WorldWideScience

Sample records for ether ketone ketone

  1. Modified nanocrystal cellulose/fluorene-containing sulfonated poly(ether ether ketone ketone) composites for proton exchange membranes

    Science.gov (United States)

    Wei, Yingcong; Shang, Yabei; Ni, Chuangjiang; Zhang, Hanyu; Li, Xiaobai; Liu, Baijun; Men, Yongfeng; Zhang, Mingyao; Hu, Wei

    2017-09-01

    Highly sulfonated poly(ether ether ketone ketone)s (SFPEEKKs) with sulfonation degrees of 2.34 (SFPEEKK5) and 2.48 (SFPEEKK10) were synthesized through the direct sulfonation of a fluorene-containing poly(ether ether ketone ketone) under a relatively mild reaction condition. Using the solution blending method, sulfonated nanocrystal cellulose (sNCC)-enhanced SFPEEKK composites (SFPEEKK/sNCC) were successfully prepared for investigation as proton exchange membranes. Transmission electron microscopy showed that sNCC was uniformly distributed in the composite membranes. The properties of the composite membranes, including thermal stability, mechanical properties, water uptake, swelling ratio, oxidative stability and proton conductivity were thoroughly evaluated. Results indicated that the insertion of sNCC could contribute to water management and improve the mechanical performance of the membranes. Notably, the proton conductivity of SFPEEKK5/sNCC-5 was as high as 0.242 S cm-1 at 80 °C. All data proved the potential of SFPEEKK/sNCC composites for proton exchange membranes in medium-temperature fuel cells.

  2. Comparison of Properties among Dendritic and Hyperbranched Poly(ether ether ketones and Linear Poly(ether ketones

    Directory of Open Access Journals (Sweden)

    Atsushi Morikawa

    2016-02-01

    Full Text Available Poly(ether ether ketone dendrimers and hyperbranched polymers were prepared from 3,5-dimethoxy-4′-(4-fluorobenzoyldiphenyl ether and 3,5-dihydroxy-4′-(4-fluorobenzoyldiphenyl ether through aromatic nucleophilic substitution reactions. 1-(tert-Butyldimethylsiloxy-3,5-bis(4-fluorobenzoylbenzene was polycondensed with bisphenols, followed by cleavage of the protective group to form linear poly(ether ketones having the same hydroxyl groups in the side chains as the chain ends of the dendrimer and hyperbranched polymers. Their properties, such as solubilities, reduced viscosities, and thermal properties, were compared with one another. Similar comparisons were also carried out among the corresponding methoxy group polymers, and the size of the molecules was shown to affect the properties.

  3. Novel proton exchange membranes based on structure-optimized poly(ether ether ketone ketone)s and nanocrystalline cellulose

    Science.gov (United States)

    Ni, Chuangjiang; Wei, Yingcong; Zhao, Qi; Liu, Baijun; Sun, Zhaoyan; Gu, Yan; Zhang, Mingyao; Hu, Wei

    2018-03-01

    Two sulfonated fluorenyl-containing poly(ether ether ketone ketone)s (SFPEEKKs) were synthesized as the matrix of composite proton exchange membranes by directly sulfonating copolymer precursors comprising non-sulfonatable fluorinated segments and sulfonatable fluorenyl-containing segments. Surface-modified nanocrystalline cellulose (NCC) was produced as the "performance-enhancing" filler by treating the microcrystalline cellulose with acid. Two families of SFPEEKK/NCC nanocomposite membranes with various NCC contents were prepared via a solution-casting procedure. Results revealed that the insertion of NCC at a suitable ratio could greatly enhance the proton conductivity of the pristine membranes. For example, the proton conductivity of SFPEEKK-60/NCC-4 (SFPEEKK with 60% fluorenyl segments in the repeating unit, and inserted with 4% NCC) composite membrane was as high as 0.245 S cm-1 at 90 °C, which was 61.2% higher than that of the corresponding pure SFPEEKK-60 membrane. This effect could be attributed to the formation of hydrogen bond networks and proton conduction paths through the interaction between -SO3H/-OH groups on the surface of NCC particles and -SO3H groups on the SFPEEKK backbones. Furthermore, the chemically modified NCC filler and the optimized chemical structure of the SFPEEKK matrix also provided good dimensional stability and mechanical properties of the obtained nanocomposites. In conclusion, these novel nanocomposites can be promising proton exchange membranes for fuel cells at moderate temperatures.

  4. Fuel cell performance of pendent methylphenyl sulfonated poly(ether ether ketone ketone)s

    Science.gov (United States)

    Zhang, Hanyu; Stanis, Ronald J.; Song, Yang; Hu, Wei; Cornelius, Chris J.; Shi, Qiang; Liu, Baijun; Guiver, Michael D.

    2017-11-01

    Meta- and para-linked homopolymers bearing 3-methylphenyl (Me) pendent groups were postsulfonated to create sulfonated poly(ether ether ketone ketone) (SPEEKK) backbone isomers, which are referred to as Me-p-SPEEKK and Me-m-SPEEKK. Their thermal and oxidative stability, mechanical properties, dimensional stability, methanol permeability, and proton conductivity are characterized. Me-p-SPEEKK and Me-m-SPEEKK proton conductivities at 100 °C are 116 and 173 mS cm-1, respectively. Their methanol permeabilities are 3.3-3.9 × 10-7 cm2 s-1, and dimensional swelling at 100 °C is 16.4-17.5%. Me-p-SPEEKK and Me-m-SPEEKK were fabricated into membrane electrode assemblies (MEAs), and electrochemical properties were evaluated within a direct methanol fuel cell (DMFC) and proton-exchange membrane fuel cell (PEMFC). When O2 is used as the oxidant at 80 °C and 100% RH, the maximum power density of Me-m-SPEEKK reaches 657 mW cm-2, which is higher than those of Nafion 115 (552 mW cm-2). DMFC performance is 85 mW cm-2 at 80 °C with 2.0 M methanol using Me-p-SPEEKK due to its low MeOH crossover. In general, these electrochemical results are comparable to Nafion. These ionomer properties, combined with a potentially less expensive and scalable polymer manufacturing process, may broaden their potential for many practical applications.

  5. The PROMETHEE multiple criteria decision making analysis for selecting the best membrane prepared from sulfonated poly(ether ketone)s and poly(ether sulfone)s for proton exchange membrane fuel cell

    International Nuclear Information System (INIS)

    Nikouei, Mohammad Ali; Oroujzadeh, Maryam; Mehdipour-Ataei, Shahram

    2017-01-01

    Proton exchange membrane as the heart of fuel cell has been the topic of many research activities in recent years. Finding a suitable alternative for Nafion membranes is one of the most important issues of interest. This study is dedicated to sulfonated poly(ether ketone) and poly(ether sulfone) membranes. For synthesis of these two groups of polymers, two different isomeric biphenols (meta- and para-) were used and each group of membranes with three different degree of sulfonation (25, 35, and 45%) was synthesized. In this way, twelve different membrane samples were obtained and their properties were evaluated. Since each membrane had some strong and some weak points of properties in comparison to the other ones, using a rational analysis for choosing the best membrane between prepared samples was inevitable. For this purpose a PROMETHEE based multiple criteria decision making approach was applied and for evaluation of the weight of each criterion, Shannon entropy method was used. Final results showed that poly(ether ketone) membranes in selected criteria were better than poly(ether sulfone) membranes and as expected, membranes with the highest degree of sulfonation (45%) were placed at the top ranking levels. - Highlights: • Sulfonated poly(ether ketone)s and Poly(ether sulfone)s were synthesized. • Related membranes for PEMFC were prepared. • The properties of membranes were measured. • Multiple criteria decision making approach was used to ranking the membranes. • PROMETHEE based approach selected poly(ether ketone)s as better choices.

  6. Polyether ether ketone film. Polyether ether ketone film

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, S. (Sumitomo Chemical Co. Ltd., Tokyo (Japan))

    1990-07-05

    The characteristics and the film making process of polyether ether ketone (PEEK) resin, and the characteristics and the applications of PEEK film, are described. PEEK is aromatic polyketone with super thermal resistance. Though it is a crystalline polymer of which the crystallinity is controlled to 48% in a highest degree, it has also amorphous property, thus it shows unique property. The characteristics of PEEK resin are found in thermal resistance, incombusti-bility, transparency, chemical resistance, light resistance and radiation resistance. As for the film making process, casting method by T-die is generally adopted. The general properties of PEEK film are excellent in high thermal resistance, good electrical properties, chemical resistance, hydrolysis resistance, radiation resistance and imcombusti-bility. In the application of PEEK film, new development is expected in following fields; a high performance composite, flexible print substrate with high thermal resistance, insulating tape with thermal resistance, and a general film in the nuclear energy industry. 5 figs., 5 tabs.

  7. The failure of poly (ether ether ketone) in high speed contacts

    Science.gov (United States)

    Briscoe, B. J.; Stuart, B. H.; Sebastian, S.; Tweedale, P. J.

    1993-04-01

    The paper describes an experimental study, with an associated analysis incorporating supplementary data, of the anti-boundary lubricating action of an alkane-aliphatic carboxylic acid lubricant system in a poly (ether ether ketone)-mild steel contact. The experiments involve progressively increasing the load in a contact formed between a polymer plate and a rotating steel shaft and estimating the frictional work dissipated. Scuffing is identified when a rapid increase in frictional work is noted at a characteristic normal load. It is shown that the additive induces premature scuffing. Subsidiary data is provided using Raman spectroscopy and hardness probes, and confirms that certain additives such as decanoic acid and dodecylamine will induce surface plasticization in poly (ether ether ketone). The trends in the frictional data have been interpreted using the adhesive model of friction in conjunction with temperature-dependent interfacial theology and bulk mechanical property data. It is proposed that the scuffing process is induced prematurely as a consequence of excessive additive-induced subsurface plasticization. Restricted surface plasticization in this system provides an enhanced self-lubricating capacity.

  8. Silane Cross-Linked Sulfonted Poly(Ether Ketone/Ether Benzimidazoles for Fuel Cell Applications

    Directory of Open Access Journals (Sweden)

    Zilu Yao

    2017-11-01

    Full Text Available γ-(2,3-epoxypropoxy propyltrimethoxysilane (KH-560 was incorporated in various proportions into side-chain-type sulfonated poly(ether ketone/ether benzimidazole (SPEKEBI as a crosslinker, to make membranes with high ion exchange capacities and excellent performance for direct methanol fuel cells (DMFCs. Systematical measurements including Fourier transform infrared (FT-IR, scanning electron microscopy-energy-dispersive and X-ray photoelectron spectroscopy (XPS proved the complete disappearance of epoxy groups in KH-560 and the existence of Si in the membranes. The resulting membranes showed increased mechanical strength and thermal stability compared to the unmodified sulfonated poly(ether ketone/ether benzimidazole membrane in appropriate doping amount. Meanwhile, the methanol permeability has decreased, leading to the increase of relative selectivities of SPEKEBI-x-SiO2 membranes. Furthermore, the H2/O2 cell performance of SPEKEBI-2.5-SiO2 membrane showed a much higher peak power density compared with the pure SPEKEBI memrbrane.

  9. Ultraviolet-induced surface grafting of octafluoropentyl methacrylate on polyether ether ketone for inducing antibiofilm properties.

    Science.gov (United States)

    Amdjadi, Parisa; Nojehdehian, Hanieh; Najafi, Farhood; Ghasemi, Amir; Seifi, Massoud; Dashtimoghadam, Erfan; Fahimipour, Farahnaz; Tayebi, Lobat

    2017-07-01

    Since octafluoropentyl methacrylate is an antifouling polymer, surface modification of polyether ether ketone with octafluoropentyl methacrylate is a practical approach to obtaining anti-biofilm biocompatible devices. In the current study, the surface treatment of polyether ether ketone by the use of ultraviolet irradiation, so as to graft (octafluoropentyl methacrylate) polymer chains, was initially implemented and then investigated. The Fourier-transform infrared and nuclear magnetic resonance spectra corroborated the appearance of new signals associated with the fluoroacrylate group. Thermogravimetric curves indicated enhanced asymmetry in the polymer structure due to the introduction of the said new groups. Measuring the peak area in differential scanning calorimetry experiments also showed additional bond formation. Static water contact angle measurements indicated a change in wettability to the more hydrophobic surface. The polyether ether ketone-octafluoropentyl methacrylate surface greatly reduced the protein adsorption. This efficient method can modulate and tune the surface properties of polyether ether ketone according to specific applications.

  10. Poly (ether ether ketone) membranes for fuel cells

    International Nuclear Information System (INIS)

    Marrero, Jacqueline C.; Gomes, Ailton de S.; Filho, Jose C.D.; Hui, Wang S.; Oliveira, Vivianna S. de

    2015-01-01

    Polymeric membranes were developed using a SPEEK polymer matrix (sulphonated poly (ether ether ketone)), containing hygroscopic particles of zirconia (Zr) (incorporated by sol-gel method), for use as electrolyte membranes in fuel cells. SPEEK with different sulfonation degrees were used: 63 and 86%. The thermal analysis (TGA and DSC) was carried out to characterize the membranes and electrochemical impedance spectroscopy (EIS) was carried out to evaluating the proton conductivity of the membranes. Additional analysis were underway in order to characterize these membranes, which include: X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) in order to evaluate the influence of zirconia and sulfonation degree on the properties of the membranes. (author)

  11. All solid supercapacitor based on polyaniline and crosslinked sulfonated poly[ether ether ketone

    International Nuclear Information System (INIS)

    Sivaraman, P.; Kushwaha, R.K.; Shashidhara, K.; Hande, V.R.; Thakur, A.P.; Samui, A.B.; Khandpekar, M.M.

    2010-01-01

    All solid supercapacitor based on polyaniline (PANI) and crosslinked sulfonated poly[ether ether ketone] (XSPEEK,) is reported in this paper. The crosslinker used for sulfonated poly[ether ether ketone] (SPEEK) is 1,4-bis(hydroxymethyl) benzene. The XSPEEK is used as both solid electrolyte and separator membrane. Supercapacitors are fabricated using various PANI/XSPEEK weight ratios. These are characterized by cyclic voltammetry and galvanostatic charge-discharge studies. The supercapacitor with PANI/XSPEEK weight ratio 1:0.5, exhibit a specific capacitance of 480 F g -1 of PANI. To the best of authors' knowledge, the value reported here is the highest for a supercapacitor based on a proton conducting solid polymer electrolyte and PANI. Detailed electrochemical impedance spectroscopy analysis is carried out. The analysis shows that the complex capacitance of the supercapacitor depends on the XSPEEK content. The time constant (t 0 ), derived from the imaginary part of complex capacitance decreases with increase in the XSPEEK content in the supercapacitor. Cycle life characteristics of the supercapacitor show a decrease in specific capacitance during initial cycles and get stabilized during later cycles.

  12. Evaluation of crystallization kinetics of poly (ether-ketone-ketone and poly (ether-ether-ketone by DSC

    Directory of Open Access Journals (Sweden)

    Gibran da Cunha Vasconcelos

    2010-08-01

    Full Text Available The poly (aryl ether ketones are used as matrices in advanced composites with high performance due to its high thermal stability, excellent environmental performance and superior mechanical properties. Most of the physical, mechanical and thermodynamic properties of semi-crystalline polymers depend on the degree of crystallinity and morphology of the crystalline regions. Thus, a study on the crystallization process promotes a good prediction of how the manufacturing parameters affect the developed structure, and the properties of the final product. The objective of this work was to evaluate the thermoplastics polymers PEKK e PEEK by DSC, aiming to obtain the relationship between kinetics, content, nucleation and geometry of the crystalline phases, according to the parameters of the Avrami and Kissinger models. The analysis of the Avrami exponents obtained for the studied polymers indicates that both showed the formation of crystalline phases with heterogeneous nucleation and growth geometry of the type sticks or discs, depending on the cooling conditions. It was also found that the PEEK has a higher crystallinity than PEKK.

  13. Hydrogen storage by functionalised Poly(ether ether ketone)

    Energy Technology Data Exchange (ETDEWEB)

    Pedicini, R.; Giacoppo, G.; Carbone, A.; Passalacqua, E. [CNR-ITAE, Messina (Italy). Inst. for Advanced Energy Technologies

    2010-07-01

    In this work a functionalised polymer was studied as potential material for hydrogen storage in solid state. A Poly(ether ether ketone) (PEEK) matrix was modified by a manganese oxide in situ formation. Here we report the functionalisation process and the preliminary results on hydrogen storage capability of the synthesised polymer. The polymer was characterized by Scanning Electron Microscopy, X-ray diffraction, Transmission Electron Microscopy and Gravimetric Hydrogen Adsorption measurements. In the functionalised PEEK, morphological changes occur as a function of oxide precursor concentration and reaction time. Promising results by gravimetric measurements were obtained with a hydrogen sorption of 0.24%wt/wt at 50 C and 60 bar, moreover, reversibility hydrogen adsorption and desorption in a wide range of both temperature and pressure was confirmed. (orig.)

  14. Novel crosslinked membranes based on sulfonated poly(ether ether ketone) for direct methanol fuel cells.

    Science.gov (United States)

    Zhu, Yuanqin; Zieren, Shelley; Manthiram, Arumugam

    2011-07-14

    Novel covalently crosslinked membranes based on sulfonated poly(ether ether ketone) and carboxylated polysulfone exhibit much lower methanol crossover and better performance in direct methanol fuel cells at 65 °C in 1 and 2 M methanol solutions compared to Nafion 115 membranes.

  15. Optical anisotropy, molecular orientations, and internal stresses in thin sulfonated poly(ether ether ketone) films

    NARCIS (Netherlands)

    Koziara, B.T.; Nijmeijer, K.; Benes, N.E.

    2015-01-01

    The thickness, the refractive index, and the optical anisotropy of thin sulfonated poly(ether ether ketone) films, prepared by spin-coating or solvent deposition, have been investigated with spectroscopic ellipsometry. For not too high polymer concentrations (≤5 wt%) and not too low spin speeds

  16. Optical anisotropy, molecular orientations, and internal stresses in thin sulfonated poly(ether ether ketone) films

    NARCIS (Netherlands)

    Koziara, Beata; Nijmeijer, Dorothea C.; Benes, Nieck Edwin

    2015-01-01

    The thickness, the refractive index, and the optical anisotropy of thin sulfonated poly(ether ether ketone) films, prepared by spin-coating or solvent deposition, have been investigated with spectroscopic ellipsometry. For not too high polymer concentrations (B5 wt%) and not too low spin speeds

  17. Lithiated and sulphonated poly(ether ether ketone) solid state electrolyte films for supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Chiu, K.-F.; Su, S.-H., E-mail: minimono42@gmail.com

    2013-10-01

    Poly(ether ether ketone) (PEEK) films have been synthesised and used as solid-state electrolytes for supercapacitors. In order to increase their ion conductivity, the PEEK films were sulphonated by sulphuric acid, and various amounts of LiClO{sub 4} were added. The solid-state electrolyte films were characterised by Fourier transform infrared spectroscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy, and thermogravimetric analysis. The ionic conductivities of the electrolyte films were analysed by performing electrochemical impedance spectroscopy. The obtained electrolyte films can be sandwiched or directly coated on activated carbon electrodes to form solid-state supercapacitors. The electrochemical characteristics of these supercapacitors were investigated by performing cyclic voltammetry and charge–discharge tests. Under an optimal content of LiClO{sub 4}, the supercapacitor can provide a capacitance as high as 190 F/g. After 1000 cycles, the supercapacitors show almost no capacitance fading, indicating high stability of the solid-state electrolyte films. - Highlights: • Poly(ether ether ketone) (PEEK) films have been used as solid-state electrolytes. • LiClO4 addition can efficiently improve the ionic conductivity. • Supercapacitors using PEEK electrolyte films deliver high capacitance.

  18. Lithiated and sulphonated poly(ether ether ketone) solid state electrolyte films for supercapacitors

    International Nuclear Information System (INIS)

    Chiu, K.-F.; Su, S.-H.

    2013-01-01

    Poly(ether ether ketone) (PEEK) films have been synthesised and used as solid-state electrolytes for supercapacitors. In order to increase their ion conductivity, the PEEK films were sulphonated by sulphuric acid, and various amounts of LiClO 4 were added. The solid-state electrolyte films were characterised by Fourier transform infrared spectroscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy, and thermogravimetric analysis. The ionic conductivities of the electrolyte films were analysed by performing electrochemical impedance spectroscopy. The obtained electrolyte films can be sandwiched or directly coated on activated carbon electrodes to form solid-state supercapacitors. The electrochemical characteristics of these supercapacitors were investigated by performing cyclic voltammetry and charge–discharge tests. Under an optimal content of LiClO 4 , the supercapacitor can provide a capacitance as high as 190 F/g. After 1000 cycles, the supercapacitors show almost no capacitance fading, indicating high stability of the solid-state electrolyte films. - Highlights: • Poly(ether ether ketone) (PEEK) films have been used as solid-state electrolytes. • LiClO4 addition can efficiently improve the ionic conductivity. • Supercapacitors using PEEK electrolyte films deliver high capacitance

  19. Biaxial deformation behaviour of poly-ether-ether-ketone

    Science.gov (United States)

    Turner, Josh; Menary, Gary; Martin, Peter

    2018-05-01

    The biaxial tensile properties of thin poly-ether-ether-ketone (PEEK) films are presented. Investigation into the biaxial mechanical behaviour of PEEK films will provide a preliminary insight into the anticipated stress/strain response, and potential suitability, to the possible fabrication of thin walled parts through stretch blow moulding and thermoforming processes - with the multi-axial state of strain imposed onto the heated thermoplastic sheet representative of the expected strain history experienced during these material forming processes. Following identification of the prospective forming temperature window, the biaxial mechanical behaviour of the material is characterized under differing modes of deformation, at a nominal strain rate of 1 s-1. The temperature dependence is outlined within - with an appreciable increase in flow behaviour correlated with specimen temperature exceeding its glass transition temperature (Tg).

  20. Thermal stability of sulfonated Poly(Ether Ether Ketone) films : on the role of Protodesulfonation

    NARCIS (Netherlands)

    Koziara, B.T.; Kappert, E.J.; Ogieglo, W.; Nijmeijer, Kitty; Hempenius, M.A.; Benes, N.E.

    Thin film and bulk, sulfonated poly(ether ether ketone) (SPEEK) have been subjected to a thermal treatment at 160–250 °C for up to 15 h. Exposing the films to 160 °C already causes partial desulfonation, and heating to temperatures exceeding 200 °C results in increased conjugation in the material,

  1. Poly(vinylbenzyl sulfonic acid)-grafted poly(ether ether ketone) membranes

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Mi-Lim; Choi, Jisun; Woo, Hyun-Su; Kumar, Vinod; Sohn, Joon-Yong; Shin, Junhwa, E-mail: shinj@kaeri.re.kr

    2014-02-15

    Highlights: • PEEK-g-PVBSA, a polymer electrolyte membrane was prepared by a radiation grafting technique. • Poly(ether ether ketone) (PEEK), an aromatic hydrocarbon polymer was used as a grafting backbone film. • The water uptake, proton conductivity, and methanol permeability of the membranes were evaluated. • PEEK-g-PVBSA membranes show considerably lower methanol permeability compared to a Nafion membrane. -- Abstract: In this study, an aromatic hydrocarbon based polymer electrolyte membrane, poly(vinylbenzyl sulfonic acid)-grafted poly(ether ether ketone) (PEEK-g-PVBSA), has been prepared by the simultaneous irradiation grafting of vinylbenzyl chloride (VBC) monomer onto a PEEK film and subsequent sulfonation. Each chemical conversion was monitored by FT-IR and SEM–EDX instruments. The physicochemical properties including IEC, water uptake, proton conductivity, and methanol permeability of the prepared membranes were also investigated and found that the values of these properties increase with the increase of degree of grafting. It was observed that the IEC values of the prepared PEEK-g-PVBSA membranes with 32%, 58%, and 80% DOG values were 0.50, 1.05, and 1.22 meq/g while the water uptakes were 14%, 20%, and 21%, respectively. The proton conductivities (0.0272–0.0721 S/cm at 70 °C) were found to be somewhat lower than Nafion 212 (0.126 S/cm at 70 °C) at a relative humidity of 90%. However, the prepared membranes showed a considerably lower methanol permeability (0.61–1.92 × 10{sup −7} cm{sup 2}/s) compared to a Nafion 212 membrane (5.37 × 10{sup −7} cm{sup 2}/s)

  2. Ion-Selective Ionic Polymer Metal Composite (IPMC) actuator based on crown ether containing sulfonated Poly(Arylene Ether Ketone)

    NARCIS (Netherlands)

    Tas, S.; Zoetebier, B.; Sukas, O.S.; Bayraktar, M.; Hempenius, M.; Vancso, G.J.; Nijmeijer, K.

    2017-01-01

    This study introduces the concept of ion selective actuation in polymer metal composite actuators, employing crown ether bearing aromatic polyether materials. For this purpose, sulfonated poly(arylene ether ketone) (SPAEK) and crown ether containing SPAEK with molar masses suitable for membrane

  3. Sulfonated poly(ether ether ketone) membranes for electric double layer capacitors

    International Nuclear Information System (INIS)

    Kim, Wan Ju; Kim, Dong-Won

    2008-01-01

    Sulfonated poly(ether ether ketone) (S-PEEK) with different degree of sulfonation (DS) has been prepared and evaluated as a proton conducting membrane for electric double layer capacitor (EDLC). The polymer electrolytes prepared with S-PEEK membrane exhibited ionic conductivities about 1.2 x 10 -3 -4.5 x 10 -3 S cm -1 at room temperature, which depended on both soaking solvent and degree of sulfonation. The quasi-solid-state EDLCs consisted of activated carbon electrodes and S-PEEK membrane were assembled, and their electrochemical characteristics were studied by cyclic voltammetry and charge-discharge cycle tests. The effect of DS on the electrochemical performances of EDLCs has been investigated

  4. Microwave sintering of poly-ether-ether-ketone (PEEK) based coatings deposited on metallic substrate

    International Nuclear Information System (INIS)

    Zhang, G.; Leparoux, S.; Liao, H.; Coddet, C.

    2006-01-01

    In this paper, the feasibility of microwave (MW) sintering PEEK (poly-ether-ether-ketone) based coatings was investigated. Three coatings were studied: pure PEEK, micron-SiC and nano-SiC particles filled (wt.10%) PEEK coatings. The results indicate that, for the two composite coatings, the SiC particles distributed in the polymer matrix, as a good MW susceptor, could be heated preferentially by MW radiation. Consequently, the polymer matrix was heated by these particles

  5. Preparation and DMFC performance of a sulfophenylated poly(arylene ether ketone) polymer electrolyte membrane

    Energy Technology Data Exchange (ETDEWEB)

    Liu Baijun, E-mail: liubj@jlu.edu.c [College of Chemistry, Jilin University, Changchun 130012 (China); Hu Wei [College of Chemistry, Jilin University, Changchun 130012 (China); Kim, Yu Seung [Los Alamos National Laboratory, Electronic and Electrochemical Materials and Devices, Los Alamos, NM 87545 (United States); Zou Haifeng [College of Chemistry, Jilin University, Changchun 130012 (China); Robertson, Gilles P. [Institute for Chemical Process and Environmental Technology, National Research Council, Ottawa, Ontario K1A 0R6 (Canada); Jiang Zhenhua [College of Chemistry, Jilin University, Changchun 130012 (China); Guiver, Michael D. [Institute for Chemical Process and Environmental Technology, National Research Council, Ottawa, Ontario K1A 0R6 (Canada); Department of Energy Engineering, Hanyang University, 17 Haengdang-dong, Seongdong-gu, Seoul 133-791 (Korea, Republic of)

    2010-04-15

    A sulfonated poly(aryl ether ether ketone ketone) (PEEKK) having a well-defined rigid homopolymer-like chemical structure was synthesized from a readily prepared PEEKK by post-sulfonation with concentrated sulfuric acid at room temperature within several hours. The polymer electrolyte membrane (PEM) cast from the resulting polymer exhibited an excellent combination of thermal resistance, oxidative and dimensional stability, low methanol fuel permeability and high proton conductivity. Furthermore, membrane electrode assemblies (MEAs) were successfully fabricated and good direct methanol fuel cell (DMFC) performance was observed. At 2 M MeOH feed, the current density at 0.5 V reached 165 mA/cm, which outperformed our reported similarly structured analogues and MEAs derived from comparative Nafion membranes.

  6. Polyether ether ketone encased monolith frits made of polyether ether ketone tubing with a 0.25 mm opening resulting in an improved separation performance in liquid chromatography.

    Science.gov (United States)

    Park, Sin Young; Cheong, Won Jo

    2016-05-01

    Tiny polyether ether ketone encased monolith frits have been prepared by modified catalytic sulfonation of the inner surface of polyether ether tubing (1.6 mm od, 0.25 mm id) followed by modified formation of organic monolith and cutting of the tubing into slices. The frit was placed below the central hole of the column outlet union and supported by a combination of a silica capillary (0.365 mm od, 0.05 mm id) and a polyether ether ketone sleeve (1.6 mm od, 0.38 mm id) tightened with a nut and a ferrule when the column was packed to prevent sinking of the frit element into the union hole (0.25 mm opening) otherwise. The column packed this way with the frits investigated in this study has shown better separation performance owing to the reduced frit volume in comparison to the column packed with a commercial stainless-steel screen frit. This study establishes the strategy of disposable microcolumns in which cheap disposable frits are used whenever the column is re-packed to yield columns of even better chromatographic performance than the columns with commercial frits. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Thermal Stability of Sulfonated Poly(Ether Ether Ketone) Films: on the Role of Protodesulfonation

    OpenAIRE

    Koziara, Beata; Kappert, Emiel; Ogieglo, Wojciech; Nijmeijer, Dorothea C.; Hempenius, Mark A.; Benes, Nieck Edwin

    2016-01-01

    Thin film and bulk, sulfonated poly(ether ether ketone) (SPEEK) have been subjected to a thermal treatment at 160–250 °C for up to 15 h. Exposing the films to 160 °C already causes partial desulfonation, and heating to temperatures exceeding 200 °C results in increased conjugation in the material, most likely via a slight cross-linking by H-substitution. It is well-known that the sulfonate proton plays a major role in the desulfonation reactions, and exchanging the protons with other cations ...

  8. Characterization of melt-blended graphene – poly(ether ether ketone) nanocomposite

    International Nuclear Information System (INIS)

    Tewatia, Arya; Hendrix, Justin; Dong, Zhizhong; Taghon, Meredith; Tse, Stephen; Chiu, Gordon; Mayo, William E.; Kear, Bernard; Nosker, Thomas; Lynch, Jennifer

    2017-01-01

    Using a high shear melt-processing method, graphene-reinforced polymer matrix composites (G-PMCs) were produced with good distribution and particle–matrix interaction of bi/trilayer graphene at 2 wt. % and 5 wt. % in poly ether ether ketone (2Gn-PEEK and 5Gn-PEEK). The morphology, structure, thermal properties, and mechanical properties of PEEK, 2Gn-PEEK and 5 Gn-PEEK were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), thermal gravimetric analysis (TGA), flexural mechanical testing, and dynamic mechanical analysis (DMA). Addition of graphene to PEEK induces surface crystallization, increased percent crystallinity, offers a composite that is thermally stable until 550 °C and enhances thermomechanical properties. Results show that graphene was successfully melt-blended within PEEK using this method.

  9. Characterization of melt-blended graphene – poly(ether ether ketone) nanocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Tewatia, Arya; Hendrix, Justin [Department of Materials Science and Engineering, Rutgers University, 607 Taylor Road, Piscataway, NJ, 08854 (United States); Dong, Zhizhong [Department of Mechanical Engineering, Rutgers University, 98 Brett Road, Piscataway, NJ 08854 (United States); Taghon, Meredith [Department of Materials Science and Engineering, Rutgers University, 607 Taylor Road, Piscataway, NJ, 08854 (United States); Tse, Stephen [Department of Mechanical Engineering, Rutgers University, 98 Brett Road, Piscataway, NJ 08854 (United States); Chiu, Gordon; Mayo, William E.; Kear, Bernard; Nosker, Thomas [Department of Materials Science and Engineering, Rutgers University, 607 Taylor Road, Piscataway, NJ, 08854 (United States); Lynch, Jennifer, E-mail: jklynch@rci.rutgers.edu [Department of Materials Science and Engineering, Rutgers University, 607 Taylor Road, Piscataway, NJ, 08854 (United States)

    2017-02-15

    Using a high shear melt-processing method, graphene-reinforced polymer matrix composites (G-PMCs) were produced with good distribution and particle–matrix interaction of bi/trilayer graphene at 2 wt. % and 5 wt. % in poly ether ether ketone (2Gn-PEEK and 5Gn-PEEK). The morphology, structure, thermal properties, and mechanical properties of PEEK, 2Gn-PEEK and 5 Gn-PEEK were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), thermal gravimetric analysis (TGA), flexural mechanical testing, and dynamic mechanical analysis (DMA). Addition of graphene to PEEK induces surface crystallization, increased percent crystallinity, offers a composite that is thermally stable until 550 °C and enhances thermomechanical properties. Results show that graphene was successfully melt-blended within PEEK using this method.

  10. Energetic effects of ether and ketone functional groups in 9,10-dihydroanthracene compound

    International Nuclear Information System (INIS)

    Freitas, Vera L.S.; Gomes, Jose R.B.; Ribeiro da Silva, Maria D.M.C.

    2010-01-01

    The energetic effects caused by replacing one of the methylene groups in the 9,10-dihydroanthracene by ether or ketone functional groups yielding xanthene and anthrone species, respectively, were determined from direct comparison of the standard (p o = 0.1 MPa) molar enthalpies of formation in the gaseous phase, at T = 298.15 K, of these compounds. The experimental static-bomb combustion calorimetry and Calvet microcalorimetry and the computational G3(MP2)//B3LYP method were used to get the standard molar gas-phase enthalpies of formation of xanthene, (41.8 ± 3.5) kJ . mol -1 , and anthrone, (31.4 ± 3.2) kJ . mol -1 . The enthalpic increments for the substitution of methylene by ether and ketone in the parent polycyclic compound (9,10-dihydroanthracene) are -(117.9 ± 5.5) kJ . mol -1 and -(128.3 ± 5.4) kJ . mol -1 , respectively.

  11. Mass transport of direct methanol fuel cell species in sulfonated poly(ether ether ketone) membranes

    International Nuclear Information System (INIS)

    Silva, V.S.; Ruffmann, B.; Vetter, S.; Boaventura, M.; Mendes, A.M.; Madeira, L.M.; Nunes, S.P.

    2006-01-01

    Homogeneous membranes based on sulfonated poly(ether ether ketone) (sPEEK) with different sulfonation degrees (SD) were prepared and characterized. In order to perform a critical analysis of the SD effect on the polymer barrier and mass transport properties towards direct methanol fuel cell species, proton conductivity, water/methanol pervaporation and nitrogen/oxygen/carbon dioxide pressure rise method experiments are proposed. This procedure allows the evaluation of the individual permeability coefficients in hydrated sPEEK membranes with different sulfonation degrees. Nafion[reg] 112 was used as reference material. DMFC tests were also performed at 50 deg. C. It was observed that the proton conductivity and the permeability towards water, methanol, oxygen and carbon dioxide increase with the sPEEK sulfonation degree. In contrast, the SD seems to not affect the nitrogen permeability coefficient. In terms of selectivity, it was observed that the carbon dioxide/oxygen selectivity increases with the sPEEK SD. In contrast, the nitrogen/oxygen selectivity decreases. In terms of barrier properties for preventing the DMFC reactants loss, the polymer electrolyte membrane based on the sulfonated poly(ether ether ketone) with SD lower or equal to 71%, although having slightly lower proton conductivity, presented much better characteristics for fuel cell applications compared with the well known Nafion[reg] 112. In terms of the DMFC tests of the studied membranes at low temperature, the sPEEK membrane with SD = 71% showed to have similar performance, or even better, as that of Nafion[reg] 112. However, the highest DMFC overall efficiency was achieved using sPEEK membrane with SD = 52%

  12. Sulfonated poly(tetramethydiphenyl ether ether ketone) membranes for vanadium redox flow battery application

    Energy Technology Data Exchange (ETDEWEB)

    Mai, Zhensheng; Bi, Cheng; Dai, Hua [PEMFC Key Materials and Technology Laboratory, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023 (China); Graduate University of the Chinese Academy of Sciences, Beijing 100039 (China); Zhang, Huamin; Li, Xianfeng [PEMFC Key Materials and Technology Laboratory, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023 (China)

    2011-01-01

    Sulfonated poly(tetramethydiphenyl ether ether ketone) (SPEEK) with various degree of sulfonation is prepared and first used as ion exchange membrane for vanadium redox flow battery (VRB) application. The vanadium ion permeability of SPEEK40 membrane is one order of magnitude lower than that of Nafion 115 membrane. The low cost SPEEK membranes exhibit a better performance than Nafion at the same operating condition. VRB single cells with SPEEK membranes show very high energy efficiency (>84%), comparable to that of the Nafion, but at much higher columbic efficiency (>97%). In the self-discharge test, the duration of the cell with the SPEEK membrane is two times longer than that with Nafion 115. The membrane keeps a stable performance after 80-cycles charge-discharge test. (author)

  13. Analysis of electron-irradiated poly-ether ether ketone by X-ray photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Oyabu, Matashige; Kobayashi, Yoshinori; Seguchi, Tadao; Sasuga, Tsuneo; Kudoh, Hisaaki.

    1995-01-01

    Organic polymers used in atomic power plants or space are damaged by ionizing irradiation. Radicals produced by irradiation cause oxidation, chain scission and crosslinking, all of which lead to degradation of the material. In this paper, the surface of electron-irradiated poly-ether ether ketone (PEEK) was studied by X-ray photoelectron spectroscopy (XPS). The irradiation in air was found to oxidize the PEEK surface producing carboxyl groups, the content of which dependant on the dose. Carboxyl groups were not produced in helium gas. Quantitative spectral analysis indicated that the aromatic structure might be decomposed. Some comparison was made between the semicrystalline and amorphous samples. The oxygen content resulting from irradiation, of semicrystalline PEEK increased more than that of amorphous PEEK. (author)

  14. Origin of mechanical modifications in poly (ether ether ketone)/carbon nanotube composite

    International Nuclear Information System (INIS)

    Pavlenko, Ekaterina; Puech, Pascal; Bacsa, Wolfgang; Boyer, François; Olivier, Philippe; Sapelkin, Andrei; King, Stephen; Heenan, Richard; Pons, François; Gauthier, Bénédicte; Cadaux, Pierre-Henri

    2014-01-01

    Variations in the hardness of a poly (ether ether ketone) beam electrically modified with multi-walled carbon nanotubes (MWCNT, 0.5%-3%) are investigated. It is shown that both rupture and hardness variations correlate with the changes in carbon nanotube concentration when using micro indentation and extended Raman imaging. Statistical analysis of the relative spectral intensities in the Raman image is used to estimate local tube concentration and polymer crystallinity. We show that the histogram of the Raman D band across the image provides information about the amount of MWCNTs and the dispersion of MWCNTs in the composite. We speculate that we have observed a local modification of the ordering between pure and modified polymer. This is partially supported by small angle neutron scattering measurements, which indicate that the agglomeration state of the MWCNTs is the same at the concentrations studied.

  15. Origin of mechanical modifications in poly (ether ether ketone)/carbon nanotube composite

    Energy Technology Data Exchange (ETDEWEB)

    Pavlenko, Ekaterina; Puech, Pascal; Bacsa, Wolfgang, E-mail: wolfgang.bacsa@cemes.fr [CEMES-CNRS and University of Toulouse, 29 Jeanne Marvig, 31055 Toulouse (France); Boyer, François; Olivier, Philippe [Université de Toulouse, Institut Clément Ader, I.U.T. Université Paul Sabatier - 133C Avenue de Rangueil - B.P. 67701, 31077 Toulouse CEDEX 4 (France); Sapelkin, Andrei [School of Physics and Astronomy, Queen Mary, University of London, Mile End Road, E1 4NS London (United Kingdom); King, Stephen; Heenan, Richard [ISIS Facility, Rutherford Appleton Laboratory, Chilton, OX11 0QX Didcot (United Kingdom); Pons, François; Gauthier, Bénédicte; Cadaux, Pierre-Henri [AIRBUS FRANCE (B.E. M and P Toulouse), 316 Route de Bayonne, 31060 Toulouse (France)

    2014-06-21

    Variations in the hardness of a poly (ether ether ketone) beam electrically modified with multi-walled carbon nanotubes (MWCNT, 0.5%-3%) are investigated. It is shown that both rupture and hardness variations correlate with the changes in carbon nanotube concentration when using micro indentation and extended Raman imaging. Statistical analysis of the relative spectral intensities in the Raman image is used to estimate local tube concentration and polymer crystallinity. We show that the histogram of the Raman D band across the image provides information about the amount of MWCNTs and the dispersion of MWCNTs in the composite. We speculate that we have observed a local modification of the ordering between pure and modified polymer. This is partially supported by small angle neutron scattering measurements, which indicate that the agglomeration state of the MWCNTs is the same at the concentrations studied.

  16. Ketones urine test

    Science.gov (United States)

    Ketone bodies - urine; Urine ketones; Ketoacidosis - urine ketones test; Diabetic ketoacidosis - urine ketones test ... Urine ketones are usually measured as a "spot test." This is available in a test kit that ...

  17. Preliminary Investigation of Poly-Ether-Ether-Ketone Based on Fused Deposition Modeling for Medical Applications

    Directory of Open Access Journals (Sweden)

    Feng Zhao

    2018-02-01

    Full Text Available Poly-ether-ether-ketone (PEEK fabricated by fused deposition modeling for medical applications was evaluated in terms of mechanical strength and in vitro cytotoxicity in this study. Orthogonal experiments were firstly designed to investigate the significant factors on tensile strength. Nozzle temperature, platform temperature, and the filament diameter were tightly controlled for improved mechanical strength performance. These sensitive parameters affected the interlayer bonding and solid condition in the samples. Fourier transform infrared (FTIR spectrometry analysis was secondly conducted to compare the functional groups in PEEK granules, filaments, and printed parts. In vitro cytotoxicity test was carried out at last, and no toxic substances were introduced during the printing process.

  18. Ketones blood test

    Science.gov (United States)

    Acetone bodies; Ketones - serum; Nitroprusside test; Ketone bodies - serum; Ketones - blood; Ketoacidosis - ketones blood test ... fat cells break down in the blood. This test is used to diagnose ketoacidosis . This is a ...

  19. Accelerated simulations of aromatic polymers: application to polyether ether ketone (PEEK)

    Science.gov (United States)

    Broadbent, Richard J.; Spencer, James S.; Mostofi, Arash A.; Sutton, Adrian P.

    2014-10-01

    For aromatic polymers, the out-of-plane oscillations of aromatic groups limit the maximum accessible time step in a molecular dynamics simulation. We present a systematic approach to removing such high-frequency oscillations from planar groups along aromatic polymer backbones, while preserving the dynamical properties of the system. We consider, as an example, the industrially important polymer, polyether ether ketone (PEEK), and show that this coarse graining technique maintains excellent agreement with the fully flexible all-atom and all-atom rigid bond models whilst allowing the time step to increase fivefold to 5 fs.

  20. Preparation and characterization of electrospun poly(phthalazinone ether nitrile ketone) membrane with novel thermally stable properties

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Gang; Zhang, Hao; Qian, Bingqing [Carbon Research Laboratory, Liaoning Key Lab for Energy Materials and Chemical Engineering, State Key Lab of Fine Chemicals, Dalian University of Technology, Dalian 116024 (China); Wang, Jinyan, E-mail: wangjinyan@dlut.edu.cn [Department of Polymer Science and Materials, Dalian University of Technology, Dalian 116024 (China); Jian, Xigao [Department of Polymer Science and Materials, Dalian University of Technology, Dalian 116024 (China); Qiu, Jieshan, E-mail: jqiu@dlut.edu.cn [Carbon Research Laboratory, Liaoning Key Lab for Energy Materials and Chemical Engineering, State Key Lab of Fine Chemicals, Dalian University of Technology, Dalian 116024 (China)

    2015-10-01

    Highlights: • Poly (phthalazinone ether nitrile ketone) (PPENK) was used to successfully prepare nanofiber membranes by electrospinning. • Electrospun membrane exhibits a good thermostability. • Electrospun membrane. - Abstract: Electrospun nanofibrous membranes have several applications because of their excellent properties, such as high porosity, small fiber diameter, and large surface area. However, high-temperature resistant electrospun membranes remain a challenge because of the absence of precursors that offer spinnability, scalability, and superior thermal stability. In this study, poly(phthalazinone ether nitrile ketone) (PPENK) was used to successfully prepare nanofiber membranes by electrospinning. Electrospun PPENK membranes were characterized by scanning electron microscopy, differential scanning calorimetry, Fourier transform infrared spectroscopy, and tensile stress–strain tests. Results indicated that the prepared electrospun membranes had a very high glass transition temperature, superior chemical resistance, and excellent mechanical strength. These desirable properties broaden their potential application in membranes and treatment of various hot fluid streams without strict temperature control.

  1. Enhanced response of microbial fuel cell using sulfonated poly ether ether ketone membrane as a biochemical oxygen demand sensor

    Energy Technology Data Exchange (ETDEWEB)

    Ayyaru, Sivasankaran; Dharmalingam, Sangeetha, E-mail: sangeetha@annauniv.edu

    2014-03-01

    Graphical abstract: - Highlights: • Sulfonated poly ether ether ketone (SPEEK) membrane in SCMFC used to determine the BOD. • The biosensor produces a good linear relationship with the BOD concentration up to 650 ppm. • This sensing range was 62.5% higher than that of Nafion{sup ®}. • SPEEK exhibited one order lesser oxygen permeability than Nafion{sup ®}. • Nafion{sup ®} shows high anodic internal resistance (67 Ω) than the SPEEK (39 Ω). - Abstract: The present study is focused on the development of single chamber microbial fuel cell (SCMFC) using sulfonated poly ether ether ketone (SPEEK) membrane to determine the biochemical oxygen demand (BOD) matter present in artificial wastewater (AW). The biosensor produces a good linear relationship with the BOD concentration up to 650 ppm when using artificial wastewater. This sensing range was 62.5% higher than that of Nafion{sup ®}. The most serious problem in using MFC as a BOD sensor is the oxygen diffusion into the anode compartment, which consumes electrons in the anode compartment, thereby reducing the coulomb yield and reducing the electrical signal from the MFC. SPEEK exhibited one order lesser oxygen permeability than Nafion{sup ®}, resulting in low internal resistance and substrate loss, thus improving the sensing range of BOD. The system was further improved by making a double membrane electrode assembly (MEA) with an increased electrode surface area which provide high surface area for electrically active bacteria.

  2. Low vanadium ion permeabilities of sulfonated poly(phthalazinone ether ketone)s provide high efficiency and stability for vanadium redox flow batteries

    Science.gov (United States)

    Chen, Liyun; Zhang, Shouhai; Chen, Yuning; Jian, Xigao

    2017-07-01

    A series of novel sulfonated poly(phthalazinone ether ketone)s containing pendant phenyl moieties (SPPEK-Ps) are synthesized and thoroughly characterized. The chemical structures of the polymers are confirmed by 1H NMR and FTIR analysis. The physicochemical properties and single cell performance of SPPEK-P membranes are systematically evaluated, revealing that the membranes are thermally, chemically and mechanically stable. The area resistances of SPPEK-P-90 and SPPEK-P-100 are 0.75 Ω cm2 and 0.34 Ω cm2, respectively. SPPEK-P membranes are impermeable to the bulky hydrated VO2+ ion and exhibited low V3+ ion permeability (SPPEK-P-90, 2.53 × 10-5 cm min-1) (Nafion 115 membrane: 9.0 × 10-4 cm min-1). Tests of SPPEK-P-90 in vanadium redox flow batteries (VRFBs) demonstrate a comparable columbic efficiency (CE) and energy efficiency (EE) to that of Nafion 115, where the CE is 98% and the EE is 83% at 60 mA cm-2. Moreover, the SPPEK-P-90 membrane exhibits stable performance in cell over 100 charge-discharge cycles (∼450 h).

  3. Mechanical Properties Optimization of Poly-Ether-Ether-Ketone via Fused Deposition Modeling.

    Science.gov (United States)

    Deng, Xiaohu; Zeng, Zhi; Peng, Bei; Yan, Shuo; Ke, Wenchao

    2018-01-30

    Compared to the common selective laser sintering (SLS) manufacturing method, fused deposition modeling (FDM) seems to be an economical and efficient three-dimensional (3D) printing method for high temperature polymer materials in medical applications. In this work, a customized FDM system was developed for polyether-ether-ketone (PEEK) materials printing. The effects of printing speed, layer thickness, printing temperature and filling ratio on tensile properties were analyzed by the orthogonal test of four factors and three levels. Optimal tensile properties of the PEEK specimens were observed at a printing speed of 60 mm/s, layer thickness of 0.2 mm, temperature of 370 °C and filling ratio of 40%. Furthermore, the impact and bending tests were conducted under optimized conditions and the results demonstrated that the printed PEEK specimens have appropriate mechanical properties.

  4. Poly (ether ether ketone) derivatives: Synthetic route and characterization of nitrated and sulfonated polymers

    International Nuclear Information System (INIS)

    Conceicao, T.F.; Bertolino, J.R.; Barra, G.M.O.; Pires, A.T.N.

    2009-01-01

    Nitrated and sulfonated poly (ether ether ketone) [SNPEEK] samples were prepared through sulfonation of nitrated PEEK (NPEEK) at different temperatures resulting in polymers with distinct sulfonation degrees (SD). The sulfonation occurred preferentially in the hydroquinone segment even after 81% of this moiety had been nitrated. Sulfonation in the benzophenone moiety was achieved only in 16% of this segment at the reaction temperature of 80 deg. C. The substitution degree was obtained through the TG curves, and values were in agreement with 1 H NMR data when SD is much higher as ND (nitration degree). The highest SD obtained was 72%. Membranes of the sulfonated and nitrated PEEK (SNPEEK) were prepared by casting and showed good ductility depending on the substitution degree, with proton conductivity in the order of 10 -2 S cm -1 , an important characteristic in some applications, such as in fuel cells

  5. Poly (ether ether ketone) derivatives: Synthetic route and characterization of nitrated and sulfonated polymers

    Energy Technology Data Exchange (ETDEWEB)

    Conceicao, T.F.; Bertolino, J.R. [Grupo de Estudo em Materiais Polimericos-Departamento de Quimica, Universidade Federal de Santa Catarina, Florianopolis, SC (Brazil); Barra, G.M.O. [Departamento de Engenharia Mecanica, Universidade Federal de Santa Catarina, Florianopolis, SC (Brazil); Pires, A.T.N. [Grupo de Estudo em Materiais Polimericos-Departamento de Quimica, Universidade Federal de Santa Catarina, Florianopolis, SC (Brazil)], E-mail: alfredotiburcio@pq.cnpq.br

    2009-03-01

    Nitrated and sulfonated poly (ether ether ketone) [SNPEEK] samples were prepared through sulfonation of nitrated PEEK (NPEEK) at different temperatures resulting in polymers with distinct sulfonation degrees (SD). The sulfonation occurred preferentially in the hydroquinone segment even after 81% of this moiety had been nitrated. Sulfonation in the benzophenone moiety was achieved only in 16% of this segment at the reaction temperature of 80 deg. C. The substitution degree was obtained through the TG curves, and values were in agreement with {sup 1}H NMR data when SD is much higher as ND (nitration degree). The highest SD obtained was 72%. Membranes of the sulfonated and nitrated PEEK (SNPEEK) were prepared by casting and showed good ductility depending on the substitution degree, with proton conductivity in the order of 10{sup -2} S cm{sup -1}, an important characteristic in some applications, such as in fuel cells.

  6. Mechanical Properties Optimization of Poly-Ether-Ether-Ketone via Fused Deposition Modeling

    Directory of Open Access Journals (Sweden)

    Xiaohu Deng

    2018-01-01

    Full Text Available Compared to the common selective laser sintering (SLS manufacturing method, fused deposition modeling (FDM seems to be an economical and efficient three-dimensional (3D printing method for high temperature polymer materials in medical applications. In this work, a customized FDM system was developed for polyether-ether-ketone (PEEK materials printing. The effects of printing speed, layer thickness, printing temperature and filling ratio on tensile properties were analyzed by the orthogonal test of four factors and three levels. Optimal tensile properties of the PEEK specimens were observed at a printing speed of 60 mm/s, layer thickness of 0.2 mm, temperature of 370 °C and filling ratio of 40%. Furthermore, the impact and bending tests were conducted under optimized conditions and the results demonstrated that the printed PEEK specimens have appropriate mechanical properties.

  7. Enhanced osteogenic activity of poly ether ether ketone using calcium plasma immersion ion implantation.

    Science.gov (United States)

    Lu, Tao; Qian, Shi; Meng, Fanhao; Ning, Congqin; Liu, Xuanyong

    2016-06-01

    As a promising implantable material, poly ether ether ketone (PEEK) possesses similar elastic modulus to that of cortical bones yet suffers from bio-inertness and poor osteogenic properties, which limits its application as orthopedic implants. In this work, calcium is introduced onto PEEK surface using calcium plasma immersion ion implantation (Ca-PIII). The results obtained from scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) confirm the modified layer with varying contents of calcium are formed on PEEK surfaces. Water contact angle measurements reveal the increasing hydrophobicity of both Ca-PIII treated surfaces. In vitro cell adhesion, viability assay, alkaline phosphatase activity and collagen secretion analyses disclose improved the adhesion, proliferation, and osteo-differentiation of rat bone mesenchymal stem cells (bMSCs) on Ca-PIII treated surfaces. The obtained results indicate that PEEK surface with enhanced osteogenic activity can be produced by calcium incorporation. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Structuring of poly ether ether ketone by ArF excimer laser radiation in different atmospheres

    International Nuclear Information System (INIS)

    Feng, Y.; Gottmann, J.; Kreutz, E.W.

    2003-01-01

    Structuring of poly ether ether ketone (PEEK) by 193 nm ArF excimer laser radiation has been investigated. Experiments were carried out in different atmospheres (air, vacuum, Ar, O 2 ) in order to study its influence on the quality of the structures and the formation of the debris. Repetition rate makes little effect on the ablation rate and roughness of the structure in presence of any kind of atmosphere, indicating for the structuring of PEEK by ArF laser radiation a large window of processing. The roughness at the bottom of the structures and the morphology of the side walls are strongly affected by the properties of the atmosphere. The smallest roughness is achieved at 0.6 J/cm 2 for all kinds of processing gases. Debris around the structures can be diminished by structuring in vacuum. Plasma expansion speed has been measured by using high speed photography

  9. Organic monolith frits encased in polyether ether ketone tubing with improved durability for liquid chromatography.

    Science.gov (United States)

    Park, Sin Young; Cheong, Won Jo

    2015-09-01

    This study introduces a preparation method for polymer-encased monolith frits with improved durability for liquid chromatography columns. The inner surface of the polyether ether ketone tubing is pretreated with sulfuric acid in the presence of catalysts (vanadium oxide and sodium sulfate). The tubing was rinsed with water and acetone, flushed with nitrogen, and treated with glycidyl methacrylate. After washing, the monolith reaction mixture composed of lauryl methacrylate, ethylene glycol dimethacrylate, initiator, and porogenic solvent was filled in the tubing and subjected to in situ polymerization. The tubing was cut into thin slices and used as frits for microcolumns. To check their durability, the frit slices were placed in a vial and a heavy impact was applied on the vial by a vortex mixer for various periods. The frits made in the presence of catalysts were found to be more durable than those made without catalysts. Furthermore, when the monolith-incorporated tubing was used as a chromatography column, the column prepared in the presence of catalysts resulted in a better separation efficiency. The separation performance of the columns installed with the polyether ether ketone encased monolith frits was comparable to that of the columns installed with the commercial stainless-steel screen frits. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Preparation of poly(ether ether ketone)-based polymer electrolytes for fuel cell membranes using grafting technique

    International Nuclear Information System (INIS)

    Hasegawa, Shin; Suzuki, Yasuyuki; Maekawa, Yasunari

    2008-01-01

    Poly(ether ether ketone) (PEEK)-based polymer electrolyte membranes (PEMs) was successfully prepared by radiation grafting of a styrene monomer into PEEK films and the consequent selective sulfonation of the grafting chains in the film state. Using milder sulfonation, the sulfonation reactions proceeded at the grafted chains in preference to the phenylene rings of PEEK main chains; as a result, the grafted films could successfully transform to a PEM with conductivity of more than 0.1 S/cm. The ion exchange capacity (IEC) and conductivity of the grafted PEEK electrolyte membranes were controlled to the ranges of 1.2-2.9 mmol/g and 0.03-0.18 S/cm by changing the grafting degree. It should be noted that this is the first example of directly transforming super-engineering plastic films into a PEM using radiation grafting

  11. Sulfonated Poly(Ether Ether Ketone)/Functionalized Carbon Nanotube Composite Membrane for Vanadium Redox Flow Battery Applications

    International Nuclear Information System (INIS)

    Jia, Chuankun; Cheng, Yuanhang; Ling, Xiao; Wei, Guanjie; Liu, Jianguo; Yan, Chuanwei

    2015-01-01

    A novel sulfonated poly(ether ether ketone) (SPEEK) membrane embedded with the short-carboxylic multi-walled carbon nanotube (we name it as SPEEK/SCCT membrane) for vanadium redox flow battery (VRB) has been prepared with low capacity loss, low cost and high energy efficiency. The mechanical strength, vanadium ions permeability and performance of the membrane in the VRB single cell were characterized. Results showed that the SPEEK/SCCT membrane possessed low permeability of vanadium ions, accompanied by higher mechanical strength than the Nafion 212 membrane. The VRB single cell with SPEEK/SCCT membrane showed 7% higher coulombic efficiency (CE), 6% higher energy efficiency (EE) but lower capacity loss in comparison with the one with Nafion 212. The good cell performance, low capacity loss and high vanadium ions barrier properties of the blend membrane is of significant interest for VRB applications

  12. Development and characterization of poli composites (ether ether ketone)(PEEK)(Hydroxyapatite(HA)

    International Nuclear Information System (INIS)

    Ferreira, V.P.; Santos, F.S.F.; Sa, M.D. de; Fook, M.V.L.

    2016-01-01

    The objective of this work was to develop PEEK / HA composites, combining the biological activity of the ceramic phase with the properties of the polymer phase, the materials used in this research were Poly (ether-ether-ketone) (PEEK) and Hydroxyapatite (HA) (50, 60, 70 and 80% m / v HA), this material was subjected to a load of two tons followed by a thermal treatment at 390 ° for a period of 30 minutes. Then they were characterized by FTIR, DRX and MO. In the physical-chemical characterization of FTIR and XRD, it was not possible to identify significant alterations. In the FTIR spectra of the composites, there is no formation of new identifiable chemical bonds. In the composites XRD diffractograms a profile similar to the ceramic phase was observed, with peaks increasing in intensity and narrowing proportional to the increase of the hydroxyapatite concentration in the composites. In optical microscopy it is possible to observe surfaces with heterogeneous morphology, with signs of roughness and in the cross section we observe a heterogeneous aspect, rich in regions with large agglomerates and lighter particles. Considering the processing aspects, the technique proved to be effective for the development of PEEK /HA composites. (author)

  13. Hardness and wear properties of boron-implanted poly(ether-ether-ketone) and poly-ether-imide

    International Nuclear Information System (INIS)

    Lee Youngchul; Lee, E.H.; Mansur, L.K.

    1992-01-01

    The effects of boron beam irradiation on the hardness, friction, and wear of polymer surfaces were investigated. Typical high-performance thermoplastics, poly(ether-ether-ketone) (PEEK) and a poly-ether-imide (Ultem) were studied after 200 keV boron ion beam treatment at ambient temperature to doses of 2.3x10 14 , 6.8x10 14 , and 2.2x10 15 ions cm -2 . The hardnesses of pristine and boron-implanted materials were characterized by a conventional Knoop method and a load-depth sensing nanoindentation technique. Both measurements showed a significant increase in hardness with increasing dose. The increase in hardness was also found to depend on the penetration depth of the diamond indenter. Wear and friction properties were characterized by a reciprocating sliding friction tester with an SAE 52100 high-carbon, chrome steel ball at 0.5 and 1 N normal loads. Wear and frictional properties varied in a complex fashion with polymer type and dose, but not much with normal load. A substantial reduction in friction coefficient was observed for PEEK at the highest dose but no reduction was observed for Ultem. The wear damage was substantially reduced at the highest dose for both Ultem and PEEK. For the system studied, the highest dose, 2.2x10 15 ions cm -2 , appears to be optimum in improving wear resistance for both PEEK and Ultem. (orig.)

  14. A novel sulfonated poly(ether ether ketone) and cross-linked membranes for fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hongtao; Zhang, Gang; Wu, Jing; Zhao, Chengji; Zhang, Yang; Shao, Ke; Han, Miaomiao; Lin, Haidan; Zhu, Jing; Na, Hui [Alan G MacDiarmid Institute, College of Chemistry, Jilin University, Qianjin Street 2699, Changchun 130012, Jilin (China)

    2010-10-01

    A novel poly(ether ether ketone) (PEEK) containing pendant carboxyl groups has been synthesized by a nucleophilic polycondensation reaction. Sulfonated polymers (SPEEKs) with different ion exchange capacity are then obtained by post-sulfonation process. The structures of PEEK and SPEEKs are characterized by both FT-IR and {sup 1}H NMR. The properties of SPEEKs as candidates for proton exchange membranes are studied. The cross-linking reaction is performed at 140 C using poly(vinyl alcohol) (PVA) as the cross-linker. In comparison with the non-cross-linked membranes, some properties of the cross-linked membranes are significantly improved, such as water uptake, methanol resistance, mechanical and oxidative stabilities, while the proton conductivity decreases. The effect of PVA content on proton conductivity, water uptake, swelling ratio, and methanol permeability is also investigated. Among all the membranes, SPEEK-C-8 shows the highest selectivity of 50.5 x 10{sup 4} S s cm{sup -3}, which indicates that it is a suitable candidate for applications in direct methanol fuel cells. (author)

  15. Rheological, mechanical and tribological properties of carbon-nanofibre reinforced poly (ether ether ketone composites

    Directory of Open Access Journals (Sweden)

    Volker Altstaedt

    2003-12-01

    Full Text Available Poly(ether ether ketone nanocomposites containing vapour-grown carbon nanofibres (CNF were produced using standard polymer processing techniques. At high shear rates no significant increase in resin viscosity was observed. Nevertheless, the addition of the CNFs results in a higher melt strength at 360°C. Electron microscopy confirmed the homogeneous dispersion and alignment of nanofibres in the polymer matrix. Evaluation of the mechanical composite properties revealed a linear increase in tensile stiffness and strength with nanofibre loading fractions up to 15 wt% whilst matrix ductility was maintained up to 10 wt%. An interpretation of the composite performance by short-fibre theory resulted in rather low intrinsic stiffness properties of the vapour-grown CNF. Differential scanning calorimetry was used to investigate crystallization kinetics and degree of crystallinity. The CNFs were found not to act as nucleating sites. Furthermore, unidirectional sliding tests against two different counterpart materials (100Cr6 martensitic bearing steel, X5CrNi18-10 austenitic stainless steel were performed. The carbon nanofibres were found to reduce the wear rate of PEEK significantly.

  16. Proton-conducting membranes based on benzimidazole-containing sulfonated poly(ether ether ketone) compared with their carboxyl acid form

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hongtao; Wu, Jing; Zhao, Chengji; Zhang, Gang; Zhang, Yang; Shao, Ke; Xu, Dan; Lin, Haidan; Han, Miaomiao; Na, Hui [Alan G MacDiarmid Institute, College of Chemistry, Jilin University, Changchun 130012 (China)

    2009-10-15

    A series of sulfonated poly(ether ether ketone) containing pendant carboxyl (C-SPEEKs) have been synthesized using a nucleophilic polycondesation reaction. A condensation reaction between 1,2-diaminobenzene and carboxyl resulted in a new series of copolymers containing benzimidazole groups (SPEEK-BIms). The expected structures of the sulfonated copolymers are confirmed by {sup 1}H NMR. The dependence of ion exchange capacity, water uptake, proton conductivity and methanol diffusion coefficient of SPEEK-BIm membranes has been studied and compared with their carboxyl acid form. The results suggest that the introduction of benzimidazole groups may be responsible for many excellent properties of the membranes for fuel cell. It is noticeable that the markedly improved oxidative stability is benefit for the application of membrane. (author)

  17. Poly (ether ether ketone) membranes for fuel cells; Membranas de poli (eter eter cetona) sulfonado para celulas a combustivel

    Energy Technology Data Exchange (ETDEWEB)

    Marrero, Jacqueline C.; Gomes, Ailton de S.; Filho, Jose C.D., E-mail: jacquecosta@gmail.com [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil); Hui, Wang S. [Universidade de Sao Paulo (USP), Sao Paulo, SP (Brazil); Oliveira, Vivianna S. de [Escola Tecnica Rezende-Rammel, Rio de Janeiro, RJ (Brazil)

    2015-07-01

    Polymeric membranes were developed using a SPEEK polymer matrix (sulphonated poly (ether ether ketone)), containing hygroscopic particles of zirconia (Zr) (incorporated by sol-gel method), for use as electrolyte membranes in fuel cells. SPEEK with different sulfonation degrees were used: 63 and 86%. The thermal analysis (TGA and DSC) was carried out to characterize the membranes and electrochemical impedance spectroscopy (EIS) was carried out to evaluating the proton conductivity of the membranes. Additional analysis were underway in order to characterize these membranes, which include: X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) in order to evaluate the influence of zirconia and sulfonation degree on the properties of the membranes. (author)

  18. Ketone bodies in epilepsy.

    Science.gov (United States)

    McNally, Melanie A; Hartman, Adam L

    2012-04-01

    Seizures that are resistant to standard medications remain a major clinical problem. One underutilized option for patients with medication-resistant seizures is the high-fat, low-carbohydrate ketogenic diet. The diet received its name based on the observation that patients consuming this diet produce ketone bodies (e.g., acetoacetate, β-hydroxybutyrate, and acetone). Although the exact mechanisms of the diet are unknown, ketone bodies have been hypothesized to contribute to the anticonvulsant and antiepileptic effects. In this review, anticonvulsant properties of ketone bodies and the ketogenic diet are discussed (including GABAergic and glutamatergic effects). Because of the importance of ketone body metabolism in the early stages of life, the effects of ketone bodies on developing neurons in vitro also are discussed. Understanding how ketone bodies exert their effects will help optimize their use in treating epilepsy and other neurological disorders. © 2012 The Authors. Journal of Neurochemistry © 2012 International Society for Neurochemistry.

  19. Polyether ether ketone implants achieve increased bone fusion when coated with nano-sized hydroxyapatite

    DEFF Research Database (Denmark)

    Johansson, Pär; Jimbo, Ryo; Naito, Yoshihito

    2016-01-01

    Polyether ether ketone (PEEK) possesses excellent mechanical properties similar to those of human bone and is considered the best alternative material other than titanium for orthopedic spine and trauma implants. However, the deficient osteogenic properties and the bioinertness of PEEK limit its...... fields of application. The aim of this study was to limit these drawbacks by coating the surface of PEEK with nano-scaled hydroxyapatite (HA) minerals. In the study, the biological response to PEEK, with and without HA coating, was investigated. Twenty-four screw-like and apically perforated implants...

  20. Craniofacial reconstruction using patient-specific implants polyether ether ketone with computer-assisted planning.

    Science.gov (United States)

    Manrique, Oscar J; Lalezarzadeh, Frank; Dayan, Erez; Shin, Joseph; Buchbinder, Daniel; Smith, Mark

    2015-05-01

    Reconstruction of bony craniofacial defects requires precise understanding of the anatomic relationships. The ideal reconstructive technique should be fast as well as economical, with minimal donor-site morbidity, and provide a lasting and aesthetically pleasing result. There are some circumstances in which a patient's own tissue is not sufficient to reconstruct defects. The development of sophisticated software has facilitated the manufacturing of patient-specific implants (PSIs). The aim of this study was to analyze the utility of polyether ether ketone (PEEK) PSIs for craniofacial reconstruction. We performed a retrospective chart review from July 2009 to July 2013 in patients who underwent craniofacial reconstruction using PEEK-PSIs using a virtual process based on computer-aided design and computer-aided manufacturing. A total of 6 patients were identified. The mean age was 46 years (16-68 y). Operative indications included cancer (n = 4), congenital deformities (n = 1), and infection (n = 1). The mean surgical time was 3.7 hours and the mean hospital stay was 1.5 days. The mean surface area of the defect was 93.4 ± 43.26 cm(2), the mean implant cost was $8493 ± $837.95, and the mean time required to manufacture the implants was 2 weeks. No major or minor complications were seen during the 4-year follow-up. We found PEEK implants to be useful in the reconstruction of complex calvarial defects, demonstrating a low complication rate, good outcomes, and high patient satisfaction in this small series of patients. Polyether ether ketone implants show promising potential and warrant further study to better establish the role of this technology in cranial reconstruction.

  1. The Influence of Operation Temperature of the Characteristic of Sulfonated Polyether-Ether Ketone Electrolyte Membrane

    International Nuclear Information System (INIS)

    Sri Handayani; Eniya Listiani Dewi

    2008-01-01

    Recently, high temperature Direct Methanol Fuel Cell (DMFC) has been receiving great attention, because provide faster reaction kinetic, the enhance electrode kinetics, reduced size and reduce Pt-based catalyst poisoning by CO. But at high temperature, it will decrease the membrane performance i.e. low proton conductivity affected by humidification and high methanol crossover as happening to Nafion-117 membrane (commercial membrane). To solve this problems, sulfonated polyether-ether ketone and composite (silica additive) as electrolyte membrane at high temperature DMFC was tried to use. In this research, sPEEK with sulfonation degree (SD) 47 % and 68 % and addition silica 3 wt % were used as electrolyte membranes. Proton conductivity and methanol permeability of these membranes were measured at various temperatures (25, 50, 90 and 140 C ). Proton conductivity of membranes were measured by standard bridge impedance spectroscopy (LCR-meter, HIOKI 3522-50) and it was found about 0.01-0.04 S/cm. Methanol permeability of membranes were investigated by diffusion cell and gave the result about 10 - 6 - 10 - 7cm 2 /s. The best sPEEK membrane was sPEEK membrane with SD 68 % and the addition of silica 3 wt%, signed by highest selectivity value (ratio proton conductivity to methanol permeability). Therefore, electrolyte membrane based sulfonated polyether-ether ketone (SD 68 %) with silica could be used at high temperature which give promising as solid electrolyte membrane in application high temperature DMFC. (author)

  2. Biofilm behavior on sulfonated poly(ether-ether-ketone) (sPEEK)

    Energy Technology Data Exchange (ETDEWEB)

    Montero, Juan F.D. [Center for Research on Dental Implants (CEPID), School of Dentistry (ODT), Federal University of Santa Catarina - UFSC, Florianópolis, SC 88040-900 (Brazil); Tajiri, Henrique A.; Barra, Guilherme M.O.; Fredel, Márcio C. [Department of Mechanical Engineering (EMC), Federal University of Santa Catarina (UFSC), Florianópolis, SC 88040-900 (Brazil); Benfatti, Cesar A.M.; Magini, Ricardo S. [Center for Research on Dental Implants (CEPID), School of Dentistry (ODT), Federal University of Santa Catarina - UFSC, Florianópolis, SC 88040-900 (Brazil); Pimenta, Andréa L. [Integrated Laboratories Technologies (InteLAB), Dept. Chemical Engineering (EQA), Federal University of Santa Catarina - UFSC, Florianópolis, SC 88040-970 (Brazil); Department of Biologie, Université de Cergy Pontoise, 2, Av. Adolphe Chauvin, 95302 Cergy Pontoise (France); Souza, Júlio C.M., E-mail: julio.c.m.souza@ufsc.br [Center for Research on Dental Implants (CEPID), School of Dentistry (ODT), Federal University of Santa Catarina - UFSC, Florianópolis, SC 88040-900 (Brazil); Center for Microelectromechanical Systems (CMEMS), Dept. Mechanical Engineering (DEM), Campus Azurém, 4800-058 Guimarães (Portugal)

    2017-01-01

    Poly(ether-ether-ketone) (PEEK) has also shown to be very attractive for incorporating therapeutic compounds thanks to a sulfonation process which modifies the material structure resulting in a sulfonated-PEEK (sPEEK). Concerning biomedical applications, the objective of this work was to evaluate the influence of different sulfonation degree of sPEEK on the biofilm growth. PEEK samples were functionalized by using sulphuric acid (98%) and then dissolved into dimethyl-sulfoxide. A dip coating technique was used to synthesize sPEEK thin films. The sulfonation degree of the materials was analyzed by FT-IR, H NMR, TG and IEC. The surfaces were characterized by scanning electron microscopy, profilometry and contact angle analyses. Subsequently, the biofilm formation on sulfonated-PEEK based on Streptococcus mutans and Enterococcus faecalis was measured by spectrophotometry, colony forming units (CFU mL{sup −1}) and SEM. Results obtained from thermal and chemical analyses showed an intensification in sulfonation degree for sPEEK at 2 and 2.5 h. The E. faecalis or S. mutans biofilm growth revealed statistically significant differences (p < 0.05) between 2 and 3 h sulfonation groups. A significant decrease (p < 0.05) in CFU mL{sup −1} was recorded for S. mutans or E. faecalis biofilm grown on 2.5 or 3 h sPEEK. Regarding the thermal-chemical and microbiologic analyses, the sulfonation degree of sPEEK ranging from 2 up to 3 h was successful capable to decrease the biofilm growth. That revealed an alternative strategy to embed anti-biofilm and therapeutic compounds into PEEK avoiding infections in biomedical applications. - Highlights: • PEEK can be dissolved to incorporate therapeutic compounds. • High sulfonation degree on sPEEK affected the biofilm growth. • The sulfonation degree must be controlled to maintain the properties of sPEEK.

  3. Biofilm behavior on sulfonated poly(ether-ether-ketone) (sPEEK)

    International Nuclear Information System (INIS)

    Montero, Juan F.D.; Tajiri, Henrique A.; Barra, Guilherme M.O.; Fredel, Márcio C.; Benfatti, Cesar A.M.; Magini, Ricardo S.; Pimenta, Andréa L.; Souza, Júlio C.M.

    2017-01-01

    Poly(ether-ether-ketone) (PEEK) has also shown to be very attractive for incorporating therapeutic compounds thanks to a sulfonation process which modifies the material structure resulting in a sulfonated-PEEK (sPEEK). Concerning biomedical applications, the objective of this work was to evaluate the influence of different sulfonation degree of sPEEK on the biofilm growth. PEEK samples were functionalized by using sulphuric acid (98%) and then dissolved into dimethyl-sulfoxide. A dip coating technique was used to synthesize sPEEK thin films. The sulfonation degree of the materials was analyzed by FT-IR, H NMR, TG and IEC. The surfaces were characterized by scanning electron microscopy, profilometry and contact angle analyses. Subsequently, the biofilm formation on sulfonated-PEEK based on Streptococcus mutans and Enterococcus faecalis was measured by spectrophotometry, colony forming units (CFU mL −1 ) and SEM. Results obtained from thermal and chemical analyses showed an intensification in sulfonation degree for sPEEK at 2 and 2.5 h. The E. faecalis or S. mutans biofilm growth revealed statistically significant differences (p < 0.05) between 2 and 3 h sulfonation groups. A significant decrease (p < 0.05) in CFU mL −1 was recorded for S. mutans or E. faecalis biofilm grown on 2.5 or 3 h sPEEK. Regarding the thermal-chemical and microbiologic analyses, the sulfonation degree of sPEEK ranging from 2 up to 3 h was successful capable to decrease the biofilm growth. That revealed an alternative strategy to embed anti-biofilm and therapeutic compounds into PEEK avoiding infections in biomedical applications. - Highlights: • PEEK can be dissolved to incorporate therapeutic compounds. • High sulfonation degree on sPEEK affected the biofilm growth. • The sulfonation degree must be controlled to maintain the properties of sPEEK.

  4. The surface modifications of multi-walled carbon nanotubes for multi-walled carbon nanotube/poly(ether ether ketone) composites

    International Nuclear Information System (INIS)

    Cao, Zongshuang; Qiu, Li; Yang, Yongzhen; Chen, Yongkang; Liu, Xuguang

    2015-01-01

    Graphical abstract: Multi-walled carbon nanotube/poly(ether ether ketone) (MWCNT/PEEK) composites incorporating surface modified multi-walled carbon nanotubes (MWCNTs) as fillers were fabricated in a solution blending method in order to explore the dynamic mechanical and tribological properties of MWCNT/PEEK composites systematically. It is evident that surface modifications of MWCNTs have a significant impact on dispersibility of MWCNTs in PEEK, dynamic mechanical and tribological properties of MWCNT/PEEK composites. Typically, a clear effect of surface modifications of MWCNTs on tribological properties of MWCNT/PEEK composites was observed. A significant reduction in frictional coefficient of MWCNT/PEEK composites with the MWCNTs modified with ethanolamine has been achieved and the self-lubricating film on their worn surfaces was also observed. - Highlights: • The dispersibility of surface modified MWCNTs in PEEK has been studied. • MWCNTs modified with ethanolamine have showed a good dispersion in PEEK. • Surface modifications of MWCNTs have a significant impact on both dynamic mechanical and tribological properties of MWCNT/PEEK composites. - Abstract: The effects of surface modifications of multi-walled carbon nanotubes (MWCNTs) on the morphology, dynamic mechanical and tribological properties of multi-walled carbon nanotube/poly(ether ether ketone) (MWCNT/PEEK) composites have been investigated. MWCNTs were treated with mixed acids to obtain acid-functionalized MWCNTs. Then the acid-functionalized MWCNTs were modified with ethanolamine (named e-MWCNTs). The MWCNT/PEEK composites were prepared by a solution-blending method. A more homogeneous distribution of e-MWCNTs within the composites was found with scanning electron microscopy. Dynamic mechanical analysis demonstrated a clear increase in the storage modulus of e-MWCNT/PEEK composites because of the improved interfacial adhesion strength between e-MWCNTs and PEEK. Furthermore, the presence of e

  5. The surface modifications of multi-walled carbon nanotubes for multi-walled carbon nanotube/poly(ether ether ketone) composites

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Zongshuang [Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024 (China); Research Center of Advanced Material Science and Technology, Taiyuan University of Technology, Taiyuan 030024 (China); Qiu, Li [Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024 (China); College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Yang, Yongzhen, E-mail: yyztyut@126.com [Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024 (China); Research Center of Advanced Material Science and Technology, Taiyuan University of Technology, Taiyuan 030024 (China); Chen, Yongkang, E-mail: y.k.chen@herts.ac.uk [Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024 (China); University of Hertfordshire, School of Engineering and Technology, Hatfield, Hertfordshire AL10 9AB (United Kingdom); Liu, Xuguang [Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024 (China); College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024 (China)

    2015-10-30

    Graphical abstract: Multi-walled carbon nanotube/poly(ether ether ketone) (MWCNT/PEEK) composites incorporating surface modified multi-walled carbon nanotubes (MWCNTs) as fillers were fabricated in a solution blending method in order to explore the dynamic mechanical and tribological properties of MWCNT/PEEK composites systematically. It is evident that surface modifications of MWCNTs have a significant impact on dispersibility of MWCNTs in PEEK, dynamic mechanical and tribological properties of MWCNT/PEEK composites. Typically, a clear effect of surface modifications of MWCNTs on tribological properties of MWCNT/PEEK composites was observed. A significant reduction in frictional coefficient of MWCNT/PEEK composites with the MWCNTs modified with ethanolamine has been achieved and the self-lubricating film on their worn surfaces was also observed. - Highlights: • The dispersibility of surface modified MWCNTs in PEEK has been studied. • MWCNTs modified with ethanolamine have showed a good dispersion in PEEK. • Surface modifications of MWCNTs have a significant impact on both dynamic mechanical and tribological properties of MWCNT/PEEK composites. - Abstract: The effects of surface modifications of multi-walled carbon nanotubes (MWCNTs) on the morphology, dynamic mechanical and tribological properties of multi-walled carbon nanotube/poly(ether ether ketone) (MWCNT/PEEK) composites have been investigated. MWCNTs were treated with mixed acids to obtain acid-functionalized MWCNTs. Then the acid-functionalized MWCNTs were modified with ethanolamine (named e-MWCNTs). The MWCNT/PEEK composites were prepared by a solution-blending method. A more homogeneous distribution of e-MWCNTs within the composites was found with scanning electron microscopy. Dynamic mechanical analysis demonstrated a clear increase in the storage modulus of e-MWCNT/PEEK composites because of the improved interfacial adhesion strength between e-MWCNTs and PEEK. Furthermore, the presence of e

  6. Study of sulfonated polyether ether ketone with pendant lithiated fluorinated sulfonic groups as ion conductive binder in lithium-ion batteries

    Science.gov (United States)

    Wei, Zengbin; Xue, Lixin; Nie, Feng; Sheng, Jianfang; Shi, Qianru; Zhao, Xiulan

    2014-06-01

    In an attempt to reduce the Li+ concentration polarization and electrolyte depletion from the electrode porous space, sulfonated polyether ether ketone with pendant lithiated fluorinated sulfonic groups (SPEEK-FSA-Li) is prepared and attempted as ionic conductivity binder. Sulfonated aromatic poly(ether ether ketone) exhibits strong adhesion and chemical stability, and lithiated fluorinated sulfonic side chains help to enhance the ionic conductivity and Li+ ion diffusion due to the charge delocalization over the sulfonic chain. The performances are evaluated by cyclic voltammetry, electrochemical impedance spectroscopy, charge-discharge cycle testing, 180° peel testing, and compared with the cathode prepared with polyvinylidene fluoride binder. The electrode prepared with SPEEK-FSA-Li binder forms the relatively smaller resistances of both the SEI and the charge transfer of lithium ion transport. This is beneficial to lithium ion intercalation and de-intercalation of the cathode during discharging-charging, therefore the cell prepared with SPEEK-FSA-Li shows lower charge plateau potential and higher discharge plateau potential. Compared with PVDF, the electrode with ionic binder shows smaller decrease in capacity with the increasing of cycle rate. Meanwhile, adhesion strength of electrode prepared with SPEEK-FSA-Li is more than five times greater than that with PVDF.

  7. Implant Failure After Motec Wrist Joint Prosthesis Due to Failure of Ball and Socket-Type Articulation-Two Patients With Adverse Reaction to Metal Debris and Polyether Ether Ketone.

    Science.gov (United States)

    Karjalainen, Teemu; Pamilo, Konsta; Reito, Aleksi

    2018-04-21

    We describe 2 cases of articulation-related failures resulting in revision surgery after a Motec total wrist arthroplasty: one with an adverse reaction to metal debris and the other with an adverse reaction to polyether ether ketone. In the first patient, blood cobalt and chrome levels were elevated and magnetic resonance imaging showed clear signs of a pseudotumor. The other patient had an extensive release of polyether ether ketone particles into the surrounding synovia due to adverse wear conditions in the cup, leading to the formation of a fluid-filled cyst sac with a black lining and diffuse lymphocyte-dominated inflammation in the synovia. We recommend regular follow-up including x-rays, monitoring of cobalt and chrome ion levels, and a low threshold for cross-sectional imaging in patients who have undergone total wrist arthroplasty with a Motec joint prosthesis. Wear-related problems can also develop in implants in which polyether ether ketone is the bulk material. Copyright © 2018 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.

  8. Local deformation behavior of surface porous polyether-ether-ketone.

    Science.gov (United States)

    Evans, Nathan T; Torstrick, F Brennan; Safranski, David L; Guldberg, Robert E; Gall, Ken

    2017-01-01

    Surface porous polyether-ether-ketone has the ability to maintain the tensile monotonic and cyclic strength necessary for many load bearing orthopedic applications while providing a surface that facilitates bone ingrowth; however, the relevant deformation behavior of the pore architecture in response to various loading conditions is not yet fully characterized or understood. The focus of this study was to examine the compressive and wear behavior of the surface porous architecture using micro Computed Tomography (micro CT). Pore architectures of various depths (~0.5-2.5mm) and pore sizes (212-508µm) were manufactured using a melt extrusion and porogen leaching process. Compression testing revealed that the pore architecture deforms in the typical three staged linear elastic, plastic, and densification stages characteristic of porous materials. The experimental moduli and yield strengths decreased as the porosity increased but there was no difference in properties between pore sizes. The porous architecture maintained a high degree of porosity available for bone-ingrowth at all strains. Surface porous samples showed no increase in wear rate compared to injection molded samples, with slight pore densification accompanying wear. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Stress shielding and fatigue limits of poly-ether-ether-ketone dental implants.

    Science.gov (United States)

    Lee, Woo-Taek; Koak, Jai-Young; Lim, Young-Jun; Kim, Seong-Kyun; Kwon, Ho-Beom; Kim, Myung-Joo

    2012-05-01

    The poly-ether-ether-ketone (PEEK) polymer is of great interest as an alternative to titanium in orthopedics because of its biocompatibility and low elastic modulus. This study evaluated the fatigue limits of PEEK and the effects of the low elastic modulus PEEK in relation to existing dental implants. Compressive loading tests were performed with glass fiber-reinforced PEEK (GFR-PEEK), carbon fiber-reinforced PEEK (CFR-PEEK), and titanium rods. Among these tests, GFR-PEEK fatigue tests were performed according to ISO 14801. For the finite element analysis, three-dimensional models of dental implants and bone were constructed. The implants in the test groups were coated with a 0.5-mm thick and 5-mm long PEEK layer on the upper intrabony area. The strain energy densities (SED) were calculated, and the bone resorption was predicted. The fatigue limits of GFR-PEEK were 310 N and were higher than the static compressive strength of GFR-PEEK. The bone around PEEK-coated implants showed higher levels of SED than the bone in direct contact with the implants, and the wider diameter and stiffer implants showed lower levels of SED. The compressive strength of the GFR-PEEK and CFR-PEEK implants ranged within the bite force of the anterior and posterior dentitions, respectively, and the PEEK implants showed adequate fatigue limits for replacing the anterior teeth. Dental implants with PEEK coatings and PEEK implants may reduce stress shielding effects. Dental implant application of PEEK polymer-fatigue limit and stress shielding. Copyright © 2012 Wiley Periodicals, Inc.

  10. Effect of surface finishing on friction and wear of Poly-Ether-Ether-Ketone (PEEK under oil lubrication

    Directory of Open Access Journals (Sweden)

    Thiago Fontoura de Andrade

    Full Text Available Abstract The tribological properties of poly-ether-ether-ketone (PEEK containing 30% of carbon fiber were studied in an oil-lubricated environment and different surface finishing of the metallic counterbody. Four different finishing processes, commonly used in the automotive industry, were chosen for this study: turning, grinding, honing and polishing. The test system used was tri-pin on disc with pins made of PEEK and counterbody made of steel; they were fully immersed in ATF Dexron VI oil. Some test parameters were held constant, such as the apparent pressure of 2 MPa, linear velocity of 2 m/s, oil temperature at 85 °C, and the time - 120 minutes. The lubrication regime for the apparent pressure of 1 MPa to 7 MPa range was also studied at different sliding speeds. A direct correlation was found between the wear rate, friction coefficient and the lubrication regime, wherein wear under hydrodynamic lubrication was, on average, approximately 5 times lower, and the friction coefficient 3 times lower than under boundary lubrication.

  11. Low-temperature direct heterogeneous bonding of polyether ether ketone and platinum.

    Science.gov (United States)

    Fu, Weixin; Shigetou, Akitsu; Shoji, Shuichi; Mizuno, Jun

    2017-10-01

    Direct heterogeneous bonding between polyether ether ketone (PEEK) and Pt was realized at the temperatures lower than 150°C. In order to create sufficient bondability to diverse materials, the surface was modified by vacuum ultraviolet (VUV) irradiation, which formed hydrate bridges. For comparison, direct bonding between surfaces atomically cleaned via Ar fast atom bombardment (FAB) was conducted in a vacuum. The VUV irradiation was found to be effective for creating an ultrathin hydrate bridge layer from the residual water molecules in the chamber. Tight bonds were formed through dehydration of the hydrate bridges by heating at 150°C, which also contributed to enhancing interdiffusion across the interface. The VUV-modified surfaces showed bondability as good as that of the FAB-treated surfaces, and the VUV-modified samples had shear strengths at the same level as those of FAB-treated surfaces. This technology will be of practical use in the packaging of lightweight, flexible biomedical devices. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. PEEK (polyether-ether-ketone)-coated nitinol wire: Film stability for biocompatibility applications

    Science.gov (United States)

    Sheiko, Nataliia; Kékicheff, Patrick; Marie, Pascal; Schmutz, Marc; Jacomine, Leandro; Perrin-Schmitt, Fabienne

    2016-12-01

    High quality biocompatible poly-ether-ether-ketone (PEEK) coatings were produced on NiTi shape memory alloy wires using dipping deposition from colloidal aqueous PEEK dispersions after substrate surface treatment. The surface morphology and microstructure were investigated by Scanning Electron Microscopy at every step of the process from the as-received Nitinol substrate to the ultimate PEEK-coated NiTi wire. Nanoscratch tests were carried out to access the adhesive behavior of the polymer coated film to the NiTi. The results indicate that the optimum process conditions in cleaning, chemical etching, and electropolishing the NiTi, were the most important and determining parameters to be achieved. Thus, high quality PEEK coatings were obtained on NiTi wires, straight or curved (even with a U-shape) with a homogeneous microstructure along the wire length and a uniform thickness of 12 μm without any development of cracks or the presence of large voids. The biocompatibility of the PEEK coating film was checked in fibrobast cultured cells. The coating remains stable in biological environment with negligible Ni ion release, no cytotoxicity, and no delamination observed with time.

  13. Nanocomposite Based on Functionalized Gold Nanoparticles and Sulfonated Poly(ether ether ketone Membranes: Synthesis and Characterization

    Directory of Open Access Journals (Sweden)

    Iole Venditti

    2017-03-01

    Full Text Available Gold nanoparticles, capped by 3-mercapto propane sulfonate (Au-3MPS, were synthesized inside a swollen sulfonated poly(ether ether ketone membrane (sPEEK. The formation of the Au-3MPS nanoparticles in the swollen sPEEK membrane was observed by spectroscopic and microscopic techniques. The nanocomposite containing the gold nanoparticles grown in the sPEEK membrane, showed the plasmon resonance λmax at about 520 nm, which remained stable over a testing period of three months. The size distribution of the nanoparticles was assessed, and the sPEEK membrane roughness, both before and after the synthesis of nanoparticles, was studied by AFM. The XPS measurements confirm Au-3MPS formation in the sPEEK membrane. Moreover, AFM experiments recorded in fluid allowed the production of images of the Au-3MPS@sPEEK composite in water at different pH levels, achieving a better understanding of the membrane behavior in a water environment; the dynamic hydration process of the Au-3MPS@sPEEK membrane was investigated. These preliminary results suggest that the newly developed nanocomposite membranes could be promising materials for fuel cell applications.

  14. Fatigue data for polyether ether ketone (PEEK) under fully-reversed cyclic loading.

    Science.gov (United States)

    Shrestha, Rakish; Simsiriwong, Jutima; Shamsaei, Nima

    2016-03-01

    In this article, the data obtained from the uniaxial fully-reversed fatigue experiments conducted on polyether ether ketone (PEEK), a semi-crystalline thermoplastic, are presented. The tests were performed in either strain-controlled or load-controlled mode under various levels of loading. The data are categorized into four subsets according to the type of tests, including (1) strain-controlled fatigue tests with adjusted frequency to obtain the nominal temperature rise of the specimen surface, (2) strain-controlled fatigue tests with various frequencies, (3) load-controlled fatigue tests without step loadings, and (4) load-controlled fatigue tests with step loadings. Accompanied data for each test include the fatigue life, the maximum (peak) and minimum (valley) stress-strain responses for each cycle, and the hysteresis stress-strain responses for each collected cycle in a logarithmic increment. A brief description of the experimental method is also given.

  15. Electrochemical investigation of sulfonated poly(ether ether ketone)/clay nanocomposite membranes for moderate temperature fuel cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Hasani-Sadrabadi, Mohammad Mahdi [Polymer Engineering Department, Amirkabir University of Technology, Tehran (Iran); Biomedical Engineering Department, Amirkabir University of Technology, Tehran (Iran); Dashtimoghadam, Erfan; Sarikhani, Kaveh [Polymer Engineering Department, Amirkabir University of Technology, Tehran (Iran); Majedi, Fatemeh S. [Biomedical Engineering Department, Amirkabir University of Technology, Tehran (Iran); Khanbabaei, Ghader [Polymer Science and Technology Division, Research Institute of Petroleum Industry, Tehran (Iran)

    2010-05-01

    In the present study, polyelectrolyte membranes based on partially sulfonated poly(ether ether ketone) (sPEEK) with various degrees of sulfonation are prepared. The optimum degree of sulfonation is determined according to the transport properties and hydrolytic stability of the membranes. Subsequently, various amounts of the organically modified montmorillonite (MMT) are introduced into the sPEEK matrices via the solution intercalation technique. The proton conductivity and methanol permeability measurements of the fabricated composite membranes reveal a high proton to methanol selectivity, even at elevated temperatures. Membrane based on sPEEK and 1 wt% of MMT, as the optimum nanoclay composition, exhibits a high selectivity and power density at the concentrated methanol feed. Moreover, it is found that the optimum nanocomposite membrane not only provides higher performance compared to the neat sPEEK and Nafion {sup registered} 117 membranes, but also exhibits a high open circuit voltage (OCV) at the elevated methanol concentration. Owing to the high proton conductivity, reduced methanol permeability, high power density, convenient processability and low cost, sPEEK/MMT nanocomposite membranes could be considered as the alternative membranes for moderate temperature direct methanol fuel cell applications. (author)

  16. Novel sulfonated poly (ether ether keton)/polyetherimide acid-base blend membranes for vanadium redox flow battery applications

    International Nuclear Information System (INIS)

    Liu, Shuai; Wang, Lihua; Ding, Yue; Liu, Biqian; Han, Xutong; Song, Yanlin

    2014-01-01

    Highlights: • SPEEK/PEI acid-base blend membranes are prepared for VRB applications. • The acid-base blend membranes have much lower vanadium ion permeability. • The energy efficiency of SPEEK/PEI maintain around 86.9% after 50 cycles. - Abstract: Novel acid-base blend membranes composed of sulfonated poly (ether ether ketone) (SPEEK) and polyetherimide (PEI) were prepared for vanadium redox flow battery (VRB). The blend membranes were characterized by Fourier transform infrared spectroscopy (FT-IR) and scanning electronic microscopy (SEM). The ion exchange capacity (IEC), proton conductivity, water uptake, vanadium ion permeability and mechanical properties were measured. As a result, the acid-base blend membranes exhibit higher water uptake, IEC and lower vanadium ion permeability compared to Nafion117 membranes and all these properties decrease with the increase of PEI. In VRB single cell test, the VRB with blend membranes shows lower charge capacity loss, higher coulombic efficiency (CE) and energy efficiency (EE) than Nafion117 membrane. Furthermore, the acid-base blend membranes present stable performance up to 50 cycles with no significant decline in CE and EE. All experimental results indicate that the SPEEK/PEI (S/P) acid-base blend membranes show promising prospects for VRB

  17. Repairing a Facial Cleft by Polyether-Ether-Ketone Implant Combined With Titanium Mesh.

    Science.gov (United States)

    Deng, Yuan; Tang, Weiwei; Li, Zhengkang

    2018-05-15

    The Tessier Number 4 cleft is one of the rarest, most complex craniofacial anomalies that presents difficulties in surgical treatment. In this article, we report a case of simultaneous facial depression, eye displacement, and medial canthus deformity. In this case, the maxillary bony defect was reconstructed using computer-assisted design computer-assisted manufacturing (CAD-CAM) polyether-ether-ketone (PEEK) material, and the orbital floor defect was repaired with AO prefabricated titanium mesh. Additionally, the medial canthus was modified with canthopexy and a single Z-plasty flap. Owing to its relative rarity and varied clinical presentations, no definitive operative methods have been accepted for Tessier No. 4 facial cleft. This study presents the combination of CAD-CAM manufactured PEEK material and titanium mesh as an alternative approach for reconstructing the bony defect of Tessier No. 4 facial clefts.

  18. Enhanced osteoblast responses to poly ether ether ketone surface modified by water plasma immersion ion implantation.

    Science.gov (United States)

    Wang, Heying; Lu, Tao; Meng, Fanhao; Zhu, Hongqin; Liu, Xuanyong

    2014-05-01

    Poly ether ether ketone (PEEK) offers a set of characteristics superior for human implants; however, its application is limited by the bio-inert surface property. In this work, PEEK surface was modified using single step plasma immersion ion implantation (PIII) treatment with a gas mixture of water vapor as a plasma resource and argon as an ionization assistant. Field emission scanning electron microscopy, atomic force microscopy and X-ray photoelectron spectroscopy were used to investigate the microstructure and composition of the modified PEEK surface. The water contact angle and zeta-potential of the surfaces were also measured. Osteoblast precursor cells MC3T3-E1 and rat bone mesenchymal stem cells were cultured on the PEEK samples to evaluate their cytocompatibility. The obtained results show that the hydroxyl groups as well as a "ravined structure" are constructed on water PIII modified PEEK. Compared with pristine PEEK, the water PIII treated PEEK is more favorable for osteoblast adhesion, spreading and proliferation, besides, early osteogenic differentiation indicated by the alkaline phosphatase activity is also up-regulated. Our study illustrates enhanced osteoblast responses to the PEEK surface modified by water PIII, which gives positive information in terms of future biomedical applications. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Mechanical properties of orthodontic wires covered with a polyether ether ketone tube.

    Science.gov (United States)

    Shirakawa, Nobukazu; Iwata, Toshio; Miyake, Shinjiro; Otuka, Takero; Koizumi, So; Kawata, Toshitugu

    2018-03-21

    To evaluate the esthetics and frictional force of an orthodontic wire passed through a newly designed tube made of a polyether ether ketone (PEEK) resin. Two types of standard PEEK tubes were prepared at 0.5 × 0.6ф and 0.8 × 0.9ф, and different archwires were passed through the tubes. Color values were determined according to brightness and hues. Friction was assessed with different bracket-wire combinations, and surface roughness was determined by stereomicroscopy before and after the application of friction. The PEEK tube showed a color difference that was almost identical to that of coated wires conventionally used in clinical practice, indicating a sufficient esthetic property. The result of the friction test showed that the frictional force was greatly reduced by passing the archwire through the PEEK tube in almost all of the archwires tested. Use of the new PEEK tube demonstrated a good combination of esthetic and functional properties for use in orthodontic appliances.

  20. Preparation and characterization of poly (methyl methacrylate) and sulfonated poly (ether ether ketone) blend ultrafiltration membranes for protein separation applications

    International Nuclear Information System (INIS)

    Arthanareeswaran, G.; Thanikaivelan, P.; Raajenthiren, M.

    2009-01-01

    Poly (methyl methacrylate) (PMMA) and poly (methyl methacrylate)/sulfonated poly (ether ether ketone) (SPEEK) blend membranes were prepared by phase inversion technique in various composition using N,N'-dimethylformamide as solvent. The prepared membranes were characterized in terms of pure water flux, water content, porosity and thermal stability. The addition of SPEEK to the casting solution resulted in membranes with high pure water flux, water content, porosity and slightly low thermal stability. The cross sectional views of the blend membranes under electron microscope confirm the porosity and water flux results. The effect of the addition of SPEEK into the PMMA matrix on the extent of bovine serum albumin (BSA) separation was studied. It was found that the permeate flux increased significantly while the rejection of BSA from aqueous solution reduced moderately during ultrafiltration (UF) process. The effect was attributed to the increase in porosity and charge of the membrane due to the addition of SPEEK into the PMMA blend solution

  1. Synthesis and Characterization of Sulfonated Graphene Oxide Reinforced Sulfonated Poly (Ether Ether Ketone (SPEEK Composites for Proton Exchange Membrane Materials

    Directory of Open Access Journals (Sweden)

    Ning Cao

    2018-03-01

    Full Text Available As a clean energy utilization device, full cell is gaining more and more attention. Proton exchange membrane (PEM is a key component of the full cell. The commercial-sulfonated, tetrafluoroethylene-based fluoropolymer-copolymer (Nafion membrane exhibits excellent proton conductivity under a fully humidified environment. However, it also has some disadvantages in practice, such as high fuel permeability, a complex synthesis process, and high cost. To overcome these disadvantages, a low-cost and novel membrane was developed. The sulfonated poly (ether ether ketone (SPEEK was selected as the base material of the proton exchange membrane. Sulfonated graphene (SG was cross-linked with SPEEK through the elimination reaction of hydrogen bonds. It was found that the sulfonic acid groups and hydrophilic oxygen groups increased obviously in the resultant membrane. Compared with the pure SPEEK membrane, the SG-reinforced membrane exhibited better proton conductivity and methanol permeability prevention. The results indicate that the SG/SPEEK could be applied as a new proton exchange membrane in fuel cells.

  2. Evaluation of atmospheric solid analysis probe ionization coupled to ion mobility mass spectrometry for characterization of poly(ether ether ketone) polymers

    Energy Technology Data Exchange (ETDEWEB)

    Cossoul, Emilie; Hubert-Roux, Marie; Sebban, Muriel [Normandie Université, COBRA, UMR6014 and FR3038, Université de Rouen, INSA de Rouen, CNRS, IRCOF, 1 rue Tesnière, 76821 Mont-Saint-Aignan Cedex (France); Churlaud, Florence [Arkema, Centre d’Etude de Recherche et Développement, 27470 Serquigny (France); Oulyadi, Hassan [Normandie Université, COBRA, UMR6014 and FR3038, Université de Rouen, INSA de Rouen, CNRS, IRCOF, 1 rue Tesnière, 76821 Mont-Saint-Aignan Cedex (France); Afonso, Carlos, E-mail: carlos.afonso@univ-rouen.fr [Normandie Université, COBRA, UMR6014 and FR3038, Université de Rouen, INSA de Rouen, CNRS, IRCOF, 1 rue Tesnière, 76821 Mont-Saint-Aignan Cedex (France)

    2015-01-26

    Highlights: • Solvent free approach. • Production of intact small oligomers of PEEK with ASAP ionization. • Comparison of the MS/MS spectra from M{sup +}· and [M + H]{sup +} precursor ions. • Identification of end-groups using tandem mass spectrometry. - Abstract: Recently, the interest of the coupling between atmospheric solid analysis probe (ASAP) and ion mobility–mass spectrometry has been revealed in the field of polymers. This method associates a direct ionization technique with a bi-dimensional separation method. Poly(ether ether ketones) (PEEK) belong to the family of the poly(aryl ether ketones) (PAEK) which are high performance aromatic polymers usually used in aerospace, electronics and nuclear industries. PEEK are important commercial thermoplastics with excellent chemical resistance and good mechanical properties. Because of their low solubility, few structural characterization studies of PEEK have been reported. In mass spectrometry, only MALDI-TOF analyses for polymer synthesis monitoring have been described with the use of strong acids such as sulfuric acid. This work demonstrates that ASAP is particularly efficient for analysis of PEEK in a solvent free approach with the production of intact small oligomers (n ≤ 2). Five types of PEEK oligomers with different end-groups were evidenced. With MALDI-TOF, the same end-groups with almost the same relative abundance were obtained which support the hypothesis that the oligomers detected in ASAP are intact small oligomers and not fragments or pyrolysis products. This is particularly interesting as generally the ASAP analysis of polymers yields pyrolysis products with the loss of end-group information. The end-groups assignments have been confirmed by tandem mass spectrometry (MS/MS) experiments on the M{sup +}· molecular ions, which allowed highlighting some specific neutral or radical losses as well as two diagnostic product ions. Thus, ASAP-IM/MS/MS proves to be a fast and efficient

  3. Treatment of two different water resources in desalination and microbial fuel cell processes by poly sulfone/Sulfonated poly ether ether ketone hybrid membrane

    International Nuclear Information System (INIS)

    Ghasemi, Mostafa; Wan Daud, Wan Ramli; Alam, Javed; Ilbeygi, Hamid; Sedighi, Mehdi; Ismail, Ahmad Fauzi; Yazdi, Mohammad H.; Aljlil, Saad A.

    2016-01-01

    The PS (Polysulfone)/SPEEK (sulfonated poly ether ether ketone) hybrid membranes were fabricated and modified with low and high DS (degrees of sulfonation) for the desalination of brackish water and proton exchange membrane in microbial fuel cell. The results illustrated that SPEEK has changed the morphology of membranes and increase their hydrophilicity. PS/SPEEK with lower DS (29%) had the rejection percentage of 62% for NaCl and 68% for MgSO_4; while it was 67% and 81% for PS/SPEEK (76%) at 4 bars. Furthermore, the water flux for PS at 10 bar was 12.41 L m"−"2 h"−"1. It was four times higher for PS/SPEEK (29%) which means 49.5 L m"−"2 h"−"1 and 13 times higher for PS/SPEEK (76%) with means 157.76 L m"−"2 h"−"1. However, in MFC (microbial fuel cell), the highest power production was 97.47 mW/m"2 by PS/SPEEK (29%) followed by 41.42 mW/m"2 for PS/SPEEK (76%), and 9.4 mW/m"2 for PS. This revealed that the sulfonation of PEEK (poly ether ether ketone) made it a better additive for PS for desalination, because it created a membrane with higher hydrophilicity, better pore size and better for salt rejection. Although for the separator, the degree of sulfonation was limited; otherwise it made a membrane to transfer some of the unwanted ions. - Highlights: • Fabrication of a composite membrane for desalination and MFC. • PS/SPEEK (76%) had the lowest contact angle (48.8) and highest hydrophilicity than PS and PS/SPEEK (29%). • PS/SPEEK (29%) was the best separator for use in MFC. • PS/SPEEK (76%) had the highest flux (61.3 L m"−"2 h"−"1) for desalination.

  4. Catalytic enantioselective Reformatsky reaction with ketones

    NARCIS (Netherlands)

    Fernandez-Ibanez, M. Angeles; Macia, Beatriz; Minnaard, Adriaan J.; Feringa, Ben L.

    2008-01-01

    Chiral tertiary alcohols were obtained with good yields and enantioselectivities via a catalytic Reformatsky reaction with ketones, including the challenging diaryl ketones, using chiral BINOL derivatives.

  5. Rhodium-catalyzed Asymmetric Hydrogenation of α-Dehydroamino Ketones: A General Approach to Chiral α-amino Ketones.

    Science.gov (United States)

    Gao, Wenchao; Wang, Qingli; Xie, Yun; Lv, Hui; Zhang, Xumu

    2016-01-01

    Rhodium/DuanPhos-catalyzed asymmetric hydrogenation of aliphatic α-dehydroamino ketones has been achieved and afforded chiral α-amino ketones in high yields and excellent enantioselectives (up to 99 % ee), which could be reduced further to chiral β-amino alcohols by LiAlH(tBuO)3 with good yields. This protocol provides a readily accessible route for the synthesis of chiral α-amino ketones and chiral β-amino alcohols. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Graft-crosslinked copolymers based on poly(arylene ether ketone)-gc-sulfonated poly(arylene ether sulfone) for PEMFC applications.

    Science.gov (United States)

    Zhang, Xuan; Hu, Zhaoxia; Luo, Linqiang; Chen, Shanshan; Liu, Jianmei; Chen, Shouwen; Wang, Lianjun

    2011-07-15

    Novel poly(arylene ether ketone) polymers with fluorophenyl pendants and phenoxide-terminated wholly sulfonated poly(arylene ether sulfone) oligomers are prepared via Ni(0)-catalyzed and nucleophilic polymerization, respectively, and subsequently used as starting materials to obtain graft-crosslinked membranes as polymer electrolyte membranes. The phenoxide-terminated sulfonated moieties are introduced as hydrophilic parts as well as crosslinking units. The chemical structure and morphology of the obtained membranes are confirmed by (1) H NMR and tapping-mode AFM. The properties required for fuel cell applications, including water uptake and dimensional change, as well as proton conductivity, are investigated. AFM results show a clear nanoscale phase-separation microstructure of the obtained membranes. The membranes show good dimensional stability and reasonably high proton conductivities under 30-90% relative humidity. The anisotropic proton conductivity ratios (σ(formula see text) ) of the membranes in water are in the range 0.65-0.92, and increase with an increase in hydrophilic block length. The results indicate that the graft-crosslinked membranes are promising candidates for applications as polymer electrolyte membranes. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. A new interpretation of SAXS peaks in sulfonated poly(ether ether ketone) (sPEEK) membranes for fuel cells.

    Science.gov (United States)

    Mendil-Jakani, H; Zamanillo Lopez, I; Legrand, P M; Mareau, V H; Gonon, L

    2014-06-21

    The structure of a commercial sulfonated poly(ether ether ketone) (sPEEK) membrane was analyzed by Small-Angle X-Ray Scattering (SAXS) for different water uptakes obtained after immersion in liquid water at various temperatures. For low membrane swelling, the SAXS profile displays only a wide-angle peak in the 0.2-0.3 Å(-1) region. As the membrane swells, two supplementary correlation peaks arise and shift towards small angles, which are the signature of a structural evolution of the membrane, whereas the wide angle peak remains stable. The SAXS spectra of sPEEK membranes can thus display three correlation peaks simultaneously. Therefore we propose a new interpretation of these SAXS spectra which conclude that the two small angle peaks are attributed to the so-called matrix and ionomer peaks and the wide-angle peak is ascribed to the mean separation distance between sulfonic acid groups grafted onto the polymer backbone. This peak attribution implies that the sPEEK nano-phase separation is triggered by an immersion in hot water (ionomer peak apparition). Our new peak attribution was confirmed by studying the impact of temperature, electron density contrast and ionic exchange capacity.

  8. Crosslinked poly(vinyl alcohol)/sulfonated poly(ether ether ketone) blend membranes for fuel cell applications - Surface energy characteristics and proton conductivity

    Energy Technology Data Exchange (ETDEWEB)

    Kanakasabai, P.; Vijay, P.; Deshpande, Abhijit P.; Varughese, Susy [Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai 600 036 (India)

    2011-02-01

    Ionic polymers, their blends and composites are considered potential candidates for application as electrolytes in fuel cells. While developing new materials for membranes, it is important to understand the interactions of these electrolytic materials with electrodes/catalysts and with reactants/products. Some of these interactions can be understood by estimating the surface energy and wettability of the membrane materials. In this work, polyvinyl alcohol with varying degrees of sulfonation and its blend with sulfonated poly(ether ether ketone) are prepared and studied for their wettability characteristics using goniometry. The surface energy and its components are estimated using different approaches and compared. Properties such as the ion-exchange capacity, the proton conductivity and the water sorption/desorption behaviour are also investigated to understand the relationship with wettability and surface energy and its components. Among the different methods, the van Oss acid-base and the modified Berthelot approaches yield comparable estimates for the total surface energy. (author)

  9. Effect of chemical etching on the Cu/Ni metallization of poly (ether ether ketone)/carbon fiber composites

    International Nuclear Information System (INIS)

    Di Lizhi; Liu Bin; Song Jianjing; Shan Dan; Yang Dean

    2011-01-01

    Poly(ether ether ketone)/carbon fiber composites (PEEK/Cf) were chemical etched by Cr 2 O 3 /H 2 SO 4 solution, electroless plated with copper and then electroplated with nickel. The effects of chemical etching time and temperature on the adhesive strength between PEEK/Cf and Cu/Ni layers were studied by thermal shock method. The electrical resistance of some samples was measured. X-ray photoelectron spectroscopy (XPS) was used to analyze the surface composition and functional groups. Scanning electron microscopy (SEM) was performed to observe the surface morphology of the composite, the chemical etched sample, the plated sample and the peeled metal layer. The results indicated that C=O bond increased after chemical etching. With the increasing of etching temperature and time, more and more cracks and partially exposed carbon fibers appeared at the surface of PEEK/Cf composites, and the adhesive strength increased consequently. When the composites were etched at 60 deg. C for 25 min and at 70-80 deg. C for more than 15 min, the Cu/Ni metallization layer could withstand four thermal shock cycles without bubbling, and the electrical resistivity of the metal layer of these samples increased with the increasing of etching temperature and time.

  10. Highly stable ionic-covalent cross-linked sulfonated poly(ether ether ketone) for direct methanol fuel cells

    Science.gov (United States)

    Lei, Linfeng; Zhu, Xingye; Xu, Jianfeng; Qian, Huidong; Zou, Zhiqing; Yang, Hui

    2017-05-01

    A novel ionic cross-linked sulfonated poly(ether ether ketone) containing equal content of sulfonic acid and pendant tertiary amine groups (TA-SPEEK) has been initially synthesized for the application in direct methanol fuel cells (DMFCs). By adjusting the ratio of p-xylene dibromide to tertiary amine groups of TA-SPEEK, a series of ionic-covalent cross-linked membranes (C-SPEEK-x) with tunable degree of cross-linking are prepared. Compared with the pristine membrane, the ionic and ionic-covalent cross-linked proton exchange membranes (PEMs) exhibit reduced methanol permeability and improved mechanical properties, dimensional and oxidative stability. The proton conductivity and methanol selectivity of protonated TA-SPEEK and C-SPEEK-x at 25 °C is up to 0.109 S cm-1 and 3.88 × 105 S s cm-3, respectively, which are higher than that of Nafion 115. The DMFC incorporating C-SPEEK-25 exhibits a maximum power density as high as 35.3 mW cm-2 with 4 M MeOH at 25 °C (31.8 mW cm-2 for Nafion 115). Due to the highly oxidative stability of the membrane, no obvious performance degradation of the DMFC is observed after more than 400 h operation, indicating such cost-effective ionic-covalent cross-linked membranes have substantial potential as alternative PEMs for DMFC applications.

  11. Effect of degree of sulfonation and casting solvent on sulfonated poly(ether ether ketone) membrane for vanadium redox flow battery

    Science.gov (United States)

    Xi, Jingyu; Li, Zhaohua; Yu, Lihong; Yin, Bibo; Wang, Lei; Liu, Le; Qiu, Xinping; Chen, Liquan

    2015-07-01

    The properties of sulfonated poly(ether ether ketone) (SPEEK) membranes with various degree of sulfonation (DS) and casting solvent are investigated for vanadium redox flow battery (VRFB). The optimum DS of SPEEK membrane is firstly confirmed by various characterizations such as physicochemical properties, ion selectivity, and VRFB single-cell performance. Subsequently the optimum casting solvent is selected for the optimum DS SPEEK membrane within N,N‧-dimethylformamide (DMF), N,N‧-dimethylacetamide (DMAc), N-methyl-2-pyrrolidone (NMP), and dimethylsulfoxide (DMSO). The different performance of SPEEK membranes prepared with various casting solvents can be attributed to the different interaction between solvent and -SO3H group of SPEEK. In the VRFB single-cell test, the optimum SPEEK membrane with DS of 67% and casting solvent of DMF (S67-DMF membrane) exhibits higher VRFB efficiencies and better cycle-life performance at 80 mA cm-2. The investigation of various DS and casting solvent will be effective guidance on the selection and modification of SPEEK membrane towards VRFB application.

  12. Ketone EC50 values in the Microtox test.

    Science.gov (United States)

    Chen, H F; Hee, S S

    1995-03-01

    The Microtox EC50 values for the following ketones are reported in the following homologous series: straight chain methyl ketones (acetone, 2-butanone, 2-pentanone, 2-hepatonone, 2-octanone, 2-decanone, and 2-tridecanone); methyl ketones substituted at one alpha carbon (3-methyl-2-butanone; 3,3-dimethyl-2-butanone); methyl substituted at two alpha carbons (2,4-dimethyl-3-pentanone; 2,2,4,4-tetramethyl-3-pentanone); phenyl groups replacing methyl in acetone (acetophenone; benzophenone); methyl groups substituted at the alpha carbons of cyclohexanone; and 2,3- 2,4-, and 2,5-hexanediones, most for the first time. While there were linear relationships between log EC50 and MW for the straight chain methyl ketones, and for methyl substitution at the alpha carbon for methyl ketones, there were no other linear relationships. As molecular weight increased, the EC50 values of soluble ketones decreased; as distance between two carbonyl groups decreased so too did EC50 values. Thus, for the ketones the geometry around the carbonyl group is an important determinant of toxicity as well as MW, water solubility, and octanol/water coefficient.

  13. Properties investigation of sulfonated poly(ether ether ketone)/polyacrylonitrile acid-base blend membrane for vanadium redox flow battery application.

    Science.gov (United States)

    Li, Zhaohua; Dai, Wenjing; Yu, Lihong; Liu, Le; Xi, Jingyu; Qiu, Xinping; Chen, Liquan

    2014-11-12

    Acid-base blend membrane prepared from sulfonated poly(ether ether ketone) (SPEEK) and polyacrylonitrile (PAN) was detailedly evaluated for vanadium redox flow battery (VRFB) application. SPEEK/PAN blend membrane exhibited dense and homogeneous cross-section morphology as scanning electron microscopy and energy-dispersive X-ray spectroscopy images show. The acid-base interaction of ionic cross-linking and hydrogen bonding between SPEEK and PAN could effectively reduce water uptake, swelling ratio, and vanadium ion permeability, and improve the performance and stability of blend membrane. Because of the good balance of proton conductivity and vanadium ion permeability, blend membrane with 20 wt % PAN (S/PAN-20%) showed higher Coulombic efficiency (96.2% vs 91.1%) and energy efficiency (83.5% vs 78.4%) than Nafion 117 membrane at current density of 80 mA cm(-2) when they were used in VRFB single cell. Besides, S/PAN-20% membrane kept a stable performance during 150 cycles at current density of 80 mA cm(-2) in the cycle life test. Hence the SPEEK/PAN acid-base blend membrane could be used as promising candidate for VRFB application.

  14. Novel sulfonated poly (ether ether ketone)/phosphonic acid-functionalized titania nanohybrid membrane by an in situ method for direct methanol fuel cells

    Science.gov (United States)

    Wu, Hong; Cao, Ying; Li, Zhen; He, Guangwei; Jiang, Zhongyi

    2015-01-01

    Sulfonated poly (ether ether ketone)/phosphonic acid-functionalized titania nanohybrid membranes are prepared by an in situ method using titanium tetrachloride (TiCl4) as inorganic precursor and amino trimethylene phosphonic acid (ATMP) as modifier. Phosphonic acid-functionalized titania nanoparticles with a uniform particle size of ∼50 nm are formed and dispersed homogeneously in the SPEEK matrix with good interfacial compatibility. Accordingly, the nanohybrid membranes display remarkably enhanced proton conduction property due to the incorporation of additional sites for proton transport and the formation of well-connected channels by bridging the hydrophilic domains in SPEEK matrix. The nanohybrid membrane with 6 wt. % of phosphonic acid-functionalized titania nanoparticles exhibits the highest proton conductivity of 0.334 S cm-1 at 65 °C and 100% RH, which is 63.7% higher than that of pristine SPEEK membrane. Furthermore, the as-prepared nanohybrid membranes also show elevated thermal and mechanical stabilities as well as decreased methanol permeability.

  15. Preliminary Study of the Use of Sulphonated Polyether Ether Ketone (SPEEK as Proton Exchange Membrane for Microbial Fuel Cell (MFC

    Directory of Open Access Journals (Sweden)

    Dani Permana

    2018-02-01

    Full Text Available Sulfonated polyether ether ketone (SPEEK was utilized as a proton exchange membrane (PEM in Microbial Fuel Cell (MFC. The SPEEK performance in producing electricity had been observed in MFC using wastewater and glucose as substrates. The MFC with catering and tofu wastewater produced maximum power density about 0.31 mW/m2 and 0.03 mW/m2, respectively, lower that of MFC with tapioca average power density of 39.4 W/m2 over 48 h. The power density boosted because of the presence of Saccharomyces cerevisiae as inoculum. The study using of S. cerevisiae and Acetobacter acetii, separately, were also conducted in with glucose as substrate. The MFC produced an average power densities were 7.3 and 6.4 mW/m2 for S. cerevisiae and A. acetii, respectively. The results of this study indicated that SPEEK membrane has the potential usage in MFCs and can substitute the commercial membrane, Nafion. Article History: Received: Juni 14th 2017; Received: Sept 25th 2017; Accepted: December 16th 2017; Available online How to Cite This Article: Putra, H.E., Permana, D and Djaenudin, D. (2018 Preliminary Study of the Use of Sulfonated Polyether Ether Ketone (SPEEK as Proton Exchange Membrane for Microbial Fuel Cell (MFC. International Journal of Renewable Energy Development, 7(1, 7-12. https://doi.org/10.14710/ijred.7.1.7-12

  16. Homologation Reaction of Ketones with Diazo Compounds.

    Science.gov (United States)

    Candeias, Nuno R; Paterna, Roberta; Gois, Pedro M P

    2016-03-09

    This review covers the addition of diazo compounds to ketones to afford homologated ketones, either in the presence or in the absence of promoters or catalysts. Reactions with diazoalkanes, aryldiazomethanes, trimethylsilyldiazomethane, α-diazo esters, and disubstituted diazo compounds are covered, commenting on the complex regiochemistry of the reaction and the nature of the catalysts and promoters. The recent reports on the enantioselective version of ketone homologation reactions are gathered in one section, followed by reports on the use of cyclic ketones ring expansion in total synthesis. Although the first reports of this reaction appeared in the literature almost one century ago, the recent achievements, in particular, for the asymmetric version, forecast the development of new breakthroughs in the synthetically valuable field of diazo chemistry.

  17. Reduction of Aldehydes and Ketones by Sodium Dithionite

    NARCIS (Netherlands)

    Vries, Johannes G. de; Kellogg, Richard M.

    1980-01-01

    Conditions have been developed for the effective reduction of aldehydes and ketones by sodium dithionite, Na2S2O4. Complete reduction of simple aldehydes and ketones can be achieved with excess Na2S2O4 in H2O/dioxane mixtures at reflux temperature. Some aliphatic ketones, for example, pentanone and

  18. Molecular motions of non-crystalline poly(aryl ether-ether-ketone) PEEK and influence of electron beam irradiation

    International Nuclear Information System (INIS)

    Sasuga, T.; Hagiwara, M.

    1985-01-01

    The dynamic mechanical relaxation of non-crystalline poly(aryl ether-ether-ketone) PEEK and the one irradiated with electron beam were studied. The three distinct γ, β, α' relaxation maxima were observed in unirradiated PEEK from low to high temperature. It was revealed from the study on the irradiation effects that three different molecular processes are overlapped in γ relaxation peak, i.e., molecular motion of water bound to main chain, local motion of main chain, and local mode of the aligned and/or oriented moiety. The β relaxation connected with the glass transition occurred at 150 deg C and it shifted to higher temperature by irradiation. The α' relaxation which can be attributed to rearrangement of molecular chain due to crystallization was observed in unirradiated PEEK approx. 180 deg C and its magnitude decreased with the increase in irradiation dose. This effect indicates the formation of structures inhibiting crystallization such as crosslinking and/or short branching during irradiation. A new relaxation, β', appeared in the temperature range of 40 deg to 100 deg C by irradiation and its magnitude increased with dose. This relaxation was attributed to rearrangement of molecular chain from loosened packing around chain ends, which were introduced into the non-crystalline region by chain scission under irradiation, to more rigid molecular packing. (author)

  19. L-Arginine modified multi-walled carbon nanotube/sulfonated poly(ether ether ketone) nanocomposite films for biomedical applications

    Science.gov (United States)

    Kaya, Hatice; Bulut, Osman; Kamali, Ali Reza; Ege, Duygu

    2018-06-01

    Favorable implant-tissue interactions are crucial to achieve successful osseointegration of the implants. Poly(ether ether ketone) (PEEK) is an interesting alternative to titanium in orthopedics because of its low cost, high biocompatibility and comparable mechanical properties with cancellous bone. Despite these advantages; however, the untreated surface of PEEK fails to osseointegrate due to its bioinert and hydrophobic behavior. This paper deals with the surface modification of PEEK with a novel method. For this, PEEK was first treated with concentrated sulfuric acid to prepare sulfonated PEEK (SPEEK) films using a solvent casting method. Then, 1 and 2 wt% multi-walled carbon nanotube was incorporated into SPEEK to form nanocomposite films. The samples were characterized with Fourier Transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscopy. After successful preparation of the nanocomposite films, L-arginine was covalently conjugated on the nanocomposite films to further improve their surface properties. Subsequently, the samples were characterized using X-ray Photoemission Spectroscopy (XPS), water contact angle measurements and Atomic Force Microscopy (AFM) and Dynamic Mechanical Thermal Analysis (DMTA). Finally, cell culture studies were carried out by using Alamar Blue assay to evaluate the biocompatibility of the films. The results obtained indicate the successful preparation of L-arginine-conjugated MWCNT/SPEEK nanocomposite films. The modified surface shows potential to improve implants' mechanical and biological performances.

  20. Synthesis and thermal behavior of new organometallic poly ketones and co-poly ketones based on diferrocenylidene piperidone

    International Nuclear Information System (INIS)

    Aly, K.I.

    2005-01-01

    A new interesting category of organometallic poly ketones and copolyketones were synthesized via Friedel - Crafts reaction through the polymerization of 2,6-[Bis (2-ferrocenyl )methylene] N-methylpiperidone (II) with different diacid chlorides. The model compound was synthesized by reacting the monomer (II) with benzoyl chloride and characterized by HNMR, IR and elemental analyses. The poly ketones and copolyketones were insoluble in most organic solvents but soluble easily in protic solvents. The thermal properties of these poly ketones and copolyketones were evaluated and correlated to their structural units by TGA and DSC measurements, and had inherent viscosity 0.34-0.52 dl g-1. Moreover, the electrical conductivity of one of the poly ketones, as selected example, Va and copolyketone VI were investigated above the temperature range (300-500 K) and showed that it followed an Arrhenius equation with activation energy 2.09 eV, also the morphological properties of selected examples of poly-and copolyketones were detected by SEM

  1. Allergic Reaction to Polyether Ether Ketone Following Cross-Reactivity to Epoxy Resin.

    Science.gov (United States)

    Kofler, Lukas; Wambacher, Markus; Schweinzer, Katrin; Scherl, Maritta; Kofler, Heinz

    Polyether ether ketone (PEEK) is a thermoplastic polymer frequently used in engineering but also in medical devices. Only 1 case of allergic reaction to PEEK used as an implanted medical device has been reported so far; however, the route of sensitization remained unclear. Here we report on a 62-year-old male patient with a preknown, severe type IV allergy to epoxy resin. He reported strong pain in his shoulder after implantation of a PEEK-containing device after a rotator cuff injury. For testing, the device was implanted in a small pouch subcutaneously on the abdomen. The patient reported massive pain starting 8 hours after the implantation, strictly limited to the procedural area and showing perifocal erythema. A possible explanation of the sensitization mode is the source material for PEEK and epoxy resin, as both are mainly based on bisphenols. An allergic reaction to PEEK with preknown epoxy resin sensitization has not been reported so far. As epoxy resins are a frequent cause of occupational contact dermatitis and PEEK is widely used for medical and nonmedical devices, we believe that this is of great clinical relevance.

  2. Dual-isotope technique for determination of in vivo ketone body kinetics

    International Nuclear Information System (INIS)

    Miles, J.M.; Schwenk, W.F.; McClean, K.L.; Haymond, M.W.

    1986-01-01

    Total ketone body specific activity has been widely used in studies of ketone body metabolism to circumvent so-called isotope disequilibrium between the two major ketone body pools, acetoacetate and beta-hydroxybutyrate. Recently, this approach has been criticized on theoretical grounds. In the present studies, [13C]acetoacetate and beta-[14C]hydroxybutyrate were simultaneously infused in nine mongrel dogs before and during an infusion of either unlabeled sodium acetoacetate or unlabeled sodium beta-hydroxybutyrate. Ketone body turnover was determined using total ketone body specific activity, total ketone body moles % enrichment, and an open two-pool model, both before and during the exogenous infusion of unlabeled ketone bodies. Basal ketone body turnover rates were significantly higher using [13C]acetoacetate than with either beta-[14C]hydroxybutyrate alone or the dual-isotope model (3.6 +/- 0.5 vs. 2.2 +/- 0.2 and 2.7 +/- 0.2 mumol X kg-1 X min-1, respectively, P less than 0.05). During exogenous infusion of unlabeled sodium acetoacetate, the dual-isotope model provided the best estimate of ketone body inflow, whereas 14C specific activity underestimated the known rate of acetoacetate infusion by 55% (P less than 0.02). During sodium beta-hydroxybutyrate infusion, [13C]-acetoacetate overestimated ketone body inflow by 55% (P = NS), while better results were obtained with 14C beta-hydroxybutyrate alone and the two-pool model. Ketone body interconversion as estimated by the dual-isotope technique increased markedly during exogenous ketone body infusion. In conclusion, significant errors in estimation of ketone body inflow were made using single-isotope techniques, whereas a dual-isotope model provided reasonably accurate estimates of ketone body inflow during infusion of exogenous acetoacetate and beta-hydroxybutyrate

  3. PEEK (polyether-ether-ketone)-coated nitinol wire: Film stability for biocompatibility applications

    Energy Technology Data Exchange (ETDEWEB)

    Sheiko, Nataliia [Institut Charles Sadron, C.N.R.S. UPR 22, Université de Strasbourg, 23 rue du Loess, BP 84047, 67034 Strasbourg Cedex 2 (France); Kékicheff, Patrick, E-mail: patrick.kekicheff@ics-cnrs.unistra.fr [Institut Charles Sadron, C.N.R.S. UPR 22, Université de Strasbourg, 23 rue du Loess, BP 84047, 67034 Strasbourg Cedex 2 (France); Marie, Pascal; Schmutz, Marc; Jacomine, Leandro [Institut Charles Sadron, C.N.R.S. UPR 22, Université de Strasbourg, 23 rue du Loess, BP 84047, 67034 Strasbourg Cedex 2 (France); Perrin-Schmitt, Fabienne [Faculté de Médecine, INSERM, UMR-S 1121, “Biomaterials and Bioengineering”, Université de Strasbourg, 11 rue Humann, 67085 Strasbourg Cedex (France)

    2016-12-15

    Highlights: • A thin (12 μm) homogeneous PEEK film without any defects or voids is deposited on NiTi wires. • The coating remains stable in biological environment with negligible Ni ion release and no cytotoxicity. • Large pressure (>2 GPa) can only disrupt the coating film as shown by nanoscratch tests. • Coated spring wires sustain mechanical stress in continuous cycles of axial compression/stretching for >7 million cycles. - Abstract: High quality biocompatible poly-ether-ether-ketone (PEEK) coatings were produced on NiTi shape memory alloy wires using dipping deposition from colloidal aqueous PEEK dispersions after substrate surface treatment. The surface morphology and microstructure were investigated by Scanning Electron Microscopy at every step of the process from the as-received Nitinol substrate to the ultimate PEEK-coated NiTi wire. Nanoscratch tests were carried out to access the adhesive behavior of the polymer coated film to the NiTi. The results indicate that the optimum process conditions in cleaning, chemical etching, and electropolishing the NiTi, were the most important and determining parameters to be achieved. Thus, high quality PEEK coatings were obtained on NiTi wires, straight or curved (even with a U-shape) with a homogeneous microstructure along the wire length and a uniform thickness of 12 μm without any development of cracks or the presence of large voids. The biocompatibility of the PEEK coating film was checked in fibrobast cultured cells. The coating remains stable in biological environment with negligible Ni ion release, no cytotoxicity, and no delamination observed with time.

  4. PEEK (polyether-ether-ketone)-coated nitinol wire: Film stability for biocompatibility applications

    International Nuclear Information System (INIS)

    Sheiko, Nataliia; Kékicheff, Patrick; Marie, Pascal; Schmutz, Marc; Jacomine, Leandro; Perrin-Schmitt, Fabienne

    2016-01-01

    Highlights: • A thin (12 μm) homogeneous PEEK film without any defects or voids is deposited on NiTi wires. • The coating remains stable in biological environment with negligible Ni ion release and no cytotoxicity. • Large pressure (>2 GPa) can only disrupt the coating film as shown by nanoscratch tests. • Coated spring wires sustain mechanical stress in continuous cycles of axial compression/stretching for >7 million cycles. - Abstract: High quality biocompatible poly-ether-ether-ketone (PEEK) coatings were produced on NiTi shape memory alloy wires using dipping deposition from colloidal aqueous PEEK dispersions after substrate surface treatment. The surface morphology and microstructure were investigated by Scanning Electron Microscopy at every step of the process from the as-received Nitinol substrate to the ultimate PEEK-coated NiTi wire. Nanoscratch tests were carried out to access the adhesive behavior of the polymer coated film to the NiTi. The results indicate that the optimum process conditions in cleaning, chemical etching, and electropolishing the NiTi, were the most important and determining parameters to be achieved. Thus, high quality PEEK coatings were obtained on NiTi wires, straight or curved (even with a U-shape) with a homogeneous microstructure along the wire length and a uniform thickness of 12 μm without any development of cracks or the presence of large voids. The biocompatibility of the PEEK coating film was checked in fibrobast cultured cells. The coating remains stable in biological environment with negligible Ni ion release, no cytotoxicity, and no delamination observed with time.

  5. Oxidative Umpolung α‐Alkylation of Ketones

    DEFF Research Database (Denmark)

    Shneider, O. Svetlana; Pisarevsky, Evgeni; Fristrup, Peter

    2015-01-01

    We disclose a hypervalent iodine mediated α-alkylative umpolung reaction of carbonyl compounds with dialkylzinc as the alkyl source. The reaction is applicable to all common classes of ketones including 1,3-dicarbonyl compounds and regular ketones via their lithium enolates. The α...

  6. Iodine - catalyzed prins cyclization of aliphatic and aromatic ketones

    International Nuclear Information System (INIS)

    Kishore, K.R.; Reddy, K.; Silva Junior, Luiz F.

    2013-01-01

    Iodine-catalyzed Prins cyclization of homoallylic alcohols and ketones was investigated. Anhydrous conditions and inert atmosphere are not required in this metal-free protocol. The reaction of 2-(3,4-dihydronaphthalene-1-yl)propan-1-ol with six aliphatic symmetric ketones gave the desired products in 67-77% yield. Cyclization was performed with four aliphatic unsymmetric ketones, leading to corresponding pyrans in 66-76% yield. Prins cyclization was also accomplished with four aromatic ketones in 37-66% yield. Finally, Prins cyclization of the monoterpene isopulegol and acetone was successfully achieved. (author)

  7. Iodine - catalyzed prins cyclization of aliphatic and aromatic ketones

    Energy Technology Data Exchange (ETDEWEB)

    Kishore, K.R.; Reddy, K.; Silva Junior, Luiz F., E-mail: luizfsjr@iq.usp.br [Universidade de Sao Paulo (IQ/USP), SP (Brazil). Inst. de Quimica. Dept. de Quimica Fundamental

    2013-09-15

    Iodine-catalyzed Prins cyclization of homoallylic alcohols and ketones was investigated. Anhydrous conditions and inert atmosphere are not required in this metal-free protocol. The reaction of 2-(3,4-dihydronaphthalene-1-yl)propan-1-ol with six aliphatic symmetric ketones gave the desired products in 67-77% yield. Cyclization was performed with four aliphatic unsymmetric ketones, leading to corresponding pyrans in 66-76% yield. Prins cyclization was also accomplished with four aromatic ketones in 37-66% yield. Finally, Prins cyclization of the monoterpene isopulegol and acetone was successfully achieved. (author)

  8. Considerations of the Effects of Naphthalene Moieties on the Design of Proton-Conductive Poly(arylene ether ketone) Membranes for Direct Methanol Fuel Cells.

    Science.gov (United States)

    Wang, Baolong; Hong, Lihua; Li, Yunfeng; Zhao, Liang; Wei, Yuxue; Zhao, Chengji; Na, Hui

    2016-09-14

    Novel sulfonated poly(arylene ether ketones) (SDN-PAEK-x), consisting of dual naphthalene and flexible sulfoalkyl groups, were prepared via polycondensation, demethylation, and sulfobutylation grafting reaction. Among them, SDN-PAEK-1.94 membrane with the highest ion exchange capacity (IEC = 2.46 mequiv·g(-1)) exhibited the highest proton conductivity, which was 0.147 S· cm(-1) at 25 °C and 0.271 S·cm(-1) at 80 °C, respectively. The introduction of dual naphthalene moieties is expected to achieve much enhanced properties compared to those of sulfonated poly(arylene ether ketones) (SNPAEK-x), consisting of single naphthalene and flexible sulfoalkyl groups. Compared with SNPAEK-1.60 with a similar IEC, SDN-PAEK-1.74 membrane showed higher proton conductivity, higher IEC normalized conductivity, and higher effective proton mobility, although it had lower analytical acid concentration. The SDN-PAEK-x membranes with IECs higher than 1.96 mequiv·g(-1) also exhibited higher proton conductivity than that of recast Nafion membrane. Furthermore, SDN-PAEK-1.94 displayed a better single cell performance with a maximum power density of 60 mW·cm(-2) at 80 °C. Considering its high proton conductivity, excellent single cell performance, good mechanical stabilities, low membrane swelling, and methanol permeability, SDN-PAEK-x membranes are promising candidates as alternative polymer electrolyte membranes to Nafion for direct methanol fuel cell applications.

  9. Ion-exchange composite membranes pore-filled with sulfonated poly(ether ether ketone) and Engelhard titanosilicate-10 for improved performance of vanadium redox flow batteries

    Science.gov (United States)

    Kim, Jihoon; Lee, Yongkyu; Jeon, Jae-Deok; Kwak, Seung-Yeop

    2018-04-01

    A series of ion-exchange membranes for vanadium redox flow batteries (VRBs) are prepared by filling the pores of a poly(tetrafluoroethylene) (PTFE) substrate with sulfonated poly(ether ether ketone) (SPEEK) and microporous Engelhard titanosilicate-10 (ETS-10). The effects of ETS-10 incorporation and PTFE reinforcement on membrane properties and VRB single-cell performance are investigated using various characterization tools. The results show that these composite membranes exhibit improved mechanical properties and reduced vanadium-ion permeabilities owing to the interactions between ETS-10 and SPEEK, the suppressed swelling of PTFE, and the unique ETS-10 framework. The composite membrane with 3 wt% ETS-10 (referred to as "SE3/P") exhibits the best membrane properties and highest ion selectivity. The VRB system with the SE3/P membrane exhibits higher cell capacity, higher cell efficiency, and lower capacity decay than that with a Nafion membrane. These results indicate that this composite membrane has potential as an alternative to Nafion in VRB systems.

  10. Friedel-Crafts Crosslinked Highly Sulfonated Polyether Ether Ketone (SPEEK) Membranes for a Vanadium/Air Redox Flow Battery.

    Science.gov (United States)

    Merle, Géraldine; Ioana, Filipoi Carmen; Demco, Dan Eugen; Saakes, Michel; Hosseiny, Seyed Schwan

    2013-12-30

    Highly conductive and low vanadium permeable crosslinked sulfonated poly(ether ether ketone) (cSPEEK) membranes were prepared by electrophilic aromatic substitution for a Vanadium/Air Redox Flow Battery (Vanadium/Air-RFB) application. Membranes were synthesized from ethanol solution and crosslinked under different temperatures with 1,4-benzenedimethanol and ZnCl2 via the Friedel-Crafts crosslinking route. The crosslinking mechanism under different temperatures indicated two crosslinking pathways: (a) crosslinking on the sulfonic acid groups; and (b) crosslinking on the backbone. It was observed that membranes crosslinked at a temperature of 150 °C lead to low proton conductive membranes, whereas an increase in crosslinking temperature and time would lead to high proton conductive membranes. High temperature crosslinking also resulted in an increase in anisotropy and water diffusion. Furthermore, the membranes were investigated for a Vanadium/Air Redox Flow Battery application. Membranes crosslinked at 200 °C for 30 min with a molar ratio between 2:1 (mol repeat unit:mol benzenedimethanol) showed a proton conductivity of 27.9 mS/cm and a 100 times lower VO2+ crossover compared to Nafion.

  11. Cs2CO3-Initiated Trifluoro-Methylation of Chalcones and Ketones for Practical Synthesis of Trifluoromethylated Tertiary Silyl Ethers

    Directory of Open Access Journals (Sweden)

    Cheng Dong

    2017-05-01

    Full Text Available It was found that 1,2-trifluoromethylation reactions of ketones, enones, and aldehydes were easily accomplished using the Prakash reagent in the presence of catalytic amounts of cesium carbonate, which represents an experimentally convenient, atom-economic process for this anionic trifluoromethylation of non-enolisable aldehydes and ketones.

  12. Colorimetric Recognition of Aldehydes and Ketones.

    Science.gov (United States)

    Li, Zheng; Fang, Ming; LaGasse, Maria K; Askim, Jon R; Suslick, Kenneth S

    2017-08-07

    A colorimetric sensor array has been designed for the identification of and discrimination among aldehydes and ketones in vapor phase. Due to rapid chemical reactions between the solid-state sensor elements and gaseous analytes, distinct color difference patterns were produced and digitally imaged for chemometric analysis. The sensor array was developed from classical spot tests using aniline and phenylhydrazine dyes that enable molecular recognition of a wide variety of aliphatic or aromatic aldehydes and ketones, as demonstrated by hierarchical cluster, principal component, and support vector machine analyses. The aldehyde/ketone-specific sensors were further employed for differentiation among and identification of ten liquor samples (whiskies, brandy, vodka) and ethanol controls, showing its potential applications in the beverage industry. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Effects of microstructural inclusions on fatigue life of polyether ether ketone (PEEK).

    Science.gov (United States)

    Simsiriwong, Jutima; Shrestha, Rakish; Shamsaei, Nima; Lugo, Marcos; Moser, Robert D

    2015-11-01

    In this study, the effects of microstructural inclusions on fatigue life of polyether ether ketone (PEEK) was investigated. Due to the versatility of its material properties, the semi-crystralline PEEK polymer has been increasingly adopted in a wide range of applications particularly as a biomaterial for orthopedic, trauma, and spinal implants. To obtain the cyclic behavior of PEEK, uniaxial fully-reversed strain-controlled fatigue tests were conducted at ambient temperature and at 0.02 mm/mm to 0.04 mm/mm strain amplitudes. The microstructure of PEEK was obtained using the optical and the scanning electron microscope (SEM) to determine the microstructural inclusion properties in PEEK specimen such as inclusion size, type, and nearest neighbor distance. SEM analysis was also conducted on the fracture surface of fatigue specimens to observe microstructural inclusions that served as the crack incubation sites. Based on the experimental strain-life results and the observed microstructure of fatigue specimens, a microstructure-sensitive fatigue model was used to predict the fatigue life of PEEK that includes both crack incubation and small crack growth regimes. Results show that the employed model is applicable to capture microstructural effects on fatigue behavior of PEEK. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Sulfonated poly(ether ether ketone)/poly(vinyl alcohol) sensitizing system for solution photogeneration of small Ag, Au, and Cu crystallites.

    Science.gov (United States)

    Korchev, A S; Shulyak, T S; Slaten, B L; Gale, W F; Mills, G

    2005-04-28

    Illumination of air-free aqueous solutions containing sulfonated poly(ether ether ketone) and poly(vinyl alcohol) with 350 nm light results in benzophenone ketyl radicals of the polyketone. The polymer radicals form with a quantum yield 0.02 and decay with a second-order rate constant 6 orders of magnitude lower than that of typical alpha-hydroxy radicals. Evidence is presented that the polymeric benzophenone ketyl radicals reduce Ag+, Cu2+, and AuCl4- to metal particles of nanometer dimensions. Decreases in the reduction rates with increasing Ag(I), Cu(II), and Au(III) concentrations are explained using a kinetic model in which the metal ions quench the excited state of the polymeric benzophenone groups, which forms the macromolecular radicals. Quenching is fastest for Ag+, whereas Cu2+ and AuCl4- exhibit similar rate constants. Particle formation becomes more complex as the number of equivalents needed to reduce the metal ions increases; the Au(III) system is an extreme case where the radical reactions operate in parallel with secondary light-initiated and thermal reduction channels. For each metal ion, the polymer-initiated photoreactions produce crystallites possessing distinct properties, such as a very strong plasmon in the Ag case or the narrow size distribution exhibited by Au particles.

  15. Is there an astrocyte-neuron ketone body shuttle?

    Science.gov (United States)

    Guzmán, M; Blázquez, C

    2001-01-01

    Ketone bodies can replace glucose as the major source of brain energy when glucose becomes scarce. Although it is generally assumed that the liver supplies extrahepatic tissues with ketone bodies, recent evidence shows that astrocytes are also ketogenic cells. Moreover, the partitioning of fatty acids between ketogenesis and ceramide synthesis de novo might control the survival/death decision of neural cells. These findings support the notion that astrocytes might supply neurons with ketone bodies in situ, and raise the possibility that astrocyte ketogenesis is a cytoprotective pathway.

  16. Morphology Effect on Proton Dynamics in Nafion® 117 and Sulfonated Polyether Ether Ketone

    Science.gov (United States)

    Leong, Jun Xing; Diño, Wilson Agerico; Ahmad, Azizan; Daud, Wan Ramli Wan; Kasai, Hideaki

    2016-09-01

    We report results of our experimental and theoretical studies on the dynamics of proton conductivity in Nafion® 117 and self-fabricated sulfonated polyether ether ketone (SPEEK) membranes. Knowing that the presence of water molecules in the diffusion process results in a lower energy barrier, we determined the diffusion barriers and corresponding tunneling probabilities of Nafion® 117 and SPEEK system using a simple theoretical model that excludes the medium (water molecules) in the initial calculations. We then propose an equation that relates the membrane conductivity to the tunneling probability. We recover the effect of the medium by introducing a correction term into the proposed equation, which takes into account the effect of the proton diffusion distance and the hydration level. We have also experimentally verified that the proposed equation correctly explain the difference in conductivity between Nafion® 117 and SPEEK. We found that membranes that are to be operated in low hydration environments (high temperatures) need to be designed with short diffusion distances to enhance and maintain high conductivity.

  17. Electricity generation and removal performance of a microbial fuel cell using sulfonated poly (ether ether ketone) as proton exchange membrane to treat phenol/acetone wastewater.

    Science.gov (United States)

    Wu, Hao; Fu, Yu; Guo, Chunyu; Li, Yanbo; Jiang, Nanzhe; Yin, Chengri

    2018-07-01

    The microbial fuel cell (MFC) has emerged as a promising technology for wastewater treatment and energy recovery, but the expensive cost of proton exchange membranes (PEMs) is a problem that need to be solved. In this study, a two-chamber MFC based on our self-made PEM sulfonated poly (ether ether ketone) membrane was set up to treat phenol/acetone wastewater and synchronously generate power. The maximum output voltage was 240-250 mV. Using phenol and acetone as substrates, the power generation time in an operation cycle was 289 h. The MFC exhibited good removal performance, with no phenol or acetone detected, respectively, when the phenol concentration was lower than 50 mg/L and the acetone concentration was lower than 100 mg/L. This study provides a cheap and eco-friendly way to treat phenol/acetone wastewater and generate useful energy by MFC technology. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Hydrophilization of poly(ether ether ketone) films by surface-initiated atom transfer radical polymerization

    DEFF Research Database (Denmark)

    Fristrup, Charlotte Juel; Jankova Atanasova, Katja; Hvilsted, Søren

    2010-01-01

    Surface-Initiated Atom Transfer Radical Polymerization (SI-ATRP) has been exploited to hydrophilize PEEK. The ketone groups on the PEEK surface were reduced to hydroxyl groups which were converted to bromoisobutyrate initiating sites for SI-ATRP. The modification steps were followed by contact...... angle measurements and XPS. Moreover, ATR FTIR has been used to confirm the formation of initiating groups. Grafting of PEGMA from PEEK was performed in aqueous solution. The presence of the PPEGMA grafts on PEEK was revealed by the thermograms from TGA whereas investigations with AFM rejected changes...

  19. Friedel–Crafts Crosslinked Highly Sulfonated Polyether Ether Ketone (SPEEK Membranes for a Vanadium/Air Redox Flow Battery

    Directory of Open Access Journals (Sweden)

    Géraldine Merle

    2013-12-01

    Full Text Available Highly conductive and low vanadium permeable crosslinked sulfonated poly(ether ether ketone (cSPEEK membranes were prepared by electrophilic aromatic substitution for a Vanadium/Air Redox Flow Battery (Vanadium/Air-RFB application. Membranes were synthesized from ethanol solution and crosslinked under different temperatures with 1,4-benzenedimethanol and ZnCl2 via the Friedel–Crafts crosslinking route. The crosslinking mechanism under different temperatures indicated two crosslinking pathways: (a crosslinking on the sulfonic acid groups; and (b crosslinking on the backbone. It was observed that membranes crosslinked at a temperature of 150 °C lead to low proton conductive membranes, whereas an increase in crosslinking temperature and time would lead to high proton conductive membranes. High temperature crosslinking also resulted in an increase in anisotropy and water diffusion. Furthermore, the membranes were investigated for a Vanadium/Air Redox Flow Battery application. Membranes crosslinked at 200 °C for 30 min with a molar ratio between 2:1 (mol repeat unit:mol benzenedimethanol showed a proton conductivity of 27.9 mS/cm and a 100 times lower VO2+ crossover compared to Nafion.

  20. Friedel–Crafts Crosslinked Highly Sulfonated Polyether Ether Ketone (SPEEK) Membranes for a Vanadium/Air Redox Flow Battery

    Science.gov (United States)

    Merle, Géraldine; Ioana, Filipoi Carmen; Demco, Dan Eugen; Saakes, Michel; Hosseiny, Seyed Schwan

    2014-01-01

    Highly conductive and low vanadium permeable crosslinked sulfonated poly(ether ether ketone) (cSPEEK) membranes were prepared by electrophilic aromatic substitution for a Vanadium/Air Redox Flow Battery (Vanadium/Air-RFB) application. Membranes were synthesized from ethanol solution and crosslinked under different temperatures with 1,4-benzenedimethanol and ZnCl2 via the Friedel–Crafts crosslinking route. The crosslinking mechanism under different temperatures indicated two crosslinking pathways: (a) crosslinking on the sulfonic acid groups; and (b) crosslinking on the backbone. It was observed that membranes crosslinked at a temperature of 150 °C lead to low proton conductive membranes, whereas an increase in crosslinking temperature and time would lead to high proton conductive membranes. High temperature crosslinking also resulted in an increase in anisotropy and water diffusion. Furthermore, the membranes were investigated for a Vanadium/Air Redox Flow Battery application. Membranes crosslinked at 200 °C for 30 min with a molar ratio between 2:1 (mol repeat unit:mol benzenedimethanol) showed a proton conductivity of 27.9 mS/cm and a 100 times lower VO2+ crossover compared to Nafion. PMID:24957118

  1. Production of methyl-vinyl ketone from levulinic acid

    Energy Technology Data Exchange (ETDEWEB)

    Dumesic, James A [Verona, WI; West,; Ryan, M [Madison, WI

    2011-06-14

    A method for converting levulinic acid to methyl vinyl ketone is described. The method includes the steps of reacting an aqueous solution of levulinic acid, over an acid catalyst, at a temperature of from room temperature to about 1100 K. Methyl vinyl ketone is thereby formed.

  2. Microbial desalination cell with sulfonated sodium poly(ether ether ketone) as cation exchange membranes for enhancing power generation and salt reduction.

    Science.gov (United States)

    Moruno, Francisco Lopez; Rubio, Juan E; Atanassov, Plamen; Cerrato, José M; Arges, Christopher G; Santoro, Carlo

    2018-06-01

    Microbial desalination cell (MDC) is a bioelectrochemical system capable of oxidizing organics, generating electricity, while reducing the salinity content of brine streams. As it is designed, anion and cation exchange membranes play an important role on the selective removal of ions from the desalination chamber. In this work, sulfonated sodium (Na + ) poly(ether ether ketone) (SPEEK) cation exchange membranes (CEM) were tested in combination with quaternary ammonium chloride poly(2,6-dimethyl 1,4-phenylene oxide) (QAPPO) anion exchange membrane (AEM). Non-patterned and patterned (varying topographical features) CEMs were investigated and assessed in this work. The results were contrasted against a commercially available CEM. This work used real seawater from the Pacific Ocean in the desalination chamber. The results displayed a high desalination rate and power generation for all the membranes, with a maximum of 78.6±2.0% in salinity reduction and 235±7mWm -2 in power generation for the MDCs with the SPEEK CEM. Desalination rate and power generation achieved are higher with synthesized SPEEK membranes when compared with an available commercial CEM. An optimized combination of these types of membranes substantially improves the performances of MDC, making the system more suitable for real applications. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  3. Anhydrous proton exchange membrane of sulfonated poly(ether ether ketone) enabled by polydopamine-modified silica nanoparticles

    International Nuclear Information System (INIS)

    Wang, Jingtao; Bai, Huijuan; Zhang, Haoqin; Zhao, Liping; Chen, Huiling; Li, Yifan

    2015-01-01

    Highlights: • The concept of acid/base pairs was employed to design anhydrous PEMs. • Polydopamine-modified silica particles were uniformly dispersed in SPEEK membrane. • The membranes displayed enhancement in both stability and anhydrous proton conductivity. - Abstract: Novel anhydrous proton exchange membrane is (PEM) facilely prepared by embedding dopamine-modified silica nanoparticles (DSiOis 2 ) into sulfonated poly (ether ether ketone) (SPEEK) polymer matrix. DSiO 2 bearing -NH 2 /-NH- groups are synthesized inspired by the bioadhesion principle, which are uniformly dispersed within SPEEK membrane due to the good interfacial compatibility. The interfacial electrostatic attractions render unique rearrangement of the nanophase-separated structure and the chain packing of the resultant hybrid membranes. As a result, the thermal and mechanical stabilities as well as structural stability of the hybrid membranes are enhanced when compared to SPEEK control membrane. On the other hand, induced by the attractions, acid–base pairs are formed at the SPEEK/DSiOarewere 2 interface, where fast proton transfer via Grotthuss mechanism is expected. These features confer much higher proton conductivities on the DSiO 2 -filled membranes under both hydrated and anhydrous conditions, compared to those of the SPEEK control membrane and SiO 2 -filled membranes. Particularly, the hybrid membrane with 15 wt% DSiO 2 achieve the highest conductivities of 4.52achieveachieved × 10 −3 S cm −1 at 120 °C under anhydrous condition, which is much higher than the SPEEK control membrane and the commercial Nafion membrane (0.1iswas × 10 −3 S cm −1 ). The membrane with 9 wt% DSiO 2 show an open cell potential of 0.98showshowed V and an optimum power density of 111.7 mW cm −2 , indicative of its potential application in fuel cell under anhydrous condition

  4. 21 CFR 862.1435 - Ketones (nonquantitative) test system.

    Science.gov (United States)

    2010-04-01

    ...) test system is a device intended to identify ketones in urine and other body fluids. Identification of ketones is used in the diagnosis and treatment of acidosis (a condition characterized by abnormally high...) Classification. Class I (general controls). The device is exempt from the premarket notification procedures in...

  5. Cyclodextrin ketones as oxidation catalysts: investigation of bridged derivatives

    DEFF Research Database (Denmark)

    Fenger, Thomas Hauch; Marinescu, Lavinia; Bols, Mikael

    2009-01-01

    A series of alpha-cyclodextrin derivatives containing a 3, 4 or 5 membered ether-linked bridge between the 6A and 6D oxygen atoms, with and without a ketone, were prepared. The synthesis used perbenzylated alpha-cyclodextrin A,D-diol as a starting material upon which O-alkylation and further modi...... derivatives were also made. The 6A,6D-di-O-(propa-2-on-1,3-diyl)-6C,6F-di-O-methyl and di-O-pivaloyl derivatives were also prepared. The new compounds were analysed for catalysis of the oxidation of amines and alcohols....

  6. Blood ketone response to norepinephrine-induced free fatty acid in diabetes

    Energy Technology Data Exchange (ETDEWEB)

    Blackard, W G; Omori, Yoshiaki

    1963-04-18

    During 90-minute norepinephrine infusions, blood free fatty acid and ketone responses of Japanese nondiabetic and diabetic subjects were determined. Nonobese diabetic subjects with and without fasting hyperglycemia demonstrated significantly greater blood ketone elevations than nondiabetics. An inverse correlation between obesity and blood ketone response to nonrepinephrine was observed in diabetics. This correlation could not be attributed to varying degrees of fasting hyperglycemia or free fatty acid elevation. Nonobese diabetics with mild fasting hyperglycemia (90 to 150 mg%) exhibited an unexpected greater increase in blood ketones than nonobese diabetics with moderate fasting hyperglycemia (150 to 250 mg%). Differences in free fatty acid elevations were not responsible for this apparent paradox. The magnitude of the hyperketonemic response, though dependent on free fatty elevation, seemed more sensitive to the degree of obesity and the fasting blood glucose level. Fractional ketone body measurements attributed the blood ketone elevations predominantly to ..beta..-hydroxybutyric acid increases. 43 references, 6 figures, 1 table.

  7. Improved adaptability of polyaryl-ether-ether-ketone with texture pattern and graphite-like carbon film for bio-tribological applications

    Science.gov (United States)

    Ren, Siming; Huang, Jinxia; Cui, Mingjun; Pu, Jibin; Wang, Liping

    2017-04-01

    With the development of surface treatment technology, an increasing number of bearings, seals, dynamic friction drive or even biomedical devices involve a textured surface to improve lubrication and anti-wear. The present investigation has been conducted in order to evaluate the friction and wear behaviours of textured polyaryl-ether-ether-ketone (PEEK) coated with a graphite-like carbon (GLC) film sliding against stainless steel pin in biological medium. Compared with pure PEEK, the PEEK coated with GLC film shows excellent tribological performance with a low friction of 0.08 and long lifetime (wear volumes are about 3.78 × 10-4 mm3 for un-textured one and 2.60 × 10-4 mm3 for textured GLC film after 36,000 s of sliding) under physiological saline solution. In particular, the GLC film with appropriate dimple area density is effective to improve friction reduction and wear resistance properties of PEEK substrate under biological solution, which is attributed to the entrapment of wear debris in the dimples to inhibit the graphitization and the fluid dynamic pressure effect derived from the texture surface to increase the thickness in elastohydrodynamic lubrication (EHL) film during sliding motions. Moreover, the friction coefficient of GLC film under physiological saline solution decreases with the increase in the applied load. With the increasing applied load, the texture surface is responsible for accounting the improved wear resistance and a much lower graphitization of the GLC film during whole test.

  8. State of the water in crosslinked sulfonated poly(ether ether ketone). Two-dimensional differential scanning calorimetry correlation mapping

    Energy Technology Data Exchange (ETDEWEB)

    Al Lafi, Abdul G. [Department of Chemistry, Atomic Energy Commission, Damascus, P.O. Box 6091 (Syrian Arab Republic); Hay, James N., E-mail: cscientific9@aec.org.sy [The School of Metallurgy and Materials, College of Physical Sciences and Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom)

    2015-07-20

    Highlights: • 2D-DSC mapping was applied to analyze the heat flow responses of hydrated crosslinked sPEEK. • Two types of loosely bond water were observed. • The first was bond to the sulfonic acid groups and increased with ion exchange capacity. • The second was attributed to the polar groups introduced by ions irradiation and increased with crosslinking degree. • DSC combined with 2D mapping provides a powerful tool for polymer structural determination. - Abstract: This paper reports the first application of two-dimensional differential scanning calorimetry correlation mapping, 2D-DSC-CM to analyze the heat flow responses of sulphonated poly(ether ether ketone), sPEEK, films having different ion exchange capacity and degrees of crosslinks. With the help of high resolution and high sensitivity of 2D-DSC-CM, it was possible to locate two types of loosely bound water within the structure of crosslinked sPEEK. The first was bound to the sulfonic acid groups and dependent on the ion exchange capacity of the sPEEK. The second was bound to other polar groups, either introduced by irradiation with ions and dependent on the crosslinking degree or present in the polymer such as the carbonyl groups or terminal units. The results suggest that the ability of the sulfonic acid groups in the crosslinked sPEEK membranes to adsorb water molecules is increased by crosslinking, probably due to the better close packing efficiency of the crosslinked samples. DSC combined with 2D correlation mapping provides a fast and powerful tool for polymer structural determination.

  9. DIRECT AMIDOALKYLATION OF KETONES

    NARCIS (Netherlands)

    TENHOEVE, W; WYNBERG, H

    1994-01-01

    In a one-pot reaction aromatic aldehydes, urethane or acetamide and a variety of ketones condense in the presence of catalytic amounts of boron trifluoride or p-toluenesulfonic acid to furnish substituted carbamates or amides in good yield.

  10. The reaction of organocerium reagents with easily enolizable ketones

    International Nuclear Information System (INIS)

    Imamoto, Tsuneo; Kusumoto, Tetsuo; Sugiura, Yasushi; Suzuki, Nobuyo; Takiyama, Nobuyuki

    1985-01-01

    Organocerium (III) reagents were conveniently generated by the reaction of organolithium compounds with anhydrous cerium (III) chloride. The reagents are less basic than organolithiums and Grignard reagents, and they react readily at -78 deg C with easily enolizable ketones such as 2-tetralone to afford addition products in high yields. Cerium (III) enolates were also generated from lithium enolates and cerium (III) chloride. The cerium (III) enolates undergo aldol addition with ketones or sterically crowded aldehyde to give the corresponding β-hydroxy ketones in good to high yields. (author)

  11. Catalyst-free dehydrative α-alkylation of ketones with alcohols: green and selective autocatalyzed synthesis of alcohols and ketones.

    Science.gov (United States)

    Xu, Qing; Chen, Jianhui; Tian, Haiwen; Yuan, Xueqin; Li, Shuangyan; Zhou, Chongkuan; Liu, Jianping

    2014-01-03

    Direct dehydrative α-alkylation reactions of ketones with alcohols are now realized under simple, practical, and green conditions without using external catalysts. These catalyst-free autocatalyzed alkylation methods can efficiently afford useful alkylated ketone or alcohol products in a one-pot manner and on a large scale by CC bond formation of the in situ generated intermediates with subsequent controllable and selective Meerwein-Pondorf-Verley-Oppenauer-type redox processes. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Bio-functionalisation of polyether ether ketone using plasma immersion ion implantation

    Science.gov (United States)

    Wakelin, Edgar; Yeo, Giselle; Kondyurin, Alexey; Davies, Michael; McKenzie, David; Weiss, Anthony; Bilek, Marcela

    2015-12-01

    Plasma immersion ion implantation (PIII) is used here to improve the surface bioactivity of polyether ether ketone (PEEK) by modifying the chemical and mechanical properties and by introducing radicals. Modifications to the chemical and mechanical properties are characterised as a function of ion fluence (proportional to treatment time) to determine the suitability of the treated surfaces for biological applications. Radical generation increases with treatment time, where treatments greater than 400 seconds result in a high concentration of long-lived radicals. Radical reactions are responsible for oxidation of the surface, resulting in a permanent increase in the polar surface energy. The nano-scale reduced modulus was found to increase with treatment time at the surface from 4.4 to 5.2 GPa. The macromolecular Young's modulus was also found to increase, but by an amount corresponding to the volume fraction of the ion implanted region. The treated surface layer exhibited cracking under cyclical loads, associated with an increased modulus due to dehydrogenation and crosslinking, however it did not show any sign of delamination, indicating that the modified layer is well integrated with the substrate - a critical factor for bioactive surface coatings to be used in-vivo. Protein immobilisation on the PIII treated surfaces was found to saturate after 240 seconds of treatment, indicating that there is room to tune surface mechanical properties for specific applications without affecting the protein coverage. Our findings indicate that the modification of the chemical and mechanical properties by PIII treatments as well as the introduction of radicals render PEEK well suited for use in orthopaedic implantable devices.

  13. Synthesis and Consecutive Reactions of α-Azido Ketones: A Review

    Directory of Open Access Journals (Sweden)

    Sadia Faiz

    2015-08-01

    Full Text Available This review paper covers the major synthetic approaches attempted towards the synthesis of α-azido ketones, as well as the synthetic applications/consecutive reactions of α-azido ketones.

  14. Dispersibility and chemical bonds between multi-walled carbon nanotubes and poly(ether ether ketone) in nanocomposite fibers

    International Nuclear Information System (INIS)

    Yanmei, Jin; Haihui, Liu; Ning, Wang; Lichen, Hou; Xing-Xiang, Zhang

    2012-01-01

    A series of multi-walled carbon nanotubes (MWNTs)/poly(ether ether ketone)(PEEK) nanocomposite fibers were fabricated by mixing, melt extruding PEEK with different loadings and species of MWNTs, and melt-spun the blended chips. Nanocomposite fibers were heat-stretched and heat-treated. The morphology and dispersibility of MWNTs in nanocomposite fibers were observed using a field emission environmental scanning electron microscope (FESEM) and a transmission electron microscope (TEM). The thermal and crystallization behavior of nanocomposite fibers were characterized using differential scanning calorimetry (DSC) and an X-ray diffractometer (XRD). Mechanical properties were tested using a tensile strength tester. MWNTs tend to aggregate when the loading exceeds 0.8 wt%. Functional groups on MWNTs improve the hydrophobicity and the dispersibility of MWNTs in PEEK matrix. The enhancement of mechanical properties depends on the loading and species of functional groups. The most effectively reinforced effect is in the sequence, carboxylic MWNTs (MWNT–COOH) > hydroxyl MWNTs (MWNT–OH) > MWNTs, which can be explained by the strong hydrogen bonding and the affinity between MWNT–COOH and PEEK, MWNT–OH and PEEK, and possible formation of a chemical bond between MWNT–COOH and PEEK. A nanocomposite fiber with excellent mechanical property was fabricated using 0.8 wt% MWNT–COOH as filler. The Young's modulus is 1.7 GPa; and the stress is 648 MPa. -- Highlights: ► Functional groups on MWNTs improve their hydrophobility and dispersability. ► Mechanical properties depend on the content and species of the functional groups. ► The reinforced effect is in the sequence, carboxylic MWNTs > hydroxyl MWNTs > MWNTs. ► The strength behavior was result of hydrogen bond, affinity and chemical bond. ► Dispersability of MWNTs in matrix was analyzed by calculating solubility parameter.

  15. High strength, surface porous polyether-ether-ketone for load-bearing orthopaedic implants

    Science.gov (United States)

    Evans, Nathan T.; Torstrick, F. Brennan; Lee, Christopher S.D.; Dupont, Kenneth M.; Safranski, David L.; Chang, W. Allen; Macedo, Annie E.; Lin, Angela; Boothby, Jennifer M.; Whittingslow, Daniel C.; Carson, Robert A.; Guldberg, Robert E.; Gall, Ken

    2015-01-01

    Despite its widespread clinical use in load-bearing orthopaedic implants, polyether-ether-ketone (PEEK) is often associated with poor osseointegration. In this study, a surface porous PEEK material (PEEK-SP) was created using a melt extrusion technique. The porous layer thickness was 399.6±63.3 µm and possessed a mean pore size of 279.9±31.6 µm, strut spacing of 186.8±55.5 µm, porosity of 67.3±3.1%, and interconnectivity of 99.9±0.1%. Monotonic tensile tests showed that PEEK-SP preserved 73.9% of the strength (71.06±2.17 MPa) and 73.4% of the elastic modulus (2.45±0.31 GPa) of as-received, injection molded PEEK. PEEK-SP further demonstrated a fatigue strength of 60.0 MPa at one million cycles, preserving 73.4% of the fatigue resistance of injection molded PEEK. Interfacial shear testing showed the pore layer shear strength to be 23.96±2.26 MPa. An osseointegration model in the rat revealed substantial bone formation within the pore layer at 6 and 12 weeks via µCT and histological evaluation. Ingrown bone was more closely apposed to the pore wall and fibrous tissue growth was reduced in PEEK-SP when compared to non-porous PEEK controls. These results indicate that PEEK-SP could provide improved osseointegration while maintaining the structural integrity necessary for load-bearing orthopaedic applications. PMID:25463499

  16. Dihydrogenimidazole modified silica-sulfonated poly(ether ether ketone) hybrid materials as electrolyte membranes for direct ethanol fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Roelofs, Kimball S.; Hirth, Thomas [Fraunhofer Institute for Interfacial Engineering and Biotechnology, Nobelstr. 12, 70569 Stuttgart (Germany); Schiestel, Thomas, E-mail: Thomas.Schiestel@igb.fraunhofer.de [Fraunhofer Institute for Interfacial Engineering and Biotechnology, Nobelstr. 12, 70569 Stuttgart (Germany)

    2011-05-25

    The present study reports on dihydrogenimidazole modified inorganic-organic mixed matrix membranes for possible application as a proton exchange membrane in direct ethanol fuel cells. The polymeric phase consisted mainly of sulfonated poly(ether ether ketone) (sPEEK) with a sulfonation degree of 55%. The inorganic phase was built up from hydrophilic fumed silica particles interconnected with partially hydrolyzed and condensed tetraethoxysilane with a total inorganic loading of 27.3%. This inorganic phase was further modified with N-(3-triethoxysilylpropyl)-4,5-dihydroimidazole (DHIM), which consists of an hydrolyzable inorganic part and a functional organic group. The influence of the modifier on the mixed matrix system was studied by means of various modifier concentrations in various aqueous-ethanolic systems (water, 2 M and 4 M ethanol). Modifier concentration and ethanol concentration of the ethanol-water mixture exhibited significant but opposite effects on the liquid uptake of the mixed matrix membranes. The proton conductivity as well as the proton diffusion coefficient as a function of modifier content showed a linear decrease. The proton conductivity as a function of temperature showed Arrhenius behavior and the activation energy of the mixed matrix membranes was 43.9 {+-} 2.6 kJ mol{sup -1}. High selectivity of proton diffusion coefficient to ethanol permeability coefficient was obtained with high modifier concentrations. At low modifier concentrations, this selectivity was dominated by ethanol permeation and at high modifier concentrations by proton diffusion. The main electrolyte properties can be optimized by setting the DHIM content in mixed matrix membrane. With this approach, tailor-made membranes can be prepared for possible application in direct ethanol fuel cells.

  17. Dihydrogenimidazole modified silica-sulfonated poly(ether ether ketone) hybrid materials as electrolyte membranes for direct ethanol fuel cells

    International Nuclear Information System (INIS)

    Roelofs, Kimball S.; Hirth, Thomas; Schiestel, Thomas

    2011-01-01

    The present study reports on dihydrogenimidazole modified inorganic-organic mixed matrix membranes for possible application as a proton exchange membrane in direct ethanol fuel cells. The polymeric phase consisted mainly of sulfonated poly(ether ether ketone) (sPEEK) with a sulfonation degree of 55%. The inorganic phase was built up from hydrophilic fumed silica particles interconnected with partially hydrolyzed and condensed tetraethoxysilane with a total inorganic loading of 27.3%. This inorganic phase was further modified with N-(3-triethoxysilylpropyl)-4,5-dihydroimidazole (DHIM), which consists of an hydrolyzable inorganic part and a functional organic group. The influence of the modifier on the mixed matrix system was studied by means of various modifier concentrations in various aqueous-ethanolic systems (water, 2 M and 4 M ethanol). Modifier concentration and ethanol concentration of the ethanol-water mixture exhibited significant but opposite effects on the liquid uptake of the mixed matrix membranes. The proton conductivity as well as the proton diffusion coefficient as a function of modifier content showed a linear decrease. The proton conductivity as a function of temperature showed Arrhenius behavior and the activation energy of the mixed matrix membranes was 43.9 ± 2.6 kJ mol -1 . High selectivity of proton diffusion coefficient to ethanol permeability coefficient was obtained with high modifier concentrations. At low modifier concentrations, this selectivity was dominated by ethanol permeation and at high modifier concentrations by proton diffusion. The main electrolyte properties can be optimized by setting the DHIM content in mixed matrix membrane. With this approach, tailor-made membranes can be prepared for possible application in direct ethanol fuel cells.

  18. Direct α-alkylation of ketones with alcohols in water.

    Science.gov (United States)

    Xu, Guoqiang; Li, Qiong; Feng, Jiange; Liu, Qiang; Zhang, Zuojun; Wang, Xicheng; Zhang, Xiaoyun; Mu, Xindong

    2014-01-01

    The direct α-alkylation of ketones with alcohols has emerged as a new green protocol to construct C-C bonds with H2 O as the sole byproduct. In this work, a very simple and convenient Pd/C catalytic system for the direct α-alkylation of ketones with primary alcohols in pure water is developed. Based on this catalytic system, aqueous mixtures of dilute acetone, 1-butanol, and ethanol (mimicking ABE fermentation products) can be directly transformed into C5 -C11 or longer-chain ketones and alcohols, which are precursors to fuels. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. On the Metabolism of Exogenous Ketones in Humans

    Directory of Open Access Journals (Sweden)

    Brianna J. Stubbs

    2017-10-01

    Full Text Available Background and aims: Currently there is considerable interest in ketone metabolism owing to recently reported benefits of ketosis for human health. Traditionally, ketosis has been achieved by following a high-fat, low-carbohydrate “ketogenic” diet, but adherence to such diets can be difficult. An alternative way to increase blood D-β-hydroxybutyrate (D-βHB concentrations is ketone drinks, but the metabolic effects of exogenous ketones are relatively unknown. Here, healthy human volunteers took part in three randomized metabolic studies of drinks containing a ketone ester (KE; (R-3-hydroxybutyl (R-3-hydroxybutyrate, or ketone salts (KS; sodium plus potassium βHB.Methods and Results: In the first study, 15 participants consumed KE or KS drinks that delivered ~12 or ~24 g of βHB. Both drinks elevated blood D-βHB concentrations (D-βHB Cmax: KE 2.8 mM, KS 1.0 mM, P < 0.001, which returned to baseline within 3–4 h. KS drinks were found to contain 50% of the L-βHB isoform, which remained elevated in blood for over 8 h, but was not detectable after 24 h. Urinary excretion of both D-βHB and L-βHB was <1.5% of the total βHB ingested and was in proportion to the blood AUC. D-βHB, but not L-βHB, was slowly converted to breath acetone. The KE drink decreased blood pH by 0.10 and the KS drink increased urinary pH from 5.7 to 8.5. In the second study, the effect of a meal before a KE drink on blood D-βHB concentrations was determined in 16 participants. Food lowered blood D-βHB Cmax by 33% (Fed 2.2 mM, Fasted 3.3 mM, P < 0.001, but did not alter acetoacetate or breath acetone concentrations. All ketone drinks lowered blood glucose, free fatty acid and triglyceride concentrations, and had similar effects on blood electrolytes, which remained normal. In the final study, participants were given KE over 9 h as three drinks (n = 12 or a continuous nasogastric infusion (n = 4 to maintain blood D-βHB concentrations greater than 1 mM. Both drinks

  20. Quaternized adamantane-containing poly(aryl ether ketone) anion exchange membranes for vanadium redox flow battery applications

    Science.gov (United States)

    Zhang, Bengui; Zhang, Shouhai; Weng, Zhihuan; Wang, Guosheng; Zhang, Enlei; Yu, Ping; Chen, Xiaomeng; Wang, Xinwei

    2016-09-01

    Quaternized adamantane-containing poly(aryl ether ketone) anion exchange membranes (QADMPEK) are prepared and investigated for vanadium redox flow batteries (VRFB) application. The bulky, rigid and highly hydrophobic adamantane segment incorporated into the backbone of membrane material makes QADMPEK membranes have low water uptake and swelling ratio, and the as-prepared membranes display significantly lower permeability of vanadium ions than that of Nafion117 membrane. As a consequence, the VRFB cell with QADMPEK-3 membrane shows higher coulombic efficiency (99.4%) and energy efficiency (84.0%) than those for Nafion117 membrane (95.2% and 80.5%, respectively) at the current density of 80 mA cm-2. Furthermore, at a much higher current density of 140 mA cm-2, QADMPEK membrane still exhibits better coulombic efficiency and energy efficiency than Nafion117 membrane (coulombic efficiency 99.2% vs 96.5% and energy efficiency 76.0% vs 74.0%). Moreover, QADMPEK membranes show high stability in in-situ VRFB cycle test and ex-situ oxidation stability test. These results indicate that QADMPEK membranes are good candidates for VRFB applications.

  1. Contribution to the study of the structure and reactivity of ketones using deuterium substitution of the α - ketone hydrogens

    International Nuclear Information System (INIS)

    Frejaville, G.

    1966-02-01

    This work is an attempt to obtain more knowledge about the structure and the reactivity of ketones; it is also a contribution to conformational analysis based on infrared signals associated with the C-D vibration in mono-deuterated compounds. In the first chapter the various dosage and synthetic methods used in this work are described. In the second chapter the infrared spectra in the 2100-2200 cm -1 region for mono-deuterated ketones are interpreted on the basis of a simple model. This model is then studied in detail, and also critically and precisely, in the case of the mono deuterated acetone molecule. In the third chapter is studied the mechanism of the Favorskii reaction and the reactivity of all the α-ketonic hydrogens of 2 chloro-cyclohexanone are classified. In a technical appendix is described a counter-current exchange method for obtaining a great variety of solvents and deuterated pure raw materials under advantageous conditions. (author) [fr

  2. Influence of Silica/Sulfonated Polyether-Ether Ketone as Polymer Electrolyte Membrane for Hydrogen Fueled Proton Exchange Membrane Fuel Cells

    Directory of Open Access Journals (Sweden)

    Sri Handayani

    2011-12-01

    Full Text Available The operation of non-humidified condition of proton exchange membrane fuel cell (PEMFC using composite sPEEK-silica membrane is reported. Sulfonated membrane of PEEK is known as hydrocarbon polyelectrolyte membrane for PEMFC and direct methanol fuel cell (DMFC. The state of the art of fuel cells is based on the perluorosulfonic acid membrane (Nafion. Nafion has been the most used in both PEMFC and DMFC due to good performance although in low humidified condition showed poor current density. Here we reported the effect of silica in hydrocarbon sPEEK membrane that contributes for a better water management system inside the cell, and showed 0.16 W/cm2 of power density which is 78% higher than that of non-silica modified [Keywords: composite membrane, polyether-ether ketone, silica, proton exchange membrane fuel cell].

  3. Silica sulfuric acid and as an efficient catalyst for the Friedlander quinoline synthesis from simple ketones and ortho - amino aryl ketones under microwave irradiation

    International Nuclear Information System (INIS)

    Zolfigol, M. A.; Salehi, P.; Shiri, M.; Faal Rastegar, T.; Ghaderi, A.

    2008-01-01

    The synthesis of quinoline derivatives via Friedlander method from ortho-amino aryl ketones in the presence of a catalytic amount of silica sulfuric acid under solvent-free condition and microwave irradiation was described. A good range of simple ketones such as cyclohexanone and deoxybenzoin were used

  4. Electronic structure and tautomerism of aryl ketones

    International Nuclear Information System (INIS)

    Novak, Igor; Klasinc, Leo; Šket, Boris; McGlynn, S.P.

    2015-01-01

    Graphical abstract: Photoelectron spectroscopy, tautomerism. - Highlights: • UV photoelectron spectroscopy of aryl ketones. • The relative stability of tautomers and their electronic structures. • The factors influencing tautomerism. - Abstract: The electronic structures of several aryl ketones (AK) and their α-halo derivatives have been studied by UV photoelectron spectroscopy (UPS). The relative stabilities of keto–enol tautomers have been determined using high-level ab initio calculations and the results were used in the analysis of UPS spectra. The main features of electronic structure and tautomerism of the AK derivatives are discussed

  5. Electronic structure and tautomerism of aryl ketones

    Energy Technology Data Exchange (ETDEWEB)

    Novak, Igor, E-mail: inovak@csu.edu.au [Charles Sturt University, POB 883, Orange, NSW 2800 (Australia); Klasinc, Leo, E-mail: klasinc@irb.hr [Physical Chemistry Department, Ruđer Bošković Institute, HR-10002 Zagreb (Croatia); Šket, Boris, E-mail: Boris.Sket@fkkt.uni-lj.si [Faculty of Chemistry and Chemical Technology, University of Ljubljana, SI-1000 (Slovenia); McGlynn, S.P., E-mail: sean.mcglynn@chemgate.chem.lsu.edu [Louisiana State University, Baton Rouge, LA 70803 (United States)

    2015-07-15

    Graphical abstract: Photoelectron spectroscopy, tautomerism. - Highlights: • UV photoelectron spectroscopy of aryl ketones. • The relative stability of tautomers and their electronic structures. • The factors influencing tautomerism. - Abstract: The electronic structures of several aryl ketones (AK) and their α-halo derivatives have been studied by UV photoelectron spectroscopy (UPS). The relative stabilities of keto–enol tautomers have been determined using high-level ab initio calculations and the results were used in the analysis of UPS spectra. The main features of electronic structure and tautomerism of the AK derivatives are discussed.

  6. Contribution to the study of gamma radiolysis of 2-furyl butyl or substituted phenyl ketones in isopropanol

    International Nuclear Information System (INIS)

    El Dessouky Aly, M.M.

    1982-03-01

    The following ketones: 2-furyl butyl ketone (I), 2 furyl phenyl ketone (II), 2-furyl p-methylphenyl ketone (III) and 2-furyl p-methoxyphenyl ketone (IV) were synthesised and characterised. The yields of hydrogen and methane obtained during radiolysis of the mixtures ketones (I to IV)-2-propanol were determined. These yields are always lower than with pure 2-propanol. Radiolysis products for ketones (I) and (II) are studied. Analysis of radiolitical products were conducted by gas chromatography. Effect of radiation dose and ketone concentration is determined. Reaction mechanisms are studied [fr

  7. Bacterial production of methyl ketones

    Energy Technology Data Exchange (ETDEWEB)

    Beller, Harry R.; Goh, Ee-Been

    2017-01-31

    The present invention relates to methods and compositions for increasing production of methyl ketones in a genetically modified host cell that overproduces .beta.-ketoacyl-CoAs through a re-engineered .beta.-oxidation pathway and overexpresses FadM.

  8. Synthesis of tritium labelled methyl vinyl ketone and its use in copolymer analysis

    International Nuclear Information System (INIS)

    Burfield, D.R.; Savariar, C.M.

    1980-01-01

    The synthesis of tritiated methyl vinyl ketone by base catalysed exchange and its use in determining the ketone content of styrene/methyl vinyl ketone copolymers are reported. Methods of assay are described in detail and the general applicability of the method is discussed. (author)

  9. Ketone Bodies Mediate Antiseizure Effects

    Directory of Open Access Journals (Sweden)

    Jena M. Krueger

    2015-10-01

    Full Text Available Investigators from The Barrow Neurological Institute, Creighton University, University of Kentucky and the University of Calgary Faculty of Medicine investigated the effect of ketone bodies and the ketogenic diet on epileptic Kcna1-null mice.

  10. Etched poly(ether ether ketone) jacket stir bar with detachable dumbbell-shaped structure for stir bar sorptive extraction.

    Science.gov (United States)

    Zhou, Wei; Wang, Chenlu; Wang, Xuemei; Chen, Zilin

    2018-06-08

    Development of stir bar sorptive extraction (SBSE) device with high stability and extraction efficiency is critical and challenging by date. In this work, etched poly(ether ether ketone) (PEEK) tube with high mechanical strength and large specific surface area was used as jacket for SBSE device. By etching with concentrated sulfuric acid, the smooth outer surface of PEEK become porous with plenty of micro holes, which was beneficial for coating of sorbents and significantly improved the extraction performance. After functionalized by bio-polydopamine method, strong hydrophobic p-naphtholbenzein molecular was immobilized onto the chemical resistant PEEK surface (PNB@E-PEEK) as stationary phase. We also firstly developed a simple detachable dumbbell-shaped structure for improving the workability of PEEK jacket stir bar. The dumbbell-shaped construction can eliminate the friction between stir bar and container, and the design of detachable structure make elution can be accomplished easier with small amount of organic solvent. It was interesting that the developed detachable dumbbell-shaped PNB@E-PEEK stir bar showed exceptional stability and extraction efficiency for SBSE enrichment of multiple analytes including several Sudan dyes, triazines, polycyclic aromatic hydrocarbons (PAHs), alkaloids and flavonoid. By coupling with high performance liquid chromatography-ultraviolet detection (HPLC-UV), PNB@E-PEEK stir bar based SBSE-HPLC-UV method was applied for the analysis of common Sudan dye pollutants. The method showed low limits of detection (0.02-0.03 ng/mL), good linearity (R 2  ≥ 0.9979) and good reproducibility (relative standard deviation ≤ 7.96%). It has been successfully applied to determine three dye pollutants in tap and lake water. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Composite electrolytes composed of Cs-substituted phosphotungstic acid and sulfonated poly(ether-ether ketone) for fuel cell systems

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Song-Yul, E-mail: ms089203@tutms.tut.ac.jp [Department of Materials Science, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi 441-8580 (Japan); Yoshida, Toshihiro; Kawamura, Go [Department of Materials Science, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi 441-8580 (Japan); Muto, Hiroyuki [Department of Materials Science and Engineering, Kurume National College of Technology, 1-1-1 Komorino, Kurume, Fukuoka 830-8555 (Japan); Sakai, Mototsugu [Department of Materials Science, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi 441-8580 (Japan); Matsuda, Atsunori, E-mail: matsuda@tutms.tut.ac.jp [Department of Materials Science, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi 441-8580 (Japan)

    2010-10-15

    Composite electrolytes composed of cesium hydrogen sulfate containing phosphotungstic acids (CsHSO{sub 4}-H{sub 3}PW{sub 12}O{sub 40}) and sulfonated poly(ether-ether ketone) (SPEEK) were prepared by casting the corresponding precursor for application in fuel cells. Partially Cs-substituted phosphotungstic acids (Cs{sub x}H{sub 3-x}PW{sub 12}O{sub 40}) were formed in the CsHSO{sub 4}-H{sub 3}PW{sub 12}O{sub 40} system by mechanochemical treatment. SPEEK was prepared from PEEK by sulfonation using concentrated sulfuric acid. Flexible composite electrolytes were obtained and their electrochemical properties were markedly improved with the addition of Cs{sub x}H{sub 3-x}PW{sub 12}O{sub 40}, into the SPEEK matrix. A maximum power density of 213 mW cm{sup -2} was obtained from the single cell test for 50H{sub 3}PW{sub 12}O{sub 40}-50CsHSO{sub 4} in SPEEK (1/5 by weight) composite electrolyte at 80 deg. C and at 80 RH%. Electrochemical properties and transmission electron microscopy (TEM) results suggest that three-dimensional cluster particles were formed and homogeneously distributed in the SPEEK matrix. The mechanochemically synthesized Cs{sub x}H{sub 3-x}PW{sub 12}O{sub 40} incorporated into the SPEEK matrix increased the number of protonate sites in the electrolyte. The composite electrolytes were successfully formed with Cs{sub x}H{sub 3-x}PW{sub 12}O{sub 40}, which consist of hydrogen bonding between surface of inorganic solid acids and not only -HSO{sub 4}{sup -} dissociated from CsHSO{sub 4} but also -SO{sub 3}H groups in the SPEEK.

  12. High-strength, surface-porous polyether-ether-ketone for load-bearing orthopedic implants.

    Science.gov (United States)

    Evans, Nathan T; Torstrick, F Brennan; Lee, Christopher S D; Dupont, Kenneth M; Safranski, David L; Chang, W Allen; Macedo, Annie E; Lin, Angela S P; Boothby, Jennifer M; Whittingslow, Daniel C; Carson, Robert A; Guldberg, Robert E; Gall, Ken

    2015-02-01

    Despite its widespread clinical use in load-bearing orthopedic implants, polyether-ether-ketone (PEEK) is often associated with poor osseointegration. In this study, a surface-porous PEEK material (PEEK-SP) was created using a melt extrusion technique. The porous layer was 399.6±63.3 μm thick and possessed a mean pore size of 279.9±31.6 μm, strut spacing of 186.8±55.5 μm, porosity of 67.3±3.1% and interconnectivity of 99.9±0.1%. Monotonic tensile tests showed that PEEK-SP preserved 73.9% of the strength (71.06±2.17 MPa) and 73.4% of the elastic modulus (2.45±0.31 GPa) of as-received, injection-molded PEEK. PEEK-SP further demonstrated a fatigue strength of 60.0 MPa at one million cycles, preserving 73.4% of the fatigue resistance of injection-molded PEEK. Interfacial shear testing showed the pore layer shear strength to be 23.96±2.26 MPa. An osseointegration model in the rat revealed substantial bone formation within the pore layer at 6 and 12 weeks via microcomputed tomography and histological evaluation. Ingrown bone was more closely apposed to the pore wall and fibrous tissue growth was reduced in PEEK-SP when compared to non-porous PEEK controls. These results indicate that PEEK-SP could provide improved osseointegration while maintaining the structural integrity necessary for load-bearing orthopedic applications. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  13. Baeyger-Villiger oxidation of bicyclic ketones. Study of the reaction mechanisms

    International Nuclear Information System (INIS)

    Moutin, Michel

    1968-01-01

    Steric effects occur with the substituents in the ring enlargement of ketones leading to lactones. Different theories which have been proposed are examined, the case of camphor being of particular interest. The following ketones are examined: episo- and iso-fenchone, α and β fenchocamphorone and camphenylone, and the lactone yields are predicted. The identification of the lactones produced is discussed. The case of α fencho-camphorone, which contradicts previous theory, is underlined. The synthesis of the ketones is discussed. (author) [fr

  14. Bilateral Malar Reconstruction Using Patient-Specific Polyether Ether Ketone Implants in Treacher-Collins Syndrome Patients With Absent Zygomas.

    Science.gov (United States)

    Sainsbury, David C G; George, Alan; Forrest, Christopher R; Phillips, John H

    2017-03-01

    The authors performed bilateral malar reconstruction using polyether ether ketone implants in 3 patients with Treacher-Collins syndrome with absent, as opposed to hypoplastic, zygomata. These patient-specific implants were fabricated using computed-aided design software reformatted from three-dimensional bony preoperative computed tomography images. The first time the authors performed this procedure the implant compressed the globe resulting in temporary anisocoria that was quickly recognized intraoperatively. The implant was immediately removed and the patient made a full-recovery with no ocular disturbance. The computer-aided design and manufacturing process was adjusted to include periorbital soft-tissue boundaries to aid in contouring the new implants. The same patient, and 2 further patients, subsequently underwent malar reconstruction using this soft tissue periorbital boundary fabrication process with an additional 2 mm relief removed from the implant's orbital surface. These subsequent procedures were performed without complication and with pleasing aesthetic results. The authors describe their experience and the salutary lessons learnt.

  15. Synthesis and antidiabetic activity of β-acetamido ketones

    Directory of Open Access Journals (Sweden)

    Xing-hua Zhang

    2011-08-01

    Full Text Available This paper reports the use of trifluoroacetic acid as a catalyst in the Dakin–West reaction for the synthesis of β-acetamido ketones. The method has several advantages such as requiring only mild conditions and a low concentration of catalyst. Screening of 19 β-acetamido ketones for antidiabetic activity in vitro showed that their activity as peroxisome proliferator-activated receptor (PPAR agonists and as dipeptidyl peptidase 4 (DPP-IV inhibitors was fairly weak.

  16. Development and characterization of poli composites (ether ether ketone)(PEEK)(Hydroxyapatite(HA); Desenvolvimento e caracterizacao de compositos poli (eter-eter-cetona)(PEEK)/Hidroxiapatita(HA)

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, V.P.; Santos, F.S.F.; Sa, M.D. de; Fook, M.V.L., E-mail: valeriap.ferreira@hotmail.com [Universidade Federal de Campina Grande (UFCG), PB (Brazil). Centro de Ciencias e Tecnologia. Programa de Pos-Graduacao em Ciencia e Engenharia de Materiais

    2016-07-01

    The objective of this work was to develop PEEK / HA composites, combining the biological activity of the ceramic phase with the properties of the polymer phase, the materials used in this research were Poly (ether-ether-ketone) (PEEK) and Hydroxyapatite (HA) (50, 60, 70 and 80% m / v HA), this material was subjected to a load of two tons followed by a thermal treatment at 390 ° for a period of 30 minutes. Then they were characterized by FTIR, DRX and MO. In the physical-chemical characterization of FTIR and XRD, it was not possible to identify significant alterations. In the FTIR spectra of the composites, there is no formation of new identifiable chemical bonds. In the composites XRD diffractograms a profile similar to the ceramic phase was observed, with peaks increasing in intensity and narrowing proportional to the increase of the hydroxyapatite concentration in the composites. In optical microscopy it is possible to observe surfaces with heterogeneous morphology, with signs of roughness and in the cross section we observe a heterogeneous aspect, rich in regions with large agglomerates and lighter particles. Considering the processing aspects, the technique proved to be effective for the development of PEEK /HA composites. (author)

  17. [Pollution Characteristics of Aldehydes and Ketones Compounds in the Exhaust of Beijing Typical Restaurants].

    Science.gov (United States)

    Cheng, Jing-chen; Cui, Tong; He, Wan-qing; Nie, Lei; Wang, Jun-ling; Pan, Tao

    2015-08-01

    Aldehydes and ketones compounds, as one of the components in the exhaust of restaurants, are a class of volatile organic compounds (VOCs) with strong chemical reactivity. However, there is no systematic study on aldehydes and ketones compounds in the exhaust of restaurants. To further clarify the food source emission levels of aldehydes and ketones compounds and controlling measures, to access city group catering VOCs emissions control decision-making basis, this study selected 8 Beijing restaurants with different types. The aldehydes and ketones compounds were sampled using DNPH-silica tube, and then ultra performance liquid chromatography was used for quantitative measurement. The aldehydes and ketones concentrations of reference volume condition from 8 restaurants in descending order were Roasted Duck restaurant, Chinese Style Barbecue, Home Dishes, Western Fast-food, School Canteen, Chinese Style Fast-food, Sichuan Cuisine, Huaiyang Cuisine. The results showed that the range of aldehydes and ketones compounds (C1-C9) concentrations of reference volume condition in the exhaust of restaurants was 115.47-1035.99 microg x m(-3). The composition of aldehydes and ketones compounds in the exhaust of sampled restaurants was obviously different. The percentages of C1-C3 were above 40% in the exhaust from Chinese style restaurants. Fast food might emit more C4-C9 aldehydes and ketones compounds. From the current situation of existing aldehydes and ketones compounds control, the removal efficiency of high voltage electrostatic purifiers widely used in Beijing is limited.

  18. Presence and potential significance of aromatic-ketone groups in aquatic humic substances

    Science.gov (United States)

    Leenheer, J.A.; Wilson, M.A.; Malcolm, R.L.

    1987-01-01

    Aquatic humic- and fulvic-acid standards of the International Humic Substances Society were characterized, with emphasis on carbonyl-group nature and content, by carbon-13 nuclear-magnetic-resonance spectroscopy, proton nuclear-magnetic-resonance spectroscopy, and infrared spectroscopy. After comparing spectral results of underivatized humic and fulvic acids with spectral results of chemically modified derivatives, that allow improved observation of the carbonyl group, the data clearly indicated that aromatic ketone groups comprised the majority of the carbonyl-group content. About one ketone group per monocyclic aromatic ring was determined for both humic and fulvic acids. Aromatic-ketone groups were hypothesized to form by photolytic rearrangements and oxidation of phenolic ester and hydrocarbon precursors; these groups have potential significance regarding haloform formation in water, reactivity resulting from active hydrogen of the methyl and methylene adjacent to the ketone groups, and formation of hemiketal and lactol structures. Aromatic-ketone groups also may be the point of attachment between aliphatic and aromatic moieties of aquatic humic-substance structure. ?? 1987.

  19. Computed-tomography modeled polyether ether ketone (PEEK) implants in revision cranioplasty.

    Science.gov (United States)

    O'Reilly, Eamon B; Barnett, Sam; Madden, Christopher; Welch, Babu; Mickey, Bruce; Rozen, Shai

    2015-03-01

    Traditional cranioplasty methods focus on pre-operative or intraoperative hand molding. Recently, CT-guided polyether ether ketone (PEEK) plate reconstruction enables precise, time-saving reconstruction. This case series aims to show a single institution experience with use of PEEK cranioplasty as an effective, safe, precise, reusable, and time-saving cranioplasty technique in large, complex cranial defects. We performed a 6-year retrospective review of cranioplasty procedures performed at our affiliated hospitals using PEEK implants. A total of nineteen patients underwent twenty-two cranioplasty procedures. Pre-operative, intra-operative, and post-operative data was collected. Nineteen patients underwent twenty-two procedures. Time interval from injury to loss of primary cranioplasty averaged 57.7 months (0-336 mo); 4.0 months (n=10, range 0-19) in cases of trauma. Time interval from primary cranioplasty loss to PEEK cranioplasty was 11.8 months for infection (n=11, range 6-25 mo), 12.2 months for trauma (n=5, range 2-27 mo), and 0.3 months for cosmetic or functional reconstructions (n=3, range 0-1). Similar surgical techniques were used in all patients. Drains were placed in 11/22 procedures. Varying techniques were used in skin closure, including adjacent tissue transfer (4/22) and free tissue transfer (1/22). The PEEK plate required modification in four procedures. Three patients had reoperation following PEEK plate reconstruction. Cranioplasty utilizing CT-guided PEEK plate allows easy inset, anatomic accuracy, mirror image aesthetics, simplification of complex 3D defects, and potential time savings. Additionally, it's easily manipulated in the operating room, and can be easily re-utilized in cases of intraoperative course changes or infection. Copyright © 2014 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  20. Preparation, characterization and in vitro response of bioactive coatings on polyether ether ketone.

    Science.gov (United States)

    Durham, John W; Allen, Matthew J; Rabiei, Afsaneh

    2017-04-01

    Polyether ether ketone (PEEK) is a highly heat-resistant thermoplastic with excellent strength and elastic modulus similar to human bone, making it an attractive material for orthopedic implants. However, the hydrophobic surface of PEEK implants induces fibrous encapsulation which is unfavorable for stable implant anchorage. In this study, PEEK was coated via ion-beam-assisted deposition (IBAD) using a two-layer design of yttria-stabilized zirconia (YSZ) as a heat-protection layer, and hydroxyapatite (HA) as a top layer to improve osseointegration. Microstructural analysis of the coatings showed a dense, uniform columnar grain structure in the YSZ layer and no delamination from the substrate. The HA layer was found to be amorphous and free of porosities in its as-deposited state. Subsequent heat treatment via microwave energy followed by autoclaving crystallized the HA layer, confirmed by SEM and XRD analysis. An in vitro study using MC3T3 preosteoblast cells showed improved bioactivity in heat-treated sample groups. Cell proliferation, differentiation, and mineralization were analyzed by MTT assay and DNA content, osteocalcin expression, and Alizarin Red S (AR-S) content, respectively. Initial cell growth was increased, and osteogenic maturation and mineralization were accelerated most on coatings that underwent a combined microwave and autoclave heat treatment process as compared to uncoated PEEK and amorphous HA surfaces. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 560-567, 2017. © 2015 Wiley Periodicals, Inc.

  1. Poly (fluorenyl ether ketone) ionomers containing separated hydrophilic multiblocks used in fuel cells as proton exchange membranes

    Energy Technology Data Exchange (ETDEWEB)

    Hu, H.; Xiao, M.; Wang, S.J.; Meng, Y.Z. [State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-Sen University, Guangzhou 510275 (China); The Key Laboratory of Low-carbon Chemistry and Energy Conservation of Guangdong Province, Sun Yat-Sen University, Guangzhou 510275 (China)

    2010-01-15

    A series of sulfonated poly(fluorenyl ether ketone) with different hydrophilic block lengths were synthesized via a two-step one-pot polymerization from 9,9'-bis(4-Hydroxypheyl) fluorine, 3,3'-disulfonated-4,4'-difluorobenzophenone, and 4,4'-difluorobenzophenone. The resulting sulfonated block polymers with high inherent viscosity (0.8-1.37 dL/g) were very soluble in polar organic solvents and can form flexible and transparent membranes by casting from their solutions. Transmission electron microscope (TEM) was used to examine the microstructure of the membranes and the results revealed that significant hydrophilic/hydrophobic microphase separation was produced. The effects of the multiblock structure and/or length were investigated by comparison of the properties of the multiblock copolymer and the corresponding random structure. The multiblock structure can provide enhanced proton transport, especially under partially hydrated conditions. The as-made membranes can also exhibit better oxidative stability and single cell performance than random copolymer. The multiblock structure design method provides a useful way to prepare proton exchange membrane used in PEM fuel cells. (author)

  2. Lithium diffusion in polyether ether ketone and polyimide stimulated by in situ electron irradiation and studied by the neutron depth profiling method

    Science.gov (United States)

    Vacik, J.; Hnatowicz, V.; Attar, F. M. D.; Mathakari, N. L.; Dahiwale, S. S.; Dhole, S. D.; Bhoraskar, V. N.

    2014-10-01

    Diffusion of lithium from a LiCl aqueous solution into polyether ether ketone (PEEK) and polyimide (PI) assisted by in situ irradiation with 6.5 MeV electrons was studied by the neutron depth profiling method. The number of the Li atoms was found to be roughly proportional to the diffusion time. Regardless of the diffusion time, the measured depth profiles in PEEK exhibit a nearly exponential form, indicating achievement of a steady-state phase of a diffusion-reaction process specified in the text. The form of the profiles in PI is more complex and it depends strongly on the diffusion time. For the longer diffusion time, the profile consists of near-surface bell-shaped part due to Fickian-like diffusion and deeper exponential part.

  3. Metabolism of ketone bodies during exercise and training: physiological basis for exogenous supplementation

    Science.gov (United States)

    Evans, Mark; Cogan, Karl E.

    2016-01-01

    Abstract Optimising training and performance through nutrition strategies is central to supporting elite sportspeople, much of which has focused on manipulating the relative intake of carbohydrate and fat and their contributions as fuels for energy provision. The ketone bodies, namely acetoacetate, acetone and β‐hydroxybutyrate (βHB), are produced in the liver during conditions of reduced carbohydrate availability and serve as an alternative fuel source for peripheral tissues including brain, heart and skeletal muscle. Ketone bodies are oxidised as a fuel source during exercise, are markedly elevated during the post‐exercise recovery period, and the ability to utilise ketone bodies is higher in exercise‐trained skeletal muscle. The metabolic actions of ketone bodies can alter fuel selection through attenuating glucose utilisation in peripheral tissues, anti‐lipolytic effects on adipose tissue, and attenuation of proteolysis in skeletal muscle. Moreover, ketone bodies can act as signalling metabolites, with βHB acting as an inhibitor of histone deacetylases, an important regulator of the adaptive response to exercise in skeletal muscle. Recent development of ketone esters facilitates acute ingestion of βHB that results in nutritional ketosis without necessitating restrictive dietary practices. Initial reports suggest this strategy alters the metabolic response to exercise and improves exercise performance, while other lines of evidence suggest roles in recovery from exercise. The present review focuses on the physiology of ketone bodies during and after exercise and in response to training, with specific interest in exploring the physiological basis for exogenous ketone supplementation and potential benefits for performance and recovery in athletes. PMID:27861911

  4. The in vivo response to a novel Ti coating compared with polyether ether ketone: evaluation of the periphery and inner surfaces of an implant.

    Science.gov (United States)

    Walsh, William Robert; Pelletier, Matthew H; Christou, Chris; He, Jiawei; Vizesi, Frank; Boden, Scott D

    2018-02-26

    Increasing bone ongrowth and ingrowth of polyether ether ketone (PEEK) interbody fusion devices has the potential to improve clinical outcomes. This study evaluated the in vivo response of promoting new bone growth and bone apposition with NanoMetalene (NM) compared with PEEK alone in a cancellous implantation site with an empty aperture. This is a randomized control animal study. Implants and funding for this study were provided by SeaSpine (60,000 USD). Cylindrical dowels with two apertures were prepared as PEEK with a sub-micron layer of the titanium (NM). The titanium coating was applied over the entire implant (Group 1) or just the apertures (Group 2). Polyether ether ketone implants with no coating served as controls (Group 3). Implants were placed in the cancellous bone of the distal femur or proximal tibia with no graft material placed in the apertures in eight adult sheep. Bone ongrowth to the surface of the implant and ingrowth into the apertures was assessed at 4 and 8 weeks after surgery with micro-computed tomography (CT) and undecalcified histology. The apertures in the implants were notably empty in the PEEK group at 4 and 8 weeks. In contrast, new bone formation into the apertures was found in samples coated with NM even though no graft material was placed into the defect. The bone growing into the aperture tracked along the titanium layer. Apertures with the titanium coating demonstrated significantly more bone by micro-CT qualitative grading compared with PEEK with average bone coverage scores of Group 1 (NM) 1.62±0.89, Group 2 (NM apertures only) 1.62±0.77, and Group 3 (PEEK) 0.43±0.51, respectively, at 4 weeks (p<.01) and Group 1 (NM) 1.79±1.19, Group 2 (NM apertures only) 1.98±1.18, and Group 3 (PEEK) 0.69±0.87, respectively, at 8 weeks (p<.05). The amount of bone in the apertures (ingrowth) quantified using the volumetric data from the micro-CT supported an overall increase in bone volume inside the apertures with the titanium coating

  5. Breath Ketone Testing: A New Biomarker for Diagnosis and Therapeutic Monitoring of Diabetic Ketosis

    Directory of Open Access Journals (Sweden)

    Yue Qiao

    2014-01-01

    Full Text Available Background. Acetone, β-hydroxybutyric acid, and acetoacetic acid are three types of ketone body that may be found in the breath, blood, and urine. Detecting altered concentrations of ketones in the breath, blood, and urine is crucial for the diagnosis and treatment of diabetic ketosis. The aim of this study was to evaluate the advantages of different detection methods for ketones, and to establish whether detection of the concentration of ketones in the breath is an effective and practical technique. Methods. We measured the concentrations of acetone in the breath using gas chromatography-mass spectrometry and β-hydroxybutyrate in fingertip blood collected from 99 patients with diabetes assigned to groups 1 (−, 2 (±, 3 (+, 4 (++, or 5 (+++ according to urinary ketone concentrations. Results. There were strong relationships between fasting blood glucose, age, and diabetic ketosis. Exhaled acetone concentration significantly correlated with concentrations of fasting blood glucose, ketones in the blood and urine, LDL-C, creatinine, and blood urea nitrogen. Conclusions. Breath testing for ketones has a high sensitivity and specificity and appears to be a noninvasive, convenient, and repeatable method for the diagnosis and therapeutic monitoring of diabetic ketosis.

  6. Rhodium Catalyzed Intramolecular C-H Insertion of α-Aryl-α-diazo Ketones

    Science.gov (United States)

    Taber, Douglass F.; Tian, Weiwei

    2011-01-01

    Direct diazo transfer proceeds smoothly with α-aryl ketones. The derived α-aryl-α-diazo ketones cyclize efficiently with Rh catalysis to give the corresponding α-aryl cyclopentanones. PMID:17385917

  7. Wear resistance of poly(2-methacryloyloxyethyl phosphorylcholine)-grafted carbon fiber reinforced poly(ether ether ketone) liners against metal and ceramic femoral heads.

    Science.gov (United States)

    Yamane, Shihori; Kyomoto, Masayuki; Moro, Toru; Hashimoto, Masami; Takatori, Yoshio; Tanaka, Sakae; Ishihara, Kazuhiko

    2018-04-01

    Younger, active patients who undergo total hip arthroplasty (THA) have increasing needs for wider range of motion and improved stability of the joint. Therefore, bearing materials having not only higher wear resistance but also mechanical strength are required. Carbon fiber-reinforced poly(ether ether ketone) (CFR-PEEK) is known as a super engineering plastic that has great mechanical strength. In this study, we focused on poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC)-grafted CFR-PEEK and investigated the effects of PMPC grafting and the femoral heads materials on the wear properties of CFR-PEEK liners. Compared with untreated CFR-PEEK, the PMPC-grafted CFR-PEEK surface revealed higher wettability and lower friction properties under aqueous circumstances. In the hip simulator wear test, wear particles generated from the PMPC-grafted CFR-PEEK liners were fewer than those of the untreated CFR-PEEK liners. There were no significant differences in the size and the morphology of the wear particles between the differences of PMPC-grafting and the counter femoral heads. Zirconia-toughened alumina (ZTA) femoral heads had significantly smoother surfaces compared to cobalt-chromium-molybdenum alloy femoral heads after the hip simulator test. Thus, we conclude that the bearing combination of the PMPC-grafted CFR-PEEK liner and ZTA head is expected to be a lifelong bearing interface in THA. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 1028-1037, 2018. © 2017 Wiley Periodicals, Inc.

  8. Metabolism of ketone bodies during exercise and training: physiological basis for exogenous supplementation.

    Science.gov (United States)

    Evans, Mark; Cogan, Karl E; Egan, Brendan

    2017-05-01

    Optimising training and performance through nutrition strategies is central to supporting elite sportspeople, much of which has focused on manipulating the relative intake of carbohydrate and fat and their contributions as fuels for energy provision. The ketone bodies, namely acetoacetate, acetone and β-hydroxybutyrate (βHB), are produced in the liver during conditions of reduced carbohydrate availability and serve as an alternative fuel source for peripheral tissues including brain, heart and skeletal muscle. Ketone bodies are oxidised as a fuel source during exercise, are markedly elevated during the post-exercise recovery period, and the ability to utilise ketone bodies is higher in exercise-trained skeletal muscle. The metabolic actions of ketone bodies can alter fuel selection through attenuating glucose utilisation in peripheral tissues, anti-lipolytic effects on adipose tissue, and attenuation of proteolysis in skeletal muscle. Moreover, ketone bodies can act as signalling metabolites, with βHB acting as an inhibitor of histone deacetylases, an important regulator of the adaptive response to exercise in skeletal muscle. Recent development of ketone esters facilitates acute ingestion of βHB that results in nutritional ketosis without necessitating restrictive dietary practices. Initial reports suggest this strategy alters the metabolic response to exercise and improves exercise performance, while other lines of evidence suggest roles in recovery from exercise. The present review focuses on the physiology of ketone bodies during and after exercise and in response to training, with specific interest in exploring the physiological basis for exogenous ketone supplementation and potential benefits for performance and recovery in athletes. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.

  9. Proton conductivity and fuel cell property of composite electrolyte consisting of Cs-substituted heteropoly acids and sulfonated poly(ether-ether ketone)

    Energy Technology Data Exchange (ETDEWEB)

    Oh, S.Y.; Yoshida, T.; Kawamura, G.; Sakai, M.; Matsuda, A. [Department of Materials Science, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi 441-8580 (Japan); Muto, H. [Department of Materials Science and Engineering, Kurume National College of Technology, 1-1-1 Komorino, Kurume, Fukuoka 830-8555 (Japan)

    2010-09-15

    Inorganic-organic composite electrolytes were fabricated from partially Cs{sup +}-substituted heteropoly acids (Cs-HPAs) and sulfonated poly(ether-ether ketone) (SPEEK) for application in fuel cells. Heteropoly acids, such as phosphotungstic acid (H{sub 3}PW{sub 12}O{sub 40}:WPA), and silicotungstic acid (H{sub 4}SiW{sub 12}O{sub 40}:WSiA), were mechanochemically treated with cesium hydrogen sulfate (CsHSO{sub 4}) to obtain the form of Cs-HPAs. SPEEK was prepared from PEEK by sulfonation using concentrated sulfuric acid. Water durability and surface structure of HPAs were modified by introducing Cs{sup +} into HPAs. Flexible and hot water stable composite electrolytes were obtained, and their electrochemical properties were markedly improved with the addition of Cs-HPAs into the SPEEK matrix. Maximum power densities of 245 and 247 mW cm{sup -2} were obtained for 50WPA.50CsHSO{sub 4} and 50WSiA.50CsHSO{sub 4} in SPEEK (1/5 by weight) composite electrolytes, respectively, from single cell tests at 80 C and 80 RH%. These results suggest that a three-dimensional proton-conductive path was formed among homogeneously distributed Cs-HPAs particles in the SPEEK matrix. The Cs-HPAs incorporated into the SPEEK matrix increased the number of protonate sites in the electrolyte. These observations imply that the mechanochemically synthesized Cs-HPAs, which consist of hydrogen bondings between Cs-HPAs and -HSO{sub 4}{sup -}, dissociated from CsHSO{sub 4}, are promising materials as inorganic fillers in inorganic-organic composite. (author)

  10. A Ketone Ester Drink Increases Postexercise Muscle Glycogen Synthesis in Humans.

    Science.gov (United States)

    Holdsworth, David A; Cox, Peter J; Kirk, Tom; Stradling, Huw; Impey, Samuel G; Clarke, Kieran

    2017-09-01

    Physical endurance can be limited by muscle glycogen stores, in that glycogen depletion markedly reduces external work. During carbohydrate restriction, the liver synthesizes the ketone bodies, D-β-hydroxybutyrate, and acetoacetate from fatty acids. In animals and in the presence of glucose, D-β-hydroxybutyrate promotes insulin secretion and increases glycogen synthesis. Here we determined whether a dietary ketone ester, combined with plentiful glucose, can increase postexercise glycogen synthesis in human skeletal muscle. After an interval-based glycogen depletion exercise protocol, 12 well-trained male athletes completed a randomized, three-arm, blinded crossover recovery study that consisted of consumption of either a taste-matched, zero-calorie control or a ketone monoester drink, followed by a 10-mM glucose clamp or saline infusion for 2 h. The three postexercise conditions were control drink then saline infusion, control drink then hyperglycemic clamp, or ketone ester drink then hyperglycemic clamp. Skeletal muscle glycogen content was determined in muscle biopsies of vastus lateralis taken before and after the 2-h clamps. The ketone ester drink increased blood D-β-hydroxybutyrate concentrations to a maximum of 5.3 versus 0.7 mM for the control drink (P glycogen was 50% higher (246 vs 164 mmol glycosyl units per kilogram dry weight, P glycogen synthesis.

  11. Value of point-of-care ketones in assessing dehydration and acidosis in children with gastroenteritis.

    Science.gov (United States)

    Levy, Jason A; Waltzman, Mark; Monuteaux, Michael C; Bachur, Richard G

    2013-11-01

    Children with gastroenteritis often develop dehydration with metabolic acidosis. Serum ketones are frequently elevated in this population. The goal was to determine the relationship between initial serum ketone concentration and both the degree of dehydration and the magnitude of acidosis. This was a secondary analysis of a prospective trial of crystalloid administration for rapid rehydration. Children 6 months to 6 years of age with gastroenteritis and dehydration were enrolled. A point-of-care serum ketone (beta-hydroxybutyrate) concentration was obtained at the time of study enrollment. The relationship between initial serum ketone concentration and a prospectively assigned and previously validated clinical dehydration score, and serum bicarbonate concentration, was analyzed. A total of 188 patients were enrolled. The median serum ketone concentration was elevated at 3.1 mmol/L (interquartile range [IQR] = 1.2 to 4.6 mmol/L), and the median dehydration score was consistent with moderate dehydration. A significant positive relationship was found between serum ketone concentration and the clinical dehydration score (Spearman's rho = 0.22, p = 0.003). Patients with moderate dehydration had a higher median serum ketone concentration than those with mild dehydration (3.6 mmol/L vs. 1.4 mmol/L, p = 0.007). Additionally, the serum ketone concentration was inversely correlated with serum bicarbonate concentration (ρ = -0.26, p Children with gastroenteritis and dehydration have elevated serum ketone concentrations that correlate with both degree of dehydration and magnitude of metabolic acidosis. Point-of-care serum ketone measurement may be a useful tool to inform management decisions at the point of triage or in the initial evaluation of children with gastroenteritis and dehydration. © 2013 by the Society for Academic Emergency Medicine.

  12. ESR, electrochemical and cyclodextrin-inclusion studies of triazolopyridyl pyridyl ketones and dipyridyl ketones derivatives

    Science.gov (United States)

    Olea-Azar, C.; Abarca, B.; Norambuena, E.; Opazo, L.; Jullian, C.; Valencia, S.; Ballesteros, R.; Chadlaoui, M.

    2008-11-01

    The electron spin resonance (ESR) spectra of free radicals obtained by electrolytic reduction of triazolopyridyl pyridyl ketones and dipyridyl ketones derivatives were measured in dimethylsulfoxide (DMSO). The hyperfine patterns indicate that the spin density delocalization is dependent of the rings presented in the molecule. The electrochemistry of these compounds was characterized using cyclic voltammetry, in DMSO as solvent. When one carbonyl is present in the molecule one step in the reduction mechanism was observed while two carbonyl are present two steps were detected. The first wave was assigned to the generation of the correspondent free radical species, and the second wave was assigned to the dianion derivatives. The phase-solubility measurements indicated an interaction between molecules selected and cyclodextrins in water. These inclusion complexes are 1:1 with βCD, and HP-βCD. The values of Ks showed a different kind of complexes depending on which rings are included. AM1 and DFT calculations were performed to obtain the optimized geometries, theoretical hyperfine constants, and spin distributions, respectively. The theoretical results are in complete agreement with the experimental ones.

  13. Further research on the biological activities and the safety of raspberry ketone is needed

    Directory of Open Access Journals (Sweden)

    Jungmin Lee

    2016-03-01

    Full Text Available Raspberry ketone supplements have grabbed consumer attention with the possibility that they might help burn fat and aid weight loss. While raspberry ketone occurs naturally, and is found in raspberry fruit, most is synthetically produced for use in commercial products as flavorings, fragrances, or dietary supplements. Currently, the amount of raspberry ketone in dietary supplements (currently sold in the US is well above the maximum concentration recommended for food and fragrance products, so additional toxicology work is needed to ensure that such concentrations of raspberry ketone are safe. In addition to safety data, clinical studies are also needed to validate any health benefits. Without research on the effects of consuming high concentrations of raspberry ketone, consumers should be wary of unsubstantiated claims and mindful of potential harm to their health.

  14. Phosphine-catalyzed cycloadditions of allenic ketones: new substrates for nucleophilic catalysis.

    Science.gov (United States)

    Wallace, Debra J; Sidda, Rachel L; Reamer, Robert A

    2007-02-02

    A range of phosphine-catalyzed cycloaddition reactions of allenic ketones have been studied, extending the scope of these processes from the more widely used 2,3-butadienoates to allow access to a number of synthetically useful products. Reaction of allenyl methyl ketone 4 with exo-enones afforded spirocyclic compounds in good regioselectivity and promising enantioselectivity via a [2 + 3] cycloaddtion. Aromatic allenyl ketones undergo a phosphine-promoted dimerization to afford functionalized pyrans, leading to a formal [2 + 4] Diels-Alder product, but did not react in the [2 + 3] cycloaddition. The results from other reactions that had found utility with 2,3-butadienoates are also reported.

  15. EFFICACY OF PARENTERAL ADMINISTERED KETONAL IN ARTICULAR SYNDROME OF DIFFERENT ETIOLOGY

    Directory of Open Access Journals (Sweden)

    E. I. Shmidt

    2002-01-01

    Full Text Available Objective. To assess intramuscular ketonal application efficacy in joint syndrome. Methods. 30 patients with different joint diseases were included. Intramuscular monotherapy with ketonal was given for 7 days. Before and after treatment pain at rest and at movement was assessed using visual analog scale. Results. Mean pain at movement before treatment was 76 mm, after treatment - 47 mm. Pain at rest was 54 mm and 24 mm respectively. In 14 patients efficacy was considered by the physician as good and in 15 - as fair. The drug was well tolerated in all cases. Conclusion. Intramuscular application of ketonal is highly effective and well tolerated treatment in different joint diseases.

  16. Validation of a tracer technique to determine nonsteady-state ketone body turnover rates in man

    International Nuclear Information System (INIS)

    Keller, U.; Sonnenberg, G.E.; Stauffacher, W.

    1981-01-01

    The features of a single-compartment model of total ketone bodies were evaluated using primed constant infusions of [3-14C]acetoacetate (AcAc) and of D-[3-14C]beta-hydroxybutyrate (beta OHB) in 12 postabsorptive subjects. The volume of distribution (VD) of AcAc was 0.18 +- 0.01 liter/kg (n = 9), and that of beta OHB was similar, 0.18 +- 0.02 liter/kg (n = 3). The production rate of total ketone bodies was calculated using the combined specific activity of AcAc and of beta OHB. The mean basal total ketone body production rates were similar using either [14C]AcAc (6.5 mumol . kg-1 . min-1) or [14C]beta OHB (6.8 mumol . kg-1 . min-1). To determine the pool fraction that was rapidly mixed during nonsteady state of ketone body inflow, unlabeled AcAc was infused with stepwise increasing and decreasing rates between 5 and 25 mumol . kg-1 . m-1 to mimic nonsteady-state ketone body production rates. The functional pool fraction P was determined as the pool fraction that provided the best match between tracer-determined rates of ketone production and rates of AcAc infusion. P of total ketone bodies was almost equal to 1 using either [14C]AcAc (1.05 +- 0.16) or [14C]beta OHB (1.00 +- 0.06), suggesting rapid mixing of ketone bodies throughout the entire pool. The described pool model may be used to determine total ketone body kinetics during acute perturbations of the steady state

  17. The Conversion of Carboxylic Acids to Ketones: A Repeated Discovery

    Science.gov (United States)

    Nicholson, John W.; Wilson, Alan

    2004-09-01

    This article describes the history of the reaction converting carboxylic acids to ketones. The reaction has been rediscovered several times, yet has actually been known for centuries. The best known version of the process is the Dakin West reaction (1928), which applies to α-amino acids and also involves the simultaneous conversion of the amine group to amido functionality. Unlike other examples, this particular reaction has attracted a reasonable amount of attention and it appears to be better known than the conversion of simple carboxylic acids to ketones. However, this reaction was described as long ago as 1612, when Beguin published an account of it in his book, Tyrocinium Chymicum . Since then, many chemists have rediscovered the reaction, apparently independently. One of the earliest modern accounts was by W. H. Perkin, Sr., in 1886, who made various simple ketones by refluxing the appropriate carboxylic acids with base. However, this work has been largely ignored, including by his son, W. H. Perkin, Jr., who used a more complicated base-catalyzed ketonization to prepare small ring compounds in the early years of the 20th century. Other articles detailing the application of ketonization to organic acids are discussed, including our own work, which employed the process to crosslink carboxylated polymers for possible technical application in coatings. Despite its relative obscurity, the reaction was used by Woodward et al. in the total synthesis of strychnine, reported in 1963, and this is discussed in detail at the end of the article. See Featured Molecules .

  18. Ketone Diester Ingestion Impairs Time-Trial Performance in Professional Cyclists

    Directory of Open Access Journals (Sweden)

    Jill J. Leckey

    2017-10-01

    Full Text Available We investigated the effect of pre- “race” ingestion of a 1,3-butanediol acetoacetate diester on blood ketone concentration, substrate metabolism and performance of a cycling time trial (TT in professional cyclists. In a randomized cross-over design, 10 elite male cyclists completed a ~31 km laboratory-based TT on a cycling ergometer programmed to simulate the 2017 World Road Cycling Championships course. Cyclists consumed a standardized meal [2 g/kg body mass (BM carbohydrate (CHO] the evening prior to a trial day and a CHO breakfast (2 g/kg BM CHO with 200 mg caffeine on the morning of a trial day. Cyclists were randomized to consume either the ketone diester (2 × 250 mg/kg or a placebo drink, followed immediately by 200 mL diet cola, given ~ 30 min before and immediately prior to commencing a 20 min incremental warm-up. Blood samples were collected prior to and during the warm-up, pre- and post- TT and at regular intervals after the TT. Urine samples were collected pre- and post- warm-up, immediately post TT and 60 min post TT. Pre-exercise ingestion of the diester resulted in a 2 ± 1% impairment in TT performance that was associated with gut discomfort and higher perception of effort. Serum β-hydroxybutyrate, serum acetoacetate, and urine ketone concentrations increased from rest following ketone ingestion and were higher than placebo throughout the trial. Ketone ingestion induces hyperketonemia in elite professional cyclists when in a carbohydrate fed state, and impairs performance of a cycling TT lasting ~50 min.

  19. The Effect of Core and Veneering Design on the Optical Properties of Polyether Ether Ketone.

    Science.gov (United States)

    Zeighami, S; Mirmohammadrezaei, S; Safi, M; Falahchai, S M

    2017-12-01

    This study aimed to evaluate the effect of core shade and core and veneering thickness on color parameters and translucency of polyether ether ketone (PEEK). Sixty PEEK discs (0.5 and 1 mm in thickness) with white and dentine shades were veneered with A2 shade indirect composite resin with 0.5, 1 and 1.5 mm thickness (n=5). Cores without the veneering material served as controls for translucency evaluation. Color parameters were measured by a spectroradiometer. Color difference (ΔE₀₀) and translucency parameters (TP) were computed. Data were analyzed using one-way ANOVA and Tukey's test (for veneering thickness) and independent t-test (for core shade and thickness) via SPSS 20.0 (p⟨0.05). Regarding the veneering thickness, white cores of 0.5 mm thickness showed significant differences in all color parameters. In white cores of 1 mm thickness and dentine cores of 0.5 and 1 mm thickness, there were statistically significant differences only in L∗, a∗ and h∗. The mean TP was significantly higher in all white cores of 1 mm thickness than dentine cores of 1 mm. Considering ΔE₀₀=3.7 as clinically unacceptable, only three groups had higher mean ΔE₀₀ values. Core shade, core thickness, and the veneering thickness affected the color and translucency of PEEK restorations. Copyright© 2017 Dennis Barber Ltd.

  20. Ru (III) Catalyzed Oxidation of Aliphatic Ketones by N-Bromosuccinimide in Aqueous Acetic Acid: A Kinetic Study

    Science.gov (United States)

    Giridhar Reddy, P.; Ramesh, K.; Shylaja, S.; Rajanna, K. C.; Kandlikar, S.

    2012-01-01

    Kinetics of Ru (III) catalyzed oxidation of aliphatic ketones such as acetone, ethyl methyl ketone, diethyl ketone, iso-butylmethyl ketone by N-bromosuccinimide in the presence of Hg(II) acetate have been studied in aqueous acid medium. The order of [N-bromosuccinimide] was found to be zero both in catalyzed as well as uncatalyzed reactions. However, the order of [ketone] changed from unity to a fractional one in the presence of Ru (III). On the basis of kinetic features, the probable mechanisms are discussed and individual rate parameters evaluated. PMID:22654610

  1. A Convenient Synthesis of Conjugated Acetylenic Ketones by Copper(l)-Catalyzed under Microwave Irradiation

    Institute of Scientific and Technical Information of China (English)

    WANG; JinXian

    2001-01-01

    Alkynyl ketones are useful precursors and intermediates in synthetic organic chemistry1 and has evoked considerable interest. A number of methods for the synthesis of conjugated acetylenic ketones involve the reaction a metal acetylide with an acyl chlorides or another carboxylic acid derivative have been developed 2. Recently, the synthesis of α, β-conjugated acetylenic ketones catalyzed by Pd(Ⅱ) or by copper(Ⅰ)pd(Ⅱ) reaction of 1-alkynes and acyl chlorides have been described. The acylation of terminal alkynes by acyl chlorides in the presence of catalytic amounts copper(Ⅰ) salts leading to α, β-conjugated acetylenic ketones has also been reported. However, many of these reactions suffer from lack of high pressure (17 atm), long reaction time (30 h)and require low temperatures (-78℃). Our work involves the synthesis of conjugated acetylenic ketones via the reaction of terminal alkynes with aroyl chlorides in the presence of cuprous iodide under microwave irradiation conditions.……

  2. A Convenient Synthesis of Conjugated Acetylenic Ketones by Copper(l)-Catalyzed under Microwave Irradiation

    Institute of Scientific and Technical Information of China (English)

    WANG JinXian; WEI BangGuo; ZHAO LianBiao; HU YuLai; KANG LiQing

    2001-01-01

    @@ Alkynyl ketones are useful precursors and intermediates in synthetic organic chemistry1 and has evoked considerable interest. A number of methods for the synthesis of conjugated acetylenic ketones involve the reaction a metal acetylide with an acyl chlorides or another carboxylic acid derivative have been developed 2. Recently, the synthesis of α, β-conjugated acetylenic ketones catalyzed by Pd(Ⅱ) or by copper(Ⅰ)pd(Ⅱ) reaction of 1-alkynes and acyl chlorides have been described. The acylation of terminal alkynes by acyl chlorides in the presence of catalytic amounts copper(Ⅰ) salts leading to α, β-conjugated acetylenic ketones has also been reported. However, many of these reactions suffer from lack of high pressure (17 atm), long reaction time (30 h)and require low temperatures (-78℃). Our work involves the synthesis of conjugated acetylenic ketones via the reaction of terminal alkynes with aroyl chlorides in the presence of cuprous iodide under microwave irradiation conditions.

  3. On the nature of the olefination reaction involving ditungsten hexaalkoxides and aldehydes or ketones

    Energy Technology Data Exchange (ETDEWEB)

    Chisholm, M.H.; Huffman, J.C.; Lucas, E.A.; Sousa, A.; Streib, W.E. [Indiana Univ., Bloomington, IN (United States)

    1992-03-25

    Reductive coupling of aldehydes and ketones to olefins under the action of ditungsten hexaalkoxides was investigated. In these reactions, reductive cleavage of the aldehyde or ketone carbonyl is followed by formation of the olefinic C-C bond and breaking of the carbonyl C-O bond of the second aldehyde or ketone. Observations concerning the initial C-O bond cleavage and subsequent C-C bond formation are presented. 10 refs., 4 figs.

  4. Enzymatic Baeyer-Villiger Oxidation of Benzo-Fused Ketones : Formation of Regiocomplementary Lactones

    NARCIS (Netherlands)

    Rioz-Martinez, Ana; de Gonzalo, Gonzalo; Pazmino, Daniel E. Torres; Fraaije, Marco W.; Gotor, Vicente

    Baeyer-Villiger monooxygenases (BVMOs) are enzymes that are known to catalyse the Baeyer-Villiger oxidation of ketones in aqueous media using O(2) as oxidant. Herein, we describe the oxidation of a set of diverse benzo-fused ketones by three different BVMOs in both aqueous and non-conventional

  5. Effects of iron-containing minerals on hydrothermal reactions of ketones

    Science.gov (United States)

    Yang, Ziming; Gould, Ian R.; Williams, Lynda B.; Hartnett, Hilairy E.; Shock, Everett L.

    2018-02-01

    Hydrothermal organic transformations occurring in geochemical processes are influenced by the surrounding environments including rocks and minerals. This work is focused on the effects of five common minerals on reactions of a model ketone substrate, dibenzylketone (DBK), in an experimental hydrothermal system. Ketones play a central role in many hydrothermal organic functional group transformations, such as those converting hydrocarbons to oxygenated compounds; however, how these minerals control the hydrothermal chemistry of ketones is poorly understood. Under the hydrothermal conditions of 300 °C and 70 MPa for up to 168 h, we observed that, while quartz (SiO2) and corundum (Al2O3) had no detectable effect on the hydrothermal reactions of DBK, iron-containing minerals, such as hematite (Fe2O3), magnetite (Fe3O4), and troilite (synthetic FeS), accelerated the reaction of DBK by up to an order of magnitude. We observed that fragmentation products, such as toluene and bibenzyl, dominated in the presence of hematite or magnetite, while use of troilite gave primarily the reduction products, e.g., 1, 3-diphenyl-propane and 1, 3-diphenyl-2-propanol. The roles of the three iron minerals in these transformations were further explored by (1) control experiments with various mineral surface areas, (2) measuring H2 in hydrothermal solutions, and (3) determining hydrogen balance among the organic products. These results suggest the reactions catalyzed by iron oxides (hematite and magnetite) are promoted mainly by the mineral surfaces, whereas the sulfide mineral (troilite) facilitated the reduction of ketone in the reaction solution. Therefore, this work not only provides a useful chemical approach to study and uncover complicated hydrothermal organic-mineral interactions, but also fosters a mechanistic understanding of ketone reactions in the deep carbon cycle.

  6. Atmospheric fate of methyl vinyl ketone

    DEFF Research Database (Denmark)

    Praske, Eric; Crounse, John D; Bates, Kelvin H

    2015-01-01

    First generation product yields from the OH-initiated oxidation of methyl vinyl ketone (3-buten-2-one, MVK) under both low and high NO conditions are reported. In the low NO chemistry, three distinct reaction channels are identified leading to the formation of (1) OH, glycolaldehyde, and acetyl...

  7. Human ketone body production and utilization studied using tracer techniques: Regulation by free fatty acids, insulin, catecholamines, and thyroid hormones

    Energy Technology Data Exchange (ETDEWEB)

    Keller, U.; Lustenberger, M.; Mueller-Brand, J.G.; Gerber, P.P.; Stauffacher, W.

    1989-05-01

    Ketone body concentrations fluctuate markedly during physiological and pathological conditions. Tracer techniques have been developed in recent years to study production, utilization, and the metabolic clearance rate of ketone bodies. This review describes data on the roles of insulin, catecholamines, and thyroid hormones in the regulation of ketone body kinetics. The data indicate that insulin lowers ketone body concentrations by three independent mechanisms: first, it inhibits lipolysis, and thus lowers free fatty acid availability for ketogenesis; second, it restrains ketone body production within the liver; third, it enhances peripheral ketone body utilization. To assess these effects in humans in vivo, experimental models were developed to study insulin effects with controlled concentrations of free fatty acids, insulin, glucagon, and ketone bodies. Presently available data also support an important role of catecholamines in increasing ketone body concentrations. Evidence was presented that norepinephrine increases ketogenesis not only by stimulating lipolysis, and thus releasing free fatty acids, but also by increasing intrahepatic ketogenesis. Thyroid hormone availability was associated with lipolysis and ketogenesis. Ketone body concentrations after an overnight fast were only modestly elevated in hyperthyroidism resulting from increased peripheral ketone body clearance. There was a significant correlation between serum triiodothyronine levels and the ketone body metabolic clearance rate. Thus, ketone body homeostasis in human subjects resulted from the interaction of hormones such as insulin, catecholamines, and thyroid hormones regulating lipolysis, intrahepatic ketogenesis, and peripheral ketone body utilization. 58 references.

  8. Human ketone body production and utilization studied using tracer techniques: Regulation by free fatty acids, insulin, catecholamines, and thyroid hormones

    International Nuclear Information System (INIS)

    Keller, U.; Lustenberger, M.; Mueller-Brand, J.G.; Gerber, P.P.; Stauffacher, W.

    1989-01-01

    Ketone body concentrations fluctuate markedly during physiological and pathological conditions. Tracer techniques have been developed in recent years to study production, utilization, and the metabolic clearance rate of ketone bodies. This review describes data on the roles of insulin, catecholamines, and thyroid hormones in the regulation of ketone body kinetics. The data indicate that insulin lowers ketone body concentrations by three independent mechanisms: first, it inhibits lipolysis, and thus lowers free fatty acid availability for ketogenesis; second, it restrains ketone body production within the liver; third, it enhances peripheral ketone body utilization. To assess these effects in humans in vivo, experimental models were developed to study insulin effects with controlled concentrations of free fatty acids, insulin, glucagon, and ketone bodies. Presently available data also support an important role of catecholamines in increasing ketone body concentrations. Evidence was presented that norepinephrine increases ketogenesis not only by stimulating lipolysis, and thus releasing free fatty acids, but also by increasing intrahepatic ketogenesis. Thyroid hormone availability was associated with lipolysis and ketogenesis. Ketone body concentrations after an overnight fast were only modestly elevated in hyperthyroidism resulting from increased peripheral ketone body clearance. There was a significant correlation between serum triiodothyronine levels and the ketone body metabolic clearance rate. Thus, ketone body homeostasis in human subjects resulted from the interaction of hormones such as insulin, catecholamines, and thyroid hormones regulating lipolysis, intrahepatic ketogenesis, and peripheral ketone body utilization. 58 references

  9. Comparing Finger-stick β-Hydroxybutyrate with Dipstick Urine Tests in the Detection of Ketone Bodies

    Directory of Open Access Journals (Sweden)

    Baris KURU

    2014-06-01

    Full Text Available SUMMARY: Objectives: Blood ketone (beta-hydroxybutyrate measurements are suggested instead of urine ketone (acetoacetate measurements in the diagnosis of diabetic ketoacidosis. Urine ketone examination is difficult and time consuming, and may result in an incorrect interpretation. Studies performed in emergency departments on blood ketones are limited. Our objective is to compare urine ketones and capillary blood ketones in patients whose serum glucose levels were ≥150 mg/dl. Methods: In our cross-sectional prospective study, finger-stick blood beta-hydroxybutyrate, arterial blood gas and urine ketone measurements of patients whose serum glucose levels were 150 mg/dL and higher were performed in the emergency department. Results: A total of 265 patients were included in the study. The mean age of the patients was 62.4±14.9 years, and 65.7% of them were female. The mean of the capillary blood ketone levels of the patients was determined to be 0.524±0.9 mmol/L (min: 0 mmol/L, max: 6.7 mmol/L. In 29 (13.1% of the 221 patients whose urine ketone levels were negative, the finger-stick blood ketone levels were positive. Three of these patients were severely ketonemic, six were moderately ketonemic, and 20 were mildly ketonemic. Conclusions: In patients admitted to the emergency department with a blood glucose level of 150 mg/dL or higher, performing a capillary blood ketone measurement instead of a urine ketone measurement was a better predictor of ketonemia. ÖZET: Amaç: Diyabetik keto asidoz tanısında idrar ketonu (asetoasetat yerine kan ketonu (beta-hidroksibütirat ölçümü önerilmektedir. İdrar ketonu bakılması zahmetli, zaman alıcı ve yanlış yorumlara yol açabilen bir testtir. Acil servislerde kan ketonu ile ilgili yapılan çalışmalar sınırlıdır. Bu çalışmadaki amacımız serum glikoz düzeyi ≥150 mg/dl tespit edilen hastalarda idrar ketonu ile kapiller kanda keton varlığını karşılaştırmaktır. Gereç ve Y

  10. Ketones in Urine: MedlinePlus Lab Test Information

    Science.gov (United States)

    ... K. Brunner & Suddarth's Handbook of Laboratory and Diagnostic Tests. 2 nd Ed, Kindle. Philadelphia: Wolters Kluwer Health, Lippincott Williams & Wilkins; c2014. Ketones: Urine; p. 351. Joslin Diabetes ...

  11. Catalytic Asymmetric Alkylation of Aryl Heteroaryl Ketones

    NARCIS (Netherlands)

    Ortiz, Pablo; Harutyunyan, Syuzanna; del Hoyo, Ana

    Tertiary diarylmethanols are highly bioactive structural motifs. A new strategy to access chiral tertiary diarylmethanols through copper-catalyzed direct alkylation of (di)(hetero)aryl ketones by using Grignard reagents was developed. The low reactivity and the similarity of the enantiotopic faces

  12. The interaction of adipose-derived human mesenchymal stem cells and polyether ether ketone.

    Science.gov (United States)

    Wang, Weiwei; Kratz, Karl; Behl, Marc; Yan, Wan; Liu, Yue; Xu, Xun; Baudis, Stefan; Li, Zhengdong; Kurtz, Andreas; Lendlein, Andreas; Ma, Nan

    2015-01-01

    Polyether ether ketone (PEEK) as a high-performance, thermoplastic implant material entered the field of medical applications due to its structural function and commercial availability. In bone tissue engineering, the combination of mesenchymal stem cells (MSCs) with PEEK implants may accelerate the bone formation and promote the osseointegration between the implant and the adjacent bone tissue. In this concept the question how PEEK influences the behaviour and functions of MSCs is of great interest. Here the cellular response of human adipose-derived MSCs to PEEK was evaluated and compared to tissue culture plate (TCP) as the reference material. Viability and morphology of cells were not altered when cultured on the PEEK film. The cells on PEEK presented a high proliferation activity in spite of a relatively lower initial cell adhesion rate. There was no significant difference on cell apoptosis and senescence between the cells on PEEK and TCP. The inflammatory cytokines and VEGF secreted by the cells on these two surfaces were at similar levels. The cells on PEEK showed up-regulated BMP2 and down-regulated BMP4 and BMP6 gene expression, whereas no conspicuous differences were observed in the committed osteoblast markers (BGLAP, COL1A1 and Runx2). With osteoinduction the cells on PEEK and TCP exhibited a similar osteogenic differentiation potential. Our results demonstrate the biofunctionality of PEEK for human MSC cultivation and differentiation. Its clinical benefits in bone tissue engineering may be achieved by combining MSCs with PEEK implants. These data may also provide useful information for further modification of PEEK with chemical or physical methods to regulate the cellular processes of MSCs and to consequently improve the efficacy of MSC-PEEK based therapies.

  13. The contribution of ketone bodies to basal and activity-dependent neuronal oxidation in vivo.

    Science.gov (United States)

    Chowdhury, Golam M I; Jiang, Lihong; Rothman, Douglas L; Behar, Kevin L

    2014-07-01

    The capacity of ketone bodies to replace glucose in support of neuronal function is unresolved. Here, we determined the contributions of glucose and ketone bodies to neocortical oxidative metabolism over a large range of brain activity in rats fasted 36 hours and infused intravenously with [2,4-(13)C₂]-D-β-hydroxybutyrate (BHB). Three animal groups and conditions were studied: awake ex vivo, pentobarbital-induced isoelectricity ex vivo, and halothane-anesthetized in vivo, the latter data reanalyzed from a recent study. Rates of neuronal acetyl-CoA oxidation from ketone bodies (V(acCoA-kbN)) and pyruvate (V(pdhN)), and the glutamate-glutamine cycle (V(cyc)) were determined by metabolic modeling of (13)C label trapped in major brain amino acid pools. V(acCoA-kbN) increased gradually with increasing activity, as compared with the steeper change in tricarboxylic acid (TCA) cycle rate (V(tcaN)), supporting a decreasing percentage of neuronal ketone oxidation: ∼100% (isoelectricity), 56% (halothane anesthesia), 36% (awake) with the BHB plasma levels achieved in our experiments (6 to 13 mM). In awake animals ketone oxidation reached saturation for blood levels >17 mM, accounting for 62% of neuronal substrate oxidation, the remainder (38%) provided by glucose. We conclude that ketone bodies present at sufficient concentration to saturate metabolism provides full support of basal (housekeeping) energy needs and up to approximately half of the activity-dependent oxidative needs of neurons.

  14. Antioxidant capacity contributes to protection of ketone bodies against oxidative damage induced during hypoglycemic conditions.

    Science.gov (United States)

    Haces, María L; Hernández-Fonseca, Karla; Medina-Campos, Omar N; Montiel, Teresa; Pedraza-Chaverri, José; Massieu, Lourdes

    2008-05-01

    Ketone bodies play a key role in mammalian energy metabolism during the suckling period. Normally ketone bodies' blood concentration during adulthood is very low, although it can rise during starvation, an exogenous infusion or a ketogenic diet. Whenever ketone bodies' levels increase, their oxidation in the brain rises. For this reason they have been used as protective molecules against refractory epilepsy and in experimental models of ischemia and excitotoxicity. The mechanisms underlying the protective effect of these compounds are not completely understood. Here, we studied a possible antioxidant capacity of ketone bodies and whether it contributes to the protection against oxidative damage induced during hypoglycemia. We report for the first time the scavenging capacity of the ketone bodies, acetoacetate (AcAc) and both the physiological and non-physiological isomers of beta-hydroxybutyrate (D- and L-BHB, respectively), for diverse reactive oxygen species (ROS). Hydroxyl radicals (.OH) were effectively scavenged by D- and L-BHB. In addition, the three ketone bodies were able to reduce cell death and ROS production induced by the glycolysis inhibitor, iodoacetate (IOA), while only D-BHB and AcAc prevented neuronal ATP decline. Finally, in an in vivo model of insulin-induced hypoglycemia, the administration of D- or L-BHB, but not of AcAc, was able to prevent the hypoglycemia-induced increase in lipid peroxidation in the rat hippocampus. Our data suggest that the antioxidant capacity contributes to protection of ketone bodies against oxidative damage in in vitro and in vivo models associated with free radical production and energy impairment.

  15. Preparation and characterization of polymer blend based on sulfonated poly (ether ether ketone) and polyetherimide (SPEEK/PEI) as proton exchange membranes for fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Hashim, Nordiana; Ali, Ab Malik Marwan [Ionic Material and Devices Research Laboratory, Institute of Science, Universiti Teknologi MARA, 40450 Shah Alam (Malaysia); Lepit, Ajis; Rasmidi, Rosfayanti [Faculty of Applied Sciences, Universiti Teknologi MARA Sabah, Beg Berkunci 71, 88997 Kota Kinabalu (Malaysia); Subban, Ri Hanum Yahaya [Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam (Malaysia); Institute of Science, Universiti Teknologi MARA, 40450 Shah Alam (Malaysia); Yahya, Muhd Zu Azhan [Faculty of Defence Science & Technology, Universiti Pertahanan Nasional Malaysia, 57000 Kuala Lumpur (Malaysia)

    2015-08-28

    Blends of sulfonated poly (ether ether ketone) (SPEEK) and polyetherimide (PEI) were prepared in five different weight ratios using N-methyl-2-pyrrolidone (NMP) as solvent by the solution cast technique. The degree of sulfonation (DS) of the sulfonated PEEK was determined from deuterated dimethyl sulfoxide (DMSO-d{sub 6}) solution of the purified polymer using {sup 1}H NMR method. The properties studied in the present investigation includes conductivity, water uptake, thermal stability and structure analysis of pure SPEEK as well as SPEEK-PEI polymer blend membranes. The experimental results show that the conductivity of the membranes increased with increase in temperature from 30 to 80°C, except for that of pure SPEEK membrane which increased with temperature from 30 to 60°C while its conductivity decreased with increasing temperature from 60 to 80°C. The conductivity of 70wt.%SPEEK-30wt.%PEI blend membrane at 80% relative humidity (RH) is found to be 1.361 × 10{sup −3} Scm{sup −1} at 30°C and 3.383 × 10{sup −3} Scm{sup −1} at 80°C respectively. It was also found that water uptake and thermal stability of the membranes slightly improved upon blending with PEI. Structure analysis was carried out using Fourier Transform Infrared (FTIR) spectroscopy which revealed considerable interactions between sulfonic acid group of SPEEK and imide groups of PEI. Modification of SPEEK by blending with PEI shows good potential for improving the electrical and physical properties of proton exchange membranes.

  16. Fragrance material review on methyl-2,6,10-trimethylcyclododeca-2,5,9-trien-1-yl ketone.

    Science.gov (United States)

    Scognamiglio, J; Letizia, C S; Api, A M

    2013-12-01

    A toxicologic and dermatologic review of methyl 2,6,10-trimethylcyclododeca-2,5,9-trien-1-yl ketone when used as a fragrance ingredient is presented. Methyl 2,6,10-trimethylcyclododeca-2,5,9-trien-1-yl ketone is a member of the fragrance structural group Alkyl Cyclic Ketones. These fragrances can be described as being composed of an alkyl, R1, and various substituted and bicyclic saturated or unsaturated cyclic hydrocarbons, R2, in which one of the rings may include up to 12 carbons. Alternatively, R2 may be a carbon bridge of C2-C4 carbon chain length between the ketone and cyclic hydrocarbon. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. Available data for methyl 2,6,10-trimethylcyclododeca-2,5,9-trien-1-yl ketone were evaluated then summarized and includes physical properties, acute toxicity, skin irritation, mucous membrane (eye) irritation, skin sensitization, repeated dose, and genotoxicity data. A safety assessment of the entire Alkyl Cyclic Ketones will be published simultaneously with this document; please refer to Belsito et al. (Belsito, D., Bickers, D., Bruze, M., Calow, P., Dagli, M., Fryer, A.D., Greim, H., Miyachi, Y., Saurat, J.H., Sipes, I.G., 2013. A Toxicologic and Dermatologic Assessment of Alkyl Cyclic Ketones When Used as Fragrance Ingredients (submitted for publication)) for an overall assessment of the safe use of this material and all Alkyl Cyclic Ketones in fragrances. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Aqueous-Phase Acetic Acid Ketonization over Monoclinic Zirconia

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Qiuxia [Institute for Integrated Catalysis, Pacific Northwest; College; Lopez-Ruiz, Juan A. [Institute for Integrated Catalysis, Pacific Northwest; Cooper, Alan R. [Institute for Integrated Catalysis, Pacific Northwest; Wang, Jian-guo [College; Albrecht, Karl O. [Institute for Integrated Catalysis, Pacific Northwest; Mei, Donghai [Institute for Integrated Catalysis, Pacific Northwest

    2017-12-13

    The effect of aqueous phase on the acetic acid ketonization over monoclinic zirconia has been investigated using first-principles based density functional theory (DFT) calculations. To capture the aqueous phase chemistry over the solid zirconia catalyst surface, the aqueous phase is represented by 111 explicit water molecules with a liquid water density of 0.93 g/cm3 and the monoclinic zirconia is modeled by the most stable surface structure . The dynamic nature of aqueous phase/ interface was studied using ab initio molecular dynamics simulation, indicating that nearly half of the surface Zr sites are occupied by either adsorbed water molecules or hydroxyl groups at 550 K. DFT calculations show that the adsorption process of acetic acid from the liquid water phase to the surface is nearly thermodynamically neutral with a Gibbs free energy of -2.3 kJ/mol although the adsorption strength of acetic acid on the surface in aqueous phase is much stronger than in vapor phase. Therefore it is expected that the adsorption of acetic acid will dramatically affects aqueous phase ketonization reactivity over the monoclinic zirconia catalyst. Using the same ketonization mechanism via the β-keto acid intermediate, we have compared acetic acid ketonization to acetone in both vapor and aqueous phases. Our DFT calculation results show although the rate-determining step of the β-keto acid formation via the C-C coupling is not pronouncedly affected, the presence of liquid water molecules will dramatically affect dehydrogenation and hydrogenation steps via proton transfer mechanism. This work was financially supported by the United States Department of Energy (DOE)’s Bioenergy Technologies Office (BETO) and performed at the Pacific Northwest National Laboratory (PNNL). PNNL is a multi-program national laboratory operated for DOE by Battelle Memorial Institute. Computing time and advanced catalyst characterization use was granted by a user proposal at the William R. Wiley

  18. The retro Grignard addition reaction revisited: the reversible addition of benzyl reagents to ketones

    DEFF Research Database (Denmark)

    Christensen, Stig Holden; Holm, Torkil; Madsen, Robert

    2014-01-01

    transformation. The retro benzyl reaction was shown by the addition of benzylmagnesium chloride to di-tert-butyl ketone followed by exchange of both the benzyl and the ketone moiety with another substrate. Similar experiments were performed with phenylmagnesium bromide and tert-butylmagnesium chloride...

  19. [Effect of phenolic ketones on ethanol fermentation and cellular lipid composition of Pichia stipitis].

    Science.gov (United States)

    Yang, Jinlong; Cheng, Yichao; Zhu, Yuanyuan; Zhu, Junjun; Chen, Tingting; Xu, Yong; Yong, Qiang; Yu, Shiyuan

    2016-02-01

    Lignin degradation products are toxic to microorganisms, which is one of the bottlenecks for fuel ethanol production. We studied the effects of phenolic ketones (4-hydroxyacetophenone, 4-hydroxy-3-methoxy-acetophenone and 4-hydroxy-3,5-dimethoxy-acetophenone) derived from lignin degradation on ethanol fermentation of xylose and cellular lipid composition of Pichia stipitis NLP31. Ethanol and the cellular fatty acid of yeast were analyzed by high performance liquid chromatography (HPLC) and gas chromatography/mass spectrometry (GC/MS). Results indicate that phenolic ketones negatively affected ethanol fermentation of yeast and the lower molecular weight phenolic ketone compound was more toxic. When the concentration of 4-hydroxyacetophenone was 1.5 g/L, at fermentation of 24 h, the xylose utilization ratio, ethanol yield and ethanol concentration decreased by 42.47%, 5.30% and 9.76 g/L, respectively, compared to the control. When phenolic ketones were in the medium, the ratio of unsaturated fatty acids to saturated fatty acids (UFA/SFA) of yeast cells was improved. When 1.5 g/L of three aforementioned phenolic ketones was added to the fermentation medium, the UFA/SFA ratio of yeast cells increased to 3.03, 3.06 and 3.61, respectively, compared to 2.58 of the control, which increased cell membrane fluidity and instability. Therefore, phenolic ketones can reduce the yeast growth, increase the UFA/SFA ratio of yeast and lower ethanol productivity. Effectively reduce or remove the content of lignin degradation products is the key to improve lignocellulose biorefinery.

  20. Ketone-Based Metabolic Therapy: Is Increased NAD+ a Primary Mechanism?

    Directory of Open Access Journals (Sweden)

    Marwa Elamin

    2017-11-01

    Full Text Available The ketogenic diet’s (KD anticonvulsant effects have been well-documented for nearly a century, including in randomized controlled trials. Some patients become seizure-free and some remain so after diet cessation. Many recent studies have explored its expanded therapeutic potential in diverse neurological disorders, yet no mechanism(s of action have been established. The diet’s high fat, low carbohydrate composition reduces glucose utilization and promotes the production of ketone bodies. Ketone bodies are a more efficient energy source than glucose and improve mitochondrial function and biogenesis. Cellular energy production depends on the metabolic coenzyme nicotinamide adenine dinucleotide (NAD, a marker for mitochondrial and cellular health. Furthermore, NAD activates downstream signaling pathways (such as the sirtuin enzymes associated with major benefits such as longevity and reduced inflammation; thus, increasing NAD is a coveted therapeutic endpoint. Based on differential NAD+ utilization during glucose- vs. ketone body-based acetyl-CoA generation for entry into the tricarboxylic cycle, we propose that a KD will increase the NAD+/NADH ratio. When rats were fed ad libitum KD, significant increases in hippocampal NAD+/NADH ratio and blood ketone bodies were detected already at 2 days and remained elevated at 3 weeks, indicating an early and persistent metabolic shift. Based on diverse published literature and these initial data we suggest that increased NAD during ketolytic metabolism may be a primary mechanism behind the beneficial effects of this metabolic therapy in a variety of brain disorders and in promoting health and longevity.

  1. Raspberry Ketone Trifluoroacetate, a new attractant for the Queensland fruit fly (Bactrocera tryoni (Froggatt))

    Science.gov (United States)

    The Queensland fruit fly (Bactrocera tryoni, Q-fly) is a major agricultural pest in eastern Australia. The deployment of male lures comprises an important component of several control and detection strategies for this pest. A novel fluorinated analog of raspberry ketone, raspberry ketone trifluoroac...

  2. Improved cerebral energetics and ketone body metabolism in db/db mice

    DEFF Research Database (Denmark)

    Andersen, Jens V; Christensen, Sofie K; Nissen, Jakob D

    2017-01-01

    It is becoming evident that type 2 diabetes mellitus is affecting brain energy metabolism. The importance of alternative substrates for the brain in type 2 diabetes mellitus is poorly understood. The aim of this study was to investigate whether ketone bodies are relevant candidates to compensate...... metabolism in type 2 diabetes mellitus. The increased hippocampal ketone body utilization and improved mitochondrial function in db/db mice, may act as adaptive mechanisms in order to maintain cerebral energetics during hampered glucose metabolism....

  3. Sulfonated poly(fluorenyl ether ketone nitrile) electrolyte membrane with high proton conductivity and low water uptake

    Energy Technology Data Exchange (ETDEWEB)

    Tian, S.H.; Wang, S.J.; Xiao, M.; Meng, Y.Z. [State Key Laboratory of Optoelectronic Materials and Technologies/Institute of Optoelectronic and Functional Composite Materials, Sun Yat-sen University, Guangzhou 510275 (China); Shu, D. [School of Chemistry and Environmental, South China Normal University, Guangzhou 510006 (China)

    2010-01-01

    High molecular weight sulfonated poly(fluorenyl ether ketone nitrile)s with different equivalent weight (EW) from 681 to 369 g mequiv.{sup -1} are synthesized by the nucleophilic substitution polycondensation of various amounts of sulfonated difluorobenzophenone (SDFBP) and 2,6-difluorobenzonitrile (DFBN) with bisphenol fluorene (BPF). The synthesized copolymers are characterized by {sup 1}H NMR, FT-IR, TGA, and DSC techniques. The membranes cast from the corresponding copolymers exhibit superior thermal stability, good oxidative stability and high proton conductivity, but low water uptake due to the strong nitrile dipole interchain interactions that combine to limit swelling. Among all the membranes, the membrane with EW of 441 g mequiv.{sup -1} shows optimum properties of both high proton conductivity of 41.9 mS cm{sup -1} and low water uptake of 42.6%. Accordingly, That membrane is fabricated into a membrane electrode assembly (MEA) and evaluated in a single proton exchange membrane fuel cell (PEMFC). The experimental results indicate its similar cell performance as that of Nafion {sup registered} 117 at 70 C, but much better cell performance at higher temperatures. At the potential of 0.6 V, the current density of fuel cell using the prepared membrane and Nafion {sup registered} 117 is 0.46 and 0.25 A cm{sup -2}, respectively. The highest current density of the former reaches as high as 1.25 A cm{sup -2}. (author)

  4. Fatty acid-induced astrocyte ketone production and the control of food intake.

    Science.gov (United States)

    Le Foll, Christelle; Levin, Barry E

    2016-06-01

    Obesity and Type 2 diabetes are major worldwide public health issues today. A relationship between total fat intake and obesity has been found. In addition, the mechanisms of long-term and excessive high-fat diet (HFD) intake in the development of obesity still need to be elucidated. The ventromedial hypothalamus (VMH) is a major site involved in the regulation of glucose and energy homeostasis where "metabolic sensing neurons" integrate metabolic signals from the periphery. Among these signals, fatty acids (FA) modulate the activity of VMH neurons using the FA translocator/CD36, which plays a critical role in the regulation of energy and glucose homeostasis. During low-fat diet (LFD) intake, FA are oxidized by VMH astrocytes to fuel their ongoing metabolic needs. However, HFD intake causes VMH astrocytes to use FA to generate ketone bodies. We postulate that these astrocyte-derived ketone bodies are exported to neurons where they produce excess ATP and reactive oxygen species, which override CD36-mediated FA sensing and act as a signal to decrease short-term food intake. On a HFD, VMH astrocyte-produced ketones reduce elevated caloric intake to LFD levels after 3 days in rats genetically predisposed to resist (DR) diet-induced obesity (DIO), but not leptin-resistant DIO rats. This suggests that, while VMH ketone production on a HFD can contribute to protection from obesity, the inherent leptin resistance overrides this inhibitory action of ketone bodies on food intake. Thus, astrocytes and neurons form a tight metabolic unit that is able to monitor circulating nutrients to alter food intake and energy homeostasis. Copyright © 2016 the American Physiological Society.

  5. Constituents of Artemisia gmelinii Weber ex Stechm. from Uttarakhand Himalaya: A Source of Artemisia Ketone

    Science.gov (United States)

    Haider, S. Z.; Andola, H. C.; Mohan, M.

    2012-01-01

    The essential oils isolated from the aerial parts of two different populations of Artemisia gmelinii growing in Uttarakhand Himalaya region were analysed by gas chromatography and gas chromatography/mass spectrometry (GC-MS) in order to determine the variation of concentration in their constituents. Artemisia ketone was detected as a major constituent in both the populations i.e., Niti valley and Jhelum samples. Niti oil was found to have considerably greater amounts of artemesia ketone (53.34%) followed by α-thujone (9.91%) and 1,8-cineole (6.57%), Similarly, the first major compound in Jhelum oil was artemesia ketone (40.87%), whereas ar-curcumene (8.54%) was identified as a second major compound followed by α-thujone (4.04%). Artemisia ketone can be useful for perfumery and fragrance to introduce new and interesting herbaceous notes. PMID:23439844

  6. Successful adaptation to ketosis by mice with tissue-specific deficiency of ketone body oxidation.

    Science.gov (United States)

    Cotter, David G; Schugar, Rebecca C; Wentz, Anna E; d'Avignon, D André; Crawford, Peter A

    2013-02-15

    During states of low carbohydrate intake, mammalian ketone body metabolism transfers energy substrates originally derived from fatty acyl chains within the liver to extrahepatic organs. We previously demonstrated that the mitochondrial enzyme coenzyme A (CoA) transferase [succinyl-CoA:3-oxoacid CoA transferase (SCOT), encoded by nuclear Oxct1] is required for oxidation of ketone bodies and that germline SCOT-knockout (KO) mice die within 48 h of birth because of hyperketonemic hypoglycemia. Here, we use novel transgenic and tissue-specific SCOT-KO mice to demonstrate that ketone bodies do not serve an obligate energetic role within highly ketolytic tissues during the ketogenic neonatal period or during starvation in the adult. Although transgene-mediated restoration of myocardial CoA transferase in germline SCOT-KO mice is insufficient to prevent lethal hyperketonemic hypoglycemia in the neonatal period, mice lacking CoA transferase selectively within neurons, cardiomyocytes, or skeletal myocytes are all viable as neonates. Like germline SCOT-KO neonatal mice, neonatal mice with neuronal CoA transferase deficiency exhibit increased cerebral glycolysis and glucose oxidation, and, while these neonatal mice exhibit modest hyperketonemia, they do not develop hypoglycemia. As adults, tissue-specific SCOT-KO mice tolerate starvation, exhibiting only modestly increased hyperketonemia. Finally, metabolic analysis of adult germline Oxct1(+/-) mice demonstrates that global diminution of ketone body oxidation yields hyperketonemia, but hypoglycemia emerges only during a protracted state of low carbohydrate intake. Together, these data suggest that, at the tissue level, ketone bodies are not a required energy substrate in the newborn period or during starvation, but rather that integrated ketone body metabolism mediates adaptation to ketogenic nutrient states.

  7. The role of point-of-care blood testing for ketones in the diagnosis of ...

    African Journals Online (AJOL)

    estimated that the annual cost of treating DKA in the USA exceeds. 1 billion ... If urinary ketones are positive, patients are referred for further management – often ... To evaluate a hand-held electrochemical (point-of-care testing; POCT) ketone monitor and compare it with the gold-standard ..... renal failure may be present.

  8. Effect of Polyether Ether Ketone on Therapeutic Radiation to the Spine: A Pilot Study.

    Science.gov (United States)

    Jackson, J Benjamin; Crimaldi, Anthony J; Peindl, Richard; Norton, H James; Anderson, William E; Patt, Joshua C

    2017-01-01

    Cadaveric model. To compare the effect of PEEK versus conventional implants on scatter radiation to a simulated tumor bed in the spine SUMMARY OF BACKGROUND DATA.: Given the highly vasculature nature of the spine, it is the most common place for bony metastases. After surgical treatment of a spinal metastasis, adjuvant radiation therapy is typically administered. Radiation dosing is primarily limited by toxicity to the spinal cord. The scatter effect caused by metallic implants decreases the accuracy of dosing and can unintentionally increase the effective dose seen by the spinal cord. This represents a dose-limiting factor for therapeutic radiation postoperatively. A cadaveric thorax specimen was utilized as a metastatic tumor model with two separate three-level spine constructs (one upper thoracic and one lower thoracic). Each construct was examined independently. All four groups compared included identical posterior instrumentation. The anterior constructs consisted of either: an anterior polyether ether ketone (PEEK) cage, an anterior titanium cage, an anterior bone cement cage (polymethyl methacrylate), or a control group with posterior instrumentation alone. Each construct had six thermoluminescent detectors to measure the radiation dose. The mean dose was similar across all constructs and locations. There was more variability in the upper thoracic spine irrespective of the construct type. The PEEK construct had a more uniform dose distribution with a standard deviation of 9.76. The standard deviation of the others constructs was 14.26 for the control group, 19.31 for the titanium cage, and 21.57 for the cement (polymethyl methacrylate) construct. The PEEK inter-body cage resulted in a significantly more uniform distribution of therapeutic radiation in the spine when compared with the other constructs. This may allow for the application of higher effective dosing to the tumor bed for spinal metastases without increasing spinal cord toxicity with either

  9. Bedside ketone determination in diabetic children with hyperglycemia and ketosis in the acute care setting.

    Science.gov (United States)

    Ham, Melissa R; Okada, Pamela; White, Perrin C

    2004-03-01

    Diabetic ketoacidosis (DKA) is a serious complication of diabetes mellitus marked by characteristic biochemical derangements. Diagnosis and management involve frequent evaluation of these biochemical parameters. Reliable bedside equivalents for these laboratory studies may help reduce the time to treatment and reduce costs. We evaluated the precision and bias of a bedside serum ketone meter in the acute care setting. Serum ketone results using the Precision Xtra glucometer/ketone meter (Abbott Laboratories, MediSense Products Inc., Bedford, MA, USA) correlated strongly with the Children's Medical Center of Dallas' laboratory values within the meter's value range. Meter ketone values steadily decreased during the treatment of DKA as pH and CO(2) levels increased and acidosis resolved. Therefore, the meter may be useful in monitoring therapy for DKA. This meter may also prove useful in identifying patients at risk for DKA in physicians' offices or at home.

  10. An In Silico Knockout Model for Gastrointestinal Absorption Using a Systems Pharmacology Approach - Development and Application for Ketones.

    Directory of Open Access Journals (Sweden)

    Vittal Shivva

    Full Text Available Gastrointestinal absorption and disposition of ketones is complex. Recent work describing the pharmacokinetics (PK of d-β-hydroxybutyrate (BHB following oral ingestion of a ketone monoester ((R-3-hydroxybutyl (R-3-hydroxybutyrate found multiple input sites, nonlinear disposition and feedback on endogenous production. In the current work, a human systems pharmacology model for gastrointestinal absorption and subsequent disposition of small molecules (monocarboxylic acids with molecular weight < 200 Da was developed with an application to a ketone monoester. The systems model was developed by collating the information from the literature and knowledge gained from empirical population modelling of the clinical data. In silico knockout variants of this systems model were used to explore the mechanism of gastrointestinal absorption of ketones. The knockouts included active absorption across different regions in the gut and also a passive diffusion knockout, giving 10 gut knockouts in total. Exploration of knockout variants has suggested that there are at least three distinct regions in the gut that contribute to absorption of ketones. Passive diffusion predominates in the proximal gut and active processes contribute to the absorption of ketones in the distal gut. Low doses are predominantly absorbed from the proximal gut by passive diffusion whereas high doses are absorbed across all sites in the gut. This work has provided mechanistic insight into the absorption process of ketones, in the form of unique in silico knockouts that have potential for application with other therapeutics. Future studies on absorption process of ketones are suggested to substantiate findings in this study.

  11. Poly(ionic liquids)-coated stainless-steel wires packed into a polyether ether ketone tube for in-tube solid-phase microextraction.

    Science.gov (United States)

    Feng, Juanjuan; Wang, Xiuqin; Tian, Yu; Luo, Chuannan; Sun, Min

    2017-12-01

    An in-tube solid-phase microextraction device was developed by packing poly(ionic liquids)-coated stainless-steel wires into a polyether ether ketone tube. An anion-exchange process was performed to enhance the extraction performance. Surface properties of poly(ionic liquids)-coated stainless-steel wires were characterized by scanning electron microscopy and energy dispersive X-ray spectrometry. The extraction device was connected to high-performance liquid chromatography equipment to build an online enrichment and analysis system. Ten polycyclic aromatic hydrocarbons were used as model analytes, and important conditions including extraction time and desorption time were optimized. The enrichment factors from 268 to 2497, linear range of 0.03-20 μg/L, detection limits of 0.010-0.020 μg/L, extraction and preparation repeatability with relative standard deviation less than 1.8 and 19%, respectively were given by the established online analysis method. It has been used to detect polycyclic aromatic hydrocarbons in environmental samples, with the relative recovery (5, 10 μg/L) in the range of 85.1-118.9%. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. A ketogenic diet increases transport and oxidation of ketone bodies in RG2 and 9L gliomas without affecting tumor growth.

    Science.gov (United States)

    De Feyter, Henk M; Behar, Kevin L; Rao, Jyotsna U; Madden-Hennessey, Kirby; Ip, Kevan L; Hyder, Fahmeed; Drewes, Lester R; Geschwind, Jean-François; de Graaf, Robin A; Rothman, Douglas L

    2016-08-01

    The dependence of tumor cells, particularly those originating in the brain, on glucose is the target of the ketogenic diet, which creates a plasma nutrient profile similar to fasting: increased levels of ketone bodies and reduced plasma glucose concentrations. The use of ketogenic diets has been of particular interest for therapy in brain tumors, which reportedly lack the ability to oxidize ketone bodies and therefore would be starved during ketosis. Because studies assessing the tumors' ability to oxidize ketone bodies are lacking, we investigated in vivo the extent of ketone body oxidation in 2 rodent glioma models. Ketone body oxidation was studied using (13)C MR spectroscopy in combination with infusion of a (13)C-labeled ketone body (beta-hydroxybutyrate) in RG2 and 9L glioma models. The level of ketone body oxidation was compared with nontumorous cortical brain tissue. The level of (13)C-beta-hydroxybutyrate oxidation in 2 rat glioma models was similar to that of contralateral brain. In addition, when glioma-bearing animals were fed a ketogenic diet, the ketone body monocarboxylate transporter was upregulated, facilitating uptake and oxidation of ketone bodies in the gliomas. These results demonstrate that rat gliomas can oxidize ketone bodies and indicate upregulation of ketone body transport when fed a ketogenic diet. Our findings contradict the hypothesis that brain tumors are metabolically inflexible and show the need for additional research on the use of ketogenic diets as therapy targeting brain tumor metabolism. © The Author(s) 2016. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. Excess enthalpies and (vapour + liquid) equilibrium data for the binary mixtures of dimethylsulphoxide with ketones

    International Nuclear Information System (INIS)

    Radhamma, M.; Venkatesu, P.; Rao, M.V. Prabhakara; Prasad, D.H.L.

    2007-01-01

    Excess enthalpies (H E ), at ambient pressure and T = 298.15 K, have been measured by using a solution calorimeter for the binary liquid mixtures of dimethyl sulphoxide (DMSO) with ketones, as a function of composition. The ketones chosen in the present investigation were methyl ethyl ketone (MEK), methyl isobutyl ketone (MIBK), and cyclohexanone (CH). The H E values are positive over the entire composition range for the three binary mixtures. Furthermore, the (vapour + liquid) equilibrium (VLE) was measured at 715 Torr for these mixtures, of different compositions, with the help of Swietoslawski-ebulliometer. The experimental temperature-mole fraction (t-x) data were used to compute Wilson parameters and then used to calculate the equilibrium vapour-phase compositions as well as the theoretical points for these binary mixtures. These Wilson parameters are used to calculate activity coefficients (γ) and these in turn to calculate excess Gibbs free energy (G E ). The intermolecular interactions and structural effects were analyzed on the basis of the measured and derived properties

  14. Candida tropicalis CE017: a new Brazilian enzymatic source for the bioreduction of aromatic prochiral ketones

    International Nuclear Information System (INIS)

    Vieira, Gizelle A.B.; Araujo, Daniel M. de Freitas; Lemos, Telma L.G.; Mattos, Marcos Carlos de; Oliveira, Maria da Conceicao F. de; Melo, Vania M.M.; Gonzalo, Gonzalo de; Gotor-Fernandez, Vicente; Gotor, Vicente

    2010-01-01

    The reactivity and stereoselectivity showed by a new strain of Candida tropicalis in the reduction of prochiral ketones have been compared with the ones previously attained in our laboratory using microorganisms from the Brazilian biodiversity. In this manner, Candida tropicalis has demonstrated its versatility as stereoselective agent in the bioreduction of a series of aromatic ketones. These prochiral compounds were converted into their corresponding optically alcohols with moderate to excellent stereopreference depending on the substrate structure. Among ketones tested, nitroacetophenones were enzymatically reduced to enantiopure (S)-alcohol with complete conversion. (author)

  15. Synthetic Applications and Mechanistic Studies of the Hydroxide-Mediated Cleavage of Carbon-Carbon Bonds in Ketones

    DEFF Research Database (Denmark)

    Mazziotta, Andrea; Makarov, Ilya S.; Fristrup, Peter

    2017-01-01

    The hydroxide-mediated cleavage of ketones into alkanes and carboxylic acids has been reinvestigated and the substrate scope extended to benzyl carbonyl compounds. The transformation is performed with a 0.05 M ketone solution in refluxing xylene in the presence of 10 equiv of potassium hydroxide....... The studies were complemented by a theoretical investigation where two possible pathways were characterized by DFT/M06-2X. The calculations showed that the scission takes place by nucleophilic attack of hydroxide on the ketone followed by fragmentation of the resulting oxyanion into the carboxylic acid...

  16. Candida tropicalis CE017: a new Brazilian enzymatic source for the bioreduction of aromatic prochiral ketones

    Energy Technology Data Exchange (ETDEWEB)

    Vieira, Gizelle A.B.; Araujo, Daniel M. de Freitas; Lemos, Telma L.G.; Mattos, Marcos Carlos de; Oliveira, Maria da Conceicao F. de; Melo, Vania M.M., E-mail: mcdmatto@ufc.b [Universidade Federal do Ceara (DQOI/UFC), Fortaleza, CE (Brazil). Dept. de Quimica Organica e Inorganica; Gonzalo, Gonzalo de; Gotor-Fernandez, Vicente; Gotor, Vicente [Universidad de Oviedo, Oviedo (Spain). Inst. Univ. de Biotecnologia de Asturias. Dept. de Quimica Organica e Inorganica

    2010-07-01

    The reactivity and stereoselectivity showed by a new strain of Candida tropicalis in the reduction of prochiral ketones have been compared with the ones previously attained in our laboratory using microorganisms from the Brazilian biodiversity. In this manner, Candida tropicalis has demonstrated its versatility as stereoselective agent in the bioreduction of a series of aromatic ketones. These prochiral compounds were converted into their corresponding optically alcohols with moderate to excellent stereopreference depending on the substrate structure. Among ketones tested, nitroacetophenones were enzymatically reduced to enantiopure (S)-alcohol with complete conversion. (author)

  17. Synthesis of New Polyether Ether Ketone Derivatives with Silver Binding Site and Coordination Compounds of Their Monomers with Different Silver Salts

    Directory of Open Access Journals (Sweden)

    Jérôme Girard

    2016-05-01

    Full Text Available Polyether ether ketone (PEEK is a well-known polymer used for implants and devices, especially spinal ones. To overcome the biomaterial related infection risks, 4-4′-difluorobenzophenone, the famous PEEK monomer, was modified in order to introduce binding sites for silver ions, which are well known for their antimicrobial activity. The complexation of these new monomers with different silver salts was studied. Crystal structures of different intermediates were obtained with a linear coordination between two pyridine groups and the silver ions in all cases. The mechanical and thermal properties of different new polymers were characterized. The synthesized PEEKN5 polymers showed similar properties than the PEEK ones whereas the PEEKN7 polymers showed similar thermal properties but the mechanical properties are not as good as the ones of PEEK. To improve these properties, these polymers were complexed with silver nitrate in order to “cross-link” with silver ions. The presence of ionic silver in the polymer was then confirmed by thermogravimetric analysis (TGA and X-ray powder diffraction (XRPD. Finally, a silver-based antimicrobial compound was successfully coated on the surface of PEEKN5.

  18. Lauric Acid Stimulates Ketone Body Production in the KT-5 Astrocyte Cell Line.

    Science.gov (United States)

    Nonaka, Yudai; Takagi, Tetsuo; Inai, Makoto; Nishimura, Shuhei; Urashima, Shogo; Honda, Kazumitsu; Aoyama, Toshiaki; Terada, Shin

    2016-08-01

    Coconut oil has recently attracted considerable attention as a potential Alzheimer's disease therapy because it contains large amounts of medium-chain fatty acids (MCFAs) and its consumption is thought to stimulate hepatic ketogenesis, supplying an alternative energy source for brains with impaired glucose metabolism. In this study, we first reevaluated the responses of plasma ketone bodies to oral administration of coconut oil to rats. We found that the coconut oil-induced increase in plasma ketone body concentration was negligible and did not significantly differ from that observed after high-oleic sunflower oil administration. In contrast, the administration of coconut oil substantially increased the plasma free fatty acid concentration and lauric acid content, which is the major MCFA in coconut oil. Next, to elucidate whether lauric acid can activate ketogenesis in astrocytes with the capacity to generate ketone bodies from fatty acids, we treated the KT-5 astrocyte cell line with 50 and 100 μM lauric acid for 4 h. The lauric acid treatments increased the total ketone body concentration in the cell culture supernatant to a greater extent than oleic acid, suggesting that lauric acid can directly and potently activate ketogenesis in KT-5 astrocytes. These results suggest that coconut oil intake may improve brain health by directly activating ketogenesis in astrocytes and thereby by providing fuel to neighboring neurons.

  19. Process for conversion of levulinic acid to ketones

    Energy Technology Data Exchange (ETDEWEB)

    Dagle, Vanessa M.; Dagle, Robert A.

    2017-05-30

    A method for generating desired platform chemicals from feedstocks such as cellulosic biomass feedstocks containing levulinic acid by decarboxylating a feed stock comprising levulinic acid to generate ketones. This is done by passing a feed stock comprising levulinic acid in a gas phase over a non-precious metal catalyst on a neutral support.

  20. Biofiltration of odours - industrial pilot to treat methyl ethyl ketone and toluene

    International Nuclear Information System (INIS)

    Otten, L.; Elsie, K.

    2002-01-01

    Methyl ethyl ketone and toluene in the off-gases of a plant producing polyvinyl chloride sheeting for the automotive industry and swimming pools caused frequent odour complaints from the neighbourhood. A pilot project was developed to investigate the removal of the compounds under actual operating conditions by passing part of the exhaust through a compost-based, three-stage biofilter. It was determined over the 156 days of operation that the removal efficiencies of methyl ethyl ketone and toluene averaged 73% and 49%, respectively. It was also shown that shutdowns and disruptions of the laminating process for short and extended periods did not affect the biofilter performance. Addition of 100g/L solution of KNO 3 as a nitrogen source did not improve the performance. Carbon dioxide concentration data and the presence of an average microbial population of 52 million colony forming units per gram provided evidence that biological degradation played a significant role in the reduction of methyl ethyl ketone and toluene in the off-gases of the laminator. (author)

  1. Photochemical studies on aromatic γ,δ-epoxy ketones: efficient synthesis of benzocyclobutanones and indanones.

    Science.gov (United States)

    Shao, Yutian; Yang, Chao; Gui, Weijun; Liu, Yang; Xia, Wujiong

    2012-04-11

    Irradiation of terminal aromatic γ,δ-epoxy ketones with a 450 W UV lamp led to Norrish type II cyclization/semi-pinacol rearrangement cascade reaction which formed the benzocyclobutanones containing a full-carbon quaternary center, whereas irradiation of substituted aromatic γ,δ-epoxy ketones led to the indanones through a photochemical epoxy rearrangement and 1,5-biradicals cyclization tandem reaction. This journal is © The Royal Society of Chemistry 2012

  2. Polyether ether ketone implants achieve increased bone fusion when coated with nano-sized hydroxyapatite: a histomorphometric study in rabbit bone.

    Science.gov (United States)

    Johansson, Pär; Jimbo, Ryo; Naito, Yoshihito; Kjellin, Per; Currie, Fredrik; Wennerberg, Ann

    2016-01-01

    Polyether ether ketone (PEEK) possesses excellent mechanical properties similar to those of human bone and is considered the best alternative material other than titanium for orthopedic spine and trauma implants. However, the deficient osteogenic properties and the bioinertness of PEEK limit its fields of application. The aim of this study was to limit these drawbacks by coating the surface of PEEK with nano-scaled hydroxyapatite (HA) minerals. In the study, the biological response to PEEK, with and without HA coating, was investigated. Twenty-four screw-like and apically perforated implants in the rabbit femur were histologically evaluated at 3 weeks and 12 weeks after surgery. Twelve of the 24 implants were HA coated (test), and the remaining 12 served as uncoated PEEK controls. At 3 weeks and 12 weeks, the mean bone-implant contact was higher for test compared to control (P<0.05). The bone area inside the threads was comparable in the two groups, but the perforating hole showed more bone area for the HA-coated implants at both healing points (P<0.01). With these results, we conclude that nano-sized HA coating on PEEK implants significantly improved the osteogenic properties, and in a clinical situation this material composition may serve as an implant where a rapid bone fusion is essential.

  3. 40 CFR 63.61 - Deletion of methyl ethyl ketone from the list of hazardous air pollutants.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 9 2010-07-01 2010-07-01 false Deletion of methyl ethyl ketone from the list of hazardous air pollutants. 63.61 Section 63.61 Protection of Environment ENVIRONMENTAL... Designations, Source Category List § 63.61 Deletion of methyl ethyl ketone from the list of hazardous air...

  4. A Green Approach for Allylations of Aldehydes and Ketones: Combining Allylborate, Mechanochemistry and Lanthanide Catalyst

    Directory of Open Access Journals (Sweden)

    Viviane P. de Souza

    2016-11-01

    Full Text Available Secondary and tertiary alcohols synthesized via allylation of aldehydes and ketones are important compounds in bioactive natural products and industry, including pharmaceuticals. Development of a mechanochemical method using potassium allyltrifluoroborate salt and water, to successfully perform the allylation of aromatic and aliphatic carbonyl compounds is reported for the first time. By controlling the grinding parameters, the methodology can be selective, namely, very efficient for aldehydes and ineffective for ketones, but by employing lanthanide catalysts, the reactions with ketones can become practically quantitative. The catalyzed reactions can also be performed under mild aqueous stirring conditions. Considering the allylation agent and its by-products, aqueous media, energy efficiency and use of catalyst, the methodology meets most of the green chemistry principles.

  5. Oxidation of Group 8 transition-Metal Hydrides and Ionic Hydrogenation of Ketones and Aldehydes

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Kjell-Tore

    1996-08-01

    Transition-metal hydrides have received considerable attention during the last decades because of their unusual reactivity and their potential as homogeneous catalysts for hydrogenation and other reactions of organic substrates. An important class of catalytic processes where transition-metal hydrides are involved is the homogeneous hydrogenation of alkenes, alkynes, ketones, aldehydes, arenes and nitro compounds. This thesis studies the oxidation of Group 8 transition-metal hydrides and the ionic hydrogenation of ketones and aldehydes.

  6. OXYGEN 18 EXCHANGE REACTIONS OF ALDEHYDES AND KETONES

    Energy Technology Data Exchange (ETDEWEB)

    Byrn, Marianne; Calvin, Melvin

    1965-12-01

    Using infra-red spectroscopy, the equilibrium exchange times have been determined for a series of ketones, aromatic aldehydes, and {beta}-ketoesters reacting with oxygen 18 enriched water. These exchange times have been evaluated in terms of steric and electronic considerations, and applied to a discussion of the exchange times of chlorophylls a and b and chlorophyll derivatives.

  7. Investigation of phonon transport and thermal boundary conductance at the interface of functionalized SWCNT and poly (ether-ketone)

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Haoxiang; Kumar, Satish, E-mail: satish.kumar@me.gatech.edu [G.W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States); Chen, Liang [School of Energy and Power Engineering, Xi' an Jiaotong University, Xi' an, Shaanxi (China); Varshney, Vikas [Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, Ohio 45433 (United States); Universal Technology Corporation, Dayton, Ohio 45432 (United States); Roy, Ajit K. [Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, Ohio 45433 (United States)

    2016-09-07

    Carbon nanostructures such as carbon nanotube (CNT), graphene, and carbon fibers can be used as fillers in amorphous polymers to improve their thermal properties. In this study, the effect of covalent bonding of CNT with poly(ether ketone) (PEK) on interfacial thermal interactions is investigated using non-equilibrium molecular dynamics simulations. The number of covalent bonds between (20, 20) CNT and PEK is varied in the range of 0–80 (0%–6.25%), and the thermal boundary conductance is computed. The analysis reveals that covalent functionalization of CNT atoms can enhance the thermal boundary conductance by an order of magnitude compared to the non-functionalized CNT-PEK interface at a high degree of CNT functionalization. Besides strengthening the thermal coupling, covalent functionalization is also shown to modify the phonon spectra of CNT. The transient spectral energy analysis shows that the crosslinks cause faster energy exchange from CNT to PEK in different frequency bands. The oxygen atom of hydroxyl group of PEK contributes energy transfer in the low frequency band, while aromatic and carbonyl carbon atoms play a more significant role in high frequency bands. In addition, by analyzing the relaxation time of the spectral temperature of different frequency bands of CNT, it is revealed that with increasing number of bonds, both lower frequency vibrational modes and higher frequency modes efficiently couple across the CNT-PEK interface and contribute in thermal energy transfer from CNT to the matrix.

  8. Homogeneous and heterogeneous photoredox-catalyzed hydroxymethylation of ketones and keto esters: catalyst screening, chemoselectivity and dilution effects

    Directory of Open Access Journals (Sweden)

    Axel G. Griesbeck

    2014-05-01

    Full Text Available The homogeneous titanium- and dye-catalyzed as well as the heterogeneous semiconductor particle-catalyzed photohydroxymethylation of ketones by methanol were investigated in order to evaluate the most active photocatalyst system. Dialkoxytitanium dichlorides are the most efficient species for chemoselective hydroxymethylation of acetophenone as well as other aromatic and aliphatic ketones. Pinacol coupling is the dominant process for semiconductor catalysis and ketone reduction dominates the Ti(OiPr4/methanol or isopropanol systems. Application of dilution effects on the TiO2 catalysis leads to an increase in hydroxymethylation at the expense of the pinacol coupling.

  9. The catalystic asymmetric synthesis of optically active epoxy ketones

    NARCIS (Netherlands)

    Marsman, Bertha Gerda

    1981-01-01

    In this thesis the use of catalytic asymmetric synthesis to prepare optically active epoxy ketones is described. This means that the auxiliary chirality, necessary to obtain an optically active product, is added in a catalytic quantity . In principle this is a very efficient way to make opticlly

  10. Regioselective 1,4-trifluoromethylation of α,β-unsaturated ketones via a S-(trifluoromethyldiphenylsulfonium salts/copper system

    Directory of Open Access Journals (Sweden)

    Satoshi Okusu

    2013-10-01

    Full Text Available Regioselective conjugate 1,4-trifluoromethylation of α,β-unsaturated ketones by the use of shelf-stable electrophilic trifluoromethylating reagents, S-(trifluoromethyldiphenylsulfonium salts and copper under mild conditions is described. A wide range of acyclic aryl–aryl–enones and aryl–alkyl–enones were converted into β-trifluoromethylated ketones in low to moderate yields.

  11. Solvation effect on decomposition rate of 10-methyl-10-phenylphenoxarsonium iodide in some alcohols and ketones

    International Nuclear Information System (INIS)

    Gavrilov, V.I.; Gumerov, N.S.; Rakhmatullin, R.R.

    1989-01-01

    By the method of conductometry decomposition kinetics of 10-methyl-10phenylphenoxarsonium iodide in methanol, ethanol, 2-propanol, 1-butanol, 1-pentanol and methyl ethyl ketone at initial concentration of the salt 0.00024-0.003 mol/l, is studied. It is shown that at the temperatures up to 80-95 deg C practically no decomposition of arsonium salt in methanol and ethanol is observed. With an increase in the length of alcohol alkyl radical the decomposition rate increases. The values of activation enrgy both for alcohols and ketone are approximately the same. At the same time, decomposition rate in alcohol proved much slower than in ketone, which is related to iodide-ion solvation in protic solvents

  12. Solvation effect on decomposition rate of 10-methyl-10-phenylphenoxarsonium iodide in some alcohols and ketones

    Energy Technology Data Exchange (ETDEWEB)

    Gavrilov, V I; Gumerov, N S; Rakhmatullin, R R [Kazanskij Khimiko-Tekhnologicheskij Inst., Kazan (USSR)

    1989-03-01

    By the method of conductometry decomposition kinetics of 10-methyl-10phenylphenoxarsonium iodide in methanol, ethanol, 2-propanol, 1-butanol, 1-pentanol and methyl ethyl ketone at initial concentration of the salt 0.00024-0.003 mol/l, is studied. It is shown that at the temperatures up to 80-95 deg C practically no decomposition of arsonium salt in methanol and ethanol is observed. With an increase in the length of alcohol alkyl radical the decomposition rate increases. The values of activation enrgy both for alcohols and ketone are approximately the same. At the same time, decomposition rate in alcohol proved much slower than in ketone, which is related to iodide-ion solvation in protic solvents.

  13. A potent trifluoromethyl ketone histone deacetylase inhibitor exhibits class-dependent mechanism of action

    DEFF Research Database (Denmark)

    Madsen, Andreas Stahl; Olsen, Christian Adam

    2016-01-01

    Histone deacetylase (HDAC) enzymes are validated targets for treatment of certain cancers and have potential as targets for pharmacological intervention in a number of other diseases. Thus, inhibitors of these enzymes have received considerable attention, but these are often evaluated by IC50 value......-on–fast-off mechanism was observed, but the trifluoromethyl ketone compound exhibited differential mechanisms depending on the enzyme isoform. The trifluoromethyl ketone compound displayed a fast-on–fast-off mechanism against class-IIa HDACs 4 and 7, but slow-binding mechanisms against class-I and class-IIb enzymes...

  14. Raspberry ketone in food supplements – High intake, few toxicity data – A cause for safety concern?

    DEFF Research Database (Denmark)

    Bredsdorff, Lea; Wedebye, Eva Bay; Nikolov, Nikolai Georgiev

    2015-01-01

    Raspberry ketone (4-(4-hydroxyphenyl)-2-butanone) is marketed on the Internet as a food supplement. The recommended intake is between 100 and 1400 mg per day. The substance is naturally occurring in raspberries (up to 4.3 mg/kg) and is used as a flavouring substance. Toxicological studies...... on raspberry ketone are limited to acute and subchronic studies in rats. When the lowest recommended daily dose of raspberry ketone (100 mg) as a food supplement is consumed, it is 56 times the established threshold of toxicological concern (TTC) of 1800 μg/day for Class 1 substances. The margin of safety (MOS......) based on a NOAEL of 280 mg/kg bw/day for lower weight gain in rats is 165 at 100 mg and 12 at 1400 mg. The recommended doses are a concern taking into account the TTC and MOS. Investigations of raspberry ketone in quantitative structure-activity relationship (QSAR) models indicated potential cardiotoxic...

  15. The breakdown of vinyl ethers as a two-center synchronous reaction

    Science.gov (United States)

    Pokidova, T. S.; Shestakov, A. F.

    2009-11-01

    The experimental data on the molecular decomposition of vinyl ethers of various structures to alkanes and the corresponding aldehydes or ketones in the gas phase were analyzed using the method of intersecting parabolas. The enthalpies and kinetic parameters of decomposition were calculated for 17 reactions. The breakdown of ethers is a two-center concerted reaction characterized by a very high classical potential barrier to the thermally neutral reaction (180-190 kJ/mol). The kinetic parameters (activation energies and rate constants) of back reactions of the formation of vinyl ethers in the addition of aldehydes or ketones to alkanes were calculated using the method of intersecting parabolas. The factors that influenced the activation energy of the decomposition and formation of ethers were discussed. Quantum-chemical calculations of several vinyl ether decomposition reactions were performed. Ether formation reactions were compared with the formation of unsaturated alcohols as competitive reactions, which can occur in the interaction of carbonyl compounds with alkenes.

  16. Regulation of hypothalamic neuronal sensing and food intake by ketone bodies and fatty acids.

    Science.gov (United States)

    Le Foll, Christelle; Dunn-Meynell, Ambrose A; Miziorko, Henri M; Levin, Barry E

    2014-04-01

    Metabolic sensing neurons in the ventromedial hypothalamus (VMH) alter their activity when ambient levels of metabolic substrates, such as glucose and fatty acids (FA), change. To assess the relationship between a high-fat diet (HFD; 60%) intake on feeding and serum and VMH FA levels, rats were trained to eat a low-fat diet (LFD; 13.5%) or an HFD in 3 h/day and were monitored with VMH FA microdialysis. Despite having higher serum levels, HFD rats had lower VMH FA levels but ate less from 3 to 6 h of refeeding than did LFD rats. However, VMH β-hydroxybutyrate (β-OHB) and VMH-to-serum β-OHB ratio levels were higher in HFD rats during the first 1 h of refeeding, suggesting that VMH astrocyte ketone production mediated their reduced intake. In fact, using calcium imaging in dissociated VMH neurons showed that ketone bodies overrode normal FA sensing, primarily by exciting neurons that were activated or inhibited by oleic acid. Importantly, bilateral inhibition of VMH ketone production with a 3-hydroxy-3-methylglutaryl-CoA synthase inhibitor reversed the 3- to 6-h HFD-induced inhibition of intake but had no effect in LFD-fed rats. These data suggest that a restricted HFD intake regimen inhibits caloric intake as a consequence of FA-induced VMH ketone body production by astrocytes.

  17. Effects of ketone bodies in Alzheimer's disease in relation to neural hypometabolism, β-amyloid toxicity, and astrocyte function

    DEFF Research Database (Denmark)

    Hertz, Leif; Chen, Ye; Waagepetersen, Helle S

    2015-01-01

    Diet supplementation with ketone bodies (acetoacetate and β-hydroxybuturate) or medium-length fatty acids generating ketone bodies has consistently been found to cause modest improvement of mental function in Alzheimer's patients. It was suggested that the therapeutic effect might be more...

  18. The inverse problem of brain energetics: ketone bodies as alternative substrates

    Energy Technology Data Exchange (ETDEWEB)

    Calvetti, D; Occhipinti, R [Case Western Reserve University, Department of Mathematics, 10900 Euclid Avenue, Cleveland, OH 44106 (United States); Somersalo, E [Helsinki University of Technology, Institute of Mathematics, P. O. Box 1100, FIN-02015 HUT (Finland)], E-mail: daniela.calvetti@case.edu, E-mail: rossana.occhipinti@case.edu, E-mail: erkki.somersalo@tkk.fi

    2008-07-15

    Little is known about brain energy metabolism under ketosis, although there is evidence that ketone bodies have a neuroprotective role in several neurological disorders. We investigate the inverse problem of estimating reaction fluxes and transport rates in the different cellular compartments of the brain, when the data amounts to a few measured arterial venous concentration differences. By using a recently developed methodology to perform Bayesian Flux Balance Analysis and a new five compartment model of the astrocyte-glutamatergic neuron cellular complex, we are able to identify the preferred biochemical pathways during shortage of glucose and in the presence of ketone bodies in the arterial blood. The analysis is performed in a minimally biased way, therefore revealing the potential of this methodology for hypothesis testing.

  19. The inverse problem of brain energetics: ketone bodies as alternative substrates

    International Nuclear Information System (INIS)

    Calvetti, D; Occhipinti, R; Somersalo, E

    2008-01-01

    Little is known about brain energy metabolism under ketosis, although there is evidence that ketone bodies have a neuroprotective role in several neurological disorders. We investigate the inverse problem of estimating reaction fluxes and transport rates in the different cellular compartments of the brain, when the data amounts to a few measured arterial venous concentration differences. By using a recently developed methodology to perform Bayesian Flux Balance Analysis and a new five compartment model of the astrocyte-glutamatergic neuron cellular complex, we are able to identify the preferred biochemical pathways during shortage of glucose and in the presence of ketone bodies in the arterial blood. The analysis is performed in a minimally biased way, therefore revealing the potential of this methodology for hypothesis testing

  20. The inverse problem of brain energetics: ketone bodies as alternative substrates

    Science.gov (United States)

    Calvetti, D.; Occhipinti, R.; Somersalo, E.

    2008-07-01

    Little is known about brain energy metabolism under ketosis, although there is evidence that ketone bodies have a neuroprotective role in several neurological disorders. We investigate the inverse problem of estimating reaction fluxes and transport rates in the different cellular compartments of the brain, when the data amounts to a few measured arterial venous concentration differences. By using a recently developed methodology to perform Bayesian Flux Balance Analysis and a new five compartment model of the astrocyte-glutamatergic neuron cellular complex, we are able to identify the preferred biochemical pathways during shortage of glucose and in the presence of ketone bodies in the arterial blood. The analysis is performed in a minimally biased way, therefore revealing the potential of this methodology for hypothesis testing.

  1. Adenosine A1 Receptor Antagonism Abolished the Anti-seizure Effects of Exogenous Ketone Supplementation in Wistar Albino Glaxo Rijswijk Rats

    Directory of Open Access Journals (Sweden)

    Zsolt Kovács

    2017-07-01

    Full Text Available The state of therapeutic ketosis can be achieved by using the ketogenic diet (KD or exogenous ketone supplementation. It was suggested previously that the adenosinergic system may be involved in the mediating effect of KD on suppressing seizure activity in different types of epilepsies, likely by means of adenosine A1 receptors (A1Rs. Thus, we tested in the present study whether exogenous ketone supplements (ketone ester: KE, 2.5 g/kg/day; ketone salt/KS + medium chain triglyceride/MCT: KSMCT, 2.5 g/kg/day applied sub-chronically (for 7 days by intragastric gavage can modulate absence epileptic activity in genetically absence epileptic Wistar Albino Glaxo/Rijswijk (WAG/Rij rats. The number of spike-wave discharges (SWDs significantly and similarly decreased after both KE and KSMCT treatment between 3rd and 7th days of gavage. Moreover, blood beta-hydroxybutyrate (βHB levels were significantly increased alike after KE and KSMCT gavage, compared to control levels. The SWD number and βHB levels returned to the baseline levels on the first day without ketone supplementation. To determine whether A1Rs can modify ketone supplement-evoked changes in absence epileptic activity, we applied a non-pro-epileptic dose of a specific A1R antagonist DPCPX (1,3-dipropyl-8-cyclopentylxanthine (intraperitoneal/i.p. 0.2 mg/kg in combination with KSMCT (2.5 g/kg/day, gavage. As expected, DPCPX abolished the KSMCT-evoked decrease in SWD number. Thus, we concluded that application of exogenous ketone supplements may decrease absence epileptic activity in WAG/Rij rats. Moreover, our results suggest that among others the adenosinergic system, likely via A1Rs, may modulate the exogenous ketone supplements-evoked anti-seizure effects.

  2. Sulfonated Holey Graphene Oxide (SHGO) Filled Sulfonated Poly(ether ether ketone) Membrane: The Role of Holes in the SHGO in Improving Its Performance as Proton Exchange Membrane for Direct Methanol Fuel Cells.

    Science.gov (United States)

    Jiang, Zhong-Jie; Jiang, Zhongqing; Tian, Xiaoning; Luo, Lijuan; Liu, Meilin

    2017-06-14

    Sulfonated holey graphene oxides (SHGOs) have been synthesized by the etching of sulfonated graphene oxides with concentrated HNO 3 under the assistance of ultrasonication. These SHGOs could be used as fillers for the sulfonated aromatic poly(ether ether ketone) (SPEEK) membrane. The obtained SHGO-incorporated SPEEK membrane has a uniform and dense structure, exhibiting higher performance as proton exchange membranes (PEMs), for instance, higher proton conductivity, lower activation energy for proton conduction, and comparable methanol permeability, as compared to Nafion 112. The sulfonated graphitic structure of the SHGOs is believed to be one of the crucial factors resulting in the higher performance of the SPEEK/SHGO membrane, since it could increase the local density of the -SO 3 H groups in the membrane and induce a strong interfacial interaction between SHGO and the SPEEK matrix, which improve the proton conductivity and lower the swelling ratio of the membrane, respectively. Additionally, the proton conductivity of the membrane could be further enhanced by the presence of the holes in the graphitic planes of the SHGOs, since it provides an additional channel for transport of the protons. When used, direct methanol fuel cell with the SPEEK/SHGO membrane is found to exhibit much higher performance than that with Nafion 112, suggesting potential use of the SPEEK/SHGO membrane as the PEMs.

  3. Fumigant toxicity of five essential oils rich in ketones against Sitophilus zeamais (Motschulsky

    Directory of Open Access Journals (Sweden)

    J.M Herrera

    2014-06-01

    Full Text Available Essential oils (EOs and individual compounds act as fumigants against insects found in stored products. In fumigant assays, Sitophilus zeamais Motschulsky adults were treated with essential oils derived from Aphyllocladus decussatus Hieron, Aloysia polystachya Griseb, Minthostachys verticillata Griseb Epling and Tagetes minuta L , which are rich in ketones and their major components: a- thujone, R-carvone, S-carvone, (- menthone, R (+ pulegone and E-Z- ocimenone. M. verticillata oil was the most toxic ( LC50: 116.6 µl /L air characterized by a high percentage of menthone (40.1% and pulegone (43.7%. All ketones showed insecticidal activity against S. zeamais. However, pulegone (LC50: 11.8 µl/L air, R- carvone (LC50: 17.5 µl/L air, S-carvone (LC50: 28.1 µl/L air and E-Z-ocimenone (LC50: 42.3 µl/L air were the most toxic. These ketones are a,b-unsaturated carbonyl. This feature could play a fundamental role in the increase of insecticidal activity against S. zeamais.

  4. A rational approach to predict and modulate stereolability of chiral alpha substituted ketones.

    Science.gov (United States)

    Cirilli, Roberto; Costi, Roberta; Di Santo, Roberto; Gasparrini, Francesco; La Torre, Francesco; Pierini, Marco; Siani, Gabriella

    2009-01-01

    An effective strategy to assess and modulate the stereolability of chiral alpha substituted ketones (C alpha SKs) is presented. The tendency of C alpha SKs to retain or change their configuration in water is analyzed as a function of thermodynamic proton-release attitude of alpha asymmetric atoms inside the structures by linear Brønsted correlations. A molecular modeling procedure was developed to analyze and suggest chemical modifications of C alpha SKs in view to obtain the desired grade of stereochemical stability. The approach was employed to predict the tendency to enantiomerize in water of two ketones (1 and 2) endowed with inhibitory activity against monoamine oxidases (MAOs) and the results were confirmed by experimental kinetics measurements performed in organic medium. As a demonstration of practical potentialities of the approach, four new structures, conceived as simple chemical modifications of 1 and 2, were designed to improve/reduce the stereostability grade of the starting anti-MAO ketones. The possibility to extend easily the procedure to other classes of C-H acids appears of interest.

  5. Asymmetric Chemoenzymatic Reductive Acylation of Ketones by a Combined Iron-Catalyzed Hydrogenation-Racemization and Enzymatic Resolution Cascade

    KAUST Repository

    El-Sepelgy, Osama

    2017-02-28

    A general and practical process for the conversion of prochiral ketones into the corresponding chiral acetates has been realized. An iron carbonyl complex is reported to catalyze the hydrogenation-dehydrogenation-hydrogenation of prochiral ketones. By merging the iron-catalyzed redox reactions with enantioselective enzymatic acylations a wide range of benzylic, aliphatic and (hetero)aromatic ketones, as well as diketones, were reductively acylated. The corresponding products were isolated with high yields and enantioselectivities. The use of an iron catalyst together with molecular hydrogen as the hydrogen donor and readily available ethyl acetate as acyl donor make this cascade process highly interesting in terms of both economic value and environmental credentials.

  6. Efficient Baeyer-Villiger electro-oxidation of ketones with molecular ...

    African Journals Online (AJOL)

    A new and efficient method for the synthesis of lactones and esters involving the application of an molecular oxygen-based electro-catalytic oxidation system and ionic liquid [bmim][OTf] as electrolyte has been developed. The reaction between various ketones with molecular oxygen proceeds in a three-electrode cell under ...

  7. The incorporation of [1-14C] acetate into the methyl ketones that occur in steam-distillates of bovine milk fat.

    Science.gov (United States)

    Lawrence, R C; Hawke, J C

    1966-01-01

    1. The (14)C-labelling of the fatty acids and the methyl ketones in steam-distillates of milk fat from a lactating cow that had been injected intravenously with [1-(14)C]acetate was determined. 2. The labelling patterns of the C(6)-C(16) fatty acids and the corresponding methyl ketones with one fewer carbon atoms were similar, particularly so for the C(5)-C(10) compounds at 9 and 22hr. after the injection of [1-(14)C]acetate. The isolation of (14)C-labelled methyl ketones in the range C(3)-C(15) is evidence that the beta-oxo acid precursors, which are glyceride-bound in the milk fat, are synthesized in the mammary gland from acetate. The absence of heptadecan-2-one in steam-distillates and the extremely low specific radioactivity of stearic acid are further evidence for this biosynthetic pathway. 3. The specific radioactivities of the C(5)-C(15) methyl ketones were higher (with the exception of C(9) methyl ketone in the second milking) than the specific activities of the corresponding fatty acids with one more carbon atom. This is consistent with the methyl ketone precursors' being formed during the biosynthesis of fatty acids rather than being products of beta-oxidation of fatty acids.

  8. N-Heterocyclic Carbene-Catalyzed Vinylogous Mukaiyama Aldol Reaction of α-Keto Esters and α-Trifluoromethyl Ketones

    KAUST Repository

    Du, Guang-Fen; Wang, Ying; Xing, Fen; Xue, Mei; Guo, Xu-Hong; Huang, Kuo-Wei; Dai, Bin

    2015-01-01

    © Georg Thieme Verlag Stuttgart · New York · Synthesis 2016. N-Heterocyclic carbene (NHC)-catalyzed vinylogous Mukaiyama aldol reaction of ketones was developed. Under the catalysis of 5 mol% NHC, α-keto esters and α-trifluoromethyl ketones reacted with 2-(trimethysilyloxy)furan efficiently to produce γ-substituted butenolides containing adjacent quaternary and tertiary carbon centers in high yields with good diastereoselectivities.

  9. Chemical Composition and Cytotoxic Activities of Petroleum Ether ...

    African Journals Online (AJOL)

    Methods: The composition of petroleum ether extract was analyzed by gas ... acids, sterides, pregnanones, terpenes, alkaloids, alkenes, alcohols, ketones, aldehydes and other compounds. .... and mass spectra with those obtained from the.

  10. Can ketones compensate for deteriorating brain glucose uptake during aging? Implications for the risk and treatment of Alzheimer's disease.

    Science.gov (United States)

    Cunnane, Stephen C; Courchesne-Loyer, Alexandre; St-Pierre, Valérie; Vandenberghe, Camille; Pierotti, Tyler; Fortier, Mélanie; Croteau, Etienne; Castellano, Christian-Alexandre

    2016-03-01

    Brain glucose uptake is impaired in Alzheimer's disease (AD). A key question is whether cognitive decline can be delayed if this brain energy defect is at least partly corrected or bypassed early in the disease. The principal ketones (also called ketone bodies), β-hydroxybutyrate and acetoacetate, are the brain's main physiological alternative fuel to glucose. Three studies in mild-to-moderate AD have shown that, unlike with glucose, brain ketone uptake is not different from that in healthy age-matched controls. Published clinical trials demonstrate that increasing ketone availability to the brain via moderate nutritional ketosis has a modest beneficial effect on cognitive outcomes in mild-to-moderate AD and in mild cognitive impairment. Nutritional ketosis can be safely achieved by a high-fat ketogenic diet, by supplements providing 20-70 g/day of medium-chain triglycerides containing the eight- and ten-carbon fatty acids octanoate and decanoate, or by ketone esters. Given the acute dependence of the brain on its energy supply, it seems reasonable that the development of therapeutic strategies aimed at AD mandates consideration of how the underlying problem of deteriorating brain fuel supply can be corrected or delayed. © 2016 New York Academy of Sciences.

  11. Iodine-Promoted Deoxygenative Iodization/Olefination/Sulfenylation of Ketones with Sulfonyl Hydrazides: Access to β-Iodoalkenyl Sulfides.

    Science.gov (United States)

    Bao, Yishu; Yang, Xiuqin; Zhou, Qingfa; Yang, Fulai

    2018-04-06

    A highly regio- and stereoselective synthesis of β-haloalkenyl sulfides using commercially available ketones and sulfonyl hydrazides as starting materials has been developed. This protocol obviates the need for alkynes and traditional sulfenylating agents and therefore opens up a new door to construct β-iodoalkenyl sulfides in a highly simple manner. This study reveals that ketones could be used as vinyl iodide precursors in organic synthesis.

  12. Catecholamine, Corticosteroid and Ketone Excretion in Exercise and Hypoxia,

    Science.gov (United States)

    OHCS excretion tended to be higher during the experimental period and subsequently lower overnight during the hypoxia week. Ketosis occurred in two...subjects. In one of these it could be readily related to previous extraneous stress. Excretion of unidentified ketones in overnight urines was sometimes suspected and occurred beyond doubt following gross ketosis . (Author)

  13. Increasing the proton conductivity of sulfonated polyether ether ketone by incorporating graphene oxide: Morphology effect on proton dynamics

    Science.gov (United States)

    Leong, Jun Xing; Diño, Wilson Agerico; Ahmad, Azizan; Daud, Wan Ramli Wan; Kasai, Hideaki

    2018-03-01

    We synthesized graphene oxide-sulfonated polyether ether ketone (GO-SPEEK) composite membrane and compare its proton conductivity with that of Nafion® 117 and SPEEK membranes. From experimental measurements, we found that GO-SPEEK has better proton conductivity (σGO-SPEEK = 3.8 × 10-2 S cm-1) when compared to Nafion® 117 (σNafion = 2.4 × 10-2 S cm-1) and SPEEK (σSPEEK = 2.9 × 10-3 S cm-1). From density functional theory (DFT-) based total energy calculations, we found that GO-SPEEK has the shortest proton diffusion distance among the three membranes, yielding the highest tunneling probability. Hence, GO-SPEEK exhibits the highest conductivity. The short proton diffusion distance in GO-SPEEK, as compared to Nafion® 117 and SPEEK, can be attributed to the presence of oxygenated functional groups of GO in the polymer matrix. This also explains why GO-SPEEK requires the lowest hydration level to reach its maximum conductivity. Moreover, we have successfully shown that the proton conductivity σ is related to the tunneling probability T, i.e., σ = σ‧ exp(-1/T). We conclude that the proton diffusion distance and hydration level are the two most significant factors that determine the membrane’s good conductivity. The distance between ionic sites of the membrane should be small to obtain good conductivity. With this short distance, lower hydration level is required. Thus, a membrane with short separation between the ionic sites can have enhanced conductivity, even at low hydration conditions.

  14. Reaction rate constants of H-abstraction by OH from large ketones: measurements and site-specific rate rules.

    Science.gov (United States)

    Badra, Jihad; Elwardany, Ahmed E; Farooq, Aamir

    2014-06-28

    Reaction rate constants of the reaction of four large ketones with hydroxyl (OH) are investigated behind reflected shock waves using OH laser absorption. The studied ketones are isomers of hexanone and include 2-hexanone, 3-hexanone, 3-methyl-2-pentanone, and 4-methl-2-pentanone. Rate constants are measured under pseudo-first-order kinetics at temperatures ranging from 866 K to 1375 K and pressures near 1.5 atm. The reported high-temperature rate constant measurements are the first direct measurements for these ketones under combustion-relevant conditions. The effects of the position of the carbonyl group (C=O) and methyl (CH3) branching on the overall rate constant with OH are examined. Using previously published data, rate constant expressions covering, low-to-high temperatures, are developed for acetone, 2-butanone, 3-pentanone, and the hexanone isomers studied here. These Arrhenius expressions are used to devise rate rules for H-abstraction from various sites. Specifically, the current scheme is applied with good success to H-abstraction by OH from a series of n-ketones. Finally, general expressions for primary and secondary site-specific H-abstraction by OH from ketones are proposed as follows (the subscript numbers indicate the number of carbon atoms bonded to the next-nearest-neighbor carbon atom, the subscript CO indicates that the abstraction is from a site next to the carbonyl group (C=O), and the prime is used to differentiate different neighboring environments of a methylene group):

  15. Catalytic Ketone Hydrodeoxygenation Mediated by Highly Electrophilic Phosphonium Cations.

    Science.gov (United States)

    Mehta, Meera; Holthausen, Michael H; Mallov, Ian; Pérez, Manuel; Qu, Zheng-Wang; Grimme, Stefan; Stephan, Douglas W

    2015-07-06

    Ketones are efficiently deoxygenated in the presence of silane using highly electrophilic phosphonium cation (EPC) salts as catalysts, thus affording the corresponding alkane and siloxane. The influence of distinct substitution patterns on the catalytic effectiveness of several EPCs was evaluated. The deoxygenation mechanism was probed by DFT methods. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Taming Radical Pairs in Nanocrystalline Ketones: Photochemical Syn-thesis of Compounds with Vicinal Stereogenic All-Carbon Quaternary Centers.

    Science.gov (United States)

    Dotson, Jordan J; Perez-Estrada, Salvador; Garcia-Garibay, Miguel A

    2018-05-29

    Here we describe the use of crystalline ketones to control the fate of the radical pair intermediates generated in the Norrish type I photodecarbonylation reaction to render it a powerful tool in the challenging synthesis of sterically congested carbon-carbon bonds. This methodology makes the synthetically more accessible hexasusbtituted ketones as ideal synthons for the construction of adjacent, all-carbon substituted, stereogenic quaternary stereocenters. We describe here the structural and thermochemical parameters required of the starting ketone in order to react in the solid state. Finally, the scope and scalability of the reaction and its application in the total synthesis of two natural products is described.

  17. Synthetic Applications and Mechanistic Studies of the Hydroxide-Mediated Cleavage of Carbon-Carbon Bonds in Ketones

    DEFF Research Database (Denmark)

    Mazziotta, Andrea; Makarov, Ilya S.; Fristrup, Peter

    2017-01-01

    The hydroxide-mediated cleavage of ketones into alkanes and carboxylic acids has been reinvestigated and the substrate scope extended to benzyl carbonyl compounds. The transformation is performed with a 0.05 M ketone solution in refluxing xylene in the presence of 10 equiv of potassium hydroxide....... The reaction constitutes a straightforward protocol for the synthesis of certain phenyl-substituted carboxylic acids from 2-phenylcycloalkanones. The mechanism was investigated by kinetic experiments which indicated a first order reaction in hydroxide and a full negative charge in the rate-determining step....... The studies were complemented by a theoretical investigation where two possible pathways were characterized by DFT/M06-2X. The calculations showed that the scission takes place by nucleophilic attack of hydroxide on the ketone followed by fragmentation of the resulting oxyanion into the carboxylic acid...

  18. Synthetic Applications and Mechanistic Studies of the Hydroxide-Mediated Cleavage of Carbon-Carbon Bonds in Ketones.

    Science.gov (United States)

    Mazziotta, Andrea; Makarov, Ilya S; Fristrup, Peter; Madsen, Robert

    2017-06-02

    The hydroxide-mediated cleavage of ketones into alkanes and carboxylic acids has been reinvestigated and the substrate scope extended to benzyl carbonyl compounds. The transformation is performed with a 0.05 M ketone solution in refluxing xylene in the presence of 10 equiv of potassium hydroxide. The reaction constitutes a straightforward protocol for the synthesis of certain phenyl-substituted carboxylic acids from 2-phenylcycloalkanones. The mechanism was investigated by kinetic experiments which indicated a first order reaction in hydroxide and a full negative charge in the rate-determining step. The studies were complemented by a theoretical investigation where two possible pathways were characterized by DFT/M06-2X. The calculations showed that the scission takes place by nucleophilic attack of hydroxide on the ketone followed by fragmentation of the resulting oxyanion into the carboxylic acid and a benzyl anion.

  19. Reaction of Aldehydes/Ketones with Electron-Deficient 1,3,5-Triazines Leading to Functionalized Pyrimidines as Diels-Alder/Retro-Diels-Alder Reaction Products: Reaction Development and Mechanistic Studies.

    Science.gov (United States)

    Yang, Kai; Dang, Qun; Cai, Pei-Jun; Gao, Yang; Yu, Zhi-Xiang; Bai, Xu

    2017-03-03

    Catalytic inverse electron demand Diels-Alder (IEDDA) reactions of heterocyclic aza-dienes are rarely reported since highly reactive and electron-rich dienophiles are often found not compatible with strong acids such as Lewis acids. Herein, we disclose that TFA-catalyzed reactions of electron-deficient 1,3,5-triazines and electron-deficient aldehydes/ketones can take place. These reactions led to highly functionalized pyrimidines as products in fair to good yields. The reaction mechanism was carefully studied by the combination of experimental and computational studies. The reactions involve a cascade of stepwise inverse electron demand hetero-Diels-Alder (ihDA) reactions, followed by retro-Diels-Alder (rDA) reactions and elimination of water. An acid was required for both ihDA and rDA reactions. This mechanism was further verified by comparing the relative reactivity of aldehydes/ketones and their corresponding vinyl ethers in the current reaction system.

  20. Novel deep cavity calix[4]pyrroles derived from steroidal ketones

    Czech Academy of Sciences Publication Activity Database

    Dukh, Mykhaylo; Drašar, Pavel; Černý, Ivan; Pouzar, Vladimír; Shriver, J. A.; Král, V.; Sessler, J. L.

    2002-01-01

    Roč. 14, 2-3 (2002), s. 237-244 ISSN 1061-0278 R&D Projects: GA MŠk OC D12.20 Grant - others:NIH(US) GM58907 Institutional research plan: CEZ:AV0Z4055905 Keywords : ketones * steroid Subject RIV: CC - Organic Chemistry Impact factor: 1.820, year: 2002

  1. A Ketone Ester Diet Increases Brain Malonyl-CoA and Uncoupling Proteins 4 and 5 while Decreasing Food Intake in the Normal Wistar Rat*

    Science.gov (United States)

    Kashiwaya, Yoshihiro; Pawlosky, Robert; Markis, William; King, M. Todd; Bergman, Christian; Srivastava, Shireesh; Murray, Andrew; Clarke, Kieran; Veech, Richard L.

    2010-01-01

    Three groups of male Wistar rats were pair fed NIH-31 diets for 14 days to which were added 30% of calories as corn starch, palm oil, or R-3-hydroxybutyrate-R-1,3-butanediol monoester (3HB-BD ester). On the 14th day, animal brains were removed by freeze-blowing, and brain metabolites measured. Animals fed the ketone ester diet had elevated mean blood ketone bodies of 3.5 mm and lowered plasma glucose, insulin, and leptin. Despite the decreased plasma leptin, feeding the ketone ester diet ad lib decreased voluntary food intake 2-fold for 6 days while brain malonyl-CoA was increased by about 25% in ketone-fed group but not in the palm oil fed group. Unlike the acute effects of ketone body metabolism in the perfused working heart, there was no increased reduction in brain free mitochondrial [NAD+]/[NADH] ratio nor in the free energy of ATP hydrolysis, which was compatible with the observed 1.5-fold increase in brain uncoupling proteins 4 and 5. Feeding ketone ester or palm oil supplemented diets decreased brain l-glutamate by 15–20% and GABA by about 34% supporting the view that fatty acids as well as ketone bodies can be metabolized by the brain. PMID:20529850

  2. A ketone ester diet increases brain malonyl-CoA and Uncoupling proteins 4 and 5 while decreasing food intake in the normal Wistar Rat.

    Science.gov (United States)

    Kashiwaya, Yoshihiro; Pawlosky, Robert; Markis, William; King, M Todd; Bergman, Christian; Srivastava, Shireesh; Murray, Andrew; Clarke, Kieran; Veech, Richard L

    2010-08-20

    Three groups of male Wistar rats were pair fed NIH-31 diets for 14 days to which were added 30% of calories as corn starch, palm oil, or R-3-hydroxybutyrate-R-1,3-butanediol monoester (3HB-BD ester). On the 14th day, animal brains were removed by freeze-blowing, and brain metabolites measured. Animals fed the ketone ester diet had elevated mean blood ketone bodies of 3.5 mm and lowered plasma glucose, insulin, and leptin. Despite the decreased plasma leptin, feeding the ketone ester diet ad lib decreased voluntary food intake 2-fold for 6 days while brain malonyl-CoA was increased by about 25% in ketone-fed group but not in the palm oil fed group. Unlike the acute effects of ketone body metabolism in the perfused working heart, there was no increased reduction in brain free mitochondrial [NAD(+)]/[NADH] ratio nor in the free energy of ATP hydrolysis, which was compatible with the observed 1.5-fold increase in brain uncoupling proteins 4 and 5. Feeding ketone ester or palm oil supplemented diets decreased brain L-glutamate by 15-20% and GABA by about 34% supporting the view that fatty acids as well as ketone bodies can be metabolized by the brain.

  3. Short-chain fatty acids and ketones directly regulate sympathetic nervous system via G protein-coupled receptor 41 (GPR41).

    Science.gov (United States)

    Kimura, Ikuo; Inoue, Daisuke; Maeda, Takeshi; Hara, Takafumi; Ichimura, Atsuhiko; Miyauchi, Satoshi; Kobayashi, Makio; Hirasawa, Akira; Tsujimoto, Gozoh

    2011-05-10

    The maintenance of energy homeostasis is essential for life, and its dysregulation leads to a variety of metabolic disorders. Under a fed condition, mammals use glucose as the main metabolic fuel, and short-chain fatty acids (SCFAs) produced by the colonic bacterial fermentation of dietary fiber also contribute a significant proportion of daily energy requirement. Under ketogenic conditions such as starvation and diabetes, ketone bodies produced in the liver from fatty acids are used as the main energy sources. To balance energy intake, dietary excess and starvation trigger an increase or a decrease in energy expenditure, respectively, by regulating the activity of the sympathetic nervous system (SNS). The regulation of metabolic homeostasis by glucose is well recognized; however, the roles of SCFAs and ketone bodies in maintaining energy balance remain unclear. Here, we show that SCFAs and ketone bodies directly regulate SNS activity via GPR41, a Gi/o protein-coupled receptor for SCFAs, at the level of the sympathetic ganglion. GPR41 was most abundantly expressed in sympathetic ganglia in mouse and humans. SCFA propionate promoted sympathetic outflow via GPR41. On the other hand, a ketone body, β-hydroxybutyrate, produced during starvation or diabetes, suppressed SNS activity by antagonizing GPR41. Pharmacological and siRNA experiments indicated that GPR41-mediated activation of sympathetic neurons involves Gβγ-PLCβ-MAPK signaling. Sympathetic regulation by SCFAs and ketone bodies correlated well with their respective effects on energy consumption. These findings establish that SCFAs and ketone bodies directly regulate GPR41-mediated SNS activity and thereby control body energy expenditure in maintaining metabolic homeostasis.

  4. Novel chemistry of alpha-tosyloxy ketones: applications to the solution- and solid-phase synthesis of privileged heterocycle and enediyne libraries

    DEFF Research Database (Denmark)

    Nicolaou, K C; Montagnon, T; Ulven, T

    2002-01-01

    New synthetic technologies for the preparation and elaboration of alpha-tosyloxy ketones in solution- and on solid-phase are described. Both olefins and ketones serve as precursors to these relatively stable chemical entities: olefins via a novel one-pot epoxidation, arylsulfonic acid displacemen...

  5. Enhancement of L-3-hydroxybutyryl-CoA dehydrogenase activity and circulating ketone body levels by pantethine. Relevance to dopaminergic injury.

    Science.gov (United States)

    Cornille, Emilie; Abou-Hamdan, Mhamad; Khrestchatisky, Michel; Nieoullon, André; de Reggi, Max; Gharib, Bouchra

    2010-04-23

    The administration of the ketone bodies hydroxybutyrate and acetoacetate is known to exert a protective effect against metabolic disorders associated with cerebral pathologies. This suggests that the enhancement of their endogenous production might be a rational therapeutic approach. Ketone bodies are generated by fatty acid beta-oxidation, a process involving a mitochondrial oxido-reductase superfamily, with fatty acid-CoA thioesters as substrates. In this report, emphasis is on the penultimate step of the process, i.e. L-3-hydroxybutyryl-CoA dehydrogenase activity. We determined changes in enzyme activity and in circulating ketone body levels in the MPTP mouse model of Parkinson's disease. Since the active moiety of CoA is pantetheine, mice were treated with pantethine, its naturally-occurring form. Pantethine has the advantage of being known as an anti-inflammatory and hypolipidemic agent with very few side effects. We found that dehydrogenase activity and circulating ketone body levels were drastically reduced by the neurotoxin MPTP, whereas treatment with pantethine overcame these adverse effects. Pantethine prevented dopaminergic neuron loss and motility disorders. In vivo and in vitro experiments showed that the protection was associated with enhancement of glutathione (GSH) production as well as restoration of respiratory chain complex I activity and mitochondrial ATP levels. Remarkably, pantethine treatment boosted the circulating ketone body levels in MPTP-intoxicated mice, but not in normal animals. These finding demonstrate the feasibility of the enhancement of endogenous ketone body production and provide a promising therapeutic approach to Parkinson's disease as well as, conceivably, to other neurodegenerative disorders.

  6. Enhancement of L-3-hydroxybutyryl-CoA dehydrogenase activity and circulating ketone body levels by pantethine. Relevance to dopaminergic injury

    Directory of Open Access Journals (Sweden)

    de Reggi Max

    2010-04-01

    Full Text Available Abstract Background The administration of the ketone bodies hydroxybutyrate and acetoacetate is known to exert a protective effect against metabolic disorders associated with cerebral pathologies. This suggests that the enhancement of their endogenous production might be a rational therapeutic approach. Ketone bodies are generated by fatty acid beta-oxidation, a process involving a mitochondrial oxido-reductase superfamily, with fatty acid-CoA thioesters as substrates. In this report, emphasis is on the penultimate step of the process, i.e. L-3-hydroxybutyryl-CoA dehydrogenase activity. We determined changes in enzyme activity and in circulating ketone body levels in the MPTP mouse model of Parkinson's disease. Since the active moiety of CoA is pantetheine, mice were treated with pantethine, its naturally-occurring form. Pantethine has the advantage of being known as an anti-inflammatory and hypolipidemic agent with very few side effects. Results We found that dehydrogenase activity and circulating ketone body levels were drastically reduced by the neurotoxin MPTP, whereas treatment with pantethine overcame these adverse effects. Pantethine prevented dopaminergic neuron loss and motility disorders. In vivo and in vitro experiments showed that the protection was associated with enhancement of glutathione (GSH production as well as restoration of respiratory chain complex I activity and mitochondrial ATP levels. Remarkably, pantethine treatment boosted the circulating ketone body levels in MPTP-intoxicated mice, but not in normal animals. Conclusions These finding demonstrate the feasibility of the enhancement of endogenous ketone body production and provide a promising therapeutic approach to Parkinson's disease as well as, conceivably, to other neurodegenerative disorders.

  7. Study of ketone body kinetics in children by a combined perfusion of 13C and 2H3 tracers

    International Nuclear Information System (INIS)

    Bougneres, P.F.; Ferre, P.

    1987-01-01

    Ketone body kinetics were quantified in six children (3-5 yr old), who were fasted for 13-22 h, by a combined perfusion of [3- 13 C]acetoacetate ([ 13 C]AcAc) and D-(-)-beta-[4,4,4- 2 H3]hydroxybutyrate (beta-[ 2 H3]OHB) and gas chromatography-mass spectrometry analysis. Results were analyzed according to the single-pool (combined enrichments) or the two-accessible pools models. After 20-22 h of fasting, ketone body turnover rate was 30-50 mumol.kg-1.min-1, a rate achieved after several days of fasting in adults. At low ketosis, acetoacetate was the ketone body preferentially synthesized de novo and utilized irreversibly. When ketosis increased, acetoacetate irreversible disposal was not enhanced, since it was largely converted into beta-OHB, whereas beta-OHB irreversible disposal was very much increased. The single-pool and two-pool models gave similar ketone body turnover rates when [ 13 C]AcAc was the tracer, whereas the use of beta-[ 2 H3]OHB gave some more divergent results, especially at low ketosis. These studies demonstrate that ketogenesis is very active in short-term fasted children and that the use of a combined infusion of [ 13 C]AcAc and beta-[ 2 H3]OHB is a convenient way to give insight into individual ketone body kinetics

  8. Arene activation by a nonheme iron(III)-hydroperoxo complex: pathways leading to phenol and ketone products.

    Science.gov (United States)

    Faponle, Abayomi S; Banse, Frédéric; de Visser, Sam P

    2016-07-01

    Iron(III)-hydroperoxo complexes are found in various nonheme iron enzymes as catalytic cycle intermediates; however, little is known on their catalytic properties. The recent work of Banse and co-workers on a biomimetic nonheme iron(III)-hydroperoxo complex provided evidence of its involvement in reactivity with arenes. This contrasts the behavior of heme iron(III)-hydroperoxo complexes that are known to be sluggish oxidants. To gain insight into the reaction mechanism of the biomimetic iron(III)-hydroperoxo complex with arenes, we performed a computational (density functional theory) study. The calculations show that iron(III)-hydroperoxo reacts with substrates via low free energies of activation that should be accessible at room temperature. Moreover, a dominant ketone reaction product is observed as primary products rather than the thermodynamically more stable phenols. These product distributions are analyzed and the calculations show that charge interaction between the iron(III)-hydroxo group and the substrate in the intermediate state pushes the transferring proton to the meta-carbon atom of the substrate and guides the selectivity of ketone formation. These studies show that the relative ratio of ketone versus phenol as primary products can be affected by external interactions of the oxidant with the substrate. Moreover, iron(III)-hydroperoxo complexes are shown to selectively give ketone products, whereas iron(IV)-oxo complexes will react with arenes to form phenols instead.

  9. Use of ketonal in lumbago

    Directory of Open Access Journals (Sweden)

    P. R. Kamchatnov

    2014-01-01

    Full Text Available Lumbago is one of the most common musculoskeletal pain syndromes. The course of lumbago shows a tendency towards frequent relapses and is associated with the significant material costs of medical care. A wide range of analgesics, nonsteroidal anti-inflammatory drugs in particular, whose administration may be linked with an increased risk for adverse visceral reactions, is used to treat patient with lumbago. The risk of their side effects may be reduced by the extensive use of non-drug treatments and the early expansion of a motor regimen in a patient. Therapeutic effectiveness in reducing the likelihood of adverse reactions may be provided by short-term treatment with effective drugs. The advantages of using ketoprofen (ketonal formulations in patients with lumbago are considered.

  10. Analysis of Ketones by Selected Ion Flow Tube Mass Spectrometry

    Czech Academy of Sciences Publication Activity Database

    Smith, D.; Wang, T.; Španěl, Patrik

    2003-01-01

    Roč. 17, - (2003), s. 2655-2660 ISSN 0951-4198 R&D Projects: GA ČR GA202/03/0827; GA ČR GA203/02/0737 Institutional research plan: CEZ:AV0Z4040901 Keywords : mass spectrometry * selected ion flow tube * ketones Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.789, year: 2003

  11. Elimination of ketone vapors by adsorption on spherical MCM-41 and MCM-48 silicas decorated with thermally activated poly(furfuryl alcohol)

    Energy Technology Data Exchange (ETDEWEB)

    Machowski, Kamil [Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Kraków (Poland); Kuśtrowski, Piotr, E-mail: kustrows@chemia.uj.edu.pl [Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Kraków (Poland); Dudek, Barbara [Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Kraków (Poland); Michalik, Marek [Institute of Geological Sciences, Jagiellonian University, Oleandry 2a, 30-063 Kraków (Poland)

    2015-09-01

    Spherical MCM-41 and MCM-48 silicas with different arrangements of mesopores were synthesized in a water–alcohol solution of surfactant by the hard-templating method. The pore structure and morphology of the obtained materials were confirmed by powder X-ray diffraction (XRD), low-temperature adsorption of nitrogen and scanning electron microscopy (SEM). The surface of mesoporous silicas was decorated with small amounts of poly(furfuryl alcohol) (PFA), which was introduced by the precipitation polymerization and subsequently thermally activated at 523 K to form stable C=O surface species detected by FTIR spectroscopy. The adsorption capacity of the PFA/silica composites in the elimination of various ketone (acetone, methyl-ethyl ketone and methyl-isobutyl ketone) vapors was compared to the effectiveness of pristine silicas. It was found that the modification of silicas by thermally degraded PFA enhanced their adsorption capacity. This effect was attributed to the appearance of another type of surface centers (namely carbonyl groups), which beside silanols interact with ketone molecules via hydrogen bonds. DRIFT spectra showed that a ketone molecule is bonded on silanol species in its keto form, whereas on carbonyl functionalities in enol one. - Highlights: • Surface of spherical MCM-type silicas was decorated with poly(furfuryl alcohol). • Thermal degradation of deposited polymer resulted in formation of C=O species. • Carbonyl groups enhanced adsorption capacity of MCM-41 and MCM-48 silicas. • Adsorption of ketones in enol or keto forms was revealed by DRIFT measurements.

  12. Elimination of ketone vapors by adsorption on spherical MCM-41 and MCM-48 silicas decorated with thermally activated poly(furfuryl alcohol)

    International Nuclear Information System (INIS)

    Machowski, Kamil; Kuśtrowski, Piotr; Dudek, Barbara; Michalik, Marek

    2015-01-01

    Spherical MCM-41 and MCM-48 silicas with different arrangements of mesopores were synthesized in a water–alcohol solution of surfactant by the hard-templating method. The pore structure and morphology of the obtained materials were confirmed by powder X-ray diffraction (XRD), low-temperature adsorption of nitrogen and scanning electron microscopy (SEM). The surface of mesoporous silicas was decorated with small amounts of poly(furfuryl alcohol) (PFA), which was introduced by the precipitation polymerization and subsequently thermally activated at 523 K to form stable C=O surface species detected by FTIR spectroscopy. The adsorption capacity of the PFA/silica composites in the elimination of various ketone (acetone, methyl-ethyl ketone and methyl-isobutyl ketone) vapors was compared to the effectiveness of pristine silicas. It was found that the modification of silicas by thermally degraded PFA enhanced their adsorption capacity. This effect was attributed to the appearance of another type of surface centers (namely carbonyl groups), which beside silanols interact with ketone molecules via hydrogen bonds. DRIFT spectra showed that a ketone molecule is bonded on silanol species in its keto form, whereas on carbonyl functionalities in enol one. - Highlights: • Surface of spherical MCM-type silicas was decorated with poly(furfuryl alcohol). • Thermal degradation of deposited polymer resulted in formation of C=O species. • Carbonyl groups enhanced adsorption capacity of MCM-41 and MCM-48 silicas. • Adsorption of ketones in enol or keto forms was revealed by DRIFT measurements.

  13. Activation of Acetone and Other Simple Ketones in Anaerobic Bacteria.

    Science.gov (United States)

    Heider, Johann; Schühle, Karola; Frey, Jasmin; Schink, Bernhard

    2016-01-01

    Acetone and other ketones are activated for subsequent degradation through carboxylation by many nitrate-reducing, phototrophic, and obligately aerobic bacteria. Acetone carboxylation leads to acetoacetate, which is subsequently activated to a thioester and degraded via thiolysis. Two different types of acetone carboxylases have been described, which require either 2 or 4 ATP equivalents as an energy supply for the carboxylation reaction. Both enzymes appear to combine acetone enolphosphate with carbonic phosphate to form acetoacetate. A similar but more complex enzyme is known to carboxylate the aromatic ketone acetophenone, a metabolic intermediate in anaerobic ethylbenzene metabolism in denitrifying bacteria, with simultaneous hydrolysis of 2 ATP to 2 ADP. Obligately anaerobic sulfate-reducing bacteria activate acetone to a four-carbon compound as well, but via a different process than bicarbonate- or CO2-dependent carboxylation. The present evidence indicates that either carbon monoxide or a formyl residue is used as a cosubstrate, and that the overall ATP expenditure of this pathway is substantially lower than in the known acetone carboxylase reactions. © 2016 S. Karger AG, Basel.

  14. Fenofibrate induces ketone body production in melanoma and glioblastoma cells

    Directory of Open Access Journals (Sweden)

    Maja M Grabacka

    2016-02-01

    Full Text Available Ketone bodies (beta-hydroxybutyrate, bHB, acetoacetate are mainly produced in the liver during prolonged fasting or starvation. bHB is a very efficient energy substrate for sustaining ATP production in peripheral tissues; importantly its consumption is preferred over glucose. However, the majority of malignant cells, particularly cancer cells of neuroectodermal origin such as glioblastoma, are not able to use ketone bodies as a source of energy. Here, we report a novel observation that fenofibrate, a synthetic peroxisome proliferator-activated receptor alpha (PPARa agonist, induces bHB production in melanoma and glioblastoma cells, as well as in neurospheres composed of nontransformed cells. Unexpectedly, this effect is not dependent on PPARa activity or its expression level. The fenofibrate-induced ketogenesis is accompanied by growth arrest and down-regulation of transketolase, but the NADP/NADPH and GSH/GSSG ratios remain unaffected. Our results reveal a new, intriguing aspect of cancer cell biology and highlight the benefits of fenofibrate as a supplement to both canonical and dietary (ketogenic therapeutic approaches against glioblastoma.

  15. Comprehensive in Vitro Analysis of Acyltransferase Domain Exchanges in Modular Polyketide Synthases and Its Application for Short-Chain Ketone Production

    DEFF Research Database (Denmark)

    Yuzawa, Satoshi; Deng, Kai; Wang, George

    2017-01-01

    AT domain replacements in most type I PKS modules. To further demonstrate the utility of the optimized AT domain boundary, we have constructed hybrid PKSs to produce industrially important short-chain ketones. Our in vitro and in vivo analysis demonstrated production of predicted ketones without significant...

  16. The depolarizing action of GABA in cultured hippocampal neurons is not due to the absence of ketone bodies.

    Science.gov (United States)

    Waddell, Jaylyn; Kim, Jimok; Alger, Bradley E; McCarthy, Margaret M

    2011-01-01

    Two recent reports propose that the depolarizing action of GABA in the immature brain is an artifact of in vitro preparations in which glucose is the only energy source. The authors argue that this does not mimic the physiological environment because the suckling rats use ketone bodies and pyruvate as major sources of metabolic energy. Here, we show that availability of physiologically relevant levels of ketone bodies has no impact on the excitatory action of GABA in immature cultured hippocampal neurons. Addition of β-hydroxybutyrate (BHB), the primary ketone body in the neonate rat, affected neither intracellular calcium elevation nor membrane depolarizations induced by the GABA-A receptor agonist muscimol, when assessed with calcium imaging or perforated patch-clamp recording, respectively. These results confirm that the addition of ketone bodies to the extracellular environment to mimic conditions in the neonatal brain does not reverse the chloride gradient and therefore render GABA hyperpolarizing. Our data are consistent with the existence of a genuine "developmental switch" mechanism in which GABA goes from having a predominantly excitatory role in immature cells to a predominantly inhibitory one in adults.

  17. Poor adherence to ketone testing in patients with Type 1 Diabetes

    Science.gov (United States)

    Diabetic ketoacidosis (DKA) is an acute, still common, and preventable complication of type 1 diabetes (T1D) associated with increased health care costs, morbidity, and mortality. Clinical recommendations advise self-monitoring of ketones in people with T1D during hyperglycemia and illness to allow ...

  18. Reduction of , -Unsaturated Ketones Using a Zn/NiCl System in ...

    African Journals Online (AJOL)

    NJD

    Reduction of , -Unsaturated Ketones Using a Zn/NiCl. 2. System in Aqueous Media in the Presence of Anionic and. Cationic Surfactants. Hocine Ilikti*, Tayeb Benabdallah, Kamel Bentayeb, Adil A. Othman and Zoubir Derriche. Organic Chemistry and Electrochemistry Laboratory, Department of Chemistry, Faculty of Science, ...

  19. The synthesis and analysis of lignin-bound Hibbert ketone structures in technical lignins.

    Science.gov (United States)

    Miles-Barrett, Daniel M; Neal, Andrew R; Hand, Calum; Montgomery, James R D; Panovic, Isabella; Ojo, O Stephen; Lancefield, Christopher S; Cordes, David B; Slawin, Alexandra M Z; Lebl, Tomas; Westwood, Nicholas J

    2016-10-25

    Understanding the structure of technical lignins resulting from acid-catalysed treatment of lignocellulosic biomass is important for their future applications. Here we report an investigation into the fate of lignin under acidic aqueous organosolv conditions. In particular we examine in detail the formation and reactivity of non-native Hibbert ketone structures found in isolated organosolv lignins from both Douglas fir and beech woods. Through the use of model compounds combined with HSQC, HMBC and HSQC-TOCSY NMR experiments we demonstrate that, depending on the lignin source, both S and G lignin-bound Hibbert ketone units can be present. We also show that these units can serve as a source of novel mono-aromatic compounds following an additional lignin depolymerisation reaction.

  20. Thermodynamic properties of donor-acceptor complexes of tertiary amine with aryl ketones in hexane medium

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, R. [Department of Physics, The New College, Chennai 600 014 (India); Jayakumar, S. [Department of Physics, R.K.M. Vivekananda College, Chennai 600 004 (India); Kannappan, V., E-mail: vkannappan@hotmail.com [Department of Chemistry, Presidency College, Chennai 600 005 (India)

    2012-05-20

    Highlights: Black-Right-Pointing-Pointer Ultrasonic scan is carried out on ternary systems of aromatic tertiary amine and three aryl ketones. Black-Right-Pointing-Pointer Formation of CT complexes is found between tertiary amine with aryl ketones. Black-Right-Pointing-Pointer Stability constant values are computed by ultrasonic and spectral methods are compared. Black-Right-Pointing-Pointer The trend in the 'K' suggests that substituents in ketones influence the stabilities of these complexes. Black-Right-Pointing-Pointer The thermodynamic parameters suggest CT interaction is exothermic and the complexes are thermodynamically stable. - The thermodynamic stability of complexes formed between N,N-dimethylaniline (DMANI) and three ketones, namely, acetophenone (ACP), 4-chloroactophenone (ClACP) and 4-methylacetophenone (MACP) in n-hexane is extensively investigated by spectral and ultrasonic methods. The ultrasound scan was carried out in the temperature range 208.15-313.15 K and at atmospheric pressure on solutions containing equimolar concentrations of components ranging from 0.025 to 0.2 M. The existence of solute-solute interactions has also been confirmed through electronic absorption spectra analyzed with Benesi-Hildebrand theory at 303.15 K. The stability constants of the donor-acceptor complexes determined both by spectroscopic and ultrasonic methods are comparable and follow similar trends. The trend in the formation constants is discussed with structures of the components. The thermodynamic behavior of the systems was explained through the computed values of the free energy ({Delta}G), enthalpy ({Delta}H) and entropy ({Delta}S) changes for complex formation are computed and discussed.

  1. Gold nanoparticles on OMS-2 for heterogeneously catalyzed aerobic oxidative α,β-dehydrogenation of β-heteroatom-substituted ketones.

    Science.gov (United States)

    Yoshii, Daichi; Jin, Xiongjie; Yatabe, Takafumi; Hasegawa, Jun-Ya; Yamaguchi, Kazuya; Mizuno, Noritaka

    2016-12-06

    In the presence of Au nanoparticles supported on manganese oxide OMS-2 (Au/OMS-2), various kinds of β-heteroatom-substituted α,β-unsaturated ketones (heteroatom = N, O, S) can be synthesized through α,β-dehydrogenation of the corresponding saturated ketones using O 2 (in air) as the oxidant. The catalysis of Au/OMS-2 is truly heterogeneous, and the catalyst can be reused.

  2. Microbial transformation of sesquitepenoid ketone, (+) Nootkatone by Macrophomia phaseolina

    OpenAIRE

    Vajira P. Bulugahapitiya; Syed Ghulam Musharaff

    2009-01-01

    Microbial transformation is an effective tool for the structural modification of bioactive natural and synthetic compounds leading to synthesis of more potent derivatives. Its application in asymmetric synthesis is increasing due to its versatility and ease. This article presents biotransformation of sesquiterpenoid ketone, (+)-Nootkatone (1) by M. phaseolina, a plant pathogenic fungus. The transformation afforded four main compounds. They were determined to be 1:6 stereoisomeric mixture of 1...

  3. Robust and efficient, yet uncatalysed synthesis of trialkylsilyl-protected cyanohydrins from ketones

    Czech Academy of Sciences Publication Activity Database

    Cabirol, F. L.; Lim, A. E. C.; Hanefeld, U.; Sheldon, R. A.; Lyapkalo, Ilya

    2008-01-01

    Roč. 73, č. 6 (2008), s. 2446-2449 ISSN 0022-3263 Institutional research plan: CEZ:AV0Z40550506 Keywords : ketones * cyanosilylation * silyl protection * anionic reactivity * dimethylsulfoxide Subject RIV: CC - Organic Chemistry Impact factor: 3.952, year: 2008

  4. Diastereo- and enantioselective iridium-catalyzed allylation of cyclic ketone enolates: synergetic effect of ligands and barium enolates.

    Science.gov (United States)

    Chen, Wenyong; Chen, Ming; Hartwig, John F

    2014-11-12

    We report asymmetric allylic alkylation of barium enolates of cyclic ketones catalyzed by a metallacyclic iridium complex containing a phosphoramidite ligand derived from (R)-1-(2-naphthyl)ethylamine. The reaction products contain adjacent quaternary and tertiary stereocenters. This process demonstrates that unstabilized cyclic ketone enolates can undergo diastereo- and enantioselective Ir-catalyzed allylic substitution reactions with the proper choice of enolate countercation. The products of these reactions can be conveniently transformed to various useful polycarbocyclic structures.

  5. Composition of secondary alcohols, ketones, alkanediols, and ketols in Arabidopsis thaliana cuticular waxes

    Science.gov (United States)

    Wen, Miao; Jetter, Reinhard

    2009-01-01

    Arabidopsis wax components containing secondary functional groups were examined (i) to test the biosynthetic relationship between secondary alcohols and ketols and (ii) to determine the regiospecificity and substrate preference of the enzyme involved in ketol biosynthesis. The stem wax of Arabidopsis wild type contained homologous series of C27 to C31 secondary alcohols (2.4 μg cm−2) and C28 to C30 ketones (6.0 μg cm−2) dominated by C29 homologues. In addition, compound classes containing two secondary functional groups were identified as C29 diols (∼0.05 μg cm−2) and ketols (∼0.16 μg cm−2). All four compound classes showed characteristic isomer distributions, with functional groups located between C-14 and C-16. In the mah1 mutant stem wax, diols and ketols could not be detected, while the amounts of secondary alcohols and ketones were drastically reduced. In two MAH1-overexpressing lines, equal amounts of C29 and C31 secondary alcohols were detected. Based on the comparison of homologue and isomer compositions between the different genotypes, it can be concluded that biosynthetic pathways lead from alkanes to secondary alcohols, and via ketones or diols to ketols. It seems plausible that MAH1 is the hydroxylase enzyme involved in all these conversions in Arabidopsis thaliana. PMID:19346242

  6. Practical and General Palladium-Catalyzed Synthesis of Ketones from Internal Olefins

    KAUST Repository

    Morandi, Bill

    2013-01-16

    Make it simple! A convenient and general palladium-catalyzed oxidation of internal olefins to ketones is reported. The transformation occurs at room temperature and shows wide substrate scope. Applications to the oxidation of seed-oil derivatives and a bioactive natural product (see scheme) are described, as well as intriguing mechanistic features.

  7. Practical and General Palladium-Catalyzed Synthesis of Ketones from Internal Olefins

    KAUST Repository

    Morandi, Bill; Wickens, Zachary K.; Grubbs, Robert H.

    2013-01-01

    Make it simple! A convenient and general palladium-catalyzed oxidation of internal olefins to ketones is reported. The transformation occurs at room temperature and shows wide substrate scope. Applications to the oxidation of seed-oil derivatives and a bioactive natural product (see scheme) are described, as well as intriguing mechanistic features.

  8. Metal-free hydration of aromatic haloalkynes to α-halomethyl ketones

    KAUST Repository

    Ye, Min

    2016-10-01

    A highly regioselective and efficient metal-free hydration of aromatic haloalkynes to alpha-halomethyl ketones using cheap tetrafluoroboric acid as catalyst is described. The protocol is conducted under convenient conditions and affords products in good to excellent yields, with broad substrate scope, including a variety of aromatic alkynyl chlorides, alkynyl bromides, and alkynyl iodides. (C) 2016 Elsevier Ltd. All rights reserved.

  9. Metal-free hydration of aromatic haloalkynes to α-halomethyl ketones

    KAUST Repository

    Ye, Min; Wen, Yuelu; Li, Huifang; Fu, Yejuan; Wang, Qinghao

    2016-01-01

    A highly regioselective and efficient metal-free hydration of aromatic haloalkynes to alpha-halomethyl ketones using cheap tetrafluoroboric acid as catalyst is described. The protocol is conducted under convenient conditions and affords products in good to excellent yields, with broad substrate scope, including a variety of aromatic alkynyl chlorides, alkynyl bromides, and alkynyl iodides. (C) 2016 Elsevier Ltd. All rights reserved.

  10. A new way to produce hyperketonemia: use of ketone ester in a case of Alzheimer's disease.

    Science.gov (United States)

    Newport, Mary T; VanItallie, Theodore B; Kashiwaya, Yoshihiro; King, Michael Todd; Veech, Richard L

    2015-01-01

    Providing ketone bodies to the brain can bypass metabolic blocks to glucose utilization and improve function in energy-starved neurons. For this, plasma ketones must be elevated well above the ≤ 0.2 mM default concentrations normally prevalent. Limitations of dietary methods currently used to produce therapeutic hyperketonemia have stimulated the search for better approaches. Described herein is a new way to produce therapeutic hyperketonemia, entailing prolonged oral administration of a potent ketogenic agent--ketone monoester (KME)--to a patient with Alzheimer's disease dementia and a pretreatment Mini-Mental State Examination score of 12. The patient improved markedly in mood, affect, self-care, and cognitive and daily activity performance. The KME was well tolerated throughout the 20-month treatment period. Cognitive performance tracked plasma β-hydroxybutyrate concentrations, with noticeable improvements in conversation and interaction at the higher levels, compared with predose levels. KME-induced hyperketonemia is robust, convenient, and safe, and the ester can be taken as an oral supplement without changing the habitual diet. Published by Elsevier Inc.

  11. The AMP-activated protein kinase is involved in the regulation of ketone body production by astrocytes.

    Science.gov (United States)

    Blázquez, C; Woods, A; de Ceballos, M L; Carling, D; Guzmán, M

    1999-10-01

    The possible role of the AMP-activated protein kinase (AMPK), a highly conserved stress-activated kinase, in the regulation of ketone body production by astrocytes was studied. AMPK activity in rat cortical astrocytes was three times higher than in rat cortical neurons. AMPK in astrocytes was shown to be functionally active. Thus, incubation of astrocytes with 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR), a cell-permeable activator of AMPK, stimulated both ketogenesis from palmitate and carnitine palmitoyltransferase I. This was concomitant to a decrease of intracellular malonyl-CoA levels and an inhibition of acetyl-CoA carboxylase/fatty acid synthesis and 3-hydroxy-3-methylglutaryl-CoA reductase/cholesterol synthesis. Moreover, in microdialysis experiments AICAR was shown to stimulate brain ketogenesis markedly. The effect of chemical hypoxia on AMPK and the ketogenic pathway was studied subsequently. Incubation of astrocytes with azide led to a remarkable drop of fatty acid beta-oxidation. However, activation of AMPK during hypoxia compensated the depression of beta-oxidation, thereby sustaining ketone body production. This effect seemed to rely on the cascade hypoxia --> increase of the AMP/ATP ratio --> AMPK stimulation --> acetyl-CoA carboxylase inhibition --> decrease of malonyl-CoA concentration --> carnitine palmitoyltransferase I deinhibition --> enhanced ketogenesis. Furthermore, incubation of neurons with azide blunted lactate oxidation, but not 3-hydroxybutyrate oxidation. Results show that (a) AMPK plays an active role in the regulation of ketone body production by astrocytes, and (b) ketone bodies produced by astrocytes during hypoxia might be a substrate for neuronal oxidative metabolism.

  12. Efficient hydrodeoxygenation of biomass-derived ketones over bifunctional Pt-polyoxometalate catalyst.

    Science.gov (United States)

    Alotaibi, Mshari A; Kozhevnikova, Elena F; Kozhevnikov, Ivan V

    2012-07-21

    Acidic heteropoly salt Cs(2.5)H(0.5)PW(12)O(40) doped with Pt nanoparticles is a highly active and selective catalyst for one-step hydrogenation of methyl isobutyl and diisobutyl ketones to the corresponding alkanes in the gas phase at 100 °C with 97-99% yield via metal-acid bifunctional catalysis.

  13. Forging C-C Bonds Through Decarbonylation of Aryl Ketones.

    Science.gov (United States)

    Somerville, Rosie J; Martin, Ruben

    2017-06-06

    The ability of nickel to cleave strong σ-bonds is again in the spotlight after a recent report that demonstrates the feasibility of using nickel complexes to promote decarbonylation of diaryl ketones. This transformation involves the cleavage of two strong C-C(O) bonds and avoids the use of noble metals, hence reinforcing the potential of decarbonylation as a technique for forging C-C bonds. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Study of ketone body kinetics in children by a combined perfusion of /sup 13/C and /sup 2/H3 tracers

    Energy Technology Data Exchange (ETDEWEB)

    Bougneres, P.F.; Ferre, P.

    1987-11-01

    Ketone body kinetics were quantified in six children (3-5 yr old), who were fasted for 13-22 h, by a combined perfusion of (3-/sup 13/C)acetoacetate ((/sup 13/C)AcAc) and D-(-)-beta-(4,4,4-/sup 2/H3)hydroxybutyrate (beta-(/sup 2/H3)OHB) and gas chromatography-mass spectrometry analysis. Results were analyzed according to the single-pool (combined enrichments) or the two-accessible pools models. After 20-22 h of fasting, ketone body turnover rate was 30-50 mumol.kg-1.min-1, a rate achieved after several days of fasting in adults. At low ketosis, acetoacetate was the ketone body preferentially synthesized de novo and utilized irreversibly. When ketosis increased, acetoacetate irreversible disposal was not enhanced, since it was largely converted into beta-OHB, whereas beta-OHB irreversible disposal was very much increased. The single-pool and two-pool models gave similar ketone body turnover rates when (/sup 13/C)AcAc was the tracer, whereas the use of beta-(/sup 2/H3)OHB gave some more divergent results, especially at low ketosis. These studies demonstrate that ketogenesis is very active in short-term fasted children and that the use of a combined infusion of (/sup 13/C)AcAc and beta-(/sup 2/H3)OHB is a convenient way to give insight into individual ketone body kinetics.

  15. Inborn Errors of Metabolism with Acidosis: Organic Acidemias and Defects of Pyruvate and Ketone Body Metabolism.

    Science.gov (United States)

    Schillaci, Lori-Anne P; DeBrosse, Suzanne D; McCandless, Shawn E

    2018-04-01

    When a child presents with high-anion gap metabolic acidosis, the pediatrician can proceed with confidence by recalling some basic principles. Defects of organic acid, pyruvate, and ketone body metabolism that present with acute acidosis are reviewed. Flowcharts for identifying the underlying cause and initiating life-saving therapy are provided. By evaluating electrolytes, blood sugar, lactate, ammonia, and urine ketones, the provider can determine the likelihood of an inborn error of metabolism. Freezing serum, plasma, and urine samples during the acute presentation for definitive diagnostic testing at the provider's convenience aids in the differential diagnosis. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Studies on the production of hydrocarbon mixtures from waste methyl ethyl ketone

    International Nuclear Information System (INIS)

    Kokitkar, P.B.; Roth, O.B.; Debelak, K.A.

    1992-01-01

    Large quantities of waste solvents are generated annually around the world in a large number of diverse industries, the paints and plastics industry being the largest consumer. The management of these waste solvents is becoming more and more difficult due to stricter environmental regulations by the EPA. The paint and allied products industry is expected to shift its solvent use from aliphatics and aromatics to oxygenated solvents to meet emissions and disposal standards. Many researchers have studied the dehydration reactions of oxygenated solvents to produce dehydration. However, most researchers have obtained only low molecular weight compounds (C 3 - C 4 hydrocarbons) from C 1 - C 4 alcohols and ketones. The kinetics of this class of reactions are not available in the open literature. The objective of this paper is to investigate the thermodynamic feasibility of this class of reactions and to compare the hydrocarbon products obtained using methylethyl ketone with regular unleaded gasoline

  17. Synthesis of β-phenylchalcogeno-α, β-unsaturated esters, ketones and nitriles using microwave and solvent-free conditions

    International Nuclear Information System (INIS)

    Lenardao, Eder J.; Silva, Marcio S.; Mendes, Samuel R.; Azambuja, Francisco de; Jacob, Raquel G.; Perin, Gelson; Santos, Paulo Cesar Silva dos

    2007-01-01

    A simple, clean and efficient solvent-free protocol was developed for hydrochalcogenation of alkynes containing a Michael acceptor (ester, ketone and nitrile) with phenylchalcogenolate anions generated in situ from the respective diphenyl dichalcogenide (Se, Te, S), using alumina supported sodium borohydride. This efficient and improved method is general and furnishes the respective (Z)-β-phenylchalcogeno-α,β-unsaturated esters, ketones and nitriles, in good yield and higher selectivity, compared with those that use organic solvent and inert atmosphere. The use of microwave (MW) irradiation facilitates the procedure and accelerates the reaction. (author)

  18. γ-Sultam-cored N,N-ligands in the ruthenium(ii)-catalyzed asymmetric transfer hydrogenation of aryl ketones.

    Science.gov (United States)

    Rast, Slavko; Modec, Barbara; Stephan, Michel; Mohar, Barbara

    2016-02-14

    The synthesis of new enantiopure syn- and anti-3-(α-aminobenzyl)-benzo-γ-sultam ligands 6 and their application in the ruthenium(ii)-catalyzed asymmetric transfer hydrogenation (ATH) of ketones using formic acid/triethylamine is described. In particular, benzo-fused cyclic ketones afforded excellent enantioselectivities in reasonable time employing a low loading of the syn ligand-containing catalyst. A never-before-seen dynamic kinetic resolution (DKR) during reduction of a γ-keto carboxylic ester (S7) derivative of 1-indanone is realized leading as well to excellent induction.

  19. Design, synthesis and biological activity of novel peptidyl benzyl ketone FVIIa inhibitors

    DEFF Research Database (Denmark)

    Storgaard, Morten; Henriksen, Signe Teuber; Zaragoza, Florencio

    2011-01-01

    Herein is described the synthesis of a novel class of peptidyl FVIIa inhibitors having a C-terminal benzyl ketone group. This class is designed to be potentially suitable as stabilization agents of liquid formulations of rFVIIa, which is a serine protease used for the treatment of hemophilia...

  20. Baeyer-Villiger Oxidation of Cyclic Ketones by Using Tin-Silica Pillared Catalysts

    Czech Academy of Sciences Publication Activity Database

    Přech, Jan; Carretero, M. A.; Čejka, Jiří

    2017-01-01

    Roč. 9, č. 15 (2017), s. 3063-3072 ISSN 1867-3880 R&D Projects: GA ČR GBP106/12/G015 Institutional support: RVO:61388955 Keywords : heterogeneous catalysis * ketones * layered * zeolites Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry Impact factor: 4.803, year: 2016

  1. Methylenation of perfluoroalkyl ketones using a Peterson olefination approach.

    Science.gov (United States)

    Hamlin, Trevor A; Kelly, Christopher B; Cywar, Robin M; Leadbeater, Nicholas E

    2014-02-07

    An operationally simple, inexpensive, and rapid route for the olefination of a wide array of trifluoromethyl ketones to yield 3,3,3-trifluoromethylpropenes is reported. Using a Peterson olefination approach, the reaction gives good to excellent yields of the alkene products and can be performed without purification of the β-hydroxysilyl intermediate. The reaction can be extended to other perfluoroalkyl substituents and is easily scaled up. The alkenes prepared can be readily transformed into a variety of other perfluoroalkyl-containing compounds.

  2. Toxicity of Aromatic Ketone to Yeast Cell and Improvement of the Asymmetric Reduction of Aromatic Ketone Catalyzed by Yeast Cell with the Introduction of Resin Adsorption

    Directory of Open Access Journals (Sweden)

    Zhong-Hua Yang

    2008-01-01

    Full Text Available Asymmetric reduction of the prochiral aromatic ketone catalyzed by yeast cells is one of the most promising routes to produce its corresponding enantiopure aromatic alcohol, but the space-time yield does not meet people’s expectations. Therefore, the toxicity of aromatic ketone and aromatic alcohol to the yeast cell is investigated in this work. It has been found that the aromatic compounds are poisonous to the yeast cell. The activity of yeast cell decreases steeply when the concentration of acetophenone (ACP is higher than 30.0 mmol/L. Asymmetric reduction of acetophenone to chiral S-α-phenylethyl alcohol (PEA catalyzed by the yeast cell was chosen as the model reaction to study in detail the promotion effect of the introduction of the resin adsorption on the asymmetric reduction reaction. The resin acts as the substrate reservoir and product extraction agent in situ. It has been shown that this reaction could be remarkably improved with this technique when the appropriate kind of resin is applied. The enantioselectivity and yield are acceptable even though the initial ACP concentration reaches 72.2 mmol/L.

  3. Palladium(II)-catalyzed desulfitative synthesis of aryl ketones from sodium arylsulfinates and nitriles: scope, limitations, and mechanistic studies.

    Science.gov (United States)

    Skillinghaug, Bobo; Sköld, Christian; Rydfjord, Jonas; Svensson, Fredrik; Behrends, Malte; Sävmarker, Jonas; Sjöberg, Per J R; Larhed, Mats

    2014-12-19

    A fast and efficient protocol for the palladium(II)-catalyzed production of aryl ketones from sodium arylsulfinates and various organic nitriles under controlled microwave irradiation has been developed. The wide scope of the reaction has been demonstrated by combining 14 sodium arylsulfinates and 21 nitriles to give 55 examples of aryl ketones. One additional example illustrated that, through the choice of the nitrile reactant, benzofurans are also accessible. The reaction mechanism was investigated by electrospray ionization mass spectrometry and DFT calculations. The desulfitative synthesis of aryl ketones from nitriles was also compared to the corresponding transformation starting from benzoic acids. Comparison of the energy profiles indicates that the free energy requirement for decarboxylation of 2,6-dimethoxybenzoic acid and especially benzoic acid is higher than the corresponding desulfitative process for generating the key aryl palladium intermediate. The palladium(II) intermediates detected by ESI-MS and the DFT calculations provide a detailed understanding of the catalytic cycle.

  4. From ketones to esters by a Cu-catalyzed highly selective C(CO)-C(alkyl) bond cleavage: aerobic oxidation and oxygenation with air.

    Science.gov (United States)

    Huang, Xiaoqiang; Li, Xinyao; Zou, Miancheng; Song, Song; Tang, Conghui; Yuan, Yizhi; Jiao, Ning

    2014-10-22

    The Cu-catalyzed aerobic oxidative esterification of simple ketones via C-C bond cleavage has been developed. Varieties of common ketones, even inactive aryl long-chain alkyl ketones, are selectively converted into esters. The reaction tolerates a wide range of alcohols, including primary and secondary alcohols, chiral alcohols with retention of the configuration, electron-deficient phenols, as well as various natural alcohols. The usage of inexpensive copper catalyst, broad substrate scope, and neutral and open air conditions make this protocol very practical. (18)O labeling experiments reveal that oxygenation occurs during this transformation. Preliminary mechanism studies indicate that two novel pathways are mainly involved in this process.

  5. New Measurements of Methyl Ethyl Ketone (MEK) Photolysis Rates and Their Relevance to Global Oxidative Capacity

    Science.gov (United States)

    Brewer, J.; Ravishankara, A. R.; Mellouki, A.; Fischer, E. V.; Kukui, A.; Véronique, D.; Ait-helal, W.; Leglise, J.; Ren, Y.

    2017-12-01

    Methyl ethyl ketone (MEK) is one of the most abundant ketones in the atmosphere. MEK can be emitted directly into the atmosphere from both anthropogenic and natural sources, and it is also formed during the gas-phase oxidation of volatile organic compounds (VOCs). MEK is lost via reaction with OH, photolysis and deposition to the surface. Similar to the other atmospheric ketones, the photolysis of MEK may represent a source of HOx (OH + HO2) radicals in the upper troposphere. The degradation of MEK also leads to the atmospheric formation of acetaldehyde and formaldehyde. This work presents a new analysis of the temperature dependence of MEK photolysis cross-sections and a quantification of MEK photolysis rates under surface pressures using the CNRS HELIOS outdoor atmospheric chamber (Chambre de simulation atmosphérique à irradiation naturelle d'Orléans; http://www.era-orleans.org/ERA-TOOLS/helios-project.html). Additionally, we use the GEOS-Chem 3-D CTM (version 10-01, www.geos-chem.org) to investigate the impact of these newly measured rates and cross-sections on the global distribution and seasonality of MEK, as well as its importance to the tropospheric oxidative capacity.

  6. The rate of cerebral utilization of glucose, ketone bodies, and oxygen: a comparative in vivo study of infant and adult rats.

    Science.gov (United States)

    Dahlquist, G; Persson, B

    1976-11-01

    Cerebral blood flow (CBF) was measured by means of Celabeled microspheres in infant (20-day-old) and adult (3-month-old) rats, anesthetised with Na-5-ethyl-5-(1-methylpropyl)2-thiobarbituric acid. Cerebral arteriovenous differences of acetoacetate, D-beta-hydroxybutyrate, glucose, lactate, and oxygen and brain DNA content were determined in other groups of similarly treated infant and adult animals fed or starved for 48 or 72 hr. The mean CBF values of 0.48+/-0.04 and 0.62+/-0.07 ml/(g X min), +/- SEM, in infant and adult animals, respectively, were not significantly different. CBF was unaffected by starvation. At any given arterial concentration the cerebral arteriovenous difference of acetoacetate was significantly higher in infant than adult rats. The same was true for D-beta-hydroxybutyrate at arterial concentrations above 1 mmol/liter. There was an approximately linear relationship between arterial concentration of acetoacetate and its cerebral arteriovenous difference in both infant and adult rats. A similar relationship was found for D-beta-hydroxybutyrate only in infant animals. In the fed state, the cerebral uptake of glucose and ketone bodies (micromoles per (mg DNA X min)) was not different in infant and adult rats. During starvation, cerebral uptake of ketone bodies expressed as micromoles per (mg DNA X min) was higher in infant than adult rats, indicating a higher rate of utilization of ketone bodies per cell in these animals. For glucose, no such difference was found in either fed or starved groups (Table 3). The average percentage of the total cerebral uptake of substrates (micromoles per min) accounted for by ketone bodies increased in both infant and adult rats during starvation. This percentage value was clearly higher in infant than adult rats during starvation. After 72 hr of starvation the values were 38.8% and 15.2% in infant and adult rats, respectively (Fig. 3). Calculated cerebral metabolic rate for oxygen (CMRO2), assuming complete

  7. Polyether ether ketone implants achieve increased bone fusion when coated with nano-sized hydroxyapatite: a histomorphometric study in rabbit bone

    Directory of Open Access Journals (Sweden)

    Johansson P

    2016-04-01

    Full Text Available Pär Johansson,1 Ryo Jimbo,1 Yoshihito Naito,2 Per Kjellin,3 Fredrik Currie,3 Ann Wennerberg1 1Department of Prosthodontics, Faculty of Odontology, Malmö University, Malmö, Sweden; 2Oral Implant Center, Tokushima University Hospital, Tokushima, Japan; 3Promimic AB, Stena Center, Göteborg, Sweden Abstract: Polyether ether ketone (PEEK possesses excellent mechanical properties similar to those of human bone and is considered the best alternative material other than titanium for orthopedic spine and trauma implants. However, the deficient osteogenic properties and the bioinertness of PEEK limit its fields of application. The aim of this study was to limit these drawbacks by coating the surface of PEEK with nano-scaled hydroxyapatite (HA minerals. In the study, the biological response to PEEK, with and without HA coating, was investigated. Twenty-four screw-like and apically perforated implants in the rabbit femur were histologically evaluated at 3 weeks and 12 weeks after surgery. Twelve of the 24 implants were HA coated (test, and the remaining 12 served as uncoated PEEK controls. At 3 weeks and 12 weeks, the mean bone–implant contact was higher for test compared to control (P<0.05. The bone area inside the threads was comparable in the two groups, but the perforating hole showed more bone area for the HA-coated implants at both healing points (P<0.01. With these results, we conclude that nano-sized HA coating on PEEK implants significantly improved the osteogenic properties, and in a clinical situation this material composition may serve as an implant where a rapid bone fusion is essential. Keywords: HA, PEEK, osseointegration, histology, orthopedics, in vivo

  8. Measurements of mass-fraction activity coefficient at infinite dilution of aliphatic and aromatic hydrocarbons, thiophene, alcohols, water, ethers, and ketones in hyperbranched polymer, Boltorn H2004, using inverse gas chromatography

    International Nuclear Information System (INIS)

    Domanska, Urszula; Zolek-Tryznowska, Zuzanna

    2010-01-01

    Thermodynamic properties of the hyperbranched polymer, Boltorn H2004 (B-H2004), were investigated by inverse gas chromatography with 42 different solvents: n-alkanes (C 5 -C 10 ), cycloalkanes (C 5 -C 8 ), alkenes (C 5 -C 8 ), alkynes (C 5 -C 8 ), aromatic hydrocarbons (benzene, toluene, ethylbenzene, o-, m-, p-xylene, thiophene), alcohols (C 1 -C 5 ), water, ethers (tetrahydrofuran (THF), methyl-tert-butylether (MTBE), diethyl-, di-n-propyl-, di-n-butyl ether), and ketones (acetone, 2-pentanone, 3-pentanone, 2-hexanone, 3-hexanone, cyclopentanone) at the temperatures from (308.15 to 348.15) K using the inverse gas chromatography (IGC). The density and thermophysical properties of polymer were described. The specific retention volume (V g ), the mass-fraction activity coefficient at infinite dilution (Ω 13 ∞ ), the Flory-Huggins interaction parameter (χ 13 ∞ ), the molar enthalpy of sorption in the polymer (Δ s H), the partial molar excess enthalpy at infinite dilution (ΔH 1 E,∞ ), the molar enthalpy of vaporization to the ideal-gas state for the pure solutes (Δ vap H 0 ), the partial molar Gibbs excess energy at infinite dilution (ΔG 1 E,∞ ), and the solubility parameter of the polymer (δ 3 ), were calculated. The UNIFAC-FV model was used to predict the mass-fraction activity coefficient at infinite dilution for different solutes in the B-H2004 polymer.

  9. Laboratory Studies of Aedes aegypti Attraction to Ketones, Sulfides, and Primary Chloroalkanes Tested Alone and in Combination with L-Lactic Acid.

    Science.gov (United States)

    Bernier, Ulrich R; Kline, Daniel L; Allan, Sandra A; Barnard, Donald R

    2015-03-01

    The attraction of female Aedes aegypti to single compounds and binary compositions containing L-lactic acid and an additional saturated compound from a set of ketones, sulfides, and chloroalkanes was studied using a triple-cage dual-port olfactometer. These chemical classes were studied because of their structural relation to acetone, dimethyl disulfide, and dichloromethane, which have all been reported to synergize attraction to L-lactic acid. Human odors, carbon dioxide, and the binary mixture of L-lactic acid and CO₂served as controls for comparison of attraction responses produced by the binary mixtures. All tested mixtures that contained chloroalkanes attracted mosquitoes at synergistic levels, as did L-lactic acid and CO₂. Synergism was less frequent in mixtures of L-lactic acid with sulfides and ketones; in the case of ketones, synergistic attraction was observed only for L-lactic acid combined with acetone or butanone. Suppression or inhibition of attraction response was observed for combinations that contained ketones of C7-C12 molecular chain length (optimum in the C8-C10 range). This inhibition effect is similar to that observed previously for specific ranges of carboxylic acids, aldehydes, and alcohols.

  10. A Comparative study on VOCs and aldehyde-ketone emissions from a spark Ignition vehicle fuelled on compressed natural gas and gasoline

    International Nuclear Information System (INIS)

    Shah, A.N.

    2012-01-01

    In this work, an experimental study was conducted on a spark ignition (SI) vehicle fuelled on compressed natural gas (CNG), and gasoline to compare the unregulated emissions such as volatile organic compounds (VOCs) and aldehyde-ketones or carbonyls. In the meantime, ozone forming potential (OFP) of pollutants was also calculated on the basis of their specific reactivity (SR). The vehicle was run on a chassis dynamometer following the Chinese National Standards test scheduled for light duty vehicle (LDV) emissions. According to the results, total aldehyde-ketones were increased by 39.4% due to the substantial increase in formaldehyde and acrolein + acetone emissions, while VOCs and BTEX (benzene, toluene, ethyl benzene, and xylene) reduced by 85.2 and 86% respectively, in case of CNG fuelled vehicle as compared to gasoline vehicle. Although total aldehyde-ketones were higher with CNG relative to gasoline, their SR was lower due decrease in acetaldehyde, propionaldehyde, crotonaldehyde, and methacrolein species having higher maximum incremental reactivity (MIR) values. The SR of VOCs and aldehyde-ketones emitted from CNG fuelled vehicle was decreased by above 10% and 32% respectively, owing to better physicochemical properties and more complete burning of CNG as compared to gasoline. (author)

  11. NHC-Copper(I) Halide-Catalyzed Direct Alkynylation of Trifluoromethyl Ketones on Water

    KAUST Repository

    Czerwiński, Paweł

    2016-05-04

    An efficient and easily scalable NHC-copper(I) halide-catalyzed addition of terminal alkynes to 1,1,1-trifluoromethyl ketones, carried out on water for the first time, is reported. A series of addition reactions were performed with as little as 0.1-2.0mol% of [(NHC)CuX] (X=Cl, Br, I, OAc, OTf) complexes, providing tertiary propargylic trifluoromethyl alcohols in high yields and with excellent chemoselectivity from a broad range of aryl- and more challenging alkyl-substituted trifluoromethyl ketones (TFMKs). DFT calculations were performed to rationalize the correlation between the yield of catalytic alkynylation and the sterics of N-heterocyclic carbenes (NHCs), expressed as buried volume (%VBur), indicating that steric effects dominate the yield of the reaction. Additional DFT calculations shed some light on the differential reactivity of [(NHC)CuX] complexes in the alkynylation of TFMKs. The first enantioselective version of a direct alkynylation in the presence of C1-symmetric NHC-copper(I) complexes is also presented. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Inverse relationship between brain glucose and ketone metabolism in adults during short-term moderate dietary ketosis: A dual tracer quantitative positron emission tomography study.

    Science.gov (United States)

    Courchesne-Loyer, Alexandre; Croteau, Etienne; Castellano, Christian-Alexandre; St-Pierre, Valérie; Hennebelle, Marie; Cunnane, Stephen C

    2017-07-01

    Ketones (principally β-hydroxybutyrate and acetoacetate (AcAc)) are an important alternative fuel to glucose for the human brain, but their utilisation by the brain remains poorly understood. Our objective was to use positron emission tomography (PET) to assess the impact of diet-induced moderate ketosis on cerebral metabolic rate of acetoacetate (CMRa) and glucose (CMRglc) in healthy adults. Ten participants (35 ± 15 y) received a very high fat ketogenic diet (KD) (4.5:1; lipid:protein plus carbohydrates) for four days. CMRa and CMRglc were quantified by PET before and after the KD with the tracers, 11 C-AcAc and 18 F-fluorodeoxyglucose ( 18 F-FDG), respectively. During the KD, plasma ketones increased 8-fold ( p = 0.005) while plasma glucose decreased by 24% ( p = 0.005). CMRa increased 6-fold ( p = 0.005), whereas CMRglc decreased by 20% ( p = 0.014) on the KD. Plasma ketones were positively correlated with CMRa (r = 0.93; p < 0.0001). After four days on the KD, CMRa represented 17% of whole brain energy requirements in healthy adults with a 2-fold difference across brain regions (12-24%). The CMR of ketones (AcAc and β-hydroxybutyrate combined) while on the KD was estimated to represent about 33% of brain energy requirements or approximately double the CMRa. Whether increased ketone availability raises CMR of ketones to the same extent in older people as observed here or in conditions in which chronic brain glucose hypometabolism is present remains to be determined.

  13. Synthesis and structure of aromatic and heterocyclic tellurium compounds 33. Synthesis of [2-(aryltelluro)vinyl]aldehydes and ketones and stereochemistry of nucleophilic substitution under vinyl atom of carbon

    International Nuclear Information System (INIS)

    Sadekov, I.D.; Rivkin, B.B.; Zakharov, A.V.; Minkin, V.I.

    1996-01-01

    By means of interaction of (2-vinylchlorida) carbonyl compounds and (2-acylvinyl) triethylammonium chlorides and arenetellurolate-anions certain, [2-(aryltelluro)vinyl]ketones and [2-(aryltelluro)vinyl]aldehydes have been synthesized, while by means of reaction between 2-aroylvinyl chlorides and Li 2 Te some di(2-aroylvinyl)tellurides have been prepared. Interaction of (2-vinylchloride)ketones with arenetellurolate-anions always gives rise to Z-isomers of [2-(aryltelluro)vinyl]ketones as a result of stabilization of intermediate carbanion by intramolecular coordination O→Te. Nucleophilic addition of arenetellurolate-anions to α-acetylene aldehydes and ketones occurs as trans-addition. 36 refs., 2 figs., 1 tab

  14. Dermal absorption and disposition of musk ambrette, musk ketone and musk xylene in human subjects.

    Science.gov (United States)

    Hawkins, David R; Elsom, Lionel F; Kirkpatrick, David; Ford, Richard A; Api, Anne Marie

    2002-05-28

    Musk ambrette, musk ketone and musk xylene have a long history of use as fragrance ingredients, although musk ambrette is no longer used in fragrances. As part of the review of the safety of these uses, it is important to consider the systemic exposure that results from these uses. Since the primary route of exposure to fragrances is on the skin, dermal doses of carbon-14 labelled musk ambrette, musk ketone and musk xylene were applied to the backs (100 cm2) of healthy human volunteers (two to three subjects) at a nominal dose level of 10-20 microg/cm2 and excess material removed at 6 h. Means of 2.0% musk ambrette, 0.5% musk ketone and 0.3% musk xylene were absorbed based on the amounts excreted in urine and faeces during 5 days. Most of the material was excreted in the urine with less than 10% of the amount excreted being found in faeces. No radioactivity was detected in any plasma sample, consistent with low absorption, and no radioactivity was detected (<0.02% dose) in skin strips taken at 120 h. Analysis of urine samples indicated that all three compounds were excreted mainly as single glucuronide conjugates. The aglycones were chromatographically different, but of similar polarity, to the major rat metabolites excreted in bile also as glucuronides.

  15. Asymmetric reduction of ketones with catecholborane using 2,6-BODOL complexes of titanium(IV) as catalysts.

    Science.gov (United States)

    Sarvary, I; Almqvist, F; Frejd, T

    2001-05-18

    Reductions performed with Ti(IV) complexes of ligands based on bicyclo[2.2.2]octane diols 5 and 6 are effective catalysts in the reduction of prochiral ketones to optically active alcohols, with catecholborane as the reducing agent. Methyl ketones are favored and enantiomeric excesses (ee) of octanone, which gave 2-octanol in 87% ee. Further details of the method were examined, for example, temperature, solvent composition, amount of molecular sieves (4 A), and catecholborane quality, as well as the sensitivity of the ligands towards acids. NMR spectroscopic methods were used to gain some insight into the complexes formed between the ligands and [Ti(OiPr)4]. A dimeric structure is proposed for the pre-catalyst.

  16. Posterior lumbar interbody fusion using non resorbable poly-ether-ether-ketone versus resorbable poly-L-lactide-co-D,L-lactide fusion devices. Clinical outcome at a minimum of 2-year follow-up.

    Science.gov (United States)

    Jiya, Timothy U; Smit, T; van Royen, B J; Mullender, M

    2011-04-01

    Previous papers on resorbable poly-L-lactide-co-D,L-lactide (PLDLLA) cages in spinal fusion have failed to report adequately on patient-centred clinical outcome measures. Also comparison of PLDLLA cage with a traditionally applicable counterpart has not been previously reported. This is the first randomized prospective study that assesses clinical outcome of PLDLLA cage compared with a poly-ether-ether-ketone (PEEK) implant. Twenty-six patients were randomly assigned to undergo instrumented posterior lumbar interbody fusion (PLIF) whereby either a PEEK cage or a PLDLLA cage was implanted. Clinical outcome based on visual analogue scale scores for leg pain and back pain, as well as Oswestry Disability Index (ODI) and SF-36 questionnaires were documented and analysed. When compared with preoperative values, all clinical parameters have significantly improved in the PEEK group at 2 years after surgery with the exception of SF-36 general health, SF-36 mental health and SF-36 role emotional scores. No clinical parameter showed significant improvement at 2 years after surgery compared with preoperative values in the PLDLLA patient group. Only six patients (50%) in the PLDLLA group showed improvement in the VAS scores for leg and back pain as well as the ODI, as opposed to 10 patients (71%) in the PEEK group. One-third of the patients in the PLDLLA group actually reported worsening of their pain scores and ODI. Three cases of mild to moderate osteolysis were seen in the PLDLLA group. Following up on our preliminary report, these 2-year results confirm the superiority of the PEEK implant to the resorbable PLDLLA implant in aiding spinal fusion and alleviating symptoms following PLIF in patients with degenerative spondylolisthesis associated with either canal stenosis or foramen stenosis or both and emanating from a single lumbar segment.

  17. Titanium and polyether ether ketone (PEEK) patient-specific sub-periosteal implants: two novel approaches for rehabilitation of the severely atrophic anterior maxillary ridge.

    Science.gov (United States)

    Mounir, M; Atef, M; Abou-Elfetouh, A; Hakam, M M

    2018-05-01

    The aim of this study was to assess two new protocols for single-stage rehabilitation of the severely atrophic maxillary ridge using customized porous titanium or polyether ether ketone (PEEK) sub-periosteal implants. Ten patients with a severely atrophic anterior maxillary alveolar ridge were divided randomly into two groups (five patients in each) to receive customized sub-periosteal implants fabricated via CAD/CAM technology: group 1, porous titanium implants; group 2, PEEK implants. Prosthetic loading with fixed acrylic bridges was performed 1 month postoperative. The implants were followed-up for 12 months and evaluated for the presence of any sign of radiographic bone resorption, mobility, infection, prosthetic fracture, or implant exposure. The immediate postoperative period was uneventful except for one case complicated by wound dehiscence in group 1. At 12 months, all implants were functionally stable and the patients were comfortable with the prostheses. No signs of radiographic bone resorption, mobility, infection, or prosthetic fracture were observed. Within the limitations of this study, the application of customized porous titanium and PEEK sub-periosteal implants produced through CAD/CAM technology appears to be an acceptable method for single-stage prosthetic rehabilitation of the severely atrophic edentulous anterior maxilla. This study was awarded the best case study at the academy of osseintegration annual meeting 2017, Orlando, Florida. Copyright © 2017 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  18. Reaction rate constants of H-abstraction by OH from large ketones: Measurements and site-specific rate rules

    KAUST Repository

    Badra, Jihad

    2014-01-01

    Reaction rate constants of the reaction of four large ketones with hydroxyl (OH) are investigated behind reflected shock waves using OH laser absorption. The studied ketones are isomers of hexanone and include 2-hexanone, 3-hexanone, 3-methyl-2-pentanone, and 4-methl-2-pentanone. Rate constants are measured under pseudo-first-order kinetics at temperatures ranging from 866 K to 1375 K and pressures near 1.5 atm. The reported high-temperature rate constant measurements are the first direct measurements for these ketones under combustion-relevant conditions. The effects of the position of the carbonyl group (CO) and methyl (CH3) branching on the overall rate constant with OH are examined. Using previously published data, rate constant expressions covering, low-to-high temperatures, are developed for acetone, 2-butanone, 3-pentanone, and the hexanone isomers studied here. These Arrhenius expressions are used to devise rate rules for H-abstraction from various sites. Specifically, the current scheme is applied with good success to H-abstraction by OH from a series of n-ketones. Finally, general expressions for primary and secondary site-specific H-abstraction by OH from ketones are proposed as follows (the subscript numbers indicate the number of carbon atoms bonded to the next-nearest-neighbor carbon atom, the subscript CO indicates that the abstraction is from a site next to the carbonyl group (CO), and the prime is used to differentiate different neighboring environments of a methylene group):P1,CO = 7.38 × 10-14 exp(-274 K/T) + 9.17 × 10-12 exp(-2499 K/T) (285-1355 K)S10,CO = 1.20 × 10-11 exp(-2046 K/T) + 2.20 × 10-13 exp(160 K/T) (222-1464 K)S11,CO = 4.50 × 10-11 exp(-3000 K/T) + 8.50 × 10-15 exp(1440 K/T) (248-1302 K)S11′,CO = 3.80 × 10-11 exp(-2500 K/T) + 8.50 × 10-15 exp(1550 K/T) (263-1370 K)S 21,CO = 5.00 × 10-11 exp(-2500 K/T) + 4.00 × 10-13 exp(775 K/T) (297-1376 K) © 2014 the Partner Organisations.

  19. Potentiometric titrations of para and nitro substituted aromatic acids and their mixtures in methylethyl ketone

    International Nuclear Information System (INIS)

    Ozeroglu, C.; Karahan, M.

    2011-01-01

    In this study, it was the purpose to examine the potentiometric titrations of para and nitro substituted aromatic acids in methylethyl ketone (MEK) as a non-aqueous solvent. Good analytical results were obtained in determining the amount of each acid and the amounts of acids in their ternary mixtures by using 0.0964 N tetrabuthylammoniumhydroxyde (TBAH) as a standard titrant. Methylethyl ketone (MEK) which is a good solvent for many organic compounds and has a convenient liquid range of -86 to 80 deg. C was used for titration of the para and nitro substituted aromatic acids. A linear relationship has been found between pKa values of the para and nitro substituted aromatic acids in water and the half neutralization potential (HNP) values determined by potentiometric titration curves of the same acids in MEK. (author)

  20. A SENSITIZED PHOTOINITIATION SYSTEM——BIS (7- DIETHYLAMINO COUMARIN )KETONE- 3 AND DIPHENYLIODONIUM SALT COMBINATION

    Institute of Scientific and Technical Information of China (English)

    LI Jun; WANG Xiuzhi; YANG Yongyung; LI Miaozhen; WANG Erjian

    1993-01-01

    Bis (7- diethylaminocoumarin ) ketone- 3(DACK) and diphenyliodonium salt (DPIO)combination as an effective photoinitiation system for radical polymerization has been investigated. The sensitized photolysis of DACK/DPIO leads to bleaching of DACK and decomposition of DPIO to generate initiating radical species. The electron transfer sensitization occurs mainly from the triplet state of DACK. The photobleaching obeyed a second-order kinetics and the rate constant was evaluated to be 31.3mol-1.l.s-1. Photopolymerization of MMA initiated by DACK/DPIO was carried out in acetonitrile solution. The polymerization rate was found to be proportional to the concentration of DACK, DPIO and MMA with the exponents of 0.34, 0.40 and 1.0 respectively. The initiated efficiency is comparable to those of small molecular ketones. The sensitized photoinitiation mechanism has been discussed.

  1. A tricalcium phosphate/polyether ether ketone anchor bionic fixation device for anterior cruciate ligament reconstruction: Safety and efficacy in a beagle model.

    Science.gov (United States)

    Mao, Genwen; Qin, Zili; Li, Zheng; Li, Xiang; Qiu, Yusheng; Bian, Weiguo

    2018-05-02

    The goal of this study was to develop a bionic fixation device based on the use of a tricalcium phosphate/polyether ether ketone anchor and harvesting of the ulnar carpal flexor muscle tendon for application as a ligament graft in a beagle anterior cruciate ligament (ACL) reconstruction model, with the goal of accelerating the ligament graft-to-bone tunnel healing and providing a robust stability through exploration of this new kind of autologous ligament graft. The safety and efficacy of this fixation device were explored 3 and 6 months after surgery in a beagle ACL reconstruction model using biomechanical tests and comprehensive histological observation. The data were compared using a two-tailed Student's t test and a paired t test. A p value <0.05 was defined as statistically significant. All the models were successfully established. This fixation device possessed the excellent mechanical properties for ACL reconstruction. A comprehensive histological observation revealed that a cartilage layer was visible in the transition zone between the tendon and bone interface at both 3 and 6 months postoperation. The trabecular of the new bone was observed six months after surgery and was found to be similar to a direct connection. This fixation technique provided not only a robust primary mechanical fixation but also a bionic fixation for long-term knee joint stability by accelerating the healing of the tendon to the bone tunnel, showing a high potential for use in clinical practice. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2018. © 2018 Wiley Periodicals, Inc.

  2. Effects of wear particles of polyether-ether-ketone and cobalt-chromium-molybdenum on CD4- and CD8-T-cell responses.

    Science.gov (United States)

    Du, Zhe; Wang, Shujun; Yue, Bing; Wang, Ying; Wang, You

    2018-02-16

    T-cells, second only to macrophages, are often considered as the potential cells involved in debris-related failure of arthroplasty. Here, we assessed the effects of particulate wear debris on T-cells and inflammatory reactions. Blood samples from 25 donors were incubated with polyether-ether-ketone (PEEK) and cobalt-chromium-molybdenum (CoCrMo) particles generated by custom cryo-milling and pulverization. The T-cell phenotypes were assessed using immunostaining and flow cytometry. For the in vivo study, 0.1 mL of each particle suspension (approximately 1.0 × 10 8 wear particles) was injected into murine knee joints; the synovium and spleen were collected one week after the operation for histological examination and immunofluorescence staining. The T-cell responses observed included low-level activation of Th1, Th2, Th17, and CD8+ pathways after 72 h of co-culture of the particles with peripheral blood mononuclear cells. Obvious CD8+ T-cell responses were observed in local synovium and peripheral spleen, with higher inflammatory cytokine expression in the CoCrMo group. Relatively minor cytotoxic and immunological reactions were observed in vitro , with PEEK and CoCrMo particle-induced immune responses being primarily mediated by CD8+ T-cells, rather than CD4+ T-cells, in vivo . Overall, PEEK wear particles induced fewer inflammatory reactions than CoCrMo particles. This study verified that PEEK was suitable as a potential alternative for metals in total knee replacements in terms of the immunological reaction to PEEK particles, and shed light on the effects of wear particles from polymer and metal-based implants on immune responses.

  3. Developed a needle trap device with PDMS sorbent for microextraction of toluene and methyl ethyl ketone from aquatic samples using dynamic headspace

    Directory of Open Access Journals (Sweden)

    Sara Karimi Zeverdegani

    2016-09-01

    Full Text Available Introduction: Due to the widespread use of toxic chemicals in most workplaces that can lead to toxic effects on human, various chemical extraction technique have been defined for analysis these toxic substances in air, water and biological samples. The purpose of this research is extraction of  toluene and methyl ethyl ketone from aquatic samples with needle trap device and  one commercial sorbent. Methods: In this research, needle trap device was used to extraction of  toluene and methyl ethyl ketone in aquatic samples, so needles(size 20 were packed with PDMS and extraction was done with dynamic headspace needle trap device. Gas chromatography with - flame ionization detector was used to analysis and optimized extraction of two substances were obtained. Results: Results show that the optimum temperature and time extraction was similar for toluene and methyl ethyl ketone (30 ° C, 30 min, but the reproducibility of results and calibration curve that obtained for toluene was better than methyl ethyl ketone. Conclusion: Needle trap technique is inexpensive, sensitive and portable also this method has good recovery to extract small amounts of  toluene and methyl ethyketon from aquatic samples with polydimethylsiloxane.

  4. The effect of RO3201195 and a pyrazolyl ketone P38 MAPK inhibitor library on the proliferation of Werner syndrome cells.

    Science.gov (United States)

    Bagley, Mark C; Dwyer, Jessica E; Baashen, Mohammed; Dix, Matthew C; Murziani, Paola G S; Rokicki, Michal J; Kipling, David; Davis, Terence

    2016-01-21

    Microwave-assisted synthesis of the pyrazolyl ketone p38 MAPK inhibitor RO3201195 in 7 steps and 15% overall yield, and the comparison of its effect upon the proliferation of Werner Syndrome cells with a library of pyrazolyl ketones, strengthens the evidence that p38 MAPK inhibition plays a critical role in modulating premature cellular senescence in this progeroid syndrome and the reversal of accelerated ageing observed in vitro on treatment with SB203580.

  5. Impaction durability of porous polyether-ether-ketone (PEEK) and titanium-coated PEEK interbody fusion devices.

    Science.gov (United States)

    Torstrick, F Brennan; Klosterhoff, Brett S; Westerlund, L Erik; Foley, Kevin T; Gochuico, Joanna; Lee, Christopher S D; Gall, Ken; Safranski, David L

    2018-05-01

    Various surface modifications, often incorporating roughened or porous surfaces, have recently been introduced to enhance osseointegration of interbody fusion devices. However, these topographical features can be vulnerable to damage during clinical impaction. Despite the potential negative impact of surface damage on clinical outcomes, current testing standards do not replicate clinically relevant impaction loading conditions. The purpose of this study was to compare the impaction durability of conventional smooth polyether-ether-ketone (PEEK) cervical interbody fusion devices with two surface-modified PEEK devices that feature either a porous structure or plasma-sprayed titanium coating. A recently developed biomechanical test method was adapted to simulate clinically relevant impaction loading conditions during cervical interbody fusion procedures. Three cervical interbody fusion devices were used in this study: smooth PEEK, plasma-sprayed titanium-coated PEEK, and porous PEEK (n=6). Following Kienle et al., devices were impacted between two polyurethane blocks mimicking vertebral bodies under a constant 200 N preload. The posterior tip of the device was placed at the entrance between the polyurethane blocks, and a guided 1-lb weight was impacted upon the anterior face with a maximum speed of 2.6 m/s to represent the strike force of a surgical mallet. Impacts were repeated until the device was fully impacted. Porous PEEK durability was assessed using micro-computed tomography (µCT) pre- and postimpaction. Titanium-coating coverage pre- and postimpaction was assessed using scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy. Changes to the surface roughness of smooth and titanium-coated devices were also evaluated. Porous PEEK and smooth PEEK devices showed minimal macroscopic signs of surface damage, whereas the titanium-coated devices exhibited substantial visible coating loss. Quantification of the porous PEEK deformation

  6. The Microwave Spectrum of Methyl Vinyl Ketone Revisited

    Science.gov (United States)

    Wilcox, David S.; Shirar, Amanda J.; Williams, Owen L.; Dian, Brian C.

    2011-06-01

    A chirped-pulse Fourier transform microwave spectrometer was used to record the rotational spectrum of methyl vinyl ketone (MVK, 3-butene-2-one) from 6 to 18.9 GHz. Two stable conformations were identified: the previously documented antiperiplanar (ap) conformer and synperiplanar (sp), which is reported for the first time in this microwave study. Methyl torsional analysis with XIAM resulted in V3 barrier heights of 433.8(1) and 376.6(2) Cm-1 for ap- and sp-MVK, respectively. Heavy atom isotopic species were detected in natural abundance allowing bond lengths and angles of the molecular frames to be calculated through Kraitchman analysis. A comparison with ab initio calculations is included.

  7. Caloric restriction increases ketone bodies metabolism and preserves blood flow in aging brain.

    Science.gov (United States)

    Lin, Ai-Ling; Zhang, Wei; Gao, Xiaoli; Watts, Lora

    2015-07-01

    Caloric restriction (CR) has been shown to increase the life span and health span of a broad range of species. However, CR effects on in vivo brain functions are far from explored. In this study, we used multimetric neuroimaging methods to characterize the CR-induced changes of brain metabolic and vascular functions in aging rats. We found that old rats (24 months of age) with CR diet had reduced glucose uptake and lactate concentration, but increased ketone bodies level, compared with the age-matched and young (5 months of age) controls. The shifted metabolism was associated with preserved vascular function: old CR rats also had maintained cerebral blood flow relative to the age-matched controls. When investigating the metabolites in mitochondrial tricarboxylic acid cycle, we found that citrate and α-ketoglutarate were preserved in the old CR rats. We suggest that CR is neuroprotective; ketone bodies, cerebral blood flow, and α-ketoglutarate may play important roles in preserving brain physiology in aging. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  8. Ketones and brain development: Implications for correcting deteriorating brain glucose metabolism during aging

    Directory of Open Access Journals (Sweden)

    Nugent Scott

    2016-01-01

    Full Text Available Brain energy metabolism in Alzheimer’s disease (AD is characterized mainly by temporo-parietal glucose hypometabolism. This pattern has been widely viewed as a consequence of the disease, i.e. deteriorating neuronal function leading to lower demand for glucose. This review will address deteriorating glucose metabolism as a problem specific to glucose and one that precedes AD. Hence, ketones and medium chain fatty acids (MCFA could be an alternative source of energy for the aging brain that could compensate for low brain glucose uptake. MCFA in the form of dietary medium chain triglycerides (MCT have a long history in clinical nutrition and are widely regarded as safe by government regulatory agencies. The importance of ketones in meeting the high energy and anabolic requirements of the infant brain suggest they may be able to contribute in the same way in the aging brain. Clinical studies suggest that ketogenesis from MCT may be able to bypass the increasing risk of insufficient glucose uptake or metabolism in the aging brain sufficiently to have positive effects on cognition.

  9. Acyclic ketones in the defensive secretion of a "daddy longlegs" (Leiobunum vittatum).

    Science.gov (United States)

    Meinwald, J; Kluge, A F; Carrel, J E; Eisner, T

    1971-07-01

    The defensive secretion of the "daddy longlegs" Leiobunum vittatum was analyzed and found to contain the acyclic ketones 4-methylheptan-3-one and E-4,6-dimethyl-6-octen-3-one as its major organic components. Although 4-methylheptan-3-one has been found previously as an alarm substance in certain ant genera, the second component, whose structure is confirmed by synthesis, is new.

  10. α-Alkylation of ketones with primary alcohols driven by visible light and bimetallic gold and palladium nanoparticles supported on transition metal oxide

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Meifen; Xin, Hui; Guo, Zhi; Guo, Dapeng; Wang, Yan; Zhao, Peng; Li, Jingyi, E-mail: lijingyicn@163.com

    2017-01-01

    Highlights: • The catalysts were prepared by reduction method at room temperature. • α-Alkylation of ketones and primary alcohols occurred on Au-Pd/CeO{sub 2} in visible light. • Superior catalytic activities were shown on bimetallic Au-Pd/CeO{sub 2} catalysts. • The catalyst can be reused for 4 times. • The mechanism of the synthesis for ketones was proposed. - Abstract: The direct α-alkylation of ketones with primary alcohols to obtain the corresponding saturated coupled ketones was achieved with bimetallic gold(Au)-palladium(Pd) nanoparticles(NPs) supported on a transition metal oxide (such as CeO{sub 2}). This system demonstrated a higher catalytic property than Au/CeO{sub 2} and Pd/CeO{sub 2} under visible light irradiation at 40 ± 3 °C in an Ar atmosphere. Such phenomenon was caused by the synergistic effect between Au and Pd. Isopropyl alcohol was used as the solvent and CH{sub 3}ONa as the base. The effect of the bimetallic Au-Pd mass ratio and the two different transition metal oxide supports (such as CeO{sub 2} or ZrO{sub 2}) during the reaction process was studied. The highest catalytic activity of those examined happened with the 1.5 wt% Au-1.5 wt% Pd (Au and Pd mass ratio 1:1)/CeO{sub 2} photo-catalyst. The intensity and wavelength of the visible light had a strong influence on the system. The catalyst can be reused for four times. A reaction mechanism was proposed for the α-alkylation of ketones with primary alcohols.

  11. Comparison of breath gases, including acetone, with blood glucose and blood ketones in children and adolescents with type 1 diabetes.

    Science.gov (United States)

    Blaikie, Tom P J; Edge, Julie A; Hancock, Gus; Lunn, Daniel; Megson, Clare; Peverall, Rob; Richmond, Graham; Ritchie, Grant A D; Taylor, David

    2014-11-25

    Previous studies have suggested that breath gases may be related to simultaneous blood glucose and blood ketone levels in adults with type 2 and type 1 diabetes. The aims of this study were to investigate these relationships in children and young people with type 1 diabetes in order to assess the efficacy of a simple breath test as a non-invasive means of diabetes management. Gases were collected in breath bags and measurements were compared with capillary blood glucose and ketone levels taken at the same time on a single visit to a routine hospital clinic in 113 subjects (59 male, age 7 years 11 months-18 years 3 months) with type 1 diabetes. The patients were well-controlled with relatively low concentrations of the blood ketone measured (β hydroxybutyrate, 0-0.4 mmol l(-1)). Breath acetone levels were found to increase with blood β hydroxybutyrate levels and a significant relationship was found between the two (Spearman's rank correlation ρ = 0.364, p acetone (ρ = 0.16, p = 0.1), but led to the conclusion that single breath measurements of acetone do not provide a good measure of blood glucose levels in this cohort. This result suggests a potential to develop breath gas analysis to provide an alternative to blood testing for ketone measurement, for example to assist with the management of type 1 diabetes.

  12. A study to compare the efficacy of polyether ether ketone rod device with titanium devices in posterior spinal fusion in a canine model.

    Science.gov (United States)

    Wang, Nanxiang; Xie, Huanxin; Xi, Chunyang; Zhang, Han; Yan, Jinglong

    2017-03-09

    The benefits of posterior lumbar fusion surgery with orthotopic paraspinal muscle-pediculated bone flaps are well established. However, the problem of non-union due to mechanical support is not completely resolved. The aim of the study was to compare the efficacy of polyether ether ketone (PEEK) rod device with conventional titanium devices in the posterior lumbar fusion surgery with orthotopic paraspinal muscle-pediculated bone flaps. This was a randomized controlled study with an experimental animal model. Thirty-two mongrel dogs were randomly divided into two groups-control group (n = 16), which received the titanium device and the treatment group (n = 16), which received PEEK rods. The animals were sacrificed 8 or 16 weeks after surgery. Lumbar spines of dogs in both groups were removed, harvested, and assessed for radiographic, biomechanical, and histological changes. Results in the current study indicated that there was no significant difference in the lumbar spine of the control and treatment groups in terms of radiographic, manual palpation, and gross examination. However, certain parameters of biomechanical testing showed significant differences (p < 0.05) in stiffness and displacement, revealing a better fusion (treatment group showed decreased stiffness with decreased displacement) of the bone graft. Similarly, the histological analysis also revealed a significant fusion mass in both treatment and control groups (p < 0.05). These findings revealed that fixation using PEEK connecting rod could improve the union of the bone graft in the posterior lumbar spine fusion surgery compared with that of the titanium rod fixation.

  13. Biomarkers, ketone bodies, and the prevention of Alzheimer's disease.

    Science.gov (United States)

    VanItallie, Theodore B

    2015-03-01

    Sporadic Alzheimer's disease (spAD) has three successive phases: preclinical, mild cognitive impairment, and dementia. Individuals in the preclinical phase are cognitively normal. Diagnosis of preclinical spAD requires evidence of pathologic brain changes provided by established biomarkers. Histopathologic features of spAD include (i) extra-cellular cerebral amyloid plaques and intracellular neurofibrillary tangles that embody hyperphosphorylated tau; and (ii) neuronal and synaptic loss. Amyloid-PET brain scans conducted during spAD's preclinical phase have disclosed abnormal accumulations of amyloid-beta (Aβ) in cognitively normal, high-risk individuals. However, this measure correlates poorly with changes in cognitive status. In contrast, MRI measures of brain atrophy consistently parallel cognitive deterioration. By the time dementia appears, amyloid deposition has already slowed or ceased. When a new treatment offers promise of arresting or delaying progression of preclinical spAD, its effectiveness must be inferred from intervention-correlated changes in biomarkers. Herein, differing tenets of the amyloid cascade hypothesis (ACH) and the mitochondrial cascade hypothesis (MCH) are compared. Adoption of the ACH suggests therapeutic research continue to focus on aspects of the amyloid pathways. Adoption of the MCH suggests research emphasis be placed on restoration and stabilization of mitochondrial function. Ketone ester (KE)-induced elevation of plasma ketone body (KB) levels improves mitochondrial metabolism and prevents or delays progression of AD-like pathologic changes in several AD animal models. Thus, as a first step, it is imperative to determine whether KE-caused hyperketonemia can bring about favorable changes in biomarkers of AD pathology in individuals who are in an early stage of AD's preclinical phase. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Investigation of attractive and repulsive interactions associated with ketones in supercritical CO2, based on Raman spectroscopy and theoretical calculations.

    Science.gov (United States)

    Kajiya, Daisuke; Saitow, Ken-ichi

    2013-08-07

    Carbonyl compounds are solutes that are highly soluble in supercritical CO2 (scCO2). Their solubility governs the efficiency of chemical reactions, and is significantly increased by changing a chromophore. To effectively use scCO2 as solvent, it is crucial to understand the high solubility of carbonyl compounds, the solvation structure, and the solute-solvent intermolecular interactions. We report Raman spectroscopic data, for three prototypical ketones dissolved in scCO2, and four theoretical analyses. The vibrational Raman spectra of the C=O stretching modes of ketones (acetone, acetophenone, and benzophenone) were measured in scCO2 along the reduced temperature Tr = T∕Tc = 1.02 isotherm as a function of the reduced density ρr = ρ∕ρc in the range 0.05-1.5. The peak frequencies of the C=O stretching modes shifted toward lower energies as the fluid density increased. The density dependence was analyzed by using perturbed hard-sphere theory, and the shift was decomposed into attractive and repulsive energy components. The attractive energy between the ketones and CO2 was up to nine times higher than the repulsive energy, and its magnitude increased in the following order: acetone attractive energy and optimized the relative configuration between each solute and CO2. According to theoretical calculations for the dispersion energy, the dipole-induced-dipole interaction energy, and the frequency shift due to their interactions, the experimentally determined attractive energy differences in the three solutes were attributed to the dispersion energies that depended on a chromophore attached to the carbonyl groups. It was found that the major intermolecular interaction with the attractive shift varied from dipole-induced dipole to dispersion depending on the chromophore in the ketones in scCO2. As the common conclusion for the Raman spectral measurements and the four theoretical calculations, solute polarizability, modified by the chromophore, was at the core of

  15. The Effect of Ketone Defects on the Charge Transport and Charge Recombination in Polyfluorenes

    NARCIS (Netherlands)

    Kuik, Martijn; Wetzelaer, Gert-Jan A. H.; Ladde, Jurre G.; Nicolai, Herman T.; Wildeman, Jurjen; Sweelssen, Jorgen; Blom, Paul W. M.; Sweelssen, Jörgen

    2011-01-01

    The effect of on-chain ketone defects on the charge transport of the polyfluorene derivative poly(9,9-dioctylfluorene) (PFO) is investigated. Using MoO3 as ohmic hole contact, the hole transport in a pristine PFO diode is observed to be limited by space-charge, whereas fluorenone contaminated PFO

  16. The effect of ketone defects on the charge transport and charge recombination in polyfluorenes

    NARCIS (Netherlands)

    Kuik, M.; Wetzelaer, G.-J.A.H.; Laddé, J.G.; Nicolai, H.T.; Wildeman, J.; Sweelssen, J.; Blom, P.W.M.

    2011-01-01

    The effect of on-chain ketone defects on the charge transport of the polyfluorene derivative poly(9,9-dioctylfluorene) (PFO) is investigated. Using MoO3 as ohmic hole contact, the hole transport in a pristine PFO diode is observed to be limited by space-charge, whereas fluorenone contaminated PFO

  17. Electron impact ionization of cycloalkanes, aldehydes, and ketones

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Dhanoj; Antony, Bobby, E-mail: bka.ism@gmail.com [Department of Applied Physics, Indian School of Mines, Dhanbad, JH 826 004 (India)

    2014-08-07

    The theoretical calculations of electron impact total ionization cross section for cycloalkane, aldehyde, and ketone group molecules are undertaken from ionization threshold to 2 keV. The present calculations are based on the spherical complex optical potential formalism and complex scattering potential ionization contribution method. The results of most of the targets studied compare fairly well with the recent measurements, wherever available and the cross sections for many targets are predicted for the first time. The correlation between the peak of ionization cross sections with number of target electrons and target parameters is also reported. It was found that the cross sections at their maximum depend linearly with the number of target electrons and with other target parameters, confirming the consistency of the values reported here.

  18. Preparation of poly (imine imine ketone) s microshells

    International Nuclear Information System (INIS)

    Cui Yi; Luo Xuan; Fan Yongheng; Zhang Lin; Liu Lei; Lin Runxiong

    2010-01-01

    Large diameter (0.6 ∼ 2.0 mm) microshells of poly (imine imine ketone) s (PIIKs) were prepared by micro-liquid technique and double-layer latex technique. A double T-channel droplet generator was designed and developed for the fabrication of PIIKs microshells of controlled size continuously. Manipulative conditions of the diameter and thickness of shells were studied, and the effect of density mismatch on shell quality was discussed. Phase separation during the preparation process affects the morphology of shells. Spinodal phase separation tends to occur at the outer surface of the shells, while binodal phase separation at the inner surface. The diameters of PIIKs shells were measured, 88% of which vary in ± 5% of the average diameter. The sphericity is better than 99%. (authors)

  19. Organic Solvent-Tolerant Marine Microorganisms as Catalysts for Kinetic Resolution of Cyclic β-Hydroxy Ketones

    NARCIS (Netherlands)

    Chen, B.; Liu, Hui; Zeferino Ribeiro De Souza, F.; Liu, Lan

    2017-01-01

    Chiral cyclic β-hydroxy ketones represent key motifs in the production of natural products of biological interest. Although the molecules are structurally simple, they require cumbersome synthetic steps to get access to them and their synthesis remains a challenge in organic chemistry. In this

  20. Syntheses of Calix[4]Pyrroles by Amberlyst-15 Catalyzed Cyclocondensations of Pyrrole with Selected Ketones

    Directory of Open Access Journals (Sweden)

    Tanuja Bisht

    2007-11-01

    Full Text Available A facile and efficient protocol is reported for the synthesis of calix[4]pyrrolesand N-confused calix[4]pyrroles in moderate to excellent yields by reaction of dialkyl orcycloalkyl ketones with pyrrole catalyzed by reusable AmberlystTM-15 under eco-friendlyconditions.

  1. Fast quantification of short chain fatty acids and ketone bodies by liquid chromatography-tandem mass spectrometry after facile derivatization coupled with liquid-liquid extraction.

    Science.gov (United States)

    Zeng, Mingfei; Cao, Huachuan

    2018-04-15

    Short chain fatty acids (SCFA) and ketone bodies recently emerged as important physiological relevant metabolites because of their association with microbiota, immunology, obesity and other metabolic states. They were commonly analyzed by GC-MS with long run time and laborious sample preparation. In this study we developed a novel LC-MS/MS method using fast derivatization coupled with liquid-liquid extraction to detect SCFA and ketone bodies in plasma and feces. Several different derivatization reagents were evaluated to compare the efficiency, the sensitivity and chromatographic separation of structural isomers. O‑benzylhydroxylamine was selected for its superior overall performance in reaction time and isomeric separation that allowed the measurement of each SCFAs and ketone bodies free from interferences. The derivatization procedure is facile and reproducible in aqueous-organic medium, which abolished the evaporation procedure hampering the analysis of volatile short chain acids. Enhancement in sensitivity remarkably improved the detection limit of SCFA and ketone bodies to sub-fmol level. This novel method was applied to quantify these metabolites in fecal and plasma samples from lean and DIO mouse. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Ligand-controlled reactivity, selectivity, and mechanism of cationic ruthenium-catalyzed hydrosilylations of alkynes, ketones, and nitriles: a theoretical study.

    Science.gov (United States)

    Yang, Yun-Fang; Chung, Lung Wa; Zhang, Xinhao; Houk, K N; Wu, Yun-Dong

    2014-09-19

    Density functional theory calculations with the M06 functional have been performed on the reactivity, selectivity, and mechanism of hydrosilylations of alkynes, ketones, and nitriles catalyzed by cationic ruthenium complexes [CpRu(L)(MeCN)2](+), with L = P(i)Pr3 or MeCN. The hydrosilylation of alkynes with L = P(i)Pr3 involves an initial silyl migration mechanism to generate the anti-Markovnikov product, in contrast to the Markovnikov product obtained with L = MeCN. The bulky phosphine ligand directs the silyl group to migrate to Cβ of the alkyne. This explains the anti-Markovnikov selectivity of the catalyst with L = P(i)Pr3. By contrast, the silane additions to either ketone or nitrile proceed through an ionic SN2-Si outer-sphere mechanism, in which the substrate attacks the Si center. The P(i)Pr3 ligand facilitates the activation of the Si-H bond to furnish a η(2)-silane complex, whereas a η(1)-silane complex is formed for the MeCN ligand. This property of the phosphine ligand enables the catalytic hydrosilylation of ketones and nitriles in addition to that of alkynes.

  3. New aromatic activated dihalides and bisphenol monomers for the preparation of novel poly(arylene ethers)

    Science.gov (United States)

    Wolfe, James F.

    1993-01-01

    The goal of this research program was to synthesize a series of unique monomers of type I to be utilized at NASA-Langley in the preparation of new poly(arylene ether ketones), poly(arylene ether ketosulfones), and poly(arylene ether ketophosphine oxides). These A-A and A-B monomer systems, which possess activated aryl halide and/or phenolic end groups, are accessible via condensation reactions of appropriately substituted aryl acetonitrile carbanions with activated aryl dihalides followed by oxidative decyanation.

  4. Steam Reforming of Acetic Acid over Co-Supported Catalysts: Coupling Ketonization for Greater Stability

    Energy Technology Data Exchange (ETDEWEB)

    Davidson, Stephen D. [Energy and Environmental; Spies, Kurt A. [Energy and Environmental; Mei, Donghai [Energy and Environmental; Kovarik, Libor [Energy and Environmental; Kutnyakov, Igor [Energy and Environmental; Li, Xiaohong S. [Energy and Environmental; Lebarbier Dagle, Vanessa [Energy and Environmental; Albrecht, Karl O. [Energy and Environmental; Dagle, Robert A. [Energy and Environmental

    2017-09-11

    We report on the markedly improved stability of a novel 2-bed catalytic system, as compared to a conventional 1-bed steam reforming catalyst, for the production of H2 from acetic acid. The 2-bed catalytic system comprises of i) a basic oxide ketonization catalyst for the conversion of acetic acid to acetone, and a ii) Co-based steam reforming catalyst, both catalytic beds placed in sequence within the same unit operation. Steam reforming catalysts are particularly prone to catalytic deactivation when steam reforming acetic acid, used here as a model compound for the aqueous fraction of bio-oil. Catalysts comprising MgAl2O4, ZnO, CeO2, and activated carbon (AC) both with and without Co-addition were evaluated for conversion of acetic acid and acetone, its ketonization product, in the presence of steam. It was found that over the bare oxide support only ketonization activity was observed and coke deposition was minimal. With addition of Co to the oxide support steam reforming activity was facilitated and coke deposition was significantly increased. Acetone steam reforming over the same Co-supported catalysts demonstrated more stable performance and with less coke deposition than with acetic acid feedstock. DFT analysis suggests that over Co surface CHxCOO species are more favorably formed from acetic acid versus acetone. These CHxCOO species are strongly bound to the Co catalyst surface and could explain the higher propensity for coke formation from acetic acid. Based on these findings, in order to enhance stability of the steam reforming catalyst a dual-bed (2-bed) catalyst system was implemented. Comparing the 2-bed and 1-bed (Co-supported catalyst only) systems under otherwise identical reaction conditions the 2-bed demonstrated significantly improved stability and coke deposition was decreased by a factor of 4.

  5. Determination of ketone bodies in blood by headspace gas chromatography-mass spectrometry

    DEFF Research Database (Denmark)

    Holm, Karen Marie Dollerup; Linnet, Kristian; Rasmussen, Brian Schou

    2010-01-01

    A gas chromatography-mass spectrometry (GC-MS) method for determination of ketone bodies (ß-hydroxybutyrate, acetone, and acetoacetate) in blood is presented. The method is based on enzymatic oxidation of D-ß-hydroxybutyrate to acetoacetate, followed by decarboxylation to acetone, which...... was quantified by the use of headspace GC-MS using acetone-(13)C(3) as an internal standard. The developed method was found to have intra- and total interday relative standard deviations

  6. Miscibility and Hydrogen Bonding in Blends of Poly(4-vinylphenol/Poly(vinyl methyl ketone

    Directory of Open Access Journals (Sweden)

    Hana Bourara

    2014-10-01

    Full Text Available The miscibility and phase behavior of poly(4-vinylphenol (PVPh with poly(vinyl methyl ketone (PVMK was investigated by differential scanning calorimetry (DSC, Fourier transform infrared spectroscopy (FTIR and scanning electron microscopy (SEM. It was shown that all blends of PVPh/PVMK are totally miscible. A DSC study showed the apparition of a single glass transition (Tg over their entire composition range. When the amount of PVPh exceeds 50% in blends, the obtained Tgs are found to be significantly higher than those observed for each individual component of the mixture, indicating that these blends are capable of forming interpolymer complexes. FTIR analysis revealed the existence of preferential specific interactions via hydrogen bonding between the hydroxyl and carbonyl groups, which intensified when the amount of PVPh was increased in blends. Furthermore, the quantitative FTIR study carried out for PVPh/PVMK blends was also performed for the vinylphenol (VPh and vinyl methyl ketone (VMK functional groups. These results were also established by scanning electron microscopy study (SEM.

  7. Copper(II)-catalyzed enantioselective hydrosilylation of halo-substituted alkyl aryl and heteroaryl ketones: asymmetric synthesis of (R)-fluoxetine and (S)-duloxetine.

    Science.gov (United States)

    Zhou, Ji-Ning; Fang, Qiang; Hu, Yi-Hu; Yang, Li-Yao; Wu, Fei-Fei; Xie, Lin-Jie; Wu, Jing; Li, Shijun

    2014-02-14

    A set of reaction conditions has been established to facilitate the non-precious copper-catalyzed enantioselective hydrosilylation of a number of structurally diverse β-, γ- or ε-halo-substituted alkyl aryl ketones and α-, β- or γ-halo-substituted alkyl heteroaryl ketones under air to afford a broad spectrum of halo alcohols in high yields and good to excellent enantioselectivities (up to 99% ee). The developed procedure has been successfully applied to the asymmetric synthesis of antidepressant drugs (R)-fluoxetine and (S)-duloxetine, which highlighted its synthetic utility.

  8. Reactions of uranium (III) and (IV) compounds with ketones, nitriles and acid chlorides. Towards a use of uranium complexes in organic synthesis

    International Nuclear Information System (INIS)

    Adam, Raymond

    1993-01-01

    In this research thesis, the author shows that various organic molecules can be interestingly transformed into uranium complexes with degrees of oxidation of +3 or +4. In a first part, the author describes reactions of carbonyl compounds with the UCl 4 -Na(Hg) reducing system. Then, he addresses reductions of ketones, nitriles and acid chlorides by a uranium (III) complex: Cp 3 U(THF). The third part reports a detailed study of the reduction of ketones by U(BH 4 ) 4 [fr

  9. Influence of Layer Thickness and Raster Angle on the Mechanical Properties of 3D-Printed PEEK and a Comparative Mechanical Study between PEEK and ABS.

    Science.gov (United States)

    Wu, Wenzheng; Geng, Peng; Li, Guiwei; Zhao, Di; Zhang, Haibo; Zhao, Ji

    2015-09-01

    Fused deposition modeling (FDM) is a rapidly growing 3D printing technology. However, printing materials are restricted to acrylonitrile butadiene styrene (ABS) or poly (lactic acid) (PLA) in most Fused deposition modeling (FDM) equipment. Here, we report on a new high-performance printing material, polyether-ether-ketone (PEEK), which could surmount these shortcomings. This paper is devoted to studying the influence of layer thickness and raster angle on the mechanical properties of 3D-printed PEEK. Samples with three different layer thicknesses (200, 300 and 400 μm) and raster angles (0°, 30° and 45°) were built using a polyether-ether-ketone (PEEK) 3D printing system and their tensile, compressive and bending strengths were tested. The optimal mechanical properties of polyether-ether-ketone (PEEK) samples were found at a layer thickness of 300 μm and a raster angle of 0°. To evaluate the printing performance of polyether-ether-ketone (PEEK) samples, a comparison was made between the mechanical properties of 3D-printed polyether-ether-ketone (PEEK) and acrylonitrile butadiene styrene (ABS) parts. The results suggest that the average tensile strengths of polyether-ether-ketone (PEEK) parts were 108% higher than those for acrylonitrile butadiene styrene (ABS), and compressive strengths were 114% and bending strengths were 115%. However, the modulus of elasticity for both materials was similar. These results indicate that the mechanical properties of 3D-printed polyether-ether-ketone (PEEK) are superior to 3D-printed ABS.

  10. Synthesis and properties of a novel sulfonated poly(arylene ether ketone sulfone) membrane with a high β-value for direct methanol fuel cell applications

    International Nuclear Information System (INIS)

    Xu, Jingmei; Ma, Li; Han, Hailan; Ni, Hongzhe; Wang, Zhe; Zhang, Huixuan

    2014-01-01

    Highlights: • Introduction of carboxyl groups into copolymers resulted in extensive hydrogen bond. • The C-SPAEKS membranes had obviously hydrophilic/hydrophobic phase separation. • The membranes showed low methanol permeability and high β values. • The membranes exhibited good thermal property and desirable mechanical performance. - Abstract: Sulfonated poly(arylene ether ketone sulfone) membranes containing carboxylic acid groups (C-SPAEKS) with different degrees of sulfonation were synthesized by the nucleophilic aromatic substitution reactions of 4-carboxylphenyl hydroquinone (4C-PH), bisphenol A, 3,3′-disulfonated 4,4′-dichlorodiphenyl sulfone, and 4,4′-difluorobenzophenone. The Fourier transform infrared and 1 H NMR analyses of C-SPAEKS revealed the presence of carboxylic acid groups in the C-SPAEKS membranes. The membranes exhibited a low swelling degree and methanol crossover level. The effects of different degrees of sulfonation on the water uptake, proton conductivity, and methanol permeability coefficient of the membranes were studied. The maximum proton conductivity of C-SPAEKS-80 membrane at room temperature was 0.069 S cm −1 , which was higher than that of Nafion ® 117 membrane. The methanol permeability coefficient of C-SPAEKS-80 membrane was 9.15 × 10 −7 cm 2 s −1 at 20 °C, much lower than that of Nafion 117 membrane (22.9 × 10 −7 cm 2 s −1 ). Furthermore, the carboxyl group-containing membranes exhibited a high β-value, further confirming that this series of membranes possess excellent comprehensive performance and can be applied in direct methanol fuel cells

  11. Ruthenium-catalyzed direct C3 alkylation of indoles with α,β-unsaturated ketones.

    Science.gov (United States)

    Li, Shuai-Shuai; Lin, Hui; Zhang, Xiao-Mei; Dong, Lin

    2015-01-28

    In this paper, a simple and highly efficient ruthenium-catalyzed direct C3 alkylation of indoles with various α,β-unsaturated ketones without chelation assistance has been developed. This novel C-H activation methodology exhibits a broad substrate scope such as different substituted indoles, pyrroles, and other azoles. Further synthetic applications of the alkylation products can lead to more attractive 3,4-fused tricyclic indoles.

  12. Acyclic Ketones in the Defensive Secretion of a “Daddy Longlegs” (Leiobunum vittatum)

    Science.gov (United States)

    Meinwald, J.; Kluge, A. F.; Carrel, J. E.; Eisner, T.

    1971-01-01

    The defensive secretion of the “daddy longlegs” Leiobunum vittatum was analyzed and found to contain the acyclic ketones 4-methylheptan-3-one and E-4,6-dimethyl-6-octen-3-one as its major organic components. Although 4-methylheptan-3-one has been found previously as an alarm substance in certain ant genera, the second component, whose structure is confirmed by synthesis, is new. PMID:5283937

  13. Analyzing urine ketone of 235 medical examiners%232例体检者尿酮体阳性结果分析

    Institute of Scientific and Technical Information of China (English)

    王会敏; 何柯新

    2012-01-01

    目的 探讨尿酮体在体检人群不同年龄段、不同性别的分布及其与血糖的相关性.方法 对232例尿酮体为阳性的体检者按年龄及性别分组进行分析,同时与其同期检测的血糖结果 进行对比分析.结果 尿酮体阳性者以1+和2+为主;主要出现在20~50岁年龄段中;大多数尿酮体阳性者其血糖不高(≤6.1).结论 在体检人群中尿酮体阳性与血糖高低不存在相关性,尿酮体阳性并不能准确反映患者的血糖水平;尿酮体阳性主要集中在20~50岁年龄组.%Objective Objective: To explore the relationship between urine ketone and different age and gender and plasma glucose detected in the same time with urine ketone. Methods The results of totally 232 medical examiners whose urine ketone were positive were analyzed according to different ages and genders. Results The urine ketone results which are positive are 1+ and 2 + , mainly distribute the ages of 20 to 50. And great majority of them has a normal or low level of fasting plasma glucose. Conclusion The urine ketone which are positive has no relationship with plasma glucose,it can't accurately reflect the level of plasma glucose. We found that most of the groups distribute the ages of 20 to 50. The reasons probably are they have heavy work pressure and imbalanced diet. People need to pay attention to the quality of life. Having a balanced nutrition diet and eating on time will be a good life style.

  14. Asymmetric Chemoenzymatic Reductive Acylation of Ketones by a Combined Iron-Catalyzed Hydrogenation-Racemization and Enzymatic Resolution Cascade

    KAUST Repository

    El-Sepelgy, Osama; Brzozowska, Aleksandra; Rueping, Magnus

    2017-01-01

    . By merging the iron-catalyzed redox reactions with enantioselective enzymatic acylations a wide range of benzylic, aliphatic and (hetero)aromatic ketones, as well as diketones, were reductively acylated. The corresponding products were isolated with high

  15. Reduction of Aldehydes and Ketones to Corresponding Alcohols Using Diammonium Hydrogen Phosphite and Commercial Zinc Dust

    Directory of Open Access Journals (Sweden)

    K. Anil Kumar

    2011-01-01

    Full Text Available A mild and an efficient system has been developed for the reduction of aromatic aldehydes and ketones to their corresponding alcohols in good yield using inexpensive commercial zinc dust as catalyst and diammonium hydrogen phosphite as a hydrogen donor.

  16. Comparison of palmitic acid kinetics during glucose or ketone body infusions

    Energy Technology Data Exchange (ETDEWEB)

    Birkhahn, R.H.; Block, D.J.; Birkhahn, G.C.; Thomford, N.R.

    1986-03-05

    Ketone body interactions can be observed for extended ketosis by infusion by monoacetoacetin (the monoglyceride of acetoacetic acid). Palmitic acid kinetics were compared on the 5th day of glucose or ketone body-glucose infusions. 20 rats were fed complete diets intravenously at the rate of 50 ml/day. All diets contained vitamins, trace minerals, electrolytes, amino acids and 1 kcal/ml of non-protein energy. Rats were divided by energy source: Group A (n = 10) received energy from glucose and Group B (n = 10) from 72% monoacetoacetin plus 28% glucose. Diets were given at 1/2 and 3/4 rats on days 1 and 2, respectively and at full rate for days 3-5. Urinary nitrogen losses, body weight and dietary intake were measured daily. Palmitate kinetics was measured on day 5 using a continuous infusion of (1-/sup 14/C) palmitate and measuring C-14 in breath and plasma and plasma palmitate by GC. The two groups had similar body weight changes and urinary nitrogen losses over the 3 days of full intake Group A had lower plasma palmitate (88 +/- 7 vs 105 +/- 6 micromol/l) but similar turnover (17.1 +/- 2.4 vs 15.0 +/- 1.9 mmol/hr) and oxidation 2.3 +/- 0.3 vs 2.2 +/- 0.05 mmol/hr) compared to Group B. These data show that feeding monoacetoacetin intravenously does not stimulate fatty acid metabolism in the well nourished rat.

  17. Comparison of palmitic acid kinetics during glucose or ketone body infusions

    International Nuclear Information System (INIS)

    Birkhahn, R.H.; Block, D.J.; Birkhahn, G.C.; Thomford, N.R.

    1986-01-01

    Ketone body interactions can be observed for extended ketosis by infusion by monoacetoacetin (the monoglyceride of acetoacetic acid). Palmitic acid kinetics were compared on the 5th day of glucose or ketone body-glucose infusions. 20 rats were fed complete diets intravenously at the rate of 50 ml/day. All diets contained vitamins, trace minerals, electrolytes, amino acids and 1 kcal/ml of non-protein energy. Rats were divided by energy source: Group A (n = 10) received energy from glucose and Group B (n = 10) from 72% monoacetoacetin plus 28% glucose. Diets were given at 1/2 and 3/4 rats on days 1 and 2, respectively and at full rate for days 3-5. Urinary nitrogen losses, body weight and dietary intake were measured daily. Palmitate kinetics was measured on day 5 using a continuous infusion of [1- 14 C] palmitate and measuring C-14 in breath and plasma and plasma palmitate by GC. The two groups had similar body weight changes and urinary nitrogen losses over the 3 days of full intake Group A had lower plasma palmitate (88 +/- 7 vs 105 +/- 6 micromol/l) but similar turnover (17.1 +/- 2.4 vs 15.0 +/- 1.9 mmol/hr) and oxidation 2.3 +/- 0.3 vs 2.2 +/- 0.05 mmol/hr) compared to Group B. These data show that feeding monoacetoacetin intravenously does not stimulate fatty acid metabolism in the well nourished rat

  18. Perinatal changes in myocardial supply and flux of fatty acids, carbohydrates, and ketone bodies in lambs

    NARCIS (Netherlands)

    Bartelds, B; Gratama, JWC; Knoester, H; Takens, J; Smid, GB; Aarnoudse, JG; Heymans, HSA; Kuipers, JRG

    No information is available on perinatal changes in myocardial metabolism in vivo. We measured myocardial supply and flux of fatty acids, carbohydrates, and ketone bodies in chronically instrumented fetal, newborn (1-4 days), and juvenile (7 wk) lambs, by measuring aorta-coronary sinus concentration

  19. Mechanism of inactivation of human leukocyte elastase by a chloromethyl ketone: kinetic and solvent isotope effect studies

    International Nuclear Information System (INIS)

    Stein, R.L.; Trainor, D.A.

    1986-01-01

    The mechanism of inactivation of human leukocyte elastase (HLE) by the chloromethyl ketone MeOSuc-Ala-Ala-Pro-Val-CH 2 Cl was investigated. The dependence of the first-order rate constant for inactivation on concentration of chloromethyl ketone is hyperbolic and suggests formation of a reversible Michaelis complex prior to covalent interaction between the enzyme and inhibitor. However, the observed Ki value is 10 microM, at least 10-fold lower than dissociation constants for complexes formed from interaction of HLE with structurally related substrates or reversible inhibitors, and suggests that Ki is a complex kinetic constant, reflecting the formation and accumulation of both the Michaelis complex and a second complex. It is proposed that this second complex is a hemiketal formed from attack of the active site serine on the carbonyl carbon of the inhibitor. The accumulation of this intermediate may be a general feature of reactions of serine proteases and chloromethyl ketones derived from specific peptides and accounts for the very low Ki values observed for these reactions. The solvent deuterium isotope effect (SIE) on the inactivation step (ki) is 1.58 +/- 0.07 and is consistent with rate-limiting, general-catalyzed attack of the active site His on the methylene carbon of the inhibitor with displacement of chloride anion. The general catalyst is thought to be the active site Asp. In contrast, the SIE on the second-order rate constant for HLE inactivation, ki/Ki, is inverse and equals 0.64 +/- 0.05

  20. Decreasing the Rate of Metabolic Ketone Reduction in the Discovery of a Clinical Acetyl-CoA Carboxylase Inhibitor for the Treatment of Diabetes

    Energy Technology Data Exchange (ETDEWEB)

    Griffith, David A. [Pfizer Worldwide Research and Development, Cambridge, MA (United States); Kung, Daniel W. [Pfizer Worldwide Research and Development, Cambridge, MA (United States); Esler, William P. [Pfizer Worldwide Research and Development, Cambridge, MA (United States); Amor, Paul A. [Pfizer Worldwide Research and Development, Cambridge, MA (United States); Bagley, Scott W. [Pfizer Worldwide Research and Development, Cambridge, MA (United States); Beysen, Carine [KineMed Inc., Emeryville, CA (United States); Carvajal-Gonzalez, Santos [Pfizer Worldwide Research and Development, Cambridge, MA (United States); Doran, Shawn D. [Pfizer Worldwide Research and Development, Cambridge, MA (United States); Limberakis, Chris [Pfizer Worldwide Research and Development, Cambridge, MA (United States); Mathiowetz, Alan M. [Pfizer Worldwide Research and Development, Cambridge, MA (United States); McPherson, Kirk [Pfizer Worldwide Research and Development, Cambridge, MA (United States); Price, David A. [Pfizer Worldwide Research and Development, Cambridge, MA (United States); Ravussin, Eric [Louisiana State Univ., Baton Rouge, LA (United States); Sonnenberg, Gabriele E. [Pfizer Worldwide Research and Development, Cambridge, MA (United States); Southers, James A. [Pfizer Worldwide Research and Development, Cambridge, MA (United States); Sweet, Laurel J. [Pfizer Worldwide Research and Development, Cambridge, MA (United States); Turner, Scott M. [KineMed Inc., Emeryville, CA (United States); Vajdos, Felix F. [Pfizer Worldwide Research and Development, Cambridge, MA (United States)

    2014-12-26

    We found that Acetyl-CoA carboxylase (ACC) inhibitors offer significant potential for the treatment of type 2 diabetes mellitus (T2DM), hepatic steatosis, and cancer. However, the identification of tool compounds suitable to test the hypothesis in human trials has been challenging. An advanced series of spirocyclic ketone-containing ACC inhibitors recently reported by Pfizer were metabolized in vivo by ketone reduction, which complicated human pharmacology projections. Here, we disclose that this metabolic reduction can be greatly attenuated through introduction of steric hindrance adjacent to the ketone carbonyl. Incorporation of weakly basic functionality improved solubility and led to the identification of 9 as a clinical candidate for the treatment of T2DM. Phase I clinical studies demonstrated dose-proportional increases in exposure, single-dose inhibition of de novo lipogenesis (DNL), and changes in indirect calorimetry consistent with increased whole-body fatty acid oxidation. This demonstration of target engagement validates the use of compound 9 to evaluate the role of DNL in human disease.

  1. Optical activities of steroid ketones - Elucidation of the octant rule.

    Science.gov (United States)

    Hatanaka, Masashi; Sayama, Daisuke; Miyasaka, Makoto

    2018-04-21

    Theoretical calculations of optical activities in steroid ketones are presented by using modern semi-empirical PM7 wavefunctions. Both circular dichroism (CD) and specific rotation, which is proportional to optical rotation dispersion (ORD), are well simulated, and signs of the Cotton effect at the most long-wavelength region are fully in accordance with the experimental results. The good accordance is related to the octant rule, which is deduced within the framework of the perturbation theory. Our treatment is promising to predict the signs of the Cotton effect of large molecules, and thus, the absolute configurations can also be grasped without demanding procedures. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Regioselective Wacker Oxidation of Internal Alkenes: Rapid Access to Functionalized Ketones Facilitated by Cross-Metathesis

    KAUST Repository

    Morandi, Bill

    2013-07-26

    Wacka wacka: The title reaction makes use of a wide range of directing groups (DG) to enable the highly regioselective oxidation of alkenes, and occurs predictably at the distal position. Both E and Z alkenes afford valuable functionalized ketones and cross-metathesis was shown to facilitate the preparation of the starting materials. BQ=benzoquinone.

  3. Regioselective Wacker Oxidation of Internal Alkenes: Rapid Access to Functionalized Ketones Facilitated by Cross-Metathesis

    KAUST Repository

    Morandi, Bill; Wickens, Zachary K.; Grubbs, Robert H.

    2013-01-01

    Wacka wacka: The title reaction makes use of a wide range of directing groups (DG) to enable the highly regioselective oxidation of alkenes, and occurs predictably at the distal position. Both E and Z alkenes afford valuable functionalized ketones and cross-metathesis was shown to facilitate the preparation of the starting materials. BQ=benzoquinone.

  4. Enhanced Proton Conductivity of Sulfonated Hybrid Poly(arylene ether ketone) Membranes by Incorporating an Amino-Sulfo Bifunctionalized Metal-Organic Framework for Direct Methanol Fuel Cells.

    Science.gov (United States)

    Ru, Chunyu; Li, Zhenhua; Zhao, Chengji; Duan, Yuting; Zhuang, Zhuang; Bu, Fanzhe; Na, Hui

    2018-03-07

    Novel side-chain-type sulfonated poly(arylene ether ketone) (SNF-PAEK) containing naphthalene and fluorine moieties on the main chain was prepared in this work, and a new amino-sulfo-bifunctionalized metal-organic framework (MNS, short for MIL-101-NH 2 -SO 3 H) was synthesized via a hydrothermal technology and postmodification. Then, MNS was incorporated into a SNF-PAEK matrix as an inorganic nanofiller to prepare a series of organic-inorganic hybrid membranes (MNS@SNF-PAEK-XX). The mechanical property, methanol resistance, electrochemistry, and other properties of MNS@SNF-PAEK-XX hybrid membranes were characterized in detail. We found that the mechanical strength and methanol resistances of these hybrid membranes were improved by the formation of an ionic cross-linking structure between -NH 2 of MNS and -SO 3 H on the side chain of SNF-PAEK. Particularly, the proton conductivity of these hybrid membranes increased obviously after the addition of MNS. MNS@SNF-PAEK-3% exhibited the proton conductivity of 0.192 S·cm -1 , which was much higher than those of the pristine membrane (0.145 S·cm -1 ) and recast Nafion (0.134 S·cm -1 ) at 80 °C. This result indicated that bifunctionalized MNS rearranged the microstructure of hybrid membranes, which could accelerate the transfer of protons. The hybrid membrane (MNS@SNF-PAEK-3%) showed a better direct methanol fuel cell performance with a higher peak power density of 125.7 mW/cm 2 at 80 °C and a higher open-circuit voltage (0.839 V) than the pristine membrane.

  5. Differential utilization of ketone bodies by neurons and glioma cell lines: a rationale for ketogenic diet as experimental glioma therapy.

    Science.gov (United States)

    Maurer, Gabriele D; Brucker, Daniel P; Bähr, Oliver; Harter, Patrick N; Hattingen, Elke; Walenta, Stefan; Mueller-Klieser, Wolfgang; Steinbach, Joachim P; Rieger, Johannes

    2011-07-26

    Even in the presence of oxygen, malignant cells often highly depend on glycolysis for energy generation, a phenomenon known as the Warburg effect. One strategy targeting this metabolic phenotype is glucose restriction by administration of a high-fat, low-carbohydrate (ketogenic) diet. Under these conditions, ketone bodies are generated serving as an important energy source at least for non-transformed cells. To investigate whether a ketogenic diet might selectively impair energy metabolism in tumor cells, we characterized in vitro effects of the principle ketone body 3-hydroxybutyrate in rat hippocampal neurons and five glioma cell lines. In vivo, a non-calorie-restricted ketogenic diet was examined in an orthotopic xenograft glioma mouse model. The ketone body metabolizing enzymes 3-hydroxybutyrate dehydrogenase 1 and 2 (BDH1 and 2), 3-oxoacid-CoA transferase 1 (OXCT1) and acetyl-CoA acetyltransferase 1 (ACAT1) were expressed at the mRNA and protein level in all glioma cell lines. However, no activation of the hypoxia-inducible factor-1α (HIF-1α) pathway was observed in glioma cells, consistent with the absence of substantial 3-hydroxybutyrate metabolism and subsequent accumulation of succinate. Further, 3-hydroxybutyrate rescued hippocampal neurons from glucose withdrawal-induced cell death but did not protect glioma cell lines. In hypoxia, mRNA expression of OXCT1, ACAT1, BDH1 and 2 was downregulated. In vivo, the ketogenic diet led to a robust increase of blood 3-hydroxybutyrate, but did not alter blood glucose levels or improve survival. In summary, glioma cells are incapable of compensating for glucose restriction by metabolizing ketone bodies in vitro, suggesting a potential disadvantage of tumor cells compared to normal cells under a carbohydrate-restricted ketogenic diet. Further investigations are necessary to identify co-treatment modalities, e.g. glycolysis inhibitors or antiangiogenic agents that efficiently target non-oxidative pathways.

  6. Differential utilization of ketone bodies by neurons and glioma cell lines: a rationale for ketogenic diet as experimental glioma therapy

    International Nuclear Information System (INIS)

    Maurer, Gabriele D; Brucker, Daniel P; Bähr, Oliver; Harter, Patrick N; Hattingen, Elke; Walenta, Stefan; Mueller-Klieser, Wolfgang; Steinbach, Joachim P; Rieger, Johannes

    2011-01-01

    Even in the presence of oxygen, malignant cells often highly depend on glycolysis for energy generation, a phenomenon known as the Warburg effect. One strategy targeting this metabolic phenotype is glucose restriction by administration of a high-fat, low-carbohydrate (ketogenic) diet. Under these conditions, ketone bodies are generated serving as an important energy source at least for non-transformed cells. To investigate whether a ketogenic diet might selectively impair energy metabolism in tumor cells, we characterized in vitro effects of the principle ketone body 3-hydroxybutyrate in rat hippocampal neurons and five glioma cell lines. In vivo, a non-calorie-restricted ketogenic diet was examined in an orthotopic xenograft glioma mouse model. The ketone body metabolizing enzymes 3-hydroxybutyrate dehydrogenase 1 and 2 (BDH1 and 2), 3-oxoacid-CoA transferase 1 (OXCT1) and acetyl-CoA acetyltransferase 1 (ACAT1) were expressed at the mRNA and protein level in all glioma cell lines. However, no activation of the hypoxia-inducible factor-1α (HIF-1α) pathway was observed in glioma cells, consistent with the absence of substantial 3-hydroxybutyrate metabolism and subsequent accumulation of succinate. Further, 3-hydroxybutyrate rescued hippocampal neurons from glucose withdrawal-induced cell death but did not protect glioma cell lines. In hypoxia, mRNA expression of OXCT1, ACAT1, BDH1 and 2 was downregulated. In vivo, the ketogenic diet led to a robust increase of blood 3-hydroxybutyrate, but did not alter blood glucose levels or improve survival. In summary, glioma cells are incapable of compensating for glucose restriction by metabolizing ketone bodies in vitro, suggesting a potential disadvantage of tumor cells compared to normal cells under a carbohydrate-restricted ketogenic diet. Further investigations are necessary to identify co-treatment modalities, e.g. glycolysis inhibitors or antiangiogenic agents that efficiently target non-oxidative pathways

  7. Effect of cesium salt of tungstophosphoric acid (Cs-TPA) on the properties of sulfonated polyether ether ketone (SPEEK) composite membranes for fuel cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Dogan, Hacer; Inan, Tuelay Y.; Unveren, Elif [The Scientific and Technological Research Council of Turkey (TUeBiTAK), Marmara Research Center, Chemistry Institute, P.K. 21, 41470 Gebze-Kocaeli (Turkey); Kaya, Metin [DEMIRDOeKUeM A.S. 4 Eyluel Mah, ismet inoenue Cad. No:245 Bozueyuek/Bilecik (Turkey)

    2010-08-15

    We have prepared composite membranes for fuel cell applications. Cesium salt of tungstophosphoric acid (Cs-TPA) particles was synthesized by aqueous solutions of tungstophosphoric acid and cesium hydroxide and, Cs-TPA particles and sulfonated (polyether ether ketone) (SPEEK) with two sulfonation degrees (DS), 60 and 70%have been used. We examined both the effects of Cs-TPA in SPEEK membranes as functions of sulfonation degrees of SPEEK and the content of Cs-TPA. The performance of the composite membranes was evaluated in terms of water uptake, ion exchange capacity, proton conductivity, chemical stability, hydrolytic stability, thermal stability and methanol permeability. The morphology of the membranes was investigated with SEM micrographs. Increasing sulfonation degree of SPEEK from 60 to 70 caused agglomeration of the Cs-TPA particles. The methanol permeability was reduced to 4.7 x 10{sup -7} cm{sup 2}/s for SPEEK (DS: 60%)/Cs-TPA membrane with 10 wt.% Cs-TPA concentration, and acceptable proton conductivity of 1.3 x 10{sup -1} S/cm was achieved at 80 C under 100% RH. The weight loss at 900 C increased with the addition of inorganic particles, as expected. The hydrolytic stability of the SPEEK/Cs-TPA based composite membranes was improved with the incorporation of the Cs-TPA particles into the matrix. We also noted that SPEEK60/Cs-TPA composite membranes were hydrolytically more stable than SPEEK70/Cs-TPA composite membranes. On the other hand, Methanol, water vapor, and hydrogen permeability values of SPEEK60 composite membranes were found to be lower than that of Nafion {sup registered}. (author)

  8. KH 2PO4 as a novel catalyst for regioselective monobromination of aralkyl ketones using N-bromosuccinimide: a green methodology

    Directory of Open Access Journals (Sweden)

    P. Md. Khaja Mohinuddin

    2015-08-01

    Full Text Available A simple, regioselective and green method has been developed for the preparation of monobrominated ketones from various aralkyl ketones by using N-bromosuccinimide in presence of KH 2PO 4 in EtOH at reflux temperature. The present method is of short reaction time and simple with excellent isolated yields of products. The use of eco-friendly solvent, reuse of organic waste (succinimide and recyclable catalyst used for 4 times without loss of activity are advantageous. This is the first example of the use of KH 2PO 4 as a useful catalyst in organohalogen chemistry and the present method meets reduce-reuse-recycle (RRR principle towards development of green protocol.

  9. DISQUAC Characterization of the CarbonylůChlorine Interactions in Binary Mixtures of Linear Ketone with Chloroalkane

    Czech Academy of Sciences Publication Activity Database

    Dragoescu, D.; Teodorescu, M.; Barhala, A.; Wichterle, Ivan

    2003-01-01

    Roč. 68, č. 7 (2003), s. 1175-1192 ISSN 0010-0765 R&D Projects: GA ČR GA104/03/1555 Institutional research plan: CEZ:AV0Z4072921 Keywords : group contribution model * thermodynamics * chloroalkanes-linear ketones Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.041, year: 2003

  10. Property Enhancement Effects of Side-Chain-Type Naphthalene-Based Sulfonated Poly(arylene ether ketone) on Nafion Composite Membranes for Direct Methanol Fuel Cells.

    Science.gov (United States)

    Wang, Baolong; Hong, Lihua; Li, Yunfeng; Zhao, Liang; Zhao, Chengji; Na, Hui

    2017-09-20

    Nafion/SNPAEK-x composite membranes were prepared by blending raw Nafion and synthesized side-chain-type naphthalene-based sulfonated poly(arylene ether ketone) with a sulfonation degree of 1.35 (SNPAEK-1.35). The incorporation of SNPAEK-1.35 polymer with ion exchange capacity (IEC) of 2.01 mequiv·g -1 into a Nafion matrix has the property enhancement effects, such as increasing IECs, improving proton conductivity, enhancing mechanical properties, reducing methanol crossover, and improving single cell performance of Nafion. Morphology studies show that Nafion/SNPAEK-x composite membranes exhibit a well-defined microphase separation structure depending on the contents of SNPAEK-1.35 polymer. Among them, Nafion/SNPAEK-7.5% with a bicontinuous morphology exhibits the best comprehensive properties. For example, it shows the highest proton conductivities of 0.092 S cm -1 at 25 °C and 0.163 S cm -1 at 80 °C, which are higher than those of recast Nafion with 0.073 S cm -1 at 25 °C and 0.133 S cm -1 at 80 °C, respectively. Nafion/SNPAEK-5.0% and Nafion/SNPAEK-7.5% membranes display an open circuit voltage of 0.77 V and a maximum power density of 47 mW cm -2 at 80 °C, which are much higher than those of recast Nafion of 0.63 V and 24 mW cm -2 under the same conditions. Nafion/SNPAEK-5.0% membrane also has comparable tensile strength (12.7 MPa) to recast Nafion (13.7 MPa), and higher Young's modulus (330 MPa) than that of recast Nafion (240 MPa). By combining their high proton conductivities, comparable mechanical properties, and good single cell performance, Nafion/SNPAEK-x composite membranes have the potential to be polymer electrolyte materials for direct methanol fuel cell applications.

  11. Relative utilization of fatty acids for synthesis of ketone bodies and complex lipids in the liver of developing rats.

    Science.gov (United States)

    Yeh, Y Y; Streuli, V L; Zee, P

    1977-04-01

    The regulation of hepatic ketogenesis, as related to the metabolism of fatty acids through oxidative and synthetic pathways, was studied in developing rats. [1-14C] palmitate was used as a substrate to determine the proportions of free fatty acids utilized for the production of ketone bodies, CO2 and complex lipids. Similar developmental patterns of hepatic ketogenesis were obtained by measuring the production of either [14C] acetoacetate from exogenous [1-14C] palmitate or the sum of unlabeled acetoacetate and beta-hydroxybutyrate from endogenous fatty acids. The production of total ketone bodies was low during the late fetal stage and at birth, but increased rapidly to a miximum value within 24 hr after brith. The maximal ketogenic capacity appeared to be maintained for the first 10 days of life. 14CO2 production from [1-14C] palmitate increased by two- to fourfold during the suckling period, from its initial low rate seen at birth. The capacity for synthesis of total complex lipids was low at birth and had increased by day 3 to a maximal value, which was comparable to that of adult fed rats. The high lipogenic capacity lasted throughout the remaining suckling period. When ketogenesis was inhibited by 4-pentenoic acid, the rate of synthesis of complex lipids did not increase despite an increase in unutilized fatty acids. During the mid-suckling period, approximately equal amounts of [1-14C] palmitate were utilized for the synthesis of ketone plus CO2 and for complex lipid synthesis. By contrast, in adult fed rats, the incorporation of fatty acids into complex lipids was four times higher than that of ketone plus CO2. These observations suggest that stimulated hepatic ketogenesis in suckling rats results from the rapid oxidation of fatty acids and consequent increased production of acetyl CoA, but not from impaired capacity for synthesis of complex lipids.

  12. Kinetic Investigation of the Electrochemical Oxidation of Bis(benzene)chromium(0) in Diethyl ketone / N,N-Dimethylformamide

    Czech Academy of Sciences Publication Activity Database

    Tsierkezos, Nikos

    2008-01-01

    Roč. 37, č. 10 (2008), s. 1437-1448 ISSN 0095-9782 Institutional research plan: CEZ:AV0Z40550506 Keywords : bis(benzene)chromium(0) * cyclic voltammetry * diethyl ketone * half-wawe potential * N,N-dimethylformamide Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.241, year: 2008

  13. Facile and Highly Diastereoselective Synthesis of syn- and cis-1,2-Diol Derivatives from Protected alpha-Hydroxy Ketones

    Czech Academy of Sciences Publication Activity Database

    Jahn, Emanuela; Smrček, Jakub; Pohl, Radek; Císařová, I.; Jones, P. G.; Jahn, Ullrich

    2015-01-01

    Roč. 2015, č. 35 (2015), s. 7785-7798 ISSN 1434-193X Grant - others:COST(XE) CM1201 Institutional support: RVO:61388963 Keywords : synthetic methods * reduction * diastereoselectivity * diols * ketones Subject RIV: CC - Organic Chemistry Impact factor: 3.068, year: 2015

  14. An easy and efficient method to produce {gamma}-amino alcohols by reduction of {beta}-enamino ketones

    Energy Technology Data Exchange (ETDEWEB)

    Harris, Maria Ines N.C.; Braga, Antonio C.H. [Universidade Estadual de Campinas, SP (Brazil). Inst. de Quimica]. E-mail: herrera@iqm.unicamp.br

    2004-12-01

    Reduction of {beta}-enamino ketones 2 with NaBH{sub 4} in glacial acetic acid gave {gamma}-amino alcohols 1 in 70% to 98% yield with diastereomeric excesses, preferentially the syn product, from 44% to 90%. The stereochemistry of these compounds was confirmed by analysis of their tetrahydro-1,3-oxazine derivatives 3. (author)

  15. Activation of aqueous hydrogen peroxide for non-catalyzed dihydroperoxidation of ketones by azeotropic removal of water.

    Science.gov (United States)

    Starkl Renar, K; Pečar, S; Iskra, J

    2015-09-28

    Cyclic and acyclic ketones were selectively converted to gem-dihydroperoxides in 72-99% yield with 30% aq. hydrogen peroxide by azeotropic distillation of water from the reaction mixture without any catalyst. The reactions were more selective than with 100% H2O2 and due to neutral conditions also less stable products could be obtained.

  16. Redox-active on-surface polymerization of single-site divalent cations from pure metals by a ketone-functionalized phenanthroline

    Energy Technology Data Exchange (ETDEWEB)

    Skomski, Daniel; Tempas, Christopher D.; Bukowski, Gregory S.; Smith, Kevin A.; Tait, Steven L., E-mail: tait@indiana.edu [Department of Chemistry, Indiana University, 800 E. Kirkwood Ave., Bloomington, Indiana 47405 (United States)

    2015-03-14

    Metallic iron, chromium, or platinum mixing with a ketone-functionalized phenanthroline ligand on a single crystal gold surface demonstrates redox activity to a well-defined oxidation state and assembly into thermally stable, one dimensional, polymeric chains. The diverging ligand geometry incorporates redox-active sub-units and bi-dentate binding sites. The gold surface provides a stable adsorption environment and directs growth of the polymeric chains, but is inert with regard to the redox chemistry. These systems are characterized by scanning tunnelling microscopy, non-contact atomic force microscopy, and X-ray photoelectron spectroscopy under ultra-high vacuum conditions. The relative propensity of the metals to interact with the ketone group is examined, and it is found that Fe and Cr more readily complex the ligand than Pt. The formation and stabilization of well-defined transition metal single-sites at surfaces may open new routes to achieve higher selectivity in heterogeneous catalysts.

  17. [Determination of nitroaromatics and cyclo ketones in sea water' by gas chromatography coupled with activated carbon fiber solid-phase micro-extraction].

    Science.gov (United States)

    Ma, Hanna; Zhu, Mengya; Wang, Yalin; Sun, Tonghua; Jia, Jinping

    2009-05-01

    A gas chromatography (GC) coupled with solid-phase micro-extraction using a special activated carbon fiber (ACF) was developed for the analysis of 6 nitroaromatics and cyclic ketones, nitrobenzene (NB), 1,3-dinitrobenzene (1,3-DNB), 2,4-dinitrotoluene (2,4-DNT), 2,6-dinitrotoluene (2,6-DNT), isophorone, 1,4-naphthaquinone (1,4-NPQ), in sea water samples. The sample was extracted for 30 min under saturation of NaCl at 1,500 r/min and 60 degrees C in head space. The desorption was performance at 280 degrees C for 2 min. The linear ranges were from 0.01 to 400 microg/L. The limits of detection (LODs) were 1.4 - 3.2 ng/L. This method has been successfully applied to the determination of nitroaromatics and cyclic ketones in the sea water samples obtained from East China Sea. The concentrations of nitrobenzene, 1,3-dinitrobenzene and 2,6-dinitrotoluene in the sea water sample were 0.756, 0.944, 0.890 microg/L, respectively. The recoveries were 86.3% - 101.8% with the relative standard deviations (RSDs) of 3.7% -7.8%. The method is suitable for analyzing nitroaromatics and cyclic ketones at low concentration levels in sea water samples.

  18. Synergic extraction of europium (III) by TTA and selected carbinols or ketons in carbontetrachloride

    International Nuclear Information System (INIS)

    El-Naggar, H.A.; El-Madany, S.

    1988-01-01

    The extraction of Eu(III) by HTTA dissolved in CCl 4 has been carried from acid-perchlorate and acid-acetate solutions. Some oxygen containing solvents have been added to the chelate in extraction of the acetate complex of Eu(III). The reaction mechanisms and the equilibrium constants are calculated for the different extracted species. The data obtained are discussed in the light of the structure of carbinols and ketones used as adducts

  19. Highly enantio- and diastereoselective allylic alkylation of Morita-Baylis-Hillman carbonates with allyl ketones

    KAUST Repository

    Tong, Guanghu

    2013-05-17

    The asymmetric allylic alkylation of Morita-Baylis-Hillman (MBH) carbonates with allyl ketones has been developed. The α-regioselective alkylation adducts, containing a hexa-1,5-diene framework with important synthetic value, were achieved in up to 83% yield, >99% ee, and 50:1 dr by using a commercially available Cinchona alkaloid as the catalyst. From the allylic alkylation adduct, a cyclohexene bearing two adjacent chiral centers was readily prepared. © 2013 American Chemical Society.

  20. Highly enantio- and diastereoselective allylic alkylation of Morita-Baylis-Hillman carbonates with allyl ketones

    KAUST Repository

    Tong, Guanghu; Zhu, Bo; Lee, Richmond; Yang, Wenguo; Tan, Davin; Yang, Caiyun; Han, Zhiqiang; Yan, Lin; Huang, Kuo-Wei; Jiang, Zhiyong

    2013-01-01

    The asymmetric allylic alkylation of Morita-Baylis-Hillman (MBH) carbonates with allyl ketones has been developed. The α-regioselective alkylation adducts, containing a hexa-1,5-diene framework with important synthetic value, were achieved in up to 83% yield, >99% ee, and 50:1 dr by using a commercially available Cinchona alkaloid as the catalyst. From the allylic alkylation adduct, a cyclohexene bearing two adjacent chiral centers was readily prepared. © 2013 American Chemical Society.

  1. Additional conformer observed in the microwave spectrum of methyl vinyl ketone

    Science.gov (United States)

    Wilcox, David S.; Shirar, Amanda J.; Williams, Owen L.; Dian, Brian C.

    2011-05-01

    A chirped-pulse Fourier transform microwave spectrometer was used to record the rotational spectrum of methyl vinyl ketone (MVK, 3-butene-2-one). Two stable conformations were identified: the previously documented antiperiplanar (ap) conformer and synperiplanar (sp), which is reported for the first time in this microwave study. Methyl torsional analysis resulted in V3 barrier heights of 433.8(1) and 376.6(2) cm-1 for ap- and sp-MVK, respectively. Heavy atom isotopic species of both conformers were detected in natural abundance allowing bond lengths and angles of the molecular frames to be calculated through Kraitchman analysis. A comparison with ab initio calculations is included.

  2. Near Infrared Spectroscopic Identification of Alkyl Aromatic Esters and Phenyl Ketones

    Science.gov (United States)

    Nelyubov, D. V.; Vazhenin, D. A.; Kudriavtsev, A. A.; Buzolina, A. Yu.

    2018-03-01

    Bands characterizing the content of carbon atoms in alkyl (7177-7205 cm-1) and phenyl structural fragments (9175-9192 cm-1) in organic molecules were revealed by studying the near infrared spectra of such compounds. The optical density at the maxima of these absorption bands was shown to depend strongly on the fraction of carbon atoms in the corresponding fragments. The developed models proved to be adequate for determining the fraction of carbon atoms in alkyl aromatic esters and phenyl ketones. The feasibility of modeling the molecular structure of alkyl aromatic esters using regression models was demonstrated for the product of the condensation of oleic acid and benzyl alcohol.

  3. Amin-substituierte Spiroacetale von Grundmanns Keton als neuartige Inhibitoren der humanen ∆8,7-Sterolisomerase

    OpenAIRE

    Krojer, Melanie

    2011-01-01

    Die Cholesterolbiosynthese ist ein wichtiger Ansatzpunkt für die Kontrolle und Manipulation von biochemischen Vorgängen in Wirbeltieren und damit für die Entwicklung therapeutischer Wirkstoffe. Mit der Cholesterolbiosynthese assoziierte Krankheiten sind beispielsweise Hypercholesterinämie, die Alzheimer Erkrankung oder die Creutzfeld-Jakob Krankheit. Im Rahmen dieser Arbeit konnten ausgehend von Grundmanns Keton und alpha-Tetralon verschiedene Amin-substituierte Spiroacetale dargestellt ...

  4. Regulation of Ketone Body Metabolism and the Role of PPARα

    Directory of Open Access Journals (Sweden)

    Maja Grabacka

    2016-12-01

    Full Text Available Ketogenesis and ketolysis are central metabolic processes activated during the response to fasting. Ketogenesis is regulated in multiple stages, and a nuclear receptor peroxisome proliferator activated receptor α (PPARα is one of the key transcription factors taking part in this regulation. PPARα is an important element in the metabolic network, where it participates in signaling driven by the main nutrient sensors, such as AMP-activated protein kinase (AMPK, PPARγ coactivator 1α (PGC-1α, and mammalian (mechanistic target of rapamycin (mTOR and induces hormonal mediators, such as fibroblast growth factor 21 (FGF21. This work describes the regulation of ketogenesis and ketolysis in normal and malignant cells and briefly summarizes the positive effects of ketone bodies in various neuropathologic conditions.

  5. Anxiolytic Effect of Exogenous Ketone Supplementation Is Abolished by Adenosine A1 Receptor Inhibition in Wistar Albino Glaxo/Rijswijk Rats.

    Science.gov (United States)

    Kovács, Zsolt; D'Agostino, Dominic P; Ari, Csilla

    2018-01-01

    Anxiety disorders are one of the most common mental health problems worldwide, but the exact pathophysiology remains largely unknown. It has been demonstrated previously that administration of exogenous ketone supplement KSMCT (ketone salt/KS + medium chain triglyceride/MCT oil) by intragastric gavage for 7 days decreased the anxiety level in genetically absence epileptic Wistar Albino Glaxo/Rijswijk (WAG/Rij) rats. To investigate the potential role of the adenosinergic system in the pathomechanism of anxiety we tested whether the inhibition of adenosine A 1 receptors (A 1 Rs) influence the anxiolytic effect of the exogenous ketone supplement. As A 1 Rs may mediate such an effect, in the present study we used a specific A 1 R antagonist, DPCPX (1,3-dipropyl-8-cyclopentylxanthine) to test whether it modulates the anxiolytic effect of sub-chronically (7 days) applied KSMCT in the previously tested animal model by using elevated plus maze (EPM) test. We administered KSMCT (2.5 g/kg/day) alone by intragastric gavage and in combination with intraperitoneally (i.p.) injected of DPCPX in two doses (lower: 0.15 mg/kg, higher: 0.25 mg/kg). Control groups represented i.p saline and water gavage with or without i.p. DPCPX administration (2.5 g/kg/day). After treatments, the level of blood glucose and beta-hydroxybutyrate (βHB), as well as body weight were recorded. KSMCT alone significantly increased the time spent in the open arms and decreased the time spent in the closed arms, supporting our previous results. Injection of lower dose of DPCPX decreased, while higher dose of DPCPX abolished the effect of KSMCT administration on EPM. Blood βHB levels were significantly increased after administration of KSMCT, while DPCPX did not change the KSMCT induced increase in blood βHB levels. These results demonstrate that A 1 R inhibition modified (decreased) the anti-anxiety effect of KSMCT administration implying that the adenosinergic system, likely via A 1 Rs, may modulate the

  6. Differential utilization of ketone bodies by neurons and glioma cell lines: a rationale for ketogenic diet as experimental glioma therapy

    Directory of Open Access Journals (Sweden)

    Mueller-Klieser Wolfgang

    2011-07-01

    Full Text Available Abstract Background Even in the presence of oxygen, malignant cells often highly depend on glycolysis for energy generation, a phenomenon known as the Warburg effect. One strategy targeting this metabolic phenotype is glucose restriction by administration of a high-fat, low-carbohydrate (ketogenic diet. Under these conditions, ketone bodies are generated serving as an important energy source at least for non-transformed cells. Methods To investigate whether a ketogenic diet might selectively impair energy metabolism in tumor cells, we characterized in vitro effects of the principle ketone body 3-hydroxybutyrate in rat hippocampal neurons and five glioma cell lines. In vivo, a non-calorie-restricted ketogenic diet was examined in an orthotopic xenograft glioma mouse model. Results The ketone body metabolizing enzymes 3-hydroxybutyrate dehydrogenase 1 and 2 (BDH1 and 2, 3-oxoacid-CoA transferase 1 (OXCT1 and acetyl-CoA acetyltransferase 1 (ACAT1 were expressed at the mRNA and protein level in all glioma cell lines. However, no activation of the hypoxia-inducible factor-1α (HIF-1α pathway was observed in glioma cells, consistent with the absence of substantial 3-hydroxybutyrate metabolism and subsequent accumulation of succinate. Further, 3-hydroxybutyrate rescued hippocampal neurons from glucose withdrawal-induced cell death but did not protect glioma cell lines. In hypoxia, mRNA expression of OXCT1, ACAT1, BDH1 and 2 was downregulated. In vivo, the ketogenic diet led to a robust increase of blood 3-hydroxybutyrate, but did not alter blood glucose levels or improve survival. Conclusion In summary, glioma cells are incapable of compensating for glucose restriction by metabolizing ketone bodies in vitro, suggesting a potential disadvantage of tumor cells compared to normal cells under a carbohydrate-restricted ketogenic diet. Further investigations are necessary to identify co-treatment modalities, e.g. glycolysis inhibitors or antiangiogenic

  7. Anxiolytic Effect of Exogenous Ketone Supplementation Is Abolished by Adenosine A1 Receptor Inhibition in Wistar Albino Glaxo/Rijswijk Rats

    Directory of Open Access Journals (Sweden)

    Zsolt Kovács

    2018-02-01

    Full Text Available Anxiety disorders are one of the most common mental health problems worldwide, but the exact pathophysiology remains largely unknown. It has been demonstrated previously that administration of exogenous ketone supplement KSMCT (ketone salt/KS + medium chain triglyceride/MCT oil by intragastric gavage for 7 days decreased the anxiety level in genetically absence epileptic Wistar Albino Glaxo/Rijswijk (WAG/Rij rats. To investigate the potential role of the adenosinergic system in the pathomechanism of anxiety we tested whether the inhibition of adenosine A1 receptors (A1Rs influence the anxiolytic effect of the exogenous ketone supplement. As A1Rs may mediate such an effect, in the present study we used a specific A1R antagonist, DPCPX (1,3-dipropyl-8-cyclopentylxanthine to test whether it modulates the anxiolytic effect of sub-chronically (7 days applied KSMCT in the previously tested animal model by using elevated plus maze (EPM test. We administered KSMCT (2.5 g/kg/day alone by intragastric gavage and in combination with intraperitoneally (i.p. injected of DPCPX in two doses (lower: 0.15 mg/kg, higher: 0.25 mg/kg. Control groups represented i.p saline and water gavage with or without i.p. DPCPX administration (2.5 g/kg/day. After treatments, the level of blood glucose and beta-hydroxybutyrate (βHB, as well as body weight were recorded. KSMCT alone significantly increased the time spent in the open arms and decreased the time spent in the closed arms, supporting our previous results. Injection of lower dose of DPCPX decreased, while higher dose of DPCPX abolished the effect of KSMCT administration on EPM. Blood βHB levels were significantly increased after administration of KSMCT, while DPCPX did not change the KSMCT induced increase in blood βHB levels. These results demonstrate that A1R inhibition modified (decreased the anti-anxiety effect of KSMCT administration implying that the adenosinergic system, likely via A1Rs, may modulate the

  8. Cerebral ketone body metabolism.

    Science.gov (United States)

    Morris, A A M

    2005-01-01

    Ketone bodies (KBs) are an important source of energy for the brain. During the neonatal period, they are also precursors for the synthesis of lipids (especially cholesterol) and amino acids. The rate of cerebral KB metabolism depends primarily on the concentration in blood; high concentrations occur during fasting and on a high-fat diet. Cerebral KB metabolism is also regulated by the permeability of the blood-brain barrier (BBB), which depends on the abundance of monocarboxylic acid transporters (MCT1). The BBB's permeability to KBs increases with fasting in humans. In rats, permeability increases during the suckling period, but human neonates have not been studied. Monocarboxylic acid transporters are also present in the plasma membranes of neurons and glia but their role in regulating KB metabolism is uncertain. Finally, the rate of cerebral KB metabolism depends on the activities of the relevant enzymes in brain. The activities vary with age in rats, but reliable results are not available for humans. Cerebral KB metabolism in humans differs from that in the rat in several respects. During fasting, for example, KBs supply more of the brain's energy in humans than in the rat. Conversely, KBs are probably used more extensively in the brain of suckling rats than in human neonates. These differences complicate the interpretation of rodent studies. Most patients with inborn errors of ketogenesis develop normally, suggesting that the only essential role for KBs is as an alternative fuel during illness or prolonged fasting. On the other hand, in HMG-CoA lyase deficiency, imaging generally shows asymptomatic white-matter abnormalities. The ability of KBs to act as an alternative fuel explains the effectiveness of the ketogenic diet in GLUT1 deficiency, but its effectiveness in epilepsy remains unexplained.

  9. Reaction Engineering of Biocatalytic Enantioselective Reduction: A Case Study for Aliphatic Ketones

    DEFF Research Database (Denmark)

    Leuchs, Susanne; Lima-Ramos, Joana; Greiner, Lasse

    2013-01-01

    , 15, 167–176.). In the present work, the process metrics of the ketone reduction were calculated. A cost analysis revealed that the enzyme costs are negligible, but the cost for nicotinamide cofactor NADP+ is dominating the overall cost of the chemical raw material followed by the ionic liquid (TEGO...... IL K5) used as solubiliser and the buffer. The overall cost of chemicals was €148/kgproduct. To assess the environmental impact of the process, the E-factor (kgwaste/kgproduct) 132 and the process mass intensity 133 (PMI, kgsubstrate/kgproduct) were calculated. A process model based on initial rate...

  10. A general approach to intermolecular carbonylation of arene C-H bonds to ketones through catalytic aroyl triflate formation

    Science.gov (United States)

    Garrison Kinney, R.; Tjutrins, Jevgenijs; Torres, Gerardo M.; Liu, Nina Jiabao; Kulkarni, Omkar; Arndtsen, Bruce A.

    2018-02-01

    The development of metal-catalysed methods to functionalize inert C-H bonds has become a dominant research theme in the past decade as an approach to efficient synthesis. However, the incorporation of carbon monoxide into such reactions to form valuable ketones has to date proved a challenge, despite its potential as a straightforward and green alternative to Friedel-Crafts reactions. Here we describe a new approach to palladium-catalysed C-H bond functionalization in which carbon monoxide is used to drive the generation of high-energy electrophiles. This offers a method to couple the useful features of metal-catalysed C-H functionalization (stable and available reagents) and electrophilic acylations (broad scope and selectivity), and synthesize ketones simply from aryl iodides, CO and arenes. Notably, the reaction proceeds in an intermolecular fashion, without directing groups and at very low palladium-catalyst loadings. Mechanistic studies show that the reaction proceeds through the catalytic build-up of potent aroyl triflate electrophiles.

  11. Unusual selectivity-determining factors in the phosphine-free Heck arylation of allyl ethers

    DEFF Research Database (Denmark)

    Ambrogio, I.; Fabrizi, G.; Cacchi, S.

    2008-01-01

    The Heck reaction of aryl iodides and bromides with allyl ethers has been investigated. Using phosphinefree Pd(OAc)(2) in DNIF at 90 degrees C in the presence of Bu4NOAc, the reaction gave cinnamyl derivatives, usually in good to high yields, with a wide range of aryl halides. The reaction...... tolerates a variety of functional groups, including ether, amide, alcohol, aldehyde, ketone, ester, cyano, carboxylic acid, and nitro groups. Ortho-substituted arylating agents afforded moderate yields in some cases, though good to high yields were obtained with o-iodotoluene, iodovanillin, and 1...

  12. Synthesis and research of derived oxazol-5-ones based on α,β – unsaturated ketones

    Directory of Open Access Journals (Sweden)

    Сергей Александрович Петров

    2015-11-01

    Full Text Available The article deals with the production of new fluorescent dyes derived oxazol-5-ones based on α, β-unsaturated ketones, as well as confirmation of the structure of the compounds obtained using NMR and IR spectroscopy. The dyes of this series are relevant because one of the important practical problems in organic chemistry and chemical technology is currently seeking new fluorescent dyes for dyeing polyester materials and polymers

  13. Metabolism of fatty acids and the levels of ketone bodies in the livers of pyridoxine-deficient rats

    International Nuclear Information System (INIS)

    Gomikawa, Shuzo; Okada, Mitsuko

    1978-01-01

    Lipid metabolism was examined in rats fed a high-protein pyridoxine-deficient diet, and their livers were found to contain large amounts of lipids, mainly in the forms of triglycerides and cholesteryl ester. The contents of ketone bodies in the livers of pyridoxine-deficient and the control rats were similar. Their NAD + /NADH ratios, calculated from the amounts of ketone bodies, were also similar in pyridoxine-deficient and control groups when the animals were fed, but the ratio in pyridoxine-deficient rats was lower than that of control rats when the animals were starved. After injection of 14 C-linoleic acid, the amounts of expired 14 CO 2 in pyridoxine-deficient and control rats were similar. The pattern of incorporations of 14 C-linoleic acid into various lipid components of the livers were examined; incorporation into the phospholipid fraction was similar in control and deficient rats, but the incorporation into the triglyceride fraction was slower, and the incorporation into cholesterol was faster in deficient animals than in controls. (auth.)

  14. Asymmetric reduction of ketones and β-keto esters by (S)-1-phenylethanol dehydrogenase from denitrifying bacterium Aromatoleum aromaticum.

    Science.gov (United States)

    Dudzik, A; Snoch, W; Borowiecki, P; Opalinska-Piskorz, J; Witko, M; Heider, J; Szaleniec, M

    2015-06-01

    Enzyme-catalyzed enantioselective reductions of ketones and keto esters have become popular for the production of homochiral building blocks which are valuable synthons for the preparation of biologically active compounds at industrial scale. Among many kinds of biocatalysts, dehydrogenases/reductases from various microorganisms have been used to prepare optically pure enantiomers from carbonyl compounds. (S)-1-phenylethanol dehydrogenase (PEDH) was found in the denitrifying bacterium Aromatoleum aromaticum (strain EbN1) and belongs to the short-chain dehydrogenase/reductase family. It catalyzes the stereospecific oxidation of (S)-1-phenylethanol to acetophenone during anaerobic ethylbenzene mineralization, but also the reverse reaction, i.e., NADH-dependent enantioselective reduction of acetophenone to (S)-1-phenylethanol. In this work, we present the application of PEDH for asymmetric reduction of 42 prochiral ketones and 11 β-keto esters to enantiopure secondary alcohols. The high enantioselectivity of the reaction is explained by docking experiments and analysis of the interaction and binding energies of the theoretical enzyme-substrate complexes leading to the respective (S)- or (R)-alcohols. The conversions were carried out in a batch reactor using Escherichia coli cells with heterologously produced PEDH as whole-cell catalysts and isopropanol as reaction solvent and cosubstrate for NADH recovery. Ketones were converted to the respective secondary alcohols with excellent enantiomeric excesses and high productivities. Moreover, the progress of product formation was studied for nine para-substituted acetophenone derivatives and described by neural network models, which allow to predict reactor behavior and provides insight on enzyme reactivity. Finally, equilibrium constants for conversion of these substrates were derived from the progress curves of the reactions. The obtained values matched very well with theoretical predictions.

  15. Direct Synthesis of Renewable Dodecanol and Dodecane with Methyl Isobutyl Ketone over Dual-Bed Catalyst Systems.

    Science.gov (United States)

    Sheng, Xueru; Li, Ning; Li, Guangyi; Wang, Wentao; Wang, Aiqin; Cong, Yu; Wang, Xiaodong; Zhang, Tao

    2017-03-09

    For the first time, we demonstrated two integrated processes for the direct synthesis of dodecanol or 2,4,8-trimethylnonane (a jet fuel range C 12 -branched alkane) using methyl isobutyl ketone (MIBK) that can be derived from lignocellulose. The reactions were carried out in dual-bed continuous flow reactors. In the first bed, MIBK was selectively converted to a mixture of C 12 alcohol and ketone. Over the Pd-modified magnesium- aluminium hydrotalcite (Pd-MgAl-HT) catalyst, a high total carbon yield (73.0 %) of C 12 oxygenates can be achieved under mild conditions. In the second bed, the C 12 oxygenates generated in the first bed were hydrogenated to dodecanol over a Ru/C catalyst or hydrodeoxygenated to 2,4,8-trimethylnonane over a Cu/SiO 2 catalyst. The as-obtained dodecanol can be used as feedstock in the production of sodium dodecylsulfate (SDS) and sodium dodecyl benzene sulfonate (SDBS), which are widely used as surfactants or detergents. The asobtained 2,4,8-trimethylnonane can be blended into conventional jet fuel without hydroisomerization. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Strigolactone analogs derived from ketones using a working model for germination stimulants as a blueprint.

    Science.gov (United States)

    Mwakaboko, Alinanuswe S; Zwanenburg, Binne

    2011-04-01

    Strigolactones are important signaling compounds in the plant kingdom. Here we focus on their germination stimulatory effect on seeds of the parasitic weeds Striga and Orobanche spp. and more particularly on the design and synthesis of new active strigolactone analogs derived from simple cyclic ketones. New analogs derived from 1-indanone, 1-tetralone, cyclopentanone, cyclohexanone and a series of substituted cyclohexanones (including carvone and pulegone) are prepared by formylation of the ketones with ethyl formate followed by coupling with a halo butenolide. Both enantiomers of the analog derived from 1-tetralone have been prepared by employing a homochiral synthon for the coupling reaction. For three other strigolactone analogs the antipodes have been obtained by chromatography on a chiral column. All analogs have an appreciable germinating activity towards seeds of Striga hermomonthica and Orobanche crenata and O. cernua. Stereoisomers having the same configuration at the D-ring as in naturally occurring strigol have a higher stimulatory effect than the corresponding antipodes. The analogs obtained from 1-indanone and 1-tetralone have an activity comparable with that of the well known stimulant GR 24. Analogs derived from 2-phenyl-cylohexanone, carvone and pulegone also have a good germinating response. The results show that the working model for designing new bioactive strigolactones is applicable.

  17. Ketone-body utilization and lipid synthesis by developing rat brain—a comparison between in vivo and in vitro experiments

    NARCIS (Netherlands)

    Klein, W.; Lopes-Cardozo, M.

    1984-01-01

    The distribution of ketone bodies between oxidation and lipid synthesis was analysed in homogenates of developing rat brain. The capacity for lipid synthesis of homogenized or minced brain preparations was compared with rates of lipid synthesis in vivo, assessed by incorporation of ³H from

  18. Convenient synthesis of non-conjugated alkynyl ketones from keto aldehydes by a chemoselective one-pot nonaflation-base catalyzed elimination sequence

    Czech Academy of Sciences Publication Activity Database

    Boltukhina, Ekaterina; Sheshenev, Andrey; Lyapkalo, Ilya

    2011-01-01

    Roč. 67, č. 30 (2011), s. 5382-5388 ISSN 0040-4020 Institutional research plan: CEZ:AV0Z40550506 Keywords : nonaflation * alkynyl ketones * cross-coupling * elimination * phosphazene base Subject RIV: CC - Organic Chemistry Impact factor: 3.025, year: 2011

  19. Clinical utility of Abbott Precision Xceed Pro® ketone meter in diabetic patients.

    Science.gov (United States)

    Yu, Hoi-Ying Elsie; Agus, Michael; Kellogg, Mark D

    2011-11-01

    Diagnosis and management of diabetic ketoacidosis (DKA) often rely on the measurement of urine ketones along with blood glucose, anion gap, and pH. These values, however, do not reliably reflect the severity of ketoacidosis. The Abbott Precision Xceed Pro® meter is an FDA-approved device that quantitatively measures β-hydroxybutyrate (BOH) in whole blood. This study was undertaken to determine whether the ketone meter meets the analytical criteria to aid DKA diagnosis and management in the hospital. 54 heparinized venous whole blood BOH concentrations from 27 diabetic patients were measured by the Abbott meter, and compared with the plasma BOH concentrations measured with Stanbio reagent (reference method). Measurements were done in the hospital central laboratory. Of the 54 pairs of specimens analyzed, 17 pairs displayed a difference of >15% between the two methods. Nearly all discrepant points occurred when BOH >5 mmol/L (reference method). Linearity evaluation revealed that the meter is not linear from 0.0 to 8.0 mmol/L, contrary to the claim by the manufacturer. Further, we identified acetoacetate, a metabolite commonly present in DKA patients, as a potential interfering substance for the meter BOH measurement. BOH measurements by the Abbott meter up to 3 mmol/L correlate well with the reference method, but become discrepant above that point. While this characteristic may be useful in the diagnosis of DKA, it may not allow clinicians to serially follow the response to therapy in hospitalized DKA patients with BOH values greater than 5 mmol/L (reference method). © 2011 John Wiley & Sons A/S.

  20. Microbial transformation of sesquitepenoid ketone, (+ Nootkatone by Macrophomia phaseolina

    Directory of Open Access Journals (Sweden)

    Vajira P. Bulugahapitiya

    2009-09-01

    Full Text Available Microbial transformation is an effective tool for the structural modification of bioactive natural and synthetic compounds leading to synthesis of more potent derivatives. Its application in asymmetric synthesis is increasing due to its versatility and ease. This article presents biotransformation of sesquiterpenoid ketone, (+-Nootkatone (1 by M. phaseolina, a plant pathogenic fungus. The transformation afforded four main compounds. They were determined to be 1:6 stereoisomeric mixture of 11,12-dihydroxy- 11,12-dihydronootkatone (2, 3, 13-hydroxynootkaone (4 and 12-hydroxy-11,12- dihydronootkatone (5 with the help of EI-MS, HR-FAB-MS(pos, HR-FAB-MS (neg, 1H-NMR, 13CNMR, COSY-450, NOESY, HMBC, HMQC spectral analyses. The compound 4 was firstchandana- amarasingha-samayawardana-avifauna-Bundala-1.1-28.07 identified as Nootkatone metabolites in this study. Further, the parental compound (1 and the transformed products 4 and 5 were found to be present significant antiprotozoal activity.

  1. Determination of acetone and methyl ethyl ketone in water

    Science.gov (United States)

    Tai, D.Y.

    1978-01-01

    Analytical procedures for the determination of acetone and methyl ethyl ketone in water samples were developed. Concentrations in the milligram-per-liter range were determined by injecting an aqueous sample into the analysis system through an injection port, trapping the organics on Tenax-GC at room temperature, and thermally desorbing the organics into a gas chromatograph with a flame ionization detector for analysis. Concentrations in the microgram-per-liter range were determined by sweeping the headspace vapors over a water sample at 50C, trapping on Tenax-GC, and thermally desorbing the organics into the gas chromatograph. The precision for two operators of the milligram-per-liter concentration procedure, expressed as the coefficient of variation, was generally less than 2 percent for concentrations ranging from 16 to 160 milligrams per liter. The precision from two operators of the microgram-per-liter concentration procedure was between 2 and 4 percent for concentrations of 20 and 60 micrograms per liter. (Woodard-USGS)

  2. N-Heterocyclic Carbene-Catalyzed Olefination of Aldehydes with Vinyliodonium Salts To Generate α,β-Unsaturated Ketones.

    Science.gov (United States)

    Rajkiewicz, Adam A; Kalek, Marcin

    2018-04-06

    An organocatalyzed metal-free, direct olefination of aldehydes with vinyliodonium salts has been achieved by an N-heterocyclic carbene-promoted C-H bond activation. The reaction proceeds under very mild conditions, delivering a range of (hetero)aryl-vinyl ketones in good yields. The retention of the double bond configuration is uniformly observed, and the application of 2-methoxyphenyl auxiliary group in iodonium salts secures a complete selectivity of the vinyl transfer.

  3. Perspectives on the metabolic management of epilepsy through dietary reduction of glucose and elevation of ketone bodies.

    Science.gov (United States)

    Greene, Amanda E; Todorova, Mariana T; Seyfried, Thomas N

    2003-08-01

    Brain cells are metabolically flexible because they can derive energy from both glucose and ketone bodies (acetoacetate and beta-hydroxybutyrate). Metabolic control theory applies principles of bioenergetics and genome flexibility to the management of complex phenotypic traits. Epilepsy is a complex brain disorder involving excessive, synchronous, abnormal electrical firing patterns of neurons. We propose that many epilepsies with varied etiologies may ultimately involve disruptions of brain energy homeostasis and are potentially manageable through principles of metabolic control theory. This control involves moderate shifts in the availability of brain energy metabolites (glucose and ketone bodies) that alter energy metabolism through glycolysis and the tricarboxylic acid cycle, respectively. These shifts produce adjustments in gene-linked metabolic networks that manage or control the seizure disorder despite the continued presence of the inherited or acquired factors responsible for the epilepsy. This hypothesis is supported by information on the management of seizures with diets including fasting, the ketogenic diet and caloric restriction. A better understanding of the compensatory genetic and neurochemical networks of brain energy metabolism may produce novel antiepileptic therapies that are more effective and biologically friendly than those currently available.

  4. EFSA ; Scientific Opinion on Flavouring Group Evaluation 63, Revision 1 (FGE.63Rev1): Consideration of aliphatic secondary alcohols, ketones and related esters evaluated by JECFA (59th and 69th meetings) structurally related to saturated and unsaturated aliphatic secondary alcohols, ketones

    DEFF Research Database (Denmark)

    Larsen, John Christian; Nørby, Karin Kristiane; Beltoft, Vibe Meister

    evaluation is necessary, as laid down in Commission Regulation (EC) No 1565/2000. The present consideration concerns a group of 19 aliphatic secondary alcohols, ketones and related esters evaluated by the JECFA at the 59th and 69th meetings in 2002 and 2008. This revision is made due to inclusion of six...

  5. Effects of lactone, ketone, and phenolic compounds on methane production and metabolic intermediates during anaerobic digestion.

    Science.gov (United States)

    Wikandari, Rachma; Sari, Noor Kartika; A'yun, Qurrotul; Millati, Ria; Cahyanto, Muhammad Nur; Niklasson, Claes; Taherzadeh, Mohammad J

    2015-02-01

    Fruit waste is a potential feedstock for biogas production. However, the presence of fruit flavors that have antimicrobial activity is a challenge for biogas production. Lactones, ketones, and phenolic compounds are among the several groups of fruit flavors that are present in many fruits. This work aimed to investigate the effects of two lactones, i.e., γ-hexalactone and γ-decalactone; two ketones, i.e., furaneol and mesifurane; and two phenolic compounds, i.e., quercetin and epicatechin on anaerobic digestion with a focus on methane production, biogas composition, and metabolic intermediates. Anaerobic digestion was performed in a batch glass digester incubated at 55 °C for 30 days. The flavor compounds were added at concentrations of 0.05, 0.5, and 5 g/L. The results show that the addition of γ-decalactone, quercetin, and epicathechin in the range of 0.5-5 g/L reduced the methane production by 50 % (MIC50). Methane content was reduced by 90 % with the addition of 5 g/L of γ-decalactone, quercetin, and epicathechin. Accumulation of acetic acid, together with an increase in carbon dioxide production, was observed. On the contrary, γ-hexalactone, furaneol, and mesifurane increased the methane production by 83-132 % at a concentration of 5 g/L.

  6. Synthesis of enantiomerically enriched drug precursors and an insect pheromone via reduction of ketones using commercially available carbonyl reductase screening kit "Chiralscreen® OH".

    Science.gov (United States)

    Nagai, Toshiya; Sakurai, Saki; Natori, Naoki; Hataoka, Manaka; Kinoshita, Takako; Inoue, Hiroyoshi; Hanaya, Kengo; Shoji, Mitsuru; Sugai, Takeshi

    2018-04-01

    Commercially available "Chiralscreen® OH" starter kit containing five types of carbonyl reductases (E001, E007, E031, E039, and E078) was used for the reduction of several aromatic and aliphatic ketones to obtain enantiomerically enriched drug precursors and an insect pheromone. Almost stereochemically pure secondary alcohols, used in the synthesis of drugs such as (R)-rasagiline mesylate, (S)-rivastigmine, (R)-chlorphenesin carbamate, and (R)-mexiletine, and the insect pheromone (4S,5R)-sitophilure, were conveniently obtained. The enzymes worked well with ketones containing at least one non-bulky substituent at the carbonyl group. The diverse stereochemical preference of the above five carbonyl reductases was clarified. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Solvent-free synthesis of C10 and C11 branched alkanes from furfural and methyl isobutyl ketone.

    Science.gov (United States)

    Yang, Jinfan; Li, Ning; Li, Guangyi; Wang, Wentao; Wang, Aiqin; Wang, Xiaodong; Cong, Yu; Zhang, Tao

    2013-07-01

    Our best results jet: C10 and C11 branched alkanes, with low freezing points, are synthesized through the aldol condensation of furfural and methyl isobutyl ketone from lignocellulose, which is then followed by hydrodeoxygenation. These jet-fuel-range alkanes are obtained in high overall yields (≈90%) under solvent-free conditions. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Copper-catalyzed transformation of ketones to amides via C(CO)-C(alkyl) bond cleavage directed by picolinamide.

    Science.gov (United States)

    Ma, Haojie; Zhou, Xiaoqiang; Zhan, Zhenzhen; Wei, Daidong; Shi, Chong; Liu, Xingxing; Huang, Guosheng

    2017-09-13

    Copper catalyzed chemoselective cleavage of the C(CO)-C(alkyl) bond leading to C-N bond formation with chelation assistance of N-containing directing groups is described. Inexpensive Cu(ii)-acetate serves as a convenient catalyst for this transformation. This method highlights the emerging strategy to transform unactivated alkyl ketones into amides in organic synthesis and provides a new strategy for C-C bond cleavage.

  9. CO2 as a C1-organic building block: Enantioselective electrocarboxylation of aromatic ketones with CO2catalyzed by cinchona alkaloids under mild conditions

    International Nuclear Information System (INIS)

    Chen, Bao-Li; Tu, Zhuo-Ying; Zhu, Hong-Wei; Sun, Wen-Wen; Wang, Huan; Lu, Jia-Xing

    2014-01-01

    Highlights: •Cinchona alkaloids catalysis achieve enantioselective electrocarboxylation of racemic aromatic ketones. •The applications of CO 2 enantioselective electrochemical fixation into optically active hydroxyl carboxylic acids have been expanded. •The applications of alkaloids have been expanded. •The applications of asymmetric synthesis by electrochemical methodology have been expanded. -- Abstract: The enantioselective electrocarboxylation of pro-chiral aromatic ketones (2-acetonaphthone, 1-(6-methoxy-2-naphthyl)ethanone, 1-(4-methoxy-1-naphthyl)ethanone) with atmospheric pressure of CO 2 catalyzed by cinchona alkaloids in the presence of phenol was investigated in an undivided cell for the first time to give optically active 2-hydroxy-2-arylpropionic acid. For the model compound 2-acetonaphthone, the influence of various reaction conditions, such as cathode material, current density, catalyst type, ratio of proton to catalyst and catalyst quantity, on the enantiomeric excesses (ee) and yield has been investigated. Under the optimized conditions of 2-acetonaphthone, all the aromatic ketones examined are converted into corresponding optically active 2-hydroxy-2-arylpropionic acids in moderate yield (32.2% - 41.3%) and ee (48.1% - 48.6%). In addition, the electrochemical behavior of 2-acetonaphthone has been studied by cyclic voltammetry (CV) in the absence and presence of CO 2 . Moreover, the probable reaction pathway was proposed accordingly

  10. Effect of insulin pump and continuous intravenous insulin on ketone body metabolism, blood gas indexes and stress state in patients with diabetic ketoacidosis

    Directory of Open Access Journals (Sweden)

    Hui-Jin Shi

    2017-09-01

    Full Text Available Objective: To study the effect of insulin pump and continuous intravenous insulin on ketone body metabolism, blood gas indexes and stress state in patients with diabetic ketoacidosis. Methods: Patients with diabetic ketoacidosis who were treated in Meizhou Maternal and Child Heath Hospital between May 2014 and March 2017 were selected as the research subjects and randomly divided into the group A who received subcutaneous insulin infusion by insulin pump and the group B who received intravenous small-dose insulin injection by micropump. The indexes of ketone body, blood gas and stress were measured before and after treatment. Results: 12 h and 24 h after treatment, serum β-hydroxybutyrate, MDA, NE, ACTH and Cor contents of both groups of patients were significantly lower than those before treatment while pH, HCO3 - and base excess levels as well as serum SOD, GSH-Px, CAT and TAC contents were significantly higher than those before treatment, and serum β-hydroxybutyrate, MDA, NE, ACTH and Cor contents of group A were significantly lower than those of group B while pH, HCO3 - and base excess levels as well as serum SOD, GSH-Px, CAT and TAC contents were significantly higher than those of group B. Conclusion: Subcutaneous insulin infusion by insulin pump can improve ketone body metabolism, acidosis status and stress state in patients with diabetic ketoacidosis.

  11. The performance of a glucose-ketone meter in the diagnosis of diabetic ketoacidosis in patients with type 2 diabetes in the emergency room.

    Science.gov (United States)

    Voulgari, Christina; Tentolouris, Nicholas

    2010-07-01

    Diabetic ketoacidosis (DKA) is a serious metabolic complication. One of its precipitating causes is insulin omission. DKA requires early diagnosis and strict glucose control, which increases the use of glucose meters in the Emergency Room (ER). We aimed to determine the performance of a glucose-ketone meter in the diagnosis of DKA. From 450 type 2 diabetes mellitus insulin-treated patients attending the ER with a capillary glucose level >13.9 mmol/L, 50 patients (26 men and 24 women, mean age 60.2 +/- 8.2 years) had DKA. Capillary glucose and beta-hydroxybutyrate (beta-OHB) were measured with the Precision-Xtra device (Abbott Laboratories, Abingdon, UK). Serum glucose and biochemical parameters were measured on an automatic analyzer; serum beta-OHB was determined using an enzymatic end-point spectrophotometric method. Urine ketones were determined using a semiquantitative assay (Ketodiastix, Bayer Diagnostics, Stoke Poges, Slough, UK). Serum and capillary beta-OHB values were highly correlated (r = 0.99, P 3.0 mmol/L) had the highest performance (sensitivity 99.87%, specificity 92.89%, positive predictive value 92.89%) for the diagnosis of DKA compared with serum ketonemia (sensitivity 90.45%, specificity 88.65%, positive predictive value 87.76%) or ketonuria (sensitivity 89.89%, specificity 52.73%, positive predictive value 41.87%). Implementation of measures such as home glucose and ketone monitoring can possibly decrease the number of hospital admissions due to DKA.

  12. Combination of Scanning Probe Microscopy and Coordination Chemistry: Structural and Electronic Study of Bis(methylbenzimidazolyl)ketone and Its Iron Complex

    NARCIS (Netherlands)

    Folkertsma, Emma; Van Der Lit, Joost; Di Cicco, Francesca; Lutz, Martin; Klein Gebbink, Robertus J. M.; Swart, Ingmar; Moret, Marc-etienne

    2017-01-01

    Here, we report the bulk synthesis of [FeII(BMBIK)Cl2] bearing the redox noninnocent bis(methylbenzimidazolyl)ketone (BMBIK) ligand and the synthesis of the similar complex [FeI(BMBIK)]+ on a Au(111) surface using lateral manipulation at the atomic level. Cyclic voltammetry and scanning tunneling

  13. Direct transformation of silyl enol ethers into functionalized allenes.

    Science.gov (United States)

    Langer, P; Döring, M; Seyferth, D; Görls, H

    2001-02-02

    The first elimination reactions of silyl enol ethers to lithiated allenes are reported. These reactions allow a direct transformation of readily available silyl enol ethers into functionalized allenes. The action of three to four equivalents of lithium diisopropylamide (LDA) on silyl enol ethers results in the formation of lithiated allenes by initial allylic lithiation, subsequent elimination of a lithium silanolate, and finally, lithiation of the allene thus formed. Starting with amide-derived silyl imino ethers, lithiated ketenimines are obtained. A variety of reactions of the lithiated allenes with electrophiles (chlorosilanes, trimethylchlorostannane, dimethyl sulfate and ethanol) were carried out. Elimination of silanolate is observed only for substrates that contain the hindered SiMe2tBu or Si(iPr)3 moiety, but not for the SiMe3 group. The reaction of 1,1-dilithio-3,3-diphenylallene with ketones provides a convenient access to novel 1,1-di(hydroxymethyl)allenes which undergo a domino Nazarov-Friedel-Crafts reaction upon treatment with p-toluenesulfonic acid.

  14. Bias voltage dependence of molecular orientation of dialkyl ketone and fatty acid alkyl ester at the liquid–graphite interface

    Energy Technology Data Exchange (ETDEWEB)

    Hibino, Masahiro, E-mail: hibino@mmm.muroran-it.ac.jp [Department of Applied Sciences, Muroran Institute of Technology, 27-1 Mizumoto-cho, Muroran 050-8585 (Japan); Tsuchiya, Hiroshi [Department of Applied Physics, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601 (Japan)

    2014-10-30

    Graphical abstract: - Highlights: • Self-assembled monolayers (SAMs) of 18-pentatriacontanone (as ketone) and stearyl stearate (as ester) were formed on a graphite surface at the liquid–solid interface. • Orientations of the molecules in SAMs on the substrate were studied by scanning tunneling microscopy. • A perpendicular carbon skeleton-plane orientation with the CO pointing up on the surface is favorable for a substrate with negative charge and vice versa. - Abstract: Molecular orientations of self-assembled 18-pentatriacontanone (as ketone) and stearyl stearate (as ester) monolayers adsorbed on a graphite surface were studied by scanning tunneling microscopy (STM) at the liquid–solid interface. At a positive sample bias, the central areas of the dialkyl ketone and fatty acid alkyl ester molecules in the STM images appeared as two bright regions on both sides of a dim spot and a bright region on one side of a dim spot, whereas at a negative sample bias, the areas appeared dim. This contrast variation indicates that a perpendicular carbon skeleton-plane orientation with the CO pointing down on the surface is favorable for a substrate with positive charge and vice versa because of the greater electronegativity of the oxygen atom. Upon the bias voltage reversal, the delay time for the STM image contrast change in the region was observed on a time scale of minutes. The difference between the delay time lengths for the direction of bias polarity change indicates that the perpendicular configuration with CO pointing up is more stable than that with CO pointing down. These results indicate that the use of an electric field along a direction vertical to the monolayer on the substrate provides control over the orientations of the molecules between two stable states at the liquid–solid interface.

  15. Highly Enantioselective Rhodium-Catalyzed Addition of Arylboroxines to Simple Aryl Ketones: Efficient Synthesis of Escitalopram.

    Science.gov (United States)

    Huang, Linwei; Zhu, Jinbin; Jiao, Guangjun; Wang, Zheng; Yu, Xingxin; Deng, Wei-Ping; Tang, Wenjun

    2016-03-24

    Highly enantioselective additions of arylboroxines to simple aryl ketones have been achieved for the first time with a Rh/(R,R,R,R)-WingPhos catalyst, thus providing a range of chiral diaryl alkyl carbinols with excellent ee values and yields. (R,R,R,R)-WingPhos has been proven to be crucial for the high reactivity and enantioselectivity. The method has enabled a new, concise, and enantioselective synthesis of the antidepressant drug escitalopram. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Isothermal Vapour-Liquid Equilibria in the Binary and Ternary Systems Composed of tert-Butyl Methyl Ether, 3,3-Dimethyl-2-butanone and 2,2-Dimethyl-1-propanol

    Czech Academy of Sciences Publication Activity Database

    Bernatová, Svatoslava; Pavlíček, Jan; Wichterle, Ivan

    2009-01-01

    Roč. 278, 1-2 (2009), s. 129-134 ISSN 0378-3812 R&D Projects: GA ČR GA104/07/0444 Institutional research plan: CEZ:AV0Z40720504 Keywords : alcohol * ether * ketone Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.857, year: 2009

  17. Systemic, cerebral and skeletal muscle ketone body and energy metabolism during acute hyper-D-β-hydroxybutyratemia in post-absorptive healthy males

    DEFF Research Database (Denmark)

    Mikkelsen, Kristian H; Seifert, Thomas; Secher, Niels H

    2015-01-01

    CONTEXT: Ketone bodies are substrates during fasting and when on a ketogenic diet not the least for the brain and implicated in the management of epileptic seizures and dementia. Moreover, D-β-hydroxybutyrate (HOB) is suggested to reduce blood glucose and fatty acid levels. OBJECTIVES...

  18. EFSA Scientific Opinion on Flavouring Group Evaluation 87 Revision 1 (FGE.87Rev1): Consideration of bicyclic secondary alcohols, ketones and related esters evaluated by JECFA (63rd meeting) structurally related to bicyclic secondary alcohols, ketones and related esters evaluated by EFSA in FGE.47

    DEFF Research Database (Denmark)

    Larsen, John Christian; Nørby, Karin Kristiane; Beltoft, Vibe Meister

    evaluation is necessary, as laid down in Commission Regulation (EC) No 1565/2000. The present consideration concerns a group of 17 bicyclic secondary alcohols, ketones and related esters evaluated by the JECFA at the 63rd meeting in 2004. This revision of FGE.87 is made due to consideration of two additional...

  19. Density, viscosity, isothermal (vapour + liquid) equilibrium, excess molar volume, viscosity deviation, and their correlations for chloroform + methyl isobutyl ketone binary system

    International Nuclear Information System (INIS)

    Clara, Rene A.; Gomez Marigliano, Ana C.; Solimo, Horacio N.

    2007-01-01

    Density and viscosity measurements for pure chloroform and methyl isobutyl ketone at T = (283.15, 293.15, 303.15, and 313.15) K as well as for the binary system {x 1 chloroform + (1 - x 1 ) methyl isobutyl ketone} at the same temperatures were made over the whole concentration range. The experimental results were fitted to empirical equations, which permit the calculation of these properties over the whole concentration and temperature ranges studied. Data of the binary mixture were further used to calculate the excess molar volume and viscosity deviation. The (vapour + liquid) equilibrium (VLE) at T = 303.15 K for this binary system was also measured in order to calculate the activity coefficients and the excess molar Gibbs energy. This binary system shows no azeotrope and negative deviations from ideal behaviour. The excess or deviation properties were fitted to the Redlich-Kister polynomial relation to obtain their coefficients and standard deviations

  20. A model to assess the feasibility of shifting reaction equilibrium by acetone removal in the transamination of ketones using 2‐propylamine

    DEFF Research Database (Denmark)

    Tufvesson, Pär; Bach, Christian; Woodley, John

    2014-01-01

    also shows the value of a modeling approach in conceptual process design prior to entering a biocatalyst screening or engineering program to assess the feasibility of a particular process strategy for a given target product. Biotechnol. Bioeng. 2014;111: 309–319. © 2013 Wiley Periodicals, Inc....... strategy. To avoid excessive laboratory work a model was used to assess the process feasibility. The results from the current study show that a simple model of the acetone removal dependence on temperature and sparging gas flowrate can be developed and fits the experimental data well. The model for acetone...... removal was then coupled to a simple model for biocatalyst kinetics and also for loss of substrate ketone by evaporation. The three models were used to simulate the effects of varying the critical process parameters and reaction equilibrium constants (K eq) as well as different substrate ketone...

  1. Effects of Composition and Structure of Mg/Al Oxides on Their Activity and Selectivity for the Condensation of Methyl Ketones

    KAUST Repository

    Shylesh, Sankaranarayanapillai

    2016-09-22

    The effects of chemical composition and pretreatment on Mg–Al hydrotalcites and alumina-supported MgO were evaluated for the gas-phase, self-condensation reaction of C3–C5 biomass-derived methyl ketones. We show that the selectivity toward the acyclic dimer enone and the cyclic enone trimer can be tuned by controlling the temperature of hydrotalcite calcination. Methyl ketone cyclization is promoted by Lewis acidic sites present on the hydrotalcite catalysts. XRD and thermal decomposition analysis reveal that the formation of periclase MgO starts above 623 K accompanied by complete disappearance of the hydrotalcite structure and is accompanied by an increase in hydroxyl condensation as the formation of well-crystallized periclase. 27Al MQMAS and 25Mg MAS NMR show that at progressively higher temperatures, Al3+ cations diffuses out of the octahedral brucite layers and incorporate into the tetrahedral and octahedral sites of the MgO matrix thereby creating defects to compensate the excess positive charge generated. The oxygen anions adjacent to the Mg2+/Al3+ defects become coordinatively unsaturated, leading to the formation of new basic sites. A kinetic isotope effect, kH/kD = 0.96, is observed at 473 K for the reaction of (CH3)2CO versus (CD3)2CO, which suggests that carbon–carbon bond formation leading to the dimer aldol product is the rate-determining step in the condensation reaction of methyl ketones. We also show that acid–base catalysts having similar reactivity and higher hydrothermal stability to that of calcined hydrotalcites can be achieved by creating defects in MgO crystallites supported alumina as a consequence of the diffusion of Al3+ cations into MgO. The physical properties of these materials are shown to be very similar to those of hydrotalcite calcined at 823 K.

  2. Effects of Composition and Structure of Mg/Al Oxides on Their Activity and Selectivity for the Condensation of Methyl Ketones

    KAUST Repository

    Shylesh, Sankaranarayanapillai; Kim, Daeyoup; Gokhale, Amit A.; Canlas, Christian; Struppe, Jochem O.; Ho, Christopher R.; Jadhav, Deepak; Yeh, Alice; Bell, Alexis T.

    2016-01-01

    The effects of chemical composition and pretreatment on Mg–Al hydrotalcites and alumina-supported MgO were evaluated for the gas-phase, self-condensation reaction of C3–C5 biomass-derived methyl ketones. We show that the selectivity toward the acyclic dimer enone and the cyclic enone trimer can be tuned by controlling the temperature of hydrotalcite calcination. Methyl ketone cyclization is promoted by Lewis acidic sites present on the hydrotalcite catalysts. XRD and thermal decomposition analysis reveal that the formation of periclase MgO starts above 623 K accompanied by complete disappearance of the hydrotalcite structure and is accompanied by an increase in hydroxyl condensation as the formation of well-crystallized periclase. 27Al MQMAS and 25Mg MAS NMR show that at progressively higher temperatures, Al3+ cations diffuses out of the octahedral brucite layers and incorporate into the tetrahedral and octahedral sites of the MgO matrix thereby creating defects to compensate the excess positive charge generated. The oxygen anions adjacent to the Mg2+/Al3+ defects become coordinatively unsaturated, leading to the formation of new basic sites. A kinetic isotope effect, kH/kD = 0.96, is observed at 473 K for the reaction of (CH3)2CO versus (CD3)2CO, which suggests that carbon–carbon bond formation leading to the dimer aldol product is the rate-determining step in the condensation reaction of methyl ketones. We also show that acid–base catalysts having similar reactivity and higher hydrothermal stability to that of calcined hydrotalcites can be achieved by creating defects in MgO crystallites supported alumina as a consequence of the diffusion of Al3+ cations into MgO. The physical properties of these materials are shown to be very similar to those of hydrotalcite calcined at 823 K.

  3. Contribution to the study of the structure and reactivity of ketones using deuterium substitution of the {alpha} - ketone hydrogens; Contribution a l'etude de la structure et de la reactivite des cetones, par utilisation de la substitution deuteriee des hydrogenes {alpha}-cetoniques

    Energy Technology Data Exchange (ETDEWEB)

    Frejaville, G [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1966-02-01

    This work is an attempt to obtain more knowledge about the structure and the reactivity of ketones; it is also a contribution to conformational analysis based on infrared signals associated with the C-D vibration in mono-deuterated compounds. In the first chapter the various dosage and synthetic methods used in this work are described. In the second chapter the infrared spectra in the 2100-2200 cm{sup -1} region for mono-deuterated ketones are interpreted on the basis of a simple model. This model is then studied in detail, and also critically and precisely, in the case of the mono deuterated acetone molecule. In the third chapter is studied the mechanism of the Favorskii reaction and the reactivity of all the {alpha}-ketonic hydrogens of 2 chloro-cyclohexanone are classified. In a technical appendix is described a counter-current exchange method for obtaining a great variety of solvents and deuterated pure raw materials under advantageous conditions. (author) [French] Ce travail est un effort vers une meilleure connaissance de la structure et de la reactivite des cetones; c'est egalement une contribution a l'analyse conformationnelle d'apres l'etude des signaux infrarouges associes a la vibration C-D dans les composes monodeuteries. Dans le premier chapitre sont decrites les differentes methodes de dosage et de synthese qui ont ete utilisees dans ce travail. Dans le deuxieme chapitre, les spectres infrarouges dans la region 2100-2200 cm{sup -1} de cetones monodeuteriees sont interpretes sur la base d'un modele simple. Ce modele est ensuite etudie de facon detaillee, critique et precise sur la molecule d'acetone monodeuteriee. Dans le troisieme chapitre on etudie le mecanisme de la reaction de FAWORSKII et l'on classe la reactivite de tous les hydrogenes {alpha}-cetoniques de la chloro-2-cyclohexanone. Dons l'appendice technique on decrit la mise en oeuvre d'un appareil d'echange a contre-courant qui permet d'obtenir dans des conditions tres interessantes une

  4. Reactions of enolisable ketones with dichloroisocyanuric acid in absence and presence of added chloride ions – a kinetic study

    Directory of Open Access Journals (Sweden)

    Y. L. Kumar

    2015-01-01

    Full Text Available Kinetics of reactions of enolisable ketones (S = acetone/2-butanone with dichloroisocyanuric acid (DCICA were studied in aqueous acetic acid and perchloric acid media in absence and presence of added chloride ions. The reactions were found to be pseudo zero order and pseudo first order on [DCICA] in absence and presence of chloride ions respectively. Both in presence and absence of chloride ions, first order and fractional order in substrate and perchloric acid were observed respectively. An increase in the rate of reaction was observed with an increase in chloride ion concentration as well as acetic acid composition. The results were interpreted in terms of probable mechanisms involving (i rate-determining enol formation from the conjugate acid of the ketone (SH+ in the absence of added chloride ions and (ii rate-determining interaction of SH+ with the most effective molecular chlorine species produced by the hydrolysis of DCICA (rather than a rate-determining interaction of enol with chlorine in the presence of added chloride ions, prior to the rapid steps of product formation. DOI: http://dx.doi.org/10.4314/bcse.v29i1.12

  5. Synthesis of Polycyclic Ring Systems Using Transition Metal Catalyzed Cyclizations of Diazo Alkynyl Ketones

    Directory of Open Access Journals (Sweden)

    Albert Padwa

    2000-12-01

    Full Text Available The rhodium(II-catalyzed reaction of α-diazo ketones bearing tethered alkyne units represents a new and useful method for the construction of a variety of substituted cyclopentenones. The process proceeds by addition of the rhodium-stabilized carbenoid onto the acetylenic π-bond to give a vinyl carbenoid intermediate. The resulting rhodium complex undergoes a wide assortment of reactions including cyclopropanation, 1,2-hydrogen migration, CH-insertion, addition to tethered alkynes and ylide formation. When 2-alkynyl-2-diazo-3-oxobutanoates were treated with a Rh(II-catalyst, furo[3,4-c]furans were formed in excellent yield.

  6. Laboratory studies of Aedes aegypti (L.) attraction to ketones, sulfides and primary chloroalkanes tested alone and in combination with l-lactic acid

    Science.gov (United States)

    The attraction of female Aedes aegypti to single compounds and binary compositions comprised of L-lactic acid and an additional saturated compound from a set of ketones, sulfides, and chloroalkanes was studied using a triple-cage dual-port olfactometer. These chemical classes were studied because o...

  7. A shock tube and laser absorption study of ignition delay times and OH reaction rates of ketones: 2-Butanone and 3-buten-2-one

    KAUST Repository

    Badra, Jihad; Elwardani, Ahmed Elsaid; Khaled, Fathi; Vasu, Subith S.; Farooq, Aamir

    2014-01-01

    Ketones are potential biofuel candidates and are also formed as intermediate products during the oxidation of large hydrocarbons or oxygenated fuels, such as alcohols and esters. This paper presents shock tube ignition delay times and OH reaction

  8. Contribution of ketone bodies to cholesterogenesis in Morris hepatoma 7777 cells

    International Nuclear Information System (INIS)

    Hilderbrandt, L.; Elson, C.; Shrago, E.

    1990-01-01

    Cholesterol synthesis in neoplastic tissues is typically measured in incubations of minced tissue or tissue slices with 10 mM concentrations of individual substrates. Carbon incorporation into cholesterol from [ 14 C] labelled substrates by freshly isolated hepatoma cells was measured after one hour incubation with 10 mm single substrates. These observations were extended by measuring cholesterol synthesis supported by [ 14 C] substrates in a media containing a mixture of substrates at physiological concentrations: 5.0 mM glucose, 1.3 mM D(-)-3-hydroxybutyrate, 0.5 mM acetoacetate, 0.3 mM acetate, 0.3 mM oleate, 0.3 mM palmitate, 0.65 mM glutamine, 1.4 mM lactate and 0.1 mM pyruvate in Eagle's modified essential medium. Under single substrate conditions, the ketone bodies contribute substantially to cholesterogenesis. Estimates of the quantitative contribution of each substrate to total cholesterol synthesis are reported

  9. Ketone bodies effectively compete with glucose for neuronal acetyl-CoA generation in rat hippocampal slices.

    Science.gov (United States)

    Valente-Silva, Paula; Lemos, Cristina; Köfalvi, Attila; Cunha, Rodrigo A; Jones, John G

    2015-09-01

    Ketone bodies can be used for cerebral energy generation in situ, when their availability is increased as during fasting or ingestion of a ketogenic diet. However, it is not known how effectively ketone bodies compete with glucose, lactate, and pyruvate for energy generation in the brain parenchyma. Hence, the contributions of exogenous 5.0 mM [1-(13)C]glucose and 1.0 mM [2-(13)C]lactate + 0.1 mM pyruvate (combined [2-(13)C]lactate + [2-(13)C]pyruvate) to acetyl-CoA production were measured both without and with 5.0 mM [U-(13)C]3-hydroxybutyrate in superfused rat hippocampal slices by (13)C NMR non-steady-state isotopomer analysis of tissue glutamate and GABA. Without [U-(13)C]3-hydroxybutyrate, glucose, combined lactate + pyruvate, and unlabeled endogenous sources contributed (mean ± SEM) 70 ± 7%, 10 ± 2%, and 20 ± 8% of acetyl-CoA, respectively. With [U-(13)C]3-hydroxybutyrate, glucose contributions significantly fell from 70 ± 7% to 21 ± 3% (p neurons. The appearance of superfusate lactate derived from glycolysis of [1-(13)C]glucose did not decrease significantly in the presence of 3-hydroxybutyrate, hence total glycolytic flux (Krebs cycle inflow + exogenous lactate formation) was attenuated by 3-hydroxybutyrate. This indicates that, under these conditions, 3-hydroxybutyrate inhibited glycolytic flux upstream of pyruvate kinase. Copyright © 2015 John Wiley & Sons, Ltd.

  10. Gas-chromatographic resolution of enantiomeric secondary alcohols. Stereoselective reductive metabolism of ketones in rabbit-liver cytosol.

    Science.gov (United States)

    Gal, J; DeVito, D; Harper, T W

    1981-01-01

    Chiral secondary alcohols were treated with (S)-(-)-1-phenylethyl isocyanate. For each racemic alcohol, the resulting diastereomeric urethane derivatives were resolved on flexible fused-silica capillary GLC columns with retention times of 15 min or less. Derivatization of individual enantiomers showed that the urethane derivatives of (R)-(-)-2-octanol, (R)-(+)-1-phenylethyl alcohol, and (S)-(+)-2,2,2-trifluoro-1-phenylethanol are eluted before the corresponding diastereomers. The procedure is simple and rapid, and is suitable for the determination of the enantiomeric composition of chiral alcohols extracted from biological media. A series of aliphatic alcohols, aryl alkyl carbinols, and arylalkyl alkyl carbinols were resolved with the procedure, and the degree of resolution varied from good to excellent. Eight achiral ketones were incubated, individually, with rabbit-liver 90,000 g supernatant fractions, and the enantiomeric composition of the alcohol metabolites was determined with the GLC procedure. The reductions proceeded with high stereoselectivity to give alcohol products of 90% or greater enantiomeric purity. The reduction of 2-octanone and acetophenone gave predominant alcohols of (S)-configuration, in agreement with the Baumann-Prelog rule. The configuration of the predominant alcohols arising in the reduction of the remainder of the ketones could not be firmly established, but the evidence suggests that they are also of the (S)-configuration. Fluorine or methyl substitution in the ortho position of acetophenone produced an increase in the stereoselectivity, and the alcohol produced from ortho-methylacetophenone was enantiomerically greater than 99% pure.

  11. Selected ion flow tube mass spectrometry of 3-hydroxybutyric acid, acetone and other ketones in the headspace of aqueous solution and urine

    Czech Academy of Sciences Publication Activity Database

    Wang, T.; Španěl, Patrik; Smith, D.

    2008-01-01

    Roč. 272, č. 1 (2008), s. 78-85 ISSN 1387-3806 R&D Projects: GA ČR GA202/06/0776 Institutional research plan: CEZ:AV0Z40400503 Keywords : ketone bodies * SIFT-MS * urine * breath Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.445, year: 2008

  12. Thermotolerant cyclamen with reduced acrolein and methyl vinyl ketone.

    Science.gov (United States)

    Kai, Hiroomi; Hirashima, Keita; Matsuda, Osamu; Ikegami, Hidetoshi; Winkelmann, Traud; Nakahara, Takao; Iba, Koh

    2012-06-01

    Reduced levels of trienoic fatty acids (TAs) in chloroplast membranes induce thermotolerance in several plant species, but the underlying mechanisms remain unclear. TA peroxidation in plant cell membranes generates cytotoxic, TA-derived compounds containing α,β-unsaturated carbonyl groups. The relationship between low TA levels and the amounts of cytotoxic TA-derived compounds was examined using thermotolerant transgenic cyclamen (Cyclamen persicum Mill.) with low TA contents. Changes in the levels of the cytotoxic TA-derived acrolein (ACR), methyl vinyl ketone (MVK), (E)-2-hexenal, 4-hydroxy-2-nonenal, and malondialdehyde were analysed in the leaf tissues of wild-type (WT) and thermotolerant transgenic cyclamen under heat stress. Levels of ACR and MVK in the WT increased in parallel with the occurrence of heat-induced tissue damage, whereas no such changes were observed in the thermotolerant transgenic lines. Furthermore, exogenous ACR and MVK infiltrated into leaves to concentrations similar to those observed in heat-stressed WT leaves caused similar disease symptoms. These results suggest that thermotolerance in transgenic cyclamen depends on reduced production rates of ACR and MVK under heat stress, due to the low level of TAs in these plants.

  13. Production of Primary Amines by Reductive Amination of Biomass-Derived Aldehydes/Ketones.

    Science.gov (United States)

    Liang, Guanfeng; Wang, Aiqin; Li, Lin; Xu, Gang; Yan, Ning; Zhang, Tao

    2017-03-06

    Transformation of biomass into valuable nitrogen-containing compounds is highly desired, yet limited success has been achieved. Here we report an efficient catalyst system, partially reduced Ru/ZrO 2 , which could catalyze the reductive amination of a variety of biomass-derived aldehydes/ketones in aqueous ammonia. With this approach, a spectrum of renewable primary amines was produced in good to excellent yields. Moreover, we have demonstrated a two-step approach for production of ethanolamine, a large-market nitrogen-containing chemical, from lignocellulose in an overall yield of 10 %. Extensive characterizations showed that Ru/ZrO 2 -containing multivalence Ru association species worked as a bifunctional catalyst, with RuO 2 as acidic promoter to facilitate the activation of carbonyl groups and Ru as active sites for the subsequent imine hydrogenation. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Dielectric and conformational studies of hydrogen bonded 2-ethoxyethanol and ethyl methyl ketone system

    Science.gov (United States)

    Pattebahadur, Kanchan. L.; Deshmukh, S. D.; Mohod, A. G.; Undre, P. B.; Patil, S. S.; Khirade, P. W.

    2018-05-01

    The Dielectric constant, density and refractive index of binary mixture of 2-ethoxy ethanol (2-EE) with ethyl methyl ketone (EMK) including those of the pure liquids were measured for 11 concentrations at 25°C temperature. The experimental data is used to calculate the Excess molar volume, Excess dielectric constant, Kirkwood correlation factor and Bruggemann factor. The excess parameters results were fitted to the Redlich-Kister type polynomial equation to derive its fitting coefficient. The Kirkwood correlation factor of the mixture has been discussed to yield information about solute solvent interaction. The Bruggeman plot shows a deviation from linearity. The FT-IR spectra of pure and their binary mixtures are also studied.

  15. Effect of the Ketone Body Beta-Hydroxybutyrate on the Innate Defense Capability of Primary Bovine Mammary Epithelial Cells

    OpenAIRE

    Hillreiner, Maria;Flinspach, Claudia;Pfaffl, Michael W.;Kliem, Heike

    2017-01-01

    Negative energy balance and ketosis are thought to cause impaired immune function and to increase the risk of clinical mastitis in dairy cows. The present in vitro study aimed to investigate the effect of elevated levels of the predominant ketone body β-hydroxybutyrate on the innate defense capability of primary bovine mammary epithelial cells (pbMEC) challenged with the mastitis pathogen Escherichia coli (E. coli). Therefore, pbMEC of healthy dairy cows in mid- lactation were isolated from m...

  16. Sulphur and oxygen sequestration of n-C 37 and n-C 38 unsaturated ketones in an immature kerogen and the release of their carbon skeletons during early stages of thermal maturation

    Science.gov (United States)

    Koopmans, Martin P.; Schaeffer-Reiss, Christine; de Leeuw, Jan W.; Lewan, Michael D.; Maxwell, James R.; Schaeffer, Philippe; Sinninghe Damsté, Jaap S.

    1997-06-01

    Sedimentary rock from the Gessoso-solfifera Formation (Messinian) in the Vena del Gesso Basin (northern Italy) containing immature ( Ro = 0.25%) S-rich organic matter was artificially matured by hydrous pyrolysis at temperatures from 160 to 330°C for 72 h to study the diagenetic fate of n-C 37 and n-C 38 di- and tri-unsaturated methyl and ethyl ketones (alkenones) biosynthesised by several prymnesiophyte algae. During early diagenesis, the alkenones are incorporated into the kerogen by both sulphur and oxygen cross-linking as indicated by chemical degradation experiments with the kerogen of the unheated sample. Heating at temperatures between 160 and 260°C, which still represents early stages of thermal maturation, produces large amounts (up to 1 mg/g TOC) of S-bound, O-bound, and both S- and O-bound n-C 37 and n-C 38 skeletons, saturated n-C 37 and n-C38 methyl, ethyl, and mid-chain ketones, C 37 and C 38 mid-chain 2,5-di- n-alkylthiophenes, C 37 and C 38 1,2-di- n-alkylbenzenes, and C 37 and C 38n-alkanes. With increasing thermal maturation, three forms of the n-C 37 and n-C 38 skeletons are relatively stable (saturated hydrocarbons, 1,2-di- n-alkylbenzenes and saturated ketones), whereas the S- and O-bound skeletons are relatively labile. These results suggest that in natural situations saturated ketones with an n-C 37 and n-C 38 skeleton can be expected as well as the corresponding hydrocarbons.

  17. Sulphur and oxygen sequestration of n-C37 and n-C38 unsaturated ketones in an immature kerogen and the release of their carbon skeletons during early stages of thermal maturation

    Science.gov (United States)

    Koopmans, M.P.; Schaeffer-Reiss, C.; De Leeuw, J. W.; Lewan, M.D.; Maxwell, J.R.; Schaeffer, P.; Sinninghe, Damste J.S.

    1997-01-01

    Sedimentary rock from the Gessoso-solfifera Formation (Messinian) in the Vena del Gesso Basin (northern Italy) containing immature (Ro = 0.25%) S-rich organic matter was artificially matured by hydrous pyrolysis at temperatures from 160 to 330??C for 72 h to study the diagenetic fate of n-C37 and n-C38 di-and tri-unsaturated methyl and ethyl ketones (alkenones) biosynthesised by several prymnesiophyte algae. During early diagenesis, the alkenones are incorporated into the kerogen by both sulphur and oxygen cross-linking as indicated by chemical degradation experiments with the kerogen of the unheated sample. Heating at temperatures between 160 and 260??C, which still represents early stages of thermal maturation, produces large amounts (up to 1 mg/g TOC) of S-bound, O-bound, and both S-and O-bound n-C37 and n-C38 skeletons, saturated n-C37 and n-C38 methyl, ethyl, and mid-chain ketones, C37 and C38 mid-chain 2,5-di-n-alkylthiophenes, C37 and C38 1,2-di-n-alkylbenzenes, and C37 and C38 n-alkanes. With increasing thermal maturation, three forms of the n-C37 and n-C38 skeletons are relatively stable (saturated hydrocarbons, 1,2-di-n-alkylbenzenes and saturated ketones), whereas the S-and O-bound skeletons are relatively labile. These results suggest that in natural situations saturated ketones with an n-C37 and n-C38 skeleton can be expected as well as the corresponding hydrocarbons. Copyright ?? 1997 Elsevier Science Ltd.

  18. Aldehydes, ketones, and carboxylic acids formed radiolytically in aqueous solutions of cyanides and simple nitriles

    International Nuclear Information System (INIS)

    Negron-Mendoza, A.; Draganic, Z.D.; Navarro-Gonzalez, R.; Graganic, I.G.

    1983-01-01

    A systematic search for aldehydes, ketones, and carboxylic acids was carried out in aqueous solutions of HCN, NH 4 CN, CH 3 CN, and C 2 H 4 CN, that had received multikilogray doses of 60 Co γ radiation. About 30 radiolytic products were identified, among them a large variety of dicarboxylic and tricarboxylic acids. Some of them might be of significant interest in molecular evolution studies of prebiotic processes. They originate in the free-radical-initiated chemical reactions where the additional oligomerization processes are particularly important. Most of the radiolytic products appear in both cyanides and nitriles and point to the importance of reactions involving the carbon-nitrogen triple bond

  19. Imact of feeding and post prandial time on plasma ketone bodies in sows during transition and lactation

    DEFF Research Database (Denmark)

    Theil, Peter Kappel; Olesen, A K; Flummer, Christine

    2013-01-01

    Two experiments were conducted with the aim of studying how dietary fat source, reproductive stage (Exp. 1), and diurnal variation (Exp. 2) affect plasma ketone bodies in sows. In Exp. 1, 40 second-parity sows were fed 1 of 5 lactation diets from 7 d prepartum until 28 d postpartum, with low or h......, therefore, primary ketosis does not appear to be a major problem in sows. In addition, this study indicates that the intermediary metabolism of sows was challenged when sows were exposed to high fat diets in late gestation....

  20. SIRT3 deacetylates mitochondrial 3-hydroxy-3-methylglutaryl CoA synthase 2 and regulates ketone body production

    DEFF Research Database (Denmark)

    Shimazu, Tadahiro; Hirschey, Matthew D; Hua, Lan

    2010-01-01

    with SIRT3 and in vivo by overexpression of SIRT3. Deacetylation of HMGCS2 lysines 310, 447, and 473 by incubation with wild-type SIRT3 or by mutation to arginine enhances its enzymatic activity. Molecular dynamics simulations show that in silico deacetylation of these three lysines causes conformational...... changes of HMGCS2 near the active site. Mice lacking SIRT3 show decreased β-hydroxybutyrate levels during fasting. Our findings show SIRT3 regulates ketone body production during fasting and provide molecular insight into how protein acetylation can regulate enzymatic activity....

  1. Biosynthetic conversion of thebaine to codeinone. Mechanism of ketone formation from enol ether in vivo

    International Nuclear Information System (INIS)

    Horn, J.S.; Paul, A.G.; Rapoport, H.

    1978-01-01

    Biosynthesis of the morphinan alkaloids proceeds by conversion of the enol ether or thebaine to the keto group of neopinone and thence to codeinone. To determine the mechanism of this transformation, [G- 14 C,6- 18 O]thebaine was fed to Papaver somniferum and the codeine and morphine were isolated. Comparison of the 18 O/ 14 C ratios in the codeine and morphine isolated with that of the thebaine fed showed that approximately 34% of the 18 O had been retained. Parallel feedings with [G- 14 C,6- 18 O]-codeinone demonstrated that the loss was due to nonenzymic exchange. Thus, the mechanism of enol ether cleavage in thebaine is established as cleavage of the 6-O-methyl group with retention of the 6-oxygen in the codeinone

  2. Continuous-flow hydration–condensation reaction: Synthesis of α,β-unsaturated ketones from alkynes and aldehydes by using a heterogeneous solid acid catalyst

    Directory of Open Access Journals (Sweden)

    Magnus Rueping

    2011-12-01

    Full Text Available A simple, practical and efficient continuous-flow hydration–condensation protocol was developed for the synthesis of α,β-unsaturated ketones starting from alkynes and aldehydes by employing a heterogeneous catalyst in a flow microwave. The procedure presents a straightforward and convenient access to valuable differently substituted chalcones and can be applied on multigram scale.

  3. Development of monograph titled "augmented chemistry aldehida & keton" with 3 dimensional (3D) illustration as a supplement book on chemistry learning

    Science.gov (United States)

    Damayanti, Latifah Adelina; Ikhsan, Jaslin

    2017-05-01

    Integration of information technology in education more rapidly performed in a medium of learning. Three-dimensional (3D) molecular modeling was performed in Augmented Reality as a tangible manifestation of increasingly modern technology utilization. Based on augmented reality, three-dimensional virtual object is projected in real time and the exact environment. This paper reviewed the uses of chemical learning supplement book of aldehydes and ketones which are equipped with three-dimensional molecular modeling by which students can inspect molecules from various viewpoints. To plays the 3D illustration printed on the book, smartphones with the open-source software of the technology based integrated Augmented Reality can be used. The aims of this research were to develop the monograph of aldehydes and ketones with 3 dimensional (3D) illustrations, to determine the specification of the monograph, and to determine the quality of the monograph. The quality of the monograph is evaluated by experiencing chemistry teachers on the five aspects of contents/materials, presentations, language and images, graphs, and software engineering, resulted in the result that the book has a very good quality to be used as a chemistry learning supplement book.

  4. Non-Toxic Metabolic Management of Metastatic Cancer in VM Mice: Novel Combination of Ketogenic Diet, Ketone Supplementation, and Hyperbaric Oxygen Therapy.

    Directory of Open Access Journals (Sweden)

    A M Poff

    Full Text Available The Warburg effect and tumor hypoxia underlie a unique cancer metabolic phenotype characterized by glucose dependency and aerobic fermentation. We previously showed that two non-toxic metabolic therapies - the ketogenic diet with concurrent hyperbaric oxygen (KD+HBOT and dietary ketone supplementation - could increase survival time in the VM-M3 mouse model of metastatic cancer. We hypothesized that combining these therapies could provide an even greater therapeutic benefit in this model. Mice receiving the combination therapy demonstrated a marked reduction in tumor growth rate and metastatic spread, and lived twice as long as control animals. To further understand the effects of these metabolic therapies, we characterized the effects of high glucose (control, low glucose (LG, ketone supplementation (βHB, hyperbaric oxygen (HBOT, or combination therapy (LG+βHB+HBOT on VM-M3 cells. Individually and combined, these metabolic therapies significantly decreased VM-M3 cell proliferation and viability. HBOT, alone or in combination with LG and βHB, increased ROS production in VM-M3 cells. This study strongly supports further investigation into this metabolic therapy as a potential non-toxic treatment for late-stage metastatic cancers.

  5. Synthesis of organolanthanides by metal addition on insaturated substrates in ether and reactivity

    International Nuclear Information System (INIS)

    Olivier, H.

    1988-01-01

    The aim of the study is the extension to rare earths of the synthesis, well known for alkaline or alkaline earth metals, by direct metal addition to insaturated substrates in ether and where the metal is directly bound to carbon. A definition of formation conditions and affinity rules is attempled, both with substrates (essentially aromatic hydrocarbons and ketones) and with metals: Yb, Sm, Ce, Nd and others. The nature of obtained products by reaction of electrophiles on synthetised organometallics, allows investigations specific reactivity and structure. Potential catalytic transformation of olefins is precised [fr

  6. Enhanced Hydrothermal Stability and Catalytic Activity of La x Zr y O z Mixed Oxides for the Ketonization of Acetic Acid in the Aqueous Condensed Phase

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Ruiz, Juan A. [Energy and Environment Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99352, United States; Cooper, Alan R. [Energy and Environment Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99352, United States; Li, Guosheng [Energy and Environment Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99352, United States; Albrecht, Karl O. [Energy and Environment Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99352, United States

    2017-08-24

    Common ketonization catalysts such as ZrO2, CeO2, CexZryOz, and TiO2-based catalysts have been reported to lose surface area, undergo phase-transformation, and lose catalytic activity when utilized in the condensed aqueous phase. In this work, we synthesized and tested a series of LaxZryOz mixed metal oxides with different La:Zr atomic ratios with the goal of enhancing the catalytic activity and stability for the ketonization of acetic acid in condensed aqueous media at 568 K. We synthesized a hydrothermally stable LaxZryOz mixed-metal oxide catalyst with enhanced ketonization activities 360 and 40 times more active than La2O3 and ZrO2, respectively. Catalyst characterization techniques suggest that the formation of a hydrothermally stable catalyst which is isomorphic with tetragonal-ZrO2 under hydrothermal reaction conditions.

  7. A Facial Protocol for the Synthesis of Benzofuran Derivatives by the Reaction of o-Hydroxy Aryl Ketone, Amine and Chloroacetyl Chloride

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Shuai; Wang, Xiuhua; Liu, Jiqiang; Liu, Chang; Chen, Jianbin; Zuo, Hua [Southwest Univ., Chongqing (China); Xie, Yongsheng; Dong, Wenliang; Shin, Dongsoo [Changwon National Univ., Changwon (Korea, Republic of)

    2014-06-15

    A facile and effective method has been developed for the synthesis of a novel series of benzofuran derivatives via N-acylation, O-alkylation and intramolecular condensation reactions, starting from readily available substituted o-hydroxy aryl ketone, and chloroacetyl arylamides. This metal-free transition process is characterized by mild reaction conditions, atom economy, short reaction time and a high yield with a decreased amount of by-products.

  8. 1,5-Asymmetric induction in the boron-mediated aldol reaction of β-oxygenated methyl ketones

    International Nuclear Information System (INIS)

    Dias, Luiz C.

    2007-01-01

    High levels of substrate-based 1,5-stereo induction are obtained in the boron-mediated aldol reactions of β-oxygenated methyl ketones with achiral and chiral aldehydes. Remote induction from the boron enolates gives the 1,5-anti adducts, with the enolate pi-facial selectivity critically dependent upon the nature of the beta-alkoxy protecting group. This 1,5-anti aldol methodology has been strategically employed in the total synthesis of several natural products. At present, the origin of the high level of 1,5-anti induction obtained with the boron enolates is unclear, although a model based on a hydrogen bonding between the alkoxy oxygen and the formyl hydrogen has been recently proposed. (author)

  9. Reaction of 11 C-benzoyl chlorides with metalloid reagents: 11 C-labeling of benzyl alcohols, benzaldehydes, and phenyl ketones from [11 C]CO.

    Science.gov (United States)

    Roslin, Sara; Dahl, Kenneth; Nordeman, Patrik

    2018-01-26

    In this article, we describe the carbon-11 ( 11 C, t 1/2  = 20.4 minutes) labeling of benzyl alcohols, benzaldehydes, and ketones using an efficient 2-step synthesis in which 11 C-carbon monoxide is used in an initial palladium-mediated reaction to produce 11 C-benzoyl chloride as a key intermediate. In the second step, the obtained 11 C-benzoyl chloride is further treated with a metalloid reagent to furnish the final 11 C-labeled product. Benzyl alcohols were obtained in moderated to high non-isolated radiochemical yields (RCY, 35%-90%) with lithium aluminum hydride or lithium aluminum deuteride as metalloid reagent. Changing the metalloid reagent to either tributyltin hydride or sodium borohydride, allowed for the reliable syntheses of 11 C-benzaldehydes in RCYs ranging from 58% to 95%. Finally, sodium tetraphenylborate were utilized to obtain 11 C-phenyl ketones in high RCYs (77%-95%). The developed method provides a new and efficient route to 3 different classes of compounds starting from aryl iodides or aryl bromides. Copyright © 2018 John Wiley & Sons, Ltd.

  10. Partial molar volumes of organic solutes in water. XXIII. Cyclic ketones at T = (298 to 573) K and pressures up to 30 MPa

    International Nuclear Information System (INIS)

    Cibulka, Ivan; Simurka, Lukas; Hnedkovsky, Lubomir; Bolotov, Alexander

    2011-01-01

    Research highlights: → In this study we examine standard molar volumes of aqueous cyclic ketones. → State parameters of measurements were (298 to 573) K and pressures up to 30 MPa. → Differences in behavior of monoketones and cyclohexane-1,4-dione were observed. → Group contribution method was designed and examined. - Abstract: Density data for dilute aqueous solutions of four cyclic ketones (cyclopentanone, cyclohexanone, cycloheptanone, and cyclohexane-1,4-dione) are presented together with standard molar volumes (partial molar volumes at infinite dilution) calculated from the experimental data. The measurements were performed at temperatures from T = 298 K up to T = 573 K. Experimental pressures were close to the saturated vapor pressure of water, and (15 and 30) MPa. The data were obtained using a high-temperature high-pressure flow vibrating-tube densimeter. Experimental standard molar volumes were correlated as a function of temperature and pressure using an empirical polynomial function. Contributions of the molecular structural segments (methylene and carbonyl groups) to the standard molar volume were also evaluated and analyzed.

  11. Theoretical study of the Wittig reaction of cyclic ketones with phosphorus ylide.

    Science.gov (United States)

    Jarwal, Nisha; Thankachan, Pompozhi Protasis

    2015-04-01

    The Wittig reaction of cyclopropanone, cyclobutanone and cyclopentanone with phosphorus ylide (Me3P = CH2) in gas phase was investigated computationally at B3LYP/6-31G** level of theory. In the Wittig reaction of cyclic ketones, two transition states (TS1 and TS2), corresponding to formation and decomposition of oxaphosphetane (OP) were located and investigated. Two loosely bound intermediates, a reactant complex (RC) and a product complex (PC) were also found. In the reaction of cyclopropanone, cyclobutanone and cyclopentanone, two oxaphosphetanes (OP1 and OP2) were predicted. OP1 initially formed was converted into OP2 by pseudorotation. In contrast to the reactions with cyclobutanone and cyclopentanone, an early TS1 was found in the reaction of cyclopropanone. The order of first activation energy barrier relative to reactant total energy was found to be cyclopropanone (-4.97 kcal mol(-1)) < cyclobutanone (0.30 kcal mol(-1)) < cyclopentanone (3.60 kcal mol(-1)).

  12. EFSA Panel on Food Contact Material, Enzymes, Flavourings and Processing Aids (CEF); Scientific Opinion on Flavouring Group Evaluation 51, Revision 1: Consideration of alicyclic ketones and secondary alcohols and related esters evaluated by the JECFA (59th meeting) structurally related to alicyclic, ketones secondary alcohols and related esters in FGE.09Rev3 (2011)

    DEFF Research Database (Denmark)

    Larsen, John Christian; Nørby, Karin Kristiane; Beltoft, Vibe Meister

    evaluation is necessary, as laid down in Commission Regulation (EC) No 1565/2000. The present consideration concerns a group of 20 alicyclic ketones and secondary alcohols and related esters evaluated by JECFA (59th meeting) in 2002. This revision is made due to inclusion of seven additional substances...

  13. Breaking the Dogma of Aldolase Specificity: Simple Aliphatic Ketones and Aldehydes are Nucleophiles for Fructose-6-phosphate Aldolase.

    Science.gov (United States)

    Roldán, Raquel; Sanchez-Moreno, Israel; Scheidt, Thomas; Hélaine, Virgil; Lemaire, Marielle; Parella, Teodor; Clapés, Pere; Fessner, Wolf-Dieter; Guérard-Hélaine, Christine

    2017-04-11

    d-Fructose-6-phosphate aldolase (FSA) was probed for extended nucleophile promiscuity by using a series of fluorogenic substrates to reveal retro-aldol activity. Four nucleophiles ethanal, propanone, butanone, and cyclopentanone were subsequently confirmed to be non-natural substrates in the synthesis direction using the wild-type enzyme and its D6H variant. This exceptional widening of the nucleophile substrate scope offers a rapid entry, in good yields and high stereoselectivity, to less oxygenated alkyl ketones and aldehydes, which was hitherto impossible. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Base-promoted isomerization of CF3-containing allylic alcohols to the corresponding saturated ketones under metal-free conditions

    Directory of Open Access Journals (Sweden)

    Yoko Hamada

    2017-08-01

    Full Text Available Following to the computational expectation, our previously reported intriguing 1,3-proton shift of 4,4,4-trifluorobut-2-yn-1-ols was successfully extended to the 4,4,4-trifluorobut-2-en-1-ol system under metal-free conditions to afford the corresponding saturated ketones in high to excellent chemical yields using such a convenient and easy-to-handle base as DBU at the toluene refluxing temperature, and utilization of the corresponding optically active substrates unambiguously demonstrated that this transformation proceeded in a highly stereoselective fashion.

  15. Solubility and solvation of alkali metal perchlorates, tetramethyl and tetraethylammonium in aqua-ketone solvents

    International Nuclear Information System (INIS)

    Kireev, A.A.; Pak, T.G.; Bezuglyj, V.D.

    1998-01-01

    The KClO 4 , RbClO 4 , CsClO 4 , (CH 3 ) 4 NClO 4 , (C 2 H 5 ) 4 NClO 4 solubility in water and water-acetone, water-methylethylketone mixtures is determined through the method of isothermal saturation at 298.15 K. Dissociation constants of alkali metals perchlorates in acetone and its 90% mixtures (by volume) are determined conductometrically. Solubility products and standard energies of the Gibbs transfer of the studied electrolytes from water into water-acetone and water-methylethylketone solvents. It is established that the Gibbs standard energies of Na + , K + , Rb + and Cs + cations transfer from water to water-ketone solvents are close to each other. It is shown that the effect of acetone and methylethylketone on solvation of the studied electrolytes is practically similar

  16. Sulphur and oxygen sequestration of n-C{sub 37} and n-C{sub 38} unsaturated ketones in an immature kerogen and the release of their carbon skeletons during early stages of thermal maturation

    Energy Technology Data Exchange (ETDEWEB)

    Koopmans, M.P.; De Leeuw, J.W.; Damste, J.S.S. [Netherlands Institute for Sea Research (NIOZ), Den Burg (Netherlands)] [and others

    1997-06-01

    Sedimentary rock from the Gessoso-solfifera Formation (Messinian) in the Vena del Gesso Basin (northern Italy) containing immature (R{sub o} = 0.25%) S-rich organic matter was artificially matured by hydrous pyrolysis at temperatures from 160 to 330{degrees}C for 72 h to study the diagenetic fate of n-C{sub 37} and n-C{sub 38} di- and tri-unsaturated methyl and ethyl ketones (alkenones) biosynthesised by several prymnesiophyte algae. During early diagenesis, the alkenones are incorporated into the kerogen by both sulphur and oxygen cross-linking as indicated by chemical degradation experiments with the kerogen of the unheated sample. Heating at temperatures between 160 and 260{degrees}C, which still represents early stages of thermal maturation, produces large amounts (up to 1 mg/g TOC) of S-bound, O-bound, and both S- and O-bound n-C{sub 37} and n-C{sub 38} skeletons, saturated n-C{sub 37} and n-C{sub 38} methyl, ethyl, and mid-chain ketones, C{sub 37} and C{sub 38} mid-chain 2,5-di-n-alkylthiophenes, C{sub 37} and C{sub 38} 1,2-di-n-alkylbenzenes, and C{sub 37} and C{sub 38} n-alkanes. With increasing thermal maturation, three forms of the n-C{sub 37} and n-C{sub 38} skeletons are relatively stable (saturated hydrocarbons, 1,2-di-n-alkylbenzenes and saturated ketones), whereas the S- and O-bound skeletons are relatively labile. These results suggest that in natural situations saturated ketones with an n-C{sub 37} and n-C{sub 38} skeleton can be expected as well as the corresponding hydrocarbons. 58 refs., 8 figs., 2 tabs.

  17. Mechanistic Insight into Ketone α-Alkylation with Unactivated Olefins via C-H Activation Promoted by Metal-Organic Cooperative Catalysis (MOCC): Enriching the MOCC Chemistry.

    Science.gov (United States)

    Dang, Yanfeng; Qu, Shuanglin; Tao, Yuan; Deng, Xi; Wang, Zhi-Xiang

    2015-05-20

    Metal-organic cooperative catalysis (MOCC) has been successfully applied for hydroacylation of olefins with aldehydes via directed C(sp(2))-H functionalization. Most recently, it was reported that an elaborated MOCC system, containing Rh(I) catalyst and 7-azaindoline (L1) cocatalyst, could even catalyze ketone α-alkylation with unactivated olefins via C(sp(3))-H activation. Herein we present a density functional theory study to understand the mechanism of the challenging ketone α-alkylation. The transformation uses IMesRh(I)Cl(L1)(CH2═CH2) as an active catalyst and proceeds via sequential seven steps, including ketone condensation with L1, giving enamine 1b; 1b coordination to Rh(I) active catalyst, generating Rh(I)-1b intermediate; C(sp(2))-H oxidative addition, leading to a Rh(III)-H hydride; olefin migratory insertion into Rh(III)-H bond; reductive elimination, generating Rh(I)-1c(alkylated 1b) intermediate; decoordination of 1c, liberating 1c and regenerating Rh(I) active catalyst; and hydrolysis of 1c, furnishing the final α-alkylation product 1d and regenerating L1. Among the seven steps, reductive elimination is the rate-determining step. The C-H bond preactivation via agostic interaction is crucial for the bond activation. The mechanism rationalizes the experimental puzzles: why only L1 among several candidates performed perfectly, whereas others failed, and why Wilkinson's catalyst commonly used in MOCC systems performed poorly. Based on the established mechanism and stimulated by other relevant experimental reactions, we attempted to enrich MOCC chemistry computationally, exemplifying how to develop new organic catalysts and proposing L7 to be an alternative for L1 and demonstrating the great potential of expanding the hitherto exclusive use of Rh(I)/Rh(III) manifold to Co(0)/Co(II) redox cycling in developing MOCC systems.

  18. Synthesis of All-Z-1,6,9,12,15-Octadecapenten-3-one, A Vinyl Ketone Polyunsaturated Marine Natural Product Isolated from Callysponga sp.

    Directory of Open Access Journals (Sweden)

    Anne Marie Langseter

    2014-03-01

    Full Text Available The synthesis of the marine natural product 1,6Z,9Z,12Z,15Z-octadecapentaen-3-one (1 has been achieved by two different routes starting from the ethyl esters of eicosapentaenoic acid (EPA and docosahexaenoic acid (DHA, respectively. Using EPA ethyl ester as starting material the polyunsaturated vinyl ketone lipid 1 was obtained in 17% overall yield.

  19. A cut-off in ocular chemesthesis from vapors of homologous alkylbenzenes and 2-ketones as revealed by concentration-detection functions

    International Nuclear Information System (INIS)

    Cometto-Muniz, J. Enrique; Abraham, Michael H.

    2008-01-01

    Studies of homologous series of environmental vapors have shown that their chemesthetic (i.e., sensory irritation) potency increases with carbon chain length (that is, their detection thresholds decrease) until they reach a homolog that fails to be detected, even at vapor saturation. All ensuing homologs cannot be detected either. In this investigation, we measured concentration-detection (i.e., psychometric) functions for ocular chemesthesis from homologous alkylbenzenes (pentyl, hexyl, and heptyl benzene) and 2-ketones (undecanone, dodecanone, and tridecanone). Using a three-alternative forced-choice procedure against air blanks, we tested a total of 18 to 24 subjects, about half of them females, average age 31 years, ranging from 18 to 56 years. Stimuli were generated and presented by a computer-controlled, vapor delivery device whose output was quantified by gas chromatography. Exposure time was 6 s and delivery flow 2.5 L/min. Within the context of present and previous findings, the outcome indicated that the functions for heptylbenzene and 2-tridecanone reached a plateau where further increases in concentration did not enhance detection. We conclude that: a) a cut-off point in ocular chemesthetic detection is reached along homologous alkylbenzenes and 2-ketones at the level of heptylbenzene and 2-tridecanone, respectively, and b) the observed effect rests on the homologs exceeding a critical molecular size (or dimension) rather than on them failing to achieve a high enough vapor concentration

  20. Comprehensive in Vitro Analysis of Acyltransferase Domain Exchanges in Modular Polyketide Synthases and Its Application for Short-Chain Ketone Production

    Energy Technology Data Exchange (ETDEWEB)

    Yuzawa, Satoshi [Univ. of California, Berkeley, CA (United States); Deng, Kai [Joint BioEnergy Inst. (JBEI), Emeryville, CA (United States); Sandia National Lab. (SNL-CA), Livermore, CA (United States); Wang, George [Joint BioEnergy Inst. (JBEI), Emeryville, CA (United States); Baidoo, Edward E. K. [Joint BioEnergy Inst. (JBEI), Emeryville, CA (United States); Northen, Trent R. [Joint BioEnergy Inst. (JBEI), Emeryville, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Adams, Paul D. [Joint BioEnergy Inst. (JBEI), Emeryville, CA (United States); Univ. of California, Berkeley, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Katz, Leonard [Univ. of California, Berkeley, CA (United States); Synthetic Biology Research Center, Emeryville, CA (United States); Keasling, Jay D. [Univ. of California, Berkeley, CA (United States); Joint BioEnergy Inst. (JBEI), Emeryville, CA (United States); Synthetic Biology Research Center, Emeryville, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2016-08-22

    Type I modular polyketide synthases (PKSs) are polymerases that utilize acyl-CoAs as substrates. Each polyketide elongation reaction is catalyzed by a set of protein domains called a module. Each module usually contains an acyltransferase (AT) domain, which determines the specific acyl-CoA incorporated into each condensation reaction. Although a successful exchange of individual AT domains can lead to the biosynthesis of a large variety of novel compounds, hybrid PKS modules often show significantly decreased activities. Using monomodular PKSs as models, we have systematically analyzed in this paper the segments of AT domains and associated linkers in AT exchanges in vitro and have identified the boundaries within a module that can be used to exchange AT domains while maintaining protein stability and enzyme activity. Importantly, the optimized domain boundary is highly conserved, which facilitates AT domain replacements in most type I PKS modules. To further demonstrate the utility of the optimized AT domain boundary, we have constructed hybrid PKSs to produce industrially important short-chain ketones. Our in vitro and in vivo analysis demonstrated production of predicted ketones without significant loss of activities of the hybrid enzymes. Finally, these results greatly enhance the mechanistic understanding of PKS modules and prove the benefit of using engineered PKSs as a synthetic biology tool for chemical production.

  1. Metabolic Responses in Endothelial Cells Following Exposure to Ketone Bodies

    Directory of Open Access Journals (Sweden)

    Erika Meroni

    2018-02-01

    Full Text Available The ketogenic diet (KD is a high-fat, low-carbohydrate diet based on the induction of the synthesis of ketone bodies (KB. Despite its widespread use, the systemic impact of KD is not completely understood. The purpose of this study was to evaluate the effects of physiological levels of KB on HMEC-1 endothelial cells. To this aim, DNA oxidative damage and the activation of Nrf2, a known transcriptional factor involved in cell responses to oxidative stress, were assessed. The exposure of cells to KB exerted a moderate genotoxic effect, measured by a significant increase in DNA oxidative damage. However, cells pre-treated with KB for 48 h and subjected to a secondary oxidative insult (H2O2, significantly decreased DNA damage compared to control oxidized cells. This protection occurred by the activation of Nrf2 pathway. In KB-treated cells, we found increased levels of Nrf2 in nuclear extracts and higher gene expression of HO-1, a target gene of Nrf2, compared to control cells. These results suggest that KB, by inducing moderate oxidative stress, activate the transcription factor Nrf2, which induces the transcription of target genes involved in the cellular antioxidant defense system.

  2. Pd-catalyzed aerobic oxidative annulation of cyclohexanones and 2-aminophenyl ketones: A direct approach to acridines

    Science.gov (United States)

    Mu, Wanlu; Li, Xiaowei; Wang, Longfei; Chen, Yong; Wu, Yanchao

    2017-08-01

    An efficient aerobic oxidative annulation of cyclohexanones and 2-aminophenyl ketones approach to substituted acridines, a structural motif for a large number of pharmaceuticals and functional materials is described. The key feature of this method is the use of oxygen as the sole oxidant and Pd catalyst, which resulting in the high regioselectivity with unsymmetrical meta-substituted cyclohexanones. The electron gap of the global redox condensation process is filled and the reaction efficiency is significantly promoted by O2 as a redox moderator. This protocol possesses many advantages such as using O2 as a cheap and nonhazardous oxidant, high regioselectivity and water as the only by-product, which meet the principle of green chemistry.

  3. Medium-chain fatty acids inhibit mitochondrial metabolism in astrocytes promoting astrocyte-neuron lactate and ketone body shuttle systems.

    Science.gov (United States)

    Thevenet, Jonathan; De Marchi, Umberto; Domingo, Jaime Santo; Christinat, Nicolas; Bultot, Laurent; Lefebvre, Gregory; Sakamoto, Kei; Descombes, Patrick; Masoodi, Mojgan; Wiederkehr, Andreas

    2016-05-01

    Medium-chain triglycerides have been used as part of a ketogenic diet effective in reducing epileptic episodes. The health benefits of the derived medium-chain fatty acids (MCFAs) are thought to result from the stimulation of liver ketogenesis providing fuel for the brain. We tested whether MCFAs have direct effects on energy metabolism in induced pluripotent stem cell-derived human astrocytes and neurons. Using single-cell imaging, we observed an acute pronounced reduction of the mitochondrial electrical potential and a concomitant drop of the NAD(P)H signal in astrocytes, but not in neurons. Despite the observed effects on mitochondrial function, MCFAs did not lower intracellular ATP levels or activate the energy sensor AMP-activated protein kinase. ATP concentrations in astrocytes were unaltered, even when blocking the respiratory chain, suggesting compensation through accelerated glycolysis. The MCFA decanoic acid (300 μM) promoted glycolysis and augmented lactate formation by 49.6%. The shorter fatty acid octanoic acid (300 μM) did not affect glycolysis but increased the rates of astrocyte ketogenesis 2.17-fold compared with that of control cells. MCFAs may have brain health benefits through the modulation of astrocyte metabolism leading to activation of shuttle systems that provide fuel to neighboring neurons in the form of lactate and ketone bodies.-Thevenet, J., De Marchi, U., Santo Domingo, J., Christinat, N., Bultot, L., Lefebvre, G., Sakamoto, K., Descombes, P., Masoodi, M., Wiederkehr, A. Medium-chain fatty acids inhibit mitochondrial metabolism in astrocytes promoting astrocyte-neuron lactate and ketone body shuttle systems. © FASEB.

  4. Leaching of Oil from Tuna Fish Liver by Using Solvent of Methyl-Ethyl Ketone

    Directory of Open Access Journals (Sweden)

    Mirna Rahmah Lubis

    2013-12-01

    Full Text Available Research of oil leaching from Tuna Fish Liver has been carried out by extracting of tuna fish liver in soxhlet by using methyl-ethyl ketone as solvent. Liver of fresh tuna fish is blended, put into soxhlet, and extracted at temperatures of 60oC, 65oC, 70oC, 75oC, and 80oC. After obtaining the oil, separation between solvent and oil is carried out by distillation. Oil obtained is analyzed by testing the yield, acid number, Iodine value, viscosity, and its impurities content. Yield obtained is influenced by temperature and time of leaching. Both variables indicates that the higher the variables, the more fish liver oil obtained. Maximum yield obtained is 25.552% at operating condition of leaching temperature 80oC, and leaching duration of 5 hours.

  5. Conversion of no-carrier-added [11C]carbon dioxide to [11C]carbon monoxide on molybdenum for the synthesis of 11C-labelled aromatic ketones

    International Nuclear Information System (INIS)

    Zeisler, S.K.; Nader, M.; Theobald, A.; Oberdorfer, F.

    1997-01-01

    A new method for the efficient conversion of no-carrier-added [ 11 C]carbon dioxide into [ 11 C]carbon monoxide is described. [ 11 C]Carbon dioxide produced by proton bombardment of ultra high purity nitrogen is pre-concentrated in a cryo trap and then passed through a quartz tube filled with a mesh of thin molybdenum wire heated to 850 o C. [ 11 C]Carbon dioxide readily reacts with molybdenum to form [ 11 C]carbon monoxide and molybdenum(IV) oxide. The latter also reduces carbon dioxide to carbon monoxide and helps improve the performance of the converter. [ 11 C]Carbon monoxide is purified from remaining [ 11 C]carbon dioxide and collected in a small silica trap from which it is eluted into a reaction mixture for the palladium-mediated synthesis of a 11 C-labelled aromatic ketone. Radiochemical yields of up to 81% (decay-corrected) for [ 11 C]carbon monoxide were obtained. Radiochemical purity and specific radioactivity of both [ 11 C]carbon monoxide and the 11 C-labelled ketone are sufficient for nuclear medical studies with PET. (Author)

  6. One-Pot Synthesis of 2-Acylindole-3-acetylketones via Domino Aza-alkylation/Michael Reaction Using o-Aminophenyl α,β-Unsaturated Ketones Followed by Desulfonative Dehydrogenation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, A Reum; Yu, Mi Rim; Sim, Jong Tack; Kim, Sung Gon [Kyonggi Univ., Suwon (Korea, Republic of)

    2016-09-15

    The development of novel and practical synthetic methods with a minimum number of operations for the construction of bioactive structurally complex compounds is a major challenge in synthetic organic chemistry. Recently, we reported an efficient method for the stereoselective synthesis of 2,3-disubstituted indoline derivatives; cis-2,3-disubstituted indolines were obtained by the aza-alkylation/Michael cascade reaction of 2-(tosylamino)phenyl α,β-unsaturated ketones with α-bromoacetophenones in good yields and with excellent diastereoselectivities (Scheme 2, Eq. (1)). Among the available synthetic strategies, domino or cascade reactions have received wide acceptance as highly efficient and powerful methods for the synthesis of molecules with a high structural complexity. An efficient synthesis of 2,3-disubstituted indoles was developed by the domino aza-alkylation/intramolecular Michael reaction of 2-(tosylamino)phenyl α,β-unsaturated ketones with α-bromoacetophenones, followed by desulfonative dehydrogenation with DBU. The reaction afforded structurally diverse and highly functionalized 2,3-disubstituted indoles in moderate to excellent yields (up to 99%). The synthesis of 2,3-disubstituted indoles without desulfonation through DDQ-induced oxidative dehydrogenation was also achieved.

  7. An efficient synthesis of β-amino ketone compounds through one-pot three-component Mannich-type reactions using bismuth nitrate as catalyst

    Directory of Open Access Journals (Sweden)

    S. Sheik Mansoor

    2015-07-01

    Full Text Available Three components one-pot Mannich reaction of aromatic ketone, aromatic aldehyde and aromatic amines has been efficiently catalyzed by recyclable bismuth nitrate (Bi(NO33, BN at ambient temperature to give various β-amino carbonyl compounds in high yields. This method has advantages of mild condition, no environmental pollution, and simple work-up procedures. Most importantly, β-amino carbonyl compounds with ortho-substituted aromatic amines are obtained in acceptable to moderate yields by this methodology.

  8. UV irradiation of polycyclic aromatic hydrocarbons in ices: production of alcohols, quinones, and ethers

    Science.gov (United States)

    Bernstein, M. P.; Sandford, S. A.; Allamandola, L. J.; Gillette, J. S.; Clemett, S. J.; Zare, R. N.

    1999-01-01

    Polycyclic aromatic hydrocarbons (PAHs) in water ice were exposed to ultraviolet (UV) radiation under astrophysical conditions, and the products were analyzed by infrared spectroscopy and mass spectrometry. Peripheral carbon atoms were oxidized, producing aromatic alcohols, ketones, and ethers, and reduced, producing partially hydrogenated aromatic hydrocarbons, molecules that account for the interstellar 3.4-micrometer emission feature. These classes of compounds are all present in carbonaceous meteorites. Hydrogen and deuterium atoms exchange readily between the PAHs and the ice, which may explain the deuterium enrichments found in certain meteoritic molecules. This work has important implications for extraterrestrial organics in biogenesis.

  9. Repurification and characterization of extractant mixture (isobutyl acetate-methyl isobutyl ketone) used in spectrophotometric analytical methods

    International Nuclear Information System (INIS)

    Al-Merey, R.; Al-Hameish, M.

    2001-01-01

    Isobutyl acetate (IBA) -methyl isobutyl ketone (MIBK) mixture used in analytical laboratories was re-purified by fractional distillation. The used mixture was washed with 0.5 M Na 2 CO 3 solution for the removal of inorganic substances. The range of fractional distillation was between 111-114 Centigrade which gave an azeotropic mixture that consists of 70% of IBA, 20% of MIBK and 10% of isobutanol (IBL). Gas chromatography (GC) analysis showed that isobutanol was increased by about 10% on the expense of IBA. This study suggests that MIBK could be determined in organic mixture spectrophotometrically. The analytical function of the re-purified mixture is found to be better than the unused mixture. Finally the distillation recovery was 93%. (author)

  10. High anion gap metabolic acidosis induced by cumulation of ketones, L- and D-lactate, 5-oxoproline and acute renal failure.

    Science.gov (United States)

    Heireman, Laura; Mahieu, Boris; Helbert, Mark; Uyttenbroeck, Wim; Stroobants, Jan; Piqueur, Marian

    2017-07-27

    Frequent causes of high anion gap metabolic acidosis (HAGMA) are lactic acidosis, ketoacidosis and impaired renal function. In this case report, a HAGMA caused by ketones, L- and D-lactate, acute renal failure as well as 5-oxoproline is discussed. A 69-year-old woman was admitted to the emergency department with lowered consciousness, hyperventilation, diarrhoea and vomiting. The patient had suffered uncontrolled type 2 diabetes mellitus, underwent gastric bypass surgery in the past and was chronically treated with high doses of paracetamol and fosfomycin. Urosepsis was diagnosed, whilst laboratory analysis of serum bicarbonate concentration and calculation of the anion gap indicated a  HAGMA. L-lactate, D-lactate, β-hydroxybutyric acid, acetone and 5-oxoproline serum levels were markedly elevated and renal function was impaired. We concluded that this case of HAGMA was induced by a variety of underlying conditions: sepsis, hyperglycaemia, prior gastric bypass surgery, decreased renal perfusion and paracetamol intake. Risk factors for 5-oxoproline intoxication present in this case are female gender, sepsis, impaired renal function and uncontrolled type 2 diabetes mellitus. Furthermore, chronic antibiotic treatment with fosfomycin might have played a role in the increased production of 5-oxoproline. Paracetamol-induced 5-oxoproline intoxication should be considered as a cause of HAGMA in patients with female gender, sepsis, impaired renal function or uncontrolled type 2 diabetes mellitus, even when other more obvious causes of HAGMA such as lactate, ketones or renal failure can be identified.

  11. Rhododenol and raspberry ketone impair the normal proliferation of melanocytes through reactive oxygen species-dependent activation of GADD45.

    Science.gov (United States)

    Kim, Minjeong; Baek, Heung Soo; Lee, Miri; Park, Hyeonji; Shin, Song Seok; Choi, Dal Woong; Lim, Kyung-Min

    2016-04-01

    Rhododenol or rhododendrol (RD, 4-(4-hydroxyphenyl)-2-butanol) occurs naturally in many plants along with raspberry ketone (RK, 4-(4-hydroxyphenyl)-2-butanone), a ketone derivative, which include Nikko maple tree (Acer nikoense) and white birch (Betula platyphylla). De-pigmenting activity of RD was discovered and it was used as a brightening ingredient for the skin whitening cosmetics. Recently, cosmetics containing RD were withdrawn from the market because a number of consumers developed leukoderma, inflammation and erythema on their face, neck and hands. Here, we explored the mechanism underlying the toxicity of RD and RK against melanocytes using B16F10 murine melanoma cells and human primary epidermal melanocytes. Treatment with RD or RK resulted in the decreased cell viability in a dose-dependent manner which appeared from cell growth arrest. Consistently, ROS generation was significantly increased by RD or RK as determined by DCF-enhanced fluorescence. An antioxidant enzyme, glutathione peroxidase was depleted as well. In line with ROS generation, oxidative damages and the arrest of normal cell proliferation, GADD genes (Growth Arrest and DNA Damage) that include GADD45 and GADD153, were significantly up-regulated. Prevention of ROS generation with an anti-oxidant, N-acetylcysteine (NAC) significantly rescued RD and RK-suppressed melanocyte proliferation. Consistently, up-regulation of GADD45 and GADD153 was significantly attenuated by NAC, suggesting that increased ROS and the resultant growth arrest of melanocytes may contribute to RD and RK-induced leukoderma. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Potentiation of 2,5-hexanedione neurotoxicity by methyl ethyl ketone

    International Nuclear Information System (INIS)

    Ralston, W.H.; Hilderbrand, R.L.; Uddin, D.E.; Andersen, M.E.; Gardier, R.W.

    1985-01-01

    Chronic oral administration of a combination of 2.2 mmol methyl ethyl ketone (MEK) and 2.2 mmol 2,5-hexanedione (2,5-HD)/kg/day, 5 days/week resulted in more rapid onset of motor deficits than did chronic dosing with 2.2 mmol 2,5-HD/kg/day alone. In kinetic studies blood time courses of 2,5-HD were determined in rats in the presence and absence of MEK. Concomitant administration of MEK reduced blood 2,5-HD clearance and increased the area under the curve (AUC) for the blood 2,5-HD. In companion experiments with 2,5-[1,6- 14 C]HD as a tracer, neural and nonneural tissues were examined 72 hr following the last treatment at Weeks 1, 2, and 3 of chronic administration of 2,5-HD alone or in combination with an equimolar dose of MEK. Rats treated with 2,5-[ 14 C]HD alone or in combination with MEK demonstrated no difference in total or trichloroacetic acid-precipitable radioactivity in blood, in liver homogenates, or in neurofilament-enriched fractions from sciatic nerve and spinal cord. The data support a suggestion that the potentiation of hexacarbon neurotoxicity by MEK is the result of the persistence of the neurotoxic metabolite in the blood and not the enhanced metabolism of parent hexacarbon to 2,5-HD

  13. Weathering and chemical degradation of methyl eugenol and raspberry ketone solid dispensers for detection, monitoring and male annihilation of Bactrocera dorsalis and Bactrocera cucurbitae (Diptera: Tephritidae) in Hawaii

    Science.gov (United States)

    Solid male lure dispensers containing methyl eugenol (ME) and raspberry ketone (RK), or mixtures of the lures (ME + RK), and dimethyl dichloro-vinyl phosphate (DDVP) were evaluated in AWPM bucket or Jackson traps in commercial papaya (Carica papaya L.) orchards where both oriental fruit fly, Bactroc...

  14. Rapid Access to β-Trifluoromethyl-Substituted Ketones: Harnessing Inductive Effects in Wacker-Type Oxidations of Internal Alkenes

    KAUST Repository

    Lerch, Michael M.; Morandi, Bill; Wickens, Zachary K.; Grubbs, Robert H.

    2014-01-01

    We present a practical trifluoromethyl-directed Wacker-type oxidation of internal alkenes that enables rapid access to β-trifluoromethyl-substituted ketones. Allylic trifluoromethyl-substituted alkenes bearing a wide range of functional groups can be oxidized in high yield and regioselectivity. The distance dependence of the regioselectivity was established by systematic variation of the number of methylene units between the double bond and the trifluoromethyl group. The regioselectivity enforced by traditional directing groups could even be reversed by introduction of a competing trifluoromethyl group. Besides being a new powerful synthetic method to prepare fluorinated molecules, this work directly probes the role of inductive effects on nucleopalladation events. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Rapid Access to β-Trifluoromethyl-Substituted Ketones: Harnessing Inductive Effects in Wacker-Type Oxidations of Internal Alkenes

    KAUST Repository

    Lerch, Michael M.

    2014-07-18

    We present a practical trifluoromethyl-directed Wacker-type oxidation of internal alkenes that enables rapid access to β-trifluoromethyl-substituted ketones. Allylic trifluoromethyl-substituted alkenes bearing a wide range of functional groups can be oxidized in high yield and regioselectivity. The distance dependence of the regioselectivity was established by systematic variation of the number of methylene units between the double bond and the trifluoromethyl group. The regioselectivity enforced by traditional directing groups could even be reversed by introduction of a competing trifluoromethyl group. Besides being a new powerful synthetic method to prepare fluorinated molecules, this work directly probes the role of inductive effects on nucleopalladation events. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Effect of a lucerne feeding strategy in the first week postpartum on feed intake and ketone body profiles in blood plasma, urine, and milk in Holstein cows

    DEFF Research Database (Denmark)

    Larsen, Mogens; Kristensen, Niels Bastian

    2010-01-01

    The objectives were to investigate the effects of a lucerne feeding strategy to postpartum transition dairy cows on feed intake and ketone body profiles in plasma, urine, and milk. At calving, 13 Holstein cows were assigned to one of two treatments: a control lactation diet or a lucerne haylage l...

  17. EFSA CEF Panel (EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids), 2016. Scientific Opinion on Flavouring Group Evaluation 51, Revision 2 (FGE.51Rev2): Consideration of alicyclic ketones and secondary alcohols and related esters evaluated by the JECFA (59th meeting, ) structurally related to alicyclic ketones secondary alcohols and related esters in FGE.09Rev6 (2015b)

    DEFF Research Database (Denmark)

    Beltoft, Vibe Meister; Nørby, Karin Kristiane

    on metabolism and toxicity. The present consideration concerns a group of 24 alicyclic ketones and secondary alcohols and related esters evaluated by JECFA (59th meeting in 2002 and 63rd meeting in 2004). This revision is made due to inclusion of four additional substances cleared for genotoxicity concern...

  18. Ultrasound-assisted synthesis of β-amino ketones via a Mannich reaction catalyzed by Fe3O4 magnetite nanoparticles as an efficient, recyclable and heterogeneous catalyst

    Directory of Open Access Journals (Sweden)

    Naghi Saadatjoo

    2017-02-01

    The present methodology offers several advantages, such as good yields, short reaction times and a recyclable catalyst with a very easy work up. In addition, the obtained results indicated that MNPs can be used as an effective and inexpensive catalyst for stereoselective synthesis of β-amino carbonyl by a one-pot three component condensation of aldehydes, ketones and amines.

  19. Improving methyl ketone production in Escherichia coli by heterologous expression of NADH-dependent FabG

    DEFF Research Database (Denmark)

    Goh, Ee Been; Chen, Yan; Petzold, Christopher J.

    2018-01-01

    balance, as fatty acid-derived pathways face the systematic metabolic challenge of net NADPH consumption (in large part, resulting from the key fatty acid biosynthetic enzyme FabG [β-ketoacyl-ACP reductase]) and net NADH production. In this study, we attempted to mitigate cofactor imbalance...... by heterologously expressing NADH-dependent, rather than NADPH-dependent, versions of FabG identified in previous studies. Of the four NADH-dependent versions of FabG tested in our previously best-reported methyl ketone-producing strain (EGS1895), the version from Acholeplasma laidlawii (Al_FabG) showed...... for the base strain (EGS1895) under fermentation conditions optimized in this study. Shotgun proteomic data for strains EGS2920 and EGS1895 during fed-batch fermentation were consistent with the goal of alleviating NADPH limitation through expression of Al_FabG. For example, relative to strain EGS1895, strain...

  20. Immobilization of Acetobacter sp. CCTCC M209061 for efficient asymmetric reduction of ketones and biocatalyst recycling.

    Science.gov (United States)

    Chen, Xiao-Hong; Wang, Xiao-Ting; Lou, Wen-Yong; Li, Ying; Wu, Hong; Zong, Min-Hua; Smith, Thomas J; Chen, Xin-De

    2012-09-04

    The bacterium Acetobacter sp. CCTCC M209061 is a promising whole-cell biocatalyst with exclusive anti-Prelog stereoselectivity for the reduction of prochiral ketones that can be used to make valuable chiral alcohols such as (R)-4-(trimethylsilyl)-3-butyn-2-ol. Although it has promising catalytic properties, its stability and reusability are relatively poor compared to other biocatalysts. Hence, we explored various materials for immobilizing the active cells, in order to improve the operational stability of biocatalyst. It was found that Ca-alginate give the best immobilized biocatalyst, which was then coated with chitosan to further improve its mechanical strength and swelling-resistance properties. Conditions were optimized for formation of reusable immobilized beads which can be used for repeated batch asymmetric reduction of 4'-chloroacetophenone. The optimized immobilized biocatalyst was very promising, with a specific activity of 85% that of the free-cell biocatalyst (34.66 μmol/min/g dw of cells for immobilized catalyst vs 40.54 μmol/min/g for free cells in the asymmetric reduction of 4'-chloroacetophenone). The immobilized cells showed better thermal stability, pH stability, solvent tolerance and storability compared with free cells. After 25 cycles reaction, the immobilized beads still retained >50% catalytic activity, which was 3.5 times higher than degree of retention of activity by free cells reused in a similar way. The cells could be recultured in the beads to regain full activity and perform a further 25 cycles of the reduction reaction. The external mass transfer resistances were negligible as deduced from Damkohler modulus Da internal mass transfer restriction affected the reduction action but was not the principal rate-controlling step according to effectiveness factors η < 1 and Thiele modulus 0.3<∅ <1. Ca-alginate coated with chitosan is a highly effective material for immobilization of Acetobacter sp. CCTCC M209061 cells for repeated use in

  1. Immobilization of Acetobacter sp. CCTCC M209061 for efficient asymmetric reduction of ketones and biocatalyst recycling

    Directory of Open Access Journals (Sweden)

    Chen Xiao-Hong

    2012-09-01

    Full Text Available Abstract Background The bacterium Acetobacter sp. CCTCC M209061 is a promising whole-cell biocatalyst with exclusive anti-Prelog stereoselectivity for the reduction of prochiral ketones that can be used to make valuable chiral alcohols such as (R-4-(trimethylsilyl-3-butyn-2-ol. Although it has promising catalytic properties, its stability and reusability are relatively poor compared to other biocatalysts. Hence, we explored various materials for immobilizing the active cells, in order to improve the operational stability of biocatalyst. Results It was found that Ca-alginate give the best immobilized biocatalyst, which was then coated with chitosan to further improve its mechanical strength and swelling-resistance properties. Conditions were optimized for formation of reusable immobilized beads which can be used for repeated batch asymmetric reduction of 4′-chloroacetophenone. The optimized immobilized biocatalyst was very promising, with a specific activity of 85% that of the free-cell biocatalyst (34.66 μmol/min/g dw of cells for immobilized catalyst vs 40.54 μmol/min/g for free cells in the asymmetric reduction of 4′-chloroacetophenone. The immobilized cells showed better thermal stability, pH stability, solvent tolerance and storability compared with free cells. After 25 cycles reaction, the immobilized beads still retained >50% catalytic activity, which was 3.5 times higher than degree of retention of activity by free cells reused in a similar way. The cells could be recultured in the beads to regain full activity and perform a further 25 cycles of the reduction reaction. The external mass transfer resistances were negligible as deduced from Damkohler modulus Da η ∅ Conclusions Ca-alginate coated with chitosan is a highly effective material for immobilization of Acetobacter sp. CCTCC M209061 cells for repeated use in the asymmetric reduction of ketones. Only a small cost in terms of the slightly lower catalytic activity compared to

  2. Carbon nanotube-supported Au-Pd alloy with cooperative effect of metal nanoparticles and organic ketone/quinone groups as a highly efficient catalyst for aerobic oxidation of amines.

    Science.gov (United States)

    Deng, Weiping; Chen, Jiashu; Kang, Jincan; Zhang, Qinghong; Wang, Ye

    2016-05-21

    Functionalised carbon nanotube (CNT)-supported Au-Pd alloy nanoparticles were highly efficient catalysts for the aerobic oxidation of amines. We achieved the highest turnover frequencies (>1000 h(-1)) for the oxidative homocoupling of benzylamine and the oxidative dehydrogenation of dibenzylamine. We discovered a cooperative effect between Au-Pd nanoparticles and ketone/quinone groups on CNTs.

  3. Toward Green Acylation of (Heteroarenes: Palladium-Catalyzed Carbonylation of Olefins to Ketones

    Directory of Open Access Journals (Sweden)

    Jie Liu

    2017-11-01

    Full Text Available Green Friedel–Crafts acylation reactions belong to the most desired transformations in organic chemistry. The resulting ketones constitute important intermediates, building blocks, and functional molecules in organic synthesis as well as for the chemical industry. Over the past 60 years, advances in this topic have focused on how to make this reaction more economically and environmentally friendly by using green acylating conditions, such as stoichiometric acylations and catalytic homogeneous and heterogeneous acylations. However, currently well-established methodologies for their synthesis either produce significant amounts of waste or proceed under harsh conditions, limiting applications. Here, we present a new protocol for the straightforward and selective introduction of acyl groups into (hetero­arenes without directing groups by using available olefins with inexpensive CO. In the presence of commercial palladium catalysts, inter- and intramolecular carbonylative C–H functionalizations take place with good regio- and chemoselectivity. Compared to classical Friedel–Crafts chemistry, this novel methodology proceeds under mild reaction conditions. The general applicability of this methodology is demonstrated by the direct carbonylation of industrial feedstocks (ethylene and diisobutene as well as of natural products (eugenol and safrole. Furthermore, synthetic applications to drug molecules are showcased.

  4. EFSA CEF Panel (EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids), 2014. Scientific Opinion on Flavouring Group Evaluation 87, Revision 2 (FGE.87Rev2): Consideration of bicyclic secondary alcohols, ketones and related esters evaluated by JECFA (63rd meeting, ) structurally related to bicyclic secondary alcohols, ketones and related esters evaluated by EFSA in FGE.47Rev1 (2008)

    DEFF Research Database (Denmark)

    Beltoft, Vibe Meister; Frandsen, Henrik Lauritz; Nørby, Karin Kristiane

    evaluation is necessary, as laid down in Commission Regulation (EC) No 1565/2000. The present consideration concerns a group of 19 bicyclic secondary alcohols, ketones and related esters evaluated by the JECFA at the 63rd meeting in 2004. This revision of FGE.87 is made due to inclusion of two additional...

  5. A Highly Efficient Method for Synthesis of Bisarylmethylidenes of Cyclic Ketones in [BMIm]Cl/NaOH System as New and Recyclable Catalyst

    Directory of Open Access Journals (Sweden)

    Shahrzad Javanshir

    2014-03-01

    Full Text Available An ionic liquid 1-Butyl-3-methylimidazoliumchloride[BMIm]Cl/sodium hydroxide system, was employed as a catalyst for the fast and one-pot crossed aldol-condensation of various aromatic aldehydes and cyclic ketones, to produce a variety of substituted α,α'-bis(benzylidene-cycloalkanones under neat conditions. This process is simple, efficient and environmentally benign and proceeds in high yield and short reaction times. The ionic liquid can be recycled for subsequent reactions without any appreciable loss of efficiency.

  6. A model to assess the feasibility of shifting reaction equilibrium by acetone removal in the transamination of ketones using 2-propylamine.

    Science.gov (United States)

    Tufvesson, Pär; Bach, Christian; Woodley, John M

    2014-02-01

    Acetone removal by evaporation has been proposed as a simple and cheap way to shift the equilibrium in the biocatalytic asymmetric synthesis of optically pure chiral amines, when 2-propylamine is used as the amine donor. However, dependent on the system properties, this may or may not be a suitable strategy. To avoid excessive laboratory work a model was used to assess the process feasibility. The results from the current study show that a simple model of the acetone removal dependence on temperature and sparging gas flowrate can be developed and fits the experimental data well. The model for acetone removal was then coupled to a simple model for biocatalyst kinetics and also for loss of substrate ketone by evaporation. The three models were used to simulate the effects of varying the critical process parameters and reaction equilibrium constants (K eq) as well as different substrate ketone volatilities (Henry's constant). The simulations were used to estimate the substrate losses and also the maximum yield that could be expected. The approach was seen to give a clear indication for which target amines the acetone evaporation strategy would be feasible and for which amines it would not. The study also shows the value of a modeling approach in conceptual process design prior to entering a biocatalyst screening or engineering program to assess the feasibility of a particular process strategy for a given target product. © 2013 Wiley Periodicals, Inc.

  7. Activation of liver carnitine palmitoyltransferase-1 and mitochondrial acetoacetyl-CoA thiolase is associated with elevated ketone body levels in the elasmobranch Squalus acanthias.

    Science.gov (United States)

    Treberg, Jason R; Crockett, Elizabeth L; Driedzic, William R

    2006-01-01

    Elasmobranch fishes are an ancient group of vertebrates that have unusual lipid metabolism whereby storage lipids are mobilized from the liver for peripheral oxidation largely as ketone bodies rather than as nonesterified fatty acids under normal conditions. This reliance on ketones, even when feeding, implies that elasmobranchs are chronically ketogenic. Compared to specimens sampled within 2 d of capture (recently captured), spiny dogfish Squalus acanthias that were held for 16-33 d without apparent feeding displayed a 4.5-fold increase in plasma concentration of d- beta -hydroxybutyrate (from 0.71 to 3.2 mM) and were considered ketotic. Overt activity of carnitine palmitoyltransferase-1 in liver mitochondria from ketotic dogfish was characterized by an increased apparent maximal activity, a trend of increasing affinity (reduced apparent K(m); P=0.09) for l-carnitine, and desensitization to the inhibitor malonyl-CoA relative to recently captured animals. Acetoacetyl-CoA thiolase (ACoAT) activity in isolated liver mitochondria was also markedly increased in the ketotic dogfish compared to recently captured fish, whereas no difference in 3-hydroxy-3-methylglutaryl-CoA synthase activity was found between these groups, suggesting that ACoAT plays a more important role in the activation of ketogenesis in spiny dogfish than in mammals and birds.

  8. Functionalized cyclopentadienyl rhodium(III) bipyridine complexes: synthesis, characterization, and catalytic application in hydrogenation of ketones.

    Science.gov (United States)

    Wang, Wan-Hui; Suna, Yuki; Himeda, Yuichiro; Muckerman, James T; Fujita, Etsuko

    2013-07-14

    A series of highly functionalized cyclopentadienyl rhodium(III) complexes, [Cp'Rh(bpy)Br](ClO4) (Cp' = substituted cyclopentadienyl), was synthesized from various multi-substituted cyclopentadienes (Cp'H). [Rh(cod)Cl]2 and Cp'H were firstly converted to [Cp'Rh(cod)] complexes, which were then treated with Br2 to give the rhodium(III) dibromides [Cp'RhBr2]2. The novel complexes [Cp'Rh(bpy)Br](ClO4) were obtained readily by the reaction of 2,2'-bipyridine with [Cp'RhBr2]2. These rhodium complexes [Cp'Rh(bpy)Br](ClO4) were fully characterized and utilized in the hydrogenation of cyclohexanone and acetophenone with generally high yields, but they did not exhibit the same reactivity trends for the two substrate ketones. The different activity of these complexes for the different substrates may be due to the influence of the substituents on the Cp' rings.

  9. Modification of poly(ether ether ketone) by ion irradiation

    Czech Academy of Sciences Publication Activity Database

    Hnatowicz, Vladimír; Havránek, Vladimír; Bočan, Jiří; Macková, Anna; Vacík, Jiří; Švorčík, V.

    2008-01-01

    Roč. 266, č. 2 (2008), s. 283-287 ISSN 0168-583X R&D Projects: GA MŠk(CZ) LC06041 Institutional research plan: CEZ:AV0Z10480505 Keywords : PEEK * ion beam modification * polymer degradation Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 0.999, year: 2008

  10. Crosslinked poly(ether ether ketone): cost-effective proton exchange ...

    Indian Academy of Sciences (India)

    2018-02-02

    Feb 2, 2018 ... such as their high cost, poor proton conductivity and high fuel permeability at temperature above 80. ◦. C, which stimu- lated the ..... swells or becomes water soluble and loses its dimensional sta- bility. The water uptake of the ...

  11. Microwave-assisted synthesis of 5-aminopyrazol-4-yl ketones and the p38(MAPK) inhibitor RO3201195 for study in Werner syndrome cells.

    Science.gov (United States)

    Bagley, Mark C; Davis, Terence; Dix, Matthew C; Murziani, Paola G S; Rokicki, Michal J; Kipling, David

    2008-07-01

    5-Aminopyrazol-4-yl ketones are prepared rapidly and efficiently using microwave dielectric heating from beta-ketonitriles by treatment with N,N'-diphenylformamidine followed by heterocyclocondensation by irradiation with a hydrazine. The inhibitory activity of RO3201195 prepared by this methodology was confirmed in hTERT-immortalized HCA2 and WS dermal fibroblasts at 200nM concentration, both by ELISA and immunoblot assay, and displays excellent kinase selectivity for p38alpha MAPK over the related stress-activated kinase JNK.

  12. Identification of di- and tri-substituted hydroxy and ketone metabolites of delta1-tetrahydrocannabinol in mouse liver.

    Science.gov (United States)

    Harvey, D J; Martin, B R; Paton, W D

    1977-08-01

    In vivo liver metabolites of delta1-tetrahydrocannabinol (delta1-THC) were examined with a gas chromatograph--mass spectrometer--computer system as trimethylsilyl (TMS), [2H9]TMS and methyloxime-TMS derivatives. In addition to the reported monohydroxy, acid, and hydroxyacid metabolites, the following multiply substituted metabolites were identified: 2'',7-, 3'', 7-, and 6beta,7-dihydroxy-delta1-THC; 2'',6alpha,7-, and 3'',6alpha,7-trihydroxy-delta1-THC; 2''-, 3''-, and 7-hydroxy-6-oxo-delta1-THC, and 2'',7- and 3'',7-dihydroxy-6-oxo-delta1-THC. The ketones and hydroxyacids were reduced to common alcohols with lithium aluminium deuteride and the number of deuterium atoms in the product was used to distinguish the metabolic alcohols from those produced by reduction.

  13. Oxidation of C18 Hydroxy-Polyunsaturated Fatty Acids to Epoxide or Ketone by Catalase-Related Hemoproteins Activated with Iodosylbenzene.

    Science.gov (United States)

    Teder, Tarvi; Boeglin, William E; Brash, Alan R

    2017-07-01

    Small catalase-related hemoproteins with a facility to react with fatty acid hydroperoxides were examined for their potential mono-oxygenase activity when activated using iodosylbenzene. The proteins tested were a Fusarium graminearum 41 kD catalase hemoprotein (Fg-cat, gene FGSG_02217), a Pseudomonas fluorescens Pfl01 catalase (37.5 kD, accession number WP_011333788.1), and a Mycobacterium avium ssp. paratuberculosis 33 kD catalase (gene MAP-2744c). 13-Hydroxy-octadecenoic acids (which are normally unreactive) were selected as substrates because these enzymes react specifically with the corresponding 13S-hydroperoxides (Pakhomova et al. 18:2559-2568, 5; Teder et al. 1862:706-715, 14). In the presence of iodosylbenzene Fg-cat converted 13S-hydroxy-fatty acids to two products: the 15,16-double bond of 13S-hydroxy α-linolenic acid was oxidized stereospecifically to the 15S,16R-cis-epoxide or the 13-hydroxyl was oxidized to the 13-ketone. Products were identified by UV, HPLC, LC-MS, NMR and by comparison with authentic standards prepared for this study. The Pfl01-cat displayed similar activity. MAP-2744c oxidized 13S-hydroxy-linoleic acid to the 13-ketone, and epoxidized the double bonds to form the 9,10-epoxy-13-hydroxy, 11,12-epoxy-13-hydroxy, and 9,10-epoxy-13-keto derivatives; equivalent transformations occurred with 9S-hydroxy-linoleic acid as substrate. In parallel incubations in the presence of iodosylbenzene, human catalase displayed no activity towards 13S-hydroxy-linoleic acid, as expected from the highly restricted access to its active site. The results indicated that with suitable transformation to Compound I, monooxygenase activity can be demonstrated by these catalase-related hemoproteins with tyrosine as the proximal heme ligand.

  14. Luminescent single-ion magnets from Lanthanoid(III) complexes with monodentate ketone ligands

    Energy Technology Data Exchange (ETDEWEB)

    Kanetomo, Takuya; Ishida, Takayuki, E-mail: takayuki.ishida@uec.ac.jp [Department of Engineering Science, The University of Electro-Communications, Tokyo (Japan)

    2016-02-01

    We synthesized [Ln{sup III}(hfac){sub 3}(H{sub 2}O)(L)] (abbreviated as Ln-L; Ln = Gd, Tb, Eu; L = DTBK (di-t-butyl ketone), BP (benzophenone)), in which the carbonyl oxygen atom was coordinated to the Ln ion center, despite of such bulky substituents. Their crystal structures were determined by means of X-ray diffraction study. Gd-DTBK is completely isomorphous to the di-t-butyl nitroxide derivative and accordingly can be regarded as a model with the ligand spin masked. The ac magnetic susceptibility measurements on Tb-DTBK and -BP showed frequency dependence, characteristic of single-ion magnets. They also displayed photoluminescence in the solid state at room temperature. The quantum yields of the luminescence of Tb-DTBK and -BP (λ{sub ex} = 360 nm) were improved to 57 and 35%, respectively, from that of the starting material [TbI{sup III}(hfac){sub 3}(H{sub 2}O){sub 2}] (28% at λ{sub ex} = 370 nm). Similarly, the quantum yields for Eu-DTBK and -BP were 8 and 15%, respectively, with λ{sub ex} = 400 nm, while that of the starting material [EuI{sup III}(hfac){sub 3}(H{sub 2}O){sub 2}] was 4% at λ{sub ex}=400 nm.

  15. Room Temperature Reactivity Of Silicon Nanocrystals With Solvents: The Case Of Ketone And Hydrogen Production From Secondary Alcohols: Catalysis?

    KAUST Repository

    El Demellawi, Jehad K.; Holt, Christopher; Abou-Hamad, Edy; Al-Talla, Zeyad; Saih, Youssef; Chaieb, Saharoui

    2015-01-01

    Although silicon nanoparticles dispersed in liquids are used in various applications ranging from bio-labeling to hydrogen production, their reactivities with their solvents and their catalytic properties re-main still unexplored. Here, we discovered that, because of their surface structures and mechanical strain, silicon nanoparticles react strongly with their solvents and may act as catalysts for the dehydrogenation, at room temperature, of secondary alcohols (e.g. isopropanol) to ketones and hydrogen. This catalytic reaction was followed by gas chromatography, pH measurements, mass spectroscopy and solidstate NMR. This discovery provides new understanding of the role played by silicon nanoparticles, and nanosilicon in general, in their stability in solvents in general as well as being candidates in catalysis.

  16. Room Temperature Reactivity Of Silicon Nanocrystals With Solvents: The Case Of Ketone And Hydrogen Production From Secondary Alcohols: Catalysis?

    KAUST Repository

    El Demellawi, Jehad K.

    2015-05-29

    Although silicon nanoparticles dispersed in liquids are used in various applications ranging from bio-labeling to hydrogen production, their reactivities with their solvents and their catalytic properties re-main still unexplored. Here, we discovered that, because of their surface structures and mechanical strain, silicon nanoparticles react strongly with their solvents and may act as catalysts for the dehydrogenation, at room temperature, of secondary alcohols (e.g. isopropanol) to ketones and hydrogen. This catalytic reaction was followed by gas chromatography, pH measurements, mass spectroscopy and solidstate NMR. This discovery provides new understanding of the role played by silicon nanoparticles, and nanosilicon in general, in their stability in solvents in general as well as being candidates in catalysis.

  17. Distributions of Polycyclic Aromatic Hydrocarbons, Aromatic Ketones, Carboxylic Acids, and Trace Metals in Arctic Aerosols: Long-Range Atmospheric Transport, Photochemical Degradation/Production at Polar Sunrise.

    Science.gov (United States)

    Singh, Dharmendra Kumar; Kawamura, Kimitaka; Yanase, Ayako; Barrie, Leonard A

    2017-08-15

    The distributions, correlations, and source apportionment of aromatic acids, aromatic ketones, polycyclic aromatic hydrocarbons (PAHs), and trace metals were studied in Canadian high Arctic aerosols. Nineteen PAHs including minor sulfur-containing heterocyclic PAH (dibenzothiophene) and major 6 carcinogenic PAHs were detected with a high proportion of fluoranthene followed by benzo[k]fluoranthene, pyrene, and chrysene. However, in the sunlit period of spring, their concentrations significantly declined likely due to photochemical decomposition. During the polar sunrise from mid-March to mid-April, benzo[a]pyrene to benzo[e]pyrene ratios significantly dropped, and the ratios diminished further from late April to May onward. These results suggest that PAHs transported over the Arctic are subjected to strong photochemical degradation at polar sunrise. Although aromatic ketones decreased in spring, concentrations of some aromatic acids such as benzoic and phthalic acids increased during the course of polar sunrise, suggesting that aromatic hydrocarbons are oxidized to result in aromatic acids. However, PAHs do not act as the major source for low molecular weight (LMW) diacids such as oxalic acid that are largely formed at polar sunrise in the arctic atmosphere because PAHs are 1 to 2 orders of magnitude less abundant than LMW diacids. Correlations of trace metals with organics, their sources, and the possible role of trace transition metals are explained.

  18. Author Details

    African Journals Online (AJOL)

    Vaivars, G. Vol 60 (2007) - Articles Preparation and Characterization of Sulfonated Poly (ether ether ketone)/Phosphated Zirconia Nanoparticles Composite Proton-conducting Membranes Abstract PDF. ISSN: 0379-4350. AJOL African Journals Online. HOW TO USE AJOL... for Researchers · for Librarians · for Authors ...

  19. Composite perfluorohydrocarbon membranes, their preparation and use

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Yong; Bikson, Benjamin

    2017-04-04

    Composite porous hydrophobic membranes are prepared by forming a perfluorohydrocarbon layer on the surface of a preformed porous polymeric substrate. The substrate can be formed from poly (aryl ether ketone) and a perfluorohydrocarbon layer can be chemically grafted to the surface of the substrate. The membranes can be utilized for a broad range of fluid separations, such as microfiltration, nanofiltration, ultrafiltration as membrane contactors for membrane distillation and for degassing and dewatering of fluids. The membranes can further contain a dense ultra-thin perfluorohydrocarbon layer superimposed on the porous poly (aryl ether ketone) substrate and can be utilized as membrane contactors or as gas separation. membranes for natural gas treatment and gas dehydration.

  20. GABA action in immature neocortical neurons directly depends on the availability of ketone bodies.

    Science.gov (United States)

    Rheims, Sylvain; Holmgren, Carl D; Chazal, Genevieve; Mulder, Jan; Harkany, Tibor; Zilberter, Tanya; Zilberter, Yuri

    2009-08-01

    In the early postnatal period, energy metabolism in the suckling rodent brain relies to a large extent on metabolic pathways alternate to glucose such as the utilization of ketone bodies (KBs). However, how KBs affect neuronal excitability is not known. Using recordings of single NMDA and GABA-activated channels in neocortical pyramidal cells we studied the effects of KBs on the resting membrane potential (E(m)) and reversal potential of GABA-induced anionic currents (E(GABA)), respectively. We show that during postnatal development (P3-P19) if neocortical brain slices are adequately supplied with KBs, E(m) and E(GABA) are both maintained at negative levels of about -83 and -80 mV, respectively. Conversely, a KB deficiency causes a significant depolarization of both E(m) (>5 mV) and E(GABA) (>15 mV). The KB-mediated shift in E(GABA) is largely determined by the interaction of the NKCC1 cotransporter and Cl(-)/HCO3 transporter(s). Therefore, by inducing a hyperpolarizing shift in E(m) and modulating GABA signaling mode, KBs can efficiently control the excitability of neonatal cortical neurons.