological water samples. (author) 4 refs.; 5 figs.; 3 tabs

  6. Simultaneous hyperpolarized 13C-pyruvate MRI and 18F-FDG-PET in cancer (hyperPET)

    DEFF Research Database (Denmark)

    Borgwardt, Henrik Gutte; Hansen, Adam Espe; Henriksen, Sarah T.

    2015-01-01

    have named this concept hyper PET. Intravenous injection of the hyperpolarized (13)C-pyruvate results in an increase of (13)C-lactate, (13)C-alanine and (13)C-CO2 ((13)C-HCO3) resonance peaks relative to the tissue, disease and the metabolic state probed. Accordingly, with dynamic nuclear polarization......In this paper we demonstrate, for the first time, the feasibility of a new imaging concept - combined hyperpolarized (13)C-pyruvate magnetic resonance spectroscopic imaging (MRSI) and (18)F-FDG-PET imaging. This procedure was performed in a clinical PET/MRI scanner with a canine cancer patient. We...... (DNP) and use of (13)C-pyruvate it is now possible to directly study the Warburg Effect through the rate of conversion of (13)C-pyruvate to (13)C-lactate. In this study, we combined it with (18)F-FDG-PET that studies uptake of glucose in the cells. A canine cancer patient with a histology verified...

  7. Interaction between the thyroid hormone receptor and co-factors on the promoter of the gene encoding phospho enol pyruvate carboxykinase

    NARCIS (Netherlands)

    Schmidt, E. D.; van Beeren, M.; Glass, C. K.; Wiersinga, W. M.; Lamers, W. H.

    1993-01-01

    Using transient transfection studies we localized a thyroid hormone-responsive element on the promoter of the rat phospho-enol pyruvate carboxykinase gene between 355 and 174 bp upstream of the transcription start site. DNAse 1 footprinting analysis within this region showed that a 28 bp fragment at

  8. The MDM2-p53-pyruvate carboxylase signalling axis couples mitochondrial metabolism to glucose-stimulated insulin secretion in pancreatic β-cells

    DEFF Research Database (Denmark)

    Li, Xiaomu; Cheng, Kenneth K. Y.; Liu, Zhuohao

    2016-01-01

    deletion or pharmacological inhibition of its negative regulator MDM2, impairs GSIS, leading to glucose intolerance in mice. Mechanistically, p53 activation represses the expression of the mitochondrial enzyme pyruvate carboxylase (PC), resulting in diminished production of the TCA cycle intermediates...

  9. omega-Amino acid:pyruvate transaminase from Alcaligenes denitrificans Y2k-2: a new catalyst for kinetic resolution of beta-amino acids and amines.

    Science.gov (United States)

    Yun, Hyungdon; Lim, Seongyop; Cho, Byung-Kwan; Kim, Byung-Gee

    2004-04-01

    Alcaligenes denitrificans Y2k-2 was obtained by selective enrichment followed by screening from soil samples, which showed omega-amino acid:pyruvate transaminase activity, to kinetically resolve aliphatic beta-amino acid, and the corresponding structural gene (aptA) was cloned. The gene was functionally expressed in Escherichia coli BL21 by using an isopropyl-beta-D-thiogalactopyranoside (IPTG)-inducible pET expression system (9.6 U/mg), and the recombinant AptA was purified to show a specific activity of 77.2 U/mg for L-beta-amino-n-butyric acid (L-beta-ABA). The enzyme converts various beta-amino acids and amines to the corresponding beta-keto acids and ketones by using pyruvate as an amine acceptor. The apparent K(m) and V(max) for L-beta-ABA were 56 mM and 500 U/mg, respectively, in the presence of 10 mM pyruvate. In the presence of 10 mM L-beta-ABA, the apparent K(m) and V(max) for pyruvate were 11 mM and 370 U/mg, respectively. The enzyme exhibits high stereoselectivity (E > 80) in the kinetic resolution of 50 mM D,L-beta-ABA, producing optically pure D-beta-ABA (99% enantiomeric excess) with 53% conversion.

  10. ω-Amino Acid:Pyruvate Transaminase from Alcaligenes denitrificans Y2k-2: a New Catalyst for Kinetic Resolution of β-Amino Acids and Amines

    Science.gov (United States)

    Yun, Hyungdon; Lim, Seongyop; Cho, Byung-Kwan; Kim, Byung-Gee

    2004-01-01

    Alcaligenes denitrificans Y2k-2 was obtained by selective enrichment followed by screening from soil samples, which showed ω-amino acid:pyruvate transaminase activity, to kinetically resolve aliphatic β-amino acid, and the corresponding structural gene (aptA) was cloned. The gene was functionally expressed in Escherichia coli BL21 by using an isopropyl-β-d-thiogalactopyranoside (IPTG)-inducible pET expression system (9.6 U/mg), and the recombinant AptA was purified to show a specific activity of 77.2 U/mg for l-β-amino-n-butyric acid (l-β-ABA). The enzyme converts various β-amino acids and amines to the corresponding β-keto acids and ketones by using pyruvate as an amine acceptor. The apparent Km and Vmax for l-β-ABA were 56 mM and 500 U/mg, respectively, in the presence of 10 mM pyruvate. In the presence of 10 mM l-β-ABA, the apparent Km and Vmax for pyruvate were 11 mM and 370 U/mg, respectively. The enzyme exhibits high stereoselectivity (E > 80) in the kinetic resolution of 50 mM d,l-β-ABA, producing optically pure d-β-ABA (99% enantiomeric excess) with 53% conversion. PMID:15066855

  11. Studies on the formation of lactate and pyruvate from glucose in cultured skin fibroblasts: implications for detection of respiratory chain defects

    NARCIS (Netherlands)

    Wijburg, F. A.; Feller, N.; Scholte, H. R.; Przyrembel, H.; Wanders, R. J.

    1989-01-01

    We investigated the time course of the formation of lactate and pyruvate from glucose in cultured skin fibroblasts from controls, from a patient with a cytochrome c oxidase deficiency and from controls treated with inhibitors of the individual respiratory chain complexes. Fibroblasts from the

  12. Discovery of a 1,2-bis(3-indolyl)ethane that selectively inhibits the pyruvate kinase of methicillin-resistant Staphylococcus aureus over human isoforms.

    Science.gov (United States)

    Zoraghi, Roya; Campbell, Sara; Kim, Catrina; Dullaghan, Edie M; Blair, Lachlan M; Gillard, Rachel M; Reiner, Neil E; Sperry, Jonathan

    2014-11-01

    Methicillin-resistant Staphylococcus aureus pyruvate kinase (MRSA PK) has recently been identified as a target for development of novel antibacterial agents. Testing a series of 1,2-bis(3-indolyl)ethanes against MRSA PK has led to the discovery of a potent inhibitor that is selective over human isoforms. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Elevated levels of 14-3-3 proteins, serotonin, gamma enolase and pyruvate kinase identified in clinical samples from patients diagnosed with colorectal cancer

    Czech Academy of Sciences Publication Activity Database

    Dowling, P.; Hughes, D. J.; Larkin, A.M.; Meiller, J.; Henry, M.; Meleady, P.; Lynch, V.; Pardini, B.; Naccarati, A.; Levý, M.; Vodička, Pavel; Neary, P.; Clynes, M.

    2015-01-01

    Roč. 441, feb. (2015), s. 133-141 ISSN 0009-8981 Institutional support: RVO:68378041 Keywords : biomarkers * colorectal cancer * proteomics * mass spectrometry * 14-3-3 proteins * pyruvate kinase Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.799, year: 2015

  14. Chaski, a novel Drosophila lactate/pyruvate transporter required in glia cells for survival under nutritional stress.

    Science.gov (United States)

    Delgado, María Graciela; Oliva, Carlos; López, Estefanía; Ibacache, Andrés; Galaz, Alex; Delgado, Ricardo; Barros, L Felipe; Sierralta, Jimena

    2018-01-19

    The intercellular transport of lactate is crucial for the astrocyte-to-neuron lactate shuttle (ANLS), a model of brain energetics according to which neurons are fueled by astrocytic lactate. In this study we show that the Drosophila chaski gene encodes a monocarboxylate transporter protein (MCT/SLC16A) which functions as a lactate/pyruvate transporter, as demonstrated by heterologous expression in mammalian cell culture using a genetically encoded FRET nanosensor. chaski expression is prominent in the Drosophila central nervous system and it is particularly enriched in glia over neurons. chaski mutants exhibit defects in a high energy demanding process such as synaptic transmission, as well as in locomotion and survival under nutritional stress. Remarkably, locomotion and survival under nutritional stress defects are restored by chaski expression in glia cells. Our findings are consistent with a major role for intercellular lactate shuttling in the brain metabolism of Drosophila.

  15. Computer-assisted study on the reaction between pyruvate and ylide in the pathway leading to lactyl-ThDP.

    Science.gov (United States)

    Alvarado, Omar; Jaña, Gonzalo; Delgado, Eduardo J

    2012-08-01

    In this study the formation of the lactyl-thiamin diphosphate intermediate (L-ThDP) is addressed using density functional theory calculations at X3LYP/6-31++G(d,p) level of theory. The study includes potential energy surface scans, transition state search, and intrinsic reaction coordinate calculations. Reactivity is analyzed in terms of Fukui functions. The results allow to conclude that the reaction leading to the formation of L-ThDP occurs via a concerted mechanism, and during the nucleophilic attack on the pyruvate molecule, the ylide is in its AP form. The calculated activation barrier for the reaction is 19.2 kcal/mol, in agreement with the experimental reported value.

  16. Immunocapture and microplate-based activity and quantity measurement of pyruvate dehydrogenase in human peripheral blood mononuclear cells.

    Science.gov (United States)

    Liu, Xiaowen; Pervez, Hira; Andersen, Lars W; Uber, Amy; Montissol, Sophia; Patel, Parth; Donnino, Michael W

    2015-01-01

    Pyruvate dehydrogenase (PDH) activity is altered in many human disorders. Current methods require tissue samples and yield inconsistent results. We describe a modified method for measuring PDH activity from isolated human peripheral blood mononuclear cells (PBMCs). RESULTS/METHODOLOGY: We found that PDH activity and quantity can be successfully measured in human PBMCs. Freeze-thaw cycles cannot efficiently disrupt the mitochondrial membrane. Processing time of up to 20 h does not affect PDH activity with proteinase inhibitor addition and a detergent concentration of 3.3% showed maximum yield. Sample protein concentration is correlated to PDH activity and quantity in human PBMCs from healthy subjects. Measuring PDH activity from PBMCs is a novel, easy and less invasive way to further understand the role of PDH in human disease.

  17. Alu element insertion in PKLR gene as a novel cause of pyruvate kinase deficiency in Middle Eastern patients.

    Science.gov (United States)

    Lesmana, Harry; Dyer, Lisa; Li, Xia; Denton, James; Griffiths, Jenna; Chonat, Satheesh; Seu, Katie G; Heeney, Matthew M; Zhang, Kejian; Hopkin, Robert J; Kalfa, Theodosia A

    2018-03-01

    Pyruvate kinase deficiency (PKD) is the most frequent red blood cell enzyme abnormality of the glycolytic pathway and the most common cause of hereditary nonspherocytic hemolytic anemia. Over 250 PKLR-gene mutations have been described, including missense/nonsense, splicing and regulatory mutations, small insertions, small and gross deletions, causing PKD and hemolytic anemia of variable severity. Alu retrotransposons are the most abundant mobile DNA sequences in the human genome, contributing to almost 11% of its mass. Alu insertions have been associated with a number of human diseases either by disrupting a coding region or a splice signal. Here, we report on two unrelated Middle Eastern patients, both born from consanguineous parents, with transfusion-dependent hemolytic anemia, where sequence analysis revealed a homozygous insertion of AluYb9 within exon 6 of the PKLR gene, causing precipitous decrease of PKLR RNA levels. This Alu element insertion consists a previously unrecognized mechanism underlying pathogenesis of PKD. © 2017 Wiley Periodicals, Inc.

  18. Immunocapture and microplate-based activity and quantity measurement of pyruvate dehydrogenase in human peripheral blood mononuclear cells

    Science.gov (United States)

    Liu, Xiaowen; Pervez, Hira; Andersen, Lars W; Uber, Amy; Montissol, Sophia; Patel, Parth; Donnino, Michael W

    2015-01-01

    Background Pyruvate dehydrogenase (PDH) activity is altered in many human disorders. Current methods require tissue samples and yield inconsistent results. We describe a modified method for measuring PDH activity from isolated human peripheral blood mononuclear cells (PBMCs). Results/Methodology We found that PDH activity and quantity can be successfully measured in human PBMCs. Freeze-thaw cycles cannot efficiently disrupt the mitochondrial membrane. Processing time of up to 20 h does not affect PDH activity with proteinase inhibitor addition and a detergent concentration of 3.3% showed maximum yield. Sample protein concentration is correlated to PDH activity and quantity in human PBMCs from healthy subjects. Conclusion Measuring PDH activity from PBMCs is a novel, easy and less invasive way to further understand the role of PDH in human disease. PMID:25826140

  19. Small ubiquitin-like modifier 1 modification of pyruvate kinase M2 promotes aerobic glycolysis and cell proliferation in A549 human lung cancer cells

    Directory of Open Access Journals (Sweden)

    An S

    2018-04-01

    Full Text Available Shuxian An,1,* Liangqian Huang,2,3,* Ping Miao,1 Liang Shi,1 Mengqin Shen,1 Xiaoping Zhao,1 Jianjun Liu,1 Gang Huang1,3,4 1Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; 2Department of Cancer Biology and Abramson Family Cancer Research Institute, University of Pennsylvania School of Medicine, Philadelphia, PA, USA; 3Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine & Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China; 4Shanghai University of Medicine and Health Sciences, Shanghai, China *These authors contributed equally to this work Objective: Lung cancer is the leading cause of cancer-related death worldwide. Aerobic glycolysis is considered the seventh hallmark of cancer. The M2 isoform of pyruvate kinase (PKM2 is an important rate-limiting enzyme in glycolytic pathway, and is strongly expressed in several types of cancer. Thus, understanding the underlying mechanisms of regulation of PKM2 is of great value for targeted therapy for lung cancer.Patients and methods: Seventy-three lung adenocarcinoma patients were analyzed in our study. The expression levels of PKM2 were analyzed by immunohistochemistry on tissues. The effect of small ubiquitin-like modifier 1 (SUMO1 on PKM2 expression was investigated using Western blot assay and quantitative polymerase chain reaction. PKM2 SUMO1 modification was determined by in vitro and in vivo SUMOylation assays. 18F-deoxyglucose uptake and lactate production measurements were conducted to research the levels of glycolysis. The level of oxidative phosphorylation in cells was determined by cellular oxygen consumption rate measurements. Cell proliferation assays were carried out to confirm the growth ability of tumor cells.Results: PKM2 was overexpressed in lung adenocarcinoma patients based on immunohistochemical staining. Patients with high PKM2 expression had reduced

  20. Lactate/pyruvate transporter MCT-1 is a direct Wnt target that confers sensitivity to 3-bromopyruvate in colon cancer.

    Science.gov (United States)

    Sprowl-Tanio, Stephanie; Habowski, Amber N; Pate, Kira T; McQuade, Miriam M; Wang, Kehui; Edwards, Robert A; Grun, Felix; Lyou, Yung; Waterman, Marian L

    2016-01-01

    There is increasing evidence that oncogenic Wnt signaling directs metabolic reprogramming of cancer cells to favor aerobic glycolysis or Warburg metabolism. In colon cancer, this reprogramming is due to direct regulation of pyruvate dehydrogenase kinase 1 ( PDK1 ) gene transcription. Additional metabolism genes are sensitive to Wnt signaling and exhibit correlative expression with PDK1. Whether these genes are also regulated at the transcriptional level, and therefore a part of a core metabolic gene program targeted by oncogenic WNT signaling, is not known. Here, we identify monocarboxylate transporter 1 (MCT-1; encoded by SLC16A1 ) as a direct target gene supporting Wnt-driven Warburg metabolism. We identify and validate Wnt response elements (WREs) in the proximal SLC16A1 promoter and show that they mediate sensitivity to Wnt inhibition via dominant-negative LEF-1 (dnLEF-1) expression and the small molecule Wnt inhibitor XAV939. We also show that WREs function in an independent and additive manner with c-Myc, the only other known oncogenic regulator of SLC16A1 transcription. MCT-1 can export lactate, the byproduct of Warburg metabolism, and it is the essential transporter of pyruvate as well as a glycolysis-targeting cancer drug, 3-bromopyruvate (3-BP). Using sulforhodamine B (SRB) assays to follow cell proliferation, we tested a panel of colon cancer cell lines for sensitivity to 3-BP. We observe that all cell lines are highly sensitive and that reduction of Wnt signaling by XAV939 treatment does not synergize with 3-BP, but instead is protective and promotes rapid recovery. We conclude that MCT-1 is part of a core Wnt signaling gene program for glycolysis in colon cancer and that modulation of this program could play an important role in shaping sensitivity to drugs that target cancer metabolism.