WorldWideScience

Sample records for ethanol acutely inhibits

  1. Inhibition of vascular endothelial growth factor signaling facilitates liver repair from acute ethanol-induced injury in zebrafish

    Directory of Open Access Journals (Sweden)

    Changwen Zhang

    2016-11-01

    Full Text Available Alcoholic liver disease (ALD results from alcohol overconsumption and is among the leading causes of liver-related morbidity and mortality worldwide. Elevated expression of vascular endothelial growth factor (VEGF and its receptors has been observed in ALD, but how it contributes to ALD pathophysiology is unclear. Here, we investigated the impact of VEGF signaling inhibition on an established zebrafish model of acute alcoholic liver injury. Kdrl activity was blocked by chemical inhibitor treatment or by genetic mutation. Exposing 4-day-old zebrafish larvae to 2% ethanol for 24 h induced hepatic steatosis, angiogenesis and fibrogenesis. The liver started self-repair once ethanol was removed. Although inhibiting Kdrl did not block the initial activation of hepatic stellate cells during ethanol treatment, it suppressed their proliferation, extracellular matrix protein deposition and fibrogenic gene expression after ethanol exposure, thus enhancing the liver repair. It also ameliorated hepatic steatosis and attenuated hepatic angiogenesis that accelerated after the ethanol treatment. qPCR showed that hepatic stellate cells are the first liver cell type to increase the expression of VEGF ligand and receptor genes in response to ethanol exposure. Both hepatic stellate cells and endothelial cells, but not hepatic parenchymal cells, expressed kdrl upon ethanol exposure and were likely the direct targets of Kdrl inhibition. Ethanol-induced steatosis and fibrogenesis still occurred in cloche mutants that have hepatic stellate cells but lack hepatic endothelial cells, and Kdrl inhibition suppressed both phenotypes in the mutants. These results suggest that VEGF signaling mediates interactions between activated hepatic stellate cells and hepatocytes that lead to steatosis. Our study demonstrates the involvement of VEGF signaling in regulating sustained liver injuries after acute alcohol exposure. It also provides a proof of principle of using the

  2. Effects of acute or chronic ethanol exposure during adolescence on behavioral inhibition and efficiency in a modified water maze task.

    Directory of Open Access Journals (Sweden)

    Shawn K Acheson

    Full Text Available Ethanol is well known to adversely affect frontal executive functioning, which continues to develop throughout adolescence and into young adulthood. This is also a developmental window in which ethanol is misused by a significant number of adolescents. We examined the effects of acute and chronic ethanol exposure during adolescence on behavioral inhibition and efficiency using a modified water maze task. During acquisition, rats were trained to find a stable visible platform onto which they could escape. During the test phase, the stable platform was converted to a visible floating platform (providing no escape and a new hidden platform was added in the opposite quadrant. The hidden platform was the only means of escape during the test phase. In experiment 1, adolescent animals received ethanol (1.0 g/kg 30 min before each session during the test phase. In experiment 2, adolescent animals received chronic intermittent ethanol (5.0 g/kg for 16 days (PND30 To PND46 prior to any training in the maze. At PND72, training was initiated in the same modified water maze task. Results from experiment 1 indicated that acute ethanol promoted behavioral disinhibition and inefficiency. Experiment 2 showed that chronic intermittent ethanol during adolescence appeared to have no lasting effect on behavioral disinhibition or new spatial learning during adulthood. However, chronic ethanol did promote behavioral inefficiency. In summary, results indicate that ethanol-induced promotion of perseverative behavior may contribute to the many adverse behavioral sequelae of alcohol intoxication in adolescents and young adults. Moreover, the long-term effect of adolescent chronic ethanol exposure on behavioral efficiency is similar to that observed after chronic exposure in humans.

  3. Acute ethanol exposure inhibits silencing of cerebellar Golgi cell firing induced by granule cell axon input

    Directory of Open Access Journals (Sweden)

    Paolo eBotta

    2014-02-01

    Full Text Available Golgi cells (GoCs are specialized interneurons that provide inhibitory input to granule cells in the cerebellar cortex. GoCs are pacemaker neurons that spontaneously fire action potentials, triggering spontaneous inhibitory postsynaptic currents in granule cells and also contributing to the generation tonic GABAA receptor-mediated currents in granule cells. In turn, granule cell axons provide feedback glutamatergic input to GoCs. It has been shown that high frequency stimulation of granule cell axons induces a transient pause in GoC firing in a type 2-metabotropic glutamate receptor (mGluR2-dependent manner. Here, we investigated the effect ethanol on the pause of GoC firing induced by high frequency stimulation of granule cell axons. GoC electrophysiological recordings were performed in parasagittal cerebellar vermis slices from postnatal day 23 to 26 rats. Loose-patch cell-attached recordings revealed that ethanol (40 mM reversibly decreases the pause duration. An antagonist of mGluR2 reduced the pause duration but did not affect the effect of ethanol. Whole-cell voltage-clamp recordings showed that currents evoked by an mGluR2 agonist were not significantly affected by ethanol. Perforated-patch experiments in which hyperpolarizing and depolarizing currents were injected into GoCs demonstrated that there is an inverse relationship between spontaneous firing and pause duration. Slight inhibition of the Na+/K+ pump mimicked the effect of ethanol on pause duration. In conclusion, ethanol reduces the granule cell axon-mediated feedback mechanism by reducing the input responsiveness of GoCs. This would result in a transient increase of GABAA receptor-mediated inhibition of granule cells, limiting information flow at the input stage of the cerebellar cortex.

  4. Frontline Science: ATF3 is responsible for the inhibition of TNF-α release and the impaired migration of acute ethanol-exposed monocytes and macrophages.

    Science.gov (United States)

    Hu, Chaojie; Meng, Xiaoming; Huang, Cheng; Shen, Chenlin; Li, Jun

    2017-03-01

    Binge drinking represses host innate immunity and leads to a high risk of infection. Acute EtOH-pretreated macrophages exhibit a decreased production of proinflammatory mediators in response to LPS. ATF3 is induced and counter-regulates the LPS/TLR4 inflammatory cascade. Here, we investigated the potential role of ATF3 in LPS tolerance in acute ethanol-pretreated macrophages. We found that there was an inverse correlation between ATF3 and LPS-induced TNF-α production in acute ethanol-pretreated murine monocytes and macrophages. The knockdown of ATF3 attenuated the inhibitory effects of acute ethanol treatment on LPS-induced TNF-α production. Furthermore, ChIP assays and co-IP demonstrated that ATF3, together with HDAC1, negatively modulated the transcription of TNF-α. In binge-drinking mice challenged with LPS, an up-regulation of ATF3 and HDAC1 and a concomitant decrease in TNF-α were observed. Given that HDAC1 was concomitantly induced in acute ethanol-exposed monocytes and macrophages, we used the HDACi TSA or silenced HDAC1 to explore the role of HDAC1 in acute ethanol-treated macrophages. Our results revealed that TSA treatment and HDAC1 knockdown prevented acute ethanol-induced ATF3 expression and the inhibition of TNF-α transcription. These data indicated a dual role for HDAC1 in acute ethanol-induced LPS tolerance. Furthermore, we showed that the induction of ATF3 led to the impaired migration of BM monocytes and macrophages. Overall, we present a novel role for ATF3 in the inhibition of LPS-induced TNF-α and in the impairment of monocyte and macrophage migration. © Society for Leukocyte Biology.

  5. A hot water extract of turmeric (Curcuma longa) suppresses acute ethanol-induced liver injury in mice by inhibiting hepatic oxidative stress and inflammatory cytokine production.

    Science.gov (United States)

    Uchio, Ryusei; Higashi, Yohei; Kohama, Yusuke; Kawasaki, Kengo; Hirao, Takashi; Muroyama, Koutarou; Murosaki, Shinji

    2017-01-01

    Turmeric ( Curcuma longa ) is a widely used spice that has various biological effects, and aqueous extracts of turmeric exhibit potent antioxidant activity and anti-inflammatory activity. Bisacurone, a component of turmeric extract, is known to have similar effects. Oxidative stress and inflammatory cytokines play an important role in ethanol-induced liver injury. This study was performed to evaluate the influence of a hot water extract of C. longa (WEC) or bisacurone on acute ethanol-induced liver injury. C57BL/6 mice were orally administered WEC (20 mg/kg body weight; BW) or bisacurone (60 µg/kg BW) at 30 min before a single dose of ethanol was given by oral administration (3·0 g/kg BW). Plasma levels of aspartate aminotransferase and alanine aminotransferase were markedly increased in ethanol-treated mice, while the increase of these enzymes was significantly suppressed by prior administration of WEC. The increase of alanine aminotransferase was also significantly suppressed by pretreatment with bisacurone. Compared with control mice, animals given WEC had higher hepatic tissue levels of superoxide dismutase and glutathione, as well as lower hepatic tissue levels of thiobarbituric acid-reactive substances, TNF-α protein and IL-6 mRNA. These results suggest that oral administration of WEC may have a protective effect against ethanol-induced liver injury by suppressing hepatic oxidation and inflammation, at least partly through the effects of bisacurone.

  6. Saw palmetto ethanol extract inhibits adipocyte differentiation.

    Science.gov (United States)

    Villaverde, Nicole; Galvis, Adriana; Marcano, Adriana; Priestap, Horacio A; Bennett, Bradley C; Barbieri, M Alejandro

    2013-07-01

    The fruits of saw palmetto have been used for the treatment of a variety of urinary and reproductive system problems. In this study we investigated whether the fruit extracts affect in vitro adipogenesis. Saw palmetto ethanol extract inhibited the lipid droplet accumulation by induction media in a dose-dependent manner, and it also attenuated the protein expressions of C-EBPα and PPARγ. Phosphorylation of Erk1/2 and Akt1 were also decreased by saw palmetto ethanol extract. This report suggests that saw palmetto extracts selectively affect the adipocyte differentiation through the modulation of several key factors that play a critical role during adipogenesis.

  7. Acute but not chronic ethanol exposure impairs retinol oxidation in the small and large intestine of the rat

    DEFF Research Database (Denmark)

    Parlesak, Alexandr; Ellendt, K.; Lindros, K.

    2005-01-01

    BACKGROUND AND AIM: Ethanol has been shown to inhibit retinol oxidation at the level of alcohol dehydrogenase in liver and colon but not previously in the small intestine. In the present study we investigated how chronic alcohol feeding and acute ethanol exposure affects retinol dehydrogenase...... higher, respectively). While chronic alcohol feeding did not affect these parameters, acute ethanol exposure reduced V(max) and V(max)/K(m) dose-dependently (p

  8. The relation of age to the acute effects of ethanol on acetanilide disposition.

    Science.gov (United States)

    Wynne, H A; Mutch, E; Williams, F M; James, O F; Rawlins, M D; Woodhouse, K W

    1989-03-01

    The activity of the major drug-metabolizing enzymes, the mono-oxygenases, can be inhibited by an acute dose of ethanol. We set out to determine whether age has any relation to the degree of inhibition produced by ethanol, using acetanilide as a model substrate. Eight healthy young subjects (mean age 26 years) and eight healthy elderly subjects (mean age 72 years) were studied on two occasions, once receiving acetanilide alone and once acetanilide with 75 ml vodka (30 g ethanol). The clearance of acetanilide was significantly lower (p less than 0.05) in the elderly subjects at 27 +/- 3 l/h compared to 38 +/- 2 l/h in young subjects. No age-related differences in peak blood ethanol concentrations or ethanol elimination rates were noted. After ethanol, acetanilide clearance fell 18% to 31 +/- 3 l/h in young subjects (p = 0.05) and by 15% to 23 +/- 2 l/h in elderly subjects (p = 0.08). This suggests that the elderly do not suffer greater impairment of drug oxidation after acute ethanol ingestion than do the young.

  9. Central reinforcing effects of ethanol are blocked by catalase inhibition.

    Science.gov (United States)

    Nizhnikov, Michael E; Molina, Juan C; Spear, Norman E

    2007-11-01

    Recent studies have systematically indicated that newborn rats are highly sensitive to ethanol's positive reinforcing effects. Central administrations of ethanol (25-200mg %) associated with an olfactory conditioned stimulus (CS) promote subsequent conditioned approach to the CS as evaluated through the newborn's response to a surrogate nipple scented with the CS. It has been shown that ethanol's first metabolite, acetaldehyde, exerts significant reinforcing effects in the central nervous system. A significant amount of acetaldehyde is derived from ethanol metabolism via the catalase system. In newborn rats, catalase levels are particularly high in several brain structures. The present study tested the effect of catalase inhibition on central ethanol reinforcement. In the first experiment, pups experienced lemon odor either paired or unpaired with intracisternal (IC) administrations of 100mg% ethanol. Half of the animals corresponding to each learning condition were pretreated with IC administrations of either physiological saline or a catalase inhibitor (sodium-azide). Catalase inhibition completely suppressed ethanol reinforcement in paired groups without affecting responsiveness to the CS during conditioning or responding by unpaired control groups. A second experiment tested whether these effects were specific to ethanol reinforcement or due instead to general impairment in learning and expression capabilities. Central administration of an endogenous kappa opioid receptor agonist (dynorphin A-13) was used as an alternative source of reinforcement. Inhibition of the catalase system had no effect on the reinforcing properties of dynorphin. The present results support the hypothesis that ethanol metabolism regulated by the catalase system plays a critical role in determination of ethanol reinforcement in newborn rats.

  10. Acute effects of ethanol in the control of protein synthesis in isolated rat liver cells

    International Nuclear Information System (INIS)

    Girbes, T.; Susin, A.; Ayuso, M.S.; Parrilla, R.

    1983-01-01

    The acute effect of ethanol on hepatic protein synthesis is a rather controversial issue. In view of the conflicting reports on this subject, the effect of ethanol on protein labeling from L-[ 3 H]valine in isolated liver cells was studied under a variety of experimental conditions. When tracer doses of the isotope were utilized, ethanol consistently decreased the rate of protein labeling, regardless of the metabolic conditions of the cells. This inhibition was not prevented by doses of 4-methylpyrazole large enough to abolish all the characteristic metabolic effects of ethanol, and it was not related to perturbations on the rates of L-valine transport and/or proteolysis. When ethanol was tested in the presence of saturating doses of L-[ 3 H]valine no effect on protein labeling was observed. These observations suggest that the ethanol effect in decreasing protein labeling from tracer doses of the radioactive precursor does not reflect variations in the rate of protein synthesis but reflects changes in the specific activity of the precursor. These changes probably are secondary to variations in the dimensions of the amino acid pool utilized for protein synthesis. Even though it showed a lack of effect when tested alone, in the presence of saturating doses of the radioactive precursor ethanol inhibited the stimulatory effects on protein synthesis mediated by glucose and several gluconeogenic substrates. This effect of ethanol was not prevented by inhibitors of alcohol dehydrogenase, indicating that a shift of the NAD system to a more reduced state is not the mediator of its action. It is suggested that ethanol probably acted by changing the steady-state levels of some common effector(s) generated from the metabolism of all these fuels or else by preventing the inactivation of a translational repressor

  11. Acute ethanol intake induces superoxide anion generation and mitogen-activated protein kinase phosphorylation in rat aorta: A role for angiotensin type 1 receptor

    Energy Technology Data Exchange (ETDEWEB)

    Yogi, Alvaro; Callera, Glaucia E. [Kidney Research Centre, Ottawa Hospital Research Institute, University of Ottawa, Ontario (Canada); Mecawi, André S. [Department of Physiology, Faculty of Medicine of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP (Brazil); Batalhão, Marcelo E.; Carnio, Evelin C. [Department of General and Specialized Nursing, College of Nursing of Ribeirão Preto, USP, São Paulo (Brazil); Antunes-Rodrigues, José [Department of Physiology, Faculty of Medicine of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP (Brazil); Queiroz, Regina H. [Department of Clinical, Toxicological and Food Science Analysis, Faculty of Pharmaceutical Sciences, USP, São Paulo (Brazil); Touyz, Rhian M. [Kidney Research Centre, Ottawa Hospital Research Institute, University of Ottawa, Ontario (Canada); Tirapelli, Carlos R., E-mail: crtirapelli@eerp.usp.br [Department of Psychiatric Nursing and Human Sciences, Laboratory of Pharmacology, College of Nursing of Ribeirão Preto, USP, Ribeirão Preto, SP (Brazil)

    2012-11-01

    Ethanol intake is associated with increase in blood pressure, through unknown mechanisms. We hypothesized that acute ethanol intake enhances vascular oxidative stress and induces vascular dysfunction through renin–angiotensin system (RAS) activation. Ethanol (1 g/kg; p.o. gavage) effects were assessed within 30 min in male Wistar rats. The transient decrease in blood pressure induced by ethanol was not affected by the previous administration of losartan (10 mg/kg; p.o. gavage), a selective AT{sub 1} receptor antagonist. Acute ethanol intake increased plasma renin activity (PRA), angiotensin converting enzyme (ACE) activity, plasma angiotensin I (ANG I) and angiotensin II (ANG II) levels. Ethanol induced systemic and vascular oxidative stress, evidenced by increased plasma thiobarbituric acid-reacting substances (TBARS) levels, NAD(P)H oxidase‐mediated vascular generation of superoxide anion and p47phox translocation (cytosol to membrane). These effects were prevented by losartan. Isolated aortas from ethanol-treated rats displayed increased p38MAPK and SAPK/JNK phosphorylation. Losartan inhibited ethanol-induced increase in the phosphorylation of these kinases. Ethanol intake decreased acetylcholine-induced relaxation and increased phenylephrine-induced contraction in endothelium-intact aortas. Ethanol significantly decreased plasma and aortic nitrate levels. These changes in vascular reactivity and in the end product of endogenous nitric oxide metabolism were not affected by losartan. Our study provides novel evidence that acute ethanol intake stimulates RAS activity and induces vascular oxidative stress and redox-signaling activation through AT{sub 1}-dependent mechanisms. These findings highlight the importance of RAS in acute ethanol-induced oxidative damage. -- Highlights: ► Acute ethanol intake stimulates RAS activity and vascular oxidative stress. ► RAS plays a role in acute ethanol-induced oxidative damage via AT{sub 1} receptor activation.

  12. Evaluation of acute and subacute toxicities of aqueous ethanolic ...

    African Journals Online (AJOL)

    Evaluation of acute and subacute toxicities of aqueous ethanolic extract of leaves of Senna alata (L.) Roxb (Ceasalpiniaceae) ... Significant variation (P<0.05) of the body weight was observed after 26 days of treatment, in some biochemicals index of serum and 20% liver homogenates (glutathione , alkaline phosphatase ...

  13. Inhibition of IKKβ Reduces Ethanol Consumption in C57BL/6J Mice.

    Science.gov (United States)

    Truitt, Jay M; Blednov, Yuri A; Benavidez, Jillian M; Black, Mendy; Ponomareva, Olga; Law, Jade; Merriman, Morgan; Horani, Sami; Jameson, Kelly; Lasek, Amy W; Harris, R Adron; Mayfield, R Dayne

    2016-01-01

    Proinflammatory pathways in neuronal and non-neuronal cells are implicated in the acute and chronic effects of alcohol exposure in animal models and humans. The nuclear factor-κB (NF-κB) family of DNA transcription factors plays important roles in inflammatory diseases. The kinase IKKβ mediates the phosphorylation and subsequent proteasomal degradation of cytosolic protein inhibitors of NF-κB, leading to activation of NF-κB. The role of IKKβ as a potential regulator of excessive alcohol drinking had not previously been investigated. Based on previous findings that the overactivation of innate immune/inflammatory signaling promotes ethanol consumption, we hypothesized that inhibiting IKKβ would limit/decrease drinking by preventing the activation of NF-κB. We studied the systemic effects of two pharmacological inhibitors of IKKβ, TPCA-1 and sulfasalazine, on ethanol intake using continuous- and limited-access, two-bottle choice drinking tests in C57BL/6J mice. In both tests, TPCA-1 and sulfasalazine reduced ethanol intake and preference without changing total fluid intake or sweet taste preference. A virus expressing Cre recombinase was injected into the nucleus accumbens and central amygdala to selectively knock down IKKβ in mice genetically engineered with a conditional Ikkb deletion ( Ikkb F/F ). Although IKKβ was inhibited to some extent in astrocytes and microglia, neurons were a primary cellular target. Deletion of IKKβ in either brain region reduced ethanol intake and preference in the continuous access two-bottle choice test without altering the preference for sucrose. Pharmacological and genetic inhibition of IKKβ decreased voluntary ethanol consumption, providing initial support for IKKβ as a potential therapeutic target for alcohol abuse.

  14. Ascorbic acid supplementation enhances recovery from ethanol induced inhibition of Leydig cell steroidogenesis than abstention in male guinea pigs.

    Science.gov (United States)

    Radhakrishnakartha, Harikrishnan; Appu, Abhilash Puthuvelvippel; Indira, Madambath

    2014-01-15

    The impact of ascorbic acid supplementation against ethanol induced Leydig cell toxicity was studied in guinea pigs. Male guinea pigs were exposed to ethanol (4g/kgb.wt.) for 90 days. After 90 days, ethanol administration was completely stopped and animals in the ethanol group were divided into abstention group and ascorbic acid supplemented group (25mg/100gb.wt.) and those in control group were maintained as control and control+ascorbic acid group. Ethanol administration reduced the serum testosterone and LH (luteinising hormone) levels and elevated estradiol levels. Cholesterol levels in Leydig cell were increased whereas the mRNA and protein expressions of StAR (steroidogenic acute regulatory) protein, cytochrome P450scc (cytochrome p450side chain cleavage enzyme), 3β-HSD (3β-hydroxysteroid dehydrogenase), 17β-HSD (17β-hydroxysteroid dehydrogenase) and LH receptor were drastically reduced. Administration of ascorbic acid resulted in alteration of all these parameters indicating enhanced recovery from ethanol induced inhibition of Leydig cell steroidogenesis. Although abstention could also reduce the inhibition of steroidogenesis, this was lesser in comparison with ascorbic acid supplemented group. © 2013 Published by Elsevier B.V.

  15. Mechanism of ethanol inhibition of fermentation in Zymomonas mobilis CP4

    International Nuclear Information System (INIS)

    Osman, Y.A.; Ingram, L.O.

    1985-01-01

    Accumulation of alcohol during fermentation is accompanied by a progressive decrease in the rate of sugar conversion to ethanol. In this study, the authors provided evidence that inhibition of fermentation by ethanol can be attributed to an indirect effect of ethanol on the enzymes of glycolysis involving the plasma membrane. Ethanol decreased the effectiveness of the plasma membrane as a semipermeable barrier, allowing leakage of essential cofactors and coenzymes. This leakage of cofactors and coenzymes, coupled with possible additional leakage of intermediary metabolites en route to ethanol formation, is sufficient to explain the inhibitory effects of ethanol on fermentation in Zymomonas mobilis

  16. Inhibition of potassium currents is involved in antiarrhythmic effect of moderate ethanol on atrial fibrillation

    International Nuclear Information System (INIS)

    Yang, Baode; Li, Chenxing; Sun, Junyi; Wang, Xinghui; Liu, Xinling; Yang, Chun; Chen, Lina; Zhou, Jun; Hu, Hao

    2017-01-01

    Excessive consumption of alcohol is a well-established risk factor of atrial fibrillation (AF). However, the effects of moderate alcohol drinking remain to be elucidated. This study was designed to determine the effects of moderate ethanol ingestion on atrial fibrillation and the electrophysiological mechanisms. In acetylcholine-induced canine and mouse AF models, the moderate ethanol prevented the generation and persistence of AF through prolonging the latent period of AF and shortening the duration of AF. The action potential duration (APD) was remarkably prolonged under the concentration range of 12.5–50.0 mM ethanol in guinea pig atrial myocytes. Ultra-rapid delayed rectified potassium currents (I Kv1.5 ) were markedly inhibited by 12.5–50.0 mM ethanol in a concentration-dependent manner. Ethanol with 50.0 mM could inhibit rapid delayed rectifier potassium currents (I hERG ). Ethanol under 6.25–50.0 mM did not affect on inward rectifier potassium currents (I Kir2.1 ). Collectively, the present study provided an evidence that moderate ethanol intake can prolong the APD of atrial myocytes by inhibition of I Kv1.5 and I hERG , which contributed to preventing the development and duration of AF. - Highlights: • Moderate ethanol prevented the development of AF in animal models. • Moderate ethanol prolonged APD in guinea pig atrial myocytes. • Moderate ethanol inhibited Kv1.5 currents.

  17. Time-dependent negative reinforcement of ethanol intake by alleviation of acute withdrawal.

    Science.gov (United States)

    Cunningham, Christopher L; Fidler, Tara L; Murphy, Kevin V; Mulgrew, Jennifer A; Smitasin, Phoebe J

    2013-02-01

    Drinking to alleviate the symptoms of acute withdrawal is included in diagnostic criteria for alcoholism, but the contribution of acute withdrawal relief to high alcohol intake has been difficult to model in animals. Ethanol dependence was induced by passive intragastric ethanol infusions in C57BL/6J (B6) and DBA/2J (D2) mice; nondependent control animals received water infusions. Mice were then allowed to self-administer ethanol or water intragastrically. The time course of acute withdrawal was similar to that produced by chronic ethanol vapor exposure in mice, reaching a peak at 7 to 9 hours and returning to baseline within 24 hours; withdrawal severity was greater in D2 than in B6 mice (experiment 1). Postwithdrawal delays in initial ethanol access (1, 3, or 5 days) reduced the enhancement in later ethanol intake normally seen in D2 (but not B6) mice allowed to self-infuse ethanol during acute withdrawal (experiment 2). The postwithdrawal enhancement of ethanol intake persisted over a 5-day abstinence period in D2 mice (experiment 3). D2 mice allowed to drink ethanol during acute withdrawal drank more ethanol and self-infused more ethanol than nondependent mice (experiment 4). Alcohol access during acute withdrawal increased later alcohol intake in a time-dependent manner, an effect that may be related to a genetic difference in sensitivity to acute withdrawal. This promising model of negative reinforcement encourages additional research on the mechanisms underlying acute withdrawal relief and its role in determining risk for alcoholism. Copyright © 2013 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  18. Ethanol inhibits B16-BL6 melanoma metastasis and cell phenotypes associated with metastasis.

    Science.gov (United States)

    Kushiro, Kyoko; Núñez, Nomelí P

    2012-01-01

    Every year, approximately 68,000 new cases of malignant melanoma are diagnosed in the US. Ethanol consumption inhibits metastasis of melanoma in mice, but the mechanism is not well understood. C57BL/6J ob/+ mice, given either water or 20% ethanol, were injected intravenously with B16-BL6 melanoma cells to determine pulmonary metastasis. The effects of ethanol on cell phenotypes and markers of the epithelial-to-mesenchymal transition were determined in cell culture. In mice, ethanol consumption inhibited experimental pulmonary metastasis. This inhibition was associated with decreased body weight, and levels of systemic leptin, and insulin. In cell culture, ethanol inhibited B16-BL6 cell motility, invasion, and anchorage-independent growth. Additionally, ethanol reduced Snai1 expression and increased E-cadherin expression. Lastly, ethanol increased the expression of Kiss1 metastasis-suppressor and the metastasis suppressor Nm23/nucleoside diphosphate kinase. In both animal and in cell culture conditions, ethanol inhibited the metastatic ability of B16-BL6 melanoma cells.

  19. Acute effects of ethanol and acetate on glucose kinetics in normal subjects

    International Nuclear Information System (INIS)

    Yki-Jaervinen, H.; Koivisto, V.A.; Ylikahri, R.; Taskinen, M.R.

    1988-01-01

    The authors compared the effects of two ethanol doses on glucose kinetics and assessed the role of acetate as a mediator of ethanol-induced insulin resistance. Ten normal males were studied on four occasions, during which either a low or moderate ethanol, acetate, or saline dose was administered. Both ethanol doses similarly inhibited basal glucose production. The decrease in R a was matched by a comparable decrease in glucose utilization (R d ), resulting in maintenance of normoglycemia. During hyperinsulinemia glucose disposal was lower in the moderate than the low-dose ethanol or saline studies. During acetate infusion, the blood acetate level was comparable with those in the ethanol studies. Acetate had no effect on glucose kinetics. In conclusion, (1) in overnight fasted subjects, ethanol does not cause hypoglycemia because its inhibitory effect on R a is counterbalanced by equal inhibition of R d ; (2) basal R a and R d are maximally inhibited already by small ethanol doses, whereas inhibition of insulin-stimulated glucose disposal requires a moderate ethanol dose; and (3) acetate is not the mediator of ethanol-induced insulin resistance

  20. Inhibitive and Synergistic Properties of Ethanolic Extract of ...

    African Journals Online (AJOL)

    It was also noted that only KCl was synergistic to the ethanol extract of Anogeissus leiocarpus, while other halides tested were antagonistic. All the data acquired reveal that the ethanolic extract of Anogeissus leiocarpus act as an inhibitor in the acid environment due to the phytochemicals: saponin, tannins, flavonoid, ...

  1. Ethanol exposure can inhibit red spruce ( Picea rubens ) seed germination

    Science.gov (United States)

    John R. Butnor; Brittany M. Verrico; Victor Vankus; Stephen R. Keller

    2018-01-01

    Flotation of seeds in solvents is a common means of separating unfilled and filled seeds. While a few protocols for processing red spruce (Picea rubens) seeds recommend ethanol flotation, delayed and reduced germination have been reported. We conducted an ethanol bioassay on seeds previously stored at -20°C to quantify the concentration required to separate red spruce...

  2. Genetic dissection of acute ethanol responsive gene networks in prefrontal cortex: functional and mechanistic implications.

    Directory of Open Access Journals (Sweden)

    Aaron R Wolen

    Full Text Available Individual differences in initial sensitivity to ethanol are strongly related to the heritable risk of alcoholism in humans. To elucidate key molecular networks that modulate ethanol sensitivity we performed the first systems genetics analysis of ethanol-responsive gene expression in brain regions of the mesocorticolimbic reward circuit (prefrontal cortex, nucleus accumbens, and ventral midbrain across a highly diverse family of 27 isogenic mouse strains (BXD panel before and after treatment with ethanol.Acute ethanol altered the expression of ~2,750 genes in one or more regions and 400 transcripts were jointly modulated in all three. Ethanol-responsive gene networks were extracted with a powerful graph theoretical method that efficiently summarized ethanol's effects. These networks correlated with acute behavioral responses to ethanol and other drugs of abuse. As predicted, networks were heavily populated by genes controlling synaptic transmission and neuroplasticity. Several of the most densely interconnected network hubs, including Kcnma1 and Gsk3β, are known to influence behavioral or physiological responses to ethanol, validating our overall approach. Other major hub genes like Grm3, Pten and Nrg3 represent novel targets of ethanol effects. Networks were under strong genetic control by variants that we mapped to a small number of chromosomal loci. Using a novel combination of genetic, bioinformatic and network-based approaches, we identified high priority cis-regulatory candidate genes, including Scn1b, Gria1, Sncb and Nell2.The ethanol-responsive gene networks identified here represent a previously uncharacterized intermediate phenotype between DNA variation and ethanol sensitivity in mice. Networks involved in synaptic transmission were strongly regulated by ethanol and could contribute to behavioral plasticity seen with chronic ethanol. Our novel finding that hub genes and a small number of loci exert major influence over the ethanol

  3. Oral glutamate intake reduces acute and chronic effects of ethanol in ...

    African Journals Online (AJOL)

    treatment, male Wistar rats were trained to consume ethanol-sucrose solution during a 2-h period daily, ... Oral treatment with 2.5 g/kg of glutamate reversed the acute motor effects of ethanol. ..... glutamate release in the prefrontal cortex-NAc.

  4. Inhibition of potassium currents is involved in antiarrhythmic effect of moderate ethanol on atrial fibrillation

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Baode; Li, Chenxing [Department of Pharmacology, Health Science Center, Xi' an Jiaotong University, Xi' an (China); Sun, Junyi [Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi' an Jiaotong University, Xi' an (China); Department of Periodontology, College of Stomatology, Xi' an Jiaotong University, Xi' an (China); Wang, Xinghui; Liu, Xinling [Basic Medical Experiment Teaching Center, Health Science Center, Xi' an Jiaotong University, Xi' an (China); Yang, Chun [Department of Cardiology, The First Affiliated Hospital, Xi' an Jiaotong University, Xi' an (China); Chen, Lina; Zhou, Jun [Department of Pharmacology, Health Science Center, Xi' an Jiaotong University, Xi' an (China); Key Laboratory of Environment and Genes Related to Diseases, Xi' an Jiaotong University, Ministry of Education of China, Xi' an (China); Hu, Hao, E-mail: huhao@mail.xjtu.edu.cn [Department of Pharmacology, Health Science Center, Xi' an Jiaotong University, Xi' an (China); Key Laboratory of Environment and Genes Related to Diseases, Xi' an Jiaotong University, Ministry of Education of China, Xi' an (China)

    2017-05-01

    Excessive consumption of alcohol is a well-established risk factor of atrial fibrillation (AF). However, the effects of moderate alcohol drinking remain to be elucidated. This study was designed to determine the effects of moderate ethanol ingestion on atrial fibrillation and the electrophysiological mechanisms. In acetylcholine-induced canine and mouse AF models, the moderate ethanol prevented the generation and persistence of AF through prolonging the latent period of AF and shortening the duration of AF. The action potential duration (APD) was remarkably prolonged under the concentration range of 12.5–50.0 mM ethanol in guinea pig atrial myocytes. Ultra-rapid delayed rectified potassium currents (I{sub Kv1.5}) were markedly inhibited by 12.5–50.0 mM ethanol in a concentration-dependent manner. Ethanol with 50.0 mM could inhibit rapid delayed rectifier potassium currents (I{sub hERG}). Ethanol under 6.25–50.0 mM did not affect on inward rectifier potassium currents (I{sub Kir2.1}). Collectively, the present study provided an evidence that moderate ethanol intake can prolong the APD of atrial myocytes by inhibition of I{sub Kv1.5} and I{sub hERG}, which contributed to preventing the development and duration of AF. - Highlights: • Moderate ethanol prevented the development of AF in animal models. • Moderate ethanol prolonged APD in guinea pig atrial myocytes. • Moderate ethanol inhibited Kv1.5 currents.

  5. Blockade of store-operated calcium entry alleviates ethanol-induced hepatotoxicity via inhibiting apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Ruibing [Department of Hepatology and Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong Province 250012 (China); Yan, Lihui [Shandong Normal University, Jinan, Shandong Province 250012 (China); Luo, Zheng; Guo, Xiaolan [Department of Hepatology and Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong Province 250012 (China); Yan, Ming, E-mail: ymylh@163.com [Department of Hepatology and Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong Province 250012 (China)

    2015-08-15

    Extracellular Ca{sup 2+} influx has been suggested to play a role in ethanol-induced hepatocyte apoptosis and necrosis. Previous studies indicated that store-operated Ca{sup 2+} entry (SOCE) was involved in liver injury induced by ethanol in HepG2 cells. However, the mechanisms underlying liver injury caused by SOCE remain unclear. We aimed to investigate the effects and mechanism of SOCE inhibition on liver injury induced by ethanol in BRL cells and Sprague–Dawley rats. Our data demonstrated that ethanol (0–400 mM) dose-dependently increased hepatocyte injury and 100 mM ethanol significantly upregulated the mRNA and protein expression of SOC for at least 72 h in BRL cells. Blockade of SOCE by pharmacological inhibitors and sh-RNA knockdown of STIM1 and Orai1 attenuated intracellular Ca{sup 2+} overload, restored the mitochondrial membrane potential (MMP), decreased cytochrome C release and inhibited ethanol-induced apoptosis. STIM1 and Orai1 expression was greater in ethanol-treated than control rats, and the SOCE inhibitor corosolic acid ameliorated the histopathological findings and alanine transaminase and aspartate transaminase activity as well as decreased cytochrome C release and inhibited alcohol-induced cell apoptosis. These findings suggest that SOCE blockade could alleviate alcohol-induced hepatotoxicity via inhibiting apoptosis. SOCE might be a useful therapeutic target in alcoholic liver diseases. - Highlights: • Blockade of SOCE alleviated overload of Ca{sup 2+} and hepatotoxicity after ethanol application. • Blockade of SOCE inhibited mitochondrial apoptosis after ethanol application. • SOCE might be a useful therapeutic target in alcoholic liver diseases.

  6. Acute effects of ethanol and ethanol plus furosemide on pancreatic capillary blood flow in rats.

    Science.gov (United States)

    Dib, J A; Cooper-Vastola, S A; Meirelles, R F; Bagchi, S; Caboclo, J L; Holm, C; Eisenberg, M M

    1993-07-01

    The effects of intravenous ethanol and ethanol plus furosemide on pancreatic capillary blood flow (PCBF) were investigated using a laser-Doppler flowmeter. Forty Sprague-Dawley male rats were divided into 4 groups: (1) control, (2) 80% ethanol, (3) 80% ethanol plus furosemide, and (4) furosemide. Mean arterial blood pressure and heart rate were monitored. Levels of serum amylase, calcium, electrolytes, ethanol, and furosemide (groups 3 and 4) were measured, and samples of pancreatic tissue were obtained. The ethanol and furosemide levels were statistically different (p 0.05) between groups 1 and 4. Histopathologic analysis revealed swollen acini in group 2 and sparse focal necrosis without acinar swelling in group 3. The depressant effect of ethanol on PCBF may be the result of its direct action on pancreatic cells causing edema and capillary compression rather than on primary vascular control mechanisms that adjust blood flow. Furosemide counters this effect.

  7. Biofilm formation and ethanol inhibition by bacterial contaminants of biofuel fermentation.

    Science.gov (United States)

    Rich, Joseph O; Leathers, Timothy D; Bischoff, Kenneth M; Anderson, Amber M; Nunnally, Melinda S

    2015-11-01

    Bacterial contaminants can inhibit ethanol production in biofuel fermentations, and even result in stuck fermentations. Contaminants may persist in production facilities by forming recalcitrant biofilms. A two-year longitudinal study was conducted of bacterial contaminants from a Midwestern dry grind corn fuel ethanol facility. Among eight sites sampled in the facility, the combined liquefaction stream and yeast propagation tank were consistently contaminated, leading to contamination of early fermentation tanks. Among 768 contaminants isolated, 92% were identified as Lactobacillus sp., with the most abundant species being Lactobacillus plantarum, Lactobacillus casei, Lactobacillus mucosae, and Lactobacillus fermentum. Seven percent of total isolates showed the ability to form biofilms in pure cultures, and 22% showed the capacity to significantly inhibit ethanol production. However, these traits were not correlated. Ethanol inhibition appeared to be related to acetic acid production by contaminants, particularly by obligately heterofermentative species such as L. fermentum and L. mucosae. Published by Elsevier Ltd.

  8. Chronic ethanol exposure inhibits distraction osteogenesis in a mouse model: Role of the TNF signaling axis

    International Nuclear Information System (INIS)

    Wahl, Elizabeth C.; Aronson, James; Liu, Lichu; Liu, Zhendong; Perrien, Daniel S.; Skinner, Robert A.; Badger, Thomas M.; Ronis, Martin J.J.; Lumpkin, Charles K.

    2007-01-01

    Tumor necrosis factor-alpha (TNF-α) is an inflammatory cytokine that modulates osteoblastogenesis. In addition, the demonstrated inhibitory effects of chronic ethanol exposure on direct bone formation in rats are hypothetically mediated by TNF-α signaling. The effects in mice are unreported. Therefore, we hypothesized that in mice (1) administration of a soluble TNF receptor 1 derivative (sTNF-R1) would protect direct bone formation during chronic ethanol exposure, and (2) administration of recombinant mouse TNF-α (rmTNF-α) to ethanol naive mice would inhibit direct bone formation. We utilized a unique model of limb lengthening (distraction osteogenesis, DO) combined with liquid diets to measure chronic ethanol's effects on direct bone formation. Chronic ethanol exposure resulted in increased marrow TNF, IL-1, and CYP 2E1 RNA levels in ethanol-treated vs. control mice, while no significant weight differences were noted. Systemic administration of sTNF-R1 during DO (8.0 mg/kg/2 days) to chronic ethanol-exposed mice resulted in enhanced direct bone formation as measured radiologically and histologically. Systemic rmTNF-α (10 μg/kg/day) administration decreased direct bone formation measures, while no significant weight differences were noted. We conclude that chronic ethanol-associated inhibition of direct bone formation is mediated to a significant extent by the TNF signaling axis in a mouse model

  9. A Single Pair of Serotonergic Neurons Counteracts Serotonergic Inhibition of Ethanol Attraction in Drosophila.

    Science.gov (United States)

    Xu, Li; He, Jianzheng; Kaiser, Andrea; Gräber, Nikolas; Schläger, Laura; Ritze, Yvonne; Scholz, Henrike

    2016-01-01

    Attraction to ethanol is common in both flies and humans, but the neuromodulatory mechanisms underlying this innate attraction are not well understood. Here, we dissect the function of the key regulator of serotonin signaling-the serotonin transporter-in innate olfactory attraction to ethanol in Drosophila melanogaster. We generated a mutated version of the serotonin transporter that prolongs serotonin signaling in the synaptic cleft and is targeted via the Gal4 system to different sets of serotonergic neurons. We identified four serotonergic neurons that inhibit the olfactory attraction to ethanol and two additional neurons that counteract this inhibition by strengthening olfactory information. Our results reveal that compensation can occur on the circuit level and that serotonin has a bidirectional function in modulating the innate attraction to ethanol. Given the evolutionarily conserved nature of the serotonin transporter and serotonin, the bidirectional serotonergic mechanisms delineate a basic principle for how random behavior is switched into targeted approach behavior.

  10. [Metabolic disturbances and ways of their pharmacological correction in acute poisoning with ethanol in patients with chronic alcoholism].

    Science.gov (United States)

    Livanov, G A; Lodyagin, A N; Lubsanova, S V; Kovalenko, A L; Batotsyrenov, B V; Sergeev, O A; Loladze, A T; Andrianov, A Yu

    2015-01-01

    To study an influence of chronic alcoholism on the clinical course and severity of metabolic disturbances in patients with acute poisoning with ethanol and to improve the treatment. Authors examined 93 patients stratified into three groups (acute poisoning with ethanol in patients with chronic alcoholism, without chronic alcoholism and those treated with reamberin). The presence of chronic alcoholism significantly augmented metabolic disturbances and influenced the disturbance of oxygen-transport function and free-radical processes in patients with acute intoxication with ethanol. Using of reamberin in the complex intensive therapy led to the decrease in metabolic disorders, which improved the clinical course of acute poisoning with ethanol in patients with chronic alcoholism.

  11. CENTRAL REINFORCING EFFECTS OF ETHANOL ARE BLOCKED BY CATALASE INHIBITION

    OpenAIRE

    Nizhnikov, Michael Edward; Molina, Juan Carlos; Spear, Norman

    2007-01-01

    Recent studies have systematically indicated that newborn rats are highly sensitive to ethanol’s positive reinforcing effects. Central administrations of ethanol (25–200 mg %) associated with an olfactory conditioned stimulus (CS) promote subsequent conditioned approach to the CS as evaluated through the newborn’s response to a surrogate nipple scented with the CS. It has been shown that ethanol’s first metabolite, acetaldehyde, exerts significant reinforcing effects in the central nervous sy...

  12. Acute oral toxicity and cytotoxicological evaluation of the ethanol ...

    African Journals Online (AJOL)

    Lucas Nicolau

    2015-02-02

    Feb 2, 2015 ... anatomic differences between S. saman, S. innopinada and S. tubulosa. ... Preparation of the extract. The ethanolic extract of the pods ... voucher specimen was deposited under TEPB number – 27.261. Animals. Female mice ...

  13. Deletion of circadian gene Per1 alleviates acute ethanol-induced hepatotoxicity in mice

    International Nuclear Information System (INIS)

    Wang, Tao; Yang, Ping; Zhan, Yibei; Xia, Lin; Hua, Zichun; Zhang, Jianfa

    2013-01-01

    The severity of ethanol-induced liver injury is associated with oxidative stress and lipid accumulation in the liver. Core circadian clock is known to mediate antioxidative enzyme activity and lipid metabolism. However, the link between circadian clock and ethanol-induced hepatotoxicity remains unclear. Here we showed that extents of acute ethanol-induced liver injury and steatosis in mice exhibit circadian variations consistent with hepatic expression of Period (Per) genes. Mice lacking clock gene Per1 displayed less susceptible to ethanol-induced liver injury, as evidenced by lower serum transaminase activity and less severe histopathological changes. Ethanol-induced lipid peroxidation was alleviated in Per1−/− mice. However, Per1 deletion had no effect on antioxidants depletion caused by ethanol administration. Ethanol-induced triglycerides (TG) accumulation in the serum and liver was significantly decreased in Per1−/− mice compared with that in wild-type (WT) mice. Analysis of gene expression in the liver revealed peroxisome proliferators activated receptor-gamma (PPARγ) and its target genes related to TG synthesis are remarkably down-regulated in Per1−/− mice. HepG2 cells were treated with ethanol at 150 mM for 3 days. Per1 overexpression augmented lipid accumulation after treatment with ethanol in HepG2 cells, but had no effect on ethanol-induced oxidative stress. Expression of genes related to lipogenesis, including PPARγ and its target genes, was up-regulated in cells overexpressing Per1. In conclusion, these results indicated that circadian rhythms of ethanol-induced hepatotoxicity are controlled by clock gene Per1, and deletion of Per1 protected mice from ethanol-induced liver injury by decreasing hepatic lipid accumulation

  14. Lipid environment modulates the development of acute tolerance to ethanol in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Jill C Bettinger

    Full Text Available The development of tolerance to a drug at the level of the neuron reflects a homeostatic mechanism by which neurons respond to perturbations of their function by external stimuli. Acute functional tolerance (AFT to ethanol is a fast compensatory response that develops within a single drug session and normalizes neuronal function despite the continued presence of the drug. We performed a genetic screen to identify genes required for the development of acute functional tolerance to ethanol in the nematode C. elegans. We identified mutations affecting multiple genes in a genetic pathway known to regulate levels of triacylglycerols (TAGs via the lipase LIPS-7, indicating that there is an important role for TAGs in the development of tolerance. Genetic manipulation of lips-7 expression, up or down, produced opposing effects on ethanol sensitivity and on the rate of development of AFT. Further, decreasing cholesterol levels through environmental manipulation mirrored the effects of decreased TAG levels. Finally, we found that genetic alterations in the levels of the TAG lipase LIPS-7 can modify the phenotype of gain-of-function mutations in the ethanol-inducible ion channel SLO-1, the voltage- and calcium-sensitive BK channel. This study demonstrates that the lipid milieu modulates neuronal responses to ethanol that include initial sensitivity and the development of acute tolerance. These results lend new insight into studies of alcohol dependence, and suggest a model in which TAG levels are important for the development of AFT through alterations of the action of ethanol on membrane proteins.

  15. Chronic ethanol consumption in rats produces opioid antinociceptive tolerance through inhibition of mu opioid receptor endocytosis.

    Directory of Open Access Journals (Sweden)

    Li He

    Full Text Available It is well known that the mu-opioid receptor (MOR plays an important role in the rewarding properties of ethanol. However, it is less clear how chronic ethanol consumption affects MOR signaling. Here, we demonstrate that rats with prolonged voluntary ethanol consumption develop antinociceptive tolerance to opioids. Signaling through the MOR is controlled at many levels, including via the process of endocytosis. Importantly, agonists at the MOR that promote receptor endocytosis, such as the endogenous peptides enkephalin and β-endorphin, show a reduced propensity to promote antinociceptive tolerance than do agonists, like morphine, which do not promote receptor endocytosis. These observations led us to examine whether chronic ethanol consumption produced opioid tolerance by interfering with MOR endocytosis. Indeed, here we show that chronic ethanol consumption inhibits the endocytosis of MOR in response to opioid peptide. This loss of endocytosis was accompanied by a dramatic decrease in G protein coupled receptor kinase 2 (GRK2 protein levels after chronic drinking, suggesting that loss of this component of the trafficking machinery could be a mechanism by which endocytosis is lost. We also found that MOR coupling to G-protein was decreased in ethanol-drinking rats, providing a functional explanation for loss of opioid antinociception. Together, these results suggest that chronic ethanol drinking alters the ability of MOR to endocytose in response to opioid peptides, and consequently, promotes tolerance to the effects of opioids.

  16. Metalloproteinase inhibition prevents acute respiratory distress syndrome.

    Science.gov (United States)

    Carney, D E; McCann, U G; Schiller, H J; Gatto, L A; Steinberg, J; Picone, A L; Nieman, G F

    2001-08-01

    -3 prevented lung injury in our model of endotoxin-induced ARDS. The proposed mechanism of COL-3 is a synergistic inhibition of the terminal neutrophil effectors MMPs and NE. Similar to the universal practice of prophylaxis against gastric stress ulceration and deep venous thromboses in trauma patients, chemically modified tetracyclines may likewise be administered to prevent acute lung injury in critically injured patients at risk of developing ARDS. Copyright 2001 Academic Press.

  17. Inhibition of phosphodiesterase 4 reduces ethanol intake and preference in C57BL/6J mice

    Directory of Open Access Journals (Sweden)

    Yuri A. Blednov

    2014-05-01

    Full Text Available Some anti-inflammatory medications reduce alcohol consumption in rodent models. Inhibition of phosphodiesterases (PDE increases cAMP and reduces inflammatory signaling. Rolipram, an inhibitor of PDE4, markedly reduced ethanol intake and preference in mice and reduced ethanol seeking and consumption in alcohol-preferring fawn-hooded rats (Hu et al., 2011;Wen et al., 2012. To determine if these effects were specific for PDE4, we compared nine PDE inhibitors with different subtype selectivity: propentofylline (nonspecific, vinpocetine (PDE1, olprinone, milrinone (PDE3, zaprinast (PDE5, rolipram, mesopram, piclamilast, and CDP840 (PDE4. Alcohol intake was measured in C57BL/6J male mice using 24-hour two-bottle choice and two-bottle choice with limited (three-hour access to alcohol. Only the selective PDE4 inhibitors reduced ethanol intake and preference in the 24-hour two-bottle choice test. For rolipram, piclamilast, and CDP840, this effect was observed after the first 6 hours but not after the next 18 hours. Mesopram, however, produced a long-lasting reduction of ethanol intake and preference. In the limited access test, rolipram, piclamilast, and mesopram reduced ethanol consumption and total fluid intake and did not change preference for ethanol, whereas CDP840 reduced both consumption and preference without altering total fluid intake. Our results provide novel evidence for a selective role of PDE4 in regulating ethanol drinking in mice. We suggest that inhibition of PDE4 may be an unexplored target for medication development to reduce excessive alcohol consumption.

  18. Effects of the Acute and Chronic Ethanol Intoxication on Acetate Metabolism and Kinetics in the Rat Brain.

    Science.gov (United States)

    Hsieh, Ya-Ju; Wu, Liang-Chih; Ke, Chien-Chih; Chang, Chi-Wei; Kuo, Jung-Wen; Huang, Wen-Sheng; Chen, Fu-Du; Yang, Bang-Hung; Tai, Hsiao-Ting; Chen, Sharon Chia-Ju; Liu, Ren-Shyan

    2018-02-01

    Ethanol (EtOH) intoxication inhibits glucose transport and decreases overall brain glucose metabolism; however, humans with long-term EtOH consumption were found to have a significant increase in [1- 11 C]-acetate uptake in the brain. The relationship between the cause and effect of [1- 11 C]-acetate kinetics and acute/chronic EtOH intoxication, however, is still unclear. [1- 11 C]-acetate positron emission tomography (PET) with dynamic measurement of K 1 and k 2 rate constants was used to investigate the changes in acetate metabolism in different brain regions of rats with acute or chronic EtOH intoxication. PET imaging demonstrated decreased [1- 11 C]-acetate uptake in rat brain with acute EtOH intoxication, but this increased with chronic EtOH intoxication. Tracer uptake rate constant K 1 and clearance rate constant k 2 were decreased in acutely intoxicated rats. No significant change was noted in K 1 and k 2 in chronic EtOH intoxication, although 6 of 7 brain regions showed slightly higher k 2 than baseline. These results indicate that acute EtOH intoxication accelerated acetate transport and metabolism in the rat brain, whereas chronic EtOH intoxication status showed no significant effect. In vivo PET study confirmed the modulatory role of EtOH, administered acutely or chronically, in [1- 11 C]-acetate kinetics and metabolism in the rat brain. Acute EtOH intoxication may inhibit the transport and metabolism of acetate in the brain, whereas chronic EtOH exposure may lead to the adaptation of the rat brain to EtOH in acetate utilization. [1- 11 C]-acetate PET imaging is a feasible approach to study the effect of EtOH on acetate metabolism in rat brain. Copyright © 2017 by the Research Society on Alcoholism.

  19. The acute toxicity of ethanol extract from irradiated Temulawak (curcuma xanthorrizha roxb.) which have anticancer activity

    International Nuclear Information System (INIS)

    Ermin Katrin; Susanto; Hendig Winarno

    2011-01-01

    Pasteurization of herbs and herbal medicinal products have been carried out by several herbal industries, but information about the safety of irradiated herbal medicine is still a little, even the influence of gamma irradiation for pasteurization purpose on the toxicity of crude Temulawak has never been investigated. The ethanol extract of Curcuma xanthorrizha Roxb. has cytotoxic activity which potential as an anticancer. In this research, the acute toxicity tests were carried out to the ethanol extract from Curcuma xanthorrizha without irradiation and irradiated with doses of 5 and 10 kGy. The acute toxicity tests of ethanol extract were conducted in mice by observing the effect of extracts on animal behavior (pharmacologic profile) after a single dose of test material, the development of animal body weight and death every day for 14 days and observed several organ weights on day 14. Acute toxicity test results after administration of extracts on male and female mice a dose up to 7500 mg/kg body weight (BW) showed that no deaths and no significant toxic effect, so that the ethanol extract of Curcuma xanthorrizha without irradiation and irradiated with doses of 5 and 10 kGy can be declared safe. Thus LD 50 from ethanol extract of Curcuma xanthorrizha without irradiation and irradiated (5 and 10 kGY) in mice was greater than 7500 mg/kg body weight. (author)

  20. Inhibition of rat mammary microsomal oxidation of ethanol to acetaldehyde by plant polyphenols.

    Science.gov (United States)

    Maciel, María Eugenia; Castro, José Alberto; Castro, Gerardo Daniel

    2011-07-01

    We previously reported that the microsomal fraction from rat mammary tissue is able to oxidize ethanol to acetaldehyde, a mutagenic-carcinogenic metabolite, depending on the presence of NADPH and oxygen but not inhibited by carbon monoxide or other cytochrome P450 inhibitors. The process was strongly inhibited by diphenyleneiodonium, a known inhibitor of NADPH oxidase, and by nordihydroguaiaretic acid, an inhibitor of lipoxygenases. This led us to suggest that both enzymes could be involved. With the purpose of identifying natural compounds present in food with the ability to decrease the production of acetaldehyde in mammary tissue, in the present studies, several plant polyphenols having inhibitory effects on lipoxygenases and of antioxidant nature were tested as potential inhibitors of the rat mammary tissue microsomal pathway of ethanol oxidation. We included in the present screening study 32 polyphenols having ready availability and that were also tested against the rat mammary tissue cytosolic metabolism of ethanol to acetaldehyde. Several polyphenols were also able to inhibit the microsomal ethanol oxidation at concentrations as low was 10-50 μM. The results of these screening experiments suggest the potential of several plant polyphenols to prevent in vivo production and accumulation of acetaldehyde in mammary tissue.

  1. The ethanol metabolite acetaldehyde inhibits the induction of long-term potentiation in the rat dentate gyrus in vivo

    Science.gov (United States)

    Abe, Kazuho; Yamaguchi, Shinichi; Sugiura, Minoru; Saito, Hiroshi

    1999-01-01

    Ethanol has been reported to inhibit the induction of long-term potentiation (LTP) in the hippocampus. However, the correlation between the effects of ethanol in vivo and in vitro remained unclear. In addition, previous works have little considered the possibility that the effect of ethanol is mediated by its metabolites. To solve these problems, we investigated the effects of ethanol and acetaldehyde, the first metabolite in the metabolism of ethanol, on the induction of LTP at medial perforant path-granule cell synapses in the dentate gyrus of anaesthetized rats in vivo.Oral administration of 1 g kg−1 ethanol significantly inhibited the induction of LTP, confirming the effectiveness of ethanol in vivo.A lower dose of ethanol (0.5 g kg−1) failed to inhibit the induction of LTP in intact rats, but significantly inhibited LTP in rats treated with disulfiram, an inhibitor of aldehyde dehydrogenase, demonstrating that LTP is inhibited by acetaldehyde accumulation following ethanol administration.Intravenous injection of acetaldehyde (0.06 g kg−1) significantly inhibited the induction of LTP.The inhibitory effect of acetaldehyde on LTP induction was also observed when it was injected into the cerebroventricules, suggesting that acetaldehyde has a direct effect on the brain. The intracerebroventricular dose of acetaldehyde effective in inhibiting LTP induction (0.1–0.15 mg brain−1) was approximately 10 fold lower than that of ethanol (1.0–1.5 mg brain−1).It is possible that acetaldehyde is partly responsible for memory impairments induced by ethanol intoxication. PMID:10482910

  2. The sap of Acer okamotoanum decreases serum alcohol levels after acute ethanol ingestion in rats.

    Science.gov (United States)

    Yoo, Yeong-Min; Jung, Eui-Man; Kang, Ha-Young; Choi, In-Gyu; Choi, Kyung-Chul; Jeung, Eui-Bae

    2011-10-01

    In the present study, we examined whether Acer okamotoanum (A. okamotoanum) sap decreased the serum alcohol and acetaldehyde levels after acute ethanol treatment in a rat model. Male rats were orally administered 25, 50 or 100% A. okamotoanum sap 30 min prior to oral challenge with 3 ml of ethanol (15 ml/kg of a 20% ethanol solution in water), and the blood concentrations of alcohol and acetaldehyde were analyzed up to 7 h after the treatment. Pre-treatment with the sap significantly decreased the blood ethanol and acetaldehyde concentrations after 5 h when compared with ethanol treatment alone (a negative control). The expression levels of liver alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) mRNA were increased significantly in animals pre-treated with A. okamotoanum sap when compared with negative and positive controls. The data suggest that sap pre-treatment enhanced the alcohol metabolism rate in the rat liver. To investigate the involvement of mitochondrial regulation in the ethanol-induced hepatocyte apoptosis, we carried out an immunohistochemical analysis of Bax and Bcl-2. Pre-treatment with sap significantly decreased Bax expression and increased Bcl-2 expression 7 h after ethanol administration when compared with the negative control. The data suggest that A. okamotoanum sap pre-treatment may reduce the alcohol-induced oxidative stress in the rat liver.

  3. Acute and subacute toxicities of defatted ethanolic extract of Moringa ...

    African Journals Online (AJOL)

    Moringa oleifera seeds are widely accepted as a nutritional supplement. The seeds are consumed and are sold on the shelf of nature, herbal shops, pharmacy and supermarkets. They are consumed as herbal remedy for various diseases. This study was designed to evaluate the acute and sub-acute toxicity of defatted ...

  4. Sub-acute toxicity evaluation of ethanol extract of rheumatic tea ...

    African Journals Online (AJOL)

    Sub-acute toxicity profile of Rheumatic Tea Formula (RTF), a polyherbal tea consisting of Salix alba, Eucalyptus globulus and Albizia chevalieri was investigated in wistar rats of both sexes. Wistar rats were orally administered three different doses of ethanol extract of RTF for 28 days after which the effect on body weight, ...

  5. Acute psychomotor effects of MDMA and ethanol (co-) administration over time in healthy volunteers

    NARCIS (Netherlands)

    Dumont, G J H; Schoemaker, R C; Touw, D J; Sweep, F C G J; Buitelaar, J K; van Gerven, J M A; Verkes, R J

    In Western societies, a considerable percentage of young people use 3,4-methylenedioxymethamphetamine (MDMA or 'ecstasy'). The use of alcohol (ethanol) in combination with ecstasy is common. The aim of the present study was to assess the acute psychomotor and subjective effects of (co-)

  6. Hepatoprotective effect of ethanol extract from Berchemia lineate against CCl4-induced acute hepatotoxicity in mice.

    Science.gov (United States)

    Li, Cong; Yi, Li-Tao; Geng, Di; Han, Yuan-Yuan; Weng, Lian-Jin

    2015-05-01

    The roots of Berchemia lineate (L.) DC. (Rhamnaceae) have been long used as a remedy for the treatment of some diseases in Guangxi Province, China. The present study investigates the hepatoprotective effect of Berchemia lineate ethanol extract (BELE) on CCl4-induced acute liver damage in mice. Effect of BELE administrated for 7 consecutive days was evaluated in mice by the serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), total bilirubin (TBIL), albulin (ALB), globulin (GLB), and total protein (TP) levels, as well as liver superoxide dismutase (SOD) activity and malondialdehyde (MDA) level. Moreover, histopathological examinations were also taken. Compared with the model group, administration of 400 mg/kg BELE for 7 d in mice significantly decreased the serum ALT (56.25 U/L), AST (297.67 U/L), ALP (188.20 U/L), and TBIL (17.90 mol/L), along with the elevation of TP (64.67 g/L). In addition, BELE (100, 200, and 400 mg/kg, i.g.) treated mice recorded a dose-dependent increment of SOD (291.17, 310.32, and 325.67 U/mg prot) and reduction of MDA (7.27, 6.77, and 5.33 nmol/mg prot) levels. Histopathological examinations also confirmed that BELE can ameliorate CCl4-induced liver injuries, characterized by extensive hepatocellular degeneration/necrosis, inflammatory cell infiltration, congestion, and sinusoidal dilatation. The results indicated that BELE possessed remarkable protective effect against acute hepatotoxicity and oxidative injuries induced by CCl4, and that the hepatoprotective effects of BELE may be due to both the inhibition of lipid peroxidation and the increase of antioxidant activity.

  7. The Effect of Acute Ethanol and Gabapentin Administration on Spatial Learning and Memory

    Directory of Open Access Journals (Sweden)

    Fahimeh Yeganeh

    2011-09-01

    Full Text Available  Introduction: Patients with epilepsy can have impaired cognitive abilities. Many factors contribute to this impairment, including the adverse effects of antiepileptic drugs like Gabapentin (GBP. Apart from anti-epilectic action, Gabapentin is used to relieve ethanol withdrawal syndrome. Because both GBP and ethanol act on GABA ergic system, the purpose of this study was to evaluate their effect and interaction on spatial learning and memory. Material and Methods: Male Sprague-Dawley rats were trained in the Morris water maze for 5 consecutive days. On the sixth day, a probe test was performed to assess the retention phase or spatial rats’ memory ability. Ethanol (1.5 g/kg i.p. and GBP (30 mg/kg i.p. was administered each day 30 and 40 minutes before testing respectively. Results: Acute ethanol administration selectively impaired spatial memory (p<0.05, yet it failed to impair the acquisition phase (learning. Contradictorily GBP selectively impaired learning on second and forth days. Conclusion: These findings demonstrate that GBP and acute ethanol impair different phases of learning probably by modifying different neuronal pathways in cognitive areas of the brain.

  8. Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass

    DEFF Research Database (Denmark)

    Klinke, H.B.; Thomsen, A.B.; Ahring, Birgitte Kiær

    2004-01-01

    for ethanol fermentation. The resulting hydrolyzsates contain substances inhibitory to fermentation-depending on both the raw material (biomass) and the pre-treatment applied. An overview of the inhibitory effect on ethanol production by yeast and bacteria is presented. Apart from furans formed by sugar......An overview of the different inhibitors formed by pre-treatment of lignocellulosic materials and their inhibition of ethanol production in yeast and bacteria is given. Different high temperature physical pre-treatment methods are available to render the carbohydrates in lignocellulose accessible...... degradation, phenol monomers from lignin degradation are important co-factors in hydrolysate inhibition, and inhibitory effects of these aromatic compounds on different ethanol producing microorganisms is reviewed. The furans and phenols generally inhibited growth and ethanol production rate (Q...

  9. Acute oral toxicity and cytotoxicological evaluation of the ethanol ...

    African Journals Online (AJOL)

    Lucas Nicolau

    2015-02-02

    Feb 2, 2015 ... Piauí, Brazil. 2Medicinal .... at 24 ± 1°C and 12 h light dark cycle with water and food (FRI-LAB .... (OECD, 2001), acute treatment with distilled water and .... Farm. 2:50-. 53. OECD (Organisation for Economic Co-operation and ...

  10. Adenylyl cylases 1 and 8 mediate select striatal-dependent behaviors and sensitivity to ethanol stimulation in the adolescent period following acute neonatal ethanol exposure.

    Science.gov (United States)

    Susick, Laura L; Lowing, Jennifer L; Bosse, Kelly E; Hildebrandt, Clara C; Chrumka, Alexandria C; Conti, Alana C

    2014-08-01

    Neonatal alcohol exposure in rodents causes dramatic neurodegenerative effects throughout the developing nervous system, particularly in the striatum, acutely after exposure. These acute neurodegenerative effects are augmented in mice lacking adenylyl cyclases 1 and 8 (AC1/8) as neonatal mice with a genetic deletion of both AC isoforms (DKO) have increased vulnerability to ethanol-induced striatal neurotoxicity compared to wild type (WT) controls. While neonatal ethanol exposure is known to negatively impact cognitive behaviors, such as executive functioning and working memory in adolescent and adult animals, the threshold of ethanol exposure required to impinge upon developmental behaviors in mice has not been extensively examined. Therefore, the purpose of this study was to determine the behavioral effects of neonatal ethanol exposure using various striatal-dependent developmental benchmarks and to assess the impact of AC1/8 deletion on this developmental progression. WT and DKO mice were treated with 2.5 g/kg ethanol or saline on postnatal day (P)6 and later subjected to the wire suspension, negative geotaxis, postural reflex, grid hang, tail suspension and accelerating rotarod tests at various time points. At P30, mice were evaluated for their hypnotic responses to 4.0 g/kg ethanol by using the loss of righting reflex assay and ethanol-induced stimulation of locomotor activity after 2.0 g/kg ethanol. Ethanol exposure significantly impaired DKO performance in the negative geotaxis test while genetic deletion of AC1/8 alone increased grid hang time and decreased immobility time in the tail suspension test with a concomitant increase in hindlimb clasping behavior. Locomotor stimulation was significantly increased in animals that received ethanol as neonates, peaking significantly in ethanol-treated DKO mice compared to ethanol-treated WT controls, while sedation duration following high-dose ethanol challenge was unaffected. These data indicate that the

  11. Evaluation of acute toxicity, genotoxicity and inhibitory effect on acute inflammation of an ethanol extract of Morus alba L. (Moraceae) in mice.

    Science.gov (United States)

    Oliveira, Alisson Macário de; Nascimento, Matheus Ferreira do; Ferreira, Magda Rhayanny Assunção; Moura, Danielle Feijó de; Souza, Talita Giselly Dos Santos; Silva, Gabriela Cavalcante da; Ramos, Eduardo Henrique da Silva; Paiva, Patrícia Maria Guedes; Medeiros, Paloma Lys de; Silva, Teresinha Gonçalves da; Soares, Luiz Alberto Lira; Chagas, Cristiano Aparecido; Souza, Ivone Antônia de; Napoleão, Thiago Henrique

    2016-12-24

    not result in genotoxicity and considerably reduced (58.6-65.6% inhibition) leukocyte migration in all doses evaluated, in comparison with the negative control. The ethanol extract from M. alba leaves administered intraperitoneally possesses a greater degree of toxicity in mice when compared to per os administration. The extract was not genotoxic when ingested by mice and exhibited a highly inhibitory effect against acute inflammation, which is probably linked to the presence of chlorogenic acid and flavonoids in the composition. This work contributes to the determination of safety of the medicinal use of M. alba leaves. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  12. Gastroprotective effect of Cymbopogon citratus infusion on acute ethanol-induced gastric lesions in rats.

    Science.gov (United States)

    Sagradas, Joana; Costa, Gustavo; Figueirinha, Artur; Castel-Branco, Maria Margarida; Silvério Cabrita, António Manuel; Figueiredo, Isabel Vitória; Batista, Maria Teresa

    2015-09-15

    Treatment of gastric ulcers with medicinal plants is quite common in traditional medicine worldwide. Cymbopogon citratus (DC) Stapf. leaves infusion has been used in folk medicine of many tropical and subtropical regions to treat gastric disturbances. The aim of this study was to assess the potential gastroprotective activity of an essential oil-free infusion from C. citratus leaves in acute gastric lesions induced by ethanol in rat. The study was performed on adult male Wistar rats (234.0±22.7g) fasted for 24h but with free access to water. The extract was given orally before (prevention) or after (treatment) intragastric administration of absolute ethanol. Effects of dose (28 or 56mg/kg of body weight) and time of contact of the extract with gastric mucosa (1 or 2h) were also assessed. Animals were sacrificed, being the stomachs removed and the lesions were assessed by macroscopic observation and histopathology. C. citratus extract, given orally before or after ethanol, significantly (P<0.01) reduced gastric mucosal injury compared with control group (vehicle+ethanol). The effect does not appear to be dose-dependent. Results also suggested that the extract is more effective when the time of contact with gastric mucosa increases. The results of this assay confirm the gastroprotective activity of C. citratus extract on experimental gastric lesions induced by ethanol, contributing for the pharmacological validation of its traditional use. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  13. Effects of acute ethanol exposure on cytokine production by primary airway smooth muscle cells

    Energy Technology Data Exchange (ETDEWEB)

    Kaphalia, Lata; Kalita, Mridul [Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX (United States); Kaphalia, Bhupendra S. [Department of Pathology, University of Texas Medical Branch, Galveston, TX (United States); Calhoun, William J., E-mail: William.Calhoun@utmb.edu [Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX (United States)

    2016-02-01

    Both chronic and binge alcohol abuse can be significant risk factors for inflammatory lung diseases such as acute respiratory distress syndrome and chronic obstructive pulmonary disease. However, metabolic basis of alcohol-related lung disease is not well defined, and may include key metabolites of ethanol [EtOH] in addition to EtOH itself. Therefore, we investigated the effects of EtOH, acetaldehyde [ACE], and fatty acid ethyl esters [FAEEs] on oxidative stress, endoplasmic reticulum (ER) stress, AMP-activated protein kinase (AMPK) signaling and nuclear translocation of phosphorylated (p)-NF-κB p65 in primary human airway smooth muscle (HASM) cells stimulated to produce cytokines using LPS exposure. Both FAEEs and ACE induced evidence of cellular oxidative stress and ER stress, and increased p-NF-κB in nuclear extracts. EtOH and its metabolites decreased p-AMPKα activation, and induced expression of fatty acid synthase, and decreased expression of sirtuin 1. In general, EtOH decreased secretion of IP-10, IL-6, eotaxin, GCSF, and MCP-1. However, FAEEs and ACE increased these cytokines, suggesting that both FAEEs and ACE as compared to EtOH itself are proinflammatory. A direct effect of EtOH could be consistent with blunted immune response. Collectively, these two features of EtOH exposure, coupled with the known inhibition of innate immune response in our model might explain some clinical manifestations of EtOH exposure in the lung. - Highlights: • Metabolic basis for EtOH toxicity was studied in human airway smooth muscle (HASM) cells. • In HASM cells, EtOH metabolites were found to be relatively more toxic than EtOH itself. • EtOH metabolites mediate deactivation of AMPK via oxidative stress and ER stress. • EtOH metabolites were found to be more proinflammatory than EtOH itself in HASM cells.

  14. Effects of acute ethanol exposure on cytokine production by primary airway smooth muscle cells

    International Nuclear Information System (INIS)

    Kaphalia, Lata; Kalita, Mridul; Kaphalia, Bhupendra S.; Calhoun, William J.

    2016-01-01

    Both chronic and binge alcohol abuse can be significant risk factors for inflammatory lung diseases such as acute respiratory distress syndrome and chronic obstructive pulmonary disease. However, metabolic basis of alcohol-related lung disease is not well defined, and may include key metabolites of ethanol [EtOH] in addition to EtOH itself. Therefore, we investigated the effects of EtOH, acetaldehyde [ACE], and fatty acid ethyl esters [FAEEs] on oxidative stress, endoplasmic reticulum (ER) stress, AMP-activated protein kinase (AMPK) signaling and nuclear translocation of phosphorylated (p)-NF-κB p65 in primary human airway smooth muscle (HASM) cells stimulated to produce cytokines using LPS exposure. Both FAEEs and ACE induced evidence of cellular oxidative stress and ER stress, and increased p-NF-κB in nuclear extracts. EtOH and its metabolites decreased p-AMPKα activation, and induced expression of fatty acid synthase, and decreased expression of sirtuin 1. In general, EtOH decreased secretion of IP-10, IL-6, eotaxin, GCSF, and MCP-1. However, FAEEs and ACE increased these cytokines, suggesting that both FAEEs and ACE as compared to EtOH itself are proinflammatory. A direct effect of EtOH could be consistent with blunted immune response. Collectively, these two features of EtOH exposure, coupled with the known inhibition of innate immune response in our model might explain some clinical manifestations of EtOH exposure in the lung. - Highlights: • Metabolic basis for EtOH toxicity was studied in human airway smooth muscle (HASM) cells. • In HASM cells, EtOH metabolites were found to be relatively more toxic than EtOH itself. • EtOH metabolites mediate deactivation of AMPK via oxidative stress and ER stress. • EtOH metabolites were found to be more proinflammatory than EtOH itself in HASM cells.

  15. Acute and subacute toxicity evaluation of ethanolic extract from fruits of Schinus molle in rats.

    Science.gov (United States)

    Ferrero, Adriana; Minetti, Alejandra; Bras, Cristina; Zanetti, Noelia

    2007-09-25

    Ethanolic and hexanic extracts from fruits and leaves of Schinus molle showed ability to control several insect pests. Potential vertebrate toxicity associated with insecticidal plants requires investigation before institutional promotion. The aim of the present study was to evaluate the acute and subacute toxicity of ethanolic extracts from fruits of Schinus molle in rats. The plant extract was added to the diet at 2g/kg body weight/day during 1 day to evaluate acute toxicity and at 1g/kg body weight/day during 14 days to evaluate subacute toxicity. At the end of the exposure and after 7 days, behavioral and functional parameters in a functional observational battery and motor activity in an open field were assessed. Finally, histopathological examinations were conducted on several organs. In both exposures, an increase in the arousal level was observed in experimental groups. Also, the landing foot splay parameter increased in the experimental group after acute exposure. Only the subacute exposure produced a significant increase in the motor activity in the open field. All these changes disappeared after 7 days. None of the exposures affected the different organs evaluated. Our results suggest that ethanolic extracts from fruits and leaves of Schinus molle should be relatively safe to use as insecticide.

  16. Acute and chronic ethanol intake: effects on spatial and non-spatial memory in rats.

    Science.gov (United States)

    García-Moreno, Luis M; Cimadevilla, Jose M

    2012-12-01

    Abusive alcohol consumption produces neuronal damage and biochemical alterations in the mammal brain followed by cognitive disturbances. In this work rats receiving chronic and acute alcohol intake were evaluated in a spontaneous delayed non-matching to sample/position test. Chronic alcohol-treated rats had free access to an aqueous ethanol solution as the only available liquid source from the postnatal day 21 to the end of experiment (postnatal day 90). Acute alcoholic animals received an injection of 2 g/kg ethanol solution once per week. Subjects were evaluated in two tests (object recognition and spatial recognition) based on the spontaneous delayed non-matching to sample or to position paradigm using delays of 1 min, 15 min and 60 min. Results showed that chronic and acute alcohol intake impairs the rats' performance in both tests. Moreover, chronic alcohol-treated rats were more altered than acute treated animals in both tasks. Our results support the idea that chronic and acute alcohol administration during postnatal development caused widespread brain damage resulting in behavioral disturbances and learning disabilities. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Corrosion Inhibition and Adsorption Properties of Ethanolic Extract of Calotropis for Corrosion of Aluminium in Acidic Media

    OpenAIRE

    Sudesh Kumar; Suraj Prakash Mathur

    2013-01-01

    The corrosion inhibition of aluminium in sulfuric acid solution in the presence of different plant parts, namely, leaves, latex, and fruit was studied using weight loss method and thermometric method. The ethanolic extracts of Calotropis procera and Calotropis gigantea act as an inhibitor in the acid environment. The inhibition efficiency increases with increase in inhibitor concentration. The plant parts inhibit aluminium, and inhibition is attributed, due to the adsorption of the plant part...

  18. Acute Cor Pulmonale and Right Heat Failure Complicating Ethanol Ablative Therapy: Anesthetic and Radiologic Considerations and Management

    Energy Technology Data Exchange (ETDEWEB)

    Naik, Bhiken, E-mail: bin4n@virginia.edu [University of Virginia, Department of Anesthesiology (United States); Matsumoto, Alan H. [University of Virginia, Department of Radiology and Medical Imaging (United States)

    2013-10-15

    Ethanol is an effective ablative agent used for the treatment of certain solid organ tumors and vascular malformations (VMs). The egress of ethanol beyond the target tissue can be associated with significant changes to the cardiopulmonary system that can lead to cardiac arrest. This article reviews the contemporary role of ethanol in tumor and VM treatment and discusses the physiological mechanisms of acute pulmonary hypertension and cardiovascular collapse. The importance of periprocedural recognition of the hemodynamic changes that can occur with the use of ethanol and the treatment of this condition are discussed.

  19. Brain catalase activity inhibition as well as opioid receptor antagonism increases ethanol-induced HPA axis activation.

    Science.gov (United States)

    Pastor, Raúl; Sanchis-Segura, Carles; Aragon, Carlos M G

    2004-12-01

    Growing evidence indicates that brain catalase activity is involved in the psychopharmacological actions of ethanol. Recent data suggest that participation of this enzymatic system in some ethanol effects could be mediated by the endogenous opioid system. The present study assessed whether brain catalase has a role in ethanol-induced activation of the HPA axis, a neuroendocrine system modulated by the endogenous opioid neurotransmission. Swiss male mice received an intraperitoneal injection of the catalase inhibitor 3-amino-1,2,4-triazole (AT; 0-1 g/kg), and 0 to 20 hr after this administration, animals received an ethanol (0-4 g/kg; intraperitoneally) challenge. Thirty, 60, or 120 min after ethanol administration, plasma corticosterone levels were determined immunoenzymatically. In addition, we tested the effects of 45 mg/kg of cyanamide (another catalase inhibitor) and 0 to 2 mg/kg of naltrexone (nonselective opioid receptor antagonist) on ethanol-induced enhancement in plasma corticosterone values. The present study revealed that AT boosts ethanol-induced increase in plasma corticosterone levels in a dose- and time-dependent manner. However, it did not affect corticosterone values when measured after administration of saline, cocaine (4 mg/kg, intraperitoneally), or morphine (30 mg/kg, intraperitoneally). The catalase inhibitor cyanamide (45 mg/kg, intraperitoneally) also increased ethanol-related plasma corticosterone levels. These effects of AT and cyanamide on ethanol-induced corticosterone values were observed under treatment conditions that decreased significantly brain catalase activity. Indeed, a significant correlation between effects of catalase manipulations on both variables was found. Finally, we found that the administration of naltrexone enhanced the levels of plasma corticosterone after the administration of saline or ethanol. This study shows that the inhibition of brain catalase increases ethanol-induced plasma corticosterone levels. Results are

  20. In Vivo Acute on Chronic Ethanol Effects in Liver: A Mouse Model Exhibiting Exacerbated Injury, Altered Metabolic and Epigenetic Responses

    Directory of Open Access Journals (Sweden)

    Shivendra D. Shukla

    2015-11-01

    Full Text Available Chronic alcoholics who also binge drink (i.e., acute on chronic are prone to an exacerbated liver injury but its mechanism is not understood. We therefore investigated the in vivo effects of chronic and binge ethanol ingestion and compared to chronic ethanol followed by three repeat binge ethanol on the liver of male C57/BL6 mice fed ethanol in liquid diet (4% for four weeks followed by binge ethanol (intragastric administration, 3.5 g/kg body weight, three doses, 12h apart. Chronic followed by binge ethanol exacerbated fat accumulation, necrosis, decrease in hepatic SAM and SAM:SAH ratio, increase in adenosine levels, and elevated CYP2E1 levels. Histone H3 lysine acetylation (H3AcK9, dually modified phosphoacetylated histone H3 (H3AcK9/PS10, and phosphorylated H2AX increased after binge whereas phosphorylation of histone H3 ser 10 (H3S10 and H3 ser 28 (H3S28 increased after chronic ethanol-binge. Histone H3 lysine 4 and 9 dimethylation increased with a marked dimethylation in H3K9 in chronic ethanol binge group. Trimethylated histone H3 levels did not change. Nuclear levels of histone acetyl transferase GCN5 and histone deacetylase HDAC3 were elevated whereas phospho-CREB decreased in a distinctive manner. Taken together, acute on chronic ethanol ingestion caused amplification of liver injury and elicited characteristic profiles of histone modifications, metabolic alterations, and changes in nuclear protein levels. These findings demonstrate that chronic ethanol exposure renders liver more susceptible to repeat acute/binge ethanol induced acceleration of alcoholic liver disease.

  1. The effect of ethanol on reversal learning in honey bees (Apis mellifera anatolica): Response inhibition in a social insect model.

    Science.gov (United States)

    Abramson, Charles I; Craig, David Philip Arthur; Varnon, Christopher A; Wells, Harrington

    2015-05-01

    We investigated the effects of ethanol on reversal learning in honey bees (Apis mellifera anatolica). The rationale behind the present experiment was to determine the species generality of the effect of ethanol on response inhibition. Subjects were originally trained to associate either a cinnamon or lavender odor with a sucrose feeding before a reversal of the conditioned stimuli. We administered 15 μL of ethanol at varying doses (0%, 2.5%, 5%, 10%, or 20%) according to group assignment. Ethanol was either administered 5 min before original discrimination training or 5 min before the stimuli reversal. We analyzed the effects of these three manipulations via a recently developed individual analysis that eschews aggregate assessments in favor of a model that conceptualizes learning as occurring in individual organisms. We measured responding in the presence of conditioned stimuli associated with a sucrose feeding, responding in the presence of conditioned stimuli associated with distilled water, and responding in the presence of the unconditioned stimulus (sucrose). Our analyses revealed the ethanol dose manipulation lowered responding for all three measures at increasingly higher doses, which suggests ethanol served as a general behavioral suppressor. Consistent with previous ethanol reversal literature, we found administering ethanol before the original discrimination phase or before the reversal produced inconsistent patterns of responding at varying ethanol doses. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Acute Ethanol Gavage Attenuates Hemorrhage/Resuscitation-Induced Hepatic Oxidative Stress in Rats

    Directory of Open Access Journals (Sweden)

    B. Relja

    2012-01-01

    Full Text Available Acute ethanol intoxication increases the production of reactive oxygen species (ROS. Hemorrhagic shock with subsequent resuscitation (H/R also induces ROS resulting in cellular and hepatic damage in vivo. We examined the role of acute ethanol intoxication upon oxidative stress and subsequent hepatic cell death after H/R. 14 h before H/R, rats were gavaged with single dose of ethanol or saline (5 g/kg, EtOH and ctrl; H/R_EtOH or H/R_ctrl, resp.. Then, rats were hemorrhaged to a mean arterial blood pressure of 30±2 mmHg for 60 min and resuscitated. Two control groups underwent surgical procedures without H/R (sham_ctrl and sham_EtOH, resp.. Liver tissues were harvested at 2, 24, and 72 h after resuscitation. EtOH-gavage induced histological picture of acute fatty liver. Hepatic oxidative (4-hydroxynonenal, 4-HNE and nitrosative (3-nitrotyrosine, 3-NT stress were significantly reduced in EtOH-gavaged rats compared to controls after H/R. Proapoptotic caspase-8 and Bax expressions were markedly diminished in EtOH-gavaged animals compared with controls 2 h after resuscitation. EtOH-gavage increased antiapoptotic Bcl-2 gene expression compared with controls 2 h after resuscitation. iNOS protein expression increased following H/R but was attenuated in EtOH-gavaged animals after H/R. Taken together, the data suggest that acute EtOH-gavage may attenuate H/R-induced oxidative stress thereby reducing cellular injury in rat liver.

  3. [Evaluation of selected socioeconomic factors in patients with acute ethanol intoxication and alcohol withdrawal syndrome].

    Science.gov (United States)

    Lukasik-Głębocka, Magdalena; Sommerfeld, Karina

    2014-01-01

    Ethanol is commonly overused psychoactive substance in Poland and all around the world. It causes addiction, which occurs as a result of its chronic administration. One of the main symptoms of addiction is hunger due to psychoactive substance that prevents interruption of its adoption and contributes to relapse drinking. Acute poisoning with ethyl alcohol and alcohol withdrawal syndrome are diseases causing a potential danger to life. The prevalence of use and abuse of alcoholic beverages is a potential risk, causing health problems, including permanent damage of the central and peripheral nervous system and socio-economic problems. The aim of this study is to analyze certain aspects of the socio-economic situation of the patients hospitalized in the Department of Toxicology in Raszeja City Hospital in Poznan due to acute ethanol intoxication or alcohol withdrawal syndrome in 2010. 299 patients history was evaluated, among which 161 were treated for acute intoxication with ethanol and 138 due to alcohol withdrawal syndrome. Objects of interest were elements of subjective tests including: marital status of patients, their education and professional activity and the problem of homelessness. The study group consisted of 299 patients in age from 16 to 77 years, hospitalized in the Department of Toxicology in Raszeja City Hospital in Poznan due to acute ethanol intoxication or alcohol withdrawal syndrome. It was found that the largest group consisted of patients remaining married (42.81%) and unmarried (30.43%). Alcohol abuse affects people of all levels of education. In the present study, most patients had a vocational education (37.79%) and medium (23.08%). Patients were analyzed in terms of economic activity, among which about 40% were unemployed. In the whole group more than 10% of those were homeless. Ethyl alcohol intoxication and alcohol withdrawal represents a significant hazard. As a result of reliance, patients lose control of alcohol consumption and they

  4. Protective effect of treatment with thiamine or benfotiamine on liver oxidative damage in rat model of acute ethanol intoxication.

    Science.gov (United States)

    Portari, Guilherme Vannucchi; Ovidio, Paula Payão; Deminice, Rafael; Jordão, Alceu Afonso

    2016-10-01

    The aim of this study was to evaluate possible beneficial effects of treatment with thiamine or benfotiamine in an animal model of acute ethanol intoxication. Thirty male Wistar rats were separated at random into three groups of 10 animals each: Ethanol (E), Ethanol treated with thiamine (T) and Ethanol treated with benfotiamine (BE). Rats were gavaged with single dose of ethanol (5g/kg, 40% v:v). After 30min of ethanol gavage the animals were treated with thiamine or benfotiamine. Six hours after first gavage, the animals were euthanized and blood and liver samples were collected for ethanol and oxidative stress biomarkers quantification. Serum ethanol levels were higher in animals treated with thiamine or benfotiamine while hepatic alcohol levels were higher in animals of the group treated with benfotiamine comparing to controls or thiamine treated groups. The lipid peroxidation biomarkers were diminished for the groups treated with thiamine or benfotiamine comparing to E animals. Concerning protein oxidative damage parameters, they were enhanced for animals treated with benfotiamine in relation to other groups. In conclusion, the treatment with thiamine or benfotiamine even 30min after the massive dose of ethanol has proven to be beneficial against liver damage. Improved results were obtained with benfotiamine in relation to oxidative damage from aqueous compartments. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Ethanol negatively regulates hepatic differentiation of hESC by inhibition of the MAPK/ERK signaling pathway in vitro.

    Directory of Open Access Journals (Sweden)

    Wei Gao

    Full Text Available Alcohol insult triggers complex events in the liver, promoting fibrogenic/inflammatory signals and in more advanced cases, aberrant matrix deposition. It is well accepted that the regenerative capacity of the adult liver is impaired during alcohol injury. The liver progenitor/stem cells have been shown to play an important role in liver regeneration -in response to various chronic injuries; however, the effects of alcohol on stem cell differentiation in the liver are not well understood.We employed hepatic progenitor cells derived from hESCs to study the impact of ethanol on hepatocyte differentiation by exposure of these progenitor cells to ethanol during hepatocyte differentiation.We found that ethanol negatively regulated hepatic differentiation of hESC-derived hepatic progenitor cells in a dose-dependent manner. There was also a moderate cell cycle arrest at G1/S checkpoint in the ethanol treated cells, which is associated with a reduced level of cyclin D1 in these cells. Ethanol treatment specifically inhibited the activation of the ERK but not JNK nor the p38 MAP signaling pathway. At the same time, the WNT signaling pathway was also reduced in the cells exposed to ethanol. Upon evaluating the effects of the inhibitors of these two signaling pathways, we determined that the Erk inhibitor replicated the effects of ethanol on the hepatocyte differentiation and attenuated the WNT/β-catenin signaling, however, inhibitors of WNT only partially replicated the effects of ethanol on the hepatocyte differentiation.Our results demonstrated that ethanol negatively regulated hepatic differentiation of hESC-derived hepatic progenitors through inhibiting the MAPK/ERK signaling pathway, and subsequently attenuating the WNT signaling pathway. Thus, our finding provides a novel insight into the mechanism by which alcohol regulates cell fate selection of hESC-derived hepatic progenitor cells, and the identified pathways may provide therapeutic targets

  6. INCREASES IN ANXIETY-LIKE BEHAVIOR INDUCED BY ACUTE STRESS ARE REVERSED BY ETHANOL IN ADOLESCENT BUT NOT ADULT RATS

    OpenAIRE

    Varlinskaya, Elena I.; Spear, Linda P.

    2011-01-01

    Repeated exposure to stressors has been found to increase anxiety-like behavior in laboratory rodents, with the social anxiety induced by repeated restraint being extremely sensitive to anxiolytic effects of ethanol in both adolescent and adult rats. No studies, however, have compared social anxiogenic effects of acute stress or the capacity of ethanol to reverse this anxiety in adolescent and adult animals. Therefore, the present study was designed to investigate whether adolescent [postnata...

  7. The role of glycerol-3-phosphate dehydrogenase 1 in the progression of fatty liver after acute ethanol administration in mice

    International Nuclear Information System (INIS)

    Sato, Tomoki; Morita, Akihito; Mori, Nobuko; Miura, Shinji

    2014-01-01

    Highlights: • Ethanol administration increased GPD1 mRNA expression. • Ethanol administration increased glucose incorporation into TG glycerol moieties. • No increase in hepatic TG levels was observed in ethanol-injected GPD1 null mice. • We propose that GPD1 is required for ethanol-induced TG accumulation in the liver. - Abstract: Acute ethanol consumption leads to the accumulation of triglycerides (TGs) in hepatocytes. The increase in lipogenesis and reduction of fatty acid oxidation are implicated as the mechanisms underlying ethanol-induced hepatic TG accumulation. Although glycerol-3-phosphate (Gro3P), formed by glycerol kinase (GYK) or glycerol-3-phosphate dehydrogenase 1 (GPD1), is also required for TG synthesis, the roles of GYK and GPD1 have been the subject of some debate. In this study, we examine (1) the expression of genes involved in Gro3P production in the liver of C57BL/6J mice in the context of hepatic TG accumulation after acute ethanol intake, and (2) the role of GPD1 in the progression of ethanol-induced fatty liver using GPD1 null mice. As a result, in C57BL/6J mice, ethanol-induced hepatic TG accumulation began within 2 h and was 1.7-fold greater than that observed in the control group after 6 h. The up-regulation of GPD1 began 2 h after administering ethanol, and significantly increased 6 h later with the concomitant escalation in the glycolytic gene expression. The incorporation of 14 C-labelled glucose into TG glycerol moieties increased during the same period. On the other hand, in GPD1 null mice carrying normal GYK activity, no significant increase in hepatic TG level was observed after acute ethanol intake. In conclusion, GPD1 and glycolytic gene expression is up-regulated by ethanol, and GPD1-mediated incorporation of glucose into TG glycerol moieties together with increased lipogenesis, is suggested to play an important role in ethanol-induced hepatic TG accumulation

  8. The role of glycerol-3-phosphate dehydrogenase 1 in the progression of fatty liver after acute ethanol administration in mice

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Tomoki, E-mail: s13220@u-shizuoka-ken.ac.jp [Laboratory of Nutritional Biochemistry, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526 (Japan); Morita, Akihito, E-mail: moritaa@u-shizuoka-ken.ac.jp [Laboratory of Nutritional Biochemistry, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526 (Japan); Mori, Nobuko, E-mail: morin@b.s.osakafu-u.ac.jp [Department of Biological Science, Graduate School of Science, Osaka Prefecture University, 1-2 Gakuen-cho, Naka-ku, Sakai 599-8570 (Japan); Miura, Shinji, E-mail: miura@u-shizuoka-ken.ac.jp [Laboratory of Nutritional Biochemistry, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526 (Japan)

    2014-02-21

    Highlights: • Ethanol administration increased GPD1 mRNA expression. • Ethanol administration increased glucose incorporation into TG glycerol moieties. • No increase in hepatic TG levels was observed in ethanol-injected GPD1 null mice. • We propose that GPD1 is required for ethanol-induced TG accumulation in the liver. - Abstract: Acute ethanol consumption leads to the accumulation of triglycerides (TGs) in hepatocytes. The increase in lipogenesis and reduction of fatty acid oxidation are implicated as the mechanisms underlying ethanol-induced hepatic TG accumulation. Although glycerol-3-phosphate (Gro3P), formed by glycerol kinase (GYK) or glycerol-3-phosphate dehydrogenase 1 (GPD1), is also required for TG synthesis, the roles of GYK and GPD1 have been the subject of some debate. In this study, we examine (1) the expression of genes involved in Gro3P production in the liver of C57BL/6J mice in the context of hepatic TG accumulation after acute ethanol intake, and (2) the role of GPD1 in the progression of ethanol-induced fatty liver using GPD1 null mice. As a result, in C57BL/6J mice, ethanol-induced hepatic TG accumulation began within 2 h and was 1.7-fold greater than that observed in the control group after 6 h. The up-regulation of GPD1 began 2 h after administering ethanol, and significantly increased 6 h later with the concomitant escalation in the glycolytic gene expression. The incorporation of {sup 14}C-labelled glucose into TG glycerol moieties increased during the same period. On the other hand, in GPD1 null mice carrying normal GYK activity, no significant increase in hepatic TG level was observed after acute ethanol intake. In conclusion, GPD1 and glycolytic gene expression is up-regulated by ethanol, and GPD1-mediated incorporation of glucose into TG glycerol moieties together with increased lipogenesis, is suggested to play an important role in ethanol-induced hepatic TG accumulation.

  9. Neuromotor effects of acute ethanol inhalation exposure in humans: a preliminary study.

    Science.gov (United States)

    Nadeau, Véronique; Lamoureux, Daniel; Beuter, Anne; Charbonneau, Michel; Tardif, Robert

    2003-07-01

    Ethanol (ETOH) is added to unleaded gasoline to decrease environmental levels of carbon monoxide from automobiles emissions. Therefore, addition of ETOH in reformulated fuel will most likely increase and the involuntarily human exposure to this chemical will also increase. This preliminary study was undertaken to evaluate the possible neuromotor effects resulting from acute ETOH exposure by inhalation in humans. Five healthy non-smoking adult males, with no history of alcohol abuse, were exposed by inhalation, in a dynamic, controlled-environment exposure chamber, to various concentrations of ETOH (0, 250, 500 and 1,000 ppm in air) for six hours. Reaction time, body sway, hand tremor and rapid alternating movements were measured before and after each exposure session by using the CATSYS 7.0 system and a diadochokinesimeter. The concentrations of ETOH in blood and in alveolar air were also measured. ETOH was not detected in blood nor in alveolar air when volunteers were exposed to 250 and 500 ppm, but at the end of exposure to 1,000 ppm, blood and alveolar air concentrations were 0.443 mg/100ml and 253.1 ppm, respectively. The neuromotor tests did not show conclusively significant differences between the exposed and non-exposed conditions. In conclusion, this study suggests that acute exposure to ethanol at 1,000 ppm or lower or to concentrations that could be encountered upon refueling is not likely to cause any significant neuromotor alterations in healthy males.

  10. Ethanol Decreases Inflammatory Response in Human Lung Epithelial Cells by Inhibiting the Canonical NF-kB-Pathway

    Directory of Open Access Journals (Sweden)

    Katharina Mörs

    2017-08-01

    Full Text Available Background/Aims: Alcohol (ethanol, EtOH as significant contributor to traumatic injury is linked to suppressed inflammatory response, thereby influencing clinical outcomes. Alcohol-induced immune-suppression during acute inflammation (trauma was linked to nuclear factor-kappaB (NF-ĸB. Here, we analyzed alcohol`s effects and mechanisms underlying its influence on NF-ĸB-signaling during acute inflammation in human lung epithelial cells. Methods: A549-cells were stimulated with interleukin (IL-1β, or sera from trauma patients (TP or healthy volunteers, with positive/negative blood alcohol concentrations (BAC, and subsequently exposed to EtOH (170 Mm, 1h. IL-6-release and neutrophil adhesion to A549 were analyzed. Specific siRNA-NIK mediated downregulation of non-canonical, and IKK-NBD-inhibition of canonical NF-ĸB signaling were performed. Nuclear levels of activated p50 and p52 NF-ĸB-subunits were detected using TransAm ELISA. Results: Both stimuli significantly induced IL-6-release (39.79±4.70 vs. 0.58±0.8 pg/ml and neutrophil adhesion (132.30±8.80 vs. 100% control, p<0.05 to A549-cells. EtOH significantly decreased IL-6-release (22.90±5.40, p<0.05 and neutrophil adherence vs. controls (105.40±14.5%, p<0.05. IL-1β-induced significant activation of canonical/p50 and non-canonical/p52 pathways. EtOH significantly reduced p50 (34.90±23.70 vs. 197.70±36.43, p<0.05 not p52 activation. Inhibition of canonical pathway was further increased by EtOH (less p50-activation, while p52 remained unaltered. Inhibition of non-canonical pathway was unchanged by EtOH. Conclusion: Here, alcohol`s anti-inflammatory effects are mediated via decreasing nuclear levels of activated p50-subunit and canonical NF-ĸB signaling pathway.

  11. Ethanol Decreases Inflammatory Response in Human Lung Epithelial Cells by Inhibiting the Canonical NF-kB-Pathway.

    Science.gov (United States)

    Mörs, Katharina; Hörauf, Jason-Alexander; Kany, Shinwan; Wagner, Nils; Sturm, Ramona; Woschek, Mathias; Perl, Mario; Marzi, Ingo; Relja, Borna

    2017-01-01

    Alcohol (ethanol, EtOH) as significant contributor to traumatic injury is linked to suppressed inflammatory response, thereby influencing clinical outcomes. Alcohol-induced immune-suppression during acute inflammation (trauma) was linked to nuclear factor-kappaB (NF-ĸB). Here, we analyzed alcohol`s effects and mechanisms underlying its influence on NF-ĸB-signaling during acute inflammation in human lung epithelial cells. A549-cells were stimulated with interleukin (IL)-1β, or sera from trauma patients (TP) or healthy volunteers, with positive/negative blood alcohol concentrations (BAC), and subsequently exposed to EtOH (170 Mm, 1h). IL-6-release and neutrophil adhesion to A549 were analyzed. Specific siRNA-NIK mediated downregulation of non-canonical, and IKK-NBD-inhibition of canonical NF-ĸB signaling were performed. Nuclear levels of activated p50 and p52 NF-ĸB-subunits were detected using TransAm ELISA. Both stimuli significantly induced IL-6-release (39.79±4.70 vs. 0.58±0.8 pg/ml) and neutrophil adhesion (132.30±8.80 vs. 100% control, p<0.05) to A549-cells. EtOH significantly decreased IL-6-release (22.90±5.40, p<0.05) and neutrophil adherence vs. controls (105.40±14.5%, p<0.05). IL-1β-induced significant activation of canonical/p50 and non-canonical/p52 pathways. EtOH significantly reduced p50 (34.90±23.70 vs. 197.70±36.43, p<0.05) not p52 activation. Inhibition of canonical pathway was further increased by EtOH (less p50-activation), while p52 remained unaltered. Inhibition of non-canonical pathway was unchanged by EtOH. Here, alcohol`s anti-inflammatory effects are mediated via decreasing nuclear levels of activated p50-subunit and canonical NF-ĸB signaling pathway. © 2017 The Author(s). Published by S. Karger AG, Basel.

  12. Ethanol Extract of Atractylodes macrocephala Protects Bone Loss by Inhibiting Osteoclast Differentiation

    Directory of Open Access Journals (Sweden)

    Youn-Hwan Hwang

    2013-06-01

    Full Text Available The rhizome of Atractylodes macrocephala has been used mainly in Traditional Chinese Medicine for invigorating the functions of the stomach and spleen. In the present study, we investigated the inhibitory effect of the 70% ethanol extract of the rhizome of Atractylodes macrocephala (AMEE on osteoclast differentiation. We found that AMEE inhibits osteoclast differentiation from its precursors induced by receptor activator of nuclear factor-κB ligand (RANKL, an essential cytokine required for osteoclast differentiation. AMEE attenuated RANKL-induced activation of NF-κB signaling pathway, subsequently inhibiting the induction of osteoclastogenic transcription factors, c-Fos and nuclear factor of activated T cells cytoplasmic 1. Consistent with the in vitro results, administration of AMEE protected RANKL-induced bone loss in mice. We also identified atractylenolide I and II as active constituents contributing to the anti-osteoclastogenic effect of AMEE. Taken together, our results demonstrate that AMEE has a protective effect on bone loss via inhibiting osteoclast differentiation and suggest that AMEE may be useful in preventing and treating various bone diseases associated with excessive bone resorption.

  13. Acute Ethanol Intake Induces NAD(P)H Oxidase Activation and Rhoa Translocation in Resistance Arteries.

    Science.gov (United States)

    Simplicio, Janaina A; Hipólito, Ulisses Vilela; Vale, Gabriel Tavares do; Callera, Glaucia Elena; Pereira, Camila André; Touyz, Rhian M; Tostes, Rita de Cássia; Tirapelli, Carlos R

    2016-11-01

    The mechanism underlying the vascular dysfunction induced by ethanol is not totally understood. Identification of biochemical/molecular mechanisms that could explain such effects is warranted. To investigate whether acute ethanol intake activates the vascular RhoA/Rho kinase pathway in resistance arteries and the role of NAD(P)H oxidase-derived reactive oxygen species (ROS) on such response. We also evaluated the requirement of p47phox translocation for ethanol-induced NAD(P)H oxidase activation. Male Wistar rats were orally treated with ethanol (1g/kg, p.o. gavage) or water (control). Some rats were treated with vitamin C (250 mg/kg, p.o. gavage, 5 days) before administration of water or ethanol. The mesenteric arterial bed (MAB) was collected 30 min after ethanol administration. Vitamin C prevented ethanol-induced increase in superoxide anion (O2-) generation and lipoperoxidation in the MAB. Catalase and superoxide dismutase activities and the reduced glutathione, nitrate and hydrogen peroxide (H2O2) levels were not affected by ethanol. Vitamin C and 4-methylpyrazole prevented the increase on O2- generation induced by ethanol in cultured MAB vascular smooth muscle cells. Ethanol had no effect on phosphorylation levels of protein kinase B (Akt) and eNOS (Ser1177 or Thr495 residues) or MAB vascular reactivity. Vitamin C prevented ethanol-induced increase in the membrane: cytosol fraction ratio of p47phox and RhoA expression in the rat MAB. Acute ethanol intake induces activation of the RhoA/Rho kinase pathway by a mechanism that involves ROS generation. In resistance arteries, ethanol activates NAD(P)H oxidase by inducing p47phox translocation by a redox-sensitive mechanism. O mecanismo da disfunção vascular induzido pelo consumo de etanol não é totalmente compreendido. Justifica-se, assim a identificação de mecanismos bioquímicos e moleculares que poderiam explicar tais efeitos. Investigar se a ingestão aguda de etanol ativa a via vascular RhoA/Rho quinase

  14. Increases in anxiety-like behavior induced by acute stress are reversed by ethanol in adolescent but not adult rats.

    Science.gov (United States)

    Varlinskaya, Elena I; Spear, Linda P

    2012-01-01

    Repeated exposure to stressors has been found to increase anxiety-like behavior in laboratory rodents, with the social anxiety induced by repeated restraint being extremely sensitive to anxiolytic effects of ethanol in both adolescent and adult rats. No studies, however, have compared social anxiogenic effects of acute stress or the capacity of ethanol to reverse this anxiety in adolescent and adult animals. Therefore, the present study was designed to investigate whether adolescent [postnatal day (P35)] Sprague-Dawley rats differ from their adult counterparts (P70) in the impact of acute restraint stress on social anxiety and in their sensitivity to the social anxiolytic effects of ethanol. Animals were restrained for 90 min, followed by examination of stress- and ethanol-induced (0, 0.25, 0.5, 0.75, and 1 g/kg) alterations in social behavior using a modified social interaction test in a familiar environment. Acute restraint stress increased anxiety, as indexed by reduced levels of social investigation at both ages, and decreased social preference among adolescents. These increases in anxiety were dramatically reversed among adolescents by acute ethanol. No anxiolytic-like effects of ethanol emerged following restraint stress in adults. The social suppression seen in response to higher doses of ethanol was reversed by restraint stress in animals of both ages. To the extent that these data are applicable to humans, the results of the present study provide some experimental evidence that stressful life events may increase the attractiveness of alcohol as an anxiolytic agent for adolescents. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. Ethanol and Other Short-Chain Alcohols Inhibit NLRP3 Inflammasome Activation through Protein Tyrosine Phosphatase Stimulation

    Science.gov (United States)

    Hoyt, Laura R.; Ather, Jennifer L.; Randall, Matthew J.; DePuccio, Daniel P.; Landry, Christopher C.; Wewers, Mark D.; Gavrilin, Mikhail A.; Poynter, Matthew E.

    2016-01-01

    Immunosuppression is a major complication of alcoholism that contributes to increased rates of opportunistic infections and sepsis in alcoholics. The NLRP3 inflammasome, a multi-protein intracellular pattern recognition receptor complex that facilitates the cleavage and secretion of the pro-inflammatory cytokines IL-1β and IL-18, can be inhibited by ethanol and we sought to better understand the mechanism through which this occurs and whether chemically similar molecules exert comparable effects. We show that ethanol can specifically inhibit activation of the NLRP3 inflammasome, resulting in attenuated IL-1β and caspase-1 cleavage and secretion, as well as diminished ASC speck formation, without affecting potassium efflux, in a mouse macrophage cell line (J774), mouse bone marrow derived dendritic cells, mouse neutrophils, and human PBMCs. The inhibitory effects on the Nlrp3 inflammasome were independent of GABAA receptor activation or NMDA receptor inhibition, but was associated with decreased oxidant production. Ethanol treatment markedly decreased cellular tyrosine phosphorylation, while administration of the tyrosine phosphatase inhibitor sodium orthovanadate prior to ethanol restored tyrosine phosphorylation and IL-1β secretion subsequent to ATP stimulation. Furthermore, sodium orthovanadate-induced phosphorylation of ASC Y144, necessary and sufficient for Nlrp3 inflammasome activation, and secretion of phosphorylated ASC, were inhibited by ethanol. Finally, multiple alcohol-containing organic compounds exerted inhibitory effects on the Nlrp3 inflammasome, whereas 2-methylbutane (isopentane), the analogous alkane of the potent inhibitor isoamyl alcohol (isopentanol), did not. Our results demonstrate that ethanol antagonizes the NLRP3 inflammasome at an apical event in its activation through the stimulation of protein tyrosine phosphatases, an effect shared by other short-chain alcohols. PMID:27421477

  16. Protective Effects of the Ethanol Extract of Viola tianshanica Maxim against Acute Lung Injury Induced by Lipopolysaccharides in Mice.

    Science.gov (United States)

    Wang, Xue; Yang, Qiao-Li; Shi, Yu-Zhu; Hou, Bi-Yu; Yang, Sheng-Qian; Huang, Hua; Zhang, Li; Du, Guan-Hua

    2017-09-28

    Viola tianshanica Maxim, belonging to the Violaceae plant family, is traditionally used in Uighur medicine for treating pneumonia, headache, and fever. There is, however, a lack of basic understanding of its pharmacological activities. This study was designed to observe the effects of the ethanol extract (TSM) from Viola tianshanica Maxim on the inflammation response in acute lung injury (ALI) induced by LPS and the possible underlying mechanisms. We found that TSM (200 and 500 mg/kg) significantly decreased inflammatory cytokine production and the number of inflammatory cells, including macrophages and neutrophils, in bronchoalveolar lavage fluid. TSM also markedly inhibited the lung wet-to-dry ratio and alleviated pathological changes in lung tissues. In vitro, after TSM (12.5-100 μg/ml) treatment to RAW 264.7 cells for 1 h, LPS (1 μg/ml) was added and the cells were further incubated for 24 h. TSM dose-dependently inhibited the levels of proinflammatory cytokines, such as NO, PGE2, TNF-α, IL-6, and IL-1β, and remarkably decreased the protein and mRNA expression of TNF-α and IL-6 in LPS-stimulated RAW 264.7 cells. TSM also suppressed protein expression of p-IκBa and p-ERK1/2 and blocked nuclear translocation of NF-κB p65. The results indicate that TSM exerts anti-inflammatory effects related with inhibition on NF-κB and MAPK (p-ERK1/2) signaling pathways. In conclusion, our data demonstrate that TSM might be a potential agent for the treatment of ALI.

  17. Effect of gamma irradiation on acute oral toxicity of ethanolic extract of red ginger (zingiber officinale)

    International Nuclear Information System (INIS)

    Ermin Katrin; Winarti Andayani; Susanto; Hendig Winarno

    2014-01-01

    Red ginger is widely used in traditional medicine to treat various types of diseases. Evaluation of the toxic properties of red ginger is very important to know the negative harmful impact to human health. Therefore, before it is consumed by humans, it is needed to conduct acute oral toxicity of red ginger extract in mice. Thin rhizome of red ginger in poly ethylene plastic packaging was irradiated by gamma rays at a dose of 10 kGy with a dose rate of 10 kGy/h. The ethanol extract of unirradiated as well as irradiated red ginger was then tested for the acute oral toxicity using OECD Guideline test method. The results showed that throughout the 14 days of treatment there was a change in behavior pattern, clinical symptoms and body weight of control mice and treatment groups. Histopathological examination of kidneys, heart, liver, lungs and spleen of the dose less than 1250 mg/kg body weight showed normal condition and no significant side effects observation. While central venous damage and a reduced number of hepatocyte cells in male mice occurred in the test dose higher than 2000 mg/kg body weight, whereas in female mice it occurred in the test group dose higher than 1250 mg/kg bw. Based on renal histology of male and female mice at doses higher than 1250 mg/kg body weight, there were damage to Bowman's capsule, glomerulus, proximal vessel and distal vessels. LD50 of unirradiated and irradiated with 10 kGy of ethanol extract of red ginger were 1887 mg/kg body weight and 2639 mg/kg body weight, respectively, and it can be categorized as moderately toxic. Oral administration of ethanol extract of red ginger with dose of 1250 mg/kg body weight gave an effect in mice organs. From these results it can be concluded that oral administration of both unirradiated and irradiated with a dose 10 kGy of ethanol extract consider safe at a dose less than 1250 mg/kg body weigh. (author)

  18. The protective activity of Conyza blinii saponin against acute gastric ulcer induced by ethanol.

    Science.gov (United States)

    Ma, Long; Liu, Jiangguang

    2014-12-02

    Conyza blinii H.Lév., is a type of natural plant. Its dried overground section is used to treat infections and inflammations in traditional Chinese medicine. Triterpenoidal saponins have a wide range of bioactivities, for instance, anti-cancer, anti-virus and anti-anaphylaxis. Conyza blinii saponin (CBS), mainly composed of triterpenoidal saponins, is the total saponin of Conyza blinii H.Lév. It has been reported that CBS also has gastric mucous membrane protection activity. This study aims to test CBS׳s protective activity of gastric׳s mucous membrane against ethanol. This investigation may lead to the development of novel drug from natural products as anti-ulcer agent, or as gastric mucous protective against chemical damage. CBS (Conyza blinii saponin) is the total saponin of Conyza blinii H.Lév., which was obtained as described previously. We tested the protective activity of CBS against ethanol-induced ulcer. Thirty six rats were grouped randomly as 'NORMAL', 'CONTROL', 'MODEL', 'LOW DOSE', 'MEDIUM DOSE' and 'HIGH DOSE'. The 'NORMAL' group were rats with no pathological model established within it. The 'CONTROL' group was administrated with colloidal bismuth subcitrate, while 'MODEL' group was not given any active agents apart from absolute ethanol in order to obtain gastric ulcer model. The three 'DOSE' groups were treated with different concentrations of CBS (5, 10, 20mg/mL) before administration followed by absolute ethanol. All rats were sacrificed after the experiment to acquire the gastric tissue. The ulcer index (UI), malondialdehyde (MDA) and superoxide dismutase (SOD) were measured to monitor the activity of CBS. Besides, the rat gastric tissue was made to paraffin section and stained using the Hematoxylin-Eosin (HE) method. The histopathology examination was carried out to examine CBS efficacy in terms of gastric mucous protection. We found that CBS had a profound protection activity against acute gastric ulcer induced by ethanol and this

  19. Acute serotonin depletion releases motivated inhibition of response vigour.

    Science.gov (United States)

    den Ouden, Hanneke E M; Swart, Jennifer C; Schmidt, Kristin; Fekkes, Durk; Geurts, Dirk E M; Cools, Roshan

    2015-04-01

    The neurotransmitter serotonin has long been implicated in the motivational control of behaviour. Recent theories propose that the role of serotonin can be understood in terms of an interaction between a motivational and a behavioural activation axis. Experimental support for these ideas, however, has been mixed. In the current study, we aimed to investigate the role of serotonin (5HT) in behavioural vigour as a function of incentive motivation. We employed dietary acute tryptophan depletion (ATD) to lower the 5HT precursor tryptophan during the performance of a speeded visual discrimination task. Feedback valence and feedback probability were manipulated independently and cued prior to target onset. On feedback trials, fast correct responses led to either reward or avoidance of punishment, while slow or incorrect responses led to reward omission or punishment. We show that behavioural responding is inhibited under high incentive motivation (i.e. high-feedback probability) at baseline 5HT levels and that lowering these leads to behavioural disinhibition, while leaving accuracy unaffected. Surprisingly, there were no differential effects of motivational valence, with 5HT depletion releasing behavioural inhibition under both appetitive and aversive motivation. Our findings extend current theories on the role of 5HT in behavioural inhibition by showing that reductions in serotonin lead to increased behavioural vigour only if there is a motivational drive to inhibit behaviour at baseline.

  20. Ethanol and anaerobic conditions reversibly inhibit commercial cellulase activity in thermophilic simultaneous saccharification and fermentation (tSSF

    Directory of Open Access Journals (Sweden)

    Podkaminer Kara K

    2012-06-01

    Full Text Available Abstract Background A previously developed mathematical model of low solids thermophilic simultaneous saccharification and fermentation (tSSF with Avicel was unable to predict performance at high solids using a commercial cellulase preparation (Spezyme CP and the high ethanol yield Thermoanaerobacterium saccharolyticum strain ALK2. The observed hydrolysis proceeded more slowly than predicted at solids concentrations greater than 50 g/L Avicel. Factors responsible for this inaccuracy were investigated in this study. Results Ethanol dramatically reduced cellulase activity in tSSF. At an Avicel concentration of 20 g/L, the addition of ethanol decreased conversion at 96 hours, from 75% in the absence of added ethanol down to 32% with the addition of 34 g/L initial ethanol. This decrease is much greater than expected based on hydrolysis inhibition results in the absence of a fermenting organism. The enhanced effects of ethanol were attributed to the reduced, anaerobic conditions of tSSF, which were shown to inhibit cellulase activity relative to hydrolysis under aerobic conditions. Cellulose hydrolysis in anaerobic conditions was roughly 30% slower than in the presence of air. However, this anaerobic inhibition was reversed by exposing the cellulase enzymes to air. Conclusion This work demonstrates a previously unrecognized incompatibility of enzymes secreted by an aerobic fungus with the fermentation conditions of an anaerobic bacterium and suggests that enzymes better suited to industrially relevant fermentation conditions would be valuable. The effects observed may be due to inactivation or starvation of oxygen dependent GH61 activity, and manipulation or replacement of this activity may provide an opportunity to improve biomass to fuel process efficiency.

  1. Model studies for evaluating the acute neurobehavioral effects of complex hydrocarbon solvents. I. Validation of methods with ethanol

    NARCIS (Netherlands)

    McKee, R.H.; Lammers, J.H.C.M.; Hoogendijk, E.M.G.; Emmen, H.H.; Muijser, H.; Barsotti, D.A.; Owen, D.E.; Kulig, B.M.

    2006-01-01

    As a preliminary step to evaluating the acute neurobehavioral effects of hydrocarbon solvents and to establish a working model for extrapolating animal test data to humans, joint neurobehavioral/toxicokinetic studies were conducted which involved administering ethanol to rats and volunteers. The

  2. Acute effect of Ethanol and Taurine on frontal cortex absolute beta power before and after exercise

    Science.gov (United States)

    Cagy, Mauricio; Velasques, Bruna; Ribeiro, Pedro; Gongora, Mariana; Alvarenga, Renato; Alonso, Luciano; Pompeu, Fernando A. M. S.

    2018-01-01

    Ethanol (ET) is a substance that modulates the Central Nervous System (CNS). Frequently, ET intake occurs combined with energy drinks, which contain taurine (TA), an important amino acid found in the body (i.e brain and muscles). Although TA administration has been used in the improvement of physical performance, the impact of TA, ET and exercise remains unknown. This study aimed to analyze the acute effect of 6g of Taurine (TA), 0.6 mL∙kg-1 of Ethanol (ET), and Taurine combined with Ethanol (TA+ET) ingestion on the electrocortical activity before and after a moderate intensity exercise in 9 subjects, 5 women (counterbalanced experimental design). In each of the 4 treatments (Placebo—PL, TA, ET and TA+ET), electroencephalography (EEG) tests were conducted in order to analyze changes in absolute beta power (ABP) in the frontal lobe in 3 moments: baseline (before ingestion), peak (before exercise) and post-exercise. In the PL treatment, the frontal areas showed decrease in ABP after exercise. However, in the ET+TA treatment, ABP values were greater after exercise, except for Fp1. The ET treatment had no effect on the Superior Frontal Gyrus area (F3, Fz and F4) and ABP decreased after exercise in Fp1 and Fp2. In the TA treatment, ABP increased after exercise, while it decreased at the peak moment in most of the frontal regions, except for Fp1, F3 and Fz. We concluded that after a moderate intensity exercise, a decrease in cortical activity occurs in placebo treatment. Moreover, we found a inhibitory effect of TA on cortical activity before exercise and a increased in cortical activity after exercise. A small ET dose is not enough to alter ABP in all regions of the frontal cortex and, in combination with TA, it showed an increase in the frontal cortex activity at the post-exercise moment. PMID:29538445

  3. Large-scale analysis of acute ethanol exposure in zebrafish development: a critical time window and resilience.

    Directory of Open Access Journals (Sweden)

    Shaukat Ali

    Full Text Available BACKGROUND: In humans, ethanol exposure during pregnancy causes a spectrum of developmental defects (fetal alcohol syndrome or FAS. Individuals vary in phenotypic expression. Zebrafish embryos develop FAS-like features after ethanol exposure. In this study, we ask whether stage-specific effects of ethanol can be identified in the zebrafish, and if so, whether they allow the pinpointing of sensitive developmental mechanisms. We have therefore conducted the first large-scale (>1500 embryos analysis of acute, stage-specific drug effects on zebrafish development, with a large panel of readouts. METHODOLOGY/PRINCIPAL FINDINGS: Zebrafish embryos were raised in 96-well plates. Range-finding indicated that 10% ethanol for 1 h was suitable for an acute exposure regime. High-resolution magic-angle spinning proton magnetic resonance spectroscopy showed that this produced a transient pulse of 0.86% concentration of ethanol in the embryo within the chorion. Survivors at 5 days postfertilisation were analysed. Phenotypes ranged from normal (resilient to severely malformed. Ethanol exposure at early stages caused high mortality (≥88%. At later stages of exposure, mortality declined and malformations developed. Pharyngeal arch hypoplasia and behavioral impairment were most common after prim-6 and prim-16 exposure. By contrast, microphthalmia and growth retardation were stage-independent. CONCLUSIONS: Our findings show that some ethanol effects are strongly stage-dependent. The phenotypes mimic key aspects of FAS including craniofacial abnormality, microphthalmia, growth retardation and behavioral impairment. We also identify a critical time window (prim-6 and prim-16 for ethanol sensitivity. Finally, our identification of a wide phenotypic spectrum is reminiscent of human FAS, and may provide a useful model for studying disease resilience.

  4. Acute Inhalation Exposure to Titanium Ethanolate as a Possible Cause of Metal Fume Fever

    Directory of Open Access Journals (Sweden)

    M Ahmadimanesh

    2014-04-01

    Full Text Available Occupational inhalation exposure to noxious agents is not uncommon. Herein, we present a 26-year-old male student who had accidental acute inhalation exposure to a large quantity of titanium ethanolate and hydrogen chloride in chemistry lab. He was referred to the emergency department of our hospital with low-grade fever, dyspnea, headache, fatigue and myalgia. After 24 hrs of symptomatic treatment (oxygen therapy and acetaminophen, the fever was subsided and the patient discharged home in a good clinical condition. The presented symptoms could be interpreted as a form of metal fume fever. It can therefore be concluded that organo-metallic compound of titanium metal may have the potential to produce metal fume fever in human.

  5. Deficits in spatial learning and memory in adult mice following acute, low or moderate levels of prenatal ethanol exposure during gastrulation or neurulation.

    Science.gov (United States)

    Schambra, Uta B; Lewis, C Nicole; Harrison, Theresa A

    2017-07-01

    Debate continues on the merits of strictly limiting alcohol consumption during all of pregnancy, and whether "safe" consumption levels and/or times exist. Only a relatively few experimental studies have been conducted that limit the timing of exposure to specific events during development and the exposure level to one that might model sporadic, incidental drinking during pregnancy. In the present study, the effects of two acute gavage exposures to low and moderate levels of ethanol (peak blood ethanol concentrations (BEC) of 104 and 177mg/dl, respectively) either during gastrulation on gestational day (GD) 7 (at GD7:0h and GD7:4h) or during neurulation on GD8 (at GD8:6h and GD8:10h) on the spatial learning and memory abilities of adult mice in the radial arm maze (RAM) were examined. Mice were selected from a prenatal ethanol exposure (PAE) cohort that had been tested as neonates for their sensorimotor development (Schambra et al., 2015) and as juveniles and young adults for open field activity levels and emotionality (Schambra et al., 2016). Mice exposed on either of the two gestational days to acute, low or moderate levels of ethanol were deficient in overall performance in the RAM in adulthood. Importantly, mice in ethanol exposed groups took longer to reach criterion in the RAM, and many mice in these groups failed to do so after 48 trials when testing was terminated. Exposure to a low level of ethanol on either GD7 or GD8, or a moderate level on GD7, resulted in significant impairment in spatial reference (long-term) memory, while only mice exposed on GD7 to the low level of ethanol were significantly impaired in spatial working (short-term) memory. Mice exposed to the low ethanol level on either day had significantly shorter response latencies, which may reflect impairment of processes related to response inhibition or executive attention in these mice. For all measures, distributions of individual scores revealed a relatively small subset of mice in each PAE

  6. [Acute ethanol intoxication among children and adolescents. A retrospective analysis of 173 patients admitted to a university children hospital].

    Science.gov (United States)

    Schöberl, S; Nickel, P; Schmutzer, G; Siekmeyer, W; Kiess, W

    2008-01-01

    In the last time the alcohol consumption among children and adolescents is a big theme in all kind of media. The ethanol consumption among children and adolescents has risen during the last years, but also new hazardous drinking patterns like "binge-drinking" are increasing. These drinking episodes are responsible for many hospital presentations of children and adolescents with acute ethanol intoxication. This study is a retrospective analysis of 173 patients admitted to the university children hospital of Leipzig due to acute ethanol intoxication during the period 1998-2004. Investigated parameters were: socio-demographic factors, clinical presentation and management as well as quantity and type of alcohol. During the years 1998-2004 the rate of alcohol intoxicated patients in this study increased, from 1998-2003 at about 171.4%. Totally 173 patients with an average age of 14.5 years were admitted to the university children hospital. There were significantly more boys than girls. The mean blood alcohol concentration of these patients was 1.77%. Some of the patients had severe symptoms. 62 were unconscious, 2 were in coma and at least 3 patients had to be ventilated. A difference between socioeconomic groups could be observed by comparing the different school types. 44.8% of the patients went to the middle school. Furthermore 17 patients of this study had mental disorders or psychosocial problems and were therefore in psychological or psychiatric treatment. In this study a significant influence of social classes or psychosocial problems on alcohol consumption such as binge-drinking leading to acute ethanol intoxication could not be found. Alarming is the increasing number of ethanol intoxicated patients, the young age, the high measured blood ethanol concentrations and the severe symptoms of these patients. This is the reason why early and intensive prevention strategies are required.

  7. Protective effect of Allium neapolitanum Cyr. versus Allium sativum L. on acute ethanol-induced oxidative stress in rat liver.

    Science.gov (United States)

    Nencini, Cristina; Franchi, Gian Gabriele; Cavallo, Federica; Micheli, Lucia

    2010-04-01

    This study investigated the protective effect of Allium neapolitanum Cyr., a spontaneous species of the Italian flora, compared with garlic (Allium sativum L.) on liver injury induced by ethanol in rats. Male albino Wistar rats were orally treated with fresh Allium homogenates (leaves or bulbs, 250 mg/kg) daily for 5 days, whereas controls received vehicle only. At the end of the experimental 5-day period, the animals received an acute ethanol dose (6 mL/kg, i.p.) 2 hours before the last Allium administration and were sacrificed 6 hours after ethanol administration. The activities of catalase (CAT), superoxide dismutase (SOD), and glutathione reductase (GR) and the levels of malondialdehyde (MDA), ascorbic acid (AA), and reduced (GSH) and oxidized glutathione in liver tissue were determined. Administration of both Allium species for 5 days (leaves or bulbs) led to no statistical variation of nonenzymatic parameters versus the control group; otherwise Allium treatment caused an increase of GSH and AA levels compared with the ethanol group and a diminution of MDA levels, showing in addition that A. neapolitanum bulb had the best protective effect. Regarding to enzymatic parameters, GR and CAT activities were enhanced significantly compared with the ethanol group, whereas SOD activity showed a trend different from other parameters estimated. However, the treatment with both Allium species followed by acute ethanol administration reestablished the nonenzymatic parameters similar to control values and enhanced the activities of the enzymes measured. These results suggest that fresh Allium homogenates (leaves or bulbs) possess antioxidant properties and provide protection against ethanol-induced liver injury.

  8. Hepato- and neuro-protective effects of watermelon juice on acute ethanol-induced oxidative stress in rats

    Directory of Open Access Journals (Sweden)

    Omolola R. Oyenihi

    Full Text Available Chronic and acute alcohol exposure has been extensively reported to cause oxidative stress in hepatic and extra-hepatic tissues. Watermelon (Citrullus lanatus is known to possess various beneficial properties including; antioxidant, anti-inflammatory, analgesic, anti-diabetic, anti-ulcerogenic effects. However, there is a lack of pertinent information on its importance in acute alcohol-induced hepato- and neuro-toxicity. The present study evaluated the potential protective effects of watermelon juice on ethanol-induced oxidative stress in the liver and brain of male Wistar rats. Rats were pre-treated with the watermelon juice at a dose of 4 ml/kg body weight for a period of fifteen days prior to a single dose of ethanol (50%; 12 ml/kg body weight. Ethanol treatment reduced body weight gain and significantly altered antioxidant status in the liver and brain. This is evidenced by the significant elevation of malondialdehyde (MDA concentration; depletion in reduced glutathione (GSH levels and an increased catalase (CAT activity in the brain and liver. There was no significant difference in the activity of glutathione peroxidase (GPX in the liver and brain.Oral administration of watermelon juice for fifteen (15 days prior to ethanol intoxication, significantly reduced the concentration of MDA in the liver and brain of rats. In addition, water melon pre-treatment increased the concentration of GSH and normalized catalase activity in both tissues in comparison to the ethanol control group. Phytochemical analysis revealed the presence of phenol, alkaloids, saponins, tannins and steroids in watermelon juice. Our findings indicate that watermelon juice demonstrate anti-oxidative effects in ethanol-induced oxidation in the liver and brain of rats; which could be associated with the plethora of antioxidant phyto-constituents present there-in. Keywords: Watermelon, Neuro-protective, Hepatoprotective, Ethanol intoxication

  9. Cytokine Changes following Acute Ethanol Intoxication in Healthy Men: A Crossover Study

    Directory of Open Access Journals (Sweden)

    Sudan Prasad Neupane

    2016-01-01

    Full Text Available Alcohol is a known modulator of the innate immune system. Owing to the absence of human studies, alcohol’s effect on circulating cytokine profile remains unclear. We investigated the effect of acute high dose alcohol consumption on systemic cytokine release. After an overnight fasting, alcohol-experienced healthy male volunteers (N=20 aged 25–45 years were given oral ethanol in the form of vodka (4.28 mL/kg which they drank over a period of 30 minutes reaching peak blood alcohol concentration of 0.12% (SD 0.028. Blood samples were obtained prior to alcohol intake as well as 2, 7, and 12 hours thereafter. Serum levels of the inflammatory cytokines IL-1β, IL-1Ra, IL-6, IL-10, IL-17, IFN-γ, MCP-1, and TNF-α were determined by the multibead-based assay. Baseline cytokine levels were not related to BMI, hepatic parameters, electrolytes, glucose, or morning cortisol levels. Within 2 hours of alcohol intake, levels of IL-1Ra were elevated and remained so throughout the assessment period (p for trend = 0.015. In contrast, the levels of the chemokine MCP-1 dropped acutely followed by steadily increasing levels during the observation period (p<0.001. The impact of sustained elevated levels of MCP-1 even after the clearance of blood alcohol content deserves attention.

  10. Increasing kynurenine brain levels reduces ethanol consumption in mice by inhibiting dopamine release in nucleus accumbens.

    Science.gov (United States)

    Giménez-Gómez, Pablo; Pérez-Hernández, Mercedes; Gutiérrez-López, María Dolores; Vidal, Rebeca; Abuin-Martínez, Cristina; O'Shea, Esther; Colado, María Isabel

    2018-06-01

    Recent research suggests that ethanol (EtOH) consumption behaviour can be regulated by modifying the kynurenine (KYN) pathway, although the mechanisms involved have not yet been well elucidated. To further explore the implication of the kynurenine pathway in EtOH consumption we inhibited kynurenine 3-monooxygenase (KMO) activity with Ro 61-8048 (100 mg/kg, i.p.), which shifts the KYN metabolic pathway towards kynurenic acid (KYNA) production. KMO inhibition decreases voluntary binge EtOH consumption and EtOH preference in mice subjected to "drinking in the dark" (DID) and "two-bottle choice" paradigms, respectively. This effect seems to be a consequence of increased KYN concentration, since systemic KYN administration (100 mg/kg, i.p.) similarly deters binge EtOH consumption in the DID model. Despite KYN and KYNA being well-established ligands of the aryl hydrocarbon receptor (AhR), administration of AhR antagonists (TMF 5 mg/kg and CH-223191 20 mg/kg, i.p.) and of an agonist (TCDD 50 μg/kg, intragastric) demonstrates that signalling through this receptor is not involved in EtOH consumption behaviour. Ro 61-8048 did not alter plasma acetaldehyde concentration, but prevented EtOH-induced dopamine release in the nucleus accumbens shell. These results point to a critical involvement of the reward circuitry in the reduction of EtOH consumption induced by KYN and KYNA increments. PNU-120596 (3 mg/kg, i.p.), a positive allosteric modulator of α7-nicotinic acetylcholine receptors, partially prevented the Ro 61-8048-induced decrease in EtOH consumption. Overall, our results highlight the usefulness of manipulating the KYN pathway as a pharmacological tool for modifying EtOH consumption and point to a possible modulator of alcohol drinking behaviour. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Inhibition of Human Cervical Cancer Cell Growth by Ethanolic Extract of Boerhaavia diffusa Linn. (Punarnava Root

    Directory of Open Access Journals (Sweden)

    Rakhi Srivastava

    2011-01-01

    Full Text Available In Indian traditional medicine, Boerhaavia diffusa (punarnava roots have been widely used for the treatment of dyspepsia, jaundice, enlargement of spleen, abdominal pain and as an anti-stress agent. Pharmacological evaluation of the crude ethanolic extract of B. diffusa roots has been shown to possess antiproliferative and immunomodulatory properties. The extract of B. diffusa was studied for anti-proliferative effects on the growth of HeLa cells and for its effect on cell cycle. Bio-assays of extracts from B. diffusa root showed that a methanol : chloroform fraction (BDF 5 had an antiproliferative effect on HeLa cells. After 48 h of exposure, this fraction at a concentration of 200 μg mL−1 significantly reduced cell proliferation with visible morphological changes in HeLa cells. Cell cycle analysis suggests that antiproliferative effect of BDF 5 could be due to inhibition of DNA synthesis in S-phase of cell cycle in HeLa cells, whereas no significant change in cell cycle was detected in control cells. The fraction BDF 5 caused cell death via apoptosis as evident from DNA fragmentation and caspase-9 activation. Thus the extract has potential to be evaluated in detail to assess the molecular mechanism-mediated anticancer activities of this plant.

  12. Protective Effects of Ethanolic Extracts from Artichoke, an Edible Herbal Medicine, against Acute Alcohol-Induced Liver Injury in Mice

    OpenAIRE

    Tang, Xuchong; Wei, Ruofan; Deng, Aihua; Lei, Tingping

    2017-01-01

    Oxidative stress and inflammation are well-documented pathological factors in alcoholic liver disease (ALD). Artichoke (Cynara scolymus L.) is a healthy food and folk medicine with anti-oxidative and anti-inflammatory properties. This study aimed to evaluate the preventive effects of ethanolic extract from artichoke against acute alcohol-induced liver injury in mice. Male Institute of Cancer Research mice were treated with an ethanolic extract of artichoke (0.4, 0.8, and 1.6 g/kg body weight)...

  13. Acute and Sub-Acute Oral Toxicity Evaluation of Astragalus hamosus Seedpod Ethanolic Extract in Wistar Rats

    Directory of Open Access Journals (Sweden)

    Mohammadmehdi Hassanzadeh-Taheri

    2018-03-01

    Full Text Available Background: Oral consumption of Astragalus hamosus L. (AH seedpod has been widely prescribed in traditional medicine system. However, its toxicity evaluation has never been investigated. Hence, the current study was performed to evaluate the toxicological profile of AH seedpod in acute and subacute assessments based on the OECD-guidelines 425 and 407 in male and female Wistar rats. Methods: In the acute study, ethanolic extract of AH at a single dose of 2000 mg/kg was orally administrated to six female rats. In the subacute assay, AH at the three different oral doses (75, 150 and 300 mg/kg were administrated to both male and female rats for 28 consecutive days. Results: No death or behavioural changes were observed in the treated animals. In subacute test, in both sexes, no changes in organ weights observed. Biochemically, compared to the control, AH at the dose of 300 mg/kg slightly increased (p<0.05 uric acid and creatinine and declined total cholesterol levels in both male and female rats. However, there is no statistically difference in other parameters such as albumin, triglyceride, blood urea, aspartate aminotransferase and alanine aminotransferase between AH treated groups and untreated controls. Hematologic parameters showed that AH at the maximum dose decreased red blood cells count only in male rats. Histopathological evaluation of liver and kidney exhibited no noticeable alterations in AH treated animals. Conclusion: It could be concluded that high excessive and long term consumption of AH may lead to renal dysfunction and deficiency in hematopoietic system.

  14. Catalase inhibition in the Arcuate nucleus blocks ethanol effects on the locomotor activity of rats.

    Science.gov (United States)

    Sanchis-Segura, Carles; Correa, Mercé; Miquel, Marta; Aragon, Carlos M G

    2005-03-07

    Previous studies have demonstrated that there is a bidirectional modulation of ethanol-induced locomotion produced by drugs that regulate brain catalase activity. In the present study we have assessed the effect in rats of intraperitoneal, intraventricular or intracraneal administration of the catalase inhibitor sodium azide in the locomotor changes observed after ethanol (1 g/kg) administration. Our results show that sodium azide prevents the effects of ethanol in rats locomotion not only when sodium azide was systemically administered but also when it was intraventricularly injected, then confirming that the interaction between catalase and ethanol takes place in Central Nervous System (CNS). Even more interestingly, the same results were observed when sodium azide administration was restricted to the hypothalamic Arcuate nucleus (ARC), a brain region which has one of the highest levels of expression of catalase. Therefore, the results of the present study not only confirm a role for brain catalase in the mediation of ethanol-induced locomotor changes in rodents but also point to the ARC as a major neuroanatomical location for this interaction. These results are in agreement with our reports showing that ethanol-induced locomotor changes are clearly dependent of the ARC integrity and, especially of the POMc-synthesising neurons of this nucleus. According to these data we propose a model in which ethanol oxidation via catalase could produce acetaldehyde into the ARC and to promote a release of beta-endorphins that would activate opioid receptors to produce locomotion and other ethanol-induced neurobehavioural changes.

  15. Short-term and long-term ethanol administration inhibits the placental uptake and transport of valine in rats

    International Nuclear Information System (INIS)

    Patwardhan, R.V.; Schenker, S.; Henderson, G.I.; Abou-Mourad, N.N.; Hoyumpa, A.M. Jr.

    1981-01-01

    Ethanol ingestion during pregnancy causes a pattern of fetal/neonatal dysfunction called the FAS. The effects of short- and long-term ethanol ingestion on the placental uptake and maternal-fetal transfer of valine were studied in rats. The in vivo placental uptake and fetal uptake were estimated after injection of 0.04 micromol of /sub 14/C-valine intravenously on day 20 of gestation in Sprague-Dawley rats. Short-term ethanol ingestion (4 gm/kg) caused a significant reduction in the placental uptake of /sub 14/C-valine by 33%, 60%, and 30%, and 31% at 2.5, 5, 10, and 15 min after valine administration, respectively (p less than 0.01), and a similar significant reduction occurred in the fetal uptake of /sub 14/C-valine (p less than 0.01). Long-term ethanol ingestion prior to and throughout gestation resulted in a 47% reduction in placental valine uptake (p less than 0.01) and a 46% reduction in fetal valine uptake (p less than 0.01). Long-term ethanol feeding from day 4 to day 20 of gestation caused a 32% reduction in placental valine uptake (p less than 0.01) and a 26% reduction in fetal valine uptake (p less than 0.01). We conclude that both short- and long-term ingestion of ethanol inhibit the placental uptake and maternal-fetal transfer of an essential amino acid--valine. An alteration of placental function may contribute to the pathogenesis of the FAS

  16. Na+/K+-ATPase inhibition partially mimics the ethanol-induced increase of the Golgi cell-dependent component of the tonic GABAergic current in rat cerebellar granule cells.

    Directory of Open Access Journals (Sweden)

    Marvin R Diaz

    Full Text Available Cerebellar granule cells (CGNs are one of many neurons that express phasic and tonic GABAergic conductances. Although it is well established that Golgi cells (GoCs mediate phasic GABAergic currents in CGNs, their role in mediating tonic currents in CGNs (CGN-I(tonic is controversial. Earlier studies suggested that GoCs mediate a component of CGN-I(tonic that is present only in preparations from immature rodents. However, more recent studies have detected a GoC-dependent component of CGN-I(tonic in preparations of mature rodents. In addition, acute exposure to ethanol was shown to potentiate the GoC component of CGN-I(tonic and to induce a parallel increase in spontaneous inhibitory postsynaptic current frequency at CGNs. Here, we tested the hypothesis that these effects of ethanol on GABAergic transmission in CGNs are mediated by inhibition of the Na(+/K(+-ATPase. We used whole-cell patch-clamp electrophysiology techniques in cerebellar slices of male rats (postnatal day 23-30. Under these conditions, we reliably detected a GoC-dependent component of CGN-I(tonic that could be blocked with tetrodotoxin. Further analysis revealed a positive correlation between basal sIPSC frequency and the magnitude of the GoC-dependent component of CGN-I(tonic. Inhibition of the Na(+/K(+-ATPase with a submaximal concentration of ouabain partially mimicked the ethanol-induced potentiation of both phasic and tonic GABAergic currents in CGNs. Modeling studies suggest that selective inhibition of the Na(+/K(+-ATPase in GoCs can, in part, explain these effects of ethanol. These findings establish a novel mechanism of action of ethanol on GABAergic transmission in the central nervous system.

  17. Comparative analysis of adsorption and corrosion inhibitive properties of ethanol extract of Dialium Guineense leaves for mild steel in 0.5 M HCl

    OpenAIRE

    Shola Elijah Adeniji; Bamigbola Abiola Akindehinde

    2018-01-01

    Adsorption and corrosion inhibitive properties of ethanol extract of Dialium guineense leaves for mild steel in 0.5M HCl was studied using the gravimetric method. The results showed that the ethanol extract of Dialium guineense leaves is a good corrosion inhibitor for mild steel in 0.5 M HCl. The inhibition efficiency was found to increase with increase in the concentration of ethanol extract of Dialium guineense leaves up to the maximum of 92 %, but at the same time it decreased as the tempe...

  18. The acute effects of ethanol on acetanilide disposition in normal subjects, and in patients with liver disease.

    Science.gov (United States)

    McKay, J; Rawlings, M D; Cobden, I; James, O F

    1982-10-01

    1 The effects of single doses (25 g and 50 g) oral ethanol on the disposition of acetanilide (50 mg/kg metabolic active mass) has been studied in normal subjects, and in patients with chronic non-alcoholic liver disease. 2 In normal subjects, ethanol produced a dose-dependent increase in acetanilide half-life, and a decrease in acetenilide clearance. There was a significant correlation (rs = 0.71, P less than 0.01) between the 90 min blood ethanol concentration and the reduction in acetanilide clearance. 3 In patients with liver disease, ethanol produced a similar proportional change in acetanilide half-life and clearance, but these were less consistent. Moreover, liver disease itself was associated with an increase in acetenilide half-life, and a reduction in clearance. 4 It is concluded that single oral doses of ethanol, comparable to those consumed during social drinking, may inhibit some forms of microsomal oxidation and thus have important clinical implications.

  19. Acute whole-body vibration increases reciprocal inhibition.

    Science.gov (United States)

    Ritzmann, Ramona; Krause, Anne; Freyler, Kathrin; Gollhofer, Albert

    2018-06-26

    Based on previous evidence that whole-body vibration (WBV) affects pathways involved in disynaptic reciprocal inhibition (DRI), the present hypothesis-driven experiment aimed to assess the acute effects of WBV on DRI and co-contraction. DRI from ankle dorsiflexors to plantar flexors was investigated during submaximal dorsiflexion before and after 1 min of WBV. With electromyography, musculus soleus (SOL) H-reflex depression following a conditioning stimulation of the peroneal nerve (1.1x motor threshold for the musculus tibialis anterior, TA) was assessed and co-contraction was calculated. After WBV, DRI was significantly increased (+4%, p < 0.05). SOL (-13%, p < 0.05) and TA (-6%, p < 0.05) activities were significantly reduced; co-contraction tended to be diminished (-8%, p = 0.05). Dorsiflexion torque remained unchanged. After WBV, DRI increased during submaximal isometric contraction in healthy subjects. The simultaneous SOL relaxation and TA contraction indicate that a more economic movement execution is of functional significance for WBV application in clinical and athletic treatment. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Study of the inhibition effect of ethanolic extract of mangosteen pericarp on atherogenesis in hypercholesterolemic rat

    Directory of Open Access Journals (Sweden)

    Titin Andri Wihastuti

    2015-10-01

    Full Text Available Objective: To investigate the effect of ethanolic extract of mangosteen pericarp (EEMP through lipid profile, H2O2, nuclear factor-kappa B (NF-κB, inducible nitric oxide synthase (iNOS and endothelial nitric oxide synthase (eNOS measurement in hypercholesterolemic rat. Methods: A total of 20 rats were used in true laboratory experiment which were divided into 5 groups (n = 4 using posttest-only design. There were a normal diet group, a hypercholesterol diet (HCD group, a group that was given HCD with EEMP 200 mg/kg body weight, a group that was given HCD with 400 mg/kg body weight and a group that was given HCD with 800 mg/kg body weight. The lipid profile was measured using Cobas Mira. On the other hand, H2O2 was analysed using colorimetric hydrogen peroxide kit. Double staining immunofluorescence was given to observe NF-κB, iNOS and eNOS by using confocal laser scanning microscopy. The result was analyzed quantitatively using Olymphus Fluoview software (version 1.7a. Results: Lipid profile was significantly worsened in HCD and H2O2 level and expressions of NF-κB, iNOS and eNOS were also increased in HCD. EEMP 200 mg/kg body weight generally did not show significant results. However, high density lipoprotein level was affected by EEMP 400 mg/kg body weight, but not for other lipid profiles which reduced H2O2 level and NF-κB, iNOS and eNOS expressions significantly. EEMP 800 mg/kg body weight had been shown to be the most effective dose to improve lipid profile, decrease level of H2O2 and the expression of NF-κB and iNOS and maintain expression of eNOS. Conclusions: EEMP is an anti-inflammatory and antioxidant agent to inhibit atherogenesis in hypercholesterolemic rat.

  1. Acute, subacute and subchronic toxicological studies of carissa carandas leaves (ethanol extract): a plant active against cardiovascular diseases

    International Nuclear Information System (INIS)

    Shamim, S.

    2014-01-01

    The Purpose of this research study was to examine the toxicological effects of aqueous: ethanol (1:1) extract of Carissa carandas leaves extracts in rats. Methodolgy: Acute toxicity studies were conducted to check the LD50 values in experimental animals. Autopsy after acute toxicity revealed that no gross changes were observed in organs like liver, spleen, heart and kidney among the animals of group N (control) and S (treated). The appearance of organs of Group S animals was comparable with that of Group N animals. Results: No signs of toxicity and mortality were observed in treated group after sub acute toxicity as compared to the control group. The histopathological studies after subchronic toxicity in doses of 1750 mg/kg (p.o.) and 5000 mg/kg (p.o) showed no toxic effects on organs like liver, heart, kidney and spleen. While chronic toxicity in dose 5000 mg/kg (p.o.) showed some histological changes. (author)

  2. Acute ethanol administration reduces the antidote effect of N-acetylcysteine after acetaminophen overdose in mice

    DEFF Research Database (Denmark)

    Dalhoff, K; Hansen, P B; Ott, P

    1991-01-01

    given ethanol or saline alone only 7% and 3%, respectively, survived 96 h. 4. The data suggest that the protective effect of N-acetylcysteine on acetaminophen-induced toxicity in fed mice is reduced by concomitant administration of ethanol. This may explain the clinical observation that ingestion...

  3. Effect of Acute and Chronic Treatment of the 80% Ethanolic Fruit ...

    African Journals Online (AJOL)

    The aim of this study was to evaluate the effect of chronic treatment of the 80% ethanolic extract of dried fruits of E. schimperi in rats. The fruits of the plant were collected from Bahir Dar area, north-western Ethiopia; dried, crushed into powder and percolated in 80% ethanol. The percolate was concentrated in a vacuum ...

  4. Chronic ethanol consumption inhibits repair of dimethylnitrosamine-induced DNA alkylation

    International Nuclear Information System (INIS)

    Mufti, S.I.; Salvagnini, M.; Lieber, C.S.; Garro, A.J.

    1988-01-01

    Chronic ethanol consumption causes a DNA repair deficiency. This was demonstrated in Sprague-Dawley rats injected with 14 C-labeled dimethylnitrosamine after being pair-fed isocaloric, ethanol, or carbohydrate control diets for 4 weeks. Hepatic DNA was isolated from rats killed at intervals over a 36 hour period after administration of the nitrosamine and concentrations of alkylated guanine derivatives were measured. While N7-methylguanine was lost at equivalent rates from the DNA of both diet groups, 06methylguanine, a promutagenic lesion, persisted at higher levels for longer periods of time in the DNA from the alcohol-fed animals

  5. Method of inhibiting the onset of acute radiation syndrome and also inhibiting the onset of septicemia and a composition therefor

    Energy Technology Data Exchange (ETDEWEB)

    Ribi, E E

    1986-01-14

    A method is described for inhibiting the onset of acute radiation syndrome caused by the exposure of warm-blooded animals to a whole body dose of at least 100 rads of x-radiation. Also described is a method for inhibiting the onset of septicemia. The methods comprise administering to a warm-blooded animal an effective amount of a pharmaceutical preparation containing refined detoxified endotoxin in combination with a pharmaceutically acceptable carrier.

  6. Short Communication: Is Ethanol-Based Hand Sanitizer Involved in Acute Pancreatitis after Excessive Disinfection?-An Evaluation with the Use of PBPK Model.

    Science.gov (United States)

    Huynh-Delerme, Céline; Artigou, Catherine; Bodin, Laurent; Tardif, Robert; Charest-Tardif, Ginette; Verdier, Cécile; Sater, Nessryne; Ould-Elhkim, Mostafa; Desmares, Catherine

    2012-01-01

    An occupational physician reported to the French Health Products Safety Agency (Afssaps) a case of adverse effect of acute pancreatitis (AP) in a teaching nurse, after multiple demonstrations with ethanol-based hand sanitizers (EBHSs) used in a classroom with defective mechanical ventilation. It was suggested by the occupational physician that the exposure to ethanol may have produced a significant blood ethanol concentration and subsequently the AP. In order to verify if the confinement situation due to defective mechanical ventilation could increase the systemic exposure to ethanol via inhalation route, a physiologically based pharmacokinetic (PBPK) modeling was used to predict ethanol blood levels. Under the worst case scenario, the simulation by PBPK modeling showed that the maximum blood ethanol concentration which can be predicted of 5.9 mg/l is of the same order of magnitude to endogenous ethanol concentration (mean = 1.1 mg/L; median = 0.4 mg/L; range = 0-35 mg/L) in nondrinker humans (Al-Awadhi et al., 2004). The present study does not support the likelihood that EBHS leads to an increase in systemic ethanol concentration high enough to provoke an acute pancreatitis.

  7. Short Communication: Is Ethanol-Based Hand Sanitizer Involved in Acute Pancreatitis after Excessive Disinfection?—An Evaluation with the Use of PBPK Model

    Directory of Open Access Journals (Sweden)

    Céline Huynh-Delerme

    2012-01-01

    Full Text Available An occupational physician reported to the French Health Products Safety Agency (Afssaps a case of adverse effect of acute pancreatitis (AP in a teaching nurse, after multiple demonstrations with ethanol-based hand sanitizers (EBHSs used in a classroom with defective mechanical ventilation. It was suggested by the occupational physician that the exposure to ethanol may have produced a significant blood ethanol concentration and subsequently the AP. In order to verify if the confinement situation due to defective mechanical ventilation could increase the systemic exposure to ethanol via inhalation route, a physiologically based pharmacokinetic (PBPK modeling was used to predict ethanol blood levels. Under the worst case scenario, the simulation by PBPK modeling showed that the maximum blood ethanol concentration which can be predicted of 5.9 mg/l is of the same order of magnitude to endogenous ethanol concentration (mean = 1.1 mg/L; median = 0.4 mg/L; range = 0–35 mg/L in nondrinker humans (Al-Awadhi et al., 2004. The present study does not support the likelihood that EBHS leads to an increase in systemic ethanol concentration high enough to provoke an acute pancreatitis.

  8. Protective Effects of Ethanolic Extracts from Artichoke, an Edible Herbal Medicine, against Acute Alcohol-Induced Liver Injury in Mice.

    Science.gov (United States)

    Tang, Xuchong; Wei, Ruofan; Deng, Aihua; Lei, Tingping

    2017-09-11

    Oxidative stress and inflammation are well-documented pathological factors in alcoholic liver disease (ALD). Artichoke ( Cynara scolymus L.) is a healthy food and folk medicine with anti-oxidative and anti-inflammatory properties. This study aimed to evaluate the preventive effects of ethanolic extract from artichoke against acute alcohol-induced liver injury in mice. Male Institute of Cancer Research mice were treated with an ethanolic extract of artichoke (0.4, 0.8, and 1.6 g/kg body weight) by gavage once daily. Up to 40% alcohol (12 mL/kg body weight) was administered orally 1 h after artichoke treatment. All mice were fed for 10 consecutive days. Results showed that artichoke extract significantly prevented elevated levels of aspartate aminotransferase, alanine aminotransferase, triglyceride, total cholesterol, and malondialdehyde. Meanwhile, the decreased levels of superoxide dismutase and glutathione were elevated by artichoke administration. Histopathological examination showed that artichoke attenuated degeneration, inflammatory infiltration and necrosis of hepatocytes. Immunohistochemical analysis revealed that expression levels of toll-like receptor (TLR) 4 and nuclear factor-kappa B (NF-κB) in liver tissues were significantly suppressed by artichoke treatment. Results obtained demonstrated that artichoke extract exhibited significant preventive protective effect against acute alcohol-induced liver injury. This finding is mainly attributed to its ability to attenuate oxidative stress and suppress the TLR4/NF-κB inflammatory pathway. To the best of our knowledge, the underlying mechanisms of artichoke on acute ALD have been rarely reported.

  9. Antibacterial activity of cinnamon ethanol extract (cinnamomum burmannii) and its application as a mouthwash to inhibit streptococcus growth

    Science.gov (United States)

    Waty, Syahdiana; Suryanto, Dwi; Yurnaliza

    2018-03-01

    Cinnamon bark has been commonly used as spicy and traditional medicine. It contains several antibacterial compounds such as flavonoids, saponins, and cinnamaldehyde. Several studies have been done to know the antibacterial effect on bacteria such as Streptococcus in vitro. This study aimed to examine the antibacterial activity of cinnamon ethanol extract against Streptococcus and its application as mouthwash to inhibit the bacteria. The cinnamon bark was macerated followed by extracted in 80% ethanol. Bacterial samples were isolated from dental plaque of patients visiting dental clinic drg. Syahdiana Waty in Medan, North Sumatra. The isolates were identified using Vitek 2 compact. Secondary metabolites were detected using previously described method. Antibacterial assay was done at extract concentration of 6.25%, 12.5%, and 25%. The result showed that alkaloids, flavonoids, saponins, and glycoside were detected in the extract. Nine bacterial species were identified as Streptococcus mitis, S. sanguinis, S. salivarius, S. pluranimalium, S. pneumoniae, S. alactolyticus, Kocuria rosea, Kocuria kristinae, and Spingomonas paucimolis. It showed that the extract of Cinnamon bark significantly inhibited Streptococcus growth, and it was effective as mouthwash.

  10. SR Ca2+-leak and disordered excitation-contraction coupling as the basis for arrhythmogenic and negative inotropic effects of acute ethanol exposure.

    Science.gov (United States)

    Mustroph, Julian; Wagemann, Olivia; Lebek, Simon; Tarnowski, Daniel; Ackermann, Jasmin; Drzymalski, Marzena; Pabel, Steffen; Schmid, Christof; Wagner, Stefan; Sossalla, Samuel; Maier, Lars S; Neef, Stefan

    2018-03-01

    Ethanol has acute negative inotropic and arrhythmogenic effects. The underlying mechanisms, however, are largely unknown. Sarcoplasmic reticulum Ca 2+ -leak is an important mechanism for reduced contractility and arrhythmias. Ca 2+ -leak can be induced by oxidative stress and Ca 2+ /Calmodulin-dependent protein kinase II (CaMKII). Therefore, we investigated the influence of acute ethanol exposure on excitation-contraction coupling in atrial and ventricular cardiomyocytes. Isolated human atrial and murine atrial or ventricular cardiomyocytes were preincubated for 30 min and then superfused with control solution or solution containing ethanol. Ethanol had acute negative inotropic and positive lusitropic effects in human atrial muscle strips and murine ventricular cardiomyocytes. Accordingly, Ca 2+ -imaging indicated lower Ca 2+ -transient amplitudes and increased SERCA2a activity, while myofilament Ca 2+ -sensitivity was reduced. SR Ca 2+ -leak was assessed by measuring Ca 2+ -sparks. Ethanol induced severe SR Ca 2+ -leak in human atrial cardiomyocytes (calculated leak: 4.60 ± 0.45 mF/F 0 vs 1.86 ± 0.26 in control, n ≥ 80). This effect was dose-dependent, while spontaneous arrhythmogenic Ca 2+ -waves increased ~5-fold, as investigated in murine cardiomyocytes. Delayed afterdepolarizations, which can result from increased SR Ca 2+ -leak, were significantly increased by ethanol. Measurements using the reactive oxygen species (ROS) sensor CM-H 2 DCFDA showed increased ROS-stress in ethanol treated cells. ROS-scavenging with N-acetylcysteine prevented negative inotropic and positive lusitropic effects in human muscle strips. Ethanol-induced Ca 2+ -leak was abolished in mice with knockout of NOX2 (the main source for ROS in cardiomyocytes). Importantly, mice with oxidation-resistant CaMKII (Met281/282Val mutation) were protected from ethanol-induced Ca 2+ -leak. We show for the first time that ethanol acutely induces strong SR Ca 2+ -leak, also altering

  11. Chronic intermittent ethanol exposure during adolescence: effects on social behavior and ethanol sensitivity in adulthood.

    Science.gov (United States)

    Varlinskaya, Elena I; Truxell, Eric; Spear, Linda P

    2014-08-01

    This study assessed long-lasting consequences of repeated ethanol exposure during two different periods of adolescence on 1) baseline levels of social investigation, play fighting, and social preference and 2) sensitivity to the social consequences of acute ethanol challenge. Adult male and female Sprague-Dawley rats were tested 25 days after repeated exposure to ethanol (3.5 g/kg intragastrically [i.g.], every other day for a total of 11 exposures) in a modified social interaction test. Early-mid adolescent intermittent exposure (e-AIE) occurred between postnatal days (P) 25 and 45, whereas late adolescent intermittent exposure (l-AIE) was conducted between P45 and P65. Significant decreases in social investigation and social preference were evident in adult male rats, but not their female counterparts following e-AIE, whereas neither males nor females demonstrated these alterations following l-AIE. In contrast, both e-AIE and l-AIE produced alterations in sensitivity to acute ethanol challenge in males tested 25 days after adolescent exposure. Ethanol-induced facilitation of social investigation and play fighting, reminiscent of that normally seen during adolescence, was evident in adult males after e-AIE, whereas control males showed an age-typical inhibition of social behavior. Males after l-AIE were found to be insensitive to the socially suppressing effects of acute ethanol challenge, suggesting the development of chronic tolerance in these animals. In contrast, females showed little evidence for alterations in sensitivity to acute ethanol challenge following either early or late AIE. The results of the present study demonstrate a particular vulnerability of young adolescent males to long-lasting detrimental effects of repeated ethanol. Retention of adolescent-typical sensitivity to the socially facilitating effects of ethanol could potentially make ethanol especially appealing to these males, therefore promoting relatively high levels of ethanol intake later

  12. Inhibition of 5-Lipoxygenase Pathway Attenuates Acute Liver Failure by Inhibiting Macrophage Activation

    Directory of Open Access Journals (Sweden)

    Lu Li

    2014-01-01

    Full Text Available This study aimed to investigate the role of 5-lipoxygenase (5-LO in acute liver failure (ALF and changes in macrophage activation by blocking it. ALF was induced in rats by administration of D-galactosamine (D-GalN/lipopolysaccharide (LPS. Rats were injected intraperitoneally with AA-861 (a specific 5-LO inhibitor, 24 hr before D-GalN/LPS administration. After D-GalN/LPS injection, the liver tissue was collected for assessment of histology, macrophage microstructure, macrophage counts, 5-LO mRNA formation, protein expression, and concentration of leukotrienes. Serum was collected for detecting alanine aminotransferase (ALT, aspartate transaminase (AST, total bilirubin (Tbil, and tumor necrosis factor- (TNF-α. Twenty-four hours after injection, compared with controls, ALF rats were characterized by widespread hepatocyte necrosis and elevated ALT, AST, and Tbil, and 5-LO protein expression reached a peak. Liver leukotriene B4 was also significantly elevated. However, 5-LO mRNA reached a peak 8 hr after D-GalN/LPS injection. Simultaneously, the microstructure of macrophages was changed most significantly and macrophages counts were increased significantly. Moreover, serum TNF-α was also elevated. By contrast, AA-861 pretreatment significantly decreased liver necrosis as well as all of the parameters compared with the rats without pretreatment. Macrophages, via the 5-LO pathway, play a critical role in ALF, and 5-LO inhibitor significantly alleviates ALF, possibly related to macrophage inhibition.

  13. Nicotinamide Inhibits Ethanol-Induced Caspase-3 and PARP-1 Over-activation and Subsequent Neurodegeneration in the Developing Mouse Cerebellum.

    Science.gov (United States)

    Ieraci, Alessandro; Herrera, Daniel G

    2018-06-01

    Fetal alcohol spectrum disorder (FASD) is the principal preventable cause of mental retardation in the western countries resulting from alcohol exposure during pregnancy. Ethanol-induced massive neuronal cell death occurs mainly in immature neurons during the brain growth spurt period. The cerebellum is one of the brain areas that are most sensitive to ethanol neurotoxicity. Currently, there is no effective treatment that targets the causes of these disorders and efficient treatments to counteract or reverse FASD are desirable. In this study, we investigated the effects of nicotinamide on ethanol-induced neuronal cell death in the developing cerebellum. Subcutaneous administration of ethanol in postnatal 4-day-old mice induced an over-activation of caspase-3 and PARP-1 followed by a massive neurodegeneration in the developing cerebellum. Interestingly, treatment with nicotinamide, immediately or 2 h after ethanol exposure, diminished caspase-3 and PARP-1 over-activation and reduced ethanol-induced neurodegeneration. Conversely, treatment with 3-aminobenzadine, a specific PARP-1 inhibitor, was able to completely block PARP-1 activation, but not caspase-3 activation or ethanol-induced neurodegeneration in the developing cerebellum. Our results showed that nicotinamide reduces ethanol-induced neuronal cell death and inhibits both caspase-3 and PARP-1 alcohol-induced activation in the developing cerebellum, suggesting that nicotinamide might be a promising and safe neuroprotective agent for treating FASD and other neurodegenerative disorders in the developing brain that shares similar cell death pathways.

  14. Nitrate addition to groundwater impacted by ethanol-blended fuel accelerates ethanol removal and mitigates the associated metabolic flux dilution and inhibition of BTEX biodegradation

    Science.gov (United States)

    Corseuil, Henry Xavier; Gomez, Diego E.; Schambeck, Cássio Moraes; Ramos, Débora Toledo; Alvarez, Pedro J. J.

    2015-03-01

    A comparison of two controlled ethanol-blended fuel releases under monitored natural attenuation (MNA) versus nitrate biostimulation (NB) illustrates the potential benefits of augmenting the electron acceptor pool with nitrate to accelerate ethanol removal and thus mitigate its inhibitory effects on BTEX biodegradation. Groundwater concentrations of ethanol and BTEX were measured 2 m downgradient of the source zones. In both field experiments, initial source-zone BTEX concentrations represented less than 5% of the dissolved total organic carbon (TOC) associated with the release, and measurable BTEX degradation occurred only after the ethanol fraction in the multicomponent substrate mixture decreased sharply. However, ethanol removal was faster in the nitrate amended plot (1.4 years) than under natural attenuation conditions (3.0 years), which led to faster BTEX degradation. This reflects, in part, that an abundant substrate (ethanol) can dilute the metabolic flux of target pollutants (BTEX) whose biodegradation rate eventually increases with its relative abundance after ethanol is preferentially consumed. The fate and transport of ethanol and benzene were accurately simulated in both releases using RT3D with our general substrate interaction module (GSIM) that considers metabolic flux dilution. Since source zone benzene concentrations are relatively low compared to those of ethanol (or its degradation byproduct, acetate), our simulations imply that the initial focus of cleanup efforts (after free-product recovery) should be to stimulate the degradation of ethanol (e.g., by nitrate addition) to decrease its fraction in the mixture and speed up BTEX biodegradation.

  15. Acute ethanol poisoning in a 4-year-old as a result of ethanol-based hand-sanitizer ingestion.

    Science.gov (United States)

    Engel, Jeffrey S; Spiller, Henry A

    2010-07-01

    Alcohol-based hand sanitizers have become widely available because of widespread usage in schools, hospitals, and workplaces and by consumers. We report what we believe is the first unintentional ingestion in a small child producing significant intoxication. A 4-year-old 14-kg girl was brought to the emergency department with altered mental status after a history of ingesting an alcohol-based hand sanitizer. Physical examination revealed an obtunded child with periods of hypoventilation and a hematoma in the central portion of her forehead from a fall at home that occurred after the ingestion. Abnormal vital signs included a heart rate of 139 beats/min and temperature of 96.3 degrees F, decreasing to 93.6 degrees F. Abnormal laboratory values consisted of potassium of 2.6 mEq/L and a serum alcohol of 243 mg/dL. A computed tomography scan of her brain without contrast showed no acute intracranial abnormality. A urine drug screen for common drugs of abuse was reported as negative. The child was intubated, placed on mechanical ventilation, and admitted for medical care. She recovered over the next day without sequelae. As with other potentially toxic products, we would recommend caution and direct supervision of use when this product is available to young children.

  16. Inhibition of retinol oxidation by ethanol in the rat liver and colon

    DEFF Research Database (Denmark)

    Parlesak, Alexandr; Menzl, Ina; Feuchter, Anette

    2000-01-01

    the efficiency in the small intestine was negligible (0.20). In the presence of increasing ethanol concentrations (9, 17, and 34 mM), V(max)/K(m) for retinol oxidation decreased in a dose dependent manner to 7.8% of the initial value in the large intestine and to 12% in the liver. The V(max)/K(m) of retinoic...

  17. Acute effects of cocaine and cannabis on response inhibition in humans: an ERP investigation

    NARCIS (Netherlands)

    Spronk, D.B.; De Bruijn, E.R.; van Wel, J.H.; Ramaekers, J.G.; Verkes, R.J.

    2016-01-01

    Substance abuse has often been associated with alterations in response inhibition in humans. Not much research has examined how the acute effects of drugs modify the neurophysiological correlates of response inhibition, or how these effects interact with individual variation in trait levels of

  18. The Ethanolic Extracts The Gorgonian Isis hippuris Inhibited the Induced Mammary Carcinoma Growth In C3H Mice

    Science.gov (United States)

    Trianto, Agus; Andriyas, Yogi; Ridlo, Ali; Sedjati, Sri; Susilaningsih, Neni; Murwani, Retno

    2018-02-01

    The gorgonian Isis hippuris contains secondary metabolites gorgosterol and hippuristanol which are capable of inhibiting cancer cells. However, in vivo test of the gorgonian Isis hippuris extract as the anticancer drug has not been conducted. The research to study of the effect of ethanolic extract of the gorgonian on the induced tumor growth in C3H mice. The I. hippuris was obtained from Karimunjawa water in Jepara. The extract was prepared by maceration using ethanol. A total 20, 8-10 moths old of C3H mice with an initial weight of 20-25 gram were assigned into control, Ih-1, Ih-2, and Ih-3 groups. Control, Ih-1, Ih-2, and Ih-3 groups each received 0, 0.15, 1.5, and 15 mg extract per mouse per day respectively for two weeks. Cancer cells were introduced to all groups from a donor cancer mouse by injection via left or right axilla and allowed to grow. The cancer mass was removed and processed for histological examination, and cancer growth was determined according to Elston and Ellis criteria. The result showed that histological grade of cancer mass from the control group was in grade 2 or differentiated moderately. The histological grade of cancer mass from Ih-1, Ih-2, and Ih-3 groups were in grade 1 (low grade) or similar to a normal cell. Statistical analysis by Kruskal-Wallis test showed a significant difference (ptest found no significant differences among Ih-1, Ih-2, and Ih-3 treated mice. The results indicated the potential of active substances in the ethanol extract of I. hippuris as an anti-cancer drug.

  19. Kinetics of sugars consumption and ethanol inhibition in carob pulp fermentation by Saccharomyces cerevisiae in batch and fed-batch cultures.

    Science.gov (United States)

    Lima-Costa, Maria Emília; Tavares, Catarina; Raposo, Sara; Rodrigues, Brígida; Peinado, José M

    2012-05-01

    The waste materials from the carob processing industry are a potential resource for second-generation bioethanol production. These by-products are small carob kibbles with a high content of soluble sugars (45-50%). Batch and fed-batch Saccharomyces cerevisiae fermentations of high density sugar from carob pods were analyzed in terms of the kinetics of sugars consumption and ethanol inhibition. In all the batch runs, 90-95% of the total sugar was consumed and transformed into ethanol with a yield close to the theoretical maximum (0.47-0.50 g/g), and a final ethanol concentration of 100-110 g/l. In fed-batch runs, fresh carob extract was added when glucose had been consumed. This addition and the subsequent decrease of ethanol concentrations by dilution increased the final ethanol production up to 130 g/l. It seems that invertase activity and yeast tolerance to ethanol are the main factors to be controlled in carob fermentations. The efficiency of highly concentrated carob fermentation makes it a very promising process for use in a second-generation ethanol biorefinery.

  20. CaCO3 supplementation alleviates the inhibition of formic acid on acetone/butanol/ethanol fermentation by Clostridium acetobutylicum.

    Science.gov (United States)

    Qi, Gaoxiang; Xiong, Lian; Lin, Xiaoqing; Huang, Chao; Li, Hailong; Chen, Xuefang; Chen, Xinde

    2017-01-01

    To investigate the inhibiting effect of formic acid on acetone/butanol/ethanol (ABE) fermentation and explain the mechanism of the alleviation in the inhibiting effect under CaCO 3 supplementation condition. From the medium containing 50 g sugars l -1 and 0.5 g formic acid l -1 , only 0.75 g ABE l -1 was produced when pH was adjusted by KOH and fermentation ended prematurely before the transformation from acidogenesis to solventogenesis. In contrast, 11.4 g ABE l -1 was produced when pH was adjusted by 4 g CaCO 3 l -1 . The beneficial effect can be ascribed to the buffering capacity of CaCO 3 . Comparative analysis results showed that the undissociated formic acid concentration and acid production coupled with ATP and NADH was affected by the pH buffering capacity of CaCO 3 . Four millimole undissociated formic acid was the threshold at which the transformation to solventogenesis occurred. The inhibiting effect of formic acid on ABE fermentation can be alleviated by CaCO 3 supplementation due to its buffering capacity.

  1. Gastroprotective actions of Taraxacum coreanum Nakai water extracts in ethanol-induced rat models of acute and chronic gastritis.

    Science.gov (United States)

    Yang, Hye Jeong; Kim, Min Jung; Kwon, Dae Young; Kang, Eun Seon; Kang, Suna; Park, Sunmin

    2017-08-17

    Taraxacum coreanum Nakai has been traditionally used for treating inflammatory diseases including gastrointestinal diseases. We studied whether water extracts of Taraxacum coreanum Nakai (TCN) had a protective effect on acute and chronic gastritis induced by ethanol/HCl in an animal model of gastritis and its mechanism was also explored. In the acute study, rats were orally administered 0.15g/mL dextrin (normal-control), 0.15g/mL dextrin (control), 0.05g/mL TCN (TCN-L), 0.15g/mL TCN (TCN-H), or 0.01g/mL omeprazole (orally; positive-control), followed by oral administration of 1mL of 60% ethanol plus 150mM HCl (inducer). In the chronic study, rats were administered 10% diluted inducer in drinking water, and 0.6% dextrin, 0.2% or 0.6% TCN, and 0.05% omeprazole were administered in chow for 4 weeks. Acid content, gastric structure, oxidative stress, and markers of inflammation in the stomach tissue were measured at the end of experiment. Acute and chronic ethanol/HCl administration caused the inner layer of the stomach to redden, hemorrhage, and edema in the control group; TCN-H reduced these symptoms more effectively than did the omeprazole positive-control. Acid production and total acidity in the stomach increased in the control group, which was markedly suppressed by omeprazole. TCN also reduced the acid production and acidity, but not to the same degree as omeprazole. H-E and PAS staining revealed that in the inner layer of the stomach, cellular structure was disrupted, with an increased nuclear size and thickness, disarrangement, and decreased mucin in the control group. TCN prevented the cellular disruption in the inner layer, and TCN-H was more effective than the positive-control. This was associated with oxidative stress and inflammation. TCN dose-dependently reduced the infiltration of mast cells and TNF-α expression in the inner layer of the stomach, and decreased lipid peroxides by increasing superoxide dismutase and glutathione peroxidase expression. TCN

  2. Acute prenatal exposure to ethanol on gestational day 12 elicits opposing deficits in social behaviors and anxiety-like behaviors in Sprague Dawley rats.

    Science.gov (United States)

    Diaz, Marvin R; Mooney, Sandra M; Varlinskaya, Elena I

    2016-09-01

    Our previous research has shown that in Long Evans rats acute prenatal exposure to a high dose of ethanol on gestational day (G) 12 produces social deficits in male offspring and elicits substantial decreases in social preference relative to controls, in late adolescents and adults regardless of sex. In order to generalize the observed detrimental effects of ethanol exposure on G12, pregnant female Sprague Dawley rats were exposed to ethanol or saline and their offspring were assessed in a modified social interaction (SI) test as early adolescents, late adolescents, or young adults. Anxiety-like behavior was also assessed in adults using the elevated plus maze (EPM) or the light/dark box (LDB) test. Age- and sex-dependent social alterations were evident in ethanol-exposed animals. Ethanol-exposed males showed deficits in social investigation at all ages and age-dependent alterations in social preference. Play fighting was not affected in males. In contrast, ethanol-exposed early adolescent females showed no changes in social interactions, whereas older females demonstrated social deficits and social indifference. In adulthood, anxiety-like behavior was decreased in males and females prenatally exposed to ethanol in the EPM, but not the LDB. These findings suggest that social alterations associated with acute exposure to ethanol on G12 are not strain-specific, although they are more pronounced in Long Evans males and Sprague Dawley females. Furthermore, given that anxiety-like behaviors were attenuated in a test-specific manner, this study indicates that early ethanol exposure can have differential effects on different forms of anxiety. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Acute oral administration of the novel, competitive and selective glucocorticoid receptor antagonist ORG 34517 reduces the severity of ethanol withdrawal and related hypothalamic-pituitary-adrenal axis activation.

    Science.gov (United States)

    Reynolds, Anna R; Saunders, Meredith A; Brewton, Honoree' W; Winchester, Sydney R; Elgumati, Ibrahim S; Prendergast, Mark A

    2015-09-01

    The development of ethanol dependence is associated with alterations in hypothalamic-pituitary-adrenal (HPA) axis and activation of type II glucocorticoid receptors (GR). These effects may contribute to withdrawal-associated anxiety, craving and relapse to drinking. The present studies examined acute and oral administration of the novel, selective and competitive GR antagonist ORG 34517 on the severity of ethanol withdrawal. Adult, male Sprague-Dawley rats were administered ethanol (4g/kg/i.g.) twice daily for 5 days followed by 2 days of withdrawal for 1, 2 or 3 consecutive cycles. Blood ethanol levels (BELs) were determined at 0930 on Day 4 of each week, while blood corticosterone levels (BCLs) were obtained at 11:00hours on the first day of each ethanol withdrawal. During early withdrawal, subjects received oral administration of ORG 345617 (60mg/kg/i.g.) or a placebo and withdrawal was monitored. Peak BELs of 225.52mg/dl were observed during the third week. Withdrawal from three cycles of the regimen produced marked behavioral abnormalities (e.g., aggression, rigidity, and hypoactivity) and significant increases in BCLs of ethanol-dependent subjects. Acute, oral administration of ORG 34517 during early withdrawal significantly reduced both the severity of ethanol withdrawal, as reflected in reduced rigidity, aggression, and hypoactivity, and elevations in BCL without producing any sedative-like effects. The present findings demonstrate that repeated ethanol exposure and withdrawal is associated with significant behavioral abnormalities and dysregulation of HPA axis activation. Further these data suggest that selective GR antagonists should be further considered as putative pharmacotherapies for treatment of ethanol dependence. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  4. Synergisms in Alpha-glucosidase Inhibition and Antioxidant Activity of Camellia sinensis L. Kuntze and Eugenia uniflora L. Ethanolic Extracts

    Science.gov (United States)

    Vinholes, Juliana; Vizzotto, Márcia

    2017-01-01

    Background: Camellia sinensis, the most consumed and popular beverages worldwide, and Eugenia uniflora, a Brazilian native species, have been already confirmed to have beneficial effects in the treatment of diabetes mellitus. However, their potential acting together against an enzyme linked to this pathology has never been exploited. Objective: The aim of this study was to evaluate the inhibitory properties of individual and combined ethanolic extracts of the leaves of C. sinensis and E. uniflora over alpha-glucosidase, a key digestive enzyme used on the Type 2 diabetes mellitus (T2DM) control. In addition, their inhibitory activity against 2,2-diphenyl-1-picrylhydrazyl radical (DPPH•) and peroxyl radicals was also assayed. Materials and Methods: Enzyme inhibition and antioxidant potential were assessed based on in vitro assays. Total phenolic compounds, carotenoids, and chlorophylls A and B were achieved using spectrophotometric methods. Results: E. uniflora was almost 40 times more active on alpha-glucosidase than C. sinensis and combined extracts showed a significant synergistic effect with an obtained IC50 value almost 5 times lower than the theoretical value. C. sinensis extract was twice more active than E. uniflora concerning DPPH•, in contrast, E. uniflora was almost 10 times more effective than C. sinensis on inhibition of peroxyl radicals with a significant synergistic effect for combined extracts. The extracts activities may be related with their phytochemicals, mainly phenolic compounds, and chlorophylls. Conclusion: Combined C. sinensis and E. uniflora ethanolic extracts showed synergistic effect against alpha-glucosidase and lipid peroxidation. These herbal combinations can be used to control postprandial hyperglycemia and can also provide antioxidant defenses to patients with T2DM. SUMMARY Alfa-glucosidase and antioxidant Interaction between Camellia sinensis L. Kuntze and Eugenia uniflora L. ethanolic extracts was investigated.Extracts showed

  5. Synergisms in Alpha-glucosidase Inhibition and Antioxidant Activity of Camellia sinensis L. Kuntze and Eugenia uniflora L. Ethanolic Extracts.

    Science.gov (United States)

    Vinholes, Juliana; Vizzotto, Márcia

    2017-01-01

    Camellia sinensis , the most consumed and popular beverages worldwide, and Eugenia uniflora , a Brazilian native species, have been already confirmed to have beneficial effects in the treatment of diabetes mellitus. However, their potential acting together against an enzyme linked to this pathology has never been exploited. The aim of this study was to evaluate the inhibitory properties of individual and combined ethanolic extracts of the leaves of C. sinensis and E. uniflora over alpha-glucosidase, a key digestive enzyme used on the Type 2 diabetes mellitus (T2DM) control. In addition, their inhibitory activity against 2,2-diphenyl-1-picrylhydrazyl radical (DPPH • ) and peroxyl radicals was also assayed. Enzyme inhibition and antioxidant potential were assessed based on in vitro assays. Total phenolic compounds, carotenoids, and chlorophylls A and B were achieved using spectrophotometric methods. E. uniflora was almost 40 times more active on alpha-glucosidase than C. sinensis and combined extracts showed a significant synergistic effect with an obtained IC 50 value almost 5 times lower than the theoretical value. C. sinensis extract was twice more active than E. uniflora concerning DPPH • , in contrast, E. uniflora was almost 10 times more effective than C. sinensis on inhibition of peroxyl radicals with a significant synergistic effect for combined extracts. The extracts activities may be related with their phytochemicals, mainly phenolic compounds, and chlorophylls. Combined C. sinensis and E. uniflora ethanolic extracts showed synergistic effect against alpha-glucosidase and lipid peroxidation. These herbal combinations can be used to control postprandial hyperglycemia and can also provide antioxidant defenses to patients with T2DM. Alfa-glucosidase and antioxidant Interaction between Camellia sinensis L. Kuntze and Eugenia uniflora L. ethanolic extracts was investigated.Extracts showed synergistic effect over alpha-glucosidase and peroxyl radicals

  6. Statin therapy exacerbates alcohol-induced constriction of cerebral arteries via modulation of ethanol-induced BK channel inhibition in vascular smooth muscle.

    Science.gov (United States)

    Simakova, Maria N; Bisen, Shivantika; Dopico, Alex M; Bukiya, Anna N

    2017-12-01

    Statins constitute the most commonly prescribed drugs to decrease cholesterol (CLR). CLR is an important modulator of alcohol-induced cerebral artery constriction (AICAC). Using rats on a high CLR diet (2% CLR) we set to determine whether atorvastatin administration (10mg/kg daily for 18-23weeks) modified AICAC. Middle cerebral arteries were pressurized in vitro at 60mmHg and AICAC was evoked by 50mM ethanol, that is within the range of blood alcohol detected in humans following moderate-to-heavy drinking. AICAC was evident in high CLR+atorvastatin group but not in high CLR diet+placebo. Statin exacerbation of AICAC persisted in de-endothelialized arteries, and was blunted by CLR enrichment in vitro. Fluorescence imaging of filipin-stained arteries showed that atorvastatin decreased vascular smooth muscle (VSM) CLR when compared to placebo, this difference being reduced by CLR enrichment in vitro. Voltage- and calcium-gated potassium channels of large conductance (BK) are known VSM targets of ethanol, with their beta1 subunit being necessary for ethanol-induced channel inhibition and resulting AICAC. Ethanol-induced BK inhibition in excised membrane patches from freshly isolated myocytes was exacerbated in the high CLR diet+atorvastatin group when compared to high CLR diet+placebo. Unexpectedly, atorvastatin decreased the amount and function of BK beta1 subunit as documented by immunofluorescence imaging and functional patch-clamp studies. Atorvastatin exacerbation of ethanol-induced BK inhibition disappeared upon artery CLR enrichment in vitro. Our study demonstrates for the first time statin's ability to exacerbate the vascular effect of a widely consumed drug of abuse, this exacerbation being driven by statin modulation of ethanol-induced BK channel inhibition in the VSM via CLR-mediated mechanism. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Physicochemical properties, antioxidant activities and protective effect against acute ethanol-induced hepatic injury in mice of foxtail millet (Setaria italica) bran oil.

    Science.gov (United States)

    Pang, Min; He, Shujian; Wang, Lu; Cao, Xinmin; Cao, Lili; Jiang, Shaotong

    2014-08-01

    This study was designed to investigate physicochemical characterization of the oil extracted from foxtail millet bran (FMBO), and the antioxidant and hepatoprotective effects against acute ethanol-induced hepatic injury in mice. GC-MS analysis revealed that unsaturated fatty acids (UFAs) account for 83.76% of the total fatty acids; in particular, the linoleic acid (C18:2) is the predominant polyunsaturated fatty acid (PUFA), and the compounds of squalene and six phytosterols (or phytostanols) were identified in unsaponifiable matter of FMBO. The antioxidant activity examination of FMBO in vitro showed highly ferric-reducing antioxidant power and scavenging effects against DPPH· and HO· radicals. Furthermore, the protective effect of FMBO against acute hepatic injuries induced by ethanol was verified in mice. In this, intragastric administration with different dosages of FMBO in mice ahead of acute ethanol administration could observably antagonize the ethanol-induced increases in serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), triglyceride (TG), and the hepatic malondialdehyde (MDA) levels, respectively, along with enhanced hepatic superoxide dismutase (SOD) levels relative to the control. Hepatic histological changes were also observed and confirmed that FMBO is capable of attenuating ethanol-induced hepatic injury.

  8. ATF3 mediates inhibitory effects of ethanol on hepatic gluconeogenesis.

    Science.gov (United States)

    Tsai, Wen-Wei; Matsumura, Shigenobu; Liu, Weiyi; Phillips, Naomi G; Sonntag, Tim; Hao, Ergeng; Lee, Soon; Hai, Tsonwin; Montminy, Marc

    2015-03-03

    Increases in circulating glucagon during fasting maintain glucose balance by stimulating hepatic gluconeogenesis. Acute ethanol intoxication promotes fasting hypoglycemia through an increase in hepatic NADH, which inhibits hepatic gluconeogenesis by reducing the conversion of lactate to pyruvate. Here we show that acute ethanol exposure also lowers fasting blood glucose concentrations by inhibiting the CREB-mediated activation of the gluconeogenic program in response to glucagon. Ethanol exposure blocked the recruitment of CREB and its coactivator CRTC2 to gluconeogenic promoters by up-regulating ATF3, a transcriptional repressor that also binds to cAMP-responsive elements and thereby down-regulates gluconeogenic genes. Targeted disruption of ATF3 decreased the effects of ethanol in fasted mice and in cultured hepatocytes. These results illustrate how the induction of transcription factors with overlapping specificity can lead to cross-coupling between stress and hormone-sensitive pathways.

  9. Ethanol extracts of Cassia grandis and Tabernaemontana cymosa inhibit the in vitro replication of dengue virus serotype 2

    Directory of Open Access Journals (Sweden)

    Carolina Hernández-Castro

    2015-02-01

    Full Text Available Objective: To determine the antiviral activity of ethanol extracts derived from Cassia grandis leaves and Tabernaemontana cymosa bark against two dengue virus (DENV serotype 2 strains DENV-2/NG and DENV-2/1 6681 in two cell lines susceptible to infection, VERO and U937. Methods: The cytotoxic concentration 50 (CC50 was assessed using the MTT method, and the effective concentration 50 (EC50 was determined using the technique of inhibiting the production of infectious viral particles by the plating method. Further testing of dose-response inhibition was performed, and three experimental approaches were evaluated (pre-, trans- and posttreatment to determine the effect of the extracts according to the time of administration. Finally, a preliminary phytochemical analysis for both extracts was performed. Results: The cytotoxicity of the extracts was low (CC50>300 µg/mL, and the U937 cell line was more sensitive to the antiproliferative effect of both extracts. When the virus strain-dependent selectivities of the extracts were compared, it was found that both extracts were more selective in cultures infected with the DENV-2/NG strain than in those infected with the DENV-2/16681 strain. A dose-dependent inhibitory effect of the extracts was not observed in any of the evaluations. Finally, the highest inhibition was detected with the post-treatment approach with the Tabernaemontana cymosa extract (99.9% in both cell lines. Conclusions: A therapy with compounds derived from these extracts would inhibit viral replication and affect steps after viral internalization.

  10. Effects of topiramate and other anti-glutamatergic drugs on the acute intoxicating actions of ethanol in mice: modulation by genetic strain and stress

    Science.gov (United States)

    Chen, Yi-Chyan; Holmes, Andrew

    2008-01-01

    Compounds with anti-glutamatergic properties currently in clinical use for various indications (e.g., Alzheimer's disease, epilepsy, psychosis, mood disorders) have potential utility as novel treatments for alcoholism. Enhanced sensitivity to certain acute intoxicating effects (ataxia, sedative) of alcohol may be one mechanism by which anti-glutamatergic drugs modulate alcohol use. We examined the effects of six compounds (memantine, dextromethorphan, haloperidol, lamotrigine, oxcarbazepine, topiramate) on sensitivity to acute intoxicating effects of ethanol (ataxia, hypothermia, sedation/hypnosis) in C57BL/6J mice. Analysis of topiramate was extended to determine the influence of genetic background (via comparison of the 129S1, BALB/cJ, C57BL/6J, DBA/2J inbred strains) and prior stress history (via chronic exposure of C57BL/6J to swim stress) on topiramate's effects on ethanol-induced sedation/hypnosis. Results showed that one N-methyl-D-aspartate receptor (NMDAR) antagonist, memantine, but not another, dextromethorphan, potentiated the ataxic but not hypothermic or sedative/hypnotic effects of ethanol. Haloperidol increased ethanol-induced ataxia and sedation/hypnosis to a similar extent as the prototypical NMDAR antagonist MK-801. Of the anticonvulsants tested, lamotrigine accentuated ethanol-induced sedation/hypnosis, while oxcarbazepine was without effect. Topiramate was without effect per se under baseline conditions in C57BL/6J, but had a synergistic effect with MK-801 on ethanol-induced sedation/hypnosis. Comparing inbred strains, topiramate was found to significantly potentiated ethanol's sedative/hypnotic effects in BALB/cJ, but not 129S1, C57BL/6J or DBA/2J strains. Topiramate also increased ethanol-induced sedation/hypnosis in C57BL/6J after exposure to chronic stress exposure. Current data demonstrate that, with the exception of MK-801 and haloperidol, the compounds tested had either no significant or assay-selective effects on sensitivity to acute

  11. Gas chromatography-mass spectrometry of ethyl palmitate calibration and resolution with ethyl oleate as biomarker ethanol sub acute in urine application study

    Science.gov (United States)

    Suaniti, Ni Made; Manurung, Manuntun

    2016-03-01

    Gas Chromatography-Mass Spectrometry is used to separate two and more compounds and identify fragment ion specific of biomarker ethanol such as palmitic acid ethyl ester (PAEE), as one of the fatty acid ethyl esters as early detection through conyugated reaction. This study aims to calibrate ethyl palmitate and develop analysis with oleate acid. This methode can be used analysis ethanol and its chemistry biomarker in ethanol sub-acute consumption as analytical forensic toxicology. The result show that ethanol level in urine rats Wistar were 9.21 and decreased 6.59 ppm after 48 hours consumption. Calibration curve of ethyl palmitate was y = 0.2035 x + 1.0465 and R2 = 0.9886. Resolution between ethyl palmitate and oleate were >1.5 as good separation with fragment ion specific was 88 and the retention time was 18 minutes.

  12. Response inhibition and cognitive appraisal in clients with acute stress disorder and posttraumatic stress disorder.

    Science.gov (United States)

    Abolghasemi, Abass; Bakhshian, Fereshteh; Narimani, Mohammad

    2013-08-01

    The purpose of the present study was to compare response inhibition and cognitive appraisal in clients with acute stress disorder, clients with posttraumatic stress disorder, and normal individuals. This was a comparative study. The sample consisted of 40 clients with acute stress disorder, 40 patients with posttraumatic stress disorder, and 40 normal individuals from Mazandaran province selected through convenience sampling method. Data were collected using Composite International Diagnostic Interview, Stroop Color-Word Test, Posttraumatic Cognitions Inventory, and the Impact of Event Scale. Results showed that individuals with acute stress disorder are less able to inhibit inappropriate responses and have more impaired cognitive appraisals compared to those with posttraumatic stress disorder. Moreover, results showed that response inhibition and cognitive appraisal explain 75% of the variance in posttraumatic stress disorder symptoms and 38% of the variance in posttraumatic stress disorder symptoms. The findings suggest that response inhibition and cognitive appraisal are two variables that influence the severity of posttraumatic stress disorder and acute stress disorder symptoms. Also, these results have important implications for pathology, prevention, and treatment of posttraumatic stress disorder and acute stress disorder.

  13. Response Inhibition and Cognitive Appraisal in Clients with Acute Stress Disorder and Posttraumatic Stress Disorder

    Directory of Open Access Journals (Sweden)

    Abass Abolghasemi

    2013-09-01

    Full Text Available Objective: The purpose of the present study was to compare response inhibition and cognitive appraisal in clients with acute stress disorder, clients with posttraumatic stress disorder, and normal individuals .Method:This was a comparative study. The sample consisted of 40 clients with acute stress disorder, 40 patients with posttraumatic stress disorder, and 40 normal individuals from Mazandaran province selected through convenience sampling method. Data were collected using Composite International Diagnostic Interview, Stroop Color-Word Test, Posttraumatic Cognitions Inventory, and the Impact of Event Scale. Results:Results showed that individuals with acute stress disorder are less able to inhibit inappropriate responses and have more impaired cognitive appraisals compared to those with posttraumatic stress disorder. Moreover, results showed that response inhibition and cognitive appraisal explain 75% of the variance in posttraumatic stress disorder symptoms and 38% of the variance in posttraumatic stress disorder symptoms .Conclusion:The findings suggest that response inhibition and cognitive appraisal are two variables that influence the severity of posttraumatic stress disorder and acute stress disorder symptoms. Also, these results have important implications for pathology, prevention, and treatment of posttraumatic stress disorder and acute stress disorder

  14. Prevention of secretory diarrhea by ethanol extract of Bistortae rhizoma through inhibition of chloride channel

    Directory of Open Access Journals (Sweden)

    Bo Yu

    2015-08-01

    Full Text Available Inhibition of cystic fibrosis transmembrane conductance regulator (CFTR and Ca2+-activated Cl- channel (CaCC represents an attractive approach for the treatment of secretory diarrhea. The aim of the study is to investigate the molecular basis of the anti-diarrheal effect of traditional Chinese herbal anti-diarrheal medicine Bistortae rhizoma. Fluorescence quenching assay indicated that the 40% methanol /water fraction (D5 dose-dependently inhibited both CFTR and CaCC function in transfected Fischer rat thyroid (FRT cells. Ex vivo studies indicated that D5 inhibited both forskolin (FSK-activated CFTR current and CCh-induced CaCC current in rat colonic mucosa. In the mouse closed-loop model, intraluminal application of D5 (200 µg/mL significantly reduced cholera toxin-stimulated fluid secretion. In the intestinal motility model, D5 significantly delayed intestinal peristalsis in mice. Our research suggests that CFTR and CaCC-mediated intestinal epithelial Cl- secretion inhibiting and gastrointestinal motility delaying may account for the anti-diarrheal activity of B. rhizoma.

  15. Inhibition mechanism of compound ethanol extracts from wuweizi (fructus schisandrae chinensis) on renal interstitial fibrosis in diabetic nephropathy model mice.

    Science.gov (United States)

    Zhang, Yanqiu; Zhang, Daning; Zhang, Mianzhi

    2012-12-01

    To evaluate inhibition effect and mechanism of compound ethanol extracts from Wuweizi (Fructus Schisandrae Chinensis), Chuanxiong (Rhizoma Chuanxiong) and Muli (Cocha Ostreae) (FRC) on glomerular and tubular interstitial fibrosis in streptozocin (STZ)-induced diabetic nephropathy (ND) model mice. Twenty-seven male C57BL/6 mice were divided randomly into 3 groups: nondibetic (ND), STZ-induced diabetic (D), and STZ-induced diabetic that were treated with 5 g x kg(-1) x day(-1) of FRC by oral gavage (D(FRC)), with 9 in each group. The protein expressions of E-cadherin, alpha-smooth muscle actin (alpha-SMA), Plasminogen Activator Inhibitor-1 (PAL-1) in renal tissues were investigated by Western blotting. The expressions of fibronectin (FN) and alpha-SMA were detected by immunohistochemical method. The morphological changes of renal tissues were observed under a microscope. Renal tissues in the D(FRC) group showed a lessened degree of fibrosis. Meanwhile, the expressions of FN, alpha-SMA and PAI-1 were significantly lower in the D(FRC) group than those in the D group (all P < 0.05). FRC can ameliorate the DN in the C57BL/6 mice, and its mechanism may relate to inhibition on the epithelial to mesenchymal transdifferentiation, endothelial-myofibroblast transition and PAL-1 expression.

  16. Acute LSD effects on response inhibition neural networks.

    Science.gov (United States)

    Schmidt, A; Müller, F; Lenz, C; Dolder, P C; Schmid, Y; Zanchi, D; Lang, U E; Liechti, M E; Borgwardt, S

    2017-10-02

    Recent evidence shows that the serotonin 2A receptor (5-hydroxytryptamine2A receptor, 5-HT2AR) is critically involved in the formation of visual hallucinations and cognitive impairments in lysergic acid diethylamide (LSD)-induced states and neuropsychiatric diseases. However, the interaction between 5-HT2AR activation, cognitive impairments and visual hallucinations is still poorly understood. This study explored the effect of 5-HT2AR activation on response inhibition neural networks in healthy subjects by using LSD and further tested whether brain activation during response inhibition under LSD exposure was related to LSD-induced visual hallucinations. In a double-blind, randomized, placebo-controlled, cross-over study, LSD (100 µg) and placebo were administered to 18 healthy subjects. Response inhibition was assessed using a functional magnetic resonance imaging Go/No-Go task. LSD-induced visual hallucinations were measured using the 5 Dimensions of Altered States of Consciousness (5D-ASC) questionnaire. Relative to placebo, LSD administration impaired inhibitory performance and reduced brain activation in the right middle temporal gyrus, superior/middle/inferior frontal gyrus and anterior cingulate cortex and in the left superior frontal and postcentral gyrus and cerebellum. Parahippocampal activation during response inhibition was differently related to inhibitory performance after placebo and LSD administration. Finally, activation in the left superior frontal gyrus under LSD exposure was negatively related to LSD-induced cognitive impairments and visual imagery. Our findings show that 5-HT2AR activation by LSD leads to a hippocampal-prefrontal cortex-mediated breakdown of inhibitory processing, which might subsequently promote the formation of LSD-induced visual imageries. These findings help to better understand the neuropsychopharmacological mechanisms of visual hallucinations in LSD-induced states and neuropsychiatric disorders.

  17. Inhibition of urokinase plasminogen activator “uPA” activity alters ethanol consumption and conditioned place preference in mice

    Directory of Open Access Journals (Sweden)

    Al Maamari E

    2014-09-01

    Full Text Available Elyazia Al Maamari,* Mouza Al Ameri, Shamma Al Mansouri, Amine Bahi*Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates*These authors contributed equally to this workAbstract: Urokinase plasminogen activator, uPA, is a serine protease implicated in addiction to drugs of abuse. Using its specific inhibitor, B428, we and others have characterized the role of uPA in the rewarding properties of psychostimulants, including cocaine and amphetamine, but none have examined the role of uPA in ethanol use disorders. Therefore, in the current study, we extended our observations to the role of uPA in ethanol consumption and ethanol-induced conditioned place preference. The general aim of the present series of experiments was to investigate the effects of the administration of the B428 on voluntary alcohol intake and ethanol conditioned reward. A two-bottle choice, unlimited-access paradigm was used to compare ethanol intake between vehicle- and 3, 10, and 30 mg/kg B428-administered mice. For this purpose, the mice were presented with an ethanol solution (2.5%–20% and water, at each concentration for 4 days, and their consumption was measured daily. Consumption of saccharin and quinine solutions was also measured. Systemic administration of B428 dose-dependently decreased ethanol intake and preference. Additionally, B428 mice did not differ from vehicle mice in their intake of graded solutions of tastants, suggesting that the uPA inhibition did not alter taste function. Also, ethanol metabolism was not affected following B428 injection. More importantly, 1.5 g/kg ethanol-induced conditioned place preference acquisition was blocked following B428 administration. Taken together, our results are the first to implicate uPA inhibition in the regulation of ethanol consumption and preference, and suggest that uPA may be considered as a possible therapeutic drug target for alcoholism and

  18. Comparative analysis of adsorption and corrosion inhibitive properties of ethanol extract of Dialium Guineense leaves for mild steel in 0.5 M HCl

    Directory of Open Access Journals (Sweden)

    Shola Elijah Adeniji

    2018-05-01

    Full Text Available Adsorption and corrosion inhibitive properties of ethanol extract of Dialium guineense leaves for mild steel in 0.5M HCl was studied using the gravimetric method. The results showed that the ethanol extract of Dialium guineense leaves is a good corrosion inhibitor for mild steel in 0.5 M HCl. The inhibition efficiency was found to increase with increase in the concentration of ethanol extract of Dialium guineense leaves up to the maximum of 92 %, but at the same time it decreased as the temperature was increased. Corrosion inhibition by the extract of Dialium guineense leaves is carried out by adsorption mechanism with the kinetics of corrosion following the pseudo first order reaction with high correlation. Thermodynamic consideration revealed that adsorption of the ethanol extract of Dialium guineense leaves on mild steel surface is an exothermic and spontaneous process that fitted the Langmuir adsorption isotherm. The values of activation energy and Gibb’s free energy were found within the range of limits expected for the mechanism of physical adsorption.

  19. Acute inflammatory thyromegaly following checkpoint inhibition: A new imaging entity?

    Directory of Open Access Journals (Sweden)

    Erik H. Middlebrooks, MD

    2018-02-01

    Full Text Available Immune checkpoint blockade (CPB utilizing such agents as ipilimumab, nivolumab, or pembrolizumab has revolutionized melanoma therapy and has seen continued utilization in numerous other malignancies in recent years. However, these agents come at the price of inflammatory immune-related adverse events. Despite the increasing recognition of biochemical thyroid dysfunction associated with CPB, information regarding potential imaging findings is sparse. We describe the first 2 cases of acute thyroiditis following CPB presenting as diffuse thyromegaly documented by computed tomography, ultrasound, and iodine uptake imaging. Given the rise in the use of CPB, it is important for radiologists to recognize potential imaging manifestations of therapy immune-related adverse events to avoid erroneous diagnosis and to prompt the biochemical investigation of thyroid function.

  20. Acute inhibition of iron bioavailability by zinc: studies in humans.

    Science.gov (United States)

    Olivares, Manuel; Pizarro, Fernando; Ruz, Manuel; de Romaña, Daniel López

    2012-08-01

    Iron (Fe) and zinc (Zn) deficiencies constitute two of the most important nutritional and public health problems affecting developing countries. Combined supplementation or fortification with Zn and Fe are strategies that can be used to improve the Zn and Fe status of a population. However, there is concern about potential negative interactions between these two micronutrients due to a competitive binding to DMT1 and Zip14 transporter. Studies performed in humans have shown an inhibitory effect of Zn on Fe absorption when both minerals are given together as a solution in fasting conditions. We found that at low doses of iron (0.5 mg) the threshold for the inhibition of iron bioavailability was at a Zn:Fe wt/wt ratio ≥5.9:1, whereas at higher doses of Fe (10 mg) this inhibition occurred at 1:1 Zn:Fe wt/wt ratio. This differential response could be explained by the variation in the abundance of both cations as they compete for a limited number of shared transporters at the enterocyte. Conflicting results have been obtained when this interaction was studied in different food matrices. A negative interaction was not observed when Fe and Zn were provided in a composite hamburger meal, premature formula, human milk, or cow milk. A decrease on Fe absorption was observed in only 1 of 3 studies when Fe and Zn were supplied in wheat flour. The possibility of a negative interaction should be considered for supplementation or fortification programs with both microminerals.

  1. ST-elevation acute coronary syndromes in the Platelet Inhibition and Patient Outcomes (PLATO) trial

    DEFF Research Database (Denmark)

    Armstrong, Paul W; Siha, Hany; Fu, Yuling

    2012-01-01

    Ticagrelor, when compared with clopidogrel, reduced the 12-month risk of vascular death/myocardial infarction and stroke in patients with ST-elevation acute coronary syndromes intended to undergo primary percutaneous coronary intervention in the PLATelet inhibition and patient Outcomes (PLATO...

  2. Inhibition of autophagy as a treatment strategy for p53 wild-type acute myeloid leukemia

    NARCIS (Netherlands)

    Folkerts, Hendrik; Hilgendorf, Susan; Wierenga, Albertus T J; Jaques, Jennifer; Mulder, André B; Coffer, Paul J; Schuringa, Jan Jacob; Vellenga, Edo

    2017-01-01

    Here we have explored whether inhibition of autophagy can be used as a treatment strategy for acute myeloid leukemia (AML). Steady-state autophagy was measured in leukemic cell lines and primary human CD34(+) AML cells with a large variability in basal autophagy between AMLs observed. The autophagy

  3. Vitamin K3 attenuates cerulein-induced acute pancreatitis through inhibition of the autophagic pathway.

    Science.gov (United States)

    Chinzei, Ryo; Masuda, Atsuhiro; Nishiumi, Shin; Nishida, Masayuki; Onoyama, Mitsuko; Sanuki, Tsuyoshi; Fujita, Tsuyoshi; Moritoh, Satoshi; Itoh, Tomoo; Kutsumi, Hiromu; Mizuno, Shigeto; Azuma, Takeshi; Yoshida, Masaru

    2011-01-01

    The discovery of novel and effective treatment methods would be of great help to patients with acute pancreatitis. The aims of this study were to determine the inhibitory effects of vitamin K3 (VK3) against cerulein-induced acute pancreatitis in mice and to examine the mechanisms behind these effects. Acute pancreatitis in mice was induced by intraperitoneal injection of cerulein 6 times at hourly intervals. Vitamin K3 was administered once before the first injection of cerulein or twice before and after the first injection of cerulein. The degrees of inflammation and autophagy in the pancreatic tissue were estimated by histological examination, measurement of enzyme activity, confocal microscopy, and Western blotting. The inhibitory effects of VK3 against rapamycin-induced autophagy were also examined using HeLa cells stably expressing green fluorescent protein LC3. Cerulein-induced acute pancreatitis was markedly attenuated by the administration of VK3. In addition, VK3 led to the inhibition of cerulein-evoked autophagic changes and colocalization of autophagosomes and lysosomes in the pancreatic tissue. Vitamin K3 also reduced rapamycin-induced autophagy in HeLa/green fluorescent protein LC3 cells. Our data suggest that the administration of VK3 reduces pancreatic inflammation in acute pancreatitis through inhibition of the autophagic pathway. Vitamin K3 may be an effective therapeutic strategy against acute pancreatitis.

  4. Comparison of Acute Toxicity of Algal Metabolites Using Bioluminescence Inhibition Assay

    Directory of Open Access Journals (Sweden)

    Hansa Jeswani

    2015-01-01

    Full Text Available Microalgae are reported to degrade hazardous compounds. However, algae, especially cyanobacteria are known to produce secondary metabolites which may be toxic to flora, fauna and human beings. The aim of this study was selection of an appropriate algal culture for biological treatment of biomass gasification wastewater based on acute toxicity considerations. The three algae that were selected were Spirulina sp., Scenedesmus abundans and a fresh water algal consortium. Acute toxicity of the metabolites produced by these algal cultures was tested at the end of log phase using the standard bioluminescence inhibition assay based on Vibrio fischeri NRRLB 11174. Scenedesmus abundans and a fresh water algal consortium dominated by cyanobacteria such as Phormidium, Chroococcus and Oscillatoria did not release much toxic metabolites at the end of log phase and caused only about 20% inhibition in bioluminescence. In comparison, Spirulina sp. released toxic metabolites and caused 50% bioluminescence inhibition at 3/5 times dilution of the culture supernatant (EC50.

  5. Ethanol injected into the hypothalamic arcuate nucleus induces behavioral stimulation in rats: an effect prevented by catalase inhibition and naltrexone.

    Science.gov (United States)

    Pastor, Raúl; Aragon, Carlos M G

    2008-10-01

    It is suggested that some of the behavioral effects of ethanol, including its psychomotor properties, are mediated by beta-endorphin and opioid receptors. Ethanol-induced increases in the release of hypothalamic beta-endorphin depend on the catalasemic conversion of ethanol to acetaldehyde. Here, we evaluated the locomotor activity in rats microinjected with ethanol directly into the hypothalamic arcuate nucleus (ArcN), the main site of beta-endorphin synthesis in the brain and a region with high levels of catalase expression. Intra-ArcN ethanol-induced changes in motor activity were also investigated in rats pretreated with the opioid receptor antagonist, naltrexone (0-2 mg/kg) or the catalase inhibitor 3-amino-1,2,4-triazole (AT; 0-1 g/kg). We found that ethanol microinjections of 64 or 128, but not 256 microg, produced locomotor stimulation. Intra-ArcN ethanol (128 microg)-induced activation was prevented by naltrexone and AT, whereas these compounds did not affect spontaneous activity. The present results support earlier evidence indicating that the ArcN and the beta-endorphinic neurons of this nucleus are necessary for ethanol to induce stimulation. In addition, our data suggest that brain structures that, as the ArcN, are rich in catalase may support the formation of ethanol-derived pharmacologically relevant concentrations of acetaldehyde and, thus be of particular importance for the behavioral effects of ethanol.

  6. Potency of a novel saw palmetto ethanol extract, SPET-085, for inhibition of 5alpha-reductase II.

    Science.gov (United States)

    Pais, Pilar

    2010-08-01

    The nicotinamide adenine dinucleotide phosphate (NADPH)-dependent membrane protein 5alpha-reductase irreversibly catalyses the conversion of testosterone to the most potent androgen, 5alpha-dihydrotestosterone (DHT). In humans, two 5alpha-reductase isoenyzmes are expressed: type I and type II. Type II is found primarily in prostate tissue. Saw palmetto extract (SPE) has been widely used for the treatment of lower urinary tract symptoms secondary to benign prostatic hyperplasia (BPH). The mechanisms of the pharmacological effects of SPE include the inhibition of 5alpha-reductase, among other actions. Clinical studies of SPE have been equivocal, with some showing significant results and others not. These inconsistent results may be due, in part, to varying bioactivities of the SPE used in the studies. The aim of the present study was to determine the in vitro potency of a novel saw palmetto ethanol extract (SPET-085), an inhibitor of the 5alpha-reductase isoenzyme type II, in a cell-free test system. On the basis of the enzymatic conversion of the substrate androstenedione to the 5alpha-reduced product 5alpha-androstanedione, the inhibitory potency was measured and compared to those of finasteride, an approved 5alpha-reductase inhibitor. SPET-085 concentration-dependently inhibited 5alpha-reductase type II in vitro (IC(50)=2.88+/-0.45 microg/mL). The approved 5alpha-reductase inhibitor, finasteride, tested as positive control, led to 61% inhibition of 5alpha-reductase type II. SPET-085 effectively inhibits the enzyme that has been linked to BPH, and the amount of extract required for activity is very low compared to data reported for other extracts. It can be concluded from data in the literature that SPET-085 is as effective as a hexane extract of saw palmetto that exhibited the highest levels of bioactivity, and is more effective than other SPEs tested. This study confirmed that SPET-085 has prostate health-promoting bioactivity that also corresponds favorably to

  7. Inhibition of lipopolysaccharide induced acute inflammation in lung by chlorination

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jinshan; Xue, Jinling; Xu, Bi; Xie, Jiani [Environmental Simulation and Pollution Control State Key Joint Laboratory, School of Environment, Tsinghua University, Beijing 100084 (China); Qiao, Juan, E-mail: qjuan@tsinghua.edu.cn [Department of Chemistry, Tsinghua University, Beijing 100084 (China); Lu, Yun, E-mail: luyun@tsinghua.edu.cn [Environmental Simulation and Pollution Control State Key Joint Laboratory, School of Environment, Tsinghua University, Beijing 100084 (China)

    2016-02-13

    Highlights: • Chlorination is effective to reduce the inflammation inducing capacity of LPS in lung. • LAL-detected endotoxin activity is not correlated to the potency of inflammation induction. • Alkyl chain of LPS was chlorinated in chlorination process. • LPS aggregate size decreases after chlorination. - Abstract: Lipopolysaccharide (LPS, also called endotoxin) is a pro-inflammatory constituent of gram negative bacteria and cyanobacteria, which causes a potential health risk in the process of routine urban application of reclaimed water, such as car wash, irrigation, scenic water refilling, etc. Previous studies indicated that the common disinfection treatment, chlorination, has little effect on endotoxin activity removal measured by Limulus amebocyte lysate (LAL) assay. However, in this study, significant decrease of acute inflammatory effects was observed in mouse lung, while LAL assay still presented a moderate increase of endotoxin activity. To explore the possible mechanisms, the nuclear magnetic resonance (NMR) results showed the chlorination happened in alkyl chain of LPS molecules, which could affect the interaction between LPS and LPS-binding protein. Also the size of LPS aggregates was found to drop significantly after treatment, which could be another results of chlorination caused polarity change. In conclusion, our observation demonstrated that chlorination is effective to reduce the LPS induced inflammation in lung, and it is recommended to use health effect-based methods to assess risk removal of water treatment technologies.

  8. Inhibition of lipopolysaccharide induced acute inflammation in lung by chlorination.

    Science.gov (United States)

    Zhang, Jinshan; Xue, Jinling; Xu, Bi; Xie, Jiani; Qiao, Juan; Lu, Yun

    2016-02-13

    Lipopolysaccharide (LPS, also called endotoxin) is a pro-inflammatory constituent of gram negative bacteria and cyanobacteria, which causes a potential health risk in the process of routine urban application of reclaimed water, such as car wash, irrigation, scenic water refilling, etc. Previous studies indicated that the common disinfection treatment, chlorination, has little effect on endotoxin activity removal measured by Limulus amebocyte lysate (LAL) assay. However, in this study, significant decrease of acute inflammatory effects was observed in mouse lung, while LAL assay still presented a moderate increase of endotoxin activity. To explore the possible mechanisms, the nuclear magnetic resonance (NMR) results showed the chlorination happened in alkyl chain of LPS molecules, which could affect the interaction between LPS and LPS-binding protein. Also the size of LPS aggregates was found to drop significantly after treatment, which could be another results of chlorination caused polarity change. In conclusion, our observation demonstrated that chlorination is effective to reduce the LPS induced inflammation in lung, and it is recommended to use health effect-based methods to assess risk removal of water treatment technologies. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Inhibition of lipopolysaccharide induced acute inflammation in lung by chlorination

    International Nuclear Information System (INIS)

    Zhang, Jinshan; Xue, Jinling; Xu, Bi; Xie, Jiani; Qiao, Juan; Lu, Yun

    2016-01-01

    Highlights: • Chlorination is effective to reduce the inflammation inducing capacity of LPS in lung. • LAL-detected endotoxin activity is not correlated to the potency of inflammation induction. • Alkyl chain of LPS was chlorinated in chlorination process. • LPS aggregate size decreases after chlorination. - Abstract: Lipopolysaccharide (LPS, also called endotoxin) is a pro-inflammatory constituent of gram negative bacteria and cyanobacteria, which causes a potential health risk in the process of routine urban application of reclaimed water, such as car wash, irrigation, scenic water refilling, etc. Previous studies indicated that the common disinfection treatment, chlorination, has little effect on endotoxin activity removal measured by Limulus amebocyte lysate (LAL) assay. However, in this study, significant decrease of acute inflammatory effects was observed in mouse lung, while LAL assay still presented a moderate increase of endotoxin activity. To explore the possible mechanisms, the nuclear magnetic resonance (NMR) results showed the chlorination happened in alkyl chain of LPS molecules, which could affect the interaction between LPS and LPS-binding protein. Also the size of LPS aggregates was found to drop significantly after treatment, which could be another results of chlorination caused polarity change. In conclusion, our observation demonstrated that chlorination is effective to reduce the LPS induced inflammation in lung, and it is recommended to use health effect-based methods to assess risk removal of water treatment technologies.

  10. Mutation of the inhibitory ethanol site in GABAA ρ1 receptors promotes tolerance to ethanol-induced motor incoordination.

    Science.gov (United States)

    Blednov, Yuri A; Borghese, Cecilia M; Ruiz, Carlos I; Cullins, Madeline A; Da Costa, Adriana; Osterndorff-Kahanek, Elizabeth A; Homanics, Gregg E; Harris, R Adron

    2017-09-01

    Genes encoding the ρ1/2 subunits of GABA A receptors have been associated with alcohol (ethanol) dependence in humans, and ρ1 was also shown to regulate some of the behavioral effects of ethanol in animal models. Ethanol inhibits GABA-mediated responses in wild-type (WT) ρ1, but not ρ1(T6'Y) mutant receptors expressed in Xenopus laevis oocytes, indicating the presence of an inhibitory site for ethanol in the second transmembrane helix. In this study, we found that ρ1(T6'Y) receptors expressed in oocytes display overall normal responses to GABA, the endogenous GABA modulator (zinc), and partial agonists (β-alanine and taurine). We generated ρ1 (T6'Y) knockin (KI) mice using CRISPR/Cas9 to test the behavioral importance of the inhibitory actions of ethanol on this receptor. Both ρ1 KI and knockout (KO) mice showed faster recovery from acute ethanol-induced motor incoordination compared to WT mice. Both KI and KO mutant strains also showed increased tolerance to motor impairment produced by ethanol. The KI mice did not differ from WT mice in other behavioral actions, including ethanol intake and preference, conditioned taste aversion to ethanol, and duration of ethanol-induced loss of righting reflex. WT and KI mice did not differ in levels of ρ1 or ρ2 mRNA in cerebellum or in ethanol clearance. Our findings indicate that the inhibitory site for ethanol in GABA A ρ1 receptors regulates acute functional tolerance to moderate ethanol intoxication. We note that low sensitivity to alcohol intoxication has been linked to risk for development of alcohol dependence in humans. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Ethanol Extract of Mylabris phalerata Inhibits M2 Polarization Induced by Recombinant IL-4 and IL-13 in Murine Macrophages

    Directory of Open Access Journals (Sweden)

    Hwan-Suck Chung

    2017-01-01

    Full Text Available Mylabris phalerata (MP is an insect used in oriental herbal treatments for tumor, tinea infections, and stroke. Recent studies have shown that tumor-associated macrophages (TAM have detrimental roles such as tumor progression, angiogenesis, and metastasis. Although TAM has phenotypes and characteristics in common with M2-polarized macrophages, M1 macrophages have tumor suppression and immune stimulation effects. Medicines polarizing macrophages to M1 have been suggested to have anticancer effects via the modulation of the tumor microenvironment. In this line, we screened oriental medicines to find M1 polarizing medicines in M2-polarized macrophages. Among approximately 400 types of oriental medicine, the ethanol extract of M. phalerata (EMP was the most proficient in increasing TNF-α secretion in M2-polarized macrophages and TAM. Although EMP enhanced the levels of an M1 cytokine (TNF-α and a marker (CD86, it significantly reduced the levels of an M2 marker (arginase-1 in M2-polarized macrophages. In addition, EMP-treated macrophages increased the levels of M1 markers (Inos and Tnf-α and reduced those of the enhanced M2 markers (Fizz-1, Ym-1, and arginase-1. EMP-treated macrophages significantly reduced Lewis lung carcinoma cell migration in a transwell migration assay and inhibited EL4-luc2 lymphoma proliferation. In our mechanism study, EMP was found to inhibit STAT3 phosphorylation in M2-polarized macrophages. These results suggest that EMP is effective in treating TAM-mediated tumor progression and metastasis.

  12. Inhibitor y effect on key enzymes relevant to acute type-2 diabetes and antioxidative activity of ethanolic extract of Artocarpus heterophyllus stem bark

    Directory of Open Access Journals (Sweden)

    Basiru Olaitan Ajiboye

    2016-09-01

    Full Text Available Objective: To investigate the in vitro antioxidant activity of ethanolic extract of Artocarpus heterophyllus (A. heterophyllus stem bark and its inhibitory effect on a-amylase and a-glucosidase. Methods: The A. heterophyllus stem bark was extracted using methanol and tested for antioxidative activity. Results: The results revealed that the ethanolic extract has polyphenolics and free radical scavenging compounds which were significantly higher (P < 0.05 than their respective standard, at concentration dependent manner. The ethanolic extract of A. heterophyllus stem bark was observed to show inhibitory activities on a-amylase and a-glucosidase with IC50 of (4.18 ± 0.01 and (3.53 ± 0.03 mg/mL, respectively. The Lineweaver-Burk plot revealed that ethanolic extract of A. heterophyllus stem bark exhibited non-competitive inhibition for a-amylase and uncompetitive inhibition for a-glucosidase activities. Also, gas chromatography–mass spectrometry showed the presence of different bioactive compounds in extract. Conclusions: Therefore, it can be inferred from this study that ethanolic extract of A. heterophyllus stem bark may be useful in the management of diabetes mellitus probably due to bioactive compounds observed in the extract.

  13. β-Adrenergic induction of lipolysis in hepatocytes is inhibited by ethanol exposure.

    Science.gov (United States)

    Schott, Micah B; Rasineni, Karuna; Weller, Shaun G; Schulze, Ryan J; Sletten, Arthur C; Casey, Carol A; McNiven, Mark A

    2017-07-14

    In liver steatosis ( i.e. fatty liver), hepatocytes accumulate many large neutral lipid storage organelles known as lipid droplets (LDs). LDs are important in the maintenance of energy homeostasis, but the signaling mechanisms that stimulate LD metabolism in hepatocytes are poorly defined. In adipocytes, catecholamines target the β-adrenergic (β-AR)/cAMP pathway to activate cytosolic lipases and induce their recruitment to the LD surface. Therefore, the goal of this study was to determine whether hepatocytes, like adipocytes, also undergo cAMP-mediated lipolysis in response to β-AR stimulation. Using primary rat hepatocytes and human hepatoma cells, we found that treatment with the β-AR agent isoproterenol caused substantial LD loss via activation of cytosolic lipases adipose triglyceride lipase (ATGL) and hormone-sensitive lipase (HSL). β-Adrenergic stimulation rapidly activated PKA, which led to the phosphorylation of ATGL and HSL and their recruitment to the LD surface. To test whether this β-AR-dependent lipolysis pathway was altered in a model of alcoholic fatty liver, primary hepatocytes from rats fed a 6-week EtOH-containing Lieber-DeCarli diet were treated with cAMP agonists. Compared with controls, EtOH-exposed hepatocytes showed a drastic inhibition in β-AR/cAMP-induced LD breakdown and the phosphorylation of PKA substrates, including HSL. This observation was supported in VA-13 cells, an EtOH-metabolizing human hepatoma cell line, which displayed marked defects in both PKA activation and isoproterenol-induced ATGL translocation to the LD periphery. In summary, these findings suggest that β-AR stimulation mobilizes cytosolic lipases for LD breakdown in hepatocytes, and perturbation of this pathway could be a major consequence of chronic EtOH insult leading to fatty liver.

  14. Lithium-mediated protection against ethanol neurotoxicity

    Directory of Open Access Journals (Sweden)

    Jia Luo

    2010-06-01

    Full Text Available Lithium has long been used as a mood stabilizer in the treatment of manic-depressive (bipolar disorder. Recent studies suggest that lithium has neuroprotective properties and may be useful in the treatment of acute brain injuries such as ischemia and chronic neurodegenerative diseases such as Alzheimer’s disease, Parkinson’s disease, Huntington’s disease and amyotrophic lateral sclerosis. One of the most important neuroprotective properties of lithium is its anti-apoptotic action. Ethanol is a neuroteratogen and fetal alcohol spectrum disorders (FASD are caused by maternal ethanol exposure during pregnancy. FASD is the leading cause of mental retardation. Ethanol exposure causes neuroapoptosis in the developing brain. Ethanol-induced loss of neurons in the central nervous system underlies many of the behavioral deficits observed in FASD. Excessive alcohol consumption is also associated with Wernicke–Korsakoff syndrome and neurodegeneration in the adult brain. Recent in vivo and in vitro studies indicate that lithium is able to ameliorate ethanol-induced neuroapoptosis. Lithium is an inhibitor of glycogen synthase kinase 3 (GSK3 which has recently been identified as a mediator of ethanol neurotoxicity. Lithium’s neuroprotection may be mediated by its inhibition of GSK3. In addition, lithium also affects many other signaling proteins and pathways that regulate neuronal survival and differentiation. This review discusses the recent evidence of lithium-mediated protection against ethanol neurotoxicity and potential underlying mechanisms.

  15. Inhibitory effects of ethanol on phosphatidylinositol breakdown in pancreatic acini

    International Nuclear Information System (INIS)

    Towner, S.J.; Peppin, J.F.; Tsukamoto, H.

    1986-01-01

    Recently the physiological relationship between the phospholipid effect and secretagogue-induced cellular function has begun to be understood. In this study, the authors investigated acute and chronic effects of ethanol on phosphatidylinositol (PI) synthesis and breakdown in pancreatic acini. Five pairs of male Wistar rats were intragastrically infused for 30 days with high fat diet (25% total calories) plus ethanol or isocaloric dextrose. After intoxication, isolated in HEPES media, followed by 30 min incubation with CCK-8 (0, 100, 300 or 600 pM) and ethanol (0 or 100 mM). Acinar lipids were extracted and counted for labeled PI. Incorporation of 3 H-inositol into alcoholic acinar PI was reduced to 38.2% of that in controls. A percent maximal PI break down by CCK-8 was similar in the two groups (13-24% of basal). However, the magnitude of PI breakdown was markedly lower in alcoholic acini (482 vs 1081 dpm) due to the decreased PI synthesis rate. The presence of 100 mM ethanol in the media further inhibited the breakdown by 50% in this group. These results strongly indicate that chronic ethanol intoxication inhibits PI synthesis and breakdown in pancreatic acini, and that this inhibition can be potentiated by acute ethanol administration

  16. Acute mTOR inhibition induces insulin resistance and alters substrate utilization in vivo

    DEFF Research Database (Denmark)

    Kleinert, Maximilian; Sylow, Lykke; Fazakerley, Daniel J

    2014-01-01

    , but not rapamycin reduced insulin-stimulated glucose uptake into incubated muscles, despite normal GLUT4 translocation in muscle cells. AZD8055 inhibited glycolysis in MEF cells. Abrogation of mTORC2 activity by SIN1 deletion impaired glycolysis and AZD8055 had no effect in SIN1 KO MEFs. Re-expression of wildtype...... SIN1 rescued glycolysis. Glucose intolerance following AZD8055 administration was absent in mice lacking the mTORC2 subunit Rictor in muscle, and in vivo glucose uptake into Rictor-deficient muscle was reduced despite normal Akt activity. Taken together, acute mTOR inhibition is detrimental to glucose...

  17. Effect of acute ethanol on beta-endorphin secretion from rat fetal hypothalamic neurons in primary cultures

    Energy Technology Data Exchange (ETDEWEB)

    Sarkar, D.K.; Minami, S. (Washington State Univ., Pullman (USA))

    1990-01-01

    To characterize the effect of ethanol on the hypothalamic {beta}-endorphin-containing neurons, rat fetal hypothalamic neurons were maintained in primary culture, and the secretion of {beta}-endorphin ({beta}-EP) was determined after ethanol challenges. Constant exposure to ethanol at doses of 6-50 mM produced a dose-dependent increase in basal secretion of {beta}-EP from these cultured cells. These doses of ethanol did not produce any significant effect on cell viability, DNA or protein content. The stimulated secretion of {beta}-EP following constant ethanol exposure is short-lasting. However, intermittent ethanol exposures maintained the ethanol stimulatory action on {beta}-EP secretion for a longer time. The magnitude of the {beta}-EP response to 50 mM ethanol is similar to that of the {beta}-EP response to 56 mM of potassium. Ethanol-stimulated {beta}-EP secretion required extracellular calcium and was blocked by a calcium channel blocker; a sodium channel blocker did not affect ethanol-stimulated secretion. These results suggest that the neuron culture system is a useful model for studying the cellular mechanisms involved in the ethanol-regulated hypothalamic opioid secretion.

  18. Inhibition of Group IIA Secretory Phospholipase A2 and its Inflammatory Reactions in Mice by Ethanolic Extract of Andrographis paniculata, a Well-known Medicinal Food

    Science.gov (United States)

    Kishore, V.; Yarla, N. S.; Zameer, F.; Nagendra Prasad, M. N.; Santosh, M. S.; More, S. S.; Rao, D. G.; Dhananjaya, Bhadrapura Lakkappa

    2016-01-01

    Andrographis paniculata Nees is an important medicinal plant found in the tropical regions of the world, which has been traditionally used in Indian and Chinese medicinal systems. It is also used as medicinal food. A. paniculata is found to exhibit anti-inflammatory activities; however, its inhibitory potential on inflammatory Group IIA phospholipases A2 (PLA2) and its associated inflammatory reactions are not clearly understood. The aim of the present study is to evaluate the inhibitory/neutralizing potential of ethanolic extract of A. paniculata on the isolated inflammatory PLA2 (VRV-PL-VIIIa) from Daboii rusellii pulchella (belonging to Group IIA inflammatory secretory PLA2 [sPLA2]) and its associated edema-induced activities in Swiss albino mice. A. paniculata extract dose dependently inhibited the Group IIA sPLA2 enzymatic activity with an IC50 value of 10.3 ± 0.5 μg/ml. Further, the extract dose dependently inhibited the edema formation, when co-injected with enzyme indicating that a strong correlation exists between lipolytic and pro-inflammatory activities of the enzyme. In conclusion, results of this study shows that the ethanolic extract of A. paniculata effectively inhibits Group IIA sPLA2 and its associated inflammatory activities, which substantiate its anti-inflammatory properties. The results of the present study warranted further studies to develop bioactive compound (s) in ethanolic extract of A. paniculata as potent therapeutic agent (s) for inflammatory diseases. SUMMARY This study emphasis the anti-inflammatory effect of A. paniculata by inhibiting the inflammatory Group IIA sPLA2 and its associated inflammatory activities such as edema. It was found that there is a strong correlation between lipolytic activity and pro-inflammatory activity inhibition. Therefore, the study suggests that the extract processes potent anti-inflammatory agents, which could be developed as a potential therapeutic agent against inflammatory and related diseases

  19. Prediction of acute inhalation toxicity using in vitro lung surfactant inhibition

    DEFF Research Database (Denmark)

    Sørli, Jorid Birkelund; Huang, Yishi; Da Silva, Emilie

    2018-01-01

    impregnation products using the constant flow through set-up of the constrained drop surfactometer to determine if they inhibited LS function or not. The same products were tested in a mouse inhalation bioassay to determine their toxicity in vivo. The sensitivity was 100%, i.e. the in vitro method predicted...... the chemical composition of the products and induction of toxicity. The currently accepted method for determination of acute inhalation toxicity is based on experiments on animals; it is time-consuming, expensive and causes stress for the animals. Impregnation products are present on the market in large...... numbers and amounts and exhibit great variety. Therefore, an alternative method to screen for acute inhalation toxicity is needed. The aim of our study was to determine if inhibition of lung surfactant by impregnation products in vitro could accurately predict toxicity in vivo in mice. We tested 21...

  20. Beyond the "First Hit": Marked Inhibition by N-Acetyl Cysteine of Chronic Ethanol Intake But Not of Early Ethanol Intake. Parallel Effects on Ethanol-Induced Saccharin Motivation.

    Science.gov (United States)

    Quintanilla, María Elena; Rivera-Meza, Mario; Berríos-Cárcamo, Pablo; Salinas-Luypaert, Catalina; Herrera-Marschitz, Mario; Israel, Yedy

    2016-05-01

    A number of studies have shown that acetaldehyde synthesized in the brain is necessary to induce ethanol (EtOH) reinforcement in naïve animals (acquisition phase). However, after chronic intake is achieved (maintenance phase), EtOH intake becomes independent of acetaldehyde generation or its levels. Glutamate has been reported to be associated with the maintenance of chronic EtOH intake. The levels of brain extracellular glutamate are modulated by 2 glial processes: glutamate reabsorption via an Na(+) -glutamate transporter (GLT1) and a cystine-glutamate exchanger. Chronic EtOH intake lowers GLT1 levels and increases extracellular glutamate. The administration of N-acetyl cysteine (NAC), a precursor of cystine, has been shown to reduce the relapse of several drugs of abuse, while NAC has not been tested on chronic EtOH intake or on EtOH's influence on the motivation for another drug. These were investigated in the present study. (i) Rats bred for their high EtOH intake were allowed access to 10% EtOH and water up to 87 days. NAC was administered (30 and 60 mg/kg daily, intraperitoneally) for 14 consecutive days, either during the acquisition phase or the maintenance phase of EtOH drinking. (ii) In additional experiments, rats were allowed EtOH (10%) and water access for 61 days, after which EtOH was replaced by saccharin (0.3%) to determine both if chronic EtOH consumption influences saccharin intake and whether NAC modifies the post chronic EtOH saccharin intake. NAC did not influence the acquisition ("first hit") of chronic EtOH intake, but greatly inhibited (60 to 70%; p intake when NAC was administered to animals that were consuming EtOH chronically. NAC did not influence saccharin intake in naïve animals. In animals that had consumed EtOH chronically and were thereafter offered a saccharin solution (0.3%), saccharin intake increased over 100% versus that of EtOH-untreated animals, an effect that was fully suppressed by NAC. N-acetyl cysteine, a drug

  1. Acute Stress Suppresses Synaptic Inhibition and Increases Anxiety via Endocannabinoid Release in the Basolateral Amygdala.

    Science.gov (United States)

    Di, Shi; Itoga, Christy A; Fisher, Marc O; Solomonow, Jonathan; Roltsch, Emily A; Gilpin, Nicholas W; Tasker, Jeffrey G

    2016-08-10

    Stress and glucocorticoids stimulate the rapid mobilization of endocannabinoids in the basolateral amygdala (BLA). Cannabinoid receptors in the BLA contribute to anxiogenesis and fear-memory formation. We tested for rapid glucocorticoid-induced endocannabinoid regulation of synaptic inhibition in the rat BLA. Glucocorticoid application to amygdala slices elicited a rapid, nonreversible suppression of spontaneous, but not evoked, GABAergic synaptic currents in BLA principal neurons; the effect was also seen with a membrane-impermeant glucocorticoid, but not with intracellular glucocorticoid application, implicating a membrane-associated glucocorticoid receptor. The glucocorticoid suppression of GABA currents was not blocked by antagonists of nuclear corticosteroid receptors, or by inhibitors of gene transcription or protein synthesis, but was blocked by inhibiting postsynaptic G-protein activity, suggesting a postsynaptic nongenomic steroid signaling mechanism that stimulates the release of a retrograde messenger. The rapid glucocorticoid-induced suppression of inhibition was prevented by blocking CB1 receptors and 2-arachidonoylglycerol (2-AG) synthesis, and it was mimicked and occluded by CB1 receptor agonists, indicating it was mediated by the retrograde release of the endocannabinoid 2-AG. The rapid glucocorticoid effect in BLA neurons in vitro was occluded by prior in vivo acute stress-induced, or prior in vitro glucocorticoid-induced, release of endocannabinoid. Acute stress also caused an increase in anxiety-like behavior that was attenuated by blocking CB1 receptor activation and inhibiting 2-AG synthesis in the BLA. Together, these findings suggest that acute stress causes a long-lasting suppression of synaptic inhibition in BLA neurons via a membrane glucocorticoid receptor-induced release of 2-AG at GABA synapses, which contributes to stress-induced anxiogenesis. We provide a cellular mechanism in the basolateral amygdala (BLA) for the rapid stress

  2. Pharmacological TLR4 Inhibition Protects against Acute and Chronic Fat-Induced Insulin Resistance in Rats.

    Science.gov (United States)

    Zhang, Ning; Liang, Hanyu; Farese, Robert V; Li, Ji; Musi, Nicolas; Hussey, Sophie E

    2015-01-01

    To evaluate whether pharmacological TLR4 inhibition protects against acute and chronic fat-induced insulin resistance in rats. For the acute experiment, rats received a TLR4 inhibitor [TAK-242 or E5564 (2x5 mg/kg i.v. bolus)] or vehicle, and an 8-h Intralipid (20%, 8.5 mg/kg/min) or saline infusion, followed by a two-step hyperinsulinemic-euglycemic clamp. For the chronic experiment, rats were subcutaneously implanted with a slow-release pellet of TAK-242 (1.5 mg/d) or placebo. Rats then received a high fat diet (HFD) or a low fat control diet (LFD) for 10 weeks, followed by a two-step insulin clamp. Acute experiment; the lipid-induced reduction (18%) in insulin-stimulated glucose disposal (Rd) was attenuated by TAK-242 and E5564 (the effect of E5564 was more robust), suggesting improved peripheral insulin action. Insulin was able to suppress hepatic glucose production (HGP) in saline- but not lipid-treated rats. TAK-242, but not E5564, partially restored this effect, suggesting improved HGP. Chronic experiment; insulin-stimulated Rd was reduced ~30% by the HFD, but completely restored by TAK-242. Insulin could not suppress HGP in rats fed a HFD and TAK-242 had no effect on HGP. Pharmacological TLR4 inhibition provides partial protection against acute and chronic fat-induced insulin resistance in vivo.

  3. Effects of standard ethanolic extract from Erythrina velutina in acute cerebral ischemia in mice.

    Science.gov (United States)

    Rodrigues, Francisca Taciana Sousa; de Sousa, Caren Nádia Soares; Ximenes, Naiara Coelho; Almeida, Anália Barbosa; Cabral, Lucas Moraes; Patrocínio, Cláudio Felipe Vasconcelos; Silva, Aline Holanda; Leal, Luzia Kalyne Almeida Moreira; Honório Júnior, José Eduardo Ribeiro; Macedo, Danielle; Vasconcelos, Silvânia Maria Mendes

    2017-12-01

    The objective of this study was to verify a possible neuroprotective effect of the ethanolic extract of Erythrina velutina (EEEV). Male Swiss mice were submitted to transient cerebral ischemia by occlusion of both carotid arteries for 30 min and treated for 5 days with EEEV (200 or 400 mg/kg) or Memantine (MEM) 10 mg/kg, with initiation of treatment 2 or 24 h after Ischemia. On the 6th day after the induction of ischemia, the animals were submitted to evaluation of locomotor activity and memory and then sacrificed. The brains were dissected for the removal of the prefrontal cortex (PFC), hippocampus (HC) and striatum (ST) for determination of amino acid concentrations. In the step down and Y-maze tests, ischemia caused damage to the animals and treatment with EEEV or MEM reversed this effect. The animals submitted to ischemia also showed memory deficit in the object recognition test, an effect that was reverted by EEEV400 and MEM10. Amino acid dosage showed an increase in excitatory amino acid concentrations in the PFC of the ischemic animals and this effect was reversed by the treatment with EEEV400/24H. Regarding the inhibitory amino acids, ischemia caused an increase of taurine in the PFC while treatment with MEM10/24H or EEEV400/24H reversed this effect. In HC, an increase in excitatory amino acids was also observed in ischemiated animals having treatment with EEEV200/2H or EEEV400/24H reversed this effect. Similar effect was also observed in the same area in relation to the inhibitory amino acids with treatment with MEM10/24H or EEEV400/24H. In the ST, ischemia was also able to cause an increase in excitatory amino acids that was reversed more efficiently by the treatments with MEM10/24H and EEEV200. Also in this area, an increase of taurine and GABA was observed and only the treatment with EEEV200/2H showed a reversion of this effect. In view of these findings, EEEV presents a neuroprotective effect possibly due to its action on amino acid

  4. GSK-3 Inhibition Sensitizes Acute Myeloid Leukemia Cells to 1,25D-Mediated Differentiation

    Science.gov (United States)

    Gupta, Kalpana; Stefan, Tammy; Ignatz-Hoover, James; Moreton, Stephen; Parizher, Gary; Saunthararajah, Yogen; Wald, David N.

    2017-01-01

    1,25-dihydroxyvitamin D3 (1,25D), the biologically active form of vitamin D, is widely considered a promising therapy for acute myeloid leukemia (AML) based on its ability to drive differentiation of leukemic cells. However, clinical trials have been disappointing in part to dose-limiting hypercalcemia. Here we show how inhibiting glycogen synthase kinase 3 (GSK3) can improve the differentiation response of AML cells to 1,25D-mediated differentiation. GSK3 inhibition in AML cells enhanced the differentiating effects of low concentrations of 1,25D. In addition, GSK3 inhibition augmented the ability of 1,25D to induce irreversible growth inhibition and slow the progression of AML in mouse models. Mechanistic studies revealed that GSK3 inhibition led to the hyperphosphorylation of the vitamin D receptor (VDR), enabling an interaction between VDR and the coactivator, SRC-3 (NCOA3), thereby increasing transcriptional activity. We also found that activation of JNK-mediated pathways in response to GSK3 inhibition contributed to the potentiation of 1,25D-induced differentiation. Taken together, our findings offer a preclinical rationale to explore the repositioning of GSK3 inhibitors to enhance differentiation-based therapy for AML treatment. PMID:26964622

  5. The acute effects of MDMA and ethanol administration on electrophysiological correlates of performance monitoring in healthy volunteers.

    Science.gov (United States)

    Spronk, D B; Dumont, G J H; Verkes, R J; De Bruijn, E R A

    2014-07-01

    Knowing how commonly used drugs affect performance monitoring is of great importance, because drug use is often associated with compromised behavioral control. Two of the most commonly used recreational drugs in the western world, 3,4-methylenedioxymethamphetamine (MDMA or "ecstasy") and ethanol (alcohol), are also often used in combination. The error-related negativity (ERN), correct-related negativity (CRN), and N2 are electrophysiological indices of performance monitoring. The present study aimed to investigate how ethanol, MDMA, and their co-administration affect performance monitoring as indexed by the electrophysiological correlates. Behavioral and EEG data were obtained from 14 healthy volunteers during execution of a speeded choice-reaction-time task after administration of ethanol, MDMA, and combined ethanol and MDMA, in a double-blind, placebo-controlled, randomized crossover design. Ethanol significantly reduced ERN amplitudes, while administration of MDMA did not affect the ERN. Co-administration of MDMA and ethanol did not further impair nor ameliorate the effect of ethanol alone. No drug effects on CRN nor N2 were observed. A decreased ERN following ethanol administration is in line with previous work and offers further support for the impairing effects of alcohol intoxication on performance monitoring. This impairment may underlie maladaptive behavior in people who are under influence. Moreover, these data demonstrate for the first time that MDMA does not affect performance monitoring nor does it interact with ethanol in this process. These findings corroborate the notion that MDMA leaves central executive functions relatively unaffected.

  6. Pharmacokinetic and pharmacodynamic drug interactions with ethanol (alcohol).

    Science.gov (United States)

    Chan, Lingtak-Neander; Anderson, Gail D

    2014-12-01

    Ethanol (alcohol) is one of the most widely used legal drugs in the world. Ethanol is metabolized by alcohol dehydrogenase (ADH) and the cytochrome P450 (CYP) 2E1 drug-metabolizing enzyme that is also responsible for the biotransformation of xenobiotics and fatty acids. Drugs that inhibit ADH or CYP2E1 are the most likely theoretical compounds that would lead to a clinically significant pharmacokinetic interaction with ethanol, which include only a limited number of drugs. Acute ethanol primarily alters the pharmacokinetics of other drugs by changing the rate and extent of absorption, with more limited effects on clearance. Both acute and chronic ethanol use can cause transient changes to many physiologic responses in different organ systems such as hypotension and impairment of motor and cognitive functions, resulting in both pharmacokinetic and pharmacodynamic interactions. Evaluating drug interactions with long-term use of ethanol is uniquely challenging. Specifically, it is difficult to distinguish between the effects of long-term ethanol use on liver pathology and chronic malnutrition. Ethanol-induced liver disease results in decreased activity of hepatic metabolic enzymes and changes in protein binding. Clinical studies that include patients with chronic alcohol use may be evaluating the effects of mild cirrhosis on liver metabolism, and not just ethanol itself. The definition of chronic alcohol use is very inconsistent, which greatly affects the quality of the data and clinical application of the results. Our study of the literature has shown that a significantly higher volume of clinical studies have focused on the pharmacokinetic interactions of ethanol and other drugs. The data on pharmacodynamic interactions are more limited and future research addressing pharmacodynamic interactions with ethanol, especially regarding the non-central nervous system effects, is much needed.

  7. Prediction of acute inhalation toxicity using in vitro lung surfactant inhibition.

    Science.gov (United States)

    Sørli, Jorid B; Huang, Yishi; Da Silva, Emilie; Hansen, Jitka S; Zuo, Yi Y; Frederiksen, Marie; Nørgaard, Asger W; Ebbehøj, Niels E; Larsen, Søren T; Hougaard, Karin S

    2018-01-01

    Private consumers and professionals may experience acute inhalation toxicity after inhaling aerosolized impregnation products. The distinction between toxic and non-toxic products is difficult to make for producers and product users alike, as there is no clearly described relationship between the chemical composition of the products and induction of toxicity. The currently accepted method for determination of acute inhalation toxicity is based on experiments on animals; it is time-consuming, expensive and causes stress for the animals. Impregnation products are present on the market in large numbers and amounts and exhibit great variety. Therefore, an alternative method to screen for acute inhalation toxicity is needed. The aim of our study was to determine if inhibition of lung surfactant by impregnation products in vitro could accurately predict toxicity in vivo in mice. We tested 21 impregnation products using the constant flow through set-up of the constrained drop surfactometer to determine if the products inhibited surfactant function or not. The same products were tested in a mouse inhalation bioassay to determine their toxicity in vivo. The sensitivity was 100%, i.e., the in vitro method predicted all the products that were toxic for mice to inhale. The specificity of the in vitro test was 63%, i.e., the in vitro method found three false positives in the 21 tested products. Six of the products had been involved in accidental human inhalation where they caused acute inhalation toxicity. All of these six products inhibited lung surfactant function in vitro and were toxic to mice.

  8. Inhibition of HDAC6 protects against rhabdomyolysis-induced acute kidney injury.

    Science.gov (United States)

    Shi, Yingfeng; Xu, Liuqing; Tang, Jinhua; Fang, Lu; Ma, Shuchen; Ma, Xiaoyan; Nie, Jing; Pi, Xiaoling; Qiu, Andong; Zhuang, Shougang; Liu, Na

    2017-03-01

    Histone deacetylase 6 (HDAC6) inhibition has been reported to protect against ischemic stroke and prolong survival after sepsis in animal models. However, it remains unknown whether HDAC6 inhibition offers a renoprotective effect after acute kidney injury (AKI). In this study, we examined the effect of tubastatin A (TA), a highly selective inhibitor of HDAC6, on AKI in a murine model of glycerol (GL) injection-induced rhabdomyolysis. Following GL injection, the mice developed severe acute tubular injury as indicated by renal dysfunction; expression of neutrophil gelatinase-associated lipocalin (NGAL), an injury marker of renal tubules; and an increase of TdT-mediated dUTP nick-end labeling (TUNEL)-positive tubular cells. These changes were companied by increased HDAC6 expression in the cytoplasm of renal tubular cells. Administration of TA significantly reduced serum creatinine and blood urea nitrogen levels as well as attenuated renal tubular damage in injured kidneys. HDAC6 inhibition also resulted in decreased expression of NGAL, reduced apoptotic cell, and inactivated caspase-3 in the kidney after acute injury. Moreover, injury to the kidney increased phosphorylation of nuclear factor (NF)-κB and expression of multiple cytokines/chemokines including tumor necrotic factor-α and interleukin-6 and monocyte chemoattractant protein-1, as well as macrophage infiltration. Treatment with TA attenuated all those responses. Finally, HDAC6 inhibition reduced the level of oxidative stress by suppressing malondialdehyde (MDA) and preserving expression of superoxide dismutase (SOD) in the injured kidney. Collectively, these data indicate that HDAC6 contributes to the pathogenesis of rhabdomyolysis-induced AKI and suggest that HDAC6 inhibitors have therapeutic potential for AKI treatment. Copyright © 2017 the American Physiological Society.

  9. Edaravone attenuates brain damage in rats after acute CO poisoning through inhibiting apoptosis and oxidative stress.

    Science.gov (United States)

    Li, Qin; Bi, Ming Jun; Bi, Wei Kang; Kang, Hai; Yan, Le Jing; Guo, Yun-Liang

    2016-03-01

    Acute carbon monoxide (CO) poisoning is the most common cause of death from poisoning all over the world and may result in neuropathologic and neurophysiologic changes. Acute brain damage and delayed encephalopathy are the most serious complication, yet their pathogenesis is poorly understood. The present study aimed to evaluate the neuroprotective effects of Edaravone against apoptosis and oxidative stress after acute CO poisoning. The rat model of CO poisoning was established in a hyperbaric oxygen chamber by exposed to CO. Ultrastructure changes were observed by transmission electron microscopy (TEM). TUNEL stain was used to assess apoptosis. Immunohistochemistry and immunofluorescence double stain were used to evaluate the expression levels of heme oxygenase-1 (HO-1) and nuclear factor erythroid 2-related factor 2 (Nrf-2) protein and their relationship. By dynamically monitored the carboxyhemoglobin (HbCO) level in blood, we successfully established rat model of severe CO poisoning. Ultrastructure changes, including chromatin condensation, cytoplasm dissolution, vacuoles formation, nucleus membrane and cell organelles decomposition, could be observed after CO poisoning. Edaravone could improve the ultrastructure damage. CO poisoning could induce apoptosis. Apoptotic cells were widely distributed in cortex, striatum and hippocampus. Edaravone treatment attenuated neuronal apoptosis as compared with the poisoning group (P Edaravone, the expression of HO-1 and Nrf-2 significantly increased (P Edaravone may inhibit apoptosis, activate the Keapl-Nrf/ARE pathway, and thus improve the ultrastructure damage and neurophysiologic changes following acute CO poisoning. © 2014 Wiley Periodicals, Inc.

  10. PARP Inhibition Prevents Ethanol-Induced Neuroinflammatory Signaling and Neurodegeneration in Rat Adult-Age Brain Slice Cultures

    Science.gov (United States)

    Tajuddin, Nuzhath; Kim, Hee-Yong

    2018-01-01

    Using rat adult-age hippocampal-entorhinal cortical (HEC) slice cultures, we examined the role of poly [ADP-ribose] polymerase (PARP) in binge ethanol’s brain inflammatory and neurodegenerative mechanisms. Activated by DNA strand breaks, PARP (principally PARP1 in the brain) promotes DNA repair via poly [ADP-ribose] (PAR) products, but PARP overactivation triggers regulated neuronal necrosis (e.g., parthanatos). Previously, we found that brain PARP1 levels were upregulated by neurotoxic ethanol binges in adult rats and HEC slices, and PARP inhibitor PJ34 abrogated slice neurodegeneration. Binged HEC slices also exhibited increased Ca+2-dependent phospholipase A2 (PLA2) isoenzymes (cPLA2 IVA and sPLA2 IIA) that mobilize proinflammatory ω6 arachidonic acid (ARA). We now find in 4-day–binged HEC slice cultures (100 mM ethanol) that PARP1 elevations after two overnight binges precede PAR, cPLA2, and sPLA2 enhancements by 1 day and high-mobility group box-1 (HMGB1), an ethanol-responsive alarmin that augments proinflammatory cytokines via toll-like receptor-4 (TLR4), by 2 days. After verifying that PJ34 effectively blocks PARP activity (↑PAR), we demonstrated that, like PJ34, three other PARP inhibitors—olaparib, veliparib, and 4-aminobenzamide—provided neuroprotection from ethanol. Importantly, PJ34 and olaparib also prevented ethanol’s amplification of the PLA2 isoenzymes, and two PLA2 inhibitors were neuroprotective—thus coupling PARP to PLA2, with PLA2 activity promoting neurodegeneration. Also, PJ34 and olaparib blocked ethanol-induced HMGB1 elevations, linking brain PARP induction to TLR4 activation. The results provide evidence in adult brains that induction of PARP1 may mediate dual neuroinflammatory pathways (PLA2→phospholipid→ARA and HMGB1→TLR4→proinflammatory cytokines) that are complicit in binge ethanol-induced neurodegeneration. PMID:29339456

  11. Evaluation of the acute dermal exposure of the ethanolic and hexanic extracts from leaves of Schinus molle var. areira L. in rats.

    Science.gov (United States)

    Bras, Cristina; Gumilar, Fernanda; Gandini, Norberto; Minetti, Alejandra; Ferrero, Adriana

    2011-10-11

    Schinus molle var. areira L. (Anacardiaceae) is employed in herbal medicine for many conditions, including respiratory, urinary and menstrual disorders, and as a digestive stimulant, diuretic, astringent and antidepressant. It is also known for its topical use as wound healer, antiseptic, for skin disorders and as repellent and insecticide. In the present work, the acute dermal exposure to ethanolic and hexanic extracts from leaves of Schinus molle var. areira was studied in rats. A single dose of 2000 mg/kg of body weight of ethanolic and hexanic extracts from leaves was applied on the shaved skin of male and female rats. After 24h of exposure, the patch was removed and any sign of irritation was recorded. Behavioral and functional parameters in a functional observational battery and motor activity in an open field were assessed after the exposure to the extracts. Then, after 14 days of observation, animals were retested. Finally, histopathological studies were conducted on several organs. Slight signs of erythema and edema were observed in the skin site of exposure, but they disappeared after 48 h. The exposure to the hexanic extract produced an increase in parameters of activity, rearing and arousal assessed in the functional observational battery, which reversed after 14 days. On the other hand, the ethanolic extract caused an increase in locomotor activity, reflected in a higher number of rearings performed in the open field in the evaluation carried out on Day 14. No histopathological alterations were detected in the analyzed organs. The results show that the acute dermal exposure of the ethanolic and hexanic extracts from leaves of Schinus molle var. areira only causes a slight and reversible skin irritation, and a mild stimulatory effect in rats. All these indicate that the topical use of these extracts would be safe. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  12. Acute anal stretch inhibits NMDA-dependent pelvic-urethra reflex potentiation via spinal GABAergic inhibition in anesthetized rats.

    Science.gov (United States)

    Chen, Sung-Lang; Huang, Yu-Hui; Kao, Yu-Lin; Chen, Gin-Den; Cheng, Chen-Li; Peng, Hsien-Yu; Liao, Jiuan-Miaw; Huang, Pei-Chen; Tsai, Shih-Jei; Lin, Tzer-Bin

    2008-10-01

    The impact of acute anal stretch on the pelvic-urethra reflex potentiation was examined in urethane-anesthetized rats by recording the external urethra sphincter electromyogram activity evoked by the pelvic afferent stimulation. Test stimulation (1 stimulation/30 s) evoked a baseline reflex activity with a single action potential that was abolished by gallamine (5 mg/kg iv). On the other hand, the repetitive stimulation (1 stimulation/1 s) induced spinal reflex potentiation (SRP) that was attenuated by intrathecal 6-cyano-7-nitroquinoxaline-2,4-dione (a glutamatergic alpha-amino-3-hydroxy-5-methyl-4-isoxazoleproprionat receptor antagonist, 100 microM, 10 microl) and d-2-amino-5-phosphonovalerate [a glutamatergic N-methyl-D-aspartate (NMDA) antagonist, 100 microM, 10 microl]. Acute anal stretch using a mosquito clamp with a distance of 4 mm exhibited no effect, whereas distances of 8 mm attenuated and 12 mm abolished the repetitive stimulation-induced SRP. Intrathecal NMDA (100 microM, 10 microl) reversed the abolition on SRP caused by anal stretch. On the other hand, pretreated bicuculline [gamma-aminobutyric acid (GABA) A receptor antagonist, 100 microM, 10 microl] but not hydroxysaclofen (GABAB receptor antagonist) counteracted the abolition on the repetitive stimulation-induced SRP caused by the anal stretch. All of the results suggested that anal stretch may be used as an adjunct to assist voiding dysfunction in patients with overactive urethra sphincter and that GABAergic neurotransmission is important in the neural mechanisms underlying external urethra sphincter activity inhibited by anal stretch.

  13. Anti-Ulcerogenic Properties of Lycium chinense Mill Extracts against Ethanol-Induced Acute Gastric Lesion in Animal Models and Its Active Constituents

    Directory of Open Access Journals (Sweden)

    Opeyemi J. Olatunji

    2015-12-01

    Full Text Available The objective of this study was to explore the gastroprotective properties of the aerial part of Lycium chinense Mill (LCA against ethanol-induced gastric mucosa lesions in mice models. Administration of LCA at doses of 50, 100, 200 and 400 mg/kg body weight prior to ethanol consumption dose dependently inhibited gastric ulcers. The gastric mucosal injury was analyzed by gastric juice acidity, glutathione (GSH, superoxide dismutase (SOD, malondialdehyde (MDA, myeloperoxidase (MPO activities. Furthermore, the levels of the inflammatory mediators, tumor necrosis factor-α (TNF-α, interleukin-6 (IL-6 and interleukin-1β (IL-1β in serum were also analyzed using ELISA. Pathological changes were also observed with the aid of hematoxylin-eosin (HE staining. Our results indicated that LCA significantly reduced the levels of MPO, MDA and increased SOD and GSH activities. Furthermore, LCA also significantly inhibited the levels of TNF-α, IL-6, and IL-1β in the serum of ulcerated mice in a dose dependent manner. Immunohistological analysis indicated that LCA also significantly attenuated the overexpression of nuclear factor-κB in pretreated mice models. This findings suggests Lycium chinense Mill possesses gastroprotective properties against ethanol-induced gastric injury and could be a possible therapeutic intervention in the treatment and management of gastric ulcers.

  14. Translational overview of cytokine inhibition in acute myocardial infarction and chronic heart failure.

    Science.gov (United States)

    Hartman, Minke H T; Groot, Hilde E; Leach, Irene Mateo; Karper, Jacco C; van der Harst, Pim

    2018-02-15

    Many cytokines are currently under investigation as potential target to improve cardiac function and outcome in the setting of acute myocardial infarction (MI) or chronic heart failure (HF). Here we aim to provide a translational overview of cytokine inhibiting therapies tested in experimental models and clinical studies. In various experimental studies, inhibition of interleukin-1 (IL-1), -6 (IL-6), -8 (IL-8), monocyte chemoattractant protein-1 (MCP-1), CC- and CXC chemokines, and tumor necrosis factor-α (TNF-α) had beneficial effects on cardiac function and outcome. On the other hand, neutral or even detrimental results have been reported for some (IL-1, IL-6, IL-8, and MCP-1). Ambivalence of cytokine function, differences in study designs, treatment regimens and chosen endpoints hamper the translation of experimental research into clinical practice. Human studies are currently limited to IL-1β inhibition, IL-1 receptor antagonists (IL-1RA), IL-6 receptor antagonists (IL-6RA) or TNF inhibition. Despite favorable effects on cardiovascular events observed in retrospective cohort studies of rheumatoid arthritis patients treated with TNF inhibition or IL-1RA, most prospective studies reported disappointing and inconsistent results. Smaller studies (n 100) evaluating IL-1β inhibition presented positive results on outcome. In conclusion, of the 10 anticytokine therapies tested in animals models beneficial effects have been reported in at least one setting. In larger clinical studies, findings were unsatisfactory in all but one. Many anticytokine therapies with promising animal experimental data continue to require further evaluation in humans. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  15. Lateral/Basolateral Amygdala Serotonin Type-2 Receptors Modulate Operant Self-administration of a Sweetened Ethanol Solution via Inhibition of Principal Neuron Activity

    Directory of Open Access Journals (Sweden)

    Brian eMccool

    2014-01-01

    Full Text Available The lateral/basolateral amygdala (BLA forms an integral part of the neural circuitry controlling innate anxiety and learned fear. More recently, BLA dependent modulation of self-administration behaviors suggests a much broader role in the regulation of reward evaluation. To test this, we employed a self-administration paradigm that procedurally segregates ‘seeking’ (exemplified as lever-press behaviors from consumption (drinking directed at a sweetened ethanol solution. Microinjection of the nonselective serotonin type-2 receptor agonist, alpha-methyl-5-hydroxytryptamine (-m5HT into the BLA reduced lever pressing behaviors in a dose-dependent fashion. This was associated with a significant reduction in the number of response-bouts expressed during non-reinforced sessions without altering the size of a bout or the rate of responding. Conversely, intra-BLA -m5HT only modestly effected consumption-related behaviors; the highest dose reduced the total time spent consuming a sweetened ethanol solution but did not inhibit the total number of licks, number of lick bouts, or amount of solution consumed during a session. In vitro neurophysiological characterization of BLA synaptic responses showed that -m5HT significantly reduced extracellular field potentials. This was blocked by the 5-HT2A/C antagonist ketanserin suggesting that 5-HT2-like receptors mediate the behavioral effect of -m5HT. During whole-cell patch current-clamp recordings, we subsequently found that -m5HT increased action potential threshold and hyperpolarized the resting membrane potential of BLA pyramidal neurons. Together, our findings show that the activation of BLA 5-HT2A/C receptors inhibits behaviors related to reward-seeking by suppressing BLA principal neuron activity. These data are consistent with the hypothesis that the BLA modulates reward-related behaviors and provides specific insight into BLA contributions during operant self-administration of a

  16. Fluctuations in serum ethanol concentration in the treatment of acute methanol poisoning: a prospective study of 21 patients

    Czech Academy of Sciences Publication Activity Database

    Zakharov, S.; Navrátil, Tomáš; Salek, T.; Kurcová, I.; Pelclová, D.

    2015-01-01

    Roč. 159, č. 4 (2015), s. 666-676 ISSN 1213-8118 Institutional support: RVO:61388955 Keywords : methanol poisoning * ethanol * antidote Subject RIV: CG - Electrochemistry Impact factor: 0.924, year: 2015

  17. Therapeutic activity of multiple common γ-chain cytokine inhibition in acute and chronic GVHD.

    Science.gov (United States)

    Hechinger, Anne-Kathrin; Smith, Benjamin A H; Flynn, Ryan; Hanke, Kathrin; McDonald-Hyman, Cameron; Taylor, Patricia A; Pfeifer, Dietmar; Hackanson, Björn; Leonhardt, Franziska; Prinz, Gabriele; Dierbach, Heide; Schmitt-Graeff, Annette; Kovarik, Jiri; Blazar, Bruce R; Zeiser, Robert

    2015-01-15

    The common γ chain (CD132) is a subunit of the interleukin (IL) receptors for IL-2, IL-4, IL-7, IL-9, IL-15, and IL-21. Because levels of several of these cytokines were shown to be increased in the serum of patients developing acute and chronic graft-versus-host disease (GVHD), we reasoned that inhibition of CD132 could have a profound effect on GVHD. We observed that anti-CD132 monoclonal antibody (mAb) reduced acute GVHD potently with respect to survival, production of tumor necrosis factor, interferon-γ, and IL-6, and GVHD histopathology. Anti-CD132 mAb afforded protection from GVHD partly via inhibition of granzyme B production in CD8 T cells, whereas exposure of CD8 T cells to IL-2, IL-7, IL-15, and IL-21 increased granzyme B production. Also, T cells exposed to anti-CD132 mAb displayed a more naive phenotype in microarray-based analyses and showed reduced Janus kinase 3 (JAK3) phosphorylation upon activation. Consistent with a role of JAK3 in GVHD, Jak3(-/-) T cells caused less severe GVHD. Additionally, anti-CD132 mAb treatment of established chronic GVHD reversed liver and lung fibrosis, and pulmonary dysfunction characteristic of bronchiolitis obliterans. We conclude that acute GVHD and chronic GVHD, caused by T cells activated by common γ-chain cytokines, each represent therapeutic targets for anti-CD132 mAb immunomodulation. © 2015 by The American Society of Hematology.

  18. Ethanol inhibits cold-menthol receptor TRPM8 by modulating its interaction with membrane phosphatidylinositol 4,5-bisphosphate

    Czech Academy of Sciences Publication Activity Database

    Benedikt, Jan; Teisinger, Jan; Vyklický st., Ladislav; Vlachová, Viktorie

    2007-01-01

    Roč. 100, č. 1 (2007), s. 211-224 ISSN 0022-3042 R&D Projects: GA ČR GA305/06/0319; GA ČR GA309/04/0496; GA MŠk 1M0517; GA MŠk LC554 Institutional research plan: CEZ:AV0Z50110509 Keywords : Cold /menthol receptor * ethanol * phosphatidylinositol Subject RIV: ED - Physiology Impact factor: 4.451, year: 2007

  19. Ethanol production

    Energy Technology Data Exchange (ETDEWEB)

    Kolleurp, F; Daugulis, A J

    1985-05-01

    Extractive fermentation is a technique that can be used to reduce the effect of end-product inhibition through the use of a water-immiscible phase which removes fermentation products in situ. This has the beneficial effect of not only removing inhibitory products as they are formed (thus keeping reaction rates high) but also has the potential for reducing product recovery costs. We have chosen to examine the ethanol fermentation as a model system for end product inhibition and extractive fermentation, and have developed a computer model predicting the productivity enhancement possible with this technique. The model predicts an ethanol productivity of 82.6 g/L-h if a glucose feed of 750 g/L is fermented with a solvent having a distribution coefficient of 0.5 at a dilution rate of 5.0 h . This is more than 10 times higher than for a conventional chemostat fermentation of a 250 g/L glucose feed. In light of this, a systematic approach to extractive fermentation has been undertaken involving the screening of more than 1,000 solvents for their extractive properties. UNIFAC and UNIQUAC estimates of distribution coefficients and selectivities were compiled and ranked in a database, together with other important physical properties, such as density, surface tension and viscosity. Preliminary shake-flask and chemostat biocompatibility studies on the most promising solvents have been undertaken. The previous predictive, data base and experimental results are discussed.

  20. Medicinal Mushroom Cracked-Cap Polypore, Phellinus rimosus (Higher Basidiomycetes) Attenuates Acute Ethanol-Induced Lipid Peroxidation in Mice.

    Science.gov (United States)

    Ajith, Thekkuttuparambil A; Janardhanan, Kainoor K

    2015-01-01

    Alcohol abuse and alcoholism remain one of the major health issues worldwide, especially in developing countries. The protective effect of Phellinus rimosus against acute alcohol-induced lipid peroxidation in the liver, kidney, and brain as well as its effect against antioxidant enzyme activity such as superoxide (SOD) and catalase (CAT) in the liver was evaluated in mice. Ethyl acetate extract of Ph. Rimosus (50 mg/kg body wt, p.o.) 1 h before each administration of alcohol (3 mL/kg, p.o.; total 2 doses at 24-h intervals) protected against lipid peroxidation in all organs and attenuated the decline of SOD and CAT activity in the liver. The fold increase in lipid peroxidation, including conjugated diene and thiobarbituric acid reactive substance (TBARS) levels, was highest in the liver. There were 2.6- and 1.5- fold increases in TBARS levels in the liver of the alcohol alone- and alcohol+Ph. Rimosus-treated groups, compared with that of the normal group. Activity of SOD and CAT in the liver of alcohol- and alcohol+Ph. Rimosus- treated animals was 9.05±1.38, 18.76±1.71, and 11.26±1.02, 31.58±3.35 IU/mg protein, respectively. Extract at 1 mg/mL inhibited 50.6% activity of aniline hydroxylase (CYP2E1) in liver homogenate. From these results, we concluded that the extract significantly protected against the lipid peroxidation. Protection in the liver may be due to the inhibitory effect on CYP2E1 as well as the direct radical scavenging effect of Ph. Rimosus, which warrants further research.

  1. Acutely increasing δGABAA receptor activity impairs memory and inhibits synaptic plasticity in the hippocampus

    Science.gov (United States)

    Whissell, Paul D.; Eng, Dave; Lecker, Irene; Martin, Loren J.; Wang, Dian-Shi; Orser, Beverley A.

    2013-01-01

    Extrasynaptic γ-aminobutyric acid type A (GABAA) receptors that contain the δ subunit (δGABAA receptors) are expressed in several brain regions including the dentate gyrus (DG) and CA1 subfields of the hippocampus. Drugs that increase δGABAA receptor activity have been proposed as treatments for a variety of disorders including insomnia, epilepsy and chronic pain. Also, long-term pretreatment with the δGABAA receptor–preferring agonist 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol (THIP) enhances discrimination memory and increases neurogenesis in the DG. Despite the potential therapeutic benefits of such treatments, the effects of acutely increasing δGABAA receptor activity on memory behaviors remain unknown. Here, we studied the effects of THIP (4 mg/kg, i.p.) on memory performance in wild-type (WT) and δGABAA receptor null mutant (Gabrd−/−) mice. Additionally, the effects of THIP on long-term potentiation (LTP), a molecular correlate of memory, were studied within the DG and CA1 subfields of the hippocampus using electrophysiological recordings of field potentials in hippocampal slices. The results showed that THIP impaired performance in the Morris water maze, contextual fear conditioning and object recognition tasks in WT mice but not Gabrd−/− mice. Furthermore, THIP inhibited LTP in hippocampal slices from WT but not Gabrd−/− mice, an effect that was blocked by GABAA receptor antagonist bicuculline. Thus, acutely increasing δGABAA receptor activity impairs memory behaviors and inhibits synaptic plasticity. These results have important implications for the development of therapies aimed at increasing δGABAA receptor activity. PMID:24062648

  2. Acutely increasing δGABAA receptor activity impairs memory and inhibits synaptic plasticity in the hippocampus

    Directory of Open Access Journals (Sweden)

    Paul David Whissell

    2013-09-01

    Full Text Available Extrasynaptic γ-aminobutyric acid type A (GABAA receptors that contain the δ subunit (δGABAA receptors are expressed in several brain regions including the dentate gyrus (DG and CA1 subfields of the hippocampus. Drugs that increase δGABAA receptor activity have been proposed as treatments for a variety of disorders including insomnia, epilepsy and chronic pain. Also, long-term pretreatment with the δGABAA receptor–preferring agonist 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol (THIP enhances discrimination memory and increases neurogenesis in the DG. Despite the potential therapeutic benefits of such treatments, the effects of acutely increasing δGABAA receptor activity on memory behaviors remain unknown. Here, we studied the effects of THIP (4 mg/kg, i.p. on memory performance in wild-type (WT and δGABAA receptor null mutant (Gabrd–/– mice. Additionally, the effects of THIP on long-term potentiation (LTP, a molecular correlate of memory, were studied within the DG and CA1 subfields of the hippocampus using electrophysiological recordings of field potentials in hippocampal slices. The results showed that THIP impaired performance in the Morris water maze, contextual fear conditioning and object recognition tasks in WT mice but not Gabrd–/– mice. Furthermore, THIP inhibited LTP in hippocampal slices from WT but not Gabrd–/– mice, an effect that was blocked by GABAA receptor antagonist bicuculline. Thus, acutely increasing δGABAA receptor activity impairs memory behaviors and inhibits synaptic plasticity. These results have important implications for the development of therapies aimed at increasing δGABAA receptor activity.

  3. Ethanol Extract of Sanguisorbae Radix Inhibits Mast Cell Degranulation and Suppresses 2,4-Dinitrochlorobenzene-Induced Atopic Dermatitis-Like Skin Lesions

    Directory of Open Access Journals (Sweden)

    Ju-Hye Yang

    2016-01-01

    Full Text Available Sanguisorbae Radix (SR is well known as herbal medicine named “Zi-Yu” in Korea, which is the dried roots of Sanguisorba officinalis L. (Rosacease. We investigated the underlying mechanism on the inhibition of atopic dermatitis (AD of an ethanol extract of SR (ESR using 2,4-dinitrochlorobenzene- (DNCB- induced AD mice model. Oral administration of ESR significantly suppressed DNCB-induced AD-like symptoms such as scratching behavior, ear thickness, epidermal thickness, and IgE levels. To investigate the effects of ESR treatment on degranulation of IgE/Ag-activated mouse bone marrow-derived mast cells (BMMCs, we measured the release of β-hexosaminidase (β-HEX, degranulation marker. ESR decreased the infiltration of eosinophils and mast cells into the AD skin lesions. Furthermore, ESR significantly inhibited degranulation of IgE/Ag-activated BMMCs. We have demonstrated that ESR decreased AD symptoms in mice and inhibits degranulation of IgE/Ag-activated mast cells. Our study suggests that ESR may serve as a potential therapeutic candidate for the treatment of AD symptoms.

  4. Kynurenine–3–monooxygenase inhibition prevents multiple organ failure in rodent models of acute pancreatitis

    Science.gov (United States)

    Mole, Damian J; Webster, Scott P; Uings, Iain; Zheng, Xiaozhong; Binnie, Margaret; Wilson, Kris; Hutchinson, Jonathan P; Mirguet, Olivier; Walker, Ann; Beaufils, Benjamin; Ancellin, Nicolas; Trottet, Lionel; Bénéton, Véronique; Mowat, Christopher G; Wilkinson, Martin; Rowland, Paul; Haslam, Carl; McBride, Andrew; Homer, Natalie ZM; Baily, James E; Sharp, Matthew GF; Garden, O James; Hughes, Jeremy; Howie, Sarah EM; Holmes, Duncan S; Liddle, John; Iredale, John P

    2015-01-01

    Acute pancreatitis (AP) is a common and devastating inflammatory condition of the pancreas that is considered to be a paradigm of sterile inflammation leading to systemic multiple organ dysfunction syndrome (MODS) and death1,2 Acute mortality from AP-MODS exceeds 20%3 and for those who survive the initial episode, their lifespan is typically shorter than the general population4. There are no specific therapies available that protect individuals against AP-MODS. Here, we show that kynurenine-3-monooxygenase (KMO), a key enzyme of tryptophan metabolism5, is central to the pathogenesis of AP-MODS. We created a mouse strain deficient for Kmo with a robust biochemical phenotype that protected against extrapancreatic tissue injury to lung, kidney and liver in experimental AP-MODS. A medicinal chemistry strategy based on modifications of the kynurenine substrate led to the discovery of GSK180 as a potent and specific inhibitor of KMO. The binding mode of the inhibitor in the active site was confirmed by X-ray co-crystallography at 3.2 Å resolution. Treatment with GSK180 resulted in rapid changes in levels of kynurenine pathway metabolites in vivo and afforded therapeutic protection against AP-MODS in a rat model of AP. Our findings establish KMO inhibition as a novel therapeutic strategy in the treatment of AP-MODS and open up a new area for drug discovery in critical illness. PMID:26752518

  5. Kynurenine-3-monooxygenase inhibition prevents multiple organ failure in rodent models of acute pancreatitis.

    Science.gov (United States)

    Mole, Damian J; Webster, Scott P; Uings, Iain; Zheng, Xiaozhong; Binnie, Margaret; Wilson, Kris; Hutchinson, Jonathan P; Mirguet, Olivier; Walker, Ann; Beaufils, Benjamin; Ancellin, Nicolas; Trottet, Lionel; Bénéton, Véronique; Mowat, Christopher G; Wilkinson, Martin; Rowland, Paul; Haslam, Carl; McBride, Andrew; Homer, Natalie Z M; Baily, James E; Sharp, Matthew G F; Garden, O James; Hughes, Jeremy; Howie, Sarah E M; Holmes, Duncan S; Liddle, John; Iredale, John P

    2016-02-01

    Acute pancreatitis (AP) is a common and devastating inflammatory condition of the pancreas that is considered to be a paradigm of sterile inflammation leading to systemic multiple organ dysfunction syndrome (MODS) and death. Acute mortality from AP-MODS exceeds 20% (ref. 3), and the lifespans of those who survive the initial episode are typically shorter than those of the general population. There are no specific therapies available to protect individuals from AP-MODS. Here we show that kynurenine-3-monooxygenase (KMO), a key enzyme of tryptophan metabolism, is central to the pathogenesis of AP-MODS. We created a mouse strain that is deficient for Kmo (encoding KMO) and that has a robust biochemical phenotype that protects against extrapancreatic tissue injury to the lung, kidney and liver in experimental AP-MODS. A medicinal chemistry strategy based on modifications of the kynurenine substrate led to the discovery of the oxazolidinone GSK180 as a potent and specific inhibitor of KMO. The binding mode of the inhibitor in the active site was confirmed by X-ray co-crystallography at 3.2 Å resolution. Treatment with GSK180 resulted in rapid changes in the levels of kynurenine pathway metabolites in vivo, and it afforded therapeutic protection against MODS in a rat model of AP. Our findings establish KMO inhibition as a novel therapeutic strategy in the treatment of AP-MODS, and they open up a new area for drug discovery in critical illness.

  6. Acute effects of ethanol on action potential and intracellular Ca2+ transient in cardiac ventricular cells: a simulation study

    Czech Academy of Sciences Publication Activity Database

    Pásek, Michal; Bébarová, M.; Christé, G.; Šimurdová, M.; Šimurda, J.

    2016-01-01

    Roč. 54, č. 5 (2016), s. 753-762 ISSN 0140-0118 Institutional support: RVO:61388998 Keywords : ethanol * cardiomyocyte * action potential * rat ventricular cell model * human ventricular cell model Subject RIV: BO - Biophysics Impact factor: 1.916, year: 2016

  7. Fomepizole versus ethanol in the treatment of acute methanol poisoning: Comparison of clinical effectiveness in a mass poisoning outbreak.

    Science.gov (United States)

    Zakharov, Sergey; Pelclova, Daniela; Navratil, Tomas; Belacek, Jaromir; Komarc, Martin; Eddleston, Michael; Hovda, Knut Erik

    2015-01-01

    Mass or cluster methanol poisonings are frequently reported from around the world. The comparative effectiveness of ethanol and fomepizole as antidotes for methanol poisoning is unknown due to the difficulty of performing a randomized controlled trial. During an outbreak of mass poisonings in the Czech Republic in 2012-2014, we compared the effects of antidotes on the frequency of health sequelae and mortality. The study was designed as a cross-sectional case series and quasi-case-control study. Patients with a diagnosis of methanol poisoning on admission to hospitals were identified for the study. Diagnosis was established when (i) a history of recent ingestion of illicit spirits was available and serum methanol was higher than 6.2 mmol/L (20 mg/dL), or (ii) there was a history/clinical suspicion of methanol poisoning, and serum methanol was above the limit of detection with at least two of the following: pH poisoning and other key parameters, was selected. Data were obtained from 100 hospitalized patients with confirmed poisoning: 25 patients treated with fomepizole were compared with 68 patients receiving ethanol (seven patients did not receive any antidote). More severely acidotic (p 12 h; p = 0.028) patients received fomepizole more often than ethanol, as reflected in the higher number of fomepizole-treated patients being intubated (p = 0.009). No association was found between the type of antidote and the survival in either the case series (p = 0.205) or the quasi-control groups (p = 0.705) in which patients were very closely matched to minimize confounding by allocation. In the multivariate analysis, positive serum ethanol (odds ratio [OR], 10.8; 95% confidence interval [CI], 2.9-39.9) and arterial blood pH (OR, 3.7; 95% CI, 1.3-10.5) on admission were the only independent variables for the survival. The median intensive care unit length of stay was 6 (range, 2-22) days in the fomepizole group and 4 (range, 1-33) days in the ethanol group (p = 0.131). There

  8. Arbidol: a broad-spectrum antiviral that inhibits acute and chronic HCV infection

    Directory of Open Access Journals (Sweden)

    Pécheur Eve-Isabelle

    2006-07-01

    Full Text Available Abstract Arbidol (ARB is an antiviral compound that was originally proven effective for treatment of influenza and several other respiratory viral infections. The broad spectrum of ARB anti-viral activity led us to evaluate its effect on hepatitis C virus (HCV infection and replication in cell culture. Long-term ARB treatment of Huh7 cells chronically replicating a genomic length genotype 1b replicon resulted in sustained reduction of viral RNA and protein expression, and eventually cured HCV infected cells. Pre-treatment of human hepatoma Huh7.5.1 cells with 15 μM ARB for 24 to 48 hours inhibited acute infection with JFH-1 virus by up to 1000-fold. The inhibitory effect of ARB on HCV was not due to generalized cytotoxicity, nor to augmentation of IFN antiviral signaling pathways, but involved impaired virus-mediated membrane fusion. ARB's affinity for membranes may inhibit several aspects of the HCV lifecycle that are membrane-dependent.

  9. Inhibition of NEDD8-activating enzyme: a novel approach for the treatment of acute myeloid leukemia.

    Science.gov (United States)

    Swords, Ronan T; Kelly, Kevin R; Smith, Peter G; Garnsey, James J; Mahalingam, Devalingam; Medina, Ernest; Oberheu, Kelli; Padmanabhan, Swaminathan; O'Dwyer, Michael; Nawrocki, Steffan T; Giles, Francis J; Carew, Jennifer S

    2010-05-06

    NEDD8 activating enzyme (NAE) has been identified as an essential regulator of the NEDD8 conjugation pathway, which controls the degradation of many proteins with important roles in cell-cycle progression, DNA damage, and stress responses. Here we report that MLN4924, a novel inhibitor of NAE, has potent activity in acute myeloid leukemia (AML) models. MLN4924 induced cell death in AML cell lines and primary patient specimens independent of Fms-like tyrosine kinase 3 expression and stromal-mediated survival signaling and led to the stabilization of key NAE targets, inhibition of nuclear factor-kappaB activity, DNA damage, and reactive oxygen species generation. Disruption of cellular redox status was shown to be a key event in MLN4924-induced apoptosis. Administration of MLN4924 to mice bearing AML xenografts led to stable disease regression and inhibition of NEDDylated cullins. Our findings indicate that MLN4924 is a highly promising novel agent that has advanced into clinical trials for the treatment of AML.

  10. Acute inhibition of myostatin-family proteins preserves skeletal muscle in mouse models of cancer cachexia

    Energy Technology Data Exchange (ETDEWEB)

    Benny Klimek, Margaret E.; Aydogdu, Tufan [Department of Cell Biology and Anatomy, University of Miami Miller School of Medicine, Miami, FL (United States); Link, Majik J.; Pons, Marianne [Molecular Oncology Program, Division of Surgical Oncology, DeWitt Daughtry Family Department of Surgery, University of Miami Miller School of Medicine, Miami, FL (United States); Koniaris, Leonidas G. [Department of Cell Biology and Anatomy, University of Miami Miller School of Medicine, Miami, FL (United States); Molecular Oncology Program, Division of Surgical Oncology, DeWitt Daughtry Family Department of Surgery, University of Miami Miller School of Medicine, Miami, FL (United States); Molecular Oncology and Experimental Therapeutics Program, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL (United States); Zimmers, Teresa A., E-mail: tzimmers@med.miami.edu [Department of Cell Biology and Anatomy, University of Miami Miller School of Medicine, Miami, FL (United States); Molecular Oncology Program, Division of Surgical Oncology, DeWitt Daughtry Family Department of Surgery, University of Miami Miller School of Medicine, Miami, FL (United States); Molecular Oncology and Experimental Therapeutics Program, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL (United States)

    2010-01-15

    Cachexia, progressive loss of fat and muscle mass despite adequate nutrition, is a devastating complication of cancer associated with poor quality of life and increased mortality. Myostatin is a potent tonic muscle growth inhibitor. We tested how myostatin inhibition might influence cancer cachexia using genetic and pharmacological approaches. First, hypermuscular myostatin null mice were injected with Lewis lung carcinoma or B16F10 melanoma cells. Myostatin null mice were more sensitive to tumor-induced cachexia, losing more absolute mass and proportionately more muscle mass than wild-type mice. Because myostatin null mice lack expression from development, however, we also sought to manipulate myostatin acutely. The histone deacetylase inhibitor Trichostatin A has been shown to increase muscle mass in normal and dystrophic mice by inducing the myostatin inhibitor, follistatin. Although Trichostatin A administration induced muscle growth in normal mice, it failed to preserve muscle in colon-26 cancer cachexia. Finally we sought to inhibit myostatin and related ligands by administration of the Activin receptor extracellular domain/Fc fusion protein, ACVR2B-Fc. Systemic administration of ACVR2B-Fc potently inhibited muscle wasting and protected adipose stores in both colon-26 and Lewis lung carcinoma cachexia, without affecting tumor growth. Enhanced cachexia in myostatin knockouts indicates that host-derived myostatin is not the sole mediator of muscle wasting in cancer. More importantly, skeletal muscle preservation with ACVR2B-Fc establishes that targeting myostatin-family ligands using ACVR2B-Fc or related molecules is an important and potent therapeutic avenue in cancer cachexia.

  11. Acute inhibition of myostatin-family proteins preserves skeletal muscle in mouse models of cancer cachexia

    International Nuclear Information System (INIS)

    Benny Klimek, Margaret E.; Aydogdu, Tufan; Link, Majik J.; Pons, Marianne; Koniaris, Leonidas G.; Zimmers, Teresa A.

    2010-01-01

    Cachexia, progressive loss of fat and muscle mass despite adequate nutrition, is a devastating complication of cancer associated with poor quality of life and increased mortality. Myostatin is a potent tonic muscle growth inhibitor. We tested how myostatin inhibition might influence cancer cachexia using genetic and pharmacological approaches. First, hypermuscular myostatin null mice were injected with Lewis lung carcinoma or B16F10 melanoma cells. Myostatin null mice were more sensitive to tumor-induced cachexia, losing more absolute mass and proportionately more muscle mass than wild-type mice. Because myostatin null mice lack expression from development, however, we also sought to manipulate myostatin acutely. The histone deacetylase inhibitor Trichostatin A has been shown to increase muscle mass in normal and dystrophic mice by inducing the myostatin inhibitor, follistatin. Although Trichostatin A administration induced muscle growth in normal mice, it failed to preserve muscle in colon-26 cancer cachexia. Finally we sought to inhibit myostatin and related ligands by administration of the Activin receptor extracellular domain/Fc fusion protein, ACVR2B-Fc. Systemic administration of ACVR2B-Fc potently inhibited muscle wasting and protected adipose stores in both colon-26 and Lewis lung carcinoma cachexia, without affecting tumor growth. Enhanced cachexia in myostatin knockouts indicates that host-derived myostatin is not the sole mediator of muscle wasting in cancer. More importantly, skeletal muscle preservation with ACVR2B-Fc establishes that targeting myostatin-family ligands using ACVR2B-Fc or related molecules is an important and potent therapeutic avenue in cancer cachexia.

  12. Glucose-induced thermogenesis in patients with small cell lung carcinoma. The effect of acute beta-adrenergic inhibition

    DEFF Research Database (Denmark)

    Simonsen, L; Bülow, J; Tuxen, C

    1994-01-01

    Seven patients with histologically verified small cell lung carcinoma were given an oral glucose load of 75 g on two occasions to examine the effect of glucose on whole body and forearm thermogenesis with and without acute beta-adrenergic inhibition with propranolol. Whole body energy expenditure...

  13. Autophagy Protects against CYP2E1/Chronic Ethanol-Induced Hepatotoxicity

    Directory of Open Access Journals (Sweden)

    Yongke Lu

    2015-10-01

    Full Text Available Autophagy is an intracellular pathway by which lysosomes degrade and recycle long-lived proteins and cellular organelles. The effects of ethanol on autophagy are complex but recent studies have shown that autophagy serves a protective function against ethanol-induced liver injury. Autophagy was found to also be protective against CYP2E1-dependent toxicity in vitro in HepG2 cells which express CYP2E1 and in vivo in an acute alcohol/CYPE1-dependent liver injury model. The goal of the current report was to extend the previous in vitro and acute in vivo experiments to a chronic ethanol model to evaluate whether autophagy is also protective against CYP2E1-dependent liver injury in a chronic ethanol-fed mouse model. Wild type (WT, CYP2E1 knockout (KO or CYP2E1 humanized transgenic knockin (KI, mice were fed an ethanol liquid diet or control dextrose diet for four weeks. In the last week, some mice received either saline or 3-methyladenine (3-MA, an inhibitor of autophagy, or rapamycin, which stimulates autophagy. Inhibition of autophagy by 3-MA potentiated the ethanol-induced increases in serum transaminase and triglyceride levels in the WT and KI mice but not KO mice, while rapamycin prevented the ethanol liver injury. Treatment with 3-MA enhanced the ethanol-induced fat accumulation in WT mice and caused necrosis in the KI mice; little or no effect was found in the ethanol-fed KO mice or any of the dextrose-fed mice. 3-MA treatment further lowered the ethanol-decrease in hepatic GSH levels and further increased formation of TBARS in WT and KI mice, whereas rapamycin blunted these effects of ethanol. Neither 3-MA nor rapamycin treatment affected CYP2E1 catalytic activity or content or the induction CYP2E1 by ethanol. The 3-MA treatment decreased levels of Beclin-1 and Atg 7 but increased levels of p62 in the ethanol-fed WT and KI mice whereas rapamycin had the opposite effects, validating inhibition and stimulation of autophagy, respectively. These

  14. Protective effects of alginate–chitosan microspheres loaded with alkaloids from Coptis chinensis Franch. and Evodia rutaecarpa (Juss. Benth. (Zuojin Pill against ethanol-induced acute gastric mucosal injury in rats

    Directory of Open Access Journals (Sweden)

    Wang QS

    2015-11-01

    Full Text Available Qiang-Song Wang,1,2,* Xiao-Ning Zhu,1,* Heng-Li Jiang,1,* Gui-Fang Wang,3 Yuan-Lu Cui1 1Tianjin State Key Laboratory of Modern Chinese Medicine, Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 2Institute of Biomedical Engineering, Chinese Academy of Medical Science & Peking Union Medical College, 3Pharmacy Department, Baokang Hospital, Tianjin University of Traditional Chinese Medicine, Tianjin, People’s Republic of China *These authors contributed equally to this work Abstract: Zuojin Pill (ZJP, a traditional Chinese medicine formula, consists of Coptis chinensis Franch. and Evodia rutaecarpa (Juss. Benth. in a ratio of 6:1 (w/w and was first recorded in “Danxi’s experiential therapy” for treating gastrointestinal disorders in the 15th century. However, the poor solubility of alkaloids from ZJP restricted the protective effect in treating gastritis and gastric ulcer. The aim of the study was to investigate the protective mechanism of mucoadhesive microspheres loaded with alkaloids from C. chinensis Franch. and E. rutaecarpa (Juss. Benth. on ethanol-induced acute gastric mucosal injury in rats. Surface morphology, particle size, drug loading, encapsulation efficiency, in vitro drug release, mucoadhesiveness, and fluorescent imaging of the microspheres in gastrointestinal tract were studied. The results showed that the mucoadhesive microspheres loaded with alkaloids could sustain the release of drugs beyond 12 hours and had gastric mucoadhesive property with 82.63% retention rate in vitro. The fluorescence tracer indicated high retention of mucoadhesive microspheres within 12 hours in vivo. The mucoadhesive microspheres loaded with alkaloids could reduce the gastric injury by decreasing the mucosal lesion index, increasing the percentage of inhibition and increasing the amount of mucus in the gastric mucosa in an ethanol-induced gastric mucosal injury rat model. Moreover, the

  15. Gastroprotective effect of the ethanolic extract of Parkia platycephala Benth. leaves against acute gastric lesion models in rodents

    Directory of Open Access Journals (Sweden)

    Hélio B Fernandes

    2010-01-01

    Full Text Available Parkia platycephala Benth. (Leguminosae - Mimosoideae, popularly known as "visgueira", fava bean tree or "fava-de-bolota", is widely found in the Northern and Northeastern regions of Brazil. Its pods are used as cattle food supplement in the drought period. Compounds with a gastroprotective activity were obtained from the genus Parkia. Therefore, this study aimed at investigating the gastroprotective effect of the ethanolic extract of Parkia platycephala Benth. leaves (Pp-EtOH, as well as evaluating its possible mechanisms of action in experimental ulcer induction models. Lesions were induced by absolute ethanol, ethanol-HCl, ischemia-reperfusion and indomethacin in rodents. Pp-EtOH showed a protective effect in the lesion models (66, 48 and 52 %, respectively, but it was not able to protect gastric mucosa against indomethacin-induced lesions. Results show a possible participation of the NO-synthase pathway in the gastroprotection and an antioxidant activity, by the increase of the catalase activity. The participation of prostaglandins and potassium channels sensitive to ATP in the gastroprotective effect of Pp-EtOH seems less likely to occur. More comprehensive studies, therefore, should be carried out to elucidate the antiulcerative effects of this promising natural product against this gastrointestinal disorder.

  16. Metalloproteinase Inhibition Protects against Reductions in Circulating Adrenomedullin during Lead-induced Acute Hypertension.

    Science.gov (United States)

    Nascimento, Regina A; Mendes, Gabryella; Possomato-Vieira, Jose S; Gonçalves-Rizzi, Victor Hugo; Kushima, Hélio; Delella, Flavia K; Dias-Junior, Carlos A

    2015-06-01

    Intoxication with lead (Pb) results in increased blood pressure by mechanisms involving matrix metalloproteinases (MMPs). Recent findings have revealed that MMP type two (MMP-2) seems to cleave vasoactive peptides. This study examined whether MMP-2 and MMP-9 levels/activities increase after acute intoxication with low lead concentrations and whether these changes were associated with increases in blood pressure and circulating endothelin-1 or with reductions in circulating adrenomedullin and calcitonin gene-related peptide (CGRP). Here, we expand previous findings and examine whether doxycycline (a MMPs inhibitor) affects these alterations. Wistar rats received intraperitoneally (i.p.) 1st dose 8 μg/100 g of lead (or sodium) acetate, a subsequent dose of 0.1 μg/100 g to cover daily loss and treatment with doxycycline (30 mg/kg/day) or water by gavage for 7 days. Similar whole-blood lead levels (9 μg/dL) were found in lead-exposed rats treated with either doxycycline or water. Lead-induced increases in systolic blood pressure (from 143 ± 2 to 167 ± 3 mmHg) and gelatin zymography of plasma samples showed that lead increased MMP-9 (but not MMP-2) levels. Both lead-induced increased MMP-9 activity and hypertension were blunted by doxycycline. Doxycycline also prevented lead-induced reductions in circulating adrenomedullin. No significant changes in plasma levels of endothelin-1 or CGRP were found. Lead-induced decreases in nitric oxide markers and antioxidant status were not prevented by doxycycline. In conclusion, acute lead exposure increases blood pressure and MMP-9 activity, which were blunted by doxycycline. These findings suggest that MMP-9 may contribute with lead-induced hypertension by cleaving the vasodilatory peptide adrenomedullin, thereby inhibiting adrenomedullin-dependent lowering of blood pressure. © 2014 Nordic Association for the Publication of BCPT (former Nordic Pharmacological Society).

  17. Anti-ulcerogenic effect of methanolic extracts from Enicosanthellum pulchrum (King) Heusden against ethanol-induced acute gastric lesion in animal models.

    Science.gov (United States)

    Nordin, Noraziah; Salama, Suzy Munir; Golbabapour, Shahram; Hajrezaie, Maryam; Hassandarvish, Pouya; Kamalidehghan, Behnam; Majid, Nazia Abdul; Hashim, Najihah Mohd; Omar, Hanita; Fadaienasab, Mehran; Karimian, Hamed; Taha, Hairin; Ali, Hapipah Mohd; Abdulla, Mahmood Ameen

    2014-01-01

    A natural source of medicine, Enicosanthellum pulchrum is a tropical plant which belongs to the family Annonaceae. In this study, methanol extract from the leaves and stems of this species was evaluated for its gastroprotective potential against mucosal lesions induced by ethanol in rats. Seven groups of rats were assigned, groups 1 and 2 were given Tween 20 (10% v/v) orally. Group 3 was administered omeprazole 20 mg/kg (10% Tween 20) whilst the remaining groups received the leaf and stem extracts at doses of 150 and 300 mg/kg, respectively. After an additional hour, the rats in groups 2-7 received ethanol (95% v/v; 8 mL/kg) orally while group 1 received Tween 20 (10% v/v) instead. Rats were sacrificed after 1 h and their stomachs subjected to further studies. Macroscopically and histologically, group 2 rats showed extremely severe disruption of the gastric mucosa compared to rats pre-treated with the E. pulchrum extracts based on the ulcer index, where remarkable protection was noticed. Meanwhile, a significant percentage of inhibition was shown with the stem extract at 62% (150 mg/kg) and 65% (300 mg/kg), whilst the percentage with the leaf extract at doses of 150 and 300 mg/kg was 63% and 75%, respectively. An increase in mucus content, nitric oxide, glutathione, prostaglandin E2, superoxide dismutase, protein and catalase, and a decrease in malondialdehyde level compared to group 2 were also obtained. Furthermore, immunohistochemical staining of groups 4-7 exhibited down-regulation of Bax and up-regulation of Hsp70 proteins. The methanol extract from the leaves and the stems showed notable gastroprotective potential against ethanol.

  18. A role for ethanol-induced oxidative stress in controlling lineage commitment of mesenchymal stromal cells through inhibition of wnt/beta-catenin signaling

    Science.gov (United States)

    The mechanisms by which chronic ethanol intake induces bone loss remain unclear. In females, the skeletal response to ethanol varies depending on physiologic status (viz. cycling, pregnancy, lactation). Ethanol-induced oxidative stress appears to be a key event leading to skeletal toxicity. In the c...

  19. Acute and long-term Purkinje cell loss following a single ethanol binge during the early third trimester equivalent in the rat.

    Science.gov (United States)

    Idrus, Nirelia M; Napper, Ruth M A

    2012-08-01

    In the rat, binge-like ethanol (EtOH) exposure during the early neonatal period (a developmental period equivalent to the human third trimester) can result in a permanent deficit of cerebellar Purkinje cells (Pcells). However, the consequences of a moderate binge alcohol exposure on a single day during this postnatal period have not been established. This is an issue of importance as many pregnant women binge drink periodically at social drinking levels. This study aimed to identify both the acute and long-term effects of exposure to a single alcohol binge that achieved a mean peak blood EtOH concentration of approximately 250 mg/dl during early postnatal life using a rat model of fetal alcohol spectrum disorders. Acute apoptotic Pcell death 10 hours after a moderate dose binge EtOH exposure from postnatal days (PDs) 0 to 10 was assessed using active caspase-3 immunolabeling. Acute Pcell apoptosis was quantified in cerebellar vermal lobules I-X using the physical disector method. Long-term effects were assessed at PD 60 using stereological methods to determine total Pcell numbers in the vermis, lobule III, and lobule IX, following a moderate dose binge EtOH exposure at PDs 0, 2, or 4. Acute apoptosis was induced by EtOH on PDs 1 to 8 in a time and lobular-dependent manner. For EtOH exposure on PD 2, significant long-term Pcell loss occurred in lobule III. EtOH exposure on PD 4 resulted in significant long-term Pcell loss throughout the entire vermis. These results indicate that a single, early EtOH episode of moderate dose can create significant and permanent Pcell loss in the developing cerebellum. Copyright © 2012 by the Research Society on Alcoholism.

  20. A study of antimicrobial activity, acute toxicity and cytoprotective effect of a polyherbal extract in a rat ethanol-HCl gastric ulcer model

    Directory of Open Access Journals (Sweden)

    Haule Emmanuel E

    2012-10-01

    Full Text Available Abstract Background The decoction of the aerial parts of Rhynchosia recinosa (A.Rich. Bak. [Fabaceae] is used in combination with the stem barks of Ozoroa insignis Del. (Anacardiaceae, Maytenus senegalensis (Lam. Excell. [Celastraceae] Entada abyssinica Steud. ex A.Rich [Fabaceae] and Lannea schimperi (Hochst.Engl. [Anacardiaceae] as a traditional remedy for managing peptic ulcers. However, the safety and efficacy of this polyherbal preparation has not been evaluated. This study reports on the phytochemical profile and some biological activities of the individual plant extracts and a combination of extracts of the five plants. Methods A mixture of 80% ethanol extracts of R. recinosa, O. insignis, M. senegalensis, E. abyssinica and L. schimperi at doses of 100, 200, 400 and 800 mg/kg body wt were evaluated for ability to protect Sprague Dawley rats from gastric ulceration by an ethanol-HCl mixture. Cytoprotective effect was assessed by comparison with a negative control group given 1% tween 80 in normal saline and a positive control group given 40 mg/kg body wt pantoprazole. The individual extracts and their combinations were also tested for antibacterial activity against four Gram negative bacteria; Escherichia coli (ATCC 25922, Salmonella typhi (NCTC 8385, Vibrio cholerae (clinical isolate, and Klebsiella pneumoniae (clinical isolate using the microdilution method. In addition the extracts were evaluated for brine shrimp toxicity and acute toxicity in mice. Phytochemical tests were done using standard methods to determine the presence of tannins, saponins, steroids, cardiac glycosides, flavonoids, alkaloids and terpenoids in the individual plant extracts and in the mixed extract of the five plants. Results The combined ethanolic extracts of the 5 plants caused a dose-dependent protection against ethanol/HCl induced ulceration of rat gastric mucosa, reaching 81.7% mean protection as compared to 87.5% protection by 40 mg/kg body wt pantoprazole

  1. A study of antimicrobial activity, acute toxicity and cytoprotective effect of a polyherbal extract in a rat ethanol-HCl gastric ulcer model

    Science.gov (United States)

    2012-01-01

    Background The decoction of the aerial parts of Rhynchosia recinosa (A.Rich.) Bak. [Fabaceae] is used in combination with the stem barks of Ozoroa insignis Del. (Anacardiaceae), Maytenus senegalensis (Lam.) Excell. [Celastraceae] Entada abyssinica Steud. ex A.Rich [Fabaceae] and Lannea schimperi (Hochst.)Engl. [Anacardiaceae] as a traditional remedy for managing peptic ulcers. However, the safety and efficacy of this polyherbal preparation has not been evaluated. This study reports on the phytochemical profile and some biological activities of the individual plant extracts and a combination of extracts of the five plants. Methods A mixture of 80% ethanol extracts of R. recinosa, O. insignis, M. senegalensis, E. abyssinica and L. schimperi at doses of 100, 200, 400 and 800 mg/kg body wt were evaluated for ability to protect Sprague Dawley rats from gastric ulceration by an ethanol-HCl mixture. Cytoprotective effect was assessed by comparison with a negative control group given 1% tween 80 in normal saline and a positive control group given 40 mg/kg body wt pantoprazole. The individual extracts and their combinations were also tested for antibacterial activity against four Gram negative bacteria; Escherichia coli (ATCC 25922), Salmonella typhi (NCTC 8385), Vibrio cholerae (clinical isolate), and Klebsiella pneumoniae (clinical isolate) using the microdilution method. In addition the extracts were evaluated for brine shrimp toxicity and acute toxicity in mice. Phytochemical tests were done using standard methods to determine the presence of tannins, saponins, steroids, cardiac glycosides, flavonoids, alkaloids and terpenoids in the individual plant extracts and in the mixed extract of the five plants. Results The combined ethanolic extracts of the 5 plants caused a dose-dependent protection against ethanol/HCl induced ulceration of rat gastric mucosa, reaching 81.7% mean protection as compared to 87.5% protection by 40 mg/kg body wt pantoprazole. Both the individual

  2. Acute stimulation of brain mu opioid receptors inhibits glucose-stimulated insulin secretion via sympathetic innervation.

    Science.gov (United States)

    Tudurí, Eva; Beiroa, Daniel; Stegbauer, Johannes; Fernø, Johan; López, Miguel; Diéguez, Carlos; Nogueiras, Rubén

    2016-11-01

    Pancreatic insulin-secreting β-cells express opioid receptors, whose activation by opioid peptides modulates hormone secretion. Opioid receptors are also expressed in multiple brain regions including the hypothalamus, where they play a role in feeding behavior and energy homeostasis, but their potential role in central regulation of glucose metabolism is unknown. Here, we investigate whether central opioid receptors participate in the regulation of insulin secretion and glucose homeostasis in vivo. C57BL/6J mice were acutely treated by intracerebroventricular (i.c.v.) injection with specific agonists for the three main opioid receptors, kappa (KOR), delta (DOR) and mu (MOR) opioid receptors: activation of KOR and DOR did not alter glucose tolerance, whereas activation of brain MOR with the specific agonist DAMGO blunted glucose-stimulated insulin secretion (GSIS), reduced insulin sensitivity, increased the expression of gluconeogenic genes in the liver and, consequently, impaired glucose tolerance. Pharmacological blockade of α2A-adrenergic receptors prevented DAMGO-induced glucose intolerance and gluconeogenesis. Accordingly, DAMGO failed to inhibit GSIS and to impair glucose tolerance in α2A-adrenoceptor knockout mice, indicating that the effects of central MOR activation on β-cells are mediated via sympathetic innervation. Our results show for the first time a new role of the central opioid system, specifically the MOR, in the regulation of insulin secretion and glucose metabolism. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Minocycline and matrix metalloproteinase inhibition in acute intracerebral hemorrhage: a pilot study.

    Science.gov (United States)

    Chang, J J; Kim-Tenser, M; Emanuel, B A; Jones, G M; Chapple, K; Alikhani, A; Sanossian, N; Mack, W J; Tsivgoulis, G; Alexandrov, A V; Pourmotabbed, T

    2017-11-01

    Intracerebral hemorrhage (ICH) is a devastating cerebrovascular disorder with high morbidity and mortality. Minocycline is a matrix metalloproteinase-9 (MMP-9) inhibitor that may attenuate secondary mechanisms of injury in ICH. The feasibility and safety of minocycline in ICH patients were evaluated in a pilot, double-blinded, placebo-controlled randomized clinical trial. Patients with acute onset (minocycline or placebo. The outcome events included adverse events, change in serial National Institutes of Health Stroke Scale score assessments, hematoma volume and MMP-9 measurements, 3-month functional outcome (modified Rankin score) and mortality. A total of 20 patients were randomized to minocycline (n = 10) or placebo (n = 10). The two groups did not differ in terms of baseline characteristics. No serious adverse events or complications were noted with minocycline infusion. The two groups did not differ in any of the clinical and radiological outcomes. Day 5 serum MMP-9 levels tended to be lower in the minocycline group (372 ± 216 ng/ml vs. 472 ± 235 ng/ml; P = 0.052). Multiple linear regression analysis showed that minocycline was associated with a 217.65 (95% confidence interval -425.21 to -10.10, P = 0.041) decrease in MMP-9 levels between days 1 and 5. High-dose intravenous minocycline can be safely administered to patients with ICH. Larger randomized clinical trials evaluating the efficacy of minocycline and MMP-9 inhibition in ICH patients are required. © 2017 EAN.

  4. Ethanolic Extract of Traditional Chinese Medicine (TCM) Gamboge Inhibits Colon Cancer via the Wnt/Beta-Catenin Signaling Pathway in an Orthotopic Mouse Model.

    Science.gov (United States)

    Wang, Wei; Li, Youran; Chen, Yiqi; Chen, Hongjin; Zhu, Ping; Xu, Minmin; Wang, Hao; Wu, Minna; Yang, Zhijian; Hoffman, Robert M; Gu, Yunfei

    2018-04-01

    The aim of the present study was to investigate the efficacy of an ethanolic extract of gamboge (EEG), a traditional Chinese medicine (TCM), both in vitro on colon cancer cells and in vivo in an orthotopic mouse model of human colon cancer. The in vitro cytotoxicity of EEG on colon cancer cells was determined with the CCK8 proliferation assay and the Annexin V-PE/7-AAD apoptosis assay. Efficacy of EEG in vivo was evaluated in an orthotopic mouse model of human colon cancer implated with the green fluorescent protein-expressing human colon cancer cell line SW480-GFP. The tumor-bearing mice were treated with vehicle (0.2 ml/dose normal saline, po, daily), irinotecan (50 mg/kg/dose, ip, twice a week), 5-FU (15 mg/kg/dose, ip, every other day) as positive controls or EEG at doses of 12.5, 25 and 50 mg/kg/dose, po, daily. Real-time fluorescence imaging was performed to determine tumor inhibition in each treated group compared to the untreated controls. The protein expression of β-catenin, MMP-7, cyclin D1 and E-cadherin in the tumors was analyzed by immunohistochemistry. EEG significantly induced proliferation inhibition and apoptosis of SW480 colon cancer cells in vitro in a dose-dependent manner. Tumor growth in the colon-cancer orthotopic model was significantly inhibited by irinotecan, 5-FU and all three doses of EEG. The efficacy of EEG was comparable to irinotecan and 5-FU. Irinotecan, 5-FU and 50 mg/kg EEG significantly decreased the protein expression of β-catenin and MMP-7. Cyclin D1 expression was decreased and E-cadherin expression was increased by irinotecan, 5-FU and all three doses of EEG. The present study demonstrates anti-tumor efficacy of EEG on colon cancer both in vitro and in vivo through inducing proliferation inhibition and apoptosis of SW480 colon cancer cells and inhibiting tumor growth, respectively. EEG exerts anti-tumor activity at least partly via down-regulation of the Wnt/β-catenin signaling pathway. Copyright© 2018, International

  5. Ethanolic extract of Aconiti Brachypodi Radix attenuates nociceptive pain probably via inhibition of voltage-dependent Na⁺ channel.

    Science.gov (United States)

    Ren, Wei; Yuan, Lin; Li, Jun; Huang, Xian-Ju; Chen, Su; Zou, Da-Jiang; Liu, Xiangming; Yang, Xin-Zhou

    2012-01-01

    Aconiti Brachypodi Radix, belonging to the genus of Aconitum (Family Ranunculaceae), are used clinically as anti-rheumatic, anti-inflammatory and anti-nociceptive in traditional medicine of China. However, its mechanism and influence on nociceptive threshold are unknown and need further investigation. The analgesic effects of ethanolic extract of Aconiti Brachypodi Radix (EABR) were thus studied in vivo and in vitro. Three pain models in mice were used to assess the effect of EABR on nociceptive threshold. In vitro study was conducted to clarify the modulation of the extract on the tetrodotoxin-sensitive (TTX-S) sodium currents in rat's dorsal root ganglion (DRG) neurons using whole-cell patch clamp technique. The results showed that EABR (5-20 mg/kg, i.g.) could produce dose-dependent analgesic effect on hot-plate tests as well as writhing response induced by acetic acid. In addition, administration of 2.5-10 mg/kg EABR (i.g.) caused significant decrease in pain responses in the first and second phases of formalin test without altering the PGE₂ production in the hind paw of the mice. Moreover, EABR (10 µg/ml -1 mg/ml) could suppress TTX-S voltage-gated sodium currents in a dose-dependent way, indicating the underlying electrophysiological mechanism of the analgesic effect of the folk plant medicine. Collectively, our results indicated that EABR has analgesic property in three pain models and useful influence on TTX-S sodium currents in DRG neurons, suggesting that the interference with pain messages caused by the modulation of EABR on TTX-S sodium currents in DRG neurones may explain some of its analgesic effect.

  6. Acute mTOR inhibition induces insulin resistance and alters substrate utilization in vivo

    DEFF Research Database (Denmark)

    Kleinert, Maximilian; Sylow, Lykke; Fazakerley, Daniel J.

    2014-01-01

    , but not rapamycin reduced insulin-stimulated glucose uptake into incubated muscles, despite normal GLUT4 translocation in muscle cells. AZD8055 inhibited glycolysis in MEF cells. Abrogation of mTORC2 activity by SIN1 deletion impaired glycolysis and AZD8055 had no effect in SIN1 KO MEFs. Re-expression of wildtype...... SIN1 rescued glycolysis. Glucose intolerance following AZD8055 administration was absent in mice lacking the mTORC2 subunit Rictor in muscle, and in vivo glucose uptake into Rictor-deficient muscle was reduced despite normal Akt activity. Taken together, acute mTOR inhibition is detrimental to glucose...

  7. Positive serum ethanol concentration on admission to hospital as the factor predictive of treatment outcome in acute methanol poisoning

    Czech Academy of Sciences Publication Activity Database

    Zakharov, S.; Nurieva, O.; Kotíková, K.; Běláček, J.; Navrátil, Tomáš; Pelclová, D.

    2017-01-01

    Roč. 148, č. 3 (2017), s. 409-419 ISSN 0026-9247 Institutional support: RVO:61388955 Keywords : acute optic neuropathy * clinical-features * outbreak Subject RIV: CG - Electrochemistry OBOR OECD: Electrochemistry (dry cells, batteries, fuel cells, corrosion metals, electrolysis) Impact factor: 1.282, year: 2016

  8. Ethanol extracts from Portulaca oleracea L. attenuated ischemia/reperfusion induced rat neural injury through inhibition of HMGB1 induced inflammation

    Science.gov (United States)

    Zheng, Chenggang; Liu, Chen; Wang, Wanyin; Tang, Gusheng; Dong, Liwei; Zhou, Juan; Zhong, Zhengrong

    2016-01-01

    It is well demonstrated that the high mobility group box 1 (HMGB1) mediated inflammation has been implicated as one of the important causes for brain damage induced by cerebral ischemia/reperfusion (I/R). In the present study, we assessed the neuro-protective and anti-inflammation effects of the ethanol extracts from Portulaca oleracea L. (EEPO) against cerebral I/R injury in the rat transient middle cerebral artery occlusion (tMCAO) model. Rats were administrated with their respective treatment for 7 days before the MCA occlusion. After that, rats were intraperitoneal injection with chloral hydrate and sacrificed by decapitation, then the serum and brain tissue were collected. The neurological deficit score, infarct size and brain edema were tested. The levels of serum cytokine as TNF-α, IL-1β, INF-γ, IL-6, and HMGB1 and LDH were detected. The protein level of tissue or nucleus HMGB1, IκB and p-p65 were tested, too. The results showed that pretreatment with EEPO significantly decreased the neurological deficit score, infarct size and brain edema. Moreover, EEPO decreased rat serum cytokine level and rat right cortices p-p65 and IκB protein level. In conclusion all these results suggested that pretreatment with EEFPO provided significant protection against cerebral I/R injury in rats might by virtue of its anti-inflammation property through inhibition of increase of neuleus HMGB1. PMID:27904702

  9. Glucocorticoid resistance is reverted by LCK inhibition in pediatric T-cell acute lymphoblastic leukemia.

    Science.gov (United States)

    Serafin, Valentina; Capuzzo, Giorgia; Milani, Gloria; Minuzzo, Sonia Anna; Pinazza, Marica; Bortolozzi, Roberta; Bresolin, Silvia; Porcù, Elena; Frasson, Chiara; Indraccolo, Stefano; Basso, Giuseppe; Accordi, Benedetta

    2017-12-21

    Pediatric T-acute lymphoblastic leukemia (T-ALL) patients often display resistance to glucocorticoid (GC) treatment. These patients, classified as prednisone poor responders (PPR), have poorer outcome than do the other pediatric T-ALL patients receiving a high-risk adapted therapy. Because glucocorticoids are administered to ALL patients during all the different phases of therapy, GC resistance represents an important challenge to improving the outcome for these patients. Mechanisms underlying resistance are not yet fully unraveled; thus our research focused on the identification of deregulated signaling pathways to point out new targeted approaches. We first identified, by reverse-phase protein arrays, the lymphocyte cell-specific protein-tyrosine kinase (LCK) as aberrantly activated in PPR patients. We showed that LCK inhibitors, such as dasatinib, bosutinib, nintedanib, and WH-4-023, are able to induce cell death in GC-resistant T-ALL cells, and remarkably, cotreatment with dexamethasone is able to reverse GC resistance, even at therapeutic drug concentrations. This was confirmed by specific LCK gene silencing and ex vivo combined treatment of cells from PPR patient-derived xenografts. Moreover, we observed that LCK hyperactivation in PPR patients upregulates the calcineurin/nuclear factor of activated T cells signaling triggering to interleukin-4 ( IL-4 ) overexpression. GC-sensitive cells cultured with IL-4 display an increased resistance to dexamethasone, whereas the inhibition of IL-4 signaling could increase GC-induced apoptosis in resistant cells. Treatment with dexamethasone and dasatinib also impaired engraftment of leukemia cells in vivo. Our results suggest a quickly actionable approach to supporting conventional therapies and overcoming GC resistance in pediatric T-ALL patients. © 2017 by The American Society of Hematology.

  10. Ghrelin ameliorates acute lung injury induced by oleic acid via inhibition of endoplasmic reticulum stress.

    Science.gov (United States)

    Tian, Xiuli; Liu, Zhijun; Yu, Ting; Yang, Haitao; Feng, Linlin

    2018-03-01

    Acute lung injury (ALI) is associated with excessive mortality and lacks appropriate therapy. Ghrelin is a novel peptide that protects the lung against ALI. This study aimed to investigate whether endoplasmic reticulum stress (ERS) mediates the protective effect of ghrelin on ALI. We used a rat oleic acid (OA)-induced ALI model. Pulmonary impairment was detected by hematoxylin and eosin (HE) staining, lung mechanics, wet/dry weight ratio, and arterial blood gas analysis. Plasma and lung content of ghrelin was examined by ELISA, and mRNA expression was measured by quantitative real-time PCR. Protein levels were detected by western blot. Rats with OA treatment showed significant pulmonary injury, edema, inflammatory cellular infiltration, cytokine release, hypoxia and CO 2 retention as compared with controls. Plasma and pulmonary content of ghrelin was reduced in rats with ALI, and mRNA expression was downregulated. Ghrelin (10nmol/kg) treatment ameliorated the above symptoms, but treatment with the ghrelin antagonists D-Lys 3 GHRP-6 (1μmol/kg) and JMV 2959 (6mg/kg) exacerbated the symptoms. ERS induced by OA was prevented by ghrelin and augmented by ghrelin antagonist treatment. The ERS inducer, tunicamycin (Tm) prevented the ameliorative effect of ghrelin on ALI. The decreased ratio of p-Akt and Akt induced by OA was improved by ghrelin treatment, and was further exacerbated by ghrelin antagonists. Ghrelin protects against ALI by inhibiting ERS. These results provide a new target for prevention and therapy of ALI. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. The Ly49E receptor inhibits the immune control of acute Trypanosoma cruzi infection

    Directory of Open Access Journals (Sweden)

    Jessica Filtjens

    2016-11-01

    Full Text Available The protozoan parasite Trypanosoma cruzi (T. cruzi circulates in the blood upon infection and invades a variety of cells. Parasites intensively multiply during the acute phase of infection and persist lifelong at low levels in tissues and blood during the chronic phase. Natural killer (NK and NKT cells play an important role in the immune control of T. cruzi infection, mainly by releasing the cytokine IFN-γ that activates the microbicidal action of macrophages and other cells and shapes a protective type 1 immune response. The mechanisms by which immune cells are regulated to produce IFN-γ during T. cruzi infection are still incompletely understood. Here, we show that urokinase plasminogen activator (uPA is induced early upon T. cruzi infection, and remains elevated until day 20 post inoculation. We previously demonstrated that the inhibitory receptor Ly49E, which is expressed, among others, on NK and NKT cells, is triggered by uPA. Therefore, we compared wild type (WT to Ly49E knockout (KO mice for their control of experimental T. cruzi infection. Our results show that young, i.e. 4- and 6-week-old, Ly49E KO mice control the infection better than WT mice, indicated by a lower parasite load and less cachexia. The beneficial effect of Ly49E depletion is more obvious in 4-week-old male than in female mice and weakens in 8-week-old mice. In young mice, the lower T. cruzi parasitemia in Ly49E KO mice is paralleled by higher IFN-γ production compared to their WT controls. Our data indicate that Ly49E receptor expression inhibits the immune control of T. cruzi infection. This is the first demonstration that the inhibitory Ly49E receptor can interfere with the immune response to a pathogen in vivo.

  12. Kaempferol increases apoptosis in human acute promyelocytic leukemia cells and inhibits multidrug resistance genes.

    Science.gov (United States)

    Moradzadeh, Maliheh; Tabarraei, Alijan; Sadeghnia, Hamid Reza; Ghorbani, Ahmad; Mohamadkhani, Ashraf; Erfanian, Saiedeh; Sahebkar, Amirhossein

    2018-02-01

    Acute promyelocytic leukemia (APL) is one of the most life-threatening hematological malignancies. Defects in the cell growth and apoptotic pathways are responsible for both disease pathogenesis and treatment resistance. Therefore, pro-apoptotic agents are potential candidates for APL treatment. Kaempferol is a flavonoid with antioxidant and anti-tumor properties. This study was designed to investigate the cytotoxic, pro-apoptotic, and differentiation-inducing effects of kaempferol on HL-60 and NB4 leukemia cells. Resazurin assay was used to determine cell viability following treatment with kaempferol (12.5-100 μM) and all-trans retinoic acid (ATRA; 10 μM; used as a positive control). Apoptosis and differentiation were also detected using propidium iodide and NBT staining techniques, respectively. Furthermore, the expression levels of genes involved in apoptosis (PI3 K, AKT, BCL2, BAX, p53, p21, PTEN, CASP3, CASP8, and CASP9), differentiation (PML-RAR and HDAC1), and multi-drug resistance (ABCB1 and ABCC1) were determined using quantitative real-time PCR. The protein expressions of Bax/Bcl2 and casp3 were confirmed using Western blot. The results showed that kaempferol decreased cell viability and increased subG1 population in the tested leukemic cells. This effect was associated with decreased expression of Akt, BCL2, ABCB1, and ABCC1 genes, while the expression of CASP3 and BAX/BCL-2 ratio were significantly increased at both gene and protein levels. Kaempferol promoted apoptosis and inhibited multidrug resistance in a concentration-dependent manner, without any differential effect on leukemic cells. In conclusion, this study suggested that kaempferol may be utilized as an appropriate alternative for ATRA in APL patients. © 2017 Wiley Periodicals, Inc.

  13. Ethanol Basics

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-01-30

    Ethanol is a widely-used, domestically-produced renewable fuel made from corn and other plant materials. More than 96% of gasoline sold in the United States contains ethanol. Learn more about this alternative fuel in the Ethanol Basics Fact Sheet, produced by the U.S. Department of Energy's Clean Cities program.

  14. Stress Sensitization of Ethanol Withdrawal-Induced Reduction in Social Interaction: Inhibition by CRF-1 and Benzodiazepine Receptor Antagonists and a 5-HT1A-Receptor Agonist

    OpenAIRE

    Breese, George R; Knapp, Darin J; Overstreet, David H

    2004-01-01

    Repeated withdrawals from chronic ethanol sensitize the withdrawal-induced reduction in social interaction behaviors. This study determined whether stress might substitute for repeated withdrawals to facilitate withdrawal-induced anxiety-like behavior. When two 1-h periods of restraint stress were applied at 1-week intervals to rats fed control diet, social interaction was reduced upon withdrawal from a subsequent 5-day exposure to ethanol diet. Neither this ethanol exposure alone nor exposur...

  15. Response of rat brain protein synthesis to ethanol and sodium barbital

    International Nuclear Information System (INIS)

    Tewari, S.; Greenberg, S.A.; Do, K.; Grey, P.A.

    1987-01-01

    Central nervous system (CNS) depressants such as ethanol and barbiturates under acute or chronic conditions can induce changes in rat brain protein synthesis. While these data demonstrate the individual effects of drugs on protein synthesis, the response of brain protein synthesis to alcohol-drug interactions is not known. The goal of the present study was to determine the individual and combined effects of ethanol and sodium barbital on brain protein synthesis and gain an understanding of the mechanisms by which these alterations in protein synthesis are produced. Specifically, the in vivo and in vitro effects of sodium barbital (one class of barbiturates which is not metabolized by the hepatic tissue) were examined on brain protein synthesis in rats made physically dependent upon ethanol. Using cell free brain polysomal systems isolated from Control, Ethanol and 24 h Ethanol Withdrawn rats, data show that sodium barbital, when intubated intragastrically, inhibited the time dependent incorporation of 14 C) leucine into protein by all three groups of ribosomes. Under these conditions, the Ethanol Withdrawn group displayed the largest inhibition of the 14 C) leucine incorporation into protein when compared to the Control and Ethanol groups. In addition, sodium barbital when added at various concentrations in vitro to the incubation medium inhibited the incorporation of 14 C) leucine into protein by Control and Ethanol polysomes. The inhibitory effects were also obtained following preincubation of ribosomes in the presence of barbital but not cycloheximide. Data suggest that brain protein synthesis, specifically brain polysomes, through interaction with ethanol or barbital are involved in the functional development of tolerance. These interactions may occur through proteins or polypeptide chains or alterations in messenger RNA components associated with the ribosomal units

  16. Inhibition of c-Jun N-terminal Kinase Signaling Pathway Alleviates Lipopolysaccharide-induced Acute Respiratory Distress Syndrome in Rats

    Directory of Open Access Journals (Sweden)

    Jian-Bo Lai

    2016-01-01

    Conclusions: Inhibiting JNK alleviated LPS-induced acute lung inflammation and had no effects on pulmonary edema and fibrosis. JNK inhibitor might be a potential therapeutic medication in ARDS, in the context of reducing lung inflammatory.

  17. A crucial role for ethanol-induced oxidative stress in controlling lineage commitment of mesenchymal stromal cells through inhibition of wnt/beta-catenin signaling

    Science.gov (United States)

    Female skeletal responses to ethanol may vary depending on the physiologic status (viz. cycling, pregnancy, lactation). Nonetheless, ethanol-induced oxidative stress appears to be the key event leading to skeletal toxicity. In the current study, we chronically infused EtOH-containing liquid diets ...

  18. Deficits in response inhibition in male rats prenatally exposed to vapor condensates made from gasoline containing ethanol at 0% and 15%, but not 85%

    Science.gov (United States)

    The impact of developmental exposure to inhaled ethanol-gasoline fuel blends is a potential public health concern. We previously reported that rats whose mothers inhaled ethanol (21,000 ppm) during pregnancy had increased levels of anticipatory responding on a choice reaction tim...

  19. High ethanol tolerance of the thermophilic anaerobic ethanol producer Thermoanaerobacter BG1L1

    DEFF Research Database (Denmark)

    Georgieva, Tania I.; Mikkelsen, Marie Just; Ahring, Birgitte Kiær

    2007-01-01

    The low ethanol tolerance of thermophilic anaerobic bacteria, generally less than 2% (v/v) ethanol, is one of the main limiting factors for their potential use for second generation fuel ethanol production. In this work, the tolerance of thermophilic anaerobic bacterium Thermoanaerobacter BG 1L1...... to exogenously added ethanol was studied in a continuous immobilized reactor system at a growth temperature of 70 degrees C. Ethanol tolerance was evaluated based on inhibition of fermentative performance e.g.. inhibition of substrate conversion. At the highest ethanol concentration tested (8.3% v/v), the strain...... was able to convert 42% of the xylose initially present, indicating that this ethanol concentration is not the upper limit tolerated by the strain. Long-term strain adaptation to high ethanol concentrations (6 - 8.3%) resulted in an improvement of xylose conversion by 25% at an ethanol concentration of 5...

  20. Effects of chronic ethanol administration on hepatic glycoprotein secretion in the rat

    International Nuclear Information System (INIS)

    Sorrell, M.F.; Nauss, J.M.; Donohue, T.M. Jr.; Tuma, D.J.

    1983-01-01

    The effects of chronic ethanol feeding on protein and glycoprotein synthesis and secretion were studied in rat liver slices. Liver slices from rats fed ethanol for 4-5 wk showed a decreased ability to incorporate [ 14 C]glucosamine into medium trichloracetic acid-precipitable proteins when compared to the pair-fed controls; however, the labeling of hepatocellular glycoproteins was unaffected by chronic ethanol treatment. Immunoprecipitation of radiolabeled secretory (serum) glycoproteins with antiserum against rat serum proteins showed a similar marked inhibition in the appearance of glucosamine-labeled proteins in the medium of slices from ethanol-fed rats. Minimal effects, however, were noted in the labeling of intracellular secretory glycoproteins. Protein synthesis, as determined by measuring [ 14 C]leucine incorporation into medium and liver proteins, was decreased in liver slices from ethanol-fed rats as compared to the pair-fed controls. This was the case for both total proteins as well as immunoprecipitable secretory proteins, although the labeling of secretory proteins retained in the liver slices was reduced to a lesser extent than total radiolabeled hepatic proteins. When the terminal sugar, [ 14 C]fucose, was employed as a precursor in order to more closely focus on the final steps of hepatic glycoprotein secretion, liver slices obtained from chronic ethanol-fed rats exhibited impaired secretion of fucose-labeled proteins into the medium. When ethanol (5 or 10 mM) was added to the incubation medium containing liver slices from the ethanol-fed rats, the alterations in protein and glycoprotein synthesis and secretion caused by the chronic ethanol treatment were further potentiated. The results of this study indicate that liver slices prepared from chronic ethanol-fed rats exhibit both impaired synthesis and secretion of proteins and glycoproteins, and these defects are further potentiated by acute ethanol administration

  1. Hyperin protects against LPS-induced acute kidney injury by inhibiting TLR4 and NLRP3 signaling pathways

    Science.gov (United States)

    Chunzhi, Gong; Zunfeng, Li; Chengwei, Qin; Xiangmei, Bu; Jingui, Yu

    2016-01-01

    Hyperin is a flavonoid compound derived from Ericaceae, Guttifera, and Celastraceae that has been shown to have various biological effects, such as anti-inflammatory and anti-oxidant effects. However, there is no evidence to show the protective effects of hyperin on lipopolysaccharide (LPS)-induced acute kidney injury (AKI). Therefore, we investigated the protective effects and mechanism of hyperin on LPS-induced AKI in mice. The levels of TNF-α, IL-6, and IL-1β were tested by ELISA. The effects of hyperin on blood urea nitrogen (BUN) and serum creatinine were also detected. In addition, the expression of TLR4, NF-κB, and NLRP3 were detected by western blot analysis. The results showed that hyperin significantly inhibited LPS-induced TNF-α, IL-6, and IL-1β production. The levels of BUN and creatinine were also suppressed by hyperin. Furthermore, LPS-induced TLR4 expression and NF-κB activation were also inhibited by hyperin. In addition, treatment of hyperin dose-dependently inhibited LPS-induced NLRP3 signaling pathway. In conclusion, the results showed that hyperin inhibited LPS-induced inflammatory response by inhibiting TLR4 and NLRP3 signaling pathways. Hyperin has potential application prospects in the treatment of sepsis-induced AKI. PMID:27813491

  2. Liver, plasma and erythrocyte levels of thiamine and its phosphate esters in rats with acute ethanol intoxication: a comparison of thiamine and benfotiamine administration.

    Science.gov (United States)

    Portari, Guilherme Vannucchi; Vannucchi, Helio; Jordao, Alceu Afonso

    2013-03-12

    Thiamine and benfotiamine are vitamin B1 and pro-vitamin B1 substances, respectively. Vitamin B1 plays an essential role in energy metabolism, and its deficiency leads to neurologic and cardiovascular pathologies, as seen in alcoholics. This study presents new data about the effects of thiamine hydrochloride or benfotiamine treatment given to rats with acute alcohol intoxication, on the distribution of thiamine and its phosphate esters in liver, plasma and erythrocytes. The treatments were effective in increasing thiamine levels in plasma, erythrocytes and liver cells. The benfotiamine-treated group had its total plasma thiamine increased by 100%. In erythrocytes, thiamine levels were 4- and 25-fold higher in the groups treated with thiamine and benfotiamine, respectively, compared with the untreated groups. Liver thiamine was increased by 60% in the treated groups compared with the untreated groups. Thus, we verified the high bioavailability especially of benfotiamine within 6h of ethanol administration. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. GABAA Receptors Containing ρ1 Subunits Contribute to In Vivo Effects of Ethanol in Mice

    Science.gov (United States)

    Blednov, Yuri A.; Benavidez, Jillian M.; Black, Mendy; Leiter, Courtney R.; Osterndorff-Kahanek, Elizabeth; Johnson, David; Borghese, Cecilia M.; Hanrahan, Jane R.; Johnston, Graham A. R.; Chebib, Mary; Harris, R. Adron

    2014-01-01

    GABAA receptors consisting of ρ1, ρ2, or ρ3 subunits in homo- or hetero-pentamers have been studied mainly in retina but are detected in many brain regions. Receptors formed from ρ1 are inhibited by low ethanol concentrations, and family-based association analyses have linked ρ subunit genes with alcohol dependence. We determined if genetic deletion of ρ1 in mice altered in vivo ethanol effects. Null mutant male mice showed reduced ethanol consumption and preference in a two-bottle choice test with no differences in preference for saccharin or quinine. Null mutant mice of both sexes demonstrated longer duration of ethanol-induced loss of righting reflex (LORR), and males were more sensitive to ethanol-induced motor sedation. In contrast, ρ1 null mice showed faster recovery from acute motor incoordination produced by ethanol. Null mutant females were less sensitive to ethanol-induced development of conditioned taste aversion. Measurement of mRNA levels in cerebellum showed that deletion of ρ1 did not change expression of ρ2, α2, or α6 GABAA receptor subunits. (S)-4-amino-cyclopent-1-enyl butylphosphinic acid (“ρ1” antagonist), when administered to wild type mice, mimicked the changes that ethanol induced in ρ1 null mice (LORR and rotarod tests), but the ρ1 antagonist did not produce these effects in ρ1 null mice. In contrast, (R)-4-amino-cyclopent-1-enyl butylphosphinic acid (“ρ2” antagonist) did not change ethanol actions in wild type but produced effects in mice lacking ρ1 that were opposite of the effects of deleting (or inhibiting) ρ1. These results suggest that ρ1 has a predominant role in two in vivo effects of ethanol, and a role for ρ2 may be revealed when ρ1 is deleted. We also found that ethanol produces similar inhibition of function of recombinant ρ1 and ρ2 receptors. These data indicate that ethanol action on GABAA receptors containing ρ1/ρ2 subunits may be important for specific effects of ethanol in vivo. PMID:24454882

  4. GABAA receptors containing ρ1 subunits contribute to in vivo effects of ethanol in mice.

    Directory of Open Access Journals (Sweden)

    Yuri A Blednov

    Full Text Available GABAA receptors consisting of ρ1, ρ2, or ρ3 subunits in homo- or hetero-pentamers have been studied mainly in retina but are detected in many brain regions. Receptors formed from ρ1 are inhibited by low ethanol concentrations, and family-based association analyses have linked ρ subunit genes with alcohol dependence. We determined if genetic deletion of ρ1 in mice altered in vivo ethanol effects. Null mutant male mice showed reduced ethanol consumption and preference in a two-bottle choice test with no differences in preference for saccharin or quinine. Null mutant mice of both sexes demonstrated longer duration of ethanol-induced loss of righting reflex (LORR, and males were more sensitive to ethanol-induced motor sedation. In contrast, ρ1 null mice showed faster recovery from acute motor incoordination produced by ethanol. Null mutant females were less sensitive to ethanol-induced development of conditioned taste aversion. Measurement of mRNA levels in cerebellum showed that deletion of ρ1 did not change expression of ρ2, α2, or α6 GABAA receptor subunits. (S-4-amino-cyclopent-1-enyl butylphosphinic acid ("ρ1" antagonist, when administered to wild type mice, mimicked the changes that ethanol induced in ρ1 null mice (LORR and rotarod tests, but the ρ1 antagonist did not produce these effects in ρ1 null mice. In contrast, (R-4-amino-cyclopent-1-enyl butylphosphinic acid ("ρ2" antagonist did not change ethanol actions in wild type but produced effects in mice lacking ρ1 that were opposite of the effects of deleting (or inhibiting ρ1. These results suggest that ρ1 has a predominant role in two in vivo effects of ethanol, and a role for ρ2 may be revealed when ρ1 is deleted. We also found that ethanol produces similar inhibition of function of recombinant ρ1 and ρ2 receptors. These data indicate that ethanol action on GABAA receptors containing ρ1/ρ2 subunits may be important for specific effects of ethanol in vivo.

  5. Ethanol concentration-dependent alterations in gene expression during acute binge drinking in the HIV-1 transgenic rat.

    Science.gov (United States)

    Sarkar, Sraboni; Chang, Sulie L

    2013-07-01

    Binge drinking of high ethanol (EtOH) concentration beverages is common among young adults and can be a risk factor for exposure to sexually transmitted diseases, including HIV-1. We used a novel noninfectious HIV-1 transgenic (HIV-1Tg) rat model that mimics HIV-1 patients in terms of altered immune responses and deficits in cognitive learning and memory to investigate EtOH concentration-dependent effects on 48 alcohol-modulated genes during binge EtOH administration. HIV-1Tg and control F344 rats were administered water, 8% EtOH, or 52% EtOH by gavage (i.g.) for 3 days (2.0 g/kg/d). Two hours after final treatment, blood, liver, and spleen were collected from each animal. Serum blood EtOH concentration (BEC) was measured, and gene expression in the liver and spleen was determined using a specifically designed PCR array. The BEC was significantly higher in the 52% EtOH-treated HIV-1Tg rats compared with the 8% EtOH group; however, the BEC was higher in the 8% EtOH-treated control rats compared with the 52% EtOH group. There was no change in expression of the EtOH metabolism-related genes, Adh1, Adh4, and Cyp2e1, in either the 8 or 52% EtOH-treated HIV-1Tg rats, whereas expression of those genes was significantly higher in the liver of the 52% EtOH control rats, but not in the 8% EtOH group. In the HIV-1Tg rats, expression of the GABAA , metabotropic glutamate, and dopamine neurotransmitter receptor genes was significantly increased in the spleen of the 52% EtOH group, but not in the 8% EtOH group, whereas no change was observed in those genes in either of the control groups. Our data indicate that, in the presence of HIV-1 infection, EtOH concentration-dependent binge drinking can have significantly different molecular effects. Copyright © 2013 by the Research Society on Alcoholism.

  6. Acute Respiratory Distress Syndrome Neutrophils Have a Distinct Phenotype and Are Resistant to Phosphoinositide 3-Kinase Inhibition.

    Science.gov (United States)

    Juss, Jatinder K; House, David; Amour, Augustin; Begg, Malcolm; Herre, Jurgen; Storisteanu, Daniel M L; Hoenderdos, Kim; Bradley, Glyn; Lennon, Mark; Summers, Charlotte; Hessel, Edith M; Condliffe, Alison; Chilvers, Edwin R

    2016-10-15

    Acute respiratory distress syndrome is refractory to pharmacological intervention. Inappropriate activation of alveolar neutrophils is believed to underpin this disease's complex pathophysiology, yet these cells have been little studied. To examine the functional and transcriptional profiles of patient blood and alveolar neutrophils compared with healthy volunteer cells, and to define their sensitivity to phosphoinositide 3-kinase inhibition. Twenty-three ventilated patients underwent bronchoalveolar lavage. Alveolar and blood neutrophil apoptosis, phagocytosis, and adhesion molecules were quantified by flow cytometry, and oxidase responses were quantified by chemiluminescence. Cytokine and transcriptional profiling were used in multiplex and GeneChip arrays. Patient blood and alveolar neutrophils were distinct from healthy circulating cells, with increased CD11b and reduced CD62L expression, delayed constitutive apoptosis, and primed oxidase responses. Incubating control cells with disease bronchoalveolar lavage recapitulated the aberrant functional phenotype, and this could be reversed by phosphoinositide 3-kinase inhibitors. In contrast, the prosurvival phenotype of patient cells was resistant to phosphoinositide 3-kinase inhibition. RNA transcriptomic analysis revealed modified immune, cytoskeletal, and cell death pathways in patient cells, aligning closely to sepsis and burns datasets but not to phosphoinositide 3-kinase signatures. Acute respiratory distress syndrome blood and alveolar neutrophils display a distinct primed prosurvival profile and transcriptional signature. The enhanced respiratory burst was phosphoinositide 3-kinase-dependent but delayed apoptosis and the altered transcriptional profile were not. These unexpected findings cast doubt over the utility of phosphoinositide 3-kinase inhibition in acute respiratory distress syndrome and highlight the importance of evaluating novel therapeutic strategies in patient-derived cells.

  7. Vitamin K3 attenuates lipopolysaccharide-induced acute lung injury through inhibition of nuclear factor-κB activation

    Science.gov (United States)

    Tanaka, S; Nishiumi, S; Nishida, M; Mizushina, Y; Kobayashi, K; Masuda, A; Fujita, T; Morita, Y; Mizuno, S; Kutsumi, H; Azuma, T; Yoshida, M

    2010-01-01

    Vitamin K is a family of fat-soluble compounds including phylloquinone (vitamin K1), menaquinone (vitamin K2) and menadione (vitamin K3). Recently, it was reported that vitamin K, especially vitamins K1 and K2, exerts a variety of biological effects, and these compounds are expected to be candidates for therapeutic agents against various diseases. In this study, we investigated the anti-inflammatory effects of vitamin K3 in in vitro cultured cell experiments and in vivo animal experiments. In human embryonic kidney (HEK)293 cells, vitamin K3 inhibited the tumour necrosis factor (TNF)-α-evoked translocation of nuclear factor (NF)-κB into the nucleus, although vitamins K1 and K2 did not. Vitamin K3 also suppressed the lipopolysaccharide (LPS)-induced nuclear translocation of NF-κB and production of TNF-α in mouse macrophage RAW264·7 cells. Moreover, the addition of vitamin K3 before and after LPS administration attenuated the severity of lung injury in an animal model of acute lung injury/acute respiratory distress syndrome (ARDS), which occurs in the setting of acute severe illness complicated by systemic inflammation. In the ARDS model, vitamin K3 also suppressed the LPS-induced increase in the serum TNF-α level and inhibited the LPS-evoked nuclear translocation of NF-κB in lung tissue. Despite marked efforts, little therapeutic progress has been made, and the mortality rate of ARDS remains high. Vitamin K3 may be an effective therapeutic strategy against acute lung injury including ARDS. PMID:20030669

  8. Vitamin K3 attenuates lipopolysaccharide-induced acute lung injury through inhibition of nuclear factor-kappaB activation.

    Science.gov (United States)

    Tanaka, S; Nishiumi, S; Nishida, M; Mizushina, Y; Kobayashi, K; Masuda, A; Fujita, T; Morita, Y; Mizuno, S; Kutsumi, H; Azuma, T; Yoshida, M

    2010-05-01

    Vitamin K is a family of fat-soluble compounds including phylloquinone (vitamin K1), menaquinone (vitamin K2) and menadione (vitamin K3). Recently, it was reported that vitamin K, especially vitamins K1 and K2, exerts a variety of biological effects, and these compounds are expected to be candidates for therapeutic agents against various diseases. In this study, we investigated the anti-inflammatory effects of vitamin K3 in in vitro cultured cell experiments and in vivo animal experiments. In human embryonic kidney (HEK)293 cells, vitamin K3 inhibited the tumour necrosis factor (TNF)-alpha-evoked translocation of nuclear factor (NF)-kappaB into the nucleus, although vitamins K1 and K2 did not. Vitamin K3 also suppressed the lipopolysaccharide (LPS)-induced nuclear translocation of NF-kappaB and production of TNF-alpha in mouse macrophage RAW264.7 cells. Moreover, the addition of vitamin K3 before and after LPS administration attenuated the severity of lung injury in an animal model of acute lung injury/acute respiratory distress syndrome (ARDS), which occurs in the setting of acute severe illness complicated by systemic inflammation. In the ARDS model, vitamin K3 also suppressed the LPS-induced increase in the serum TNF-alpha level and inhibited the LPS-evoked nuclear translocation of NF-kappaB in lung tissue. Despite marked efforts, little therapeutic progress has been made, and the mortality rate of ARDS remains high. Vitamin K3 may be an effective therapeutic strategy against acute lung injury including ARDS.

  9. Inhibition of glycolysis modulates prednisolone resistance in acute lymphoblastic leukemia cells

    NARCIS (Netherlands)

    Hulleman, Esther; Kazemier, Karin M.; Holleman, Amy; VanderWeele, David J.; Rudin, Charles M.; Broekhuis, Mathilde J. C.; Evans, William E.; Pieters, Rob; Den Boer, Monique L.

    2009-01-01

    Treatment failure in pediatric acute lymphoblastic leukemia (ALL) is related to cellular resistance to glucocorticoids (eg, prednisolone). Recently, we demonstrated that genes associated with glucose metabolism are differentially expressed between prednisolone-sensitive and prednisolone-resistant

  10. Modifications in adrenal hormones response to ethanol by prior ethanol dependence.

    Science.gov (United States)

    Guaza, C; Borrell, S

    1985-03-01

    Ethanol was administered to rats by means of a liquid diet for 16 days; after an ethanol-free interval of four weeks, animals received a test (IP) dose of ethanol (2 g/kg), and the adrenocortical and adrenomedullary responses were evaluated. Chronically ethanol-exposed animals showed tolerance to the stimulatory effect of ethanol in the pituitary-adrenal axis. Likewise, previously dependent rats showed tolerance to the increase in the activity of the adrenomedullary function induced by acute administration of the drug. Our results indicate that chronic ethanol ingestion can induce persistent changes after complete alcohol abstinence.

  11. Acute ethanol poisoning in a 6-year-old girl following ingestion of alcohol-based hand sanitizer at school.

    Science.gov (United States)

    Joseph, Madeline Matar; Zeretzke, Cristina; Reader, Sara; Sollee, Dawn R

    2011-01-01

    Alcohol-based hand sanitizers (ABHSs) have been widely used in homes, workplaces and schools to prevent the spread of infectious diseases. We report a young child unintentionally ingested ABHS at a school, resulting in intoxication. The child was a 6-year-old girl who had been brought to the emergency department (ED) for hypothermia, altered mental status (AMS), periods of hypoventilation, hypothermia and vomiting. Computed tomography of her head revealed nothing abnormal in intracranial pathology. Urine drug screening was negative. Alcohol level was 205 mg/dL on admission. Other abnormal values included potassium of 2.8 mEq/L, osmolality of 340 mOsm/kg and no hypoglycemia. Further investigation revealed that the patient had gone frequently to the class restroom for ingestion of unknown quantities of ABHSs during the day. The patient was admitted for one day for intravenous fluid hydration and close observation of her mental status. The patient was discharged from the hospital the next day without any complications. Despite the large safety margin of ABHSs, emergency physicians need to be aware of the potential risk of ingestion of a large amount of such products in children and consider it in the assessment and management of school-age children with acute AMS.

  12. Quercetin Inhibits Peripheral and Spinal Cord Nociceptive Mechanisms to Reduce Intense Acute Swimming-Induced Muscle Pain in Mice

    Science.gov (United States)

    Borghi, Sergio M.; Pinho-Ribeiro, Felipe A.; Fattori, Victor; Bussmann, Allan J. C.; Vignoli, Josiane A.; Camilios-Neto, Doumit; Casagrande, Rubia; Verri, Waldiceu A.

    2016-01-01

    The present study aimed to evaluate the effects of the flavonoid quercetin (3,3´,4´,5,7-pentahydroxyflavone) in a mice model of intense acute swimming-induced muscle pain, which resembles delayed onset muscle soreness. Quercetin intraperitoneal (i.p.) treatment dose-dependently reduced muscle mechanical hyperalgesia. Quercetin inhibited myeloperoxidase (MPO) and N-acetyl-β-D- glucosaminidase (NAG) activities, cytokine production, oxidative stress, cyclooxygenase-2 (COX-2) and gp91phox mRNA expression and muscle injury (creatinine kinase [CK] blood levels and myoblast determination protein [MyoD] mRNA expression) as well as inhibited NFκB activation and induced Nrf2 and HO-1 mRNA expression in the soleus muscle. Beyond inhibiting those peripheral effects, quercetin also inhibited spinal cord cytokine production, oxidative stress and glial cells activation (glial fibrillary acidic protein [GFAP] and ionized calcium-binding adapter molecule 1 [Iba-1] mRNA expression). Concluding, the present data demonstrate that quercetin is a potential molecule for the treatment of muscle pain conditions related to unaccustomed exercise. PMID:27583449

  13. The role of stress mediators in modulation of cytokine production by ethanol

    International Nuclear Information System (INIS)

    Glover, Mitzi; Cheng Bing; Fan Ruping; Pruett, Stephen

    2009-01-01

    Acute ethanol exposure in humans and in animal models activates the hypothalamic-pituitary-adrenal (HPA) axis and the sympathetic nervous system (SNS); the resultant increases in concentration of neuroendocrine mediators contribute to some of the immunosuppressive effects of ethanol. However, the role of these mediators in the ethanol-induced inhibition of inflammatory responses is not clear. This is complicated by the fact that most inflammatory stimuli also activate the HPA axis and SNS, and it has not been determined if ethanol plus an inflammatory stimulus increases these stress responses. Addressing this issue is the major focus of the study described herein. Complementary approaches were used, including quantitative assessment of the stress response in mice treated with polyinosinic-polycytidylic acid (poly I:C, as an inflammatory stimulus) and inhibition of the production or action of key HPA axis and SNS mediators. Treatment of mice with ethanol shortly before treatment with poly I:C yielded a significant increase in the corticosterone response as compared to the response to poly I:C alone, but the increase was small and not likely sufficient to account for the anti-inflammatory effects of ethanol. Inhibition of catecholamine and glucocorticoid production by adrenalectomy, and inhibition of catecholamine action with a sustained release antagonist (nadalol) supported this conclusion and revealed that 'excess' stress responses associated with ethanol treatment is not the mechanism of suppression of pro-inflammatory cytokine production, but stress-induced corticosterone does regulate production of several of these cytokines, which has not previously been reported.

  14. The role of stress mediators in modulation of cytokine production by ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Glover, Mitzi; Bing, Cheng; Ruping, Fan [LSU Health Sciences Center, Department of Cellular Biology and Anatomy, Shreveport, LA 71130 (United States); Pruett, Stephen [LSU Health Sciences Center, Department of Cellular Biology and Anatomy, Shreveport, LA 71130 (United States); Mississippi State University College of Veterinary Medicine, Department of Basic Sciences, P.O. Box 6100, Mississippi State, MS 39762-6100 (United States)], E-mail: pruett@cvm.msstate.edu

    2009-08-15

    Acute ethanol exposure in humans and in animal models activates the hypothalamic-pituitary-adrenal (HPA) axis and the sympathetic nervous system (SNS); the resultant increases in concentration of neuroendocrine mediators contribute to some of the immunosuppressive effects of ethanol. However, the role of these mediators in the ethanol-induced inhibition of inflammatory responses is not clear. This is complicated by the fact that most inflammatory stimuli also activate the HPA axis and SNS, and it has not been determined if ethanol plus an inflammatory stimulus increases these stress responses. Addressing this issue is the major focus of the study described herein. Complementary approaches were used, including quantitative assessment of the stress response in mice treated with polyinosinic-polycytidylic acid (poly I:C, as an inflammatory stimulus) and inhibition of the production or action of key HPA axis and SNS mediators. Treatment of mice with ethanol shortly before treatment with poly I:C yielded a significant increase in the corticosterone response as compared to the response to poly I:C alone, but the increase was small and not likely sufficient to account for the anti-inflammatory effects of ethanol. Inhibition of catecholamine and glucocorticoid production by adrenalectomy, and inhibition of catecholamine action with a sustained release antagonist (nadalol) supported this conclusion and revealed that 'excess' stress responses associated with ethanol treatment is not the mechanism of suppression of pro-inflammatory cytokine production, but stress-induced corticosterone does regulate production of several of these cytokines, which has not previously been reported.

  15. Agmatine Protects against Zymosan-Induced Acute Lung Injury in Mice by Inhibiting NF-κB-Mediated Inflammatory Response

    Directory of Open Access Journals (Sweden)

    Xuanfei Li

    2014-01-01

    Full Text Available Acute lung injury (ALI is characterized by overwhelming lung inflammation and anti-inflammation treatment is proposed to be a therapeutic strategy for ALI. Agmatine, a cationic polyamine formed by decarboxylation of L-arginine, is an endogenous neuromodulator that plays protective roles in diverse central nervous system (CNS disorders. Consistent with its neuromodulatory and neuroprotective properties, agmatine has been reported to have beneficial effects on depression, anxiety, hypoxic ischemia, Parkinson’s disease, and gastric disorder. In this study, we tested the effect of agmatine on the lung inflammation induced by Zymosan (ZYM challenge in mice. We found that agmatine treatment relieved ZYM-induced acute lung injury, as evidenced by the reduced histological scores, wet/dry weight ratio, and myeloperoxidase activity in the lung tissue. This was accompanied by reduced levels of TNF-α, IL-1β, and IL-6 in lung and bronchoalveolar lavage fluid and decreased iNOS expression in lung. Furthermore, agmatine inhibited the phosphorylation and degradation of IκB and subsequently blocked the activation of nuclear factor (NF-κB induced by Zymosan. Taken together, our results showed that agmatine treatment inhibited NF-κB signaling in lungs and protected mice against ALI induced by Zymosan, suggesting agmatine may be a potential safe and effective approach for the treatment of ALI.

  16. Acute toxicity and cholinesterase inhibition of the nematicide ethoprophos in larvae of gar Atractosteus tropicus (Semionotiformes: Lepisosteidae

    Directory of Open Access Journals (Sweden)

    Freylan Mena Torres

    2012-03-01

    Full Text Available Biomarkers are a widely applied approach in environmental studies. Analyses of cholinesterase (ChE, glutathione S-transferase (GST and lipid peroxidation (LPO are biomarkers that can provide information regarding early effects of pollutants at different biochemical levels on an organism. The aim of this study was to evaluate the biomarker approach on a Costa Rican native and relevant species. For this, larvae of gar (Atractosteus tropicus were exposed to the organophosphorus nematicide, ethoprophos. Acute (96hr exposure was conducted with pesticide concentrations ranging from 0.1μg/L to 1 500μg/L. The 96hr LC50 calculated was 859.7μg/L. After exposure, three biomarkers (ChE, GST and LPO were analyzed in fish that survived the acute test. The lowest observed effect concentration (LOEC regarding ChE activity inhibition was 50μg/L. This concentration produced a significant inhibition (p0.05 in GST activity and LPO were observed in A. tropicus larvae after exposure to ethoprophos.

  17. Agmatine protects against zymosan-induced acute lung injury in mice by inhibiting NF-κB-mediated inflammatory response.

    Science.gov (United States)

    Li, Xuanfei; Liu, Zheng; Jin, He; Fan, Xia; Yang, Xue; Tang, Wanqi; Yan, Jun; Liang, Huaping

    2014-01-01

    Acute lung injury (ALI) is characterized by overwhelming lung inflammation and anti-inflammation treatment is proposed to be a therapeutic strategy for ALI. Agmatine, a cationic polyamine formed by decarboxylation of L-arginine, is an endogenous neuromodulator that plays protective roles in diverse central nervous system (CNS) disorders. Consistent with its neuromodulatory and neuroprotective properties, agmatine has been reported to have beneficial effects on depression, anxiety, hypoxic ischemia, Parkinson's disease, and gastric disorder. In this study, we tested the effect of agmatine on the lung inflammation induced by Zymosan (ZYM) challenge in mice. We found that agmatine treatment relieved ZYM-induced acute lung injury, as evidenced by the reduced histological scores, wet/dry weight ratio, and myeloperoxidase activity in the lung tissue. This was accompanied by reduced levels of TNF-α, IL-1β, and IL-6 in lung and bronchoalveolar lavage fluid and decreased iNOS expression in lung. Furthermore, agmatine inhibited the phosphorylation and degradation of IκB and subsequently blocked the activation of nuclear factor (NF)-κB induced by Zymosan. Taken together, our results showed that agmatine treatment inhibited NF-κB signaling in lungs and protected mice against ALI induced by Zymosan, suggesting agmatine may be a potential safe and effective approach for the treatment of ALI.

  18. Inhibition of Pyk2 blocks lung inflammation and injury in a mouse model of acute lung injury

    Directory of Open Access Journals (Sweden)

    Duan Yingli

    2012-01-01

    Full Text Available Abstract Background Proline-rich tyrosine kinase 2 (Pyk2 is essential in neutrophil degranulation and chemotaxis in vitro. However, its effect on the process of lung inflammation and edema formation during LPS induced acute lung injury (ALI remains unknown. The goal of the present study was to determine the effect of inhibiting Pyk2 on LPS-induced acute lung inflammation and injury in vivo. Methods C57BL6 mice were given either 10 mg/kg LPS or saline intratracheally. Inhibition of Pyk2 was effected by intraperitoneal administration TAT-Pyk2-CT 1 h before challenge. Bronchoalveolar lavage analysis of cell counts, lung histology and protein concentration in BAL were analyzed at 18 h after LPS treatment. KC and MIP-2 concentrations in BAL were measured by a mouse cytokine multiplex kit. The static lung compliance was determined by pressure-volume curve using a computer-controlled small animal ventilator. The extravasated Evans blue concentration in lung homogenate was determined spectrophotometrically. Results Intratracheal instillation of LPS induced significant neutrophil infiltration into the lung interstitium and alveolar space, which was attenuated by pre-treatment with TAT-Pyk2-CT. TAT-Pyk2-CT pretreatment also attenuated 1 myeloperoxidase content in lung tissues, 2 vascular leakage as measured by Evans blue dye extravasation in the lungs and the increase in protein concentration in bronchoalveolar lavage, and 3 the decrease in lung compliance. In each paradigm, treatment with control protein TAT-GFP had no blocking effect. By contrast, production of neutrophil chemokines MIP-2 and keratinocyte-derived chemokine in the bronchoalveolar lavage was not reduced by TAT-Pyk2-CT. Western blot analysis confirmed that tyrosine phosphorylation of Pyk2 in LPS-challenged lungs was reduced to control levels by TAT-Pyk2-CT pretreatment. Conclusions These results suggest that Pyk2 plays an important role in the development of acute lung injury in mice and

  19. Concomitant stress potentiates the preference for, and consumption of, ethanol induced by chronic pre-exposure to ethanol

    OpenAIRE

    G. Morais-Silva; J. Fernandes-Santos; D. Moreira-Silva; M.T. Marin

    2016-01-01

    Ethanol abuse is linked to several acute and chronic injuries that can lead to health problems. Ethanol addiction is one of the most severe diseases linked to the abuse of this drug. Symptoms of ethanol addiction include compulsive substance intake and withdrawal syndrome. Stress exposure has an important role in addictive behavior for many drugs of abuse (including ethanol), but the consequences of stress and ethanol in the organism when these factors are concomitant results in a complex int...

  20. Enhanced sensitivity to ethanol-induced inhibition of LTP in CA1 pyramidal neurons of socially isolated C57BL/6J mice: role of neurosteroids

    Directory of Open Access Journals (Sweden)

    Giuseppe eTalani

    2011-10-01

    Full Text Available Ethanol (EtOH–induced impairment of long-term potentiation (LTP in the rat hippocampus is prevented by the 5α-reductase inhibitor finasteride, suggesting that this effect of EtOH is dependent on the increased local release of neurosteroids such as 3α,5α-THP that promote GABA–mediated transmission. Given that social isolation (SI in rodents is associated with altered plasma and brain levels of such neurosteroids as well as with an enhanced neurosteroidogenic action of EtOH, we examined whether the inhibitory effect of EtOH on LTP at CA3-CA1 hippocampal excitatory synapses is altered in C57BL/6J mice subjected to SI for 6 weeks in comparison with group-housed (GH animals. Extracellular recording of fEPSPs as well as patch-clamp analysis were performed in hippocampal slices prepared from both SI and GH mice. Consistent with previous observations, recording of fEPSPs revealed that the extent of LTP induced in the CA1 region of SI mice was significantly reduced compared with that in GH animals. EtOH (40 mM inhibited LTP in slices from SI mice but not in those from GH mice, and this effect of EtOH was abolished by co-application of 1 µM finasteride. Current-clamp analysis of CA1 pyramidal neurons revealed a decrease in action potential frequency and an increase in the intensity of injected current required to evoke the first action potential in SI mice compared with GH mice, indicative of a decrease in neuronal excitability associated with SI. Together, our data suggest that SI results in reduced levels of neuronal excitability and synaptic plasticity in the hippocampus. Furthermore, the increased sensitivity to the neurosteroidogenic effect of EtOH associated with SI likely accounts for the greater inhibitory effect of EtOH on LTP in SI mice. The increase in EtOH sensitivity induced by SI may be important for the changes in the effects of EtOH on anxiety and on learning and memory associated with the prolonged stress attributable to social

  1. Agmatine inhibits nuclear factor-κB nuclear translocation in acute spinal cord compression injury rat model

    Directory of Open Access Journals (Sweden)

    Doaa M. Samy

    2016-09-01

    Full Text Available Secondary damage after acute spinal cord compression injury (SCCI exacerbates initial insult. Nuclear factor kappa-B (NF-κB-p65 activation is involved in SCCI deleterious effects. Agmatine (Agm showed neuroprotection against various CNS injuries. However, Agm impact on NF-κB signaling in acute SCCI remains to be investigated. The present study compared the effectiveness of Agm therapy and decompression laminectomy (DL in functional recovery, oxidative stress, inflammatory and apoptotic responses, and modulation of NF-κB activation in acute SCCI rat model. Rats were either sham-operated or subjected to SCCI at T8–9, using 2-Fr. catheter. SCCI rats were randomly treated with DL at T8–9, intraperitoneal Agm (100 mg/kg/day, combined (DL/Agm treatment or saline (n = 16/group. After 28-days of neurological follow-up, spinal cords were either subjected to biochemical measurement of oxidative stress and inflammatory markers or histopathology and immuno-histochemistry for NF-κB-p65 and caspase-3 expression (n = 8/group. Agm was comparable to DL in facilitating neurological functions recovery, reducing inflammation (TNF-α/interleukin-6, and apoptosis. Agm was distinctive in combating oxidative stress. Agm neuroprotective effects were paralleled with inhibition of NF-κB-p65 nuclear translocation. Combined pharmacological and surgical interventions were proved superior in functional recovery. In conclusion, present research suggested a new mechanism for Agm neuroprotection in rats SCCI through inhibition of NF-κB activation.

  2. Ethanol-induced effects on sting extension response and punishment learning in the western honey bee (Apis mellifera.

    Directory of Open Access Journals (Sweden)

    Manuel A Giannoni-Guzmán

    Full Text Available Acute ethanol administration is associated with sedation and analgesia as well as behavioral disinhibition and memory loss but the mechanisms underlying these effects remain to be elucidated. During the past decade, insects have emerged as important model systems to understand the neural and genetic bases of alcohol effects. However, novel assays to assess ethanol's effects on complex behaviors in social or isolated contexts are necessary. Here we used the honey bee as an especially relevant model system since bees are typically exposed to ethanol in nature when collecting standing nectar crop of flowers, and there is recent evidence for independent biological significance of this exposure for social behavior. Bee's inhibitory control of the sting extension response (SER and a conditioned-place aversion assay were used to study ethanol effects on analgesia, behavioral disinhibition, and associative learning. Our findings indicate that although ethanol, in a dose-dependent manner, increases SER thresholds (analgesic effects, it disrupts the ability of honey bees to inhibit SER and to associate aversive stimuli with their environment. These results suggest that ethanol's effects on analgesia, behavioral disinhibition and associative learning are common across vertebrates and invertebrates. These results add to the use of honey bees as an ethanol model to understand ethanol's effects on complex, socially relevant behaviors.

  3. Acute ethanol has biphasic effects on short- and long-term memory in both foreground and background contextual fear conditioning in C57BL/6 mice.

    Science.gov (United States)

    Gulick, Danielle; Gould, Thomas J

    2007-09-01

    Ethanol is a frequently abused, addictive drug that impairs cognitive function. Ethanol may disrupt cognitive processes by altering attention, short-term memory, and/or long-term memory. Interestingly, some research suggests that ethanol may enhance cognitive processes at lower doses. The current research examined the dose-dependent effects of ethanol on contextual and cued fear conditioning. In addition, the present studies assessed the importance of stimulus salience in the effects of ethanol and directly compared the effects of ethanol on short-term and long-term memory. This study employed both foreground and background fear conditioning, which differ in the salience of contextual stimuli, and tested conditioning at 4 hours, 24 hours, and 1 week in order to assess the effects of ethanol on short-term and long-term memory. Foreground conditioning consisted of 2 presentations of a foot shock unconditioned stimulus (US) (2 seconds, 0.57 mA). Background conditioning consisted of 2 auditory conditioned stimulus (30 seconds, 85 dB white noise)-foot shock (US; 2 seconds, 0.57 mA) pairings. For both foreground and background conditioning, ethanol enhanced short-term and long-term memory for contextual and cued conditioning at a low dose (0.25 g/kg) and impaired short-term and long-term memory for contextual and cued conditioning at a high dose (1.0 g/kg). These results suggest that ethanol has long-lasting, biphasic effects on short-term and long-term memory for contextual and cued conditioning. Furthermore, the effects of ethanol on contextual fear conditioning are independent of the salience of the context.

  4. Impact of TGF-β inhibition during acute exercise on Achilles tendon extracellular matrix

    DEFF Research Database (Denmark)

    Potter, Ross M; Huynh, Richard T; Volper, Brent D

    2017-01-01

    The purpose of this study was to evaluate the role of TGF-β1in regulating tendon extracellular matrix after acute exercise. Wistar rats exercised (n = 15) on a treadmill for four consecutive days (60 min/day) or maintained normal cage activity. After each exercise bout, the peritendinous space of...

  5. Contrast media inhibit exogenous surfactant therapy in rats with acute respiratory distress syndrome

    NARCIS (Netherlands)

    Kesecioglu, Jozef; Haitsma, Jack J.; Schultz, Marcus J.; den Heeten, Gerard J.; Lachmann, Burkhard

    2006-01-01

    AIM: To test the effects of various contrast media on the pulmonary surfactant system. MATERIAL AND METHODS: In a rat model of acute respiratory distress syndrome (ARDS) induced by lung lavage, the effects of surfactant suspended in saline were compared with surfactant suspended in the contrast

  6. Agmatine inhibits nuclear factor-jB nuclear translocation in acute ...

    African Journals Online (AJOL)

    The present study compared the effectiveness of Agm therapy and decompression laminectomy (DL) in functional recovery, oxidative stress, inflammatory and apoptotic responses, and modulation of NF-jB activation in acute SCCI rat model. Rats were either sham-operated or subjected to SCCI at T8–9, using 2-Fr. catheter.

  7. Studying the effects of dietary body weight-adjusted acute tryptophan depletion on punishment-related behavioral inhibition.

    Science.gov (United States)

    Gaber, Tilman J; Dingerkus, Vita L S; Crockett, Molly J; Bubenzer-Busch, Sarah; Helmbold, Katrin; Sánchez, Cristina L; Dahmen, Brigitte; Herpertz-Dahlmann, Beate; Zepf, Florian D

    2015-01-01

    Alterations in serotonergic (5-HT) neurotransmission are thought to play a decisive role in affective disorders and impulse control. This study aims to reproduce and extend previous findings on the effects of acute tryptophan depletion (ATD) and subsequently diminished central 5-HT synthesis in a reinforced categorization task using a refined body weight-adjusted depletion protocol. Twenty-four young healthy adults (12 females, mean age [SD]=25.3 [2.1] years) were subjected to a double-blind within-subject crossover design. Each subject was administered both an ATD challenge and a balanced amino acid load (BAL) in two separate sessions in randomized order. Punishment-related behavioral inhibition was assessed using a forced choice go/no-go task that incorporated a variable payoff schedule. Administration of ATD resulted in significant reductions in TRP measured in peripheral blood samples, indicating reductions of TRP influx across the blood-brain barrier and related brain 5-HT synthesis. Overall accuracy and response time performance were improved after ATD administration. The ability to adjust behavioral responses to aversive outcome magnitudes and behavioral adjustments following error contingent punishment remained intact after decreased brain 5-HT synthesis. A previously observed dissociation effect of ATD on punishment-induced inhibition was not observed. Our results suggest that neurodietary challenges with ATD Moja-De have no detrimental effects on task performance and punishment-related inhibition in healthy adults.

  8. Inhibition of Acute Phase Inflammation by Laminaria japonica through Regulation of iNOS-NF-κB Pathway

    Directory of Open Access Journals (Sweden)

    Seong Kyu Park

    2013-01-01

    Full Text Available Laminaria japonica has been frequently used as food supplements in many of the Asian countries and as a drug in traditional oriental medicine. This research investigated the effects of Laminaria japonica extract (LJE on acute phase inflammation in a carrageenan-induced paw edema model, as assessed by histomorphometric and immunohistochemical analyses. The effect of LJE was also evaluated in Raw264.7 cells stimulated with lipopolysaccharide (LPS in the aspect of the inhibition of nitric oxide (NO, prostaglandin E2 (PGE2, and proinflammatory cytokines production. NO, PGE2, tumor necrosis factor (TNF-α, interleukin-1β, and interleukin-6 contents were assayed by ELISA, and inducible NO synthase (iNOS and cyclooxygenase (COX-2 expressions were determined by western blot analyses. In rats, LJE treatment inhibited carrageenan-induced paw edema formation and infiltration of inflammatory cells in H&E staining. LJE treatment prevented the ability of LPS to increase the levels of iNOS and COX-2 protein in a concentration-dependent manner. Consistently, LJE suppressed the production of TNF-α, interleukin-1β, and interleukin-6. Treatment of the cells with LJE caused inhibition of inhibitor of κBα phosphorylation induced by LPS, suggesting LJE repression of nuclear factor-κB activity by LPS. In conclusion, this study shown here may be of help to understand the action mechanism of LJE and the anti-inflammatory use of L. japonica.

  9. Studying the effects of dietary body weight-adjusted acute tryptophan depletion on punishment-related behavioral inhibition

    Directory of Open Access Journals (Sweden)

    Tilman J. Gaber

    2015-08-01

    Full Text Available Background: Alterations in serotonergic (5-HT neurotransmission are thought to play a decisive role in affective disorders and impulse control. Objective: This study aims to reproduce and extend previous findings on the effects of acute tryptophan depletion (ATD and subsequently diminished central 5-HT synthesis in a reinforced categorization task using a refined body weight–adjusted depletion protocol. Design: Twenty-four young healthy adults (12 females, mean age [SD]=25.3 [2.1] years were subjected to a double-blind within-subject crossover design. Each subject was administered both an ATD challenge and a balanced amino acid load (BAL in two separate sessions in randomized order. Punishment-related behavioral inhibition was assessed using a forced choice go/no-go task that incorporated a variable payoff schedule. Results: Administration of ATD resulted in significant reductions in TRP measured in peripheral blood samples, indicating reductions of TRP influx across the blood–brain barrier and related brain 5-HT synthesis. Overall accuracy and response time performance were improved after ATD administration. The ability to adjust behavioral responses to aversive outcome magnitudes and behavioral adjustments following error contingent punishment remained intact after decreased brain 5-HT synthesis. A previously observed dissociation effect of ATD on punishment-induced inhibition was not observed. Conclusions: Our results suggest that neurodietary challenges with ATD Moja–De have no detrimental effects on task performance and punishment-related inhibition in healthy adults.

  10. Fetal guinea pig brain 15-hydroxyprostaglandin dehydrogenase: Ontogeny and effect of ethanol

    International Nuclear Information System (INIS)

    Treissman, D.; Brien, J.F.

    1991-01-01

    The objectives of this study were to determine the ontogeny of 15-hydroxyprostaglandin dehydrogenase (15-OH-PGDH) activity in the brain of the fetal guinea pig and to test the hypothesis that acute in vitro ethanol exposure produces concentration-dependent inhibition of fetal brain 15-OH-PGDH activity. Enzyme activity was determined in vitro by measuring the rate of oxidation of PGE2 to 15-keto-PGE2 using an optimized radiometric procedure. The study was conducted utilizing the whole brain of the fetal guinea pig at mean gestational ages of 34, 43 and 62 days (term, about 66 days) and the brain stem (pons and medulla) of the fetal guinea pig at mean gestational ages of 43 and 62 days. The direct effect of acute in vitro exposure to ethanol was assessed by incubating 15-OH-PGDH with ethanol in the concentration range of 10 to 80 mM. 15-OH-PGDH was measurable in the whole brain and brain stem, and the enzyme activity was similar for the gestational ages examined. There was no significant ethanol-induced inhibition of 15-OH-PGDH activity in the whole brain or brain stem. The data demonstrate that the whole brain and brain stem of the fetal guinea pig have the capacity to metabolize PGE2 to 15-keto-PGE2, an inactive metabolite, during the second half of gestation. The data apparently are not consistent with the hypothesis that acute in vitro exposure to ethanol directly inhibits 15-OH-PGDH activity in fetal brain

  11. Characterization of wine yeasts for ethanol production

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez, J.; Benitez, T.

    1986-11-01

    Selected wine yeasts were tested for their ethanol and sugar tolerance, and for their fermentative capacity. Growth (..mu..) and fermentation rates (..nu..) were increasingly inhibited by increasing ethanol and glucose concentrations, ''flor'' yeasts being the least inhibited. Except in the latter strains, the ethanol production rate was accelerated by adding the glucose stepwise. The best fermenting strains selected in laboratory medium were also the best at fermenting molasses. Invertase activity was not a limiting step in ethanol production, ..nu.. being accelerated by supplementing molasses with ammonia and biotine, and by cell recycle.

  12. Ethanolic extract of Passiflora edulis Sims leaves inhibits protein glycation and restores the oxidative burst in diabetic rat macrophages after Candida albicans exposure

    Directory of Open Access Journals (Sweden)

    Carolina Fernandes Ribas Martins

    2015-12-01

    Full Text Available abstract This study was conducted to evaluate the effects of the ethanolic extract of Passiflora edulis leaves on blood glucose, protein glycation, NADPH oxidase activity and macrophage phagocytic capacity after Candida albicans exposure in diabetic rats. The Passiflora edulis Sims leaves were dried to 40°C, powdered, extracted by maceration in 70% ethanol, evaporated under reduced pressure and lyophilised. The biochemical tests performed were total phenolic content (TP as determined by the Folin-Ciocalteu assay, trapping potential DPPH assay and total iron-reducing potential. Diabetes was induced by alloxan injection. Protein glycation was determined by AGE and fructosamine serum concentrations. Extract-treated diabetic animals demonstrated lower fructosamine concentrations compared with the diabetic group. Our results suggest that ethanolic Passiflora edulis Sims leaf extraction may have beneficial effects on diabetes and may improve glycaemic control in diabetic rats.

  13. Mechanistic Studies of the Anti-Ulcerogenic Activity and Acute Toxicity Evaluation of Dichlorido-Copper(II-4-(2-5-Bromo-benzylideneaminoethyl Piperazin-1-ium Phenolate Complex against Ethanol-Induced Gastric Injury in Rats

    Directory of Open Access Journals (Sweden)

    A. Hamid A. Hadi

    2011-10-01

    Full Text Available The compound dichlorido-copper(II-4-(2-5-bromobenzylideneaminoethyl piperazin-1-ium phenolate (CuLBS was synthesized, characterized and screened for acute toxicity and protective activity against ethanol-induced gastric mucosal injury in rats. Gross microscopic lesions, biochemical and immunological parameters and histochemcial staining of glycogen storage were taken into consideration. Oral administration of CuLBS (30 and 60 mg/Kg for two weeks dose-dependently flattened gastric mucosa, significantly increased gastric mucus and total acidity, compared with control group (P < 0.01. Serum levels of liver enzymes aspartate (AST and alanine transaminases (ALT, pro-inflammatory (IL-6 and TNF-α and anti-inflammatory (IL-10 cytokines in the rats exposed to ethanol induced ulceration have been altered. Administration of CuLBS showed considerable (P < 0.05 protection against ulceration by modulating the acute alterations of cytokines AST, ALT and stomach glycogen. Interestingly, CuLBS did not interfere with the natural release of nitric oxide. CuLBS alone (60 mg/Kg did not exhibit any ulcerogenic effect as assessed using Adami’s scoring scale. An acute toxicity study showed that rats treated with CuLBS (1,000 and 2,000 mg/Kg manifested no abnormal signs. These findings therefore, suggested that the gastroprotective activity of CuLBS might contribute in modulating the inflammatory cytokine-mediated oxidative damage to gastric mucosa.

  14. Rapid redistribution and inhibition of renal sodium transporters during acute pressure natriuresis

    DEFF Research Database (Denmark)

    Zhang, Y; Mircheff, A K; Hensley, C B

    1996-01-01

    and basolateral Na+ pumps to internal membranes. Arterial pressure was increased 50 mmHg by constricting various arteries. We also tested whether transporter internalization occurred when PT Na+ reabsorption was inhibited with the carbonic anhydrase inhibitor benzolamide. Five minutes after initiating either...

  15. Cheongsangbangpung-tang ameliorated the acute inflammatory response via the inhibition of NF-κB activation and MAPK phosphorylation.

    Science.gov (United States)

    Kim, Seon Young; Park, Sang Mi; Hwangbo, Min; Lee, Jong Rok; Byun, Sung Hui; Ku, Sae Kwang; Cho, Il Je; Kim, Sang Chan; Jee, Seon Young; Park, Sook Jahr

    2017-01-13

    Cheongsangbangpung-tang (CBT) is a traditional herbal formula used in Eastern Asia to treat heat-related diseases and swellings in the skin. The present study was conducted to evaluate the anti-inflammatory effects of cheongsangbangpung-tang extract (CBTE) both in vitro and in vivo. The in vitro effects of CBTE on the lipopolysaccharide (LPS)-induced production of inflammation-related proteins were examined in RAW 264.7 cells. The levels of nitric oxide (NO) were measured with the Griess reagent. Inflammatory cytokines and prostaglandin E 2 (PGE 2 ) were detected using the enzyme-linked immunosorbent assay (ELISA) method. Inflammation-related proteins were detected by Western blot. The effect of CBTE on acute inflammation in vivo was evaluated using carrageenan (CA)-induced paw oedema. To evaluate the anti-inflammatory effect, paw oedema volume, thickness of the dorsum and ventrum pedis skin, number of infiltrated inflammatory cells, and number of COX-2-, iNOS-immunoreactive cells were measured. In an in vitro study, CBTE inhibited the production of NO and PGE 2 and also decreased the expression of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2) activity, interleukin (IL)-1β, IL-6 and tumuor necrosis factor-α. In LPS-activated macrophages, nuclear factor-kappaB (NF-κB) and mitogen-activated protein kinase (MAPK) signalling is a pivotal pathway in the inflammatory process. These plausible molecular mechanisms increased the phosphorylation of I-κBα, while the activation of NF-κB and the phosphorylation of MAPK by LPS were blocked by CBTE treatment. In our in vivo study, a CA-induced acute oedematous paw inflammation rat model was used to evaluate the anti-inflammatory effect of CBTE. CBTE significantly reduced the increases in paw swelling, skin thicknesses, infiltrated inflammatory cells and iNOS-, COX-2 positive cells induced by CA injection. Based on these results, CBTE should favourably inhibit the acute inflammatory response through

  16. Kefir induces apoptosis and inhibits cell proliferation in human acute erythroleukemia.

    Science.gov (United States)

    Jalali, Fatemeh; Sharifi, Mohammadreza; Salehi, Rasoul

    2016-01-01

    Acute erythroleukemia is an uncommon subtype of acute myeloid leukemia which has been considered to be a subtype of AML with a worse prognosis. Intensive chemotherapy is the first line of treatment. In recent years, the effect of kefir on some malignancies has been experimented. Kefir is a kind of beverage, which obtained by incubation of kefir grains with raw milk. Kefir grains are a symbiotic complex of different kinds of yeasts and bacteria, especially lactic acid bacteria which gather in a mostly carbohydrate matrix, named kefiran. We investigated the effect of kefir on acute erythroleukemia cell line (KG-1) and peripheral blood mononuclear cells (PBMCs). The cell line and PBMCs were treated with different doses of kefir and milk and incubated for three different times. We used Polymixin B to block the lipopolysaccharide and NaOH (1 mol/l) to neutralize the acidic media. Viability was detected by MTT assay. Apoptosis and necrosis were assessed by annexin-propidium iodide staining. Our results showed that kefir induced apoptosis and necrosis in KG-1 cell line. It was revealed that kefir decreased proliferation in erythroleukemia cell line. We did not observe a remarkable effect of kefir on PBMCs. Our study suggested that kefir may have potential to be an effective treatment for erythroleukemia.

  17. Delta receptor antagonism, ethanol taste reactivity, and ethanol consumption in outbred male rats.

    Science.gov (United States)

    Higley, Amanda E; Kiefer, Stephen W

    2006-11-01

    Naltrexone, a nonspecific opioid antagonist, produces significant changes in ethanol responsivity in rats by rendering the taste of ethanol aversive as well as producing a decrease in voluntary ethanol consumption. The present study investigated the effect of naltrindole, a specific antagonist of delta opioid receptors, on ethanol taste reactivity and ethanol consumption in outbred rats. In the first experiment, rats received acute treatment of naltrexone, naltrindole, or saline followed by the measurement of ethanol consumption in a short-term access period. The second experiment involved the same treatments and investigated ethanol palatability (using the taste-reactivity test) as well as ethanol consumption. Results indicated that treatment with 3 mg/kg naltrexone significantly affected palatability (rendered ethanol more aversive, Experiment 2) and decreased voluntary ethanol consumption (Experiments 1 and 2). The effects of naltrindole were inconsistent. In Experiment 1, 8 mg/kg naltrindole significantly decreased voluntary ethanol consumption but this was not replicated in Experiment 2. The 8 mg/kg dose produced a significant increase in aversive responding (Experiment 2) but did not affect ingestive responding. Lower doses of naltrindole (2 and 4 mg/kg) were ineffective in altering rats' taste-reactivity response to and consumption of ethanol. While these data suggest that delta receptors are involved in rats' taste-reactivity response to ethanol and rats' ethanol consumption, it is likely that multiple opioid receptors mediate both behavioral responses.

  18. The cytochrome P-450 inhibitor cobalt chloride prevents inhibition of renal Na,K-ATPase and redistribution of apical NHE-3 during acute hypertension

    DEFF Research Database (Denmark)

    Zhang, Y B; Magyar, C E; Holstein-Rathlou, N H

    1998-01-01

    by cobalt chloride (CoCl2). Four groups of rats (n = 4 to 5) were studied: (1) sham-operated; (2) 50 mg of CoCl2/kg subcutaneously for 2 d; (3) acute hypertension by constricting arteries for 5 min; and (4) acute hypertension after CoCl2 treatment as in group 3. Renal cortex was analyzed after sorbitol...... reabsorption and diuresis and abolishes Na,K-ATPase inhibition and NHE-3 redistribution during acute hypertension, evidence that these responses may be mediated by cytochrome P-450 arachidonate metabolites....

  19. Inhibition of Notch signaling by Dll4-Fc promotes reperfusion of acutely ischemic tissues

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Ren [Department of Pathology, University of Southern California, Los Angeles (United States); Trindade, Alexandre [Centro Interdisciplinar de Investigacao em Sanidade Animal (CIISA), Lisbon Technical University, Lisbon (Portugal); Instituto Gulbenkian de Ciencia, Oeiras (Portugal); Sun, Zhanfeng [Department of Vascular Surgery, 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang (China); Kumar, Ram; Weaver, Fred A. [Department of Surgery, University of Southern California, Los Angeles (United States); Krasnoperov, Valery; Naga, Kranthi [Vasgene Therapeutics, Los Angeles, CA (United States); Duarte, Antonio [Centro Interdisciplinar de Investigacao em Sanidade Animal (CIISA), Lisbon Technical University, Lisbon (Portugal); Instituto Gulbenkian de Ciencia, Oeiras (Portugal); Gill, Parkash S., E-mail: parkashg@usc.edu [Department of Pathology, University of Southern California, Los Angeles (United States)

    2012-02-03

    Highlights: Black-Right-Pointing-Pointer Low dose Dll4-Fc increases vascular proliferation and overall perfusion. Black-Right-Pointing-Pointer Low dose Dll4-Fc helps vascular injury recovery in hindlimb ischemia model. Black-Right-Pointing-Pointer Low dose Dll4-Fc helps vascular injury recovery in skin flap model. Black-Right-Pointing-Pointer Dll4 heterozygous deletion promotes vascular injury recovery. Black-Right-Pointing-Pointer Dll4 overexpression delays vascular injury recovery. -- Abstract: Notch pathway regulates vessel development and maturation. Dll4, a high-affinity ligand for Notch, is expressed predominantly in the arterial endothelium and is induced by hypoxia among other factors. Inhibition of Dll4 has paradoxical effects of reducing the maturation and perfusion in newly forming vessels while increasing the density of vessels. We hypothesized that partial and/or intermittent inhibition of Dll4 may lead to increased vascular response and still allow vascular maturation to occur. Thus tissue perfusion can be restored rapidly, allowing quicker recovery from ischemia or tissue injury. Our studies in two different models (hindlimb ischemia and skin flap) show that inhibition of Dll4 at low dose allows faster recovery from vascular and tissue injury. This opens a new possibility for Dll4 blockade's therapeutic application in promoting recovery from vascular injury and restoring blood supply to ischemic tissues.

  20. Synthesis, DNA Cleavage Activity, Cytotoxicity, Acetylcholinesterase Inhibition, and Acute Murine Toxicity of Redox-Active Ruthenium(II) Polypyridyl Complexes.

    Science.gov (United States)

    Alatrash, Nagham; Narh, Eugenia S; Yadav, Abhishek; Kim, Mahn-Jong; Janaratne, Thamara; Gabriel, James; MacDonnell, Frederick M

    2017-07-06

    Four mononuclear [(L-L) 2 Ru(tatpp)] 2+ and two dinuclear [(L-L) 2 Ru(tatpp)Ru(L-L) 2 ] 4+ ruthenium(II) polypyridyl complexes (RPCs) containing the 9,11,20,22-tetraazatetrapyrido[3,2-a:2',3'-c:3'',2''-l:2''',3'''-n]pentacene (tatpp) ligand were synthesized, in which L-L is a chelating diamine ligand such as 2,2'-bipyridine (bpy), 1,10-phenanthroline (phen), 3,4,7,8-tetramethyl-1,10-phenanthroline (Me 4 phen) or 4,7-diphenyl-1,10-phenanthroline (Ph 2 phen). These Ru-tatpp analogues all undergo reduction reactions with modest reducing agents, such as glutathione (GSH), at pH 7. These, plus several structurally related but non-redox-active RPCs, were screened for DNA cleavage activity, cytotoxicity, acetylcholinesterase (AChE) inhibition, and acute mouse toxicity, and their activities were examined with respect to redox activity and lipophilicity. All of the redox-active RPCs show single-strand DNA cleavage in the presence of GSH, whereas none of the non-redox-active RPCs do. Low-micromolar cytotoxicity (IC 50 ) against malignant H358, CCL228, and MCF7 cultured cell lines was mainly restricted to the redox-active RPCs; however, they were substantially less toxic toward nonmalignant MCF10 cells. The IC 50 values for AChE inhibition in cell-free assays and the acute toxicity of RPCs in mice revealed that whereas most RPCs show potent inhibitory action against AChE (IC 50 values <15 μm), Ru-tatpp complexes as a class are surprisingly well tolerated in animals relative to other RPCs. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Acutely increasing δGABA(A) receptor activity impairs memory and inhibits synaptic plasticity in the hippocampus.

    Science.gov (United States)

    Whissell, Paul D; Eng, Dave; Lecker, Irene; Martin, Loren J; Wang, Dian-Shi; Orser, Beverley A

    2013-01-01

    Extrasynaptic γ-aminobutyric acid type A (GABA(A)) receptors that contain the δ subunit (δGABA(A) receptors) are expressed in several brain regions including the dentate gyrus (DG) and CA1 subfields of the hippocampus. Drugs that increase δGABA(A) receptor activity have been proposed as treatments for a variety of disorders including insomnia, epilepsy and chronic pain. Also, long-term pretreatment with the δGABA(A) receptor-preferring agonist 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol (THIP) enhances discrimination memory and increases neurogenesis in the DG. Despite the potential therapeutic benefits of such treatments, the effects of acutely increasing δGABA(A) receptor activity on memory behaviors remain unknown. Here, we studied the effects of THIP (4 mg/kg, i.p.) on memory performance in wild-type (WT) and δGABA(A) receptor null mutant (Gabrd(-/-)) mice. Additionally, the effects of THIP on long-term potentiation (LTP), a molecular correlate of memory, were studied within the DG and CA1 subfields of the hippocampus using electrophysiological recordings of field potentials in hippocampal slices. The results showed that THIP impaired performance in the Morris water maze, contextual fear conditioning and object recognition tasks in WT mice but not Gabrd(-/-) mice. Furthermore, THIP inhibited LTP in hippocampal slices from WT but not Gabrd(-/-) mice, an effect that was blocked by GABA(A) receptor antagonist bicuculline. Thus, acutely increasing δGABA(A) receptor activity impairs memory behaviors and inhibits synaptic plasticity. These results have important implications for the development of therapies aimed at increasing δGABA(A) receptor activity.

  2. Ethanol Forensic Toxicology.

    Science.gov (United States)

    Perry, Paul J; Doroudgar, Shadi; Van Dyke, Priscilla

    2017-12-01

    Ethanol abuse can lead to negative consequences that oftentimes result in criminal charges and civil lawsuits. When an individual is suspected of driving under the influence, law enforcement agents can determine the extent of intoxication by measuring the blood alcohol concentration (BAC) and performing a standardized field sobriety test. The BAC is dependent on rates of absorption, distribution, and elimination, which are influenced mostly by the dose of ethanol ingested and rate of consumption. Other factors contributing to BAC are gender, body mass and composition, food effects, type of alcohol, and chronic alcohol exposure. Because of individual variability in ethanol pharmacology and toxicology, careful extrapolation and interpretation of the BAC is needed, to justify an arrest and assignment of criminal liability. This review provides a summary of the pharmacokinetic properties of ethanol and the clinical effects of acute intoxication as they relate to common forensic questions. Concerns regarding the extrapolation of BAC and the implications of impaired memory caused by alcohol-induced blackouts are discussed. © 2017 American Academy of Psychiatry and the Law.

  3. Dendrobium chrysanthum ethanolic extract induces apoptosis via p53 up-regulation in HeLa cells and inhibits tumor progression in mice.

    Science.gov (United States)

    Prasad, Ritika; Rana, Nishant Kumar; Koch, Biplob

    2017-06-01

    Background Dendrobium is one of the diverse genus of orchid plants. It possesses a number of pharmacological activities and has long been used in traditional system of medicine. The goal of this study was to investigate the apoptosis inducing property of the ethanolic extract from the leaves of Dendrobium chrysanthum, a species of Dendrobium whose anticancer role has not been ascertained yet. Methods To evaluate the anticancer activity of the ethanolic extract of D. chrysanthum in vitro in HeLa (human cervical cancer) cells, cytotoxic activity, generation of reactive oxygen species (ROS), induction of apoptosis and effect on cell cycle were determined. The in vivo study was carried out in Dalton's lymphoma (DL) bearing mice to assess the tumor growth delay. Results Our study demonstrated that the ethanolic extract showed dose-dependent cytotoxicity against HeLa cells. The extract exhibited dose-dependent increase in ROS production as well as apoptotic cell death which was further confirmed through presence of DNA fragmentation. Cell cycle analysis by flow cytometry suggests that the ethanolic extract perturbed cell cycle progression and leads to the delay of the cells in S phase. Further, the real-time PCR studies also showed up-regulation of apoptotic genes p53 and Bax. The in vivo antitumor activity exhibited significant increase in the life span of DL bearing mice as compared to control with significant decrease in abdominal size along with reduced tumor ascites. Conclusions These observations demonstrate the anticancer potential of the D. chrysanthum ethanolic extract mediated through p53-dependent apoptosis.

  4. Inhibition of c-Myc overcomes cytotoxic drug resistance in acute myeloid leukemia cells by promoting differentiation.

    Directory of Open Access Journals (Sweden)

    Xiao-Na Pan

    Full Text Available Nowadays, drug resistance still represents a major obstacle to successful acute myeloid leukemia (AML treatment and the underlying mechanism is not fully elucidated. Here, we found that high expression of c-Myc was one of the cytogenetic characteristics in the drug-resistant leukemic cells. c-Myc over-expression in leukemic cells induced resistance to chemotherapeutic drugs, enhanced colony formation capacity and inhibited cell differentiation induced by all-trans retinoic acid (ATRA. Meanwhile, inhibition of c-Myc by shRNA or specific c-Myc inhibitor 10058-F4 rescued the sensitivity to cytotoxic drugs, restrained the colony formation ability and promoted differentiation. RT-PCR and western blotting analysis showed that down-regulation of C/EBPβ contributed to the poor differentiation state of leukemic cells induced by c-Myc over-expression. Importantly, over-expression of C/EBPβ could reverse c-Myc induced drug resistance. In primary AML cells, the c-Myc expression was negatively correlated with C/EBPβ. 10058-F4, displayed anti-proliferative activity and increased cellular differentiation with up-regulation of C/EBPβ in primary AML cells. Thus, our study indicated that c-Myc could be a novel target to overcome drug resistance, providing a new approach in AML therapy.

  5. Inhibition of histone deacetylases 1 and 6 enhances cytarabine-induced apoptosis in pediatric acute myeloid leukemia cells.

    Science.gov (United States)

    Xu, Xuelian; Xie, Chengzhi; Edwards, Holly; Zhou, Hui; Buck, Steven A; Ge, Yubin

    2011-02-16

    Pediatric acute myeloid leukemia (AML) remains a challenging disease to treat even with intensified cytarabine-based chemotherapy. Histone deacetylases (HDACs) have been reported to be promising therapeutic targets for treating AML. However, HDAC family members that are involved in chemotherapy sensitivities remain unknown. In this study, we sought to identify members of the HDAC family that are involved in cytarabine sensitivities, and to select the optimal HDACI that is most efficacious when combined with cytarabine for treating children with AML. Expression profiles of classes I, II, and IV HDACs in 4 pediatric AML cell lines were determined by Western blotting. Inhibition of class I HDACs by different HDACIs was measured post immnunoprecipitation. Individual down-regulation of HDACs in pediatric AML cells was performed with lentiviral shRNA. The effects of cytarabine and HDACIs on apoptosis were determined by flow cytometry analysis. Treatments with structurally diverse HDACIs and HDAC shRNA knockdown experiments revealed that down-regulation of both HDACs 1 and 6 is critical in enhancing cytarabine-induced apoptosis in pediatric AML, at least partly mediated by Bim. However, down-regulation of HDAC2 may negatively impact cytarabine sensitivities in the disease. At clinically achievable concentrations, HDACIs that simultaneously inhibited both HDACs 1 and 6 showed the best anti-leukemic activities and significantly enhanced cytarabine-induced apoptosis. Our results further confirm that HDACs are bona fide therapeutic targets for treating pediatric AML and suggest that pan-HDACIs may be more beneficial than isoform-specific drugs.

  6. Acute inhibition of selected membrane-proximal mouse T cell receptor signaling by mitochondrial antagonists.

    Directory of Open Access Journals (Sweden)

    Kwangmi Kim

    2009-11-01

    Full Text Available T cells absorb nanometric membrane vesicles, prepared from plasma membrane of antigen presenting cells, via dual receptor/ligand interactions of T cell receptor (TCR with cognate peptide/major histocompatibility complex (MHC plus lymphocyte function-associated antigen 1 (LFA-1 with intercellular adhesion molecule 1. TCR-mediated signaling for LFA-1 activation is also required for the vesicle absorption. Exploiting those findings, we had established a high throughput screening (HTS platform and screened a library for isolation of small molecules inhibiting the vesicle absorption. Follow-up studies confirmed that treatments (1 hour with various mitochondrial antagonists, including a class of anti-diabetic drugs (i.e., Metformin and Phenformin, resulted in ubiquitous inhibition of the vesicle absorption without compromising viability of T cells. Further studies revealed that the mitochondrial drug treatments caused impairment of specific membrane-proximal TCR signaling event(s. Thus, activation of Akt and PLC-gamma1 and entry of extracellular Ca(2+ following TCR stimulation were attenuated while polymerization of monomeric actins upon TCR triggering progressed normally after the treatments. Dynamic F-actin rearrangement concurring with the vesicle absorption was also found to be impaired by the drug treatments, implying that the inhibition by the drug treatments of downstream signaling events (and the vesicle absorption could result from lack of directional relocation of signaling and cell surface molecules. We also assessed the potential application of mitochondrial antagonists as immune modulators by probing effects of the long-term drug treatments (24 hours on viability of resting primary T cells and cell cycle progression of antigen-stimulated T cells. This study unveils a novel regulatory mechanism for T cell immunity in response to environmental factors having effects on mitochondrial function.

  7. Valsartan Protects Against Contrast-Induced Acute Kidney Injury in Rats by Inhibiting Endoplasmic Reticulum Stress-Induced Apoptosis.

    Science.gov (United States)

    Sun, Yan; Peng, Ping-An; Ma, Yue; Liu, Xiao-Li; Yu, Yi; Jia, Shuo; Xu, Xiao-Han; Wu, Si-Jing; Zhou, Yu-Jie

    2017-01-01

    Contrast-induced acute kidney injury (CI-AKI) is a serious complication of the administration of iodinated contrast media (CM) for diagnostic and interventional cardiovascular procedures and is associated with substantial morbidity and mortality. While the preventative measures can mitigate the risk of CI-AKI, there remains a need for novel and effective therapeutic approaches. The pathogenesis of CI-AKI is complex and not completely understood. CM-induced renal tubular cell apoptosis caused by the activation of endoplasmic reticulum (ER) stress is involved in CIAKI. We previously demonstrated that valsartan alleviated CM-induced human renal tubular cell apoptosis by inhibiting ER stress in vitro. However, the nephroprotective effect of valsartan on CI-AKI in vivo has not been investigated. Therefore, the aim of this study was to explore the protective effect of valsartan in a rat model of CI-AKI by measuring the amelioration of renal damage and the changes in ER stressrelated biomarkers. Our results showed that the radiocontrast agent meglumine diatrizoate caused significant renal insufficiency, renin-angiotensin system (RAS) activation, and renal tubular apoptosis by triggering ER stress through activation of glucose-regulated protein 78 (GRP78), activating transcription factor 4 (ATF4), caspase 12, CCAAT/enhancer-binding protein-homologous protein (CHOP) and c-Jun N-terminal protein kinase (JNK) (Pvalsartan significantly alleviated renal dysfunction, pathological injury, and apoptosis along with the inhibition of ER stressrelated biomarkers (PValsartan could protect against meglumine diatrizoate-induced kidney injury in rats by inhibiting the ER stress-induced apoptosis, making it a promising strategy for preventing CI-AKI. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  8. The dietary flavonoids naringenin and quercetin acutely impair glucose metabolism in rodents possibly via inhibition of hypothalamic insulin signalling.

    Science.gov (United States)

    Koch, Christiane E; Ganjam, Goutham K; Steger, Juliane; Legler, Karen; Stöhr, Sigrid; Schumacher, Daniela; Hoggard, Nigel; Heldmaier, Gerhard; Tups, Alexander

    2013-03-28

    Secondary metabolites of herbs and spices are widely used as an alternative strategy in the therapy of various diseases. The polyphenols naringenin, quercetin and curcumin have been characterised as anti-diabetic agents. Conversely, in vitro, naringenin and quercetin are described to inhibit phosphoinositide-3-kinase (PI3K), an enzyme that is essential for the neuronal control of whole body glucose homoeostasis. Using both in vitro and in vivo experiments, we tested whether the inhibitory effect on PI3K occurs in neurons and if it might affect whole body glucose homoeostasis. Quercetin was found to inhibit basal and insulin-induced phosphorylation of Akt (Ser473), a downstream target of PI3K, in HT-22 cells, whereas naringenin and curcumin had no effect. In Djungarian hamsters (Phodopus sungorus) naringenin and quercetin (10 mg/kg administered orally) diminished insulin-induced phosphorylation of Akt (Ser473) in the arcuate nucleus, indicating a reduction in hypothalamic PI3K activity. In agreement with this finding, glucose tolerance in naringenin-treated hamsters (oral) and mice (oral and intracerebroventricular) was reduced compared with controls. Dietary quercetin also impaired glucose tolerance, whereas curcumin was ineffective. Circulating levels of insulin and insulin-like growth factor-binding protein were not affected by the polyphenols. Oral quercetin reduced the respiratory quotient, suggesting that glucose utilisation was impaired after treatment. These data demonstrate that low doses of naringenin and quercetin acutely and potently impair glucose homoeostasis. This effect may be mediated by inhibition of hypothalamic PI3K signalling. Whether chronic impairments in glucose homoeostasis occur after long-term application remains to be identified.

  9. Troglitazone inhibits cell growth and induces apoptosis of B-cell acute lymphoblastic leukemia cells with t(14;18).

    Science.gov (United States)

    Takenokuchi, M; Saigo, K; Nakamachi, Y; Kawano, S; Hashimoto, M; Fujioka, T; Koizumi, T; Tatsumi, E; Kumagai, S

    2006-01-01

    Peroxisome proliferator-activated receptor-gamma (PPARgamma), a member of the nuclear receptor superfamily, has been detected in several human leukemia cells. Recent studies reported that PPARgamma ligands inhibit cell proliferation and induce apoptosis in both normal and malignant B-lineage cells. We investigated the expression of PPARgamma and the effects of PPARgamma ligands on UTree-O2, Bay91 and 380, three B-cell acute lymphoblastic leukemia (B-ALL) cell lines with t(14;18), which show a poor prognosis, accompanying c-myc abnormality. Western blot analysis identified expression of PPARgamma protein and real-time PCR that of PPARgamma mRNA on the three cell lines. Troglitazone (TGZ), a synthetic PPARgamma ligand, inhibited cell growth in these cell lines in a dose-dependent manner, which was associated with G(1) cell cycle arrest and apoptosis. We also found this effect PPARgamma independent since PPARgamma antagonists failed to reverse this effect. We assessed the expression of c-myc, an apoptosis-regulatory gene, since c-myc abnormality was detected in most B-ALL cells with t(14;18). TGZ was found to dose-dependently downregulate the expression of c-myc mRNA and c-myc protein in the three cell lines. These results suggest that TGZ inhibits cell growth via induction of G(1) cell cycle arrest and apoptosis in these cell lines and that TGZ-induced apoptosis, at least in part, may be related to the downregulation of c-myc expression. Moreover, the downregulation of c-myc expression by TGZ may depend on a PPARgamma-independent mechanism. Further studies indicate that PPARgamma ligands may serve as a therapeutic agent in B-ALL with t(14;18).

  10. Acute insulin-induced elevations of circulating leptin and feeding inhibition in lean but not obese rats.

    Science.gov (United States)

    Singh, Kimberly A; Boozer, Carol N; Vasselli, Joseph R

    2005-08-01

    Insulin has been shown to stimulate leptin mRNA expression acutely in rat adipose tissue, but its short-term effects on circulating leptin levels, and subsequent feeding behavior, have not been well described. We used 11-mo-old female selectively bred obesity-resistant (OR) and obesity-prone (OP) Sprague-Dawley rats maintained on laboratory chow to investigate this question. At testing, body weights and basal leptin levels of the OP rats were significantly elevated compared with the OR rats. In the 3-h fasted state, injection of 2.0 U insulin/kg ip resulted in significant elevations of plasma leptin at 4 h postinjection in both OP and OR groups (hour 4, +2.50 and +5.98 ng/ml, respectively). In separate feeding tests with the same groups, intake of laboratory chow pellets was significantly inhibited during hours 2-4 after 2.0 U/kg of insulin in the OR (-80.1%, P < 0.05), but not in the OP group, compared with intake after saline injections. In feeding tests with palatable moderately high-fat pellets after 2.0 and 3.0 U insulin/kg ip, significant decreases between hours 2 and 4 in intake were seen in the OR group only (-41.0 and -68.3%, respectively). Thus feeding inhibition coincides with insulin-induced elevations of plasma leptin in lean but not obese Sprague-Dawley rats. Our data suggest that elevations of leptin within the physiological range may contribute to short-term inhibition of food intake in rats and that this process may be stimulated by feeding-related insulin release.

  11. Acute Stressors Reduce Neural and Behavioral Inhibition to Food Cues among Binge Eating Disorder Symptomatic Women

    Directory of Open Access Journals (Sweden)

    Zhenyong Lyu

    2016-10-01

    Full Text Available Stressors can trigger binge-eating but researchers have yet to consider their effects on both neural responses to food cues and food consumption among those at risk. In this experiment, we examined the impact of acute stressors on neural activation to food images and subsequent food consumption within binge-eating disorder (BED and non-eating disordered control groups. Eighteen women meeting DSM-IV BED criteria and 26 women serving as non-eating disordered controls were randomly assigned to unpleasant stressor (painful cold pressor test followed by negative performance feedback or less unpleasant stressor (non-painful sensory discrimination task followed by positive performance feedback conditions. Subsequently, they were scanned with functional magnetic resonance imaging (fMRI while viewing food and neutral images. After the scans, participants completed a self-report battery in an environment conducive to snacking. During exposure to food images, BED-symptomatic women in the unpleasant stressor condition reported more liking of high calorie food images and showed less activation in one inhibitory area, the hippocampus, compared to controls in this condition. BED-symptomatic women exposed to unpleasant stressors also consumed more chocolate than any other group during the post-scan questionnaire completion. Crucially, reduced hippocampal activation to high calorie food images predicted more chocolate consumption following fMRI scans within the entire sample. This experiment provides initial evidence suggesting unpleasant acute stressors contribute to reduced inhibitory region responsiveness in relation to external food cues and later food consumption among BED-symptomatic women.

  12. Cholinesterase Inhibition and Depression of the Photic After Discharge of Flash Evoked Potentials Following Acute or Repeated Exposures to a Mixture of Carbaryl and Propoxur

    Science.gov (United States)

    While information exists regarding inhibition of cholinesterase (ChE) activity, little is known about neurophysiological changes produced by a mixture of N-methyl carbamate pesticides. Previously, we reported that acute treatment with propoxur or carbaryl decreased the duration o...

  13. Citrus tachibana Leaves Ethanol Extract Alleviates Airway Inflammation by the Modulation of Th1/Th2 Imbalance via Inhibiting NF-κB Signaling and Histamine Secretion in a Mouse Model of Allergic Asthma.

    Science.gov (United States)

    Bui, Thi Tho; Piao, Chun Hua; Kim, Soo Mi; Song, Chang Ho; Shin, Hee Soon; Lee, Chang-Hyun; Chai, Ok Hee

    2017-07-01

    Asthma is a chronic inflammatory disease of bronchial airway, which is characterized by chronic airway inflammation, airway edema, goblet cell hyperplasia, the aberrant production of the Th2 cytokines, and eosinophil infiltration in the lungs. In this study, the therapeutic effect and the underlying mechanism of Citrus tachibana leaves ethanol extract (CTLE) in the ovalbumin (OVA)-induced allergic asthma and compound 48/80-induced anaphylaxis were investigated. Oral administration of CTLE inhibited OVA-induced asthmatic response by reducing airway inflammation, OVA-specific IgE and IgG1 levels, and increasing OVA-specific IgG2a levels. CTLE restored Th1/Th2 balance through an increase in Th2 cytokines tumor necrosis factor-α, interleukin (IL)-4, and IL-6 and decreases in Th1 cytokines interferon-γ and IL-12. Furthermore, CTLE inhibited the total level of NF-κB and the phosphorylation of IκB-α and NF-κB by OVA. In addition, CTLE dose-dependently inhibited compound 48/80-induced anaphylaxis via blocking histamine secretion from mast cells. The anti-inflammatory mechanism of CTLE may involve the modulation of Th1/Th2 imbalance via inhibiting the NF-κB signaling and histamine secretion. Taken together, we suggest that CTLE could be used as a therapeutic agent for patients with Th2-mediated or histamine-mediated allergic asthma.

  14. Ethanol modulation of mammalian BK channels in excitable tissues: molecular targets and their possible contribution to alcohol-induced altered behavior

    Directory of Open Access Journals (Sweden)

    Alex M. Dopico

    2014-12-01

    Full Text Available In most tissues, the function of calcium- and voltage-gated potassium (BK channels is modified in response to ethanol concentrations reached in human blood during alcohol intoxication. In general, modification of BK current from ethanol-naïve preparations in response to brief ethanol exposure results from changes in channel open probability without modification of unitary conductance or change in BK protein levels in the membrane. Protracted and/or repeated ethanol exposure, however, may evoke changes in BK expression. The final ethanol effect on BK open probability leading to either BK current potentiation or BK current reduction is determined by an orchestration of molecular factors, including levels of activating ligand (cytosolic calcium, BK subunit composition and posttranslational modifications, and the channel’s lipid microenvironment. These factors seem to allosterically regulate a direct interaction between ethanol and a recognition pocket of discrete dimensions recently mapped to the channel-forming (slo1 subunit. Type of ethanol exposure also plays a role in the final BK response to the drug: in several central nervous system regions (e.g., striatum, primary sensory neurons, and supraoptic nucleus, acute exposure to ethanol reduces neuronal excitability by enhancing BK activity. In contrast, protracted or repetitive ethanol administration may alter BK subunit composition and membrane expression, rendering the BK complex insensitive to further ethanol exposure. In neurohypophysial axon terminals, ethanol potentiation of BK channel activity leads to a reduction in neuropeptide release. In vascular smooth muscle, however, ethanol inhibition of BK current leads to cell contraction and vascular constriction.

  15. Inhibition by local bupivacaine-releasing microspheres of acute postoperative pain from hairy skin incision.

    Science.gov (United States)

    Ohri, Rachit; Wang, Jeffrey Chi-Fei; Blaskovich, Phillip D; Pham, Lan N; Costa, Daniel S; Nichols, Gary A; Hildebrand, William P; Scarborough, Nelson L; Herman, Clifford J; Strichartz, Gary R

    2013-09-01

    Acute postoperative pain causes physiological deficits and slows recovery. Reduction of such pain by local anesthetics that are delivered for several days postoperatively is a desirable clinical objective, which is approached by a new formulation and applied in animal studies reported here. We subcutaneously injected a new formulation of poly-lactic-co-glycolic acid polymer microspheres, which provides steady drug release for 96+ hours into rats at the dorsal region 2 hours before surgery. A single 1.2-cm-long skin incision was followed by blunt dissection of skin away from the underlying fascia, and closed by 2 sutures, followed by 14 days of testing. Microspheres containing 5, 10, 20, and 40 mg bupivacaine were injected locally 2 hours before surgery; bupivacaine-free microspheres were the vehicle control, and bupivacaine HCl solution (0.5%), the positive control. Mechanical sensitivity was determined by the frequency of local muscle contractions to repeated pokes with nylon monofilaments (von Frey hairs) exerting 4 and 15 g forces, testing, respectively, allodynia and hyperalgesia, and by pinprick. Injection of bupivacaine microspheres (40 mg drug) into intact skin reduced responses to 15 g von Frey hairs for 6 hours and to pinprick for 36 hours. Respective reductions from bupivacaine HCl lasted for 3 and 2 hours. Skin incision and dissection alone caused mechanical allodynia and hyperalgesia for 14 days. Microspheres containing 20 or 40 mg bupivacaine suppressed postoperative hypersensitivity for up to 3 days, reduced integrated allodynia (area under curve of response versus time) over postoperative days 1 to 5 by 51% ± 20% (mean ± SE) and 78% ± 12%, and reduced integrated hyperalgesia by 55% ± 13% and 64% ± 11%, for the respective doses. Five and ten milligrams bupivacaine in microspheres and the 0.5% bupivacaine solution were ineffective in reducing postoperative hypersensitivity, as were 40 mg bupivacaine microspheres injected contralateral to the

  16. Water-filtered infrared a irradiation in combination with visible light inhibits acute chlamydial infection.

    Directory of Open Access Journals (Sweden)

    Hanna Marti

    Full Text Available New therapeutic strategies are needed to overcome drawbacks in treatment of infections with intracellular bacteria. Chlamydiaceae are Gram-negative bacteria implicated in acute and chronic diseases such as abortion in animals and trachoma in humans. Water-filtered infrared A (wIRA is short wavelength infrared radiation with a spectrum ranging from 780 to 1400 nm. In clinical settings, wIRA alone and in combination with visible light (VIS has proven its efficacy in acute and chronic wound healing processes. This is the first study to demonstrate that wIRA irradiation combined with VIS (wIRA/VIS diminishes recovery of infectious elementary bodies (EBs of both intra- and extracellular Chlamydia (C. in two different cell lines (Vero, HeLa regardless of the chlamydial strain (C. pecorum, C. trachomatis serovar E as shown by indirect immunofluorescence and titration by subpassage. Moreover, a single exposure to wIRA/VIS at 40 hours post infection (hpi led to a significant reduction of C. pecorum inclusion frequency in Vero cells and C. trachomatis in HeLa cells, respectively. A triple dose of irradiation (24, 36, 40 hpi during the course of C. trachomatis infection further reduced chlamydial inclusion frequency in HeLa cells without inducing the chlamydial persistence/stress response, as ascertained by electron microscopy. Irradiation of host cells (HeLa, Vero neither affected cell viability nor induced any molecular markers of cytotoxicity as investigated by Alamar blue assay and Western blot analysis. Chlamydial infection, irradiation, and the combination of both showed a similar release pattern of a subset of pro-inflammatory cytokines (MIF/GIF, Serpin E1, RANTES, IL-6, IL-8 and chemokines (IL-16, IP-10, ENA-78, MIG, MIP-1α/β from host cells. Initial investigation into the mechanism indicated possible thermal effects on Chlamydia due to irradiation. In summary, we demonstrate a non-chemical reduction of chlamydial infection using the combination

  17. Inhibiting Bruton's Tyrosine Kinase Rescues Mice from Lethal Influenza Induced Acute Lung Injury.

    Science.gov (United States)

    Florence, Jon M; Krupa, Agnieszka; Booshehri, Laela M; Davis, Sandra A; Matthay, Michael A; Kurdowska, Anna K

    2018-03-08

    Infection with seasonal influenza A virus (IAV) leads to lung inflammation and respiratory failure, a main cause of death in influenza infected patients. Previous experiments in our laboratory indicated that Bruton's tyrosine kinase (Btk) plays a substantial role in regulating inflammation in the respiratory region during acute lung injury (ALI) in mice, therefore we sought to determine if blocking Btk activity had a protective effect in the lung during influenza induced inflammation. A Btk inhibitor (Btk Inh.) Ibrutinib (also known as PCI-32765) was administered intranasally to mice starting 72h after lethal infection with IAV. Our data indicates that treatment with the Btk inhibitor not only reduced weight loss and led to survival, but had a dramatic effect on morphological changes to the lungs of IAV infected mice. Attenuation of lung inflammation indicative of ALI such as alveolar hemorrhage, interstitial thickening, and the presence of alveolar exudate, together with reduced levels of inflammatory mediators TNFα, IL-1β, IL-6, KC, and MCP-1 strongly suggest amelioration of the pathological immune response in the lungs to promote resolution of the infection. Finally, we observed that blocking Btk specifically in the alveolar compartment led to significant attenuation of neutrophil extracellular traps (NET)s released into the lung in vivo, and NET formation in vitro. Our innovative findings suggest that Btk may be a new drug target for influenza induced lung injury, and in general immunomodulatory treatment may be key in treating lung dysfunction driven by excessive inflammation.

  18. Inhibition of myostatin signaling through Notch activation following acute resistance exercise.

    Directory of Open Access Journals (Sweden)

    Matthew G MacKenzie

    Full Text Available Myostatin is a TGFβ family member and negative regulator of muscle size. Due to the complexity of the molecular pathway between myostatin mRNA/protein and changes in transcription, it has been difficult to understand whether myostatin plays a role in resistance exercise-induced skeletal muscle hypertrophy. To circumvent this problem, we determined the expression of a unique myostatin target gene, Mighty, following resistance exercise. Mighty mRNA increased by 6 h (82.9 ± 24.21% and remained high out to 48 h (56.5 ± 19.67% after resistance exercise. Further examination of the soleus, plantaris and tibialis anterior muscles showed that the change in Mighty mRNA at 6 h correlated with the increase in muscle size associated with this protocol (R(2 = 0.9996. The increase in Mighty mRNA occurred both independent of Smad2 phosphorylation and in spite of an increase in myostatin mRNA (341.8 ± 147.14% at 3 h. The myostatin inhibitor SKI remained unchanged. However, activated Notch, another potential inhibitor of TGFβ signaling, increased immediately following resistance exercise (83 ± 11.2% and stayed elevated out to 6 h (78 ± 16.6%. Electroportion of the Notch intracellular domain into the tibialis anterior resulted in an increase in Mighty mRNA (63 ± 13.4% that was equivalent to the canonical Notch target HES-1 (94.4 ± 7.32%. These data suggest that acute resistance exercise decreases myostatin signaling through the activation of the TGFβ inhibitor Notch resulting in a decrease in myostatin transcriptional activity that correlates well with muscle hypertrophy.

  19. 4-Phenylbutyrate inhibits tunicamycin-induced acute kidney injury via CHOP/GADD153 repression.

    Directory of Open Access Journals (Sweden)

    Rachel E Carlisle

    Full Text Available Different forms of acute kidney injury (AKI have been associated with endoplasmic reticulum (ER stress; these include AKI caused by acetaminophen, antibiotics, cisplatin, and radiocontrast. Tunicamycin (TM is a nucleoside antibiotic known to induce ER stress and is a commonly used inducer of AKI. 4-phenylbutyrate (4-PBA is an FDA approved substance used in children who suffer from urea cycle disorders. 4-PBA acts as an ER stress inhibitor by aiding in protein folding at the molecular level and preventing misfolded protein aggregation. The main objective of this study was to determine if 4-PBA could protect from AKI induced by ER stress, as typified by the TM-model, and what mechanism(s of 4-PBA's action were responsible for protection. C57BL/6 mice were treated with saline, TM or TM plus 4-PBA. 4-PBA partially protected the anatomic segment most susceptible to damage, the outer medullary stripe, from TM-induced AKI. In vitro work showed that 4-PBA protected human proximal tubular cells from apoptosis and TM-induced CHOP expression, an ER stress inducible proapoptotic gene. Further, immunofluorescent staining in the animal model found similar protection by 4-PBA from CHOP nuclear translocation in the tubular epithelium of the medulla. This was accompanied by a reduction in apoptosis and GRP78 expression. CHOP(-/- mice were protected from TM-induced AKI. The protective effects of 4-PBA extended to the ultrastructural integrity of proximal tubule cells in the outer medulla. When taken together, these results indicate that 4-PBA acts as an ER stress inhibitor, to partially protect the kidney from TM-induced AKI through the repression of ER stress-induced CHOP expression.

  20. Acute toxicity and cholinesterase inhibition of the nematicide ethoprophos in larvae of gar Atractosteus tropicus (Semionotiformes: Lepisosteidae

    Directory of Open Access Journals (Sweden)

    Freylan Mena Torres

    2012-03-01

    Full Text Available Biomarkers are a widely applied approach in environmental studies. Analyses of cholinesterase (ChE, glutathione S-transferase (GST and lipid peroxidation (LPO are biomarkers that can provide information regarding early effects of pollutants at different biochemical levels on an organism. The aim of this study was to evaluate the biomarker approach on a Costa Rican native and relevant species. For this, larvae of gar (Atractosteus tropicus were exposed to the organophosphorus nematicide, ethoprophos. Acute (96hr exposure was conducted with pesticide concentrations ranging from 0.1μg/L to 1 500μg/L. The 96hr LC50 calculated was 859.7μg/L. After exposure, three biomarkers (ChE, GST and LPO were analyzed in fish that survived the acute test. The lowest observed effect concentration (LOEC regarding ChE activity inhibition was 50μg/L. This concentration produced a significant inhibition (p0.05 in GST activity and LPO were observed in A. tropicus larvae after exposure to ethoprophos.El proceso de reproducción inducida de Atractosteus tropicus es útil para la acuicultura y la reintroducción en zonas donde las poblaciones silvestres se han reducido considerablemente. En larvas de esta especie se evaluó la toxicidad aguda, así como la respuesta de tres biomarcadores: actividad colinesterasa (ChE, actividad de Glutation S-transferasa (GST y peroxidación de lípidos (LPO. Asimismo, se realizaron exposiciones agudas (96hr a etoprofos (nematicida organofosforado, en donde se utilizaron concentraciones entre 0.1μg/L y 1 500μg/L del nematicida. La concentración letal 50 (LC50 calculada fue de 859.7μg/L; la máxima concentración sin efecto en los organismos (NOEC 10μg/L y la concentración más baja en la cual se observó algún efecto (LOEC 50μg/L. A esa concentración, el efecto observado fue una reducción significativa (p0.05 luego de la exposición de los organismos a etoprofos.

  1. Inhibition of CD147 (Cluster of Differentiation 147) Ameliorates Acute Ischemic Stroke in Mice by Reducing Thromboinflammation.

    Science.gov (United States)

    Jin, Rong; Xiao, Adam Y; Chen, Rui; Granger, D Neil; Li, Guohong

    2017-12-01

    Inflammation and thrombosis currently are recognized as critical contributors to the pathogenesis of ischemic stroke. CD147 (cluster of differentiation 147), also known as extracellular matrix metalloproteinase inducer, can function as a key mediator of inflammatory and immune responses. CD147 expression is increased in the brain after cerebral ischemia, but its role in the pathogenesis of ischemic stroke remains unknown. In this study, we show that CD147 acts as a key player in ischemic stroke by driving thrombotic and inflammatory responses. Focal cerebral ischemia was induced in C57BL/6 mice by a 60-minute transient middle cerebral artery occlusion. Animals were treated with anti-CD147 function-blocking antibody (αCD147) or isotype control antibody. Blood-brain barrier permeability, thrombus formation, and microvascular patency were assessed 24 hours after ischemia. Infarct size, neurological deficits, and inflammatory cells invaded in the brain were assessed 72 hours after ischemia. CD147 expression was rapidly increased in ischemic brain endothelium after transient middle cerebral artery occlusion. Inhibition of CD147 reduced infarct size and improved functional outcome on day 3 after transient middle cerebral artery occlusion. The neuroprotective effects were associated with (1) prevented blood-brain barrier damage, (2) decreased intravascular fibrin and platelet deposition, which in turn reduced thrombosis and increased cerebral perfusion, and (3) reduced brain inflammatory cell infiltration. The underlying mechanism may include reduced NF-κB (nuclear factor κB) activation, MMP-9 (matrix metalloproteinase-9) activity, and PAI-1 (plasminogen activator inhibitor-1) expression in brain microvascular endothelial cells. Inhibition of CD147 ameliorates acute ischemic stroke by reducing thromboinflammation. CD147 might represent a novel and promising therapeutic target for ischemic stroke and possibly other thromboinflammatory disorders. © 2017 American Heart

  2. Inhibition of histone deacetylases 1 and 6 enhances cytarabine-induced apoptosis in pediatric acute myeloid leukemia cells.

    Directory of Open Access Journals (Sweden)

    Xuelian Xu

    Full Text Available BACKGROUND: Pediatric acute myeloid leukemia (AML remains a challenging disease to treat even with intensified cytarabine-based chemotherapy. Histone deacetylases (HDACs have been reported to be promising therapeutic targets for treating AML. However, HDAC family members that are involved in chemotherapy sensitivities remain unknown. In this study, we sought to identify members of the HDAC family that are involved in cytarabine sensitivities, and to select the optimal HDACI that is most efficacious when combined with cytarabine for treating children with AML. METHODOLOGY: Expression profiles of classes I, II, and IV HDACs in 4 pediatric AML cell lines were determined by Western blotting. Inhibition of class I HDACs by different HDACIs was measured post immnunoprecipitation. Individual down-regulation of HDACs in pediatric AML cells was performed with lentiviral shRNA. The effects of cytarabine and HDACIs on apoptosis were determined by flow cytometry analysis. RESULTS: Treatments with structurally diverse HDACIs and HDAC shRNA knockdown experiments revealed that down-regulation of both HDACs 1 and 6 is critical in enhancing cytarabine-induced apoptosis in pediatric AML, at least partly mediated by Bim. However, down-regulation of HDAC2 may negatively impact cytarabine sensitivities in the disease. At clinically achievable concentrations, HDACIs that simultaneously inhibited both HDACs 1 and 6 showed the best anti-leukemic activities and significantly enhanced cytarabine-induced apoptosis. CONCLUSION: Our results further confirm that HDACs are bona fide therapeutic targets for treating pediatric AML and suggest that pan-HDACIs may be more beneficial than isoform-specific drugs.

  3. Ibrutinib inhibits pre-BCR+ B-cell acute lymphoblastic leukemia progression by targeting BTK and BLK.

    Science.gov (United States)

    Kim, Ekaterina; Hurtz, Christian; Koehrer, Stefan; Wang, Zhiqiang; Balasubramanian, Sriram; Chang, Betty Y; Müschen, Markus; Davis, R Eric; Burger, Jan A

    2017-03-02

    Targeting B-cell receptor (BCR) signaling is a successful therapeutic strategy in mature B-cell malignancies. Precursor BCR (pre-BCR) signaling, which is critical during normal B lymphopoiesis, also plays an important role in pre-BCR + B cell acute lymphoblastic leukemia (B-ALL). Here, we investigated the activity and mechanism of action of the BTK inhibitor ibrutinib in preclinical models of B-ALL. Pre-BCR + ALL cells were exquisitely sensitive to ibrutinib at therapeutically relevant drug concentrations. In pre-BCR + ALL, ibrutinib thwarted autonomous and induced pre-BCR signaling, resulting in deactivation of PI3K/Akt signaling. Ibrutinib modulated the expression of pre-BCR regulators (PTPN6, CD22, CD72, and PKCβ) and substantially reduced BCL6 levels. Ibrutinib inhibited ALL cell migration toward CXCL12 and beneath marrow stromal cells and reduced CD44 expression. CRISPR-Cas9 gene editing revealed that both BTK and B lymphocyte kinase (BLK) are relevant targets of ibrutinib in pre-BCR + ALL. Consequently, in mouse xenograft models of pre-BCR + ALL, ibrutinib treatment significantly prolonged survival. Combination treatment of ibrutinib with dexamethasone or vincristine demonstrated synergistic activity against pre-BCR + ALL. These data corroborate ibrutinib as a promising targeted agent for pre-BCR + ALL and highlight the importance of ibrutinib effects on alternative kinase targets. © 2017 by The American Society of Hematology.

  4. Major role of suckling stimulation for inhibition of estrous behaviors in lactating rabbits: acute and chronic effects.

    Science.gov (United States)

    García-Dalmán, Cipatli; González-Mariscal, Gabriela

    2012-01-01

    Lactation in rabbits induces anestrus: sexual receptivity and scent-marking (chinning) are reduced despite the brevity of suckling (one daily nursing bout, lasting around 3 min). The mechanisms underlying this effect are unknown but, as chinning, lordosis, and ambulation in an open field are immediately inhibited by the peripheral stimulation received during mating we hypothesized that, across lactation, suckling stimulation would provoke a similar effect. To test this possibility we provided litters of 1, 3, 5, or 10 pups across lactation days 1-15 and quantified chinning and ambulation frequencies, the lordosis quotient, and milk output. Baseline chinning frequency, determined before the daily nursing bout, was low across lactation days 1-15 in does nursing 3, 5 or 10 pups but it increased steadily across days 1-10 in rabbits suckling one pup. Yet, a single young was sufficient to abolish chinning for about 1h, after which this behavior rose again. Suckling litters of all sizes reduced (but did not abolish) ambulation frequency, both chronically (baseline levels declined across days 1-5) and acutely. Sexual receptivity was significantly reduced on lactation day 15 only in does that had nursed 10 pups. Large litter size promoted a larger milk output and a normal duration of nursing episodes. Results support a major role of suckling stimulation for the suppression of estrous behaviors and ambulation through as yet unidentified mechanisms. Copyright © 2011. Published by Elsevier Inc.

  5. Ethanol extract of mango (Mangifera indica L.) peel inhibits α-amylase and α-glucosidase activities, and ameliorates diabetes related biochemical parameters in streptozotocin (STZ)-induced diabetic rats.

    Science.gov (United States)

    Gondi, Mahendranath; Prasada Rao, U J S

    2015-12-01

    Peel is a major by-product during processing of mango fruit into pulp. Recent report indicates that the whole peel powder ameliorated diabetes. In the present study, ethanolic extract of mango peel was analysed for its bioactive compounds, evaluated for α-amylase and α-glucosidase inhibitory properties, oral glucose tolerance test, antioxidant properties, plasma insulin level and biochemical parameters related to diabetes. In addition to gallic and protocatechuic acids, the extract also had chlorogenic and ferulic acids, which were not reported earlier in mango peel extracts. The peel extract inhibited α-amylase and α-glucosidase activities, with IC50 values of 4.0 and 3.5 μg/ml. Ethanolic extract of peel showed better glucose utilization in oral glucose tolerance test. Treatment of streptozotocin-induced diabetic rats with the extract decreased fasting blood glucose, fructosamine and glycated hemoglobin levels, and increased plasma insulin level. Peel extract treatment decreased malondialdehyde level, but increased the activities of antioxidant enzymes significantly in liver and kidney compared to diabetic rats. These beneficial effects were comparable to metformin, but better than gallic acid treated diabetic rats. The beneficial effects of peel extract may be through different mechanism like increased plasma insulin levels, decreased oxidative stress and inhibition of carbohydrate hydrolyzing enzyme activities by its bioactive compounds. Thus, results suggest that the peel extract can be a potential source of nutraceutical or can be used in functional foods and this is the first report on antidiabetic properties of mango peel extract.

  6. Ethanol dehydration

    OpenAIRE

    Ana María Uyazán; Iván Dario Gil; J L Aguilar; Gerardo Rodríguez Niño; Luis Alfonso Caicedo

    2004-01-01

    This review outlines ethanol dehydration processes and their most important characteristics. It also deals with the main operating variables and some criteria used in designing the separation scheme. A differentiation is made between processes involving liquid steam balance in separation operations and those doing it by screening the difference in molecule size. The last part presents a comparison between the three main industrial processes, stressing their stengths and weaknesses from the op...

  7. Ethanol dehydration

    Directory of Open Access Journals (Sweden)

    Ana María Uyazán

    2004-09-01

    Full Text Available This review outlines ethanol dehydration processes and their most important characteristics. It also deals with the main operating variables and some criteria used in designing the separation scheme. A differentiation is made between processes involving liquid steam balance in separation operations and those doing it by screening the difference in molecule size. The last part presents a comparison between the three main industrial processes, stressing their stengths and weaknesses from the operational, energy consumption and industrial services points of view.

  8. Dansyl-PQRamide, a putative antagonist of NPFF receptors, reduces anxiety-like behavior of ethanol withdrawal in a plus-maze test in rats.

    Science.gov (United States)

    Kotlinska, Jolanta; Pachuta, Agnieszka; Bochenski, Marcin; Silberring, Jerzy

    2009-06-01

    Much evidence indicates that endogenous opioid peptides are involved in effects caused by ethanol. The aim of the present study was to determine whether dansyl-PQR amide, a putative antagonist of receptors for an anti-opioid peptide-neuropeptide FF (NPFF) could affect anxiety-like behavior measured during withdrawal from acute-, and chronic ethanol administration in the elevated plus maze test in rats. Our study indicated that intracerebroventricular (i.c.v.) administration of dansyl-PQRamide (2.4 and 4.8 nmol) reversed anxiety-like behavior measured as a percent time spent in the open arms, and a percent open arm entries onto the open arms in the elevated plus-maze test in rats. These effects were inhibited by NPFF (10 and/or 20 nmol, i.c.v.) in the experiments performed during withdrawal from acute- and chronic ethanol administration. During withdrawal from acute ethanol, naloxone (1mg/kg, i.p.), a nonselective opioid receptor antagonist, attenuated only an increased percent time spent in the open arms induced by dansyl-PQR amide (4.8 nmol). Dansyl-PQR amide, NPFF and naloxone given alone to naive rats did not have influence on spontaneous locomotor activity of animals. Furthermore, NPFF potentiated anxiety-like behavior during withdrawal from chronic, but not acute, ethanol administration in rats. Our data suggest that NPFF system is involved in regulation of affective symptoms of ethanol withdrawal. It seems that involvement of the NPFF system in ethanol withdrawal anxiety-like behavior is associated with regulation of the opioid system activity.

  9. Effect of central nervous system radiotherapy in children with acute lymphoblastic leukaemia on lymphocyte subpopulations and indicators of leucocyte migration inhibition in the peripheral blood

    International Nuclear Information System (INIS)

    Cesarz-Kruz, E.; Lukas, A; Sroczynska, M.; Lukas, W; Sonta-Jakimczyk, D.

    1981-01-01

    The reported investigations of changes in lymphocyte subpopulations and indicators of leycocyte migration inhibition in the peripheral blood were carried out in 17 children with acute lymphoblastic leukaemia subjected to prophylactic irradiation of the central nervous system. It was found that the depressive effect of radioprophylaxis affected mostly lymphocytes B. The usefulness of immunomodulation application in children with this leukaemia immediately after completion of radiotherapy is considered. (author)

  10. Acute Toxicity of Organophosphorus Compounds in Guinea Pigs Is Sex- and Age-Dependent and Cannot Be Solely Accounted for by Acetylcholinesterase Inhibition

    OpenAIRE

    Fawcett, William P.; Aracava, Yasco; Adler, Michael; Pereira, Edna F. R.; Albuquerque, Edson X.

    2008-01-01

    This study was designed to test the hypothesis that the acute toxicity of the nerve agents S-[2-(diisopropylamino)ethyl]-O-ethyl methylphosphonothioate (VX), O-pinacolyl methylphosphonofluoridate (soman), and O-isopropyl methylphosphonofluoridate (sarin) in guinea pigs is age- and sex-dependent and cannot be fully accounted for by the irreversible inhibition of acetylcholinesterase (AChE). The subcutaneous doses of nerve agents needed to decrease 24-h survival of guine...

  11. Prevention of experimentally-induced gastric ulcers in rats by an ethanolic extract of "Parsley" Petroselinum crispum.

    Science.gov (United States)

    Al-Howiriny, Tawfeq; Al-Sohaibani, Mohammed; El-Tahir, Kamal; Rafatullah, Syed

    2003-01-01

    An ethanolic extract of Parsley, Petroselinum crispum (Mill.) Nym.ex A.W. Hill (Umbelliferae), was tested for its ability to inhibit gastric secretion and to protect gastric mucosa against the injuries caused by pyloric ligation, hypothermic restraint stress, indomethacin and cytodestructive agents (80% ethanol, 0.2 M NaOH and 25% NaCl) in rats. The extract in doses of 1 and 2 g/kg body weight had a significant antiulcerogenic activity on the models used. Besides, ethanol-induced depleted gastric wall mucus and non-protein sulfhydryl contents were replenished by pretreatment with Parsley extract. Acute toxicity tests showed a large margin of safety for the extract. The phytochemical screening of Parsley leaves revealed the presence of tannins, flavonoids, sterols and/or triterpenes.

  12. Temporal Profiles Dissociate Regional Extracellular Ethanol versus Dopamine Concentrations

    Science.gov (United States)

    2015-01-01

    In vivo monitoring of dopamine via microdialysis has demonstrated that acute, systemic ethanol increases extracellular dopamine in regions innervated by dopaminergic neurons originating in the ventral tegmental area and substantia nigra. Simultaneous measurement of dialysate dopamine and ethanol allows comparison of the time courses of their extracellular concentrations. Early studies demonstrated dissociations between the time courses of brain ethanol concentrations and dopaminergic responses in the nucleus accumbens (NAc) elicited by acute ethanol administration. Both brain ethanol and extracellular dopamine levels peak during the first 5 min following systemic ethanol administration, but the dopamine response returns to baseline while brain ethanol concentrations remain elevated. Post hoc analyses examined ratios of the dopamine response (represented as a percent above baseline) to tissue concentrations of ethanol at different time points within the first 25–30 min in the prefrontal cortex, NAc core and shell, and dorsomedial striatum following a single intravenous infusion of ethanol (1 g/kg). The temporal patterns of these “response ratios” differed across brain regions, possibly due to regional differences in the mechanisms underlying the decline of the dopamine signal associated with acute intravenous ethanol administration and/or to the differential effects of acute ethanol on the properties of subpopulations of midbrain dopamine neurons. This Review draws on neurochemical, physiological, and molecular studies to summarize the effects of acute ethanol administration on dopamine activity in the prefrontal cortex and striatal regions, to explore the potential reasons for the regional differences observed in the decline of ethanol-induced dopamine signals, and to suggest directions for future research. PMID:25537116

  13. Piperlongumine inhibits the proliferation and survival of B-cell acute lymphoblastic leukemia cell lines irrespective of glucocorticoid resistance

    Energy Technology Data Exchange (ETDEWEB)

    Han, Seong-Su, E-mail: seong-su-han@uiowa.edu [Division of Pediatric Hematology-Oncology, University of Iowa Carver College of Medicine, Iowa City, IA (United States); Han, Sangwoo [Health and Human Physiology, University of Iowa Carver College of Medicine, Iowa City, IA (United States); Kamberos, Natalie L. [Division of Pediatric Hematology-Oncology, University of Iowa Carver College of Medicine, Iowa City, IA (United States)

    2014-09-26

    Highlights: • PL inhibits the proliferation of B-ALL cell lines irrespective of GC-resistance. • PL selectively kills B-ALL cells by increasing ROS, but not normal counterpart. • PL does not sensitize majority of B-ALL cells to DEX. • PL represses the network of constitutively activated TFs and modulates their target genes. • PL may serve as a new therapeutic molecule for GC-resistant B-ALL. - Abstract: Piperlongumine (PL), a pepper plant alkaloid from Piper longum, has anti-inflammatory and anti-cancer properties. PL selectively kills both solid and hematologic cancer cells, but not normal counterparts. Here we evaluated the effect of PL on the proliferation and survival of B-cell acute lymphoblastic leukemia (B-ALL), including glucocorticoid (GC)-resistant B-ALL. Regardless of GC-resistance, PL inhibited the proliferation of all B-ALL cell lines, but not normal B cells, in a dose- and time-dependent manner and induced apoptosis via elevation of ROS. Interestingly, PL did not sensitize most of B-ALL cell lines to dexamethasone (DEX). Only UoC-B1 exhibited a weak synergistic effect between PL and DEX. All B-ALL cell lines tested exhibited constitutive activation of multiple transcription factors (TFs), including AP-1, MYC, NF-κB, SP1, STAT1, STAT3, STAT6 and YY1. Treatment of the B-ALL cells with PL significantly downregulated these TFs and modulated their target genes. While activation of AURKB, BIRC5, E2F1, and MYB mRNA levels were significantly downregulated by PL, but SOX4 and XBP levels were increased by PL. Intriguingly, PL also increased the expression of p21 in B-ALL cells through a p53-independent mechanism. Given that these TFs and their target genes play critical roles in a variety of hematological malignancies, our findings provide a strong preclinical rationale for considering PL as a new therapeutic agent for the treatment of B-cell malignancies, including B-ALL and GC-resistant B-ALL.

  14. Piperlongumine inhibits the proliferation and survival of B-cell acute lymphoblastic leukemia cell lines irrespective of glucocorticoid resistance

    International Nuclear Information System (INIS)

    Han, Seong-Su; Han, Sangwoo; Kamberos, Natalie L.

    2014-01-01

    Highlights: • PL inhibits the proliferation of B-ALL cell lines irrespective of GC-resistance. • PL selectively kills B-ALL cells by increasing ROS, but not normal counterpart. • PL does not sensitize majority of B-ALL cells to DEX. • PL represses the network of constitutively activated TFs and modulates their target genes. • PL may serve as a new therapeutic molecule for GC-resistant B-ALL. - Abstract: Piperlongumine (PL), a pepper plant alkaloid from Piper longum, has anti-inflammatory and anti-cancer properties. PL selectively kills both solid and hematologic cancer cells, but not normal counterparts. Here we evaluated the effect of PL on the proliferation and survival of B-cell acute lymphoblastic leukemia (B-ALL), including glucocorticoid (GC)-resistant B-ALL. Regardless of GC-resistance, PL inhibited the proliferation of all B-ALL cell lines, but not normal B cells, in a dose- and time-dependent manner and induced apoptosis via elevation of ROS. Interestingly, PL did not sensitize most of B-ALL cell lines to dexamethasone (DEX). Only UoC-B1 exhibited a weak synergistic effect between PL and DEX. All B-ALL cell lines tested exhibited constitutive activation of multiple transcription factors (TFs), including AP-1, MYC, NF-κB, SP1, STAT1, STAT3, STAT6 and YY1. Treatment of the B-ALL cells with PL significantly downregulated these TFs and modulated their target genes. While activation of AURKB, BIRC5, E2F1, and MYB mRNA levels were significantly downregulated by PL, but SOX4 and XBP levels were increased by PL. Intriguingly, PL also increased the expression of p21 in B-ALL cells through a p53-independent mechanism. Given that these TFs and their target genes play critical roles in a variety of hematological malignancies, our findings provide a strong preclinical rationale for considering PL as a new therapeutic agent for the treatment of B-cell malignancies, including B-ALL and GC-resistant B-ALL

  15. Does cortisol influence core executive functions? A meta-analysis of acute cortisol administration effects on working memory, inhibition, and set-shifting.

    Science.gov (United States)

    Shields, Grant S; Bonner, Joseph C; Moons, Wesley G

    2015-08-01

    The hormone cortisol is often believed to play a pivotal role in the effects of stress on human cognition. This meta-analysis is an attempt to determine the effects of acute cortisol administration on core executive functions. Drawing on both rodent and stress literatures, we hypothesized that acute cortisol administration would impair working memory and set-shifting but enhance inhibition. Additionally, because cortisol is thought to exert different nongenomic (rapid) and genomic (slow) effects, we further hypothesized that the effects of cortisol would differ as a function of the delay between cortisol administration and cognitive testing. Although the overall analyses were nonsignificant, after separating the rapid, nongenomic effects of cortisol from the slower, genomic effects of cortisol, the rapid effects of cortisol enhanced response inhibition, g+ = 0.113, p=.016, but impaired working memory, g+ = -0.315, p=.008, although these effects reversed over time. Contrary to our hypotheses, there was no effect of cortisol administration on set-shifting. Thus, although we did not find support for the idea that increases in cortisol influence set-shifting, we found that acute increases in cortisol exert differential effects on working memory and inhibition over time. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Gestational or acute restraint in adulthood reduces levels of 5α-reduced testosterone metabolites in the hippocampus and produces behavioral inhibition of adult male rats

    Directory of Open Access Journals (Sweden)

    Alicia A Walf

    2012-12-01

    Full Text Available Stressors, during early life or adulthood, can alter steroid-sensitive behaviors, such as exploration, anxiety, and/or cognitive processes. We investigated if exposure to acute stressors in adulthood may alter behavioral and neuroendocrine responses of male rats that were exposed to gestational stress or not. We hypothesized that rats exposed to gestational and acute stress may show behavioral inhibition, increased corticosterone, and altered androgen levels in the hippocampus. Subjects were adult, male offspring of rat dams that were restrained daily on gestational days 14-20, or did not experience this manipulation. Immediately before testing, rats were restraint-stressed for 20 minutes or not. During week 1, rats were tested in a battery of tasks, including the open field, elevated plus maze, social interaction, tailflick, pawlick, and defensive burying tasks. During week 2, rats were trained and tested 24 hours later in the inhibitory avoidance task. Plasma corticosterone and androgen levels, and hippocampal androgen levels, were measured in all subjects. Gestational and acute restraint stress increased plasma levels of corticosterone, and reduced levels of testosterone’s 5α-reduced metabolites, dihydrotestosterone and 3α-androstanediol, but not the aromatized metabolite, estradiol, in plasma or the hippocampus. Gestational and acute restraint stress reduced central entries made in the open field, and latencies to enter the shock-associated side of the inhibitory avoidance chamber during testing. Gestational stress reduced time spent interacting with a conspecific. These data suggest that gestational and acute restraint stress can have actions to produce behavioral inhibition coincident with increased corticosterone and decreased 5α-reduced androgens of adult male rats. Thus, gestational stress altered neural circuits involved in the neuroendocrine response to acute stress in early adulthood.

  17. Halofuginone alleviates acute viral myocarditis in suckling BALB/c mice by inhibiting TGF-β1

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Xiao-Hua [Department of Emergency, Xi’an Children’s Hospital, Xi' an, 710003, Shanxi (China); Fu, Jia [Department of Infection, Xi’an Children’s Hospital, Xi' an, 710003, Shanxi (China); Sun, Da-Qing, E-mail: daqingsuncd@163.com [Department of Respiration, Xi’an Children’s Hospital, NO. 69 Xijuyuan Lane, Xi' an 710003, Shanxi (China)

    2016-04-29

    Viral myocarditis (VMC) is an inflammation of heart muscle in infants and young adolescents. This study explored the function of halofuginone (HF) in Coxsackievirus B3 (CVB3) -treated suckling mice. HF-treated animal exhibited higher survival rate, lower heart/body weight, and more decreased blood sugar concentration than CVB3 group. HF also reduced the expressions of interleukin(IL)-17 and IL-23 and the numbers of Th17 cells. Moreover, HF downregulated pro-inflammatory cytokine levels and increased anti-inflammatory cytokine levels. The expressions of transforming growth factor(TGF-β1) and nuclear factor kappa-light-chain-enhancer of activated B (NF-κB) p65/ tumor necrosis factor-α (TNF-α) proteins were decreased by HF as well. Finally, the overexpression of TGF-β1 counteracted the protection effect of HF in CVB3-treated suckling mice. In summary, our study suggests HF increases the survival of CVB3 suckling mice, reduces the Th17 cells and pro-inflammatory cytokine levels, and may through downregulation of the TGF-β1-mediated expression of NF-κB p65/TNF-α pathway proteins. These results offer a potential therapeutic strategy for the treatment of VMC. - Highlights: • Halofuginone (HF) increases the survival of suckling BALB/c mice infected with acute CVB3. • HF reduces the expression of Th17 cell markers (IL-17 and IL-23) and the number of CD4{sup +} IL17{sup +} cells. • Pro-inflammatory cytokines levels associated with myocarditis were reduced by HF in CVB3-treated suckling mice. • HF alleviates VMC via inhibition of TGF-β1-mediated NF-κB p65/TNF-α pathway.

  18. Self-Administered Ethanol Enema Causing Accidental Death

    Directory of Open Access Journals (Sweden)

    Thomas Peterson

    2014-01-01

    Full Text Available Excessive ethanol consumption is a leading preventable cause of death in the United States. Much of the harm from ethanol comes from those who engage in excessive or hazardous drinking. Rectal absorption of ethanol bypasses the first pass metabolic effect, allowing for a higher concentration of blood ethanol to occur for a given volume of solution and, consequently, greater potential for central nervous system depression. However, accidental death is extremely rare with rectal administration. This case report describes an individual with klismaphilia whose death resulted from acute ethanol intoxication by rectal absorption of a wine enema.

  19. Acute toxicity of organophosphorus compounds in guinea pigs is sex- and age-dependent and cannot be solely accounted for by acetylcholinesterase inhibition.

    Science.gov (United States)

    Fawcett, William P; Aracava, Yasco; Adler, Michael; Pereira, Edna F R; Albuquerque, Edson X

    2009-02-01

    This study was designed to test the hypothesis that the acute toxicity of the nerve agents S-[2-(diisopropylamino)ethyl]-O-ethyl methylphosphonothioate (VX), O-pinacolyl methylphosphonofluoridate (soman), and O-isopropyl methylphosphonofluoridate (sarin) in guinea pigs is age- and sex-dependent and cannot be fully accounted for by the irreversible inhibition of acetylcholinesterase (AChE). The subcutaneous doses of nerve agents needed to decrease 24-h survival of guinea pigs by 50% (LD(50) values) were estimated by probit analysis. In all animal groups, the rank order of LD(50) values was sarin > soman > VX. The LD(50) value of soman was not influenced by sex or age of the animals. In contrast, the LD(50) values of VX and sarin were lower in adult male than in age-matched female or younger guinea pigs. A colorimetric assay was used to determine the concentrations of nerve agents that inhibit in vitro 50% of AChE activity (IC(50) values) in guinea pig brain extracts, plasma, red blood cells, and whole blood. A positive correlation between LD(50) values and IC(50) values for AChE inhibition would support the hypothesis that AChE inhibition is a major determinant of the acute toxicity of the nerve agents. However, such a positive correlation was found only between LD(50) values and IC(50) values for AChE inhibition in brain extracts from neonatal and prepubertal guinea pigs. These results demonstrate for the first time that the lethal potencies of some nerve agents in guinea pigs are age- and sex-dependent. They also support the contention that mechanisms other than AChE inhibition contribute to the lethality of nerve agents.

  20. Ganoderma lucidum ethanol extract inhibits the inflammatory response by suppressing the NF-κB and toll-like receptor pathways in lipopolysaccharide-stimulated BV2 microglial cells.

    Science.gov (United States)

    Yoon, Hyun-Min; Jang, Kyung-Jun; Han, Min Seok; Jeong, Jin-Woo; Kim, Gi Young; Lee, Jai-Heon; Choi, Yung Hyun

    2013-03-01

    Ganoderma lucidum is a traditional Oriental medicine that has been widely used as a tonic to promote longevity and health in Korea and other Asian countries. Although a great deal of work has been carried out on the therapeutic potential of this mushroom, the pharmacological mechanisms of its anti-inflammatory actions remain unclear. In this study, we evaluated the inhibitory effects of G. lucidum ethanol extract (EGL) on the production of inflammatory mediators and cytokines in lipopolysaccharide (LPS)-stimulated murine BV2 microglia. We also investigated the effects of EGL on the LPS-induced activation of nuclear factor kappaB (NF-κB) and upregulation of toll-like receptor 4 (TLR4) and myeloid differentiation factor 88 (MyD88). Elevated levels of nitric oxide (NO), prostaglandin E(2) (PGE(2)) and pro-inflammatory cytokine production were detected in BV2 microglia following LPS stimulation. We identifed that EGL significantly inhibits the excessive production of NO, PGE(2) and pro-inflammatory cytokines, including interleukin (IL)-1β and tumor necrosis factor-α in a concentration-dependent manner without causing cytotoxicity. In addition, EGL suppressed NF-κB translocation and transcriptional activity by blocking IκB degradation and inhibiting TLR4 and MyD88 expression in LPS-stimulated BV2 cells. Our results indicate that the inhibitory effects of EGL on LPS-stimulated inflammatory responses in BV2 microglia are associated with the suppression of the NF-κB and TLR signaling pathways. Therefore, EGL may be useful in the treatment of neurodegenerative diseases by inhibiting inflammatory mediator responses in activated microglia.

  1. Attenuation of ethanol abstinence-induced anxiety- and depressive-like behavior by the phosphodiesterase-4 inhibitor rolipram in rodents.

    Science.gov (United States)

    Gong, Mei-Fang; Wen, Rui-Ting; Xu, Ying; Pan, Jian-Chun; Fei, Ning; Zhou, Yan-Meng; Xu, Jiang-Ping; Liang, Jian-Hui; Zhang, Han-Ting

    2017-10-01

    Withdrawal symptoms stand as a core feature of alcohol dependence. Our previous results have shown that inhibition of phosphodiesterase-4 (PDE4) decreased ethanol seeking and drinking in alcohol-preferring rodents. However, little is known about whether PDE4 is involved in ethanol abstinence-related behavior. The objective of this study was to characterize the role of PDE4 in the development of anxiety- and depressive-like behavior induced by abstinence from ethanol exposure in different animal models. Using three rodent models of ethanol abstinence, we examined the effects of rolipram, a prototypical, selective PDE4 inhibitor, on (1) anxiety-like behavior induced by repeated ethanol abstinence in the elevated plus maze test in fawn-hooded (FH/Wjd) rats, (2) anxiety-like behavior in the open-field test and light-dark transition test following acute ethanol abstinence in C57BL/6J mice, and (3) anxiety- and depressive-like behavior induced by protracted ethanol abstinence in the elevated plus maze, forced-swim, and tail-suspension tests in C57BL/6J mice. Pretreatment with rolipram (0.1 or 0.2 mg/kg) significantly increased entries and time spent in the open arms of the elevated plus maze test in rats with repeated ethanol abstinence. Similarly, in mice with acute ethanol abstinence, administration of rolipram (0.25 or 0.5 mg/kg) dose-dependently increased the crossings in the central zone of the open-field test and duration and transitions on the light side of the light-dark transition test, suggesting anxiolytic-like effects of rolipram. Consistent with these, chronic treatment with rolipram (0.1, 0.3, or 1.0 mg/kg) increased entries in the open arms of the elevated plus maze test; it also reduced the increased duration of immobility in both the forced-swim and tail-suspension tests in mice after protracted ethanol abstinence, suggesting antidepressant-like effects of rolipram. These results provide the first demonstration for that PDE4 plays a role in modulating

  2. Oral Conditioned Cues Can Enhance or Inhibit Ethanol (EtOH)-Seeking and EtOH-Relapse Drinking by Alcohol-Preferring (P) Rats.

    Science.gov (United States)

    Knight, Christopher P; Hauser, Sheketha R; Deehan, Gerald A; Toalston, Jamie E; McBride, William J; Rodd, Zachary A

    2016-04-01

    Conditioned cues can elicit drug-seeking in both humans and rodents. The majority of preclinical research has employed excitatory conditioned cues (stimuli present throughout the availability of a reinforcer), but oral consumption of alcohol is similar to a conditional stimuli (presence of stimuli is paired with the delivery of the reinforcer) approach. The current experiments attempted to determine the effects of conditional stimuli (both excitatory and inhibitory) on the expression of context-induced ethanol (EtOH)-seeking. Alcohol-preferring (P) rats self-administered EtOH and water in standard 2-lever operant chambers. A flavor was added to the EtOH solution (CS+) during the EtOH self-administration sessions. After 10 weeks, rats underwent extinction training (7 sessions), followed by a 2-week home cage period. Another flavor was present during extinction (CS-). Rats were exposed to a third flavor in a non-drug-paired environment (CS(0)). EtOH-seeking was assessed in the presence of no cue, CS+, CS-, or CS(0) in the dipper previously associated with EtOH self-administration (no EtOH available). Rats were maintained a week in their home cage before being returned to the operant chambers with access to EtOH (flavored with no cue, CS+, CS-, or CS(0)). The results indicated that the presence of the CS+ enhanced EtOH-seeking, while the presence of the CS- suppressed EtOH-seeking. Similarly, adding the CS- flavor to 15% EtOH reduced responding for EtOH while the CS+ enhanced responding for EtOH during relapse testing. Overall, the data indicate that conditional stimuli are effective at altering both EtOH-seeking behavior and EtOH-relapse drinking. Copyright © 2016 by the Research Society on Alcoholism.

  3. Concomitant stress potentiates the preference for, and consumption of, ethanol induced by chronic pre-exposure to ethanol

    Directory of Open Access Journals (Sweden)

    G. Morais-Silva

    2016-01-01

    Full Text Available Ethanol abuse is linked to several acute and chronic injuries that can lead to health problems. Ethanol addiction is one of the most severe diseases linked to the abuse of this drug. Symptoms of ethanol addiction include compulsive substance intake and withdrawal syndrome. Stress exposure has an important role in addictive behavior for many drugs of abuse (including ethanol, but the consequences of stress and ethanol in the organism when these factors are concomitant results in a complex interaction. We investigated the effects of concomitant, chronic administration of ethanol and stress exposure on the withdrawal and consumption of, as well as the preference for, ethanol in mice. Male Swiss mice (30–35 g, 8-10 per group were exposed to an ethanol liquid diet as the only source of food for 15 days. In the final 5 days, they were exposed to forced swimming stress. Twelve hours after removal of the ethanol liquid diet, animals were evaluated for ethanol withdrawal by measuring anxiety-related behaviors and locomotor activity. Twenty-four hours after evaluation of ethanol withdrawal, they were evaluated for voluntary consumption of ethanol in a “three-bottle choice” paradigm. Mice exposed to chronic consumption of ethanol had decreased locomotor activity during withdrawal. Contrary to our expectations, a concomitant forced swimming stress did not aggravate ethanol withdrawal. Nevertheless, simultaneous ethanol administration and stress exposure increased voluntary consumption of ethanol, mainly solutions containing high concentrations of ethanol. These results showed that stressful situations during ethanol intake may aggravate specific addiction-related behaviors.

  4. Concomitant stress potentiates the preference for, and consumption of, ethanol induced by chronic pre-exposure to ethanol.

    Science.gov (United States)

    Morais-Silva, G; Fernandes-Santos, J; Moreira-Silva, D; Marin, M T

    2016-01-01

    Ethanol abuse is linked to several acute and chronic injuries that can lead to health problems. Ethanol addiction is one of the most severe diseases linked to the abuse of this drug. Symptoms of ethanol addiction include compulsive substance intake and withdrawal syndrome. Stress exposure has an important role in addictive behavior for many drugs of abuse (including ethanol), but the consequences of stress and ethanol in the organism when these factors are concomitant results in a complex interaction. We investigated the effects of concomitant, chronic administration of ethanol and stress exposure on the withdrawal and consumption of, as well as the preference for, ethanol in mice. Male Swiss mice (30-35 g, 8-10 per group) were exposed to an ethanol liquid diet as the only source of food for 15 days. In the final 5 days, they were exposed to forced swimming stress. Twelve hours after removal of the ethanol liquid diet, animals were evaluated for ethanol withdrawal by measuring anxiety-related behaviors and locomotor activity. Twenty-four hours after evaluation of ethanol withdrawal, they were evaluated for voluntary consumption of ethanol in a "three-bottle choice" paradigm. Mice exposed to chronic consumption of ethanol had decreased locomotor activity during withdrawal. Contrary to our expectations, a concomitant forced swimming stress did not aggravate ethanol withdrawal. Nevertheless, simultaneous ethanol administration and stress exposure increased voluntary consumption of ethanol, mainly solutions containing high concentrations of ethanol. These results showed that stressful situations during ethanol intake may aggravate specific addiction-related behaviors.

  5. The acute-phase response and serum amyloid A inhibit the inflammatory response to Acinetobacter baumannii Pneumonia

    NARCIS (Netherlands)

    Renckens, Rosemarijn; Roelofs, Joris J. T. H.; Knapp, Sylvia; de Vos, Alex F.; Florquin, Sandrine; van der Poll, Tom

    2006-01-01

    BACKGROUND: Acinetobacter baumannii is an emerging pathogen in nosocomial pneumonia. Trauma and postsurgical patients display a profound acute-phase protein response and are susceptible to pneumonia. METHODS: To study the way in which the acute-phase response induced by sterile tissue injury

  6. TAL1/SCL is downregulated upon histone deacetylase inhibition in T-cell acute lymphoblastic leukemia cells

    NARCIS (Netherlands)

    Cardoso, B. A.; de Almeida, S. F.; Laranjeira, A. B. A.; Carmo-Fonseca, M.; Yunes, J. A.; Coffer, P. J.; Barata, J. T.

    2011-01-01

    The transcription factor T-cell acute lymphocytic leukemia (TAL)-1 is a major T-cell oncogene associated with poor prognosis in T-cell acute lymphoblastic leukemia (T-ALL). TAL1 binds histone deacetylase 1 and incubation with histone deacetylase inhibitors (HDACis) promotes apoptosis of leukemia

  7. Cellulosic ethanol

    DEFF Research Database (Denmark)

    Lindedam, Jane; Bruun, Sander; Jørgensen, Henning

    2010-01-01

    Background Variations in sugar yield due to genotypic qualities of feedstock are largely undescribed for pilot-scale ethanol processing. Our objectives were to compare glucose and xylose yield (conversion and total sugar yield) from straw of five winter wheat cultivars at three enzyme loadings (2.......5, 5 and 10 FPU g-1 dm pretreated straw) and to compare particle size distribution of cultivars after pilot-scale hydrothermal pretreatment. Results Significant interactions between enzyme loading and cultivars show that breeding for cultivars with high sugar yields under modest enzyme loading could...... be warranted. At an enzyme loading of 5 FPU g-1 dm pretreated straw, a significant difference in sugar yields of 17% was found between the highest and lowest yielding cultivars. Sugar yield from separately hydrolyzed particle-size fractions of each cultivar showed that finer particles had 11% to 21% higher...

  8. Curative Effects of Thiacremonone against Acetaminophen-Induced Acute Hepatic Failure via Inhibition of Proinflammatory Cytokines Production and Infiltration of Cytotoxic Immune Cells and Kupffer Cells

    Directory of Open Access Journals (Sweden)

    Yu Ri Kim

    2013-01-01

    Full Text Available High doses of acetaminophen (APAP; N-acetyl-p-aminophenol cause severe hepatotoxicity after metabolic activation by cytochrome P450 2E1. This study was undertaken to examine the preventive effects of thiacremonone, a compound extracted from garlic, on APAP-induced acute hepatic failure in male C57BL/6J. Mice received with 500 mg/kg APAP after a 7-day pretreatment with thiacremonone (10–50 mg/kg. Thiacremonone inhibited the APAP-induced serum ALT and AST levels in a dose-dependent manner, and markedly reduced the restricted area of necrosis and inflammation by administration of APAP. Thiacremonone also inhibited the APAP-induced depletion of intracellular GSH, induction of nitric oxide, and lipid peroxidation as well as expression of P450 2E1. After APAP injection, the numbers of Kupffer cells, natural killer cells, and cytotoxic T cells were elevated, but the elevated cell numbers in the liver were reduced in thiacremonone pretreated mice. The expression levels of I-309, M-CSF, MIG, MIP-1α, MIP-1β, IL-7, and IL-17 were increased by APAP treatment, which were inhibited in thiacremonone pretreated mice. These data indicate that thiacremonone could be a useful agent for the treatment of drug-induced hepatic failure and that the reduction of cytotoxic immune cells as well as proinflammatory cytokine production may be critical for the prevention of APAP-induced acute liver toxicity.

  9. Atorvastatin inhibits the immediate-early response gene EGR1 and improves the functional profile of CD4+T-lymphocytes in acute coronary syndromes.

    Science.gov (United States)

    Severino, Anna; Zara, Chiara; Campioni, Mara; Flego, Davide; Angelini, Giulia; Pedicino, Daniela; Giglio, Ada Francesca; Trotta, Francesco; Giubilato, Simona; Pazzano, Vincenzo; Lucci, Claudia; Iaconelli, Antonio; Ruggio, Aureliano; Biasucci, Luigi Marzio; Crea, Filippo; Liuzzo, Giovanna

    2017-03-14

    Background- Adaptive immune-response is associated with a worse outcome in acute coronary syndromes. Statins have anti-inflammatory activity beyond lowering lipid levels. We investigated the effects of ex-vivo and in-vivo atorvastatin treatment in acute coronary syndromes on CD4+T-cells, and the underlying molecular mechanisms.Approach and results- Blood samples were collected from 50 statin-naïve acute coronary syndrome patients. We assessed CD4+T-cell activation by flow-cytometry, the expression of 84 T-helper transcription-factors and 84 T-cell related genes by RT-qPCR, and protein expression by Western-blot, before and after 24-hours incubation with increasing doses of atorvastatin: 3-10-26 μg/ml (corresponding to blood levels achieved with doses of 10-40-80 mg, respectively). After incubation, we found a significant decrease in interferon-γ-producing CD4+CD28nullT-cells (P = 0.009) and a significant increase in interleukin-10-producing CD4+CD25highT-cells (P 3-fold changes).The in-vivo effects of atorvastatin were analyzed in 10 statin-free acute coronary syndrome patients at baseline, and after 24h and 48h of atorvastatin therapy (80 mg/daily): EGR1-gene expression decreased at 24h (P = 0.01) and 48h (P = 0.005); EGR1-protein levels decreased at 48h (P = 0.03).Conclusions-In acute coronary syndromes, the effects of atorvastatin on immune system might be partially related to the inhibition of the master regulator gene EGR1. Our finding might offer a causal explanation on why statins improve the early outcome in acute coronary syndromes.

  10. SphK1 inhibitor II (SKI-II) inhibits acute myelogenous leukemia cell growth in vitro and in vivo

    International Nuclear Information System (INIS)

    Yang, Li; Weng, Wei; Sun, Zhi-Xin; Fu, Xian-Jie; Ma, Jun; Zhuang, Wen-Fang

    2015-01-01

    Previous studies have identified sphingosine kinase 1 (SphK1) as a potential drug target for treatment of acute myeloid leukemia (AML). In the current study, we investigated the potential anti-leukemic activity of a novel and specific SphK1 inhibitor, SKI-II. We demonstrated that SKI-II inhibited growth and survival of human AML cell lines (HL-60 and U937 cells). SKI-II was more efficient than two known SphK1 inhibitors SK1-I and FTY720 in inhibiting AML cells. Meanwhile, it induced dramatic apoptosis in above AML cells, and the cytotoxicity by SKI-II was almost reversed by the general caspase inhibitor z-VAD-fmk. SKI-II treatment inhibited SphK1 activation, and concomitantly increased level of sphingosine-1-phosphate (S1P) precursor ceramide in AML cells. Conversely, exogenously-added S1P protected against SKI-II-induced cytotoxicity, while cell permeable short-chain ceramide (C6) aggravated SKI-II's lethality against AML cells. Notably, SKI-II induced potent apoptotic death in primary human AML cells, but was generally safe to the human peripheral blood mononuclear cells (PBMCs) isolated from healthy donors. In vivo, SKI-II administration suppressed growth of U937 leukemic xenograft tumors in severe combined immunodeficient (SCID) mice. These results suggest that SKI-II might be further investigated as a promising anti-AML agent. - Highlights: • SKI-II inhibits proliferation and survival of primary and transformed AML cells. • SKI-II induces apoptotic death of AML cells, but is safe to normal PBMCs. • SKI-II is more efficient than two known SphK1 inhibitors in inhibiting AML cells. • SKI-II inhibits SphK1 activity, while increasing ceramide production in AML cells. • SKI-II dose-dependently inhibits U937 xenograft growth in SCID mice

  11. SphK1 inhibitor II (SKI-II) inhibits acute myelogenous leukemia cell growth in vitro and in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Li; Weng, Wei; Sun, Zhi-Xin; Fu, Xian-Jie; Ma, Jun, E-mail: majuntongrensh1@126.com; Zhuang, Wen-Fang, E-mail: wenfangzhuangmd@163.com

    2015-05-15

    Previous studies have identified sphingosine kinase 1 (SphK1) as a potential drug target for treatment of acute myeloid leukemia (AML). In the current study, we investigated the potential anti-leukemic activity of a novel and specific SphK1 inhibitor, SKI-II. We demonstrated that SKI-II inhibited growth and survival of human AML cell lines (HL-60 and U937 cells). SKI-II was more efficient than two known SphK1 inhibitors SK1-I and FTY720 in inhibiting AML cells. Meanwhile, it induced dramatic apoptosis in above AML cells, and the cytotoxicity by SKI-II was almost reversed by the general caspase inhibitor z-VAD-fmk. SKI-II treatment inhibited SphK1 activation, and concomitantly increased level of sphingosine-1-phosphate (S1P) precursor ceramide in AML cells. Conversely, exogenously-added S1P protected against SKI-II-induced cytotoxicity, while cell permeable short-chain ceramide (C6) aggravated SKI-II's lethality against AML cells. Notably, SKI-II induced potent apoptotic death in primary human AML cells, but was generally safe to the human peripheral blood mononuclear cells (PBMCs) isolated from healthy donors. In vivo, SKI-II administration suppressed growth of U937 leukemic xenograft tumors in severe combined immunodeficient (SCID) mice. These results suggest that SKI-II might be further investigated as a promising anti-AML agent. - Highlights: • SKI-II inhibits proliferation and survival of primary and transformed AML cells. • SKI-II induces apoptotic death of AML cells, but is safe to normal PBMCs. • SKI-II is more efficient than two known SphK1 inhibitors in inhibiting AML cells. • SKI-II inhibits SphK1 activity, while increasing ceramide production in AML cells. • SKI-II dose-dependently inhibits U937 xenograft growth in SCID mice.

  12. Fibroblast growth factor 21 (FGF21 is robustly induced by ethanol and has a protective role in ethanol associated liver injury

    Directory of Open Access Journals (Sweden)

    Bhavna N. Desai

    2017-11-01

    Conclusions: Acute or binge ethanol consumption significantly increases circulating FGF21 levels in both humans and mice. However, FGF21 does not play a role in acute ethanol clearance. In contrast, chronic ethanol consumption in the absence of FGF21 is associated with significant liver pathology alone or in combination with excess mortality, depending on the type of diet consumed with ethanol. This suggests that FGF21 protects against long term ethanol induced hepatic damage and may attenuate progression of alcoholic liver disease. Further study is required to assess the therapeutic potential of FGF21 in the treatment of alcoholic liver disease.

  13. A PAF receptor antagonist inhibits acute airway inflammation and late-phase responses but not chronic airway inflammation and hyperresponsiveness in a primate model of asthma

    Directory of Open Access Journals (Sweden)

    R. H. Gundel

    1992-01-01

    Full Text Available We have examined the effects of a PAF receptor antagonist, WEB 2170, on several indices of acute and chronic airway inflammation and associated changes in lung function in a primate model of allergic asthma. A single oral administration WEB 2170 provided dose related inhibition of the release of leukotriene C4 (LTC4 and prostaglandin D2 (PGD2 recovered and quantified in bronchoalveolar lavage (BAL fluid obtained during the acute phase response to inhaled antigen. In addition, oral WEB 2170 treatment in dual responder primates blocked the acute influx of neutrophils into the airways as well as the associated late-phase airway obstruction occurring 6 h after antigen inhalation. In contrast, a multiple dosing regime with WEB 2170 (once a day for 7 consecutive days failed to reduce the chronic airway inflammation (eosinophilic and associated airway hyperresponsiveness to inhaled methacholine that is characteristic of dual responder monkeys. Thus, we conclude that the generation of PAF following antigen inhalation contributes to the development of lipid mediators, acute airway inflammation and associated late-phase airway obstruction in dual responder primates; however, PAF does not play a significant role in the maintenance of chronic airway inflammation and associated airway hyperresponsiveness in this primate model.

  14. An overview of exposure to ethanol-containing substances and ethanol intoxication in children based on three illustrated cases

    Directory of Open Access Journals (Sweden)

    Kam Lun Hon

    2018-01-01

    Full Text Available Alcohol addiction and intoxication are major health problems worldwide. Acute alcohol intoxication is well reported in adults and adolescents but less frequently reported in children of younger ages. We report three anonymized cases of pediatric ethanol exposure and illustrate the different mechanisms of intoxication. In all cases, a focused history is the key to prompt diagnosis and timely management. Physicians should be aware of this potential poison in children presented with acute confusional or encephalopathic state. In contrast, neonates with ethanol intoxication may present with nonspecific gastrointestinal symptomatology. Urgent exclusion of sepsis, electrolyte imbalance, drug intoxication, and surgical abdominal condition is critical. Using these illustrated cases, we performed a narrative literature review on issues of exposure to ethanol-containing substances and ethanol intoxication in children. In conclusion, a high level of suspicion and interrogation on ethanol or substance use are essential particularly in the lactating mother for an accurate and timely diagnosis of ethanol intoxication to be made.

  15. Chronic ethanol consumption impairs learning and memory after cessation of ethanol.

    Science.gov (United States)

    Farr, Susan A; Scherrer, Jeffrey F; Banks, William A; Flood, James F; Morley, John E

    2005-06-01

    Acute consumption of ethanol results in reversible changes in learning and memory whereas chronic ethanol consumption of six or more months produces permanent deficits and neural damage in rodents. The goal of the current paper was determine whether shorter durations of chronic ethanol ingestion in mice would produce long-term deficits in learning and memory after the cessation of ethanol. We first examined the effects of four and eight weeks of 20% ethanol followed by a three week withdrawal period on learning and memory in mice. We determined that three weeks after eight, but not four, weeks of 20% ethanol consumption resulted in deficits in learning and long-term memory (seven days) in T-maze footshock avoidance and Greek Cross brightness discrimination, step-down passive avoidance and shuttlebox active avoidance. Short-term memory (1 hr) was not affected. The deficit was not related to changes in thiamine status, caloric intake, or nonmnemonic factors, such as, activity or footshock sensitivity. Lastly, we examined if the mice recovered after longer durations of withdrawal. After eight weeks of ethanol, we compared mice after three and 12 weeks of withdrawal. Mice that had been off ethanol for both three and 12 weeks were impaired in T-maze footshock avoidance compared to the controls. The current results indicate that a duration of ethanol consumption as short as eight weeks produces deficits in learning and memory that are present 12 weeks after withdrawal.

  16. Arsenic trioxide decreases the amount and inhibits the function of regulatory T cells, which may contribute to its efficacy in the treatment of acute promyelocytic leukemia.

    Science.gov (United States)

    Xu, Wen; Li, Xiaoxia; Quan, Lina; Yao, Jiying; Mu, Guannan; Guo, Jingjie; Wang, Yitong

    2018-03-01

    Arsenic trioxide (ATO) exhibits substantial clinical efficacy in the treatment of acute promyelocytic leukemia (APL). Here, we investigated whether ATO exerts its efficacy by affecting regulatory T (Treg) cells. We determined whether ATO treatment influenced the amount and function of purified Treg cells. We also examined the effect of ATO treatment on Treg cells from APL patients. ATO treatment induced apoptosis in purified Treg cells and dampened the inhibition of effector T (Teff) cells proliferation and the secretion of cytokine by Treg cells. Treg cell levels in the peripheral blood and serum IL-10 levels were dramatically decreased in APL patients after single ATO treatment. In summary, our results show that ATO decreases the amount and inhibits the function of Treg cells, thereby enhancing Teff cell function and overall anti-tumor immunity.

  17. Korean red ginseng and its primary ginsenosides inhibit ethanol-induced oxidative injury by suppression of the MAPK pathway in TIB-73 cells.

    Science.gov (United States)

    Park, Hye-Min; Kim, Shang-Jin; Mun, A-Reum; Go, Hyeon-Kyu; Kim, Gi-Beum; Kim, Sung-Zoo; Jang, Seon-Il; Lee, Sei-Jin; Kim, Jin-Shang; Kang, Hyung-Sub

    2012-06-14

    Panax ginseng (P. ginseng) is one of the most widely used medicinal plants due to its wide spectrum of medicinal effects. Among the currently available Panax ginseng products, Korea red ginseng (KRG) has been shown to exhibit a variety of antioxidative and hepatoprotective action. Our aim was to investigate the effects of KRG and its primary ginsenosides (Rg3 and Rh2) on EtOH-induced injury to mouse hepatocytes (TIB-73). We investigated the effects of KRG and its primary ginsenoside on EtOH-induced injury to TIB-73 cells and evaluated MAPKs signals as a possible mechanism of action. Hepatocytic injury was evaluated by biochemical assays as cell viability, lactate dehydrogenase (LDH), aspartate aminotransferase (AST), ROS and mitochondria membrane potential (MMP) level in TIB-73 cells. The levels of MAPK activation were analyzed by Western blots. The results showed that exposure of EtOH to TIB-73 cells led to cell death and membrane damage, accompanied by a decrease in cell viability, MMP, and Mg(2+) concentrations, but an increase in LDH, AST, ROS and MAPK activation. KRG and its primary ginsenosides reduced EtOH-induced generation of ROS and the activation of ERK and JNK, and increased Mg(2+) concentrations. These results suggest that KRG and its primary ginsenosides inhibit EtOH-induced oxidative injury by suppression of the MAPK pathway in TIB-73 cells. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  18. Effect of Ethanolic Leaf Extract of Senna Fistula on some ...

    African Journals Online (AJOL)

    olayemitoyin

    This study was designed to investigate the effect of chronic administration of ethanolic leave extract of Senna ... Diabetes is a disorder in the metabolism of protein, .... Acute toxicity study .... pancreatic beta cells, however, further study could be.

  19. Chronic intermittent ethanol exposure in early adolescent and adult male rats: effects on tolerance, social behavior, and ethanol intake.

    Science.gov (United States)

    Broadwater, Margaret; Varlinskaya, Elena I; Spear, Linda P

    2011-08-01

    Given the prevalence of alcohol use in adolescence, it is important to understand the consequences of chronic ethanol exposure during this critical period in development. The purpose of this study was to assess possible age-related differences in susceptibility to tolerance development to ethanol-induced sedation and withdrawal-related anxiety, as well as voluntary ethanol intake after chronic exposure to relatively high doses of ethanol during adolescence or adulthood. Juvenile/adolescent and adult male Sprague-Dawley rats were assigned to one of five 10-day exposure conditions: chronic ethanol (4 g/kg every 48 hours), chronic saline (equivalent volume every 24 hours), chronic saline/acutely challenged with ethanol (4 g/kg on day 10), nonmanipulated/acutely challenged with ethanol (4 g/kg on day 10), or nonmanipulated. For assessment of tolerance development, duration of the loss of righting reflex (LORR) and blood ethanol concentrations (BECs) upon regaining of righting reflex (RORR) were tested on the first and last ethanol exposure days in the chronic ethanol group, with both saline and nonmanipulated animals likewise challenged on the last exposure day. Withdrawal-induced anxiety was indexed in a social interaction test 24 hours after the last ethanol exposure, with ethanol-naïve chronic saline and nonmanipulated animals serving as controls. Voluntary intake was assessed 48 hours after the chronic exposure period in chronic ethanol, chronic saline and nonmanipulated animals using an 8-day 2 bottle choice, limited-access ethanol intake procedure. In general, adolescent animals showed shorter durations of LORR and higher BECs upon RORR than adults on the first and last ethanol exposure days, regardless of chronic exposure condition. Adults, but not adolescents, developed chronic tolerance to the sedative effects of ethanol, tolerance that appeared to be metabolic in nature. Social deficits were observed after chronic ethanol in both adolescents and adults

  20. Acute and Chronic Toxicity, Cytochrome P450 Enzyme Inhibition, and hERG Channel Blockade Studies with a Polyherbal, Ayurvedic Formulation for Inflammation

    Directory of Open Access Journals (Sweden)

    Debendranath Dey

    2015-01-01

    Full Text Available Ayurvedic plants are known for thousands of years to have anti-inflammatory and antiarthritic effect. We have recently shown that BV-9238, a proprietary formulation of Withania somnifera, Boswellia serrata, Zingiber officinale, and Curcuma longa, inhibits LPS-induced TNF-alpha and nitric oxide production from mouse macrophage and reduces inflammation in different animal models. To evaluate the safety parameters of BV-9238, we conducted a cytotoxicity study in RAW 264.7 cells (0.005–1 mg/mL by MTT/formazan method, an acute single dose (2–10 g/kg bodyweight toxicity study and a 180-day chronic study with 1 g and 2 g/kg bodyweight in Sprague Dawley rats. Some sedation, ptosis, and ataxia were observed for first 15–20 min in very high acute doses and hence not used for further chronic studies. At the end of 180 days, gross and histopathology, blood cell counts, liver and renal functions were all at normal levels. Further, a modest attempt was made to assess the effects of BV-9238 (0.5 µg/mL on six major human cytochrome P450 enzymes and 3H radioligand binding assay with human hERG receptors. BV-9238 did not show any significant inhibition of these enzymes at the tested dose. All these suggest that BV-9238 has potential as a safe and well tolerated anti-inflammatory formulation for future use.

  1. Acute inhibition of central c-Jun N-terminal kinase restores hypothalamic insulin signalling and alleviates glucose intolerance in diabetic mice.

    Science.gov (United States)

    Benzler, J; Ganjam, G K; Legler, K; Stöhr, S; Krüger, M; Steger, J; Tups, A

    2013-05-01

    The hypothalamus has been identified as a main insulin target tissue for regulating normal body weight and glucose metabolism. Recent observations suggest that c-Jun-N-terminal kinase (JNK)-signalling plays a crucial role in the development of obesity and insulin resistance because neuronal JNK-1 ablation in the mouse prevented high-fat diet-induced obesity (DIO) and increased energy expenditure, as well as insulin sensitivity. In the present study, we investigated whether central JNK inhibition is associated with sensitisation of hypothalamic insulin signalling in mice fed a high-fat diet for 3 weeks and in leptin-deficient mice. We determined whether i.c.v. injection of a pharmacological JNK-inhibitor (SP600125) improved impaired glucose homeostasis. By immunohistochemistry, we first observed that JNK activity was increased in the arcuate nucleus (ARC) and the ventromedial hypothalamus (VMH) in both mouse models, relative to normoglycaemic controls. This suggests that up-regulation of JNK in these regions is associated with glucose intolerance and obesity, independent of leptin levels. Acute i.c.v. injection of SP600125 ameliorated glucose tolerance within 30 min in both leptin-deficient and DIO mice. Given the acute nature of i.c.v. injections, these effects cannot be attributed to changes in food intake or energy balance. In a hypothalamic cell line, and in the ARC and VMH of leptin-deficient mice, JNK inhibition by SP600125 consistently improved impaired insulin signalling. This was determined by a reduction of phospho-insulin receptor substrate-1 [IRS-1(Ser612)] protein in a hypothalamic cell line and a decline in the number of pIRS-1(Ser612) immunoreactive cells in the ARC and VMH. Serine 612 phosphorylation of IRS-1 is assumed to negatively regulate insulin signalling. In leptin-deficient mice, in both nuclei, central inhibition of JNK increased the number of cells immunoreactive for phospho-Akt (Ser473) and phospho-GSK-3β (Ser9), which are important

  2. Ruscogenin inhibits lipopolysaccharide-induced acute lung injury in mice: involvement of tissue factor, inducible NO synthase and nuclear factor (NF)-κB.

    Science.gov (United States)

    Sun, Qi; Chen, Ling; Gao, Mengyu; Jiang, Wenwen; Shao, Fangxian; Li, Jingjing; Wang, Jun; Kou, Junping; Yu, Boyang

    2012-01-01

    Acute lung injury is still a significant clinical problem with a high mortality rate and there are few effective therapies in clinic. Here, we studied the inhibitory effect of ruscogenin, an anti-inflammatory and anti-thrombotic natural product, on lipopolysaccharide (LPS)-induced acute lung injury in mice basing on our previous studies. The results showed that a single oral administration of ruscogenin significantly decreased lung wet to dry weight (W/D) ratio at doses of 0.3, 1.0 and 3.0 mg/kg 1 h prior to LPS challenge (30 mg/kg, intravenous injection). Histopathological changes such as pulmonary edema, coagulation and infiltration of inflammatory cells were also attenuated by ruscogenin. In addition, ruscogenin markedly decreased LPS-induced myeloperoxidase (MPO) activity and nitrate/nitrite content, and also downregulated expression of tissue factor (TF), inducible NO synthase (iNOS) and nuclear factor (NF)-κB p-p65 (Ser 536) in the lung tissue at three doses. Furthermore, ruscogenin reduced plasma TF procoagulant activity and nitrate/nitrite content in LPS-induced ALI mice. These findings confirmed that ruscogenin significantly attenuate LPS-induced acute lung injury via inhibiting expressions of TF and iNOS and NF-κB p65 activation, indicating it as a potential therapeutic agent for ALI or sepsis. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Fuel ethanol discussion paper

    International Nuclear Information System (INIS)

    1992-01-01

    In recognition of the potential benefits of ethanol and the merits of encouraging value-added agricultural development, a committee was formed to develop options for the role of the Ontario Ministry of Agriculture and Food in the further development of the ethanol industry in Ontario. A consultation with interested parties produced a discussion paper which begins with an outline of the role of ethanol as an alternative fuel. Ethanol issues which require industry consideration are presented, including the function of ethanol as a gasoline oxygenate or octane enhancer, environmental impacts, energy impacts, agricultural impacts, trade and fiscal implications, and regulation. The ethanol industry and distribution systems in Ontario are then described. The current industry consists of one ethanol plant and over 30 retail stations. The key issue for expanding the industry is the economics of producing ethanol. At present, production of ethanol in the short term depends on tax incentives amounting to 23.2 cents/l. In the longer term, a significant reduction in feedstock costs and a significant improvement in processing technology, or equally significant gasoline price increases, will be needed to create a sustainable ethanol industry that does not need incentives. Possible roles for the Ministry are identified, such as support for ethanol research and development, financial support for construction of ethanol plants, and active encouragement of market demand for ethanol-blended gasolines

  4. Exenatide, a Glucagon-like Peptide-1 Receptor Agonist, Acutely Inhibits Intestinal Lipoprotein Production in Healthy Humans

    NARCIS (Netherlands)

    Xiao, Changting; Bandsma, Robert H. J.; Dash, Satya; Szeto, Linda; Lewis, Gary F.

    Objective-Incretin-based therapies for the treatment of type 2 diabetes mellitus improve plasma lipid profiles and postprandial lipemia, but their exact mechanism of action remains unclear. Here, we examined the acute effect of the glucagon-like peptide-1 receptor agonist, exenatide, on intestinal

  5. The utility of zebrafish to study the mechanisms by which ethanol affects social behavior and anxiety during early brain development.

    Science.gov (United States)

    Parker, Matthew O; Annan, Leonette V; Kanellopoulos, Alexandros H; Brock, Alistair J; Combe, Fraser J; Baiamonte, Matteo; Teh, Muy-Teck; Brennan, Caroline H

    2014-12-03

    Exposure to moderate levels of ethanol during brain development has a number of effects on social behavior but the molecular mechanisms that mediate this are not well understood. Gaining a better understanding of these factors may help to develop therapeutic interventions in the future. Zebrafish offer a potentially useful model in this regard. Here, we introduce a zebrafish model of moderate prenatal ethanol exposure. Embryos were exposed to 20mM ethanol for seven days (48hpf-9dpf) and tested as adults for individual social behavior and shoaling. We also tested their basal anxiety with the novel tank diving test. We found that the ethanol-exposed fish displayed reductions in social approach and shoaling, and an increase in anxiety in the novel tank test. These behavioral differences corresponded to differences in hrt1aa, slc6a4 and oxtr expression. Namely, acute ethanol caused a spike in oxtr and ht1aa mRNA expression, which was followed by down-regulation at 7dpf, and an up-regulation in slc6a4 at 72hpf. This study confirms the utility of zebrafish as a model system for studying the molecular basis of developmental ethanol exposure. Furthermore, it proposes a putative developmental mechanism characterized by ethanol-induced OT inhibition leading to suppression of 5-HT and up-regulation of 5-HT1A, which leads, in turn, to possible homeostatic up-regulation of 5-HTT at 72hpf and subsequent imbalance of the 5-HT system. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Treatment of ethanol-induced acute pulmonary hypertension and right ventricular dysfunction in pigs, by sildenafil analogue (UK343-664 or nitroglycerin

    Directory of Open Access Journals (Sweden)

    Sidi Avner

    2008-01-01

    Full Text Available In patients at risk for sudden ethanol (ETOH intravascular absorption, prompt treatment of pulmonary hypertension (PHTN will minimise the risk of cardiovascular decompensation. We investigated the haemodynamic effects of intravenous ETOH and the pulmonary vasodilatory effects of a sildenafil analogue (UK343-664 and nitroglycerin (NTG during ETOH-induced PHTN in pigs. We studied pulmonary and systemic haemodynamics, and right ventricular rate or time derivate of pressure rise during ventricular contraction ( =dP/dT, as an index of contractility, in 23 pigs. ETOH was infused at a rate of 50 mg/kg/min, titrated to achieve a twofold increase in mean pulmonary arterial pressure (MPAP, and then discontinued. The animals were randomised to receive an infusion of 2 ml/kg ( n = 7 normal saline, a 500-μg/kg bolus of UK343-664 ( n = 8, or NTG 1 μg/kg ( n = 8; each was given over 60 seconds. Following ETOH infusion, dP/dT decreased central venous pressure (CVP, and MPAP increased significantly, resulting in significantly increased pulmonary vascular resistance (PVR. Within 2 minutes after treatment with either drug, CVP, heart rate (HR, and the systemic vascular resistance-to-pulmonary vascular resistance (SVR/PVR ratio returned to baseline. However, at that time, only in the UK343-664 group, MPAP and dP/dT partially recovered and were different from the respective values at PHTN stage. NTG and UK343-664 decreased PVR within 2 minutes, from 1241±579 and 1224±494 dyne · cm/sec 5 , which were threefold-to-fourfold increased baseline values, to 672±308 and 538±203 dyne · cm/sec 5 respectively. However, only in the UK343-664 group, changes from baseline PVR values after treatment were significant compared to the maximal change during target PHTN. Neither drug caused a significant change in SVR. In this model of ETOH-induced PHTN, both UK343-664 and NTG were effective pulmonary vasodilators with a high degree of selectivity. However, the changes from

  7. Oridonin effectively reverses the drug resistance of cisplatin involving induction of cell apoptosis and inhibition of MMP expression in human acute myeloid leukemia cells

    Directory of Open Access Journals (Sweden)

    Yuan Zhang

    2017-03-01

    Full Text Available Cisplatin is the first generation platinum-based chemotherapy agent. However, the extensive application of cisplatin inevitably causes drug resistance, which is a major obstacle to cancer chemotherapy. Oridonin is a diterpenoid isolated from Rabdosia rubescens with potent anticancer activity. The aim of our study is to investigate the role of oridonin to reverse the cisplatin-resistance in human acute myeloid leukemia (AML cells. The effect of oridonin on human AML cell proliferation was evaluated by MTT assay, cell migration and invasion were evaluated by transwell migration and invasion assays in cisplatin-resistant human AML cells. Furthermore, cell apoptosis was examined by flow cytometry. The inhibitive effect of oridonin in vivo was determined using xenografted nude mice. In addition, the expressions of MMP2 and MMP9 were detected by Western blot. There was a synergistic antitumor effect between cisplatin and oridonin on cisplatin-resistant human AML cells in vitro and in vivo. In addition, the combination of cisplatin and oridonin synergistically induced cell apoptosis. Furthermore, the combination treatment not only inhibited AML cell migration and invasion, but more significantly, decreased the expressions of MMP2 and MMP9 proteins. Our results suggest that the synergistic effect between both agents is likely to be driven by the inhibition of MMP expression and the resulting increased apoptosis.

  8. Qi-Dong-Huo-Xue-Yin Inhibits Inflammation in Acute Lung Injury in Mice via Toll-Like Receptor 4/Caveolin-1 Signaling

    Directory of Open Access Journals (Sweden)

    Li-Ying Xu

    2018-01-01

    Full Text Available Acute lung injury (ALI is a critical illness with no current effective treatment. Caveolin-1 indirectly activates inflammation-associated signaling pathways by inhibiting endothelial nitric oxide synthase (eNOS. This induces an imbalance between pro- and anti-inflammatory cytokine levels, which are involved in the pathogenesis of ALI. The compound Chinese prescription Qi-Dong-Huo-Xue-Yin (QDHXY is efficacious for ALI treatment via an anti-inflammatory effect; however, the exact underlying mechanism is unknown. Therefore, we explored the protective effect of QDHXY against lipopolysaccharide- (LPS- induced ALI in mice. Histopathological changes in mouse lung tissues were studied. Furthermore, alterations in the serum levels of pro- and anti-inflammatory cytokines were investigated. The levels of tumor necrosis factor- (TNF-α, interleukin- (IL- 6, IL-1β, and interferon-γ-induced protein 10 in bronchoalveolar lavage fluid were measured. Additionally, the expression levels of myeloid differentiation factor 88 (MyD88, caveolin-1, and eNOS were assessed. QDHXY significantly reduced lung infiltration with inflammatory cells and the production of serum pro- and anti-inflammatory cytokines and inhibited the expression of TNF-α, IL-1β, caveolin-1, and MyD88 but not eNOS. These indicate that QDHXY significantly improved the balance between pro- and anti-inflammatory cytokine levels, possibly by inhibiting the caveolin-1 signaling pathway. Therefore, QDHXY may be a potential treatment for ALI.

  9. Transient impairment of hippocampus-dependent learning and memory in relatively low-dose of acute radiation syndrome is associated with inhibition of hippocampal neurogenesis

    International Nuclear Information System (INIS)

    Kim, Joong-Sun; Lee, Hae-June; Kim, Jong-Choon

    2008-01-01

    Neurogenesis in the adult hippocampus, which occurs constitutively, is vulnerable to ionizing radiation. In the relatively low-dose exposure of acute radiation syndrome (ARS), the change in the adult hippocampal function is poorly understood. This study analyzed the changes in apoptotic cell death and neurogenesis in the DGs of hippocampi from adult ICR mice with single whole-body gamma-irradiation using the TdT-mediated dUTP-biotin nick end-labeling (TUNEL) method and immunohistochemical markers of neurogenesis, Ki-67 and doublecortin (DCX). In addition, the hippocampus-dependent learning and memory tasks after single whole-body gamma-irradiation were examined in order to evaluate the hippocampus-related behavioral dysfunction in the relatively low-dose exposure of ARS. The number of TUNEL-positive apoptotic nuclei in the dentate gyrus (DG) was increased 6-12 h after acute gamma-irradiation (a single dose of 0.5 to 4 Gy). In contrast, the number of Ki-67- and DCX-positive cells began to decrease significantly 6 h postirradiation, reaching its lowest level 24 h after irradiation. The level of Ki-67 and DCX immunoreactivity decreased in a dose-dependent manner within the range of irradiation applied (0-4 Gy). In passive avoidance and object recognition memory test, the mice trained 1 day after acute irradiation (2 Gy) showed significant memory deficits, compared with the sham controls. In conclusion, the pattern of the hippocampus-dependent memory dysfunction is consistent with the change in neurogenesis after acute irradiation. It is suggested that a relatively low dose of ARS in adult ICR mice is sufficiently detrimental to interrupt the functioning of the hippocampus, including learning and memory, possibly through the inhibition of neurogenesis. (author)

  10. Lithium protects ethanol-induced neuronal apoptosis

    International Nuclear Information System (INIS)

    Zhong Jin; Yang Xianlin; Yao Weiguo; Lee Weihua

    2006-01-01

    Lithium is widely used for the treatment of bipolar disorder. Recent studies have demonstrated its neuroprotective effect. Ethanol is a potent neurotoxin that is particularly harmful to the developing nervous system. In this study, we evaluated lithium's neuroprotection against ethanol-induced apoptosis. Transient exposure of infant mice to ethanol caused apoptotic cell death in brain, which was prevented significantly by administering a low dose of lithium 15 min later. In cultured cerebellar granule neurons, ethanol-induced apoptosis and activation of caspase-3/9, both of which were prevented by lithium. However, lithium's protection is not mediated by its commonly known inhibition of glycogen synthase3β, because neither ethanol nor lithium has significant effects on the phosphorylation of Akt (ser473) or GSK3β (ser9). In addition, the selective GSK-3β inhibitor SB-415286 was unable to prevent ethanol-induced apoptosis. These data suggest lithium may be used as a potential preventive measure for ethanol-induced neurological deficits

  11. Ethanol Basics (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2015-01-01

    Ethanol is a widely-used, domestically-produced renewable fuel made from corn and other plant materials. More than 96% of gasoline sold in the United States contains ethanol. Learn more about this alternative fuel in the Ethanol Basics Fact Sheet, produced by the U.S. Department of Energy's Clean Cities program.

  12. Acute administration of fish oil inhibits triggered activity in isolated myocytes from rabbits and patients with heart failure.

    NARCIS (Netherlands)

    den Ruijter, H.M.; Berecki, G.; Verkerk, A.O.; Bakker, D.; Baartscheer, A.; Schumacher, C.A.; Belterman, C.N.; de Jonge, N.; Fiolet, J.W.; Brouwer, I.A.; Coronel, R.

    2008-01-01

    Background-Fish oil reduces sudden death in patients with prior myocardial infarction. Sudden death in heart failure may be due to triggered activity based on disturbed calcium handling. We hypothesized that superfusion with ω3-polyunsaturated fatty acids (ω3-PUFAs) from fish inhibits triggered

  13. Time course of cholinesterase inhibition in adult rats treated acutely with carbaryl, carbofuran, formetanate, methomyl, methiocarb, oxamyl or propoxur

    International Nuclear Information System (INIS)

    Padilla, S.; Marshall, R.S.; Hunter, D.L.; Lowit, A.

    2007-01-01

    To compare the toxicity of seven N-methyl carbamates, time course profiles for brain and red blood cell (RBC) cholinesterase (ChE) inhibition were established for each. Adult, male, Long Evans rats (n = 4-5 dose group) were dosed orally with either carbaryl (30 mg/kg in corn oil); carbofuran (0.5 mg/kg in corn oil); formetanate HCl (10 mg/kg in water); methomyl (3 mg/kg in water); methiocarb (25 mg/kg in corn oil); oxamyl (1 mg/kg in water); or propoxur (20 mg/kg in corn oil). This level of dosing produced at least 40% brain ChE inhibition. Brain and blood were taken from 0.5 to 24 h after dosing for analysis of ChE activity using two different methods: (1) a radiometric method which limits the amount of reactivation of ChE activity, and (2) a spectrophotometric method (Ellman method using traditional, unmodified conditions) which may encourage reactivation. The time of peak ChE inhibition was similar for all seven N-methyl carbamate pesticides: 0.5-1.0 h after dosing. By 24 h, brain and RBC ChE activity in all animals returned to normal. The spectrophotometric method underestimated ChE inhibition. Moreover, there was a strong, direct correlation between brain and RBC ChE activity (radiometric assay) for all seven compounds combined (r 2 = 0.73, slope 1.1), while the spectrophotometric analysis of the same samples showed a poor correlation (r 2 = 0.09). For formetanate, propoxur, methomyl, and methiocarb, brain and RBC ChE inhibitions were not different over time, but for carbaryl, carbofuran and oxamyl, the RBC ChE was slightly more inhibited than brain ChE. These data indicate (1) the radiometric method is superior for analyses of ChE activity in tissues from carbamate-treated animals (2) that animals treated with these N-methyl carbamate pesticides are affected rapidly, and recover rapidly, and (3) generally, assessment of RBC ChE is an accurate predictor of brain ChE inhibition for these seven pesticides

  14. Recurring ethanol exposure induces disinhibited courtship in Drosophila.

    Directory of Open Access Journals (Sweden)

    Hyun-Gwan Lee

    Full Text Available Alcohol has a strong causal relationship with sexual arousal and disinhibited sexual behavior in humans; however, the physiological support for this notion is largely lacking and thus a suitable animal model to address this issue is instrumental. We investigated the effect of ethanol on sexual behavior in Drosophila. Wild-type males typically court females but not males; however, upon daily administration of ethanol, they exhibited active intermale courtship, which represents a novel type of behavioral disinhibition. The ethanol-treated males also developed behavioral sensitization, a form of plasticity associated with addiction, since their intermale courtship activity was progressively increased with additional ethanol experience. We identified three components crucial for the ethanol-induced courtship disinhibition: the transcription factor regulating male sex behavior Fruitless, the ABC guanine/tryptophan transporter White and the neuromodulator dopamine. fruitless mutant males normally display conspicuous intermale courtship; however, their courtship activity was not enhanced under ethanol. Likewise, white males showed negligible ethanol-induced intermale courtship, which was not only reinstated but also augmented by transgenic White expression. Moreover, inhibition of dopamine neurotransmission during ethanol exposure dramatically decreased ethanol-induced intermale courtship. Chronic ethanol exposure also affected a male's sexual behavior toward females: it enhanced sexual arousal but reduced sexual performance. These findings provide novel insights into the physiological effects of ethanol on sexual behavior and behavioral plasticity.

  15. Resveratrol engages AMPK to attenuate ERK and mTOR signaling in sensory neurons and inhibits incision-induced acute and chronic pain

    Directory of Open Access Journals (Sweden)

    Tillu Dipti V

    2012-01-01

    Full Text Available Abstract Background Despite advances in our understanding of basic mechanisms driving post-surgical pain, treating incision-induced pain remains a major clinical challenge. Moreover, surgery has been implicated as a major cause of chronic pain conditions. Hence, more efficacious treatments are needed to inhibit incision-induced pain and prevent the transition to chronic pain following surgery. We reasoned that activators of AMP-activated protein kinase (AMPK may represent a novel treatment avenue for the local treatment of incision-induced pain because AMPK activators inhibit ERK and mTOR signaling, two important pathways involved in the sensitization of peripheral nociceptors. Results To test this hypothesis we used a potent and efficacious activator of AMPK, resveratrol. Our results demonstrate that resveratrol profoundly inhibits ERK and mTOR signaling in sensory neurons in a time- and concentration-dependent fashion and that these effects are mediated by AMPK activation and independent of sirtuin activity. Interleukin-6 (IL-6 is thought to play an important role in incision-induced pain and resveratrol potently inhibited IL-6-mediated signaling to ERK in sensory neurons and blocked IL-6-mediated allodynia in vivo through a local mechanism of action. Using a model of incision-induced allodynia in mice, we further demonstrate that local injection of resveratrol around the surgical wound strongly attenuates incision-induced allodynia. Intraplantar IL-6 injection and plantar incision induces persistent nociceptive sensitization to PGE2 injection into the affected paw after the resolution of allodynia to the initial stimulus. We further show that resveratrol treatment at the time of IL-6 injection or plantar incision completely blocks the development of persistent nociceptive sensitization consistent with the blockade of a transition to a chronic pain state by resveratrol treatment. Conclusions These results highlight the importance of signaling

  16. Ethanol production using nuclear petite yeast mutants

    Energy Technology Data Exchange (ETDEWEB)

    Hutter, A.; Oliver, S.G. [Department of Biomolecular Sciences, UMIST, Manchester (United Kingdom)

    1998-12-31

    Two respiratory-deficient nuclear petites, FY23{Delta}pet191 and FY23{Delta}cox5a, of the yeast Saccharomyces cerevisiae were generated using polymerase-chain-reaction-mediated gene disruption, and their respective ethanol tolerance and productivity assessed and compared to those of the parental grande, FY23WT, and a mitochondrial petite, FY23{rho}{sup 0}. Batch culture studies demonstrated that the parental strain was the most tolerant to exogenously added ethanol with an inhibition constant. K{sub i}, of 2.3% (w/v) and a specific rate of ethanol production, q{sub p}, of 0.90 g ethanol g dry cells{sup -1} h{sup -1}. FY23{rho}{sup 0} was the most sensitive to ethanol, exhibiting a K{sub i} of 1.71% (w/v) and q{sub p} of 0.87 g ethanol g dry cells{sup -1} h{sup -1}. Analyses of the ethanol tolerance of the nuclear petites demonstrate that functional mitochondria are essential for maintaining tolerance to the toxin with the 100% respiratory-deficient nuclear petite, FY23{Delta}pet191, having a K{sub i} of 2.14% (w/v) and the 85% respiratory-deficient FY23{Delta}cox5a, having a K{sub i} of 1.94% (w/v). The retention of ethanol tolerance in the nuclear petites as compared to that of FY23{rho}{sup 0} is mirrored by the ethanol productivities of these nuclear mutants, being respectively 43% and 30% higher than that of the respiratory-sufficient parent strain. This demonstrates that, because of their respiratory deficiency, the nuclear petites are not subject of the Pasteur effect and so exhibit higher rates of fermentation. (orig.)

  17. KCNQ channels show conserved ethanol block and function in ethanol behaviour.

    Directory of Open Access Journals (Sweden)

    Sonia Cavaliere

    Full Text Available In humans, KCNQ2/3 channels form an M-current that regulates neuronal excitability, with mutations in these channels causing benign neonatal familial convulsions. The M-current is important in mechanisms of neural plasticity underlying associative memory and in the response to ethanol, with KCNQ controlling the release of dopamine after ethanol exposure. We show that dKCNQ is broadly expressed in the nervous system, with targeted reduction in neuronal KCNQ increasing neural excitability and KCNQ overexpression decreasing excitability and calcium signalling, consistent with KCNQ regulating the resting membrane potential and neural release as in mammalian neurons. We show that the single KCNQ channel in Drosophila (dKCNQ has similar electrophysiological properties to neuronal KCNQ2/3, including conserved acute sensitivity to ethanol block, with the fly channel (IC(50 = 19.8 mM being more sensitive than its mammalian ortholog (IC(50 = 42.1 mM. This suggests that the role of KCNQ in alcohol behaviour can be determined for the first time by using Drosophila. We present evidence that loss of KCNQ function in Drosophila increased sensitivity and tolerance to the sedative effects of ethanol. Acute activation of dopaminergic neurons by heat-activated TRP channel or KCNQ-RNAi expression produced ethanol hypersensitivity, suggesting that both act via a common mechanism involving membrane depolarisation and increased dopamine signalling leading to ethanol sedation.

  18. Post-exposure administration of diazepam combined with soluble epoxide hydrolase inhibition stops seizures and modulates neuroinflammation in a murine model of acute TETS intoxication

    International Nuclear Information System (INIS)

    Vito, Stephen T.; Austin, Adam T.; Banks, Christopher N.; Inceoglu, Bora; Bruun, Donald A.; Zolkowska, Dorota; Tancredi, Daniel J.; Rogawski, Michael A.; Hammock, Bruce D.; Lein, Pamela J.

    2014-01-01

    Tetramethylenedisulfotetramine (TETS) is a potent convulsant poison for which there is currently no approved antidote. The convulsant action of TETS is thought to be mediated by inhibition of type A gamma-aminobutyric acid receptor (GABA A R) function. We, therefore, investigated the effects of post-exposure administration of diazepam, a GABA A R positive allosteric modulator, on seizure activity, death and neuroinflammation in adult male Swiss mice injected with a lethal dose of TETS (0.15 mg/kg, ip). Administration of a high dose of diazepam (5 mg/kg, ip) immediately following the second clonic seizure (approximately 20 min post-TETS injection) effectively prevented progression to tonic seizures and death. However, this treatment did not prevent persistent reactive astrogliosis and microglial activation, as determined by GFAP and Iba-1 immunoreactivity and microglial cell morphology. Inhibition of soluble epoxide hydrolase (sEH) has been shown to exert potent anti-inflammatory effects and to increase survival in mice intoxicated with other GABA A R antagonists. The sEH inhibitor TUPS (1 mg/kg, ip) administered immediately after the second clonic seizure did not protect TETS-intoxicated animals from tonic seizures or death. Combined administration of diazepam (5 mg/kg, ip) and TUPS (1 mg/kg, ip, starting 1 h after diazepam and repeated every 24 h) prevented TETS-induced lethality and influenced signs of neuroinflammation in some brain regions. Significantly decreased microglial activation and enhanced reactive astrogliosis were observed in the hippocampus, with no changes in the cortex. Combining an agent that targets specific anti-inflammatory mechanisms with a traditional antiseizure drug may enhance treatment outcome in TETS intoxication. - Highlights: • Acute TETS intoxication causes delayed and persistent neuroinflammation. • Diazepam given post-TETS prevents lethal tonic seizures but not neuroinflammation. • A soluble epoxide hydrolase inhibitor alters

  19. Transient Responses to NOTCH and TLX1/HOX11 Inhibition in T-Cell Acute Lymphoblastic Leukemia/Lymphoma

    OpenAIRE

    Rakowski, Lesley A.; Lehotzky, Erica A.; Chiang, Mark Y.

    2011-01-01

    To improve the treatment strategies of T-cell acute lymphoblastic leukemia/lymphoma (T-ALL), further efforts are needed to identify therapeutic targets. Dysregulated expression of HOX-type transcription factors occurs in 30-40% of cases of T-ALL. TLX1/HOX11 is the prototypical HOX-type transcription factor. TLX1 may be an attractive therapeutic target because mice that are deficient in TLX1 are healthy. To test this possibility, we developed a conditional doxycycline-regulated mouse model of ...

  20. Acute Consumption of Bordo Grape Juice and Wine Improves Serum Antioxidant Status in Healthy Individuals and Inhibits Reactive Oxygen Species Production in Human Neuron-Like Cells.

    Science.gov (United States)

    Copetti, Cristiane; Franco, Fernanda Wouters; Machado, Eduarda da Rosa; Soquetta, Marcela Bromberger; Quatrin, Andréia; Ramos, Vitor de Miranda; Moreira, José Cláudio Fonseca; Emanuelli, Tatiana; Sautter, Cláudia Kaehler; Penna, Neidi Garcia

    2018-01-01

    Few studies investigated the biological effects of American grape cultivars. We investigated the metabolic response after acute consumption of grape juice or wine from Bordo grapes ( Vitis labrusca ) in a placebo-controlled crossover study with fifteen healthy volunteers. Blood samples were collected 1 hour after the intake of 100 mL of water, juice, or wine to measure TBARS, ABTS, FRAP, glucose, and uric acid levels. To evaluate differences in cellular response, intracellular reactive species production (DCFH-DA) and metabolic mitochondrial viability (MTT) were assessed after exposure of human neuron-like cells (SH-SY5Y) to juice or wine. Glycemia was reduced after juice or wine consumption, whereas blood levels of uric acid were reduced after juice consumption but increased after wine consumption. Juice and wine consumption reduced plasma lipid peroxidation and increased plasma antioxidant capacity (ABTS and FRAP assays). Furthermore, juice inhibited H 2 O 2 -induced intracellular production of reactive species (RS) and increased the viability of SH-SY5Y cells. In contrast, wine (dealcoholized) exhibited a per se effect by inducing the production of RS and reducing cell viability. These results indicate a positive impact of acute consumption of Bordo juice and wine on human oxidative status, whereas only juice had protective effects against oxidative stress-induced cytotoxicity.

  1. Acute Consumption of Bordo Grape Juice and Wine Improves Serum Antioxidant Status in Healthy Individuals and Inhibits Reactive Oxygen Species Production in Human Neuron-Like Cells

    Directory of Open Access Journals (Sweden)

    Cristiane Copetti

    2018-01-01

    Full Text Available Few studies investigated the biological effects of American grape cultivars. We investigated the metabolic response after acute consumption of grape juice or wine from Bordo grapes (Vitis labrusca in a placebo-controlled crossover study with fifteen healthy volunteers. Blood samples were collected 1 hour after the intake of 100 mL of water, juice, or wine to measure TBARS, ABTS, FRAP, glucose, and uric acid levels. To evaluate differences in cellular response, intracellular reactive species production (DCFH-DA and metabolic mitochondrial viability (MTT were assessed after exposure of human neuron-like cells (SH-SY5Y to juice or wine. Glycemia was reduced after juice or wine consumption, whereas blood levels of uric acid were reduced after juice consumption but increased after wine consumption. Juice and wine consumption reduced plasma lipid peroxidation and increased plasma antioxidant capacity (ABTS and FRAP assays. Furthermore, juice inhibited H2O2-induced intracellular production of reactive species (RS and increased the viability of SH-SY5Y cells. In contrast, wine (dealcoholized exhibited a per se effect by inducing the production of RS and reducing cell viability. These results indicate a positive impact of acute consumption of Bordo juice and wine on human oxidative status, whereas only juice had protective effects against oxidative stress-induced cytotoxicity.

  2. Acute inhibition of estradiol synthesis impacts vestibulo-ocular reflex adaptation and cerebellar long-term potentiation in male rats.

    Science.gov (United States)

    Dieni, Cristina V; Ferraresi, Aldo; Sullivan, Jacqueline A; Grassi, Sivarosa; Pettorossi, Vito E; Panichi, Roberto

    2018-03-01

    The vestibulo-ocular reflex (VOR) adaptation is an ideal model for investigating how the neurosteroid 17 beta-estradiol (E2) contributes to the modification of behavior by regulating synaptic activities. We hypothesized that E2 impacts VOR adaptation by affecting cerebellar synaptic plasticity at the parallel fiber-Purkinje cell (PF) synapse. To verify this hypothesis, we investigated the acute effect of blocking E2 synthesis on gain increases and decreases in adaptation of the VOR in male rats using an oral dose (2.5 mg/kg) of the aromatase inhibitor letrozole. We also assessed the effect of letrozole on synaptic plasticity at the PF synapse in vitro, using cerebellar slices from male rats. We found that letrozole acutely impaired both gain increases and decreases adaptation of the VOR without altering basal ocular-motor performance. Moreover, letrozole prevented long-term potentiation at the PF synapse (PF-LTP) without affecting long-term depression (PF-LTD). Thus, in male rats neurosteroid E2 has a relevant impact on VOR adaptation and affects exclusively PF-LTP. These findings suggest that E2 might regulate changes in VOR adaptation by acting locally on cerebellar and extra-cerebellar synaptic plasticity sites.

  3. Pathway engineering to improve ethanol production by thermophilic bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Lynd, L.R.

    1998-12-31

    Continuation of a research project jointly funded by the NSF and DOE is proposed. The primary project goal is to develop and characterize strains of C. thermocellum and C. thermosaccharolyticum having ethanol selectivity similar to more convenient ethanol-producing organisms. An additional goal is to document the maximum concentration of ethanol that can be produced by thermophiles. These goals build on results from the previous project, including development of most of the genetic tools required for pathway engineering in the target organisms. As well, we demonstrated that the tolerance of C. thermosaccharolyticum to added ethanol is sufficiently high to allow practical utilization should similar tolerance to produced ethanol be demonstrated, and that inhibition by neutralizing agents may explain the limited concentrations of ethanol produced in studies to date. Task 1 involves optimization of electrotransformation, using either modified conditions or alternative plasmids to improve upon the low but reproducible transformation, frequencies we have obtained thus far.

  4. Power-law approach to modeling biological systems. II. Application to ethanol production

    Energy Technology Data Exchange (ETDEWEB)

    Voit, E O; Savageau, M A

    1982-01-01

    The use of the power-law formalism is illustrated by modeling yeast ethanol production in batch culture at high cell densities. Parameter values are estimated from experimental data. The results suggest that ethanol killing of viable cells and lysis of nonviable cells are major determinants of system behavior, whereas catabolism of ethanol and inhibition of cell growth by ethanol appear to be insignificant under these experimental conditions.

  5. Curcumin attenuates lipopolysaccharide/d-galactosamine-induced acute liver injury by activating Nrf2 nuclear translocation and inhibiting NF-kB activation.

    Science.gov (United States)

    Xie, Yi-Lian; Chu, Jin-Guo; Jian, Xiao-Min; Dong, Jin-Zhong; Wang, Li-Ping; Li, Guo-Xiang; Yang, Nai-Bin

    2017-07-01

    Curcumin, a polyphenol in curry spice isolated from the rhizome of turmeric, has been reported to possess versatile biological properties including anti-inflammatory, anti-oxidant, antifibrotic, and anticancer activities. In this study, the hepatoprotective effect of curcumin was investigated in lipopolysaccharide (LPS)/d-galactosamine (d-GalN)-induced acute liver injury (ALI) in rats. Experimental ALI was induced with an intraperitoneal (ip) injection of sterile 0.9% sodium chloride (NaCl) solution containing 8μg LPS and 800mg/kg d-GalN. Curcumin was administered once daily starting three days prior to LPS/d-GalN treatment. Results indicated that curcumin could attenuate hepatic pathological damage, decrease serum ALT and AST levels, and reduce malondialdehyde (MDA) content in experimental ALI rats. Moreover, higher dosages of curcumin pretreatment inhibited NF-κB activation and reduced serum TNF-α and liver TNF-α levels induced by LPS/d-GalN ip injection. Furthermore, we found that curcumin up-regulated the expression of nuclear Nrf2 and Nrf2-dependent antioxidant defense genes including heme oxygenase-1 (HO-1), glutamate-cysteine ligase (GCLC), NAD(P)H dehydrogenase, and quinone (NQO-1) in a dose-dependent manner. Our results showed that curcumin protected experimental animals against LPS/d-GalN-induced ALI through activation of Nrf2 nuclear translocation and inhibition of NF-κB activation. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  6. Inhibition of glycogen synthase kinase 3beta ameliorates triptolide-induced acute cardiac injury by desensitizing mitochondrial permeability transition

    International Nuclear Information System (INIS)

    Wang, Wenwen; Yang, Yanqin; Xiong, Zhewen; Kong, Jiamin; Fu, Xinlu; Shen, Feihai; Huang, Zhiying

    2016-01-01

    Triptolide (TP), a diterpene triepoxide, is a major active component of Tripterygium wilfordii extracts, which are prepared as tablets and has been used clinically for the treatment of inflammation and autoimmune disorders. However, TP's therapeutic potential is limited by severe adverse effects. In a previous study, we reported that TP induced mitochondria dependent apoptosis in cardiomyocytes. Glycogen synthase kinase-3β (GSK-3β) is a multifunctional serine/threonine kinase that plays important roles in the necrosis and apoptosis of cardiomyocytes. Our study aimed to investigate the role of GSK-3β in TP-induced cardiotoxicity. Inhibition of GSK-3β activity by SB 216763, a potent and selective GSK-3 inhibitor, prominently ameliorated the detrimental effects in C57BL/6J mice with TP administration, which was associated with a correction of GSK-3β overactivity. Consistently, in TP-treated H9c2 cells, SB 216763 treatment counteracted GSK-3β overactivity, improved cell viability, and prevented apoptosis by modulating the expression of Bcl-2 family proteins. Mechanistically, GSK-3β interacted with and phosphorylated cyclophilin F (Cyp-F), a key regulator of mitochondrial permeability transition pore (mPTP). GSK-3β inhibition prevented the phosphorylation and activation of Cyp-F, and desensitized mPTP. Our findings suggest that pharmacological targeting of GSK-3β could represent a promising therapeutic strategy for protecting against cardiotoxicity induced by TP. - Highlights: • GSK-3β inhibition ameliorates TP-induced cardiotoxicity in vitro and in vivo. • GSK-3β controls Cyp-F activation, and regulates mPTP and apoptosis in H9c2 cells. • The protective effect is attributed to GSK-3β activity rather than to protein level. • GSK-3β may be a promising target against TP-induced cardiotoxicity.

  7. Inhibition of glycogen synthase kinase 3beta ameliorates triptolide-induced acute cardiac injury by desensitizing mitochondrial permeability transition

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wenwen; Yang, Yanqin; Xiong, Zhewen; Kong, Jiamin [School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006 (China); Fu, Xinlu [Laboratory Animals Center, Sun Yat-sen University, Guangzhou 510006 (China); Shen, Feihai, E-mail: shenfh3@mail.sysu.edu.cn [School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006 (China); Huang, Zhiying, E-mail: hzhiying@mail.sysu.edu.cn [School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006 (China)

    2016-12-15

    Triptolide (TP), a diterpene triepoxide, is a major active component of Tripterygium wilfordii extracts, which are prepared as tablets and has been used clinically for the treatment of inflammation and autoimmune disorders. However, TP's therapeutic potential is limited by severe adverse effects. In a previous study, we reported that TP induced mitochondria dependent apoptosis in cardiomyocytes. Glycogen synthase kinase-3β (GSK-3β) is a multifunctional serine/threonine kinase that plays important roles in the necrosis and apoptosis of cardiomyocytes. Our study aimed to investigate the role of GSK-3β in TP-induced cardiotoxicity. Inhibition of GSK-3β activity by SB 216763, a potent and selective GSK-3 inhibitor, prominently ameliorated the detrimental effects in C57BL/6J mice with TP administration, which was associated with a correction of GSK-3β overactivity. Consistently, in TP-treated H9c2 cells, SB 216763 treatment counteracted GSK-3β overactivity, improved cell viability, and prevented apoptosis by modulating the expression of Bcl-2 family proteins. Mechanistically, GSK-3β interacted with and phosphorylated cyclophilin F (Cyp-F), a key regulator of mitochondrial permeability transition pore (mPTP). GSK-3β inhibition prevented the phosphorylation and activation of Cyp-F, and desensitized mPTP. Our findings suggest that pharmacological targeting of GSK-3β could represent a promising therapeutic strategy for protecting against cardiotoxicity induced by TP. - Highlights: • GSK-3β inhibition ameliorates TP-induced cardiotoxicity in vitro and in vivo. • GSK-3β controls Cyp-F activation, and regulates mPTP and apoptosis in H9c2 cells. • The protective effect is attributed to GSK-3β activity rather than to protein level. • GSK-3β may be a promising target against TP-induced cardiotoxicity.

  8. Bisphenol A down-regulates rate-limiting Cyp11a1 to acutely inhibit steroidogenesis in cultured mouse antral follicles

    International Nuclear Information System (INIS)

    Peretz, Jackye; Flaws, Jodi A.

    2013-01-01

    Bisphenol A (BPA) is the backbone of polycarbonate plastic products and the epoxy resin lining of aluminum cans. Previous studies have shown that exposure to BPA decreases sex steroid hormone production in mouse antral follicles. The current study tests the hypothesis that BPA first decreases the expression levels of the steroidogenic enzyme cytochrome P450 side-chain cleavage (Cyp11a1) and steroidogenic acute regulatory protein (StAR) in mouse antral follicles, leading to a decrease in sex steroid hormone production in vitro. Further, the current study tests the hypothesis that these effects are acute and reversible after removal of BPA. Exposure to BPA (10 μg/mL and 100 μg/mL) significantly decreased expression of Cyp11a1 and StAR beginning at 18 h and 72 h, respectively, compared to controls. Exposure to BPA (10 μg/mL and 100 μg/mL) significantly decreased progesterone levels beginning at 24 h and decreased androstenedione, testosterone, and estradiol levels at 72 h and 96 h compared to controls. Further, after removing BPA from the culture media at 20 h, expression of Cyp11a1 and progesterone levels were restored to control levels by 48 h and 72 h, respectively. Additionally, expression of StAR and levels of androstenedione, testosterone, and estradiol never decreased compared to controls. These data suggest that BPA acutely decreases expression of Cyp11a1 as early as 18 h and this reduction in Cyp11a1 may lead to a decrease in progesterone production by 24 h, followed by a decrease in androstenedione, testosterone, and estradiol production and expression of StAR at 72 h. Therefore, BPA exposure likely targets Cyp11a1 and steroidogenesis, but these effects are reversible with removal of BPA exposure. - Highlights: • BPA may target Cyp11a1 to inhibit steroidogenesis in antral follicles. • BPA may decrease the expression of Cyp11a1 prior to inhibiting steroidogenesis. • The adverse effects of BPA on steroidogenesis in antral follicles are reversible

  9. Bisphenol A down-regulates rate-limiting Cyp11a1 to acutely inhibit steroidogenesis in cultured mouse antral follicles

    Energy Technology Data Exchange (ETDEWEB)

    Peretz, Jackye, E-mail: peretz@illinois.edu [2001 South Lincoln Ave, 3211 VMBSB, University of Illinois, Urbana, IL 61802 (United States); Flaws, Jodi A., E-mail: jflaws@illinois.edu [2001 South Lincoln Ave, 3223 VMBSB, University of Illinois, Urbana, IL 61802 (United States)

    2013-09-01

    Bisphenol A (BPA) is the backbone of polycarbonate plastic products and the epoxy resin lining of aluminum cans. Previous studies have shown that exposure to BPA decreases sex steroid hormone production in mouse antral follicles. The current study tests the hypothesis that BPA first decreases the expression levels of the steroidogenic enzyme cytochrome P450 side-chain cleavage (Cyp11a1) and steroidogenic acute regulatory protein (StAR) in mouse antral follicles, leading to a decrease in sex steroid hormone production in vitro. Further, the current study tests the hypothesis that these effects are acute and reversible after removal of BPA. Exposure to BPA (10 μg/mL and 100 μg/mL) significantly decreased expression of Cyp11a1 and StAR beginning at 18 h and 72 h, respectively, compared to controls. Exposure to BPA (10 μg/mL and 100 μg/mL) significantly decreased progesterone levels beginning at 24 h and decreased androstenedione, testosterone, and estradiol levels at 72 h and 96 h compared to controls. Further, after removing BPA from the culture media at 20 h, expression of Cyp11a1 and progesterone levels were restored to control levels by 48 h and 72 h, respectively. Additionally, expression of StAR and levels of androstenedione, testosterone, and estradiol never decreased compared to controls. These data suggest that BPA acutely decreases expression of Cyp11a1 as early as 18 h and this reduction in Cyp11a1 may lead to a decrease in progesterone production by 24 h, followed by a decrease in androstenedione, testosterone, and estradiol production and expression of StAR at 72 h. Therefore, BPA exposure likely targets Cyp11a1 and steroidogenesis, but these effects are reversible with removal of BPA exposure. - Highlights: • BPA may target Cyp11a1 to inhibit steroidogenesis in antral follicles. • BPA may decrease the expression of Cyp11a1 prior to inhibiting steroidogenesis. • The adverse effects of BPA on steroidogenesis in antral follicles are reversible.

  10. Andrographolide inhibits growth of human T-cell acute lymphoblastic leukemia Jurkat cells by downregulation of PI3K/AKT and upregulation of p38 MAPK pathways

    Science.gov (United States)

    Yang, Tingfang; Yao, Shuluan; Zhang, Xianfeng; Guo, Yan

    2016-01-01

    T-cell acute lymphoblastic leukemia (T-ALL) as a prevalent hematologic malignancy is one of the most common malignant tumors worldwide in children. Andrographolide (Andro), the major active component from Andrographis paniculata, has been shown to possess antitumor activities in several types of cancer cells. However, whether Andro would inhibit T-ALL cell growth remains unclear. In this study, we investigated the cytotoxic effect of Andro on human T-ALL Jurkat cells and explored the mechanisms of cell death. Cell apoptosis was assayed by flow cytometry, and the signaling transduction for Andro was analyzed by Western blotting. The results indicated 10 μg/mL Andro could significantly induce Jurkat cells’ apoptosis, depending on the inhibition of PI3K/AKT pathway. Moreover, Andro-induced apoptosis is enhanced by AKT-selective inhibitor LY294002. ERK- or JNK-selective inhibitors PD98059 and SP600125 had no effect on Andro-induced apoptosis. In addition, p38 inhibitor SB203580 could reverse Andro-induced apoptosis in Jurkat cells. We also found that the protein expression of p-p53 and p-p38 were increased after Andro treatments. The result of an in vivo study also demonstrated Andro’s dose-dependent inhibition in subcutaneous Jurkat xenografts. In conclusion, our findings explained a novel mechanism of drug action by Andro in Jurkat cells and suggested that Andro might be developed into a new candidate therapy for T-ALL patients in the coming days. PMID:27114702

  11. GSK3β-dependent inhibition of AMPK potentiates activation of neutrophils and macrophages and enhances severity of acute lung injury

    Science.gov (United States)

    Park, Dae Won; Jiang, Shaoning; Liu, Yanping; Siegal, Gene P.; Inoki, Ken; Abraham, Edward

    2014-01-01

    Although AMP-activated protein kinase (AMPK) is involved in regulating carbohydrate and lipid metabolism, activated AMPK also plays an anti-inflammatory role in many cell populations. However, despite the ability of AMPK activation to diminish the severity of inflammatory responses, previous studies have found that AMPK activity is diminished in LPS-treated neutrophils and also in lungs of mice with LPS-induced acute lung injury (ALI). Since GSK3β participates in regulating AMPK activity, we examined potential roles for GSK3β in modulating LPS-induced activation of neutrophils and macrophages and in influencing severity of ALI. We found that GSK3β-dependent phosphorylation of T479-AMPK was associated with pT172 dephosphorylation and inactivation of AMPK following TLR4 engagement. GSK3β inhibitors BIO (6-bromoindirubin-3′-oxime), SB216763, or siRNA knockdown of GSK3β, but not the PI3K/AKT inhibitor LY294002, prevented Thr172-AMPK dephosphorylation. Exposure to LPS resulted in rapid binding between IKKβ and AMPKα, and phosphorylation of S485-AMPK by IKKβ. These results suggest that IKKβ-dependent phosphorylation of S485-AMPK was an essential step in subsequent phosphorylation and inactivation AMPK by GSK3β. Inhibition of GSK3β activity delayed IκBα degradation and diminished expression of the proinflammatory TNF-α in LPS-stimulated neutrophils and macrophages. In vivo, inhibition of GSK3β decreased the severity of LPS-induced lung injury as assessed by development of pulmonary edema, production of TNF-α and MIP-2, and release of the alarmins HMGB1 and histone 3 in the lungs. These results show that inhibition of AMPK by GSK3β plays an important contributory role in enhancing LPS-induced inflammatory responses, including worsening the severity of ALI. PMID:25239914

  12. Andrographolide inhibits growth of human T-cell acute lymphoblastic leukemia Jurkat cells by downregulation of PI3K/AKT and upregulation of p38 MAPK pathways

    Directory of Open Access Journals (Sweden)

    Yang T

    2016-04-01

    Full Text Available Tingfang Yang,1 Shuluan Yao,2 Xianfeng Zhang,3 Yan Guo2 1Department of Pediatrics, Jining No 1 People’s Hospital, Shandong Province, People’s Republic of China; 2Department of Respiratory Medicine, Jining Medical University Affiliated Hospital, Shandong Province, People’s Republic of China; 3Department of Psychiatry, Jining Psychiatric Hospital, Shandong Province, People’s Republic of China Abstract: T-cell acute lymphoblastic leukemia (T-ALL as a prevalent hematologic malignancy is one of the most common malignant tumors worldwide in children. Andrographolide (Andro, the major active component from Andrographis paniculata, has been shown to possess antitumor activities in several types of cancer cells. However, whether Andro would inhibit T-ALL cell growth remains unclear. In this study, we investigated the cytotoxic effect of Andro on human T-ALL Jurkat cells and explored the mechanisms of cell death. Cell apoptosis was assayed by flow cytometry, and the signaling transduction for Andro was analyzed by Western blotting. The results indicated 10 µg/mL Andro could significantly induce Jurkat cells’ apoptosis, depending on the inhibition of PI3K/AKT pathway. Moreover, Andro-induced apoptosis is enhanced by AKT-selective inhibitor LY294002. ERK- or JNK-selective inhibitors PD98059 and SP600125 had no effect on Andro-induced apoptosis. In addition, p38 inhibitor SB203580 could reverse Andro-induced apoptosis in Jurkat cells. We also found that the protein expression of p-p53 and p-p38 were increased after Andro treatments. The result of an in vivo study also demonstrated Andro’s dose-dependent inhibition in subcutaneous Jurkat xenografts. In conclusion, our findings explained a novel mechanism of drug action by Andro in Jurkat cells and suggested that Andro might be developed into a new candidate therapy for T-ALL patients in the coming days. Keywords: andrographolide, PI3K, AKT, Burkitt lymphoma, Jurkat cell

  13. Lipoxin Inhibits Fungal Uptake by Macrophages and Reduces the Severity of Acute Pulmonary Infection Caused by Paracoccidioides brasiliensis

    Directory of Open Access Journals (Sweden)

    Laura R. R. Ribeiro

    2015-01-01

    Full Text Available Cysteinyl leukotrienes (CysLTs and lipoxins (LXs are lipid mediators that control inflammation, with the former inducing and the latter inhibiting this process. Because the role played by these mediators in paracoccidioidomycosis was not investigated, we aimed to characterize the role of CysLT in the pulmonary infection developed by resistant (A/J and susceptible (B10.A mice. 48 h after infection, elevated levels of pulmonary LTC4 and LXA4 were produced by both mouse strains, but higher levels were found in the lungs of susceptible mice. Blocking the CysLTs receptor by MTL reduced fungal loads in B10.A, but not in A/J mice. In susceptible mice, MLT treatment led to reduced influx of PMN leukocytes, increased recruitment of monocytes, predominant synthesis of anti-inflammatory cytokines, and augmented expression of 5- and 15-lipoxygenase mRNA, suggesting a prevalent LXA4 activity. In agreement, MTL-treated macrophages showed reduced fungal burdens associated with decreased ingestion of fungal cells. Furthermore, the addition of exogenous LX reduced, and the specific blockade of the LX receptor increased the fungal loads of B10.A macrophages. This study showed for the first time that inhibition of CysLTs signaling results in less severe pulmonary paracoccidioidomycosis that occurs in parallel with elevated LX activity and reduced infection of macrophages.

  14. The acute effect of metformin on glucose production in the conscious dog is primarily attributable to inhibition of glycogenolysis.

    Science.gov (United States)

    Chu, C A; Wiernsperger, N; Muscato, N; Knauf, M; Neal, D W; Cherrington, A D

    2000-12-01

    Although metformin has been used worldwide to treat type 2 diabetes for several decades, its mechanism of action on glucose homeostasis remains controversial. To further assess the effect of metformin on glucose metabolism, 10 42-hour-fasted conscious dogs were studied in the absence ([Con] n = 5) and presence ([Met] n = 5) of a portal infusion of metformin (0.15 mg x kg(-1) x min(-1)) over 300 minutes. Hepatic glucose production was measured by both arteriovenous-difference and tracer methods. All dogs were maintained on a pancreatic clamp and in a euglycemic state to ensure that any changes in glucose metabolism would result directly from the effects of metformin. The arterial metformin level was 21 +/- 3 microg/mL during the test period. Net hepatic glucose output (NHGO) decreased in Met dogs from 1.9 +/- 0.2 to 0.7 +/- 0.1 mg x kg(-1) x min(-1) (P metformin on glucose metabolism was an inhibition of hepatic glucose production and not a stimulation of glucose utilization; and (2) the inhibition of glucose production was attributable to a decrease in hepatic glycogenolysis and not to an alteration in gluconeogenic flux.

  15. Ebselen protects mitochondrial function and oxidative stress while inhibiting the mitochondrial apoptosis pathway after acute spinal cord injury.

    Science.gov (United States)

    Jia, Zhi-Qiang; Li, San-Qiang; Qiao, Wei-Qiang; Xu, Wen-Zhong; Xing, Jian-Wu; Liu, Jian-Tao; Song, Hui; Gao, Zhong-Yang; Xing, Bing-Wen; He, Xi-Jing

    2018-05-04

    Ebselen is a fat-soluble small molecule and organic selenium compound that regulates the activity of glutathione peroxidase to alleviate mitochondrial oxidative stress and improve mitochondrial function. In the present study, we aimed to investigate the effects of ebselen on mitochondrial oxidative stress response, mitochondrial apotosis, and motor behaviors after spinal cord injury (SCI). We found that ebselen significantly increased the BBB score in motor behavior, thus suggesting a rescue effect of ebselen on motor function after SCI in rats. Meanwhile, we revealed that ebselen can increase glutathione (GSH) content as well as superoxide dismutase (SOD) and catalase (CAT) activities after SCI-this suggests ebselen has an antioxidant effect. Furthermore, the ATP content and Na + -K + -ATPase activity in mitochondria were increased by ebselen after SCI, while the mitochondrial membrane potential (MMP) was decreased by ebselen. The Cytochrome C and Smac release from mitochondria were reduced by ebselen after SCI, thus indicating improved membrane permeability by ebselen. Moreover, the alterations in caspase-3, Bax and Bcl-2 protein expression, as well as the proportion of cell apoptosis were improved by ebselen treatment, which together suggested that ebselen has an inhibitory effect on mitochondrial apotosis pathways after SCI. Taken together, our results suggest that ebselen can inhibit secondary damage caused by spinal cord injury. Indeed it plays a neuroprotective role in spinal cord injury perhaps by improving mitochondrial function and inhibiting the mitochondrial apoptosis pathway. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Acute inhibition of hepatic glucose-6-phosphatase does not affect gluconeogenesis but directs gluconeogenic flux toward glycogen in fasted rats. A pharmacological study with the chlorogenic acid derivative S4048

    NARCIS (Netherlands)

    van Dijk, T. H.; van der Sluijs, F. H.; Wiegman, C. H.; Baller, J. F.; Gustafson, L. A.; Burger, H. J.; Herling, A. W.; Kuipers, F.; Meijer, A. J.; Reijngoud, D. J.

    2001-01-01

    Effects of acute inhibition of glucose-6-phosphatase activity by the chlorogenic acid derivative S4048 on hepatic carbohydrate fluxes were examined in isolated rat hepatocytes and in vivo in rats. Fluxes were calculated using tracer dilution techniques and mass isotopomer distribution analysis in

  17. Acute inhibition of hepatic glucose-6-phosphatase does not affect gluconeogenesis but directs gluconeogenic flux toward glycogen in fasted rats - A pharmacological study with the chlorogenic acid derivative S4048

    NARCIS (Netherlands)

    van Dijk, TH; van der Sluijs, FH; Wiegman, CH; Baller, JFW; Gustafson, LA; Burger, HJ; Herling, AW; Kuipers, F; Meijer, AJ; Reijngoud, DJ

    2001-01-01

    Effects of acute inhibition of glucose-6-phosphatase activity by the chlorogenic acid derivative S4048 on hepatic carbohydrate fluxes were examined in isolated rat hepatocytes and in vivo in rats. Fluxes were calculated using tracer dilution techniques and mass isotopomer distribution analysis in

  18. The effect of acute and chronic exposure to ethanol on the developing encephalon: a review Os efeitos da exposição aguda e crônica ao etanol sobre o desenvolvimento do encéfalo: uma revisão

    Directory of Open Access Journals (Sweden)

    Tales Alexandre Aversi-Ferreira

    2008-09-01

    Full Text Available OBJECTIVES: to compare the acute and chronic effects of ethanol on the neural development, by analysis of the ontogenetic neural structure of mammals. METHODS: searches were performed in the following electronic databases: MEDLINE, SciElo, PubMed, LILACS, CAPES periodical, and the Open Journal System. The descriptors used were: "chronic ethanol toxicity", "chronic alcohol toxicity", "acute ethanol toxicity", "acute alcohol", "neural ontogenic development", "neuronal migration disturbances", "neural structure". The following inclusion criteria were used: articles published between 2003 and 2007, some classic articles in the field and an important neuropsychology textbook. RESULTS: the analysis of papers revealed that, although several studies of the chronic effects of ethanol exposure on the mammalian nervous system have been conducted, only a few have investigated the acute effects of ethanol on specific days of gestation, and these studies have revealed important disorders relating to the cerebral tissue. CONCLUSIONS: it should be recommended that women refrain from the consumption of ethanol during gestational phase to protect the fetus' health. Furthermore, the acute consumption of ethanol by women nearing the eighth or ninth week of gestation has been shown to be potentially harmful to the nervous tissue of the fetus.OBJETIVOS: comparar os efeitos agudo e crônico do etanol sobre o desenvolvimento do sistema nervoso através da análise da estrutura ontogênica neural dos mamíferos. MÉTODOS: pesquisas foram feitas nas bases eletrônicas: MEDLINE, SciElo, PubMed, LILACS, CAPES periodical, Open Journal System. Os descritores usados foram: "toxidade crônica ao etanol", "toxidade crônica ao álcool", "toxicidade aguda ao etanol", "toxicidade aguda ao álcool", "desenvolvimento ontogênico neural", "distúrbios da migração neuronal", "estrutura neural".Foram considerados critérios de inclusão: artigos publicados no periódo de 2003 e 2007

  19. Ethanol from lignocellulosic biomasses

    International Nuclear Information System (INIS)

    Ricci, E.; Viola, E.; Zimbardi, F.; Braccio, G.; Cuna, D.

    2001-01-01

    In this report are presented results achieved on the process optimisation of bioethanol production from wheat straw, carried out within the ENEA's project of biomass exploitation for renewable energy. The process consists of three main steps: 1) biomass pretreatment by means of steam explosion; 2) enzymatic hydrolysis of the cellulose fraction; 3) fermentation of glucose. To perform the hydrolysis step, two commercial enzymatic mixtures have been employed, mainly composed by β-glucosidase (cellobiase), endo-glucanase and exo-glucanase. The ethanologenic yeast Saccharomyces cerevisiae has been used to ferment the glucose in he hydrolyzates. Hydrolysis yield of 97% has been obtained with steam exploded wheat straw treated at 220 0 C for 3 minutes and an enzyme to substrate ratio of 4%. It has been pointed out the necessity of washing with water the pretreated what straw, in order to remove the biomass degradation products, which have shown an inhibition effect on the yeast. At the best process conditions, a fermentation yield of 95% has been achieved. In the Simultaneous Saccharification and Fermentation process, a global conversion of 92% has been obtained, which corresponds to the production of about 170 grams of ethanol per kilogram of exploded straw [it

  20. Enhancing Ethanol Production by Fermentation Using Saccharomyces cereviseae under Vacuum Condition in Batch Operation

    Directory of Open Access Journals (Sweden)

    A Abdullah

    2012-04-01

    Full Text Available Ethanol is one of renewable energy, which considered being an excellent alternativeclean-burning fuel to replaced gasoline. In fact, the application of ethanol as fuel still blended withgasoline. The advantages of using ethanol as fuel are that the raw material mostly from renewableresources and the product has low emission which means environmental friendly. Ethanol can beproduced by fermentation of sugars (glucose/fructose. The constraint in the ethanol fermentationbatch or continuous process is the ethanol product inhibition. Inhibition in ethanol productivityand cell growth can be overcome by taking the product continuously from the fermentor. Theprocess can be done by using a vacuum fermentation. The objective of this research is toinvestigate the effect of pressure and glucose concentration in ethanol fermentation. The researchwas conducted in laboratory scale and batch process. Equipment consists of fermentor withvacuum system. The observed responses were dried cells of yeast, concentration of glucose, andconcentration of ethanol. Observations were made every 4 hours during a day of experiment. Theresults show that the formation of ethanol has a growth-associated product characteristic undervacuum operation. Vacuum condition can increase the cell formation productivity and the ethanolformation, as it is compared with fermentation under atmospheric condition. The maximum cellsproductivity and ethanol formation in batch operation under vacuum condition was reached at166.6 mmHg of pressure. The maximum numbers of cells and ethanol formation was reached at141.2 mm Hg of pressure. High initial glucose concentration significantly can affect the productivityand the yield of ethanol.

  1. Therapeutic effect of methyl salicylate 2-O-β-d-lactoside on LPS-induced acute lung injury by inhibiting TAK1/NF-kappaB phosphorylation and NLRP3 expression.

    Science.gov (United States)

    Yang, Shengqian; Yu, Ziru; Yuan, Tianyi; Wang, Lin; Wang, Xue; Yang, Haiguang; Sun, Lan; Wang, Yuehua; Du, Guanhua

    2016-11-01

    Acute lung injury (ALI), characterized by pulmonary edema and inflammatory cell infiltration, is a common syndrome of acute hypoxemic respiratory failure. Methyl salicylate 2-O-β-d-lactoside (MSL), a natural derivative of salicylate extracted from Gaultheria yunnanensis (Franch.) Rehder, was reported to have potent anti-inflammatory effects on the progression of collagen or adjuvant-induced arthritis in vivo and in vitro. The aim of this study is to investigate the therapeutic effect of MSL on lipopolysaccharide (LPS)-induced acute lung injury and reveal underlying molecular mechanisms. Our results showed that MSL significantly ameliorated pulmonary edema and histological severities, and inhibited IL-6 and IL-1β production in LPS-induced ALI mice. MSL also reduced MPO activity in lung tissues and the number of inflammatory cells in BALF. Moreover, we found that MSL significantly inhibited LPS-induced TAK1 and NF-κB p65 phosphorylation, as well as the expression of NLRP3 protein in lung tissues. Furthermore, MSL significantly inhibited LPS-induced TAK1 and NF-κB p65 phosphorylation in Raw264.7 cells. In addition, MSL significantly inhibited nuclear translocation of NF-κB p65 in cells treated with LPS in vitro. Taken together, our results suggested that MSL exhibited a therapeutic effect on LPS-induced ALI by inhibiting TAK1/NF-κB phosphorylation and NLRP3 expression. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Bilirubin prevents acute DSS-induced colitis by inhibiting leukocyte infiltration and suppressing upregulation of inducible nitric oxide synthase.

    Science.gov (United States)

    Zucker, Stephen D; Vogel, Megan E; Kindel, Tammy L; Smith, Darcey L H; Idelman, Gila; Avissar, Uri; Kakarlapudi, Ganesh; Masnovi, Michelle E

    2015-11-15

    Bilirubin is thought to exert anti-inflammatory effects by inhibiting vascular cell adhesion molecule-1 (VCAM-1)-dependent leukocyte migration and by suppressing the expression of inducible nitric oxide synthase (iNOS). As VCAM-1 and iNOS are important mediators of tissue injury in the dextran sodium sulfate (DSS) murine model of inflammatory colitis, we examined whether bilirubin prevents colonic injury in DSS-treated mice. Male C57BL/6 mice were administered 2.5% DSS in the drinking water for 7 days, while simultaneously receiving intraperitoneal injections of bilirubin (30 mg/kg) or potassium phosphate vehicle. Disease activity was monitored, peripheral blood counts and serum nitrate levels were determined, and intestinal specimens were analyzed for histological injury, leukocyte infiltration, and iNOS expression. The effect of bilirubin on IL-5 production by HSB-2 cells and on Jurkat cell transendothelial migration also was determined. DSS-treated mice that simultaneously received bilirubin lost less body weight, had lower serum nitrate levels, and exhibited reduced disease severity than vehicle-treated animals. Concordantly, histopathological analyses revealed that bilirubin-treated mice manifested significantly less colonic injury, including reduced infiltration of eosinophils, lymphocytes, and monocytes, and diminished iNOS expression. Bilirubin administration also was associated with decreased eosinophil and monocyte infiltration into the small intestine, with a corresponding increase in peripheral blood eosinophilia. Bilirubin prevented Jurkat migration but did not alter IL-5 production. In conclusion, bilirubin prevents DSS-induced colitis by inhibiting the migration of leukocytes across the vascular endothelium and by suppressing iNOS expression. Copyright © 2015 the American Physiological Society.

  3. Water-insoluble fractions of botanical foods lower blood ethanol levels in rats by physically maintaining the ethanol solution after ethanol administration

    Directory of Open Access Journals (Sweden)

    Shunji Oshima

    2015-11-01

    strongly with the inhibition of the blood ethanol response, likely by delaying gastric emptying.

  4. Ethanol Transportation Backgrounder

    OpenAIRE

    Denicoff, Marina R.

    2007-01-01

    For the first 6 months of 2007, U.S. ethanol production totaled nearly 3 billion gallons—32 percent higher than the same period last year. As of August 29, there were 128 ethanol plants with annual production capacity totaling 6.78 billion gallons, and an additional 85 plants were under construction. U.S. ethanol production capacity is expanding rapidly and is currently expected to exceed 13 billion gallons per year by early 2009, if not sooner. Ethanol demand has increased corn prices and le...

  5. APTO-253 Stabilizes G-quadruplex DNA, Inhibits MYC Expression, and Induces DNA Damage in Acute Myeloid Leukemia Cells.

    Science.gov (United States)

    Local, Andrea; Zhang, Hongying; Benbatoul, Khalid D; Folger, Peter; Sheng, Xia; Tsai, Cheng-Yu; Howell, Stephen B; Rice, William G

    2018-06-01

    APTO-253 is a phase I clinical stage small molecule that selectively induces CDKN1A (p21), promotes G 0 -G 1 cell-cycle arrest, and triggers apoptosis in acute myeloid leukemia (AML) cells without producing myelosuppression in various animal species and humans. Differential gene expression analysis identified a pharmacodynamic effect on MYC expression, as well as induction of DNA repair and stress response pathways. APTO-253 was found to elicit a concentration- and time-dependent reduction in MYC mRNA expression and protein levels. Gene ontogeny and structural informatic analyses suggested a mechanism involving G-quadruplex (G4) stabilization. Intracellular pharmacokinetic studies in AML cells revealed that APTO-253 is converted intracellularly from a monomer to a ferrous complex [Fe(253) 3 ]. FRET assays demonstrated that both monomeric APTO-253 and Fe(253) 3 stabilize G4 structures from telomeres, MYC, and KIT promoters but do not bind to non-G4 double-stranded DNA. Although APTO-253 exerts a host of mechanistic sequelae, the effect of APTO-253 on MYC expression and its downstream target genes, on cell-cycle arrest, DNA damage, and stress responses can be explained by the action of Fe(253) 3 and APTO-253 on G-quadruplex DNA motifs. Mol Cancer Ther; 17(6); 1177-86. ©2018 AACR . ©2018 American Association for Cancer Research.

  6. Combined use of drugs inhibiting the renin–angiotensin system: prescribing patterns and risk of acute kidney injury in German nursing home residents

    Directory of Open Access Journals (Sweden)

    Dörks M

    2018-05-01

    Full Text Available Michael Dörks,1 Stefan Herget-Rosenthal,2 Falk Hoffmann,1 Kathrin Jobski1 1Department of Health Services Research, Carl von Ossietzky University Oldenburg, Oldenburg, Germany; 2Department of Medicine, Rotes Kreuz Krankenhaus, Bremen, Germany Background/aims: In 2012, the European Medicines Agency reviewed the safety of dual renin–angiotensin system (RAS blockade because of potentially increased risks for inter alia acute kidney injury (AKI. Since residents of nursing homes are particularly vulnerable to adverse drug outcomes, the aims of our study were to describe RAS-inhibiting drug use in German nursing home residents and examine the risk of AKI associated with dual RAS blockade.Methods: Based on claims data, a nested case-control study within a cohort of RAS-inhibiting drug users was conducted. Using conditional logistic regression, confounder-adjusted odds ratios (aORs and 95% confidence intervals (CI were obtained for the risk of AKI associated with dual RAS blockade. Subgroup analyses were performed in patients with diabetes or chronic kidney disease and both comorbidities.Results: Of all 127,227 nursing home residents, the study cohort included 64,567 (50.7% who were treated with at least one RAS-inhibiting drug. More than three quarters of the study population were female (77.1%. Mean age was 86.0 ± 6.8 years. Most residents were treated with angiotensin-converting enzyme inhibitors (77.8%, followed by angiotensin II receptor blockers (21.6% and aliskiren (0.2%. Annual prevalence of dual RAS blockade declined from 9.6 (95% CI 7.8–11.8 in 2010 to 4.7 (95% CI 4.0–5.4 per 1,000 users in 2014. In the overall cohort, AKI was not significantly associated with dual RAS blockade (aOR 1.99; 0.77–5.17. However, significantly increased aORs were observed when considering patients with diabetes (3.47; 1.27–9.47, chronic kidney disease (4.74; 1.24–18.13 or both (11.17; 2.65–47.15.Conclusions: Prescribing of drugs inhibiting the RAS is

  7. Combined use of drugs inhibiting the renin-angiotensin system: prescribing patterns and risk of acute kidney injury in German nursing home residents.

    Science.gov (United States)

    Dörks, Michael; Herget-Rosenthal, Stefan; Hoffmann, Falk; Jobski, Kathrin

    2018-01-01

    In 2012, the European Medicines Agency reviewed the safety of dual renin-angiotensin system (RAS) blockade because of potentially increased risks for inter alia acute kidney injury (AKI). Since residents of nursing homes are particularly vulnerable to adverse drug outcomes, the aims of our study were to describe RAS-inhibiting drug use in German nursing home residents and examine the risk of AKI associated with dual RAS blockade. Based on claims data, a nested case-control study within a cohort of RAS-inhibiting drug users was conducted. Using conditional logistic regression, confounder-adjusted odds ratios (aORs) and 95% confidence intervals (CI) were obtained for the risk of AKI associated with dual RAS blockade. Subgroup analyses were performed in patients with diabetes or chronic kidney disease and both comorbidities. Of all 127,227 nursing home residents, the study cohort included 64,567 (50.7%) who were treated with at least one RAS-inhibiting drug. More than three quarters of the study population were female (77.1%). Mean age was 86.0 ± 6.8 years. Most residents were treated with angiotensin-converting enzyme inhibitors (77.8%), followed by angiotensin II receptor blockers (21.6%) and aliskiren (0.2%). Annual prevalence of dual RAS blockade declined from 9.6 (95% CI 7.8-11.8) in 2010 to 4.7 (95% CI 4.0-5.4) per 1,000 users in 2014. In the overall cohort, AKI was not significantly associated with dual RAS blockade (aOR 1.99; 0.77-5.17). However, significantly increased aORs were observed when considering patients with diabetes (3.47; 1.27-9.47), chronic kidney disease (4.74; 1.24-18.13) or both (11.17; 2.65-47.15). Prescribing of drugs inhibiting the RAS is common in German nursing homes. Though the prevalence of dual RAS blockade declined, our study showed an increased risk of AKI in patients with diabetes and/or chronic kidney disease. Therefore, cautious use is warranted in these vulnerable patients.

  8. Tolerance to and cross tolerance between ethanol and nicotine.

    Science.gov (United States)

    Collins, A C; Burch, J B; de Fiebre, C M; Marks, M J

    1988-02-01

    Female DBA mice were subjected to one of four treatments: ethanol-containing or control diets, nicotine (0.2, 1.0, 5.0 mg/kg/hr) infusion or saline infusion. After removal from the liquid diets or cessation of infusion, the animals were challenged with an acute dose of ethanol or nicotine. Chronic ethanol-fed mice were tolerant to the effects of ethanol on body temperature and open field activity and were cross tolerant to the effects of nicotine on body temperature and heart rate. Nicotine infused animals were tolerant to the effects of nicotine on body temperature and rotarod performance and were cross tolerant to the effects of ethanol on body temperature. Ethanol-induced sleep time was decreased in chronic ethanol- but not chronic nicotine-treated mice. Chronic drug treatment did not alter the elimination rate of either drug. Chronic ethanol treatment did not alter the number or affinity of brain nicotinic receptors whereas chronic nicotine treatment elicited an increase in the number of [3H]-nicotine binding sites. Tolerance and cross tolerance between ethanol and nicotine is discussed in terms of potential effects on desensitization of brain nicotinic receptors.

  9. Role of interleukin-1 receptor signaling in the behavioral effects of ethanol and benzodiazepines.

    Science.gov (United States)

    Blednov, Yuri A; Benavidez, Jillian M; Black, Mendy; Mayfield, Jody; Harris, R Adron

    2015-08-01

    Gene expression studies identified the interleukin-1 receptor type I (IL-1R1) as part of a pathway associated with a genetic predisposition to high alcohol consumption, and lack of the endogenous IL-1 receptor antagonist (IL-1ra) strongly reduced ethanol intake in mice. Here, we compared ethanol-mediated behaviors in mice lacking Il1rn or Il1r1. Deletion of Il1rn (the gene encoding IL-1ra) increases sensitivity to the sedative/hypnotic effects of ethanol and flurazepam and reduces severity of acute ethanol withdrawal. Conversely, deletion of Il1r1 (the gene encoding the IL-1 receptor type I, IL-1R1) reduces sensitivity to the sedative effects of ethanol and flurazepam and increases the severity of acute ethanol withdrawal. The sedative effects of ketamine and pentobarbital were not altered in the knockout (KO) strains. Ethanol intake and preference were not changed in mice lacking Il1r1 in three different tests of ethanol consumption. Recovery from ethanol-induced motor incoordination was only altered in female mice lacking Il1r1. Mice lacking Il1rn (but not Il1r1) showed increased ethanol clearance and decreased ethanol-induced conditioned taste aversion. The increased ethanol- and flurazepam-induced sedation in Il1rn KO mice was decreased by administration of IL-1ra (Kineret), and pre-treatment with Kineret also restored the severity of acute ethanol withdrawal. Ethanol-induced sedation and withdrawal severity were changed in opposite directions in the null mutants, indicating that these responses are likely regulated by IL-1R1 signaling, whereas ethanol intake and preference do not appear to be solely regulated by this pathway. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Market penetration of ethanol

    International Nuclear Information System (INIS)

    Szulczyk, Kenneth R.; McCarl, Bruce A.; Cornforth, Gerald

    2010-01-01

    This research examines in detail the technology and economics of substituting ethanol for gasoline. This endeavor examines three issues. First, the benefits of ethanol/gasoline blends are examined, and then the technical problems of large-scale implementation of ethanol. Second, ethanol production possibilities are examined in detail from a variety of feedstocks and technologies. The feedstocks are the starch/sugar crops and crop residues, while the technologies are corn wet mill, dry grind, and lignocellulosic fermentation. Examining in detail the production possibilities allows the researchers to identity the extent of technological change, production costs, byproducts, and GHG emissions. Finally, a U.S. agricultural model, FASOMGHG, is updated which predicts the market penetration of ethanol given technological progress, variety of technologies and feedstocks, market interactions, energy prices, and GHG prices. FASOMGHG has several interesting results. First, gasoline prices have a small expansionary impact on the U.S. ethanol industry. Both agricultural producers' income and cost both increase with higher energy prices. If wholesale gasoline is $4 per gallon, the predicted ethanol market penetration attains 53% of U.S. gasoline consumption in 2030. Second, the corn wet mill remains an important industry for ethanol production, because this industry also produces corn oil, which could be converted to biodiesel. Third, GHG prices expand the ethanol industry. However, the GHG price expands the corn wet mill, but has an ambiguous impact on lignocellulosic ethanol. Feedstocks for lignocellulosic fermentation can also be burned with coal to generate electricity. Both industries are quite GHG efficient. Finally, U.S. government subsidies on biofuels have an expansionary impact on ethanol production, but may only increase market penetration by an additional 1% in 2030, which is approximately 6 billion gallons. (author)

  11. BET inhibition as a single or combined therapeutic approach in primary paediatric B-precursor acute lymphoblastic leukaemia

    International Nuclear Information System (INIS)

    Da Costa, D; Agathanggelou, A; Perry, T; Weston, V; Petermann, E; Zlatanou, A; Oldreive, C; Wei, W; Stewart, G; Longman, J; Smith, E; Kearns, P; Knapp, S; Stankovic, T

    2013-01-01

    Paediatric B-precursor ALL is a highly curable disease, however, treatment resistance in some patients and the long-term toxic effects of current therapies pose the need for more targeted therapeutic approaches. We addressed the cytotoxic effect of JQ1, a highly selective inhibitor against the transcriptional regulators, bromodomain and extra-terminal (BET) family of proteins, in paediatric ALL. We showed a potent in vitro cytotoxic response of a panel of primary ALL to JQ1, independent of their prognostic features but dependent on high MYC expression and coupled with transcriptional downregulation of multiple pro-survival pathways. In agreement with earlier studies, JQ1 induced cell cycle arrest. Here we show that BET inhibition also reduced c-Myc protein stability and suppressed progression of DNA replication forks in ALL cells. Consistent with c-Myc depletion and downregulation of pro-survival pathways JQ1 sensitised primary ALL samples to the classic ALL therapeutic agent dexamethasone. Finally, we demonstrated that JQ1 reduces ALL growth in ALL xenograft models, both as a single agent and in combination with dexamethasone. We conclude that targeting BET proteins should be considered as a new therapeutic strategy for the treatment of paediatric ALL and particularly those cases that exhibit suboptimal responses to standard treatment

  12. Infantile 4-tert-octylphenol exposure transiently inhibits rat ovarian steroidogenesis and steroidogenic acute regulatory protein (StAR) expression

    International Nuclear Information System (INIS)

    Myllymaeki, S.A.; Karjalainen, M.; Haavisto, T.E.; Toppari, J.; Paranko, J.

    2005-01-01

    Phenolic compounds, such as 4-tert-octylphenol (OP), have been shown to interfere with rat ovarian steroidogenesis. However, little is known about steroidogenic effects of infantile OP exposure on immature ovary. The aim of the present study was to investigate the effects of infantile OP exposure on plasma FSH, LH, estradiol, and progesterone levels in 14-day-old female rats. The effect on ovarian steroidogenic acute regulatory protein (StAR) and FSH receptor (FSHr) expression was analyzed by Western blotting. Ex vivo analysis was carried out for follicular estradiol, progesterone, testosterone, and cAMP production. Sprague-Dawley rats were given OP (0, 10, 50, or 100 mg/kg) subcutaneously on postnatal days 6, 8, 10, and 12. On postnatal day 14, plasma FSH was decreased and progesterone increased significantly at a dose of 100 mg OP/kg. In addition, the highest OP dose advanced the time of vaginal opening in puberty. OP had no effect on infantile LH and estradiol levels or ovarian FSHr content. Ovarian StAR protein content and ex vivo hormone and cAMP production were decreased at all OP doses compared to controls. However, hormone levels recovered independent on FSH and even increased above the control level during a prolonged culture. On postnatal day 35, no statistically significant differences were seen between control and OP-exposed animals in plasma FSH, LH, estradiol, and progesterone levels, or in ovarian StAR protein content. The results indicate that the effect of OP on the infantile ovary is reversible, while more permanent effects in the hypothalamus and pituitary, as described earlier, are involved in the reduction of circulating FSH levels and premature vaginal opening

  13. Curcumin modulates the inflammatory response and inhibits subsequent fibrosis in a mouse model of viral-induced acute respiratory distress syndrome.

    Science.gov (United States)

    Avasarala, Sreedevi; Zhang, Fangfang; Liu, Guangliang; Wang, Ruixue; London, Steven D; London, Lucille

    2013-01-01

    Acute Respiratory Distress Syndrome (ARDS) is a clinical syndrome characterized by diffuse alveolar damage usually secondary to an intense host inflammatory response of the lung to a pulmonary or extrapulmonary infectious or non-infectious insult often leading to the development of intra-alveolar and interstitial fibrosis. Curcumin, the principal curcumoid of the popular Indian spice turmeric, has been demonstrated as an anti-oxidant and anti-inflammatory agent in a broad spectrum of diseases. Using our well-established model of reovirus 1/L-induced acute viral pneumonia, which displays many of the characteristics of the human ALI/ARDS, we evaluated the anti-inflammatory and anti-fibrotic effects of curcumin. Female CBA/J mice were treated with curcumin (50 mg/kg) 5 days prior to intranasal inoculation with 10(7)pfu reovirus 1/L and daily, thereafter. Mice were evaluated for key features associated with ALI/ARDS. Administration of curcumin significantly modulated inflammation and fibrosis, as revealed by histological and biochemical analysis. The expression of IL-6, IL-10, IFNγ, and MCP-1, key chemokines/cytokines implicated in the development of ALI/ARDS, from both the inflammatory infiltrate and whole lung tissue were modulated by curcumin potentially through a reduction in the phosphorylated form of NFκB p65. While the expression of TGFß1 was not modulated by curcumin, TGFß Receptor II, which is required for TGFß signaling, was significantly reduced. In addition, curcumin also significantly inhibited the expression of α-smooth muscle actin and Tenascin-C, key markers of myofibroblast activation. This data strongly supports a role for curcumin in modulating the pathogenesis of viral-induced ALI/ARDS in a pre-clinical model potentially manifested through the alteration of inflammation and myofibroblast differentiation.

  14. Post-exposure administration of diazepam combined with soluble epoxide hydrolase inhibition stops seizures and modulates neuroinflammation in a murine model of acute TETS intoxication

    Energy Technology Data Exchange (ETDEWEB)

    Vito, Stephen T., E-mail: stvito@ucdavis.edu [Department of Entomology, College of Agricultural and Environmental Sciences, University of California-Davis, Davis, CA 95616 (United States); Austin, Adam T., E-mail: aaustin@ucdavis.edu [Department of Pediatrics, School of Medicine, University of California-Davis Medical Center, Sacramento, CA 95817 (United States); Banks, Christopher N., E-mail: Christopher.Banks@oehha.ca.gov [Department of Molecular Biosciences, School of Veterinary Medicine, University of California-Davis, Davis, CA 95616 (United States); Inceoglu, Bora, E-mail: abinceoglu@ucdavis.edu [Department of Entomology, College of Agricultural and Environmental Sciences, University of California-Davis, Davis, CA 95616 (United States); Bruun, Donald A., E-mail: dabruun@ucdavis.edu [Department of Molecular Biosciences, School of Veterinary Medicine, University of California-Davis, Davis, CA 95616 (United States); Zolkowska, Dorota, E-mail: dzolkowska@gmail.com [Department of Neurology, School of Medicine, University of California-Davis, Sacramento, CA 95817 (United States); Tancredi, Daniel J., E-mail: djtancredi@ucdavis.edu [Department of Pediatrics, School of Medicine, University of California-Davis Medical Center, Sacramento, CA 95817 (United States); Rogawski, Michael A., E-mail: rogawski@ucdavis.edu [Department of Neurology, School of Medicine, University of California-Davis, Sacramento, CA 95817 (United States); Hammock, Bruce D., E-mail: bdhammock@ucdavis.edu [Department of Entomology, College of Agricultural and Environmental Sciences, University of California-Davis, Davis, CA 95616 (United States); Lein, Pamela J., E-mail: pjlein@ucdavis.edu [Department of Molecular Biosciences, School of Veterinary Medicine, University of California-Davis, Davis, CA 95616 (United States)

    2014-12-01

    Tetramethylenedisulfotetramine (TETS) is a potent convulsant poison for which there is currently no approved antidote. The convulsant action of TETS is thought to be mediated by inhibition of type A gamma-aminobutyric acid receptor (GABA{sub A}R) function. We, therefore, investigated the effects of post-exposure administration of diazepam, a GABA{sub A}R positive allosteric modulator, on seizure activity, death and neuroinflammation in adult male Swiss mice injected with a lethal dose of TETS (0.15 mg/kg, ip). Administration of a high dose of diazepam (5 mg/kg, ip) immediately following the second clonic seizure (approximately 20 min post-TETS injection) effectively prevented progression to tonic seizures and death. However, this treatment did not prevent persistent reactive astrogliosis and microglial activation, as determined by GFAP and Iba-1 immunoreactivity and microglial cell morphology. Inhibition of soluble epoxide hydrolase (sEH) has been shown to exert potent anti-inflammatory effects and to increase survival in mice intoxicated with other GABA{sub A}R antagonists. The sEH inhibitor TUPS (1 mg/kg, ip) administered immediately after the second clonic seizure did not protect TETS-intoxicated animals from tonic seizures or death. Combined administration of diazepam (5 mg/kg, ip) and TUPS (1 mg/kg, ip, starting 1 h after diazepam and repeated every 24 h) prevented TETS-induced lethality and influenced signs of neuroinflammation in some brain regions. Significantly decreased microglial activation and enhanced reactive astrogliosis were observed in the hippocampus, with no changes in the cortex. Combining an agent that targets specific anti-inflammatory mechanisms with a traditional antiseizure drug may enhance treatment outcome in TETS intoxication. - Highlights: • Acute TETS intoxication causes delayed and persistent neuroinflammation. • Diazepam given post-TETS prevents lethal tonic seizures but not neuroinflammation. • A soluble epoxide hydrolase

  15. Antifungal activity of Piper aduncum and Peperomia pellucida leaf ethanol extract against Candida albicans

    Science.gov (United States)

    Hastuti, Utami Sri; Ummah, Yunita Putri Irsadul; Khasanah, Henny Nurul

    2017-05-01

    This research was done to 1) examine the effect of Piper aduncum leaf ethanol extract at certain concentrations against Candida albicans colony growth inhibition in vitro; 2) examine the effect of Peperomia pellucida leaf ethanol extract at certain concentrations toward Candida albicans colony growth inhibition in vitro; and 3) determine the most effective concentration of P. aduncum and P. pellucida leaves ethanol extract against C. albicans colony growth inhibition in vitro. These plant extracts were prepared by the maceration technique using 95% ethanol, and then sterile filtered and evaporated to obtain the filtrate. The filtrate was diluted with sterile distilled water at certain concentrations, i.e.: 0%, 10%, 20%, 30%, 405, 50%, 60%, 70%, 80%, and 90%. The antifungal effect of each leaf extract concentration was examined by the agar diffusion method on Sabouraud Dextrose Agar medium. The research results are: 1) the P.aduncum leaf ethanol extract at some concentrations has an effect against C. albicans colony growth inhibition in vitro; 2) the P.pellucida leaf ethanol extract at some concentrations has an effect against C. albicans colony growth inhibition in vitro; 3) the P. aduncum leaf ethanol extract at 80% is the most effective for C. albicans colony growth inhibition in vitro; and 4) the P. pellucida leaf ethanol extract at 70% is the most effective for C. albicans colony growth inhibition in vitro.

  16. Utilization of exogenous ethanol by pea seedlings in an oxygen-free environment

    International Nuclear Information System (INIS)

    Ivanov, B.F.; Zemlyanukhin, A.A.; Salam, A.M.M.

    1991-01-01

    The authors investigated the metabolism of exogenous [2- 14 C]-ethanol in pea seedlings (Pisum sativum L.) exposed to different gaseous media, viz.,air, helium, or CO 2 . The 14 C label from ethanol most actively entered amino acids (glutamic and aspartic acids, alanine, glycine, and serine) and organic acids (citrate, malate, succinate, and malonate). Conversion of ethanol to organic acids and separate amino acids (gamma-aminobutyric acid and valine) was intensified under conditions of oxygen stress. A high concentration of CO 2 stimulated transformations of ethanol into these two amino acids, but sharply inhibited overall entry of the label from exogenous ethanol into metabolites of the seedlings. Lengthening the time of exposure lowered this inhibition. Exogenous ethanol did not take part in stress accumulation of alanine in seedlings deprived of oxygen. It is concluded that ethanol participates actively in the metabolic response of pea plants to oxygen stress, and that CO 2 exerts strong modifying action on this response

  17. Iptakalim inhibits nicotinic acetylcholine receptor-mediated currents in dopamine neurons acutely dissociated from rat substantia nigra pars compacta.

    Science.gov (United States)

    Hu, J; DeChon, J; Yan, K C; Liu, Q; Hu, G; Wu, J

    2006-07-31

    Iptakalim hydrochloride, a novel cardiovascular ATP-sensitive K(+) (K(ATP)) channel opener, has shown remarkable antihypertensive and neuroprotective effects in a variety of studies using in vivo and in vitro preparations. We recently found that iptakalim blocked human alpha4-containing nicotinic acetylcholine receptors (nAChRs) heterologously expressed in the human SH-EP1 cell line. In the present study, we examined the effects of iptakalim on several neurotransmitter-induced current responses in single DA neurons freshly dissociated from rat substantia nigra pars compacta (SNc), using perforated patch-clamp recordings combined with a U-tube rapid drug application. In identified DA neurons under voltage-clamp configuration, glutamate-, NMDA-, and GABA-induced currents were insensitive to co-application with iptakalim (100 microM), while whole-cell currents induced by ACh (1 mM+1 microM atropine) or an alpha4beta2 nicotinic acetylcholine receptors relatively selective agonist, RJR-2403 (300 microM), were eliminated by iptakalim. Iptakalim inhibited RJR-2403-induced current in a concentration-dependent manner, and reduced maximal RJR-2403-induced currents at the highest agonist concentration, suggesting a non-competitive block. In current-clamp mode, iptakalim failed to affect resting membrane potential and spontaneous action potential firing, but abolished RJR-2403-induced neuronal firing acceleration. Together, these results indicate that in dissociated SNc DA neurons, alpha4-containing nAChRs, rather than ionotropic glutamate receptors, GABA(A) receptors or perhaps K-ATP channels are the sensitive targets to mediate iptakalim's pharmacological roles.

  18. Canadian ethanol retailers' directory

    International Nuclear Information System (INIS)

    1998-06-01

    This listing is a directory of all ethanol-blended gasoline retailers in Quebec, Ontario, Manitoba, Saskatchewan, Alberta, British Columbia, and the Yukon. The listing includes the name and address of the retailer. Bulk purchase facilities of ethanol-blended fuels are also included, but in a separate listing

  19. Canada's ethanol retail directory

    International Nuclear Information System (INIS)

    1996-11-01

    A directory was published listing all ethanol-blended gasoline retailers in Quebec, Ontario, Manitoba, Saskatchewan, Alberta, British Columbia, and the Yukon. The listings include the name and address of the retailer. A list of bulk purchase facilities of ethanol-blended fuels is also included

  20. Deletion of vanilloid receptor (TRPV1) in mice alters behavioral effects of ethanol

    Science.gov (United States)

    Blednov, Y.A.; Harris, R.A.

    2009-01-01

    The vanilloid receptor TRPV1 is activated by ethanol and this may be important for some of the central and peripheral actions of ethanol. To determine if this receptor has a role in ethanol-mediated behaviors, we studied null mutant mice in which the Trpv1 gene was deleted. Mice lacking this gene showed significantly higher preference for ethanol and consumed more ethanol in a two-bottle choice test as compared with wild type littermates. Null mutant mice showed shorter duration of loss of righting reflex induced by low doses of ethanol (3.2 and 3.4 g/kg) and faster recovery from motor incoordination induced by ethanol (2 g/kg). However, there were no differences between null mutant and wild type mice in severity of ethanol-induced acute withdrawal (4 g/kg) or conditioned taste aversion to ethanol (2.5 g/kg). Two behavioral phenotypes (decreased sensitivity to ethanol-induced sedation and faster recovery from ethanol-induced motor incoordination) seen in null mutant mice were reproduced in wild type mice by injection of a TRPV1 antagonist, capsazepine (10 mg/kg). These two ethanol behaviors were changed in the opposite direction after injection of capsaicin, a selective TRPV1 agonist, in wild type mice. The studies provide the first evidence that TRPV1 is important for specific behavioral actions of ethanol. PMID:19705551

  1. Pharmacological Inhibition of Macrophage Toll-like Receptor 4/Nuclear Factor-kappa B Alleviates Rhabdomyolysis-induced Acute Kidney Injury.

    Science.gov (United States)

    Huang, Rong-Shuang; Zhou, Jiao-Jiao; Feng, Yu-Ying; Shi, Min; Guo, Fan; Gou, Shen-Ju; Salerno, Stephen; Ma, Liang; Fu, Ping

    2017-09-20

    Acute kidney injury (AKI) is the most common and life-threatening systemic complication of rhabdomyolysis. Inflammation plays an important role in the development of rhabdomyolysis-induced AKI. This study aimed to investigate the kidney model of AKI caused by rhabdomyolysis to verify the role of macrophage Toll-like receptor 4/nuclear factor-kappa B (TLR4/NF-κB) signaling pathway. C57BL/6 mice were injected with a 50% glycerin solution at bilateral back limbs to induce rhabdomyolysis, and CLI-095 or pyrrolidine dithiocarbamate (PDTC) was intraperitoneally injected at 0.5 h before molding. Serum creatinine levels, creatine kinase, the expression of tumor necrosis factor (TNF)-α, interleukin (IL)-1β and IL-6, and hematoxylin and eosin stainings of kidney tissues were tested. The infiltration of macrophage, mRNA levels, and protein expression of TLR4 and NF-κB were investigated by immunofluorescence double-staining techniques, reverse transcriptase-quantitative polymerase chain reaction, and Western blotting, respectively. In vitro, macrophage RAW264.7 was stimulated by ferrous myoglobin; the cytokines, TLR4 and NF-κB expressions were also detected. In an in vivo study, using CLI-095 or PDTC to block TLR4/NF-κB, functional and histologic results showed that the inhibition of TLR4 or NF-κB alleviated glycerol-induced renal damages (P rhabdomyolysis-induced AKI by the regulation of proinflammatory cytokine production and macrophage infiltration.

  2. Pim kinase inhibition sensitizes FLT3-ITD acute myeloid leukemia cells to topoisomerase 2 inhibitors through increased DNA damage and oxidative stress

    Science.gov (United States)

    Doshi, Kshama A.; Trotta, Rossana; Natarajan, Karthika; Rassool, Feyruz V.; Tron, Adriana E.; Huszar, Dennis; Perrotti, Danilo; Baer, Maria R.

    2016-01-01

    Internal tandem duplication of fms-like tyrosine kinase-3 (FLT3-ITD) is frequent (30 percent) in acute myeloid leukemia (AML), and is associated with short disease-free survival following chemotherapy. The serine threonine kinase Pim-1 is a pro-survival oncogene transcriptionally upregulated by FLT3-ITD that also promotes its signaling in a positive feedback loop. Thus inhibiting Pim-1 represents an attractive approach in targeting FLT3-ITD cells. Indeed, co-treatment with the pan-Pim kinase inhibitor AZD1208 or expression of a kinase-dead Pim-1 mutant sensitized FLT3-ITD cell lines to apoptosis triggered by chemotherapy drugs including the topoisomerase 2 inhibitors daunorubicin, etoposide and mitoxantrone, but not the nucleoside analog cytarabine. AZD1208 sensitized primary AML cells with FLT3-ITD to topoisomerase 2 inhibitors, but did not sensitize AML cells with wild-type FLT3 or remission bone marrow cells, supporting a favorable therapeutic index. Mechanistically, the enhanced apoptosis observed with AZD1208 and topoisomerase 2 inhibitor combination treatment was associated with increased DNA double-strand breaks and increased levels of reactive oxygen species (ROS), and co-treatment with the ROS scavenger N-acetyl cysteine rescued FLT3-ITD cells from AZD1208 sensitization to topoisomerase 2 inhibitors. Our data support testing of Pim kinase inhibitors with topoisomerase 2 inhibitors, but not with cytarabine, to improve treatment outcomes in AML with FLT3-ITD. PMID:27374090

  3. Vinpocetine reduces diclofenac-induced acute kidney injury through inhibition of oxidative stress, apoptosis, cytokine production, and NF-κB activation in mice.

    Science.gov (United States)

    Fattori, Victor; Borghi, Sergio M; Guazelli, Carla F S; Giroldo, Andressa C; Crespigio, Jefferson; Bussmann, Allan J C; Coelho-Silva, Letícia; Ludwig, Natasha G; Mazzuco, Tânia L; Casagrande, Rubia; Verri, Waldiceu A

    2017-06-01

    Acute kidney injury (AKI) represents a complex clinical condition associated with significant morbidity and mortality. Approximately, 19-33% AKI episodes in hospitalized patients are related to drug-induced nephrotoxicity. Although, considered safe, non-steroidal anti-inflammatory drugs such as diclofenac have received special attention in the past years due to the potential risk of renal damage. Vinpocetine is a nootropic drug known to have anti-inflammatory properties. In this study, we investigated the effect and mechanisms of vinpocetine in a model of diclofenac-induced AKI. We observed that diclofenac increased proteinuria and blood urea, creatinine, and oxidative stress levels 24h after its administration. In renal tissue, diclofenac also increased oxidative stress and induced morphological changes consistent with renal damage. Moreover, diclofenac induced kidney cells apoptosis, up-regulated proinflammatory cytokines, and induced the activation of NF-κB in renal tissue. On the other hand, vinpocetine reduced diclofenac-induced blood urea and creatinine. In the kidneys, vinpocetine inhibited diclofenac-induced oxidative stress, morphological changes, apoptosis, cytokine production, and NF-κB activation. To our knowledge, this is the first study demonstrating that diclofenac-induced AKI increases NF-κB activation, and that vinpocetine reduces the nephrotoxic effects of diclofenac. Therefore, vinpocetine is a promising molecule for the treatment of diclofenac-induced AKI. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Epigallocatechin-3-gallate Ameliorates Seawater Aspiration-Induced Acute Lung Injury via Regulating Inflammatory Cytokines and Inhibiting JAK/STAT1 Pathway in Rats

    Science.gov (United States)

    Liu, Wei; Dong, Mingqing; Bo, Liyan; Li, Congcong; Liu, Qingqing; Li, Yanyan; Ma, Lijie; Xie, Yonghong; Fu, Enqing; Mu, Deguang; Pan, Lei; Jin, Faguang; Li, Zhichao

    2014-01-01

    Signal transducers and activators of transcriptions 1 (STAT1) play an important role in the inflammation process of acute lung injury (ALI). Epigallocatechin-3-gallate (EGCG) exhibits a specific and strong anti-STAT1 activity. Therefore, our study is to explore whether EGCG pretreatment can ameliorate seawater aspiration-induced ALI and its possible mechanisms. We detected the arterial partial pressure of oxygen, lung wet/dry weight ratios, protein content in bronchoalveolar lavage fluid, and the histopathologic and ultrastructure staining of the lung. The levels of IL-1, TNF-α, and IL-10 and the total and the phosphorylated protein level of STAT1, JAK1, and JAK2 were assessed in vitro and in vivo. The results showed that EGCG pretreatment significantly improved hypoxemia and histopathologic changes, alleviated pulmonary edema and lung vascular leak, reduced the production of TNF-α and IL-1, and increased the production of IL-10 in seawater aspiration-induced ALI rats. EGCG also prevented the seawater aspiration-induced increase of TNF-α and IL-1 and decrease of IL-10 in NR8383 cell line. Moreover, EGCG pretreatment reduced the total and the phosphorylated protein level of STAT1 in vivo and in vitro and reduced the phosphorylated protein level of JAK1 and JAK2. The present study demonstrates that EGCG ameliorates seawater aspiration-induced ALI via regulating inflammatory cytokines and inhibiting JAK/STAT1 pathway in rats. PMID:24692852

  5. Up-Regulation of P21 Inhibits TRAIL-Mediated Extrinsic Apoptosis, Contributing Resistance to SAHA in Acute Myeloid Leukemia Cells

    Directory of Open Access Journals (Sweden)

    Xing Wu

    2014-08-01

    Full Text Available Background/Aim: P21, a multifunctional cell cycle-regulatory molecule, regulates apoptotic cell death. In this study we examined the effect of altered p21 expression on the sensitivity of acute myeloid leukemia cells in response to HDAC inhibitor SAHA treatment and investigated the underlying mechanism. Methods: Stably transfected HL60 cell lines were established in RPMI-1640 with supplementation of G-418. Cell viability was measured by MTT assay. Western blot was applied to assess the protein expression levels of target genes. Cell apoptosis was monitored by AnnexinV-PE/7AAD assay. Results: We showed HL60 cells that that didn't up-regulate p21 expression were more sensitive to SAHA-mediated apoptosis than NB4 and U937 cells that had increased p21 level. Enforced expression of p21 in HL60 cells reduced sensitivity to SAHA and blocked TRAIL-mediated apoptosis. Conversely, p21 silencing in NB4 cells enhanced SAHA-mediated apoptosis and lethality. Finally, we found that combined treatment with SAHA and rapamycin down-regulated p21 and enhanced apoptosis in AML cells. Conclusion: We conclude that up-regulated p21 expression mediates resistance to SAHA via inhibition of TRAIL apoptotic pathway. P21 may serve as a candidate biomarker to predict responsiveness or resistance to SAHA-based therapy in AML patients. In addition, rapamycin may be an effective agent to override p21-mediated resistance to SAHA in AML patients.

  6. Biological caproate production by Clostridium kluyveri from ethanol and acetate as carbon sources

    DEFF Research Database (Denmark)

    Yin, Yanan; Zhang, Yifeng; Karakashev, Dimitar Borisov

    2017-01-01

    Caproate is a valuable industrial product and chemical precursor. In this study, batch tests were conducted to investigate the fermentative caproate production through chain elongation from acetate and ethanol. The effect of acetate/ethanol ratio and initial ethanol concentration on caproate...... production was examined. When substrate concentration was controlled at 100 mM total carbon, hydrogen was used as an additional electron donor. The highest caproate concentration of 3.11 g/L was obtained at an ethanol/acetate ratio of 7:3. No additional electron donor was needed upon an ethanol/acetate ratio...... ≥7:3. Caproate production increased with the increase of carbon source until ethanol concentration over 700 mM, which inhibited the fermentation process. The highest caproate concentration of 8.42 g/L was achieved from high ethanol strength wastewater with an ethanol/acetate ratio of 10:1 (550 m...

  7. Opioid system of the brain and ethanol.

    Science.gov (United States)

    Gogichadze, M; Mgaloblishvili-Nemsadze, M; Oniani, N; Emukhvary, N; Basishvili, T

    2009-04-01

    Influence of blocking of opioid receptors with concomitant intraperitoneal injections of Naloxone (20 mg/kg) (non-selective antagonist of opioid system) on the outcomes of anesthetic dose of ethanol (4,25 ml /kg 25% solution) was investigated in the rats. The sleep-wakefulness cycle (SWC) was used as a model for identification of the effects. Alterations of the SWC structure adequately reflect the neuro-chemical changes, which may develop during pharmacological and non-pharmacological impact. Administration of anesthetic dose of ethanol evoked considerable modification of spontaneous EEG activity of the neocortex. The EEG activity was depressed and full inhibition of spinal reflexes and somatic muscular relaxation did occur. During EEG depression regular SWC did not develop. All phases of SWC were reduced. The disturbances of SWC, such as decrease of slow wave sleep and paradoxical sleep duration and increase of wakefulness, remained for several days. At concomitant administration of Naloxone and ethanol, duration of EEG depression decreased significantly. Generation of normal SWC was observed on the same experimental day. However, it should be noted that complete abolishment of ethanol effects by Naloxone was not observed. The results obtained suggest that Naloxone partially blocks ethanol depressogenic effects and duration of this effect is mediated by GABA-ergic system of the brain.

  8. Evaluation of antiallergic and anti-anaphylactic activity of ethanolic extract of Sanseveiria trifasciata leaves (EEST) in rodents.

    Science.gov (United States)

    Andhare, Rohan N; Raut, Mayuresh K; Naik, Suresh R

    2012-08-01

    The leaves and rhizomes of Sansevieria trifasciata are used in folk medicine for treating bronchitis, asthma, cough, snake bite and insect bite etc. The ethanolic extract elicited analgesic, anti-inflammatory and antipyretic activity. Hence, it was decided to study the antiallergic activity of ethanolic extract of S. trifasciata (EEST) on various animal models as well as in vitro conditions, and also to understand possible mechanism of action. Ethanolic extract of S. trifasciata leaves (EEST) were prepared by cold maceration followed by concentration and evaporation under reduced pressure on a rotary evaporator to obtain semisolid mass. The various phytoconstituents were analyzed. The acute toxicity study of EEST was carried out in mice. The antiallergic and anaphylactic activities were evaluated using animal models viz. milk induced eosinophilia and leukocytosis, compound 48/80 induced mast cell degranulation, active and passive cutaneous anaphylaxis and histamine induced pedal edema. In addition, EEST effect on Shultz-Dale reaction in sensitized guinea pig ileum in ex vivo and antioxidant activity by free radical scavenging by DPPH method (in vitro) were also studied. EEST treatment at 100mg/kg and 200mg/kg p.o inhibited (a) milk-induced increased eosinophilia, leukocytosis, monocytes and neutrophils. (b) Prevented passive cutaneous and active anaphylactoid reactions. (c) Prevented compound 48/80 induced degranulation of sensitized mesenteric mast cells. (d) Inhibited histamine induced pedal edema formation significantly. EEST pretreatment inhibited Shultz-Dale reaction in guinea pig ileum and also elicited potent antioxidant activity. Experimental findings demonstrate promising antiallergic and anti-anaphylactic activity of EEST and also elicited potent antioxidant activity. The antiallergic and anti-anphylactic activity might be due to inhibition of release of chemical mediators from mast cells largely by phytoconstituents like steroidal saponins, triterpenoids

  9. The Rhizome Mixture of Anemarrhena asphodeloides and Coptidis chinensis Ameliorates Acute and Chronic Colitis in Mice by Inhibiting the Binding of Lipopolysaccharide to TLR4 and IRAK1 Phosphorylation

    Directory of Open Access Journals (Sweden)

    Jin-Ju Jeong

    2014-01-01

    Full Text Available In the previous study, the mixture of the rhizome of Anemarrhena asphodeloides (AA, family Liliaceae and the rhizome of Coptidis chinensis (CC, family Ranunculaceae (AC-mix improved TNBS- or oxazolone-induced colitis in mice. Therefore, to investigate its anticolitic mechanism, we measured its effect in acute and chronic DSS-induced colitic mice and investigated its anti-inflammatory mechanism in peritoneal macrophages. AC-mix potently suppressed DSS-induced body weight loss, colon shortening, myeloperoxidase activity, and TNF-α, IL-1β, and IL-6 expressions in acute or chronic DSS-stimulated colitic mice. Among AC-mix ingredients, AA, CC, and their main constituents mangiferin and berberine potently inhibited the expression of proinflammatory cytokines TNF-α and IL-1β, as well as the activation of NF-κB in LPS-stimulated peritoneal macrophages. AA and mangiferin potently inhibited IRAK phosphorylation, but CC and berberine potently inhibited the binding of LPS to TLR4 on macrophages, as well as the phosphorylation of IRAK1. AC-mix potently inhibited IRAK phosphorylation and LPS binding to TLR4 on macrophages. Based on these findings, AC-mix may ameliorate colitis by the synergistic inhibition of IRAK phosphorylation and LPS binding to TLR4 on macrophages.

  10. Metabolic changes after prior treatment with ethanol. Evidence against in involvement of the Na+ + K+-activated ATPase in the increase in ethanol metabolism.

    Science.gov (United States)

    Yuki, T; Thurman, R G; Schwabe, U; Scholz, R

    1980-01-01

    In perfused rat liver, the inhibition of ethanol uptake by ouabain does not follow the rapid inhibition of the Na+ K+- activated ATPase as assessed by changes in perfusate [K+] (half-time, t 1/2 = 2--3 min), but correlated rather with the slow inhibition of oxygen uptake (maximal inhibition = 40% in 20 min). The data indicate that ouabain exerts its effect on ethanol metabolism via the following sequence of events; inhibition of the sodium pump is followed gradually by a perturbation of the intracellular cation milieu; this leads to an inhibition of the mitochondrial respiratory chain, resulting in diminished rate of NADH oxidation, which in turn causes in inhibition of ethanol metabolism. PMID:6249265

  11. Loss of ethanol conditioned taste aversion and motor stimulation in knockin mice with ethanol-insensitive α2-containing GABA(A) receptors.

    Science.gov (United States)

    Blednov, Y A; Borghese, C M; McCracken, M L; Benavidez, J M; Geil, C R; Osterndorff-Kahanek, E; Werner, D F; Iyer, S; Swihart, A; Harrison, N L; Homanics, G E; Harris, R A

    2011-01-01

    GABA type A receptors (GABA(A)-Rs) are potential targets of ethanol. However, there are multiple subtypes of this receptor, and, thus far, individual subunits have not been definitively linked with specific ethanol behavioral actions. Interestingly, though, a chromosomal cluster of four GABA(A)-R subunit genes, including α2 (Gabra2), was associated with human alcoholism (Am J Hum Genet 74:705-714, 2004; Pharmacol Biochem Behav 90:95-104, 2008; J Psychiatr Res 42:184-191, 2008). The goal of our study was to determine the role of receptors containing this subunit in alcohol action. We designed an α2 subunit with serine 270 to histidine and leucine 277 to alanine mutations that was insensitive to potentiation by ethanol yet retained normal GABA sensitivity in a recombinant expression system. Knockin mice containing this mutant subunit were tested in a range of ethanol behavioral tests. These mutant mice did not develop the typical conditioned taste aversion in response to ethanol and showed complete loss of the motor stimulant effects of ethanol. Conversely, they also demonstrated changes in ethanol intake and preference in multiple tests. The knockin mice showed increased ethanol-induced hypnosis but no difference in anxiolytic effects or recovery from acute ethanol-induced motor incoordination. Overall, these studies demonstrate that the effects of ethanol at GABAergic synapses containing the α2 subunit are important for specific behavioral effects of ethanol that may be relevant to the genetic linkage of this subunit with human alcoholism.

  12. Loss of Ethanol Conditioned Taste Aversion and Motor Stimulation in Knockin Mice with Ethanol-Insensitive α2-Containing GABAA Receptors

    Science.gov (United States)

    Borghese, C. M.; McCracken, M. L.; Benavidez, J. M.; Geil, C. R.; Osterndorff-Kahanek, E.; Werner, D. F.; Iyer, S.; Swihart, A.; Harrison, N. L.; Homanics, G. E.; Harris, R. A.

    2011-01-01

    GABA type A receptors (GABAA-Rs) are potential targets of ethanol. However, there are multiple subtypes of this receptor, and, thus far, individual subunits have not been definitively linked with specific ethanol behavioral actions. Interestingly, though, a chromosomal cluster of four GABAA-R subunit genes, including α2 (Gabra2), was associated with human alcoholism (Am J Hum Genet 74:705–714, 2004; Pharmacol Biochem Behav 90:95–104, 2008; J Psychiatr Res 42:184–191, 2008). The goal of our study was to determine the role of receptors containing this subunit in alcohol action. We designed an α2 subunit with serine 270 to histidine and leucine 277 to alanine mutations that was insensitive to potentiation by ethanol yet retained normal GABA sensitivity in a recombinant expression system. Knockin mice containing this mutant subunit were tested in a range of ethanol behavioral tests. These mutant mice did not develop the typical conditioned taste aversion in response to ethanol and showed complete loss of the motor stimulant effects of ethanol. Conversely, they also demonstrated changes in ethanol intake and preference in multiple tests. The knockin mice showed increased ethanol-induced hypnosis but no difference in anxiolytic effects or recovery from acute ethanol-induced motor incoordination. Overall, these studies demonstrate that the effects of ethanol at GABAergic synapses containing the α2 subunit are important for specific behavioral effects of ethanol that may be relevant to the genetic linkage of this subunit with human alcoholism. PMID:20876231

  13. Speichim cuts ethanol energy

    Energy Technology Data Exchange (ETDEWEB)

    1981-05-08

    France's Speichim has reported low-pressure steam consumption of only 0.7kg/l in the production of industrial-grade ethanol. Mechanical compression of distillation vapours can reduce this energy demand even more.

  14. Human amniotic epithelial cells inhibit CD4+ T cell activation in acute kidney injury patients by influencing the miR-101-c-Rel-IL-2 pathway.

    Science.gov (United States)

    Liu, Junfeng; Hua, Rong; Gong, Zhangbin; Shang, Bin; Huang, Yongyi; Guo, Lihe; Liu, Te; Xue, Jun

    2017-01-01

    In the pathogenesis of acute kidney injury (AKI), the release of multiple interleukins can lead to increased kidney damage. Human amniotic epithelial cells (HuAECs) can inhibit immune cell activation in vivo and in vitro. We hypothesized that HuAECs could weaken patient-derived peripheral blood CD4+ T-cell activation and decreasing the ability of these cells to express and release IL-2. -Cell proliferation assay revealed that under the same culture conditions, activated AKI patient-derived CD4+ T cells had a significantly reduced proliferation rate when were co-cultured with HuAECs. And the level of IL-2 released was also significantly reduced. Western blot and qRT-PCR assays showed that the expression of c-Rel in the CD4+ T cells was also significantly reduced. However, the expression level of endogenous miR-101 in the CD4+ T cells co-cultured with HuAECs was significantly increased. Luciferase reporter assay results suggested that miR-101 could bind to a specific site in the c-Rel 3' UTR and induce the post-transcriptional silencing of c-Rel. Subsequently, we over-expressed miR-101 in AKI patient-derived CD4+ T cells. The qRT-PCR and western blot assay results revealed that the expression of endogenous c-Rel was significantly reduced, while the ELISA results indicated that the level of IL-2 released was also significantly decreased. Finally, ChIP-PCR assay results showed that the miR-101-overexpressing CD4+ T-cell group and the HuAEC co-culture CD4+ T-cell group exhibited significantly decreased binding capacities between the 'c-Rel-NFκB' complex and the IL-2 gene promoter, and the transcriptional activity of IL-2 was also significantly decreased. Therefore, we confirmed that HuAECs can stimulate miR-101 expression in AKI patient-derived peripheral blood CD4+ T cells, thus inhibiting the expression of the miR-101 target gene c-Rel and leading to a reduction in IL-2 expression and release. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Bioelectrochemical ethanol production through mediated acetate reduction by mixed cultures.

    Science.gov (United States)

    Steinbusch, Kirsten J J; Hamelers, Hubertus V M; Schaap, Joris D; Kampman, Christel; Buisman, Cees J N

    2010-01-01

    Biological acetate reduction with hydrogen is a potential method to convert wet biomass waste into ethanol. Since the ethanol concentration and reaction rates are low, this research studies the feasibility of using an electrode, in stead of hydrogen, as an electron donor for biological acetate reduction in conjunction of an electron mediator. Initially, the effect of three selected mediators on metabolic flows during acetate reduction with hydrogen was explored; subsequently, the best performing mediator was used in a bioelectrochemical system to stimulate acetate reduction at the cathode with mixed cultures at an applied cathode potential of -550 mV. In the batch test, methyl viologen (MV) was found to accelerate ethanol production 6-fold and increased ethanol concentration 2-fold to 13.5 +/- 0.7 mM compared to the control. Additionally, MV inhibited n-butyrate and methane formation, resulting in high ethanol production efficiency (74.6 +/- 6%). In the bioelectrochemical system, MV addition to an inoculated cathode led directly to ethanol production (1.82 mM). Hydrogen was coproduced at the cathode (0.0035 Nm(3) hydrogen m(-2) d(-1)), so it remained unclear whether acetate was reduced to ethanol by electrons supplied by the mediator or by hydrogen. As MV reacted irreversibly at the cathode, ethanol production stopped after 5 days.

  16. Interaction of biogenic amines with ethanol.

    Science.gov (United States)

    Smith, A A

    1975-01-01

    Ethanol through its primary catabolite, acetaldehyde, competitively inhibits oxidation of aldehyde dehydrogenase substrates. As a consequence biogenic amines form increased quantities of alcohols rather than the corresponding acids. During this biotransformation, condensation reactions between deaminated and intact amines may occur which can yield tetrahydropapaverolines. These compounds are closely related to precursors of opioids which is cause to link ethanol abuse to morphine addiction. There is, however, no pharmacological or clinical evidence suggesting similarities between ethanol dependence or opiod addiction. Acetaldehyde plays an additional role in alkaloidal formation in vitro. Biogenic amines may react with acetaldehyde to form isoquinoline or carboline compounds. Some of these substances have significant pharmacological activity. Furthermore, they may enter neural stores and displace the natural neurotransmitter. Thus, they can act as false neurotransmitters. Some investigators believe that chronic ethanol ingestion leads to significant formation of such aberrant compounds which may then upset autonomic nervous system balance. This disturbance may explain the abnormal sympathetic activity seen in withdrawal. While these ideas about the etiology of alcohol abuse have a definite appeal, they are naturally based on in vitro preliminary work. Much study of the quantitative pharmacology of these compounds in animals is required before judgement can be made as to the merits of the proposed hypotheses. In the meantime, pharmacological studies on the ability of ethanol to depress respiration in the mouse has revealed that unlike opioids or barbituates, respiratory depression induced by ethanol requires the presence in brain of serotonin. This neurotransmitter also mediates the respiratory effects of several other alcohols but curiously, not chloral hydrate, yet this compound is purported to alter biogenic amine metabolism much like ethanol. Thus, the response

  17. Environmental benefits of ethanol

    International Nuclear Information System (INIS)

    1998-11-01

    The environmental benefits of ethanol blended fuels in helping to reduce harmful emissions into the atmosphere are discussed. The use of oxygenated fuels such as ethanol is one way of addressing air pollution concerns such as ozone formation. The state of California has legislated stringent automobile emissions standards in an effort to reduce emissions that contribute to the formation of ground-level ozone. Several Canadian cities also record similar hazardous exposures to carbon monoxide, particularly in fall and winter. Using oxygenated fuels such as ethanol, is one way of addressing the issue of air pollution. The net effect of ethanol use is an overall decrease in ozone formation. For example, use of a 10 per cent ethanol blend results in a 25-30 per cent reduction in carbon monoxide emissions by promoting a more complete combustion of the fuel. It also results in a 6-10 per cent reduction of carbon dioxide, and a seven per cent overall decrease in exhaust VOCs (volatile organic compounds). The environmental implications of feedstock production associated with the production of ethanol for fuel was also discussed. One of the Canadian government's initiatives to address the climate change challenge is its FleetWise initiative, in which it has agreed to a phased-in acquisition of alternative fuel vehicles by the year 2005. 9 refs

  18. Ethanol-Induced Neurodegeneration and Glial Activation in the Developing Brain

    Directory of Open Access Journals (Sweden)

    Mariko Saito

    2016-08-01

    Full Text Available Ethanol induces neurodegeneration in the developing brain, which may partially explain the long-lasting adverse effects of prenatal ethanol exposure in fetal alcohol spectrum disorders (FASD. While animal models of FASD show that ethanol-induced neurodegeneration is associated with glial activation, the relationship between glial activation and neurodegeneration has not been clarified. This review focuses on the roles of activated microglia and astrocytes in neurodegeneration triggered by ethanol in rodents during the early postnatal period (equivalent to the third trimester of human pregnancy. Previous literature indicates that acute binge-like ethanol exposure in postnatal day 7 (P7 mice induces apoptotic neurodegeneration, transient activation of microglia resulting in phagocytosis of degenerating neurons, and a prolonged increase in glial fibrillary acidic protein-positive astrocytes. In our present study, systemic administration of a moderate dose of lipopolysaccharides, which causes glial activation, attenuates ethanol-induced neurodegeneration. These studies suggest that activation of microglia and astrocytes by acute ethanol in the neonatal brain may provide neuroprotection. However, repeated or chronic ethanol can induce significant proinflammatory glial reaction and neurotoxicity. Further studies are necessary to elucidate whether acute or sustained glial activation caused by ethanol exposure in the developing brain can affect long-lasting cellular and behavioral abnormalities observed in the adult brain.

  19. Hepatoprotective activity of methanolic extract of Barleria montana leaves in ethanol treated rats

    Directory of Open Access Journals (Sweden)

    Shanaz Banu

    2012-10-01

    Full Text Available Objective: The present study was undertaken to investigate the protective effect and possible mechanism of methanolic extract of Barleria montana (BM on ethanol-induced rat hepatic injury. Method: This respective activity was assessed through monitoring liver function tests through the measurement of triglycerides, cholesterol, total protein, total bilirubin, serum enzymes like SGOT and SGPT and in vivo antioxidant parameters like lipid peroxidase, Superoxide dismutase(SOD and catalase,. Further, hepatic tissues were also subjected to histopathological studies. Result: Pretreatment of BM methanolic extract (500mg/kg reduced the fatty liver symptoms and significantly (p<0.001 inhibited the increase of respective serum enzyme levels. Conclusions: The results of the present study indicated that BM methanolic extract possess hepatoprotective effects which could act as an effective treatment for acute hepatic diseases.

  20. Concurrent Inhibition of Pim and FLT3 Kinases Enhances Apoptosis of FLT3-ITD Acute Myeloid Leukemia Cells through Increased Mcl-1 Proteasomal Degradation.

    Science.gov (United States)

    Kapoor, Shivani; Natarajan, Karthika; Baldwin, Patrick R; Doshi, Kshama A; Lapidus, Rena G; Mathias, Trevor J; Scarpa, Mario; Trotta, Rossana; Davila, Eduardo; Kraus, Manfred; Huszar, Dennis; Tron, Adriana E; Perrotti, Danilo; Baer, Maria R

    2018-01-01

    Purpose: fms -like tyrosine kinase 3 internal tandem duplication (FLT3-ITD) is present in 30% of acute myeloid leukemia (AML), and these patients have short disease-free survival. FLT3 inhibitors have limited and transient clinical activity, and concurrent treatment with inhibitors of parallel or downstream signaling may improve responses. The oncogenic serine/threonine kinase Pim-1 is upregulated downstream of FLT3-ITD and also promotes its signaling in a positive feedback loop, suggesting benefit of combined Pim and FLT3 inhibition. Experimental Design: Combinations of clinically active Pim and FLT3 inhibitors were studied in vitro and in vivo Results: Concurrent treatment with the pan-Pim inhibitor AZD1208 and FLT3 inhibitors at clinically applicable concentrations abrogated in vitro growth of FLT3-ITD, but not wild-type FLT3 (FLT3-WT), cell lines. AZD1208 cotreatment increased FLT3 inhibitor-induced apoptosis of FLT3-ITD, but not FLT3-WT, cells measured by sub-G 1 fraction, annexin V labeling, mitochondrial membrane potential, and PARP and caspase-3 cleavage. Concurrent treatment with AZD1208 and the FLT3 inhibitor quizartinib decreased growth of MV4-11 cells, with FLT3-ITD, in mouse xenografts, and prolonged survival, enhanced apoptosis of FLT3-ITD primary AML blasts, but not FLT3-WT blasts or remission marrow cells, and decreased FLT3-ITD AML blast colony formation. Mechanistically, AZD1208 and quizartinib cotreatment decreased expression of the antiapoptotic protein Mcl-1. Decrease in Mcl-1 protein expression was abrogated by treatment with the proteasome inhibitor MG132, and was preceded by downregulation of the Mcl-1 deubiquitinase USP9X, a novel mechanism of Mcl-1 regulation in AML. Conclusions: The data support clinical testing of Pim and FLT3 inhibitor combination therapy for FLT3-ITD AML. Clin Cancer Res; 24(1); 234-47. ©2017 AACR . ©2017 American Association for Cancer Research.

  1. Inhibition of IκB Kinase at 24 Hours After Acute Kidney Injury Improves Recovery of Renal Function and Attenuates Fibrosis.

    Science.gov (United States)

    Johnson, Florence L; Patel, Nimesh S A; Purvis, Gareth S D; Chiazza, Fausto; Chen, Jianmin; Sordi, Regina; Hache, Guillaume; Merezhko, Viktoria V; Collino, Massimo; Yaqoob, Muhammed M; Thiemermann, Christoph

    2017-07-03

    Acute kidney injury (AKI) is a major risk factor for the development of chronic kidney disease. Nuclear factor-κB is a nuclear transcription factor activated post-ischemia, responsible for the transcription of proinflammatory proteins. The role of nuclear factor-κB in the renal fibrosis post-AKI is unknown. We used a rat model of AKI caused by unilateral nephrectomy plus contralateral ischemia (30 minutes) and reperfusion injury (up to 28 days) to show impairment of renal function (peak: 24 hours), activation of nuclear factor-κB (peak: 48 hours), and fibrosis (28 days). In humans, AKI is diagnosed by a rise in serum creatinine. We have discovered that the IκB kinase inhibitor IKK16 (even when given at peak serum creatinine) still improved functional and structural recovery and reduced myofibroblast formation, macrophage infiltration, transforming growth factor-β expression, and Smad2/3 phosphorylation. AKI resulted in fibrosis within 28 days (Sirius red staining, expression of fibronectin), which was abolished by IKK16. To confirm the efficacy of IKK16 in a more severe model of fibrosis, animals were subject to 14 days of unilateral ureteral obstruction, resulting in tubulointerstitial fibrosis, myofibroblast formation, and macrophage infiltration, all of which were attenuated by IKK16. Inhibition of IκB kinase at peak creatinine improves functional recovery, reduces further injury, and prevents fibrosis. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  2. Effect of Water on Ethanol Conversion over ZnO

    Energy Technology Data Exchange (ETDEWEB)

    Rahman, Muhammad Mahfuzur; Davidson, Stephen D.; Sun, Junming; Wang, Yong

    2015-10-01

    This work focuses on understanding the role of water on ethanol conversion over zinc oxide (ZnO). It was found that a competitive adsorption between ethanol and water occurs on ZnO, which leads to the blockage of the strong Lewis acid site by water on ZnO. As a result, both dehydration and dehydrogenation reactions are inhibited. However, the extent of inhibition for dehydration is orders of magnitude higher than that for dehydrogenation, leading to the shift of reaction pathway from ethanol dehydration to dehydrogenation. In the secondary reactions for acetaldehyde conversion, water inhibits the acetaldehyde aldol-condensation to crotonaldehyde, favoring the oxidation of acetaldehyde to acetic acid, and then to acetone via ketonization at high temperature (i.e., 400 °C).

  3. Competitiveness of Brazilian sugarcane ethanol compared to US corn ethanol

    International Nuclear Information System (INIS)

    Crago, Christine L.; Khanna, Madhu; Barton, Jason; Giuliani, Eduardo; Amaral, Weber

    2010-01-01

    Corn ethanol produced in the US and sugarcane ethanol produced in Brazil are the world's leading sources of biofuel. Current US biofuel policies create both incentives and constraints for the import of ethanol from Brazil and together with the cost competitiveness and greenhouse gas intensity of sugarcane ethanol compared to corn ethanol will determine the extent of these imports. This study analyzes the supply-side determinants of cost competitiveness and compares the greenhouse gas intensity of corn ethanol and sugarcane ethanol delivered to US ports. We find that while the cost of sugarcane ethanol production in Brazil is lower than that of corn ethanol in the US, the inclusion of transportation costs for the former and co-product credits for the latter changes their relative competitiveness. We also find that the relative cost of ethanol in the US and Brazil is highly sensitive to the prevailing exchange rate and prices of feedstocks. At an exchange rate of US1=R2.15 the cost of corn ethanol is 15% lower than the delivered cost of sugarcane ethanol at a US port. Sugarcane ethanol has lower GHG emissions than corn ethanol but a price of over $113 per ton of CO 2 is needed to affect competitiveness. (author)

  4. Maesopsin 4-O-beta-D-glucoside, a natural compound isolated from the leaves of Artocarpus tonkinensis, inhibits proliferation and up-regulates HMOX1, SRXN1 and BCAS3 in acute myeloid leukemia.

    Science.gov (United States)

    Pozzesi, N; Pierangeli, S; Vacca, C; Falchi, L; Pettorossi, V; Martelli, M P; Thuy, T T; Ninh, P T; Liberati, A M; Riccardi, C; Sung, T V; Delfino, D V

    2011-06-01

    The leaves of Artocarpus tonkinensis are used in Vietnamese traditional medicine for treatment of arthritis, and the compound maesopsin 4-O-β-D-glucoside (TAT-2), isolated from them, inhibits the proliferation of activated T cells. Our goal was to test the anti-proliferative activity of TAT-2 on the T-cell leukemia, Jurkat, and on the acute myeloid leukemia, OCI-AML. TAT-2 inhibited the growth of OCI-AML (and additional acute myeloid leukemia cells) but not Jurkat cells. Growth inhibition was shown to be due to inhibition of proliferation rather than increase in cell death. Analysis of cytokine release showed that TAT-2 stimulated the release of TGF-β, yet TGF-β neutralization did not reverse the maesopsin-dependent effect. Gene expression profiling determined that maesopsin modulated 19 identifiable genes. Transcription factor CP2 was the gene most significantly modulated. Real-time PCR validated that up-regulation of sulphiredoxin 1 homolog (SRXN1), hemeoxygenase 1 (HMOX1), and breast carcinoma amplified sequence 3 (BCAS3) were consistently modulated.

  5. ACUTE TOXICITY STUDIES AND ANTIDOTAL THERAPY OF ...

    African Journals Online (AJOL)

    ACUTE TOXICITY STUDIES AND ANTIDOTAL THERAPY OF ETHANOL EXTRACT OF JATROPHA CURCAS SEEDS IN EXPERIMENTAL ANIMALS. ... with the aim of investigating the toxicity of the ethanol seed extract of JC in rats, mice, and chicks; and also to use conventional antidotes to treat intoxication in rats due to ...

  6. Inhibition of MMPs by alcohols

    Science.gov (United States)

    Tezvergil-Mutluay, Arzu; Agee, Kelli A.; Hoshika, Tomohiro; Uchiyama, Toshikazu; Tjäderhane, Leo; Breschi, Lorenzo; Mazzoni, Annalisa; Thompson, Jeremy M.; McCracken, Courtney E.; Looney, Stephen W.; Tay, Franklin R.; Pashley, David H.

    2011-01-01

    Objectives While screening the activity of potential inhibitors of matrix metalloproteinases (MMPs), due to the limited water solubility of some of the compounds, they had to be solubilized in ethanol. When ethanol solvent controls were run, they were found to partially inhibit MMPs. Thus, the purpose of this study was to compare the MMP-inhibitory activity of a series of alcohols. Methods The possible inhibitory activity of a series of alcohols was measured against soluble rhMMP-9 and insoluble matrix-bound endogenous MMPs of dentin in completely demineralized dentin. Increasing concentrations (0.17, 0.86, 1.71 and 4.28 moles/L) of a homologous series of alcohols (i.e. methanol, ethanol, propanols, butanols, pentanols, hexanols, the ethanol ester of methacrylic acid, heptanols and octanol) were compared to ethanediol, and propanediol by regression analysis to calculate the molar concentration required to inhibit MMPs by 50% (i.e. the IC50). Results Using two different MMP models, alcohols were shown to inhibit rhMMP-9 and the endogenous proteases of dentin matrix in a dose-dependent manner. The degree of MMP inhibition by alcohols increased with chain length up to 4 methylene groups. Based on the molar concentration required to inhibit rhMMP-9 fifty percent, 2-hydroxyethylmethacrylate (HEMA), 3-hexanol, 3-heptanol and 1-octanol gave the strongest inhibition. Significance The results indicate that alcohols with 4 methylene groups inhibit MMPs more effectively than methanol or ethanol. MMP inhibition was inversely related to the Hoy's solubility parameter for hydrogen bonding forces of the alcohols (i.e. to their hydrophilicity). PMID:21676453

  7. In Vivo Anti-Trypanosoma cruzi Activity of Hydro-Ethanolic Extract and Isolated Active Principles from Aristeguietia glutinosa and Mechanism of Action Studies

    Directory of Open Access Journals (Sweden)

    Javier Varela

    2014-06-01

    Full Text Available The currently available treatments for Chagas disease show limited therapeutic potential and are associated with serious side effects. Attempting to find alternative drugs isolated from Nature as agents against Trypanosoma cruzi has been our goal. Recently, we have demonstrated the in vitro anti-T. cruzi activities of two secondary metabolites isolated from the hydro-ethanolic extract of the aerial parts of Aristeguietia glutinosa (Lam., (family Asteraceae. These active principles displayed poor hemolytic activity, low toxicity against murine macrophages, and absence of mutagenicity. Herein, proof of concept in vivo studies of the whole hydro-ethanolic extract of the aerial parts of Aristeguietia glutinosa and of the most active component isolated from the hydro-ethanolic extract, i.e., (+-15-hydroxy-7-labden-17-al, was done in a murine acute model of Chagas disease. Both treatments caused a decrease in the animals’ parasitemia. Metabolomic mechanism of action studies were done by 1H-NMR, both on the extract and on the active compounds, examining the effects of the metabolites both on membrane sterol biosynthesis and mitochondrial dehydrogenases, whereby we found that one of the metabolites inhibited the activity of the parasite mitochondrial dehydrogenases and the other inhibited the biosynthesis of parasite membrane sterols. The results are interesting in the context of popular use of plants for the treatment of Chagas disease.

  8. Toxicological evaluation of ethanolic extract of Lychnophora trichocarpha, Brazilian arnica

    Directory of Open Access Journals (Sweden)

    Fernanda C. Ferrari

    2012-10-01

    Full Text Available The species of the genus Lychnophora, Asteraceae, are popularly known as "arnica" and are native from Brazilian savana (Cerrado. They are widely used in Brazilian folk medicine as anti-inflammatory, to treat bruise, pain, rheumatism and for insect bites. For evaluation of acute toxicity, the ethanolic extract was given to albino female and male mice. In open-field test, the extract of Lychnophora trichocarpha (Spreng. Spreng. (0.750 g/kg induced a significant inhibition of the spontaneous locomotor activity and exploratory behavior of the animals were observed 1 and 4 h after administration. In traction test, the same dose reduced the muscular force 1 h after administration. The exploratory behavior reduced significantly in the group that received 0.50 g/kg, 1 and 4 h after administration of the extract. The animals that received the doses of 0.25, 0.50 and 0.75 g/kg did not show any change of blood biochemical parameters comparing to control group and showed some histopathological changes such as congestion and inflammation of kidney and liver. The dose of 1.5 g/kg caused the most serious signs of toxicity. Histopathological changes observed was hemorrhage in 62.5% and pulmonary congestion in 100% of the animals. Brain and liver congestion was found in 62.5% of the animals.

  9. Toxicological evaluation of ethanolic extract of Lychnophora trichocarpha, Brazilian arnica

    Directory of Open Access Journals (Sweden)

    Fernanda C. Ferrari

    2012-07-01

    Full Text Available The species of the genus Lychnophora, Asteraceae, are popularly known as "arnica" and are native from Brazilian savana (Cerrado. They are widely used in Brazilian folk medicine as anti-inflammatory, to treat bruise, pain, rheumatism and for insect bites. For evaluation of acute toxicity, the ethanolic extract was given to albino female and male mice. In open-field test, the extract of Lychnophora trichocarpha (Spreng. Spreng. (0.750 g/kg induced a significant inhibition of the spontaneous locomotor activity and exploratory behavior of the animals were observed 1 and 4 h after administration. In traction test, the same dose reduced the muscular force 1 h after administration. The exploratory behavior reduced significantly in the group that received 0.50 g/kg, 1 and 4 h after administration of the extract. The animals that received the doses of 0.25, 0.50 and 0.75 g/kg did not show any change of blood biochemical parameters comparing to control group and showed some histopathological changes such as congestion and inflammation of kidney and liver. The dose of 1.5 g/kg caused the most serious signs of toxicity. Histopathological changes observed was hemorrhage in 62.5% and pulmonary congestion in 100% of the animals. Brain and liver congestion was found in 62.5% of the animals.

  10. Ethanol fuels in Brazil

    International Nuclear Information System (INIS)

    Trindade, S.C.

    1993-01-01

    The largest alternative transportation fuels program in the world today is Brazil's Proalcool Program. About 6.0 million metric tons of oil equivalent (MTOE) of ethanol, derived mainly from sugar cane, were consumed as transportation fuels in 1991 (equivalent to 127,000 barrels of crude oil per day). Total primary energy consumed by the Brazilian economy in 1991 was 184.1 million MTOE, and approximately 4.3 million vehicles -- about one third of the total vehicle fleet or about 40 percent of the total car population -- run on hydrous or open-quotes neatclose quotes ethanol at the azeotropic composition (96 percent ethanol, 4 percent water, by volume). Additional transportation fuels available in the country are diesel and gasoline, the latter of which is defined by three grades. Gasoline A (regular, leaded gas)d has virtually been replaced by gasoline C, a blend of gasoline and up to 22 percent anhydrous ethanol by volume, and gasoline B (premium gasoline) has been discontinued as a result of neat ethanol market penetration

  11. Phagocytosis and production of reactive oxygen species by peripheral blood phagocytes in patients with different stages of alcohol-induced liver disease: effect of acute exposure to low ethanol concentrations

    DEFF Research Database (Denmark)

    Parlesak, Alexandr; Schäfer, C.; Paulus, S. B.

    2003-01-01

    BACKGROUND: In rodents, the development of alcoholic liver disease (ALD) after chronic alcohol feeding was shown to depend on the activity of enzymes that are necessary for production of reactive oxygen species (ROS) in phagocytes. The aim of this study was to determine the formation of ROS...... by resting and challenged phagocytes of patients with different stages of ALD in the presence of ethanol concentrations commonly found in the blood of alcohol abusers. PATIENTS AND METHODS: The release of ROS and the phagocytosis of bacteria by neutrophils and monocytes obtained from 60 patients, who were...... produced significantly more ROS than those of healthy controls. Basal values of ROS production from neutrophils correlated closely to markers of the severity of ALD. ROS formation was depressed dose-dependently by ethanol in the healthy controls but not in alcohol abusers. CONCLUSIONS: Changes in the ROS...

  12. Enhancing Ethanol Production by Fermentation Using Saccharomyces cereviseae under Vacuum Condition in Batch Operation

    Directory of Open Access Journals (Sweden)

    A Abdullah

    2012-02-01

    Full Text Available Ethanol is one of renewable energy, which considered being an excellent alternative clean-burning fuel to replaced gasoline. In fact, the application of ethanol as fuel still blended with gasoline. The advantages of using ethanol as fuel are that the raw material mostly from renewable resources and the product has low emission which means environmental friendly. Ethanol can be produced by fermentation of sugars (glucose/fructose. The constraint in the ethanol fermentation batch or continuous process is the ethanol product inhibition. Inhibition in ethanol productivity and cell growth can be overcome by taking the product continuously from the fermentor. The process can be done by using a vacuum fermentation. The objective of this research is to investigate the effect of pressure and glucose concentration in ethanol fermentation. The research was conducted in laboratory scale and batch process. Equipment consists of fermentor with vacuum system. The observed responses were dried cells of yeast, concentration of glucose, and concentration of ethanol. Observations were made every 4 hours during a day of experiment. The results show that the formation of ethanol has a growth-associated product characteristic under vacuum operation. Vacuum condition can increase the cell formation productivity and the ethanol formation, as it is compared with fermentation under atmospheric condition. The maximum cells productivity and ethanol formation in batch operation under vacuum condition was reached at 166.6 mmHg of pressure. The maximum numbers of cells and ethanol formation was reached at 141.2 mm Hg of pressure. High initial glucose concentration significantly can affect the productivity and the yield of ethanol.

  13. Effects of ethanol and NAP on cerebellar expression of the neural cell adhesion molecule L1.

    Directory of Open Access Journals (Sweden)

    Devon M Fitzgerald

    Full Text Available The neural cell adhesion molecule L1 is critical for brain development and plays a role in learning and memory in the adult. Ethanol inhibits L1-mediated cell adhesion and neurite outgrowth in cerebellar granule neurons (CGNs, and these actions might underlie the cerebellar dysmorphology of fetal alcohol spectrum disorders. The peptide NAP potently blocks ethanol inhibition of L1 adhesion and prevents ethanol teratogenesis. We used quantitative RT-PCR and Western blotting of extracts of cerebellar slices, CGNs, and astrocytes from postnatal day 7 (PD7 rats to investigate whether ethanol and NAP act in part by regulating the expression of L1. Treatment of cerebellar slices with 20 mM ethanol, 10(-12 M NAP, or both for 4 hours, 24 hours, and 10 days did not significantly affect L1 mRNA and protein levels. Similar treatment for 4 or 24 hours did not regulate L1 expression in primary cultures of CGNs and astrocytes, the predominant cerebellar cell types. Because ethanol also damages the adult cerebellum, we studied the effects of chronic ethanol exposure in adult rats. One year of binge drinking did not alter L1 gene and protein expression in extracts from whole cerebellum. Thus, ethanol does not alter L1 expression in the developing or adult cerebellum; more likely, ethanol disrupts L1 function by modifying its conformation and signaling. Likewise, NAP antagonizes the actions of ethanol without altering L1 expression.

  14. 黄芩乙醇提取物通过下调NAD特异的谷氨酸脱氢酶抑制哈维氏弧菌生长%Ethanol-extracts from Scutellaria Inhibit the Growth of Vibrio harveyi by Downregulating NAD +-dependent Glutamate Dehydrogenase

    Institute of Scientific and Technical Information of China (English)

    谢丽玲; 朱琳; 王爱霞; 朱炎坤; 黎家杰; 周亮; 毕潇

    2017-01-01

    Vibrio harveyi is one of common pathogenic bacteria,which is seriously imperilling human health and aquatic industry.Because of antibiotics abuse,drug residues and drug-resistance are becoming more serious.It is urgent to look for new alternatives with low toxicity and susceptiblihy to drug-resistance.In this study,we reveal the antibacterial effects of the ethanol extracts from Scutellaria on V.harveyi.The results showed that the ethanol extracts of Scutellaria had a strong inhibitory effect on V.harvey,the diameter of inhibition zone was 18.33 ± 0.58 mm.The minimum inhibitory concentrations (MIC) and minimal bactericidal concentration (MBC) were 7.92 mg/mL and 15.84 mg/mL,respectively.By observation with scanning electron microscope (SEM) and concentration determination of intracellular and extracellular proteins,we found that although there were many little pores on the surface of V.harveyi,it remained smooth and integrated.After treated with ethanol extracts of Scutellaria,a band of protein disappeared in SDS-PAGE which was identified as NAD-specific glutamate dehydrogenase (NAD-GDH) by MALDI-TOF-TOF-MS.Furthermore,the real-time PCR results showed that the mRNA levels of this gene were affected by ethanol extracts of Scutellaria.These results are in good agreement with Scutellaria application in aqueous infection,and indicate that ethanol extracts of Scutellaria inhibit V.harveyi growth effectively through downregulating the expression of NAD-dependent glutamate dehydrogenase,which provides new evidence for the application of traditional Chinese medicine in the fields of aquaculture.%哈维氏弧菌(Vibrio harveyi)是水产动物的常见致病菌,对人类健康和水产经济带来巨大威 胁.抗生素的滥用使得药物残留和耐药性问题变得日益严重.因此,迫切需要寻找新型、不易产生耐药性和低毒的抗菌物质.本文研究黄芩醇提物对哈维氏弧菌的抑制作用及抑菌机制.实验结果表明,黄芩醇提物对

  15. Enhancing SHP-1 expression with 5-azacytidine may inhibit STAT3 activation and confer sensitivity in lestaurtinib (CEP-701)-resistant FLT3-ITD positive acute myeloid leukemia

    International Nuclear Information System (INIS)

    Al-Jamal, Hamid Ali Nagi; Mat Jusoh, Siti Asmaa; Hassan, Rosline; Johan, Muhammad Farid

    2015-01-01

    Tumor-suppressor genes are inactivated by methylation in several cancers including acute myeloid leukemia (AML). Src homology-2 (SH2)-containing protein-tyrosine phosphatase 1 (SHP-1) is a negative regulator of the JAK/STAT pathway. Transcriptional silencing of SHP-1 plays a critical role in the development and progression of cancers through STAT3 activation. 5-Azacytidine (5-Aza) is a DNA methyltransferase inhibitor that causes DNA demethylation resulting in re-expression of silenced SHP-1. Lestaurtinib (CEP-701) is a multi-targeted tyrosine kinase inhibitor that potently inhibits FLT3 tyrosine kinase and induces hematological remission in AML patients harboring the internal tandem duplication of the FLT3 gene (FLT3-ITD). However, the majority of patients in clinical trials developed resistance to CEP-701. Therefore, the aim of this study, was to assess the effect of re-expression of SHP-1 on sensitivity to CEP-701 in resistant AML cells. Resistant cells harboring the FLT3-ITD were developed by overexposure of MV4-11 to CEP-701, and the effects of 5-Aza treatment were investigated. Apoptosis and cytotoxicity of CEP-701 were determined using Annexin V and MTS assays, respectively. Gene expression was performed by quantitative real-time PCR. STATs activity was examined by western blotting and the methylation profile of SHP-1 was studied using MS-PCR and pyrosequencing analysis. Repeated-measures ANOVA and Kruskal–Wallis tests were used for statistical analysis. The cytotoxic dose of CEP-701 on resistant cells was significantly higher in comparison with parental and MV4-11R-cep + 5-Aza cells (p = 0.004). The resistant cells showed a significant higher viability and lower apoptosis compared with other cells (p < 0.001). Expression of SHP-1 was 7-fold higher in MV4-11R-cep + 5-Aza cells compared to parental and resistant cells (p = 0.011). STAT3 was activated in resistant cells. Methylation of SHP-1 was significantly decreased in MV4-11R-cep + 5-Aza cells (p = 0

  16. Control of Biofilm Formation in Fungi Using Ethanol

    International Nuclear Information System (INIS)

    El Sebaey, R.T.

    2015-01-01

    The use of fungi in biotechnology requires that no cell loss takes place; a maximal level of cell-nutrient interaction is required to achieve efficient performance and avoid cell loss. The main aim of the present study is to use ethanol to control cell-cell and cell-surface adhesion through manipulating cell surface properties. A Fungal isolate with a phenol oxidase activity (43.2 U/ml) was chosen out of twelve isolates belonging to two main genera: Aspergillus sp. and Penicillium sp. The fungus isolate, assigned as the highest phenol oxidase producer, was morphologically identified as Penicillium purpurogenum. Penicillium purpurogenum formed a ring around the bottle in static and shaking conditions, therefore, a number of different stress conditions, such as ph, temperature, different nitrogen sources, gamma radiation and ethanol, were employed separately to control biofilm formation in the fungus under study. The fungus was tested for its morphology, mycelia weight, stress response (catalase, lipid peroxidation and red pigment synthesis) and extracellular and surface bound protein and exo polysaccharides. The obtained results correlate the biofilm formation to stress response and surface bound protein. Combining all types of stress did not result in more biofilm formation control; on the contrary, it posed more stress on the fungus and affected the biomass. Ethanol on its own was successively used to control biofilm, which was inhibited in the presence of 2.5% v/v ethanol without affecting the growth. The addition of ethanol also increased the intracellular phenol oxidase activity from 43.2 to 228.43 U/ml. scanning electron microscopy showed that the addition of ethanol resulted in the formation of loose mycelia network as compared to a tight mycelia network in ethanol free cultures. The presence of Yap1p gene, the detection of an oxidized form of glutathione (GSSG) and catalase after ethanol addition all suggest that a stress response might be involved in the

  17. The Protective Role of Zinc Sulphate on Ethanol -Induced Liver and Kidney Damages in Rats

    International Nuclear Information System (INIS)

    Al-Damegh, Mona Abdalla

    2007-01-01

    Around the world more and more people suffer from alcoholism. Addiction problems, alcoholism and excessive use of drugs both medical and nonmedical, are major causes of liver and kidney damage in adults. The purpose of this study was to investigate on the protective role of zinc sulphate on liver and kidney in rats with acute alcoholism. Wistar albino rats were divided into four groups. Group I; control group, group 2; given only Zinc Sulphate (100 mg/kg/day for 3days), group 3; rats given absolute ethanol (1 ml of absolute ethanol administrated by gavage technique to each rat), group 4 given Zinc sulphate prior to the administration of absolute ethanol. The results of this study revealed that acute ethanol exposure caused degenerative morphological changes in the liver and kidney. Significant difference were found in the levels of serum, liver, kidney super oxide dismutase(SOD), catalase (CAT), nitric oxide(NO), and malondialdehyde (MDA) in the ethanol group compared to the control group. Moreover ,serum urea, creatnine, uric acid, alkaline phoshpatase and transaminases activities (GOTand GPT) were increased in the ethanol group compared to the control group. On the other hand,administration of zinc sulphate in the ethanol group caused a significant decrease in the degenerative changes, lipid peroxidation, antioxidant enzymes, and nitric oxide in serum, liver, and kidney. It can be concluded that zinc Sulphate has a protective role on the ethanol induced liver and kidney injury. In addition ,nitric oxide is involved in the mechanism of acute alcohol intoxication. (author)

  18. Ethanol-nicotine interactions in long-sleep and short-sleep mice.

    Science.gov (United States)

    de Fiebre, C M; Marks, M J; Collins, A C

    1990-01-01

    The possibility that common genetic factors regulate initial sensitivities to ethanol and nicotine as well as the development of cross-tolerance between these agents was explored using the long-sleep (LS) and short-sleep (SS) mice. The LS mice proved to be more sensitive to an acute challenge with nicotine than were the SS mice. Segregation analysis (F1, F2, backcross) indicated that ethanol sensitivity and nicotine sensitivity segregate together. Acute pretreatment with nicotine did not significantly affect sensitivity to ethanol, but ethanol pretreatment altered nicotine responsiveness. The LS mice develop more tolerance to nicotine and ethanol than do the SS and they also develop more cross-tolerance. These genetically determined differences in initial sensitivities, and tolerance and cross-tolerance development are not readily explained by differences in brain nicotinic receptor numbers.

  19. Ethanol-nicotine interactions in long-sleep and short-sleep mice

    Energy Technology Data Exchange (ETDEWEB)

    de Fiebre, C.M.; Marks, M.J.; Collins, A.C. (Univ. of Colorado, Boulder (USA))

    1990-05-01

    The possibility that common genetic factors regulate initial sensitivities to ethanol and nicotine as well as the development of cross-tolerance between these agents was explored using the long-sleep (LS) and short-sleep (SS) mice. The LS mice proved to be more sensitive to an acute challenge with nicotine than were the SS mice. Segregation analysis (F1, F2, backcross) indicated that ethanol sensitivity and nicotine sensitivity segregate together. Acute pretreatment with nicotine did not significantly affect sensitivity to ethanol, but ethanol pretreatment altered nicotine responsiveness. The LS mice develop more tolerance to nicotine and ethanol than do the SS and they also develop more cross-tolerance. These genetically determined differences in initial sensitivities, and tolerance and cross-tolerance development are not readily explained by differences in brain nicotinic receptor numbers.

  20. Effect of ethanol on innate antiviral pathways and HCV replication in human liver cells

    Directory of Open Access Journals (Sweden)

    Fausto Nelson

    2005-12-01

    Full Text Available Abstract Alcohol abuse reduces response rates to IFN therapy in patients with chronic hepatitis C. To model the molecular mechanisms behind this phenotype, we characterized the effects of ethanol on Jak-Stat and MAPK pathways in Huh7 human hepatoma cells, in HCV replicon cell lines, and in primary human hepatocytes. High physiological concentrations of acute ethanol activated the Jak-Stat and p38 MAPK pathways and inhibited HCV replication in several independent replicon cell lines. Moreover, acute ethanol induced Stat1 serine phosphorylation, which was partially mediated by the p38 MAPK pathway. In contrast, when combined with exogenously applied IFN-α, ethanol inhibited the antiviral actions of IFN against HCV replication, involving inhibition of IFN-induced Stat1 tyrosine phosphorylation. These effects of alcohol occurred independently of i alcohol metabolism via ADH and CYP2E1, and ii cytotoxic or cytostatic effects of ethanol. In this model system, ethanol directly perturbs the Jak-Stat pathway, and HCV replication. Infection with Hepatitis C virus is a significant cause of morbidity and mortality throughout the world. With a propensity to progress to chronic infection, approximately 70% of patients with chronic viremia develop histological evidence of chronic liver diseases including chronic hepatitis, cirrhosis, and hepatocellular carcinoma. The situation is even more dire for patients who abuse ethanol, where the risk of developing end stage liver disease is significantly higher as compared to HCV patients who do not drink 12. Recombinant interferon alpha (IFN-α therapy produces sustained responses (ie clearance of viremia in 8–12% of patients with chronic hepatitis C 3. Significant improvements in response rates can be achieved with IFN plus ribavirin combination 456 and pegylated IFN plus ribavirin 78 therapies. However, over 50% of chronically infected patients still do not clear viremia. Moreover, HCV-infected patients who abuse

  1. Implications of increased ethanol production

    International Nuclear Information System (INIS)

    1992-06-01

    The implications of increased ethanol production in Canada, assuming a 10% market penetration of a 10% ethanol/gasoline blend, are evaluated. Issues considered in the analysis include the provision of new markets for agricultural products, environmental sustainability, energy security, contribution to global warming, potential government cost (subsidies), alternative options to ethanol, energy efficiency, impacts on soil and water of ethanol crop production, and acceptance by fuel marketers. An economic analysis confirms that ethanol production from a stand-alone plant is not economic at current energy values. However, integration of ethanol production with a feedlot lowers the break-even price of ethanol by about 35 cents/l, and even further reductions could be achieved as technology to utilize lignocellulosic feedstock is commercialized. Ethanol production could have a positive impact on farm income, increasing cash receipts to grain farmers up to $53 million. The environmental impact of ethanol production from grain would be similar to that from crop production in general. Some concerns about ethanol/gasoline blends from the fuel industry have been reduced as those blends are now becoming recommended in some automotive warranties. However, the concerns of the larger fuel distributors are a serious constraint on an expansion of ethanol use. The economics of ethanol use could be improved by extending the federal excise tax exemption now available for pure alcohol fuels to the alcohol portion of alcohol/gasoline blends. 9 refs., 10 tabs

  2. Chronic intermittent ethanol inhalation increases ethanol self-administration in both C57BL/6J and DBA/2J mice.

    Science.gov (United States)

    McCool, Brian A; Chappell, Ann M

    2015-03-01

    Inbred mouse strains provide significant opportunities to understand the genetic mechanisms controlling ethanol-directed behaviors and neurobiology. They have been specifically employed to understand cellular mechanisms contributing to ethanol consumption, acute intoxication, and sensitivities to chronic effects. However, limited ethanol consumption by some strains has restricted our understanding of clinically relevant endpoints such as dependence-related ethanol intake. Previous work with a novel tastant-substitution procedure using monosodium glutamate (MSG or umami flavor) has shown that the procedure greatly enhances ethanol consumption by mouse strains that express limited drinking phenotypes using other methods. In the current study, we employ this MSG-substitution procedure to examine how ethanol dependence, induced with passive vapor inhalation, modifies ethanol drinking in C57BL/6J and DBA/2J mice. These strains represent 'high' and 'low' drinking phenotypes, respectively. We found that the MSG substitution greatly facilitates ethanol drinking in both strains, and likewise, ethanol dependence increased ethanol consumption regardless of strain. However, DBA/2J mice exhibited greater sensitivity dependence-enhanced drinking, as represented by consumption behaviors directed at lower ethanol concentrations and relative to baseline intake levels. DBA/2J mice also exhibited significant withdrawal-associated anxiety-like behavior while C57BL/6J mice did not. These findings suggest that the MSG-substitution procedure can be employed to examine dependence-enhanced ethanol consumption across a range of drinking phenotypes, and that C57BL/6J and DBA/2J mice may represent unique neurobehavioral pathways for developing dependence-enhanced ethanol consumption. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Involvement of brain catalase activity in the acquisition of ethanol-induced conditioned place preference.

    Science.gov (United States)

    Font, Laura; Miquel, Marta; Aragon, Carlos M G

    2008-03-18

    It has been suggested that some of the behavioral effects produced by ethanol are mediated by its first metabolite, acetaldehyde. The present research addressed the hypothesis that catalase-dependent metabolism of ethanol to acetaldehyde in the brain is an important step in the production of ethanol-related affective properties. Firstly, we investigated the contribution of brain catalase in the acquisition of ethanol-induced conditioned place preference (CPP). Secondly, the specificity of the catalase inhibitor 3-amino-1,2,4-triazole (AT) was evaluated with morphine- and cocaine-induced CPP. Finally, to investigate the role of catalase in the process of relapse to ethanol seeking caused by re-exposure to ethanol, after an initial conditioning and extinction, mice were primed with saline and ethanol or AT and ethanol and tested for reinstatement of CPP. Conditioned place preference was blocked in animals treated with AT and ethanol. Morphine and cocaine CPP were unaffected by AT treatment. However, the reinstatement of place preference was not modified by catalase inhibition. Taken together, the results of the present study indicate that the brain catalase-H(2)O(2) system contributes to the acquisition of affective-dependent learning induced by ethanol, and support the involvement of centrally-formed acetaldehyde in the formation of positive affective memories produced by ethanol.

  4. Deficient PKR in RAX/PKR Association Ameliorates Ethanol-Induced Neurotoxicity in the Developing Cerebellum.

    Science.gov (United States)

    Li, Hui; Chen, Jian; Qi, Yuanlin; Dai, Lu; Zhang, Mingfang; Frank, Jacqueline A; Handshoe, Jonathan W; Cui, Jiajun; Xu, Wenhua; Chen, Gang

    2015-08-01

    Ethanol-induced neuronal loss is closely related to the pathogenesis of fetal alcohol spectrum disorders. The cerebellum is one of the brain areas that are most sensitive to ethanol. The mechanism underlying ethanol neurotoxicity remains unclear. Our previous in vitro studies have shown that the double-stranded RNA (dsRNA)-activated protein kinase (PKR) regulates neuronal apoptosis upon ethanol exposure and ethanol activates PKR through association with its intracellular activator RAX. However, the role of PKR and its interaction with RAX in vivo have not been investigated. In the current study, by utilizing N-PKR-/- mice, C57BL/6J mice with a deficient RAX-binding domain in PKR, we determined the critical role of RAX/PKR association in PKR-regulated ethanol neurotoxicity in the developing cerebellum. Our data indicate that while N-PKR-/- mice have a similar BAC profile as wild-type mice, ethanol induces less brain/body mass reduction as well as cerebellar neuronal loss. In addition, ethanol promotes interleukin-1β (IL-1β) secretion, and IL-1β is a master cytokine regulating inflammatory response. Importantly, ethanol-promoted IL-1β secretion is inhibited in the developing cerebellum of N-PKR-/- mice. Thus, RAX/PKR interaction and PKR activation regulate ethanol neurotoxicity in the developing cerebellum, which may involve ethanol-induced neuroinflammation. Further, PKR could be a possible target for pharmacological intervention to prevent or treat fetal alcohol spectrum disorder (FASD).

  5. Bioconversion of cellulose to ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Hahn-Haegerdal, B; Mandenius, C F; Mattiasson, B; Nilsson, B; Axelsson, J P; Hagander, P

    1985-06-20

    Enzymatic hydrolysis of steam pretreated sallow gives highest yields of soluble sugars when hemicellulose is degraded already in the pretreatment step. The steam pretreatment equipment is rebuilt so that 75 g (dry matter) material instead of 7 g can be treated each time. The cellulose production has been increased 123% by the utilization of aqueous two-phase systems as compared to regular growth medium. The cellulase activity per gram of cellulose has been increased from 42 FPU in regular growth medium to 156 FPU in aqueous two-phase systems. Crude dextran can be used for enzyme production. Enzyme recovery up to 75% has been achieved by combining aqueous two-phase technique with membrane technique. Using the enzyme glucose isomerase in combination with S. cerevisiae theoretical yields in pentose fermentations have been achieved, with a product concentration of 60 g/L and a productivity of 2 g/L x h. Yeast and enzyme can be recirculated using membrane technique. Computer simulation shows that the rate equation for enzymatic hydrolysis with respect to inhibiting sugar concentrations can be used to interpolate with respect to sugar concentrations. Computer simulations show that hydrolysis experiments should focus on high substrate concentrations (>10%) using fed-batch technique and enzyme concentrations in the range of 2-8% in relation to substrate dry matter. The combined 'flow injection analysis', FIA, and enzyme reactor probe has been adapted to enzymatic saccarifications of sodium hydroxide pretreated sallow. The gas membrane sensor for ethanol has been utilized in simultaneous saccharification and fermentation of sodium hydroxide pretreated sallow. A literature study concerning pervaporation for ethanol up-grading has been made.(Author).

  6. Steam reforming of ethanol

    DEFF Research Database (Denmark)

    Trane-Restrup, Rasmus; Dahl, Søren; Jensen, Anker Degn

    2013-01-01

    Steam reforming (SR) of oxygenated species like bio-oil or ethanol can be used to produce hydrogen or synthesis gas from renewable resources. However, deactivation due to carbon deposition is a major challenge for these processes. In this study, different strategies to minimize carbon deposition...

  7. Bio-ethanol

    DEFF Research Database (Denmark)

    Wenzel, Henrik

    2007-01-01

    , there is not enough biomass for 'everyone', not physically and not in terms of money to promote its use. This leads to the conclusion that any use of biomass for energy purposes will have to compare to the lost opportunity of using it for something else. In this perspective, the choice to use biomass for bio......-ethanol production will not lead to reduction but to increase in CO2 emission and fossil fuel dependency. Both first and second generation bio-ethanol suffer from a biomass-to-ethanol energy conversion efficiency as low as 30-40 %, and moreover external fossil fuels are used to run the conversion. There is only......, but they do not improve the energy balance enough for bio-ethanol to compete with alternative uses of the biomass. When using biomass to substitute fossil fuels in heat & power production, a close to 100% substitution efficiency is achieved. The best alternative for CO2 reduction and oil saving is, therefore...

  8. Sorghum to Ethanol Research

    Energy Technology Data Exchange (ETDEWEB)

    Dahlberg, Jeffrey A. [Univ. of California, Parlier, CA (United States). Kearney Research and Extension Center; Wolfrum, Edward J. [National Renewable Energy Lab. (NREL), Golden, CO (United States). Process and Analytical Engineering Group

    2010-09-28

    The development of a robust source of renewable transportation fuel will require a large amount of biomass feedstocks. It is generally accepted that in addition to agricultural and forestry residues, we will need crops grown specifically for subsequent conversion into fuels. There has been a lot of research on several of these so-called "dedicated bioenergy crops" including switchgrass, miscanthus, sugarcane, and poplar. It is likely that all of these crops will end up playing a role as feedstocks, depending on local environmental and market conditions. Many different types of sorghum have been grown to produce syrup, grain, and animal feed for many years. It has several features that may make it as compelling as other crops mentioned above as a renewable, sustainable biomass feedstock; however, very little work has been done to investigate sorghum as a dedicated bioenergy crop. The goal of this project was to investigate the feasibility of using sorghum biomass to produce ethanol. The work performed included a detailed examination of the agronomics and composition of a large number of sorghum varieties, laboratory experiments to convert sorghum to ethanol, and economic and life-cycle analyses of the sorghum-to-ethanol process. This work showed that sorghum has a very wide range of composition, which depended on the specific sorghum cultivar as well as the growing conditions. The results of laboratory- and pilot-scale experiments indicated that a typical high-biomass sorghum variety performed very similarly to corn stover during the multi-step process required to convert biomass feedstocks to ethanol; yields of ethanol for sorghum were very similar to the corn stover used as a control in these experiments. Based on multi-year agronomic data and theoretical ethanol production, sorghum can achieve more than 1,300 gallons of ethanol per acre given the correct genetics and environment. In summary, sorghum may be a compelling dedicated bioenergy crop that could help

  9. Platelet Glycoprotein IIb/IIIa Receptor Inhibition in Non-ST-Elevation Acute Coronary Syndromes : Early Benefit During Medical Treatment Only, With Additional Protection During Percutaneous Coronary Intervention

    NARCIS (Netherlands)

    K.M. Akkerhuis (Martijn); P. Théroux (Pierre); R.M. Califf (Robert); E.J. Topol (Eric); M.L. Simoons (Maarten); H. Boersma (Eric)

    1999-01-01

    textabstractBACKGROUND: Glycoprotein (GP) IIb/IIIa receptor blockers prevent life-threatening cardiac complications in patients with acute coronary syndromes without ST-segment elevation and protect against thrombotic complications associated with percutaneous coronary

  10. Gastroprotective activity of ethanolic root extract of Potentilla fulgens Wall. ex Hook.

    Science.gov (United States)

    Laloo, Damiki; Prasad, Satyendra K; Krishnamurthy, Sairam; Hemalatha, Siva

    2013-03-27

    Potentilla fulgens (Wall.) ex Hook. (Rosaceae) is a potent medicinal plant of the Western Himalayas, known under the name "Himalayan Cinquefoil or Bajradanti", and has been used traditionally to treat ailments including peptic ulcers, mouth ulcers, diarrhea, diabetes and cancer. The aim of the present study was to scientifically evaluate the gastric-ulcer protective effect of P. fulgens ethanolic root extract (EPF) on experimental rats. The gastroprotective activity of EPF was evaluated on four gastric-ulcer models such as pyloric ligation (PL), ethanol (EtOH), cold restrain stress (CRS) and aspirin (ASP)-induced gastric ulcers. The gastric acid obtained from 4h PL-induced gastric ulcer rats was determined for total volume content, pH and total acid-pepsin output. Total carbohydrates and protein ratio, expressed as index of mucin activity, and DNA content were estimated in the gastric juice and gastric mucosal tissue. The microvascular permeability, H(+)K(+)-ATPase activity, gastric mucus and histamine content were also determined. The levels of antioxidant enzymes (superoxide dismutase, catalase, and glutathione) and malondialdehyde in the stomach tissue (mucosal scrapings) were quantified. A histopathological study of the stomach was evaluated using eosin-haematoxylin stain. EPF (200-400mg/kg, p.o.) showed significant protection against acute gastric-ulcer induced by EtOH, PL and CRS (400mg/kg, p.o.), but was found to be ineffective against ASP-induced ulcerogens. The effect of EPF on gastric juice studies in 4h PL rats significantly produced an increased level in gastric pH, whereas the effect on gastric volume and acid-pepsin output was observed to decrease significantly. However, EPF was found to have no significant effect on the defensive factors, thus revealing its antisecretory property by inhibiting the aggressive factors. EPF, significantly decreased the histamine level, inhibited the H(+)K(+)-ATPase activity and prevented the microvascular injury caused

  11. Phytochemical Screening and antimicrobial activity of ethanol and ...

    African Journals Online (AJOL)

    Furthermore, minimum inhibitory concentration (MIC) of the extracts was evaluated. Bioactive compounds from all the parts were found to contain tannin, flavonoids, steroids, glycosides and alkaloids in addition to certain other minor compounds. Maximum zone of inhibition was found with the ethanolic root extract against S.

  12. Ethanol sclerotherapy of peripheral venous malformations

    Energy Technology Data Exchange (ETDEWEB)

    Rimon, U. E-mail: rimonu@sheba.health.gov.il; Garniek, A.; Galili, Y.; Golan, G.; Bensaid, P.; Morag, B

    2004-12-01

    Background: venous malformations are congenital lesions that can cause pain, decreased range of movement, compression on adjacent structures, bleeding, consumptive coagulopathy and cosmetic deformity. Sclerotherapy alone or combined with surgical excision is the accepted treatment in symptomatic malformations after failed treatment attempts with tailored compression garments. Objectives: to report our experience with percutaneous sclerotherapy of peripheral venous malformations with ethanol 96%. Patients and methods: 41 sclerotherapy sessions were performed on 21 patients, aged 4-46 years, 15 females and 6 males. Fourteen patients were treated for painful extremity lesions, while five others with face and neck lesions and two with giant chest malformations had treatment for esthetic reasons. All patients had a pre-procedure magnetic resonance imaging (MRI) study. In all patients, 96% ethanol was used as the sclerosant by direct injection using general anesthesia. A minimum of 1-year clinical follow-up was performed. Follow-up imaging studies were performed if clinically indicated. Results: 17 patients showed complete or partial symptomatic improvement after one to nine therapeutic sessions. Four patients with lower extremity lesions continue to suffer from pain and they are considered as a treatment failure. Complications were encountered in five patients, including acute pulmonary hypertension with cardiovascular collapse, pulmonary embolus, skin ulcers (two) and skin blisters. All patients fully recovered. Conclusion: sclerotherapy with 96% ethanol for venous malformations was found to be effective for symptomatic improvement, but serious complications can occur.

  13. Ethanol sclerotherapy of peripheral venous malformations

    International Nuclear Information System (INIS)

    Rimon, U.; Garniek, A.; Galili, Y.; Golan, G.; Bensaid, P.; Morag, B.

    2004-01-01

    Background: venous malformations are congenital lesions that can cause pain, decreased range of movement, compression on adjacent structures, bleeding, consumptive coagulopathy and cosmetic deformity. Sclerotherapy alone or combined with surgical excision is the accepted treatment in symptomatic malformations after failed treatment attempts with tailored compression garments. Objectives: to report our experience with percutaneous sclerotherapy of peripheral venous malformations with ethanol 96%. Patients and methods: 41 sclerotherapy sessions were performed on 21 patients, aged 4-46 years, 15 females and 6 males. Fourteen patients were treated for painful extremity lesions, while five others with face and neck lesions and two with giant chest malformations had treatment for esthetic reasons. All patients had a pre-procedure magnetic resonance imaging (MRI) study. In all patients, 96% ethanol was used as the sclerosant by direct injection using general anesthesia. A minimum of 1-year clinical follow-up was performed. Follow-up imaging studies were performed if clinically indicated. Results: 17 patients showed complete or partial symptomatic improvement after one to nine therapeutic sessions. Four patients with lower extremity lesions continue to suffer from pain and they are considered as a treatment failure. Complications were encountered in five patients, including acute pulmonary hypertension with cardiovascular collapse, pulmonary embolus, skin ulcers (two) and skin blisters. All patients fully recovered. Conclusion: sclerotherapy with 96% ethanol for venous malformations was found to be effective for symptomatic improvement, but serious complications can occur

  14. A low concentration of ethanol impairs learning but not motor and sensory behavior in Drosophila larvae.

    Directory of Open Access Journals (Sweden)

    Brooks G Robinson

    Full Text Available Drosophila melanogaster has proven to be a useful model system for the genetic analysis of ethanol-associated behaviors. However, past studies have focused on the response of the adult fly to large, and often sedating, doses of ethanol. The pharmacological effects of low and moderate quantities of ethanol have remained understudied. In this study, we tested the acute effects of low doses of ethanol (∼7 mM internal concentration on Drosophila larvae. While ethanol did not affect locomotion or the response to an odorant, we observed that ethanol impaired associative olfactory learning when the heat shock unconditioned stimulus (US intensity was low but not when the heat shock US intensity was high. We determined that the reduction in learning at low US intensity was not a result of ethanol anesthesia since ethanol-treated larvae responded to the heat shock in the same manner as untreated animals. Instead, low doses of ethanol likely impair the neuronal plasticity that underlies olfactory associative learning. This impairment in learning was reversible indicating that exposure to low doses of ethanol does not leave any long lasting behavioral or physiological effects.

  15. Chronic ethanol intake alters circadian phase shifting and free-running period in mice.

    Science.gov (United States)

    Seggio, Joseph A; Fixaris, Michael C; Reed, Jeffrey D; Logan, Ryan W; Rosenwasser, Alan M

    2009-08-01

    Chronic alcohol intake is associated with widespread disruptions in sleep and circadian rhythms in both human alcoholics and in experimental animals. Recent studies have demonstrated that chronic and acute ethanol treatments alter fundamental properties of the circadian pacemaker--including free-running period and responsiveness to photic and nonphotic phase-shifting stimuli--in rats and hamsters. In the present work, the authors extend these observations to the C57BL/6J mouse, an inbred strain characterized by very high levels of voluntary ethanol intake and by reliable and stable free-running circadian activity rhythms. Mice were housed individually in running-wheel cages under conditions of either voluntary or forced ethanol intake, whereas controls were maintained on plain water. Forced ethanol intake significantly attenuated photic phase delays (but not phase advances) and shortened free-running period in constant darkness, but voluntary ethanol intake failed to affect either of these parameters. Thus, high levels of chronic ethanol intake, beyond those normally achieved under voluntary drinking conditions, are required to alter fundamental circadian pacemaker properties in C57BL/6J mice. These observations may be related to the relative ethanol insensitivity displayed by this strain in several other phenotypic domains, including ethanol-induced sedation, ataxia, and withdrawal. Additional experiments will investigate chronobiological sensitivity to ethanol in a range of inbred strains showing diverse ethanol-related phenotypes.

  16. Inhibition of cyclooxygenase-2 in experimental severe acute pancreatitis Inibição da Ciclo-Oxigenase-2 na pancreatite aguda grave experimental

    Directory of Open Access Journals (Sweden)

    José Luiz Jesus de Almeida

    2006-08-01

    Full Text Available BACKGROUND: The standard treatment for acute pancreatitis (AP is still based on supportive care. The search for a new drug that could change the natural history of the disease is a continuing challenge for many researchers. The aim of this study is to evaluate the effect of a cyclooxygenase-2 (COX-2 inhibitor on experimental AP in rats. METHODS: The animals were divided into 2 groups: Group 1 (n = 30-animals with taurocholate-induced AP treated with parecoxib (40 mg/kg. Group 2 (n = 30-animals with taurocholate-induced AP that received saline. The COX-2 inhibitor (parecoxib was injected immediately after AP induction, through the penis dorsal vein. The parameters evaluated were histology, serum levels of amylase, IL-6 and IL-10, and mortality rate. RESULTS: The serum levels of IL-6 and IL-10 in the parecoxib-treated group were lower than the control group. The amylase serum levels and the mortality rate remained unchanged in the treated animals. Histologic morphology also was unaltered, except for fat necrosis, which was higher in parecoxib-treated rats. CONCLUSION: Inhibition of Cox-2 decreases the systemic release of inflammatory cytokines, but has a poor effect on the direct pancreas injury caused by taurocholate.INTRODUÇÃO: O tratamento padrão para a pancreatite aguda permanece baseado em medidas de suporte. A busca por uma droga que altere a história natural da doença ainda é um desafio para muitos pesquisadores. O objetivo deste estudo é avaliar o efeito de um inibidor da COX-2 na pancreatite aguda grave experimental (PA em ratos. MÉTODO: Os animais foram divididos em dois Grupos: Grupo 1 (n=30 - animais com PA induzida por taurocolato e tratados com parecoxib (40mg/Kg. Grupo 2 (n=30 - animais com PA induzida por taurocolato que receberam solução salina. O inibidor de COX-2 (parecoxib foi injetado imediatamente após a indução, através da veia dorsal do pênis. Os parâmetros avaliados foram histologia, níveis séricos de

  17. Ethanol Extracts of Fruiting Bodies of Antrodia cinnamomea Suppress CL1-5 Human Lung Adenocarcinoma Cells Migration by Inhibiting Matrix Metalloproteinase-2/9 through ERK, JNK, p38, and PI3K/Akt Signaling Pathways

    Directory of Open Access Journals (Sweden)

    Ying-Yi Chen

    2012-01-01

    Full Text Available Cancer metastasis is a primary cause of cancer death. Antrodia cinnamomea (A. cinnamomea, a medicinal mushroom in Taiwan, has shown antioxidant and anticancer activities. In this study, we first observed that ethanol extract of fruiting bodies of A. cinnamomea (EEAC exerted a concentration-dependent inhibitory effect on migration and motility of the highly metastatic CL1-5 cells in the absence of cytotoxicity. The results of a gelatin zymography assay showed that A. cinnamomea suppressed the activities of matrix metalloproteinase-(MMP- 2 and MMP-9 in a concentration-dependent manner. Western blot results demonstrated that treatment with A. cinnamomea decreased the expression of MMP-9 and MMP-2; while the expression of the endogenous inhibitors of these proteins, that is, tissue inhibitors of MMP (TIMP-1 and TIMP-2 increased. Further investigation revealed that A. cinnamomea suppressed the phosphorylation of ERK1/2, p38, and JNK1/2. A. cinnamomea also suppressed the expressions of PI3K and phosphorylation of Akt. Furthermore, treatment of CL1-5 cells with inhibitors specific for PI3K (LY 294002, ERK1/2 (PD98059, JNK (SP600125, and p38 MAPK (SB203580 decreased the expression of MMP-2 and MMP-9. This is the first paper confirming the antimigration activity of this potentially beneficial mushroom against human lung adenocarcinoma CL1-5 cancer cells.

  18. Evaluation of anti-hyperlipidemic potential of ethanolic leaf extract of ...

    African Journals Online (AJOL)

    This study investigated the effect of ethanolic leaf extract of Clerodendrum volubile on lipid profile of hyperlipidemic Wistar rats. The extract was screened and quantified for phytoconstituents according to standard methods. Also, acute and sub-acute toxicity of the extract were carried out on Wistar rats using standard ...

  19. Effect of ethanol and methanol on growth of ruminal bacteria Selenomonas ruminantium and Butyrivibrio fibrisolvens.

    Science.gov (United States)

    Patterson, J A; Ricke, S C

    2015-01-01

    The effect of ethanol and methanol on growth of several ruminal bacterial strains was examined. Ethanol concentrations as low as 0.2% had a significant, but moderate, inhibitory effect on lag time or growth over time and 3.3% ethanol significantly inhibited maximum optical density obtained by both Selenomonas ruminantium and Butyrivibrio fibrisolvens. Little growth of either strain occurred at 10% ethanol concentrations. Methanol concentrations below 0.5% had little effect on either growth or maximum optical density of Selenomonas ruminantium whereas methanol concentrations below 3.3% had little effect on growth or maximum optical density of Butyrivibrio fibrisolvens. Higher methanol concentrations increasingly inhibited growth of both strains and no growth occurred at a 10% methanol concentration. Concentrations of ethanol or methanol used to add hydrophobic compounds to culture media should be kept below 1%.

  20. Preliminary study of ethanol electrooxidation in the presence of sulfate on polycrystalline platinum

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, R.S. Jr.; Oliveira, V.R.; Reis, R.G.C.S.; Maia, G.; Camara, G.A. [Departamento de Quimica/UFMS, C.P. 549, 79070-900, Campo Grande, MS (Brazil)

    2008-12-01

    The electrooxidation of ethanol and its inhibition by the presence of adsorbed sulfate have been investigated by cyclic voltammetry and chronoamperometry using several concentrations of sulfuric acid on smooth polycrystalline platinum. The results show that the concentration of sulfuric acid influences the current in both potentiostatic and potentiodynamic experiments. The results are interpreted in terms of the competitive adsorption of sulfate and ethanol on the same Pt sites and suggest that, when the sulfuric acid concentration is increased, there is a reduction of Pt free sites able to adsorb and oxidize ethanol. The voltammetric data reveal that the peak currents observed during ethanol oxidation are not affected in the same way by the presence of H{sub 2}SO{sub 4}, which, based on previously obtained FTIR results, suggests that the sulfate adsorption is able to inhibit the oxidation of ethanol in a selective way. (author)