WorldWideScience

Sample records for ether sulfone random

  1. Cation permeable membranes from blends of sulfonated poly(ether ether ketone) and poly (ether sulfone)

    NARCIS (Netherlands)

    Wilhelm, F.G.; Punt, Ineke G.M.; van der Vegt, N.F.A.; Strathmann, H.; Wessling, Matthias

    2002-01-01

    Sulfonated poly(aryl ether ether ketone), S-PEEK, is blended with non-sulfonated poly(ether sulfone) (PES) to adjust the properties of ion permeable and ion selective membranes. In this study, membranes are prepared from blends with (i) a S-PEEK content between 10 and 100 wt.% using one S-PEEK batch

  2. Preparation and Characterization of Sulfonated Poly (ether ether ...

    African Journals Online (AJOL)

    Proton-conducting membranes of organic–inorganic (sulfonated poly (ether ether ketone)/phosphated zirconia nanoparticles) composite were prepared by incorporating various ratios of phosphated zirconia nanoparticles (ZP) in sulfonated poly (ether ether ketone) (SPEEK). SPEEK/ZP showed an improvement of ...

  3. Preparation and characterization of sulfonated amine-poly(ether sulfone)s for proton exchange membrane fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Dong-Wan; Lim, Young-Don; Lee, Soon-Ho; Jeong, Young-Gi; Kim, Whan-Gi [Department of Applied Chemistry/RIC-ReSEM, Konkuk University, Chungju-si, Chungbuk 380-701 (Korea, Republic of); Hong, Tae-Whan [Department of Materials Sci and Engineering/RIC-ReSEM, Chungju National University, Chungju, Chungbuk (Korea, Republic of)

    2010-12-15

    Sulfonated amine-poly(ether sulfone)s (S-APES)s were prepared by nitration, reduction and sulfonation of poly(ether sulfone) (ultrason {sup registered} -S6010). Poly(ether sulfone) was reacted with ammonium nitrate and trifluoroacetic anhydride to produce the nitrated poly(ether sulfone), and was followed by reduction using tin(II)chloride and sodium iodide as reducing agents to give the amino-poly(ether sulfone). The S-APES was obtained by reaction of 1,3-propanesultone and the amino-poly(ether sulfone) (NH{sub 2}-PES) with sodium methoxide. The different degrees of nitration and reduction of poly(ether sulfone) were successfully synthesized by an optimized process. The reduction of nitro group to amino was done quantitatively, and this controlled the contents of the sulfonic acid group. The films were converted from salt to acid forms with dilute hydrochloric acid. Different contents of sulfonated unit of the S-APES were studied by FT-IR, {sup 1}H NMR spectroscopy, differential scanning calorimetry (DSC), and thermo gravimetric analysis (TGA). Sorption experiments were conducted to observe the interaction of sulfonated polymers with water and methanol. The ion exchange capacity (IEC), a measure of proton conductivity, was evaluated. The S-APES membranes exhibit conductivities (25 C) from 1.05 x 10{sup -3} to 4.83 x 10{sup -3} S/cm, water swell from 30.25 to 66.50%, IEC from 0.38 to 0.82 meq/g, and methanol diffusion coefficients from 3.10 x 10{sup -7} to 4.82 x 10{sup -7} cm{sup 2}/S at 25 C. (author)

  4. Electrical conductivity of sulfonated poly(ether ether ketone) based composite membranes containing sulfonated polyhedral oligosilsesquioxane

    Science.gov (United States)

    Celso, Fabricio; Mikhailenko, Serguei D.; Rodrigues, Marco A. S.; Mauler, Raquel S.; Kaliaguine, Serge

    2016-02-01

    Composite proton exchange membranes (PEMs) intended for fuel cell applications were prepared by embedding of various amounts of dispersed tri-sulfonic acid ethyl POSS (S-Et-POSS) and tri-sulfonic acid butyl POSS (S-Bu-POSS) in thin films of sulfonated poly ether-ether ketone. The electrical properties of the PEMs were studied by Impedance spectroscopy and it was found that their conductivity σ changes with the filler content following a curve with a maximum. The water uptake of these PEMs showed the same dependence. The investigation of initial isolated S-POSS substances revealed the properties of typical electrolytes, which however in both cases possessed low conductivities of 1. 17 × 10-5 S cm-1 (S-Et-POSS) and 3.52 × 10-5 S cm-1 (S-Bu-POSS). At the same time, the insoluble in water S-POSS was found forming highly conductive interface layer when wetted with liquid water and hence producing a strong positive impact on the conductivity of the composite PEM. Electrical properties of the composites were analysed within the frameworks of effective medium theory and bounding models, allowing to evaluate analytically the range of possible conductivity values. It was found that these approaches produced quite good approximation of the experimental data and constituted a fair basis for interpretation of the observed relationship.

  5. Synthesis and characterization of sulfonated cardo poly(arylene ether sulfone)s for fuel cell proton exchange membrane application

    Energy Technology Data Exchange (ETDEWEB)

    Islam, M.M.; Jang, H.H.; Lim, Y.D.; Seo, D.W.; Kim, W.G. [Department of Applied Chemistry, Konkuk University, Chungju, Chungbuk (Korea, Republic of); Kim, T.H.; Hong, Y.T. [Energy Material Research Center, Korea Research Institute of Chemical Technology, Daejeon (Korea, Republic of); Kim, D.M. [Material Engineering and Science, Hongik Univ, Jochiwon-eup, Yeongi-gun, Chungnam (Korea, Republic of)

    2012-12-15

    Sulfonated cardo poly(arylene ether sulfone)s (SPPA-PES) with various degrees of sulfonation (DS) were prepared by post-sulfonation of synthesized phenolphthalein anilide (PPA; N-phenyl-3,3'-bis(4-hydroxyphenyl)-1-isobenzopyrolidone) poly(arylene ether sulfone)s (PPA-PES) by using concentrated sulfuric acid. PPA-PES copolymers were synthesized by direct polycondensation of PPA with bis-(4-fluorophenyl)-sulfone and 4,4'-sulfonyldiphenol. The DS was varied with different mole ratios of PPA (24, 30, 40, 50 mol.%) in the polymer. The structure of the resulting SPPA-PES copolymers and the different contents of the sulfonated unit were studied by Fourier transform infrared (FT-IR) spectroscopy, {sup 1}H NMR spectroscopy, and thermogravimetric analysis (TGA). Sorption experiments were conducted to observe the interaction of sulfonated polymer with water. The ion exchange capacity (IEC) and proton conductivity of SPPA-PES were evaluated according to the increase of DS. The water uptake (WU) of the resulting SPPA-PES membranes was in the range of 20-72%, compared with 28% for Nafion 211 registered. The SPPA-PES membranes showed proton conductivities of 23-82 mS cm{sup -1}, compared with 194 mS cm{sup -1} for Nafion 211 registered, under 100% relative humidity (RH) at 80 C. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. Sulfonated poly(ether ether ketone) based composite membranes for nanofiltration of acidic and alkaline media

    NARCIS (Netherlands)

    Dalwani, M.R.; Bargeman, Gerrald; Hosseiny, Seyed Schwan; Schwan Hosseiny, Seyed; Boerrigter, M.E.; Wessling, Matthias; Benes, Nieck Edwin

    2011-01-01

    Several thin film composite nanofiltration membranes have been prepared by spin coating a sulfonated poly(ether ether ketone) solution on a polyethersulfone support, followed by thermal treatment. The most optimal developed nanofiltration membrane shows a clean water permeance of ∼4.5 L m−2 h−1

  7. Novel crosslinked membranes based on sulfonated poly(ether ether ketone) for direct methanol fuel cells.

    Science.gov (United States)

    Zhu, Yuanqin; Zieren, Shelley; Manthiram, Arumugam

    2011-07-14

    Novel covalently crosslinked membranes based on sulfonated poly(ether ether ketone) and carboxylated polysulfone exhibit much lower methanol crossover and better performance in direct methanol fuel cells at 65 °C in 1 and 2 M methanol solutions compared to Nafion 115 membranes.

  8. Chlorine resistant desalination membranes based on directly sulfonated poly(arylene ether sulfone) copolymers

    Science.gov (United States)

    McGrath, James E [Blacksburg, VA; Park, Ho Bum [Austin, TX; Freeman, Benny D [Austin, TX

    2011-10-04

    The present invention provides a membrane, kit, and method of making a hydrophilic-hydrophobic random copolymer membrane. The hydrophilic-hydrophobic random copolymer membrane includes a hydrophilic-hydrophobic random copolymer. The hydrophilic-hydrophobic random copolymer includes one or more hydrophilic monomers having a sulfonated polyarylsulfone monomer and a second monomer and one or more hydrophobic monomers having a non-sulfonated third monomer and a fourth monomer. The sulfonated polyarylsulfone monomer introduces a sulfonate into the hydrophilic-hydrophobic random copolymer prior to polymerization.

  9. Thermal and Dielectric Behavior Studies of Poly(Arylene Ether Sulfones with Sulfonated and Phosphonated Pendants

    Directory of Open Access Journals (Sweden)

    Shimoga D. Ganesh

    2016-01-01

    Full Text Available The present paper discusses the aspects of the synthesizing valeric acid based poly(ether sulfones with active carboxylic acid pendants (VALPSU from solution polymerization technique via nucleophilic displacement polycondensation reaction among 4,4′-dichlorodiphenyl sulfone (DCDPS and 4,4′-bis(4-hydroxyphenyl valeric acid (BHPA. The conditions necessary to synthesize and purify the polymer were investigated in some detail. The synthesized poly(ether sulfones comprise sulfone and ether linkages in addition to reactive carboxylic acid functionality; these active carboxylic acid functional groups were exploited to hold the phenyl sulphonic acid and phenyl phosphonic acid pendants. The phenyl sulphonic acid pendants in VALPSU were easily constructed by altering active carboxylic acid moieties by sulfanilic acid using N,N′-dicyclohexylcarbodiimide (DCC mediated mild synthetic route, whereas the latter one was built in two steps. Initially, polyphosphoric acid condensation with VALPSU by 4-bromoaniline and next straightforward palladium catalyzed synthetic route, in both of which acidic pendants are clenched by polymer backbone via amide linkage. Without impairing the primary polymeric backbone modified polymers were prepared by varying the stoichiometric ratios of respective combinations. All the polymers were physicochemically characterized and pressed into tablets; electrical contacts were established to study the dielectric properties. Finally, the influence of the acidic pendants on the dielectric properties was examined.

  10. Mass transport of direct methanol fuel cell species in sulfonated poly(ether ether ketone) membranes

    Energy Technology Data Exchange (ETDEWEB)

    Silva, V.S.; Boaventura, M.; Mendes, A.M.; Madeira, L.M. [LEPAE, Chemical Engineering Department, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto (Portugal); Ruffmann, B.; Vetter, S.; Nunes, S.P. [GKSS Research Centre, Max-Planck Str., 21502 Geesthacht (Germany)

    2006-05-05

    Homogeneous membranes based on sulfonated poly(ether ether ketone) (sPEEK) with different sulfonation degrees (SD) were prepared and characterized. In order to perform a critical analysis of the SD effect on the polymer barrier and mass transport properties towards direct methanol fuel cell species, proton conductivity, water/methanol pervaporation and nitrogen/oxygen/carbon dioxide pressure rise method experiments are proposed. This procedure allows the evaluation of the individual permeability coefficients in hydrated sPEEK membranes with different sulfonation degrees. Nafion{sup (R)} 112 was used as reference material. DMFC tests were also performed at 50{sup o}C. It was observed that the proton conductivity and the permeability towards water, methanol, oxygen and carbon dioxide increase with the sPEEK sulfonation degree. In contrast, the SD seems to not affect the nitrogen permeability coefficient. In terms of selectivity, it was observed that the carbon dioxide/oxygen selectivity increases with the sPEEK SD. In contrast, the nitrogen/oxygen selectivity decreases. In terms of barrier properties for preventing the DMFC reactants loss, the polymer electrolyte membrane based on the sulfonated poly(ether ether ketone) with SD lower or equal to 71%, although having slightly lower proton conductivity, presented much better characteristics for fuel cell applications compared with the well known Nafion{sup (R)} 112. In terms of the DMFC tests of the studied membranes at low temperature, the sPEEK membrane with SD=71% showed to have similar performance, or even better, as that of Nafion{sup (R)} 112. However, the highest DMFC overall efficiency was achieved using sPEEK membrane with SD=52%. (author)

  11. Copoly(arlene ether)s containing pendant sulfonic acid groups as proton exchange membrane

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yu Seung [Los Alamos National Laboratory; Kim, Dae Sik [CANADA NRC; Robertson, Gilles [CANADA NRC; Guiver, Michael [CANADA NRC

    2008-01-01

    A copoly(arylene ether) (PAE) with high fluorine content and a copoly(arylene ether nitrile) (PAEN) with high nitrile content, each containing pendant phenyl sulfonic acids were synthesized. The P AE and PAEN were prepared from decafluorobiphenyl (DFBP) and difluorobenzonitrile (DFBN) respectively, by polycondensation with 2-phenylhydroquinone (PHQ) by conventional aromatic nucleophilic substitution reactions. The sulfonic acid groups were introduced by mild post-sulfonation exclusively on the para-position of the pendant phenyl ring in PHQ. The membrane properties of the resulting sulfonated copolymers sP AE and sP AEN were compared for fuel cell applications. The copolymers sPAE and sPAEN, each having a degree of sulfonation (DS) of 1.0 had high ion exchange capacities (IEC{sub v}(wet) (volume-based, wet state)) of 1.77 and 2.55 meq./cm{sup 3}, high proton conductivities of 135.4 and 140.1 mS/cm at 80 C, and acceptable volume-based water uptake of 44.5-51.9 vol% at 80 C, respectively, compared to Nafion. The data points of these copolymer membranes are located in the area of outstanding properties in the trade-off plot of alternative hydrocarbon polyelectrolyte membranes (PEM) for the relationship between proton conductivity versus water uptake (weight based or volume based). Furthermore, the relative selectivity derived from proton conductivity and methanol permeability is higher than that of Nafion.

  12. Ion-Selective Ionic Polymer Metal Composite (IPMC) Actuator Based on Crown Ether Containing Sulfonated Poly(Arylene Ether Ketone)

    NARCIS (Netherlands)

    Tas, Sinem; Zoetebier, Bram; Sardan Sukas, Ö.; Bayraktar, Muharrem; Hempenius, Mark A.; Vancso, Gyula J.; Nijmeijer, Dorothea C.

    This study introduces the concept of ion selective actuation in polymer metal composite actuators, employing crown ether bearing aromatic polyether materials. For this purpose, sulfonated poly(arylene ether ketone) (SPAEK) and crown ether containing SPAEK with molar masses suitable for membrane

  13. Synthesis and characterization of sulfonated poly(ether sulfone) copolymer membranes for fuel cell applications

    Science.gov (United States)

    Krishnan, N. N.; Kim, H.-J.; Prasanna, M.; Cho, E.; Shin, E.-M.; Lee, S.-Y.; Oh, I.-H.; Hong, S.-A.; Lim, T.-H.

    Sulfonated poly(ether sulfone) copolymers (PESs) are synthesized using hydroquinone 2-potassium sulfonate (HPS) with other monomers (bisphenol A and 4-fluorophenyl sulfone). A series of PESs with different mol% of hydrophilic group is prepared by changing the mole ratio of HPS in the polymerization reaction. The chemical structure and thermal stability of the polymers are characterized by using 1H NMR, FT-IR and TGA techniques. The PES 60 membrane, which has 60 mol% of HPS unit in the polymer backbone, has a proton conductivity of 0.091 S cm -1 and good insolubility in boiling water. The TGA showed that PES 60 is stable up to 272 °C with a char yield of about 29% at 900 °C under a nitrogen atmosphere. To investigate single-cell performance, a catalyst-coated PES 60 membrane is used together with hydrogen and oxygen as the fuel and the oxidant, respectively. Cell performance is enhanced by increasing the temperature. A current density of 1400 mA cm -2 at 0.60 V is obtained at 70 °C.

  14. Copoly(arylene ether)s containing pendant sulfonic acid groups as proton exchange membranes

    Energy Technology Data Exchange (ETDEWEB)

    Dae Sik, Kim [Los Alamos National Laboratory; Yu Seung, Kim [Los Alamos National Laboratory; Gilles, Robertson [CANADA-NRC; Guiver, Michael D [CANADA-NRC

    2009-01-01

    A copoly(arylene ether) (PAE) with high fluorine content and a copoly(arylene ether nitrile) (PAEN) with high nitrile content, each containing pendant phenyl sulfonic acids were synthesized. The PAE and P AEN were prepared from decafluorobiphenyl (DFBP) and difluorobenzonitrile (DFBN) respectively, by polycondensation with 2phenylhydroquinone (PHQ) by conventional aromatic nucleophilic substitution reactions. sulfonic acid groups were introduced by mild post-sulfonation exclusively on the para-position of the pendant phenyl ring in PHQ. The membrane properties of the resulting sulfonated copolymers sPAE and sPAEN were compared for fuel cell applications. The copolymers sPAE and sPAEN, each having a degree of sulfonation (OS) of 1.0 had high ion exchange capacities (IEC{sub v})(wet) (volume-based, wet state) of 1.77 and 2.55 meq./cm3, high proton conductivities of 135.4 and 140.1 mS/cm at 80 C, and acceptable volume-based water uptake of 44.5 -51.9 vol% at 80 C, respectively, compared to Nafion. The data points of these copolymer membranes are located in the upper left-hand corner in the trade-off plot of alternative hydrocarbon polyelectrolyte membranes (PEM) for the relationship between proton conductivity versus water uptake (weight based or volume based), i.e., high proton conductivity and low water uptake. Furthermore, the relative selectivity derived from proton conductivity and methanol permeability is higher than that of Nafion.

  15. Poly (ether imide sulfone) membranes from solutions in ionic liquids

    KAUST Repository

    Kim, Dooli

    2017-11-20

    A membrane manufacture method based on non-volatile solvents and a high performance polymer, poly (ether imide sulfone) (EXTEM™), is proposed, as greener alternative to currently industrial process. We dissolved EXTEM™ in pure ionic liquids: 1-ethyl-3-methylimidalzolium thiocyanate ([EMIM]SCN), 1-butyl-3-methylimidalzolium thiocyanate ([BMIM]SCN), and 1-ethyl-3-methylimidalzolium acetate ([EMIM]OAc). The following polymer solution parameters were evaluated to optimize the manufacture: Gibbs free energy of mixing (G), intrinsic viscosity ([]) and hydrodynamic diameter. Membranes with sponge-like structure and narrow pore size distribution were obtained from solutions in [EMIM]SCN. They were tested for separation of proteins and deoxyribonucleic acids (DNA). Due to the polymer stability, we foresee that applications in more demanding chemical separations would be possible. [EMIM]SCN was 96 % purified and recovered after the membrane fabrication, contributing to the sustainability of the whole manufacturing process.

  16. Preparation of new proton exchange membranes using sulfonated poly(ether sulfone) modified by octylamine (SPESOS)

    Energy Technology Data Exchange (ETDEWEB)

    Mabrouk, W. [Societe ERAS Labo, 222 RN 90, 38330, St Nazaire Les Eymes, Grenoble (France); Laboratoire des Materiaux Industriels, Conservatoire National des Arts et Metiers de Paris 75003, Paris (France); Laboratoire de Chimie Analytique et Electrochimie, Faculte des Sciences de Tunis, Campus Universitaire 1092, Tunis (Tunisia); Ogier, L. [Societe ERAS Labo, 222 RN 90, 38330, St Nazaire Les Eymes, Grenoble (France); Matoussi, F. [Laboratoire de Chimie Analytique et Electrochimie, Faculte des Sciences de Tunis, Campus Universitaire 1092, Tunis (Tunisia); Sollogoub, C., E-mail: cyrille.sollogoub@cnam.fr [Laboratoire des Materiaux Industriels, Conservatoire National des Arts et Metiers de Paris 75003, Paris (France); Vidal, S. [Societe ERAS Labo, 222 RN 90, 38330, St Nazaire Les Eymes, Grenoble (France); Dachraoui, M. [Laboratoire de Chimie Analytique et Electrochimie, Faculte des Sciences de Tunis, Campus Universitaire 1092, Tunis (Tunisia); Fauvarque, J.F. [Laboratoire des Materiaux Industriels, Conservatoire National des Arts et Metiers de Paris 75003, Paris (France)

    2011-08-15

    Highlights: {yields} New, simple and cheap way to synthesize a membrane. {yields} The membranes combine good proton conductivities with good mechanical properties. {yields} The membrane performances in a fuel cell are similar to the Nafion 117. - Abstract: Sulfonated poly(arylene ether sulfone) (SPES) has received considerable attention in membrane preparation for proton exchange membrane fuel cell (PEMFC). But such membranes are brittle and difficult to handle in operation. We investigated new membranes using SPES grafted with various degrees of octylamine. Five new materials made from sulfonated polyethersulfone sulfonamide (SPESOS) were synthetized with different grades of grafting. They were made from SPES, with initially an ionic exchange capacity (IEC) of 2.4 meq g{sup -1} (1.3 H{sup +} per monomer unit). Pristine SPES with that IEC is water swelling and becomes soluble at 80 deg. C, its proton conductivity is in the range of 0.1 S cm{sup -1} at room temperature in aqueous H{sub 2}SO{sub 4} 1 M, similar to that of Nafion. After grafting with various amounts of octylamine, the material is water insoluble; membranes are less brittle and show sufficient ionic conductivity. Proton transport numbers were measured close to 1.

  17. Hydroquinone based sulfonated poly (arylene ether sulfone copolymer as proton exchange membrane for fuel cell applications

    Directory of Open Access Journals (Sweden)

    V. Kiran

    2015-12-01

    Full Text Available Synthesis of sulfonated poly (arylene ether sulfone copolymer by direct copolymerization of 4,4'-bis(4-hydroxyphenyl valeric acid, benzene 1,4-diol and synthesized sulfonated 4,4'-difluorodiphenylsulfone and its characterization by using FTIR (Fourier Transform Infrared and NMR (Nuclear Magnetic Resonance spectroscopic techniques have been performed. The copolymer was subsequently cross-linked with 4, 4!(hexafluoroisopropylidenediphenol epoxy resin by thermal curing reaction to synthesize crosslinked membranes. The evaluation of properties showed reduction in water and methanol uptake, ion exchange capacity, proton conductivity with simultaneous enhancement in oxidative stability of the crosslinked membranes as compared to pristine membrane. The performance of the membranes has also been evaluated in terms of thermal stability, morphology, mechanical strength and methanol permeability by using Thermo gravimetric analyzer, Differential scanning calorimetery, Atomic force microscopy, XPERT-PRO diffractometer, universal testing machine and diffusion cell, respectively. The results demonstrated that the crosslinked membranes exhibited high thermal stability with phase separation, restrained crystallinity, acceptable mechanical properties and methanol permeability. Therefore, these can serve as promising proton exchange membranes for fuel cell applications.

  18. The Effects of Sulfonated Poly(ether ether ketone Ion Exchange Preparation Conditions on Membrane Properties

    Directory of Open Access Journals (Sweden)

    Rebecca S. L. Yee

    2013-08-01

    Full Text Available A low cost cation exchange membrane to be used in a specific bioelectrochemical system has been developed using poly(ether ether ketone (PEEK. This material is presented as an alternative to current commercial ion exchange membranes that have been primarily designed for fuel cell applications. To increase the hydrophilicity and ion transport of the PEEK material, charged groups are introduced through sulfonation. The effect of sulfonation and casting conditions on membrane performance has been systematically determined by producing a series of membranes synthesized over an array of reaction and casting conditions. Optimal reaction and casting conditions for producing SPEEK ion exchange membranes with appropriate performance characteristics have been established by this uniquely systematic experimental series. Membrane materials were characterized by ion exchange capacity, water uptake, swelling, potential difference and NMR analysis. Testing this extensive membranes series established that the most appropriate sulfonation conditions were 60 °C for 6 h. For mechanical stability and ease of handling, SPEEK membranes cast from solvent casting concentrations of 15%–25% with a resulting thickness of 30–50 µm were also found to be most suitable from the series of tested casting conditions. Drying conditions did not have any apparent impact on the measured parameters in this study. The conductivity of SPEEK membranes was found to be in the range of 10−3 S cm−1, which is suitable for use as a low cost membrane in the intended bioelectrochemical systems.

  19. Poly(vinylbenzyl sulfonic acid)-grafted poly(ether ether ketone) membranes

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Mi-Lim; Choi, Jisun; Woo, Hyun-Su; Kumar, Vinod; Sohn, Joon-Yong; Shin, Junhwa, E-mail: shinj@kaeri.re.kr

    2014-02-15

    Highlights: • PEEK-g-PVBSA, a polymer electrolyte membrane was prepared by a radiation grafting technique. • Poly(ether ether ketone) (PEEK), an aromatic hydrocarbon polymer was used as a grafting backbone film. • The water uptake, proton conductivity, and methanol permeability of the membranes were evaluated. • PEEK-g-PVBSA membranes show considerably lower methanol permeability compared to a Nafion membrane. -- Abstract: In this study, an aromatic hydrocarbon based polymer electrolyte membrane, poly(vinylbenzyl sulfonic acid)-grafted poly(ether ether ketone) (PEEK-g-PVBSA), has been prepared by the simultaneous irradiation grafting of vinylbenzyl chloride (VBC) monomer onto a PEEK film and subsequent sulfonation. Each chemical conversion was monitored by FT-IR and SEM–EDX instruments. The physicochemical properties including IEC, water uptake, proton conductivity, and methanol permeability of the prepared membranes were also investigated and found that the values of these properties increase with the increase of degree of grafting. It was observed that the IEC values of the prepared PEEK-g-PVBSA membranes with 32%, 58%, and 80% DOG values were 0.50, 1.05, and 1.22 meq/g while the water uptakes were 14%, 20%, and 21%, respectively. The proton conductivities (0.0272–0.0721 S/cm at 70 °C) were found to be somewhat lower than Nafion 212 (0.126 S/cm at 70 °C) at a relative humidity of 90%. However, the prepared membranes showed a considerably lower methanol permeability (0.61–1.92 × 10{sup −7} cm{sup 2}/s) compared to a Nafion 212 membrane (5.37 × 10{sup −7} cm{sup 2}/s)

  20. A novel sulfonated poly(ether ether ketone) and cross-linked membranes for fuel cells

    Science.gov (United States)

    Li, Hongtao; Zhang, Gang; Wu, Jing; Zhao, Chengji; Zhang, Yang; Shao, Ke; Han, Miaomiao; Lin, Haidan; Zhu, Jing; Na, Hui

    A novel poly(ether ether ketone) (PEEK) containing pendant carboxyl groups has been synthesized by a nucleophilic polycondensation reaction. Sulfonated polymers (SPEEKs) with different ion exchange capacity are then obtained by post-sulfonation process. The structures of PEEK and SPEEKs are characterized by both FT-IR and 1H NMR. The properties of SPEEKs as candidates for proton exchange membranes are studied. The cross-linking reaction is performed at 140 °C using poly(vinyl alcohol) (PVA) as the cross-linker. In comparison with the non-cross-linked membranes, some properties of the cross-linked membranes are significantly improved, such as water uptake, methanol resistance, mechanical and oxidative stabilities, while the proton conductivity decreases. The effect of PVA content on proton conductivity, water uptake, swelling ratio, and methanol permeability is also investigated. Among all the membranes, SPEEK-C-8 shows the highest selectivity of 50.5 × 10 4 S s cm -3, which indicates that it is a suitable candidate for applications in direct methanol fuel cells.

  1. Review on Modification of Sulfonated Poly (-ether-ether-ketone Membranes Used as Proton Exchange Membranes

    Directory of Open Access Journals (Sweden)

    Xiaomin GAO

    2015-11-01

    Full Text Available The proton exchange membrane fuel cell (PEMFC is a type of modern power, but the traditional proton exchange membranes (PEM of PEMFC are limited by high methanol permeability and water uptake. Poly-ether-ether-ketone (PEEK is a widely used thermoplastic with good cost-effective property. Sulfonated poly (-ether-ether-ketone (SPEEK has high electric conductivity and low methanol permeability, as well as comprehensive property, which is expected to be used as PEMs. However, the proton exchange ability, methanol resistance, mechanical property and thermal stability of SPEEK are closely related to the degree of sulfonation (DS of SPEEK membranes. Additionally, the proton conductivity, methanol permeability, and stability of SPEEK membranes applied in various conditions need to be further improved. In this paper, the research into modification of SPEEK membranes made by SPEEK and other polymers, inorganic materials are introduced. The properties and modification situation of the SPEEK and the composite membranes, as well as the advantages and disadvantages of membranes prepared by different materials are summarized. From the results we know that, the methanol permeability of SPEEK/PES-C membranes is within the order of magnitude, 10-7cm2/s. The proton conductivity of the SPPESK/SPEEK blend membrane reaches 0.212 S cm-1 at 80 °C. The cross-linked SPEEK membranes have raised thermal and dimensional stability. The non-solvent caused aggregation of the SPEEK ionomers. The proton conductivity of SPEEK/50%BMIMPF6/4.6PA membrane maintains stable as 2.0 x 10-2S cm-1 after 600 h at 160 °C. Incorporation of aligned CNT into SPEEK increases the proton conductivity and reduces the methanol permeability of the composite membranes. The PANI improves the hydrothermal stability. More proton transfer sites lead to a more compact structure in the composite membranes. According to the results, the proton exchange capacity, water uptake, and conductivity of

  2. Modified nanocrystal cellulose/fluorene-containing sulfonated poly(ether ether ketone ketone) composites for proton exchange membranes

    Science.gov (United States)

    Wei, Yingcong; Shang, Yabei; Ni, Chuangjiang; Zhang, Hanyu; Li, Xiaobai; Liu, Baijun; Men, Yongfeng; Zhang, Mingyao; Hu, Wei

    2017-09-01

    Highly sulfonated poly(ether ether ketone ketone)s (SFPEEKKs) with sulfonation degrees of 2.34 (SFPEEKK5) and 2.48 (SFPEEKK10) were synthesized through the direct sulfonation of a fluorene-containing poly(ether ether ketone ketone) under a relatively mild reaction condition. Using the solution blending method, sulfonated nanocrystal cellulose (sNCC)-enhanced SFPEEKK composites (SFPEEKK/sNCC) were successfully prepared for investigation as proton exchange membranes. Transmission electron microscopy showed that sNCC was uniformly distributed in the composite membranes. The properties of the composite membranes, including thermal stability, mechanical properties, water uptake, swelling ratio, oxidative stability and proton conductivity were thoroughly evaluated. Results indicated that the insertion of sNCC could contribute to water management and improve the mechanical performance of the membranes. Notably, the proton conductivity of SFPEEKK5/sNCC-5 was as high as 0.242 S cm-1 at 80 °C. All data proved the potential of SFPEEKK/sNCC composites for proton exchange membranes in medium-temperature fuel cells.

  3. Fuel cell performance of pendent methylphenyl sulfonated poly(ether ether ketone ketone)s

    Science.gov (United States)

    Zhang, Hanyu; Stanis, Ronald J.; Song, Yang; Hu, Wei; Cornelius, Chris J.; Shi, Qiang; Liu, Baijun; Guiver, Michael D.

    2017-11-01

    Meta- and para-linked homopolymers bearing 3-methylphenyl (Me) pendent groups were postsulfonated to create sulfonated poly(ether ether ketone ketone) (SPEEKK) backbone isomers, which are referred to as Me-p-SPEEKK and Me-m-SPEEKK. Their thermal and oxidative stability, mechanical properties, dimensional stability, methanol permeability, and proton conductivity are characterized. Me-p-SPEEKK and Me-m-SPEEKK proton conductivities at 100 °C are 116 and 173 mS cm-1, respectively. Their methanol permeabilities are 3.3-3.9 × 10-7 cm2 s-1, and dimensional swelling at 100 °C is 16.4-17.5%. Me-p-SPEEKK and Me-m-SPEEKK were fabricated into membrane electrode assemblies (MEAs), and electrochemical properties were evaluated within a direct methanol fuel cell (DMFC) and proton-exchange membrane fuel cell (PEMFC). When O2 is used as the oxidant at 80 °C and 100% RH, the maximum power density of Me-m-SPEEKK reaches 657 mW cm-2, which is higher than those of Nafion 115 (552 mW cm-2). DMFC performance is 85 mW cm-2 at 80 °C with 2.0 M methanol using Me-p-SPEEKK due to its low MeOH crossover. In general, these electrochemical results are comparable to Nafion. These ionomer properties, combined with a potentially less expensive and scalable polymer manufacturing process, may broaden their potential for many practical applications.

  4. A novel guanidinium grafted poly(aryl ether sulfone) for high-performance hydroxide exchange membranes.

    Science.gov (United States)

    Zhang, Qiang; Li, Shenghai; Zhang, Suobo

    2010-10-28

    A novel poly(aryl ether sulfone) ionomer containing hexaalkylguanidinium groups was synthesized, and membranes formed from this polymer displayed large ionic clusters, high hydroxide conductivity, and excellent solubility in low boiling point water-soluble solvents such as ethanol and methanol.

  5. Electrochemically reduced graphene oxide / sulfonated polyether ether ketone composite membrane for electrochemical applications

    Science.gov (United States)

    Seetharaman, S.; Ramya, K.; Dhathathreyan, K. S.

    2013-06-01

    A simple and effective method for the preparation of sulfonated polyether ether ketone (SPEEK) based composites with electrochemical reduced graphene oxide (EGO) as inorganic fillers has been described. The resulting dispersions are homogeneous and the cast membranes show significant improvement on tensile strength and thermal properties. It has high ionic conductivity and is cost effective making it a promising alternative membrane for electrochemical applications.

  6. Synthesis and characterization of sulfonated poly (arylene ether sulfone) copolymers via direct copolymerization: Candidates for proton exchange membrane fuel cells

    Science.gov (United States)

    Harrison, William Lamont

    A designed series of directly copolymerized homo- and disulfonated copolymers containing controlled degrees of pendant sulfonic acid groups have been synthesized via nucleophilic step polymerization. Novel sulfonated poly (arylene ether sulfone) copolymers using 4,4'-bisphenol A, 4,4'-biphenol, hexafluorinated (6F) bisphenol AF, and hydroquinone, respectively, with dichlorodiphenyl sulfone (DCDPS) and 3,3'-disodiumsulfonyl-4,4'-dichlorodiphenylsulfone (SDCDPS) were investigated. Molar ratios of DCDPS and SDCDPS were systematically varied to produce copolymers of controlled compositions, which contained up to 70 mol% of disulfonic acid moiety. The goal is to identify thermally, hydrolytically, and oxidatively stable high molecular weight, film-forming, ductile ion conducting copolymers, which had properties desirable for proton exchange membranes (PEM) in fuel cells. Commercially available bisphenols were selected to produce cost effective alternative PEMs. Partially aliphatic bisphenol A and hexafluorinated (6F) bisphenol AF produced amorphous copolymers with different thermal oxidative and surface properties. Biphenol and hydroquinone was utilized to produce wholly aromatic copolymers. The sulfonated copolymers were prepared in the sodium-salt form and converted to the acid moiety via two different methodologies and subsequently investigated as proton exchange membranes for fuel cells. Hydrophilicity increased with the level of disulfonation, as expected. Moreover, water sorption increased with increasing mole percent incorporation of SDCDPS. The copolymers' water uptake was a function of both bisphenol structure and degree of disulfonation. Furthermore, the acidification procedures were shown to influence the Tg values, water uptake, and conductivity of the copolymers. Atomic force microscopy (AFM) in the tapping mode confirmed that the morphology of the copolymers could be designed to display nanophase separation in the hydrophobic and hydrophilic (sulfonated

  7. Aligned electrospun nanofibers as proton conductive channels through thickness of sulfonated poly (phthalazinone ether sulfone ketone) proton exchange membranes

    Science.gov (United States)

    Gong, Xue; He, Gaohong; Wu, Yao; Zhang, Shikai; Chen, Bo; Dai, Yan; Wu, Xuemei

    2017-08-01

    A novel approach is proposed to fabricate sulfonated poly (phthalazinone ether sulfone ketone) (SPPESK) proton exchange membranes with ordered through-plane electrospinning nanofibers, which provide nano-scale through-plane proton conductive channels along the thickness direction of the membranes, aiming to satisfy the challenging requirement of high through-plane proton conductivity in fuel cell operations. Induced by electrostatic attraction of strong electric field, the negatively charged sulfonic acid groups tend to aggregate towards surface of the electrospun fibers, which is evidenced by TEM and SAXS and further induces aggregation of the sulfonic acid groups in the SPPESK inferfiber voids filler along the surface of the nanofibers. The aligned electrospun nanofibers carries long-range ionic clusters along the thickness direction of the membrane and results in much higher total through-plane conductivity in the thickness aligned electrospun membranes, nearly twice as much as that of the cast SPPESK membrane. With smooth treatment, the thickness aligned electrospun SPPESK membranes exhibit higher single cell power density and tensile strength as compared with Nafion 115 (around 1.2 and 1.5 folds, respectively). Such a design of thickness aligned nano-size proton conductive channels provide feasibility for high performance non-fluorinated PEMs in fuel cell applications.

  8. Enhanced response of microbial fuel cell using sulfonated poly ether ether ketone membrane as a biochemical oxygen demand sensor

    Energy Technology Data Exchange (ETDEWEB)

    Ayyaru, Sivasankaran; Dharmalingam, Sangeetha, E-mail: sangeetha@annauniv.edu

    2014-03-01

    Graphical abstract: - Highlights: • Sulfonated poly ether ether ketone (SPEEK) membrane in SCMFC used to determine the BOD. • The biosensor produces a good linear relationship with the BOD concentration up to 650 ppm. • This sensing range was 62.5% higher than that of Nafion{sup ®}. • SPEEK exhibited one order lesser oxygen permeability than Nafion{sup ®}. • Nafion{sup ®} shows high anodic internal resistance (67 Ω) than the SPEEK (39 Ω). - Abstract: The present study is focused on the development of single chamber microbial fuel cell (SCMFC) using sulfonated poly ether ether ketone (SPEEK) membrane to determine the biochemical oxygen demand (BOD) matter present in artificial wastewater (AW). The biosensor produces a good linear relationship with the BOD concentration up to 650 ppm when using artificial wastewater. This sensing range was 62.5% higher than that of Nafion{sup ®}. The most serious problem in using MFC as a BOD sensor is the oxygen diffusion into the anode compartment, which consumes electrons in the anode compartment, thereby reducing the coulomb yield and reducing the electrical signal from the MFC. SPEEK exhibited one order lesser oxygen permeability than Nafion{sup ®}, resulting in low internal resistance and substrate loss, thus improving the sensing range of BOD. The system was further improved by making a double membrane electrode assembly (MEA) with an increased electrode surface area which provide high surface area for electrically active bacteria.

  9. Partially Fluorinated Sulfonated Poly(ether amide Fuel Cell Membranes: Influence of Chemical Structure on Membrane Properties

    Directory of Open Access Journals (Sweden)

    Chulsung Bae

    2011-01-01

    Full Text Available A series of fluorinated sulfonated poly (ether amides (SPAs were synthesized for proton exchange membrane fuel cell applications. A polycondensation reaction of 4,4’-oxydianiline, 2-sulfoterephthalic acid monosodium salt, and tetrafluorophenylene dicarboxylic acids (terephthalic and isophthalic or fluoroaliphatic dicarboxylic acids produced SPAs with sulfonation degrees of 80–90%. Controlling the feed ratio of the sulfonated and unsulfonated dicarboxylic acid monomers afforded random SPAs with ion exchange capacities between 1.7 and 2.2 meq/g and good solubility in polar aprotic solvents. Their structures were characterized using NMR and FT IR spectroscopies. Tough, flexible, and transparent films were obtained with dimethylsulfoxide using a solution casting method. Most SPA membranes with 90% sulfonation degree showed high proton conductivity (>100 mS/cm at 80 °C and 100% relative humidity. Among them, two outstanding ionomers (ODA-STA-TPA-90 and ODA-STA-IPA-90 showed proton conductivity comparable to that of Nafion 117 between 40 and 80 °C. The influence of chemical structure on the membrane properties was systematically investigated by comparing the fluorinated polymers to their hydrogenated counterparts. The results suggest that the incorporation of fluorinated moieties in the polymer backbone of the membrane reduces water absorption. High molecular weight and the resulting physical entanglement of the polymers chains played a more important role in improving stability in water, however.

  10. Controlled disulfonated poly(arylene ether sulfone) multiblock copolymers for direct methanol fuel cells.

    Science.gov (United States)

    Li, Qing; Chen, Yu; Rowlett, Jarrett R; McGrath, James E; Mack, Nathan H; Kim, Yu Seung

    2014-04-23

    Structure-property-performance relationships of disulfonated poly(arylene ether sulfone) multiblock copolymer membranes were investigated for their use in direct methanol fuel cell (DMFC) applications. Multiple series of reactive polysulfone, polyketone, and polynitrile hydrophobic block segments having different block lengths and molecular composition were synthesized and reacted with a disulfonated poly(arylene ether sulfone) hydrophilic block segment by a coupling reaction. Large-scale morphological order of the multiblock copolymers evolved with the increase of block size that gave notable influence on mechanical toughness, water uptake, and proton/methanol transport. Chemical structural changes of the hydrophobic blocks through polar group, fluorination, and bisphenol type allowed further control of the specific properties. DMFC performance was analyzed to elicit the impact of structural variations of the multiblock copolymers. Finally, DMFC performances of selected multiblock copolymers were compared against that of the industrial standard Nafion in the DMFC system.

  11. Poly(arylene sulfide sulfone) polymer containing ether groups

    Energy Technology Data Exchange (ETDEWEB)

    Edmonds, J.T. Jr.; Geibel, J.; Bobsein, R.L.; Straw, J.J.

    1989-02-28

    This patent describes a process comprising: (a) reacting in an organic solvent a dihalo aromatic sulfone with an aromatic diphenol at a mole ratio of about 8/1 to about 20/1 in the presence of an alkali metal base to form a mixture comprising dihalo-terminated oligomers, and subsequently (b) adding a sulfur source selected from the group consisting of hydrogen sulfide, alkali metal hydrosulfides, alkali metal sulfides, acyclic and cyclic thioamides and mixtures, thereof, to the mixture resulting from (a) and continuing the reaction at a temperature and for a sufficient time to form a recoverable polymeric solid, characterized as having a polymer melt temperature in excess of 250/sup 0/C.

  12. Highly stable ionic-covalent cross-linked sulfonated poly(ether ether ketone) for direct methanol fuel cells

    Science.gov (United States)

    Lei, Linfeng; Zhu, Xingye; Xu, Jianfeng; Qian, Huidong; Zou, Zhiqing; Yang, Hui

    2017-05-01

    A novel ionic cross-linked sulfonated poly(ether ether ketone) containing equal content of sulfonic acid and pendant tertiary amine groups (TA-SPEEK) has been initially synthesized for the application in direct methanol fuel cells (DMFCs). By adjusting the ratio of p-xylene dibromide to tertiary amine groups of TA-SPEEK, a series of ionic-covalent cross-linked membranes (C-SPEEK-x) with tunable degree of cross-linking are prepared. Compared with the pristine membrane, the ionic and ionic-covalent cross-linked proton exchange membranes (PEMs) exhibit reduced methanol permeability and improved mechanical properties, dimensional and oxidative stability. The proton conductivity and methanol selectivity of protonated TA-SPEEK and C-SPEEK-x at 25 °C is up to 0.109 S cm-1 and 3.88 × 105 S s cm-3, respectively, which are higher than that of Nafion 115. The DMFC incorporating C-SPEEK-25 exhibits a maximum power density as high as 35.3 mW cm-2 with 4 M MeOH at 25 °C (31.8 mW cm-2 for Nafion 115). Due to the highly oxidative stability of the membrane, no obvious performance degradation of the DMFC is observed after more than 400 h operation, indicating such cost-effective ionic-covalent cross-linked membranes have substantial potential as alternative PEMs for DMFC applications.

  13. Nanocomposite Based on Functionalized Gold Nanoparticles and Sulfonated Poly(ether ether ketone Membranes: Synthesis and Characterization

    Directory of Open Access Journals (Sweden)

    Iole Venditti

    2017-03-01

    Full Text Available Gold nanoparticles, capped by 3-mercapto propane sulfonate (Au-3MPS, were synthesized inside a swollen sulfonated poly(ether ether ketone membrane (sPEEK. The formation of the Au-3MPS nanoparticles in the swollen sPEEK membrane was observed by spectroscopic and microscopic techniques. The nanocomposite containing the gold nanoparticles grown in the sPEEK membrane, showed the plasmon resonance λmax at about 520 nm, which remained stable over a testing period of three months. The size distribution of the nanoparticles was assessed, and the sPEEK membrane roughness, both before and after the synthesis of nanoparticles, was studied by AFM. The XPS measurements confirm Au-3MPS formation in the sPEEK membrane. Moreover, AFM experiments recorded in fluid allowed the production of images of the Au-3MPS@sPEEK composite in water at different pH levels, achieving a better understanding of the membrane behavior in a water environment; the dynamic hydration process of the Au-3MPS@sPEEK membrane was investigated. These preliminary results suggest that the newly developed nanocomposite membranes could be promising materials for fuel cell applications.

  14. State of the water in crosslinked sulfonated poly(ether ether ketone). Two-dimensional differential scanning calorimetry correlation mapping

    Energy Technology Data Exchange (ETDEWEB)

    Al Lafi, Abdul G. [Department of Chemistry, Atomic Energy Commission, Damascus, P.O. Box 6091 (Syrian Arab Republic); Hay, James N., E-mail: cscientific9@aec.org.sy [The School of Metallurgy and Materials, College of Physical Sciences and Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom)

    2015-07-20

    Highlights: • 2D-DSC mapping was applied to analyze the heat flow responses of hydrated crosslinked sPEEK. • Two types of loosely bond water were observed. • The first was bond to the sulfonic acid groups and increased with ion exchange capacity. • The second was attributed to the polar groups introduced by ions irradiation and increased with crosslinking degree. • DSC combined with 2D mapping provides a powerful tool for polymer structural determination. - Abstract: This paper reports the first application of two-dimensional differential scanning calorimetry correlation mapping, 2D-DSC-CM to analyze the heat flow responses of sulphonated poly(ether ether ketone), sPEEK, films having different ion exchange capacity and degrees of crosslinks. With the help of high resolution and high sensitivity of 2D-DSC-CM, it was possible to locate two types of loosely bound water within the structure of crosslinked sPEEK. The first was bound to the sulfonic acid groups and dependent on the ion exchange capacity of the sPEEK. The second was bound to other polar groups, either introduced by irradiation with ions and dependent on the crosslinking degree or present in the polymer such as the carbonyl groups or terminal units. The results suggest that the ability of the sulfonic acid groups in the crosslinked sPEEK membranes to adsorb water molecules is increased by crosslinking, probably due to the better close packing efficiency of the crosslinked samples. DSC combined with 2D correlation mapping provides a fast and powerful tool for polymer structural determination.

  15. Ionic crosslinking of imidazolium functionalized poly(aryl ether ketone) by sulfonated poly(ether ether ketone) for anion exchange membranes.

    Science.gov (United States)

    Xu, Yixin; Ye, Niya; Zhang, Dengji; Yang, Jingshuai; He, Ronghuan

    2017-07-01

    Two N3-substituted imidazoles 1,2-dimethylimidazole and 1-butyl-2-methylimidazole were chosen to functionalize poly(aryl ether ketone), respectively. The generated imidazolium cations could electrostatically react with sulfonate ions of the sulfonated poly(ether ether ketone) forming the ionic crosslinking structure of the membranes. The changes in crosslinking degree and the alkyl chain-length on N3 site of the imidazoliums could highly affect the properties of the anion exchange membranes (AEMs). The AEMs functionalized by 1-butyl-2-methylimidazole exhibited superior properties compared to those functionalized by 1,2-dimethylimidazole according to the tolerance tests of the AEMs towards hot alkaline solutions. After exposed to 1M KOH at 80°C for 200h, the 1-butyl-2-methylimidazole modified AEMs maintained the ion exchange capacity of above 85%, the conductivity of about 70%, and the tensile stress at break of around 80%, respectively. The hydrophile-lipophile balance of the polymer membranes was calculated and proposed to better understand the correlation between structures and properties of the AEMs. The degradation of the imidazolium functional groups of the AEMs under the attack of hydroxide ions was evidenced by FT-IR analysis. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Synthesis of Highly Sulfonated Poly(arylene ether Containing Multiphenyl for Proton Exchange Membrane Materials

    Directory of Open Access Journals (Sweden)

    Yi-Chiang Huang

    2016-01-01

    Full Text Available A series of sterically hindered, sulfonated, poly(arylene ether polymers were synthesized by nucleophilic polycondensation reaction using 4,4′′′′-difluoro-3,3′′′′-bistrifluoromethyl-2′′,3′′,5′′,6′′-tetraphenyl-[1,1′;4′,1′′;4′′,1′′′;4′′′,1′′′′]-pentaphenyl and 4,4′-biphenol and were prepared through postpolymerization sulfonation. The chemical structures were confirmed by 1H NMR. Subsequent to sulfonation, solvent-casting membranes were provided ion exchange capacity (IEC values ranging from 0.39 to 2.90 mmol/g. Proton conductivities of membranes ranged from 143 to 228 mS/cm at 80°C under fully humidified conditions which were higher than that of Nafion 117. The membrane also exhibited considerably dimension stability, oxidative stability, and hydrolytic stability. The microphase structure was investigated by transmission electron microscopy (TEM and the ionic aggregation of sulfonic acid groups exhibited spherical ionic clusters with well-developed phase separated morphology. The results indicated that the membranes are promising candidates for application as proton exchange membranes. This investigation demonstrates introducing multiphenylated moieties to create a high free volume polymer that provides dimensionally stable and high proton conductivity membranes.

  17. Dihydrogenimidazole modified silica-sulfonated poly(ether ether ketone) hybrid materials as electrolyte membranes for direct ethanol fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Roelofs, Kimball S.; Hirth, Thomas [Fraunhofer Institute for Interfacial Engineering and Biotechnology, Nobelstr. 12, 70569 Stuttgart (Germany); Schiestel, Thomas, E-mail: Thomas.Schiestel@igb.fraunhofer.de [Fraunhofer Institute for Interfacial Engineering and Biotechnology, Nobelstr. 12, 70569 Stuttgart (Germany)

    2011-05-25

    The present study reports on dihydrogenimidazole modified inorganic-organic mixed matrix membranes for possible application as a proton exchange membrane in direct ethanol fuel cells. The polymeric phase consisted mainly of sulfonated poly(ether ether ketone) (sPEEK) with a sulfonation degree of 55%. The inorganic phase was built up from hydrophilic fumed silica particles interconnected with partially hydrolyzed and condensed tetraethoxysilane with a total inorganic loading of 27.3%. This inorganic phase was further modified with N-(3-triethoxysilylpropyl)-4,5-dihydroimidazole (DHIM), which consists of an hydrolyzable inorganic part and a functional organic group. The influence of the modifier on the mixed matrix system was studied by means of various modifier concentrations in various aqueous-ethanolic systems (water, 2 M and 4 M ethanol). Modifier concentration and ethanol concentration of the ethanol-water mixture exhibited significant but opposite effects on the liquid uptake of the mixed matrix membranes. The proton conductivity as well as the proton diffusion coefficient as a function of modifier content showed a linear decrease. The proton conductivity as a function of temperature showed Arrhenius behavior and the activation energy of the mixed matrix membranes was 43.9 {+-} 2.6 kJ mol{sup -1}. High selectivity of proton diffusion coefficient to ethanol permeability coefficient was obtained with high modifier concentrations. At low modifier concentrations, this selectivity was dominated by ethanol permeation and at high modifier concentrations by proton diffusion. The main electrolyte properties can be optimized by setting the DHIM content in mixed matrix membrane. With this approach, tailor-made membranes can be prepared for possible application in direct ethanol fuel cells.

  18. Sulfonated poly(ether ether ketone), an ion conducting polymer, as alternative polymeric membrane for the construction of anion-selective electrodes

    OpenAIRE

    González Bellavista, Anna; Macanás de Benito, Jorge; Muñoz Tapia, Maria; Fàbregas Martínez, Esteve

    2007-01-01

    A novel arrangement for polymeric membranes used in anion-selective electrodes is presented. Sulfonated poly(ether ether ketone) (SPEEK), an ion conducting polymer has been used as a polymeric matrix to build an anion-selective electrode (ISE). A NO3--ISE has been chosen as a model electrode to study the efficiency of the polymeric membrane. The effect of membrane composition and polymer compatibility with the electro-active components was investigated. The polymer matrix showed good mechanic...

  19. Anion exchange membranes based on terminally crosslinked methyl morpholinium-functionalized poly(arylene ether sulfone)s

    Science.gov (United States)

    Kwon, Sohyun; Rao, Anil H. N.; Kim, Tae-Hyun

    2018-01-01

    Azide-assisted terminal crosslinking of methyl morpholinium-functionalized poly(arylene ether sulfone) block copolymers yields products (xMM-PESs) suitable for use as anion exchange membranes. By combining the advantages of bulky morpholinium conductors and our unique polymer network crosslinked only at the termini of the polymer chains, we can produce AEMs that after the crosslinking show minimal loss in conductivity, yet with dramatically reduced water uptake. Terminal crosslinking also significantly increases the thermal, mechanical and chemical stability levels of the membranes. A high ion conductivity of 73.4 mS cm-1 and low water uptake of 26.1% at 80 °C are obtained for the crosslinked membrane with higher amount of hydrophilic composition, denoted as xMM-PES-1.5-1. In addition, the conductivity of the crosslinked xMM-PES-1.5-1 membrane exceeds that of its non-crosslinked counterpart (denoted as MM-PES-1.5-1) above 60 °C at 95% relative humidity because of its enhanced water retention capacity caused by the terminally-crosslinked structure.

  20. Shifting from hydrogen bond network to π-π stacking: a key mechanism for reversible thermochromic sulfonated poly(ether ether ketone).

    Science.gov (United States)

    Jarumaneeroj, Chatchai; Tashiro, Kohji; Chirachanchai, Suwabun

    2014-08-01

    Sulfonated poly(ether ether ketone) (SPEEK) thin film performs reversible thermochromic property by developing the color to be yellowish at the temperature above 190 °C. The detailed analyses based on temperature-dependent techniques suggest the thermal treatment inducing the shifting of the hydrogen bond network between the sulfonated group and the hydrated water molecules to the π-π stacking among aromatic rings in SPEEK chains. Although it is general that the polymer chain packing is unfavorable at high temperature, the present work shows a good example that when the polymer chains can form specific molecular interaction, such as π-π stacking, even in harsh thermal treatment, a rearrangement will effectively occur, which leads to an external stimuli-responsive property. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Crosslinked poly(vinyl alcohol)/sulfonated poly(ether ether ketone) blend membranes for fuel cell applications - Surface energy characteristics and proton conductivity

    Energy Technology Data Exchange (ETDEWEB)

    Kanakasabai, P.; Vijay, P.; Deshpande, Abhijit P.; Varughese, Susy [Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai 600 036 (India)

    2011-02-01

    Ionic polymers, their blends and composites are considered potential candidates for application as electrolytes in fuel cells. While developing new materials for membranes, it is important to understand the interactions of these electrolytic materials with electrodes/catalysts and with reactants/products. Some of these interactions can be understood by estimating the surface energy and wettability of the membrane materials. In this work, polyvinyl alcohol with varying degrees of sulfonation and its blend with sulfonated poly(ether ether ketone) are prepared and studied for their wettability characteristics using goniometry. The surface energy and its components are estimated using different approaches and compared. Properties such as the ion-exchange capacity, the proton conductivity and the water sorption/desorption behaviour are also investigated to understand the relationship with wettability and surface energy and its components. Among the different methods, the van Oss acid-base and the modified Berthelot approaches yield comparable estimates for the total surface energy. (author)

  2. Crosslinked poly(vinyl alcohol)/sulfonated poly(ether ether ketone) blend membranes for fuel cell applications-Surface energy characteristics and proton conductivity

    Science.gov (United States)

    Kanakasabai, P.; Vijay, P.; Deshpande, Abhijit P.; Varughese, Susy

    Ionic polymers, their blends and composites are considered potential candidates for application as electrolytes in fuel cells. While developing new materials for membranes, it is important to understand the interactions of these electrolytic materials with electrodes/catalysts and with reactants/products. Some of these interactions can be understood by estimating the surface energy and wettability of the membrane materials. In this work, polyvinyl alcohol with varying degrees of sulfonation and its blend with sulfonated poly(ether ether ketone) are prepared and studied for their wettability characteristics using goniometry. The surface energy and its components are estimated using different approaches and compared. Properties such as the ion-exchange capacity, the proton conductivity and the water sorption/desorption behaviour are also investigated to understand the relationship with wettability and surface energy and its components. Among the different methods, the van Oss acid-base and the modified Berthelot approaches yield comparable estimates for the total surface energy.

  3. Novel proton exchange membranes based on cardo poly(arylene ether sulfone/nitrile)s with perfluoroalkyl sulfonic acid moieties for passive direct methanol fuel cells

    Science.gov (United States)

    Zheng, Jifu; He, Qingyi; Gao, Nian; Yuan, Ting; Zhang, Suobo; Yang, Hui

    2014-09-01

    A new series of cardo poly(arylene ether sulfone/nitrile)s FSPES-x with perfluoroalkyl sulfonic acid groups have been successfully prepared by the perfluorosulfonic acid lactone ring-opening reaction without using any metal or base catalysts. These materials have been characterized by IR, NMR and TGA. The results indicate that this simple and metal-free method of preparation is highly efficient for controlling both the degree of perfluorosulfonation and the position of the sulfonate group and no side reactions such as crosslinking is observed. The FSPES-x membranes (IEC = 1.17-1.64 m equiv g-1) show the desired characteristics such as good film-forming ability, excellent thermal and mechanical properties, low methanol permeability, high conductivity (up to 0.083 S cm-1 at room temperature), as well as appropriate cell performance compared to Nafion®117. With these properties, such fluorinated sulfonic acid side-chain-type polymers are promising PEM materials for application in fuel cells.

  4. Sulfonated Holey Graphene Oxide (SHGO) Filled Sulfonated Poly(ether ether ketone) Membrane: The Role of Holes in the SHGO in Improving Its Performance as Proton Exchange Membrane for Direct Methanol Fuel Cells.

    Science.gov (United States)

    Jiang, Zhong-Jie; Jiang, Zhongqing; Tian, Xiaoning; Luo, Lijuan; Liu, Meilin

    2017-06-14

    Sulfonated holey graphene oxides (SHGOs) have been synthesized by the etching of sulfonated graphene oxides with concentrated HNO 3 under the assistance of ultrasonication. These SHGOs could be used as fillers for the sulfonated aromatic poly(ether ether ketone) (SPEEK) membrane. The obtained SHGO-incorporated SPEEK membrane has a uniform and dense structure, exhibiting higher performance as proton exchange membranes (PEMs), for instance, higher proton conductivity, lower activation energy for proton conduction, and comparable methanol permeability, as compared to Nafion 112. The sulfonated graphitic structure of the SHGOs is believed to be one of the crucial factors resulting in the higher performance of the SPEEK/SHGO membrane, since it could increase the local density of the -SO 3 H groups in the membrane and induce a strong interfacial interaction between SHGO and the SPEEK matrix, which improve the proton conductivity and lower the swelling ratio of the membrane, respectively. Additionally, the proton conductivity of the membrane could be further enhanced by the presence of the holes in the graphitic planes of the SHGOs, since it provides an additional channel for transport of the protons. When used, direct methanol fuel cell with the SPEEK/SHGO membrane is found to exhibit much higher performance than that with Nafion 112, suggesting potential use of the SPEEK/SHGO membrane as the PEMs.

  5. Synthesis and properties of novel photosensitive poly(arylene ether sulfone) containing chalcone moiety in the main chain

    Energy Technology Data Exchange (ETDEWEB)

    Wen Pushan [Key Laboratory of Catalysis and Materials Science of the State Ethnic Affairs Commission and Ministry of Education, Hubei Province, South-Central University for Nationalities, Wuhan 430074 (China); Wang Lei [Department of Materials Physics and Chemistry, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Zhang Aiqing [Key Laboratory of Catalysis and Materials Science of the State Ethnic Affairs Commission and Ministry of Education, Hubei Province, South-Central University for Nationalities, Wuhan 430074 (China); Li Xiangdan, E-mail: xiangdanli@yahoo.com.cn [Key Laboratory of Catalysis and Materials Science of the State Ethnic Affairs Commission and Ministry of Education, Hubei Province, South-Central University for Nationalities, Wuhan 430074 (China); Lee, Myong-Hoon, E-mail: mhlee2@chonbuk.ac.kr [Department of Polymer/Nano Science and Technology, Chonbuk National University, Jeonju 561-756 (Korea, Republic of)

    2011-04-15

    Research highlights: {yields} A series of novel photosensitive poly(arylene ether sulfone)s (PAESs) containing chalcone moiety in the main chain have been successfully synthesized. {yields} The photo-crosslinking of polymer film was carried out under UV irradiation without photoinitiator. {yields} The resulting polymers showed good thermal stability and excellent chemical stability after crosslinking. - Abstract: A new series of photosensitive poly(arylene ether sulfone)s containing chalcone moiety in the main chain were synthesized from 4,4'-dihydroxychalcone (4DHC), 4,4'-difluorodiphenylsulfone (DFDPS) and bisphenol A (BPA). This series of polymers were characterized by {sup 1}H NMR, FT-IR, UV spectroscopy, thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The polymers were stable up to 400 deg. C, which indicates that the polymers possess good thermal properties. The polymers were found to be soluble in polar solvents and chlorinated solvents. However, the polymers were insoluble in hydrocarbons and in hydroxyl group-containing solvents. After the irradiation of UV light, the thin polymer film was crosslinked to give an insoluble film in the absence of a photoinitiator or sensitizers. The rate of photocrosslinking was also examined and discussed.

  6. Reactive phase inversion for manufacture of asymmetric poly (ether imide sulfone) membranes

    KAUST Repository

    Jalal, Taghreed

    2014-12-01

    Poly (ether imide sulfone) membranes were manufactured by combining phase inversion and functionalization reaction between epoxy groups and amine modified polyether oligomers (Jeffamine) or TiO2 nanoparticles. Polysilsesquioxanes containing epoxy functionalities were in-situ grown in the casting solution and made available for further reaction with amines in the coagulation/annealing baths. The membranes were characterized by field emission scanning electron microscopy, porosimetry and water flux measurements. Water permeances up to 1500 l m-2 h-1 bar-1 were obtained with sharp pore size distribution and a pore diameter peak at 66 nm, confirmed by porosimetry, which allowed 99.2% rejection of γ-globulin. Water flux recovery of 77.5% was achieved after filtration with proteins. The membranes were stable in 50:50 dimethylformamide/water, 50:50 N-methyl pyrrolidone/water and 100% tetrahydrofuran. The possibility of using similar concept for homogeneous and stable attachment of nanoparticles on the membrane surface was demonstrated.

  7. Electrospun sulfonated poly(ether ketone) nanofibers as proton conductive reinforcement for durable Nafion composite membranes

    Science.gov (United States)

    Klose, Carolin; Breitwieser, Matthias; Vierrath, Severin; Klingele, Matthias; Cho, Hyeongrae; Büchler, Andreas; Kerres, Jochen; Thiele, Simon

    2017-09-01

    We show that the combination of direct membrane deposition with proton conductive nanofiber reinforcement yields highly durable and high power density fuel cells. Sulfonated poly(ether ketone) (SPEK) was directly electrospun onto gas diffusion electrodes and then filled with Nafion by inkjet-printing resulting in a 12 μm thin membrane. The ionic membrane resistance (30 mΩ*cm2) was well below that of a directly deposited membrane reinforced with chemically inert (PVDF-HFP) nanofibers (47 mΩ*cm2) of comparable thickness. The power density of the fuel cell with SPEK reinforced membrane (2.04 W/cm2) is 30% higher than that of the PVDF-HFP reinforced reference sample (1.57 W/cm2). During humidity cycling and open circuit voltage (OCV) hold, the SPEK reinforced Nafion membrane showed no measurable degradation in terms of H2 crossover current density, thus fulfilling the target of 2 mA/cm2 of the DOE after degradation. The chemical accelerated stress test (100 h OCV hold at 90 °C, 30% RH, H2/air, 50/50 kPa) revealed a degradation rate of about 0.8 mV/h for the fuel cell with SPEK reinforced membrane, compared to 1.0 mV/h for the PVDF-HFP reinforced membrane.

  8. Preparation and characterization of polymer blend based on sulfonated poly (ether ether ketone) and polyetherimide (SPEEK/PEI) as proton exchange membranes for fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Hashim, Nordiana; Ali, Ab Malik Marwan [Ionic Material and Devices Research Laboratory, Institute of Science, Universiti Teknologi MARA, 40450 Shah Alam (Malaysia); Lepit, Ajis; Rasmidi, Rosfayanti [Faculty of Applied Sciences, Universiti Teknologi MARA Sabah, Beg Berkunci 71, 88997 Kota Kinabalu (Malaysia); Subban, Ri Hanum Yahaya [Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam (Malaysia); Institute of Science, Universiti Teknologi MARA, 40450 Shah Alam (Malaysia); Yahya, Muhd Zu Azhan [Faculty of Defence Science & Technology, Universiti Pertahanan Nasional Malaysia, 57000 Kuala Lumpur (Malaysia)

    2015-08-28

    Blends of sulfonated poly (ether ether ketone) (SPEEK) and polyetherimide (PEI) were prepared in five different weight ratios using N-methyl-2-pyrrolidone (NMP) as solvent by the solution cast technique. The degree of sulfonation (DS) of the sulfonated PEEK was determined from deuterated dimethyl sulfoxide (DMSO-d{sub 6}) solution of the purified polymer using {sup 1}H NMR method. The properties studied in the present investigation includes conductivity, water uptake, thermal stability and structure analysis of pure SPEEK as well as SPEEK-PEI polymer blend membranes. The experimental results show that the conductivity of the membranes increased with increase in temperature from 30 to 80°C, except for that of pure SPEEK membrane which increased with temperature from 30 to 60°C while its conductivity decreased with increasing temperature from 60 to 80°C. The conductivity of 70wt.%SPEEK-30wt.%PEI blend membrane at 80% relative humidity (RH) is found to be 1.361 × 10{sup −3} Scm{sup −1} at 30°C and 3.383 × 10{sup −3} Scm{sup −1} at 80°C respectively. It was also found that water uptake and thermal stability of the membranes slightly improved upon blending with PEI. Structure analysis was carried out using Fourier Transform Infrared (FTIR) spectroscopy which revealed considerable interactions between sulfonic acid group of SPEEK and imide groups of PEI. Modification of SPEEK by blending with PEI shows good potential for improving the electrical and physical properties of proton exchange membranes.

  9. Preparing alkaline anion exchange membrane with enhanced hydroxide conductivity via blending imidazolium-functionalized and sulfonated poly(ether ether ketone)

    Science.gov (United States)

    Li, Zhen; Jiang, Zhongyi; Tian, Huimin; Wang, Siwen; Zhang, Bei; Cao, Ying; He, Guangwei; Li, Zongyu; Wu, Hong

    2015-08-01

    The development of alkaline anion exchange membrane (AEM) with both high ion conductivity and stabilities is of great significance for fuel cell applications. In this study, a facile acid-base blending method is designed to improve AEM performances. Basic imidazolium-functionalized poly (ether ether ketone) with a high functionalization degree is employed as polymer matrix to pursue high ion-exchange capacity (IEC) as well as high hydroxide conductivity, meanwhile acidic sulfonated poly (ether ether ketone) (SPEEK) is employed as the cross-linking agent to enhance the stabilities of the blend membranes. Particularly, an in-situ Menshutkin/crosslinking method is exploited to prevent the flocculation in the preparation process of blend membranes. As a result, dense and defect-free blend membranes are obtained. The blend membranes exhibit high level of IEC up to 3.15 mmol g-1, and consequently possess elevated hydroxide conductivity up to 31.59 mS cm-1 at 30 °C. In addition, benefiting from the strong electrostatic interaction introduced by the acid-base blending, the stabilities and methanol resistance of blend membranes are enhanced.

  10. Novel sulfonated poly(ether ether ketone ketone)s for direct methanol fuel cells usage: Synthesis, water uptake, methanol diffusion coefficient and proton conductivity

    Science.gov (United States)

    Zhang, Gang; Fu, Tiezhu; Shao, Ke; Li, Xianfeng; Zhao, Chengji; Na, Hui; Zhang, Hong

    A novel series of sulfonated poly(ether ether ketone ketone)s (SPEEKKs) with different degrees of sulfonation (Ds) were synthesized from 1,3-bis(3-sodium sulfonate-4-fluorobenzoyl)benzene (1,3-SFBB-Na), 1,3-bis(4-fluorobenzoyl)benzene (1,3-FBB) and 3,3‧,5,5‧-tetramethyl-4,4‧-biphenol (TMBP) by aromatic nucleophilic polycondensation. The chemical structures of SPEEKKs were confirmed by FT-IR spectroscopy and the Ds values of the polymers were calculated by 1H NMR and titration methods, respectively. The thermal stabilities of the SPEEKKs in acid and sodium forms were characterized by thermogravimetric analysis (TGA), which showed that SPEEKKs had excellent thermal properties at high temperatures. All the SPEEKK polymers were easily solution cast into tough membranes. Water uptakes, proton conductivities and methanol diffusion coefficients of the SPEEKK membranes were measured. Water uptake increased with Ds and temperature. Compared to Nafion, the SPEEKK-60, -70 and -80 membranes showed higher proton conductivities at 80 °C, while the other SPEEKK membranes showed relatively lower proton conductivities. This may be due to the different distribution of ion-conducting domains in membrane. However, these membranes showed lower methanol diffusions in the range of 8.32 × 10 -9 to 1.14 × 10 -7 cm 2 s -1 compared with that of Nafion (2 × 10 -6 cm 2 s -1) at the same temperature. The membranes also showed excellent mechanical properties (with a Young's modulus > 1 GPa and a tensile strength > 40 MPa). These results indicate that the SPEEKK membranes are promising materials for use in direct methanol fuel cell (DMFC) applications.

  11. Degradation of poly(ether sulfone)/polyvinylpyrrolidone membranes by sodium hypochlorite: insight from advanced electrokinetic characterizations.

    Science.gov (United States)

    Hanafi, Yamina; Szymczyk, Anthony; Rabiller-Baudry, Murielle; Baddari, Kamel

    2014-11-18

    Poly(ether sulfone) (PES)/polyvinylpyrrolidone (PVP) membranes are widely used in various industrial fields such as drinking water production and in the dairy industry. However, the use of oxidants to sanitize the processing equipment is known to impair the integrity and lifespan of polymer membranes. In this work we showed how thorough electrokinetic measurements can provide essential information regarding the mechanism of degradation of PES/PVP membranes by sodium hypochlorite. Tangential streaming current measurements were performed with ultrafiltration and nanofiltration PES/PVP membranes for various aging times. The electrokinetic characterization of membranes was complemented by FTIR-ATR spectroscopy. Results confirmed that sodium hypochlorite induces the degradation of both PES and PVP. This latter is easily oxidized by sodium hypochlorite, which leads to an increase in the negative charge density of the membrane due to the formation of carboxylic acid groups. The PVP was also found to be partly released from the membrane with aging time. Thanks to the advanced electrokinetic characterization implemented in this work it was possible for the first time to demonstrate that two different mechanisms are involved in the degradation of PES. Phenol groups were first formed as a result of the oxidation of PES aromatic rings by substitution of hydrogen by hydroxyl radicals. For more severe aging conditions, this membrane degradation mechanism was followed by the formation of sulfonic acid functions, thus indicating a second degradation process through scission of PES chains.

  12. An efficient and highly selective ortho-tert-butylation of p-cresol with methyl tert-butyl ether catalyzed by sulfonated ionic liquids

    Directory of Open Access Journals (Sweden)

    Alamdari Reza Fareghi

    2014-01-01

    Full Text Available A novel series of sulfonic acid-functionalized ionic liquids (SFILs was found to act as efficient catalysts for ortho-tert-butylation of p-cresol with methyl tert-butyl ether (MTBE as the tert-butylating agent without an added solvent. The mono o-tert-butylated product was obtained in up to 80.4% isolated yield and 95.2% selectivity under such green conditions. No O-tert-butylated byproducts were formed.

  13. Chlorinated Polyfluoroalkyl Ether Sulfonic Acids in Marine Organisms from Bohai Sea, China: Occurrence, Temporal Variations, and Trophic Transfer Behavior.

    Science.gov (United States)

    Liu, Yanwei; Ruan, Ting; Lin, Yongfeng; Liu, Aifeng; Yu, Miao; Liu, Runzeng; Meng, Mei; Wang, Yawei; Liu, Jiyan; Jiang, Guibin

    2017-04-18

    F-53B, the commercial product of chlorinated polyfluoroalkyl ether sulfonic acids (Cl-PFESAs), has been used in Chinese chrome plating industry for 30 years, and was recently identified in the environment, which caused great concerns. So far, limited investigations have been performed on their environmental occurrence, fate and impact. In this study, we demonstrated the wide occurrence of Cl-PFESAs and their trophic transfer behavior in marine organisms from Chinese Bohai Sea. 6:2 Cl-PFESA (<0.016-0.575 ng/g wet weight) was the dominant congener, and 8:2 Cl-PFESA (<0.022-0.040 ng/g) was occasionally detected. Compared to other perfluoroalkyl and polyfluoroalkyl substances (PFASs) of concern, the levels of Cl-PFESAs were relatively lower in marine organisms. Based on the comparative analysis of Cl-PFESA contamination in mollusk samples collected in 2010-2014, both the concentrations and detection frequencies of Cl-PFESAs tended to increase in this region. And this kind of chemicals were more vulnerable to be accumulated in marine organisms at relatively higher trophic levels. Similar to perfluorooctanesulfonate (PFOS) and the long chain perfluorinated carboxylates (PFCAs), 6:2 Cl-PFESA could be magnified along the food chain. Accordingly, the potential threat might be posed to the wildlife and human beings due to unintended exposure to Cl-PFESAs.

  14. Preparation and characterization of novel zwitterionic poly(arylene ether sulfone) ultrafiltration membrane with good thermostability and excellent antifouling properties

    Science.gov (United States)

    Rong, Guolong; Zhou, Di; Han, Xiaocui; Pang, Jinhui

    2018-01-01

    Zwitterionic poly(arylene ether sulfone) (PAES-NS) was synthesized via copolymerization by using a bisphenol monomer with a pyridine group. The chemical structures of the copolymers were confirmed by using Fourier transform infrared (FTIR) and 1H nuclear magnetic resonance (NMR) spectroscopy; the copolymers showed good thermal stability. A series of polyphenysulfone (PPSU)/PAES-NS blend ultrafiltration (UF) membranes was prepared via conventional immersion precipitation phase inversion methods The morphologies of the modified membranes were investigated by scanning electron microscopy (SEM). The surface hydrophilicity of the UF membranes was studied by water contact angle measurement, indicating that the zwitterionic group increased the membrane hydrophilicity. UF of solvated model pollutants using the membranes showed a significant reduction of the irreversible adsorption of the foulants, illustrating the excellent anti-fouling properties of the membrane. The water flux of the PAES-NS membrane was significantly enhanced, being almost three times higher than that of the pristine PPSU membrane, with retention of a high rejection level. After three UF cycles, the water flux recovery of the PAES-NS membrane was as high as 96%.

  15. Chlorinated Polyfluoroalkyl Ether Sulfonic Acids in Matched Maternal, Cord, and Placenta Samples: A Study of Transplacental Transfer.

    Science.gov (United States)

    Chen, Fangfang; Yin, Shanshan; Kelly, Barry C; Liu, Weiping

    2017-06-06

    Currently, information regarding concentrations of chlorinated polyfluoroalkyl ether sulfonic acids (Cl-PFESAs) in human placenta does not exist. The main objective of this study was to assess the occurrence and distribution of two Cl-PFESAs, 6:2 Cl-PFESA and 8:2 Cl-PFESA, in maternal serum, umbilical cord serum, and placenta to better assess the transport pathways related to human prenatal exposure. The widely studied perfluorooctanesulfonate (PFOS) was studied for comparison. This study was a hospital-based survey involving quantitative determination of Cl-PFESA and PFOS concentrations in maternal serum (n = 32), cord serum (n = 32), and placenta (n = 32) samples from women in Wuhan, China. The results indicate that Cl-PFESAs can efficiently be transported across placenta, with median exposure levels of 0.60 and 0.01 ng/mL for 6:2 Cl-PFESA and 8:2 Cl-PFESA in the cord sera, respectively. Concentrations of the target compounds in maternal sera, cord sera, and placentas decreased in the following order: PFOS > 6:2 Cl-PFESA > 8:2 Cl-PFESA. Similar patterns were observed in maternal sera, cord sera, and placentas for Cl-PFESAs, with concentrations decreasing in the following order: maternal sera > cord sera > placentas. Significant correlations were observed among 6:2 Cl-PFESA, 8:2 Cl-PFESA, and PFOS concentrations in the maternal serum, cord serum, and placenta samples (r > 0.7; p < 0.001). The median value of RCM (ratio of cord serum to maternal serum concentration) of 6:2 Cl-PFESA was 0.403, indicating a relatively high (∼40%) placental transfer efficiency. 8:2 Cl-PFESA was transported across placenta to a greater extent than 6:2 Cl-PFESA was, likely because of its higher hydrophobicity and lower plasma protein binding affinity. To the best of our knowledge, this is the first study to report the occurrence and distribution of 6:2 Cl-PFESA and 8:2 Cl-PFESA in human placenta. The findings improve our understanding of the mechanisms of transplacental transfer and

  16. Surface and solution properties of anionic/nonionic surfactant mixtures of alkylbenzene sulfonate and triethyleneglycol decyl ether.

    Science.gov (United States)

    Tucker, I; Penfold, J; Thomas, R K; Dong, C C; Golding, S; Gibson, C; Grillo, I

    2010-07-06

    The surface adsorption behavior and the solution microstructure of mixtures of the C(6) isomer of anionic surfactant sodium para-dodecyl benzene sulfonate, ABS, with nonionic surfactant monodecyl triethyleneglycol ether, C(10)E(3,) have been investigated using a combination of neutron reflectivity, NR, and small-angle neutron scattering, SANS. In solution, the mixing of C(10)E(3) and ABS results in the formation of small globular micelles over most of the composition range (100:0 to 20:80 ABS/C(10)E(3)). Planar aggregates (lamellar or unilamellar vesicles, ULV) are observed for solution compositions rich in the nonionic surfactant (>80 mol % nonionic). Prior to the transition to planar aggregates, the micelle aggregation number increases with increasing nonionic composition. The lamellar-phase region is preceded by a narrow range of composition over which mixtures of micelles and small unilamellar vesicles coexist. The variation in surface absorption behavior with solution composition shows a strong surface partitioning of the more surface-active component, C(10)E(3). This pronounced departure from ideal mixing is not readily explained by existing surfactant mixing theories. In the presence of Ca(2+) ions, a more complex evolution of solution phase behavior with solution composition is observed. The lamellar-phase region occurs over a broader range of solution compositions at the expense of the small-vesicle phase. The phase boundaries are shifted to lower nonionic compositions, and the extent to which the solution-phase diagrams are modified increases with increasing calcium ion concentration. The SANS data for the large planar aggregates are consistent with large polydisperse flexible unilamellar vesicles. In the presence of Ca(2+) ions, the surface adsorption patterns become more consistent with ideal mixing in the nonionic-rich region of the surface-phase diagram. However, in the ABS-rich regions the surface behavior is more complex because of the spontaneous

  17. Morphology and properties of amine terminated poly(arylene ether ketone) and poly(arylene ether sulfone) modified epoxy resin systems

    Science.gov (United States)

    Cecere, J. A.; Mcgrath, J. E.; Hedrick, J. L.

    1986-01-01

    Epoxy resin networks cured with DDS were modified by incorporating tough ductile thermoplastics such as the amine terminated polyether sulfones and amine terminated polyether ketones. Both linear copolymers were able to significantly improve the fracture toughness values at the 15 and 30 weight percent concentrations examined. These improvements in fracture toughness were achieved without any significant change in the flexural modulus.

  18. Influence of Silica/Sulfonated Polyether-Ether Ketone as Polymer Electrolyte Membrane for Hydrogen Fueled Proton Exchange Membrane Fuel Cells

    Directory of Open Access Journals (Sweden)

    Sri Handayani

    2011-12-01

    Full Text Available The operation of non-humidified condition of proton exchange membrane fuel cell (PEMFC using composite sPEEK-silica membrane is reported. Sulfonated membrane of PEEK is known as hydrocarbon polyelectrolyte membrane for PEMFC and direct methanol fuel cell (DMFC. The state of the art of fuel cells is based on the perluorosulfonic acid membrane (Nafion. Nafion has been the most used in both PEMFC and DMFC due to good performance although in low humidified condition showed poor current density. Here we reported the effect of silica in hydrocarbon sPEEK membrane that contributes for a better water management system inside the cell, and showed 0.16 W/cm2 of power density which is 78% higher than that of non-silica modified [Keywords: composite membrane, polyether-ether ketone, silica, proton exchange membrane fuel cell].

  19. Enhancing water retention and low-humidity proton conductivity of sulfonated poly(ether ether ketone) composite membrane enabled by the polymer-microcapsules with controllable hydrophilicity-hydrophobicity

    Science.gov (United States)

    He, Guangwei; Li, Yifan; Li, Zongyu; Nie, Lingli; Wu, Hong; Yang, Xinlin; Zhao, Yuning; Jiang, Zhongyi

    2014-02-01

    Four kinds of polymer microcapsules (PMCs) with different hydrophilicity-hydrophobicity are synthesized via distillation-precipitation polymerization (polymer microcapsules form by self-crosslinking of monomers/crosslinkers in this process) and incorporated into sulfonated poly(ether ether ketone) (SPEEK) matrix to prepare composite membranes. To improve the water retention of the PMCs, the hydrophilicity-hydrophobicity of the PMCs is manipulated by regulating the proportion of hydrophilic ethylene glycol dimethacrylate (EGDMA) and hydrophobic divinylbenzene (DVB) crosslinkers in the synthesis formula. The hydrophilicity of the PMCs decreases with increasing the content of polyDVB in the PMCs. The four kinds of PMCs exhibit different water retention properties. The PMCs with appropriate hydrophilic/hydrophobic balance (EGDMA: DVB = 1:1) possess the best water retention properties. Incorporation of PMCs into SPEEK matrix enhances the water-retention properties, and consequently increases proton conductivity to 0.0132 S cm-1 under 20% relative humidity, about thirteen times higher than that of the SPEEK control membrane. Moreover, the incorporation of PMCs reduces the activation energy for proton conduction and the methanol permeability of the membranes. This study may be helpful to rational design of excellent water-retention materials.

  20. Low vanadium ion permeabilities of sulfonated poly(phthalazinone ether ketone)s provide high efficiency and stability for vanadium redox flow batteries

    Science.gov (United States)

    Chen, Liyun; Zhang, Shouhai; Chen, Yuning; Jian, Xigao

    2017-07-01

    A series of novel sulfonated poly(phthalazinone ether ketone)s containing pendant phenyl moieties (SPPEK-Ps) are synthesized and thoroughly characterized. The chemical structures of the polymers are confirmed by 1H NMR and FTIR analysis. The physicochemical properties and single cell performance of SPPEK-P membranes are systematically evaluated, revealing that the membranes are thermally, chemically and mechanically stable. The area resistances of SPPEK-P-90 and SPPEK-P-100 are 0.75 Ω cm2 and 0.34 Ω cm2, respectively. SPPEK-P membranes are impermeable to the bulky hydrated VO2+ ion and exhibited low V3+ ion permeability (SPPEK-P-90, 2.53 × 10-5 cm min-1) (Nafion 115 membrane: 9.0 × 10-4 cm min-1). Tests of SPPEK-P-90 in vanadium redox flow batteries (VRFBs) demonstrate a comparable columbic efficiency (CE) and energy efficiency (EE) to that of Nafion 115, where the CE is 98% and the EE is 83% at 60 mA cm-2. Moreover, the SPPEK-P-90 membrane exhibits stable performance in cell over 100 charge-discharge cycles (∼450 h).

  1. Effects of Block Length and Membrane Processing Conditions on the Morphology and Properties of Perfluorosulfonated Poly(arylene ether sulfone) Multiblock Copolymer Membranes for PEMFC.

    Science.gov (United States)

    Assumma, Luca; Nguyen, Huu-Dat; Iojoiu, Cristina; Lyonnard, Sandrine; Mercier, Régis; Espuche, Eliane

    2015-07-01

    Perfluorosulfonated poly(arylene ether sulfone) multiblock copolymers have been shown to be promising as proton exchange membranes. The commonly used approach for preparation of the membrane is solvent casting; the properties of the resulting membranes are very dependent on the membrane processing conditions. In this paper, we study the effects of block length, selectivity of the solvent, and thermal treatment on the membrane properties such as morphology, water uptake, and ionic conductivity. DiMethylSulfOxide (DMSO), and DiMethylAcetamide (DMAc) were selected as casting solvents based on the Flory-Huggins parameter calculated by inversion gas chromatography (IGC). It was found that the solvent selectivity has a mild impact on the mean size of the ionic domains and the expansion upon swelling, while it dramatically affects the supramolecular ordering of the blocks. The membranes cast from DMSO exhibit more interconnected ionic clusters yielding higher conductivities and water uptake as compared to membranes cast from DMAc. A 10-fold increase in proton conductivity was achieved after thermal annealing of membranes at 150 °C, and the ionomers with longer block lengths show conductivities similar to Nafion at 80 °C and low relative humidity (30%).

  2. Molecular evolution of Fome lignosus laccase by ethyl methane sulfonate-based random mutagenesis in vitro.

    Science.gov (United States)

    Hu, Mei-Rong; Chao, Ya-Peng; Zhang, Guo-Qing; Yang, Xiu-Qing; Xue, Zhi-Quan; Qian, Shi-Jun

    2007-12-01

    In order to improve the laccase activity, mutant libraries are constructed through ethyl methane sulfonate-based (EMS) random mutagenesis. Mutagenesis improved expression 3.7-fold to 144 mgl(-1) laccase in yeast, together with a 1.4-fold increase in K(cat). Thus, the total activity is enhanced 5-fold for 2,2'-azino-bis 3-ethylbenzothiaoline-6-sulfonic acid (ABTS). In the presence of 0.6mM copper, the highest activity value reached 30 Uml(-1) after a 3-day cultivation at a temperature of 30 degrees C(.) In comparison with the wild type, the best mutant enzymatic properties (K(m) for ABTS and guaiacol, thermo- and pH stability, optimal pH) are not changed. Moreover, amino acid sequence analysis indicates that there are four substitutions in the best mutant laccase (Gly160Asp, Ala167Thr, Gly174Asp, and Glu234Gly). The best mutant laccase model showed that the Gly160 and Ala167 are to be found near the water channel; especially the distance of Ala167 to the Cu3a is 14.46 A. This implies that it is likely involved in the formation of water channel and that it helps facilitate the easy incoming and outgoing of water.

  3. Property Enhancement Effects of Side-Chain-Type Naphthalene-Based Sulfonated Poly(arylene ether ketone) on Nafion Composite Membranes for Direct Methanol Fuel Cells.

    Science.gov (United States)

    Wang, Baolong; Hong, Lihua; Li, Yunfeng; Zhao, Liang; Zhao, Chengji; Na, Hui

    2017-09-20

    Nafion/SNPAEK-x composite membranes were prepared by blending raw Nafion and synthesized side-chain-type naphthalene-based sulfonated poly(arylene ether ketone) with a sulfonation degree of 1.35 (SNPAEK-1.35). The incorporation of SNPAEK-1.35 polymer with ion exchange capacity (IEC) of 2.01 mequiv·g -1 into a Nafion matrix has the property enhancement effects, such as increasing IECs, improving proton conductivity, enhancing mechanical properties, reducing methanol crossover, and improving single cell performance of Nafion. Morphology studies show that Nafion/SNPAEK-x composite membranes exhibit a well-defined microphase separation structure depending on the contents of SNPAEK-1.35 polymer. Among them, Nafion/SNPAEK-7.5% with a bicontinuous morphology exhibits the best comprehensive properties. For example, it shows the highest proton conductivities of 0.092 S cm -1 at 25 °C and 0.163 S cm -1 at 80 °C, which are higher than those of recast Nafion with 0.073 S cm -1 at 25 °C and 0.133 S cm -1 at 80 °C, respectively. Nafion/SNPAEK-5.0% and Nafion/SNPAEK-7.5% membranes display an open circuit voltage of 0.77 V and a maximum power density of 47 mW cm -2 at 80 °C, which are much higher than those of recast Nafion of 0.63 V and 24 mW cm -2 under the same conditions. Nafion/SNPAEK-5.0% membrane also has comparable tensile strength (12.7 MPa) to recast Nafion (13.7 MPa), and higher Young's modulus (330 MPa) than that of recast Nafion (240 MPa). By combining their high proton conductivities, comparable mechanical properties, and good single cell performance, Nafion/SNPAEK-x composite membranes have the potential to be polymer electrolyte materials for direct methanol fuel cell applications.

  4. a Physical Random Signal in Ether-Drift Experiments

    Science.gov (United States)

    Consoli, M.; Pluchino, A.

    2015-01-01

    In ether-drift experiments, one usually assumes that the oscopic Earth's motion should be detectable in the laboratory from the time dependence of the data. Therefore a stochastic signal, which does not exhibit the smooth modulations expected from the Earth's rotation, tends to be considered as a spurious instrumental effect. The real situation, however, might be more subtle if the hypothetical ether (i.e. the physical vacuum) resembles a turbulent fluid where large-scale and small-scale motions are only indirectly related. In this case, the data might contain a genuine stochastic component. To test this scenario, a numerical simulation was performed to estimate the signal by assuming i) an `emergent-gravity' picture and ii) a simple model of statistically isotropic and homogeneous turbulence. In this framework, the present data become consistent with velocity fluctuations whose absolute scale is determined by the Earth's cosmic motion with respect to the CMB (projected in the plane of the interferometer at the latitude of the laboratory). Therefore the Earth's motion, although undetectable from the naive time dependence of the data, could nevertheless show up in their statistical distributions. In particular, the predicted non-gaussian nature of the instantaneous data could be tested with the forthcoming generation of precise cryogenic experiments, with potentially important implications for our understanding of both gravity and relativity.

  5. Enhanced Proton Conductivity of Sulfonated Hybrid Poly(arylene ether ketone) Membranes by Incorporating an Amino-Sulfo Bifunctionalized Metal-Organic Framework for Direct Methanol Fuel Cells.

    Science.gov (United States)

    Ru, Chunyu; Li, Zhenhua; Zhao, Chengji; Duan, Yuting; Zhuang, Zhuang; Bu, Fanzhe; Na, Hui

    2018-02-23

    Novel side-chain-type sulfonated poly(arylene ether ketone) (SNF-PAEK) containing naphthalene and fluorine moieties on the main chain was prepared in this work, and a new amino-sulfo-bifunctionalized metal-organic framework (MNS, short for MIL-101-NH 2 -SO 3 H) was synthesized via a hydrothermal technology and postmodification. Then, MNS was incorporated into a SNF-PAEK matrix as an inorganic nanofiller to prepare a series of organic-inorganic hybrid membranes (MNS@SNF-PAEK-XX). The mechanical property, methanol resistance, electrochemistry, and other properties of MNS@SNF-PAEK-XX hybrid membranes were characterized in detail. We found that the mechanical strength and methanol resistances of these hybrid membranes were improved by the formation of an ionic cross-linking structure between -NH 2 of MNS and -SO 3 H on the side chain of SNF-PAEK. Particularly, the proton conductivity of these hybrid membranes increased obviously after the addition of MNS. MNS@SNF-PAEK-3% exhibited the proton conductivity of 0.192 S·cm -1 , which was much higher than those of the pristine membrane (0.145 S·cm -1 ) and recast Nafion (0.134 S·cm -1 ) at 80 °C. This result indicated that bifunctionalized MNS rearranged the microstructure of hybrid membranes, which could accelerate the transfer of protons. The hybrid membrane (MNS@SNF-PAEK-3%) showed a better direct methanol fuel cell performance with a higher peak power density of 125.7 mW/cm 2 at 80 °C and a higher open-circuit voltage (0.839 V) than the pristine membrane.

  6. Improving the Efficacy of Conventional Therapy by Adding Andrographolide Sulfonate in the Treatment of Severe Hand, Foot, and Mouth Disease: A Randomized Controlled Trial

    Directory of Open Access Journals (Sweden)

    Xiuhui Li

    2013-01-01

    Full Text Available Background. Herb-derived compound andrographolide sulfonate (called Xiyanping injection recommended control measure for severe hand, foot, and mouth disease (HFMD by the Ministry of Health (China during the 2010 epidemic. However, there is a lack of good quality evidence directly comparing the efficacy of Andrographolide Sulfonate combination therapy with conventional therapy. Methods. 230 patients were randomly assigned to 7–10 days of Andrographolide Sulfonate 5–10 mg/Kg/day and conventional therapy, or conventional therapy alone. Results. The major complications occurred less often after Andrographolide Sulfonate (2.6% versus 12.1%; risk difference [RD], 0.94; 95% CI, 0.28–1.61; P=0.006. Median fever clearance times were 96 hours (CI, 80 to 126 for conventional therapy recipients and 48 hours (CI, 36 to 54 for Andrographolide Sulfonate combination-treated patients (χ2=16.57, P<0.001. The two groups did not differ in terms of HFMD-cause mortality (P=1.00 and duration of hospitalization (P=0.70. There was one death in conventional therapy group. No important adverse event was found in Andrographolide Sulfonate combination therapy group. Conclusions. The addition of Andrographolide Sulfonate to conventional therapy reduced the occurrence of major complications, fever clearance time, and the healing time of typical skin or oral mucosa lesions in children with severe HFMD.

  7. Hydrocarbon and partially fluorinated sulfonated copolymer blends as functional membranes for proton exchange membrane fuel cells

    Science.gov (United States)

    Arnett, Natalie Y.; Harrison, William L.; Badami, Anand S.; Roy, Abhishek; Lane, Ozma; Cromer, Frank; Dong, Limin; McGrath, James E.

    Polymer blending is recognized as a valuable technique used to modify and improve the mechanical, thermal, and surface properties of two different polymers or copolymers. This paper investigated the solution properties and membrane properties of a biphenol-based disulfonated poly (arylene ether sulfone) random copolymer (BPS-35) with hexafluoroisopropylidene bisphenol based sulfonated poly (arylene ether sulfone) copolymers (6FSH) and an unsulfonated biphenol-based poly (arylene ether sulfone)s. The development of blended membranes with desirable surface characteristics, reduced water swelling and similar proton conductivity is presented. Polymer blends were prepared both in the sodium salt and acid forms from dimethylacetamide (DMAc). Water uptake, specific conductivity, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and contact angles were used to characterize the blended films. Surface enrichment of the fluorinated component is illustrated by an significant increase in the water-surface contact angle was observed when 10 wt.% 6FBPA-00 (106°) was added to BPS 35 (80°). Water weight gain was reduced by a factor of 2.

  8. Monovalent cation selective crown ether containing poly(arylene ether ketone)/SPEEK blend membranes

    NARCIS (Netherlands)

    Tas, Sinem; Zoetebier, Bram; Hempenius, Mark A.; Vancso, Gyula J.; Nijmeijer, Dorothea C.

    2016-01-01

    Blend membranes of sulfonated poly(ether ether ketone) (SPEEK) and poly(arylene ether ketone) (PAEK) derivatives containing crown ether units in the main chain (CPAEK) were prepared and characterized in terms of water swelling and ion exchange capacity (IEC). The miscibility of the polymers was

  9. High Temperature, Low Relative Humidity, Polymer-type Membranes Based on Disulfonated Poly(arylene ether) Block and Random Copolymers Optionally Incorporating Protonic Conducting Layered Water insoluble Zirconium Fillers

    Energy Technology Data Exchange (ETDEWEB)

    McGrath, James E.; Baird, Donald G.

    2010-06-03

    Our research group has been engaged in the past few years in the synthesis of biphenol based partially disulfonated poly(arylene ether sulfone) random copolymers as potential PEMs. This series of polymers are named as BPSH-xx, where BP stands for biphenol, S stands for sulfonated, H stands for acidified and xx represents the degree of disulfonation. All of these sulfonated copolymers phase separate to form nano scale hydrophilic and hydrophobic morphological domains. The hydrophilic phase containing the sulfonic acid moieties causes the copolymer to absorb water. Water confined in hydrophilic pores in concert with the sulfonic acid groups serve the critical function of proton (ion) conduction and water transport in these systems. Both Nafion and BPSH show high proton conductivity at fully hydrated conditions. However proton transport is especially limited at low hydration level for the BPSH random copolymer. It has been observed that the diffusion coefficients of both water and protons change with the water content of the pore. This change in proton and water transport mechanisms with hydration level has been attributed to the solvation of the acid groups and the amount of bound and bulk-like water within a pore. At low hydration levels most of the water is tightly associated with sulfonic groups and has a low diffusion coefficient. This tends to encourage isolated domain morphology. Thus, although there may be significant concentrations of protons, the transport is limited by the discontinuous morphological structure. Hence the challenge lies in how to modify the chemistry of the polymers to obtain significant protonic conductivity at low hydration levels. This may be possible if one can alter the chemical structure to synthesize nanophase separated ion containing block copolymers. Unlike the BPSH copolymers, where the sulfonic acid groups are randomly distributed along the chain, the multiblock copolymers will feature an ordered sequence of hydrophilic and

  10. Aggregation of Cationic Amphiphilic Block and Random Copoly(vinyl ethers with Antimicrobial Activity

    Directory of Open Access Journals (Sweden)

    Yukari Oda

    2018-01-01

    Full Text Available In this study, we investigated the aggregation behaviors of amphiphilic poly(vinyl ethers with antimicrobial activity. We synthesized a di-block poly(vinyl ether, B3826, composed of cationic primary amine and hydrophobic isobutyl (iBu side chains, which previously showed antimicrobial activity against Escherichia coli. B3826 showed similar uptake behaviors as those for a hydrophobic fluorescent dye, 1,6-diphenyl-1,3,5-hexatriene, to counterpart polymers including homopolymer H44 and random copolymer R4025, indicating that the iBu block does not form strong hydrophobic domains. The cryo-TEM observations also indicated that the polymer aggregate of B3826 appears to have low-density polymer chains without any defined microscopic structures. We speculate that B3826 formed large aggregates by liquid-liquid separation due to the weak association of polymer chains. The fluorescence microscopy images showed that B3826 bonds to E. coli cell surfaces, and these bacterial cells were stained by propidium iodide, indicating that the cell membranes were significantly damaged. The results suggest that block copolymers may provide a new platform to design and develop antimicrobial materials that can utilize assembled structures and properties.

  11. High-k 3D-barium titanate foam/phenolphthalein poly(ether sulfone)/cyanate ester composites with frequency-stable dielectric properties and extremely low dielectric loss under reduced concentration of ceramics

    Science.gov (United States)

    Zheng, Longhui; Yuan, Li; Guan, Qingbao; Liang, Guozheng; Gu, Aijuan

    2018-01-01

    Higher dielectric constant, lower dielectric loss and better frequency stability have been the developing trends for high dielectric constant (high-k) materials. Herein, new composites have been developed through building unique structure by using hyperbranched polysiloxane modified 3D-barium titanate foam (BTF) (BTF@HSi) as the functional fillers and phenolphthalein poly(ether sulfone) (cPES)/cyanate ester (CE) blend as the resin matrix. For BTF@HSi/cPES/CE composite with 34.1 vol% BTF, its dielectric constant at 100 Hz is as high as 162 and dielectric loss is only 0.007; moreover, the dielectric properties of BTF@HSi/cPES/CE composites exhibit excellent frequency stability. To reveal the mechanism behind these attractive performances of BTF@HSi/cPES/CE composites, three kinds of composites (BTF/CE, BTF/cPES/CE, BTF@HSi/CE) were prepared, their structure and integrated performances were intensively investigated and compared with those of BTF@HSi/cPES/CE composites. Results show that the surface modification of BTF is good for preparing composites with improved thermal stability; while introducing flexible cPES to CE is beneficial to fabricate composites with good quality through effectively blocking cracks caused by the stress concentration, and then endowing the composites with good dielectric properties at reduced concentration of ceramics.

  12. Ion Exchange and Antibiofouling Properties of Poly(ether sulfone) Membranes Prepared by the Surface Immobilization of Brønsted Acidic Ionic Liquids via Double-Click Reactions.

    Science.gov (United States)

    Yi, Zhuan; Liu, Cui-Jing; Zhu, Li-Ping; Xu, You-Yi

    2015-07-28

    Brønsted acidic ionic liquids (BAILs) are unique ionic liquids that display chemical structures similar to zwitterions, and they were typically used as solvents and catalysts. In this work, an imidazole-based BAIL monolayer was fabricated onto poly(ether sulfone) (PES) membranes via surface clicking reactions, and the multifunctionality, including ion exchange and biofouling resistance to proteins and bacteria, was demonstrated, which was believed to be one of few works in which BAIL had been considered to be a novel fouling resistance layer for porous membranes. The successful immobilization of the BAILs onto a membrane surface was confirmed by X-ray photoelectron spectroscopy analysis, contact angle measurement, and ζ potential determination. The results from Raman spectroscopy showed that, as a decisive step prior to zwitterion, the BAIL was deprotonated in aqueous solution, and biofouling resistance to proteins and bacteria was found. However, BAIL displayed ion exchange ability at lower pH, and surface hydrophilicity/hydrophobicity of membranes could be tuned on purpose. Our results have demonstrated that the BAIL grafted onto membranes will not only act as an antibiofouling barrier like zwitterions but also provide a platform for surface chemical tailoring by ion exchange, the property of which will become especially important in acidic solutions where the fouling resistance performances of zwitterions are greatly weakened.

  13. Fully Aromatic Block Copolymers for Fuel Cell Membranes with Densely Sulfonated Nanophase Domains

    DEFF Research Database (Denmark)

    Takamuku, Shogo; Jannasch, Patrick; Lund, Peter Brilner

    Two multiblock copoly(arylene ether sulfone)s with similar block lengths and ion exchange capacities (IECs) were prepared by a coupling reaction between a non-sulfonated precursor block and a highly sulfonated precursor block containing either fully disulfonated diarylsulfone or fully...... tetrasulfonated tetraaryldisulfone segments. The latter two precursor blocks were sulfonated via lithiation-sulfination reactions whereby the sulfonic acid groups were exclu- sively placed in ortho positions to the many sulfone bridges, giving these locks IECs of 4.1 and 4.6 meqg1, respectively. Copolymer...

  14. Preparation and Characterization of Sulfonated Poly (ether ether ...

    African Journals Online (AJOL)

    NJD

    2007-08-10

    Phosphated Zirconia Nanoparticles. Composite Proton-conducting Membranes. Hongze Luo, Shan Ji, Guntars Vaivars*, Ben Bladergroen and Vladimir Linkov. Department of Chemistry, University of the Western Cape, Private Bag ...

  15. Synthesis of poly(arylene ether ketone)s bearing skeletal crown ether units for cation exchange membranes

    NARCIS (Netherlands)

    Zoetebier, Bram; Tas, Sinem; Vancso, Gyula J.; Nijmeijer, Dorothea C.; Hempenius, Mark A.

    2015-01-01

    Poly(arylene ether ketone)s (PAEKs) are the most commonly known high-performance materials used for ion exchange and fuel cell membranes. Described here is the design of novel sulfonated PAEKs (SPAEKs) and nonsulfonated PAEKs containing crown ether units in the main chain, which can be used in

  16. Multiblock copolymers with highly sulfonated blocks containing di- and tetrasulfonated arylene sulfone segments for proton exchange membrane fuel cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Takamuku, Shogo; Jannasch, Patric [Polymer and Materials Chemistry, Department of Chemistry, Lund University (Sweden)

    2012-01-15

    Multiblock copoly(arylene ether sulfone)s with different block lengths and ionic contents are tailored for durable and proton-conducting electrolyte membranes. Two series of fully aromatic copolymers are prepared by coupling reactions between non-sulfonated hydrophobic precursor blocks and highly sulfonated hydrophilic precursor blocks containing either fully disulfonated diarylsulfone or fully tetrasulfonated tetraaryldisulfone segments. The sulfonic acid groups are exclusively introduced in ortho positions to the sulfone bridges to impede desulfonation reactions and give the blocks ion exchange capacities (IECs) of 4.1 and 4.6 meq. g{sup -1}, respectively. Solvent cast block copolymer membranes show well-connected hydrophilic nanophase domains for proton transport and high decomposition temperatures above 310 C under air. Despite higher IEC values, membranes containing tetrasulfonated tetraaryldisulfone segments display a markedly lower water uptake than the corresponding ones with disulfonated diarylsulfone segments when immersed in water at 100 C, presumably because of the much higher chain stiffness and glass transition temperature of the former segments. The former membranes have proton conductivities in level of a perfluorosulfonic acid membrane (NRE212) under fully humidified conditions. A membrane with an IEC of 1.83 meq. g{sup -1} reaches above 6 mS cm{sup -1} under 30% relative humidity at 80 C, to be compared with 10 mS cm{sup -1} for NRE212 under the same conditions. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. Analytical methodology for sulfonated lignins

    NARCIS (Netherlands)

    Brudin, S.; Schoenmakers, P.

    2010-01-01

    There is a significant need to characterize and classify lignins and sulfonated lignins. Lignins have so far received a good deal of attention, whereas this is not true for sulfonated lignins. There is a clear demand for a better understanding of sulfonated lignins on a chemical as well as physical

  18. Derivatives of phenyl tribromomethyl sulfone as novel compounds with potential pesticidal activity

    Directory of Open Access Journals (Sweden)

    Krzysztof M. Borys

    2012-02-01

    Full Text Available A halogenmethylsulfonyl moiety is incorporated in numerous active herbicides and fungicides. The synthesis of tribromomethyl phenyl sulfone derivatives as novel potential pesticides is reported. The title sulfone was obtained by following three different synthetic routes, starting from 4-chlorothiophenol or 4-halogenphenyl methyl sulfone. Products of its subsequent nitration were subjected to the SNAr reactions with ammonia, amines, hydrazines and phenolates to give 2-nitroaniline, 2-nitrophenylhydrazine and diphenyl ether derivatives. Reduction of the nitro group of 4-tribromomethylsulfonyl-2-nitroaniline yielded the corresponding o-phenylenediamine substrate for preparation of structurally varied benzimidazoles.

  19. Ethyleneglycol ethers (ethyleneglycol monomethyl ether, ethyleneglycol monomethyl ether acetate, diethyleneglycol monomethyl ether, diethyleneglycol monoethyl ether and diethyleneglycol monobutyl ether).

    NARCIS (Netherlands)

    Maclaine Pont, M.A.

    1996-01-01

    The committee recommends the following exposure limits as concentrations in air averaged over 8 hours (8 h TWA): - ethyleneglycol monomethyl ether: 1 mg/m3 (0.3 ppm) - ethyleneglycol monomethyl ether acetate: 1.5 mg/3 (0.3 ppm) - diethyleneglycol monomethyl ether: 45 mg/m3 (9 ppm) - diethyleneglycol

  20. Silane Cross-Linked Sulfonted Poly(Ether Ketone/Ether Benzimidazoles for Fuel Cell Applications

    Directory of Open Access Journals (Sweden)

    Zilu Yao

    2017-11-01

    Full Text Available γ-(2,3-epoxypropoxy propyltrimethoxysilane (KH-560 was incorporated in various proportions into side-chain-type sulfonated poly(ether ketone/ether benzimidazole (SPEKEBI as a crosslinker, to make membranes with high ion exchange capacities and excellent performance for direct methanol fuel cells (DMFCs. Systematical measurements including Fourier transform infrared (FT-IR, scanning electron microscopy-energy-dispersive and X-ray photoelectron spectroscopy (XPS proved the complete disappearance of epoxy groups in KH-560 and the existence of Si in the membranes. The resulting membranes showed increased mechanical strength and thermal stability compared to the unmodified sulfonated poly(ether ketone/ether benzimidazole membrane in appropriate doping amount. Meanwhile, the methanol permeability has decreased, leading to the increase of relative selectivities of SPEKEBI-x-SiO2 membranes. Furthermore, the H2/O2 cell performance of SPEKEBI-2.5-SiO2 membrane showed a much higher peak power density compared with the pure SPEKEBI memrbrane.

  1. Synthesis and Structure-Property Relationships of Poly(sulfone)s for Anion Exchange Membranes

    Energy Technology Data Exchange (ETDEWEB)

    Yan, JL; Moore, HD; Hibbs, MR; Hickner, MA

    2013-10-05

    Membranes based on cationic polymers that conduct anions are important for enabling alkaline membrane fuel cells and other solid-state electrochemical devices that operate at high pH. Anion exchange membranes with poly(arylene ether sulfone) backbones are demonstrated by two routes: chloromethylation of commercially available poly(sulfone)s or radical bromination of benzylmethyl moieties in poly(sulfone)s containing tetramethylbisphenol A monomer residues. Polymers with tethered trimethylbenzyl ammonium moieties resulted from conversion of the halomethyl groups by quaternization with trimethyl amine. The water uptake of the chloromethylated polymers was dependent on the type of poly(sulfone) backbone for a given IEC. Bisphenol A-based Udel (R) poly(sulfone) membranes swelled in water to a large extent while membranes from biphenol-based Radel (R) poly(sulfone), a stiffer backbone than Udel, only showed moderate water uptake. The water uptake of cationic poly(sulfone)s was further reduced by synthesizing tetramethylbisphenol A and 4,4-biphenol-containing poly(sulfone) copolymers where the ionic groups were clustered on the tetramethylbisphenol A residues. The conductivity of all samples scaled with the bulk water uptake. The hydration number of the membranes could be increased by casting membranes from the ionic form polymers versus converting the halomethyl form cast polymers to ionic form in the solid state. (c) 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2013, 51, 1790-1798, 2013

  2. National survey of Methyl tert-Butyl Ether and other Volatile Organic Compounds in drinking-water sources: Results of the random source-water survey

    Science.gov (United States)

    Grady, Stephen J.

    2002-01-01

    Methyl tert-butyl ether (MTBE) was detected in source water used by 8.7 percent of randomly selected community water systems (CWSs) in the United States at concentrations that ranged from 0.2 to 20 micrograms per liter (?g/L). The Random Survey conducted by the U.S. Geological Survey, in cooperation with the Metropolitan Water District of Southern California and the Oregon Health & Science University, was designed to provide an assessment of the frequency of detection, concentration, and distribution of MTBE, three other ether gasoline oxygenates, and 62 other volatile organic compounds (VOCs) in ground- and surface-water sources used for drinking-water supplies. The Random Survey was the first of two components of a national assessment of the quality of source water supplying CWSs sponsored by the American Water Works Association Research Foundation. A total of 954 CWSs were selected for VOC sampling from the population of nearly 47,000 active, self-supplied CWSs in all 50 States, Native American Lands, and Puerto Rico based on a statistical design that stratified on CWS size (population served), type of source water (ground and surface water), and geographic distribution (State).At a reporting level of 0.2 ?g/L, VOCs were detected in 27 percent of source-water samples collected from May 3, 1999 through October 23, 2000. Chloroform (in 13 percent of samples) was the most frequently detected of 42 VOCs present in the source-water samples, followed by MTBE. VOC concentrations were generally less than 10 ?g/L?95 percent of the 530 detections?and 63 percent were less than 1.0 ?g/L. Concentrations of 1,1-dichloroethene, tetrachloroethene, trichloroethene, vinyl chloride, and total trihalomethanes (TTHMs), however, exceeded drinking-water regulations in eight samples.Detections of most VOCs were more frequent in surface-water sources than in ground-water sources, with gasoline compounds collectively and MTBE individually detected significantly more often in surface

  3. Ether: a forgotten addiction.

    Science.gov (United States)

    Krenz, Sonia; Zimmermann, Grégoire; Kolly, Stéphane; Zullino, Daniele Fabio

    2003-08-01

    Among abused inhalants, ether has recently received little attention. The case of a patient suffering from ether dependence is reported. Whereas several features of DSM-IV dependence were fulfilled, no physical withdrawal signs were observed.

  4. 21 CFR 573.600 - Lignin sulfonates.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Lignin sulfonates. 573.600 Section 573.600 Food... Additive Listing § 573.600 Lignin sulfonates. Lignin sulfonates may be safely used in animal feeds in... feeds, as liquid lignin sulfonate, in an amount not to exceed 11 percent of the molasses. (4) As a...

  5. Poly (ether ether ketone) membranes for fuel cells; Membranas de poli (eter eter cetona) sulfonado para celulas a combustivel

    Energy Technology Data Exchange (ETDEWEB)

    Marrero, Jacqueline C.; Gomes, Ailton de S.; Filho, Jose C.D., E-mail: jacquecosta@gmail.com [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil); Hui, Wang S. [Universidade de Sao Paulo (USP), Sao Paulo, SP (Brazil); Oliveira, Vivianna S. de [Escola Tecnica Rezende-Rammel, Rio de Janeiro, RJ (Brazil)

    2015-07-01

    Polymeric membranes were developed using a SPEEK polymer matrix (sulphonated poly (ether ether ketone)), containing hygroscopic particles of zirconia (Zr) (incorporated by sol-gel method), for use as electrolyte membranes in fuel cells. SPEEK with different sulfonation degrees were used: 63 and 86%. The thermal analysis (TGA and DSC) was carried out to characterize the membranes and electrochemical impedance spectroscopy (EIS) was carried out to evaluating the proton conductivity of the membranes. Additional analysis were underway in order to characterize these membranes, which include: X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) in order to evaluate the influence of zirconia and sulfonation degree on the properties of the membranes. (author)

  6. Nanostructured membranes and electrodes with sulfonic acid functionalized carbon nanotubes

    KAUST Repository

    Tripathi, Bijay Prakash

    2011-02-01

    Herein we report the covalent functionalization of multiwall carbon nanotubes by grafting sulfanilic acid and their dispersion into sulfonated poly(ether ether ketone). The nanocomposites were explored as an option for tuning the proton and electron conductivity, swelling, water and alcohol permeability aiming at nanostructured membranes and electrodes for application in alcohol or hydrogen fuel cells and other electrochemical devices. The nanocomposites were extensively characterized, by studying their physicochemical and electrochemical properties. They were processed as self-supporting films with high mechanical stability, proton conductivity of 4.47 × 10 -2 S cm-1 at 30 °C and 16.8 × 10-2 S cm-1 at 80 °C and 100% humidity level, electron conductivity much higher than for the plain polymer. The methanol permeability could be reduced to 1/20, keeping water permeability at reasonable values. The ratio of bound water also increases with increasing content of sulfonated filler, helping in keeping water in the polymer in conditions of low external humidity level. © 2010 Elsevier B.V.

  7. Synthesis and Process Optimization of Electrospun PEEK-Sulfonated Nanofibers by Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Carlo Boaretti

    2015-07-01

    Full Text Available In this study electrospun nanofibers of partially sulfonated polyether ether ketone have been produced as a preliminary step for a possible development of composite proton exchange membranes for fuel cells. Response surface methodology has been employed for the modelling and optimization of the electrospinning process, using a Box-Behnken design. The investigation, based on a second order polynomial model, has been focused on the analysis of the effect of both process (voltage, tip-to-collector distance, flow rate and material (sulfonation degree variables on the mean fiber diameter. The final model has been verified by a series of statistical tests on the residuals and validated by a comparison procedure of samples at different sulfonation degrees, realized according to optimized conditions, for the production of homogeneous thin nanofibers.

  8. Lignin Sulfonation - A different Approach

    DEFF Research Database (Denmark)

    Bjørkmann, Anders

    2001-01-01

    . It was found that lignin is very reactive, that is why the sulfonation chemistry alone does not necessarily determine its dissolution rate. It became evident that the ultrastructure dispersion of lignin in wood is beneficial for its dissolution. For W, the rate was much higher at pH 1.5 than at 6. MW lignin...... and MWL dissolved (after extraction of the "immediate" lignin) at higher rates than W lignin. For MWL, the rate difference between pH 1.5 and 6 was moderate, compared to W lignin. Borohydride reduction did not affect the lignin dissolution from W, but gave a large decrease of sulfonation rate for MWL...

  9. Oil recovery with sulfomethylated poly (lower alkyl vinyl ether/maleic anhydride)

    Energy Technology Data Exchange (ETDEWEB)

    Norton, C.J.; Falk, D.O.

    1973-05-22

    Lower alkyl vinyl ether e.g., methyl vinyl ether, propyl vinyl ether, isopropyl vinyl ether, hexyl vinyl ether, is copolymerized conventionally with maleic anhydride, the resulting copolymer is treated with ammonia or ammonium hydroxide to form the partial amide-ammonium salt, and this salt is in turn treated with formaldehyde and thereafter or simultaneously with ammonium or alkali metal salt sulfite (including bisulfites, etc.) to form an at least partially sulfomethylated copolymer. Aqueous solutions of the sulfomethylated copolymer are useful in increasing the viscosity of drive fluids used in the supplemented recovery of petroleum from subterranean formations. In general, enhancing the polyionic character of mobility control agents used in supplemented recovery of petroleum provides enhanced recovery. Achieving this enhancement of polyionic character through use of sulfonate groups provides a mobility control agent with good ability to sustain viscosity in the presence of brine and lime, usually present in the connate waters of petroleum-bearing formations. (7 claims)

  10. Ether formulations of relativity

    Energy Technology Data Exchange (ETDEWEB)

    Duffy, M.C.

    1980-12-01

    Contemporary ether theories are surveyed and criticized, especially those formally identical to orthodox Relativity. The historical development of Relativity, Special and General, in terms of an ether, is briefly indicated. Classical interpretations of Generalized Relativity using ether are compared to Euclidean formulations using a background space. The history of a sub-group of theories, formulating a 'new' Relativity involving modified transforms, is outlined. According to the theory with which they agree, recent supposed detections of drift are classified and criticized. Cosmological evidence suggesting an ether is mentioned. Only ether theories formally identical to Relativity have been published in depth. They stand criticized as being contrary to the positivist spirit. The history of mechanical analogues is traced, from Hartley's representing gravitating matter as spherical standing waves, to recent suggestions that vortex-sponge might model electromagnetic, quantum, uncertainty and faster-than-light phenomena. Contemporary theories are particular physical theories, themselves 'second interpretations' of a primary mathematical model. Mechanical analogues are auxiliary, not necessary, to other theory, disclosing relationships between classical and non-classical descriptions of assemblies charging state. The ether-relativity polemic, part of a broader dispute about relativity, is founded on mistaken conceptions of the roles of mathematical and physical models, mechanical analogues; and a distored view of history, which indicates that ether theories have become relativistic. 103 references.

  11. A durable alternative for proton-exchange membranes: sulfonated poly(benzoxazole thioether sulfone)s

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Dan [Center for Innovative Fuel Cell and Battery Technologies, School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0245 (United States); Lab of PEMFC Key Materials and Technologies, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Liaoning, Dalian 116023 (China); Graduate School of the Chinese Academy of Sciences, Beijing 100039 (China); Li, Jinhuan [Center for Innovative Fuel Cell and Battery Technologies, School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0245 (United States); College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); Song, Min-Kyu; Liu, Meilin [Center for Innovative Fuel Cell and Battery Technologies, School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0245 (United States); Yi, Baolian; Zhang, Huamin [Lab of PEMFC Key Materials and Technologies, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Liaoning, Dalian 116023 (China)

    2011-03-18

    To develop a durable proton-exchange membrane (PEM) for fuel-cell applications, a series of sulfonated poly(benzoxazole thioether sulfone)s (SPTESBOs) are designed and synthesized, with anticipated good dimensional stability (via acid-base cross linking), improved oxidative stability against free radicals (via incorporation of thioether groups), and enhanced inherent stability (via elimination of unstable end groups) of the backbone. The structures and the degree of sulfonation of the copolymers are characterized using Fourier-transform infrared spectroscopy, and nuclear magnetic resonance spectroscopy ({sup 1}H NMR and {sup 19}F NMR). The electrochemical stabilities of the monomers are examined using cyclic voltammetry in a typical three-electrode cell configuration. The physicochemical properties of the membranes vital to fuel-cell performance are also carefully evaluated under conditions relevant to fuel-cell operation, including chemical and thermal stability, proton conductivity, solubility in different solvents, water uptake, and swelling ratio. The new membranes exhibit low dimensional change at 25 C to 90 C and excellent thermal stability up to 250 C. Upon elimination of unstable end groups, the co-polymers display enhanced chemical resistance and oxidative stability in Fenton's test. Further, the SPTESBO-HFB-60 (HFB-60=hexafluorobenzene, 60 mol% sulfone) membrane displays comparable fuel-cell performance to that of an NRE 212 membrane at 80 C under fully humidified condition, suggesting that the new membranes have the potential to be more durable but less expensive for fuel-cell applications. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. A Durable Alternative for Proton-Exchange Membranes: Sulfonated Poly(Benzoxazole Thioether Sulfone)s

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Dan; Li, Jin Hui; Song, Min Kyu; Yi, Baolian; Zhang, Huamin; Liu, Meilin

    2011-02-24

    To develop a durable proton-exchange membrane (PEM) for fuel-cell applications, a series of sulfonated poly(benzoxazole thioether sulfone)s ( SPTESBOs) are designed and synthesized, with anticipated good dimensional stability (via acid–base cross linking), improved oxidative stability against free radicals (via incorporation of thioether groups), and enhanced inherent stability (via elimination of unstable end groups) of the backbone. The structures and the degree of sulfonation of the copolymers are characterized using Fourier-transform infrared spectroscopy, and nuclear magnetic resonance spectroscopy ({sup 1}H NMR and {sup 19}F NMR). The electrochemical stabilities of the monomers are examined using cyclic voltammetry in a typical three-electrode cell configuration. The physicochemical properties of the membranes vital to fuel-cell performance are also carefully evaluated under conditions relevant to fuel-cell operation, including chemical and thermal stability, proton conductivity, solubility in different solvents, water uptake, and swelling ratio. The new membranes exhibit low dimensional change at 25°C to 90°C and excellent thermal stability up to 250°C. Upon elimination of unstable end groups, the co-polymers display enhanced chemical resistance and oxidative stability in Fenton's test. Further, the SPTESBO-HFB-60 (HFB-60=hexafluorobenzene, 60 mol% sulfone) membrane displays comparable fuel-cell performance to that of an NRE 212 membrane at 80°C under fully humidified condition, suggesting that the new membranes have the potential to be more durable but less expensive for fuel-cell applications.

  13. Sulfonated copolyimide membranes derived from a novel diamine monomer with pendant benzimidazole groups for fuel cells

    DEFF Research Database (Denmark)

    Li, Wei; Guo, Xiaoxia; Aili, David

    2015-01-01

    Sulfonated polyimides are among the most interesting proton exchange membrane materials with high proton conductivity and good mechanical characteristics. As a major challenge the hydrolytic instability of the polymer backbone is addressed by introducing basic moieties in the polymer main chain....... A series of sulfonated copolyimides (SPI) are prepared via random copolymerizatio of 1,4,5,8-naphthalenetetracarboxylic dianhydride (NTDA) with a new diamine monomer with pendant benzimidazole groups, 2,2'-bis(4-(1H-benzo[d]imidazol-2-yl)phenoxy)benzidine (BIPOB), and a sulfonated diamine monomer 4,4'-bis...

  14. Properties of polypyrrole doped with alkylbenzene sulfonates

    DEFF Research Database (Denmark)

    Bay, Lasse; Skaarup, Steen; West, Keld

    2001-01-01

    -standing 10 mu m thick film is prepared electrochemically at a constant current from an aqueous solution of pyrrole and sodium alkylbenzene sulfonate. The mechanical properties of the film (tensile strength and Young's modulus) and the reversible linear elongation between the oxidised and reduced states...... are measured. Alkylbenzene sulfonates with alkyl chain lengths between 1 and 22 carbon atoms are used as dopant anion. The films made with the different anions have highly different properties and are here compared to outline the influence of the size of the anion. A maximum in linear elongation is found for p......-(n-octyl)benzene sulfonate and in conductivity for p-(n-butyl)benzene sulfonate....

  15. 4-Aminopyridinium-3-sulfonate monohydrate

    Directory of Open Access Journals (Sweden)

    Zhi-Biao Zhu

    2011-02-01

    Full Text Available The reaction of 4-aminopyridine and oleum yielded the title hydrated zwitterion, C5H6N2O3S·H2O. There are two formula units in the asymmetric unit. The H and non-H atoms of both zwitterions lie on a mirror plane except for one sulfonate O atom. The water molecules are also situated on a mirror plane. In the crystal, the zwitterions and water molecules are linked by O—H...O and N—H...O hydrogen bonds, generating a three-dimensional network.

  16. Proton conducting, composite sulfonated polymer membrane for medium temperature and low relative humidity fuel cells

    Science.gov (United States)

    Shin, Dong Won; Kang, Na Rae; Lee, Kang Hyuck; Cho, Doo Hee; Kim, Ji Hoon; Lee, Won Hyo; Lee, Young Moo

    2014-09-01

    Inorganic-organic composite membranes are fabricated using zirconium acetylacetonate nanoparticles and biphenol-based sulfonated poly(arylene ether sulfone) as an inorganic, proton conducting nanomaterial and a polymer matrix, respectively. An amphiphilic surfactant (Pluronic®) induces distribution of the inorganic nanoparticles over the entire polymer membrane. The composite membranes are thermally stable up to 200 °C. Zirconium acetylacetonate improves inter-chain interactions and the robustness of polymer membranes resulting in excellent membrane mechanical properties. In addition, composite membranes show outstanding proton conductivity compared to that of the pristine membrane at medium temperatures (80-120 °C) and low relative humidity (<50%) conditions. This improvement is due to the presence of acetylacetonate anions, which bind water molecules and act as an additional proton conducting site and/or medium. Therefore, the composite membranes significantly outperform the pristine membrane in fuel cell performance tests at medium temperatures and low relative humidity.

  17. Synthesis and characterization of sulfonic acid membranes based on interpenetrating polymer networks for application in fuel cells; Sintese e caracterizacao de membranas sulfonadas baseadas em redes polimericas interpenetrantes para aplicacao em celulas a combustivel

    Energy Technology Data Exchange (ETDEWEB)

    Blanco, Lyzed Toloza; Loureiro, Felipe A.M.; Rocco, Ana Maria [Grupo de Materiais Condutores e Energia, Escola de Quimica, Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil)], e-mail: amrocco@eq.ufrj.br; Pereira, Robson Pacheco [Instituto de Ciencias Exatas, Universidade Federal Fluminense (UFF), Volta Redonda, RJ (Brazil)

    2011-07-01

    In the present work, the synthesis and characterization of sulfonic membranes based on interpenetrating polymer networks (IPN). In order to obtain such systems, the diglycidyl ether of bisphenol A (DGEBA) was polymerized in presence of polyethyleneimine (PEI). These membranes were submitted to sulfonation reactions, originating IPN-SO{sub 3}H membranes. The characterization by FTIR evidenced the formation of a Semi-IPN structure, while sulfonation reactions resulted in systems containing -SO{sub 3}H groups covalently bonded to the chains. The membranes exhibited water retention up to 200 degree C, in a temperature range sufficient for application in PEMFC under hydration. (author)

  18. Novel proton exchange membranes based on structure-optimized poly(ether ether ketone ketone)s and nanocrystalline cellulose

    Science.gov (United States)

    Ni, Chuangjiang; Wei, Yingcong; Zhao, Qi; Liu, Baijun; Sun, Zhaoyan; Gu, Yan; Zhang, Mingyao; Hu, Wei

    2018-03-01

    Two sulfonated fluorenyl-containing poly(ether ether ketone ketone)s (SFPEEKKs) were synthesized as the matrix of composite proton exchange membranes by directly sulfonating copolymer precursors comprising non-sulfonatable fluorinated segments and sulfonatable fluorenyl-containing segments. Surface-modified nanocrystalline cellulose (NCC) was produced as the "performance-enhancing" filler by treating the microcrystalline cellulose with acid. Two families of SFPEEKK/NCC nanocomposite membranes with various NCC contents were prepared via a solution-casting procedure. Results revealed that the insertion of NCC at a suitable ratio could greatly enhance the proton conductivity of the pristine membranes. For example, the proton conductivity of SFPEEKK-60/NCC-4 (SFPEEKK with 60% fluorenyl segments in the repeating unit, and inserted with 4% NCC) composite membrane was as high as 0.245 S cm-1 at 90 °C, which was 61.2% higher than that of the corresponding pure SFPEEKK-60 membrane. This effect could be attributed to the formation of hydrogen bond networks and proton conduction paths through the interaction between -SO3H/-OH groups on the surface of NCC particles and -SO3H groups on the SFPEEKK backbones. Furthermore, the chemically modified NCC filler and the optimized chemical structure of the SFPEEKK matrix also provided good dimensional stability and mechanical properties of the obtained nanocomposites. In conclusion, these novel nanocomposites can be promising proton exchange membranes for fuel cells at moderate temperatures.

  19. Improving the Conductivity of Sulfonated Polyimides as Proton Exchange Membranes by Doping of a Protic Ionic Liquid

    Directory of Open Access Journals (Sweden)

    Bor-Kuan Chen

    2014-10-01

    Full Text Available Proton exchange membranes (PEMs are a key component of a proton exchange membrane fuel cell. Sulfonated polyimides (SPIs were doped by protic ionic liquid (PIL to prepare composite PEMs with substantially improved conductivity. SPIs were synthesized from diamine, 2,2-bis[4-(4-amino-phenoxyphenyl]propane (BAPP, sulfonated diamine, 4,4'-diamino diphenyl ether-2,2'-disulfonic acid (ODADS and aromatic anhydride. BAPP improved the mechanical and thermal properties of SPIs, while ODADS enhanced conductivity. A PIL, 1-vinylimidazolium trifluoromethane-sulfonate ([VIm][OTf], was utilized. [VIm][OTf] offered better conductivity, which can be attributed to its vinyl chemical structure attached to an imidazolium ring that contributed to ionomer-PIL interactions. We prepared sulfonated polyimide/ionic liquid (SPI/IL composite PEMs using 50 wt% [VIm][OTf] with a conductivity of 7.17 mS/cm at 100 °C, and in an anhydrous condition, 3,3',4,4'-diphenyl sulfone tetracarboxylic dianhydride (DSDA was used in the synthesis of SPIs, leading to several hundred-times improvement in conductivity compared to pristine SPIs.

  20. Effect of sulfonated lignin on enzymatic activity of the ligninolytic enzymes Cα-dehydrogenase LigD and β-etherase LigF.

    Science.gov (United States)

    Wang, Chao; Ouyang, Xianhong; Su, Sisi; Liang, Xiao; Zhang, Chao; Wang, Wenya; Yuan, Qipeng; Li, Qiang

    2016-11-01

    NAD(+)-dependent Cα-dehydrogenase LigD and glutathione-dependent β-etherase LigF which selectively cleave the β-O-4 aryl ether linkage present in lignin, are key-enzymes for the biocatalytic depolymerization of lignin. However, the catalytic efficiency of the two enzymes is low when they are used to break down the β-aryl ether linkage in natural lignin. When sulfonated lignin was added to LigF hydrolysis reactions, the conversion rate of MPHPV decreased significantly from 99.5% to 32.6%. On the contrary, sulfonated lignin has little affection on LigD, which the conversion rate of GGE only decreased from 41.7% to 41%. The strong nonspecific interactions of enzymes onto sulfonated lignin detected by surface plasmon resonance (SPR) and isothermal titration calorimetric (ITC) was obvious and universal, which can reduce enzyme activity of many enzymes, including ligninolytic enzyme β-etherase LigF. To elucidate the exact mechanisms by which β-etherase LigF interact with lignin, molecular modeling was applied. Finally, analysis on catalytic efficiency of LigD and LigF in different concentrations and molecular weights of sulfonated lignin, solution ionic strength, pH, temperature and concentration of Tween 80 revealed that electrostatic interactions and hydrophobic interactions play important roles in absorption between LigF and sulfonated lignin. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Antimalarial effects of vinyl sulfone cysteine proteinase inhibitors.

    OpenAIRE

    Rosenthal, P J; Olson, J E; Lee, G K; Palmer, J T; Klaus, J L; Rasnick, D

    1996-01-01

    We evaluated the antimalarial effects of vinyl sulfone cysteine proteinase inhibitors. A number of vinyl sulfones strongly inhibited falcipain, a Plasmodium falciparum cysteine proteinase that is a critical hemoglobinase. In studies of cultured parasites, nanomolar concentrations of three vinyl sulfones inhibited parasite hemoglobin degradation, metabolic activity, and development. The antimalarial effects correlated with the inhibition of falcipain. Our results suggest that vinyl sulfones or...

  2. Ether space-time & cosmology

    CERN Document Server

    Levy, Joseph

    2008-01-01

    The aim of this first volume of papers is to examine the different paths by which the modern ether concept has been developed and to highlight the part it plays in major departments of 21st century physics. The evidence for its existence is reviewed, and it is hoped, widespread misconceptions concerning ether are corrected. It is anticipated that the emerging modern concept of ether will play a fundamental part in the development of 21st century physical science.

  3. Enhancement of proton conductivity of sulfonated polystyrene ...

    Indian Academy of Sciences (India)

    Enhancement of proton conductivity of sulfonated polystyrene membrane prepared by plasma polymerization process. BHABESH KUMAR NATH, AZIZ KHAN, JOYANTI CHUTIA. ∗. , ARUP RATAN PAL,. HEREMBA BAILUNG, NEELOTPAL SEN SARMA, DEVASISH CHOWDHURY and NIRAB CHANDRA ADHIKARY.

  4. Sulfonated 1,3-bis(4-pyridylpropane

    Directory of Open Access Journals (Sweden)

    Ore Kuyinu

    2011-06-01

    Full Text Available In the title compound, 4-[3-(3-sulfonatopyridin-1-ium-4-ylpropyl]pyridin-1-ium-3-sulfonate, C13H14N2O6S2, the molecule is zwitterionic, with the sulfonic acid proton transfered to the basic pyridine N atom. Also, the structure adopts a butterfly-like conformation with the sulfonate groups on opposite sides of the `wings'. The dihedral angle between the two pyridinium rings is 83.56 (7°, and this results in the molecule having a chiral conformation and packing. There is strong intermolecular hydrogen bonding between the pyridinium H and sulfonate O atoms of adjoining molecules. In addition, there are weaker intermolecular C—H...O interactions.

  5. Exogenous ether lipids predominantly target mitochondria

    DEFF Research Database (Denmark)

    Kuerschner, Lars; Richter, Doris; Hannibal-Bach, Hans Kristian

    2012-01-01

    Ether lipids are ubiquitous constituents of cellular membranes with no discrete cell biological function assigned yet. Using fluorescent polyene-ether lipids we analyzed their intracellular distribution in living cells by microscopy. Mitochondria and the endoplasmic reticulum accumulated high...... amounts of ether-phosphatidylcholine and ether-phosphatidylethanolamine. Both lipids were specifically labeled using the corresponding lyso-ether lipids, which we established as supreme precursors for lipid tagging. Polyfosine, a fluorescent analogue of the anti-neoplastic ether lipid edelfosine...... in ether lipid metabolism and intracellular ether lipid trafficking....

  6. Sulfonation of vulcanized ethylene-propylene-diene terpolymer membranes

    Energy Technology Data Exchange (ETDEWEB)

    Barroso-Bujans, F. [Instituto de Ciencia y Tecnologia de Polimeros, CSIC, Juan de la Cierva 3, 28006 Madrid (Spain)], E-mail: fbarroso@ictp.csic.es; Verdejo, R.; Lozano, A. [Instituto de Ciencia y Tecnologia de Polimeros, CSIC, Juan de la Cierva 3, 28006 Madrid (Spain); Fierro, J.L.G. [Instituto de Catalisis y Petroleoquimica, CSIC, Marie Curie 2, Cantoblanco, 28049 Madrid (Spain); Lopez-Manchado, M.A. [Instituto de Ciencia y Tecnologia de Polimeros, CSIC, Juan de la Cierva 3, 28006 Madrid (Spain)

    2008-10-15

    In the present work, sulfonation of previously vulcanized ethylene propylene diene terpolymer (EPDM) membranes was developed in a swelling solvent with acetyl sulfate. This procedure avoids the need to pre-dissolve the raw polymer. The reaction conditions were optimized in terms of solvent type, reaction time, acetyl sulfate concentration and film thickness to obtain the maximum degree of sulfonation of the polymer. The sulfonation procedure presented in this study yields a degree of sulfonation comparable to the chlorosulfonic acid procedure. Sulfonic acid groups were detected by X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy, and quantified by titrations. Proton conductivity and water uptake were measured by means of impedance spectroscopy and swelling measurements, respectively, and were correlated with the degree of sulfonation. Tensile strength and Young's modulus of sulfonated EPDM increased with the degree of sulfonation, while elongation at break remained constant. Thermal stability of the sulfonated EPDM was studied by simultaneous thermogravimetry-mass spectroscopy.

  7. Complexation of AB+, AB+C, ACB+, and A(B+-stat-C) block copolymer micelles with poly(styrene sulfonate) as models for tunable gene delivery vectors

    Science.gov (United States)

    Laaser, Jennifer; Jiang, Yaming; Lohmann, Elise; Reineke, Theresa; Lodge, Timothy

    We investigate the complexation of poly(styrene sulfonate) with micelles with mixed cationic/hydrophilic coronas as models for tunable gene delivery vectors. The micelles are self-assembled from AB+, AB+C, ACB+, and A(B+-stat-C) block polymer architectures, where the hydrophobic A blocks (poly(styrene)) form the micelle cores, and the cationic B blocks (poly(dimethylamino ethyl methacrylate)) and hydrophilic, nonionic C blocks (poly(poly(ethylene glycol) methyl ether methacrylate)) form the coronas. We find that hydrophilic units do not change the colloidal stability of the complexes, and complexes based on all four micelle architectures form broad, multimodal size distributions. While complexes based on the AB+, AB+C, and ACB+polymer architectures are kinetically trapped at low ionic strength, however, those based on the A(B+-stat-C) architecture rapidly rearrange into single-micelle complexes when the linear polyanion is in excess. This suggests that the randomly-placed hydrophilic units break up the ion pairing between the cationic and anionic chains and promote formation of over-charged complexes. Design of the micelle architecture may thus provide a powerful way control the structure and stability of micelle-polyelectrolyte complexes for gene delivery applications.

  8. Biodegradation of gasoline ether oxygenates.

    Science.gov (United States)

    Hyman, Michael

    2013-06-01

    Ether oxygenates such as methyl tertiary butyl ether (MTBE) are added to gasoline to improve fuel combustion and decrease exhaust emissions. Ether oxygenates and their tertiary alcohol metabolites are now an important group of groundwater pollutants. This review highlights recent advances in our understanding of the microorganisms, enzymes and pathways involved in both the aerobic and anaerobic biodegradation of these compounds. This review also aims to illustrate how these microbiological and biochemical studies have guided, and have helped refine, molecular and stable isotope-based analytical approaches that are increasingly being used to detect and quantify biodegradation of these compounds in contaminated environments. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Removal of methyl tert-butyl ether (MTBE) with Nafion.

    Science.gov (United States)

    Lien, Hsing-Lung; Zhang, Wei-Xian

    2007-06-01

    A solid organic polymer, Nafion, is tested for the removal of methyl tert-butyl ether (MTBE) in water. Nafion with perfluorosulfonic acid backbone and terminal sulfonic acid groups has a surface acidity similar to 100% sulfuric acid, and has been commonly used as a strong-acid catalyst in many organic reactions. Sorption and subsequent transformation of MTBE were observed in batch experiments. The transformation of MTBE by porous nanocomposite Nafion SAC-13 to tert-butyl alcohol (TBA), acetone, isobutene and probably methanol was found. Subsequent transformation of TBA to acetone was also observed. Results suggest that transformational pathways may include hydrolysis, dehydrogenation and oxidation. Dissolved oxygen is needed for the oxidation of isobutene to acetone. As Nafion is insoluble in water, chemically stable, and regenerable, its use in packed-bed reactors for MTBE removal looks promising.

  10. Anaerobic degradation of linear alkylbenzene sulfonate

    DEFF Research Database (Denmark)

    Mogensen, Anders Skibsted; Haagensen, Frank; Ahring, Birgitte Kiær

    2003-01-01

    Linear alkylbenzene sulfonate (LAS) found in wastewater is removed in the wastewater treatment facilities by sorption and aerobic biodegradation. The anaerobic digestion of sewage sludge has not been shown to contribute to the removal. The concentration of LAS based on dry matter typically...... increases during anaerobic stabilization due to transformation of easily degradable organic matter. Hence, LAS is regarded as resistant to biodegradation under anaerobic conditions. We present data from a lab-scale semi-continuously stirred tank reactor (CSTR) spiked with linear dodecylbenzene sulfonate (C...

  11. 21 CFR 868.5420 - Ether hook.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ether hook. 868.5420 Section 868.5420 Food and... ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5420 Ether hook. (a) Identification. An ether hook is a device that fits inside a patient's mouth and that is intended to deliver vaporized ether. (b) Classification...

  12. Ether the nothing that connects everything

    CERN Document Server

    Milutis, Joe

    2006-01-01

    In Ether, the histories of the unseen merge with discussions of the technology of electromagnetism. Navigating more than three hundred years of the ether''s cultural and artistic history, Joe Milutis reveals its continuous reinvention and tangible impact without ever losing sight of its ephemeral, elusive nature. The true meaning of ether, Milutis suggests, may be that it can never be fully grasped.

  13. An investigation of proton conductivity of binary matrices sulfonated ...

    Indian Academy of Sciences (India)

    SPSU) and polyvinyl triazole were studied as binary matrices. The sulfonation of polysulfone was performed with trimethylsilylchlorosulfonate and high degree of sulfonation (140%) was obtained. Ion exchange capacity of SPSU was determined ...

  14. An investigation of proton conductivity of binary matrices sulfonated ...

    Indian Academy of Sciences (India)

    The polymer electrolyte membranes were prepared by blending of sulfonated polysulfone with polyvinyl triazole and phosphoric acid. Fourier transform infrared spectroscopy confirmed the sulfonation of the polysulfone and the ionic interaction between sulfonic acid and triazole units. Thermogravimetric analysis showed ...

  15. Rearrangements of Cycloalkenyl Aryl Ethers

    Directory of Open Access Journals (Sweden)

    Mercedesz Törincsi

    2016-04-01

    Full Text Available Rearrangement reactions of cycloalkenyl phenol and naphthyl ethers and the acid-catalyzed cyclization of the resulting product were investigated. Claisen rearrangement afforded 2-substituted phenol and naphthol derivatives. Combined Claisen and Cope rearrangement resulted in the formation of 4-substituted phenol and naphthol derivatives. In the case of cycloocthylphenyl ether the consecutive Claisen and Cope rearrangements were followed by an alkyl migration. The mechanism of this novel rearrangement reaction is also discussed.

  16. Sulfonated graphenes catalyzed synthesis of expanded porphyrins ...

    Indian Academy of Sciences (India)

    A newer synthesis of sulfonic acid functionalized graphenes have been developed, which have been characterized, examined as heterogeneous solid acid carbocatalyst in the synthesis of selected expanded porphyrins in different reaction conditions. This environment-friendly catalyst avoids the use of toxic catalysts and ...

  17. Sulfonated graphenes catalyzed synthesis of expanded porphyrins ...

    Indian Academy of Sciences (India)

    Abstract. A newer synthesis of sulfonic acid functionalized graphenes have been developed, which have been characterized, examined as heterogeneous solid acid carbocatalyst in the synthesis of selected expanded porphyrins in different reaction conditions. This environment-friendly catalyst avoids the use of toxic ...

  18. Enhancement of proton conductivity of sulfonated polystyrene ...

    Indian Academy of Sciences (India)

    ... water uptake, sulfonation rate, ion exchange capacity and thermal behaviour. The proton conductivity of the membranes is achieved up to 0.6 Scm-1, measured with the help of potentiostat/galvanostat. The thermogravimetric study of the plasma polymerized membrane shows the thermal stability up to 140 °C temperature.

  19. Recent Advances of Poly(ether-ether) and Poly(ether-ester) Block Copolymers in Biomedical Applications.

    Science.gov (United States)

    He, Zhi-Yao; Shi, Kun; Wei, Yu-Quan; Qian, Zhi-Yong

    2016-01-01

    Poly(ether-ether) and poly(ether-ester) block copolymers have been widely applied in biomedical fields over two decades due to their good safety and biocompatibility. Poly(ethylene glycol), poly(ethylene glycol)-poly(propylene glycol) and poly(lactic-co-glycolic acid) have been approved as excipients by Food and Drug Administration. Because of the broad perspective in biomedical fields, many novel poly(etherether) and poly(ether-ester) block copolymers have been developed for drug delivery, gene therapy and tissue engineering in recent years. This review focuses on active targeting theranostic systems, gene delivery systems and tissue engineering based on poly(ether-ether) and poly(ether-ester) block copolymers. We perform a structured search of bibliographic databases for peer-reviewed scientific reports using a focused review question and inclusion/exclusion criteria. The literatures related to the topics of this review are cataloged according to the developed copolymers or their applications such as active targeting theranostic systems, gene delivery systems and tissue engineering. Some important advances and new trends are summarized in this review. Some commercial poly(ether-ether) copolymers have been used as excipients for drug research and development. Amphiphilic and biodegradable poly(ether-ester) diblock copolymers are capable of formulating biomedical nanoparticulate theranostic systems, and targeting moiety-functionalized poly(ether-ester) diblock copolymers will be further developed and applied in biomedical nanotechnology fields in the near future. Meanwhile, triblock or multiblock poly(ether-ether) and poly(ether-ester) copolymers with environmentsensitive properties are suitable for gene delivery and tissue engineering. Poly(ether-ether) and poly(ether-ester) copolymers are being extensively applied in active targeting theranostic systems, gene delivery systems and tissue engineering. Biodegradable, environment-sensitive and targeting moiety

  20. Modification of epoxy-reinforced glass-cloth composites with a perfluorinated alkyl ether elastomer

    Science.gov (United States)

    Rosser, R. W.; Chen, T. S.; Taylor, M.

    1984-01-01

    A perfluorinated alkyl ether diacyl fluoride prepolymer (molecular weight about 1500) was coreacted with Epon 828 epoxy resin and diamino diphenyl sulfone to obtain an elastomer-toughened, glass-cloth composite. Improvements in flexural toughness, impact resistance, and water resistance, without loss of strength, modulus of elasticity or a lowering of the glass-transition temperature, were realized over those of the unmodified composite. Factors concerning optimization of the process are discussed. Results suggest that a simultaneously interpenetrating polymer network may be formed which gives rise to a measured improvement in composite mechanical properties.

  1. Poly(arylene ether-co-imidazole)s as toughness modifiers for epoxy resins

    Science.gov (United States)

    Mcdaniel, Patricia D. (Inventor); Connell, John W. (Inventor)

    1994-01-01

    A toughened epoxy was prepared by reacting an epoxy resin with a poly(arylene ether-co-imidazole)s (PAEI). The epoxy resin comprises N,N,N',N'tetraglycidyl-4,4'- methylenebisbenzenamine and 4-aminophenyl sulfone. The PAEI was prepared by reacting an aromatic bisphenol, a bisphenol imidazole, and an activated aromatic dihalide or dinitro compound in the presence of potassium carbonate in a polar aprotic solvent at an elevated temperature. The epoxies which were modified with these particular PAEI's showed a significant increase in toughness with only a 10 weight percent loading of the PAEI into the epoxy. These toughened epoxies were used to prepare composites and molded parts.

  2. Exogenous ether lipids predominantly target mitochondria.

    Directory of Open Access Journals (Sweden)

    Lars Kuerschner

    Full Text Available Ether lipids are ubiquitous constituents of cellular membranes with no discrete cell biological function assigned yet. Using fluorescent polyene-ether lipids we analyzed their intracellular distribution in living cells by microscopy. Mitochondria and the endoplasmic reticulum accumulated high amounts of ether-phosphatidylcholine and ether-phosphatidylethanolamine. Both lipids were specifically labeled using the corresponding lyso-ether lipids, which we established as supreme precursors for lipid tagging. Polyfosine, a fluorescent analogue of the anti-neoplastic ether lipid edelfosine, accumulated to mitochondria and induced morphological changes and cellular apoptosis. These data indicate that edelfosine could exert its pro-apoptotic power by targeting and damaging mitochondria and thereby inducing cellular apoptosis. In general, this study implies an important role of mitochondria in ether lipid metabolism and intracellular ether lipid trafficking.

  3. 40 CFR 721.3437 - Dialkyl ether.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Dialkyl ether. 721.3437 Section 721... Dialkyl ether. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as dialkyl ether (PMN P-93-1308) is subject to reporting under this section...

  4. 40 CFR 721.3374 - Alkylenediolalkyl ether.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alkylenediolalkyl ether. 721.3374... Substances § 721.3374 Alkylenediolalkyl ether. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as an alkylenediolalkyl ether (PMN P-93-362) is subject to...

  5. 40 CFR 721.3380 - Anilino ether.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Anilino ether. 721.3380 Section 721... Anilino ether. (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substance identified generically as anilino ether (P-83-910) is subject to reporting under this section for...

  6. 40 CFR 721.3364 - Aliphatic ether.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Aliphatic ether. 721.3364 Section 721... Aliphatic ether. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as an aliphatic ether (PMN P-93-1381) is subject to reporting under this...

  7. Synthesis and Characterization of Sulfonated Poly(Phenylene Containing a Non-Planar Structure and Dibenzoyl Groups

    Directory of Open Access Journals (Sweden)

    Hohyoun Jang

    2016-02-01

    Full Text Available Polymers for application as sulfonated polyphenylene membranes were prepared by nickel-catalyzed carbon-carbon coupling reaction of bis(4-chlorophenyl-1,2-diphenylethylene (BCD and 1,4-dichloro-2,5-dibenzoylbenzene (DCBP. Conjugated cis/trans isomer (BCD had a non-planar conformation containing four peripheral aromatic rings that facilitate the formation of π–π interactions. 1,4-Dichloro-2,5-dibenzoylbenzene was synthesized from the oxidation reaction of 2,5-dichloro-p-xylene, followed by Friedel-Crafts reaction with benzene. DCBP monomer had good reactivity in polymerization affecting the activity of benzophenone as an electron-withdrawing group. The polyphenylene was sulfonated using concentrated sulfuric acid. These polymers without any ether linkages on the polymer backbone were protected from nucleophilic attack by hydrogen peroxide, hydroxide anion, and radicals generated by polymer electrolyte membrane fuel cell (PEMFC operation systems. The mole fraction of the sulfonic acid groups was controlled by varying the mole ratio of bis(4-chlorophenyl-1,2-diphenylethylene in the copolymer. In comparison with Nafion 211® membrane, these SBCDCBP membranes showed ion exchange capacity (IEC ranging from 1.04 to 2.07 meq./g, water uptake from 36.5% to 69.4%, proton conductivity from 58.7 to 101.9 mS/cm, and high thermal stability.

  8. Hybrid proton conducting membranes based on sulfonated cross-linked polysiloxane network for direct methanol fuel cell

    Science.gov (United States)

    Zhu, Jing; Zhang, Gang; Shao, Ke; Zhao, Chengji; Li, Hongtao; Zhang, Yang; Han, Miaomiao; Lin, Haidan; Li, Mu; Na, Hui

    A series of novel hybrid membranes based on sulfonated poly(arylene ether ketone)s (SNPAEKs), polysiloxane (KH-560) and sulfonated curing agent (BDSA) has been prepared by sol-gel and cross-linking reaction for direct methanol fuel cells (DMFCs). All the hybrid membranes (SKB- xx) show high thermal properties and improved oxidative stability compared with the pristine SNPAEK membrane. The sulfonated cross-linked polysiloxanes networks in the hybrid membranes enhance the mechanical properties and reduce the swelling ratio. The swelling ratio of SKB-20 is 22%, which is much lower than that of the pristine SNPAEK (37%) at 80 °C. Meanwhile, SKB- xx membranes with greatly reduced methanol permeabilities show comparative proton conductivities to pristine SNPAEK membranes. Notably, the proton conductivities of SKB-5 and SKB-10 reach to 0.192 S cm -1 and 0.179 S cm -1 at 80 °C, respectively, which are even higher than the 0.175 S cm -1 of SNPAEK.

  9. Effects of sulfonated polyether-etherketone (SPEEK) and composite membranes on the proton exchange membrane fuel cell (PEMFC) performance

    Energy Technology Data Exchange (ETDEWEB)

    Erce Senguel; Erdener, Huelya; Akay, R. Gueltekin; Yuecel, Hayrettin; Eroglu, inci [Chemical Engineering Department, Middle East Technical University, 06531 Ankara (Turkey); Bac, Nurcan [Chemical Engineering Department, Yeditepe University, 34755 Istanbul (Turkey)

    2009-05-15

    Sulfonated polyether-etherketone (SPEEK) has a potential for proton exchange fuel cell applications. However, its conductivity and thermohydrolytic stability should be improved. In this study the proton conductivity was improved by addition of an aluminosilicate, zeolite beta. Moreover, thermohydrolytic stability was improved by blending poly-ether-sulfone (PES). Sulfonated polymers were characterized by H-NMR. Composite membranes prepared were characterized by Electrochemical Impedance Spectroscopy (EIS) for their proton conductivity. Degree of sulfonation (DS) values calculated from H-NMR results, and both proton conductivity and thermohydrolytic stability was found to strongly depend on DS. Therefore, DS values were controlled time in the range of 55-75% by controlling the reaction time. Zeolite beta fillers at different SiO{sub 2}/Al{sub 2}O{sub 3} ratios (20, 30, 40, 50) were synthesized and characterized by XRD, EDX, TGA, and SEM. The proton conductivity of plain SPEEK membrane (DS = 68%) was 0.06 S/cm at 60 C and the conductivity of the composite membrane containing of zeolite beta filled SPEEK was found to increase to 0.13 S/cm. Among the zeolite Beta/SPEEK composite membranes the best conductivity results were achieved with zeolite beta having a SiO{sub 2}/Al{sub 2}O{sub 3} ratio of 50 at 10 wt% loading. Single fuel cell tests performed at different operating temperatures indicated that SPES/SPEEK membrane is more stable hydrodynamically and also performed better than pristine SPEEK membranes which swell excessively. Membrane electrode assemblies (MEAs) were prepared by gas diffusion layer (GDL) spraying method. The highest performance of 400 mA/cm{sup 2} was obtained for SPEEK membrane (DS 56%) at 0.6 V for a H{sub 2}-O{sub 2}/PEMFC working at 1 atm and 70 C. At the same conditions Nafion {sup registered} 112 gave 660 mA/cm{sup 2}. It was observed that the operating temperature can be increased up to 90 C with polymer blends containing poly-ether-sulfone

  10. Detection, quantifications and pharmacokinetics of toltrazuril sulfone (Ponazuril) in cattle.

    Science.gov (United States)

    Dirikolu, L; Yohn, R; Garrett, E F; Chakkath, T; Ferguson, D C

    2009-06-01

    Toltrazuril sulfone (Ponazuril) is a triazine-based anti-protozoal agent with highly specific actions against apicomplexan group of organisms, which are undergoing intensive investigation. Toltrazuril sulfone may have clinical application in the treatment of Neospora. caninum and other protozoal infections in cattle. To evaluate absorption, distribution, and elimination characteristics of toltrazuril sulfone in cattle, a sensitive validated quantitative high-pressure liquid chromatography method for toltrazuril sulfone in bovine biological fluids was developed. After a single oral dose of toltrazuril sulfone at 5 mg/kg (as 150 mg/g of Marquis; Bayer HealthCare, Shawnee Mission, KS, USA), samples from six cows showed good plasma concentrations of toltrazuril sulfone, which peaked at 4821 ng/mL +/- 916 (SD) at 48 h postadministration. Thereafter, plasma concentration declined to 1950 ng/mL +/- 184 (SD) at 192 h after administration with an average plasma elimination half-life of approximately 58 h. Following oral dose of toltrazuril sulfone, the observed peak plasma concentrations were in relatively close agreement ranging from the lowest 3925 ng/mL to the highest of 6285 ng/mL with the mean peak plasma concentration being 4821 ng/mL. This study shows that toltrazuril sulfone is relatively well absorbed after oral dose in cattle. These results are therefore entirely consistent with and support the reported clinical efficacy of toltrazuril sulfone in the treatment of experimentally induced clinical cases of N. caninum and other protozoal-mediated bovine diseases.

  11. Membranes optimization of the basis of S-peek with different degrees of sulfonation for PEMFC; Otimizacao de membranas a base de S-peek com diferentes graus de sulfonacao para PEMFC

    Energy Technology Data Exchange (ETDEWEB)

    Barreto, E.B.; Fiuza, R.A.; Jose, N.M.; Boaventura, J.S.; Carvalho, L.F.V. [Universidade Federal da Bahia (IQ/UFBA), Salvador, BA (Brazil). Inst. de Quimica. Grupo de Energia e Ciencia dos Materiais

    2008-07-01

    With the growing concern emission of polluting gases in the atmosphere and search for alternative sources of clean energy that can meet the future shortage of oil, the fuel cells have become the target of scientific research in everyone. Among the various types of fuel cells includes the PEMFC (Polymer exchange membrane fuel cell), in the case of a device with high efficiency, without emission of pollutants. This work was to produce membranes and optimizing the basis of S-PEEK (poly-ether-ether-sulfonate) with varying degrees of sulfonation to be applied as electrolytes in fuel cells to the type PEMFC. The membranes were characterized chemically, by thermal analysis, and electrochemistry. (author)

  12. Hydrogen storage by functionalised Poly(ether ether ketone)

    Energy Technology Data Exchange (ETDEWEB)

    Pedicini, R.; Giacoppo, G.; Carbone, A.; Passalacqua, E. [CNR-ITAE, Messina (Italy). Inst. for Advanced Energy Technologies

    2010-07-01

    In this work a functionalised polymer was studied as potential material for hydrogen storage in solid state. A Poly(ether ether ketone) (PEEK) matrix was modified by a manganese oxide in situ formation. Here we report the functionalisation process and the preliminary results on hydrogen storage capability of the synthesised polymer. The polymer was characterized by Scanning Electron Microscopy, X-ray diffraction, Transmission Electron Microscopy and Gravimetric Hydrogen Adsorption measurements. In the functionalised PEEK, morphological changes occur as a function of oxide precursor concentration and reaction time. Promising results by gravimetric measurements were obtained with a hydrogen sorption of 0.24%wt/wt at 50 C and 60 bar, moreover, reversibility hydrogen adsorption and desorption in a wide range of both temperature and pressure was confirmed. (orig.)

  13. Production and Application of Lignosulfonates and Sulfonated Lignin.

    Science.gov (United States)

    Aro, Thomas; Fatehi, Pedram

    2017-05-09

    Lignin is the largest reservoir of aromatic compounds on earth and has great potential to be used in many industrial applications. Alternative methods to produce lignosulfonates from spent sulfite pulping liquors and kraft lignin from black liquor of kraft pulping process are critically reviewed herein. Furthermore, options to increase the sulfonate contents of lignin-based products are outlined and the industrial attractiveness of them is evaluated. This evaluation includes sulfonation and sulfomethylation of lignin. To increase the sulfomethylation efficiency of lignin, various scenarios, including hydrolysis, oxidation, and hydroxymethylation, were compared. The application of sulfonated lignin-based products is assessed and the impact of the properties of these products on the characteristics of their end-use application is critically evaluated. Sulfonated lignin-based products have been used as dispersants in cement admixtures and dye solutions more than other applications, and their molecular weight and degree of sulfonation were crucial in determining their efficiency. The use of lignin-based sulfonated products in composites may result in an increase in the hydrophilicity of some composites, but the sulfonated products may need to be desulfonated with an alkali and/or oxygen prior to their use in composites. To be used as a flocculant, sulfonated lignin-based products may need to be cross-linked to increase their molecular weight. The challenges associated with the use of lignin-based products in these applications are comprehensively discussed herein. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Synthesis and characterization of polymer blends of sulfonated polyethersulfone and sulfonated polyethersulfone octylsulfonamide for PEMFC applications

    Energy Technology Data Exchange (ETDEWEB)

    Mabrouk, W. [ERAS Labo, St Nazaire Les Eymes, Grenoble (France); Laboratoire des Materiaux Industriels, Conservatoire National des Arts et Metiers de Paris, 75003 Paris (France); Laboratoire de Chimie Analytique et Electrochimie, Faculte des Sciences de Tunis, Campus Universitaire, 1092 Tunis (Tunisia); Ogier, L.; Vidal, S. [ERAS Labo, St Nazaire Les Eymes, Grenoble (France); Sollogoub, C.; Fauvarque, J.F. [Laboratoire des Materiaux Industriels, Conservatoire National des Arts et Metiers de Paris, 75003 Paris (France); Matoussi, F.; Dachraoui, M. [Laboratoire de Chimie Analytique et Electrochimie, Faculte des Sciences de Tunis, Campus Universitaire, 1092 Tunis (Tunisia)

    2012-04-15

    Our goal in the present work was to synthesize a new proton exchange membrane that could be used in proton exchange membrane fuel cell (PEMFC), based on a blend of sulfonated polyethersulfone (S-PES) and sulfonated polyethersulfone octylsulfonamide (S-PESOS). Five blends, using S-PESOS with different grafting ratios of sulfonamide groups, have been elaborated, characterized, and tested in a PEMFC. The similar chemical structure between these two polymers favored their compatibility. The synthesized membranes showed a high water swelling capacity and an ionic conductivity equivalent to that of Nafion registered (0.1 S cm{sup -1}) in the same conditions. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. 4-(4-Aminophenylsulfonylanilinium toluene-4-sulfonate

    Directory of Open Access Journals (Sweden)

    Graham Smith

    2014-01-01

    Full Text Available In the title p-toluenesulfonate salt of the drug dapsone, C12H13N2O2S+·C7H7O3S−, the dihedral angle between the two aromatic rings of the dapsone monocation is 70.19 (17° and those between these rings and that of the p-toluenesulfonate anion are 72.34 (17 and 46.43 (17°. All amine and aminium H atoms are involved in intermolecular N—H...O hydrogen-bonding associations with sulfonyl O-atom acceptors as well as one of the sulfone O atoms, giving a three-dimensional structure.

  16. Perfluorinated compounds and polybrominated diphenyl ethers in great blue heron eggs from Indiana Dunes National Lakeshore, Indiana

    Science.gov (United States)

    Custer, T.W.; Kannan, K.; Tao, L.; Saxena, A.R.; Route, B.

    2009-01-01

    In 2007 archived great blue heron (Ardea herodias) eggs collected from Indiana Dunes National Lakeshore, IN, (Indiana Dunes) in 1993 were analyzed for 11 perfluorinated compounds (PFCs) and 7 polybrominated diphenyl ethers (PBDEs). Concentrations of perfluorooctane sulfonate, the major contributor to total PFC concentrations, were below the toxicity thresholds estimated for bobwhite quail (Colinus virginianus) and mallards (Anas platyrhynchos), but within the toxicity threshold estimated for white leghorn chickens (Gallus domesticus). The ranking of PBDE congener concentrations by percent concentration (PBDE-47 > -99 > -100 > -153 > -154 > -28 > -183) was consistent with the Penta-PBDE formulation. Total PBDE concentrations in great blue heron eggs from Indiana Dunes were elevated and probably reflect local contamination from highly urbanized and industrialized inputs into Lake Michigan. Polybrominated diphenyl ether concentrations were within levels associated with altered reproductive behavior in other avian species and based on trends in other Great Lakes birds are probably higher today.

  17. Comparison of Properties among Dendritic and Hyperbranched Poly(ether ether ketones and Linear Poly(ether ketones

    Directory of Open Access Journals (Sweden)

    Atsushi Morikawa

    2016-02-01

    Full Text Available Poly(ether ether ketone dendrimers and hyperbranched polymers were prepared from 3,5-dimethoxy-4′-(4-fluorobenzoyldiphenyl ether and 3,5-dihydroxy-4′-(4-fluorobenzoyldiphenyl ether through aromatic nucleophilic substitution reactions. 1-(tert-Butyldimethylsiloxy-3,5-bis(4-fluorobenzoylbenzene was polycondensed with bisphenols, followed by cleavage of the protective group to form linear poly(ether ketones having the same hydroxyl groups in the side chains as the chain ends of the dendrimer and hyperbranched polymers. Their properties, such as solubilities, reduced viscosities, and thermal properties, were compared with one another. Similar comparisons were also carried out among the corresponding methoxy group polymers, and the size of the molecules was shown to affect the properties.

  18. Conformational Study of Dibenzyl Ether

    Science.gov (United States)

    Hernandez-Castillo, Alicia O.; Abeysekera, Chamara; Hewett, Daniel M.; Zwier, Timothy S.

    2017-06-01

    Understanding the initial stages of polycyclic aromatic hydrocarbon (PAH) aggregation, the onset of soot formation, is an important goal on the pathway to cleaner combustion processes. PAHs with short alkyl chains, present in fuel-rich combustion environments, can undergo reactions that will chemically link aromatic rings together. One such example of a linked diaryl compound is dibenzyl ether, C_{6}H_{5}-CH_{2}-O-CH_{2}-C_{6}H_{5}. The -CH_{2}-O-CH_{2}- linkage has a length and flexibility well-suited to forming a π-stacked conformation between the two phenyl rings. In this talk, we will explore the single-conformation spectroscopy of dibenzyl ether under jet-cooled conditions in the gas phase. Laser-induced fluorescence, chirped pulse Fourier transform microwave (8-18 GHz region), and single-conformation infrared spectroscopy in the alkyl CH stretch region were all carried out on the molecule, thereby interrogating its full array of electronic, vibrational and rotational degrees of freedom. This work is the first step in a broader study to determine the extent of π-stacking in linked aryl compounds as a function of linkage and PAH size.

  19. 27 CFR 21.108 - Ethyl ether.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Ethyl ether. 21.108 Section 21.108 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT....108 Ethyl ether. (a) Odor. Characteristic odor. (b) Specific gravity at 15.56 °/15.56 °C. Not more...

  20. The synthesis of cholesteryl alkyl ethers.

    Science.gov (United States)

    Halperin, G; Gatt, S

    1980-01-01

    Seventeen cholesteryl alkyl ethers were synthesized through alcoholysis of cholesterol p-toluenesulfonate. This method was found superior to the etherification of sodium or potassium cholesterylate with alkyl halides or methanesulfonates, especially for the preparation of long-chain unsaturated aklyl ethers of [7(m)-3H]cholesterol of high specific activity.

  1. Characterization of Polyethylene-Graft-Sulfonated Polyarylsulfone Proton Exchange Membranes for Direct Methanol Fuel Cell Applications.

    Science.gov (United States)

    Kim, Hyung Kyu; Zhang, Gang; Nam, Changwoo; Chung, T C Mike

    2015-12-04

    This paper examines polymer film morphology and several important properties of polyethylene-graft-sulfonated polyarylene ether sulfone (PE-g-s-PAES) proton exchange membranes (PEMs) for direct methanol fuel cell applications. Due to the extreme surface energy differences between a semi-crystalline and hydrophobic PE backbone and several amorphous and hydrophilic s-PAES side chains, the PE-g-s-PAES membrane self-assembles into a unique morphology, with many proton conductive s-PAES channels embedded in the stable and tough PE matrix and a thin hydrophobic PE layer spontaneously formed on the membrane surfaces. In the bulk, these membranes show good mechanical properties (tensile strength >30 MPa, Young's modulus >1400 MPa) and low water swelling (λ 3 mmol/g in the s-PAES domains. On the surface, the thin hydrophobic and semi-crystalline PE layer shows some unusual barrier (protective) properties. In addition to exhibiting higher through-plane conductivity (up to 160 mS/cm) than in-plane conductivity, the PE surface layer minimizes methanol cross-over from anode to cathode with reduced fuel loss, and stops the HO• and HO₂• radicals, originally formed at the anode, entering into PEM matrix. Evidently, the thin PE surface layer provides a highly desirable protecting layer for PEMs to reduce fuel loss and increase chemical stability. Overall, the newly developed PE-g-s-PAES membranes offer a desirable set of PEM properties, including conductivity, selectivity, mechanical strength, stability, and cost-effectiveness for direct methanol fuel cell applications.

  2. Characterization of Polyethylene-Graft-Sulfonated Polyarylsulfone Proton Exchange Membranes for Direct Methanol Fuel Cell Applications

    Directory of Open Access Journals (Sweden)

    Hyung Kyu Kim

    2015-12-01

    Full Text Available This paper examines polymer film morphology and several important properties of polyethylene-graft-sulfonated polyarylene ether sulfone (PE-g-s-PAES proton exchange membranes (PEMs for direct methanol fuel cell applications. Due to the extreme surface energy differences between a semi-crystalline and hydrophobic PE backbone and several amorphous and hydrophilic s-PAES side chains, the PE-g-s-PAES membrane self-assembles into a unique morphology, with many proton conductive s-PAES channels embedded in the stable and tough PE matrix and a thin hydrophobic PE layer spontaneously formed on the membrane surfaces. In the bulk, these membranes show good mechanical properties (tensile strength >30 MPa, Young’s modulus >1400 MPa and low water swelling (λ < 15 even with high IEC >3 mmol/g in the s-PAES domains. On the surface, the thin hydrophobic and semi-crystalline PE layer shows some unusual barrier (protective properties. In addition to exhibiting higher through-plane conductivity (up to 160 mS/cm than in-plane conductivity, the PE surface layer minimizes methanol cross-over from anode to cathode with reduced fuel loss, and stops the HO• and HO2• radicals, originally formed at the anode, entering into PEM matrix. Evidently, the thin PE surface layer provides a highly desirable protecting layer for PEMs to reduce fuel loss and increase chemical stability. Overall, the newly developed PE-g-s-PAES membranes offer a desirable set of PEM properties, including conductivity, selectivity, mechanical strength, stability, and cost-effectiveness for direct methanol fuel cell applications.

  3. Room temperature synthesis of biodiesel using sulfonated graphitic carbon nitride

    Science.gov (United States)

    Sulfonation of graphitic carbon nitride (g-CN) affords a polar and strongly acidic catalyst, Sg-CN, which displays unprecedented reactivity and selectivity in biodiesel synthesis and esterification reactions at room temperature.

  4. Sulfonated hydrocarbon graft architectures for cation exchange membranes

    DEFF Research Database (Denmark)

    Nielsen, Mads Møller; Jankova Atanasova, Katja; Hvilsted, Søren

    2013-01-01

    A synthetic strategy to hydrocarbon graft architectures prepared from a commercial polysulfone and aimed as ion exchange membrane material is proposed. Polystyrene is grafted from a polysulfone macroinitiator by atom transfer radical polymerization, and subsequently sulfonated with acetyl sulfate...

  5. Catalyst-free synthesis of 3-sulfone nitrile from sulfonyl hydrazides and acrylonitrile in water.

    Science.gov (United States)

    Li, Wei; Gao, Lingfeng; Zhuge, Wenyun; Sun, Xu; Zheng, Gengxiu

    2017-09-26

    A novel catalyst-free sulfonation reaction for synthesizing 3-sulfone nitrile compounds from sulfonyl hydrazides and acrylonitriles in water, without any metal catalyst, ligand or organic solvent, was demonstrated. This catalyst-free protocol provides a new synthetic method for the construction of 3-sulfone nitrile compounds with excellent yields. The D2O experiment adequately proved that the catalyst-free sulfonation reaction occurs via a Michael addition mechanism and that the hydrogen of 3-sulfone nitrile comes from water.

  6. Amperometric urea biosensors based on sulfonated graphene/polyaniline nanocomposite

    OpenAIRE

    Das G.; Yoon HH

    2015-01-01

    Gautam Das, Hyon Hee Yoon Department of Chemical and Biological Engineering, Gachon University, Seongnam, Gyeonggi-do, South Korea Abstract: An electrochemical biosensor based on sulfonated graphene/polyaniline nanocomposite was developed for urea analysis. Oxidative polymerization of aniline in the presence of sulfonated graphene oxide was carried out by electrochemical methods in an aqueous environment. The structural properties of the nanocomposite were characterized by Fourier-transform...

  7. Oil recovery with vinyl sulfonic acid-acrylamide copolymers

    Energy Technology Data Exchange (ETDEWEB)

    Norton, C.J.; Falk, D.O.

    1973-12-18

    An aqueous polymer flood containing sulfomethylated alkali metal vinyl sulfonate-acrylamide copolymers was proposed for use in secondary or tertiary enhanced oil recovery. The sulfonate groups on the copolymers sustain the viscosity of the flood in the presence of brine and lime. Injection of the copolymer solution into a waterflooded Berea core, produced 30.5 percent of the residual oil. It is preferred that the copolymers are partially hydrolyzed.

  8. Self-assembled monolayers of sulfonate-terminated alkanethiols investigated by frequency modulation atomic force microscopy in liquid

    Science.gov (United States)

    Asakawa, Hitoshi; Inada, Natsumi; Hirata, Kaito; Matsui, Sayaka; Igarashi, Takumi; Oku, Norihisa; Yoshikawa, Norinobu; Fukuma, Takeshi

    2017-11-01

    A molecular-scale understanding of self-assembled monolayers (SAMs) of sulfonate-terminated alkanethiols is crucial for interfacial studies of functionalized SAMs and their various applications. However, such an understanding has been difficult to achieve because of the lack of direct information on these molecular-scale structures in real space. In this study, we investigated the structures of sulfonate SAMs of sodium 11-mercapto-1-undecanesulfonate (MUS) by frequency modulation atomic force microscopy (FM-AFM) in liquid. The subnanometer-resolution FM-AFM images showed that the single-component MUS SAM prepared in pure water had random surface structures. In contrast, the MUS SAM prepared in a water-ethanol mixed solvent showed periodic striped structures with a flat-lying conformation. The results suggest a significant solvent effect on molecular-scale structures of long-chain sulfonate SAMs. In addition, we investigated the molecular-scale structures of mixed SAMs of MUS and 11-mercapto-1-undecanol (MUO) with alkane chains of the same length. The FM-AFM images of the mixed SAMs showed clear phase separation between MUS SAM and MUO SAM domains. In the MUO SAM domains, the incorporated MUS molecules appeared as protrusions. The results obtained in this study provide direct structural information on long-chain sulfonate and mixed SAMs.

  9. Characterization of a sulfonated polycarbonate resistive humidity sensor.

    Science.gov (United States)

    Rubinger, Carla P L; Calado, Hallen D R; Rubinger, Rero M; Oliveira, Henrique; Donnici, Claudio L

    2013-02-05

    In this work; resistive moisture sensors were obtained by dip coating sulfonated polycarbonate (SPC) onto silver interdigitated electrodes. Commercial polycarbonate was sulfonated with acetyl sulphate at two different sulfonation degrees corresponding to 9.0 and 18.0 mole %. Impedance spectroscopy was used to investigate the humidity sensing properties at controlled relative humidity (RH%) environments generated from standard saline solutions in the range of 11-90 RH%. For the highest sulfonated sample; in the RH% range investigated (11 to 90%); the sensor impedance changed from 4.7 MΩ to 18 kΩ. Humidity sensors made from sulfonated polycarbonate showed exponential decay behavior of the impedance at constant frequency with the environmental relative humidity. Sample 9SPC presented dielectric relaxation response for environmental humidity between 58 and 90 RH% while sample 18SPC presented dielectric relaxation response for the entire measured range between 11 and 90 RH%. Sulfonated polycarbonate could be a promising material for the fabrication of simple and cheap humidity-sensing sensors for the assessment of relative humidity of the surrounding environment, as suggested by experimental results.

  10. Emergent gravity and ether-drift experiments

    Science.gov (United States)

    Consoli, M.; Pappalardo, L.

    2010-11-01

    According to several authors, gravity might be a long-wavelength phenomenon emerging in some ‘hydrodynamic limit’ from the same physical, flat-space vacuum viewed as a form of superfluid medium. In this framework, light might propagate in an effective acoustic geometry and exhibit a tiny anisotropy that could be measurable in the present ether-drift experiments. By accepting this view of the vacuum, one should also consider the possibility of sizeable random fluctuations of the signal that reflect the stochastic nature of the underlying ‘quantum ether’ and could be erroneously interpreted as instrumental noise. To test the present interpretation, we have extracted the mean amplitude of the signal from various experiments with different systematics, operating both at room temperature and in the cryogenic regime. They all give the same consistent value {< A rangle ={mathcal O}(10^{-15})} which is precisely the magnitude expected in an emergent-gravity approach, for an apparatus placed on the Earth’s surface. Since physical implications could be substantial, it would be important to obtain more direct checks from the instantaneous raw data and, possibly, with new experimental set-ups operating in gravity-free environments.

  11. Ion Exchange Formation via Sulfonated Bicomponent Nonwovens

    Science.gov (United States)

    Stoughton, Hannah L.

    For many years ion exchange resins were used to: remove heavy metals from water, recover materials from wastewater, and eliminate harmful gases from the air. While use of these resin beads dominates the ion exchange industry, the beads have limitations that should be considered when decisions are made to employ them. For instance, officials must balance the inherent zero sum surface area and porosity of the materials. This series of studies investigates the use of bicomponent nonwovens as a base substrate for producing high surface area ion exchange materials for the removal of heavy metal ions. Functionalized materials were produced in a two-step process: (1) PET/PE spunbond bicomponent fibers were fractured completely, producing the high surface area nonwoven to be used as the base ion exchange material, and (2) the conditions for functionalizing the PET fibers of the nonwoven webs were investigated where an epoxy containing monomer was grafted to the surface followed by sulfonation of the monomer. The functionalization reactions of the PET fibers were monitored based on: weight gain, FTIR, TOF-SIMS, and SEM. Ion exchange properties were evaluated using titration and copper ion removal capacity from test solutions. The relationship between web structure and removal efficiency of the metal ions was defined through a comparison of the bicomponent and homocomponent nonwovens for copper ion removal efficiency. The investigation revealed that utilizing the high surface area, fractured bicomponent nonwoven ion exchange materials with capacities comparable to commercially available ion exchange resins could be produced.

  12. Atmospheric lifetimes of selected fluorinated ether compounds

    DEFF Research Database (Denmark)

    Heathfield, A.E.; Anastasi, C.; Pagsberg, Palle Bjørn

    1998-01-01

    Atmospheric lifetimes have been estimated for a selection of ethers, the latter representing a class of compounds being considered as replacements for chlorofluorocarbons. The estimates are based on laboratory measurements of rate constants for the reaction of the OH radical with the ethers......, and a comparison with the behaviour of methyl chloroform in the atmosphere. The lifetimes for the ethers ranged from a few hours to half a year, significantly lower than those of chlorofluorocarbons and other replacements being considered. (C) 1998 Elsevier Science Ltd. All rights reserved....

  13. Preliminary Study of the Use of Sulphonated Polyether Ether Ketone (SPEEK as Proton Exchange Membrane for Microbial Fuel Cell (MFC

    Directory of Open Access Journals (Sweden)

    Dani Permana

    2018-02-01

    Full Text Available Sulfonated polyether ether ketone (SPEEK was utilized as a proton exchange membrane (PEM in Microbial Fuel Cell (MFC. The SPEEK performance in producing electricity had been observed in MFC using wastewater and glucose as substrates. The MFC with catering and tofu wastewater produced maximum power density about 0.31 mW/m2 and 0.03 mW/m2, respectively, lower that of MFC with tapioca average power density of 39.4 W/m2 over 48 h. The power density boosted because of the presence of Saccharomyces cerevisiae as inoculum. The study using of S. cerevisiae and Acetobacter acetii, separately, were also conducted in with glucose as substrate. The MFC produced an average power densities were 7.3 and 6.4 mW/m2 for S. cerevisiae and A. acetii, respectively. The results of this study indicated that SPEEK membrane has the potential usage in MFCs and can substitute the commercial membrane, Nafion. Article History: Received: Juni 14th 2017; Received: Sept 25th 2017; Accepted: December 16th 2017; Available online How to Cite This Article: Putra, H.E., Permana, D and Djaenudin, D. (2018 Preliminary Study of the Use of Sulfonated Polyether Ether Ketone (SPEEK as Proton Exchange Membrane for Microbial Fuel Cell (MFC. International Journal of Renewable Energy Development, 7(1, 7-12. https://doi.org/10.14710/ijred.7.1.7-12

  14. SuFEx Click: New Materials from SOxF and Silyl Ethers.

    Science.gov (United States)

    Yatvin, Jeremy; Brooks, Karson; Locklin, Jason

    2016-11-07

    New forms of click chemistry present new opportunities in materials science. Sulfur(VI) fluoride exchange (SuFEx) is a recently discovered click reaction between molecules containing SO x F groups and silyl ethers, two functionalities that are orthogonal to all other known click chemistries, that generates sulfate or sulfonate connections upon the addition of certain organobases or fluoride sources. SuFEx also has several important advantages over other click reactions in that it is insensitive to ambient oxygen and water, and its precursor materials, especially SO x F, are chemically, UV, and thermally inert. This Concept article focuses on the unique reactivity of SuFEx and its relation to building high molecular weight polymers and surface coatings, both of which make it a powerful new tool for materials science. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Poly(aryl ethers) and related polysiloxane copolymer molecular coatings: preparation and radiation degradation. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Mcgrath, J.E.

    1982-05-01

    The radiation degradation of poly(arylene ether sulfones) and related materials is studied. These basic studies are important both as a means to developing stronger, more stable matrix resins for composite materials, as well as to improve the data base in regard to chemical structure-physical property relationships. Thirty homo and copolymers were synthesized, at least partially characterized and, in several cases suitable film casting techniques were developed. Four samples were chosen for initial radiation degradation. Poly(dimethyl siloxane) soft bocks/segments can preferentially migrate to the surface of copolymer films. Since siloxanes are utilized as thermal control coatings, this form of 'molecular' coating is of interest. The chemistry for preparing such copolymers with any of the polymers described was demonstrated.

  16. Development of proton exchange membranes fuel cells with sulfonated HTPB-phenol; Desenvolvimento de membranas polimericas trocadoras de protons utilizando PBLH-fenol

    Energy Technology Data Exchange (ETDEWEB)

    Ferraz, Fernando A.; Oliveira, Angelo R.S.; Cesar-Oliveira, Maria Aparecida F. [Universidade Federal do Parana (UFPR), Curitiba, PR (Brazil). Dept. de Quimica. Lab. de Polimeros Sinteticos], e-mail: ferraz@quimica.ufpr.br; Cantao, Mauricio P. [LACTEC - Instituto de Tecnologia para o Desenvolvimento, Curitiba, PR (Brazil). Centro Politecnico

    2007-07-01

    Proton exchange membrane fuel cells (PEMFC) have been paid attention as promising candidates for vehicle and portable applications. PEMFC employ proton exchange polymer membrane which serves as an electrolyte between anode and cathode. Nafion{sup R} (DuPont), perfluorosulfonic acid/PTFE copolymer membranes are typically used as the polymer electrolyte in PEMFC due to their good chemical and mechanical properties as well as high proton conductivity. However, high cost of these materials is one of main obstacles for commercialization of PEMFC. Extensive efforts have been devoted to develop alternative polymer electrolyte membranes. Our group have investigated the development of proton exchange membranes fuel cells using sulfonated HTPB-Phenyl ether (HTPB-Phenol), making possible the formation of membranes with sulfonated groups amount of 2,4, 2,5 and 2,8 mmol/g of dry polymer from HTPB-Phenol 80, 98 and 117 respectively. These results mean a bigger values than those of the Nafion{sup R} membranes, that possess an ion exchange capacity of 0,67 up to 1,25 mmol/g of sulfonated groups. (author)

  17. Clinical comparison of ethyl acetate and diethyl ether in the formalin-ether sedimentation technique.

    OpenAIRE

    Erdman, D D

    1981-01-01

    A substitute for the volatile solvent diethyl ether has been actively sought for the Formalin-ether sedimentation technique. Ethyl acetate has recently been shown to be a comparable substitute. In an effort to verify these findings and evaluate ethyl acetate under clinical conditions, comparison studies with 62 fresh human stool specimens were performed. Parallel concentrates with diethyl ether and ethyl acetate were prepared for each specimen, and the quantity and appearance of recovered par...

  18. Fatty liver disease induced by perfluorooctane sulfonate: Novel insight from transcriptome analysis.

    Science.gov (United States)

    Fai Tse, William Ka; Li, Jing Woei; Kwan Tse, Anna Chung; Chan, Ting Fung; Hin Ho, Jeff Cheuk; Sun Wu, Rudolf Shiu; Chu Wong, Chris Kong; Lai, Keng Po

    2016-09-01

    Perfluorooctane sulfonate (PFOS), a hepato-toxicant and potential non-genotoxic carcinogen, was widely used in industrial and commercial products. Recent studies have revealed the ubiquitous occurrence of PFOS in the environment and in humans worldwide. The widespread contamination of PFOS in human serum raised concerns about its long-term toxic effects and its potential risks to human health. Using fatty liver mutant foie gras (fgr(-/-))/transport protein particle complex 11 (trappc11(-/-)) and PFOS-exposed wild-type zebrafish embryos as the study model, together with RNA sequencing and comparative transcriptomic analysis, we identified 499 and 1414 differential expressed genes (DEGs) in PFOS-exposed wild-type and trappc11 mutant zebrafish, respectively. Also, the gene ontology analysis on common deregulated genes was found to be associated with different metabolic processes such as the carbohydrate metabolic process, glycerol ether metabolic process, mannose biosynthetic process, de novo' (Guanosine diphosphate) GDP-l-fucose biosynthetic process, GDP-mannose metabolic process and galactose metabolic process. Ingenuity Pathway Analysis further highlighted that these deregulated gene clusters are closely related to hepatitis, inflammation, fibrosis and cirrhosis of liver cells, suggesting that PFOS can cause liver pathogenesis and non-alcoholic fatty liver disease in zebrafish. The transcriptomic alterations revealed may serve as biomarkers for the hepatotoxic effect of PFOS. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Activity relationships for aromatic crown ethers

    CERN Document Server

    Wilson, M J

    1998-01-01

    This thesis involves an investigation of aromatic crown ethers and a study of their binding constants for alkali metals. The study was motivated by the current needs of the semiconductor industry to improve the scavenging of mobile ions from fabricated circuits. A number of aromatic crown ethers have been sulphonated in an attempt to improve their water solubility and cation binding activity. These materials have been extensively studied and their binding activity determined. In collaboration with a molecular modelling study, the effect of ionisable sulphonate groups on the macrocycles' behaviour has been investigated. The broader issue of the effect of substituents in aromatic crown ethers has also been studied with the preparation of a wide range of substituted crown ethers. The cation binding activity of these materials has been found to bear a simple relationship to the electron withdrawing nature of the aromatic substituents. This relationship can be accurately monitored using electronic charge densities...

  20. Isomerization of allyl ethers initiated by lithium diisopropylamide.

    Science.gov (United States)

    Su, Chicheung; Williard, Paul G

    2010-12-03

    Lithium diisopropylamide (LDA) promotes virtually quantitative conversion of allylic ethers to (Z)-propenyl ethers. It was discovered that allylic ethers can be isomerized efficiently with very high stereoselectivity to (Z)-propenyl ethers by LDA in THF at room temperature. The reaction time for the conversion increases with more sterically hindered allylic ethers. Different amides were also compared with LDA for their ability to effect this isomerization.

  1. Synthesis in pilot plant scale and physical properties of sulfonated polystyrene

    Directory of Open Access Journals (Sweden)

    Martins Cristiane R.

    2003-01-01

    Full Text Available The homogenous sulfonation of polystyrene was developed in a pilot plant scale producing polymers with different sulfonation degrees (18 to 22 mole % of sulfonated styrene units. The reaction yield depends chiefly on the concentration ratio of acetyl sulfate and polystyrene. The morphological and thermal properties of the sulfonated polystyrene obtained by homogeneous sulfonation were studied by means of scanning electron microscopy, differential scanning calorimetry and thermogravimetry. The glass transition temperature of sulfonated polystyrene increases in relation to pure polystyrene and DCp was evaluated in order to confirm the strong interactions among the ~SO3H groups.

  2. Final report on the safety assessment of PPG-2 methyl ether, PPG-3 methyl ether, and PPG-2 methyl ether acetate.

    Science.gov (United States)

    Robinson, Valerie; Bergfeld, Wilma F; Belsito, Donald V; Klaassen, Curtis D; Marks, James G; Shank, Ronald C; Slaga, Thomas J; Snyder, Paul W; Andersen, F Alan

    2009-01-01

    PPG-2 methyl ether, PPG-3 methyl ether, and PPG-2 methyl ether acetate are used in cosmetics as fragrance ingredients and/or solvents at concentrations of 0.4% to 2%. Propylene glycol ethers are rapidly absorbed and distributed throughout the body when introduced by inhalation or oral exposure, but the inhalation toxicity of PPG-2 methyl ether vapor, for example, is low. Aerosols, such as found with hair sprays, produce particle sizes that are not respirable. Because these ingredients are highly water-soluble, they are likely to be absorbed through the human skin only at slow rates, resulting in low blood concentrations and rapid removal by the kidney. These ingredients are not genotoxic and are not reproductive or developmental toxicants. Overall the data are sufficient to conclude that PPG-2 methyl ether, PPG-3 methyl ether, and PPG-2 methyl ether acetate are safe as used in cosmetics.

  3. Inhibition of the anaerobic digestion process by linear alkylbenzene sulfonates

    DEFF Research Database (Denmark)

    Gavala, Hariklia N.; Ahring, Birgitte Kiær

    2002-01-01

    Linear Alkylbenzene Sulfonates (LAS) are the most widely used synthetic anionic surfactants. They are anthropogenic, toxic compounds and are found in the primary sludge generated in municipal wastewater treatment plants. Primary sludge is usually stabilized anaerobically and therefore it is impor......Linear Alkylbenzene Sulfonates (LAS) are the most widely used synthetic anionic surfactants. They are anthropogenic, toxic compounds and are found in the primary sludge generated in municipal wastewater treatment plants. Primary sludge is usually stabilized anaerobically and therefore...... it is important to investigate the effect of these xenobiotic compounds on an anaerobic environment. The inhibitory effect of Linear Alkylbenzene Sulfonates (LAS) on the acetogenic and methanogenic step of the anaerobic digestion process was studied. LAS inhibit both acetogenesis from propionate...

  4. The shape of cells adhering to sulfonated copolymer surfaces.

    Science.gov (United States)

    Kowalczyńska, Hanna M; Nowak-Wyrzykowska, Małgorzata; Inkielman, Marcin; Stołowska, Liliana; Marciniak, Ewa

    2005-01-01

    We studied the shape of L1210 leukaemia cells adhering in a protein-free medium to sulfonated (styrene/methyl methacrylate) copolymer surfaces of two sulfonic group densities, and thus of differing wettability. The use of our image analysis method and the mathematical procedure [Kowalczynska, H.M. et al, Colloids Surfaces B: Biointerfaces, 30 (2003) 193-206.] allowed us to calculate the values of the so-called shape parameter, which quantitatively determines the three-dimensional cell shape. Here, we show that the values of the shape parameter of the adhering cells and the F-actin concentration, in the region near the cell-substratum interface, depend on the density of sulfonic groups present on the substratum surface.

  5. Perfluoroalkyl sulfonates cause alkyl chain length-dependent hepatic steatosis and hypolipidemia mainly by impairing lipoprotein production in APOE*3-leiden CETP mice

    NARCIS (Netherlands)

    Bijland, S.; Rensen, P.C.N.; Pieterman, E.J.; Maas, A.C.E.; Hoorn, J.W. van der; Erk, M.J. van; Havekes, L.M.; Dijk, K.W. van; Chang, S.C.; Ehresman, D.J.; Butenhoff, J.L.; Princen, H.M.G.

    2011-01-01

    Perfluorobutane sulfonate (PFBS), perfluorohexane sulfonate (PFHxS), and perfluorooctane sulfonate (PFOS) are stable perfluoroalkyl sulfonate (PFAS) surfactants, and PFHxS and PFOS are frequently detected in human biomonitoring studies. Some epidemiological studies have shown modest positive

  6. Aging mechanism of Sulfonated poly(aryl ether ketone) (sPAEK) in an hydroperoxide solution and in fuel cell

    Science.gov (United States)

    Perrot, Carine; Gonon, Laurent; Marestin, Catherine; Morin, Arnaud; Gebel, Gérard

    Ex situ and in situ fuel cell degradation of a sPAEK membrane were investigated. Post-mortem analyses of the aged membrane and of the degradation products eluted in water were carried out by NMR, IR, SEC and EDX. Ex situ agings were performed in a low concentration H 2O 2 solution (0.07%) without any metallic catalyst. We exemplify that ex situ accelerated aging tests in such hydrogen peroxide solution are relevant to the chemical degradation in fuel cell. We have shown that a 500 h fuel cell test at moderate temperature (60 °C) induces significant modifications on the macromolecules such as a 40% molecular weight reduction. Degradation appears heterogeneous and limited to the cathode side. The model compound approach developed in the previous article (Perrot et al. [42]) has allowed the identification of the aging path in fuel cell. Phenolic and carboxylic acid chain ends have been identified as the main products resulting from polymer chain scissions. The ex situ lifetime (100 h) of the membrane appears very limited with respect to the in situ operating time suggesting that the low H 2O 2 concentration (0.07%) is still much higher than in fuel cell.

  7. Aging mechanism of Sulfonated poly(aryl ether ketone) (sPAEK) in an hydroperoxide solution and in fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Perrot, Carine; Gonon, Laurent; Gebel, Gerard [Institut Nanosciences et Cryogenie, Laboratoire & lt; & lt; Structures et Proprietes d' Architectures Moleculaires& gt; & gt; , Groupe des Polymeres Conducteurs Ioniques, UMR 5819 CEA-CNRS-UJF, 17 rue des Martyrs, 38054, Grenoble Cedex 9 (France); Marestin, Catherine [Laboratoire des Materiaux Organiques a Proprietes Specifiques, UMR 5041, CNRS, Chemin du Canal, 69360, Solaize (France); Morin, Arnaud [Direction de la Recherche Technologique, LITEN, DTH, LCPEM, CEA Grenoble, 17 rue des Martyrs, 38054, Grenoble Cedex 9 (France)

    2010-01-15

    Ex situ and in situ fuel cell degradation of a sPAEK membrane were investigated. Post-mortem analyses of the aged membrane and of the degradation products eluted in water were carried out by NMR, IR, SEC and EDX. Ex situ agings were performed in a low concentration H{sub 2}O{sub 2} solution (0.07%) without any metallic catalyst. We exemplify that ex situ accelerated aging tests in such hydrogen peroxide solution are relevant to the chemical degradation in fuel cell. We have shown that a 500 h fuel cell test at moderate temperature (60 C) induces significant modifications on the macromolecules such as a 40% molecular weight reduction. Degradation appears heterogeneous and limited to the cathode side. The model compound approach developed in the previous article (Perrot et al.) has allowed the identification of the aging path in fuel cell. Phenolic and carboxylic acid chain ends have been identified as the main products resulting from polymer chain scissions. The ex situ lifetime (100 h) of the membrane appears very limited with respect to the in situ operating time suggesting that the low H{sub 2}O{sub 2} concentration (0.07%) is still much higher than in fuel cell. (author)

  8. Phase behavior of a pure alkyl aryl sulfonate surfactant. [Sodium 8-phenyl-n-hexadecyl-p-sulfonate

    Energy Technology Data Exchange (ETDEWEB)

    Franses, E.I.; Davis, H.T.; Miller, W.G.; Scriven, L.E.

    1978-03-01

    Specctroturbidimetry, visual and microscopic observations, ultracentrifugation and ultrafiltration, conductimetry, and /sup 13/C NMR were used to study the phase behavior of pure sodium 8-phenyl-n-hexadecyl-p-sulfonate in water--NaCl, decane, and water--decane. Solubility of the sulfonate in water is 0.06 wt % at 25/sup 0/C and 0.7 wt % at 90/sup 0/C, and it drops to 0.0002 wt % in 3 wt % NaCl (25/sup 0/C). A liquid crystalline phase in equilibrium with aqueous solution contains 25 wt % water. Nucleation of supersaturated solutions is slow. Dispersability of the sulfonate is high, but NaCl has an adverse effect. 39 references, 13 figs., 5 tables. (DLC)

  9. Atmospheric degradation of 2-chloroethyl vinyl ether, allyl ether and allyl ethyl ether: Kinetics with OH radicals and UV photochemistry.

    Science.gov (United States)

    Antiñolo, M; Ocaña, A J; Aranguren, J P; Lane, S I; Albaladejo, J; Jiménez, E

    2017-08-01

    Unsaturated ethers are oxygenated volatile organic compounds (OVOCs) emitted by anthropogenic sources. Potential removal processes in the troposphere are initiated by hydroxyl (OH) radicals and photochemistry. In this work, we report for the first time the rate coefficients of the gas-phase reaction with OH radicals (k OH ) of 2-chloroethyl vinyl ether (2ClEVE), allyl ether (AE), and allyl ethyl ether (AEE) as a function of temperature in the 263-358 K range, measured by the pulsed laser photolysis-laser induced fluorescence technique. No pressure dependence of k OH was observed in the 50-500 Torr range in He as bath gas, while a slightly negative T-dependence was observed. The temperature dependent expressions for the rate coefficients determined in this work are: The estimated atmospheric lifetimes (τ OH ) assuming k OH at 288 K were 3, 2, and 4 h for 2ClEVE, AE and AEE, respectively. The kinetic results are discussed in terms of the chemical structure of the unsaturated ethers by comparison with similar compounds. We also report ultraviolet (UV) and infrared (IR) absorption cross sections (σ λ and σ(ν˜), respectively). We estimate the photolysis rate coefficients in the solar UV actinic region to be less than 10 -7 s -1 , implying that these compounds are not removed from the atmosphere by this process. In addition, from σ(ν˜) and τ OH , the global warming potential of each unsaturated ether was calculated to be almost zero. A discussion on the atmospheric implications of the titled compounds is presented. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. 40 CFR 721.9595 - Alkyl benzene sulfonic acids and alkyl sulfates, amine salts (generic).

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alkyl benzene sulfonic acids and alkyl... Significant New Uses for Specific Chemical Substances § 721.9595 Alkyl benzene sulfonic acids and alkyl...) The chemical substances identified generically as alkyl benzene sulfonic acids and alkyl sulfates...

  11. Fast atom bombardment mass spectrometry of condensed tannin sulfonate derivatives

    Science.gov (United States)

    J.J. Karchesy; L.Y. Foo; Richard W. Hemingway; E. Barofsky; D.F. Barofsky

    1989-01-01

    Condensed tannin sulfonate derivatives were studied by fast atom bombardment mass spectrometry (FAB-MS) to assess the feasibility of using this technique for determining molecular weight and structural information about these compounds. Both positive- and negative-ion spectra provided useful data with regard to molecular weight, cation species present, and presence of...

  12. Sorption of perfluorooctane sulfonate to carbon nanotubes in aquatic sediments

    NARCIS (Netherlands)

    Kwadijk, C.J.A.F.; Velzeboer, I.; Koelmans, A.A.

    2013-01-01

    To date, sorption of organic compounds to nanomaterials has mainly been studied for the nanomaterial in its pristine state. However, sorption may be different when nanomaterials are buried in sediments. Here, we studied sorption of Perfluorooctane sulfonate (PFOS) to sediment and to sediment with 4%

  13. Solid-supported sulfonic acid-containing catalysts efficiently ...

    Indian Academy of Sciences (India)

    Silica-functionalized sulfonic acid (SFSA) and sulfuric acid-modified polyethylene glycol-6000 (PEG-OSO3H) efficiently catalysed one-pot multi-component condensation of enolizable ketones or alkyl acetoacetates with arylaldehydes, acetonitrile and acetyl chloride to afford the corresponding -acetamido ketone or ester ...

  14. Electronic Conductivity of Polypyrrole−Dodecyl Benzene Sulfonate Complexes

    DEFF Research Database (Denmark)

    West, Keld; Bay, Lasse; Nielsen, Martin Meedom

    2004-01-01

    The electronic conductivity of the electroactive polymer polypyrrole-dodecyl benzene sulfonate (PPy-DBS) has been characterized as function of the redox level. The polymer was synthesized with different isomers of the dopant anions: the common mixed DBS tenside and three well-defined synthetic...

  15. Sulfonated polyimides containing triphenylphosphine oxide for proton exchange membranes

    Energy Technology Data Exchange (ETDEWEB)

    Mandal, Arun Kumar; Bera, Debaditya; Banerjee, Susanta, E-mail: susanta@matsc.iitkgp.ernet.in

    2016-09-15

    A series of sulfonated co-polyimides (co-SPI) were prepared by one pot polycondensation reaction of a combination of diamines namely; 4,4′-diaminostilbene-2,2′-disulfonic acid (DSDSA) and prepared non-sulfonated diamine (DATPPO) containing triphenylphosphine oxide with 1,4,5,8-naphthalenetetracarboxylic dianhydride (NTDA). All these soluble co-SPI gave flexible membranes with high thermal stability and showed good mechanical property. Transmission electron microscopy (TEM) analysis revealed the microphase separated morphology with well-dispersed hydrophilic (cluster size in the range of 5–55 nm) domains. The co-SPI membranes showed high oxidative and hydrolytic stability with higher proton conductivity. All these co-SPI membranes exhibited low water uptake and swelling ratio. The co-SPI membrane TPPO-60 (60% degree of sulfonation) with IEC{sub W} = 1.84 mequiv g{sup −1} showed high proton conductivity (99 mS cm{sup −1} at 80 °C and 107 mS cm{sup −1} at 90 °C) in water with high oxidative (20 h) and hydrolytic stability (only 5% degradation in 24 h). - Highlights: • Triphenylphosphine oxide containing sulfonated polyimides (SPIs) was synthesized. • The SPIs showed good oxidative and hydrolytic stability and high proton conductivity. • TEM analysis revealed well separated morphology of the SPIs.

  16. Response of weeping willows to linear alkylbenzene sulfonate

    DEFF Research Database (Denmark)

    Yu, X.; Trapp, Stefan; Zhou, P.

    2006-01-01

    Linear alkylbenzene sulfonate (LAS) is the most commonly used anionic surfactant in laundry detergents and cleaning agents. LAS compounds are found in surface waters and soils. The short-term acute toxicity of LAS to weeping willows (Salix babylonica L.) was investigated. Willow cuttings were grown...

  17. Polyether sulfone membrane modeling and construction for the ...

    African Journals Online (AJOL)

    The aim of this study was constructed the polyether sulfone membrane and modelling it, and for checking impact pressure, the amount of iron nanoparticles and sulfate iron intervention in reducing nitrate irons from water. For the removal ion of nitrate at 50 ppm concentration of nitrate potassium, we made three membranes ...

  18. 40 CFR 721.1625 - Alkylbenzene sulfonate, amine salt.

    Science.gov (United States)

    2010-07-01

    .... 721.1625 Section 721.1625 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC... subject to reporting. (1) The chemical substance identified generically as alkylbenzene sulfonate, amine... this part apply to this section except as modified by this paragraph. (1) Recordkeeping. The following...

  19. Intrinsic and Ionic Conduction in Humidity-Sensitive Sulfonated Polyaniline

    NARCIS (Netherlands)

    Doan, D.C.T.; Ramaneti, R.; Baggerman, J.; Tong, H.D.; Marcelis, A.T.M.; Rijn, van C.J.M.

    2014-01-01

    The influence of humidity on the conductivity of sulfonated polyaniline (SPANI) and polyaniline (PANI) is investigated with electrochemical impedance spectroscopy (EIS). Separation of intrinsic (q) and ionic charge (i) mobility was observed using combination of ac and dc impedance measurements at

  20. Uptake of 4-Toluene Sulfonate by Comamonas testosteroni T-2

    NARCIS (Netherlands)

    LOCHER, HH; POOLMAN, B; COOK, AM; KONINGS, WN

    The mechanism of transport of the xenobiotic 4-toluene sulfonate (TS) in Comamonas testosteroni T-2 was investigated. Rapid uptake of TS was observed only in cells grown with TS or 4-methylbenzoate as a carbon and energy source. Initial uptake rates under aerobic conditions showed substrate

  1. Fate of linear alkylbenzene sulfonate (LAS) in activated sludge plants

    NARCIS (Netherlands)

    Temmink, B.G.; Klapwijk, A.

    2004-01-01

    Monitoring data were collected in a pilot-scale municipal activated sludge plant to assess the fate of the C12-homologue of linear alkyl benzene sulfonate (LAS-C12). The pilot-plant was operated at influent LAS-C12 concentrations between 2 and 12 mg/l and at sludge retention times of 10 and 27

  2. Epoxy-crosslinked sulfonated poly (phenylene) copolymer proton exchange membranes

    Science.gov (United States)

    Hibbs, Michael; Fujimoto, Cy H.; Norman, Kirsten; Hickner, Michael A.

    2010-10-19

    An epoxy-crosslinked sulfonated poly(phenylene) copolymer composition used as proton exchange membranes, methods of making the same, and their use as proton exchange membranes (PEM) in hydrogen fuel cells, direct methanol fuel cell, in electrode casting solutions and electrodes, and in sulfur dioxide electrolyzers. These improved membranes are tougher, have higher temperature capability, and lower SO.sub.2 crossover rates.

  3. Inhalation anaesthesia: from diethyl ether to xenon.

    Science.gov (United States)

    Bovill, J G

    2008-01-01

    Modern anaesthesia is said to have began with the successful demonstration of ether anaesthesia by William Morton in October 1846, even though anaesthesia with nitrous oxide had been used in dentistry 2 years before. Anaesthesia with ether, nitrous oxide and chloroform (introduced in 1847) rapidly became commonplace for surgery. Of these, only nitrous oxide remains in use today. All modern volatile anaesthetics, with the exception of halothane (a fluorinated alkane), are halogenated methyl ethyl ethers. Methyl ethyl ethers are more potent, stable and better anaesthetics than diethyl ethers. They all cause myocardial depression, most markedly halothane, while isoflurane and sevoflurane cause minimal cardiovascular depression. The halogenated ethers also depress the normal respiratory response to carbon dioxide and to hypoxia. Other adverse effects include hepatic and renal damage. Hepatitis occurs most frequently with halothane, although rare cases have been reported with the other agents. Liver damage is not caused by the anaesthetics themselves, but by reactive metabolites. Type I hepatitis occurs fairly commonly and takes the form of a minor disturbance of liver enzymes, which usually resolves without treatment. Type II, thought to be immune-mediated, is rare, unpredictable and results in a severe fulminant hepatitis with a high mortality. Renal damage is rare, and was most often associated with methoxyflurane because of excessive plasma fluoride concentrations resulting from its metabolism. Methoxyflurane was withdrawn from the market because of the high incidence of nephrotoxicity. Among the contemporary anaesthetics, the highest fluoride concentrations have been reported with sevoflurane, but there are no reports of renal dysfunction associated with its use. Recently there has been a renewed interest in xenon, one of the noble gases. Xenon has many of the properties of an ideal anaesthetic. The major factor limiting its more widespread is the high cost, about

  4. A technique to anesthetize turtles with ether.

    Science.gov (United States)

    Belló, A A; Belló-Klein, A

    1991-10-01

    A technique to anesthetize turtles with ether is presented, in which a plastic cannula is passed through the glottis into the trachea. This procedure avoids apnea and allows ether vapours obtained from a chamber to be introduced, by the animal respiratory movements or by means of a pump, into the animal lungs. The anesthesia is rapidly obtained and lasts from 45-90 minutes. The time of recovery from anesthesia ranged from 60-90 minutes. With this technique no deaths were observed and the same animal could be anesthetized repeatedly.

  5. Synthesis of alkynyl ethers and low-temperature sigmatropic rearrangement of allyl and benzyl alkynyl ethers.

    Science.gov (United States)

    Sosa, Juan R; Tudjarian, Armen A; Minehan, Thomas G

    2008-11-06

    Alpha-alkoxy ketones 3 can be transformed into 1-alkynyl ethers 5 by a two-step procedure involving formation of the enol triflate or phosphate and base-induced elimination. Performing the same reaction sequence with allylic alcohols (R2OH, R2 = allyl) furnishes instead gamma,delta-unsaturated carboxylic acid derivatives 6, derived from [3,3]-sigmatropic rearrangement of the intermediate allyl alkynyl ethers at -78 degrees C and trapping of the subsequently formed ketene with nucleophiles (Nu-H). Benzyl alkynyl ether 5 (R2 = benzyl) rearranges to indanone 7 upon heating to 60 degrees C.

  6. Synthesis of Alkynyl Ethers and Low Temperature Sigmatropic Rearrangement of Allyl and Benzyl Alkynyl Ethers

    Science.gov (United States)

    Sosa, Juan R.; Tudjarian, Armen A.; Minehan, Thomas G.

    2009-01-01

    α–Alkoxy ketones 3 can be transformed into 1-alkynyl ethers 5 by a two-step procedure involving formation of the enol triflate or phosphate and base-induced elimination. Performing the same reaction sequence with allylic alcohols (R2OH, R2 = allyl) furnishes instead γ,δ-unsaturated carboxylic acid derivatives 6, derived from [3,3]-sigmatropic rearrangement of the intermediate allyl alkynyl ethers at −78 °C and trapping of the subsequently formed ketene with nucleophiles (Nu-H). Benzyl alkynyl ether 5 (R2 = benzyl) rearranges to indanone 7 upon heating to 60 °C. PMID:18847213

  7. Syntheses of Diazadithiacrown Ethers Containing Two 8-Hydroxyquinoline Side Arms

    National Research Council Canada - National Science Library

    Song, H

    2001-01-01

    Ten new diazadithiacrown ethers containing two 8-hydroxyquinoline (HQ) sidearms attached through the HQ 7-positions and four new diazadithiacrown ethers containing two HQ sidearms attached through the HQ 2-positions have been prepared...

  8. IRIS Toxicological Review of Decabromodiphenyl Ether (Final Report)

    Science.gov (United States)

    EPA announced the release of the final report, Toxicological Review of Decabromodiphenyl Ether: in support of the Integrated Risk Information System (IRIS). The updated Summary for Decabromodiphenyl Ether and accompanying toxicological review have been added to the IRIS Da...

  9. 40 CFR 721.3486 - Polyglycerin mono(4-nonylphenyl) ether.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Polyglycerin mono(4-nonylphenyl) ether... Substances § 721.3486 Polyglycerin mono(4-nonylphenyl) ether. (a) Chemical substance and significant new uses...-nonylphenyl) ether (PMN P-94-2230) is subject to reporting under this section for the significant new uses...

  10. 40 CFR 721.3500 - Perhalo alkoxy ether.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Perhalo alkoxy ether. 721.3500 Section... Substances § 721.3500 Perhalo alkoxy ether. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as perhalo alkoxy ether (PMN P-83-1227) is...

  11. 46 CFR 151.50-42 - Ethyl ether.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Ethyl ether. 151.50-42 Section 151.50-42 Shipping COAST... LIQUID HAZARDOUS MATERIAL CARGOES Special Requirements § 151.50-42 Ethyl ether. (a)(1) Gravity tanks... liquid. (g) Precautions shall be taken to prevent the contamination of ethyl ether by strong oxidizing...

  12. 40 CFR 721.3435 - Butoxy-substituted ether alkane.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Butoxy-substituted ether alkane. 721... Substances § 721.3435 Butoxy-substituted ether alkane. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as butoxy-substituted ether alkane...

  13. 40 CFR 799.4440 - Triethylene glycol monomethyl ether.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 31 2010-07-01 2010-07-01 true Triethylene glycol monomethyl ether... REQUIREMENTS Specific Chemical Test Rules § 799.4440 Triethylene glycol monomethyl ether. (a) Identification of test substance. (1) Triethylene glycol monomethyl ether (TGME, CAS No. 112-35-6) shall be tested in...

  14. 40 CFR 721.3485 - Hydrofluorocarbon alkyl ether.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Hydrofluorocarbon alkyl ether. 721... Substances § 721.3485 Hydrofluorocarbon alkyl ether. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a hydrofluorocarbon alkyl ether...

  15. 40 CFR 721.3550 - Dipropylene glycol dimethyl ether.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Dipropylene glycol dimethyl ether. 721... Substances § 721.3550 Dipropylene glycol dimethyl ether. (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substance identified as dipropylene glycol dimethyl ether (PMN P-93...

  16. 40 CFR 721.3420 - Brominated arylalkyl ether.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Brominated arylalkyl ether. 721.3420... Substances § 721.3420 Brominated arylalkyl ether. (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substance identified generically as brominated arylalkyl ether (P-83-906) is...

  17. 40 CFR 721.10069 - Ether amine phosphonate (generic).

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Ether amine phosphonate (generic). 721... Substances § 721.10069 Ether amine phosphonate (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as ether amine phosphonate (PMN P...

  18. 40 CFR 721.3465 - Stilbene diglycidyl ether.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Stilbene diglycidyl ether. 721.3465... Substances § 721.3465 Stilbene diglycidyl ether. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as stilbene diglycidyl ether (PMN P-96-1427) is subject to...

  19. 40 CFR 721.3438 - Chlorohydroxyalkyl butyl ether (generic).

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Chlorohydroxyalkyl butyl ether... Specific Chemical Substances § 721.3438 Chlorohydroxyalkyl butyl ether (generic). (a) Chemical substance... chlorohydroxyalkyl butyl ether (PMN P-99-1295) is subject to reporting under this section for the significant new use...

  20. 21 CFR 520.1846 - Polyoxyethylene (23) lauryl ether blocks.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Polyoxyethylene (23) lauryl ether blocks. 520.1846... Polyoxyethylene (23) lauryl ether blocks. (a) Specifications. Each molasses-based block contains 2.2 percent polyoxyethylene (23) lauryl ether. (b) Sponsor. See No. 067949 in § 510.600(c) of this chapter. (c) Conditions of...

  1. 40 CFR 721.3520 - Aliphatic polyglycidyl ether.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Aliphatic polyglycidyl ether. 721.3520... Substances § 721.3520 Aliphatic polyglycidyl ether. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance aliphatic polyglycidyl ether (PMN P-89-1036) is subject to...

  2. 40 CFR 721.3430 - 4-Bromophenyl phenyl ether.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false 4-Bromophenyl phenyl ether. 721.3430... Substances § 721.3430 4-Bromophenyl phenyl ether. (a) Chemical substance and significant new use subject to reporting. (1) The chemical substance 4-bromophenyl phenyl ether (CAS No. 101-55-3) is subject to reporting...

  3. Biosynthesis of archaeal membrane ether lipids

    NARCIS (Netherlands)

    Jain, Samta; Caforio, Antonella; Driessen, Arnold J. M.

    2014-01-01

    A vital function of the cell membrane in all living organism is to maintain the membrane permeability barrier and fluidity. The composition of the phospholipid bilayer is distinct in archaea when compared to bacteria and eukarya. In archaea, isoprenoid hydrocarbon side chains are linked via an ether

  4. Children's exposure to polybrominated diphenyl ethers

    NARCIS (Netherlands)

    Zuurbier, M.; Leijs, M.; Schoeters, G.; Tusscher, G. Ten; Koppe, J.G.

    2006-01-01

    Background: Polybrominated biphenyl ethers (PBDEs), a class of brominated flame retardants, are frequently used in consumer products. PBDEs levels in environmental and human samples have increased in recent decades. Children are exposed to PBDEs through diet, mainly through fish, meat and milk.

  5. The Lubrication Qualities of Dimethyl Ether (DME)

    DEFF Research Database (Denmark)

    Sivebæk, Ion Marius; Sorenson, Spencer C; Jakobsen, J.

    2002-01-01

    Dimethyl Ether (DME) has been recognised as a clean alternative for diesel oil for some years now. Fuelling diesel engines with DME solves their two most significant problems: The emission of particulate matter is virtually eliminated and the level of NOx can be reduced considerably by exhaust gas......, as the clean emission advantage obtained when using DME will be lost....

  6. Preparation and characterization of monovalent ion selective cation exchange membranes based on sulphonated poly(ether ether ketone)

    NARCIS (Netherlands)

    Balster, J.H.; Krupenko, O.; Krupenko, O.; Punt, Ineke G.M.; Stamatialis, Dimitrios; Wessling, Matthias

    2005-01-01

    This paper analyses the separation properties of various commercial cation exchange membranes (CEMs) and tailor made membranes based on sulphonated poly(ether ether ketone) and poly(ether sulphone) for binary electrolyte solutions containing protons and calcium ions. All membranes are thoroughly

  7. Poly(phenylene ether Based Amphiphilic Block Copolymers

    Directory of Open Access Journals (Sweden)

    Edward N. Peters

    2017-09-01

    Full Text Available Polyphenylene ether (PPE telechelic macromonomers are unique hydrophobic polyols which have been used to prepare amphiphilic block copolymers. Various polymer compositions have been synthesized with hydrophilic blocks. Their macromolecular nature affords a range of structures including random, alternating, and di- and triblock copolymers. New macromolecular architectures can offer tailored property profiles for optimum performance. Besides reducing moisture uptake and making the polymer surface more hydrophobic, the PPE hydrophobic segment has good compatibility with polystyrene (polystyrene-philic. In general, the PPE contributes to the toughness, strength, and thermal performance. Hydrophilic segments go beyond their affinity for water. Improvements in the interfacial adhesion between polymers and polar substrates via hydrogen bonding and good compatibility with polyesters (polyester-philic have been exhibited. The heterogeneity of domains in these PPE based block copolymer offers important contributions to diverse applications.

  8. Synthetic applications of aqueous accelerated [3,3] sigmatropic rearrangements of allyl vinyl ethers. [1,3] sigmatropic rearrangements of allyl vinyl ethers in 3 M lithium perchlorate-diethyl ether at ambient temperature. New methods to effect the retro Diels-Alder reaction of N-alkyl-2-azanorbornenes

    Energy Technology Data Exchange (ETDEWEB)

    Clark, J.D.

    1992-01-01

    Claisen rearrangements employed in the synthesis of natural and unnatural products that were heretofore difficult or impossible using conventional means are realized through the agency of water. Allyl vinyl ether 35, the unprotected form of McMurry's aphidicolin intermediate 7, rearranged after 24 h in 2.5:1 water/methanol at 80[degrees]C, affording aldehyde 40 in 70--85% yield. Acetaldehyde elimination witnessed using conventional reaction conditions was suppressed when employing water. The application of a Claisen rearrangement within the molecular framework of fenestranes was realized for the first time. Fenestrene vinyl ethers 28 and 30 rearranged to form the fenestrenes 29 and 31, respectively. Noteworthy is fenestrene 29, the first fenestrane synthesized possessing a trans-ring fusion common to two five-membered rings. The medium of 3.0 M lithium perchlorate-diethyl ether has been found to induce the rarely witnessed rearrangement of allyl vinyl ethers, despite the fact that the corresponding sigmatropic rearrangement is energetically more favorable. Yields are very good; however, in some instances the sigmatropic rearrangement and elimination processes compete slightly. Results from the observed stereoselectivities, concentration effects on reaction rate, and a crossover study indicate that these shifts take place via dissociated ions followed by recombination, and that the observed stereoselectivities are a result of unequal steric effects in the transition states for recombination. Copper(II) and sulfonic acid ion exchange resins have been found to readily catalyze the heterocycloreversion of N-alkyl-2-azanorbornenes to the corresponding primary amines, eliminating the necessity of employing a reactive dienophile to trap out the released cyclopentadiene.

  9. Hypernatremia in a patient treated with sodium polystyrene sulfonate

    Directory of Open Access Journals (Sweden)

    Manish Nepal

    2010-11-01

    Full Text Available Manish Nepal, Ion Dan Bucaloiu, Evan R NorfolkGeisinger Medical Center, Department of Nephrology, Danville, PA, USAAbstract: Severe hyperkalemia requires urgent medical attention and correction in order to prevent arrhythmic complications. Sodium polystyrene sulfonate (SPS is a cation exchange resin commonly used in the management of hyperkalemia. A recent review raised concerns regarding its effectiveness and potential adverse effects. Hypernatremia in adults in the setting of sodium polystyrene sulfonate therapy has not been described in the literature. We report the case of a woman who developed hypernatremia in the setting of excessive SPS administration and hope to increase awareness among clinicians regarding this potential side effect of SPS therapy.Keywords: SPS, hyperkalemia 

  10. Mortar modified with sulfonated polystyrene produced from waste plastic cups

    Directory of Open Access Journals (Sweden)

    L. A. C. MOTTA

    Full Text Available Abstract In this work, we studied the addition of sulfonated polystyrene produced from waste plastic cups as an admixture for mortars. Mortars were analyzed with polystyrene content of 0.0; 0.2; 0.6; 1.0 and 1.4% in relation to the cement mass. The influence of polystyrene on the mortars' properties was evaluated by the consistency index, water retention, water absorption, porosity, elasticity modulus, compressive strength, flexural strength, bond tensile strength and microscopy. The increase in the sulfonated polystyrene content decreased the elasticity modulus of the mortar and, despite higher porosity, there was a reduction of water absorption by capillarity. In relation to mortar without admixture, the modified mortar showed an increase in water retention and consistency index, and a large increase in flexural strength and bond tensile strength. The significant increase of bond tensile strength (214% with admixture 1% highlights the potential of the produced material as an adhesive mortar.

  11. Proton conductive membranes based on doped sulfonated polytriazole

    Energy Technology Data Exchange (ETDEWEB)

    Boaventura, M.; Brandao, L.; Mendes, A. [Laboratorio de Engenharia de Processos, Ambiente e Energia (LEPAE), Faculdade de Engenharia da Universidade do Porto, Rua Roberto Frias, 4200-465 Porto (Portugal); Ponce, M.L.; Nunes, S.P. [GKSS Research Centre Geesthacht GmbH, Max Planck Str. 1, D-21502, Geesthacht (Germany)

    2010-11-15

    This work reports the preparation and characterization of proton conducting sulfonated polytriazole membranes doped with three different agents: 1H-benzimidazole-2-sulfonic acid, benzimidazole and phosphoric acid. The modified membranes were characterized by scanning electron microscopy (SEM), infrared spectra, thermogravimetric analysis (TGA), dynamical mechanical thermal analysis (DMTA) and electrochemical impedance spectroscopy (EIS). The addition of doping agents resulted in a decrease of the glass transition temperature. For membranes doped with 85 wt.% phosphoric acid solution proton conductivity increased up to 2.10{sup -3} S cm{sup -1} at 120 C and at 5% relative humidity. The performance of the phosphoric acid doped membranes was evaluated in a fuel cell set-up at 120 C and 2.5% relative humidity. (author)

  12. Nucleophilic tetrafluoroethylation of carbonyl compounds with fluorinated sulfones

    Czech Academy of Sciences Publication Activity Database

    Václavík, Jiří; Chernykh, Yana; Jurásek, Bronislav; Beier, Petr

    2015-01-01

    Roč. 169, Jan (2015), s. 24-31 ISSN 0022-1139 R&D Projects: GA ČR GAP207/11/0421 Grant - others:GA MŠk(CZ) ED3.2.00/08.0144; GA MŠk(CZ) LM2010005 Institutional support: RVO:61388963 Keywords : fluorine * tetrafluoroethylation * sulfones * nucleophilic addition * carbonyl compounds Subject RIV: CC - Organic Chemistry Impact factor: 2.213, year: 2015

  13. Considerations of the Effects of Naphthalene Moieties on the Design of Proton-Conductive Poly(arylene ether ketone) Membranes for Direct Methanol Fuel Cells.

    Science.gov (United States)

    Wang, Baolong; Hong, Lihua; Li, Yunfeng; Zhao, Liang; Wei, Yuxue; Zhao, Chengji; Na, Hui

    2016-09-14

    Novel sulfonated poly(arylene ether ketones) (SDN-PAEK-x), consisting of dual naphthalene and flexible sulfoalkyl groups, were prepared via polycondensation, demethylation, and sulfobutylation grafting reaction. Among them, SDN-PAEK-1.94 membrane with the highest ion exchange capacity (IEC = 2.46 mequiv·g(-1)) exhibited the highest proton conductivity, which was 0.147 S· cm(-1) at 25 °C and 0.271 S·cm(-1) at 80 °C, respectively. The introduction of dual naphthalene moieties is expected to achieve much enhanced properties compared to those of sulfonated poly(arylene ether ketones) (SNPAEK-x), consisting of single naphthalene and flexible sulfoalkyl groups. Compared with SNPAEK-1.60 with a similar IEC, SDN-PAEK-1.74 membrane showed higher proton conductivity, higher IEC normalized conductivity, and higher effective proton mobility, although it had lower analytical acid concentration. The SDN-PAEK-x membranes with IECs higher than 1.96 mequiv·g(-1) also exhibited higher proton conductivity than that of recast Nafion membrane. Furthermore, SDN-PAEK-1.94 displayed a better single cell performance with a maximum power density of 60 mW·cm(-2) at 80 °C. Considering its high proton conductivity, excellent single cell performance, good mechanical stabilities, low membrane swelling, and methanol permeability, SDN-PAEK-x membranes are promising candidates as alternative polymer electrolyte membranes to Nafion for direct methanol fuel cell applications.

  14. Monovinyl sulfone β-cyclodextrin. A flexible drug carrier system.

    Science.gov (United States)

    del Castillo, Teresa; Marales-Sanfrutos, Julia; Santoyo-González, Francisco; Magez, Stefan; Lopez-Jaramillo, F Javier; Garcia-Salcedo, Jose A

    2014-02-01

    Cyclodextrins have been conjugated to target various receptors and have also been functionalized with carbohydrates for targeting specific organs. However, this approach is based on a rigid design that implies the ad hoc synthesis of each cyclodextrin-targeting agent conjugate. We hypothesized that: 1)a modular design that decouples the carrier function from the targeting function leads to a flexible system, 2) combining the reactivity of the vinyl sulfone group toward biomolecules that act as targeting agents with the ability of cyclodextrin to form complexes with a wide range of drugs may yield a versatile system that allows the targeting of different organs with different drugs, and 3) the higher reactivity of histidine residues toward the vinyl sulfone group can be exploited to couple the cyclodextrin to the targeting system with a degree of regioselectivity. As a proof of concept, we synthesized a monovinyl sulfone β-cyclodextrin (module responsible for the payload), which, after coupling to recombinant antibody fragments raised against Trypanosoma brucei (module responsible for targeting) and loading with nitrofurazone (module responsible for therapeutic action) resulted in an effective delivery system that targets the surface of the parasites and shows trypanocidal activity. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Synthesis of proton conducting sulfonated and phosphonated polybenzimidazoles

    Energy Technology Data Exchange (ETDEWEB)

    Ng, F.; Peron, J.; Salunke, A.; Jones, D.J.; Roziere, J. [Montpellier Univ., Montpellier (France). Lab. des Agregats Moleculaires et Materiaux Inorganiques

    2006-07-01

    A study was conducted in which a new flexible polybenzimidazoles (PBI) was synthesized with a proton conductivity higher than 10-3 S/cm at room temperature, in the absence of any unbound acid. Polybenzimidazoles are particularly robust polymers that are stable under various chemical and thermal environments. It is difficult to achieve direct sulfonation in solution of commercially available PBI, although alternative types of PBI with different solubility properties may be modified in this way. Reaction at high temperature of sulfuric acid-doped PBI membranes results in cross-linked and poorly conducting systems. Although acid-doped PBI membranes have high conductivity, acid loss occurs at temperature and load cycling in an operating fuel cell. Alternative approaches have been suggested, such as direct sulfonation and polycondensation reaction involving building blocks functionalized with protogenic groups that lead to new functionalized polybenzimidazoles with suitable properties for fuel cell application. The membrane microstructure can be modified by controlling the position, number and distribution of the sulfonic (phosphonic) acid groups along the backbone. This also affects membrane swelling and conductivity. This study also investigated the influence of the degree of protogenic group functionalization of polymer and membrane properties such as Tg, film forming properties, membrane water uptake and conductivity, and surface hydrophobic/philic properties. It was concluded that the polymer's conductivity depends on the ion exchange capacity and on the nature of the component diacids that give flexibility to the functionalized polybenzimidazole chains.

  16. Electric current-producing device having sulfone-based electrolyte

    Science.gov (United States)

    Angell, Charles Austen; Sun, Xiao-Guang

    2010-11-16

    Electrolytic solvents and applications of such solvents including electric current-producing devices. For example, a solvent can include a sulfone compound of R1--SO2--R2, with R1 being an alkyl group and R2 a partially oxygenated alkyl group, to exhibit high chemical and thermal stability and high oxidation resistance. For another example, a battery can include, between an anode and a cathode, an electrolyte which includes ionic electrolyte salts and a non-aqueous electrolyte solvent which includes a non-symmetrical, non-cyclic sulfone. The sulfone has a formula of R1--SO2--R2, wherein R1 is a linear or branched alkyl or partially or fully fluorinated linear or branched alkyl group having 1 to 7 carbon atoms, and R2 is a linear or branched or partially or fully fluorinated linear or branched oxygen containing alkyl group having 1 to 7 carbon atoms. The electrolyte can include an electrolyte co-solvent and an electrolyte additive for protective layer formation.

  17. Perfluorinated Compounds and Polybrominated Diphenyl Ethers in Great Blue Heron Eggs from Three Colonies on the Mississippi River, Minnesota

    Science.gov (United States)

    Custer, T.W.; Kannan, K.; Tao, L.; Yun, S.-H.; Trowbridge, A.

    2010-01-01

    Archived Great Blue Heron (Ardea herodias) eggs (N = 16) collected in 1993 from three colonies on the Mississippi River in Minnesota were analyzed in 2007 for perfluorinated compounds (PFCs) and polybrominated diphenyl ethers (PBDEs). One of the three colonies, Pig's Eye, was located near a presumed source of PFCs. Based on a multivariate analysis, the pattern of nine PFC concentrations differed significantly between Pig's Eye and the upriver (P = 0.002) and downriver (P = 0.02) colonies; but not between the upriver and downriver colonies (P = 0.25). Mean concentrations of perfluorooctane sulfonate (PFOS), a major PFC compound, were significantly higher at the Pig's Eye colony (geometric mean = 940 ng/g wet weight) than at upriver (60 ng/g wet weight) and downriver (131 ng/g wet weight) colonies. Perfluorooctane sulfonate concentrations from the Pig's Eye colony are among the highest reported in bird eggs. Concentrations of PFOS in Great Blue Heron eggs from Pig's Eye were well below the toxicity thresholds estimated for Bobwhite Quail (Colinus virginianus) and Mallards (Anas platyrhynchos), but within the toxicity threshold estimated for White Leghorn Chickens (Gallus domesticus). The pattern of six PBDE congener concentrations did not differ among the three colonies (P = 0.08). Total PBDE concentrations, however, were significantly greater (P = 0.03) at Pig's Eye (geometric mean = 142 ng/g wet weight) than the upriver colony (13 ng/g wet weight). Polybrominated diphenyl ether concentrations in two of six Great Blue Heron eggs from the Pig's Eye colony were within levels associated with altered reproductive behavior in American Kestrels (Falco sparverius).

  18. Perfluorooctane sulfonic acid and organohalogen pollutants in liver of three freshwater fish species in Flanders (Belgium): relationships with biochemical and organismal effects

    Energy Technology Data Exchange (ETDEWEB)

    Hoff, Philippe Tony [Department of Biology, Research Unit Ecophysiology, Biochemistry and Toxicology, Antwerp University, Groenenborgerlaan 171, B-2020 Antwerp (Belgium)]. E-mail: philippe.hoff@ua.ac.be; Van Campenhout, Karen [Department of Biology, Research Unit Ecophysiology, Biochemistry and Toxicology, Antwerp University, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Van de Vijver, Kristin [Department of Biology, Research Unit Ecophysiology, Biochemistry and Toxicology, Antwerp University, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Covaci, Adrian [Toxicological Centre, Antwerp University, Universiteitsplein 1, B-2610 Wilrijk (Belgium); Bervoets, Lieven [Department of Biology, Research Unit Ecophysiology, Biochemistry and Toxicology, Antwerp University, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Moens, Lotte [Department of Biology, Research Unit Ecophysiology, Biochemistry and Toxicology, Antwerp University, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Huyskens, Geert [Department of Biology, Research Unit Ecophysiology, Biochemistry and Toxicology, Antwerp University, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Goemans, Geert [Institute for Forestry and Game Management, Duboislaan 14, B-1560 Groenendaal (Belgium); Belpaire, Claude [Institute for Forestry and Game Management, Duboislaan 14, B-1560 Groenendaal (Belgium); Blust, Ronny [Department of Biology, Research Unit Ecophysiology, Biochemistry and Toxicology, Antwerp University, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Coen, Wim de [Department of Biology, Research Unit Ecophysiology, Biochemistry and Toxicology, Antwerp University, Groenenborgerlaan 171, B-2020 Antwerp (Belgium)

    2005-09-15

    A perfluorooctane sulfonic acid (PFOS) assessment was conducted on gibel carp (Carassius auratus gibelio), carp (Cyprinus carpio), and eel (Anguilla anguilla) in Flanders (Belgium). The liver PFOS concentrations in fish from the Ieperlee canal (Boezinge, 250-9031 ng/g wet weight, respectively) and the Blokkersdijk pond (Antwerp, 633-1822 ng/g wet weight) were higher than at the Zuun basin (Sint-Pieters-Leeuw, 11.2-162 ng/g wet weight) and among the highest in feral fish worldwide. Eel from the Oude Maas pond (Dilsen-Stokkem) and Watersportbaan basin (Ghent) had PFOS concentrations ranging between 212 and 857 ng/g wet weight. The hepatic PFOS concentration was significantly and positively related with the serum alanine aminotransferase activity, and negatively with the serum protein content in eel and carp. The hepatic PFOS concentration in carp correlated significantly and negatively with the serum electrolyte concentrations whereas a significant positive relation was found with the hematocrit in eel. Although 13 organochlorine pesticides, 22 polychlorinated biphenyl (PCB) congeners and 7 polybrominated diphenyl ethers (PBDEs) were also measured in the liver tissue, only PCB 28, PCB 74, {gamma}-hexachlorocyclohexane ({gamma}-HCH) and hexachlorobenzene (HCB) were suggested to contribute to the observed serological alterations in eel. - Hepatic perfluorooctane sulfonic acid contamination in Flanders (Belgium) might affect serological endpoints in feral carp and eel.

  19. Ether bridge formation in loline alkaloid biosynthesis

    Science.gov (United States)

    Pan, Juan; Bhardwaj, Minakshi; Faulkner, Jerome R.; Nagabhyru, Padmaja; Charlton, Nikki D.; Higashi, Richard M.; Miller, Anne-Frances; Young, Carolyn A.; Grossman, Robert B.; Schardl, Christopher L.

    2014-01-01

    Lolines are potent insecticidal agents produced by endophytic fungi of cool-season grasses. These alkaloids are composed of a pyrrolizidine ring system and an uncommon ether bridge linking carbons 2 and 7. Previous results indicated that 1-aminopyrrolizidine was a pathway intermediate. We used RNA interference to knock down expression of lolO, resulting in the accumulation of a novel alkaloid identified as exo-1-acetamidopyrrolizidine based on high-resolution MS and NMR. Genomes of endophytes differing in alkaloid profiles were sequenced, revealing that those with mutated lolO accumulated exo-1-acetamidopyrrolizidine but no lolines. Heterologous expression of wild-type lolO complemented a lolO mutant, resulting in the production of N-acetylnorloline. These results indicated that the non-heme iron oxygenase, LolO, is required for ether bridge formation, probably through oxidation of exo-1-acetamidopyrrolizidine. PMID:24374065

  20. Synthesis of New Liquid Crystalline Diglycidyl Ethers

    Directory of Open Access Journals (Sweden)

    Issam Ahmed Mohammed

    2012-01-01

    Full Text Available The phenolic Schiff bases I–VI were synthesized by condensation reactions between various diamines, namely o-dianisidine, o-tolidine and ethylenediamine with vanillin or p-hydroxybenzaldehyde and subsequent reactions between these phenolic Schiff bases and epichlorohydrin to produce new diglycidyl ethers Ia–VIa. The structures of these compounds were confirmed by CHN, FT-IR, 1H-NMR, and 13C-NMR spectroscopy. Their thermotropic liquid crystalline behavior was studied using differential scanning calorimetry (DSC and polarizing optical microscopy (POM. All the diglycidyl ethers prepared exhibit nematic mesophases, except for Va and VIa, which did not show any transition mesophases, but simply flow to liquids.

  1. Sulfonation and characterization of styrene-indene copolymers for the development of proton conducting polymer membranes

    Directory of Open Access Journals (Sweden)

    Cristiane M. Becker

    2012-01-01

    Full Text Available The aim of this work is to obtain polymer precursors based on styrene copolymers with distinct degrees of sulfonation, as an alternative material for fuel cell membranes. Acetyl sulfate was used to carry out the sulfonation and the performance of the polyelectrolyte was evaluated based on the content of acid polar groups incorporated into the macromolecular chain. Polymeric films were produced by blending the sulfonated styrene-indene copolymer with poly(vinylidene fluoride. The degree of sulfonation of the polymer was strongly affected by the sulfonation reaction parameters, with a direct impact on the ionic exchange capacity and the ionic conductivity of the sulfonated polymers and the membranes obtained from them. The films produced with the blends showed more suitable mechanical properties, although the conductivity of the membranes was still lower than that of commercially available membranes used in fuel cells.

  2. Model for Photodegradation of Polybrominated Diphenyl Ethers

    Czech Academy of Sciences Publication Activity Database

    Veselý, M.; Vajglová, Zuzana; Kotas, Petr; Křišťál, Jiří; Ponec, Robert; Jiřičný, Vladimír

    2015-01-01

    Roč. 22, č. 7 (2015), s. 4949-4963 ISSN 0944-1344 R&D Projects: GA ČR GA104/09/0880; GA ČR(CZ) GAP105/12/0664 Institutional support: RVO:67985858 ; RVO:67179843 Keywords : polybrominated diphenyl ethers * photodegradation model * quantum chemical calculation Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 2.760, year: 2015

  3. Alkyl aryl ethers in lignite solubilization

    Energy Technology Data Exchange (ETDEWEB)

    Mustral, A.M.; Cebolla, V.L.; Gavilan, J.M.

    1985-03-01

    The FT-I.R. and /sup 1/H N.M.R. spectroscopic analyses of oils or maltenes from a Spanish lignite (Utrillas, Teruel), are reported. These oils were obtained by depolymerization with alkyl aromatic ethers (anisole, 3-methyl anisole and 1,3-dimethoxybenzene) catalyzed by Lewis acids ZnCl/sub 2/, AlCl/sub 3/, SbCl/sub 3/ and BF/sub 3/ (as boron trifluoride etherate), at atmospheric pressure and temperatures <220/sup 0/C. Bands due to aromatic ethers in the I.R. and N.M.R. spectra of the oils obtained by depolymerization indicate solvent incorporation. Oils obtained by direct lignite extraction showed 25% aromatic H and some H /sub i/ (approx. = 3%) without OH groups. These appeared in some oils obtained by depolymerization with AlCl/sub 3/ and were due to secondary reactions with the aromatic extract. Oils derived from processes with good yields showed increases in aromaticity. The extent of substitution of aromatic rings in oils obtained by depolymerization was less than for oils directly extracted. All the oils studied show a low degree of condensation.

  4. Nikola Tesla, the Ether and his Telautomaton

    Science.gov (United States)

    Milar, Kendall

    2014-03-01

    In the nineteenth century physicists' understanding of the ether changed dramatically. New developments in thermodynamics, energy physics, and electricity and magnetism dictated new properties of the ether. These have traditionally been examined from the perspective of the scientists re-conceptualizing the ether. However Nikola Tesla, a prolific inventor and writer, presents a different picture of nineteenth century physics. Alongside the displays that showcased his inventions he presented alternative interpretations of physical, physiological and even psychical research. This is particularly evident in his telautomaton, a radio remote controlled boat. This invention and Tesla's descriptions of it showcase some of his novel interpretations of physical theories. He offered a perspective on nineteenth century physics that focused on practical application instead of experiment. Sometimes the understanding of physical theories that Tesla reached was counterproductive to his own inventive work; other times he offered new insights. Tesla's utilitarian interpretation of physical theories suggests a more scientifically curious and invested inventor than previously described and a connection between the scientific and inventive communities.

  5. Two-step sulfonation process for the conversion of polymer fibers to carbon fibers

    Energy Technology Data Exchange (ETDEWEB)

    Barton, Bryan E.; Patton, Jasson T.; Hukkanen, Eric J.; Bernius, Mark T.

    2017-11-14

    Disclosed herein are processes for preparing carbon fibers, comprising: sulfonating a polymer fiber with a sulfonating agent that is fuming sulfuric acid, sulfuric acid, chlorosulfonic acid, or a combination thereof; treating the sulfonated polymer with a heated solvent, wherein the temperature of the heated solvent is at least 95.degree. C.; and carbonizing the resulting product by heating it to a temperature of 501-3000.degree. C. Carbon fibers prepared according to these methods are also disclosed herein.

  6. 3?-Daidzein sulfonate sodium improves mitochondrial functions after cerebral ischemia/reperfusion injury

    OpenAIRE

    Wa Yuan; Qin Chen; Jing Zeng; Hai Xiao; Zhi-hua Huang; Xiao Li; Qiong Lei

    2017-01-01

    3′-Daidzein sulfonate sodium is a new synthetic water-soluble compound derived from daidzein (an active ingredient of the kudzu vine root). It has been shown to have a protective effect on cerebral ischemia/reperfusion injury in rats. We plan to study the mechanism of its protective effect. 3′-Daidzein sulfonate sodium was injected in rats after cerebral ischemia/reperfusion injury. Results showed that 3′-daidzein sulfonate sodium significantly reduced mitochondrial swelling, significantly el...

  7. Sulfonated phenolic material and its use in post primary oil recovery

    Energy Technology Data Exchange (ETDEWEB)

    Pardue, J. E.; Stapp, P. R.

    1984-09-04

    Sulfonated phenolic compounds as well as sulfomethylated phenolic compounds, surfactant systems containing such compound and the use of such surfactant systems in post primary oil recovery are disclosed.

  8. From ether theory to ether theology: Oliver Lodge and the physics of immortality.

    Science.gov (United States)

    Raia, Courtenay Grean

    2007-01-01

    This article follows the development of physicist Oliver Lodge's religio-scientific worldview, beginning with his reticent attraction to metaphysics in the early 1880s to the full formulation of his "ether theology" in the late 1890s. Lodge undertook the study of psychical phenomena such as telepathy, telekinesis, and "ectoplasm" to further his scientific investigations of the ether, speculating that electrical and psychical manifestations were linked phenomena that described the deeper underlying structures of the universe, beneath and beyond matter. For Lodge, to fully understand the ether was to force from the universe an ultimate Revelation, and psychical research, as the most modern and probatory science, was poised to replace religion as the means of that disclosure. (c) 2007 Wiley Periodicals, Inc.

  9. 40 CFR 721.10067 - Ether amine phosphonate salt (generic).

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Ether amine phosphonate salt (generic... Specific Chemical Substances § 721.10067 Ether amine phosphonate salt (generic). (a) Chemical substances... ether amine phosphonate salt (PMNs P-05-57, P-05-58, P-05-59, P-05-61, P-05-62, P-05-63, P-05-64, and P...

  10. Octahedral molybdenum cluster complexes with aromatic sulfonate ligands

    OpenAIRE

    Efremova, Olga A.; Vorotnikov, Yuri A.; Brylev, Konstantin A.; Vorotnikova, Natalya A.; Novozhilov, Igor N.; Kuratieva, Natalia V.; Edeleva, Mariya V.; Benoit, David M.; Kitamura, Noboru; Mironov, Yuri V.; Shestopalov, Michael A.; Sutherland, Andrew J.

    2016-01-01

    This article describes the synthesis, structures and systematic study of the spectroscopic and redox properties of a series of octahedral molybdenum metal cluster complexes with aromatic sulfonate ligands (nBu4N)2[{Mo6X8}(OTs)6] and (nBu4N)2[{Mo6X8}(PhSO3)6] (where X- is Cl-, Br- or I-; OTs- is p-toluenesulfonate and PhSO3 - is benzenesulfonate). All the complexes demonstrated photoluminescence in the red region and an ability to generate singlet oxygen. Notably, the highest quantum yields (>...

  11. New Fluorinated and Sulfonated Block Copolymers Final Report

    Science.gov (United States)

    2009-04-23

    fossil fuels, are a pressing need in the world we live in today. One such promising alternative is a fuel cell. Fuel Cells are typically classified...1H NMR . Some samples were neutralized to the cesium salt form , and the balance left in the acid form. The cesium form facilitates contrast in the x...characteristics: Mw =31,200 ,PDI=1.05, 27mol% PS. The fluorinated samples cast into membranes were sulfonated to 23,28 and 50 mol%, as determined by 1H NMR

  12. Toltrazuril sulfone sodium salt: synthesis, analytical detection, and pharmacokinetics in the horse.

    Science.gov (United States)

    Dirikolu, L; Karpiesiuk, W; Lehner, A F; Tobin, T

    2012-06-01

    Toltrazuril sulfone (ponazuril) is a triazine-based antiprotozoal agent with clinical application in the treatment of equine protozoal myeloencephalomyelitis (EPM). In this study, we synthesized and determined the bioavailability of a sodium salt formulation of toltrazuril sulfone that can be used for the treatment and prophylaxis of EPM in horses. Toltrazuril sulfone sodium salt was rapidly absorbed, with a mean peak plasma concentration of 2400 ± 169 (SEM) ng/mL occurring at 8 h after oral-mucosal dosing and was about 56% bioavailable compared with the i.v. administration of toltrazuril sulfone in dimethylsulfoxide (DMSO). The relative bioavailability of toltrazuril sulfone suspended in water compared with toltrazuril sulfone sodium salt was 46%, indicating approximately 54% less oral bioavailability of this compound suspended in water. In this study, we also investigated whether this salt formulation of toltrazuril sulfone can be used as a feed additive formulation without significant reduction in oral bioavailability. Our results indicated that toltrazuril sulfone sodium salt is relatively well absorbed when administered with feed with a mean oral bioavailability of 52%. Based on these data, repeated oral administration of toltrazuril sulfone sodium salt with or without feed will yield effective plasma and cerebrospinal fluid (CSF) concentrations of toltrazuril sulfone for the treatment and prophylaxis of EPM and other protozoal diseases of horses and other species. As such, toltrazuril sulfone sodium salt has the potential to be used as feed additive formulations for both the treatment and prophylaxis of EPM and various other apicomplexan diseases. © 2011 Blackwell Publishing Ltd.

  13. Lithiated and sulphonated poly(ether ether ketone) solid state electrolyte films for supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Chiu, K.-F.; Su, S.-H., E-mail: minimono42@gmail.com

    2013-10-01

    Poly(ether ether ketone) (PEEK) films have been synthesised and used as solid-state electrolytes for supercapacitors. In order to increase their ion conductivity, the PEEK films were sulphonated by sulphuric acid, and various amounts of LiClO{sub 4} were added. The solid-state electrolyte films were characterised by Fourier transform infrared spectroscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy, and thermogravimetric analysis. The ionic conductivities of the electrolyte films were analysed by performing electrochemical impedance spectroscopy. The obtained electrolyte films can be sandwiched or directly coated on activated carbon electrodes to form solid-state supercapacitors. The electrochemical characteristics of these supercapacitors were investigated by performing cyclic voltammetry and charge–discharge tests. Under an optimal content of LiClO{sub 4}, the supercapacitor can provide a capacitance as high as 190 F/g. After 1000 cycles, the supercapacitors show almost no capacitance fading, indicating high stability of the solid-state electrolyte films. - Highlights: • Poly(ether ether ketone) (PEEK) films have been used as solid-state electrolytes. • LiClO4 addition can efficiently improve the ionic conductivity. • Supercapacitors using PEEK electrolyte films deliver high capacitance.

  14. Polyaniline synthesized with functionalized sulfonic acids for blends manufacture

    Directory of Open Access Journals (Sweden)

    Mara Joelma Raupp Cardoso

    2007-12-01

    Full Text Available Polyaniline (PAni, an electronic conductive polymer, has poor mechanical properties, such as low tensile, compressive and flexural strength that render PAni a non-ideal material to be processed for practical applications. Desired properties of polyaniline can be enhanced by mixing it with a polymer that has good mechanical properties. In this work, PAni was synthesised using functionalized sulfonic acids like camphorsulfonic acid (CSA and dodecilbenzene sulfonic acid (DBSA in order to promote PAni doping and improve its solubility, making possible conductive blends manufacture. The different forms of PAni were characterized by infra-red spectroscopy, thermal analysis, scanning electron microscopy and conductivity measurements. A conductive blend composed of PAni/DBSA and lower density polyethylene (LDPE was obtained via solubilization method and its thermal, morphological and electrical properties were investigated. Concentrations as low as 5 wt. (% of PAni was able to lead to electrical conductivities of PAni/LDPE blends in the range of 10-3 S.cm-1, showing great potential to be used in antistatic packing, electromagnetic shielding, anti-corrosion shielding or as a semiconductor.

  15. Colonic necrosis due to calcium polystyrene sulfonate (Kalimate not suspended in sorbitol

    Directory of Open Access Journals (Sweden)

    María Dolores Castillo-Cejas

    2013-04-01

    Full Text Available Cation-exchange resins are used in the management of hyperkalemia, particularly in patients with end-stage renal disease. These resins were associated with gastrointestinal tract lesions, especially sodium polystyrene sulfonate (Kayexalate mixed with sorbitol. We present a case of colonic necrosis after the administration of calcium polystyrene sulfonate (Kalimate not suspended in sorbitol.

  16. Sulfonate Functionalisation of Transition Metal Complexes: A Versatile Tool Towards Catalyst Recovery

    NARCIS (Netherlands)

    Virboul, M.A.N.|info:eu-repo/dai/nl/304837709

    2011-01-01

    This thesis describes the synthesis and application of sulfonate-functionalised ligands in organometallic chemistry and (aqueous) catalysis. Due to their ability to trigger specific solubility, different NHC ligand precursors bearing a butyl-sulfonate chain were synthesised. The formation of

  17. Ionomeric membranes based on partially sulfonated poly(styrene) : synthesis, proton conduction and methanol permeation

    NARCIS (Netherlands)

    Picchioni, F.; Tricoli, V.; Carretta, N.

    2000-01-01

    Homogeneuosly sulfonated poly(styrene) (SPS) was prepared with various concentration of sulfonic acid groups in the base polymer. Membranes cast from these materials were investigated in relation to proton conductivity and methanol permeability in the temperature range from 20°C to 60°C. It was

  18. 40 CFR 721.10045 - Diazotized substituted heteromonocycle coupled with naphthalene sulfonic acid derivative, nickel...

    Science.gov (United States)

    2010-07-01

    ... coupled with naphthalene sulfonic acid derivative, nickel complex, alkaline salt (generic). 721.10045... derivative, nickel complex, alkaline salt (generic). (a) Chemical substance and significant new uses subject... heteromonocycle coupled with naphthalene sulfonic acid derivative, nickel complex, alkaline salt (PMN P-02-737) is...

  19. Radiation-chemical synthesis of polypropylene fabrics with sulfonic acid functional groups

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Hyun Kug; Park, Jung Soo; Han, Do Hung, E-mail: dhhan@yumail.ac.kr; Bondar, Iuliia, E-mail: juliavad@yahoo.co

    2011-04-01

    A sorption-active material carrying sulfonic acid groups was synthesized by the radiation-induced graft polymerization of styrene monomer onto the surface of non-woven polypropylene fabric, followed by sulfonation of the grafted polystyrene chains. The effect of the main experimental parameters (absorbed dose, monomer concentration, reaction time) on the styrene degree of grafting was investigated. The sulfonation process with 5% chlorosulfonic acid at room temperature was investigated in detail and the optimal sulfonation conditions for the samples with a medium degree of grafting (70-140%) were determined. Densities of 3.5-5 meq/g were obtained by applying those sorption-active PP fabrics with a sulfonic acid group.

  20. New determination method for sulfonation degree of phthalic anhydride by RP-HPLC.

    Science.gov (United States)

    Zhu, Lijun; Song, Lechun; Liu, Bin; Zhou, Yulu; Xiang, Yuzhi; Xia, Daohong

    2014-01-01

    A novel method was developed to monitor the reaction process and evaluate the sulfonation level in the sulfonation of phthalic anhydride by reversed-phase high-performance liquid chromatography (RP-HPLC). The product peak was identified in chromatograms through product analysis and by comparing its retention time with that of standard compounds. By comparing the hydrolysis and alcoholysis methods, optimized pretreatment of the sample was found for RP-HPLC. Based on the determined percentages of phthalic anhydride and sulfonated phthalic anhydride in the mixture, the degree of sulfonation was calculated. When the sulfonation degree of phthalic anhydride was in the range of 2.8-71%, the recovery of 97-104% was achieved, and the procedure was rapid and accurate.

  1. Synthesis and Antiplasmodial Activity of EG-Artemisinin Ethers and ...

    African Journals Online (AJOL)

    The aim of this study was to synthesize a series of ethylene glycol (EG) ethers and quinoline hybrids of the antimalarial drug artemisinin and to evaluate their antimalarial activity in vitro against Plasmodium falciparum strains. The ethers were synthesized in a one-step process by coupling ethylene glycol (EG) moieties of ...

  2. 40 CFR 721.825 - Certain aromatic ether diamines.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Certain aromatic ether diamines. 721.825 Section 721.825 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC... Substances § 721.825 Certain aromatic ether diamines. (a) Chemical substances and significant new uses...

  3. Synthesis and bioactivity of rotenone oxime O -ether derivatives ...

    African Journals Online (AJOL)

    A series of rotenone oxime O-ether derivatives were synthesized and characterized. All compounds were tested for their insecticidal, miticidal and fungicidal activities against the selected pests and compared with those of rotenone. The results of biological tests show that the rotenone oxime O-ether derivatives have ...

  4. 29 CFR 1915.1008 - bis-Chloromethyl ether.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false bis-Chloromethyl ether. 1915.1008 Section 1915.1008 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... § 1915.1008 bis-Chloromethyl ether. Note: The requirements applicable to shipyard employment under this...

  5. 29 CFR 1915.1006 - Methyl chloromethyl ether.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Methyl chloromethyl ether. 1915.1006 Section 1915.1006 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION... Hazardous Substances § 1915.1006 Methyl chloromethyl ether. Note: The requirements applicable to shipyard...

  6. 29 CFR 1926.1108 - bis-Chloromethyl ether.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 8 2010-07-01 2010-07-01 false bis-Chloromethyl ether. 1926.1108 Section 1926.1108 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR...-Chloromethyl ether. Note: The requirements applicable to construction work under this section are identical to...

  7. 29 CFR 1910.1008 - bis-Chloromethyl ether.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 6 2010-07-01 2010-07-01 false bis-Chloromethyl ether. 1910.1008 Section 1910.1008 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR... bis-Chloromethyl ether. See § 1910.1003, 13 carcinogens. ...

  8. 29 CFR 1910.1006 - Methyl chloromethyl ether.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 6 2010-07-01 2010-07-01 false Methyl chloromethyl ether. 1910.1006 Section 1910.1006 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION... Substances § 1910.1006 Methyl chloromethyl ether. See § 1910.1003, 13 carcinogens. ...

  9. 29 CFR 1926.1106 - Methyl chloromethyl ether.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 8 2010-07-01 2010-07-01 false Methyl chloromethyl ether. 1926.1106 Section 1926.1106 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION... § 1926.1106 Methyl chloromethyl ether. Note: The requirements applicable to construction work under this...

  10. Synthesis and Biophysical Characterization of Chlorambucil Anticancer Ether Lipid Prodrugs

    DEFF Research Database (Denmark)

    Pedersen, Palle Jacob; Christensen, Mikkel Stochkendahl; Ruysschaert, Tristan

    2009-01-01

    The synthesis and biophysical characterization of four prodrug ether phospholipid conjugates are described. The lipids are prepared from the anticancer drug chlorambucil and have C16 and C18 ether chains with phosphatidylcholine or phosphatidylglycerol headgroups. All four prodrugs have the ability...

  11. Congenital malformations and maternal occupational exposure to glycol ethers

    NARCIS (Netherlands)

    Cordier, S; Bergeret, A; Goujard, J; Ha, MC; Ayme, S; Calzolari, E; DeWalle, HEK; KnillJones, R; Candela, S; Dale, [No Value; Dananche, B; deVigan, C; Fevotte, J; Kiel, G; Mandereau, L

    Glycol ethers are found in a wide range of domestic and industrial products, many of which are used in women's work environments. Motivated by concern about their potential reproductive toxicity, we have evaluated the risk of congenital malformations related to glycol ether exposure during preg

  12. Formation and Structural Analysis of Novel Dibornyl Ethers

    African Journals Online (AJOL)

    PROF P.T. KAYE

    stereochemistry of novel dibornyl ethers, obtained by acid-catalysed condensation of camphor-derived α-hydroxybornanones. Keywords Dibornyl ethers; structure analysis; camphor derivatives. The results of some of our previous studies on the use of camphor-derived chiral auxiliaries in asymmetric synthesis1,2 indicated ...

  13. Enhancing the phase segregation and connectivity of hydrophilic channels by blending highly sulfonated graft copolymers with fluorous homopolymers

    DEFF Research Database (Denmark)

    Nielsen, Mads Møller; Ching-Ching Yang, Ami; Jankova Atanasova, Katja

    2013-01-01

    The influence of tuning the ionic content of membranes by blending, as opposed to varying the degree of sulfonation, is evaluated. Membranes of fully sulfonated poly(vinylidene fluoride-co-chlorotrifluoroethylene)-g-poly(styrene sulfonic acid) blended with PVDF were prepared and investigated...

  14. Ether in the developing world: rethinking an abandoned agent.

    Science.gov (United States)

    Chang, Connie Y; Goldstein, Elisabeth; Agarwal, Nitin; Swan, Kenneth G

    2015-10-16

    The first true demonstration of ether as an inhalation anesthetic was on October 16, 1846 by William T.G. Morton, a Boston dentist. Ether has been replaced completely by newer inhalation agents and open drop delivery systems have been exchanged for complicated vaporizers and monitoring systems. Anesthesia in the developing world, however, where lack of financial stability has halted the development of the field, still closely resembles primitive anesthetics. In areas where resources are scarce, patients are often not given supplemental intraoperative analgesia. While halothane provides little analgesia, ether provides excellent intra-operative pain control that can extend for several hours into the postoperative period. An important barrier to the widespread use of ether is availability. With decreasing demand, production of the inexpensive inhalation agent has fallen. Ether is inexpensive to manufacture, and encouraging increased production at a local level would help developing nations to cut costs and become more self-sufficient.

  15. Transesterification of soybean oil over sulfonic acid functionalised polymeric membranes

    Energy Technology Data Exchange (ETDEWEB)

    Guerreiro, L.; Castanheiro, J.E.; Fonseca, I.M.; Ramos, A.M.; Vital, J. [REQUIMTE, CQFB, Departamento de Quimica, FCT, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Martin-Aranda, R.M. [Departamento de Quimica Inorganica y Quimica Tecnica, UNED, Paseo Senda del Rey, 9, 28040 Madrid (Spain)

    2006-10-30

    The transesterification of soybean oil with methanol was studied using solid acid catalysts, at 60{sup o}C and atmospheric pressure. Nafion membranes, ion-exchange resins and poly(vinyl alcohol) membranes containing sulfonic groups were used as catalysts for the transesterification reaction studied. The reactions were carried out in a three-necked reactor using all the catalysts in the form of pellets. Nafion and PVA membranes in the form of film were also used in a membrane reactor. The PVA membrane modified with sulfossucinic acid was, in both cases, the most active catalyst. The concentration profiles obtained with the catalysts in the form of pellets exhibited an initial induction period, which disappears when the reaction is performed in the membrane reactor. (author)

  16. Characterization of melt-blended graphene – poly(ether ether ketone) nanocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Tewatia, Arya; Hendrix, Justin [Department of Materials Science and Engineering, Rutgers University, 607 Taylor Road, Piscataway, NJ, 08854 (United States); Dong, Zhizhong [Department of Mechanical Engineering, Rutgers University, 98 Brett Road, Piscataway, NJ 08854 (United States); Taghon, Meredith [Department of Materials Science and Engineering, Rutgers University, 607 Taylor Road, Piscataway, NJ, 08854 (United States); Tse, Stephen [Department of Mechanical Engineering, Rutgers University, 98 Brett Road, Piscataway, NJ 08854 (United States); Chiu, Gordon; Mayo, William E.; Kear, Bernard; Nosker, Thomas [Department of Materials Science and Engineering, Rutgers University, 607 Taylor Road, Piscataway, NJ, 08854 (United States); Lynch, Jennifer, E-mail: jklynch@rci.rutgers.edu [Department of Materials Science and Engineering, Rutgers University, 607 Taylor Road, Piscataway, NJ, 08854 (United States)

    2017-02-15

    Using a high shear melt-processing method, graphene-reinforced polymer matrix composites (G-PMCs) were produced with good distribution and particle–matrix interaction of bi/trilayer graphene at 2 wt. % and 5 wt. % in poly ether ether ketone (2Gn-PEEK and 5Gn-PEEK). The morphology, structure, thermal properties, and mechanical properties of PEEK, 2Gn-PEEK and 5 Gn-PEEK were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), thermal gravimetric analysis (TGA), flexural mechanical testing, and dynamic mechanical analysis (DMA). Addition of graphene to PEEK induces surface crystallization, increased percent crystallinity, offers a composite that is thermally stable until 550 °C and enhances thermomechanical properties. Results show that graphene was successfully melt-blended within PEEK using this method.

  17. [Recent development of research on the biotribology of carbon fiber reinforced poly ether ether ketone composites].

    Science.gov (United States)

    Chen, Yan; Pan, Yusong

    2014-12-01

    Carbon fiber reinforced poly ether ether ketone (CF/PEEK) composite possesses excellent biocompatible, biomechanical and bioribological properties. It is one of the most promising implant materials for artificial joint. Many factors influence the bioribological properties of CF/PEEK composites. In this paper, the authors reviewed on the biotribology research progress of CF/PEEK composites. The influences of various factors such as lubricant, reinforcement surface modification, functional particles, friction counterpart and friction motion modes on the bio-tribological properties of CF/PEEK composites are discussed. Based on the recent research, the authors suggest that the further research should be focused on the synergistic effect of multiple factors on the wear and lubrication mechanism of CF/PEEK.

  18. Modification of Poly(ether ether ketone Polymer for Fuel Cell Application

    Directory of Open Access Journals (Sweden)

    Devesh Shukla

    2013-01-01

    Full Text Available Polyelectrolyte membrane (PEM is an important part of PEM fuel cell. Nafion is a commercially known membrane which gives the satisfactory result in PEM fuel cell operating at low temperature. Present research paper includes functionalization of Poly(ether ether ketone (PEEK polymer with phosphonic acid group. The functionalization was done with the help of nickel-based catalyst. Further, the polymer was characterized by the FTIR, EDAX, DSC, TGA, and 1H NMR, and it was found that PEEK polymer was functionalized with phosphonic acid group with good thermal stability in comparison to virgin PEEK. Finally, the thin films of functionalized polymer were prepared by solution casting method, and proton conductivity of film samples was measured by impedance spectra whose value was found satisfactory with good thermal stability in comparison to commercially available Nafion membrane.

  19. The effect of ether anesthesia on fin-clipping rate

    Science.gov (United States)

    Eschmeyer, Paul H.

    1953-01-01

    As part of an experimental program to learn the effects of stocking lake trout (Salvelinus namaycush) in Lake Superior, 141, 392 fingerlings were marked at the Charlevoix (Michigan) Station of the U.S. Fish and Wildlife Service in October 1952. The adipose fin was removed from all fish, the right pelvic from the remainder. A random sample of 2, 417 of the fish showed an average total length of 4.0 inches (range, 2.7 to 5.4). The mean weight of all fish marked was slightly less than one-third ounce (49 fish per pound). The local women, none of whom had previous experience in the work, were employed to mark the fish. Bone-cutting forceps were used for excision of the fins, and each worker wore a bobbinet glove to facilitate handling of the fish. On alternate days the fish were anesthetized with ether before marking, to determine the effect of its use on the fin-clipping rate.

  20. Thermolysis of phenethyl phenyl ether: A model of ether linkages in low rank coal

    Energy Technology Data Exchange (ETDEWEB)

    Britt, P.F.; Buchanan, A.C. III; Malcolm, E.A.

    1994-09-01

    Currently, an area of interest and frustration for coal chemists has been the direct liquefaction of low rank coal. Although low rank coals are more reactive than bituminous coals, they are more difficult to liquefy and offer lower liquefaction yields under conditions optimized for bituminous coals. Solomon, Serio, and co-workers have shown that: in the pyrolysis and liquefaction of low rank coals, a low temperature cross-linking reaction associated with oxygen functional groups occurs before tar evolution. A variety of pretreatments (demineralization, alkylation, and ion-exchange) have been shown to reduce these retrogressive reactions and increase tar yields, but the actual chemical reactions responsible for these processes have not been defined. In order to gain insight into the thermochemical reactions leading to cross-linking in low rank coal, we have undertaken a study of the pyrolysis of oxygen containing coal model compounds. Solid state NMR studies suggest that the alkyl aryl ether linkage may be present in modest amounts in low rank coal. Therefore, in this paper, we will investigate the thermolysis of phenethyl phenyl ether (PPE) as a model of 0-aryl ether linkages found in low rank coal, lignites, and lignin, an evolutionary precursor of coal. Our results have uncovered a new reaction channel that can account for 25% of the products formed. The impact of reaction conditions, including restricted mass transport, on this new reaction pathway and the role of oxygen functional groups in cross-linking reactions will be investigated.

  1. Radiation-induced crosslinking of poly(styrene–butadiene–styrene) block copolymers and their sulfonation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sun-Young [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 29 Geumgu-gil, Jeongeup-si, Jeollabuk-do 580-185 (Korea, Republic of); Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749 (Korea, Republic of); Song, Ju-Myung; Sohn, Joon-Yong [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 29 Geumgu-gil, Jeongeup-si, Jeollabuk-do 580-185 (Korea, Republic of); Shul, Yong-Gun [Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749 (Korea, Republic of); Shin, Junhwa, E-mail: shinj@kaeri.re.kr [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 29 Geumgu-gil, Jeongeup-si, Jeollabuk-do 580-185 (Korea, Republic of)

    2013-12-01

    Highlights: • The c-SBS films were prepared using a gamma ray or electron beam. • The crosslinking degree of the c-SBS films were increased with the irradiation dose. • The prepared c-SBS films were sulfonated with various concentration of CSA. • The sulfonation of the c-SBS film is largely dependent on the concentration of CSA. • The sulfonation process is progressed from the surface to the inner part of c-SBS film. -- Abstract: Several crosslinked poly(styrene–butadiene–styrene) (c-SBS) block copolymer films were prepared using a gamma ray or electron beam with various irradiation doses and the prepared c-SBS film was then subjected to sulfonation using a chlorosulfonic acid (CSA) solution to introduce a sulfonic acid group. To estimate the degree of crosslinking, the gel fractions and FT-IR spectra of the c-SBS films were used and the results indicate that the degree of crosslinking is increased with an increase in the radiation dose. The surface morphology and mechanical property of the c-SBS films were observed using SEM and UTM instruments, respectively. The sulfonated c-SBS films were investigated by measuring the ion exchange capacity (IEC) and by observing the cross-sectional distribution patterns of sulfonic acid group using an SEM-EDX instrument. The IEC and SEM-EDX studies indicate that the sulfonated c-SBS membranes can be successfully prepared through the radiation crosslinking of the SBS film and the subsequent sulfonation with a diluted CSA solution.

  2. Vapor intrusion risk of fuel ether oxygenates methyl tert-butyl ether (MTBE), tert-amyl methyl ether (TAME) and ethyl tert-butyl ether (ETBE): A modeling study.

    Science.gov (United States)

    Ma, Jie; Xiong, Desen; Li, Haiyan; Ding, Yi; Xia, Xiangcheng; Yang, Yongqi

    2017-06-15

    Vapor intrusion of synthetic fuel additives represents a critical yet still neglected problem at sites contaminated by petroleum fuel releases. This study used an advanced numerical model to investigate the vapor intrusion potential of fuel ether oxygenates methyl tert-butyl ether (MTBE), tert-amyl methyl ether (TAME), and ethyl tert-butyl ether (ETBE). Simulated indoor air concentration of these compounds can exceed USEPA indoor air screening level for MTBE (110μg/m 3 ). Our results also reveal that MTBE has much higher chance to cause vapor intrusion problems than TAME and ETBE. This study supports the statements made by USEPA in the Petroleum Vapor Intrusion (PVI) Guidance that the vertical screening criteria for petroleum hydrocarbons may not provide sufficient protectiveness for fuel additives, and ether oxygenates in particular. In addition to adverse impacts on human health, ether oxygenate vapor intrusion may also cause aesthetic problems (i.e., odour and flavour). Overall, this study points out that ether oxygenates can cause vapor intrusion problems. We recommend that USEPA consider including the field measurement data of synthetic fuel additives in the existing PVI database and possibly revising the PVI Guidance as necessary. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Raman and Luminescent Spectra of Sulfonated Zn Phthalocyanine Enhanced by Gold Nanoparticles

    Science.gov (United States)

    Kavelin, V.; Fesenko, O.; Dubyna, H.; Vidal, C.; Klar, T. A.; Hrelescu, C.; Dolgov, L.

    2017-03-01

    Sulfonated Zn phthalocyanine, as a prospective photosensitizer in the photodynamic therapy of tumors, is investigated by means of Raman, infrared, and fluorescence spectroscopies. Conventional and surface-enhanced spectra from this photosensitizer are obtained and compared. Gold nano-islands attached to silica cores (Au-SiO2) are proposed as nanostructures providing plasmonically enhanced signals. Pronounced enhancement of Raman and infrared spectral bands from sulfonated Zn phthalocyanine allows their more convenient assignment with vibrational modes of sulfonated Zn phthalocyanine. In comparison to Raman and IR, the fluorescence is less enhanced by Au-SiO2 particles.

  4. Degradation and contamination of perfluorinated sulfonic acid membrane due to swelling-dehydration cycles

    DEFF Research Database (Denmark)

    Andersen, Shuang Ma; Morgen, Per; Skou, Eivind Morten

    Formation of sulfonic anhydride S-O-S (from the condensation of sulfonic acids) was known one of the important degradation mechanisms [i] for Nafion membrane under hydrothermal aging condition, which is especially critical for hydrogen fuel cells. Similar mechanism would also have be desirable...... to the membrane degradation in direct methanol fuel cells (DMFCs), where liquid water has direct contact with the electrolyte. An ex-situ experiment was established with swelling-dehydration cycles on the membrane. However, formation of sulfonic anhydride was not detected during the entire treatment; instead...

  5. Use of an automatic control system for the production of sulfonate additives

    Energy Technology Data Exchange (ETDEWEB)

    Barnaev, V.A.; Cherednichenko, G.I.; Gordash, Iu.T.; Manoilo, A.M.

    1980-01-01

    On the bases of industrial means for local information control systems, a system for the automatic control of industrial operations of periodic processes of volumetric decomposition of ammonium sulfonates with lime and the preparation of reagent for methanol carbonation, taking place at an improved stage of the production of sulfonate additives for motor oils in devices having periodic functioning has been worked out. The technical process, the structure and the industrial data on the control system are briefly described. A ''Carboncycle'' system, which makes it possible to intensify the production of sulfonate additives, has been developed.

  6. Effect of sulfonated steroids on steroidogenic cytochrome P450-dependent steroid hydroxylases.

    Science.gov (United States)

    Neunzig, J; Bernhardt, R

    2017-07-08

    In the last decades, sulfonated steroids evolved from inactive metabolites intended for excretion to highly relevant compounds involved in many physiological processes. Investigations of the impact of sulfonated steroids on the steroid hormone biosynthesis revealed that, on the one hand, these can serve as substrate for steroidogenic cytochromes P450 and, on the other hand, these are able to influence the catalytic properties of these enzymes. In this review the relevance of sulfonated steroids for the steroid hormone biosynthesis will be discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Characterization of Microsolvated Crown Ethers from Broadband Rotational Spectroscopy

    Science.gov (United States)

    Perez, Cristobal; Schnell, Melanie; Blanco, Susana; Lopez, Juan Carlos

    2016-06-01

    Since they were first synthetized, crown ethers have been extensively used in organometallic chemistry due to their unparalleled binding selectivity with alkali metal cations. From a structural point of view, crown ethers are heterocycles containing oxygen and/or other heteroatoms, although the most common ones are formed from ethylene oxide unit. Crown ethers are conventionally seen as being hydrophilic inside and hydrophobic outside when the structures found for the metal cation complexes are considered. However, crown ethers are extremely flexible and in isolation may present a variety of stable conformations so that their structure may be easily adapted in presence of a strong ligand as an alkali metal cation minimize the energy of the resulting complex. Water can be considered a soft ligand which interacts with crown ethers through moderate hydrogen bonds. It is thus interesting to investigate which conformers are selected by water to form complexes, the preferred interaction sites and the possible conformational changes due to the presence of one or more water molecules. Previous studies identified microsolvated crown ethers but in all cases with a chromophore group attached to the structure. Here we present a broadband rotational spectroscopy study of microsolvated crown ethers produced in a pulsed molecular jet expansion. Several 1:1 and 1:2 crown ether:water aggregates are presented for 12-crown-4, 15-crown-5 and 18-crown-6. Unambiguous identification of the structures has been achieved using isotopic substitution within the water unit. The subtle changes induced in the structures of the crown ether monomer upon complexation and the hydrogen-bonding network that hold them together will be also discussed. F. Gámez, B. Martínez-Haya, S. Blanco,J. C. López and J. L. Alonso, Phys. Chem. Chem. Phys. 2014, 14 12912-12918 V. A. Shubert, C.W. Müller and T. Zwier, J. Phys. Chem. A 2009, 113 8067-8079

  8. Enzymatic network for production of ether amines from alcohols

    DEFF Research Database (Denmark)

    Palacio, Cyntia M.; Crismaru, Ciprian G.; Bartsch, Sebastian

    2016-01-01

    We constructed an enzymatic network composed of three different enzymes for the synthesis of valuable ether amines. The enzymatic reactions are interconnected to catalyze the oxidation and subsequent transamination of the substrate and to provide cofactor recycling. This allows production...... of the desired ether amines from the corresponding ether alcohols with inorganic ammonium as the only additional substrate. To examine conversion, individual and overall reaction equilibria were established. Using these data, it was found that the experimentally observed conversions of up to 60% observed...

  9. 21 CFR 177.1970 - Vinyl chloride-lauryl vinyl ether copolymers.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Vinyl chloride-lauryl vinyl ether copolymers. 177...-lauryl vinyl ether copolymers. The vinyl chloride-lauryl vinyl ether copolymers identified in paragraph... section vinyl chloride-lauryl vinyl ether copolymers consist of basic copolymers produced by the...

  10. Catalytic Upgrading of bio-oil using 1-octene and 1-butanol over sulfonic acid resin catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhijun; Wang, Qingwen; Tripathi, Prabhat; Pittman, Charles U.

    2011-02-04

    Raw bio-oil from fast pyrolysis of biomass must be refined before it can be used as a transporation fuel, a petroleum refinery feed or for many other fuel uses. Raw bio-oil was upgraded with the neat model olefin, 1-octene, and with 1-octene/1-butanol mixtures over sulfonic acid resin catalysts frin 80 to 150 degrees celisus in order to simultaneously lower water content and acidity and to increase hydrophobicity and heating value. Phase separation and coke formation were key factors limiting the reaction rate during upgrading with neat 1-octene although octanols were formed by 1-octene hydration along with small amounts of octyl acetates and ethers. GC-MS analysis confirmed that olefin hydration, carboxylic acid esterification, acetal formation from aldehydes and ketones and O- and C-alkylations of phenolic compounds occurred simultaneously during upgrading with 1-octene/1-butanol mixtures. Addition of 1-butanol increased olefin conversion dramatically be reducing mass transfer restraints and serving as a cosolvent or emulsifying agent. It also reacted with carboxylic acids and aldehydes/ketones to form esters, and acetals, respectively, while also serving to stabilize bio-oil during heating. 1-Butanol addition also protected the catalysts, increasing catalyst lifetime and reducing or eliminationg coking. Upgrading sharply increased ester content and decreased the amounts of levoglucosan, polyhydric alcohols and organic acids. Upgrading lowered acidity (pH value rise from 2.5 to >3.0), removed the uppleasant ordor and increased hydrocarbon solubility. Water content decreased from 37.2% to < 7.5% dramatically and calorific value increased from 12.6 MJ kg to about 30.0 MJ kg.

  11. Sulfonated Polyimide-Clay Thin Films for Energy Application.

    Science.gov (United States)

    Ali, Farman; Saeed, Shaukat; Shah, Syed Sakhawat; Rahim, Fazal; Duclaux, Laurent; Levêque, Jean-Marc; Reinert, Laurence

    2016-01-01

    Sulfonated polyimides (SPIs) are considered as the promising alternatives to Nafion as membrane materials for the polymer electrolyte membrane (PEM). They generally exhibit high ionic conductivity, good mechanical properties, excellent thermal and chemical stabilities. The six-membered ring, naphthalenic anhydride-based SPIs, not only exhibit superior chemical and thermo-oxidative stabilities but are also more resistant to hydrolysis than their five-membered phthalic anhydride-based SPIs. The composites based on napthalenic polyimides are also significantly stable in high temperature environment and show better stability to hydrolysis. Incorporation of inorganic fillers into organic polymers has gained tremendous attention and these new materials are called organic-inorganic hybrids. Few patents related to the synthesis and performance PEM materials have been reviewed and cited. Keeping in view the importance of sulfonated polyimide based nanocomposites as potential membrane materials for PEM in fuel cell, we have synthesized SPIs clay based nanocomposite as potential membrane material. The objective of this work was to synthesize clay based SPIs thin films which could be used as membrane materials in PEM fuel cell for energy applications. Methods/Experimental: At the first step the nanometric sheets of vermiculite clay prepared via sonication was surface modified by grafting 3-APTES. Then the SPI was synthesized via one-step high temperature direct imidization method, which serve as a matrix material. The organo modified VMT was dispersed via sonication in the SPI matrix. Four different sets of organic-inorganic nanocomposite membranes thin films, having VMT contents in the range of 1 to 7 wt.% were prepared by casting, curing and acidification route. The synthesis of SPIs clay based thin films were carried out at three different steps and fully characterized. The synthesis of SPIs and SPIs clay based thin films were analyzed via different analytical techniques

  12. Proton-Conducting Sulfonated Ionomers by Chemical Modification and Atom Transfer Radical Polymerization

    DEFF Research Database (Denmark)

    Nielsen, Mads Møller

    (PSU), Udel, is chosen as backbone due to its mechanical and thermal properties. Sulfonic acid functionalized, dendronised side chains are attached by click chemistry in the study of hydrocarbon structures with highly flexible spacers. Various degrees of sulfonation (DS) are used in the perspectivation...... to a partially fluorinated system that is based on a poly(vinylidene fluoride) (PVDF)-containing backbone with fully sulfonated PS grafts. To counteract the dimensional change upon water contact that is a result of the increased IEC, the ionomer is blended with a high molecular weight PVDF, which contributes....... The blends are highly humidity sensitive, yet, despite lower absolute conductivities than Nafion, they display a reduced dependence on both humidity and temperature. Under fully humidified conditions the blends perform superior to fully sulfonated graft copolymer analogues. The combination of a high degree...

  13. Preparation of a Sulfonated Carbonaceous Material from Lignosulfonate and Its Usefulness as an Esterification Catalyst

    Directory of Open Access Journals (Sweden)

    Duckhee Lee

    2013-07-01

    Full Text Available Sulfonated carbonaceous material useful as a solid acid catalyst was prepared from lignosulfonate, a waste of the paper-making industry sulfite pulping process, and characterized by 13C-NMR, FT-IR, TGA, SEM and elemental analysis, etc. The sulfonic acid group density and total density of all acid groups in the sulfonated carbonaceous material was determined by titration to be 1.24 mmol/g and 5.90 mmol/g, respectively. Its catalytic activity in the esterification of cyclohexanecarboxylic acid with anhydrous ethanol was shown to be comparable to that of the ionic exchange resin Amberlyst-15, when they were used in the same amount. In the meantime, the sulfonic acid group was found to be leached out by 26%–29% after it was exposed to hot water (95 °C for 5 h. The catalytic usefulness of the prepared carbonaceous material was investigated by performing esterifications.

  14. Magnetite-supported sulfonic acid: a retrievable nanocatalyst for the Ritter reaction and multicomponent reactions

    Science.gov (United States)

    Magnetite-sulfonic acid (NanocatFe-OSO3H), prepared by wet-impregnation method, serves as a magnetically retrievable sustainable catalyst for the Ritter reaction which can be used in several reaction cycles without any loss of activity.

  15. Preparation of a sulfonated carbonaceous material from lignosulfonate and its usefulness as an esterification catalyst.

    Science.gov (United States)

    Lee, Duckhee

    2013-07-10

    Sulfonated carbonaceous material useful as a solid acid catalyst was prepared from lignosulfonate, a waste of the paper-making industry sulfite pulping process, and characterized by 13C-NMR, FT-IR, TGA, SEM and elemental analysis, etc. The sulfonic acid group density and total density of all acid groups in the sulfonated carbonaceous material was determined by titration to be 1.24 mmol/g and 5.90 mmol/g, respectively. Its catalytic activity in the esterification of cyclohexanecarboxylic acid with anhydrous ethanol was shown to be comparable to that of the ionic exchange resin Amberlyst-15, when they were used in the same amount. In the meantime, the sulfonic acid group was found to be leached out by 26%-29% after it was exposed to hot water (95 °C) for 5 h. The catalytic usefulness of the prepared carbonaceous material was investigated by performing esterifications.

  16. Evaluation of crystallization kinetics of poly (ether-ketone-ketone and poly (ether-ether-ketone by DSC

    Directory of Open Access Journals (Sweden)

    Gibran da Cunha Vasconcelos

    2010-08-01

    Full Text Available The poly (aryl ether ketones are used as matrices in advanced composites with high performance due to its high thermal stability, excellent environmental performance and superior mechanical properties. Most of the physical, mechanical and thermodynamic properties of semi-crystalline polymers depend on the degree of crystallinity and morphology of the crystalline regions. Thus, a study on the crystallization process promotes a good prediction of how the manufacturing parameters affect the developed structure, and the properties of the final product. The objective of this work was to evaluate the thermoplastics polymers PEKK e PEEK by DSC, aiming to obtain the relationship between kinetics, content, nucleation and geometry of the crystalline phases, according to the parameters of the Avrami and Kissinger models. The analysis of the Avrami exponents obtained for the studied polymers indicates that both showed the formation of crystalline phases with heterogeneous nucleation and growth geometry of the type sticks or discs, depending on the cooling conditions. It was also found that the PEEK has a higher crystallinity than PEKK.

  17. Destructive effect of polystyrene sulfonate on the structure of hemoproteins

    Science.gov (United States)

    Saburova, E. A.; Basova, L. V.; Dybovskaya, Yu. N.; Sukhorukov, B. I.

    2006-08-01

    The mechanism of the destruction of horse heart hemoglobin (Hb) and spermwhale muscle myoglobin (Mb), two hem-containing proteins, by polystyrene sulfonate, an anionic polyelectrolyte, was studied. Measurements of the optical absorption of the prostetic group of the hem in the visible spectrum and of the circular dichroism in the absorption bands of the peptide groups and aromatic amino acid residues demonstrated that the compact structure of both proteins experiences destruction in the presence of polystyrene sulfonate (PSS) at PSS concentrations ten times as low as that of the protein (in wt %) and that the content of α-helix structure in Hb and Mb decreases from 81% in the native state to 43% in their complexes with PSS. The distinctions in the mechanisms of the destruction of Hb and Mb by PSS were found to be as follows: (1) in contrast to Mb, Hb forms insoluble complexes with PSS at low PSS concentrations and (2) Mb-PSS solutions at Mb-to-PSS ratios >1 were found to contain free hems (that absorb at 397 nm), a feature not observed for Hb; the kinetics of the destruction of both the proteins by the polyelectrolyte was demonstrated to be a two-stage process. The first stage of the destruction of Hb (τ ≈ 24.5 s) was found to be four times as slow as that of Mb (τ ≈ 6 s); the second (slow) stage had a halftime of ˜6 h for both the proteins under study. To determine the localization of regions at the protein molecule surface that are capable of binding polyelectrolyte molecules, the distribution of the electrostatic potential over the surface of the Hb and Mb molecules was numerically calculated with the help of the Poisson-Boltzmann equation at pH 6.2 and an ionic strength of 100 mmol/l. Based on experimental and theoretical studies of the mechanism of the interaction of the polyelectrolyte with the proteins, the structural-functional properties of proteins responsible for their destruction by the polyelectrolyte are determined.

  18. The zeolite mediated isomerization of allyl phenyl ether

    Science.gov (United States)

    Pebriana, R.; Mujahidin, D.; Syah, Y. M.

    2017-04-01

    Allyl phenyl ether is an important starting material in organic synthesis that has several applications in agrochemical industry. The green transformation of allyl phenyl ether assisted by heterogeneous catalyst is an attractive topic for an industrial process. In this report, we investigated the isomerization of allyl phenyl ether by heating it in zeolite H-ZSM-5 and Na-ZSM-5. The conversion of allyl phenyl ether (neat) in H-ZSM-5 was 67% which produced 40% of 2-allylphenol, 17% of 2-methyldihydrobenzofuran, and other product (4:1.7:1), while in Na-ZSM-5 produced exclusively 2-allylphenol with 52% conversion. These results showed that zeolite properties can be tuned to give a selective transformation by substitution of metal ion into the zeolite interior.

  19. Formation and Structural Analysis of Novel Dibornyl Ethers

    African Journals Online (AJOL)

    PROF P.T. KAYE

    . SHORT COMMUNICATION. Formation and Structural Analysis of Novel Dibornyl Ethers. Perry T. Kaye*, Andrew R. Duggan, Joseph M. Matjila, Warner E. Molema, and. Swarnam S. Ravindran. Department of Chemistry, Rhodes University, Grahamstown, ...

  20. Fluorinated Alkyl Ether Epoxy Resin Compositions and Applications Thereof

    Science.gov (United States)

    Wohl, Christopher J. (Inventor); Connell, John W. (Inventor); Smith, Joseph G. (Inventor); Siochi, Emilie J. (Inventor); Gardner, John M. (Inventor); Palmieri, Frank M. (Inventor)

    2017-01-01

    Epoxy resin compositions prepared using amino terminated fluoro alkyl ethers. The epoxy resin compositions exhibit low surface adhesion properties making them useful as coatings, paints, moldings, adhesives, and fiber reinforced composites.

  1. Aquatic Life Criteria - Methyl Tertiary-Butyl Ether (MTBE)

    Science.gov (United States)

    Information pertaining to the 1999 Acute and Chronic Ambient Aquatic Life Water Quality Criteria for Methyl Tertiary-Butyl Ether (MTBE) for freshwater and salt water. Information includes the safe levels of MTBE that should protect the majority of species.

  2. Catalytic rearrangement of the chloroallyl ethers of p-cresol

    Energy Technology Data Exchange (ETDEWEB)

    Andreev, N.A.; Bunina-Krivorukova, L.I.; Levashova, V.I.

    1986-07-20

    The rearrangement of a series of p-cresol ethers (..beta..- and ..gamma..-chloro-, ..beta gamma..- and ..beta gamma..,..gamma..-trichloroallyl), catalyzed by boron trifluoride etherate, was studied. Increase in the number of chlorine atoms in the allyl unit of the ether hinders the rearrangement, and its mechanism changes in the investigated series of ethers from intramolecular (3,3)-sigmatropic (with inversion of the allyl unit) to intermolecular, which corresponds to electrophilic substitution in the aromatic ring (without inversion). The presence of the chlorine atom at the ..beta.. position of the allyl unit promotes rearrangement by a concerted intramolecular mechanism, while a chlorine atom at the ..gamma.. position promotes rearrangement by an intermolecular stage mechanism. Two chlorine atoms at the ..gamma.. position give rise mainly to the intermolecular rearrangement path.

  3. Spatial trends of polybrominated diphenyl ether (PBDE) congeners

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Spatial trends of polybrominated diphenyl ether (PBDE) congeners were analyzed in young of the year bluefish collected along the U.S. Atlantic coastline from...

  4. Evaluation of polybrominated diphenyl ethers in sediment of Lagos ...

    African Journals Online (AJOL)

    user

    Polybrominated diphenyl ethers (PBDEs) are additive flame retardants that are present in many commercial ... recent monitoring study conducted by United States Fish and Wildlife Service, Division of Environmental .... building materials, electronic products manufacturing factories) Oworonsoki and Agboyin stations were.

  5. POLYBROMINATED DIPHENYL ETHERS IN HOUSE DUST AND CLOTHES DRYER LINT

    Science.gov (United States)

    Polybrominated diphenyl ether (PBDE) flame retardants are now considered ubiquitous and persistent pollutants. Few studies have examined the concentrations of these chemicals in the home and here we report measurements of PBDEs in house dust samples collected from the Washington...

  6. Thermally reversible cross-linked poly(ether-urethanes

    Directory of Open Access Journals (Sweden)

    V. Gaina

    2013-07-01

    Full Text Available Cross-linked poly(ether-urethanes were prepared by Diels-Alder (DA reaction of the furan-containing poly(ether-urethane to bismaleimides and showed thermal reversibility evidenced by differential scanning calorimetry and attenuated total reflectance in conjunction with Fourier transform infrared spectroscopy (ATR-FTIR. The furan-containing poly(ether-urethanes were synthesized by the polyaddition reaction of 1,6-hexamethylene diisocyanate (HMDI or 4,4'- dibenzyl diisocyanate (DBDI to poly(tetramethylene ether glycol (PTMEG having Mn = 250, 650, 1000, 1500 and 2000 and 2-[N,N-bis(2-methyl-2-hydroxyethylamino]furfuryl as chain extender by the solution prepolymer method. The molar ratio of isocyanate: PTMEG:chain extender varied from 2:1:1 to 4:1:3, which produces a molar concentration of furyl group ranging between 3.65•10–4 and 1.25•10–3 mol/g.

  7. Nickel-catalyzed direct synthesis of dialkoxymethane ethers

    Indian Academy of Sciences (India)

    catalyzed direct synthesis of dialkoxymethane ethers. MURUGAN SUBARAMANIAN ABHIJIT BERA BHAGAVATULA L V PRASAD EKAMBARAM BALARAMAN. RAPID COMMUNICATION Volume 129 Issue 8 August 2017 pp 1153-1159 ...

  8. Urea-hydrogen peroxide prompted the selective and controlled oxidation of thioglycosides into sulfoxides and sulfones.

    Science.gov (United States)

    Singh, Adesh Kumar; Tiwari, Varsha; Mishra, Kunj Bihari; Gupta, Surabhi; Kandasamy, Jeyakumar

    2017-01-01

    A practical method for the selective and controlled oxidation of thioglycosides to corresponding glycosyl sulfoxides and sulfones is reported using urea-hydrogen peroxide (UHP). A wide range of glycosyl sulfoxides are selectively achieved using 1.5 equiv of UHP at 60 °C while corresponding sulfones are achieved using 2.5 equiv of UHP at 80 °C in acetic acid. Remarkably, oxidation susceptible olefin functional groups were found to be stable during the oxidation of sulfide.

  9. Urea–hydrogen peroxide prompted the selective and controlled oxidation of thioglycosides into sulfoxides and sulfones

    OpenAIRE

    Adesh Kumar Singh; Varsha Tiwari; Kunj Bihari Mishra; Surabhi Gupta; Jeyakumar Kandasamy

    2017-01-01

    A practical method for the selective and controlled oxidation of thioglycosides to corresponding glycosyl sulfoxides and sulfones is reported using urea–hydrogen peroxide (UHP). A wide range of glycosyl sulfoxides are selectively achieved using 1.5 equiv of UHP at 60 °C while corresponding sulfones are achieved using 2.5 equiv of UHP at 80 °C in acetic acid. Remarkably, oxidation susceptible olefin functional groups were found to be stable during the oxidation of sulfide.

  10. Urea?hydrogen peroxide prompted the selective and controlled oxidation of thioglycosides into sulfoxides and sulfones

    OpenAIRE

    Singh, Adesh Kumar; Tiwari, Varsha; Mishra, Kunj Bihari; Gupta, Surabhi; Kandasamy, Jeyakumar

    2017-01-01

    A practical method for the selective and controlled oxidation of thioglycosides to corresponding glycosyl sulfoxides and sulfones is reported using urea?hydrogen peroxide (UHP). A wide range of glycosyl sulfoxides are selectively achieved using 1.5 equiv of UHP at 60 ?C while corresponding sulfones are achieved using 2.5 equiv of UHP at 80 ?C in acetic acid. Remarkably, oxidation susceptible olefin functional groups were found to be stable during the oxidation of sulfide.

  11. Synthesis and Antiplasmodial Activity of EG-Artemisinin Ethers and ...

    African Journals Online (AJOL)

    NICO

    capillary temperature of 180 °C and discharge Current at 10 uA. 2.2. Synthetic Procedures. 2.2.1. Synthesis of EG Ethers of Artemisinin 3–8. The synthesis of EG ethers of artemisinin (Scheme 1) was achieved by using with slight modifications the general method reported by Li et al.18, and described as follows: to a solution.

  12. Impaired neurotransmission in ether lipid-deficient nerve terminals

    OpenAIRE

    Brodde, Alexander; Teigler, Andre; Brugger, Britta; Lehmann, Wolf D.; Wieland, Felix; Berger, Johannes; Just, Wilhelm W.

    2012-01-01

    Isolated defects of ether lipid (EL) biosynthesis in humans cause rhizomelic chondrodysplasia punctata type 2 and type 3, serious peroxisomal disorders. Using a previously described mouse model [Rodemer, C., Thai, T.P., Brugger, B., Kaercher, T., Werner, H., Nave, K.A., Wieland, F., Gorgas, K., and Just, W.W. (2003) Inactivation of ether lipid biosynthesis causes male infertility, defects in eye development and optic nerve hypoplasia in mice. Hum. Mol. Genet., 12, 1881–1895], we investigated ...

  13. Accelerated Expansion as Predicted by an Ether Theory of Gravitation

    OpenAIRE

    Arminjon, Mayeul

    1999-01-01

    Cosmology is investigated within a new, scalar theory of gravitation, which is a preferred-frame bimetric theory with flat background metric. Before coming to cosmology, the motivation for an " ether theory " is exposed at length; the investigated concept of ether is presented: it is a compressible fluid, and gravity is seen as Archimedes' thrust due to the pressure gradient in that fluid. The construction of the theory is explained and the current status of the experimental confrontation is ...

  14. Marine Sponge Dysidea herbacea revisited: Another Brominated Diphenyl Ether

    Directory of Open Access Journals (Sweden)

    Bruce F. Bowden

    2005-03-01

    Full Text Available Abstract: A pentabrominated phenolic diphenyl ether (1 that has not previously been reported from marine sources has been isolated from Dysidea herbacea collected at Pelorus Island, Great Barrier Reef, Australia. The structure was determined by comparison of NMR data with those of known structurally-related metabolites. NMR spectral assignments for (1 are discussed in context with those of three previously reported isomeric pentabrominated phenolic diphenyl ethers.

  15. Water and Salt Transport Properties of Triptycene-Containing Sulfonated Polysulfone Materials for Desalination Membrane Applications.

    Science.gov (United States)

    Luo, Hongxi; Aboki, Joseph; Ji, Yuanyuan; Guo, Ruilan; Geise, Geoffrey M

    2018-01-31

    A series of triptycene-containing sulfonated polysulfone (TRP-BP) materials was prepared via condensation polymerization, and the desalination membrane-relevant fundamental water and salt transport properties (i.e., sorption, diffusion, and permeability coefficients) of the polymers were characterized. Incorporating triptycene into sulfonated polysulfone increased the water content of the material compared to sulfonated polysulfone materials that do not contain triptycene. No significant difference in salt sorption was observed between TRP-BP membranes and other sulfonated polysulfone membranes, suggesting that the presence of triptycene in the polymer did not dramatically affect thermodynamic interactions between salt and the polymer. Both water and salt diffusion coefficients in the TRP-BP membranes were suppressed relative to other sulfonated polysulfone materials with comparable water content, and these phenomena may result from the influence of triptycene on polymer chain packing and/or free-volume distribution, which could increase the tortuosity of the transport pathways in the polymers. Enhanced water/salt diffusivity selectivity was observed for some of the TRP-BP membranes relative to those materials that did not contain triptycene, and correspondingly, incorporation of triptycene into sulfonated polysulfone resulted in an increase, particularly for acid counterion form TRP-BP materials, in water/salt permeability selectivity, which is favorable for desalination membrane applications.

  16. Effects of the ether phospholipid AMG-PC on mast cells are similar to that of the ether lipid AMG but different from that of the analogue hexadecylphosphocholine

    DEFF Research Database (Denmark)

    Grosman, Nina

    1991-01-01

    Farmakologi, ether phospholipid, hexacylphosphocholine, miltefosine, protein kinase C, AMG-PC(alkyl-methyl-glycero-phosphocholine), Histamine release, mast cell......Farmakologi, ether phospholipid, hexacylphosphocholine, miltefosine, protein kinase C, AMG-PC(alkyl-methyl-glycero-phosphocholine), Histamine release, mast cell...

  17. Fabrication and properties of poly(polyethylene glycol n-alkyl ether vinyl ether)s as polymeric phase change materials

    Energy Technology Data Exchange (ETDEWEB)

    Pei, Dong-fang; Chen, Sai; Li, Shu-qin; Shi, Hai-feng; Li, Wei; Li, Xuan; Zhang, Xing-xiang, E-mail: zhangpolyu@aliyun.com

    2016-06-10

    A series of poly(polyethylene glycol n-alkyl ether vinyl ether)s (PC{sub m}E{sub n}VEs) with various lengths of alkyl chains and polyethylene glycol spacers as side chain (m = 16,18; n = 1,2) were synthesized via two steps. First, monomers-ethylene glycol hexadecyl ether vinyl ether (C{sub 16}E{sub 1}VE), ethylene glycol octadecyl ether vinyl ether (C{sub 18}E{sub 1}VE), diethylene glycol hexadecyl ether vinyl ether (C{sub 16}E{sub 2}VE) and diethylene glycol octadecyl ether vinyl ether (C{sub 18}E{sub 2}VE) were synthesized by a modified Williamson etherification. Then, four new types of phase change materials were successfully fabricated by a living cationic polymerization. Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance spectroscopy (NMR), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and wide-angle X-ray diffraction (WAXD) were employed to characterize their composition, thermal properties and crystallization behavior. The results show that, the side chains of PC{sub 16}E{sub 1}VE, PC{sub 18}E{sub 1}VE, PC{sub 16}E{sub 2}VE and PC{sub 18}E{sub 2}VE are in a hexagonal lattice, and the onset temperatures for melting of PC{sub 16}E{sub 1}VE, PC{sub 18}E{sub 1}VE, PC{sub 16}E{sub 2}VE and PC{sub 18}E{sub 2}VE are 39.8 °C, 37.4 °C, 51.0 °C and 48.9 °C, the onset temperatures for crystallization are 36.7 °C, 35.2 °C, 47.4 °C and 46.3 °C, respectively. The enthalpy changes of PC{sub 18}E{sub 1}VE, PC{sub 16}E{sub 2}VE and PC{sub 18}E{sub 2}VE are higher than 100 J/g; on the contrary, it is 96 J/g for PC{sub 16}E{sub 1}VE. The enthalpy decrease is no more than 11% after 10 heating and cooling cycles. The 5 wt% mass loss temperatures of PC{sub 18}E{sub 1}VE, PC{sub 16}E{sub 2}VE and PC{sub 18}E{sub 2}VE are higher than 300 °C; on the contrary, it’s 283 °C for PC{sub 16}E{sub 1}VE. Using a weak polarity, flexible alkyl ether chain (-OCH{sub 2}CH{sub 2}O-) as a spacer to link the main chain and side chain

  18. Chronic perfluorooctane sulfonate (PFOS) exposure induces hepatic steatosis in zebrafish

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Jiangfei; Lv, Suping; Nie, Shangfei; Liu, Jing; Tong, Shoufang; Kang, Ning; Xiao, Yanyan; Dong, Qiaoxiang [Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms (China); Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou, 325035 (China); Huang, Changjiang, E-mail: cjhuang5711@163.com [Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms (China); Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou, 325035 (China); Yang, Dongren, E-mail: yangdongren@yahoo.com [Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms (China); Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou, 325035 (China)

    2016-07-15

    Highlights: • PFOS chronic exposure induces sex-dependent hepatic steotosis in zebrafish. • PFOS interferes with β-oxidation, lipid synthesis, and lipid hepatic export process. • Zebrafish could be used as an alternative model for PFOS chronic toxicity screening. - Abstract: Perfluorooctane sulfonate (PFOS), one persistent organic pollutant, has been widely detected in the environment, wildlife and human. Currently few studies have documented the effects of chronic PFOS exposure on lipid metabolism, especially in aquatic organisms. The underlying mechanisms of hepatotoxicity induced by chronic PFOS exposure are still largely unknown. The present study defined the effects of chronic exposure to low level of PFOS on lipid metabolism using zebrafish as a model system. Our findings revealed a severe hepatic steatosis in the liver of males treated with 0.5 μM PFOS as evidenced by hepatosomatic index, histological assessment and liver lipid profiles. Quantitative PCR assay further indicated that PFOS significantly increase the transcriptional expression of nuclear receptors (nr1h3, rara, rxrgb, nr1l2) and the genes associated with fatty acid oxidation (acox1, acadm, cpt1a). In addition, chronic PFOS exposure significantly decreased liver ATP content and serum level of VLDL/LDL lipoprotein in males. Taken together, these findings suggest that chronic PFOS exposure induces hepatic steatosis in zebrafish via disturbing lipid biosynthesis, fatty acid β-oxidation and excretion of VLDL/LDL lipoprotein, and also demonstrate the validity of using zebrafish as an alternative model for PFOS chronic toxicity screening.

  19. Pre-treatment of biomasses using magnetised sulfonic acid catalysts

    Directory of Open Access Journals (Sweden)

    Yane Ansanay

    2017-06-01

    Full Text Available There is a significant interest in employing solid acid catalysts for pre-treatment of biomasses for subsequent hydrolysis into sugars, because solid acid catalysts facilitate reusability, high activity, and easier separation. Hence the present research investigated pretreatment of four lignocellulosic biomasses, namely Switchgrass (Panicum virgatum L ‘Alamo’, Gamagrass (Tripsacum dactyloides, Miscanthus (Miscanthus × giganteus and Triticale hay (Triticale hexaploide Lart. at 90°C for 2 h using three carbon-supported sulfonic acid catalysts. The catalysts were synthesized via impregnating p-Toluenesulfonic acid on carbon (regular and further impregnated with iron nitrate via two methods to obtain magnetic A and magnetic B catalysts. When tested as pre-treatment agents, a maximum total lignin reduction of 17.73±0.63% was observed for Triticale hay treated with magnetic A catalyst. Furthermore, maximum glucose yield after enzymatic hydrolysis was observed to be 203.47±5.09 mg g–1 (conversion of 65.07±1.63% from Switchgrass treated with magnetic A catalyst. When reusability of magnetised catalysts were tested, it was observed that magnetic A catalyst was consistent for Gamagrass, Miscanthus × Giganteus and Triticale hay, while magnetic B catalyst was found to maintain consistent yield for switchgrass feedstock. Our results suggested that magnetised solid acid catalyst could pre-treat various biomass stocks and also can potentially reduce the use of harsh chemicals and make bioenergy processes environment friendly.

  20. Thyroid disruption by perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA).

    Science.gov (United States)

    Coperchini, F; Awwad, O; Rotondi, M; Santini, F; Imbriani, M; Chiovato, L

    2017-02-01

    Perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) are two fluorinated compounds widely used in industry because of their useful chemical characteristics. They were identified as endocrine disruptors due to their ability to interfere with thyroid function. The resistance of PFOA and PFOS to environmental degradation, their bio-accumulation in food chains, and their long half-life raised concern in the scientific community, and several studies were performed with the aim to establish the real dangerousness of these compounds for the human health. The present review will focus on the effects of PFOA and PFOS on the thyroid gland taking into account in vitro experiments, animal studies, and human data. PFOS and PFOA reduce the circulating levels of thyroid hormones in diet-exposed animals, mainly by increasing their metabolic clearance rate. An accumulation of PFOS and PFOA was documented in thyroid cells, and a cytotoxic effect was observed after exposure to extremely high concentrations of these compounds. In environmentally exposed communities and in the general population, the most consistent effect of exposure to PFOA, and to a less extent to PFOS, is the occurrence of hypothyroidism. Women and children appear to be more at risk of developing mild thyroid failure. Pregnant women with circulating thyroid antibodies might be at risk of developing subclinical hypothyroidism, mainly when exposed at high doses of PFOS. The relative risks for thyroid cancer in people exposed to PFOA and PFOS were low and based on a few cases. Moreover, there was no consistent finding across all or even most studies.

  1. Perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) contamination from textiles.

    Science.gov (United States)

    Supreeyasunthorn, Phenpimuk; Boontanon, Suwanna K; Boontanon, Narin

    2016-01-01

    The goals of this study were to determine the concentrations of perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) in textiles and to determine PFOS and PFOA contamination in textile washing water. Quantification analysis was performed by high performance liquid chromatography coupled with tandem mass spectrometry. Analysis of 32 textile samples by methanol extraction revealed that the average concentrations of PFOS and PFOA were 0.18 µg m(-2) (0.02 to 0.61 µg m(-2)) and 2.74 µg m(-2) (0.31 to 14.14 µg m(-2)), respectively. Although the average concentration of PFOS found in textile samples was below European Union (EU) Commission regulations (textile samples had PFOA concentrations exceeding 1 µg m(-2). Thus, based on these results, the concentration of PFOA in products should also be regulated. Experiments on PFOS and PFOA leaching into washing water were conducted. The maximum concentrations of PFOS and PFOA were measured after the first washing; the concentrations gradually decreased with each subsequent washing. PFOS and PFOA migrated from textiles and were released into the environment, with disappearance percentages of 29.8% for PFOS and 99% for PFOA. The data presented in this study showed that textiles could be a significant direct and indirect source of PFOS and PFOA exposure for both humans and the environment.

  2. Nonlinear dielectric effect in supercritical diethyl ether.

    Science.gov (United States)

    Drozd-Rzoska, Aleksandra; Rzoska, Sylwester J; Martinez-Garcia, Julio Cesar

    2014-09-07

    Nonlinear dielectric effect (NDE) describes changes of dielectric permittivity induced by a strong electric field in a liquid dielectric. The most classical finding related to this magnitude is the negative sign of NDE in liquid diethyl ether (DEE), recalled by Peter Debye in his Nobel Prize lecture. This article shows that the positive sign of NDE in DEE is also possible, in the supercritical domain. Moreover, NDE on approaching the gas-liquid critical point exhibits a unique critical effect described by the critical exponent ψ ≈ 0.4 close to critical temperature (T(C)) and ψ ≈ 0.6 remote from T(C). This can be linked to the emergence of the mean-field behavior in the immediate vicinity of T(C), contrary to the typical pattern observed for critical phenomena. The multi-frequency mode of NDE measurements made it possible to estimate the evolution of lifetime of critical fluctuations. The new way of data analysis made it possible to describe the critical effect without a knowledge of the non-critical background contribution in prior.

  3. Dimethyl ether (DME) as an alternative fuel

    Science.gov (United States)

    Semelsberger, Troy A.; Borup, Rodney L.; Greene, Howard L.

    With ever growing concerns on environmental pollution, energy security, and future oil supplies, the global community is seeking non-petroleum based alternative fuels, along with more advanced energy technologies (e.g., fuel cells) to increase the efficiency of energy use. The most promising alternative fuel will be the fuel that has the greatest impact on society. The major impact areas include well-to-wheel greenhouse gas emissions, non-petroleum feed stocks, well-to-wheel efficiencies, fuel versatility, infrastructure, availability, economics, and safety. Compared to some of the other leading alternative fuel candidates (i.e., methane, methanol, ethanol, and Fischer-Tropsch fuels), dimethyl ether appears to have the largest potential impact on society, and should be considered as the fuel of choice for eliminating the dependency on petroleum. DME can be used as a clean high-efficiency compression ignition fuel with reduced NO x, SO x, and particulate matter, it can be efficiently reformed to hydrogen at low temperatures, and does not have large issues with toxicity, production, infrastructure, and transportation as do various other fuels. The literature relevant to DME use is reviewed and summarized to demonstrate the viability of DME as an alternative fuel.

  4. Keeping ether "en-vogue": the role of Nathan Cooley Keep in the history of ether anesthesia.

    Science.gov (United States)

    Guralnick, Walter C; Kaban, Leonard B

    2011-07-01

    In this report, we explore the little known role of Dr Nathan Cooley Keep in the dissemination of ether anesthesia in Boston. Keep was a prominent Boston dentist who, for a short time, taught and employed both William Morton and Horace Wells. He used ether anesthesia for a variety of dental and other surgical procedures requiring pain control. Keep administered ether to anesthetize Henry Wadsworth Longfellow's wife during the delivery of their daughter. This was the first use of ether for obstetric anesthesia. Dr Keep was also the first Dean of the Harvard Dental School and convinced the Massachusetts General Hospital to appoint a dentist to the staff of the hospital for the first time. Copyright © 2011 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  5. Vinyl Sulfonate/Vinyl Amide Copolymers and Different Surfactants As Suitable Systems in Eorat Higher Temperatures and Salinities Utilisation de mélanges de copolymères vinyl sulfonate/vinyl amide et de différents tensio-actifs en RAP dans des conditions de fortes salinités et de températures élevées

    Directory of Open Access Journals (Sweden)

    Von Halasz S. P.

    2006-11-01

    Full Text Available For enhanced oil recovery flooding processes there will be an increasing demand for polymers having high temperature and electrolyte stability. High molecular weight copolymers based on vinyl sulfonate, vinyl amide, and acryl amide show high performances in matching these demanding requirements. Surfactants are also known that are stable under these conditions, resulting in high deoiling rates. The aim of the present article is to demonstrate the influence of alkylphenol ethoxylates and their corresponding ether sulfonates on VS/VA/AM copolymer solutions. Aqueous solutions of such copolymers were added to varying quantities of nonionic and anionic surfactants at different temperatures using salinity scans. This article discusses the results of experiments with solutions of copolymers and surfactants in terms of compatibility, viscosity yield, flow properties, shear stability, injectability, thermostability, and oil recovery. Solutions of alkylphenol ethoxylates and/or ether sulfonates show nearly the same compatibility within a broad range of temperature and salinity, both with and without polymers. Relatively small amounts of surfactants are able to influence the EOR (Enhanced Oil Recovery properties of the polymer solutions, giving several interesting aspects for improved oil recovery. L'utilisation des polymères en récupération assistée du pétrole a fait apparaître un besoin croissant de polymères stables à haute température et à forte salinité. Les performances des terpolymères vinyl sulfonate/vinyl amide/acrylamide (VS/VA/VM ont montré que ces polymères remplissent de tels critères d'utilisation. On connaît également des tensio-actifs chimiquement stables dans ces mêmes conditions qui pourraient donc permettre d'obtenir des taux de récupération d'huile élevés. L'objectif de ce travail est de mettre en évidence l'influence de la présence d'alkylphénols éthoxyIates et des éthers sulfonates correspondants sur les

  6. Modulating the solubility of zwitterionic poly((3- methacrylamidopropyl)ammonioalkane sulfonate)s in water and aqueous salt solutions via the spacer group separating the cationic and the anionic moieties

    OpenAIRE

    Hildebrand, Viet; Laschewsky, André; Wischerhoff, Erik

    2015-01-01

    Complementary to the well-established zwitterionic monomer 3-((3-methacrylamidopropyl)dimethylammonio) propane-1-sulfonate (SPP), the closely related monomers 2-hydroxy-3-((3-methacrylamidopropyl) dimethylammonio)propane-1-sulfonate (SHPP) and 4-((3-methacrylamidopropyl)dimethylammonio)-butane-1-sulfonate (SBP) were synthesised and polymerised by reversible addition–fragmentation chain transfer (RAFT) polymerisation, using a fluorophore labeled RAFT agent. The polyzwitterions of systematicall...

  7. Interface and properties of inorganic fullerene tungsten sulphide nanoparticle reinforced poly (ether ether ketone) nanocomposites

    Science.gov (United States)

    Wang, Nannan; Yang, Zhuxian; Wang, Yuan; Thummavichai, Kunyapat; Xia, Yongde; Ghita, Oana; Zhu, Yanqiu

    We report a simple and effective method to fabricate PEEK (poly ether ether ketone)/IF-WS2 (Inorganic Fullerene Tungsten Sulphide) nanocomposites with IF-WS2 content up to 8 wt%. We have used electron microscopies to characterise the morphology and structural features of the nancomposites, and FTIR and XPS to show that some chemical interface bondings were formed between the PEEK and IF-WS2. We demonstrate that the resulting PEEK/IF-WS2 nanocomposites showed an extraordinary 190% increase in thermal conductivity, 50 °C higher in degradation temperature, and mild improvements in strength and hardness. The increased degradation activation energy from 64 to 76 kJ/mol for neat PEEK and PEEK/IF-WS2 nanocomposites, respectively, is attributed to the synergistic interface between the PEEK matrix and IF-WS2 nanoparticles. The enhancements in both the mechanical and thermal properties will significantly expand the capacities of PEEK-based nanocomposites towards applications where thermal conductivity and stability are important.

  8. Evaluation of workers exposed to ethylene glycol monomethyl ether and ethylene glycol monomethyl ether acetate.

    Science.gov (United States)

    Park, Jiyoung; Yoon, Chungsik; Byun, Hyaejeong; Kim, Yangho; Park, Donguk; Ha, Kwonchul; Lee, Sang man; Park, Sungki; Chung, Eunkyo

    2012-01-01

    Ethylene glycol monomethyl ether (EGME) and ethylene glycol monomethyl ether acetate (EGMEA) are widely used in industries as solvents for coatings, paint and ink, but exposure data are limited because they are minor components out of mixed solvents, as well as because of inconsistency in desorption solvent use. The objective of this study was to investigate the worker exposure profile of EGME and EGMEA. Our study investigated 27 workplaces from June to September 2008 and detected EGME and EGMEA in 20 and 13, respectively. Both personal and area sampling were conducted using a charcoal tube to collect EGME and EGMEA. Gas chromatography with a flame ionization detector was used to analyze these compounds after desorption using a mixture of methylene chloride and methanol. The arithmetic mean concentrations of EGME and EGMEA during periods of full work shifts were 2.59 ppm and 0.33 ppm, respectively. The exposure levels were lower than the Korean Ministry of Labor (MOL) OEL (5 ppm) but higher than the ACGIH TLV (0.1 ppm). In general, the working environments were poor and required much improvement, including the use of personal protective equipment. Only 50% of the workplaces had local exhaust ventilation systems in operation. The average capture velocity of the operating local exhaust ventilation systems was 0.27 m/s, which did not meet the legal requirement of 0.5 m/s. Educating workers to clearly understand the handling and use of hazardous chemicals and improving working conditions are strongly suggested.

  9. Rheological, mechanical and tribological properties of carbon-nanofibre reinforced poly (ether ether ketone composites

    Directory of Open Access Journals (Sweden)

    Volker Altstaedt

    2003-12-01

    Full Text Available Poly(ether ether ketone nanocomposites containing vapour-grown carbon nanofibres (CNF were produced using standard polymer processing techniques. At high shear rates no significant increase in resin viscosity was observed. Nevertheless, the addition of the CNFs results in a higher melt strength at 360°C. Electron microscopy confirmed the homogeneous dispersion and alignment of nanofibres in the polymer matrix. Evaluation of the mechanical composite properties revealed a linear increase in tensile stiffness and strength with nanofibre loading fractions up to 15 wt% whilst matrix ductility was maintained up to 10 wt%. An interpretation of the composite performance by short-fibre theory resulted in rather low intrinsic stiffness properties of the vapour-grown CNF. Differential scanning calorimetry was used to investigate crystallization kinetics and degree of crystallinity. The CNFs were found not to act as nucleating sites. Furthermore, unidirectional sliding tests against two different counterpart materials (100Cr6 martensitic bearing steel, X5CrNi18-10 austenitic stainless steel were performed. The carbon nanofibres were found to reduce the wear rate of PEEK significantly.

  10. Nitric Acid Dehydration Using Perfluoro Carboxylate and Mixed Sulfonate/Carboxylate Membranes

    Energy Technology Data Exchange (ETDEWEB)

    Ames, Richard L. [Colorado School of Mines, Golden, CO (United States)

    2004-09-01

    Perfluoro ionomer membranes are tetrafluoro ethylene-based materials with microheterogeneous structures consisting of a hydrophobic polymer backbone and a hydrophilic side-chain cluster region. Due to the ionomer cluster morphology, these films exhibit unique transport properties. Recent investigations with perfluoro sulfonate and perfluoro sulfonate/carboxylate composite polymers have demonstrated their value in the dehydration of nitric acid and they show potential as an alternative to conventional, energy intensive unit operations in the concentration of acid feeds. As a result, investigations were conducted to determine the feasibility of using pure perfluoro carboxylate and mixed perfluoro sulfonate/carboxylate films for the dehydration of nitric acid because of the speculation of improved water selectivity of the carboxylate pendant chain. During the first phase of these investigations the effort was focused on generating a thin, solution cast perfluoro carboxylate ionomer film, to evaluate the general, chemical and physical characteristics of the polymer, and to assess the material's aqueous transport performance (flux and nitrate separation efficiencies) in pervaporation and high-pressure environments. Results demonstrated that generating robust solution-cast films was difficult yet a number of membranes survived high trans-membrane pressures up to 700 psig. General characterization of the solution cast product showed reduced ion exchange capacities when compared with thicker, ''as received'' perfluoro carboxylate and similar sulfonate films. Small angle x-ray scattering analysis results suggested that the solution cast carboxylate films contained a small fraction of sulfonate terminated side-chains. Aqueous transport experimentation showed that permeate fluxes for both pure water and nitric acid were approximately two orders of magnitude smaller for the carboxylate solution cast membranes when compared to their sulfonate

  11. Sulfonation Process and Desalination Effect of Polystyrene/PVDF Semi-Interpenetrating Polymer Network Cation Exchange Membrane

    OpenAIRE

    Yin-lin Lei; Yun-jie Luo; Fei Chen; Le-he Mei

    2014-01-01

    With the classical sulfonation method of polystyrene-based strongly acidic cation exchange resins, polystyrene/polyvinylidene fluoride (PVDF) alloy particles were sulfonated to obtain a cation exchange resin, which was then directly thermoformed to prepare a semi-interpenetrating polymer network (semi-IPN) cation exchange membrane. The effects of the swelling agent, sulfonation time and temperature and the relative contents of polystyrene and divinylbenzene (DVB) in the alloy particles on the...

  12. Grafting titanium nitride surfaces with sodium styrene sulfonate thin films

    Science.gov (United States)

    Zorn, Gilad; Migonney, Véronique; Castner, David G.

    2014-01-01

    The importance of titanium nitride lies in its high hardness and its remarkable resistance to wear and corrosion, which has led to its use as a coating for the heads of hip prostheses, dental implants and dental surgery tools. However, the usefulness of titanium nitride coatings for biomedical applications could be significantly enhanced by modifying their surface with a bioactive polymer film. The main focus of the present work was to graft a bioactive poly(sodium styrene sulfonate) (pNaSS) thin film from titanium nitride surfaces via a two-step procedure: first modifying the surface with 3-methacryloxypropyltrimethoxysilane (MPS) and then grafting the pNaSS film from the MPS modified titanium through free radical polymerization. X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS) were used after each step to characterize success and completeness of each reaction. The surface region of the titanium nitride prior to MPS functionalization and NaSS grafting contained a mixture of titanium nitride, oxy-nitride, oxide species as well as adventitious surface contaminants. After MPS functionalization, Si was detected by XPS, and characteristic MPS fragments were detected by ToF-SIMS. After NaSS grafting, Na and S were detected by XPS and characteristic NaSS fragments were detected by ToF-SIMS. The XPS determined thicknesses of the MPS and NaSS overlayers were ∼1.5 and ∼1.7 nm, respectively. The pNaSS film density was estimated by the toluidine blue colorimetric assay to be 260 ± 70 ng/cm2. PMID:25280842

  13. Synthesis and characterization of sulfonated polyesters derived from glycerol; Sintese e caracterizacao de poliesteres sulfonados obtidos a partir do glicerol

    Energy Technology Data Exchange (ETDEWEB)

    Fiuza, R.A.; Jose, N.M.; Boaventura, J.S. [Universidade Federal da Bahia (IQ/UFBA), Salvador, BA (Brazil). Inst. de Quimica; Fiuza, R.P. [Universidade Federal da Bahia (EP/UFBA), Salvador, BA (Brazil). Escola Politecnica. Curso de Mestrado em Engenharia Quimica

    2010-07-01

    In this work were synthesized polyesters from glycerol and acid sulfonated phthalic previously. The materials were characterized by DSC, TGA, FTIR, SEM, XRD and XRF. The results showed effective sulfonation of phthalic acid. The presence of sulfonic groups promoted strong changes in the crystallinity of the new material makes the lens. The polyesters made from phthalic acid sulfonated combine characteristics such as heat resistance and groups that drivers potentiate the electrolyte for application in fuel cells proton exchange membrane and also for gas separation. (author)

  14. Phosphoric Acid-Mediated Synthesis of Vinyl Sulfones through Decarboxylative Coupling Reactions of Sodium Sulfinates with Phenylpropiolic Acids.

    Science.gov (United States)

    Rong, Guangwei; Mao, Jincheng; Yan, Hong; Zheng, Yang; Zhang, Guoqi

    2015-08-07

    A novel phosphoric acid -mediated synthesis of vinyl sulfones through decarboxylative coupling reactions of sodium sulfinates with phenylpropiolic acids is described. This transformation is efficient and environmentally friendly.

  15. Pistacia lentiscus resin regulates intestinal damage and inflammation in trinitrobenzene sulfonic acid-induced colitis.

    Science.gov (United States)

    Gioxari, Aristea; Kaliora, Andriana C; Papalois, Apostolos; Agrogiannis, George; Triantafillidis, John K; Andrikopoulos, Nikolaos K

    2011-11-01

    Mastic (Pistacia lentiscus) of the Anacardiaceae family has exhibited anti-inflammatory and antioxidant properties in patients with Crohn's disease. This study was based on the hypothesis that mastic inhibits intestinal damage in inflammatory bowel disease, regulating inflammation and oxidative stress in intestinal epithelium. Four different dosages of P. lentiscus powder in the form of powder were administered orally to trinitrobenzene sulfonic acid-induced colitic rats. Eighty-four male Wistar rats were randomly assigned to seven groups: A, control; B, colitic; C-F, colitic rats daily supplemented with P. lentiscus powder at (C) 50 mg/kg, (D) 100 mg/kg, (E) 200 mg/kg, and (F) 300 mg/kg of body weight; and G, colitic rats treated daily with cortisone (25 μg/kg of body weight). Colonic damage was assessed microscopically. The cytokines tumor necrosis factor-α, intercellular adhesion molecule-1 (ICAM-1), interleukin (IL)-6, IL-8, and IL-10 and malonaldehyde were measured in colonic specimens. Results were expressed as mean ± SE values. Histological amelioration of colitis (P≤.001) and significant differences in colonic indices occurred after 3 days of treatment. Daily administration of 100 mg of P. lentiscus powder/kg of body weight decreased all inflammatory cytokines (P≤.05), whereas 50 mg of P. lentiscus powder/kg of body weight and cortisone treatment reduced only ICAM-1 (P≤.05 and P≤.01, respectively). Malonaldehyde was significantly suppressed in all treated groups (P≤.01). IL-10 remained unchanged. Cytokines and malonaldehyde remained unaltered after 6 days of treatment. Thus P. lentiscus powder could possibly have a therapeutic role in Crohn's disease, regulating oxidant/antioxidant balance and modulating inflammation.

  16. Ultrasound-assisted adsorption of 4-dodecylbenzene sulfonate from aqueous solutions by corn cob activated carbon.

    Science.gov (United States)

    Milenković, D D; Bojić, A Lj; Veljković, V B

    2013-05-01

    This study was aimed at removal of 4-dodecylbenzene sulfonate (DBS) ions from aqueous solutions by ultrasound-assisted adsorption onto the carbonized corn cob (AC). The main attention was focused on modeling the equilibrium and kinetics of adsorption of DBS onto the AC. The AC was prepared from ground dried corn cob by carbonization and activation by carbon dioxide at 880°C for 2h in a rotary furnace. The adsorption isotherm data were fitted by the Langmuir model in both the absence and the presence of ultrasound (US). The maximum adsorption capacities of the adsorbent for DBS, calculated from the Langmuir isotherms, were 29.41mg/g and 27.78mg/g in the presence of US and its absence, respectively. The adsorption process in the absence and the presence of US obeyed the pseudo second-order kinetics. The intraparticular diffusion model indicated that the adsorption of DBS ions on the AC was diffusion controlled as well as that US promoted intraparticular diffusion. The ΔG° values, -24.03kJ/mol, -25.78kJ/mol and -27.78kJ/mol, were negative at all operating temperatures, verifying that the adsorption of DBS ions was spontaneous and thermodynamically favorable. The positive value of ΔS°=187J/molK indicated the increased randomness at the adsorbent-adsorbate interface during the adsorption of DBS ions by the AC. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Microwave-assisted extraction for the simultaneous determination of Novolac glycidyl ethers, bisphenol A diglycidyl ether, and its derivatives in canned food using HPLC with fluorescence detection.

    Science.gov (United States)

    Zhang, Hong; Xue, Ming; Lu, Yanbin; Dai, Zhiyuan; Wang, Honghai

    2010-02-01

    A microwave-assisted extraction (MAE) protocol and an efficient HPLC analysis method were first developed for the fast extraction and simultaneous determination of bisphenol F diglycidyl ether (Novolac glycidyl ether 2-Ring), Novolac glycidyl ether 3-Ring, Novolac glycidyl ether 4-Ring, Novolac glycidyl ether 5-Ring, Novolac glycidyl ether 6-Ring, bisphenol A diglycidyl ether, bisphenol A (2,3-dihydroxypropyl) glycidyl ether, bisphenol A (3-chloro-2-hydroxypropyl) glycidyl ether, bisphenol A bis(3-chloro-2-hydroxypropyl) ether, bisphenol A (3-chloro-2-hydroxypropyl) (2,3-dihydroxypropyl) ether in canned fish and meat. After being optimized in terms of solvents, microwave power and irradiation time, MAE was selected to carry out the extraction of ten target compounds. Analytes were purified by poly(styrene-co-divinylbenzene) SPE columns and determined by HPLC-fluorescence detection. LOD varied from 0.79 to 3.77 ng/g for different target compounds based on S/N=3; LOQ were from 2.75 to 10.92 ng/g; the RSD for repeatability were <8.64%. The analytical recoveries ranged from 70.46 to 103.44%. This proposed method was successfully applied to 16 canned fish and meat, and the results acquired were in good accordance with the studies reported. Compared with the conventional liquid-liquid extraction and ultrasonic extraction, the optimized MAE approach gained the higher extraction efficiency (20-50% improved).

  18. Electron paramagnetic resonance spin label titration: a novel method to investigate random and site-specific immobilization of enzymes onto polymeric membranes with different properties

    Energy Technology Data Exchange (ETDEWEB)

    Butterfield, D. Allan; Colvin, Joshua; Liu Jiangling; Wang Jianquan; Bachas, Leonidas; Bhattacharrya, Dibakar

    2002-10-11

    bacterial cellulose membranes versus hydrophobic modified poly(ether)sulfone membranes. These results are discussed with reference to analysis and utilization of biofunctional membranes.

  19. Highly Sulfonated Diamine Synthesized Polyimides and Protic Ionic Liquid Composite Membranes Improve PEM Conductivity

    Directory of Open Access Journals (Sweden)

    Bor-Kuan Chen

    2015-06-01

    Full Text Available A novel sulfonated diamine was synthesized from 1,4-bis(4-aminophenoxy benzene [pBAB]. Sulfonated polyimides (SPIs were synthesized from sulfonated pBAB, 1,4-bis(4-aminophenoxy-2-sulfonic acid benzenesulfonic acid [pBABTS], various diamines and aromatic dianhydrides. Composite proton exchange membranes (PEMs made of novel SPIs and a protic ionic liquid (PIL 1-vinyl-3-H-imidazolium trifluoromethanesulfonate [VIm][OTf] showed substantially increased conductivity. We prepared an SPI/PIL composite PEM using pBABTS, 4,4′-(9-fluorenylidene dianiline (9FDA as diamine, 3,3′,4,4′-diphenylsulfone tetracarboxylic dianhydride (DSDA as dianhydride and 40 wt % [VIm][OTf] with a high conductivity of 16 mS/cm at 120 °C and anhydrous condition. pBABTS offered better conductivity, since the chemical structure had more sulfonated groups that provide increased conductivity. The new composite membrane could be a promising anhydrous or low-humidity PEM for intermediate or high-temperature fuel cells.

  20. The host cell sulfonation pathway contributes to retroviral infection at a step coincident with provirus establishment.

    Directory of Open Access Journals (Sweden)

    James W Bruce

    2008-11-01

    Full Text Available The early steps of retrovirus replication leading up to provirus establishment are highly dependent on cellular processes and represent a time when the virus is particularly vulnerable to antivirals and host defense mechanisms. However, the roles played by cellular factors are only partially understood. To identify cellular processes that participate in these critical steps, we employed a high volume screening of insertionally mutagenized somatic cells using a murine leukemia virus (MLV vector. This approach identified a role for 3'-phosphoadenosine 5'-phosphosulfate synthase 1 (PAPSS1, one of two enzymes that synthesize PAPS, the high energy sulfate donor used in all sulfonation reactions catalyzed by cellular sulfotransferases. The role of the cellular sulfonation pathway was confirmed using chemical inhibitors of PAPS synthases and cellular sulfotransferases. The requirement for sulfonation was mapped to a stage during or shortly after MLV provirus establishment and influenced subsequent gene expression from the viral long terminal repeat (LTR promoter. Infection of cells by an HIV vector was also shown to be highly dependent on the cellular sulfonation pathway. These studies have uncovered a heretofore unknown regulatory step of retroviral replication, have defined a new biological function for sulfonation in nuclear gene expression, and provide a potentially valuable new target for HIV/AIDS therapy.

  1. Potential contact and intraocular lenses based on hydrophilic/hydrophobic sulfonated syndiotactic polystyrene membranes

    Directory of Open Access Journals (Sweden)

    Simona Zuppolini

    2017-10-01

    Full Text Available Crystalline films of syndiotactic polystyrene (s-PS, a commercially available thermoplastic polymer, having a highly hydrophilic amorphous phase, were achieved by using a mild solid-state sulfonation procedure. Despite the used mild process conditions, an easy and uniform sulfonation of the phenyl rings of the amorphous phase is obtained. The crystallinity of the polymer was not affect by the sulfonation degree (S, at least at S less than 20%, and the obtained polymer films show the nanoporous crystalline form of s-PS. As widely reported in literature, the nanoporous nature of the polymer crystalline phase gives to these materials the ability to absorb and release organic molecules of appropriate size and polarity. This property, coupled to transparency, makes these materials potentially useful intraocular lens (IOLs and contact lens applications. Sulfonation procedure and sulfonated film samples characterization by using wide-angle X-ray diffraction (WAXD, Fourier-transform infrared (FTIR and ultraviolet-visible (UV-vis spectroscopy techniques and water sorption tests were reported. Furthermore, the biocompatibility study demonstrated no cytotoxicity and appropriate cell interaction properties for the specific applications.

  2. Conformational-induced doping effect of sodium dodecyl benzene sulfonate on single walled carbon nanotubes.

    Science.gov (United States)

    Lee, Jin-Hyon; Yoon, Seon-Mi; Park, Sam-Jin; Cha, In-Sung; Shin, Hyeon-Jin; Choi, Jae-Young; Kim, Jong Min; Paik, Ungyu

    2012-02-01

    The doping behavior of single-walled carbon nanotubes (SWCNTs) was investigated with an emphasis on the control of the conformation of sodium dodecylbenzene sulfonate (NaDDBS) with sulfonate groups acting as an electro-withdrawing group. The conformation of adsorbed NaDDBS on SWCNTs was controlled as a function of the amount of NaDDBS. The doping behavior of SWCNTs was significantly affected by the dosing amount of NaDDBS due to the conformational change of NaDDBS adsorbed on the SWCNT surface, which affected the spatial distance between the SWCNT surface and the sulfonate groups in NaDDBS. At a higher concentration, the spatial distance between the sulfonate group in NaDDBS and SWCNT was not sufficiently close enough to dope SWCNT due to the repulsive forces between the sulfonate groups in NaDDBS. Alternatively, at a lower concentration, NaDDBS acted as a p-type dopant for SWCNTs. To this end, this paper demonstrates a new tendency of doping that is related to the adsorbed behavior of a dispersant.

  3. Preparation of Sulfonated PVA-TMSP Membranes for Direct Methanol Fuel Cell

    Directory of Open Access Journals (Sweden)

    Haryadi

    2012-08-01

    Full Text Available Novel preparation and characterization of sulfonated polyvinyl alcohol (PVA–trimethoxysilyl propanethiol (TMSP membranes for direct methanol fuel cell (DMFC application have been investigated. Preparation of sulfonated PVA-TMSP membrane was conducted by crosslinking steps using sol-gel method and a catalyst of concentrated HCl. TMSP concentrations were varied from 1% to 3%. The gel solution was cast on to the membrane metal plate to obtain membrane sheets. The membrane was then oxidized in H2O2 concentrations of (10-30% to convert the mercapto groups into sulfonate group. Investigations of the cross-linking process and the existence of sulfonate group were conducted by infrared spectroscopy as shown for frequencies at 1140–1200/cm and 1200–1145/cm respectively. The scanning electron microscope–energy dispersive X-rays (SEM–EDX of the membranes indicated that the distribution of silica particles from sol–gel reaction products was uneven due to the fast exchange rate of condensation. The degree of swelling decreased as methanol concentrations increase for sulfonated PVA–TMSP membrane which opposed toward the value of commercial Nafion membrane. The maximum value of ion exchange capacity of the membrane was 1.82 mmol/g whereas the highest proton conductivity was 3.9 x 10-4 S/cm. Therefore it can be concluded that the membrane was a potential candidate for application in DMFC.

  4. 40 CFR 721.6181 - Fatty acid, reaction product with substituted oxirane, formaldehyde-phenol polymer glycidyl ether...

    Science.gov (United States)

    2010-07-01

    ... substituted oxirane, formaldehyde-phenol polymer glycidyl ether, substituted proplyamine and...-phenol polymer glycidyl ether, substituted proplyamine and polyethylenepolyamines (generic). (a) Chemical... as fatty acid, reaction product with substituted oxirane, formaldehyde-phenol polymer glycidyl ether...

  5. Determination of perfluoroalkyl ether carboxylic acids (PFECAs) and sulfonic acids (PFESAs) in North Carolina surface water using high resolution mass spectrometry

    Science.gov (United States)

    Many per- and polyfluorinated compounds have been shown to be globally distributed with some also having the additional undesirable properties of persistence, bioaccumulation, and toxicity. To address these concerns, many industrial manufacturers have moved away from their tradi...

  6. Identification of Novel Perfluoroalkyl Ether Carboxylic Acids (PFECAs) and Sulfonic Acids (PFESAs) in Natural Waters Using Accurate Mass Time-of-Flight Mass Spectrometry (TOFMS)

    Science.gov (United States)

    Recent scientific scrutiny and concerns over exposure, toxicity, and risk have led to international regulatory efforts resulting in the reduction or elimination of certain perfluorinated compounds from various products and waste streams. Some manufacturers have started producing ...

  7. Fouling behavior of poly(ether)sulfone ultrafiltration membrane during concentration of whey proteins: Effect of hydrophilic modification using atmospheric pressure argon jet plasma.

    Science.gov (United States)

    Damar Huner, Irem; Gulec, Haci Ali

    2017-12-01

    The aim of the study was to investigate the effects of hydrophilic surface modification via atmospheric pressure jet plasma (ApJPls) on the fouling propensity of polyethersulfone (PES) ultrafiltration (UF) membranes during concentration of whey proteins. The distance from nozzle to substrate surface of 30mm and the exposure period of 5 times were determined as the most effective parameters enabling an increase in ΔGiwi value of the plain membrane from (-) 14.92±0.89mJ/m2 to (+) 17.57±0.67mJ/m2. Maximum hydrophilicity and minimum surface roughness achieved by argon plasma action resulted in better antifouling behavior, while the hydraulic permeability and the initial permeate flux were decreased sharply due to the plasma-induced surface cross-linking. A quite steady state flux was obtained throughout the UF with the ApJPls modified PES membrane. The contribution of Rfrev to Rt, which was 94% for the UF through the plain membrane, decreased to 43% after the plasma treatment. The overall results of this study highlighted the ApJPls modification decreased the fouling propensity of PES membrane without affecting the original protein rejection capability and improved the recovery of initial permeate flux after chemical cleaning. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Polydopamine-functionalized poly(ether ether ketone) tube for capillary electrophoresis-mass spectrometry.

    Science.gov (United States)

    Zhou, Wei; Zhang, Wenpeng; Liu, Yikun; Yu, Xinhong; Chen, Zilin

    2017-09-22

    Capillary electrophoresis-mass spectrometry (CE-MS) is a hyphenated technique that combines the advantages like low sample consumption, high separation efficiency, short analytical time in CE and high sensitivity, powerful molecular structure elucidation in MS. Polyimide-coated fused silica capillary has become the most dominant capillary for CE, but it suffers from swelling and aminolysis of polyimide coating when treated with organic solvents and alkaline buffer in the CE-MS interface in which the polyimide coating at the end of the capillary is exposed to the solution, and this phenomenon can result in current instability, irregular electrospray and clogging at outlet after prolonged use. In this work, poly(ether ether ketone) (PEEK) capillary was explored as separation capillary for CE-MS. The problems like swelling and aminolysis of polyimide coating were solved due to the high thermal and chemical stability of PEEK material. After modification with polydopamine, PEEK capillary (PD-PEEK) can generate adjustable electroosmotic flow and provide good separation selectivity. The zwitterion polymer of polydopamine can provide cathodic electroosmotic flow (EOF) at high pH value (pH ≥ 5) and anodic EOF at low pH value (pH ≤ 4), and the EOF mobility can also be adjusted by controlling the modification time of polydopamine. Good separation performance was obtained in the analysis for several classes of compounds including amino acids, phenols and plant hormones at rational EOF direction. Repeatability of the PD-PEEK capillary was studied, with relative standard deviations for intra-day, inter-day runs and between tubes less than 4.94%. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Thermolysis of phenethyl phenyl ether: a model for ether linkages in lignin and low rank coal

    Energy Technology Data Exchange (ETDEWEB)

    Britt, P.F.; Buchanan, A.C.; Malcolm, E.A. [Oak Ridge National Laboratory, Oak Ridge, TN (United States). Division of Chemistry and Analytical Science

    1995-10-06

    The thermolysis of phenethyl phenyl ether (PPE) was studied at 330-425{degree}C to resolve the discrepancies in the reported mechanisms of this important model of the beta-ether linkage found in lignin and low rank coal. Cracking of PPE proceeded by two competitive pathways that produced styrene plus phenol and two previously undetected products, benzaldehyde plus toluene. The ratio of these pathways, defined as the alpha/beta selectivity, was 3.1 +/- 0.3 at 375{degree}C and independent of the PPE concentration. Thermolysis of PPE in tetralin, a model hydrogen donor solvent, increased the alpha/beta selectivity to 7 and accelerated the formation of secondary products. All the data were consistent with a free-radical chain mechanism for the decomposition of PPE. Styrene and phenol are produced by hydrogen abstraction at the alpha-carbon, beta-scission to form styrene and the phenoxy radical, followed by hydrogen abstraction. Benzaldehyde and toluene are formed by hydrogen abstraction at the beta-carbon, 1,2-phenyl migration from oxygen to carbon, beta-scission to form benzaldehyde, and the benzyl radical followed by hydrogen abstraction. Thermochemical kinetic estimates indicate that product formation is controlled by the relative rate of hydrogen abstraction at the alpha- and beta-carbons by the phenoxy radical (dominant) and benzyl radical (minor) since beta-scission and 1,2-phenyl migration are fast relative to hydrogen abstraction. Thermolysis of PhCD{sub 2}CH{sub 2}OPh and PhCH{sub 2}CD{sub 2}OPh was consistent with the previous results, indicating that there was no significant contribution of a concerted retro-ene pathway to the thermolysis of PPE.

  10. Enzymatic network for production of ether amines from alcohols.

    Science.gov (United States)

    Palacio, Cyntia M; Crismaru, Ciprian G; Bartsch, Sebastian; Navickas, Vaidotas; Ditrich, Klaus; Breuer, Michael; Abu, Rohana; Woodley, John M; Baldenius, Kai; Wu, Bian; Janssen, Dick B

    2016-09-01

    We constructed an enzymatic network composed of three different enzymes for the synthesis of valuable ether amines. The enzymatic reactions are interconnected to catalyze the oxidation and subsequent transamination of the substrate and to provide cofactor recycling. This allows production of the desired ether amines from the corresponding ether alcohols with inorganic ammonium as the only additional substrate. To examine conversion, individual and overall reaction equilibria were established. Using these data, it was found that the experimentally observed conversions of up to 60% observed for reactions containing 10 mM alcohol and up to 280 mM ammonia corresponded well to predicted conversions. The results indicate that efficient amination can be driven by high concentrations of ammonia and may require improving enzyme robustness for scale-up. Biotechnol. Bioeng. 2016;113: 1853-1861. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  11. Kinetics and mechanism of thermolysis of dibenzyl ether

    Energy Technology Data Exchange (ETDEWEB)

    Korobov, V.Yu.; Grigorieva, E.N.; Senko, O.V.; Kalechitz, I.V.

    1988-10-01

    The kinetics of thermolysis of dibenzyl ether in tetralin have been studied at 350-410 degrees C in a hydrogen atmosphere at 8.5 MPa pressure. A kinetic model has been proposed that satisfactorily describes the process and takes into account both the known transformation of ethers into toluene and benzaldehyde and the direct destruction of ether to benzene and toluene with elimination of CO and secondary conversions of benzaldehyde. It has been shown that at lower temperatures the first reaction prevails whereas at higher temperatures both reactions become competitive. The kinetic parameters support an intramolecular rearrangement as a pathway of the first reaction and a radical mechanism as a pathway of the second. 16 refs., 4 figs., 1 tab.

  12. Coal liquefaction model studies: free radical chain decomposition of diphenylpropane, dibenzyl ether, and phenyl ether via. beta. -scission reactions

    Energy Technology Data Exchange (ETDEWEB)

    Gillert, K.E. (Indiana Univ., Bloomington); Gojewski, J.J.

    1982-12-03

    The thermal decompositions to 1,3-diphenylpropane (1), dibenzyl ether (2), and phenethyl phenyl ether (3) have been found to proceed by free radical chain processes. 1 gave toluene and styrene with a reaction order of 1.55, E/sub A/ = 51.4 kcal/mol, and log A = 12.5. The reaction could be initiated by benzyl phenyl ether but not by 1,2-diphenylethane. 2 gave toluene and benzaldehyde with a reaction order of 1.43,E/sub A/ = 48 kcal/mol, and log A = 12.6. The reaction could be initiated with benzyl phenyl ether. 3 gave phenol and styrene with a reaction order of 1.21, E/sub A/ = 50.3 kcal/mol, and log A =12.3. The reaction could be initiated by benzyl phenyl ether. All of the data are consistent with free radical processes with the reaction order determined by the termination reaction. No evidence for concerted reactions has been found.

  13. A local-ether model of propagation of electromagnetic wave

    Energy Technology Data Exchange (ETDEWEB)

    Su, C.C. [Dept. of Electrical Engineering, National Tsinghua University, Hsinchu (Taiwan)

    2001-07-01

    It is pointed out that the classical propagation model can be in accord with the Sagnac effect due to earth's rotational and orbital motions in the high-precision GPS (global positioning system) and interplanetary radar, if the reference frame of the classical propagation medium is endowed with a switchability according to the location of the wave. Accordingly, it is postulated that, as in the obsolete theory, electromagnetic waves propagate via a medium like the ether. However, the ether is not universal. It is proposed that in the region under sufficient influence of the gravity due to the earth, the sun, or another celestial body, there forms a local ether, which in turn is stationary with respect to the gravitational potential of the respective body. For earthbound and interplanetary propagation, the medium is stationary in a geocentric and a heliocentric inertial frame, respectively. An electromagnetic wave propagates at a constant speed with respect to the associated local ether, independent of the motions of source and receiver. Based on this local-ether model of wave propagation, a wide variety of earthbound, interplanetary, and interstellar propagation phenomena are accounted for. Strong evidence of this new classical model is its consistent account of the Sagnac effect due to earth's motions among GPS, the intercontinental microwave link, and the interplanetary radar. Moreover, as examined within the present precision, this model is still in accord with the Michelson-Morley experiment. To test the local-ether propagation model, a one-way-link rotor experiment is proposed. (orig.)

  14. Analysis of sulfonated compounds by ion-exchange high-performance liquid chromatography-mass spectrometry.

    Science.gov (United States)

    Socher, G; Nussbaum, R; Rissler, K; Lankmayr, E

    2001-03-30

    Ion-exchange high-performance liquid chromatography (HPIEC)-mass spectrometry (MS) was used for the analysis of different sulfonated compounds. HPIEC was performed on an aminopropyl column applying a gradient with increasing concentration of a buffer consisting of ammonium acetate-acetic acid and acetonitrile as the organic modifier. HPIEC is well suited to highly efficient separation of sulfonated compounds and furthermore, due to the volatility of ammonium acetate, the method is also appropriate for LC-MS coupling by the means of either atmospheric pressure chemical ionization or electrospray ionization. The applicability range of HPIEC-MS is demonstrated on the basis of a complex mixture of model substances consisting of sulfonated aromatics and textile dyes largely differing from each other in their structural properties.

  15. Nuclear Magnetic Resonance Identification of New Sulfonic Acid Metabolites of Chloroacetanilide Herbicides

    Science.gov (United States)

    Morton, M.D.; Walters, F.H.; Aga, D.S.; Thurman, E.M.; Larive, C.K.

    1997-01-01

    The detection of the sulfonic acid metabolites of the chloroacetanilide herbicides acetochlor, alachlor, butachlor, propachlor, and, more recently, metolachlor in surface and ground water suggests that a common mechanism for dechlorination exists via the glutathione conjugation pathway. The identification of these herbicides and their metabolites is important due to growing public awareness and concern about pesticide levels in drinking water. Although these herbicides are regulated, little is known about the fate of their metabolites in soil. The sulfonic acid metabolites were synthesized by reaction of the parent compounds with an excess of sodium sulfite. Acetochlor, alachlor, butachlor, metolachlor, and propachlor and their sulfonic acid metabolites were studied by nuclear magnetic resonance spectroscopy and fast atom bombardment mass spectrometry. This paper provides a direct method for the preparation and characterization of these compounds that will be useful in the analysis and study of chloracetanilide herbicides and their metabolites.

  16. Periodic Mesoporous Organosilica Functionalized with Sulfonic Acid Groups as Acid Catalyst for Glycerol Acetylation

    Directory of Open Access Journals (Sweden)

    Pascal Van Der Voort

    2013-08-01

    Full Text Available A Periodic Mesoporous Organosilica (PMO functionalized with sulfonic acid groups has been successfully synthesized via a sequence of post-synthetic modification steps of a trans-ethenylene bridged PMO material. The double bond is functionalized via a bromination and subsequent substitution obtaining a thiol functionality. This is followed by an oxidation towards a sulfonic acid group. After full characterization, the solid acid catalyst is used in the acetylation of glycerol. The catalytic reactivity and reusability of the sulfonic acid modified PMO material is investigated. The catalyst showed a catalytic activity and kinetics that are comparable with the commercially available resin, Amberlyst-15, and furthermore our catalyst can be recycled for several subsequent catalytic runs and retains its catalytic activity.

  17. [Sensitivity to sodium dodecyl benzene sulfonate: a supplementary test for bacterial identification].

    Science.gov (United States)

    Serov, G D

    1981-01-01

    The susceptibility to sodium dodecylbenzene sulfonate, an anion-active detergent, was studied with 10 Gram-positive and 18 Gram-negative bacterial cultures. According to this susceptibility, the cultures were subdivided into two groups identical in their tinctorial properties. The bacteria growing at a 0.05% concentration of sodium dodecylbenzene sulfonate or at its higher concentrations were Gram-negative. The threshold concentration of this compound in the medium at which Gram-positive cultures could grow was 0.008%; some of the bacteria ceased growing even at a 0.002% concentration. The bacteria varied in their susceptibility to the detergent also within one and the same group, and even within one and the same species. The subdivision of bacteria on the basis of their susceptibility to sodium dodecylbenzene sulfonate may be considered as a taxonomic feature.

  18. [Effect of ether and fluorothane on higher nervous activity].

    Science.gov (United States)

    Batrak, G E; Zakopka, V M

    1978-01-01

    Tests conducted with dogs by using Pavlov's method of conditioned reflexes (salivation procedure) showed fluothane to act on the central nervous system 3 times as strong as does ether. This is confirmed by a longer time necessary for the higher nervous system to normalize. Thus, awakening of the animals after the ether anesthesia, the re-establishment of the conditioned reflex activity supervened by the 7th day on the average, whereas, after the fluothane anesthesia, this occurred only on the 24th day.

  19. A crown ether appended super gelator with multiple stimulus responsiveness.

    Science.gov (United States)

    Dong, Shengyi; Zheng, Bo; Xu, Donghua; Yan, Xuzhou; Zhang, Mingming; Huang, Feihe

    2012-06-26

    A crown ether appended super gelator is designed and synthesized. It can gel a variety of organic solvents and shows excellent gelation properties with both low critical gelation concentration and short gelation time. Due to the introduction of the crown ether moiety and a secondary ammonium unit, the supramolecular gels show reversible gel-sol transitions. The supramolecular gels can also be molded into shape-persistent and free-standing objects. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Estimating stepwise debromination pathways of polybrominated diphenyl ethers with an analogue Markov Chain Monte Carlo algorithm.

    Science.gov (United States)

    Zou, Yonghong; Christensen, Erik R; Zheng, Wei; Wei, Hua; Li, An

    2014-11-01

    A stochastic process was developed to simulate the stepwise debromination pathways for polybrominated diphenyl ethers (PBDEs). The stochastic process uses an analogue Markov Chain Monte Carlo (AMCMC) algorithm to generate PBDE debromination profiles. The acceptance or rejection of the randomly drawn stepwise debromination reactions was determined by a maximum likelihood function. The experimental observations at certain time points were used as target profiles; therefore, the stochastic processes are capable of presenting the effects of reaction conditions on the selection of debromination pathways. The application of the model is illustrated by adopting the experimental results of decabromodiphenyl ether (BDE209) in hexane exposed to sunlight. Inferences that were not obvious from experimental data were suggested by model simulations. For example, BDE206 has much higher accumulation at the first 30 min of sunlight exposure. By contrast, model simulation suggests that, BDE206 and BDE207 had comparable yields from BDE209. The reason for the higher BDE206 level is that BDE207 has the highest depletion in producing octa products. Compared to a previous version of the stochastic model based on stochastic reaction sequences (SRS), the AMCMC approach was determined to be more efficient and robust. Due to the feature of only requiring experimental observations as input, the AMCMC model is expected to be applicable to a wide range of PBDE debromination processes, e.g. microbial, photolytic, or joint effects in natural environments. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Synthesis and detection of toltrazuril sulfone and its pharmacokinetics in horses following administration in dimethylsulfoxide.

    Science.gov (United States)

    Dirikolu, L; Karpiesiuk, W; Lehner, A F; Hughes, C; Granstrom, D E; Tobin, T

    2009-08-01

    Triazine-based antiprotozoal agents are known for their lipophylic characteristics and may therefore be expected to be well absorbed following oral administration. However, although an increase in lipid solubility generally increases the absorption of chemicals, extremely lipid-soluble chemicals may dissolve poorly in gastrointestinal (GI) fluids, and their corresponding absorption and bioavailability would be low. Also, if the compound is administered in solid form and is relatively insoluble in GI fluids, it is likely to have limited contact with the GI mucosa, and therefore, its rate of absorption will be low. Based on the above considerations, we sought a solvent with low or no toxicity that would maintain triazine agents in solution. As the oral route is most preferred for daily drug therapy, such a solvent would allow an increased rate of absorption following oral administration. In present study, it was demonstrated that dimethylsulfoxide (DMSO) increased the oral bioavailability of toltrazuril sulfone (Ponazuril) threefold, relative to oral administrations of toltrazuril sulfone suspended in water. The cross-over study of toltrazuril sulfone formulated in DMSO indicated that the absolute oral bioavailability of toltrazuril sulfone in DMSO is 71%. The high bioavailability of the DMSO-preparation suggests that its daily oral administration will routinely yield effective plasma and cerebral spinal fluid (CSF) concentrations in all horses treated. Also, this improved formulation would allow clinicians to administer loading doses of toltrazuril sulfone in acute cases of Equine Protozoal Myeloencephalitis. Another option would involve administration of toltrazuril sulfone in DMSO mixed with feed (1.23 kg daily dose) meeting the US Food and Drug Administration (FDA) recommendations for the levels of DMSO permissible in pharmaceutical preparations.

  2. Study of high-anionic conducting sulfonated microporous membranes for zinc-air electrochemical cells

    Energy Technology Data Exchange (ETDEWEB)

    Wu, G.M. [Institute of Electro-Optical Engineering, Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan 333, Taiwan (China)], E-mail: wu@mail.cgu.edu.tw; Lin, S.J.; You, J.H. [Institute of Electro-Optical Engineering, Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan 333, Taiwan (China); Yang, C.C. [Ming Chi University of Technology, Taipei 243, Taiwan (China)

    2008-12-20

    High-performance electrochemical membranes have been in great demand due to the rapid market growth in the portable power source devices. The electrochemical characteristics of high-anionic conducting membrane separators were studied in this report using microporous membranes with different sulfonation degrees obtained by changing the sulfonation reaction time. The degree of sulfonation treatment and the effects on the membrane separators were carefully investigated. The room temperature anionic conductivity of the membranes was improved by 132% to 3.52 x 10{sup -2} S cm{sup -1} when the sulfonation treatment time was 128 h. It was about 1.52 x 10{sup -2} S cm{sup -1} for the unsulfonated membranes. The anionic transport number in 1 M KOH aqueous solution was also improved to 0.89 from 0.79. The characteristic properties of these membrane separators were studied by infrared spectroscopy (IR), elemental analysis (EA), X-ray diffraction (XRD), scanning electron microscopy (SEM), AC impedance, contact angle measuring system and stress-strain tests. In addition, the solid-state zinc-air cells assembled from the sulfonated membrane separators showed enhanced battery power density of 38 mW cm{sup -2} while the discharge current density was higher at 45 mA cm{sup -2}. The battery power density was around 20 mW cm{sup -2} and the discharge current density was 25 mA cm{sup -2} for the unsulfonated samples. Therefore, the sulfonated microporous membranes could be tailored for the different electrochemical cell applications.

  3. Synthesis and ATRP of novel fluorinated aromatic monomer with pendant sulfonate group

    DEFF Research Database (Denmark)

    Dimitrov, Ivaylo; Jankova Atanasova, Katja; Hvilsted, Søren

    2013-01-01

    Novel, fluorinated monomer with pendant sulfonate group was synthesized utilizing a two-step derivatization of 2,3,4,5,6-pentafluorostyrene (FS). The first step was a nucleophilic substitution of the fluorine atom in para position by hydroxyl group followed by sulfopropylation. The monomer...... was polymerized under aqueous ATRP conditions to yield phenyl-fluorinated aromatic homopolymer bearing pendant sulfonates on each repeating unit. Furthermore, this polymer was used as macroinitiator for the ATRP of poly(ethylene glycol) methacrylate. The polymers were characterized by 1H NMR, SEC and FTIR...

  4. Microwave Assisted Hydrolysis of Holocellulose Catalyzed with Sulfonated Char Derived from Lignin-Rich Residue

    Directory of Open Access Journals (Sweden)

    Kui Wang

    2015-01-01

    Full Text Available A microwave assisted green process has been developed for production of sugars through liquefying holocellulose catalyzed with sulfonated char derived from the lignin-rich residue produced during pretreatment of lignocellulose. Various reaction parameters including the hydrolysis temperature, hydrolysis time, catalyst content, and the ratio of water to feedstock were evaluated. The maximum sugars yield of 82.6% (based on the dry mass of holocellulose was obtained under the optimum reaction conditions. The sulfonated char showed superior catalytic performance to that of dilute sulfuric acid in converting holocellulose into sugars under microwave irradiation.

  5. Urea–hydrogen peroxide prompted the selective and controlled oxidation of thioglycosides into sulfoxides and sulfones

    Directory of Open Access Journals (Sweden)

    Adesh Kumar Singh

    2017-06-01

    Full Text Available A practical method for the selective and controlled oxidation of thioglycosides to corresponding glycosyl sulfoxides and sulfones is reported using urea–hydrogen peroxide (UHP. A wide range of glycosyl sulfoxides are selectively achieved using 1.5 equiv of UHP at 60 °C while corresponding sulfones are achieved using 2.5 equiv of UHP at 80 °C in acetic acid. Remarkably, oxidation susceptible olefin functional groups were found to be stable during the oxidation of sulfide.

  6. Sulfonic-based precursors (SAPs for silica mesostructures: Advances in synthesis and applications

    Directory of Open Access Journals (Sweden)

    Sadegh Rostamnia*

    2016-01-01

    Full Text Available Sulfonic acid-based precursors (SAP play an important role in tailoring mesoporous silica’s and convert them to a solid acid catalyst with a Bronsted-type nature. These kinds of solid acids contribute to sustainable and green chemistry by their heterogeneous, recyclable, and high efficiency features. Therefore, knowing the properties and reactivity of SAPs can guide us to manufacture a sulfonated mesostructures compatible with reaction type and conditions. In the present review, some of the important SAPs, their reactivity and mechanism of functionalization are discussed.

  7. [3,3]-Sigmatropic rearrangement of allenic alcohols: stereoselective synthesis of 1,3-diene-2-ol sulfonates.

    Science.gov (United States)

    Zhao, Yuyang; Wang, Yurong; Gu, Zhanshou; Wang, Zhiming

    2017-05-10

    An efficient synthetic pathway to 1,3-diene-2-ol sulfonates involving the [3,3]-sigmatropic rearrangement of allenic alcohols with sulfonic acids under mild reaction conditions is described. These products can easily undergo reduction or transition-metal catalyzed cross-coupling reactions to yield a series of stereodefined multisubstituted 1,3-dienes.

  8. 46 CFR 151.50-40 - Additional requirements for carbon disulfide (carbon bisulfide) and ethyl ether.

    Science.gov (United States)

    2010-10-01

    ... bisulfide) and ethyl ether. 151.50-40 Section 151.50-40 Shipping COAST GUARD, DEPARTMENT OF HOMELAND... ether. (a) The provisions of this section are applicable if specifically referenced in the Special... disulfide (carbon bisulfide) and § 151.50-42 for ethyl ether shall also be observed. ...

  9. 76 FR 69659 - Methacrylic Acid-Methyl Methacrylate-Polyethylene Glycol Monomethyl Ether Methacrylate Graft...

    Science.gov (United States)

    2011-11-09

    ... AGENCY 40 CFR Part 180 Methacrylic Acid-Methyl Methacrylate-Polyethylene Glycol Monomethyl Ether... residues of methacrylic acid-methyl methacrylate- polyethylene glycol monomethyl ether methacrylate graft... permissible level for residues of methacrylic acid-methyl methacrylate-polyethylene glycol monomethyl ether...

  10. 40 CFR 721.3845 - Alkyl substituted aromatic glycidyl ether (generic).

    Science.gov (United States)

    2010-07-01

    ... ether (generic). 721.3845 Section 721.3845 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.3845 Alkyl substituted aromatic glycidyl ether (generic). (a) Chemical... as alkyl substituted aromatic glycidyl ether (PMN P-97-661) is subject to reporting under this...

  11. 40 CFR 721.10017 - Amine terminated bisphenol A diglycidyl ether polymer (generic).

    Science.gov (United States)

    2010-07-01

    ... diglycidyl ether polymer (generic). 721.10017 Section 721.10017 Protection of Environment ENVIRONMENTAL... ether polymer (generic). (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substances identified generically as amine terminated bisphenol A diglycidyl ether polymer (PMNs P...

  12. 40 CFR 721.9952 - Alkoxylated aliphatic diisocyanate allyl ether (generic).

    Science.gov (United States)

    2010-07-01

    ... allyl ether (generic). 721.9952 Section 721.9952 Protection of Environment ENVIRONMENTAL PROTECTION... New Uses for Specific Chemical Substances § 721.9952 Alkoxylated aliphatic diisocyanate allyl ether... identified generically as alkoxylated aliphatic diisocyanate allyl ether (PMN P-00-0353) is subject to...

  13. 75 FR 4288 - Oxirane, 2-Methyl-, Polymer with Oxirane, Dimethyl Ether; Tolerance Exemption

    Science.gov (United States)

    2010-01-27

    ... AGENCY 40 CFR Part 180 Oxirane, 2-Methyl-, Polymer with Oxirane, Dimethyl Ether; Tolerance Exemption... oxirane, dimethyl ether (CAS Reg. No. 61419-46-3); minimum number average molecular weight (in AMW) 2,800... oxirane, dimethyl ether (CAS Reg. No. 61419-46-3) on food or feed commodities. DATES: This regulation is...

  14. Evaluation of polybrominated diphenyl ethers in sediment of Lagos ...

    African Journals Online (AJOL)

    user

    Certain pollutants, particularly synthetic organic compounds have given rise to important environmental concerns. New organic pollutants especially polybrominated diphenyl ether (PBDEs) employed in electronic equipment and in some household items as flame retardants are now finding their way into the aquatic ...

  15. Formation and Structural Analysis of Novel Dibornyl Ethers | Kaye ...

    African Journals Online (AJOL)

    One- and two-dimensional NMR spectroscopy has been used to establish the regio- and stereochemistry of novel dibornyl ethers, obtained by acid-catalysed condensation of camphor-derived a-hydroxybornanones. South African Journal of Chemistry Vol.55 2002: 111-118 ...

  16. Infrared Spectroscopy of Divalent Zinc and Cadmium Crown Ether Systems

    NARCIS (Netherlands)

    Cooper, T. E.; Carl, D. R.; Oomens, J.; Steill, J. D.; Armentrout, P. B.

    2011-01-01

    The gas-phase structures of transition-metal dication (Zn2+ and Cd2+) complexes with varying sized crown ethers, 12-crown-4 (12c4), 15-crown-5 (15c5), and 18-crown-6 (18c6), are investigated using infrared multiple photon dissociation (IRMPD) spectroscopy and quantum mechanical calculations. The

  17. Ether lipids of planktonic archae in the marine water column

    NARCIS (Netherlands)

    Sinninghe Damsté, J.S.; Hoefs, M.J.L.; Schouten, S.; King, L.L.; Wakeham, S.G.; Leeuw, J.W. de

    1997-01-01

    Acyclic and cyclic biphytanes derived from the membrane ether lipids of archaea were found in water column particulate and sedimentary organic matter from several oxic and anoxic marine environments. Compound-specific isotope analyses of the carbon skeletons suggest that planktonic archaea utilize

  18. Photodegradation of poly(ether sulphone). Part 2

    DEFF Research Database (Denmark)

    Norrman, K.; Krebs, Frederik C

    2004-01-01

    The photodegradation of poly(ether sulphone) (PES) was investigated systematically by time-of-flight SIMS (ToF-SIMS) and x-ray photoelectron spectroscopy (XPS). The effect of varying the irradiation dose, wavelength and the atmosphere was studied along with mechanistic photooxidation studies using...

  19. Synthesis and reduction of 2-nitroalkyl polysaccharide ethers

    NARCIS (Netherlands)

    Heeres, A.; Spoelma, F.F.; Doren, H.A. van; Gotlieb, K.F.; Bleeker, I.P.; Kellogg, R.M.

    2000-01-01

    Several 2-nitroalkyl polysaccharide ethers (from pullulan (1), guar (2), agarose (3), inulin (4), cellulose (5), Na-α-polyglucuronate (6) and hydroxyethyl cellulose (7)) were synthesized by reaction with 2-nitro-1-alkenes (2-nitro-1-propene and 2-nitro-1-butene) formed in situ from 2-nitroalkyl

  20. Synthesis and reduction of 2-nitroalkyl polysaccharide ethers

    NARCIS (Netherlands)

    Heeres, A; Spoelma, FF; van Doren, HA; Gotlieb, KF; Bleeker, IP; Kellogg, RM

    Several 2-nitroalkyl polysaccharide ethers (from pullulan (1), guar (2), agarose (3), inulin (4), cellulose (5), Na-alpha-polyglucuronate (6) and hydroxyethyl cellulose (7)) were synthesized by reaction with 2-nitro-1-alkenes (2-nitro-1-propene and 2-nitro-1-butene) formed in situ from 2-nitroalkyl

  1. Comparative evaluation of direct stool smear and Formol-ether ...

    African Journals Online (AJOL)

    Cryptosporidium is a common cause of diarrhoea in patients with Human Immunodeficiency Virus (HIV)/Acquired Immunodeficiency Syndrome (AIDS). Unfortunately this pathogen is not often checked for in Microbiology laboratories because the formol-ether stool concentration method for identification of Cryptosporidium is ...

  2. Binary mixtures of carbon dioxide and dimethyl ether as alternative ...

    African Journals Online (AJOL)

    Vapor-liquid equilibrium (VLE) data were predicted for the binary mixture of carbon dioxide (CO2) and dimethyl ether (DME) at ten temperatures ranging from 273.15 to 386.56 K and pressure upto 7.9 MPa to observe this mixture's potential of COP enhancement and capacity modulation as a working fluid in a refrigeration ...

  3. Acute toxicities of diethyl ether and ethanol extracted Nerium ...

    African Journals Online (AJOL)

    A four-day static renewal acute toxicity test was performed to determine the LC50 value of ethanol and diethyl ether extracted Nerium indicum leaf for the freshwater fish, Heteropneustes fossilis. The LC50 values, their upper and lower confidence limits and slope functions were calculated. The LC50 values for ethanol ...

  4. Evaluation of polybrominated diphenyl ethers in sediment of Lagos ...

    African Journals Online (AJOL)

    user

    environmental concerns. New organic pollutants especially polybrominated diphenyl ether (PBDEs) employed in electronic equipment and in some household items as flame retardants are now finding their way into the aquatic environment as components of waste discharge into the water body. These highly hazardous ...

  5. Lithium air batteries having ether-based electrolytes

    Science.gov (United States)

    Amine, Khalil; Curtiss, Larry A.; Lu, Jun; Lau, Kah Chun; Zhang, Zhengcheng; Sun, Yang-Kook

    2016-10-25

    A lithium-air battery includes a cathode including a porous active carbon material, a separator, an anode including lithium, and an electrolyte including a lithium salt and polyalkylene glycol ether, where the porous active carbon material is free of a metal-based catalyst.

  6. Li-air batteries having ether-based electrolytes

    Science.gov (United States)

    Amine, Khalil; Curtiss, Larry A; Lu, Jun; Lau, Kah Chun; Zhang, Zhengcheng; Sun, Yang-Kook

    2015-03-03

    A lithium-air battery includes a cathode including a porous active carbon material, a separator, an anode including lithium, and an electrolyte including a lithium salt and polyalkylene glycol ether, where the porous active carbon material is free of a metal-based catalyst.

  7. Synthesis of Hydroxytyrosyl Alkyl Ethers from Olive Oil Waste Waters

    Directory of Open Access Journals (Sweden)

    Juan Fernández-Bolaños

    2009-05-01

    Full Text Available The preparation of a new type of derivatives of the naturally occurring antioxidant hydroxytyrosol is reported. Hydroxytyrosyl alkyl ethers were obtained in high yield by a three-step procedure starting from hydroxytyrosol isolated from olive oil waste waters. Preliminary results obtained by the Rancimat method have shown that these derivatives retain the high protective capacity of free hydroxytyrosol.

  8. Dimethyl ether in diesel engines - progress and perspectives

    DEFF Research Database (Denmark)

    Sorenson, Spencer C

    2001-01-01

    A review of recent developments related to the use of dimethyl ether (DME) in engines is presented Research work discussed is in the areas of engine performance and emissions, fuel injection systems, spray and ignition delay, and detailed chemical kinetic modeling. DME's properties and safety...

  9. Bio-inspired ion selective crown-ether polymer membranes

    NARCIS (Netherlands)

    Tas, Sinem

    2016-01-01

    Development of unctional membranes that are capable of selectively recognizing and transporting ions have key importance for the recovery and separation of specific icons (e.d. K+, Li+, Na+) from multicomponent mixtures. In this thesis, new membrane materials based on crown ether-metal ion

  10. Preparation and Characterization of Water-Soluble Xylan Ethers

    Directory of Open Access Journals (Sweden)

    Kay Hettrich

    2017-03-01

    Full Text Available Xylan is a predominant hemicellulose component that is found in plants and in some algae. This polysaccharide is made from units of xylose (a pentose sugar. One promising source of xylan is oat spelt. This feedstock was used for the synthesis of two xylan ethers. To achieve water soluble products, we prepared dihydroxypropyl xylan as a non-ionic ether on the one hand, and carboxymethyl xylan as an ionic derivative on the other hand. Different preparation methods like heterogeneous, pseudo-homogeneous, and homogeneous syntheses were compared. In the case of dihydroxypropyl xylan, the synthesis method did not significantly affect the degree of substitution (DS. In contrast, in the case of carboxymethyl xylan, clear differences of the DS values were found in dependence on the synthesis method. Xylan ethers with DS values of >1 could be obtained, which mostly show good water solubility. The synthesized ionic, as well as non-ionic, xylan ethers were soluble in water, even though the aqueous solutions showed slight turbidity. Nevertheless, stable, transparent, and stainable films could be prepared from aqueous solutions from carboxymethyl xylans.

  11. Why do crown ethers activate enzymes in organic solvents?

    NARCIS (Netherlands)

    van Unen, D.J.; Engbersen, Johannes F.J.; Reinhoudt, David

    2002-01-01

    One of the major drawbacks of enzymes in nonaqueous solvents is that their activity is often dramatically low compared to that in water. This limitation can be largely overcome by crown ether treatment of enzymes. In this paper, we describe a number of carefully designed new experiments that have

  12. Influence of degree of sulfonation of BDPP upon enantioselectivity in rhodium-BDPP catalyzed hydrogenation reactions in a two phase system

    NARCIS (Netherlands)

    Lensink, Cornelis; Rijnberg, Evelien; Vries, Johannes G. de

    1997-01-01

    Asymmetric hydrogenation experiments were carried out with catalysts prepared in situ from [Rh(COD)Cl]2 and 2 eq. of a sulfonated (2S,4S)-bis-2,4-(diphenylphosphino)pentane carrying 0-4 sulfonate groups, in a two phase aqueous organic system. The effect of degree of sulfonation on enantioselectivity

  13. Binding of ether and carbonyl oxygens to lithium ion

    Energy Technology Data Exchange (ETDEWEB)

    Blint, R.J. [Physical Chemistry Dept., Warren, MI (United States)

    1994-12-31

    The electrolyte for a lithium battery is a lithium salt (e.g. lithium Perchlorate) dissolved in an organic solvent or a mixture of organic solvents. The conductivity in these electrolytes is ionic and needs to be as high as possible to efficiently remove energy from the battery. The diffusion coefficient of the solvated ion in liquid electrolytes is inversely dependent on the radius of the salvation sphere. Consequently conductivity will increase with a decrease in the size of the salvation shell. The size of the salvation shell is determined by the size and coordination number of the solvent molecules. The types of organic solvents in electrolytes used in lithium battery applications are usually differentiated based on their perceived solvation properties. These solvents are often small, oxygen containing organic molecules which move with the Li{sup +} ions. This paper calculates the binding energies of some of these solvents to Li{sup +} using molecular quantum mechanics (MQM) techniques. The binding energies of the various solvents to Li{sup +} may determine which solvents will be preferentially bound to the ion. In liquid organic electrolytes, then, it will be the identity of the solvent and the coordination number which most affect the conductivity; the binding energies determine both of these properties. Carbonyl oxygens which occur in formaldehyde, acetaldehyde, acetone, ethylene carbonate and propylene carbonate have different Li{sup +} bonding properties than do the ether oxygens which occur in water, dimethyl ether and diethyl ether. Polymer solvents for the lithium salts such as the polyethers have chains which are too long to move with the binding energies then serve as the basis for a different Li{sup +} transport. Dimethyl ether and diethyl ether serve both as solvents and models for the polyethers.

  14. Characterisation of perfluorooctane sulfonate (PFOS) in a terrestrial ecosystem near a fluorochemical plant in Flanders, Belgium

    NARCIS (Netherlands)

    D'Hollander, W.; De Bruyn, L.; Hagenaars, A; de Voogt, P.; Bervoets, L.

    2014-01-01

    Bioaccumulation of perfluorooctane sulfonate (PFOS) in a restricted terrestrial food chain was investigated with the omnivorous wood mouse (Apodemus sylvaticus) on top of the studied food chain. The levels detected are very high compared with literature as a result of the presence of fluorochemical

  15. Cadmium ion sorption onto lignocellulosic biosorbent modified by sulfonation : the origin of sorption capacity improvement

    Science.gov (United States)

    Eun Woo Shin; Roger M. Rowell

    2005-01-01

    Juniper (Juniperus monosperma), a small-diameter underutilized material, has been studied as a lignocellulosic bio-sorbent for removing heavy metals from water. In this study, juniper wood was modified by sulfonation to enhance sorption capacity for cadmium in water. The origin of the enhancement was investigated by observing the sorption behaviors and the change in...

  16. Gene expression profiling identifies mechanisms of protection to recurrent trinitrobenzene sulfonic acid colitis mediated by probiotics

    NARCIS (Netherlands)

    Mariman, R.; Kremer, S.H.A.; Erk, M. van; Lagerweij, T.; Koning, F.; Nagelkerken, L.

    2012-01-01

    Background: Host-microbiota interactions in the intestinal mucosa play a major role in intestinal immune homeostasis and control the threshold of local inflammation. The aim of this study was to evaluate the efficacy of probiotics in the recurrent trinitrobenzene sulfonic acid (TNBS)-induced colitis

  17. Sulfonated mesoporous silica-carbon composites and their use as solid acid catalysts

    Science.gov (United States)

    Valle-Vigón, Patricia; Sevilla, Marta; Fuertes, Antonio B.

    2012-11-01

    The synthesis of highly functionalized porous silica-carbon composites made up of sulfonic groups attached to a carbon layer coating the pores of three types of mesostructured silica (i.e. SBA-15, KIT-6 and mesocellular silica) is presented. The synthesis procedure involves the following steps: (a) removal of the surfactant, (b) impregnation of the silica pores with a carbon precursor, (c) carbonization and (d) sulfonation. The resulting silica-carbon composites contain ˜30 wt % of carbonaceous matter with a high density of acidic groups attached to the deposited carbon (i.e.sbnd SO3H, sbnd COOH and sbnd OH). The structural characteristics of the parent silica are retained in the composite materials, which exhibit a high surface area, a large pore volume and a well-ordered porosity made up uniform mesopores. The high density of the sulfonic groups in combination with the mesoporous structure of the composites ensures that a large number of active sites are easily accessible to reactants. These sulfonated silica-carbon composites behave as eco-friendly, active, selective, water tolerant and recyclable solid acids. In this study we demonstrate the usefulness of these composites as solid acid catalysts for the esterification of maleic anhydride, succinic acid and oleic acid with ethanol. These composites exhibit a superior intrinsic catalytic activity to other commercial solid acids such as Amberlyst-15.

  18. Pharmacokinetic profiles of perfluorobutane sulfonate and activation of hepatic genes in mice

    Science.gov (United States)

    Polyfluoroalkyl substances (PFAS) are organic chemicals with wide industrial and consumer uses. They are found ubiquitously at low levels in the environment and detectable in humans and wildlife. Perfluorobutane Sulfonate (PFBS) is a short-chained PFAS used to replace perfluorooc...

  19. Antibacterial surface modified of novel nanocomposite sulfonated polyethersulfone/polyrhodanine membrane

    Science.gov (United States)

    Rostam, Abbas Babaei; Peyravi, Majid; Ghorbani, Mohsen; Jahanshahi, Mohsen

    2018-01-01

    In this study, sulfonated-polyethersulfone/polyrhodanine (SPES/PRh) membranes with antibacterial behavior were fabricated. Polyethersulfone (PES) sulfonation was performed to enhance its hydrophilicity and next polyrhodanine nanoparticles (PRhNPs) were synthesized along with the sulfonated PES (SPES) by polyrhodanine (PRh) in situ polymerization. The sulfonation step also helps making composite membrane due to development of probable bondings and polymers engagements. The constructed membranes characterization was performed by FTIR, FESEM, contact angle, 1H NMR, TGA and EDS analyses. SPES/PRh membrane had enhanced hydrophilicity and consequently better fluxes for aqueous solutions. The composite SPES/PRh membrane flux was improved to 139/78 L/m2 h comparing 58.21 L/m2 h for SPES one. Membrane operational performances, antibacterial and antibiofouling tests showed improved flux, better rejection and appropriate antibacterial and antibiofouling properties for SPES/PRh membrane. The 100% bacteria mortality for specified concentrations and appropriate inhibition zones up to 9 mm have been achieved. It is generally a suitable membrane to provide proper performance beside antibacterial and antibiofouling behavior.

  20. Sodium polyanethole sulfonate as an inhibitor of activation of complement function in blood culture systems

    DEFF Research Database (Denmark)

    Palarasah, Yaseelan; Skjoedt, Mikkel-Ole; Vitved, Lars

    2010-01-01

    Sodium polyanethole sulfonate (SPS; trade name, Liquoid) is a constituent in culture media used to grow bacteria from blood samples from patients suspected of bacteremia. SPS prevents the killing of bacteria by innate cellular and humoral factors. We analyzed the effect of SPS on the three...

  1. Polybenzimidazole and sulfonated polyhedral oligosilsesquioxane composite membranes for high temperature polymer electrolyte membrane fuel cells

    DEFF Research Database (Denmark)

    Aili, David; Allward, Todd; Alfaro, Silvia Martinez

    2014-01-01

    Composite membranes based on poly(2,2′(m-phenylene)-5,5́bibenzimidazole) (PBI) and sulfonated polyhedral oligosilsesquioxane (S-POSS) with S-POSS contents of 5 and 10wt.% were prepared by solution casting as base materials for high temperature polymer electrolyte membrane fuel cells. With membranes...

  2. Sulfonation of cPTFE Film grafted Styrene for Proton Exchange Membrane Fuel Cell

    Directory of Open Access Journals (Sweden)

    Yohan Yohan

    2010-10-01

    Full Text Available Sulfonation of γ-ray iradiated and styrene-grafted crosslinked polytetrafluoroethylene film (cPTFE-g-S film have been done. The aim of the research is to make hydropyl membrane as proton exchange membrane fuel cell. Sulfonation was prepared with chlorosulfonic acid in chloroethane under various conditions. The impact of the percent of grafting, the concentration of chlorosulfonic acid, the reaction time,and the reaction temperature on the properties of sulfonated film is examinated. The results show that sulfonation of surface-grafted films is incomplete at room  temperature. The increasing of concentration of chlorosulfonic acid and reaction temperature accelerates the reaction but they also add favor side reactions. These will lead to decreasing of the ion-exchange capacity, water uptake, and proton conductivity but increasing the resistance to oxidation in a perhidrol solution. The cPTFE-g-SS membrane which is resulted has stability in a H2O2 30% solution for 20 hours.

  3. Condensed tannin-sulfonate derivatives in cold-setting wood-laminating adhesives

    Science.gov (United States)

    Roland E. Kreibich; Richard W. Hemingway

    1987-01-01

    Extraction of southern pine bark with 4.0 percent sodium sulfite and 0.4-percent sodium carbonate(based on ovendry bark weight) gives epicatechin-(4β)-sulfonate and oligomeric procyanidin-4-sulfonatee that show great promise to replace about 50 percent of the phenol-resorcinol-formaldehyde resin in coldsetting wood-laminating adhesives. Bonds in Douglas-fir...

  4. 40 CFR 721.950 - Sodium salt of an alkylated, sulfonated aromatic (generic name).

    Science.gov (United States)

    2010-07-01

    ... PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES... chemical substance identified generically as a sodium salt of an alkylated, sulfonated aromatic (PMN P-84... requirements. The provisions of subpart A of this part apply to this section except as modified by this...

  5. Covalently Cross-Linked Sulfone Polybenzimidazole Membranes with Poly(Vinylbenzyl Chloride) for Fuel Cell Applications

    DEFF Research Database (Denmark)

    Yang, Jingshuai; Aili, David; Li, Qingfeng

    2013-01-01

    Covalently cross-linked polymer membranes were fabricated from poly(aryl sulfone benzimidazole) (SO(2) PBI) and poly(vinylbenzyl chloride) (PVBCl) as electrolytes for high-temperature proton-exchange-membrane fuel cells. The cross-linking imparted organo insolubility and chemical stability agains...

  6. Asymmetric, Organocatalytic, 3-Step Synthesis of γ-Hydroxy-(E)-α-β-Unsaturated Sulfones and Esters

    Science.gov (United States)

    Petersen, Kimberly S.

    2009-01-01

    Efficient and enantiocontrolled synthesis of γ-hydroxy-α,β-unsaturated sulfones and esters are reported through the reaction of enantioenriched α-selenyl aldehydes with EWG-stabilized carbanions and then a one pot selenide oxidation, in situ epoxide formation, and final in situ epoxide opening. PMID:18811178

  7. 40 CFR 721.9674 - Sulfonated-copper phthalocyanine salt of a triarylmethane dye (generic).

    Science.gov (United States)

    2010-07-01

    ... of a triarylmethane dye (generic). 721.9674 Section 721.9674 Protection of Environment ENVIRONMENTAL... triarylmethane dye (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as sulfonated-copper phthalocyanine salt of a triarylmethane dye...

  8. Sulfonate-immobilized artificial cathode electrolyte interphases layer on Ni-rich cathode

    Science.gov (United States)

    Chae, Bum-Jin; Yim, Taeeun

    2017-08-01

    Although lithium nickel cobalt manganese layered oxides with a high nickel composition have gained great attention due to increased overall energy density for energy conversion/storage systems, poor interfacial stability is considered a critical bottleneck impeding its widespread adoption. We propose a new approach based on immobilizing the artificial cathode-electrolyte interphase layer, which effectively reduces undesired surface reactions, leading to high interfacial stability of cathode material. For installation of artificial cathode-electrolyte interphases, a sulfonate-based amphiphilic organic precursor, which effectively suppresses electrolyte decomposition, is synthesized and subjected to immobilization on cathode material via simple wet-coating, followed by heat treatment at low temperature. The sulfonate-based artificial cathode-electrolyte interphase layer is well-developed on the cathode surface, and the cell controlled by the sulfonate-immobilized cathode exhibits remarkable electrochemical performance, including a high average Coulombic efficiency (99.8%) and cycling retention (97.4%) compared with pristine cathode material. The spectroscopic analyses of the cycled cathode show that the sulfonate-based artificial cathode-electrolyte interphase layer effectively mitigates electrolyte decomposition on the cathode surface, resulting in decreased interfacial resistance between electrode and electrolyte.

  9. Multi-block sulfonated poly(phenylene) copolymer proton exchange membranes

    Science.gov (United States)

    Fujimoto, Cy H [Albuquerque, NM; Hibbs, Michael [Albuquerque, NM; Ambrosini, Andrea [Albuquerque, NM

    2012-02-07

    Improved multi-block sulfonated poly(phenylene) copolymer compositions, methods of making the same, and their use as proton exchange membranes (PEM) in hydrogen fuel cells, direct methanol fuel cells, in electrode casting solutions and electrodes. The multi-block architecture has defined, controllable hydrophobic and hydrophilic segments. These improved membranes have better ion transport (proton conductivity) and water swelling properties.

  10. succinimide-n-sulfonic acid as an efficient recyclable catalyst for the ...

    African Journals Online (AJOL)

    -amino-4,5-dihydro-4- phenylpyrano[3,2-b]indole-3-carbonitrile derivatives with coumarin-3-carboxylic acid employing succinimide-N- sulfonic acid (SuSA) as catalyst for the synthesis of a series of 5 ...

  11. Printing properties of the red reactive dyes with different number sulfonate groups on cotton fabric.

    Science.gov (United States)

    Xie, Kongliang; Gao, Aiqin; Li, Min; Wang, Xiao

    2014-01-30

    Cellulose fabric is an important printing substrate. Four red azo reactive dyes based on 1-naphthol-8-amino-3,6-disulfonic acid for cotton fabric printing were designed. Their UV-Vis spectra and printing properties for cotton were investigated. The relationship between the chemical structures of the dyes and their printing properties on cotton fabric was discussed. The results show that the color yield (K/S) values of the printed fabrics decreased with the increase of sulfonate groups, but the fixation and penetration of the reactive dyes on cotton fabric increased. The reactive dyes with fewer number sulfonate groups were sensitive to alkaline and urea. Whereas, the reactive dyes with numerous sulfonate groups were not sensitive to urea and had good leveling properties, penetration uniformity, and good wet fastness for cotton fabric. Surface wettability of all cotton fabrics printed with four dyes was excellent. It is possible to print cotton fabric urea-free using the reactive dyes with numerous sulfonate groups. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Interaction of multi-walled carbon nanotubes with perfluorinated sulfonic acid ionomers and surface treatment studies

    DEFF Research Database (Denmark)

    Andersen, Shuang Ma; Dhiman, Rajnish; Borghei, Maryam

    2014-01-01

    The interaction between high surface area nano-carbon catalyst supports for proton exchange membrane fuel cells (PEMFCs) and perfluorinated sulfonic acid (Nafion®) ionomer was studied 19 fluorine nuclear magnetic resonance spectroscopy (19F-NMR). The method was developed and improved for more...

  13. Azadirachta indica Attenuates Colonic Mucosal Damage in Experimental Colitis Induced by Trinitrobenzene Sulfonic Acid.

    Science.gov (United States)

    Gautam, M K; Goel, Shalini; Ghatule, R R; Singh, A; Joshi, V K; Goel, R K

    2013-09-01

    Azadirachta indica leaves indicated the presence of active principles with proven antioxidants, antiinflammatory, immunomodulatory, free radical scavenging and healing properties. In the present study we evaluated the healing effects of 50% ethanol extract of dried leaves of Azadirachta indica on trinitrobenzene sulfonic acid-induced colitis in rats. Azadirachta indica extract (500 mg/kg) was administered orally, once daily for 14 days and studied for its effects on diarrhoea, food and water intake, body weight changes, colonic damage and inflammation, histology, antibacterial activity and free radicals (nitric oxide and lipid peroxidation), antioxidants (superoxide dismutase, catalase and reduced glutathione) and myeloperoxidase activities in colonic tissue. Intracolonic trinitrobenzene sulfonic acid increased colonic mucosal damage and inflammation, diarrhea, but decreased body weight which were reversed by Azadirachta indica extract and sulfasalazine (positive control) treatments. Azadirachta indica extract showed antibacterial activity. Azadirachta indica extract and sulfasalazine enhanced the antioxidants but decreased free radicals and myeloperoxidase activities affected in trinitrobenzene sulfonic acid-induced colitis. Azadirachta indica extract, thus seemed to be effective in healing trinitrobenzene sulfonic acid-induced colitis in rats.

  14. 40 CFR 417.110 - Applicability; description of the SO3 solvent and vacuum sulfonation subcategory.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 28 2010-07-01 2010-07-01 true Applicability; description of the SO3 solvent and vacuum sulfonation subcategory. 417.110 Section 417.110 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SOAP AND DETERGENT MANUFACTURING...

  15. 40 CFR 417.90 - Applicability; description of the oleum sulfonation and sulfation subcategory.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 28 2010-07-01 2010-07-01 true Applicability; description of the oleum sulfonation and sulfation subcategory. 417.90 Section 417.90 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS SOAP AND DETERGENT MANUFACTURING POINT SOURCE...

  16. Distribution and excretion of perfluorooctane sulfonate (PFOS) in beef cattle (Bos taurus)

    Science.gov (United States)

    Perfluorooctane sulfonate (PFOS), a perfluoroalkyl surfactant used in many industrial products, is present in industrial wastes and in wastewater treatment plant biosolids. Biosolids are commonly applied to pastures and crops used for animal feed; consequently, PFOS may accumulate in the edible tis...

  17. A mild and efficient procedure for the synthesis of ethers from various alkyl halides

    Directory of Open Access Journals (Sweden)

    Mosstafa Kazemi

    2013-10-01

    Full Text Available A simple, mild and practical procedure has been developed for the synthesis of symmetrical and unsymmetrical ethers by using DMSO, TBAI in the presence of K2CO3. We extended the utility of Potassium carbonate as an efficient base for the preparation of ethers. A wide range of alkyl aryl and dialkyl ethers are synthezied from treatment of aliphatic alcohols and phenols with various alkyl halides in the prescence of efficient base Potassium carbonate. Secondary alkyl halides were easily converted to corresponding ethers in releatively good yields . This is a mild, simple and practical procedure for the preparation of ethers in high yields and suitable times under mild condition.

  18. Biodegradability of fuel-ethers in environment; Biodegradabilite des ethers-carburants dans l'environnement

    Energy Technology Data Exchange (ETDEWEB)

    Fayolle-Guichard, F.

    2005-04-01

    Fuel ethers (methyl tert-butyl ether or MTBE, ethyl tert-butyl ether or ETBE and tert-amyl methyl ether or TAME have been used as gasoline additives since about twenty years in order to meet the requirements for the octane index and to limit the polluting emission in exhaust pipe gas (unburnt hydrocarbons and carbon monoxide). The high water solubility and the poor biodegradability of these compounds make them pollutants frequently encountered in aquifers. The present manuscript summarizes the knowledge concerning the biodegradability of fuel ethers obtained both at IFP and during collaborations with the Pasteur Institute (Paris), the Biotechnology Research Institute (Montreal, Canada) and the Center for Environmental Biotechnology (University of Tennessee, USA). Rhodococcus ruber IFP 2001 and Mycobacterium austroafricanum IFP 2012, two microorganisms isolated at IFP for their ability to grow, respectively, on ETBE and MTBE, were studied in order to determine the intermediates produced during MTBE and ETBE biodegradation and the enzymes required for each biodegradation step, thus allowing us to propose MTBE and ETBE catabolic pathways. A proteomic approach, from the protein induced during the degradation of ETBE or MTBE to the genes encoding these different enzymes, was carried out. The isolation of such genes is required:1) to use them for help in determining the bio-remediation capacities in polluted aquifers (DNA micro-arrays), 2) to monitor the microorganisms isolated for their degradative capacities during bio-remediation processes (fluorescent in situ hybridization or FISH) and 3) to create new tools for the detection and the quantification of ETBE or MTBE in contaminated aquifers (bio-sensor). The manuscript also describes the different ways for the adaptation of microorganisms to the presence of a xenobiotic compound. (author)

  19. Coal liquefaction model studies: free radical chain decomposition of diphenylpropane, dibenzyl ether, and phenyl ether via. beta. -scission reactions

    Energy Technology Data Exchange (ETDEWEB)

    Gilbert, K.E.; Gajewski, J.J.

    1982-01-01

    The thermal decompositions of 1,3-diphenylpropane (1), dibenzyl ether (2), and phenethyl phenyl ether (3) have been found to proceed by free radical chain processes. 1 gave toluene and styrene with a reaction order of 1.55, E/sub A/ = 51.4 kcal/mol, and log A = 12.5. The reaction could be initiated by benzyl phenyl ether but not by 1,2-diphenylethane. 2 gave toluene and benzaldehyde with a reaction order of 1.43, E/sub A/ = 48 kcal/mol, and log A = 12.6. The reaction could be initiated with benzyl phenyl ether. 3 gave phenol and styrene with a reaction order of 1.21, E/sub A/ = 50.3 kcal/mol, and log A = 12.3. The reaction could be initiated by benzyl phenyl ether. All of the data are consistent with free radical chain processes with the reaction order determined by the termination reaction. No evidence for concerted reactions has been found. The thermal chemistry of three-atom links is best described by free radical chain processes. The products are consistent with a free radical chain process involving a ..beta..-scission reaction, and the reaction orders range between first and three-halves order depending upon the nature of the chain termination reaction. Activation parameters are readily estimated from thermochemical kinetic data on the individual reactions with log A approx. = 12 and E/sub A/approx. = 50 kcal/mol. Unlike the one- and two-atom linkages, reactions of the three-atom linkages are promoted by free radical initiators. The potential for inhibition of free radical chains also exists and is currently being studied. 4 tables.

  20. Synthesis of sulfonated porous carbon nanospheres solid acid by a facile chemical activation route

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Binbin, E-mail: changbinbin806@163.com; Guo, Yanzhen; Yin, Hang; Zhang, Shouren; Yang, Baocheng, E-mail: baochengyang@yahoo.com

    2015-01-15

    Generally, porous carbon nanospheres materials are usually prepared via a template method, which is a multi-steps and high-cost strategy. Here, we reported a porous carbon nanosphere solid acid with high surface area and superior porosity, as well as uniform nanospheical morphology, which prepared by a facile chemical activation with ZnCl{sub 2} using resorcinol-formaldehyde (RF) resins spheres as precursor. The activation of RF resins spheres by ZnCl{sub 2} at 400 °C brought high surface area and large volume, and simultaneously retained numerous oxygen-containing and hydrogen-containing groups due to the relatively low processing temperature. The presence of these functional groups is favorable for the modification of –SO{sub 3}H groups by a followed sulfonation treating with sulphuric acid and organic sulfonic acid. The results of N{sub 2} adsorption–desorption and electron microscopy clearly showed the preservation of porous structure and nanospherical morphology. Infrared spectra certified the variation of surface functional groups after activation and the successful modification of –SO{sub 3}H groups after sulfonation. The acidities of catalysts were estimated by an indirect titration method and the modified amount of –SO{sub 3}H groups were examined by energy dispersive spectra. The results suggested sulfonated porous carbon nanospheres catalysts possessed high acidities and –SO{sub 3}H densities, which endowed their significantly catalytic activities for biodiesel production. Furthermore, their excellent stability and recycling property were also demonstrated by five consecutive cycles. - Graphical abstract: Sulfonated porous carbon nanospheres with high surface area and superior catalytic performance were prepared by a facile chemical activation route. - Highlights: • Porous carbon spheres solid acid prepared by a facile chemical activation. • It owns high surface area, superior porosity and uniform spherical morphology. • It possesses

  1. Superoxide converts indigo carmine to isatin sulfonic acid: implications for the hypothesis that neutrophils produce ozone.

    Science.gov (United States)

    Kettle, Anthony J; Clark, Bruce M; Winterbourn, Christine C

    2004-04-30

    Recently, it was proposed that neutrophils generate ozone (Wentworth, P. J., McDunn, J. E., Wentworth, A. D., Takeuchi, C., Nieva, J., Jones, T., Bautista, C., Ruedi, J. M., Gutierrez, A., Janda, K. D., Babior, B. M., Eschenmoser, A., and Lerner, R. A. (2002) Science 298, 2195-2199; Babior, B. M., Takeuchi, C., Ruedi, J., Gutierrez, A., and Wentworth, P. J. (2003) Proc. Natl. Acad. Sci. U. S. A. 100, 3031-3034). Evidence for the proposal was based largely on the chemistry of ozone reacting with indigo carmine to produce isatin sulfonic acid. In this investigation, we have examined the specificity of this reaction and whether it can be used as unequivocal evidence of ozone production by neutrophils. Stimulated neutrophils promoted the loss of indigo carmine and formation of isatin sulfonic acid in a reaction that was completely inhibited by superoxide dismutase. Methionine, which scavenges ozone, singlet oxygen, and hypochlorous acid, had no effect on the reaction. Neither did catalase or azide, which scavenge hydrogen peroxide and inhibit myeloperoxidase, respectively. From these results, it is apparent that superoxide was responsible for bleaching indigo carmine. Superoxide generated using xanthine oxidase and acetaldehyde also converted indigo carmine to isatin sulfonic acid in a reaction that was completely inhibited by superoxide dismutase and unaffected by catalase. When the xanthine oxidase reaction was carried out in H(2)(18)O, the proportion of (18)O incorporated into the isatin sulfonic acid was the same as that found for ozone. Thus, reactions of ozone and superoxide with indigo carmine are indistinguishable with respect to isatin sulfonic acid formation. We conclude that bleaching of indigo carmine cannot be used to invoke ozone production by neutrophils. Studies using indigo carmine to implicate ozone in other biological processes should also be interpreted with caution.

  2. Sulfonic Groups Originated Dual-Functional Interlayer for High Performance Lithium-Sulfur Battery.

    Science.gov (United States)

    Lu, Yang; Gu, Sui; Guo, Jing; Rui, Kun; Chen, Chunhua; Zhang, Sanpei; Jin, Jun; Yang, Jianhua; Wen, Zhaoyin

    2017-05-03

    The lithium-sulfur battery is one of the most prospective chemistries in secondary energy storage field due to its high energy density and high theoretical capacity. However, the dissolution of polysulfides in liquid electrolytes causes the shuttle effect, and the rapid decay of lithium sulfur battery has greatly hindered its practical application. Herein, combination of sulfonated reduced graphene oxide (SRGO) interlayer on the separator is adopted to suppress the shuttle effect. We speculate that this SRGO layer plays two roles: physically blocking the migration of polysulfide as ion selective layer and anchoring lithium polysulfide by the electronegative sulfonic group. Lewis acid-base theory and density functional theory (DFT) calculations indicate that sulfonic groups have a strong tendency to interact with lithium ions in the lithium polysulfide. Hence, the synergic effect involved by the sulfonic group contributes to the enhancement of the battery performance. Furthermore, the uniformly distributed sulfonic groups working as active sites which could induce the uniform distribution of sulfur, alleviating the excessive growth of sulfur and enhancing the utilization of active sulfur. With this interlayer, the prototype battery exhibits a high reversible discharge capacity of more than 1300 mAh g-1 and good capacity retention of 802 mAh g-1 after 250 cycles at 0.5 C rate. After 60 cycles at different rates from 0.2 to 4 C, the cell with this functional separator still recovered a high specific capacity of 1100 mAh g-1 at 0.2 C. The results demonstrate a promising interlayer design toward high performance lithium-sulfur battery with longer cycling life, high specific capacity, and rate capability.

  3. 40 CFR 721.6980 - Dimer acids, polymer with polyalkylene glycol, bisphenol A-diglycidyl ether, and alky-lenepolyols...

    Science.gov (United States)

    2010-07-01

    ... glycol, bisphenol A-diglycidyl ether, and alky-lenepolyols polyglycidyl ethers (generic name). 721.6980... Substances § 721.6980 Dimer acids, polymer with polyalkylene glycol, bisphenol A-diglycidyl ether, and alky-lenepolyols polyglycidyl ethers (generic name). (a) Chemical substance and significant new uses subject to...

  4. Carbon-carbon bond cleavage of 1,2-hydroxy ethers b7 vanadium(V) dipicolinate complexes

    Energy Technology Data Exchange (ETDEWEB)

    Hanson, Susan K [Los Alamos National Laboratory; Gordon, John C [Los Alamos National Laboratory; Thorn, David L [Los Alamos National Laboratory; Scott, Brian L [Los Alamos National Laboratory; Baker, R Tom [Los Alamos National Laboratory

    2009-01-01

    The development of alternatives to current petroleum-based fuels and chemicals is becoming increasingly important due to concerns over climate change, growing world energy demand, and energy security issues. Using non-food derived biomass to produce renewable feedstocks for chemicals and fuels is a particularly attractive possibility. However, the majority of biomass is in the form of lignocellulose, which is often not fully utilized due to difficulties associated with breaking down both lignin and cellulose. Recently, a number of methods have been reported to transform cellulose directly into more valuable materials such as glucose, sorbitol, 5-(chloromethyl)furfural, and ethylene glycol. Less progress has been made with selective transformations of lignin, which is typically treated in paper and forest industries by kraft pulping (sodium hydroxide/sodium sulfide) or incineration. Our group has begun investigating aerobic oxidative C-C bond cleavage catalyzed by dipicolinate vanadium complexes, with the idea that a selective C-C cleavage reaction of this type could be used to produce valuable chemicals or intermediates from cellulose or lignin. Lignin is a randomized polymer containing methoxylated phenoxy propanol units. A number of different linkages occur naturally; one of the most prevalent is the {beta}-O-4 linkage shown in Figure 1, containing a C-C bond with 1,2-hydroxy ether substituents. While the oxidative C-C bond cleavage of 1,2-diols has been reported for a number of metals, including vanadium, iron, manganese, ruthenium, and polyoxometalate complexes, C-C bond cleavage of 1,2-hydroxy ethers is much less common. We report herein vanadium-mediated cleavage of C-C bonds between alcohol and ether functionalities in several lignin model complexes. In order to explore the scope and potential of vanadium complexes to effect oxidative C-C bond cleavage in 1,2-hydroxy ethers, we examined the reactivity of the lignin model complexes pinacol monomethyl ether (A

  5. [Experimental and clinical studies on the effect of sodium dodecylbenzene sulfonate in in vitro killing Demodex and in treating demodicidosis].

    Science.gov (United States)

    Zang, Yun shu; Wu, Da-jun; Song, Jian-bo

    2005-08-30

    To observe the effect of sodium dodecylbenzene sulfonate (SDBS) in killing Demodex in vitro and in the treatment of demodicidosis. (1) The experiment of in vitro killing Demodex with 1% and 2% SDBS was conducted. (2) A clinical trial was carried out to evaluate the therapeutic effect in the treatment of demodicidosis with 2% SDBS and 2% metronidazole emulsion. Patients with demodicidosis were randomly divided into trial and control groups (31 cases each). They were treated with 2% SDBS ointment and 2% metronidazole ointment twice a day in the early morning and evening respectively for eight weeks consecutively. Inflammatory lesions of face, Demodex infestation and scores of erythema were measured to evaluate the effect before and after treatment. (3) Follow-up was carried out for two months to evaluate the effect and side effects after 8 weeks' treatment. (1) 2% SDBS killed all Demodex in vitro after 5 h, there was significant difference between the 2% SDBS and 2% metronidazole (69.4%), or between SDBS and peanut oil (9.1%) (P Demodex folliculorum and Demodex brevis with 2% SDBS. (2) Clinical observation showed that there was a significant difference in facial inflammatory lesions, Demodex infestation and scores of erythema before and after treatment with 2% SDBS (P Demodex and is highly effective in the treatment of demodicidosis.

  6. [Ethylene glycol and propylene glycol ethers - Reproductive and developmental toxicity].

    Science.gov (United States)

    Starek-Świechowicz, Beata; Starek, Andrzej

    2015-01-01

    Both ethylene and propylene glycol alkyl ethers (EGAEs and PGAEs, respectively) are widely used, mainly as solvents, in industrial and household products. Some EGAEs demonstrate gonadotoxic, embriotoxic, fetotoxic and teratogenic effects in both humans and experimental animals. Due to the noxious impact of these ethers on reproduction and development of organisms EGAEs are replaced for considerably less toxic PGAEs. The data on the mechanisms of testicular, embriotoxic, fetotoxic and teratogenic effects of EGAEs are presented in this paper. Our particular attention was focused on the metabolism of some EGAEs and their organ-specific toxicities, apoptosis of spermatocytes associated with changes in the expression of various genes that code for oxidative stress factors, protein kinases and nuclear hormone receptors. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.

  7. SYNTHESIS OF ALLYL PHENYL ETHER AND CLAISEN REARRANGEMENT

    Directory of Open Access Journals (Sweden)

    Gagik Torosyan

    2011-12-01

    Full Text Available It has been established the possibility for phenol allylation on natural zeolites and them analogs. Here is demonstrated the synthesis of allyl phenol, which has wide industrial applications. The offered method in comparison with the traditional methods has more advantages – higher selectivity, smaller material and power resources consumption. It has been obtained the mixture of allylating phenols (30% in general with allyl phenyl ether (1 with 80% yields. At 600 K is obtained allylphenyl ether, at 700 K beginning the formation of allyl phenols, which is the result of direct C-allylation of the aromatic ring. It has been investigated the possibility of Claisen rearrangement in the same conditions. All of that are established by gas-liquid chromatography and liquid chromatography data.

  8. Ether and ester derivatives of the perborate icosahedron

    Science.gov (United States)

    Hawthorne, M. Frederick; Peymann, Toralf; Maderna, Andreas

    2003-12-16

    New boron icosahedral ethers and esters formed from Cs.sub.2 [closo-B.sub.12 (OH).sub.12 ],; Cs[closo-1-H-1-CB.sub.11 (OH).sub.11 ]; and closo-1,12-H.sub.2 -1,12-C.sub.2 B.sub.10 (OH).sub.10 are disclosed. Also set forth are their preparation by reacting the icosahedral boranes [closo-B.sub.12 H.sub.12 ].sup.2-, [closo-1-CB.sub.11 H.sub.12 ].sup.- and closo-1,12-(CH.sub.2 OH).sub.2 -1,12-C.sub.2 B.sub.10 H.sub.10 with an acid anhdride or acid chloride to form the ester or an alkylating agent to form the ether.

  9. SYNTHESIS OF ALLYL PHENYL ETHER AND CLAISEN REARRANGEMENT

    OpenAIRE

    Gagik Torosyan; Dezy Hovhannisyan

    2011-01-01

    It has been established the possibility for phenol allylation on natural zeolites and them analogs. Here is demonstrated the synthesis of allyl phenol, which has wide industrial applications. The offered method in comparison with the traditional methods has more advantages – higher selectivity, smaller material and power resources consumption. It has been obtained the mixture of allylating phenols (30%) in general with allyl phenyl ether (1) with 80% yields. At 600 K is obtained allylphenyl e...

  10. Solution of a gallstone with methyl-tertiary butyl ether

    Energy Technology Data Exchange (ETDEWEB)

    Brambs, H.J.; Roeren, T.; Holstege, A.; Raedecke, J.

    1987-08-01

    Methyl-t-butyl ether is a new agent to dissolve gallstones. The substance proves to be very successful and acts very rapidly. A percutaneous transhepatic drainage supplies an adequate access route to dissolve calculi within the bile ducts. We report the case of a patient where before insertion of an internal stent a stone in the common bile duct was dissolved within 3 1/2 hours.

  11. Patch test with ether extracts in salicaceae allergy

    Directory of Open Access Journals (Sweden)

    Sawhney M

    2002-01-01

    Full Text Available A total of 23 cases suggestive of airborne contact dermatitis were patch tested with ether extracts of flowers and leaves of populus sp. and salix sp. in a study conducted in Ladakh at an altitude of 3445 meters above sea level. Overall positivity was found in 12 (52.17%, with populus sp. alone in 7 (30. 43%, salix sp. alone in 4 17.39% and to both in one (8.33%.

  12. Homogeneous Charge Compression Ignition Combustion of Dimethyl Ether

    OpenAIRE

    Pedersen, Troels Dyhr; Schramm, Jesper

    2011-01-01

    This thesis is based on experimental and numerical studies on the use of dimethyl ether (DME) in the homogeneous charge compression ignition (HCCI) combustion process. The first paper in this thesis was published in 2007 and describes HCCI combustion of pure DME in a small diesel engine. The tests were designed to investigate the effect of engine speed, compression ratio and equivalence ratio on the combustion timing and the engine performance. It was found that the required compression ratio...

  13. Numerical investigation on the effect of injection pressure on the internal flow characteristics for diethyl ether, dimethyl ether and diesel fuel injectors using CFD

    Directory of Open Access Journals (Sweden)

    Vijayakumar Thulasi

    2011-01-01

    Full Text Available The spray characteristics of the diesel fuel are greatly affected by the cavitation formed inside the injector due to the high pressure differential across the nozzle. Many researchers across the globe are exploring the potential of using diethyl ether and dimethyl ether as an alternate for diesel fuel to meet the strict emission norms. Due to the variation in the fuel properties the internal flow characteristics in injectors for ether fuels are expected to be different from that of the diesel fuel. In this paper computational technique is used to study and compare the internal flow characteristics of diethyl ether, dimethyl ether and diesel fuel. The two phase flow model considering the fuel as a mixture of liquid and vapor is adopted for the simulation study. The injection pressure is varied from 100 to 400 bar and the flow characteristics of all three fuels are simulated and compared. Results indicate that all three fuels have distinct cavitating patterns owing to different property values. The dimethyl ether is found to be more cavitating than diesel and diethyl ether fuels as expected. The mass of fuel injected are found to be decreasing for the ether fuels when compared with diesel fuel at all injection pressures.

  14. Diethyl Ether Production Process with Various Catalyst Type

    Directory of Open Access Journals (Sweden)

    Widayat

    2013-01-01

    Full Text Available Several H-zeolite and HZSM-5 catalysts was preparated and their characters have also been investigated. H-zeolit Catalyst was preparated from Natural Zeolite that obtained from Malang District and Gunung Kidul District. Diethyl ether was produced by Ethanol with concentration of 95%. This research use fixed bed reactor that 1 gram of catalyst as bed catalyst, atmospheric pressure and temperature 140oC as the operating condition. Ethanol vapor from vaporization tank was driven by 200 ml/min Nitrogen stream. The responds in this research is liquid product concentration; diethyl ether, ethanol, methanol and water concentration. The results showed that the largest ethanol conversion was produced by the use of 56.44% HZSM-5 and the largest yield of diethyl ether diethyl was produced by the use of alumina and H-zeolite catalyst. The larger ratio between natural zeolite with HCl solvent will produce the larger surface area of catalyst and ethanol conversion. The largest ethanol conversion was produced at reactan ratio 1:20.

  15. Selective cytotoxic activity of new lipophilic hydroxytyrosol alkyl ether derivatives.

    Science.gov (United States)

    Calderón-Montaño, José Manuel; Madrona, Andrés; Burgos-Morón, Estefanía; Orta, Manuel Luis; Mateos, Santiago; Espartero, José Luis; López-Lázaro, Miguel

    2013-05-29

    Recent data suggest that hydroxytyrosol, a phenolic compound of virgin olive oils, has anticancer activity. This communication reports the synthesis of decyl and hexadecyl hydroxytyrosyl ethers, as well as the cytotoxic activity of hydroxytyrosol and a series of seven hydroxytyrosol alkyl ether derivatives against A549 lung cancer cells and MRC5 non-malignant lung fibroblasts. Hydroxytyrosyl dodecyl ether (HTDE) showed the highest selective cytotoxicity, and possible mechanisms of action were investigated; results suggest that HTDE can moderately inhibit glycolysis, induce oxidative stress, and cause DNA damage in A549 cells. The combination of HTDE with the anticancer drug 5-fluorouracil induced a synergistic cytotoxicity in A549 cancer cells but not in non-malignant MRC5 cells. HTDE also displayed selective cytotoxicity against MCF7 breast cancer cells versus MCF10 normal breast epithelial cells in the 1-30 μM range. These results suggest that the cytotoxicity of HTDE is more potent and selective than that of parent compound hydroxytyrosol.

  16. Quantum mechanistic insights on aryl propargyl ether Claisen rearrangement.

    Science.gov (United States)

    Srinivasadesikan, Venkatesan; Dai, Jiun-Kuang; Lee, Shyi-Long

    2014-06-28

    The mechanism of aryl propargyl ether Claisen rearrangement in gas and solvent phase was investigated using DFT methods. Solvent phase calculations are carried out using N,N-diethylaniline as a solvent in the PCM model. The most favorable pathways involve a [3,3]-sigmatropic reaction followed by proton transfer in the first two steps and then deprotonation or [1,5]-sigmatropic reaction. Finally, cyclization yields benzopyran or benzofuran derivatives. The [3,3]-sigmatropic reaction is the rate-determining step for benzopyran and benzofuran with ΔG(‡) value of 38.4 and 37.9 kcal mol(-1) at M06/6-31+G**//B3LYP/6-31+G* level in gas and solvent phase, respectively. The computed results are in good agreement with the experimental results. Moreover, it is found that the derivatives of aryl propargyl ether proceeded Claisen rearrangement and the rate-determining step may be shifted from the [3,3]-sigmatropic reaction to the tautomerization step. The NBO analysis revealed that substitution of the methyl groups on the aliphatic segment has decreased the stabilization energy E(2) and favors the aryl propargyl ether Claisen rearrangement.

  17. Demographic, reproductive, and dietary determinants of perfluorooctane sulfonic (PFOS) and perfluorooctanoic acid (PFOA) concentrations in human colostrum

    NARCIS (Netherlands)

    Jusko, T.A.; Oktapodas, M.; Palkovičová Murinová, L.; Babjaková, J.; Verner, M.A.; DeWitt, J.C.; Babinská, K.; Thevenet-Morrison, K.; Čonka, K.; Drobná, B.; Thurston, S.W.; Lawrence, B.P.; Dozier, A.M.; Jarvinen-Seppo, K.M.; Patayová, H.; Trnovec, T.; Legler, J.; Hertz-Picciotto, I.; Lamoree, M.H.

    2016-01-01

    To determine demographic, reproductive, and maternal dietary factors that predict perfluoroalkyl substance (PFAS) concentrations in breast milk, we measured perfluorooctane sulfonic (PFOS) and perfluorooctanoic acid (PFOA) concentrations, using liquid chromatography-mass spectrometry, in 184

  18. Surface Structural Studies of Methane Sulfonic Acid at Air/Aqueous Solution Interfaces using Vibrational Sum Frequency Spectroscopy

    National Research Council Canada - National Science Library

    Allen, H

    2000-01-01

    Atmospheric gas phase species such as methane sulfonic acid (MSA) are adsorbed and accommodated into atmospheric aqueous-phase aerosols and in some cases MSA is thought to be produced via aerosol surface chemistry...

  19. SOLVENT-FREE FACILE SYNTHESIS OF NOVEL α-TOSYLOXY β-KETO SULFONES USING [HYDROXY(TOSYLOXY)IODO]BENZENE

    Science.gov (United States)

    A facile, general and high yielding protocol for the synthesis of novel α-tosyloxy β-keto sulfones is described utilizing relatively non-toxic, [hydroxy(tosyloxy)iodo]benzene, under solvent-free conditions at room temperature.

  20. Unprecedented antioxidative cyclic ether from the red seaweed Kappaphycus alvarezii with anti-cyclooxygenase and lipoxidase activities.

    Science.gov (United States)

    Makkar, Fasina; Chakraborty, Kajal

    2017-05-01

    An unprecedented non-isoprenoid oxocine carboxylate cyclic ether characterised as (3S, 4R, 5S, 6Z)-3-((R)-hexan-2'-yl)-3,4,5,8-tetrahydro-4-methyl-2H-oxocin-5-yl acetate was isolated from the ethyl acetate-methanol extract of the red seaweed Kappaphycus alvarezii. The structure, as well as its relative stereochemistry, was proposed on the basis of extensive spectral data. The antioxidative activity of the isolated metabolite was found to have significantly greater as determined by 1, 1-diphenyl-2-picrylhydrazyl and 2,2'-azino-bis-3-ethylbenzothiozoline-6-sulfonic acid radical scavenging activities (IC50 ~ 0.3 mg/mL) compared to α-tocopherol (IC50 > 0.6 mg/mL) and was comparable to the synthetic antioxidants butylated hydroxytoluene and butylated hydroxyanisole (IC50 ~ 0.35-0.34 mg/mL). The compound exhibited greater activity against COX-2 (cyclooxygenase-2) than COX-1 (cyclooxygenase-1) isoform, and therefore, the selectivity index remained significantly lesser (anti-COX-1IC50: anti-COX-2IC50 0.87) than synthetic anti-inflammatory drugs (0.02-0.44). No significant difference of in vivo 5-lipoxidase activity (IC50 0.95 mg/mL) than ibuprofen (IC50 0.93 mg/mL) indicated the potential anti-inflammatory properties of the title compound.

  1. Electrolytic membrane formation of fluoroalkyl polymer using a UV-radiation-based grafting technique and sulfonation

    Energy Technology Data Exchange (ETDEWEB)

    Shironita, Sayoko; Mizoguchi, Satoko; Umeda, Minoru, E-mail: mumeda@vos.nagaokaut.ac.jp [Department of Materials Science and Technology, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka 940-2188, Niigata (Japan)

    2011-03-15

    A sulfonated fluoroalkyl graft polymer (FGP) membrane was prepared as a polymer electrolyte. First, the FGP membrane was grafted with styrene under UV irradiation. The grafted FGP was then sulfonated to functionalize it for proton conductivity. The grafting degree of the membrane increased with increasing grafting time during UV irradiation. The proton conductivity of the membrane increased with increasing grafting degree. The swelling ratio was independent of the grafting time, however, the water uptake increased with increasing grafting degree. Based on these results, it was found that the UV-initiated styrene grafting occurred along the membrane thickness direction. Moreover, the membrane was embedded within the glass fibers of the composite. This composite electrolytic membrane had 1.15 times the proton conductivity of a Nafion 117 membrane.

  2. Moving beyond mass-based parameters for conductivity analysis of sulfonated polymers

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yu Seung [Los Alamos National Laboratory; Pivovar, Bryan [NREL

    2009-01-01

    Proton conductivity of polymer electrolytes is critical for fuel cells and has therefore been studied in significant detail. The conductivity of sulfonated polymers has been linked to material characteristics in order to elucidate trends. Mass based measurements based on water uptake and ion exchange capacity are two of the most common material characteristics used to make comparisons between polymer electrolytes, but have significant limitations when correlated to proton conductivity. These limitations arise in part because different polymers can have significantly different densities and conduction happens over length scales more appropriately represented by volume measurements rather than mass. Herein, we establish and review volume related parameters that can be used to compare proton conductivity of different polymer electrolytes. Morphological effects on proton conductivity are also considered. Finally, the impact of these phenomena on designing next generation sulfonated polymers for polymer electrolyte membrane fuel cells is discussed.

  3. Protein adsorption characteristics of a sulfonic-acid-group-containing nonwoven fabric

    Science.gov (United States)

    Kim; Sasaki; Saito; Sugita; Sugo

    1998-07-01

    A sulfonic acid (SO3H)-group-containing nonwoven fabric was prepared by radiation-induced graft polymerizaton of an epoxy-group-containing monomer, glycidyl methacrylate, onto a nonwoven fabric and subsequent sulfonation. The nonwoven fabric containing SO3H groups at different densities was equilibrated with lysozyme in a buffer (pH 6.0). The equilibrium binding capacity (EBC) of lysozyme increased linearly with increasing SO3H group density. The SO3H-group-containing polymer chains extended from the pore surface due to mutual electrostatic repulsion and held lysozyme in multilayers. The maximum EBC was 0.7 kg/kg at a SO3H group density of 1.7 mol/kg.

  4. Meaning of leprosy for people who have experienced treatment during the sulfonic and multidrug therapy periods

    Directory of Open Access Journals (Sweden)

    Karen da Silva Santos

    2015-08-01

    Full Text Available AbstractObjective: to analyze the meanings of leprosy for people treated during the sulfonic and multidrug therapy periods.Method: qualitative nature study based on the Vigotski's historical-cultural approach, which guided the production and analysis of data. It included eight respondents who have had leprosy and were submitted to sulfonic and multidrug therapy treatments. The participants are also members of the Movement for Reintegration of People Affected by Leprosy.Results: the meanings were organized into three meaning cores: spots on the body: something is out of order; leprosy or hanseniasis? and leprosy from the inclusion in the Movement for Reintegration of People Affected by Leprosy.Conclusion: the meanings of leprosy for people submitted to both regimens point to a complex construction thereof, indicating differences and similarities in both treatments. Health professionals may contribute to the change of the meanings, since these are socially constructed and the changes are continuous.

  5. Direct esterification of olive-pomace oil using mesoporous silica supported sulfonic acids

    Directory of Open Access Journals (Sweden)

    F. Alrouh

    2017-02-01

    Full Text Available Mesoporous silica MCM-41 and SBA-15 containing propyl sulfonic acid groups were synthesized according to the literature and were characterized by X-ray diffraction, N2 adsorption and the H+ exchange capacities of the sulfonic acid groups were titrated. The esterification reaction of glycerol with olive-pomace oil has been carried out by using prepared functionalized mesoporous silica (MCM-41 and SBA-15 as catalysts. It has been monitored by GC two fatty acids (palmitic and oleic acids as reactants in olive-pomace oil and their related monoacylglycerols (Glycerol monopalmitate GMP and monooleate GMO as reaction product. The catalytic activities of the functionalized mesoporous silica were compared with commercial catalysts, these included homogeneous catalysts (p-toluenesulfonic acid and heterogeneous catalysts (Amberlyst-15. The total yield of monoacylglycerols (GMO + GMP was nearly 40%. Remarkably, we found that MCM-41-SO3H was recycled at least 3 times without any loss of activity.

  6. Stabilized sulfonated aromatic polymers by in situ solvothermal cross-linking

    Directory of Open Access Journals (Sweden)

    Maria Luisa eDi Vona

    2014-10-01

    Full Text Available The cross-link reaction via sulfone bridges of sulfonated polyetheretherketone (SPEEK by thermal treatment at 180 °C in presence of dimethylsulfoxide (DMSO is discussed. The modifications of properties subsequent to the cross-linking are presented. The mechanical strength as well as the hydrolytic stability increased with the thermal treatment time, i.e., with the degree of cross-linking. The proton conductivity was determined as function of temperature, IEC, degree of cross-linking and hydration number. The memory effect, which is the membrane ability to remember the water uptake reached at high temperature also at lower temperature, is exploited in order to achieve high values of conductivity. Membranes swelled at 110 °C can reach a conductivity of 0.14 S/cm at 80°C with a hydration number ( of 73.

  7. Adsorption behavior of perfluorinated sulfonic acid ionomer on highly graphitized carbon nanofibers and their thermal stabilities

    DEFF Research Database (Denmark)

    Andersen, Shuang Ma; Borghei, Maryam; Dhiman, Rajnish

    2014-01-01

    isotherm), the ionomer has varying affinities for CNFs (Keq. = between 5 and 22) as compared to Vulcan (Keq. = 18), depending on surface treatments. However, the interactions are most likely governed by different adsorption mechanisms depending on hydrophilicity / hydrophobicity of the adsorbent carbon......A systematic adsorption study of perfluorinated sulfonic acid Nafion® ionomer on ribbon type highly graphitized carbon nanofibers (CNFs) was carried out using 19 fluorine nuclear magnetic resonance spectroscopy. Based on the values obtained for the equilibrium constant (Keq., derived from Langmuir....... The ionomer is probably adsorbed via the polar sulfonic group on hydrophilic Vulcan, whereas, it is adsorbed primarily via hydrophobic -CF2- backbone on the highly hydrophobic pristine CNFs. Ionomer adsorption behavior is gradually altered from apolar to polar group adsorption for the acid modified CNFs...

  8. In silico approach to investigating the adsorption mechanisms of short chain perfluorinated sulfonic acids and perfluorooctane sulfonic acid on hydrated hematite surface.

    Science.gov (United States)

    Feng, Hongru; Lin, Yuan; Sun, Yuzhen; Cao, Huiming; Fu, Jianjie; Gao, Ke; Zhang, Aiqian

    2017-05-01

    Short chain perfluorinated sulfonic acids (PFSAs) that were introduced as alternatives for perfluorooctane sulfonic acid (PFOS) have been widely produced and used. However, few studies have investigated the environmental process of short chain PFSAs, and the related adsorption mechanisms still need to be uncovered. The water-oxide interface is one of the major environmental interfaces that plays an important role in affecting the adsorption behaviour and transport potential of the environmental pollutant. In this study, we performed molecular dynamics simulations and quantum chemistry calculations to investigate the adsorption mechanisms of five PFSAs and their adsorption on hydrated hematite surface as well. Different to the vertical configuration reported for PFOS on titanium oxide, all PFSAs share the same adsorption configuration as the long carbon chains parallel to the surface. The formation of hydrogen bonds between F and inter-surface H helps to stabilize the unique configuration. As a result, the sorption capacity increases with increasing C-F chain length. Moreover, both calculated adsorption energy and partial density of states (PDOS) analysis demonstrate a PFSAs adsorption mechanism in between physical and chemical adsorption because the hydrogen bonds formed by the overlap of F (p) orbital and H (s) orbital are weak intermolecular interactions while the physical adsorption are mainly ascribed to the electrostatic interactions. This massive calculation provides a new insight into the pollutant adsorption behaviour, and in particular, may help to evaluate the environmental influence of pollutants. Copyright © 2017. Published by Elsevier Ltd.

  9. Syntheses, crystal structures and characterization of divalent transition metal sulfonate complexes with o-phenanthroline

    Science.gov (United States)

    Yang, Jin; Ma, Jian-Fang; Wu, Dong-Mei; Guo, Li-Ping; Liu, Jing-Fu

    2003-09-01

    Three new complexes, namely [Cu(phen)(L)(H 2O) 2]L·H 2O 1, [M(phen) 2(H 2O) 2]2L·6H 2O [M=Co( 2), Ni( 3)], where, HL=4-methylbenzenesulfonic acid and phen= o-phenanthroline, have been synthesized. The crystal structures were determined by X-ray diffraction method and refined by full-matrix least-squares methods to R=0.0535 and wR=0.1492 using 3567 reflections with I>2 σ( I) for 1; R=0.0388 and wR=0.1223 using 3844 reflections with I>2 σ( I) for 2; and R=0.0401 and wR=0.1222 using 3425 reflections with I>2 σ( I) for 3. 1 Consists of cationic species [Cu(phen)(L)(H 2O) 2] +, in which Cu(II) ion is five-coordinated by two nitrogen atoms of o-phenanthroline, two water molecules and one sulfonate oxygen atom. The cations and the non-coordinating sulfonate anions are linked by hydrogen bonds to form infinite chains. Complexes 2 and 3 are isostructral compounds. Each of them consists of cationic species [M(phen) 2(H 2O) 2] 2+, in which metal ion is six-coordinated by four nitrogen atoms from two o-phenanthroline molecules and two water oxygen atoms. The sulfonate ions do not coordinate to metal ion. The cations, non-coordinating sulfonate ions and lattice water molecules are linked by hydrogen bonds to form infinite zigzag chains. CV, FT-IR, UV-Vis and TGA were also used to characterize these compounds.

  10. Sulfonation of maternal steroids is a conserved metabolic pathway in vertebrates.

    Science.gov (United States)

    Paitz, Ryan T; Bowden, Rachel M

    2013-12-01

    All vertebrate embryos develop in the presence of maternally derived steroids, and maternal steroids have been hypothesized to link phenotype of the offspring to maternal physiology. In placental vertebrates, it is known that maternally derived steroids are metabolized during development via the sulfonation pathway. We used eggs from the red-eared slider turtle (Trachemys scripta) to determine whether the same metabolic pathway is used to metabolize maternally derived steroids in an oviparous vertebrate. To examine the relationship between estradiol and estrogen sulfates during development, levels of maternally derived estradiol were compared with levels of estradiol sulfate, estrone sulfate, and estriol sulfate at oviposition and after 20 days of embryonic development. Estrone sulfate was the only detectable estrogen sulfate. At oviposition, levels of both estradiol and estrone sulfate varied seasonally with clutches from later in the nesting season having significantly higher concentrations of both steroids. Levels of estrone sulfate increased during development, demonstrating that the sulfonation of maternally derived steroids occurs in oviparous vertebrates as well as in placental vertebrates. We also found that exogenous estrone sulfate increases the production of female hatchlings, thereby demonstrating the ability of this metabolite to influence embryonic development. To examine the role of sulfonation in the metabolism of maternal progesterone and testosterone, we characterized the metabolic fate of both steroids by applying tritiated forms of each steroid at oviposition and characterizing metabolites after 20 days of incubation. Similar to what was demonstrated for estradiol, both progesterone and testosterone are converted to sulfonated metabolites during embryonic development. These data suggest that steroid sulfates, both those that are maternally derived and those resulting from the metabolism of maternal steroids, are a key component of the mechanism

  11. Solvent and irradiation doses effects on the ion exchange capacity of sulfonated styrene grafted PVDF

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Henrique P.; Parra, Duclerc F.; Lugao, Ademar B. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    Polymers exhibiting ion exchange capacity are studied for many years due to their application in several fields, such as membranes for proton exchange fuel cells, filtration membranes, heavy ions recovery and artificial muscles and sensors. Radiation induced grafting followed by sulfonation is a well-known way to obtain ion exchange polymers. Fluorinated polymers are frequently used as polymeric matrix for grafting due to their excellent physicochemical properties. Radiation induced grafting of styrene into poly (vinylidene fluoride) (PVDF) by simultaneous method in 1:1 styrene/toluene or styrene/N,N-dimethylformamide solutions was studied. Irradiations were performed under nitrogen atmosphere, room temperature and at doses of 5, 10 and 20 kGy with dose rate of 5 kGy.h{sup -1} from a {sup 60}Co gamma source. After washing, grafted materials were sulfonated in 10% chlorosulfonic acid/1,2-dichloroethane solutions for 4 h at room temperature. Characterization shows that increasing irradiation dose corresponds to increases in the grafting yield (GY %) gravimetrically calculated and these different solvents shows different grafting behaviors. Toluene allows no more than 3 % of grafting while DMF allows up to 55 % of grafting in the same condition. Grafting in toluene solution occurs on the surface and in DMF solution it occurs in the bulk, as confirmed by SEM. Both irradiation doses and solvent used have direct effects in the ion exchange capacities (calculated after titrations). FT-IR spectra exhibit new peaks after grafting and after sulfonation, attributed to grafted monomer and sulfonic groups attached to the styrene. DSC shows differences in thermal behavior of the polymer before and after each step. (author)

  12. Evaluation of Sulfonate-Based Collectors with Different Hydrophobic Tails for Flotation of Fluorite

    Directory of Open Access Journals (Sweden)

    Renji Zheng

    2018-02-01

    Full Text Available This investigation aims to demonstrate the effects of hydrophobic tails on the affinity and relevant flotation response of sulfonate-based collectors for fluorite. For this purpose, a series of alkyl sulfonates with different hydrophobic tails, namely sodium decanesulfonate (C10, sodium dodecylsulfate (C12, sodium hexadecanesulfonate (C16, and sodium dodecylbenzenesulfonate (C12B were applied. The flotation tests showed that C12 and C12B had a better collecting performance than C10 and C16 at pH < 10, and the flotation recovery of fluorite was higher when adopting C12B as a collector compared with C12 with a strong base. The adsorption behaviors of collectors on the fluorite surface were studied through zeta potential, Fourier transform infrared (FTIR, and X-ray photoelectron spectroscopy (XPS analyses. It was found that the affinity of alkyl sulfonates for fluorite was enhanced with the increase of the alkyl chain length from C10 to C16. The existence of phenyl in the hydrophobic tail of sulfonates could improve its activity for fluorite by reducing its surface tension. The abnormal phenomenon C16 with a high affinity for fluorite had a low collecting performance for fluorite mainly due to its overlong alkyl chain, resulting in low solubility in pulp, which restrained its interaction with fluorite. We concluded that C12B was the most applicable collector for fluorite among these reagents due to its high activity, high solubility, and low cost, which was further substantiated by calculating their molecular frontier orbital energy.

  13. The design and synthesis of novel spirocyclic heterocyclic sulfone ROMK inhibitors as diuretics.

    Science.gov (United States)

    Chobanian, Harry R; Guo, Yan; Pio, Barbara; Tang, Haifeng; Teumelsan, Nardos; Clements, Matthew; Frie, Jessica; Ferguson, Ronald; Guo, Zach; Thomas-Fowlkes, Brande S; Felix, John P; Liu, Jessica; Kohler, Martin; Priest, Birgit; Hampton, Caryn; Pai, Lee-Yuh; Corona, Aaron; Metzger, Joseph; Tong, Vincent; Joshi, Elizabeth M; Xu, Ling; Owens, Karen; Maloney, Kevin; Sullivan, Kathleen; Pasternak, Alexander

    2017-02-15

    A spirocyclic class of ROMK inhibitors was developed containing a structurally diverse heterocyclic sulfone moiety and spirocyclic core starting from lead 1. These compounds not only displayed exquisite ROMK potency but significantly improved selectivity over hERG. The lead compounds were found to have favorable pharmacokinetic properties and displayed robust diuretic, natriuretic and blood pressure lowering effects in spontaneously hypertensive rats. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Subcritical mineralization of sodium salt of dodecyl benzene sulfonate using sonication-wet oxidation (SONIWO) technique.

    Science.gov (United States)

    Dhale, A D; Mahajani, V V

    2001-06-01

    Subcritical mineralization of sodium salt of dodecyl benzene sulfonate via hybrid process-sonication followed by wet oxidation (SONIWO) has been investigated. Sonication of the compound enhanced the rates and % COD reduction during wet oxidation. In this process, homogenous CuSO4 catalyst was found to be effective. In wet oxidation studies, phenol, hydroquinone, maleic acid, oxalic acid, propionic acid, and acetic acid were identified as intermediates. The global rate equations for wet oxidation in terms of COD reduction were developed.

  15. Synthesis and Characterization of Sulfonated Polyimides as Proton Exchange Membranes for Fuel Cells

    OpenAIRE

    Gunduz, Nazan

    2001-01-01

    Series of homo- and copolyimides containing controlled degrees of sulfonic acid ion conducting pendant groups have been synthesized from both phthalic (five-) and naphthalic (six-membered) dianhydrides and appropriate wholly aromatic diamines and heterocyclic analogues. The goal is to identify thermally and hydrolytically stable ion conducting polymers (ICP) suitable as proton exchange membranes, PEM, for fuel cells. The candidate ICP's have been synthesized and characterized for molecular we...

  16. Thermochemical properties and bond dissociation enthalpies of 3- to 5-member ring cyclic ether hydroperoxides, alcohols, and peroxy radicals: cyclic ether radical + (3)O(2) reaction thermochemistry.

    Science.gov (United States)

    Auzmendi-Murua, Itsaso; Bozzelli, Joseph W

    2014-05-01

    The formation of cyclic ethers is a major product in the oxidation of hydrocarbons, and the oxidation of biomass derived alcohols. Cyclic ethers are formed in the initial reactions of alkyl radicals with dioxygen in combustion and precombustion processes that occur at moderate temperatures. They represent a significant part of the oxygenated pollutants found in the exhaust gases of engines. Cyclic ethers can also be formed from atmospheric reactions of olefins. Additionally, cyclic ethers have been linked to the formation of the secondary organic aerosol (SOA) in the atmosphere. In combustion and thermal oxidation processes these cyclic ethers will form radicals that react with (3)O2 to form peroxy radicals. Density functional theory and higher level ab initio calculations are used to calculate thermochemical properties and bond dissociation enthalpies of 3 to 5 member ring cyclic ethers (oxirane, yC2O, oxetane, yC3O, and oxolane, yC4O), corresponding hydroperoxides, alcohols, hydroperoxy alkyl, and alkyl radicals which are formed in these oxidation reaction systems. Trends in carbon-hydrogen bond dissociation energies for the ring and hydroperoxide group relative to ring size and to distance from the ether group are determined. Bond dissociation energies are calculated for use in understanding effects of the ether oxygen in the cyclic ethers, their stability, and kinetic properties. Geometries, vibration frequencies, and enthalpies of formation, ΔH°f,298, are calculated at the B3LYP/6-31G(d,p), B3LYP/6-31G(2d,2p), the composite CBS-QB3, and G3MP2B3 methods. Entropy and heat capacities, S°(T) and Cp°(T) (5 K ≤ T ≤ 5000), are determined using geometric parameters and frequencies from the B3LYP/6-31G(d,p) calculations. The strong effects of ring strain on the bond dissociation energies in these peroxy systems are also of fundamental interest. Oxetane and oxolane exhibit a significant stabilization, 10 kcal mol(-1), lower ΔfH°298 when an oxygen group is on

  17. Sulfonation Process and Desalination Effect of Polystyrene/PVDF Semi-Interpenetrating Polymer Network Cation Exchange Membrane

    Directory of Open Access Journals (Sweden)

    Yin-lin Lei

    2014-07-01

    Full Text Available With the classical sulfonation method of polystyrene-based strongly acidic cation exchange resins, polystyrene/polyvinylidene fluoride (PVDF alloy particles were sulfonated to obtain a cation exchange resin, which was then directly thermoformed to prepare a semi-interpenetrating polymer network (semi-IPN cation exchange membrane. The effects of the swelling agent, sulfonation time and temperature and the relative contents of polystyrene and divinylbenzene (DVB in the alloy particles on the feasibility of the membrane formation are discussed. The results indicate that a favorable sulfonation degree above 80% and a suitable ion exchange capacity of 1.5–2.4 mmol/g can be gained, with concentrated sulfuric acid as the sulfonation agent and 1,2-dichloroethane as the swelling agent. The running electrical resistance and desalination effect of the prepared cation exchange membrane were measured in a pilot-scale electrodialyser and not only obviously exceeded a commercial heterogeneous cation exchange membrane, but was also very close to a commercial homogenous membrane. In this way, the authors have combined the classical sulfonation method of polystyrene-based cation exchange resins with the traditional thermoforming manufacturing process of heterogeneous cation exchange membranes, to successfully develop a novel, low-price, but relatively high-performance polystyrene/PVDF cation exchange membrane with the semi-IPN structure.

  18. Evaluation of urinary mercury excretion after administration of 2,3-dimercapto-1-propane sulfonic acid to occupationally exposed men.

    Science.gov (United States)

    Torres-Alanís, O; Garza-Ocañas, L; Pineyro-Lopez, A

    1995-01-01

    The purpose of this study was to determine the clinical efficacy of 2,3-dimercapto-1-propane sulfonic acid, Na salt, on the urinary excretion of mercury as well as its possible adverse effects. Ten men with occupational mercury exposure (urinary level of 50 micrograms/g creatinine or more) were assigned to receive 2,3-dimercapto-1-propane sulfonic acid p.o. (DIMAVAL capsules, 100 mg) 300 mg/d for five days. Informed written consent was obtained from each subject. Hematology analyses, blood, chemistry, and urinalysis were obtained at the start of the study, at the end of the 2,3-dimercapto-1-propane sulfonic acid treatment and 72 hours after the administration of the final dose of 2,3-dimercapto-1-propane sulfonic acid. Twenty-four-hour urine mercury levels were closely monitored throughout therapy. All data and measurements before and during drug doses were evaluated by analyses of variance. In all subjects mean urine mercury was significantly increased (p propane sulfonic acid treatment. One subject had a moderate hypersensitivity reaction (rash) to 2,3-dimercapto-1-propane sulfonic acid but no other toxic effects were observed.

  19. QENS investigation of proton confined motions in hydrated perfluorinated sulfonic membranes and self-assembled surfactants

    Directory of Open Access Journals (Sweden)

    Berrod Quentin

    2015-01-01

    Full Text Available We report on QuasiElastic Neutron Scattering (QENS investigations of the dynamics of protons and water molecules confined in nanostructured perfluorinated sulfonic acid (PFSA materials, namely a commercial Aquivion membrane and the perfluorooctane sulfonic acid (PFOS surfactant. The former is used as electrolyte in low-temperature fuel cells, while the latter forms mesomorphous self-assembled phases in water. The dynamics was investigated as a function of the hydration level, in a wide time range by combining time-of-flight and backscattering incoherent QENS experiments. Analysis of the quasielastic broadening revealed for both systems the existence of localized translational diffusive motions, fast rotational motions and slow hopping of protons in the vicinity of the sulfonic charges. The characteristic times and diffusion coefficients have been found to exhibit a very similar behaviour in both membrane and surfactant structures. Our study provides a comprehensive picture of the proton motion mechanisms and the dynamics of confined water in model and real PFSA nanostructures.

  20. Synergistic Effects of Mixing Sulfone and Ionic Liquid as Safe Electrolytes for Lithium Sulfur Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Chen; Guo, Bingkun; Sun, Xiao-Guang; Dai, Sheng

    2014-11-26

    Here we report a strategy of mixing both the ionic liquid and sulfone with synergistic effects of reducing viscosity, increasing ionic conductivity, reducing the polysulfide dissolution, and improving the safety. The mixtures of the ionic liquids and sulfones also show distinctly different physicochemical properties, including the thermal properties and crystallization behavior. Using these electrolytes, lithium sulfur batteries assembled with lithium and mesoporous carbon composites show a reversible specific capacity of 1265 mAh g-1 (second cycle) by using 40% 1.0 M LiTFSI in MPPY∙TFSI with 60% 1.0 M LiTFSI in MIPS in the first cycle. This capacity is slightly lower than what was obtained in the pure 1.0 M LiTFSI in the sulfone electrolytes; however, it exhibits an excellent cycling stability and remains as high as 655 mAh g-1 even after 50 cycles. Our strategy provides a method to alleviate the polysulfide dissolution and redox shuttle phenomenon, with an improved ionic conductivity at the same time.

  1. Comparative effects of fipronil and its metabolites sulfone and desulfinyl on the isolated rat liver mitochondria.

    Science.gov (United States)

    Tavares, Marco A; Palma, Ivo D F; Medeiros, Hyllana C D; Guelfi, Marieli; Santana, Andréia T; Mingatto, Fábio E

    2015-07-01

    Fipronil is an insecticide extensively used to control pests in crops and animals. There are relates of poisoning due to exposure of fipronil in mammals and the liver has been suggested as potential target. In this study, we evaluated the effects of fipronil and its metabolites sulfone and desulfinyl on the bioenergetics, reactive oxygen species (ROS) production and calcium efflux from mitochondria isolated from rat liver. Fipronil (5-25 μM) inhibited state-3 respiration in mitochondria energized with glutamate plus malate, substrates of complex I of the respiratory chain and decreased the mitochondrial membrane potential resulting in inhibition of ATP synthesis. Fipronil also caused uncoupling in succinate-energized mitochondria and calcium efflux. The metabolites sulfone and desulfinyl also acted as mitochondrial inhibitors and uncouplers and caused calcium efflux, but with different potencies, being the sulfone the more potent one. These effects of fipronil and its metabolites on mitochondrial bioenergetics and calcium homeostasis may be related to toxic effects of the insecticide in the liver. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Conversion of lipids from wet microalgae into biodiesel using sulfonated graphene oxide catalysts.

    Science.gov (United States)

    Cheng, Jun; Qiu, Yi; Zhang, Jie; Huang, Rui; Yang, Weijuan; Fan, Zhentao

    2017-11-01

    Four solid acid catalysts including graphene oxide (GO), sulfonated graphene oxide (SGO), sulfonated graphene (SG), and sulfonated active carbon (SAC) were used to convert lipids in wet microalgae into biodiesel. The physiochemical properties of the catalysts were characterized with scanning electron microscope, X-ray diffraction, and thermogravimetric analysis. SGO provided the highest conversion efficiency (84.6% of sulfuric acid) of lipids to fatty acid methyl esters (FAME). Whereas SAC converted few lipids into FAME. Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and elemental analysis revealed that much higher hydrophilic hydroxyl content in SGO catalyst resulted in a considerable higher conversion efficiency of lipids to FAME than that (48.6%) catalyzed by SG, although SO3H groups (0.44mmol/g) in SGO were less than those (1.69mmol/g) in SG. Given its higher SO3H group content than GO (0.38mmol/g), SGO had higher conversion efficiency than GO (73.1%), when they had similar hydrophilic hydroxyl contents. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Efficient and selective adsorption of multi-metal ions using sulfonated cellulose as adsorbent.

    Science.gov (United States)

    Dong, Cuihua; Zhang, Fulong; Pang, Zhiqiang; Yang, Guihua

    2016-10-20

    Contamination of heavy metal in wastewater has caused great concerns on human life and health. Developing an efficient material to eliminate the heavy metal ions has been a popular topic in recent years. In this work, sulfonated cellulose (SC) was explored as efficient adsorbent for metal ions in solution. Thermo gravimetric analyzer (TGA), X-ray diffraction (XRD) and Fourier-transform infrared spectrometer (FTIR) first analyzed the characterizations of SC. Subsequently, effects of solution pH, adsorbent loading, temperature and initial metal ion concentration on adsorption performance were investigated. The results showed that sulfonated modification of cellulose could decrease the crystallinity and thermostability of cellulose. Due to its excellent performance of adsorption to metal ions, SC could reach adsorption equilibrium status within as short as 2min. In multi-component solution, SC can orderly removes Fe(3+), Pb(2+) and Cu(2+) with excellent selectivity and high efficiency. In addition, SC is a kind of green and renewable adsorbent because it can be easily regenerated by treatment with acid or chelating liquors. The mechanism study shows that the sulfonic group play a major role in the adsorption process. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Study of Synthesis Polyethylene glycol oleate Sulfonated as an Anionic Surfactant for Enhanced Oil Recovery (EOR)

    Science.gov (United States)

    Sampora, Yulianti; Juwono, Ariadne L.; Haryono, Agus; Irawan, Yan

    2017-11-01

    Mechanical Enhanced Oil Recovery (EOR) through chemical injection is using an anionic surfactant to improve the recovery of oil residues, particularly in a reservoir area that has certain characteristics. This case led the authors to conduct research on the synthesis of an anionic surfactant based on oleic acid and polyethylene glycol 400 that could be applied as a chemical injection. In this work, we investigate the sulfonation of Polyethylene glycol oleate (PDO) in a sulfuric acid agent. PDO in this experiment was derived from Indonesian palm oil. Variation of mole reactant and reaction time have been studied. The surfactant has been characterized by measuring the interfacial tension, acid value, ester value, saponification value, iodine value, Fourier Transform Infrared (FTIR), and particle size analyzer. There is a new peak at 1170-1178 cm-1 indicating that S=O bond has formed. PDO sulfonate exhibits good surface activity due to interfacial tension of 0,003 mN/m. Thus, polyethylene glycol oleate sulfonate was successfully synthesized and it could be useful as a novel an anionic surfactant.

  5. Synthesis, structural, solubility and anticancer activity studies of salts using nucleobases and sulfonic acids coformer

    Science.gov (United States)

    Singh, Neetu; Singh, Udai P.; Nikhil, Kumar; Roy, Partha; Singh, Hariji

    2017-10-01

    The reactions of natural and unnatural nucleobases (cytosine (Cyt), adenine (Ade), 5-aminouracil (AU) and caffeine (Caff)) with sulfonic acids coformer (1,5-naphthalenedisulfonic acid, NDSA; 5-sulfosalicylic acid, SSA) resulted in the formation of salts viz. [NDSA.Cyt] (1), [NDSA.Ade] (2), [NDSA.AU] (3), [NDSA.Caff] (4), [SSA.Cyt] (5), [SSA.Ade] (6), [SSA.AU] (7), and [SSA.Caff] (8). The structural analysis revealed that salts 1, 4, 6 and 7 have intermolecular interactions between adjacent nucleobases which form two different homodimer shown in R22 (8) motif and assembled via complementary Nsbnd H⋯O and Nsbnd H⋯N interactions. However, in all other salts an intermediate supramolecular synthon pattern was observed between nucleobases and sulfonic acids. The lattice energy was also calculated by DFT to investigate whether salts were thermodynamically more stable than its coformer. The same was further confirmed by differential scanning calorimetry-thermogravimetric (DSC-TG) analysis. The anticancer activity study of individual nucleobases and their NDSA salts were also performed on human breast (MCF-7) and lung (A 549) cancer cell. The salts formation of nucleobases with sulfonic acids improved their solubility, thereby demonstrating up to 8-fold increase in solubility of nucleobases.

  6. A polyvinyl alcohol/ p-sulfonate phenolic resin composite proton conducting membrane

    Science.gov (United States)

    Wu, Chien-Shun; Lin, Fan-Yen; Chen, Chih-Yuan; Chu, Peter P.

    Membranes composed of poly(vinyl alcohol) (PVA) and a proton source polymer, sulfonated phenolic resin (s-Ph) displayed good proton conductivity of the order of 10 -2 S cm -1 at ambient temperatures. Upon cross-linking above 110 °C, covalent links between the sulfonate groups of the phenolic resin and the hydroxyl groups of the PVA were established. Although this sacrificed certain sulfonate groups, the conductivity value was still preserved at the 10 -2 S cm -1 level. In sharp contrast to Nafion, the current membrane (both before and after cross-linking) was also effective in reducing the methanol uptake where the swelling ratio decreased with increase of methanol concentration. Although both the methanol permeation and the proton conductivity were lower compared to Nafion, the conductivity/permeability ratio of 0.97 for the PVA/s-Ph is higher than that determined for Nafion. The results suggested the effectiveness of proton transport in the polymer-complex structure and the possibility that a high proton conductivity can be realized with less water.

  7. Properties of Polymer Electrolyte Membranes Prepared by Blending of Sulfonated Polystyrene-Lignosulfonate

    Directory of Open Access Journals (Sweden)

    Siang Tandi Gonggo

    2012-11-01

    Full Text Available Electrolyte polymer membrane widely used in PEMFC and DMFC is a perfluorosulfonated membrane such as Nafion. This membrane material exhibits good chemical stability and proton conductivity, but it is very expensive and difficult to recycle. It has high cross-over methanol in DMFC that causes the decrease efficiency and performance of fuel cell, so that the electrolyte polymer membrane with low cross-over methanol has been needed to substitute Nafion membrane. One of the materials used as a polymer electrolyte membrane is polyblends of a sulfonated polystyrene-lignosulfonate (SPS-LS. These polyblends have been prepared by casting polymer solution and characterized as a polyelectrolyte membrane for DMFC. SPS was prepared by sulfonation of polystyrene with acetyl sulfate used as a sulfonating agent. The membranes of SPS-LS were characterized by analysis of functional groups, mechanical properties, and methanol permeability. The maximum mechanical properties of the SPS-LS membrane were observed in LS ratio of 7.5%. However, the methanol permeability of membrane increases as the increase of LS ratio in SPS-LS membranes. The properties of membranes, especially the mechanical property and methanol permeability close to that of Nafion® 117 membrane, so the SPS-LS membrane is highly potential used as the electrolyte membrane for direct methanol fuel cell.

  8. Blends of a Polymer of Intrinsic Microporosity and Partially Sulfonated Polyphenylenesulfone for Gas Separation.

    Science.gov (United States)

    Yong, Wai Fen; Lee, Zhi Kang; Chung, Tai-Shung; Weber, Martin; Staudt, Claudia; Maletzko, Christian

    2016-08-09

    Polyphenylenesulfone (PPSU) and sulfonated polyphenylenesulfone (sPPSU) are widely used for liquid separations in the medical and food industries. However, their potential applications for gas separation have not been studied extensively owing to their low intrinsic gas permeability. We report here for the first time that blending with sPPSU can significantly improve the gas separation performance of highly permeable polymers of intrinsic microporosity (PIMs), specifically PIM-1, because of the strong molecular interactions of the sulfonic acid groups of sPPSU with CO2 and O2 . In addition, a novel co-solvent system has been discovered to overcome the immiscibility of these polymers. The presence of a higher degree of sulfonation in sPPSU results in better gas separation performance of the blend membranes close to or above the Robeson upper bound lines for O2 /N2 , CO2 /N2 and CO2 /CH4 separations. Interestingly, the blend membranes have comparable gas selectivity to sPPSU even though their sPPSU content is only 5-20 wt %. Moreover, they also display improved anti-plasticization properties up to 30 atm (3 MPa) using a binary CO2 /CH4 feed gas. The newly developed PIM-1/sPPSU membranes are potential candidates for air separation, natural gas separation, and CO2 capture. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Correspondence by Charles T. Jackson containing the earliest known illustrations of a Morton ether inhaler.

    Science.gov (United States)

    Haridas, Rajesh P; Bause, George S

    2013-11-01

    A letter, dated December 1, 1846, from Charles T. Jackson, MD, to Josiah D. Whitney contains a previously unreported description of a Morton ether inhaler and the only known contemporaneous hand-drawn illustrations of this type of ether inhaler. This letter and 2 other known letters on ether anesthesia were probably carried from Boston, MA, to Liverpool, United Kingdom, on the same paddle steamer (Acadia) that carried the well-known letter from Jacob Bigelow, MD, to Francis Boott, MD.

  10. Evaluation of alternariol and alternariol methyl ether for mutagenic activity in Salmonella typhimurium

    Energy Technology Data Exchange (ETDEWEB)

    Davis, V.M.; Stack, M.E. (Food and Drug Administration, Washington, DC (United States))

    1994-10-01

    Alternariol and alternariol methyl ether were tested in the Ames Salmonella typhimurium assay, and both were shown, with and without metabolic activation, to be nonmutagenic to strains TA98 and TA100. The finding of other investigators that alternariol methyl ether is weakly mutagenic to Ta98 without metabolic activation could have resulted from the presence of a small amount of one of the highly mutagenic altertoxins in the alternariol methyl ether originally tested. 9 refs., 3 figs., 1 tab.

  11. Polyaza crown ether as non-nucleosidic building blocks in DNA-conjugates

    DEFF Research Database (Denmark)

    Jakobsen, Ulla; Rohr, Katja; Madsen, Rasmus K

    2007-01-01

    The synthesis of amphiphilic polyaza crown ether monomers X (palmityl-substituted), Y (cholesteryl-substituted) and Z (dipalmityl-subtituted) and their incorporation into oligonucleotides are described. Their effects on thermal duplex stability were investigated by UV melting curve analysis....... Thermal denaturation experiments showed remarkable stabilization of dsDNA by polyaza crown ether monomers when incorporated in opposite positions. The series of polyaza crown ether monomers (X, Y, and Z) with different lipophilicity showed a trend of increased stability of the corresponding ds......DNA with increasing lipophilicity of the polyaza crown ether monomer....

  12. Synthesis and systematic evaluation of symmetric sulfonated centrally C-C bonded cyanine near-infrared dyes for protein labelling

    NARCIS (Netherlands)

    Wal, Van Der Steffen; Kuil, Joeri; Valentijn, A.R.P.M.; Leeuwen, Van Fijs W.B.

    2016-01-01

    The most commonly used near-infrared cyanine dyes contain an aryl ether that is not fully stable towards nucleophiles. Replacement of the aryl ether by a more stable carbon-carbon bond can improve the stability. In this work we have synthesized a series of four negatively-charged symmetrical C-C

  13. N–H•••O hydrogen bonding. An FT-IR, NIR study of N-methylformamide–ether systems

    Directory of Open Access Journals (Sweden)

    BRANISLAV JOVIĆ

    2010-02-01

    Full Text Available This paper reports the results of an FT-IR and NIR study of N-methylformamide in carbon tetrachloride solution in presence of ethers as the O--electron donors, i.e., diethyl ether (DEE, diisopropyl ether (DiPE, methyl t--butyl ether (MtBE, dibutyl ether (DBE, dipentyl ether (DPE, tetrahydro-furan (THF and tetrahydropyran (THP. The spectroscopic characteristics of the N–H•••O hydrogen bonded complexes are given. In addition, the equilibrium constants for 1:1 complex formation were determined at 25 °C using Mid-IR and NIR measurements.

  14. Synthesis and characterization of nanostructured sulfonated polyimides for proton exchange membrane fuel cells

    Science.gov (United States)

    Zou, Lijun

    Sulfonated polyimides (SPI) are considered to be good candidates for proton exchange membranes (PEMs) since they exhibit high strength, good film-forming ability, chemical resistance, thermal stability, and, in their hydrated state, relatively high proton conductivity. Despite intense research in the area of SPIs, fundamental investigations of hydrophilic/hydrophobic phase segregation and studies of humidity dependent morphologies are scarce. In an effort to influence the order and distribution of ionic groups in rigid-rod SPIs and to understand the interrelationships between morphology, hydration and proton conductivity, two novel model systems of SPI polymers containing hydrophobic polysiloxane (SPI-PSX) and hydrophilic silica nanoparticles (SPI-Si) were developed. The first model system of sulfonated polyimide containing hydrophobic polysiloxane segmented copolymers was prepared by a one-pot synthesis. SPI-PSX materials were evaluated using 1H NMR, size-exclusion chromatography. The presence of ion-containing diamines in the reaction mixture was found to inhibit stoichiometric incorporation of hydrophobic siloxane segments. Siloxane segments were found to lower the thermal stability of the polyimide host. Equilibrium water sorption studies of free standing films of copolymers with and without siloxane segments show that the presence of siloxane segments does not interfere with water swelling, which suggests a microphase-segregated morphology may exist. TEM and SAXS analyses show evidence of phase-segregation in sulfonated polyimides and reveal that siloxane segments strongly affect ionic clustering. However, proton conductivity only changes slightly when polysiloxane segments are incorporated. Sulfonated polyimides containing hydrophilic silica nanoparticles is our second model system developed for stabilizing the dispersed morphologies to promote proton conductivity. SPI-Si nanocomposites were prepared by a pre-polymer of anhydride-terminated sulfonated

  15. On the radiation stability of crown ethers in ionic liquids.

    Energy Technology Data Exchange (ETDEWEB)

    Shkrob, I.; Marin, T.; Dietz, M. (Chemical Sciences and Engineering Division); (Benedictine Univ.); (Univ. of Wisconsin at Milwaukee)

    2011-04-14

    Crown ethers (CEs) are macrocyclic ionophores used for the separation of strontium-90 from acidic nuclear waste streams. Room temperature ionic liquids (ILs) are presently being considered as replacements for traditional molecular solvents employed in such separations. It is desirable that the extraction efficacy obtained with such solvents should not deteriorate in the strong radiation fields generated by decaying radionuclides. This deterioration will depend on the extent of radiation damage to both the IL solvent and the CE solute. While radiation damage to ILs has been extensively studied, the issue of the radiation stability of crown ethers, particularly in an IL matrix, has not been adequately addressed. With this in mind, we have employed electron paramagnetic resonance (EPR) spectroscopy to study the formation of CE-related radicals in the radiolysis of selected CEs in ILs incorporating aromatic (imidazolium and pyridinium) cations. The crown ethers have been found to yield primarily hydrogen loss radicals, H atoms, and the formyl radical. In the low-dose regime, the relative yield of these radicals increases linearly with the mole fraction of the solute, suggesting negligible transfer of the excitation energy from the solvent to the solute; that is, the solvent has a 'radioprotective' effect. The damage to the CE in the loading region of practical interest is relatively low. Under such conditions, the main chemical pathway leading to decreased extraction performance is protonation of the macrocycle. At high radiation doses, sufficient to increase the acidity of the IL solvent significantly, such proton complexes compete with the solvent cations as electron traps. In this regime, the CEs will rapidly degrade as the result of H abstraction from the CE ring by the released H atoms. Thus, the radiation dose to which a CE/IL system is exposed must be maintained at a level sufficiently low to avoid this regime.

  16. Electrochemical Study of Diphenyl Ether Derivatives Used as Herbicides

    Directory of Open Access Journals (Sweden)

    Amira Zaouak

    2011-01-01

    Full Text Available The electrochemical behaviour of five nitro diphenyl ethers used as herbicides is investigated in acetonitrile. A detailed study by cyclic voltammetry and exhaustive electrolysis is carried out for the anodic oxidation of 2-Chloro-6-nitro-3-phenoxyaniline (aclonifen and shows that the major oxidation product is a dimeric compound. A mechanistic scheme involving a coupling process is postulated for the electrochemical oxidation of this compound. Furthermore, the use of differential pulse voltammetry on a glassy carbon electrode permits the selective determination of aclonifen. The limit of detection is 0.6 μg/mL.

  17. Density measurements of compressed-liquid dimethyl ether + pentane mixtures.

    Science.gov (United States)

    Outcalt, Stephanie L; Lemmon, Eric W

    2016-01-01

    Compressed-liquid densities of three compositions of the binary mixture dimethyl ether (CAS No. 115-10-6) + pentane (CAS No. 109-66-0) have been measured with a vibrating U-tube densimeter. Measurements were made at temperatures from 270 K to 390 K with pressures from 1.0 MPa to 50 MPa. The overall combined uncertainty (k=2) of the density data is 0.81 kg·m-3. Data presented here have been used to improve a previously formulated Helmholtz energy based mixture model. The newly derived parameters are given.

  18. Dimethyl ether production from methanol and/or syngas

    Science.gov (United States)

    Dagle, Robert A; Wang, Yong; Baker, Eddie G; Hu, Jianli

    2015-02-17

    Disclosed are methods for producing dimethyl ether (DME) from methanol and for producing DME directly from syngas, such as syngas from biomass. Also disclosed are apparatus for DME production. The disclosed processes generally function at higher temperatures with lower contact times and at lower pressures than conventional processes so as to produce higher DME yields than do conventional processes. Certain embodiments of the processes are carried out in reactors providing greater surface to volume ratios than the presently used DME reactors. Certain embodiments of the processes are carried out in systems comprising multiple microchannel reactors.

  19. A new diphenyl ether from Phoma sp. strain, SHZK-2.

    Science.gov (United States)

    Fang, M J; Fang, H; Li, W J; Huang, D M; Wu, Z; Zhao, Y F

    2012-01-01

    A new diphenyl ether methyl 2-(2-formyl-3-hydroxy-5-methylphenoxy)-5-hydroxy-3-methoxybenzoate (3), together with four known compounds, asterric acid (1), methyl asterrate (2), 9(Z),12(Z)-nonadecadienoic acid (4) and orsellinic acid (5), were isolated from the Phoma sp. strain SHZK-2, which was isolated from a polluted environment in southern China. The structures of these compounds were determined by spectroscopic methods. Cytotoxicities of compounds against HEPG2 cell and Raji cell lines were preliminarily evaluated by the MTT method.

  20. Chemistry and properties of new poly(arylene ether imidazoles)

    Science.gov (United States)

    Connell, J. W.; Hergenrother, P. M.

    1990-01-01

    As part of a program to develop high-temperature high-performance structural resins for aerospace applications, the chemistry and properties of new poly(arylene ether imidazoles) were investigated. The polymers were prepared by the nucleophilic displacement reaction of aromatic bis(imidazolephenols) with activated aromatic difluoro compounds. The amorphous thermoplastic polymers exhibited glass transition temperatures from 230 to 301 C, inherent viscosities from 0.46 to 1.46 dL/g, and number-average molecular weights as high as 59,300 g/mole. The polymers exhibit good toughness, adhesive, composite, and film properties. The chemical, physical, and mechanical properties of these materials are discussed.

  1. CYP450-Dependent Biotransformation of the Insecticide Fipronil into Fipronil Sulfone Can Mediate Fipronil-Induced Thyroid Disruption in Rats (Full paper and erratum)

    OpenAIRE

    ROQUES, Beatrice; Lacroix, Marlène; Puel, Sylvie; Gayrard-Troy, Véronique; Hagen-Picard, Nicole; Jouanin, Isabelle; Perdu, Elisabeth; Martin, Pascal; Viguie, Catherine

    2012-01-01

    In rats, the widely used insecticide fipronil increases the clearance of thyroxine (T-4). This effect is associated with a high plasma concentration of fipronil sulfone, the fipronil main metabolite in several species including rats and humans. In sheep, following fipronil treatment, fipronil sulfone plasma concentration and thyroid disruption are much lower than in rats. We postulated that fipronil biotransformation into fipronil sulfone by hepatic cytochromes P450 (CYP) could act as a pote...

  2. Fipronil sulfone induced higher cytotoxicity than fipronil in SH-SY5Y cells: Protection by antioxidants.

    Science.gov (United States)

    Romero, A; Ramos, E; Ares, I; Castellano, V; Martínez, M; Martínez-Larrañaga, M R; Anadón, A; Martínez, M A

    2016-06-11

    Fipronil is a broad spectrum insecticide from the phenyl pyrazole family, which targets GABA receptor. Limited information is available about the metabolite fipronil sulfone cytotoxic actions. This study examined in vitro neurotoxicity of fipronil and fipronil sulfone and evaluated Trolox (vitamin E analog) (0.3, 1μM), N-acetyl-cysteine (0.5, 1mM), melatonin (0.1, 1μM) and Tempol (superoxide dismutase analog) (0.3, 0.5mM) protective role in SH-SY5Y cells. MTT and LDH assays were carried out to assess the cytotoxicity of fipronil and fipronil sulfone at 3-100μM concentrations. Fipronil sulfone was more toxic than fipronil. Tempol showed the best neuroprotectant profile against fipronil (50 and 150μM) and fipronil sulfone (3 and 10μM) reaching control levels. Fipronil (100μM) and fipronil sulfone (3μM) treatments induced a 4.7- and 5-fold increases in lipid peroxides measured as malondialdehyde (MDA) and a 2.2- and 2.0-fold increases in the levels of nitric oxide (NO). These results suggest that oxidative stress observed may be one of the major mechanisms of fipronil-induced neurotoxicity and it may be attributed in part to fipronil disposition and metabolism. Our results led us postulate that metabolite fipronil sulfone might be responsible for the fipronil-induced toxicity rather than fipronil itself. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  3. Synthesis of hydroxy thio-ether derivatives of vegetable oil.

    Science.gov (United States)

    Sharma, Brajendra K; Adhvaryu, A; Erhan, S Z

    2006-12-27

    Bio-based additives are desirable commodities due to their eco-friendly nature. These additives can demonstrate physical and chemical properties comparable to those of conventional mineral oil-based products. Sulfur incorporated triacylglycerol can function as an antiwear/antifriction additive for lubricants. The synthesis of four useful hydroxy thio-ether derivatives of vegetable oils, from commercially available epoxidized soybean oil and common organic thiols, is reported in this paper. The common thiols used herein were 1-butanethiol, 1-decanethiol, 1-octadecanethiol, and cyclohexyl mercaptan. Currently, there is no reported literature describing the synthesis of hydroxy thio-ether derivatives of vegetable oil. The reaction was monitored, and products were confirmed by NMR and FTIR spectroscopies. Experimental conditions involving various thiols, solvent, catalyst amount, time, and temperature were optimized for research quantity and laboratory scale-up. The synthetic process retains the vegetable oil structure, eliminates polyunsaturation in the molecule, and adds polar functional groups on triacylglycerol. These products can be used as agriculturally-based antiwear additives for lubricant applications.

  4. Direct dimethyl ether high temperature polymer electrolyte membrane fuel cells

    DEFF Research Database (Denmark)

    Vassiliev, Anton; Jensen, Jens Oluf; Li, Qingfeng

    A high temperature polybenzimidazole (PBI) polymer fuel cell was fed with dimethyl ether (DME) and water vapour mixture on the anode at ambient pressure with air as oxidant. A peak power density of 79 mW/cm2 was achieved at 200°C. A conventional polymer based direct DME fuel cell is liquid fed an......V higher than that of methanol, indicating less fuel crossover.......A high temperature polybenzimidazole (PBI) polymer fuel cell was fed with dimethyl ether (DME) and water vapour mixture on the anode at ambient pressure with air as oxidant. A peak power density of 79 mW/cm2 was achieved at 200°C. A conventional polymer based direct DME fuel cell is liquid fed...... and suffers from low DME solubility in water. When the DME - water mixture is fed as vapour miscibility is no longer a problem. The increased temperature is more beneficial for the kinetics of the direct oxidation of DME than of methanol. The Open Circuit Voltage (OCV) with DME operation was 50 to 100 m...

  5. Ether-Bond-Containing Ionic Liquids as Supercapacitor Electrolytes.

    Science.gov (United States)

    Rennie, Anthony J R; Sanchez-Ramirez, Nédher; Torresi, Roberto M; Hall, Peter J

    2013-09-05

    Electrochemical capacitors (ECs) are electrical energy storage devices that have the potential to be very useful in a wide range of applications, especially where there is a large disparity between peak and average power demands. The use of ionic liquids (ILs) as electrolytes in ECs can increase the energy density of devices; however, the viscosity and conductivity of ILs adversely influence the power density of the device. We present experimental results where several ILs containing different cations have been employed as the electrolyte in cells containing mesoporous carbon electrodes. Specifically, the behavior of ILs containing an ether bond in an alkyl side chain are compared with those of a similar structure and size but containing purely alkyl side chains. Using electrochemical impedance spectroscopy and constant current cycling, we show that the presence of the ether bond can dramatically increase the specific capacitance and reduce device resistance. These results have the important implication that such ILs can be used to tailor the physical properties and electrochemical performance of IL-based electrolytes.

  6. Molecular dynamics simulations of ether- and ester-linked phospholipids.

    Science.gov (United States)

    Kruczek, James; Saunders, Matthew; Khosla, Meghna; Tu, Yicheng; Pandit, Sagar A

    2017-12-01

    Dissimilarities in the bulk structure of bilayers composed of ether- vs ester-linked lipids are well-established; however, the atomistic interactions responsible for these differences are not well known. These differences are important in understanding of why archaea have a different bilayer composition than the other domains of life and why humans have larger concentrations of plasmalogens in specialized membranes? In this paper, we simulate two lipid bilayers, the ester linked dipalmitoylphosphatidylcholine (DPPC) and the ether lined dihexadecylphosphatidylcholine (DHPC), to study these variations. The structural analysis of the bilayers reveals that DPPC is more compressible than DHPC. A closer examination of dipole potential shows DHPC, despite having a smaller dipole potential of the bilayer, has a higher potential barrier than DPPC at the surface. Analysis of water order and dynamics suggests DHPC has a more ordered, less mobile layer of water in the headgroup. These results seem to resolve the issue as to whether the decrease in permeability of DHPC is due to of differences in minimum area per lipid (A0) or diffusion coefficient of water in the headgroup region (Dhead) (Guler et al., 2009) since we have shown significant changes in the order and mobility of water in that region. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Alterations of gene profiles in Leydig-cell-regenerating adult rat testis after ethane dimethane sulfonate-treatment

    Directory of Open Access Journals (Sweden)

    Yu-Fei Zhang

    2015-04-01

    Full Text Available Only occupying about 1%-5% of total testicular cells, the adult Leydig cell (ALC is a unique endocrine cell that produces androgens. Rat Leydig cells regenerate after these cells in the testis are eliminated with ethane dimethane sulfonate (EDS. In this study, we have characterized Leydig cell regeneration and messenger ribonucleic acids (mRNA profiles of EDS treated rat testes. Serum testosterone, testicular gene profiling and some steroidogenesis-related proteins were analyzed at 7, 21, 35 and 90 days after EDS treatment. Testicular testosterone levels declined to undetectable levels until 7 days after treatment and then started to recover. Seven days after treatment, 81 mRNAs were down-regulated greater than or equal to two-fold, with 48 becoming undetectable. These genes increased their expression 21 days and completely returned to normal levels 90 days after treatment. The undetectable genes include steroidogenic pathway proteins: steroidogenic acute regulatory protein, Scarb1, Cyp11a1, Cyp17a1, Hsd3b1, Cyp1b1 and Cyp2a1. Seven days after treatment, there were 89 mRNAs up-regulated two-fold or more including Pkib. These up-regulated mRNAs returned to normal 90 days after treatment. Cyp2a1 did not start to recover until 35 days after treatment, indicating that this gene is only expressed in ALCs not in the precursor cells. Quantitative polymerase chain reaction, western blotting and semi-quantitative immunohistochemical staining using tissue array confirmed the changes of several randomly picked genes and their proteins.

  8. Synthesis of Novel Bibrachial Lariat Ethers (BiBLEs) Containing [1,2 ...

    African Journals Online (AJOL)

    NICO

    Introduction. The first synthetic crown ether was discovered by Pederson.1. Since then, various structural changes have been made to the basic crown ether skeleton in an attempt to enhance the selectivity of these rings and the capacity of complexation with metal ions. When hard and soft donor atoms were added into the ...

  9. The kinetics of 1,4-butanediol diglycidyl ether crosslinking of dermal sheep collagen

    NARCIS (Netherlands)

    Zeeman, R.; Dijkstra, Pieter J.; van Wachem, Pauline B.; van Luyn, Marja J.A.; Hendriks, Marc; Cahalan, Patrick T.; Feijen, Jan

    2000-01-01

    Dermal sheep collagen was crosslinked with 1,4-butanediol diglycidyl ether (BDDGE) or modified with glycidyl isopropyl ether (PGE). The reduction in amine groups as a function of time was followed to study the overall reaction kinetics of collagen with either BDDGE or PGE. Linearization of the

  10. The kinetics of 1,4-butanediol diglycidyl ether crosslinking of dermal sheep collagen

    NARCIS (Netherlands)

    Zeeman, R; Dijkstra, PJ; van Wachem, PB; van Luyn, MJA; Hendriks, M; Cahalan, PT; Feijen, J

    2000-01-01

    Dermal sheep collagen was crosslinked with 1,4-butanediol diglycidyl ether (BDDGE) or modified with glycidyl isopropyl ether (PGE). The reduction in amine groups as a function of time was followed to study the overall reaction kinetics of collagen with either BDDGE or PGE;. Linearization of the

  11. IRON(III) NITRATE-CATALYZED FACILE SYNTHESIS OF DIPHENYLMETHYL (DPM) ETHERS FROM ALCOHOLS

    Science.gov (United States)

    Diphenyl methyl (DPM) ethers constitute important structural portion of some pharmaceutical entities and also as protective group for hydroxyl groups in synthetic chemistry. DPM ethers are normally prepared using concentrated acids or base as catalysts, which may result in the fo...

  12. Inhibition of dimethyl ether and methane oxidation in Methylococcus capsulatus and Methylosinus trichosporium.

    Science.gov (United States)

    Patel, R; Hou, C T; Felix, A

    1976-01-01

    Metal-chelating or -binding agents inhibited the oxidation of dimethyl ether and methane, but not methanol, by cell suspensions of Methylococcus capsulatus and Methylosinus trichosporium. Evidence suggests that the involvement of metal-containing enzymatic systems in the initial step of oxidation of dimethyl ether and methane. PMID:4428

  13. Mild Ti-mediated transformation of t-butyl thio-ethers into thio-acetates.

    Science.gov (United States)

    Pijper, Thomas C; Robertus, Jort; Browne, Wesley R; Feringa, Ben L

    2015-01-07

    We report a straightforward method for the rapid conversion of thio-ethers to thio-acetates using TiCl4, in good to excellent yields. The reaction conditions tolerate a variety of functional groups, including halide, nitro, ether, thiophene and acetylene functionalities. A catalytic variant of this reaction is also described.

  14. The antifungal activity of methanol and ether extracts of the leaves of ...

    African Journals Online (AJOL)

    user

    extracts from the leaves of Leonotis nepetafolia showed that they contain quinones, saponosides, flavonoids and tannins. The high amount of quinones was remarked in both methanol and ether extracts while saponins were more well extracted by methanol compared to ether. Tannins and flavonoids found in methanol ...

  15. 40 CFR 721.7000 - Polymer of disodium maleate, allyl ether, and ethylene oxide.

    Science.gov (United States)

    2010-07-01

    ... ether, and ethylene oxide. 721.7000 Section 721.7000 Protection of Environment ENVIRONMENTAL PROTECTION... ethylene oxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a polymer of disodium maleate, allyl ether, and ethylene oxide (P-91...

  16. Development and validation of a congener-specific photodegradation model for polybrominated diphenyl ethers

    NARCIS (Netherlands)

    Zeng, X.; Simonich, S.L.M.; Robrock, K.R.; Korytar, P.; Alvarez-Cohen, L.; Barofsky, D.F.

    2008-01-01

    With the phaseout of the manufacture of some polybrominated diphenyl ether ( PBDE) formulations, namely penta-brominated diphenyl ether (BDE) and octa-BDE, and the continued use of the deca-BDE formulation, it is important to be able to predict the photodegradation of the more highly brominated

  17. 77 FR 39236 - Nanomaterial Case Study: A Comparison of Multiwalled Carbon Nanotubes and Decabromodiphenyl Ether...

    Science.gov (United States)

    2012-07-02

    ... AGENCY Nanomaterial Case Study: A Comparison of Multiwalled Carbon Nanotubes and Decabromodiphenyl Ether... ``Nanomaterial Case Study: A Comparison of Multiwalled Carbon Nanotubes and Decabromodiphenyl Ether Flame... nanomaterial case study and the workshop process that the draft document will be used in for identifying and...

  18. Interactions between ether phospholipids and cholesterol as determined by scattering and molecular dynamics simulations.

    Science.gov (United States)

    Pan, Jianjun; Cheng, Xiaolin; Heberle, Frederick A; Mostofian, Barmak; Kučerka, Norbert; Drazba, Paul; Katsaras, John

    2012-12-27

    Cholesterol and ether lipids are ubiquitous in mammalian cell membranes, and their interactions are crucial in ether lipid mediated cholesterol trafficking. We report on cholesterol's molecular interactions with ether lipids as determined using a combination of small-angle neutron and X-ray scattering, and all-atom molecular dynamics (MD) simulations. A scattering density profile model for an ether lipid bilayer was developed using MD simulations, which was then used to simultaneously fit the different experimental scattering data. From analysis of the data the various bilayer structural parameters were obtained. Surface area constrained MD simulations were also performed to reproduce the experimental data. This iterative analysis approach resulted in good agreement between the experimental and simulated form factors. The molecular interactions taking place between cholesterol and ether lipids were then determined from the validated MD simulations. We found that in ether membranes cholesterol primarily hydrogen bonds with the lipid headgroup phosphate oxygen, while in their ester membrane counterparts cholesterol hydrogen bonds with the backbone ester carbonyls. This different mode of interaction between ether lipids and cholesterol induces cholesterol to reside closer to the bilayer surface, dehydrating the headgroup's phosphate moiety. Moreover, the three-dimensional lipid chain spatial density distribution around cholesterol indicates anisotropic chain packing, causing cholesterol to tilt. These insights lend a better understanding of ether lipid-mediated cholesterol trafficking and the roles that the different lipid species have in determining the structural and dynamical properties of membrane associated biomolecules.

  19. Interactions between Ether Phospholipids and Cholesterol as Determined by Scattering and Molecular Dynamics Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Jianjun [ORNL; Cheng, Xiaolin [ORNL; Heberle, Frederick A [ORNL; Mostofian, Barmak [ORNL; Kucerka, Norbert [Canadian Neutron Beam Centre and Comelius University (Slovakia); Drazba, Paul [ORNL; Katsaras, John [ORNL

    2012-01-01

    Cholesterol and ether lipids are ubiquitous in mammalian cell membranes, and their interactions are crucial in ether lipid mediated cholesterol trafficking. We report on cholesterol s molecular interactions with ether lipids as determined using a combination of small-angle neutron and Xray scattering, and all-atom molecular dynamics (MD) simulations. A scattering density profile model for an ether lipid bilayer was developed using MD simulations, which was then used to simultaneously fit the different experimental scattering data. From analysis of the data the various bilayer structural parameters were obtained. Surface area constrained MD simulations were also performed to reproduce the experimental data. This iterative analysis approach resulted in good agreement between the experimental and simulated form factors. The molecular interactions taking place between cholesterol and ether lipids were then determined from the validated MD simulations. We found that in ether membranes cholesterol primarily hydrogen bonds with the lipid headgroup phosphate oxygen, while in their ester membrane counterparts cholesterol hydrogen bonds with the backbone ester carbonyls. This different mode of interaction between ether lipids and cholesterol induces cholesterol to reside closer to the bilayer surface, dehydrating the headgroup s phosphate moiety. Moreover, the three-dimensional lipid chain spatial density distribution around cholesterol indicates anisotropic chain packing, causing cholesterol to tilt. These insights lend a better understanding of ether lipid-mediated cholesterol trafficking and the roles that the different lipid species have in determining the structural and dynamical properties of membrane associated biomolecules.

  20. Crown ether activation of cross-linked subtilisin Carlsberg crystals in organic solvents

    NARCIS (Netherlands)

    van Unen, D.J.; Sakodinskaya, I.K.; Sakodinskaya, Inna K.; Engbersen, Johannes F.J.; Reinhoudt, David

    1998-01-01

    The activity of cross-linked subtilisin Carlsberg crystals in the catalysis of peptide bond formation can be significantly enhanced by pretreatment of the enzyme crystals with crown ethers. Soaking of the enzyme crystals in a solution of crown ether in acetonitrile followed by evaporation of the

  1. The antifungal activity of methanol and ether extracts of the leaves of ...

    African Journals Online (AJOL)

    The antifungal test of the crude methanol and the crude ether extracts was realized and revealed that crude methanol extract was more active than crude ether extract on Candida albicans and Malassezia fulfur growth. The minimum inhibitor concentration (MIC) of the crude methanol extract were 4.12 mg/ml and 2.38 mg/ml ...

  2. Synthesis and Antibacterial Evaluation of New Sulfone Derivatives Containing 2-Aroxymethyl-1,3,4-Oxadiazole/Thiadiazole Moiety

    Directory of Open Access Journals (Sweden)

    Shihu Su

    2016-12-01

    Full Text Available Sulfones are one of the most important classes of agricultural fungicides. To discover new lead compounds with high antibacterial activity, a series of new sulfone derivatives were designed and synthesized by introducing the aroxymethyl moiety into the scaffold of 1,3,4-oxadiazole/thiadiazole sulfones. Antibacterial activities against three phytopathogens (Xanthomonas oryzae pv. oryzae, Ralstonia solanacearum, Xanthomonas axonopodis pv. citri. were assayed in vitro. As compared to the control of commercial fungicides and some reported sulfone fungicides, seven compounds 5I-1–5I-7 exerted remarkably higher activities with EC50 values ranging from 0.45–1.86 μg/mL against X. oryzae and 1.97–20.15 μg/mL against R. solanacearum. Exhilaratingly, 5I-1, 5I-2 and 5I-4 displayed significant in vivo activity against X. oryzae with protective effect of 90.4%, 77.7%, and 81.1% at 200 μg/mL, respectively, much higher than that exhibited by Bismerthiazol (25.6% and Thiadiazole-copper (32.0%. And the differential phytotoxicity of active derivatives was preliminarily checked. The results demonstrated that derivative of 2-aroxymethyl-1,3,4-oxadiazole/thiadiazole sulfone can serve as potential alternative bactericides for the management of plant bacterial diseases.

  3. Thiophene-degrading Escherichia coli mutants possess sulfone oxidase activity and show altered resistance to sulfur-containing antibiotics

    Energy Technology Data Exchange (ETDEWEB)

    Juhl, M.J.; Clark, D.P. (Southern Illinois Univ., Carbondale (USA))

    1990-10-01

    The authors have previously isolated mutants of Escherichia coli which show increased oxidation of heterocyclic furan and thiophene substrates. They have now found that strains carrying the thdA mutation express a novel enzyme activity which oxidizes a variety of substrates containing a sulfone (e.g., ethyl sulfone) were oxidized. The thdA mutants were more resistant than wild-type strains to aromatic sulfone antibiotics such as dapsone. In contrast they showed increased susceptibility to thiolutin, a cyclic antibiotic containing sulfur at the sulfide level of oxidation. Several new thdA mutant alleles were isolated by selecting for increased oxidation of various aliphatic sulfur compounds. These new thdA mutants showed similar sulfone oxidase activity and the same map location (at 10.7 min) as the original thdA1 mutation. The constitutive fadR mutation was required for the phenotypic expression of thdA-mediated oxidation of sulfur compounds. However, the thdA-directed expression of sulfone oxidase activity was not fadR dependent. The thdC and thdD mutations probably protect against the toxicity of thiophene derivatives rather than conferring improved metabolic capability.

  4. Functional differences between antiviral activities of sulfonated and intact intravenous immunoglobulin preparations toward varicella-zoster virus and cytomegalovirus.

    Science.gov (United States)

    Yajima, Misako; Shiraki, Atsuko; Daikoku, Tohru; Oyama, Yukari; Yoshida, Yoshihiro; Shiraki, Kimiyasu

    2015-06-01

    Intravenous immunoglobulin (IVIG) is used to treat severe viral infection, especially varicella-zoster virus (VZV) and cytomegalovirus (CMV) infections. The neutralization antibody titers of eleven IVIG preparations from four companies were examined using VZV and CMV with and without complement. The neutralizing antibody titers of intact IgG preparations were three to six times higher after addition of complement. The effectiveness of the sulfonated IgG preparation was not enhanced by complement, but desulfonated IgG regained enhanced neutralization activity with complement. Antibody-dependent cellular cytotoxicity (ADCC) toward VZV-infected cells was observed with both intact and sulfonated IVIG and guinea pig splenocytes, but ADCC toward CMV-infected cells was not, although NK cell activity toward cells infected with VZV or CMV was detected by splenocytes. Sulfonated IVIG had no complement-activated neutralization of VZV and CMV but retained ADCC toward VZV with less activity after dilution than with intact IVIG. Because sulfonated IVIG is converted to the intact form after intravenous administration, it would show complement-enhanced neutralization and ADCC activity similar to that of intact IVIG in vivo. In this study we showed the effects of intact and sulfonated IgG on the functional activity of IgG against VZV and CMV. Copyright © 2015 Japanese Society of Chemotherapy and The Japanese Association for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  5. THE USE OF CHLOROSULFONIC ACID ON SULFONATION OF cPTFE FILM GRAFTED STYRENE FOR PROTON EXCHANGE MEMBRANE

    Directory of Open Access Journals (Sweden)

    Yohan Yohan

    2010-06-01

    Full Text Available Sulfonation of g-ray iradiated and styrene-grafted crosslinked polytetrafluoro ethylene film (cPTFE-g-S film have been done. The aim of the research was to make hydrophyl membrane as proton exchange membrane fuel cell. Sulfonation was prepared by using chlorosulfonic acid in chloroethane under various conditions. The impact of the percentage of grafting, the concentration of chlorosulfonic acid, the reaction time,and the reaction temperature on the properties of sulfonated film were examined. The results show that sulfonation of surface-grafted films was incomplete at room temperature. Increasing concentration of chlorosulfonic acid and reaction temperature accelerate the reaction but they also favor side reactions. These lead to the decrease of the ion-exchange capacity, water uptake, and proton conductivity but the increase of the resistance to oxidation in a perhydrol solution. The resulted cPTFE-g-SS membraneis stabile in a H2O2 30% solution for 20 h.   Keywords: Chorosulfonic acid, sulfonation, PTFE film, proton excange membrane.

  6. Accumulation of long-chain bases in yeast promotes their conversion to a long-chain base vinyl ether[S

    Science.gov (United States)

    Martínez-Montañés, Fernando; Lone, Museer A.; Hsu, Fong-Fu; Schneiter, Roger

    2016-01-01

    Long-chain bases (LCBs) are the precursors to ceramide and sphingolipids in eukaryotic cells. They are formed by the action of serine palmitoyl-CoA transferase (SPT), a complex of integral membrane proteins located in the endoplasmic reticulum. SPT activity is negatively regulated by Orm proteins to prevent the toxic overaccumulation of LCBs. Here we show that overaccumulation of LCBs in yeast results in their conversion to a hitherto undescribed LCB derivative, an LCB vinyl ether. The LCB vinyl ether is predominantly formed from phytosphingosine (PHS) as revealed by conversion of odd chain length tracers C17-dihydrosphingosine and C17-PHS into the corresponding LCB vinyl ether derivative. PHS vinyl ether formation depends on ongoing acetyl-CoA synthesis, and its levels are elevated when the LCB degradative pathway is blocked by deletion of the major LCB kinase, LCB4, or the LCB phosphate lyase, DPL1. PHS vinyl ether formation thus appears to constitute a shunt for the LCB phosphate- and lyase-dependent degradation of LCBs. Consistent with a role of PHS vinyl ether formation in LCB detoxification, the lipid is efficiently exported from the cells. PMID:27561298

  7. Degradation of Perfluorinated Ether Lubricants on Pure Aluminum Surfaces: Semiempirical Quantum Chemical Modeling

    Science.gov (United States)

    Slaby, Scott M.; Ewing, David W.; Zehe, Michael J.

    1997-01-01

    The AM1 semiempirical quantum chemical method was used to model the interaction of perfluoroethers with aluminum surfaces. Perfluorodimethoxymethane and perfluorodimethyl ether were studied interacting with aluminum surfaces, which were modeled by a five-atom cluster and a nine-atom cluster. Interactions were studied for edge (high index) sites and top (low index) sites of the clusters. Both dissociative binding and nondissociative binding were found, with dissociative binding being stronger. The two different ethers bound and dissociated on the clusters in different ways: perfluorodimethoxymethane through its oxygen atoms, but perfluorodimethyl ether through its fluorine atoms. The acetal linkage of perfluorodimeth-oxymethane was the key structural feature of this molecule in its binding and dissociation on the aluminum surface models. The high-index sites of the clusters caused the dissociation of both ethers. These results are consistent with the experimental observation that perfluorinated ethers decompose in contact with sputtered aluminum surfaces.

  8. Identification of oxygenated ions in premixed flames of dimethyl ether and oxygen

    DEFF Research Database (Denmark)

    Frøsig Østergaard, L.; Egsgaard, H.; Hammerum, S.

    2003-01-01

    The structure of characteristic flame-ions in premixed flames of dimethyl ether and oxygen was studied by ion-molecule reactions with ammonia and collision activation with argon. The results obtained show that the flame-ions m/z 45 and m/z 47 are the methoxymethyl cation, CH3OCH2+, and protonated...... dimethyl ether, (CH3)(2)OH+. The flame-ion m/z 61 is a mixture of the trimethyloxonium ion, (CH3)(3)O+ and lesser amounts of protonated methyl formate and/or protonated ethyl methyl ether. The viability of an ionic mechanism to soot formation for dimethyl ether-oxygen flames is discussed on the background...... of ions present in the dimethyl ether flames and the reactivity of the ions....

  9. Rational Design of Cesium-Selective Ionophores and Chemosensors: Dihydrocalix[4]arene Crown-6 Ethers

    Energy Technology Data Exchange (ETDEWEB)

    Sachleben, Richard A.; Bryan, Jeffrey C.; Brown, Gilbert M.; Engle, Nancy L.; Haverlock, Tamara J.; Hay, Benjamin P.; Urvoas, Agathe; Moyer, Bruce A.

    2003-12-15

    Molecular mechanics calculations performed on calix[4]arene crown-6 ethers predict that the 1,3-dihydro derivatives will exhibit greater complementarity for potassium and cesium ions than the parent 1,3-dialkoxy calix crowns. The X-ray crystal structures of 1,3-alt bis-octyloxycalix[4]arene benzocrown-6 ether, dihydrocalix[4]arene benzocrown-6 ether, and the cesium nitrate complex of dihydrocalix[4]arene benzocrown-6 ether were determined. The cesium complex structure corresponds closely to the structure predicted by molecular mechanics. The dihydrocalix[4]arene crown-6 ethers exhibit enhanced cesium selectivity in the extraction of alkali metal salts and provide a platform for a highly sensitive and selective cesium chemosensor.

  10. Synthesis of dodecyl lauroyl benzene sulfonate and its application in enhanced oil recovery

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Zhenggang; Wu, Le; Sun, Mingming; Jiang, Jian-zhong; Wang, Feng [Jiangnan Univ., Wuxi (China). School of Chemical and Material Engineering

    2011-09-15

    A new hydrophobic surfactant, dodecyl lauroyl benzene sulfonate (DLBS), was synthesized and its application in enhanced oil recovery by alkali-surfactant-polymer (ASP) flooding was studied. The results show that DLBS can be synthesized by reaction of industrial dodecyl benzene with lauroyl chloride in the presence of AlCl{sub 3}, followed by sulfonation with ClSO{sub 3}H and neutralization with NaOH. The lauroyl-group is confirmed to be connected to the para-position of the alkylbenzene by1HNMR spectrum. The synthesized DLBS is well soluble in pure water and reservoir (connate) water at 45 C. It is highly surface active which is indicated by its low CMC of 1.1 . 10{sup -5} mol/L, and its low surface tension, {gamma}{sub cmc} of 28.6 mN m{sup -1}. By mixing with heavy alkylbenzene sulfonates of relatively low average molar mass (387g mol{sup -1}) at a total surfactant concentration of 5 mM, DLBS can reduce the interfacial tension of Daqing crude oil/connate water to an order of 10{sup -3} mN/m at 45 C in the presence of 0.5-1.0 wt.% NaOH and 1000 mg L{sup -1} of polymer. If the NaOH was replaced by a gentle alkaline salt, Na{sub 2}CO{sub 3}, certain amounts of dodecyl dimethyl carboxy betaine were added and the concentration of Na{sub 2}CO{sub 3} was increased to 1.2-2.0 wt.%, the interfacial tension of Daqing crude oil/connate water can also be reduced to an ultralow value. Therefore DLBS is a good hydrophobic surfactant applicable in ASP flooding with either NaOH or Na{sub 2}CO{sub 3} as alkaline agents. (orig.)

  11. The Role of Moderate Static Magnetic Fields on Biomineralization of Osteoblasts on Sulfonated Polystryene Films

    Energy Technology Data Exchange (ETDEWEB)

    X Ba; M Hadjiargyrou; E DiMasi; Y Meng; M Simon; Z Tan; M Rafailovich

    2011-12-31

    We have investigated the effects of moderate static magnetic fields (SMFs) on murine MC3T3-E1 osteoblasts, and found that they enhance proliferations and promote differentiation. The increase in proliferation rates in response to SMFs was greater in cultures grown on partially sulfonated polytstyrene (SPS, degree of sulfonation: 33%) than in cultures grown on tissue culture plastic. We have previously shown that when the degree of sulfonation exceeded a critical value (12%) [1], spontaneous fibrillogenesis occured which allowed for direct observation of the ECM fibrillar organization under the influence of external fields. We found that the ECM produced in cultures grown on the SPS in the presence of the SMFs assembled into a lattice with larger dimensions than the ECM of the cultures grown in the absence of SMFs. During the early stages of the biomineralization process (day 7), the SMF exposed cultures also templated mineral deposition more rapidly than the control cultures. The rapid response is attributed to orientation of diamagnetic ECM proteins already present in the serum, which could then initiate further cellular signaling. SMFs also influenced late stage osteoblast differentiation as measured by the increased rate of osteocalcin secretion and gene expression beginning 15 days after SFM exposure. This correlated with a large increase in mineral deposition, and in cell modulus. GIXD and EDXS analysis confirmed early deposition of crystalline hydroxyapatite. Previous studies on the effects of moderate SMF had focused on cellular gene and protein expression, but did not consider the organization of the ECM fibers. Our ability to form these fibers has allowed us explore this additional effect and highlight its significance in the initiation of the biomineralization process.

  12. Effect of surface finishing on friction and wear of Poly-Ether-Ether-Ketone (PEEK under oil lubrication

    Directory of Open Access Journals (Sweden)

    Thiago Fontoura de Andrade

    Full Text Available Abstract The tribological properties of poly-ether-ether-ketone (PEEK containing 30% of carbon fiber were studied in an oil-lubricated environment and different surface finishing of the metallic counterbody. Four different finishing processes, commonly used in the automotive industry, were chosen for this study: turning, grinding, honing and polishing. The test system used was tri-pin on disc with pins made of PEEK and counterbody made of steel; they were fully immersed in ATF Dexron VI oil. Some test parameters were held constant, such as the apparent pressure of 2 MPa, linear velocity of 2 m/s, oil temperature at 85 °C, and the time - 120 minutes. The lubrication regime for the apparent pressure of 1 MPa to 7 MPa range was also studied at different sliding speeds. A direct correlation was found between the wear rate, friction coefficient and the lubrication regime, wherein wear under hydrodynamic lubrication was, on average, approximately 5 times lower, and the friction coefficient 3 times lower than under boundary lubrication.

  13. 3'-O-(5-fluoro-2,4-dinitrophenyl)ADP ether and ATP ether. Affinity reagents for labeling ATPases.

    Science.gov (United States)

    Chuan, H; Wang, J H

    1988-09-15

    The affinity reagents 3'-O-(5-fluoro-2,4-dinitrophenyl)ADP ether (FDNP-ADP) and 3'-O-(5-fluoro-2,4-dinitrophenyl)ATP ether (FDNP-ATP) were synthesized and characterized. FDNP[14C]ADP was found to label the active site of mitochondrial F1-ATPase slowly at room temperature but with high specificity. F1 was effectively protected from the labeling reagent by ATP or ADP. An average number of 1.3 covalent label per F1 is sufficient for 100% inhibition of the ATPase. About 73% of the radioactive label was found covalently attached to beta subunits, 9% on alpha, practically none on gamma, delta, and epsilon. Cleavage of the labeled enzyme by pepsin and sequencing of the major radioactive peptide showed that the labeled amino acid residue in beta subunit was Lys beta 162. These results show that Lys beta 162 is indeed at the active site of F1 as assumed in the recently proposed models (Fry, D. C., Kuby, S. A., and Mildvan, A. S. (1986) Proc. Natl. Acad. Sci. U. S. A. 83, 907-911; Duncan, I. M., Parsonage, D., and Senior, A. E. (1986) FEBS Lett. 208, 1-6).

  14. Sulfonated Polyaniline Coated Mercury Film Electrodes for Voltammetric Analysis of Metals in Water

    Directory of Open Access Journals (Sweden)

    Denise Alves Fungaro

    2001-11-01

    Full Text Available The electrochemical polymerization of 2-aminobenzenesulfonic acid with and without aniline has been carried by cyclic potencial sweep in sulfuric acid solution at the glassy carbon electrode. The polymer and copolymer formed have been characterized voltammetrically. The sulfonated polyaniline coated mercury thin-film electrodes have been evaluated for use with anodic stripping voltammetry. The electrodes were tested and compared with a conventional thin-film mercury electrode. Calibration plots showed linearity up to 10-7 mol L-1. Detection limits for zinc, lead and cadmium test species are very similar at around 12 nmol L-1. Applications to analysis of waters samples are demonstrated.

  15. Indole alkaloid sulfonic acids from an aqueous extract of Isatis indigotica roots and their antiviral activity

    Directory of Open Access Journals (Sweden)

    Lingjie Meng

    2017-05-01

    Full Text Available Six new indole alkaloid sulfonic acids (1–6, together with two analogues (7 and 8 that were previously reported as synthetic products, were isolated from an aqueous extract of the Isatis indigotica root. Their structures including the absolute configurations were determined by spectroscopic data analysis, combined with enzyme hydrolysis and comparison of experimental circular dichroism and calculated electronic circular dichroism spectra. In the preliminary assay, compounds 2 and 4 showed antiviral activity against Coxsackie virus B3 and influenza virus A/Hanfang/359/95 (H3N2, respectively.

  16. Influence of halogen atoms and protonation on the photophysical properties of sulfonated porphyrins

    Science.gov (United States)

    De Boni, L.; Monteiro, C. J. P.; Mendonça, C. R.; Zílio, S. C.; Gonçalves, P. J.

    2015-07-01

    This work employs UV/vis absorption and Z-scan techniques to investigate how the presence of one or two halogens atoms and the macrocycle protonation affect the photophysical characteristics of sulfonated porphyrins. The results are relevant to photomedicine and photonics because they show that: (i) the insertion of halogen atoms increases the intersystem crossing quantum yield, a useful feature for photodynamic therapy, (ii) the fluorescence observed in fluorinated porphyrins shows desired characteristics for theranostics, which combine therapy and diagnostics in the same platform, and (iii) the protonation enhances the excited-state absorption in the visible region, an important feature for optical limiting.

  17. Electrodeposition of polypyrrole films on aluminum surfaces from a p-toluene sulfonic acid medium

    Directory of Open Access Journals (Sweden)

    Andréa Santos Liu

    2009-01-01

    Full Text Available Electrodeposition of polypyrrole films on aluminum from aqueous solutions containing p-toluene sulfonic acid and pyrrole was performed by cyclic voltammetry and galvanostatic technique. The influence of applied current density on the morphology of the films was studied by Scanning Electron Microscopy. The films displayed a cauliflower-like structure consisting of micro-spherical grains. This structure is related to dopand intercalation in the polymeric chain. Films deposited at higher current density were more susceptible to the formation of pores and defects along the polymeric chain than films deposited at lower current density. These pores allow the penetration of aggressive species, thereby favoring the corrosion process.

  18. Ileocolic Perforation Secondary to Sodium Polystyrene Sulfonate in Sorbitol Use: A Case Report

    Directory of Open Access Journals (Sweden)

    Vincent Trottier

    2009-01-01

    Full Text Available Hyperkalemia is a common condition encountered in medical and surgical patients. It can lead to various complications including cardiac arrhythmias. Sodium polystyrene sulfonate (SPS in sorbitol is an ion-exchange resin that can be used to treat hyperkalemia. It can be used in enema or in oral form. The present article describes the case of an intensive care unit patient who experienced severe, diffuse, intestinal perforation induced by the use of SPS-sorbitol, requiring multiple laparotomies, followed by a brief review of the relevant literature and recommendations regarding the use of SPS-sorbitol.

  19. 40 CFR 721.7260 - Polymer of poly-ethylene-polyamine and alkanediol di-gly-cidyl ether.

    Science.gov (United States)

    2010-07-01

    ... alkanediol di-gly-cidyl ether. 721.7260 Section 721.7260 Protection of Environment ENVIRONMENTAL PROTECTION... di-gly-cidyl ether. (a) Chemical substance and significant new uses subject to reporting. (1) The... ether (PMN P-89-810) is subject to reporting under this section for the significant new uses described...

  20. 40 CFR 721.522 - Oxirane, methyl-, polymer with oxirane, mono(3,5,5,-trimethylhexyl) ether.

    Science.gov (United States)

    2010-07-01

    ..., mono(3,5,5,-trimethylhexyl) ether. 721.522 Section 721.522 Protection of Environment ENVIRONMENTAL...,5,5,-trimethylhexyl) ether. (a) Chemical substance and significant new uses subject to reporting. (1...,-trimethylhexyl) ether (PMN P-99-0669; CAS No. 204336-40-3) is subject to reporting under this section for the...