Winitzki, Sergei
2009-01-01
This volume is the only monograph covering the exciting and dazzling recent developments in quantum cosmology, including the theory of the "multiverse" and eternal inflation pioneered by A Vilenkin, A Linde, S W Hawking, and others. Written by a leading expert in the field known for his depth and clarity of presentation, the volume presents an overview of 20 years of development of the theory of eternal inflation as well as a comprehensive, research-level introduction into the current methods and problems. This volume is invaluable for researchers as a definitive reference in the rapidly devel
Quantum superposition of massive objects and collapse models
International Nuclear Information System (INIS)
Romero-Isart, Oriol
2011-01-01
We analyze the requirements to test some of the most paradigmatic collapse models with a protocol that prepares quantum superpositions of massive objects. This consists of coherently expanding the wave function of a ground-state-cooled mechanical resonator, performing a squared position measurement that acts as a double slit, and observing interference after further evolution. The analysis is performed in a general framework and takes into account only unavoidable sources of decoherence: blackbody radiation and scattering of environmental particles. We also discuss the limitations imposed by the experimental implementation of this protocol using cavity quantum optomechanics with levitating dielectric nanospheres.
Quantum superposition of massive objects and collapse models
Energy Technology Data Exchange (ETDEWEB)
Romero-Isart, Oriol [Max-Planck-Institut fuer Quantenoptik, Hans-Kopfermann-Str. 1, D-85748 Garching (Germany)
2011-11-15
We analyze the requirements to test some of the most paradigmatic collapse models with a protocol that prepares quantum superpositions of massive objects. This consists of coherently expanding the wave function of a ground-state-cooled mechanical resonator, performing a squared position measurement that acts as a double slit, and observing interference after further evolution. The analysis is performed in a general framework and takes into account only unavoidable sources of decoherence: blackbody radiation and scattering of environmental particles. We also discuss the limitations imposed by the experimental implementation of this protocol using cavity quantum optomechanics with levitating dielectric nanospheres.
Eternal inflation and the quantum birth of cosmic structure
Energy Technology Data Exchange (ETDEWEB)
Leon, Gabriel [Universidad Nacional de La Plata, Grupo de Astrofisica, Relatividad y Cosmologia, Facultad de Ciencias Astronomicas y Geofisicas, La Plata (Argentina); Universidad de Buenos Aires, Ciudad Universitaria-Pab. I, Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Buenos Aires (Argentina)
2017-10-15
We consider the eternal inflation scenario of the slow-roll/chaotic type with the additional element of an objective collapse of the wave function. The incorporation of this new agent to the traditional inflationary setting might represent a possible solution to the quantum measurement problem during inflation, a subject that has not reached a consensus among the community. Specifically, it could provide an explanation for the generation of the primordial anisotropies and inhomogeneities, starting from a perfectly symmetric background and invoking symmetric dynamics. We adopt the continuous spontaneous localization model, in the context of inflation, as the dynamical reduction mechanism that generates the primordial inhomogeneities. Furthermore, when enforcing the objective reduction mechanism, the condition for eternal inflation can be bypassed. In particular, the collapse mechanism incites the wave function, corresponding to the inflaton, to localize itself around the zero mode of the field. Then the zero mode will evolve essentially unperturbed, driving inflation to an end in any region of the Universe where inflation occurred. Also, our approach achieves a primordial spectrum with an amplitude and shape consistent with the one that best fits the observational data. (orig.)
International Nuclear Information System (INIS)
Barenboim, Gabriela; Park, Wan-Il; Kinney, William H.
2016-01-01
We consider eternal inflation in hilltop-type inflation models, favored by current data, in which the scalar field in inflation rolls off of a local maximum of the potential. Unlike chaotic or plateau-type inflation models, in hilltop inflation the region of field space which supports eternal inflation is finite, and the expansion rate H EI during eternal inflation is almost exactly the same as the expansion rate H * during slow roll inflation. Therefore, in any given Hubble volume, there is a finite and calculable expectation value for the lifetime of the ''eternal'' inflation phase, during which quantum flucutations dominate over classical field evolution. We show that despite this, inflation in hilltop models is nonetheless eternal in the sense that the volume of the spacetime at any finite time is exponentially dominated by regions which continue to inflate. This is true regardless of the energy scale of inflation, and eternal inflation is supported for inflation at arbitrarily low energy scale.
Pre-Hawking radiation may allow for reconstruction of the mass distribution of the collapsing object
Energy Technology Data Exchange (ETDEWEB)
Dai, De-Chang, E-mail: diedachung@gmail.com [Institute of Natural Sciences, Shanghai Key Lab for Particle Physics and Cosmology, and Center for Astrophysics and Astronomy, Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Stojkovic, Dejan [HEPCOS, Department of Physics, SUNY, University at Buffalo, Buffalo, NY 14260-1500 (United States)
2016-07-10
Hawking radiation explicitly depends only on the black hole's total mass, charge and angular momentum. It is therefore generally believed that one cannot reconstruct the information about the initial mass distribution of an object that made the black hole. However, instead of looking at radiation from a static black hole, we can study the whole time-dependent process of the gravitational collapse, and pre-Hawking radiation which is excited because of the time-dependent metric. We compare radiation emitted by a single collapsing shell with that emitted by two concentric shells of the equivalent total mass. We calculate the gravitational trajectory and the momentum energy tensor. We show that the flux of energy emitted during the collapse by a single shell is significantly different from the flux emitted by two concentric shells of the equivalent total mass. When the static black hole is formed, the fluxes become indistinguishable. This implies that an observer studying the flux of particles from a collapsing object could in principle reconstruct information not only about the total mass of the collapsing object, but also about the mass distribution.
Pre-Hawking radiation may allow for reconstruction of the mass distribution of the collapsing object
Directory of Open Access Journals (Sweden)
De-Chang Dai
2016-07-01
Full Text Available Hawking radiation explicitly depends only on the black hole's total mass, charge and angular momentum. It is therefore generally believed that one cannot reconstruct the information about the initial mass distribution of an object that made the black hole. However, instead of looking at radiation from a static black hole, we can study the whole time-dependent process of the gravitational collapse, and pre-Hawking radiation which is excited because of the time-dependent metric. We compare radiation emitted by a single collapsing shell with that emitted by two concentric shells of the equivalent total mass. We calculate the gravitational trajectory and the momentum energy tensor. We show that the flux of energy emitted during the collapse by a single shell is significantly different from the flux emitted by two concentric shells of the equivalent total mass. When the static black hole is formed, the fluxes become indistinguishable. This implies that an observer studying the flux of particles from a collapsing object could in principle reconstruct information not only about the total mass of the collapsing object, but also about the mass distribution.
Domination, Eternal Domination, and Clique Covering
Directory of Open Access Journals (Sweden)
Klostermeyer William F.
2015-05-01
Full Text Available Eternal and m-eternal domination are concerned with using mobile guards to protect a graph against infinite sequences of attacks at vertices. Eternal domination allows one guard to move per attack, whereas more than one guard may move per attack in the m-eternal domination model. Inequality chains consisting of the domination, eternal domination, m-eternal domination, independence, and clique covering numbers of graph are explored in this paper.
Eternal and evanescent black holes and accelerating mirror analogs
Good, Michael R. R.; Linder, Eric V.
2018-03-01
The analogy between black hole radiation and accelerating mirror radiation (the dynamical Casimir effect) is particularly strong for mirror trajectories giving rise to a constant thermal flux of particles. We present new ways to achieve such thermal plateaus, and customize their finite, semi-infinite, and eternal presence, corresponding to forming/collapsing, complete-evaporation/remnants, and eternal black holes. We find simple expressions for the energy flux in terms of the mirror rapidity as a function of proper time and null time.
Eternity Variables to Simulate Specifications
Hesselink, WH; Boiten, EA; Moller, B
2002-01-01
Simulation of specifications is introduced as a unification and generalization of refinement mappings, history variables, forward simulations, prophecy variables, and backward simulations. Eternity variables are introduced as a more powerful alternative for prophecy variables and backward
Area collapse algorithm computing new curve of 2D geometric objects
Buczek, Michał Mateusz
2017-06-01
The processing of cartographic data demands human involvement. Up-to-date algorithms try to automate a part of this process. The goal is to obtain a digital model, or additional information about shape and topology of input geometric objects. A topological skeleton is one of the most important tools in the branch of science called shape analysis. It represents topological and geometrical characteristics of input data. Its plot depends on using algorithms such as medial axis, skeletonization, erosion, thinning, area collapse and many others. Area collapse, also known as dimension change, replaces input data with lower-dimensional geometric objects like, for example, a polygon with a polygonal chain, a line segment with a point. The goal of this paper is to introduce a new algorithm for the automatic calculation of polygonal chains representing a 2D polygon. The output is entirely contained within the area of the input polygon, and it has a linear plot without branches. The computational process is automatic and repeatable. The requirements of input data are discussed. The author analyzes results based on the method of computing ends of output polygonal chains. Additional methods to improve results are explored. The algorithm was tested on real-world cartographic data received from BDOT/GESUT databases, and on point clouds from laser scanning. An implementation for computing hatching of embankment is described.
Mathematical issues in eternal inflation
Singh Kohli, Ikjyot; Haslam, Michael C.
2015-04-01
In this paper, we consider the problem of the existence and uniqueness of solutions to the Einstein field equations for a spatially flat Friedmann-Lemaître-Robertson-Walker universe in the context of stochastic eternal inflation, where the stochastic mechanism is modelled by adding a stochastic forcing term representing Gaussian white noise to the Klein-Gordon equation. We show that under these considerations, the Klein-Gordon equation actually becomes a stochastic differential equation. Therefore, the existence and uniqueness of solutions to Einstein’s equations depend on whether the coefficients of this stochastic differential equation obey Lipschitz continuity conditions. We show that for any choice of V(φ ), the Einstein field equations are not globally well-posed, hence, any solution found to these equations is not guaranteed to be unique. Instead, the coefficients are at best locally Lipschitz continuous in the physical state space of the dynamical variables, which only exist up to a finite explosion time. We further perform Feller’s explosion test for an arbitrary power-law inflaton potential and prove that all solutions to the Einstein field equations explode in a finite time with probability one. This implies that the mechanism of stochastic inflation thus considered cannot be described to be eternal, since the very concept of eternal inflation implies that the process continues indefinitely. We therefore argue that stochastic inflation based on a stochastic forcing term would not produce an infinite number of universes in some multiverse ensemble. In general, since the Einstein field equations in both situations are not well-posed, we further conclude that the existence of a multiverse via the stochastic eternal inflation mechanism considered in this paper is still very much an open question that will require much deeper investigation.
A smooth exit from eternal inflation?
Hawking, S. W.; Hertog, Thomas
2018-04-01
The usual theory of inflation breaks down in eternal inflation. We derive a dual description of eternal inflation in terms of a deformed Euclidean CFT located at the threshold of eternal inflation. The partition function gives the amplitude of different geometries of the threshold surface in the no-boundary state. Its local and global behavior in dual toy models shows that the amplitude is low for surfaces which are not nearly conformal to the round three-sphere and essentially zero for surfaces with negative curvature. Based on this we conjecture that the exit from eternal inflation does not produce an infinite fractal-like multiverse, but is finite and reasonably smooth.
Between Representation and Eternity
DEFF Research Database (Denmark)
Atzbach, Rainer
2016-01-01
This paper seeks to explore how prayer and praying practice are reflected in archaeological sources. Apart from objects directly involved in the personal act of praying, such as rosaries and praying books, churches and religious foundations played a major role in the medieval system of intercession....... At death, an indi- vidual’s corpse and burial primarily reflect the social act of representation during the funeral. The position of the arms, which have incorrectly been used as a chronological tool in Scandinavia, may indicate an evolution from a more collective act of prayer up to the eleventh century...
White holes and eternal black holes
International Nuclear Information System (INIS)
Hsu, Stephen D H
2012-01-01
We investigate isolated white holes surrounded by vacuum, which correspond to the time reversal of eternal black holes that do not evaporate. We show that isolated white holes produce quasi-thermal Hawking radiation. The time reversal of this radiation, incident on a black hole precursor, constitutes a special preparation that will cause the black hole to become eternal. (paper)
The Universe, Time, Eternity and Infinity
Directory of Open Access Journals (Sweden)
Lolaev T. P.
2013-04-01
Full Text Available The conceptions of «universe», «eternity», «time» and «infinity» belong to the list of the most fundamental and complex characteristics of the matter. The concepts of "universe", "eternity", "time" and "infinity" is defined in article in fundamentally new interpretation. This was made possible thanks to the identification by the author the nature of time, and formulation and theoretically and experimentally justification of the Law of the Universe functioning.
Is non-minimal inflation eternal?
International Nuclear Information System (INIS)
Feng, Chao-Jun; Li, Xin-Zhou
2010-01-01
The possibility that the non-minimal coupling inflation could be eternal is investigated. We calculate the quantum fluctuation of the inflaton in a Hubble time and find that it has the same value as that in the minimal case in the slow-roll limit. Armed with this result, we have studied some concrete non-minimal inflationary models including the chaotic inflation and the natural inflation, in which the inflaton is non-minimally coupled to the gravity. We find that the non-minimal coupling inflation could be eternal in some parameter spaces.
Local Operators in the Eternal Black Hole
Papadodimas, Kyriakos; Raju, Suvrat
2015-01-01
In the AdS/CFT correspondence, states obtained by Hamiltonian evolution of the thermofield doubled state are also dual to an eternal black-hole geometry, which is glued to the boundary with a time shift generated by a large diffeomorphism. We describe gauge-invariant relational observables that
Global-local duality in eternal inflation
International Nuclear Information System (INIS)
Bousso, Raphael; Yang, I-S.
2009-01-01
We prove that the light-cone time cutoff on the multiverse defines the same probabilities as a causal patch with initial conditions in the longest-lived metastable vacuum. This establishes the equivalence of two measures of eternal inflation which naively appear very different (though both are motivated by holography). The duality can be traced to an underlying geometric relation which we identify.
Eternal peace and world citizen order
Directory of Open Access Journals (Sweden)
Lolić Marinko V.
2004-01-01
Full Text Available In this paper the author examines the key principles of Kant's conception of eternal peace and the possibility of an international legal order grounded in Reason. The central segment of the paper consists of an analysis of the problem of mediation between Kant's normative theory and political practice.
First observational tests of eternal inflation.
Feeney, Stephen M; Johnson, Matthew C; Mortlock, Daniel J; Peiris, Hiranya V
2011-08-12
The eternal inflation scenario predicts that our observable Universe resides inside a single bubble embedded in a vast inflating multiverse. We present the first observational tests of eternal inflation, performing a search for cosmological signatures of collisions with other bubble universes in cosmic microwave background data from the WMAP satellite. We conclude that the WMAP 7-year data do not warrant augmenting the cold dark matter model with a cosmological constant with bubble collisions, constraining the average number of detectable bubble collisions on the full sky N(s) < 1.6 at 68% C.L. Data from the Planck satellite can be used to more definitively test the bubble-collision hypothesis.
(No) Eternal inflation and precision Higgs physics
International Nuclear Information System (INIS)
Arkani-Hamed, Nima; Dubovsky, Sergei; Senatore, Leonardo; Villadoro, Giovanni
2008-01-01
Even if nothing but a light Higgs is observed at the LHC, suggesting that the Standard Model is unmodified up to scales far above the weak scale, Higgs physics can yield surprises of fundamental significance for cosmology. As has long been known, the Standard Model vacuum may be metastable for low enough Higgs mass, but a specific value of the decay rate holds special significance: for a very narrow window of parameters, our Universe has not yet decayed but the current inflationary period can not be future eternal. Determining whether we are in this window requires exquisite but achievable experimental precision, with a measurement of the Higgs mass to 0.1 GeV at the LHC, the top mass to 60 MeV at a linear collider, as well as an improved determination of α s by an order of magnitude on the lattice. If the parameters are observed to lie in this special range, particle physics will establish that the future of our Universe is a global big crunch, without harboring pockets of eternal inflation, strongly suggesting that eternal inflation is censored by the fundamental theory. This conclusion could be drawn even more sharply if metastability with the appropriate decay rate is found in the MSSM, where the physics governing the instability can be directly probed at the TeV scale
Aufklärung and Eternal Peace: Problems of Kantian Philosophical Projects
Directory of Open Access Journals (Sweden)
Vladimir-Adrian Costea
2018-03-01
Full Text Available This paper aims to critically analyze the major projects of Kantian philosophy in relation to the ideal of Aufklärung and the establishment of Eternal Peace. The main objective of the research is to analyze the originality and boundaries of Kantian projects both at the level of the practical (moral rationale and at the level of the relations of power and interests of the state actors on the international political scene. We aim to identify the boundaries of the Kantian approach in order to establish Eternal Peace, applying the logic of the power relations existing on the international political scene. The secondary objective of the research is to identify how the individual and the state are projected into Kantian philosophy. The original aspect of this article is the decoding of Kantian critical thinking in relation to the project of Aufklärung and the establishment of Eternal Peace. The main result of the research is that the tension of reasoning applied by philosopher Immanuel Kant regarding the definition of human nature and the relationship of forces on the international political scene. Applying the practical (moral rationale used to define the individual’s inclination to get out of the minority state (by knowledge becomes problematic at the time of the Kantian approach to justify the (political necessity of Eternal Peace.
Local Operators in the Eternal Black Hole.
Papadodimas, Kyriakos; Raju, Suvrat
2015-11-20
In the AdS/CFT correspondence, states obtained by Hamiltonian evolution of the thermofield doubled state are also dual to an eternal black-hole geometry, which is glued to the boundary with a time shift generated by a large diffeomorphism. We describe gauge-invariant relational observables that probe the black hole interior in these states and constrain their properties using effective field theory. By adapting recent versions of the information paradox we show that these observables are necessarily described by state-dependent bulk-boundary maps, which we construct explicitly.
TIME AND ETERNITY FROM PLOTINUS AND BOETHIUS TO EINSTEIN
Directory of Open Access Journals (Sweden)
Chase, Michael
2014-01-01
Full Text Available This article seeks to show that the views on time and eternity of Plotinus and Boethius are analogous to those implied by the block-time perspective in contemporary philosophy of time, as implied by the mathematical physics of Einstein and Minkowski. Both Einstein and Boethius utilized their theories of time and eternity with the practical goal of providing consolation to persons in distress; this practice of consolatio is compared to Pierre Hadot’s studies of the “Look from Above”, of the importance of concentrating on the present moment, and his emphasis on ancient philosophy as providing therapy for the soul, instead of mere abstract speculation for its own sake. In the first part of the article, Einstein’s views are compared with those of Plotinus, and with the elucidation of Plotinus’ views provided in the Arabic Theology of Aristotle. The second part of the article studies Boethius’ Consolation of Philosophy, which, contrary to recent interpretations, is indeed a genuine consolation rather than a parody thereof. The Consolation shows how the study of the Neoplatonic philosophical curriculum can lead the student along the path to salvation, by awakening and elaborating his innate ideas. To illustrate this doctrine, a passage from the little-known Pseudo-Boethian treatise De diis et praesensionibus is studied. Finally, after a survey of Boethius’ view on fate and providence, and Aristotle’s theory of future contingents, I study Boethius’ three main arguments in favor of the reconcilability of divine omniscience and human free will: the distinction between absolute and conditional necessity, the principle that the nature of knowledge is determined by the knower, and finally the doctrine that God lives in an eternal present, seeing past, present, and future simultaneously. This last view, developed primarily from Plotinus, is once again argued to be analogous to that advocated by contemporary block-time theorists on the basis
Spherically symmetric scalar field collapse
Indian Academy of Sciences (India)
2013-03-01
Mar 1, 2013 ... The very recent interest in scalar field collapse stems from a cosmological ... The objective of the present investigation is to explore the collapsing modes of a simple ..... The authors thank the BRNS (DAE) for financial support.
Volume-weighted measure for eternal inflation
International Nuclear Information System (INIS)
Winitzki, Sergei
2008-01-01
I propose a new volume-weighted probability measure for cosmological 'multiverse' scenarios involving eternal inflation. The 'reheating-volume (RV) cutoff' calculates the distribution of observable quantities on a portion of the reheating hypersurface that is conditioned to be finite. The RV measure is gauge-invariant, does not suffer from the 'youngness paradox', and is independent of initial conditions at the beginning of inflation. In slow-roll inflationary models with a scalar inflaton, the RV-regulated probability distributions can be obtained by solving nonlinear diffusion equations. I discuss possible applications of the new measure to 'landscape' scenarios with bubble nucleation. As an illustration, I compute the predictions of the RV measure in a simple toy landscape.
Eternally existing self-reproducing inflationary universe
International Nuclear Information System (INIS)
Linde, A.D.
1986-05-01
It is shown that the large-scale quantum fluctuations of the scalar field φ generated in the chaotic inflation scenario lead to an infinite process of self-reproduction of inflationary mini-universes. A model of eternally existing chaotic inflationary universe is suggested. It is pointed out that whereas the universe locally is very homogeneous as a result of inflation, which occurs at the classical level, the global structure of the universe is determined by quantum effects and is highly non-trivial. The universe consists of exponentially large number of different mini-universes, inside which all possible (metastable) vacuum states and all possible types of compactification are realized. The picture differs crucially from the standard picture of a one-domain universe in a ''true'' vacuum state. Our results may serve as a justification of the anthropic principle in the inflationary cosmology. These results may have important implications for the elementary particle theory as well. Namely, since all possible types of mini-universes, in which inflation may occur, should exist in our universe, there is no need to insist (as it is usually done) that in realistic theories the vacuum state of our type should be the only possible one or the best one. (author)
Eternal Rome: Guardian of the Heavenly Gates
Latura, G.
2016-01-01
The power of the Roman Empire did not come solely by way of brutal force. A spiritual vision inherited from the Greeks inspired the Romans—an ascent through the classical Planets to the intersections with the Milky Way, where stood the gates of heaven. This vision stretches back, through Macrobius and Cicero, to Plato's Republic and Timaeus. The Eternal City, capital of the Empire for four centuries, claimed control over the celestial portals, a tradition that is traced on Roman coins and medals over thousands of years. Julius Caesar borrowed enormous sums to campaign for the office of Pontifex Maximus—high priest of Rome—spending a fortune on “bread and circuses” to secure the support of the masses. Consolidating power at every turn, Caesar as dictator-for-life became absolute master of Rome, the city that, according to its coins, ruled the cosmos. Though his mortal frame fell to the knives of the senators, Caesar's soul was seen ascending to heaven as a comet. Thus was born the myth of Divvs Ivlivs—the divine avatar of the Roman Empire, whose name would become synonymous with the title of emperor over millennia (German Kaiser, Hungarian Csaszar, Russian Tsar, to name a few). Caesar's heir, Octavian, piously waited for Lepidus to die of old age before grabbing the office of Pontifex Maximus for himself, a title that would define the celestial authority of the ruler of Rome until Gratian renounced it four centuries later. Ambrose, bishop of Milan, convinced Gratian that such a pagan title was not fit for a Christian. Once the Roman emperor discarded the title Pontifex Maximus, the bishop of Rome picked it up and placed it above his own head, as can be seen on coins and medals of the Vatican to this day. In Jubilee years, the Pope knocks down the brick wall that has kept closed the Holy Door for a generation, a ceremony that reaffirms Rome's control of the celestial gates.
17. RMJ Oduor Eternal Damnation, a Reply to Karori Mbugua's ...
African Journals Online (AJOL)
REGINALDS
doctrine of eternal damnation. I avoid using the term “hell”, preferring to use the ... Mbugua goes on to assert that an adequate theory of justice (he probably means. “theory of ..... gratification of lust and hatred and finally parts with the last rag of.
International Nuclear Information System (INIS)
Prokopec, T.; Sornborger, A.; Brandenberger, R.H.
1992-01-01
We study single-texture collapse using a leapfrog discretization method on a 30x30x30 spatial lattice. We investigate the influence of boundary conditions, physical size of the lattice, type of space-time background (flat, i.e., nonexpanding, vs radiation-dominated and matter-dominated universes), and spatial distribution of the initial texture configuration on collapse time and critical winding. For a spherically symmetric initial configuration of size equal to the horizon size on a lattice containing 12 (30) horizon volumes, the critical winding is found to be 0.621±0.001 (0.602±0.003) (flat case), 0.624±0.002 (0.604±0.005) (radiation era), 0.628±0.002 (0.612±0.003) (matter era). The larger the physical size of the lattice (in units of the horizon size), the smaller is the critical winding, and in the limit of an infinite lattice, we argue that the critical winding approaches 0.5. For radially asymmetric cases, contraction of one axis ( /Ipancake case) slightly reduces collapse time and critical winding, and contraction of two axes (d/Icigar case) reduces collapse time and critical winding significantly
International Nuclear Information System (INIS)
Miller, R.H.; Smith, B.F.
1979-01-01
The self-consistent dynamical development of six stellar systems, started from rotating spherical configurations, has been studied by means of a fully three-dimensional n-body integration. The six examples had different initial angular velocities and velocity dispersions. All settled down into prolate bars rotating about a short axis within two initial rotation periods. The bars are long-lived, robust, and stable. Bars are the natural form toward which rapidly rotating stellar dynamical systems develop, instead of the flattened axisymmetric disks that had been expected.The early stages of each collapse are reasonably well described by a theoretical model according to which a collapse passes through a sequence of rigidly rotating, uniform-density spheroids. The first significant departures from spheroidal form were axisymmetric in all cases. Rings formed in some examples, sheets in others, with transition cases between these extremes. Nonaxisymmetry forms developed from these intermediate stages
Collapsed Dark Matter Structures.
Buckley, Matthew R; DiFranzo, Anthony
2018-02-02
The distributions of dark matter and baryons in the Universe are known to be very different: The dark matter resides in extended halos, while a significant fraction of the baryons have radiated away much of their initial energy and fallen deep into the potential wells. This difference in morphology leads to the widely held conclusion that dark matter cannot cool and collapse on any scale. We revisit this assumption and show that a simple model where dark matter is charged under a "dark electromagnetism" can allow dark matter to form gravitationally collapsed objects with characteristic mass scales much smaller than that of a Milky-Way-type galaxy. Though the majority of the dark matter in spiral galaxies would remain in the halo, such a model opens the possibility that galaxies and their associated dark matter play host to a significant number of collapsed substructures. The observational signatures of such structures are not well explored but potentially interesting.
Collapsed Dark Matter Structures
Buckley, Matthew R.; DiFranzo, Anthony
2018-02-01
The distributions of dark matter and baryons in the Universe are known to be very different: The dark matter resides in extended halos, while a significant fraction of the baryons have radiated away much of their initial energy and fallen deep into the potential wells. This difference in morphology leads to the widely held conclusion that dark matter cannot cool and collapse on any scale. We revisit this assumption and show that a simple model where dark matter is charged under a "dark electromagnetism" can allow dark matter to form gravitationally collapsed objects with characteristic mass scales much smaller than that of a Milky-Way-type galaxy. Though the majority of the dark matter in spiral galaxies would remain in the halo, such a model opens the possibility that galaxies and their associated dark matter play host to a significant number of collapsed substructures. The observational signatures of such structures are not well explored but potentially interesting.
Future foam: Nontrivial topology from bubble collisions in eternal inflation
International Nuclear Information System (INIS)
Bousso, Raphael; Freivogel, Ben; Yang, I-S.; Sekino, Yasuhiro; Shenker, Stephen; Susskind, Leonard; Yeh, C.-P.
2008-01-01
We study pocket universes which have zero cosmological constant and nontrivial boundary topology. These arise from bubble collisions in eternal inflation. Using a simplified dust model of collisions we find that boundaries of any genus can occur. Using a radiation shell model we perform analytic studies in the thin-wall limit to show the existence of geometries with a single toroidal boundary. We give plausibility arguments that higher genus boundaries can also occur. In geometries with one boundary of any genus a timelike observer can see the entire boundary. Geometries with multiple disconnected boundaries can also occur. In the spherical case with two boundaries the boundaries are separated by a horizon. Our results suggest that the holographic dual description for eternal inflation, proposed by Freivogel, Sekino, Susskind and Yeh, should include summation over the genus of the base space of the dual conformal field theory. We point out peculiarities of this genus expansion compared to the string perturbation series.
ETERNAL COMTEMPORANEITY IN ADVERTISMENTS OF "NAUJOJI ROMUVA" (1931–1940
Directory of Open Access Journals (Sweden)
Gabija Bankauskaitė-Sereikienė
2014-10-01
Full Text Available Advertising appealing to senses is satiated with the dream of immortality. The society striving for an eternal state of mythical youth lives in the reality of theatre and manipulations. On the one hand, advertising offers certain society life models through myth, archetypical symbols. On the other hand, culture of global observation, watching changes life into an illusion and life simulation. The more a person succumbs to abstractedness of life in advertisements, the greater demand for mythical time, eternal moment and harmony arises. Advertising which has categorically prohibited for a society to get older, gives an individual an illusion of eternal contemporaneity through archetypes. Modern man sees himself as a creator of history, hence, he feels great temptation to take part in an imaginary act of creation. The article provides the analysis of archetypac imagery in interwar advertisements on the basis of insights of R. Barthes, G. Debord and M. McLuhan on mythological structures of thinking, advertisements and modern society of a performance as well as thoughts of M. Eliade on repetition of time. For the analysis publication "Naujoji Romuva" (1931-1940 has been chosen. The expression of archetypes has been discussed after they have been categorized into three groups under character and general context of archetypal structures: archetypes of world creation, prototypes of man and woman, and mythical, folklore. Prototypes of man as a hero and woman as having a mystic role to continue the cycle of life, as well as mythical, folklore symbols (mirror, horseshoe, spruce, flower also play the said role. Archetypal imagery is often found in advertisements of cosmetics, chemicals and sealants.
Punctuated eternal inflation via AdS/CFT duality
International Nuclear Information System (INIS)
Lowe, David A.; Roy, Shubho
2010-01-01
The work is an attempt to model a scenario of inflation in the framework of anti-de Sitter/conformal field theory duality, a potentially complete nonperturbative description of quantum gravity. We study bubble geometries with de Sitter interiors within an ambient Schwarzschild anti-de Sitter black hole spacetime and the properties of the corresponding states in the dual conformal field theory. It is argued the viable bubble states can be identified with a subset of the black hole microstates. Consistency checks are performed and a number of implications regarding cosmology are discussed including how the key problems or paradoxes of conventional eternal inflation are overcome in this scenario.
Prevention of gravitational collapse
International Nuclear Information System (INIS)
Moffat, J.W.; Taylor, J.G.
1981-01-01
We apply a new theory of gravitation to the question of gravitational collapse to show that collapse is prevented in this theory under very reasonable conditions. This result also extends to prevent ultimate collapse of the Universe. (orig.)
Using eternity variables to specify and prove a serializable database interface
Hesselink, Wim H.
Eternity variables are introduced to specify and verify serializability of transactions of a distributed database. Eternity variables are a new kind of auxiliary variables. They do not occur in the implementation but are used in specification and verification. Elsewhere it has been proved that
No-boundary measure in the regime of eternal inflation
International Nuclear Information System (INIS)
Hartle, James; Hawking, S. W.; Hertog, Thomas
2010-01-01
The no-boundary wave function (NBWF) specifies a measure for prediction in cosmology that selects inflationary histories and remains well behaved for spatially large or infinite universes. This paper explores the predictions of the NBWF for linear scalar fluctuations about homogeneous and isotropic backgrounds in models with a single scalar field moving in a quadratic potential. We treat both the spacetime geometry of the universe and the observers inhabiting it quantum mechanically. We evaluate top-down probabilities for local observations that are conditioned on the NBWF and on part of our data as observers of the universe. For models where the most probable histories do not have a regime of eternal inflation, the NBWF predicts homogeneity on large scales, a spectrum of observable fluctuations with a small non-Gaussian component, and a small amount of inflation in our past. By contrast, for models where the dominant histories have a regime of eternal inflation, the NBWF predicts significant inhomogeneity on scales much larger than the present horizon, a Gaussian spectrum of observable fluctuations, and a long period of inflation in our past. The absence or presence of non-Gaussianity in our observable universe therefore provides information about its global structure, assuming the NBWF.
Gravity induced wave function collapse
Gasbarri, G.; Toroš, M.; Donadi, S.; Bassi, A.
2017-11-01
Starting from an idea of S. L. Adler [in Quantum Nonlocality and Reality: 50 Years of Bell's Theorem, edited by M. Bell and S. Gao (Cambridge University Press, Cambridge, England 2016)], we develop a novel model of gravity induced spontaneous wave function collapse. The collapse is driven by complex stochastic fluctuations of the spacetime metric. After deriving the fundamental equations, we prove the collapse and amplification mechanism, the two most important features of a consistent collapse model. Under reasonable simplifying assumptions, we constrain the strength ξ of the complex metric fluctuations with available experimental data. We show that ξ ≥10-26 in order for the model to guarantee classicality of macro-objects, and at the same time ξ ≤10-20 in order not to contradict experimental evidence. As a comparison, in the recent discovery of gravitational waves in the frequency range 35 to 250 Hz, the (real) metric fluctuations reach a peak of ξ ˜10-21.
International Nuclear Information System (INIS)
Suh, D. C.; Im, J. G.; Park, J. H.; Han, M. C.
1987-01-01
The computed tomographic (CT) findings of labor collapse are analysed in an attempt to evaluate the patterns of labor collapse and to get the helpful signs in differentiation between benign and malignant causes of collapse. 43 cases of labor collapse with or without endobronchial obstruction were reviewed. In 29 of 43 cases the collapses were caused by lung cancer. Benign causes of labor collapse included tuberculosis(10), broncholith(2), organizing pneumonia(1) and hamartoma(1). The helpful signs favoring malignant cause of the labor collapse were proximal bulging of the collapsed lobe, low density mass within the collapsed lung, and endobronchial lesion. Above described differential findings were especially applicable in cases of upper lobe collapse
The Eternal Role of Astronomy in History and Civilization
Theodossiou, E.; Manimanis, V. N.
2010-07-01
Astronomy is the most ancient of all natural sciences. From its roots in ancient Babylonian and Egyptian stellar observations, and through its formulation into a science from the Greek natural philosophers, it defined the measurement of time. The stellar eras and the applications of Astronomy were incorporated in temples, paintings, sculptures and in art in general. Today, the value of Astronomy on practical matters, timekeeping or the navigation, has diminished. However, the eternal questions connected with Astronomy remain: Who are we and where did we come from? How and why was the Universe born? The greatest step to answer this kind of questions came with the so-called Copernican revolution, mostly in the 17th Century. The progress of Astronomy in the 400 years since then answered questions and gave an end to all kinds of superstitions, one more contribution to human civilization.
Descartes on the Creation of the Eternal Truths
Directory of Open Access Journals (Sweden)
Danielle Macbeth
2017-06-01
Full Text Available On 15 April 1630, in a letter to Mersenne, Descartes announced that on his view God creates the truths of mathematics. Descartes returned to the theme in subsequent letters and some of his Replies but nowhere is the view systematically developed and defended. It is not clear why Descartes came to espouse the creation doctrine, nor even what exactly it is. Some have argued that his motivation was theological, that God creates the eternal truths, including the truths of logic, because and insofar as God is omnipotent andthe creator of all things. I develop and defend a different reading according to which Descartes was led to espouse the creation doctrine by a fundamental shift in his understanding of the correct mode of inquiry in metaphysics and mathematics: by 1630, the God-created truths came to play the role in inquiry that until then, in the Rules for the Direction of the Mind, had been played by images.
The phase transition to slow-roll eternal inflation
International Nuclear Information System (INIS)
Creminelli, P.; Dubovsky, S.; Nicolis, A.; Senatore, L.; Zaldarriaga, M.
2008-01-01
For slow-roll inflation we study the phase transition to the eternal regime. Starting from a finite inflationary volume, we consider the volume of the universe at reheating as order parameter. We show that there exists a critical value for the classical inflation speed, φ-dot 2 /H 4 = 3/(2 π 2 ), where the probability distribution for the reheating volume undergoes a sharp transition. In particular, for sub-critical inflation speeds all distribution moments become infinite. We show that at the same transition point the system develops a non-vanishing probability of having a strictly infinite reheating volume, while retaining a finite probability for finite values. Our analysis represents the exact quantum treatment of the system at lowest order in the slow-roll parameters and H 2 /M Pl 2 . (author)
Eternal inflation, bubble collisions, and the persistence of memory
International Nuclear Information System (INIS)
Garriga, Jaume; Guth, Alan H.; Vilenkin, Alexander
2007-01-01
A 'bubble universe' nucleating in an eternally inflating false vacuum will experience, in the course of its expansion, collisions with an infinite number of other bubbles. In an idealized model, we calculate the rate of collisions around an observer inside a given reference bubble. We show that the collision rate violates both the homogeneity and the isotropy of the bubble universe. Each bubble has a center which can be related to 'the beginning of inflation' in the parent false vacuum, and any observer not at the center will see an anisotropic bubble collision rate that peaks in the outward direction. Surprisingly, this memory of the onset of inflation persists no matter how much time elapses before the nucleation of the reference bubble
The Price of Eternal Vigilance: Women and Intoxication
Directory of Open Access Journals (Sweden)
Michelle McClellan
2016-04-01
Full Text Available The Price of Eternal Vigilance: Women and Intoxication by Michelle McClellan. The author argues that the “cultural meaning of intoxication is shaped profoundly by the reality that we seem to only hear about it from women who have given it up.” This is a problem when it obscures the reasons why women seek out alcohol. Resisting the seemingly inevitable trajectory of addiction and recovery narratives, McClellan introduces the concepts of “dry” and “wet” feminism to draw attention to both the cultural expectations women face and the ways that intoxication might serve as a form of resistance. By refusing to see intoxication as a sort of false consciousness from which women must awake, McClellan demonstrates that it reflects female ambivalence about mothering, sexuality, and pleasure itself.
Eternal 5D optical data storage in glass (Conference Presentation)
Kazansky, Peter G.; Cerkauskaite, Ausra; Drevinskas, Rokas; Zhang, Jingyu
2016-09-01
A decade ago it has been discovered that during femtosecond laser writing self-organized subwavelength structures with record small features of 20 nm, could be created in the volume of silica glass. On the macroscopic scale the self-assembled nanostructure behaves as a uniaxial optical crystal with negative birefringence. The optical anisotropy, which results from the alignment of nano-platelets, referred to as form birefringence, is of the same order of magnitude as positive birefringence in crystalline quartz. The two independent parameters describing birefringence, the slow axis orientation (4th dimension) and the strength of retardance (5th dimension), are explored for the optical encoding of information in addition to three spatial coordinates. The slow axis orientation and the retardance are independently manipulated by the polarization and intensity of the femtosecond laser beam. The data optically encoded into five dimensions is successfully retrieved by quantitative birefringence measurements. The storage allows unprecedented parameters including hundreds of terabytes per disc data capacity and thermal stability up to 1000°. Even at elevated temperatures of 160oC, the extrapolated decay time of nanogratings is comparable with the age of the Universe - 13.8 billion years. The recording of the digital documents, which will survive the human race, including the eternal copies of Universal Declaration of Human Rights, Newton's Opticks, Kings James Bible and Magna Carta, is a vital step towards an eternal archive. Additionally, a number of projects (such as Time Capsule to Mars, MoonMail, and the Google Lunar XPRIZE) could benefit from the technique's extreme durability, which fulfills a crucial requirement for storage on the Moon or Mars.
Daston, Lorraine
2010-01-01
Objectivity has a history, and it is full of surprises. In Objectivity, Lorraine Daston and Peter Galison chart the emergence of objectivity in the mid-nineteenth-century sciences--and show how the concept differs from its alternatives, truth-to-nature and trained judgment. This is a story of lofty epistemic ideals fused with workaday practices in the making of scientific images. From the eighteenth through the early twenty-first centuries, the images that reveal the deepest commitments of the empirical sciences--from anatomy to crystallography--are those featured in scientific atlases, the compendia that teach practitioners what is worth looking at and how to look at it. Galison and Daston use atlas images to uncover a hidden history of scientific objectivity and its rivals. Whether an atlas maker idealizes an image to capture the essentials in the name of truth-to-nature or refuses to erase even the most incidental detail in the name of objectivity or highlights patterns in the name of trained judgment is a...
Energy Technology Data Exchange (ETDEWEB)
Aguirre-Diaz, Gerardo J [Centro de Geociencias, Universidad Nacional Autonoma de Mexico, Campus Juriquilla, Queretaro, Qro., 76230 (Mexico)], E-mail: ger@geociencias.unam.mx
2008-10-01
Three main types of collapse calderas can be defined, 1) summit caldera: those formed at the top of large volcanoes, 2) classic caldera: semi-circular to irregular-shaped large structures, several km in diameter and related to relatively large-volume pyroclastic products, and 3) graben caldera: explosive volcano-tectonic collapse structures from which large-volume, ignimbrite-forming eruptions occurred through several fissural vents along the graben master faults and the intra-graben block faults. These in turn can collapse at least with three styles: 1) Piston: when the collapse occurs as a single crustal block; 2) Trap-door: when collapse occurs unevenly along one side while the opposite side remains with no collapse; 3) Piece-meal: when collapse occurs as broken pieces of the crust on top of the magma chamber.
Eternal higher spin black holes: a thermofield Interpretation
International Nuclear Information System (INIS)
Castro, Alejandra; Iqbal, Nabil; Llabrés, Eva
2016-01-01
We study Lorentzian eternal black holes in the Chern-Simons sector of AdS 3 higher spin gravity. We probe such black holes using bulk Wilson lines and motivate new regularity conditions that must be obeyed by the bulk connections in order for the geometry to be consistent with an interpretation as a thermofield state in the dual CFT 2 . We demonstrate that any higher spin black hole may be placed in a gauge that satisfies these conditions: this is the Chern-Simons analogue of the construction of Kruskal coordinates that permit passage through the black hole horizon. We also argue that the Wilson line provides a higher-spin notion of causality in higher spin gravity that can be used to associate a Penrose diagram with the black hole. We present some applications of the formalism, including a study of the time-dependent entanglement entropy arising from the higher spin black hole interior and evidence for an emergent AdS 2 region in the extremal limit.
Bumps on the Road to Here (from Eternity
Directory of Open Access Journals (Sweden)
Eric Winsberg
2012-02-01
Full Text Available In his recent book, From Eternity to Here, and in other more technical papers, Sean Carroll (partly in collaboration with Jennifer Chen has put forward an intriguing new way to think about the origin of the Universe. His approach, in a nutshell, is to raise certain worries about a standard Boltzmannian picture of statistical mechanics, and to present certain commitments that he thinks we ought to hold—commitments that the standard picture doesn’t share. He then proposes a cosmological model—one that purports to give us insight into what sort of process brought about the “initial state” of the universe—that can uniquely accommodate those commitments. The conclusion of Carroll’s argument is that statistical mechanical reasoning provides grounds for provisionally accepting that cosmological model. My goal in this paper is to reconstruct and critically assess this proposal. I argue that “statistical cosmology” requires a careful balance of philosophical intuitions and commitments against technical, scientific considerations; how much stock we ought to place in these intuitions and commitments should depend on where they lead us—those that lead us astray scientifically might well be in need of philosophical re‑examination.
Thermal duality and gravitational collapse
International Nuclear Information System (INIS)
Hewitt, Michael
2015-01-01
Thermal duality is a relationship between the behaviour of heterotic string models of the E(8)×E(8) or SO(32) types at inversely related temperatures, a variant of T duality in the Euclidean regime. This duality would have consequences for the nature of the Hagedorn transition in these string models. We propose that the vacuum admits a family of deformations in situations where there are closed surfaces of constant area but high radial acceleration (a string regularized version of a Penrose trapped surface), such as would be formed in situations of extreme gravitational collapse. This would allow a radical resolution of the firewall paradox by allowing quantum effects to significantly modify the spacetime geometry around a collapsed object. A string bremsstrahlung process would convert the kinetic energy of infalling matter in extreme gravitational collapse to form a region of the deformed vacuum, which would be equivalent to forming a high temperature string phase. A heuristic criterion for the conversion process is presented, relating Newtonian gravity to the string tension, suggesting an upper limit to the strength of the gravitational interaction. This conversion process might have observable consequences for charged particles falling into a rotating collapsed object by producing high energy particles via a variant of the Penrose process. (paper)
Mechanisms of cascade collapse
International Nuclear Information System (INIS)
Diaz de la Rubia, T.; Smalinskas, K.; Averback, R.S.; Robertson, I.M.; Hseih, H.; Benedek, R.
1988-12-01
The spontaneous collapse of energetic displacement cascades in metals into vacancy dislocation loops has been investigated by molecular dynamics (MD) computer simulation and transmission electron microscopy (TEM). Simulations of 5 keV recoil events in Cu and Ni provide the following scenario of cascade collapse: atoms are ejected from the central region of the cascade by replacement collision sequences; the central region subsequently melts; vacancies are driven to the center of the cascade during resolidification where they may collapse into loops. Whether or not collapse occurs depends critically on the melting temperature of the metal and the energy density and total energy in the cascade. Results of TEM are presented in support of this mechanism. 14 refs., 4 figs., 1 tab
Crisis of Modern Man and Perspective of Eternity in Light of T. G. Masaryk's Thinking
Czech Academy of Sciences Publication Activity Database
Svoboda, Jan
2014-01-01
Roč. 11, č. 2 (2014), s. 130-135 ISSN 1214-4967 Institutional support: RVO:67985955 Keywords : T.G. Masaryk's thinking * crisis of modern man * perspective of eternity * new religion * human rights Subject RIV: AA - Philosophy ; Religion
Norris, Jeff
2016-01-01
Jeff Norris, initially shocked by the Montessorians who are calling technology into question, states that technology can offer a means of development for the child who is concurrently supporting and learning from the rich and overpowering biodiversity of the rainforest. He speaks for the Children's Eternal Rainforest citizen's science as well as…
Eternal Egypt: Masterworks of Ancient Art from the British Museum. Learning from Exhibitions.
Johnson, Mark M.
2001-01-01
Introduces the exhibition "Eternal Egypt: Masterworks of Ancient Art from the British Museum" that explores the four major periods of Egyptian history. Provides background information on ancient Egypt and describes the art that was present in each of the four kingdoms. (CMK)
"Groundhog Day, Deja Vu," and the Myth of the Eternal Recurrence.
Voeltz, Richard A.
1998-01-01
Reveals that through the use of the movie "Groundhog Day," students in humanities courses can grasp Friedrich Nietzsche's myth of eternal recurrence; the myth addresses the question of what if everything that occurred in one's life occurred again just as it happened before. Discusses the similarities between Nietzsche's myth and the…
Neutrinos from gravitational collapse
International Nuclear Information System (INIS)
Mayle, R.; Wilson, J.R.; Schramm, D.N.
1986-05-01
Detailed calculations are made of the neutrino spectra emitted during gravitational collapse events (Type II supernovae). Those aspects of the neutrino signal which are relatively independent of the collapse model and those aspects which are sensitive to model details are discussed. The easier-to-detect high energy tail of the emitted neutrinos has been calculated using the Boltzmann equation which is compared with the result of the traditional multi-group flux limited diffusion calculations. 8 figs., 28 refs
Collapse models and perceptual processes
International Nuclear Information System (INIS)
Ghirardi, Gian Carlo; Romano, Raffaele
2014-01-01
Theories including a collapse mechanism have been presented various years ago. They are based on a modification of standard quantum mechanics in which nonlinear and stochastic terms are added to the evolution equation. Their principal merits derive from the fact that they are mathematically precise schemes accounting, on the basis of a unique universal dynamical principle, both for the quantum behavior of microscopic systems as well as for the reduction associated to measurement processes and for the classical behavior of macroscopic objects. Since such theories qualify themselves not as new interpretations but as modifications of the standard theory they can be, in principle, tested against quantum mechanics. Recently, various investigations identifying possible crucial test have been discussed. In spite of the extreme difficulty to perform such tests it seems that recent technological developments allow at least to put precise limits on the parameters characterizing the modifications of the evolution equation. Here we will simply mention some of the recent investigations in this direction, while we will mainly concentrate our attention to the way in which collapse theories account for definite perceptual process. The differences between the case of reductions induced by perceptions and those related to measurement procedures by means of standard macroscopic devices will be discussed. On this basis, we suggest a precise experimental test of collapse theories involving conscious observers. We make plausible, by discussing in detail a toy model, that the modified dynamics can give rise to quite small but systematic errors in the visual perceptual process.
International Nuclear Information System (INIS)
Dryapachenko, Yi.; Trofyimova, N.; Dryapachenko, G.
2002-01-01
We shall view in a common context for decommissioning of the nuclear technological, experimental or plant (reactor, accelerator and, etc.) with 'priority' call for an example to materials and data concerning of the Chornobyl infrastructure
Gravitational collapse and the vacuum energy
International Nuclear Information System (INIS)
Campos, M
2014-01-01
To explain the accelerated expansion of the universe, models with interacting dark components (dark energy and dark matter) have been considered recently in the literature. Generally, the dark energy component is physically interpreted as the vacuum energy of the all fields that fill the universe. As the other side of the same coin, the influence of the vacuum energy on the gravitational collapse is of great interest. We study such collapse adopting different parameterizations for the evolution of the vacuum energy. We discuss the homogeneous collapsing star fluid, that interacts with a vacuum energy component, using the stiff matter case as example. We conclude this work with a discussion of the Cahill-McVittie mass for the collapsed object.
Gravitational collapse and supernovae
International Nuclear Information System (INIS)
Lattimer, J.M.
1989-01-01
The collapse of the core of a massive star and the subsequent birth of a neutron star in a supernova explosion are discussed, and a model of the supernova mechanism is developed. The basic theory is then compared with the particular case of SN1987A, whose emitted neutrinos permitted the first direct test of the model. (author)
Eternal inflation and a thermodynamic treatment of Einstein's equations
Energy Technology Data Exchange (ETDEWEB)
Ghersi, José Tomás Gálvez [Facultad de Ciencias, Universidad Nacional de Ingeniería, Lima, Perú (Peru); Geshnizjani, Ghazal; Shandera, Sarah [Perimeter Institute for Theoretical Physics, Waterloo, Ontario (Canada); Piazza, Federico, E-mail: jotogalgher@gmail.com, E-mail: ggeshnizjani@perimeterinstitute.ca, E-mail: fpiazza@apc.univ-paris7.fr, E-mail: sshandera@perimeterinstitute.ca [PCCP and APC, CNRS (UMR7164), Université Denis Diderot Paris 7, Batiment Condorcet, 10 rue Alice Domon et Léonie Duquet, 75205 Paris (France)
2011-06-01
In pursuing the intriguing resemblance of the Einstein equations to thermodynamic equations, most sharply seen in systems possessing horizons, we suggest that eternal inflation of the stochastic type may be a fruitful phenomenon to explore. We develop a thermodynamic first law for quasi-de Sitter space, valid on the horizon of a single observer's Hubble patch and explore consistancy with previous proposals for horizons of various types in dynamic and static situations. We use this framework to demonstrate that for the local observer fluctuations of the type necessary for stochastic eternal inflation fall within the regime where the thermodynamic approach is believed to apply. This scenario is interesting because of suggestive parallels with black hole evaporation.
Neutrinos and supernova collapse
International Nuclear Information System (INIS)
Colgate, S.A.; Petschek, A.G.
1980-01-01
The neutrino emission resulting from stellar collapse and supernova formation is reviewed. The electron capture and consequent neutronization of the collapsing stellar matter at the end of evolution determines both the initial adiabat of core collapse as well as the trapped lepton fraction. The initial lepton fraction, Y/sub l/ = .48 supplies the pressure for neutral support of the star at the Chandrasekhar limit. High trapping values, Y/sub l/ = .4, lead to soft core collapses; low values to harder collapses. The value of Y/sub l/ is presently in dispute. The neutrino emission from initial electron capture is relatively small. A strong core-bounce shock releases both electron neutrino as well as thermal muon and tau neutrinos. Subsequent neutrino emission and cooling can sometimes lead to an unstable buoyancy gradient in the core in which case unstable core overturn is expected. Calculations have already shown the importance of the largest possible eddy or equivalently the lowest mode of overturn. Present models of low lepton trapping ratio lead to high entropy creation by the reflected shock and the stabilization of the core matter against overturn. In such cases the exterior matter must cool below an entropy of approximately s/k approx. = 2 to become unstable. This may require too long a time approximately one second for neutrino cooling from a neutrinosphere at rho approx. = 2 x 10 12 g cm -3 . On the other hand, high values of Y/sub l/ such as .4 lead to softer bounces at lower density and values of the critical stabilizing entropy of 3 or higher. Under such circumstances, core overturn can still occur
Directory of Open Access Journals (Sweden)
Darya B. Smirnova
2016-12-01
Full Text Available It is analyzed the «eternal image» of Hamlet as a prototype of the intelligentsia layer of society in the novel by S. Zheromsky «Homeless people». It is concluded that S. Zheromsky created in his novel-variation characters of Hamlet, to which the author gave national character. This relation with Hamlet manifests the motives of loneliness, homelessness and wandering.
How decoherence affects the probability of slow-roll eternal inflation
Boddy, Kimberly K.; Carroll, Sean M.; Pollack, Jason
2017-07-01
Slow-roll inflation can become eternal if the quantum variance of the inflaton field around its slowly rolling classical trajectory is converted into a distribution of classical spacetimes inflating at different rates, and if the variance is large enough compared to the rate of classical rolling that the probability of an increased rate of expansion is sufficiently high. Both of these criteria depend sensitively on whether and how perturbation modes of the inflaton interact and decohere. Decoherence is inevitable as a result of gravitationally sourced interactions whose strength are proportional to the slow-roll parameters. However, the weakness of these interactions means that decoherence is typically delayed until several Hubble times after modes grow beyond the Hubble scale. We present perturbative evidence that decoherence of long-wavelength inflaton modes indeed leads to an ensemble of classical spacetimes with differing cosmological evolutions. We introduce the notion of per-branch observables—expectation values with respect to the different decohered branches of the wave function—and show that the evolution of modes on individual branches varies from branch to branch. Thus, single-field slow-roll inflation fulfills the quantum-mechanical criteria required for the validity of the standard picture of eternal inflation. For a given potential, the delayed decoherence can lead to slight quantitative adjustments to the regime in which the inflaton undergoes eternal inflation.
Collapse settlement in compacted soils
CSIR Research Space (South Africa)
Booth, AR
1977-01-01
Full Text Available Research into collapse settlement in compacted soils is described, with special reference to recent cases in Southern Africa where collapse settlement occurred in road embankments following wetting of the soil. The laboratory work described...
The f electron collapse revisited
International Nuclear Information System (INIS)
Bennett, B.I.
1987-03-01
A reexamination of the collapse of 4f and 5f electrons in the lanthanide and actinide series is presented. The calculations show the well-known collapse of the f electron density at the thresholds of these series along with an f 2 collapse between thorium and protactinium. The collapse is sensitive to the choice of model for the exchange-correlation potential and the behavior of the potential at large radius
Cardiopulmonary Collapse during Labour
Directory of Open Access Journals (Sweden)
Vasilis Sitras
2010-01-01
Full Text Available Cardiopulmonary collapse during labour is a catastrophic event caused by various medical, surgical and obstetrical conditions. It is an emergency that threatens the life of the mother and her unborn child. We present a case of a pregnant woman who suffered from preeclampsia and underwent induction of labour. Severe lung edema occurred early in labour that caused cardiopulmonary collapse. Advanced heart-lung resuscitation was established immediately and continued until an emergency cesarean section was performed few minutes later. The outcome was favourable for both mother and child. We further discuss some aspects of the pathophysiology and appropriate treatment of cardiorespiratory arrest during labour, which involves the coordinated action of the obstetric, pediatric and surgical ward personnel.
International Nuclear Information System (INIS)
Hendricks, J.C.; O'Brien, J.A.
1985-01-01
Two cats examined bronchoscopically to discover the cause of tracheal collapse were found to have tracheal obstruction cranial to the collapse. Cats with this unusual sign should be examined bronchoscopically to ascertain whether there is an obstruction, as the cause in these 2 cats was distinct from the diffuse airway abnormality that causes tracheal collapse in dogs
Collapse, environment, and society
2012-01-01
Historical collapse of ancient states poses intriguing social-ecological questions, as well as potential applications to global change and contemporary strategies for sustainability. Five Old World case studies are developed to identify interactive inputs, triggers, and feedbacks in devolution. Collapse is multicausal and rarely abrupt. Political simplification undermines traditional structures of authority to favor militarization, whereas disintegration is preconditioned or triggered by acute stress (insecurity, environmental or economic crises, famine), with breakdown accompanied or followed by demographic decline. Undue attention to stressors risks underestimating the intricate interplay of environmental, political, and sociocultural resilience in limiting the damages of collapse or in facilitating reconstruction. The conceptual model emphasizes resilience, as well as the historical roles of leaders, elites, and ideology. However, a historical model cannot simply be applied to contemporary problems of sustainability without adjustment for cumulative information and increasing possibilities for popular participation. Between the 14th and 18th centuries, Western Europe responded to environmental crises by innovation and intensification; such modernization was decentralized, protracted, flexible, and broadly based. Much of the current alarmist literature that claims to draw from historical experience is poorly focused, simplistic, and unhelpful. It fails to appreciate that resilience and readaptation depend on identified options, improved understanding, cultural solidarity, enlightened leadership, and opportunities for participation and fresh ideas. PMID:22371579
Static axisymmetric discs and gravitational collapse
Energy Technology Data Exchange (ETDEWEB)
Chamorro, A.; Gregory, R.; Stewart, J.M.
1987-09-08
Regular static axisymmetric vacuum solutions of Einstein's field equations representing the exterior field of a finite thin disc are found. These are used to describe the slow collapse of a disc-like object. If no conditions are placed on the matter, a naked singularity is formed and the cosmic censorship hypothesis would be violated. Imposition of the weak energy condition, however, prevents slow collapse to a singularity and preserves the validity of this hypothesis. The validity of the hoop conjecture is also discussed.
Gravitational waves from gravitational collapse
Energy Technology Data Exchange (ETDEWEB)
Fryer, Christopher L [Los Alamos National Laboratory; New, Kimberly C [Los Alamos National Laboratory
2008-01-01
Gravitational wave emission from stellar collapse has been studied for nearly four decades. Current state-of-the-art numerical investigations of collapse include those that use progenitors with more realistic angular momentum profiles, properly treat microphysics issues, account for general relativity, and examine non-axisymmetric effects in three dimensions. Such simulations predict that gravitational waves from various phenomena associated with gravitational collapse could be detectable with ground-based and space-based interferometric observatories. This review covers the entire range of stellar collapse sources of gravitational waves: from the accretion induced collapse of a white dwarf through the collapse down to neutron stars or black holes of massive stars to the collapse of supermassive stars.
Gravitational Waves from Gravitational Collapse
Directory of Open Access Journals (Sweden)
Chris L. Fryer
2011-01-01
Full Text Available Gravitational-wave emission from stellar collapse has been studied for nearly four decades. Current state-of-the-art numerical investigations of collapse include those that use progenitors with more realistic angular momentum profiles, properly treat microphysics issues, account for general relativity, and examine non-axisymmetric effects in three dimensions. Such simulations predict that gravitational waves from various phenomena associated with gravitational collapse could be detectable with ground-based and space-based interferometric observatories. This review covers the entire range of stellar collapse sources of gravitational waves: from the accretion-induced collapse of a white dwarf through the collapse down to neutron stars or black holes of massive stars to the collapse of supermassive stars.
Gravitational Waves from Gravitational Collapse.
Fryer, Chris L; New, Kimberly C B
2011-01-01
Gravitational-wave emission from stellar collapse has been studied for nearly four decades. Current state-of-the-art numerical investigations of collapse include those that use progenitors with more realistic angular momentum profiles, properly treat microphysics issues, account for general relativity, and examine non-axisymmetric effects in three dimensions. Such simulations predict that gravitational waves from various phenomena associated with gravitational collapse could be detectable with ground-based and space-based interferometric observatories. This review covers the entire range of stellar collapse sources of gravitational waves: from the accretion-induced collapse of a white dwarf through the collapse down to neutron stars or black holes of massive stars to the collapse of supermassive stars. Supplementary material is available for this article at 10.12942/lrr-2011-1.
An axisymmetric gravitational collapse code
Energy Technology Data Exchange (ETDEWEB)
Choptuik, Matthew W [CIAR Cosmology and Gravity Program, Department of Physics and Astronomy, University of British Columbia, Vancouver BC, V6T 1Z1 (Canada); Hirschmann, Eric W [Department of Physics and Astronomy, Brigham Young University, Provo, UT 84604 (United States); Liebling, Steven L [Southampton College, Long Island University, Southampton, NY 11968 (United States); Pretorius, Frans [Theoretical Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States)
2003-05-07
We present a new numerical code designed to solve the Einstein field equations for axisymmetric spacetimes. The long-term goal of this project is to construct a code that will be capable of studying many problems of interest in axisymmetry, including gravitational collapse, critical phenomena, investigations of cosmic censorship and head-on black-hole collisions. Our objective here is to detail the (2+1)+1 formalism we use to arrive at the corresponding system of equations and the numerical methods we use to solve them. We are able to obtain stable evolution, despite the singular nature of the coordinate system on the axis, by enforcing appropriate regularity conditions on all variables and by adding numerical dissipation to hyperbolic equations.
An axisymmetric gravitational collapse code
International Nuclear Information System (INIS)
Choptuik, Matthew W; Hirschmann, Eric W; Liebling, Steven L; Pretorius, Frans
2003-01-01
We present a new numerical code designed to solve the Einstein field equations for axisymmetric spacetimes. The long-term goal of this project is to construct a code that will be capable of studying many problems of interest in axisymmetry, including gravitational collapse, critical phenomena, investigations of cosmic censorship and head-on black-hole collisions. Our objective here is to detail the (2+1)+1 formalism we use to arrive at the corresponding system of equations and the numerical methods we use to solve them. We are able to obtain stable evolution, despite the singular nature of the coordinate system on the axis, by enforcing appropriate regularity conditions on all variables and by adding numerical dissipation to hyperbolic equations
Scapholunate advanced collapse
International Nuclear Information System (INIS)
Chen, C.; Haller, J.; Resnick, D.
1989-01-01
Scapholunate advanced collapse 9SLAC) is a pattern of wrist malalignment (characterized mainly by radiocarpal abnormalities) that has been attributed to osteoarthritis. In order to determine the frequency of SLAC in calcium pyrophosphate dihydrate (CPPD) disease, the authors have reviewed wrist radiographs in 190 cases of this disorder. Forty-two (22%) of these cases reveal wrist abnormalities typical of SLAC. Associated findings include bilateral alterations (63%), abnormal calcification (70%), scapholunate dissociation (70%), and additional compartmental arthropathies. The authors' results confirm that CPPD crystal deposition disease is a major cause of SLAC. They believe, therefore, that this pattern of malalignment is not specific for posttraumatic or spontaneous osteoarthritis of the wrist
Energy Technology Data Exchange (ETDEWEB)
Sharafutdinov, I.G.; Asadulin, Kh.F.; Maloiaroslavtsev, D.A.; Prokopov, O.I.; Rastorquev, M.A.
1980-08-15
A collapsible shelter is proposed which includes a foundation, a framework with reinforced elements which form a roof, tie bolt elements which are riveted to the reinforced elements, and a railing; it is characterized by an arrangement whereby in order to simplify its construction and improve its reliability, the reinforced elements are detachable and are equipped with rigid connecting rods made of separate sections which are mounted to allow for movement via the reinforced elements; the connecting rod of each reinforcement element is connected to the connecting rod of the adjacent reinforced element using horizontal rods on which the shelter is secured. The shelter is made from separate planks.
Three visits to eternity: Freud, Wiesel, and Patient X.
Weiss, S S
1986-01-01
Freud's experience on the Acropolis is reviewed and reappraised. Also, the experience of Elie Wiesel at the Wall in Jerusalem and Patient X's reaction visiting an Egyptian temple are examined. Carl Jung's wish to go to Rome and his inability to do so are noted. The aim of the paper is to offer deeper understanding about intense reactions many sensitive and creative people experience over travel to special places. These places are treated as idealized and ambivalently loved transference objects. Normal anticipatory pleasure prior to the trip is impaired and reality pleasure at the site cannot be enjoyed. When these spots are reached, ego regression is initiated by the intolerably intense narcissistic pleasure mobilized by the gratification of fantasies that were felt to be unrealizable. The fantasies can be conscious or unconscious and from oedipal as well as preoedipal and postoedipal developmental levels; however, they always involve the fulfillment of overwhelmingly powerful wishes. The deep ego regression, archaic fantasies, and the complex defenses mobilized are frightening since there may also be concern about ego dissolution or irreversible transformation. One highly adaptive solution which helps master these conflictual and developmental experiences is creative ego activity. While maintaining integrity for the individual ego and enhancing the self, creative work and accomplishment also enrich and advance the cultural process.
Shearfree cylindrical gravitational collapse
International Nuclear Information System (INIS)
Di Prisco, A.; Herrera, L.; MacCallum, M. A. H.; Santos, N. O.
2009-01-01
We consider diagonal cylindrically symmetric metrics, with an interior representing a general nonrotating fluid with anisotropic pressures. An exterior vacuum Einstein-Rosen spacetime is matched to this using Darmois matching conditions. We show that the matching conditions can be explicitly solved for the boundary values of metric components and their derivatives, either for the interior or exterior. Specializing to shearfree interiors, a static exterior can only be matched to a static interior, and the evolution in the nonstatic case is found to be given in general by an elliptic function of time. For a collapsing shearfree isotropic fluid, only a Robertson-Walker dust interior is possible, and we show that all such cases were included in Cocke's discussion. For these metrics, Nolan and Nolan have shown that the matching breaks down before collapse is complete, and Tod and Mena have shown that the spacetime is not asymptotically flat in the sense of Berger, Chrusciel, and Moncrief. The issues about energy that then arise are revisited, and it is shown that the exterior is not in an intrinsic gravitational or superenergy radiative state at the boundary.
PREFACE: Collapse Calderas Workshop
Gottsmann, Jo; Aguirre-Diaz, Gerardo
2008-10-01
Caldera-formation is one of the most awe-inspiring and powerful displays of nature's force. Resultant deposits may cover vast areas and significantly alter the immediate topography. Post-collapse activity may include resurgence, unrest, intra-caldera volcanism and potentially the start of a new magmatic cycle, perhaps eventually leading to renewed collapse. Since volcanoes and their eruptions are the surface manifestation of magmatic processes, calderas provide key insights into the generation and evolution of large-volume silicic magma bodies in the Earth's crust. Despite their potentially ferocious nature, calderas play a crucial role in modern society's life. Collapse calderas host essential economic deposits and supply power for many via the exploitation of geothermal reservoirs, and thus receive considerable scientific, economic and industrial attention. Calderas also attract millions of visitors world-wide with their spectacular scenic displays. To build on the outcomes of the 2005 calderas workshop in Tenerife (Spain) and to assess the most recent advances on caldera research, a follow-up meeting was proposed to be held in Mexico in 2008. This abstract volume presents contributions to the 2nd Calderas Workshop held at Hotel Misión La Muralla, Querétaro, Mexico, 19-25 October 2008. The title of the workshop `Reconstructing the evolution of collapse calderas: Magma storage, mobilisation and eruption' set the theme for five days of presentations and discussions, both at the venue as well as during visits to the surrounding calderas of Amealco, Amazcala and Huichapan. The multi-disciplinary workshop was attended by more than 40 scientist from North, Central and South America, Europe, Australia and Asia. Contributions covered five thematic topics: geology, geochemistry/petrology, structural analysis/modelling, geophysics, and hazards. The workshop was generously supported by the International Association of Volcanology and the Chemistry of The Earth's Interior
Approaches to 'eternal' accompaniment regalement of nuclear energy installation decommissioning
International Nuclear Information System (INIS)
Dryapachenko, Ihor; Trofimova, Nina
2003-01-01
The stunning rate of events after striking the push button AZ5 in April 26, 1986 while that only rises. Boundless even for the super-power world states the complex of scientific, technological, organizational, economical and social problems became in 1991 unique property of Ukraine. It has added to the operational power reactors (now 13) at practical absence of an infrastructure of a closed fuel cycle. At the same time Ukrainian economics always' will depend on nuclear power engineering. In it are very much positive aspect concerning high technological and scientifically based contents and future non-alternative of the nuclear power industry on a global scale. The errors in an estimation of separate links of such composite model are not killed mutually, but only add. Uncertainty in estimations of natural or public processes will cause to large uncertainty of general forecast. A laborious transaction of the rules production or the legitimated algorithms of the activity realization reach the foreseen controllability. On our view the following logical thesis of such concept should be comprehension that the rules of decommissioning of a nuclear-power plant should provide the controllability with matched activities not one generation of performers. The impressive achievements of scientific-technological revolution of last decades are accompanied 'non-regalement' from the point of view of life on a planet by disastrous effects. The nuclear technologies overtake in this sense with that feature, that the 'half-life' periods of these consequences often much more large than the whole written history of mankind. The most distant consequences of the long-term processing with radioactive materials bound on our view with the human factor. If for 30-100 years beforehand it is possible to count destiny of radiological contamination or green meadows but to provide behavior of the people or society, as a whole is high-gravity even per annum forward. Objectivity of laws of history
Cylindrical collapse and gravitational waves
Energy Technology Data Exchange (ETDEWEB)
Herrera, L [Escuela de FIsica, Faculdad de Ciencias, Universidad Central de Venezuela, Caracas, Venezuela (Venezuela); Santos, N O [Universite Pierre et Marie Curie, CNRS/FRE 2460 LERMA/ERGA, Tour 22-12, 4eme etage, BoIte 142, 4 place Jussieu, 75252 Paris Cedex 05 (France); Laboratorio Nacional de Computacao Cientifica, 25651-070 Petropolis RJ (Brazil); Centro Brasileiro de Pesquisas Fisicas, 22290-180 Rio de Janeiro RJ (Brazil)
2005-06-21
We study the matching conditions for a collapsing anisotropic cylindrical perfect fluid, and we show that its radial pressure is non-zero on the surface of the cylinder and proportional to the time-dependent part of the field produced by the collapsing fluid. This result resembles the one that arises for the radiation-though non-gravitational-in the spherically symmetric collapsing dissipative fluid, in the diffusion approximation.
El eterno hechizo de Devdas / The Eternal Spell of Devdas
Directory of Open Access Journals (Sweden)
Helio San Miguel
2016-08-01
áficas, arquetipos, P.C. Barua, Bimal Roy, Sanjay Leela Bhansali, Anurag Kashyap.AbstractThe many film adaptations of the novella Devdas, published in 1917, have made its protagonist the most important character in Indian cinema and a national archetype similar to Hamlet or Don Quixote. Devdas embodies a tragic hero, introverted and weak, trapped in a web of social conventions that he does not have the courage to break, not even to fight for Paro, the love of his life. Devdas will turn instead to alcohol and to the attentions of Chandramukhi, a prostitute. The astonishing impact of some of these film adaptations, especially those directed by P.C. Barua and Bimal Roy, have contributed, in both formal and thematic levels, to its long-lasting influence in the development of Indian commercial cinema. This is visible in many other stories that are not direct adaptations of Devdas. Thus, Paro and Chandramukhi evolved into well-known and frequently opposed feminine archetypes of the virtuous woman and the prostitute with a heart of gold; the contraposition between rural and urban environments became commonplace in Hindi cinema; the submission to patriarchal authority and traditions over romantic love and one’s own will has been a recurrent theme in Bollywood movies. In the 21st century, the myth of Devdas has again surged in various versions. Among them, those of Sanjay Leela Bhansali and Anurag Kashyap have updated it in opposing ways, but both responding to the new winds that blow in contemporary Bollywood. One way or another, for almost a hundred years, no generation of Indian spectators and filmmakers have been able to escape the spell of Devdas. History has become a privileged object of analysis to study some fundamental features of the evolution ofBollywood and by extension of India’s commercial cinema.Keywords: Bollywood, Devdas, film adaptations, archetypes, P.C. Barua, Bimal Roy, Sanjay Leela Bhansali, Anurag Kashyap.
From here and now to infinity and eternity: a message to new medical doctors(*).
Lapeña, José Florencio F
2014-01-01
Commencement means both an end and a beginning; the end of the academic year and the beginning of the rest of your life as new physicians. For such a beginning, it is useful to view it in retrospect, from the point of view of the end, by conducting a pre-mortem on your life. Taking the existentialist (ex sistere, to stand forth) stance, each of us can be classified into one of four basic types of person, based on our characteristic space and time (or spatio-temporal) context or horizon. Our space can be limited to the "here" and our time to the "now;" or our space may extend to "infinity" and our time embark on "eternity." In-between these poles, most have space contexts rooted in their home and work "turf" and time involving their "lifetime," while some expand their space to include the "world" and their time to encompass "history." From the "here and now" and "turf and lifetime" contexts, the horizons of "world and history," and "infinity and eternity" are examined, challenging new medical doctors to realize their full potential. The new physician is exhorted not to wait for a post-mortem to define (des finitus, to set limits) his or her life. He or she should stand forth, to live, and give life. The new medical doctor is encouraged to look to the sunrise, draw strength from the sunshine, to be brave, and strong and true.
Spherical collapse in chameleon models
International Nuclear Information System (INIS)
Brax, Ph.; Rosenfeld, R.; Steer, D.A.
2010-01-01
We study the gravitational collapse of an overdensity of nonrelativistic matter under the action of gravity and a chameleon scalar field. We show that the spherical collapse model is modified by the presence of a chameleon field. In particular, we find that even though the chameleon effects can be potentially large at small scales, for a large enough initial size of the inhomogeneity the collapsing region possesses a thin shell that shields the modification of gravity induced by the chameleon field, recovering the standard gravity results. We analyse the behaviour of a collapsing shell in a cosmological setting in the presence of a thin shell and find that, in contrast to the usual case, the critical density for collapse in principle depends on the initial comoving size of the inhomogeneity
Spherical collapse in chameleon models
Energy Technology Data Exchange (ETDEWEB)
Brax, Ph. [Institut de Physique Théorique, CEA, IPhT, CNRS, URA 2306, F-91191Gif/Yvette Cedex (France); Rosenfeld, R. [Instituto de Física Teórica, Universidade Estadual Paulista, Rua Dr. Bento T. Ferraz, 271, 01140-070, São Paulo (Brazil); Steer, D.A., E-mail: brax@spht.saclay.cea.fr, E-mail: rosenfel@ift.unesp.br, E-mail: daniele.steer@apc.univ-paris7.fr [APC, UMR 7164, CNRS, Université Paris 7, 10 rue Alice Domon et Léonie Duquet, 75205 Paris Cedex 13 (France)
2010-08-01
We study the gravitational collapse of an overdensity of nonrelativistic matter under the action of gravity and a chameleon scalar field. We show that the spherical collapse model is modified by the presence of a chameleon field. In particular, we find that even though the chameleon effects can be potentially large at small scales, for a large enough initial size of the inhomogeneity the collapsing region possesses a thin shell that shields the modification of gravity induced by the chameleon field, recovering the standard gravity results. We analyse the behaviour of a collapsing shell in a cosmological setting in the presence of a thin shell and find that, in contrast to the usual case, the critical density for collapse in principle depends on the initial comoving size of the inhomogeneity.
Spherical Collapse in Chameleon Models
Brax, Ph; Steer, D A
2010-01-01
We study the gravitational collapse of an overdensity of nonrelativistic matter under the action of gravity and a chameleon scalar field. We show that the spherical collapse model is modified by the presence of a chameleon field. In particular, we find that even though the chameleon effects can be potentially large at small scales, for a large enough initial size of the inhomogeneity the collapsing region possesses a thin shell that shields the modification of gravity induced by the chameleon field, recovering the standard gravity results. We analyse the behaviour of a collapsing shell in a cosmological setting in the presence of a thin shell and find that, in contrast to the usual case, the critical density for collapse depends on the initial comoving size of the inhomogeneity.
Neutrino Masses in the Landscape and Global-Local Dualities in Eternal Inflation
Mainemer Katz, Dan
In this dissertation we study two topics in Theoretical Cosmology: one more formal, the other more phenomenological. We work in the context of eternally inflating cosmologies. These arise in any fundamental theory that contains at least one stable or metastable de Sitter vacuum. Each topic is presented in a different chapter: Chapter 1 deals with the measure problem in eternal inflation. Global-local duality is the equivalence of seemingly different regulators in eternal inflation. For example, the light- cone time cutoff (a global measure, which regulates time) makes the same predictions as the causal patch (a local measure that cuts off space). We show that global-local duality is far more general. It rests on a redundancy inherent in any global cutoff: at late times, an attractor regime is reached, characterized by the unlimited exponential self-reproduction of a certain fundamental region of spacetime. An equivalent local cutoff can be obtained by restricting to this fundamental region. We derive local duals to several global cutoffs of interest. The New Scale Factor Cutoff is dual to the Short Fat Geodesic, a geodesic of fixed infinitesimal proper width. Vilenkin's CAH Cutoff is equivalent to the Hubbletube, whose width is proportional to the local Hubble volume. The famous youngness problem of the Proper Time Cutoff can be readily understood by considering its local dual, the Incredible Shrinking Geodesic. The chapter closely follows our paper. Chapter 2 deals with the question of whether neutrino masses could be anthropically explained. The sum of active neutrino masses is well constrained, 58 meV ≤ mupsilon [is approximately less than] 0.23 eV, but the origin of this scale is not well understood. Here we investigate the possibility that it arises by environmental selection in a large landscape of vacua. Earlier work had noted the detrimental effects of neutrinos on large scale structure. However, using Boltzmann codes to compute the smoothed density
Scrambling time from local perturbations of the eternal BTZ black hole
Energy Technology Data Exchange (ETDEWEB)
Caputa, Paweł [Nordita, KTH Royal Institute of Technology and Stockholm University,Roslagstullsbacken 23, Stockholm, SE-106 91 (Sweden); Simón, Joan; Štikonas, Andrius [School of Mathematics and Maxwell Institute for Mathematical Sciences, University of Edinburgh,King’s Buildings, Edinburgh, EH9 3FD (United Kingdom); Takayanagi, Tadashi [Yukawa Institute for Theoretical Physics, Kyoto University,Kitashirakawa Oiwakecho, Sakyo-ku, Kyoto, 606-8502 (Japan); Kavli Institute for the Physics and Mathematics of the Universe, The University of Tokyo,5-1-5 Kashiwanoha, Kashiwa, 277-8583 (Japan); Watanabe, Kento [Yukawa Institute for Theoretical Physics, Kyoto University,Kitashirakawa Oiwakecho, Sakyo-ku, Kyoto, 606-8502 (Japan)
2015-08-04
We compute the mutual information between finite intervals in two non-compact 2d CFTs in the thermofield double formulation after one of them has been locally perturbed by a primary operator at some time t{sub ω} in the large c limit. We determine the time scale, called the scrambling time, at which the mutual information vanishes and the original entanglement between the thermofield double gets destroyed by the perturbation. We provide a holographic description in terms of a free falling particle in the eternal BTZ black hole that exactly matches our CFT calculations. Our results hold for any time t{sub ω}. In particular, when the latter is large, they reproduce the bulk shock-wave propagation along the BTZ horizon description.
Farewell to „eternal peace“? New wars and their moral and legal challenges
Directory of Open Access Journals (Sweden)
Zaborowski Holger
2015-01-01
Full Text Available This essay first discusses modern wars and the idea of „eternal peace“ as developed in modernity. It shows how in the 20th century the reality of war (as well as the concept of peace was already transformed due to the development of new technologies such as the nuclear bomb. Now, peace was replaced by a „cold war“. The essay then goes on to introduce the concept of post-national wars (as opposed to modern national wars. It argues that this concept fails fully to describe contemporary warfare. What is needed is a deeper analysis that considers most recent technological developments such as the world wide web or drone technology and the way these technologies paradigmatically change the concept and reality of war (and of peace, too. The essay concludes by arguing that the moral and legal challenges of this kind of war deserve more attention than they are getting in the current discussion.
Universality of the Volume Bound in Slow-Roll Eternal Inflation
Energy Technology Data Exchange (ETDEWEB)
Dubovsky, Sergei; Senatore, Leonardo; Villadoro, Giovanni
2012-03-28
It has recently been shown that in single field slow-roll inflation the total volume cannot grow by a factor larger than e{sup S{sub dS}/2} without becoming infinite. The bound is saturated exactly at the phase transition to eternal inflation where the probability to produce infinite volume becomes non zero. We show that the bound holds sharply also in any space-time dimensions, when arbitrary higher-dimensional operators are included and in the multi-field inflationary case. The relation with the entropy of de Sitter and the universality of the bound strengthen the case for a deeper holographic interpretation. As a spin-off we provide the formalism to compute the probability distribution of the volume after inflation for generic multi-field models, which might help to address questions about the population of vacua of the landscape during slow-roll inflation.
Computational models of stellar collapse and core-collapse supernovae
International Nuclear Information System (INIS)
Ott, Christian D; O'Connor, Evan; Schnetter, Erik; Loeffler, Frank; Burrows, Adam; Livne, Eli
2009-01-01
Core-collapse supernovae are among Nature's most energetic events. They mark the end of massive star evolution and pollute the interstellar medium with the life-enabling ashes of thermonuclear burning. Despite their importance for the evolution of galaxies and life in the universe, the details of the core-collapse supernova explosion mechanism remain in the dark and pose a daunting computational challenge. We outline the multi-dimensional, multi-scale, and multi-physics nature of the core-collapse supernova problem and discuss computational strategies and requirements for its solution. Specifically, we highlight the axisymmetric (2D) radiation-MHD code VULCAN/2D and present results obtained from the first full-2D angle-dependent neutrino radiation-hydrodynamics simulations of the post-core-bounce supernova evolution. We then go on to discuss the new code Zelmani which is based on the open-source HPC Cactus framework and provides a scalable AMR approach for 3D fully general-relativistic modeling of stellar collapse, core-collapse supernovae and black hole formation on current and future massively-parallel HPC systems. We show Zelmani's scaling properties to more than 16,000 compute cores and discuss first 3D general-relativistic core-collapse results.
Computational models of stellar collapse and core-collapse supernovae
Energy Technology Data Exchange (ETDEWEB)
Ott, Christian D; O' Connor, Evan [TAPIR, Mailcode 350-17, California Institute of Technology, Pasadena, CA (United States); Schnetter, Erik; Loeffler, Frank [Center for Computation and Technology, Louisiana State University, Baton Rouge, LA (United States); Burrows, Adam [Department of Astrophysical Sciences, Princeton University, Princeton, NJ (United States); Livne, Eli, E-mail: cott@tapir.caltech.ed [Racah Institute of Physics, Hebrew University, Jerusalem (Israel)
2009-07-01
Core-collapse supernovae are among Nature's most energetic events. They mark the end of massive star evolution and pollute the interstellar medium with the life-enabling ashes of thermonuclear burning. Despite their importance for the evolution of galaxies and life in the universe, the details of the core-collapse supernova explosion mechanism remain in the dark and pose a daunting computational challenge. We outline the multi-dimensional, multi-scale, and multi-physics nature of the core-collapse supernova problem and discuss computational strategies and requirements for its solution. Specifically, we highlight the axisymmetric (2D) radiation-MHD code VULCAN/2D and present results obtained from the first full-2D angle-dependent neutrino radiation-hydrodynamics simulations of the post-core-bounce supernova evolution. We then go on to discuss the new code Zelmani which is based on the open-source HPC Cactus framework and provides a scalable AMR approach for 3D fully general-relativistic modeling of stellar collapse, core-collapse supernovae and black hole formation on current and future massively-parallel HPC systems. We show Zelmani's scaling properties to more than 16,000 compute cores and discuss first 3D general-relativistic core-collapse results.
The collapsed football pla yer
African Journals Online (AJOL)
Football is the most popular sport in the world, played by over 265 ... FIFA Medical Officer and Honorary Part-time Lecturer, Wits Centre for Exercise Science and Sports Medicine, Johannesburg .... Management of a collapsed player does not.
Collapse of large extra dimensions
International Nuclear Information System (INIS)
Geddes, James
2002-01-01
In models of spacetime that are the product of a four-dimensional spacetime with an 'extra' dimension, there is the possibility that the extra dimension will collapse to zero size, forming a singularity. We ask whether this collapse is likely to destroy the spacetime. We argue, by an appeal to the four-dimensional cosmic censorship conjecture, that--at least in the case when the extra dimension is homogeneous--such a collapse will lead to a singularity hidden within a black string. We also construct explicit initial data for a spacetime in which such a collapse is guaranteed to occur and show how the formation of a naked singularity is likely avoided
Stress evolution during caldera collapse
Holohan, E. P.; Schöpfer, M. P. J.; Walsh, J. J.
2015-07-01
The mechanics of caldera collapse are subject of long-running debate. Particular uncertainties concern how stresses around a magma reservoir relate to fracturing as the reservoir roof collapses, and how roof collapse in turn impacts upon the reservoir. We used two-dimensional Distinct Element Method models to characterise the evolution of stress around a depleting sub-surface magma body during gravity-driven collapse of its roof. These models illustrate how principal stress orientations rotate during progressive deformation so that roof fracturing transitions from initial reverse faulting to later normal faulting. They also reveal four end-member stress paths to fracture, each corresponding to a particular location within the roof. Analysis of these paths indicates that fractures associated with ultimate roof failure initiate in compression (i.e. as shear fractures). We also report on how mechanical and geometric conditions in the roof affect pre-failure unloading and post-failure reloading of the reservoir. In particular, the models show how residual friction within a failed roof could, without friction reduction mechanisms or fluid-derived counter-effects, inhibit a return to a lithostatically equilibrated pressure in the magma reservoir. Many of these findings should be transferable to other gravity-driven collapse processes, such as sinkhole formation, mine collapse and subsidence above hydrocarbon reservoirs.
Matter and gravitons in the gravitational collapse
Directory of Open Access Journals (Sweden)
Roberto Casadio
2016-12-01
Full Text Available We consider the effects of gravitons in the collapse of baryonic matter that forms a black hole. We first note that the effective number of (soft off-shell gravitons that account for the (negative Newtonian potential energy generated by the baryons is conserved and always in agreement with Bekenstein's area law of black holes. Moreover, their (positive interaction energy reproduces the expected post-Newtonian correction and becomes of the order of the total ADM mass of the system when the size of the collapsing object approaches its gravitational radius. This result supports a scenario in which the gravitational collapse of regular baryonic matter produces a corpuscular black hole without central singularity, in which both gravitons and baryons are marginally bound and form a Bose–Einstein condensate at the critical point. The Hawking emission of baryons and gravitons is then described by the quantum depletion of the condensate and we show the two energy fluxes are comparable, albeit negligibly small on astrophysical scales.
Matter and gravitons in the gravitational collapse
Energy Technology Data Exchange (ETDEWEB)
Casadio, Roberto, E-mail: casadio@bo.infn.it [Dipartimento di Fisica e Astronomia, Alma Mater Universià di Bologna, via Irnerio 46, 40126 Bologna (Italy); I.N.F.N., Sezione di Bologna, IS FLAG, viale B. Pichat 6/2, I-40127 Bologna (Italy); Giugno, Andrea, E-mail: A.Giugno@physik.uni-muenchen.de [Arnold Sommerfeld Center, Ludwig-Maximilians-Universität, Theresienstraße 37, 80333 München (Germany); Giusti, Andrea, E-mail: andrea.giusti@bo.infn.it [Dipartimento di Fisica e Astronomia, Alma Mater Universià di Bologna, via Irnerio 46, 40126 Bologna (Italy); I.N.F.N., Sezione di Bologna, IS FLAG, viale B. Pichat 6/2, I-40127 Bologna (Italy)
2016-12-10
We consider the effects of gravitons in the collapse of baryonic matter that forms a black hole. We first note that the effective number of (soft off-shell) gravitons that account for the (negative) Newtonian potential energy generated by the baryons is conserved and always in agreement with Bekenstein's area law of black holes. Moreover, their (positive) interaction energy reproduces the expected post-Newtonian correction and becomes of the order of the total ADM mass of the system when the size of the collapsing object approaches its gravitational radius. This result supports a scenario in which the gravitational collapse of regular baryonic matter produces a corpuscular black hole without central singularity, in which both gravitons and baryons are marginally bound and form a Bose–Einstein condensate at the critical point. The Hawking emission of baryons and gravitons is then described by the quantum depletion of the condensate and we show the two energy fluxes are comparable, albeit negligibly small on astrophysical scales.
Geophysical observations at cavity collapse
Jousset, Philippe; Bazargan-Sabet, Behrooz; Lebert, François; Bernardie, Séverine; Gourry, Jean-Christophe
2010-05-01
In Lorraine region (France) salt layers at about 200 meters depth are exploited by Solvay using solution mining methodology which consists in extracting the salt by dissolution, collapsing the cavern overburden during the exploitation phase and finally reclaiming the landscape by creating a water area. In this process, one of the main challenges for the exploiting company is to control the initial 120-m diameter collapse so as to minimize possible damages. In order to detect potential precursors and understand processes associated with such collapses, a wide series of monitoring techniques including micro seismics, broad-band seismology, hydro-acoustic, electromagnetism, gas probing, automatic leveling, continuous GPS, continuous gravity and borehole extensometry was set-up in the frame of an in-situ study carried out by the "Research Group for the Impact and Safety of Underground Works" (GISOS, France). Equipments were set-up well before the final collapse, giving a unique opportunity to analyze a great deal of information prior to and during the collapse process which has been successfully achieved on February the 13th, 2009 by controlling the cavity internal pressure. In this work, we present the results of data recorded by a network of 3 broadband seismometers, 2 accelerometers, 2 tilt-meters and a continuously gravity meter. We relate the variations of the brine pumping rate with the evolutions of the induced geophysical signals and finally we propose a first mechanical model for describing the controlled collapse. Beyond the studied case, extrapolation of the results obtained might contribute to the understanding of uncontrolled cavity collapses, such as pit-craters or calderas at volcanoes.
Magnetic tension and gravitational collapse
International Nuclear Information System (INIS)
Tsagas, Christos G
2006-01-01
The gravitational collapse of a magnetized medium is investigated by studying qualitatively the convergence of a timelike family of non-geodesic worldlines in the presence of a magnetic field. Focusing on the field's tension, we illustrate how the winding of the magnetic forcelines due to the fluid's rotation assists the collapse, while shear-like distortions in the distribution of the field's gradients resist contraction. We also show that the relativistic coupling between magnetism and geometry, together with the tension properties of the field, lead to a magneto-curvature stress that opposes the collapse. This tension stress grows stronger with increasing curvature distortion, which means that it could potentially dominate over the gravitational pull of the matter. If this happens, a converging family of non-geodesic worldlines can be prevented from focusing without violating the standard energy conditions
Collapse of nonlinear Langmuir waves
International Nuclear Information System (INIS)
Malkin, V.M.
1986-01-01
The dispersion of sufficiently intensive Langmuir waves is determined by intrinsic (electron) nonlinearity. During Langmuir collapse the wave energy density required for the appearance of electron nonlinearity is attained, generally speaking, prior to the development of dissipative processes. Up to now, the effect of electron nonlinearity on the collapse dynamics and spectrum of strong Langmuir turbulence ( which may be very appreciable ) has not been studied extensively because of the difficulty of describing nonlinear Langmuir waves. In the present paper the positive determinacy of the electron nonlinear hamiltonian is proven, the increment of modulation instability of a nonlinear Langmuir wave cluster localized in a cavity is calculated, and the universal law of their collapse is found
Understanding Core-Collapse Supernovae
Hix, W. R.; Lentz, E. J.; Baird, M.; Messer, O. E. B.; Mezzacappa, A.; Lee, C.-T.; Bruenn, S. W.; Blondin, J. M.; Marronetti, P.
2010-03-01
Our understanding of core-collapse supernovae continues to improve as better microphysics is included in increasingly realistic neutrino-radiationhydrodynamic simulations. Recent multi-dimensional models with spectral neutrino transport, which slowly develop successful explosions for a range of progenitors between 12 and 25 solar mass, have motivated changes in our understanding of the neutrino reheating mechanism. In a similar fashion, improvements in nuclear physics, most notably explorations of weak interactions on nuclei and the nuclear equation of state, continue to refine our understanding of how supernovae explode. Recent progresses on both the macroscopic and microscopic effects that affect core-collapse supernovae are discussed.
Electron capture and stellar collapse
International Nuclear Information System (INIS)
Chung, K.C.
1979-01-01
In order, to investigate the function of electron capture in the phenomenon of pre-supernovae gravitacional collapse, an hydrodynamic caculation was carried out, coupling capture, decay and nuclear reaction equation system. A star simplified model (homogeneous model) was adopted using fermi ideal gas approximation for tthe sea of free electrons and neutrons. The non simplified treatment from quasi-static evolution to collapse is presented. The capture and beta decay rates, as wellas neutron delayed emission, were calculated by beta decay crude theory, while the other reaction rates were determined by usual theories. The preliminary results are presented. (M.C.K.) [pt
Moduli destabilization via gravitational collapse
Energy Technology Data Exchange (ETDEWEB)
Hwang, Dong-il [Sogang Univ., Seoul (Korea, Republic of). Center for Quantum Spacetime; Pedro, Francisco G. [Deutsches Elektronen-Synchrotron DESY, Hamburg (Germany). Theory Group; Yeom, Dong-han [Sogang Univ., Seoul (Korea, Republic of). Center for Quantum Spacetime; Kyoto Univ. (Japan). Yukawa Inst. for Theoretical Physics
2013-06-15
We examine the interplay between gravitational collapse and moduli stability in the context of black hole formation. We perform numerical simulations of the collapse using the double null formalism and show that the very dense regions one expects to find in the process of black hole formation are able to destabilize the volume modulus. We establish that the effects of the destabilization will be visible to an observer at infinity, opening up a window to a region in spacetime where standard model's couplings and masses can differ significantly from their background values.
Newton force from wave function collapse: speculation and test
International Nuclear Information System (INIS)
Diósi, Lajos
2014-01-01
The Diosi-Penrose model of quantum-classical boundary postulates gravity-related spontaneous wave function collapse of massive degrees of freedom. The decoherence effects of the collapses are in principle detectable if not masked by the overwhelming environmental decoherence. But the DP (or any other, like GRW, CSL) spontaneous collapses are not detectable themselves, they are merely the redundant formalism of spontaneous decoherence. To let DP collapses become testable physics, recently we extended the DP model and proposed that DP collapses are responsible for the emergence of the Newton gravitational force between massive objects. We identified the collapse rate, possibly of the order of 1/ms, with the rate of emergence of the Newton force. A simple heuristic emergence (delay) time was added to the Newton law of gravity. This non-relativistic delay is in peaceful coexistence with Einstein's relativistic theory of gravitation, at least no experimental evidence has so far surfaced against it. We derive new predictions of such a 'lazy' Newton law that will enable decisive laboratory tests with available technologies. The simple equation of 'lazy' Newton law deserves theoretical and experimental studies in itself, independently of the underlying quantum foundational considerations.
Intracapsular implant rupture: MR findings of incomplete shell collapse.
Soo, M S; Kornguth, P J; Walsh, R; Elenberger, C; Georgiade, G S; DeLong, D; Spritzer, C E
1997-01-01
The objective of this study was to determine the frequency and significance of the MR findings of incomplete shell collapse for detecting implant rupture in a series of surgically removed breast prostheses. MR images of 86 breast implants in 44 patients were studied retrospectively and correlated with surgical findings at explantation. MR findings included (a) complete shell collapse (linguine sign), 21 implants; (b) incomplete shell collapse (subcapsular line sign, teardrop sign, and keyhole sign), 33 implants; (c) radial folds, 31 implants; and (d) normal, 1 implant. The subcapsular line sign was seen in 26 implants, the teardrop sign was seen in 27 implants, and the keyhole sign was seen in 23 implants. At surgery, 48 implants were found to be ruptured and 38 were intact. The MR findings of ruptured implants showed signs of incomplete collapse in 52% (n = 25), linguine sign in 44% (n = 21), and radial folds in 4% (n = 2). The linguine sign perfectly predicted implant rupture, but sensitivity was low. Findings of incomplete shell collapse improved sensitivity and negative predictive values, and the subcapsular line sign produced a significant incremental increase in predictive ability. MRI signs of incomplete shell collapse were more common than the linguine sign in ruptured implants and are significant contributors to the high sensitivity and negative predictive values of MRI for evaluating implant integrity.
Reconceptualizing Mujō: A Japanese worldview not in the pursuit of eternity
Directory of Open Access Journals (Sweden)
A. Rezaee
2017-09-01
Full Text Available This paper discusses the concept of "Mujō," one of the fundamental concepts of Japanese culture and thinking. The concept of Mujō, compared with other concepts and keywords necessary to understand Japanese culture, is completely unknown in Iran. In fact, this concept is a prerequisite for understanding many aspects of Japanese culture. Some of these aspects include the importance of sakura or cherry blossoms in Japanese culture, the reason for the preference of wood over stone in Japanese architecture, the justification for the tradition of samurai suicide by sword, the kamikaze concept, and the specificity of the meaning of the word for goodbye (sayonara. Mujō is also instrumental in understanding the theme of many Japanese poems, particularly Haiku. Mujō represents a kind of worldview that has emerged throughout the history of Japan and through the integration of genuine Japanese thoughts with the thoughts of Buddhism. After explaining the literal and conceptual meaning of Mujō, the present article deals with its manifestations in the literature, culture, society, and language of Japan. This article also attempts, from the perspective of a non-Japanese, to examine one aspect of the Japanese worldview. Based on the various interpretations of Mujō, the author has attempted to reconceptualize Mujō by interpreting it as "escape from eternity." The present article seeks to respond to the implications of this conceptualization.
Ebola Laboratory Response at the Eternal Love Winning Africa Campus, Monrovia, Liberia, 2014–2015
de Wit, Emmie; Rosenke, Kyle; Fischer, Robert J.; Marzi, Andrea; Prescott, Joseph; Bushmaker, Trenton; van Doremalen, Neeltje; Emery, Shannon L.; Falzarano, Darryl; Feldmann, Friederike; Groseth, Allison; Hoenen, Thomas; Juma, Bonventure; McNally, Kristin L.; Ochieng, Melvin; Omballa, Victor; Onyango, Clayton O.; Owuor, Collins; Rowe, Thomas; Safronetz, David; Self, Joshua; Williamson, Brandi N.; Zemtsova, Galina; Grolla, Allen; Kobinger, Gary; Rayfield, Mark; Ströher, Ute; Strong, James E.; Best, Sonja M.; Ebihara, Hideki; Zoon, Kathryn C.; Nichol, Stuart T.; Nyenswah, Tolbert G.; Bolay, Fatorma K.; Massaquoi, Moses; Feldmann, Heinz; Fields, Barry
2016-01-01
West Africa experienced the first epidemic of Ebola virus infection, with by far the greatest number of cases in Guinea, Sierra Leone, and Liberia. The unprecedented epidemic triggered an unparalleled response, including the deployment of multiple Ebola treatment units and mobile/field diagnostic laboratories. The National Institute of Allergy and Infectious Diseases and the Centers for Disease Control and Prevention deployed a joint laboratory to Monrovia, Liberia, in August 2014 to support the newly founded Ebola treatment unit at the Eternal Love Winning Africa (ELWA) campus. The laboratory operated initially out of a tent structure but quickly moved into a fixed-wall building owing to severe weather conditions, the need for increased security, and the high sample volume. Until May 2015, when the laboratory closed, the site handled close to 6000 clinical specimens for Ebola virus diagnosis and supported the medical staff in case patient management. Laboratory operation and safety, as well as Ebola virus diagnostic assays, are described and discussed; in addition, lessons learned for future deployments are reviewed. PMID:27333914
Ebola Laboratory Response at the Eternal Love Winning Africa Campus, Monrovia, Liberia, 2014-2015.
de Wit, Emmie; Rosenke, Kyle; Fischer, Robert J; Marzi, Andrea; Prescott, Joseph; Bushmaker, Trenton; van Doremalen, Neeltje; Emery, Shannon L; Falzarano, Darryl; Feldmann, Friederike; Groseth, Allison; Hoenen, Thomas; Juma, Bonventure; McNally, Kristin L; Ochieng, Melvin; Omballa, Victor; Onyango, Clayton O; Owuor, Collins; Rowe, Thomas; Safronetz, David; Self, Joshua; Williamson, Brandi N; Zemtsova, Galina; Grolla, Allen; Kobinger, Gary; Rayfield, Mark; Ströher, Ute; Strong, James E; Best, Sonja M; Ebihara, Hideki; Zoon, Kathryn C; Nichol, Stuart T; Nyenswah, Tolbert G; Bolay, Fatorma K; Massaquoi, Moses; Feldmann, Heinz; Fields, Barry
2016-10-15
West Africa experienced the first epidemic of Ebola virus infection, with by far the greatest number of cases in Guinea, Sierra Leone, and Liberia. The unprecedented epidemic triggered an unparalleled response, including the deployment of multiple Ebola treatment units and mobile/field diagnostic laboratories. The National Institute of Allergy and Infectious Diseases and the Centers for Disease Control and Prevention deployed a joint laboratory to Monrovia, Liberia, in August 2014 to support the newly founded Ebola treatment unit at the Eternal Love Winning Africa (ELWA) campus. The laboratory operated initially out of a tent structure but quickly moved into a fixed-wall building owing to severe weather conditions, the need for increased security, and the high sample volume. Until May 2015, when the laboratory closed, the site handled close to 6000 clinical specimens for Ebola virus diagnosis and supported the medical staff in case patient management. Laboratory operation and safety, as well as Ebola virus diagnostic assays, are described and discussed; in addition, lessons learned for future deployments are reviewed. Published by Oxford University Press for the Infectious Diseases Society of America 2016. This work is written by (a) US Government employee(s) and is in the public domain in the US.
Eternal extended inflation and graceful exit from old inflation without Jordan-Brans-Dicke
Linde, Andrei
1990-10-01
Recently a possible solution to the graceful exit problem of the old inflation was proposed in the context of the Jordan-Brans-Dicke theory (extended inflation). In this paper we will argue that inflation in this theory occurs in a most natural way if it starts near the Planck density, as in the standard version of chaotic inflation. With most natural initial conditions, the inflationary universe in the JBD theory enters the stage of permanent reproduction of new inflationary domains (eternal extended inflation). In order to realize the extended inflation scenario at least two classical scalar fields driving inflation are necessary, as distinct from the simplest versions of new and chaotic inflation. It is shown that in the theory of two scalar fields one can solve the graceful exit problem even without modifying the Einstein gravity theory, due to the possibility that the decay rate of the false rate vacuum in old inflation depends on the value of the second scalar field and hence on time. Address after 1 September 1990: Physics Department, Stanford University, Varian Building, Stanford, CA 94305, USA.
Characteristic thickened cell walls of the bracts of the 'eternal flower' Helichrysum bracteatum.
Nishikawa, Kuniko; Ito, Hiroaki; Awano, Tatsuya; Hosokawa, Munetaka; Yazawa, Susumu
2008-07-01
Helichrysum bracteatum is called an 'eternal flower' and has large, coloured, scarious bracts. These maintain their aesthetic value without wilting or discoloration for many years. There have been no research studies of cell death or cell morphology of the scarious bract, and hence the aim of this work was to elucidate these characteristics for the bract of H. bracteatum. DAPI (4'6-diamidino-2-phenylindol dihydrochloride) staining and fluorescence microscopy were used for observation of cell nuclei. Light microscopy (LM), transmission electron microscopy (TEM) and polarized light microscopy were used for observation of cells, including cell wall morphology. Cell death occurred at the bract tip during the early stage of flower development. The cell wall was the most prominent characteristic of H. bracteatum bract cells. Characteristic thickened secondary cell walls on the inside of the primary cell walls were observed in both epidermal and inner cells. In addition, the walls of all cells exhibited birefringence. Characteristic thickened secondary cell walls have orientated cellulose microfibrils as well as general secondary cell walls of the tracheary elements. For comparison, these characters were not observed in the petal and bract tissues of Chrysanthemum morifolium. Bracts at anthesis are composed of dead cells. Helichrysum bracteatum bracts have characteristic thickened secondary cell walls that have not been observed in the parenchyma of any other flowers or leaves. The cells of the H. bracteatum bract differ from other tissues with secondary cell walls, suggesting that they may be a new cell type.
Our Lord Jesus Christ, the Eternal High Priest: new feast for Poland
Directory of Open Access Journals (Sweden)
Dominik Ostrowski
2014-03-01
Full Text Available In 2013, the feast of Jesus Christ the Eternal High Priest was introduced into the liturgical calendar of the Church in Poland. In studying the history and liturgical texts for the new feast, the authors undertook the first attempt of a comprehensive liturgical analysis of its liturgy, presenting its historical background and theology. Starting from describing the circumstances of its introduction, and ending on the presentation of its summary in the „Martyrologium”, the authors paid a special attention to the form of the Mass and, also, tried to take the theological lecture of Mass readings. Then, also the theological conclusions of analytical reading of texts of the Liturgy of the Hours have been presented. The study is the first Polish comprehensive presentation of euchology for the new feast, sometimes it only opens threads for further discussion. However, it clearly shows the fundamental traces of the new feast’s theology. Its central theme is the priesthood of Christ as superior to the priesthood of the Old Testament. The only true priesthood of Christ involves especially, in sacramental way, the ordained ministers. The ministerial priesthood, in fact, becomes the second subject of the feast, as the prayer for priests was the main motivation for introduction of this feast into liturgical calendars of local Churches.
Eternal extended inflation and graceful exit from old inflation without Jordan-Brans-Dicke
International Nuclear Information System (INIS)
Linde, A.
1990-01-01
Recently a possible solution to the graceful exit problem of the old inflation was proposed in the context of the Jordan-Brans-Dicke theory (extended inflation). In this paper we will argue that inflation in this theory occurs in a most natural way if it starts near the Planck density, as in the standard version of chaotic inflation. With most natural initial conditions, the inflationary universe in the JBD theory enters the stage of permanent reproduction of new inflationary domains (eternal extended inflation). In order to realize the extended inflation scenario at least two classical scalar fields driving inflation are necessary, as distinct from the simplest versions of new and chaotic inflation. It is shown that in the theory of two scalar fields one can solve the graceful exit problem even without modifying the Einstein gravity theory, due to the possibility that the decay rate of the false vacuum in old inflation depends on the value of the second scalar field and hence on time. (orig.)
Temperature evolution during dissipative collapse
Indian Academy of Sciences (India)
Abstract. We investigate the gravitational collapse of a radiating sphere evolving into a final static configuration described by the interior Schwarzschild solution. The temperature profiles of this par- ticular model are obtained within the framework of causal thermodynamics. The overall temperature evolution is enhanced by ...
Numerical investigations of gravitational collapse
Energy Technology Data Exchange (ETDEWEB)
Csizmadia, Peter; Racz, Istvan, E-mail: iracz@rmki.kfki.h [RMKI, Budapest, Konkoly Thege Miklos ut 29-33, H-1121 (Hungary)
2010-03-01
Some properties of a new framework for simulating generic 4-dimensional spherically symmetric gravitating systems are discussed. The framework can be used to investigate spacetimes that undergo complete gravitational collapse. The analytic setup is chosen to ensure that our numerical method is capable to follow the time evolution everywhere, including the black hole region.
On the Induced Gravitational Collapse
Directory of Open Access Journals (Sweden)
M. Becerra Laura
2018-01-01
Full Text Available The induced gravitational collapse (IGC paradigm has been applied to explain the long gamma ray burst (GRB associated with type Ic supernova, and recently the Xray flashes (XRFs. The progenitor is a binary systems of a carbon-oxygen core (CO and a neutron star (NS. The CO core collapses and undergoes a supernova explosion which triggers the hypercritical accretion onto the NS companion (up to 10-2 M⊙s-1. For the binary driven hypernova (BdHNe, the binary system is enough bound, the NS reach its critical mass, and collapse to a black hole (BH with a GRB emission characterized by an isotropic energy Eiso > 1052 erg. Otherwise, for binary systems with larger binary separations, the hypercritical accretion onto the NS is not sufficient to induced its gravitational collapse, a X-ray flash is produced with Eiso < 1052 erg. We’re going to focus in identify the binary parameters that limits the BdHNe systems with the XRFs systems.
Transport in the Sawtooth Collapse
International Nuclear Information System (INIS)
Wesson, J.A.; Alper, B.; Edwards, A.W.; Gill, R.D.
1997-01-01
The rapid temperature collapse in tokamak sawtooth oscillations having incomplete magnetic reconnection is generally thought to occur through ergodization of the magnetic field. An experiment in JET using injected nickel indicates that this explanation is improbable. copyright 1997 The American Physical Society
Collapse of simple harmonic universe
International Nuclear Information System (INIS)
Mithani, Audrey T.; Vilenkin, Alexander
2012-01-01
In a recent paper Graham et al constructed oscillating and static universe models which are stable with respect to all classical perturbations. Here we show that such universes are quantum-mechanically unstable and can collapse by quantum tunneling to zero radius. We also present instantons describing nucleation of oscillating and static universes from nothing
Critical Effects in Gravitational Collapse
International Nuclear Information System (INIS)
Chmaj, T.
2000-01-01
The models of gravitational collapse of a dynamical system are investigated by means of the Einstein equations. Different types conjunctions to gravitational field are analyzed and it is shown that in the case of week scalar field (low energy density) the system evaluated to flat space while in the case of strong field (high energy density) to black hole
Thermal conduction and gravitational collapse
International Nuclear Information System (INIS)
Herrera, L.; Jimenez, J.; Esculpi, M.
1987-01-01
A method used to study the evolution of radiating spheres, reported some years ago by Herrera, Jimenez, and Ruggeri, is extended to the case in which thermal conduction within the sphere is taken into account. By means of an explicit example it is shown that heat flow, if present, may play an important role, affecting the final outcome of collapse
Classical Collapse to Black Holes and Quantum Bounces: A Review
Directory of Open Access Journals (Sweden)
Daniele Malafarina
2017-05-01
Full Text Available In the last four decades, different programs have been carried out aiming at understanding the final fate of gravitational collapse of massive bodies once some prescriptions for the behaviour of gravity in the strong field regime are provided. The general picture arising from most of these scenarios is that the classical singularity at the end of collapse is replaced by a bounce. The most striking consequence of the bounce is that the black hole horizon may live for only a finite time. The possible implications for astrophysics are important since, if these models capture the essence of the collapse of a massive star, an observable signature of quantum gravity may be hiding in astrophysical phenomena. One intriguing idea that is implied by these models is the possible existence of exotic compact objects, of high density and finite size, that may not be covered by an horizon. The present article outlines the main features of these collapse models and some of the most relevant open problems. The aim is to provide a comprehensive (as much as possible overview of the current status of the field from the point of view of astrophysics. As a little extra, a new toy model for collapse leading to the formation of a quasi static compact object is presented.
Gravitational collapse of conventional polytropic cylinder
Lou, Yu-Qing; Hu, Xu-Yao
2017-07-01
In reference to general polytropic and conventional polytropic hydrodynamic cylinders of infinite length with axial uniformity and axisymmetry under self-gravity, the dynamic evolution of central collapsing mass string in free-fall dynamic accretion phase is re-examined in details. We compare the central mass accretion rate and the envelope mass infall rate at small radii. Among others, we correct mistakes and typos of Kawachi & Hanawa (KH hereafter) and in particular prove that their key asymptotic free-fall solution involving polytropic index γ in the two power exponents is erroneous by analytical analyses and numerical tests. The correct free-fall asymptotic solutions at sufficiently small \\hat{r} (the dimensionless independent self-similar variable) scale as {˜ } -|ln \\hat{r}|^{1/2} in contrast to KH's ˜ -|ln \\hat{r}|^{(2-γ )/2} for the reduced bulk radial flow velocity and as {˜ } \\hat{r}^{-1}|ln \\hat{r}|^{-1/2} in contrast to KH's {˜ } \\hat{r}^{-1} |ln \\hat{r}|^{-(2-γ )/2} for the reduced mass density. We offer consistent scenarios for numerical simulation code testing and theoretical study on dynamic filamentary structure formation and evolution as well as pertinent stability properties. Due to unavoidable Jeans instabilities along the cylinder, such collapsing massive filaments or strings can further break up into clumps and segments of various lengths as well as clumps embedded within segments and evolve into chains of gravitationally collapsed objects (such as gaseous planets, brown dwarfs, protostars, white dwarfs, neutron stars, black holes in a wide mass range, globular clusters, dwarf spheroidals, galaxies, galaxy clusters and even larger mass reservoirs etc.) in various astrophysical and cosmological contexts as articulated by Lou & Hu recently. As an example, we present a model scheme for comparing with observations of molecular filaments for forming protostars, brown dwarfs and gaseous planets and so forth.
Conceptual approach to 'eternal' accompaniment of decommissioning: human factor and public relations
International Nuclear Information System (INIS)
Dryapachenko, I.P.
2005-01-01
It is necessary at once to define that 'eternity' of accompaniment is not bound with exploitation of the future power engineering (hardly predicted and unnecessary priority nuclear). It will be the long-time (on hundreds years) control for the outcomes and consequences of decommissioning of a current nuclear power engineering infrastructure. Public relations at nuclear power plant (NPP) decommissioning are indispensable component at all stages of such process, so else long before it's beginning. The NPP 'exploiting' society with necessity should realize high manufacturability of branch and conforming large volumes of the material and intellectual investments at all stages of productive exploitation within several decades and not smaller costs for decommissioning during of ... several centuries. Moreover, it is not alternative to decommissioning at any versions 'green' prohibition or, to the contrary, nuclear lobbying of adequacy of nuclear power engineering. This expense nonalternative should be explained, realized, and perceived by society for regulation, control and implementation by several generations of the performers. Certainly, this problem is extremely complex, and first of all, psychologically for the nuclear professionals. Unfortunately, it is necessary to state the dangerous tendency of a creation postponement of design algorithm for the long-time public relations on this problem. And it is a tragic Chernobyl lesson already.... It is persistently demonstrated in twenty years impossibility of repetition of April 26 after the count and correcting of design errors, steam-gaseous effect and graphite-phase transition. But, do not give My God.., people in cities near NPP (really worldwide?) not at once will shut window leaves, not everyone will drink iodine solution at the first hours and will dress on headgears etc. But so has received that after 'instantaneous' break of the ChNPP unit 4 the decommissioning experience has appeared. There is no requiring of
Eternal solutions to a singular diffusion equation with critical gradient absorption
International Nuclear Information System (INIS)
Iagar, Razvan Gabriel; Laurençot, Philippe
2013-01-01
The existence of non-negative radially symmetric eternal solutions of exponential self-similar type u(t, x) = e −pβt/(2−p) f β (|x|e −βt ; β) is investigated for the singular diffusion equation with critical gradient absorption ∂ t u−Δ p u+|∇u| p/2 =0 in (0,∞)×R N , where 2N/(N + 1) < p < 2. Such solutions are shown to exist only if the parameter β ranges in a bounded interval (0, β * ], which is in sharp contrast to well-known singular diffusion equations, such as ∂ t φ − Δ p φ = 0 when p = 2N/(N + 1), N ⩾ 1, or the porous medium equation ∂ t φ − Δφ m = 0 when m = (N − 2)/N, N ⩾ 3. Moreover, the profile f(r; β) decays to zero as r → ∞ in a faster way for β = β * than for β ∈ (0, β * ) but the algebraic leading order is the same in both cases. In fact, for large r, f(r; β * ) decays as r −p/(2−p) while f(r; β) behaves as (log r) 2/(2−p) r −p/(2−p) when β ∈ (0, β * ). (paper)
Testing eternal inflation with the kinetic Sunyaev Zel'dovich effect
Energy Technology Data Exchange (ETDEWEB)
Zhang, Pengjie [Center for Astronomy and Astrophysics, Department of Physics and Astronomy, Shanghai Jiao Tong University, 955 Jianchuan road, Shanghai, 200240 (China); Johnson, Matthew C., E-mail: zhangpj@sjtu.edu.cn, E-mail: mjohnson@perimeterinstitute.ca [Department of Physics and Astronomy, York University, Toronto, On, M3J 1P3 (Canada)
2015-06-01
Perhaps the most controversial idea in modern cosmology is that our observable universe is contained within one bubble among many, all inhabiting the eternally inflating multiverse. One of the few way to test this idea is to look for evidence of the relic inhomogeneities left by the collisions between other bubbles and our own. Such relic inhomogeneities will induce a coherent bulk flow over Gpc scales. Therefore, bubble collisions leave unique imprints in the cosmic microwave background (CMB) through the kinetic Sunyaev Zel'dovich (kSZ) effect, temperature anisotropies induced by the scattering of photons from coherently moving free electrons in the diffuse intergalactic medium. The kSZ signature produced by bubble collisions has a unique directional dependence and is tightly correlated with the galaxy distribution; it can therefore be distinguished from other contributions to the CMB anisotropies. An important advantage of the kSZ signature is that it peaks on arcminute angular scales, where the limiting factors in making a detection are instrumental noise and foreground subtraction. This is in contrast to the collision signature in the primary CMB, which peaks on angular scales much larger than one degree, and whose detection is therefore limited by cosmic variance. In this paper, we examine the prospects for probing the inhomogeneities left by bubble collisions using the kSZ effect. We provide a forecast for detection using cross-correlations between CMB and galaxy surveys, finding that the detectability using the kSZ effect can be competitive with constraints from CMB temperature and polarization data.
Testing eternal inflation with the kinetic Sunyaev Zel'dovich effect
International Nuclear Information System (INIS)
Zhang, Pengjie; Johnson, Matthew C.
2015-01-01
Perhaps the most controversial idea in modern cosmology is that our observable universe is contained within one bubble among many, all inhabiting the eternally inflating multiverse. One of the few way to test this idea is to look for evidence of the relic inhomogeneities left by the collisions between other bubbles and our own. Such relic inhomogeneities will induce a coherent bulk flow over Gpc scales. Therefore, bubble collisions leave unique imprints in the cosmic microwave background (CMB) through the kinetic Sunyaev Zel'dovich (kSZ) effect, temperature anisotropies induced by the scattering of photons from coherently moving free electrons in the diffuse intergalactic medium. The kSZ signature produced by bubble collisions has a unique directional dependence and is tightly correlated with the galaxy distribution; it can therefore be distinguished from other contributions to the CMB anisotropies. An important advantage of the kSZ signature is that it peaks on arcminute angular scales, where the limiting factors in making a detection are instrumental noise and foreground subtraction. This is in contrast to the collision signature in the primary CMB, which peaks on angular scales much larger than one degree, and whose detection is therefore limited by cosmic variance. In this paper, we examine the prospects for probing the inhomogeneities left by bubble collisions using the kSZ effect. We provide a forecast for detection using cross-correlations between CMB and galaxy surveys, finding that the detectability using the kSZ effect can be competitive with constraints from CMB temperature and polarization data
Testing eternal inflation with the kinetic Sunyaev Zel'dovich effect
Zhang, Pengjie; Johnson, Matthew C.
2015-06-01
Perhaps the most controversial idea in modern cosmology is that our observable universe is contained within one bubble among many, all inhabiting the eternally inflating multiverse. One of the few way to test this idea is to look for evidence of the relic inhomogeneities left by the collisions between other bubbles and our own. Such relic inhomogeneities will induce a coherent bulk flow over Gpc scales. Therefore, bubble collisions leave unique imprints in the cosmic microwave background (CMB) through the kinetic Sunyaev Zel'dovich (kSZ) effect, temperature anisotropies induced by the scattering of photons from coherently moving free electrons in the diffuse intergalactic medium. The kSZ signature produced by bubble collisions has a unique directional dependence and is tightly correlated with the galaxy distribution; it can therefore be distinguished from other contributions to the CMB anisotropies. An important advantage of the kSZ signature is that it peaks on arcminute angular scales, where the limiting factors in making a detection are instrumental noise and foreground subtraction. This is in contrast to the collision signature in the primary CMB, which peaks on angular scales much larger than one degree, and whose detection is therefore limited by cosmic variance. In this paper, we examine the prospects for probing the inhomogeneities left by bubble collisions using the kSZ effect. We provide a forecast for detection using cross-correlations between CMB and galaxy surveys, finding that the detectability using the kSZ effect can be competitive with constraints from CMB temperature and polarization data.
Characteristic Thickened Cell Walls of the Bracts of the ‘Eternal Flower’ Helichrysum bracteatum
Nishikawa, Kuniko; Ito, Hiroaki; Awano, Tatsuya; Hosokawa, Munetaka; Yazawa, Susumu
2008-01-01
Background and Aims Helichrysum bracteatum is called an ‘eternal flower’ and has large, coloured, scarious bracts. These maintain their aesthetic value without wilting or discoloration for many years. There have been no research studies of cell death or cell morphology of the scarious bract, and hence the aim of this work was to elucidate these characteristics for the bract of H. bracteatum. Methods DAPI (4'6-diamidino-2-phenylindol dihydrochloride) staining and fluorescence microscopy were used for observation of cell nuclei. Light microscopy (LM), transmission electron microscopy (TEM) and polarized light microscopy were used for observation of cells, including cell wall morphology. Key Results Cell death occurred at the bract tip during the early stage of flower development. The cell wall was the most prominent characteristic of H. bracteatum bract cells. Characteristic thickened secondary cell walls on the inside of the primary cell walls were observed in both epidermal and inner cells. In addition, the walls of all cells exhibited birefringence. Characteristic thickened secondary cell walls have orientated cellulose microfibrils as well as general secondary cell walls of the tracheary elements. For comparison, these characters were not observed in the petal and bract tissues of Chrysanthemum morifolium. Conclusions Bracts at anthesis are composed of dead cells. Helichrysum bracteatum bracts have characteristic thickened secondary cell walls that have not been observed in the parenchyma of any other flowers or leaves. The cells of the H. bracteatum bract differ from other tissues with secondary cell walls, suggesting that they may be a new cell type. PMID:18436550
The Byzantine Empress Zoe Porphyrogenita and the quest for eternal youth.
Panas, Marios; Poulakou-Rebelakou, Effie; Kalfakis, Nicoalos; Vassilopoulos, Dimitrios
2012-09-01
The diachronically continuous struggle for eternal youth as represented by the Byzantine Empress Zoe Porphyrogenita (978-1050). The presentation of a beautiful empress, trying to keep her youth appearance until a prolonged age, applying on herself cosmetic essences and fragrances made in her personal laboratory into the imperial palace. The review of the relevant literature and the historical evidence derived from the historians and chroniclers of her era, as well as the surviving images of Zoe. The eye-witness chroniclers of the era describe her as blonde, with bright white skin, lack of wrinkles, and a very young girl appearance, preserving her beauty even into her 60s. All the historical sources agree that her main occupation was the manufacture of cosmetic essences, and for this purpose, she had installed a laboratory (myrepseion) in her private quarters, where she prepared various drugs and perfumes, spending much of her time for these activities. It is noteworthy that her first two husbands died under circumstances that aroused suspicions of Zoe's involvement in their deaths, as she had parallel love affairs. The best known image of Zoe is the mosaic panel in Saint Sophia, the cathedral Church of Constantinople and her representation has been long discussed, as she was 64 years old at the time of the scene apparently depicted in the panel, and maybe she took the opportunity of adding a more pleasing portrait of herself. The preservation of beauty is a timeless quest and cosmetic dermatology has its origins in antiquity and medieval times. © 2012 Wiley Periodicals, Inc.
From Here and Now to Infinity and Eternity: A Message to New Medical Doctors*
Lapeña, José Florencio F.
2014-01-01
Commencement means both an end and a beginning; the end of the academic year and the beginning of the rest of your life as new physicians. For such a beginning, it is useful to view it in retrospect, from the point of view of the end, by conducting a pre-mortem on your life. Taking the existentialist (ex sistere, to stand forth) stance, each of us can be classified into one of four basic types of person, based on our characteristic space and time (or spatio-temporal) context or horizon. Our space can be limited to the “here” and our time to the “now;” or our space may extend to “infinity” and our time embark on “eternity.” In-between these poles, most have space contexts rooted in their home and work “turf” and time involving their “lifetime,” while some expand their space to include the “world” and their time to encompass “history.” From the “here and now” and “turf and lifetime” contexts, the horizons of “world and history,” and “infinity and eternity” are examined, challenging new medical doctors to realize their full potential. The new physician is exhorted not to wait for a post-mortem to define (des finitus, to set limits) his or her life. He or she should stand forth, to live, and give life. The new medical doctor is encouraged to look to the sunrise, draw strength from the sunshine, to be brave, and strong and true. PMID:24891804
Modelling of cladding creep collapse
International Nuclear Information System (INIS)
Koundy, V.; Forgeron, T.; Hivroz, J.
1993-01-01
The effects of the initial ovality and pressure level on the collapse time of Zircaloy-4 tubing subjected to uniform external pressure were examined experimentally and analytically. Experiments were performed on end closed tubes with two metallurgical states: stress relieved and recrystallized. Numerical simulations were accomplished with a specific computer program based on an analytical approach and the calculated results were compared with the experimental ones. As a comparison, the finite element method is also partially examined in this analysis. Numerical collapse times are in good agreement with regard to experimental results in the case of stress relieved structure. They seem to be too conservative in the case of a recrystallized metallurgical state and the use of the anisotropic option ameliorates numerical results. Sensibility of numerical solutions to the formulation of primary creep laws are presented
Study of creep collapse of tubes subject to external pressure at elevated temperature
International Nuclear Information System (INIS)
Takikawa, N.
1982-01-01
Intermediate heat exchanger (IHX) tubes of VHTR form the boundary between the primary and secondary coolants of the reactor. The tubes are subject to external pressures at a postulated secondary coolant depressurization accident, which might lead to creep collapse. Therefore, it is necessary to ensure the integrity against creep collapse by analysis. The objective of this work is to study a simplified analytical method for predicting collapse time of a curved tube subjected to an external pressure. The study is made based on the comparison of experimental collapse time of curved and straight tubes. Creep collapse tests were conducted under an elevated temperature and an external pressure. Test results showed that curved tubes had longer collapse time than straight tubes with the same cross sectional ovality. The simplified analytical method for a curved tube is proposed in this report, which is to compute collapse time of a straight tube with the same ovality. And in this method the computed time is considered as collapse time of the curved tube. The above test results show that this simplified method gives the conservative collapse time. And it is confirmed by additional IHX tube tests that the method is applicable to creep collapse analysis of IHX tubes
Collapsed Thunderstorm, Southwest Pacific Ocean
1992-01-01
This collapsed thunderstorm was observed over the open ocean (9.0N, 120.0E) between the Philippine island of Mindoro and Borneo, Malaysia. The cleared area in the center is the result of the clouds being driven from there by the sudden rush of katabatic air spreading downward and outward from the dying thunderstorm. Around the edges of the downdrafted air, new though smaller storms are developing. The two small coral atolls are the Tubbataha Reefs.
Critical behavior of collapsing surfaces
DEFF Research Database (Denmark)
Olsen, Kasper; Sourdis, C.
2009-01-01
We consider the mean curvature evolution of rotationally symmetric surfaces. Using numerical methods, we detect critical behavior at the threshold of singularity formation resembling that of gravitational collapse. In particular, the mean curvature simulation of a one-parameter family of initial...... data reveals the existence of a critical initial surface that develops a degenerate neckpinch. The limiting flow of the type II singularity is accurately modeled by the rotationally symmetric translating soliton....
Soliton collapse during ionospheric heating
International Nuclear Information System (INIS)
Sheerin, J.P.; Nicholson, D.R.; Payne, G.L.; Duncan, L.M.
1984-01-01
We present analytical and numerical work which indicates that during ionospheric heating with high-powered hf radio waves, the oscillating two-stream instability may dominate the parametric decay instability. The oscillating two-stream instability saturates nonlinearly through the formation of solitons which undergo a collisionally damped collapse. Using the heater and radar facilities at Arecibo Observatory, we have investigated this phenomenon experimentally. Recent results from our theoretical and experimental investigations are presented
Object relations in Harry Potter.
Lake, Suzanne
2003-01-01
Good fiction helps children address their emotional dilemmas by evoking repressed content, and offering strategies and meaningful values that help them work towards resolutions. Because certain fundamental conflicts continue to be revisited and reworked throughout adulthood, it follows that masterful children's literature might enthrall adults as well. Given the extraordinary, worldwide success of the Harry Potter stories with both children and adults, it might be inferred that they, indeed, are among such literature. Common object relations themes, as well as other intrapsychic processes, are presented in such an imaginative and resonant way that the unconscious is readily engaged. The character of Harry Potter, specifically, embodies such universal (repressed) torments as the agony of destroying and losing the mother; the ominous perception of good and bad objects at war within the self; and the earnest reparative efforts offered to save the self from eternal separation from the beloved other.
Design and Analysis of Collapsible Scissor Bridge
Directory of Open Access Journals (Sweden)
Biro Mohamad Nabil Aklif
2018-01-01
Full Text Available Collapsible scissor bridge is a portable bridge that can be deployed during emergency state to access remote areas that are affected by disaster such as flood. The objective of this research is to design a collapsible scissor bridge which is able to be transported by a 4x4 vehicle and to be deployed to connect remote areas. The design is done by using Solidworks and numerical analysis for structural strength is conducted via ANSYS. The research starts with parameters setting and modelling. Finite element analysis is conducted to analyze the strength by determining the safety factor of the bridge. Kutzbach equation is also analyzed to ensure that the mechanism is able to meet the targeted degree of motion. There are five major components of the scissor structure; pin, deck, cross shaft and deck shaft. The structure is controlled by hydraulic pump driven by a motor for the motions. Material used in simulation is A36 structural steel due to limited library in ANSYS. However, the proposed material is Fiber Reinforced Polymer (FRP composites as they have a high strength to weight ratio. FRP also tends to be corrosion resistance and this characteristic is useful in flooded area.
The Negativity of Times. Collapsed Futures in Maputo, Mozambique
DEFF Research Database (Denmark)
Nielsen, Morten
2014-01-01
This article explores how urban temporalities in Maputo, Mozambique’s capital, erupt from collapsed futures, which endure within the present as traces of that which will no longer be. The argument is built on an ethnographic analysis of kuzama utomi (‘trying to make a life’), a temporal trope......, which prefigures the future as a failure on a linear scale. Still, although it is identifyed by its collapse, the future wedges itself within the present as a trace of that which will never be. While manifesting the efforts needed in order to reach a desired objective, it also exposes the powers at work...
Collapse Mechanisms Of Masonry Structures
International Nuclear Information System (INIS)
Zuccaro, G.; Rauci, M.
2008-01-01
The paper outlines a possible approach to typology recognition, safety check analyses and/or damage measuring taking advantage by a multimedia tool (MEDEA), tracing a guided procedure useful for seismic safety check evaluation and post event macroseismic assessment. A list of the possible collapse mechanisms observed in the post event surveys on masonry structures and a complete abacus of the damages are provided in MEDEA. In this tool a possible combination between a set of damage typologies and each collapse mechanism is supplied in order to improve the homogeneity of the damages interpretation. On the other hand recent researches of one of the author have selected a number of possible typological vulnerability factors of masonry buildings, these are listed in the paper and combined with potential collapse mechanisms to be activated under seismic excitation. The procedure takes place from simple structural behavior models, derived from the Umbria-Marche earthquake observations, and tested after the San Giuliano di Puglia event; it provides the basis either for safety check analyses of the existing buildings or for post-event structural safety assessment and economic damage evaluation. In the paper taking advantage of MEDEA mechanisms analysis, mainly developed for the post event safety check surveyors training, a simple logic path is traced in order to approach the evaluation of the masonry building safety check. The procedure starts from the identification of the typological vulnerability factors to derive the potential collapse mechanisms and their collapse multipliers and finally addresses the simplest and cheapest strengthening techniques to reduce the original vulnerability. The procedure has been introduced in the Guide Lines of the Regione Campania for the professionals in charge of the safety check analyses and the buildings strengthening in application of the national mitigation campaign introduced by the Ordinance of the Central Government n. 3362
HIERARCHICAL GRAVITATIONAL FRAGMENTATION. I. COLLAPSING CORES WITHIN COLLAPSING CLOUDS
Energy Technology Data Exchange (ETDEWEB)
Naranjo-Romero, Raúl; Vázquez-Semadeni, Enrique; Loughnane, Robert M. [Instituto de Radioastronomía y Astrofísica, Universidad Nacional Autónoma de México, Apdo. Postal 3-72, Morelia, Michoacán, 58089, México (Mexico)
2015-11-20
We investigate the Hierarchical Gravitational Fragmentation scenario through numerical simulations of the prestellar stages of the collapse of a marginally gravitationally unstable isothermal sphere immersed in a strongly gravitationally unstable, uniform background medium. The core developes a Bonnor–Ebert (BE)-like density profile, while at the time of singularity (the protostar) formation the envelope approaches a singular-isothermal-sphere (SIS)-like r{sup −2} density profile. However, these structures are never hydrostatic. In this case, the central flat region is characterized by an infall speed, while the envelope is characterized by a uniform speed. This implies that the hydrostatic SIS initial condition leading to Shu's classical inside-out solution is not expected to occur, and therefore neither should the inside-out solution. Instead, the solution collapses from the outside-in, naturally explaining the observation of extended infall velocities. The core, defined by the radius at which it merges with the background, has a time-variable mass, and evolves along the locus of the ensemble of observed prestellar cores in a plot of M/M{sub BE} versus M, where M is the core's mass and M{sub BE} is the critical BE mass, spanning the range from the “stable” to the “unstable” regimes, even though it is collapsing at all times. We conclude that the presence of an unstable background allows a core to evolve dynamically from the time when it first appears, even when it resembles a pressure-confined, stable BE-sphere. The core can be thought of as a ram-pressure confined BE-sphere, with an increasing mass due to the accretion from the unstable background.
Protostellar formation in rotation interstellar clouds. III. Nonaxisymmetric collapse
International Nuclear Information System (INIS)
Boss, A.P.
1980-01-01
A full three spatial-dimension gravitational hydrodynamics code has been used to follow the collapse of isothermal rotating clouds subjected to various nonaxialy symmetric perturbations (NAP). An initially axially symmetric cloud collapsed to form a ring which then fragmented into a binary protostellar system. A low thermal energy cloud with a large bar-shaped NAP collapsed and fragmented directly into a binary; higher thermal energy clouds damp out such NAPs while higher rotational rotational energy clouds produce binaries with wider separations. Fragmentation into single and binary systems has been seen. The tidal effects of other nearby protostellar clouds are shown to have an important effect upon the collapse and should not be neglected. The three-dimensional calculations indicate that isothermal interstellar clouds may fragment (with or without passing through a transitory ring phase) into protostellar objects while still in the isothermal regime. The fragments obtained have masses and specific spin angular momenta roughly a 10th that of the original cloud. Interstellar clouds and their fragments may pass through successive collapse phases with fragmentation and reduction of spin angular momentum (by conversion to orbital angular momentum and preferential accretion of low angular momentum matter) terminating in the formation of pre--main-sequence stars with the observed pre--main-sequence rotation rates
Black hole formation in perfect fluid collapse
International Nuclear Information System (INIS)
Goswami, Rituparno; Joshi, Pankaj S
2004-01-01
We construct here a special class of perfect fluid collapse models which generalizes the homogeneous dust collapse solution in order to include nonzero pressures and inhomogeneities into evolution. It is shown that a black hole is necessarily generated as the end product of continued gravitational collapse, rather than a naked singularity. We examine the nature of the central singularity forming as a result of endless collapse and it is shown that no nonspacelike trajectories can escape from the central singularity. Our results provide some insights into how the dynamical collapse works and into the possible formulations of the cosmic censorship hypothesis, which is as yet a major unsolved problem in black hole physics
Collapsing stage of 'bosonic matter'
International Nuclear Information System (INIS)
Manoukian, E.B.; Muthaporn, C.; Sirininlakul, S.
2006-01-01
We prove rigorously that for 'bosonic matter', if deflation occurs upon collapse as more and more such matter is put together, then for a non-vanishing probability of having the negatively charged particles, with Coulomb interactions, within a sphere of radius R, the latter necessarily cannot decrease faster than N -1/3 for large N, where N denotes the number of the negatively charged particles. This is in clear distinction with matter (i.e., matter with the exclusion principle) which inflates and R necessarily increases not any slower than N 1/3 for large N
PSI collapse and relativistic covariance
International Nuclear Information System (INIS)
Costa de Beauregard, Olivier
1980-01-01
We call macrorelativistic a theory invariant under the orthochronous Lorentz group and obeying the 'factlike' principle of retarded causality, and microrelativistic a theory invariant under the full Lorentz group and CPT symmetric. The Einstein correlations either direct (non-separability of measurements issuing from a common preparation) or reversed (non-separability of preparations producing a common measurement) are incompatible with the macro-, but compatible with the microrelativity. We assume that fundamental physics is fully Lorentz and CPT invariant (the transition to macrophysics introducing a 'factlike asymmetry) and consequently define the collapse-and-retrocollapse concept [fr
Eternal triangle: the interaction of light source, electrical control gear, and optics
S'heeren, Griet
1998-04-01
should guarantee the best system performance. This paper sets out to provide some guidelines on attempting to achieve a harmonious relationship between the three partners in this particular eternal triangle.
Geotechnical properties of Egyptian collapsible soils
Directory of Open Access Journals (Sweden)
Khaled E. Gaaver
2012-09-01
Full Text Available The risk of constructing structures on collapsible soils presents significant challenges to geotechnical engineers due to sudden reduction in volume upon wetting. Identifying collapsible soils when encountered in the field and taking the needed precautions should substantially reduce the risk of such problems usually reported in buildings and highways. Collapsible soils are those unsaturated soils that can withstand relatively high pressure without showing significant change in volume, however upon wetting; they are susceptible to a large and sudden reduction in volume. Collapsible soils cover significant areas around the world. In Egypt, collapsible soils were observed within the northern portion of the western desert including Borg El-Arab region, and around the city of Cairo in Six-of-October plateau, and Tenth-of-Ramadan city. Settlements associated with development on untreated collapsible soils usually lead to expensive repairs. One method for treating collapsible soils is to densify their structure by compaction. The ongoing study presents the effect of compaction on the geotechnical properties of the collapsible soils. Undisturbed block samples were recovered from test pits at four sites in Borg El-Arab district, located at about 20 km west of the city of Alexandria, Egypt. The samples were tested in both unsoaked and soaked conditions. Influence of water inundation on the geotechnical properties of collapsible soils was demonstrated. A comparative study between natural undisturbed and compacted samples of collapsible soils was performed. An attempt was made to relate the collapse potential to the initial moisture content. An empirical correlation between California Bearing Ratio of the compacted collapsible soils and liquid limit was adopted. The presented simple relationships should enable the geotechnical engineers to estimate the complex parameters of collapsible soils using simple laboratory tests with a reasonable accuracy.
Stellar core collapse and supernova
International Nuclear Information System (INIS)
Wilson, J.R.; Mayle, R.; Woosley, S.E.; Weaver, T.
1985-04-01
Massive stars that end their stable evolution as their iron cores collapse to a neutron star or black hole long been considered good candidates for producing Type II supernovae. For many years the outward propagation of the shock wave produced by the bounce of these iron cores has been studied as a possible mechanism for the explosion. For the most part, the results of these studies have not been particularly encouraging, except, perhaps, in the case of very low mass iron cores or very soft nuclear equations of state. The shock stalls, overwhelmed by photodisintegration and neutrino losses, and the star does not explode. More recently, slow late time heating of the envelope of the incipient neutron star has been found to be capable of rejuvenating the stalled shock and producing an explosion after all. The present paper discusses this late time heating and presents results from numerical calculations of the evolution, core collapse, and subsequent explosion of a number of recent stellar models. For the first time they all, except perhaps the most massive, explode with reasonable choices of input physics. 39 refs., 17 figs., 1 tab
Collapsing stellar cores and supernovae
Energy Technology Data Exchange (ETDEWEB)
Epstein, R J [Nordisk Inst. for Teoretisk Atomfysik, Copenhagen (Denmark); Noorgaard, H [Nordisk Inst. for Teoretisk Atomfysik, Copenhagen (Denmark); Chicago Univ., IL (USA). Enrico Fermi Inst.); Bond, J R [Niels Bohr Institutet, Copenhagen (Denmark); California Inst. of Tech., Pasadena (USA). W.K. Kellogg Radiation Lab.)
1979-05-01
The evolution of a stellar core is studied during its final quasi-hydrostatic contraction. The core structure and the (poorly known) properties of neutron rich matter are parametrized to include most plausible cases. It is found that the density-temperature trajectory of the material in the central part of the core (the core-center) is insensitive to nearly all reasonable parameter variations. The central density at the onset of the dynamic phase of the collapse (when the core-center begins to fall away from the rest of the star) and the fraction of the emitted neutrinos which are trapped in the collapsing core-center depend quite sensitively on the properties of neutron rich matter. We estimate that the amount of energy Ecm which is imparted to the core-mantle by the neutrinos which escape from the imploded core-center can span a large range of values. For plausible choices of nuclear and model parameters Ecm can be large enough to yield a supernova event.
Collapse models with non-white noises
International Nuclear Information System (INIS)
Adler, Stephen L; Bassi, Angelo
2007-01-01
We set up a general formalism for models of spontaneous wavefunction collapse with dynamics represented by a stochastic differential equation driven by general Gaussian noises, not necessarily white in time. In particular, we show that the non-Schroedinger terms of the equation induce the collapse of the wavefunction to one of the common eigenstates of the collapsing operators, and that the collapse occurs with the correct quantum probabilities. We also develop a perturbation expansion of the solution of the equation with respect to the parameter which sets the strength of the collapse process; such an approximation allows one to compute the leading-order terms for the deviations of the predictions of collapse models with respect to those of standard quantum mechanics. This analysis shows that to leading order, the 'imaginary noise' trick can be used for non-white Gaussian noise
Completely quantized collapse and consequences
International Nuclear Information System (INIS)
Pearle, Philip
2005-01-01
Promotion of quantum theory from a theory of measurement to a theory of reality requires an unambiguous specification of the ensemble of realizable states (and each state's probability of realization). Although not yet achieved within the framework of standard quantum theory, it has been achieved within the framework of the continuous spontaneous localization (CSL) wave-function collapse model. In CSL, a classical random field w(x,t) interacts with quantum particles. The state vector corresponding to each w(x,t) is a realizable state. In this paper, I consider a previously presented model, which is predictively equivalent to CSL. In this completely quantized collapse (CQC) model, the classical random field is quantized. It is represented by the operator W(x,t) which satisfies [W(x,t),W(x ' ,t ' )]=0. The ensemble of realizable states is described by a single state vector, the 'ensemble vector'. Each superposed state which comprises the ensemble vector at time t is the direct product of an eigenstate of W(x,t ' ), for all x and for 0≤t ' ≤t, and the CSL state corresponding to that eigenvalue. These states never interfere (they satisfy a superselection rule at any time), they only branch, so the ensemble vector may be considered to be, as Schroedinger put it, a 'catalog' of the realizable states. In this context, many different interpretations (e.g., many worlds, environmental decoherence, consistent histories, modal interpretation) may be satisfactorily applied. Using this description, a long-standing problem is resolved, where the energy comes from the particles gain due to the narrowing of their wave packets by the collapse mechanism. It is shown how to define the energy of the random field and its energy of interaction with particles so that total energy is conserved for the ensemble of realizable states. As a by-product, since the random-field energy spectrum is unbounded, its canonical conjugate, a self-adjoint time operator, can be discussed. Finally, CSL
Spherical dust collapse in higher dimensions
International Nuclear Information System (INIS)
Goswami, Rituparno; Joshi, Pankaj S.
2004-01-01
We consider here whether it is possible to recover cosmic censorship when a transition is made to higher-dimensional spacetimes, by studying the spherically symmetric dust collapse in an arbitrary higher spacetime dimension. It is pointed out that if only black holes are to result as the end state of a continual gravitational collapse, several conditions must be imposed on the collapsing configuration, some of which may appear to be restrictive, and we need to study carefully if these can be suitably motivated physically in a realistic collapse scenario. It would appear, that, in a generic higher-dimensional dust collapse, both black holes and naked singularities would develop as end states as indicated by the results here. The mathematical approach developed here generalizes and unifies the earlier available results on higher-dimensional dust collapse as we point out. Further, the dependence of black hole or naked singularity end states as collapse outcomes on the nature of the initial data from which the collapse develops is brought out explicitly and in a transparent manner as we show here. Our method also allows us to consider here in some detail the genericity and stability aspects related to the occurrence of naked singularities in gravitational collapse
Geophysical Processes - MO 2013 Collapse Potential (SHP)
NSGIC State | GIS Inventory — Collapse potential correlates with locations of underground mines and sinkholes. Computer-generated hazard calculations include areas in close proximity to mines and...
Spherically symmetric radiation in gravitational collapse
International Nuclear Information System (INIS)
Bridy, D.J.
1983-01-01
This paper investigates a previously neglected mode by which a star may lose energy in the late stages of gravitational collapse to the black hole state. A model consisting of a Schwarzschild exterior matched to a Friedman interior of collapsing pressureless dust is studied. The matter of the collapsing star is taken as the source of a massive vector boson field and a detailed boundary value problem is carried out. Vector mesons are strongly coupled to all nucleons and will be radiated by ordinary matter during the collapse. The time dependent coupling between interior and exterior modes matched across the moving boundary of the collapsing star and the presence of the gravitational fields and their gradients in the field equations may give rise to a parametric amplification mechanism and permit the gravitational field to pump energy into the boson field, greatly enhancing the amount of boson radiation. The significance of a radiative mechanism driven by collapse is that it can react back upon the collapsing source and deprive it of some of the very mass that drives the collapse via its self gravitation. If the mass loss is great enough, this may provide a mechanism to slow or even halt gravitational collapse in some cases
Understand rotating isothermal collapses yet
International Nuclear Information System (INIS)
Tohline, J.E.
1985-01-01
A scalar virial equation is used to describe the dynamic properties of equilibrium gas clouds, taking into account the relative effects of surface pressure, rotation, self gravity and internal isothermal pressure. Details concerning the internal structure of the clouds are ignored in order to obtain a globalized analytical expression. The obtained solution to the equation is found to agree with the surface-pressure-dominated model of Stahler (1983), and the rotation-dominated model of Hayashi, Narita, and Miyama (1982). On the basis of the analytical expression of virial equilibrium in the clouds, some of the limiting properties of isothermal clouds are described, and a realistic starting model for cloud collapse is proposed. 18 references
Collapse Analysis of Timber Structures
DEFF Research Database (Denmark)
Kirkegaard, Poul Henning; Sørensen, John Dalsgaard
2008-01-01
of Structures and a probabilistic modelling of the timber material proposed in the Probabilistic Model Code (PMC) of the Joint Committee on Structural Safety (JCSS). Due to the framework in the Danish Code the timber structure has to be evaluated with respect to the following criteria where at least one shall...... to criteria a) and b) the timber frame structure has one column with a reliability index a bit lower than an assumed target level. By removal three columns one by one no significant extensive failure of the entire structure or significant parts of it are obtained. Therefore the structure can be considered......A probabilistic based collapse analysis has been performed for a glulam frame structure supporting the roof over the main court in a Norwegian sports centre. The robustness analysis is based on the framework for robustness analysis introduced in the Danish Code of Practice for the Safety...
Plastic collapse behavior for thin tube with two parallel cracks
International Nuclear Information System (INIS)
Moon, Seong In; Chang, Yoon Suk; Kim, Young Jin; Lee, Jin Ho; Song, Myung Ho; Choi, Young Hwan; Kim, Joung Soo
2004-01-01
The current plugging criterion is known to be too conservative for some locations and types of defects. Many defects detected during in-service inspection take on the form of multiple cracks at the top of tube sheet but there is no reliable plugging criterion for the steam generator tubes with multiple cracks. Most of the previous studies on multiple cracks are confined to elastic analyses and only few studies have been done on the steam generator tubes failed by plastic collapse. Therefore, it is necessary to develop models which can be used to estimate the failure behavior of steam generator tubes with multiple cracks. The objective of this study is to verify the applicability of the optimum local failure prediction models proposed in the previous study. For this, plastic collapse tests are performed with the tube specimens containing two parallel through-wall cracks. The plastic collapse load of the steam generator tubes containing two parallel through-wall cracks are also estimated by using the proposed optimum global failure model and the applicability is investigated by comparing the estimated results with the experimental results. Also, the interaction effect between two cracks was evaluated to explain the plastic collapse behavior
The Collapse of the 'Celtic Tiger' Narrative
DEFF Research Database (Denmark)
Böss, Michael
2011-01-01
An account of the factors that led to the collapse of the 'Celtic Tiger' economy in 2008 and an explanation of the political effects and implications for Irish identity.......An account of the factors that led to the collapse of the 'Celtic Tiger' economy in 2008 and an explanation of the political effects and implications for Irish identity....
Non explosive collapse of white dwarfs
International Nuclear Information System (INIS)
Canal, R.; Schatzmann, E.
1976-01-01
We show that if a sufficiently cold carbon-oxygen white dwarf, close to the critical mass, accretes matter from a companion in a binary system, the time scale of collapse is long enough to allow neutronization before the onset of pycnonuclear reactions. This can possibly lead to the formation of X-ray sources by a non explosive collapse. (orig.) [de
Homoclinic phenomena in the gravitational collapse
International Nuclear Information System (INIS)
Koiller, J.; Mello Neto, J.R.T. de; Soares, I.D.
1984-01-01
A class of Bianchi IX cosmological models is shown to have chaotic gravitational collapse, due to Poincare's homoclinic phenomena. Such models can be programmed so that for any given positive integer N (N=infinity included) the universe undergoes N non-periodic oscillations (each oscillation requiring a long time) before collapsing. For N=infinity the universe undergoes periodic oscillations. (Author) [pt
On the collapse of iron stellar cores
International Nuclear Information System (INIS)
Barkat, Z.; Rakavy, G.; Reiss, Y.; Wilson, J.R.
1975-01-01
The collapse of iron stellar cores is investigated to see whether the outward shock produced by the bounce at neutron star density is sufficient to burn appreciable amounts of the envelope around the iron core. Several models were tried, and in all cases no appreciable burn took place; hence no explosion results from the collapse of these models
Plastic collapse load of corroded steel plates
Indian Academy of Sciences (India)
Keywords. Corroded steel plate; plastic collapse; FEM; rough surface. ... The main aim of present work is to study plastic collapse load of corroded steel plates with irregular surfaces under tension. Non-linear ﬁnite element method ... Department of Ocean Engineering, AmirKabir University of Technology, 15914 Tehran, Iran ...
Collapse of Electrostatic Waves in Magnetoplasmas
DEFF Research Database (Denmark)
Shukla, P. K.; Yu, M. Y.; Juul Rasmussen, Jens
1984-01-01
The two-fluid model is employed to investigate the collapse of electrostatic waves in magnetized plasmas. It is found that nonlinear interaction of ion cyclotron, upper-, and lower-hybrid waves with adiabatic particle motion along the external magnetic field can cause wave-field collapse....
Sharper criteria for the wave collapse
DEFF Research Database (Denmark)
Kuznetsov, E.A.; Juul Rasmussen, J.; Rypdal, K.
1995-01-01
Sharper criteria for three-dimensional wave collapse described by the Nonlinear Schrodinger Equation (NLSE) are derived. The collapse threshold corresponds to the ground state soliton which is known to be unstable. Thus, for nonprefocusing distributions this represents the separatrix between...
Contagious cooperation, temptation, and ecosystem collapse
Richter, A.; van Soest, D.P.; Grasman, J.
2013-01-01
Real world observations suggest that social norms of cooperation can be effective in overcoming social dilemmas such as the joint management of a common pool resource—but also that they can be subject to slow erosion and sudden collapse. We show that these patterns of erosion and collapse emerge
International Nuclear Information System (INIS)
Yang, Y.H.; Hassan, Y.A.; Schmidl, W.D.
1995-01-01
Particle image velocimetry (PIV) is a quantitative flow measurement technique. The objective of this study is to develop a new three-dimensional PIV technique for the experimental study of air bubble collapse phenomena. A three-dimensional measurement technique is necessary since bubble collapse is a three-dimensional phenomenon. The investigation of the velocity flow field around a collapsing air bubble can provide detailed three-dimensional quantitative information to help improve the understanding of the related heat transfer processes
Schaurich, Diego
2011-01-01
This phenomenological study aimed at understanding, in the light of Martin Buber's philosophy, what is to be a caregiver of children with AIDS. The phenomenological interview guided the meeting with seven caregivers of children with AIDS, selected in a teaching hospital of Porto Alegre-RS, southern of Brazil. The data were interpreted in the light of hermeneutics, emerging the unit of meaning Dialogues 'between' the familiar I and the Eternal THOU. The dialogues take place in the search for answers that allow the understanding of the significance of the impact and challenges they face while living with AIDS. As well, they reveal hope in changes, in the cure and in a vaccine development. We believe that knowing the importance of dialogue in the context of HIV/AIDS epidemic provide the development of a nursing care that brings together the technical-scientific and humanistic aspects.
Formation of protostars in collapsing, rotating, turbulent clouds
International Nuclear Information System (INIS)
Regev, O.; Shaviv, G.
1981-01-01
Collapse and star formation processes in rotating turbulent interstellar gas clouds have been studied. For this purpose numerical collapse calculations have been performed for a number of representative cases. These calculations have been carried out by a two-dimensional hydrodynamical computer code, which solves the equations of hydrodynamics explicitly, coupled to the Poisson equation. The computer code has been written especially for this work and has been thoroughly tested. The calculations in this work have been performed with an effort to obtain physically reliable results (by repeating the same calculations with different numerical spatial resolutions). A physical mechanism for angular momentum transport by turbulent viscosity has been proposed and incorporated in new collapse calculations. The main results can be summerized as follows: When there is no physical mechanism for angular momentum transport, the result of the collaps is a ringlike structure. The turbulent viscosity affects the nature of the collaps. For the two cases studied, the mass of the central object is a major fraction (30%) of the total mass of the system. The exact form of the central object and its ultimate fate depend on the parameters, especially rotational energy/gravitational energy and Re. The present calculations cannot predict the future evolution of the central object. In the new theoretical model proposed, a central protostar forms as a result of the collaps of a protostellar rotating cloud
Fire-induced collapses of steel structures
DEFF Research Database (Denmark)
Dondera, Alexandru; Giuliani, Luisa
Single-story steel buildings such as car parks and industrial halls are often characterised by stiff beams and flexible columns and may experience an outward (sway) collapse during a fire, endangering people and properties outside the building. It is therefore a current interest of the research...... to investigate the collapse behaviour of single-story steel frames and identify relevant structural characteristics that influence the collapse mode. In this paper, a parametric study on the collapse a steel beam-column assembly with beam hinged connection and fixed column support is carried out under...... on the beam. By means of those tables, a simple method for the assessment and the countermeasure of unsafe collapse mode of single-story steel buildings can be derived....
Granular Silo collapse: an experimental study
Clement, Eric; Gutierriez, Gustavo; Boltenhagen, Philippe; Lanuza, Jose
2008-03-01
We present an experimental work that develop some basic insight into the pre-buckling behavior and the buckling transition toward plastic collapse of a granular silo. We study different patterns of deformation generated on thin paper cylindrical shells during granular discharge. We study the collapse threshold for different bed height, flow rates and grain sizes. We compare the patterns that appear during the discharge of spherical beads, with those obtained in the axially compressed cylindrical shells. When the height of the granular column is close to the collapse threshold, we describe a ladder like pattern that rises around the cylinder surface in a spiral path of diamond shaped localizations, and develops into a plastic collapsing fold that grows around the collapsing silo.
Collapse analysis of toroidal shell
International Nuclear Information System (INIS)
Pomares, R.J.
1990-01-01
This paper describes a study performed to determine the collapse characteristics of a toroidal shell using finite element method (FEM) analysis. The study also included free drop testing of a quarter scale prototype to verify the analytical results. The full sized toroidal shell has a 24-inch toroidal diameter with a 24-inch tubal diameter. The shell material is type 304 strainless steel. The toroidal shell is part of the GE Model 2000 transportation packaging, and acts as an energy absorbing device. The analyses performed were on a full sized and quarter scaled models. The finite element program used in all analyses was the LIBRA code. The analytical procedure used both the elasto-plastic and large displacement options within the code. The loading applied in the analyses corresponded to an impact of an infinite rigid plane oriented normal to the drop direction vector. The application of the loading continued incrementally until the work performed by the deforming structure equalled the kinetic energy developed in the free fall. The comparison of analysis and test results showed a good correlation
International Nuclear Information System (INIS)
Kurosaki, Yukio; Yamachi, Hiroshi; Matsui, Hiroya
2008-09-01
Mizunami underground research laboratory (MIU) is planned to be excavated to the depth of 1000m below the ground surface and is now under construction. One of the most serious problems in a greatly deeper shaft is 'TAKANUKE' collapse caused by slip movement of large discontinuities, as we have reported in the report of 'Study on Collapse Mechanism of Junction between Greatly Deeper Shaft and Horizontal Drifts [JAEA-Research 2008-248 (2008)]'. TAKANUKE collapse has been well known among mining engineers in JAPAN. However, an occurring mechanism of the collapse has not yet been revealed and a design code for it also has not been established. In this report, we have conducted numerical studies using finite difference method in order to throw an objective light on a mechanism of TAKANUKE collapse. These studies show two different stress states in upper and lower side of a large discontinuities. In lower side, a minimum principal stress at shaft wall region drastically reduces due to shaft sinking. This might make shaft wall stability difficult in poor geological condition. Such a TAKANUKE collapse can be found in ventilation shaft projects of the ENASAN tunnel. In the another side of discontinuity, a slip movement along discontinuities takes place due to shaft sinking. This slip movement induces a typical TAKANUKE collapse, as we have reported in 2007. In order to evaluate a possibility of TAKANUKE collapse during MIU main shaft sinking, we have conducted a particle body analysis, which can estimate a brittle failure of hard rock, such as MIU construction site. A fault with a steeply dipping over 79 degree to the main shaft, discovered in a survey boring at MIU site, has a low potential of TAKANUKE collapse during shaft sinking. Beside, a fault with dip of 60 degree may easily slip in a form of TAKANUKE collapse. One CD-ROM is attached as an appendix. (J.P.N.)
Oxygen Issue in Core Collapse Supernovae
Elmhamdi, A.
2011-06-01
We study the spectroscopic properties of a selected sample of 26 events within Core Collapse Supernovae (CCSNe) family. Special attention is paid to the nebular oxygen forbidden line [OI] 6300, 6364 Å doublet. We analyze the line flux ratio F6300/F6364 and infer information about the optical depth evolution, densities, volume-filling factors in the oxygen emitting zones. The line luminosity is measured for the sample events and its evolution is discussed on the basis of the bolometric light curve properties in type II and in type Ib-c SNe. The luminosities are then translated into oxygen abundances using two different methods. The results are combined with the determined 56Ni masses and compared with theoretical models by means of the [O/Fe] vs. Mms diagram. Two distinguishable and continuous populations, corresponding to Ib-c and type II SNe, are found. The higher mass nature of the ejecta in type II objects is also imprinted in the [CaII] 7291, 7324Å to [OI] 6300, 6364Å luminosity ratios. Our results may be used as input parameters for theoretical models studying the chemical enrichment of galaxies.
The covariant entropy bound in gravitational collapse
International Nuclear Information System (INIS)
Gao, Sijie; Lemos, Jose P. S.
2004-01-01
We study the covariant entropy bound in the context of gravitational collapse. First, we discuss critically the heuristic arguments advanced by Bousso. Then we solve the problem through an exact model: a Tolman-Bondi dust shell collapsing into a Schwarzschild black hole. After the collapse, a new black hole with a larger mass is formed. The horizon, L, of the old black hole then terminates at the singularity. We show that the entropy crossing L does not exceed a quarter of the area of the old horizon. Therefore, the covariant entropy bound is satisfied in this process. (author)
On the quantum corrected gravitational collapse
International Nuclear Information System (INIS)
Torres, Ramón; Fayos, Francesc
2015-01-01
Based on a previously found general class of quantum improved exact solutions composed of non-interacting (dust) particles, we model the gravitational collapse of stars. As the modeled star collapses a closed apparent 3-horizon is generated due to the consideration of quantum effects. The effect of the subsequent emission of Hawking radiation related to this horizon is taken into consideration. Our computations lead us to argue that a total evaporation could be reached. The inferred global picture of the spacetime corresponding to gravitational collapse is devoid of both event horizons and shell-focusing singularities. As a consequence, there is no information paradox and no need of firewalls
On the quantum corrected gravitational collapse
Directory of Open Access Journals (Sweden)
Ramón Torres
2015-07-01
Full Text Available Based on a previously found general class of quantum improved exact solutions composed of non-interacting (dust particles, we model the gravitational collapse of stars. As the modeled star collapses a closed apparent 3-horizon is generated due to the consideration of quantum effects. The effect of the subsequent emission of Hawking radiation related to this horizon is taken into consideration. Our computations lead us to argue that a total evaporation could be reached. The inferred global picture of the spacetime corresponding to gravitational collapse is devoid of both event horizons and shell-focusing singularities. As a consequence, there is no information paradox and no need of firewalls.
On the quantum corrected gravitational collapse
Torres, Ramón; Fayos, Francesc
2015-07-01
Based on a previously found general class of quantum improved exact solutions composed of non-interacting (dust) particles, we model the gravitational collapse of stars. As the modeled star collapses a closed apparent 3-horizon is generated due to the consideration of quantum effects. The effect of the subsequent emission of Hawking radiation related to this horizon is taken into consideration. Our computations lead us to argue that a total evaporation could be reached. The inferred global picture of the spacetime corresponding to gravitational collapse is devoid of both event horizons and shell-focusing singularities. As a consequence, there is no information paradox and no need of firewalls.
Galileon radiation from a spherical collapsing shell
Energy Technology Data Exchange (ETDEWEB)
Martín-García, Javier [Instituto de Física Teórica UAM/CSIC,C/ Nicolás Cabrera 15, E-28049 Madrid (Spain); Vázquez-Mozo, Miguel Á. [Instituto Universitario de Física Fundamental y Matemáticas (IUFFyM),Universidad de Salamanca, Plaza de la Merced s/n, E-37008 Salamanca (Spain)
2017-01-17
Galileon radiation in the collapse of a thin spherical shell of matter is analyzed. In the framework of a cubic Galileon theory, we compute the field profile produced at large distances by a short collapse, finding that the radiated field has two peaks traveling ahead of light fronts. The total energy radiated during the collapse follows a power law scaling with the shell’s physical width and results from two competing effects: a Vainshtein suppression of the emission and an enhancement due to the thinness of the shell.
Tetanus with multiple wedge vertebral collapses
African Journals Online (AJOL)
owner
2012-07-06
Jul 6, 2012 ... associated with traumatic injury, often a penetrating wound inflicted by dirty ... multiple vertebral collapses and the management chal- .... back pains and swelling as in our patient.9 There are usually no ... The cervical and.
The collapse of interstellar gas clouds
International Nuclear Information System (INIS)
McNally, D.; Settle, J.J.
1980-01-01
The stability of spherically symmetric free-fall collapse to small radial perturbations is examined for non-uniform clouds. It is concluded that fragmentation of the central region of a collapsing gas cloud is possible if: (a) the density distribution is sufficiently smooth; and (b) the collapse is nearly free fall. Generally, perturbations enjoy only finite amplification during the collapse, and the amplification tends to decrease with increasing distance from the centre of the cloud. Unlimited amplification occurs only for uniform density clouds. Fragmentation is therefore unlikely to result from dynamical instability in the outer parts of a non-uniform cloud. Isothermal clouds are also briefly considered and, while it is argued that an earlier suggestion of their instability to fragmentation is unfounded, no general conclusion on the instability of such clouds could be drawn. (author)
Lung lobe collapse: pathophysiology and radiologic significance
International Nuclear Information System (INIS)
Lord, P.F.; Gomez, J.A.
1985-01-01
The radiographic changes caused by collapse of lung lobes in pulmonary disease, pneumothorax, and pleural effusion depend on the lobar recoiling force and local pleural pressure. Differences in the tendency of normal lung lobes or regions to collapse depend on the relative surface-to-volume ratio, determined by shape and size of the region or lobe. This ratio affects the physiologic parameters of pulmonary interdependence, compliance, and collateral air flow. Pulmonary surfactant increases compliance, particularly at low volumes, maintains alveolar stability, and assists in maintaining capillary patency and preventing pulmonary edema. Its loss due to lung injury increases collapsing forces. In the presence of pneumothorax or pleural effusion, diseases that cause lobar collapse produce localized air or fluid entrapment that is a diagnostic sign of the presence of the underlying pulmonary disease
Cooperation, cheating, and collapse in biological populations
Gore, Jeff
2014-03-01
Natural populations can collapse suddenly in response to small changes in environmental conditions, and recovery from such a collapse can be difficult. We have used laboratory microbial ecosystems to directly measure theoretically proposed early warning signals of impending population collapse. Yeast cooperatively break down the sugar sucrose, meaning that below a critical size the population cannot sustain itself. We have demonstrated experimentally that changes in the fluctuations of the population size can serve as an early warning signal that the population is close to collapse. The cooperative nature of yeast growth on sucrose suggests that the population may be susceptible to ``cheater'' cells, which do not contribute to the public good and instead merely take advantage of the cooperative cells. We confirm this possibility experimentally and find that such social parasitism decreases the resilience of the population.
Simple Analytic Models of Gravitational Collapse
Energy Technology Data Exchange (ETDEWEB)
Adler, R.
2005-02-09
Most general relativity textbooks devote considerable space to the simplest example of a black hole containing a singularity, the Schwarzschild geometry. However only a few discuss the dynamical process of gravitational collapse, by which black holes and singularities form. We present here two types of analytic models for this process, which we believe are the simplest available; the first involves collapsing spherical shells of light, analyzed mainly in Eddington-Finkelstein coordinates; the second involves collapsing spheres filled with a perfect fluid, analyzed mainly in Painleve-Gullstrand coordinates. Our main goal is pedagogical simplicity and algebraic completeness, but we also present some results that we believe are new, such as the collapse of a light shell in Kruskal-Szekeres coordinates.
Collapsed Lung: MedlinePlus Health Topic
... Spanish Pneumothorax - infants (Medical Encyclopedia) Also in Spanish Topic Image MedlinePlus Email Updates Get Collapsed Lung updates ... Lung surgery Pneumothorax - slideshow Pneumothorax - infants Related Health Topics Chest Injuries and Disorders Lung Diseases Pleural Disorders ...
Creep collapse of TAPS fuel cladding
International Nuclear Information System (INIS)
Chaudhry, S.M.; Anand, A.K.
1975-01-01
Densification of UO 2 can cause axial gaps between fuel pelets and cladding in unsupported (internally) at these regions. An analysis is carried out regarding the possibility of creep collapse in these regions. The analysis is based on Timoshenko's theory of collapse. At various times during the residence of fuel in reactor following parameters are calculated : (1) inelastic collapse of perfectly circular tubes (2) plastic instability in oval tubes (3) effect of creep on ovality. Creep is considered to be a non-linear combination of the following : (a) thermal creep (b) intresenic creep (c) stress aided radiation enhanced (d) stress free growth (4) Critical pressure ratio. The results obtained are compared with G.E. predictions. The results do not predict collapse of TAPS fuel cladding for five year residence time. (author)
Collapse and dispersal of a homogeneous spin fluid in Einstein-Cartan theory
Hashemi, M.; Jalalzadeh, S.; Ziaie, A. H.
2015-02-01
In the present work, we revisit the process of gravitational collapse of a spherically symmetric homogeneous dust fluid which is described by the Oppenheimer-Snyder (OS) model (Oppenheimer and Snyder in Phys Rev D 56:455, 1939). We show that such a scenario would not end in a spacetime singularity when the spin degrees of freedom of fermionic particles within the collapsing cloud are taken into account. To this purpose, we take the matter content of the stellar object as a homogeneous Weyssenhoff fluid. Employing the homogeneous and isotropic FLRW metric for the interior spacetime setup, it is shown that the spin of matter, in the context of a negative pressure, acts against the pull of gravity and decelerates the dynamical evolution of the collapse in its later stages. Our results show a picture of gravitational collapse in which the collapse process halts at a finite radius, whose value depends on the initial configuration. We thus show that the spacetime singularity that occurs in the OS model is replaced by a non-singular bounce beyond which the collapsing cloud re-expands to infinity. Depending on the model parameters, one can find a minimum value for the boundary of the collapsing cloud or correspondingly a threshold value for the mass content below which the horizon formation can be avoided. Our results are supported by a thorough numerical analysis.
Collapse and dispersal of a homogeneous spin fluid in Einstein-Cartan theory
International Nuclear Information System (INIS)
Hashemi, M.; Jalalzadeh, S.; Ziaie, A.H.
2015-01-01
In the present work, we revisit the process of gravitational collapse of a spherically symmetric homogeneous dust fluid which is described by the Oppenheimer-Snyder (OS) model (Oppenheimer and Snyder in Phys Rev D 56:455, 1939). We show that such a scenario would not end in a spacetime singularity when the spin degrees of freedom of fermionic particles within the collapsing cloud are taken into account. To this purpose, we take the matter content of the stellar object as a homogeneous Weyssenhoff fluid. Employing the homogeneous and isotropic FLRW metric for the interior spacetime setup, it is shown that the spin of matter, in the context of a negative pressure, acts against the pull of gravity and decelerates the dynamical evolution of the collapse in its later stages. Our results show a picture of gravitational collapse in which the collapse process halts at a finite radius, whose value depends on the initial configuration. We thus show that the spacetime singularity that occurs in the OS model is replaced by a non-singular bounce beyond which the collapsing cloud re-expands to infinity. Depending on the model parameters, one can find a minimum value for the boundary of the collapsing cloud or correspondingly a threshold value for the mass content below which the horizon formation can be avoided. Our results are supported by a thorough numerical analysis. (orig.)
Four tails problems for dynamical collapse theories
McQueen, Kelvin J.
2015-02-01
The primary quantum mechanical equation of motion entails that measurements typically do not have determinate outcomes, but result in superpositions of all possible outcomes. Dynamical collapse theories (e.g. GRW) supplement this equation with a stochastic Gaussian collapse function, intended to collapse the superposition of outcomes into one outcome. But the Gaussian collapses are imperfect in a way that leaves the superpositions intact. This is the tails problem. There are several ways of making this problem more precise. But many authors dismiss the problem without considering the more severe formulations. Here I distinguish four distinct tails problems. The first (bare tails problem) and second (structured tails problem) exist in the literature. I argue that while the first is a pseudo-problem, the second has not been adequately addressed. The third (multiverse tails problem) reformulates the second to account for recently discovered dynamical consequences of collapse. Finally the fourth (tails problem dilemma) shows that solving the third by replacing the Gaussian with a non-Gaussian collapse function introduces new conflict with relativity theory.
Nonlinear wave collapse and strong turbulence
International Nuclear Information System (INIS)
Robinson, P.A.
1997-01-01
The theory and applications of wave self-focusing, collapse, and strongly nonlinear wave turbulence are reviewed. In the last decade, the theory of these phenomena and experimental realizations have progressed rapidly. Various nonlinear wave systems are discussed, but the simplest case of collapse and strong turbulence of Langmuir waves in an unmagnetized plasma is primarily used in explaining the theory and illustrating the main ideas. First, an overview of the basic physics of linear waves and nonlinear wave-wave interactions is given from an introductory perspective. Wave-wave processes are then considered in more detail. Next, an introductory overview of the physics of wave collapse and strong turbulence is provided, followed by a more detailed theoretical treatment. Later sections cover numerical simulations of Langmuir collapse and strong turbulence and experimental applications to space, ionospheric, and laboratory plasmas, including laser-plasma and beam-plasma interactions. Generalizations to self-focusing, collapse, and strong turbulence of waves in other systems are also discussed, including nonlinear optics, solid-state systems, magnetized auroral and astrophysical plasmas, and deep-water waves. The review ends with a summary of the main ideas of wave collapse and strong-turbulence theory, a collection of open questions in the field, and a brief discussion of possible future research directions. copyright 1997 The American Physical Society
Directory of Open Access Journals (Sweden)
Koonin Eugene V
2007-05-01
Full Text Available Abstract Background Recent developments in cosmology radically change the conception of the universe as well as the very notions of "probable" and "possible". The model of eternal inflation implies that all macroscopic histories permitted by laws of physics are repeated an infinite number of times in the infinite multiverse. In contrast to the traditional cosmological models of a single, finite universe, this worldview provides for the origin of an infinite number of complex systems by chance, even as the probability of complexity emerging in any given region of the multiverse is extremely low. This change in perspective has profound implications for the history of any phenomenon, and life on earth cannot be an exception. Hypothesis Origin of life is a chicken and egg problem: for biological evolution that is governed, primarily, by natural selection, to take off, efficient systems for replication and translation are required, but even barebones cores of these systems appear to be products of extensive selection. The currently favored (partial solution is an RNA world without proteins in which replication is catalyzed by ribozymes and which serves as the cradle for the translation system. However, the RNA world faces its own hard problems as ribozyme-catalyzed RNA replication remains a hypothesis and the selective pressures behind the origin of translation remain mysterious. Eternal inflation offers a viable alternative that is untenable in a finite universe, i.e., that a coupled system of translation and replication emerged by chance, and became the breakthrough stage from which biological evolution, centered around Darwinian selection, took off. A corollary of this hypothesis is that an RNA world, as a diverse population of replicating RNA molecules, might have never existed. In this model, the stage for Darwinian selection is set by anthropic selection of complex systems that rarely but inevitably emerge by chance in the infinite universe
Koonin, Eugene V
2007-05-31
Recent developments in cosmology radically change the conception of the universe as well as the very notions of "probable" and "possible". The model of eternal inflation implies that all macroscopic histories permitted by laws of physics are repeated an infinite number of times in the infinite multiverse. In contrast to the traditional cosmological models of a single, finite universe, this worldview provides for the origin of an infinite number of complex systems by chance, even as the probability of complexity emerging in any given region of the multiverse is extremely low. This change in perspective has profound implications for the history of any phenomenon, and life on earth cannot be an exception. Origin of life is a chicken and egg problem: for biological evolution that is governed, primarily, by natural selection, to take off, efficient systems for replication and translation are required, but even barebones cores of these systems appear to be products of extensive selection. The currently favored (partial) solution is an RNA world without proteins in which replication is catalyzed by ribozymes and which serves as the cradle for the translation system. However, the RNA world faces its own hard problems as ribozyme-catalyzed RNA replication remains a hypothesis and the selective pressures behind the origin of translation remain mysterious. Eternal inflation offers a viable alternative that is untenable in a finite universe, i.e., that a coupled system of translation and replication emerged by chance, and became the breakthrough stage from which biological evolution, centered around Darwinian selection, took off. A corollary of this hypothesis is that an RNA world, as a diverse population of replicating RNA molecules, might have never existed. In this model, the stage for Darwinian selection is set by anthropic selection of complex systems that rarely but inevitably emerge by chance in the infinite universe (multiverse). The plausibility of different models
GRAVITATIONAL COLLAPSE AND FILAMENT FORMATION: COMPARISON WITH THE PIPE NEBULA
International Nuclear Information System (INIS)
Heitsch, Fabian; Ballesteros-Paredes, Javier; Hartmann, Lee
2009-01-01
Recent models of molecular cloud formation and evolution suggest that such clouds are dynamic and generally exhibit gravitational collapse. We present a simple analytic model of global collapse onto a filament and compare this with our numerical simulations of the flow-driven formation of an isolated molecular cloud to illustrate the supersonic motions and infall ram pressures expected in models of gravity-driven cloud evolution. We compare our results with observations of the Pipe Nebula, an especially suitable object for our purposes as its low star formation activity implies insignificant perturbations from stellar feedback. We show that our collapsing cloud model can explain the magnitude of the velocity dispersions seen in the 13 CO filamentary structure by Onishi et al. and the ram pressures required by Lada et al. to confine the lower-mass cores in the Pipe Nebula. We further conjecture that higher-resolution simulations will show small velocity dispersions in the densest core gas, as observed, but which are infall motions and not supporting turbulence. Our results point out the inevitability of ram pressures as boundary conditions for molecular cloud filaments, and the possibility that especially lower-mass cores still can be accreting mass at significant rates, as suggested by observations.
Spherical collapse in quintessence models with zero speed of sound
Creminelli, Paolo; Noreña, Jorge; Senatore, Leonardo; Vernizzi, Filippo
2010-01-01
We study the spherical collapse model in the presence of quintessence with zero speed of sound. This case is particularly motivated for w<-1 as it is required by stability. As pressure gradients are negligible, quintessence follows dark matter during the collapse. The spherical overdensity behaves as a separate closed FLRW universe, so that its evolution can be studied exactly. We derive the critical overdensity for collapse and we use the extended Press-Schechter theory to study how the clustering of quintessence affects the dark matter mass function. The effect is dominated by the modification of the linear dark matter growth function. A larger effect occurs on the total mass function, which includes the quintessence overdensities. Indeed, here quintessence constitutes a third component of virialized objects, together with baryons and dark matter, and contributes to the total halo mass by a fraction ~ (1+w) Omega_Q / Omega_m. This gives a distinctive modification of the total mass function at low redshif...
Study on the effect of subcooling on vapor film collapse on high temperature particle surface
International Nuclear Information System (INIS)
Abe, Yutaka; Tochio, Daisuke; Yanagida, Hiroshi
2000-01-01
Thermal detonation model is proposed to describe vapor explosion. According to this model, vapor film on pre-mixed high temperature droplet surface is needed to be collapsed for the trigger of the vapor explosion. It is pointed out that the vapor film collapse behavior is significantly affected by the subcooling of low temperature liquid. However, the effect of subcooling on micro-mechanism of vapor film collapse behavior is not experimentally well identified. The objective of the present research is to experimentally investigate the effect of subcooling on micro-mechanism of film boiling collapse behavior. As the results, it is experimentally clarified that the vapor film collapse behavior in low subcooling condition is qualitatively different from the vapor film collapse behavior in high subcooling condition. In case of vapor film collapse by pressure pulse, homogeneous vapor generation occurred all over the surface of steel particle in low subcooling condition. On the other hand, heterogeneous vapor generation was observed for higher subcooling condition. In case of vapor film collapse spontaneously, fluctuation of the gas-liquid interface after quenching propagated from bottom to top of the steel particle heterogeneously in low subcooling condition. On the other hand, simultaneous vapor generation occurred for higher subcooling condition. And the time transient of pressure, particle surface temperature, water temperature and visual information were simultaneously measured in the vapor film collapse experiment by external pressure pulse. Film thickness was estimated by visual data processing technique with the pictures taken by the high-speed video camera. Temperature and heat flux at the vapor-liquid interface were estimated by solving the heat condition equation with the measured pressure, liquid temperature and vapor film thickness as boundary conditions. Movement of the vapor-liquid interface were estimated with the PIV technique with the visual observation
Current status of relativistic core collapse simulations
Energy Technology Data Exchange (ETDEWEB)
Font, Jose A [Departamento de Astronomia y Astrofisica, Universidad de Valencia, Dr. Moliner 50, 46100 Burjassot (Valencia) (Spain)
2007-05-15
With the first generation of ground-based gravitational wave laser interferometers already taking data, the availability of reliable waveform templates from astrophysical sources, which may help extract the signal from the anticipated noisy data, is urgently required. Gravitational stellar core collapse supernova has traditionally been considered among the most important astrophysical sources of potentially detectable gravitational radiation. Only very recently the first multidimensional simulations of relativistic rotational core collapse have been possible (albeit for models with simplified input physics), thanks to the use of conservative formulations of the hydrodynamics equations and advanced numerical methodology, as well as stable formulations of Einstein's equations. In this paper, the current status of relativistic core collapse simulations is discussed, with the emphasis given to the modelling of the collapse dynamics and to the computation of the gravitational radiation in the existing numerical approaches. Work employing the conformally-flat approximation (CFC) of the 3+1 Einstein's equations is reported, as well as extensions of this approximation (CFC+) and investigations within the framework of the so-called BSSN formulation of the 3+1 gravitational field equations (with no approximation for the spacetime dynamics). On the other hand, the incorporation of magnetic fields and the MHD equations in numerical codes to improve the realism of core collapse simulations in general relativity, is currently an emerging field where significant progress is bound to be soon achieved. The paper also contains a brief discussion of magneto-rotational simulations of core collapse, aiming at addressing the effects of magnetic fields on the collapse dynamics and on the gravitational waveforms.
Current status of relativistic core collapse simulations
International Nuclear Information System (INIS)
Font, Jose A
2007-01-01
With the first generation of ground-based gravitational wave laser interferometers already taking data, the availability of reliable waveform templates from astrophysical sources, which may help extract the signal from the anticipated noisy data, is urgently required. Gravitational stellar core collapse supernova has traditionally been considered among the most important astrophysical sources of potentially detectable gravitational radiation. Only very recently the first multidimensional simulations of relativistic rotational core collapse have been possible (albeit for models with simplified input physics), thanks to the use of conservative formulations of the hydrodynamics equations and advanced numerical methodology, as well as stable formulations of Einstein's equations. In this paper, the current status of relativistic core collapse simulations is discussed, with the emphasis given to the modelling of the collapse dynamics and to the computation of the gravitational radiation in the existing numerical approaches. Work employing the conformally-flat approximation (CFC) of the 3+1 Einstein's equations is reported, as well as extensions of this approximation (CFC+) and investigations within the framework of the so-called BSSN formulation of the 3+1 gravitational field equations (with no approximation for the spacetime dynamics). On the other hand, the incorporation of magnetic fields and the MHD equations in numerical codes to improve the realism of core collapse simulations in general relativity, is currently an emerging field where significant progress is bound to be soon achieved. The paper also contains a brief discussion of magneto-rotational simulations of core collapse, aiming at addressing the effects of magnetic fields on the collapse dynamics and on the gravitational waveforms
3D Results in VTK with data for gravitational collapse of a molecular hydrogen cloud
International Nuclear Information System (INIS)
Duarte P, R.; Klapp E, J.
2007-01-01
With the objective of using free software for visualization, we experience with VTK (Visualization Toolkit) system guided to objects, using a VTK classes library, Tcl languages and PV-WAVE, to create an application and to produce some images in 3D with data of 3D coordinated points, in this case of a gravitational collapse of a cloud of molecular hydrogen. (Author)
THE SINGLE AND ETERNAL GREECE OF RALLOU MANOU: A SURVEY OF HER WORK FROM A SLAV STANDPOINT
Directory of Open Access Journals (Sweden)
Nadežda Mosusova
2016-02-01
Full Text Available In 2015, the Greeks were celebrating the 100th anniversary of the birth of their talented and in many ways incomparable artist Rallou Manou (1915-1988. Year 2013 marked the 25th anniversary of her death. The current paper is depicting extraordinary personality of this many faceted woman which deserves continued research and new discoveries. Working for 45 years for the Greek theater, actually from 1938 until 1988 (excluding three war years, Rallou Manou realized over 70 stage works, spreading her art all over Greece and abroad, performing both with her ensemble and with her school. Being an offspring of foreign dancing trends, German and American, Manou has chosen to follow her own style in performing and choreographing, combining the opulent heritage of Greek ancient and folk tradition with the modern and contemporary dance. The goal of Manou’s art was to present her homeland as an unity, with the motto that there is no question of an ancient or a modern Greece, but one - single and eternal. Aim of this paper is also to keep from oblivion ideas and work of Rallou Manou, focusing actual researchеs on her links with the Slavonic world of dance.
Timescales of isotropic and anisotropic cluster collapse
Bartelmann, M.; Ehlers, J.; Schneider, P.
1993-12-01
From a simple estimate for the formation time of galaxy clusters, Richstone et al. have recently concluded that the evidence for non-virialized structures in a large fraction of observed clusters points towards a high value for the cosmological density parameter Omega0. This conclusion was based on a study of the spherical collapse of density perturbations, assumed to follow a Gaussian probability distribution. In this paper, we extend their treatment in several respects: first, we argue that the collapse does not start from a comoving motion of the perturbation, but that the continuity equation requires an initial velocity perturbation directly related to the density perturbation. This requirement modifies the initial condition for the evolution equation and has the effect that the collapse proceeds faster than in the case where the initial velocity perturbation is set to zero; the timescale is reduced by a factor of up to approximately equal 0.5. Our results thus strengthens the conclusion of Richstone et al. for a high Omega0. In addition, we study the collapse of density fluctuations in the frame of the Zel'dovich approximation, using as starting condition the analytically known probability distribution of the eigenvalues of the deformation tensor, which depends only on the (Gaussian) width of the perturbation spectrum. Finally, we consider the anisotropic collapse of density perturbations dynamically, again with initial conditions drawn from the probability distribution of the deformation tensor. We find that in both cases of anisotropic collapse, in the Zel'dovich approximation and in the dynamical calculations, the resulting distribution of collapse times agrees remarkably well with the results from spherical collapse. We discuss this agreement and conclude that it is mainly due to the properties of the probability distribution for the eigenvalues of the Zel'dovich deformation tensor. Hence, the conclusions of Richstone et al. on the value of Omega0 can be
Review of collapse triggering mechanism of collapsible soils due to wetting
Directory of Open Access Journals (Sweden)
Ping Li
2016-04-01
Full Text Available Loess soil deposits are widely distributed in arid and semi-arid regions and constitute about 10% of land area of the world. These soils typically have a loose honeycomb-type meta-stable structure that is susceptible to a large reduction in total volume or collapse upon wetting. Collapse characteristics contribute to various problems to infrastructures that are constructed on loess soils. For this reason, collapse triggering mechanism for loess soils has been of significant interest for researchers and practitioners all over the world. This paper aims at providing a state-of-the-art review on collapse mechanism with special reference to loess soil deposits. The collapse mechanism studies are summarized under three different categories, i.e. traditional approaches, microstructure approach, and soil mechanics-based approaches. The traditional and microstructure approaches for interpreting the collapse behavior are comprehensively summarized and critically reviewed based on the experimental results from the literature. The soil mechanics-based approaches proposed based on the experimental results of both compacted soils and natural loess soils are reviewed highlighting their strengths and limitations for estimating the collapse behavior. Simpler soil mechanics-based approaches with less parameters or parameters that are easy-to-determine from conventional tests are suggested for future research to better understand the collapse behavior of natural loess soils. Such studies would be more valuable for use in conventional geotechnical engineering practice applications.
Directory of Open Access Journals (Sweden)
J. Marianne Siegmund
2018-03-01
Full Text Available In the second part of her arguing for contemplative listening as a fundamental act of the new evangelization, the author turns to the theological perspective of Jesus Christ as the eternal Listener and, thus, focuses upon his act of listening, which is the unique per-sonal form of his eternal divinity. The author addresses the following issues. Granted that listening has to do with obedi-ent readiness, how can one say it is in the eternal Son, who, being God, would seem to be naturally exempt from obedience? In order to answer this question, the author looks at the Balthasarian “enfleshment” of Thomas’ notion of the divine persons as subsistent relations. In brief, to say that the Son is the subsistent relation of sonship means that the Son receives himself from the Father. But this self-reception implies, the author argues, an obedient readiness. And, since the Son is Word, this obedient readiness translates into a “listening.” The Son is not only the eternal Word. He is also the eternal listener of the Word he is. Within the Godhead, each person is his relation (of “opposition” to the others and there is no difference between the person and his action. For example, the Son is his relation of sonship to the Father. But, one might ask, how could one speak of the Son’s obedi-ence? How does one avoid subordinationism? The key is to see how the Son’s posses-sion of divinity is compatible with a reception of it. If the Father is the “source and origin of all divinity,” the Son does, in fact, receive his divinity from the Father while, at the same time, he is co-equal and co-eternal with the Father. That the Father gener-ates the Son does not mean, as Arius asserted, that there was a time when the Son was not. Rather, the Son always possesses his divine sonship as being given from the Fa-ther, while the Father possesses divinity as being given away. Divinity is compatible with relationality in the mode of reception. In the
Progressive Collapse of High-Rise Buildings from Fire
Directory of Open Access Journals (Sweden)
Pershakov Valerii
2016-01-01
Full Text Available Considers ensuring the stability of structures of high-rise buildings against progressive collapse due to fire, proposed measures to ensure the stability of high-rise buildings due to progressive collapse. The analysis of large fires in high-rise buildings with progressive collapse and review of the literature on the issue of progressive collapse. The analysis of the Ukrainian normative documents on progressive collapse resistance.
Inflationary gravitational waves in collapse scheme models
Energy Technology Data Exchange (ETDEWEB)
Mariani, Mauro, E-mail: mariani@carina.fcaglp.unlp.edu.ar [Facultad de Ciencias Astronómicas y Geofísicas, Universidad Nacional de La Plata, Paseo del Bosque S/N, 1900 La Plata (Argentina); Bengochea, Gabriel R., E-mail: gabriel@iafe.uba.ar [Instituto de Astronomía y Física del Espacio (IAFE), UBA-CONICET, CC 67, Suc. 28, 1428 Buenos Aires (Argentina); León, Gabriel, E-mail: gleon@df.uba.ar [Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria – Pab. I, 1428 Buenos Aires (Argentina)
2016-01-10
The inflationary paradigm is an important cornerstone of the concordance cosmological model. However, standard inflation cannot fully address the transition from an early homogeneous and isotropic stage, to another one lacking such symmetries corresponding to our present universe. In previous works, a self-induced collapse of the wave function has been suggested as the missing ingredient of inflation. Most of the analysis regarding the collapse hypothesis has been solely focused on the characteristics of the spectrum associated to scalar perturbations, and within a semiclassical gravity framework. In this Letter, working in terms of a joint metric-matter quantization for inflation, we calculate, for the first time, the tensor power spectrum and the tensor-to-scalar ratio corresponding to the amplitude of primordial gravitational waves resulting from considering a generic self-induced collapse.
Noncrossing timelike singularities of irrotational dust collapse
International Nuclear Information System (INIS)
Liang, E.P.T.
1979-01-01
Known naked singularities in spherical dust collapse are either due to shell-crossing or localized to the central world line. They will probably be destroyed by pressure gradients or blue-shift instabilities. To violate the cosmic censorship hypothesis in a more convincing and general context, collapse solutions with naked singularities that are at least nonshell-crossing and nonlocalized need to be constructed. Some results concerning the probable structure of a class of nonshellcrossing and nonlocalized timelike singularities are reviewed. The cylindrical dust model is considered but this model is not asymptotically flat. To make these noncrossing singularities viable counter examples to the cosmic censorship hypothesis, the occurrence of such singularities in asymptotically flat collapse needs to be demonstrated. (UK)
Did mud contribute to freeway collapse?
Hough, Susan E.; Friberg, Paul A.; Busby, Robert; Field, Edward F.; Jacob, Klaus H.; Borcherdt, Roger D.
At least 41 people were killed October 17 when the upper tier of the Nimitz Freeway in Oakland, Calif., collapsed during the Ms = 7.1 Loma Prieta earthquake. Seismologists studying aftershocks concluded that soil conditions and resulting ground motion amplification were important in the failure of the structure and should be considered in the reconstruction of the highway.Structural design weaknesses in the two-tiered freeway, known as the Cypress structure, had been identified before the tragedy. The seismologists, from Lamont Doherty Geological Observatory in Palisades, N.Y., and the U.S. Geological Survey in Menlo Park, Calif., found that the collapsed section was built on fill over Bay mud. A southern section of the Cypress structure built on alluvium of Quaternary age did not collapse (see Figure 1).
The Effects of Admixed Dark Matter on Accretion Induced Collapse
Leung, Shing-Chi; Chu, Ming-Chung; Lin, Lap-Ming; Nomoto, Ken'ichi
About 90% mass of matter in the universe is dark matter (DM) and most of its properties remain poorly constrained since it does not interact with electromagnetic and strong forces. To constrain the properties of DM, studying its effects on stellar objects is one of the methods. In [Leung et al., Phys. Rev. D 87, 123506 (2013); Leung et al., Astrophys. J. 812, 110 (2015)] we have shown that the dark matter admixture can significantly lower the Chandrasekhar mass of a white dwarf and also its corresponding explosion as a Type Ia supernova (SNe Ia). This type of objects may explain some observed sub-luminous SNe Ia. Depending on their stellar evolution path and interactions with companion stars, such objects can also undergo a direct collapse to form neutron stars (NSs) instead of explosion. Here we present results of one-dimensional hydrodynamics simulations of a NS with admixed DM. The DM is assumed to be asymmetric and in the form of an ideal degenerate Fermi gas. We study how the admixture of DM affects the collapse dynamics, its neutrino signals and the properties of the proto-NS. Possible observational signals are also discussed.
Accounting and Theology::An Introduction. Initiating a Dialogue Between Immediacy and Eternity
McPhail, Ken; Gorringe, T; Gray, R
2004-01-01
Presents an introduction to the articles in “Theological perspectives in accounting”, a special issue with the objectives of exploring whether a theological take on accounting is possible and if so, beginning an investigation into the insights that might be gained from a Judeo-Christian reading of accounting in particular. Briefly outlines the initial motivations in undertaking the editorship of this special issue.
Sonographic Analysis of the Collapsed Gall Bladder
International Nuclear Information System (INIS)
Han, Sang Suk; Choi, Jae Young; Choi, Seok Jin; Eun, Chung Ki; Nam, Kyung Jin; Lee, Jeong Mi
1996-01-01
This study was done to find answers for further following questions in cases of the collapsed gallbladder (GB) : What is the probability of the presence of stone when stony echo is visible in GB area? What is the probability of the presence of stone when only acoustic shadow is visible from GB area? What are the associated GB pathologies except stone or cholecystitis in previously mentioned situations and is it possible to differentiate them? What are the underlying pathologies of GB collapse without stony echo or acoustic shadow and is it possible to differentiate them sonographic ally? What are the rate and causes of re-expansion of the collapsed GB on follow-up study? Prospective study was done in 157 cases of collapsed GB with no visible or nearly no visible bile filled lumen in recent 3 years. Sonographic analysis for GB lesions was done in 61 confirmed cases. Changing pattern of GB lumen on follow-up study and their underlying pathologies were analyzed in 28 cases. Initial sonographic examination was done with 3 or 3.5 MHz transducer. No other transducer was used in cases showing stony echo or acoustic shadow in GB area, but additional examination was done with 5 or 7-4 MHz transducer in cases without stony echo or acoustic shadow. Among 31 cases, which showed stony echo, stone was found in 30 cases and milk of calcium bile in one case. Stone was present in all of the 11 cases which showed only acoustic shadow from the collapsed GB without stony echo. GB cancer was accompanied in 2 cases among upper 42 cases, and its possibility could be suspected sonographic ally. Underlying pathologies of the 19cases without stony echo or acoustic shadow were as follows : GB stone (3), cholecystitis (6), GB cancer (1), bile plug syndrome (1), hepatitis (5), and ascites (3). And sonographic differentiation of the underlying causes for the collapse was possible in only 1 case of GB cancer. Among 28 cases of the follow-up study, 20 cases showed re-expansion of the GB lumen and
Relativistic collapse using Regge calculus: Pt. 1
International Nuclear Information System (INIS)
Dubal, M.R.; Leicester Univ.
1989-01-01
Regge calculus is used to simulate the dynamical collapse of model stars. In this paper we describe the general methodology of including a perfect fluid in dynamical Regge calculus spacetimes. The Regge-Einstein equations for spherical collapse are obtained and are then specialised to mimic a particular continuum gauge. The equivalent continuum problem is also set up. This is to be solved using standard numerical techniques (i.e. the method of finite difference). A subsequent paper will consider the solution of the equations presented here and will use the continuum problem for comparison purposes in order to check the Regge calculus results. (author)
Collapse and equilibrium of rotating, adiabatic clouds
International Nuclear Information System (INIS)
Boss, A.P.
1980-01-01
A numerical hydrodynamics computer code has been used to follow the collapse and establishment of equilibrium of adiabatic gas clouds restricted to axial symmetry. The clouds are initially uniform in density and rotation, with adiabatic exponents γ=5/3 and 7/5. The numerical technique allows, for the first time, a direct comparison to be made between the dynamic collapse and approach to equilibrium of unconstrained clouds on the one hand, and the results for incompressible, uniformly rotating equilibrium clouds, and the equilibrium structures of differentially rotating polytropes, on the other hand
Mitra, Abhas
2013-04-01
It is widely believed that though pressure resists gravitational collapse in Newtonian gravity, it aids the same in general relativity (GR) so that GR collapse should eventually be similar to the monotonous free fall case. But we show that, even in the context of radiationless adiabatic collapse of a perfect fluid, pressure tends to resist GR collapse in a manner which is more pronounced than the corresponding Newtonian case and formation of trapped surfaces is inhibited. In fact there are many works which show such collapse to rebound or become oscillatory implying a tug of war between attractive gravity and repulsive pressure gradient. Furthermore, for an imperfect fluid, the resistive effect of pressure could be significant due to likely dramatic increase of tangential pressure beyond the "photon sphere." Indeed, with inclusion of tangential pressure, in principle, there can be static objects with surface gravitational redshift z → ∞. Therefore, pressure can certainly oppose gravitational contraction in GR in a significant manner in contradiction to the idea of Roger Penrose that GR continued collapse must be unstoppable.
a Statistical Texture Feature for Building Collapse Information Extraction of SAR Image
Li, L.; Yang, H.; Chen, Q.; Liu, X.
2018-04-01
Synthetic Aperture Radar (SAR) has become one of the most important ways to extract post-disaster collapsed building information, due to its extreme versatility and almost all-weather, day-and-night working capability, etc. In view of the fact that the inherent statistical distribution of speckle in SAR images is not used to extract collapsed building information, this paper proposed a novel texture feature of statistical models of SAR images to extract the collapsed buildings. In the proposed feature, the texture parameter of G0 distribution from SAR images is used to reflect the uniformity of the target to extract the collapsed building. This feature not only considers the statistical distribution of SAR images, providing more accurate description of the object texture, but also is applied to extract collapsed building information of single-, dual- or full-polarization SAR data. The RADARSAT-2 data of Yushu earthquake which acquired on April 21, 2010 is used to present and analyze the performance of the proposed method. In addition, the applicability of this feature to SAR data with different polarizations is also analysed, which provides decision support for the data selection of collapsed building information extraction.
State-of-the-Art-Review of Collapsible Soils
Directory of Open Access Journals (Sweden)
A. A. AL-Rawas
2000-12-01
Full Text Available Collapsible soils are encountered in arid and semi-arid regions. Such soils cause potential construction problems due to their collapse upon wetting. The collapse phenomenon is primarily related to the open structure of the soil. Several soil collapse classifications based on parameters such as moisture content, dry density, Atterberg limits and clay content have been proposed in the literature as indicators of the soil collapse potential. Direct measurement of the magnitude of collapse, using laboratory and/or field tests, is essential once a soil showed indications of collapse potential. Treatment methods such as soil replacement, compaction control and chemical stabilization showed significant reduction in the settlement of collapsible soils. The design of foundations on collapsible soils depends on the depth of the soil, magnitude of collapse and economics of the design. Strip foundations are commonly used when collapsing soil extends to a shallow depth while piles and drilled piers are recommended in cases where the soil extends to several meters. This paper provides a comprehensive review of collapsible soils. These include the different types of collapsible soils, mechanisms of collapse, identification and classification methods, laboratory and field testing, treatment methods and guidelines for foundation design.
Nonlinear Progressive Collapse Analysis Including Distributed Plasticity
Directory of Open Access Journals (Sweden)
Mohamed Osama Ahmed
2016-01-01
Full Text Available This paper demonstrates the effect of incorporating distributed plasticity in nonlinear analytical models used to assess the potential for progressive collapse of steel framed regular building structures. Emphasis on this paper is on the deformation response under the notionally removed column, in a typical Alternate Path (AP method. The AP method employed in this paper is based on the provisions of the Unified Facilities Criteria – Design of Buildings to Resist Progressive Collapse, developed and updated by the U.S. Department of Defense [1]. The AP method is often used for to assess the potential for progressive collapse of building structures that fall under Occupancy Category III or IV. A case study steel building is used to examine the effect of incorporating distributed plasticity, where moment frames were used on perimeter as well as the interior of the three dimensional structural system. It is concluded that the use of moment resisting frames within the structural system will enhance resistance to progressive collapse through ductile deformation response and that it is conserative to ignore the effects of distributed plasticity in determining peak displacement response under the notionally removed column.
General relativistic collapse of rotating stars
International Nuclear Information System (INIS)
Nakamura, T.
1984-01-01
When a rotating star begins to collapse, the gravity becomes so strong that there appears a region from which even a photon cannot escape. After the distortion of space-time is radiated as gravitational waves, a Kerr black hole is formed finally. One of the main goals for numerical relativity is to simulate the collapse of a rotating star under realistic conditions. However, to know both the dynamics of matter and the propagation of gravitational radiation seems to be very difficult. Therefore, in this paper the problem is divided into 4 stages. They are: (1) The time evolution of pure gravitational waves is calculated in a 2-D code. (2) In this stage, the author tries to understand the dynamics of a collapsing, rotating star in 2D code. (3) Combining the techniques from stages 1, 2, the author tries to know both the dynamics of matter and the propagation of gravitational waves generated by the nonspherical motion of matter. (4) The author simulates the gravitational collapse of a rotating star to a black hole in 3D. 25 references, 12 figures, 1 table
Langmuir field structures favored in wave collapse
International Nuclear Information System (INIS)
Robinson, P.A.; Wouters, M.J.; Broderick, N.G.
1996-01-01
Study of Langmuir collapse thresholds shows that they have little polarization dependence and that moving packets have the lowest thresholds in the undamped case. However, incorporation of damping into the density response inhibits collapse of packets moving at more than a small fraction of the sound speed. Investigation of energy transfer to packets localized in density wells emdash the nucleation process emdash shows that at most a few trapped states can exist and that energy transfer is most effective when there is a single barely-trapped state. Coupled with an argument that closely packed wave packets have lower collapse thresholds, this argument yields an estimate of the number density of localized nucleating states in a turbulent plasma. It also leads to a simple and direct semiquantitative estimate of the collapse threshold. All these results are in accord with previous numerical simulations incorporating ion-sound damping, which show a preponderance of slow-moving or stationary packets with little or no intrinsic polarization dependence of thresholds. Likewise, the number densities obtained are in good agreement with simulation values, and the simple estimate of the threshold is semiquantitatively correct. The extent of the agreement supports the nucleation scenario with close-packed nucleation sites in the turbulent state. copyright 1996 American Institute of Physics
Identification and behavior of collapsible soils.
2011-01-01
Loess is a soil that can exhibit large deformations upon wetting. Cases of wetting induced collapse in loess have : been documented for natural deposits and man-made fills. These issues are of concern to the Indiana DOT due to the growth : of the sta...
The collapse of turbulence in the evening
Wiel, van de B.J.H.; Moene, A.F.; Jonker, H.J.J.; Baas, P.; Basu, S.; Sun, J.; Holtslag, A.A.M.
2012-01-01
A common experience in everyday weather is the fact that near-surface wind speeds tend to weaken in the evening, particularly in fair weather conditions. This cessation of wind usually coincides with the collapse of turbulence which leads to a quiet flow near the ground. As the absence of turbulent
Collapsible structure for an antenna reflector
Trubert, M. R. (Inventor)
1973-01-01
A collapsible support for an antenna reflector for use in supporting spacecraft antennas is described. The support has a regid base and a number of struts which are pivoted at the base. The deployment of the struts and their final configuration for supporting the antenna are illustrated.
Hydrogen-Poor Core-Collapse Supernovae
Pian, Elena; Mazzali, Paolo A.
Hydrogen-poor core-collapse supernovae (SNe) signal the explosive death of stars more massive than the progenitors of hydrogen-rich core-collapse supernovae, i.e., approximately in the range 15-50 M⊙ in main sequence. Since hydrogen-poor core-collapse supernovae include those that accompany gamma-ray bursts (GRBs), which were all rigorously identified with type Ic supernovae, their explosion energies cover almost two decades. The light curves and spectra are consequently very heterogeneous and often bear the signature of an asymmetric, i.e., aspherical, explosion. Asphericity is best traced by early-time (within days of the explosion) optical spectropolarimetry and by late-epoch (more than ˜ 100 days after explosion) low-resolution spectroscopy. While the relationship between hydrogen-poor core-collapse supernovae to hydrogen-poor super-luminous supernovae is not understood, a known case of association between an ultra-long gamma-ray burst and a very luminous hydrogen-poor supernova may help unraveling the connection. This is tantalizingly pointing to a magnetar powering source for both phenomena, although this scenario is still highly speculative. Host galaxies of hydrogen-poor supernovae are always star forming; in those of completely stripped supernovae and gamma-ray burst supernovae, the spatial distribution of the explosions follows the blue/ultraviolet light, with a correlation that is more than linear.
Gravitational collapse with decaying vacuum energy
Indian Academy of Sciences (India)
Abstract. The effect of dark energy on the end state of spherical radiation collapse is considered within the context of the cosmic censorship hypothesis. It is found that it is possible to have both black holes as well as naked singularities.
Schuster's law, black holes and gravitational collapse
International Nuclear Information System (INIS)
Massa, C.
1988-01-01
Consequences of the application of Schuster's law to black holes are investigated. It is shown that Schuster's law can reduce the intrinsic angular momentum of a collapsing body. The possibility is supposed that Schuster's law provides the general mechanism required by the cosmic censorship hypothesis which is taken seriously as a fundamental law of nature
A spherical collapse solution with neutrino outflow
International Nuclear Information System (INIS)
Glass, E.N.
1990-01-01
A three-parameter family of solutions of Einstein's field equations is given that represents a collapsing perfect fluid with outgoing neutrino flux. Solutions with ''naked'' singularities are exhibited. They can be forbidden by requiring pressure less than or equal to the density as a condition of cosmic censorship
Gravitational wave generation by stellar core collapse
International Nuclear Information System (INIS)
Moore, T.A.
1981-01-01
Stars which have masses greater than 5 to 8 solar masses are thought to undergo a stage of catastrophic core collapse and subsequent supernova explosion at the end of their lives. If the core is not spherically symmetric, the bounce which halts its collapse at transnuclear densities will generate a pulse of gravitational waves. This thesis presents a fully relativistic model of core collapse which treats deviations from spherical symmetry as small perturbations on a spherical background. This model may be used to predict qualitative and quantitative features of the gravitational radiation emitted by stellar cores with odd-parity, axisymmetric fluid perturbations, and represents a first step in the application of perturbative methods to more general asymmetries. The first chapter reviews the present consensus on the physics of core collapse and outlines the important features, assumptions, and limitations of the model. A series of model runs are presented and discussed. Finally, several proposals for future research are presented. Subsequent chapters explore in detail the mathematical features of the present model and its realization on the computer
The heterogeneity of world trade collapses
P.A.G. van Bergeijk (Peter)
2015-01-01
textabstractThis paper analyses drivers of imports during the major world trade collapses of the Great Depression (1930s; 34 countries) and the Great Recession (1930s; 173 countries). The analysis deals with the first year of these episodes and develops a small empirical model that shows a
International Nuclear Information System (INIS)
Chen, Peng; Wu, Jian; Liu, Yaolin; Wang, Jing
2014-01-01
At present, the extraction of earthquake disaster information from remote sensing data relies on visual interpretation. However, this technique cannot effectively and quickly obtain precise and efficient information for earthquake relief and emergency management. Collapsed buildings in the town of Zipingpu after the Wenchuan earthquake were used as a case study to validate two kinds of rapid extraction methods for earthquake-collapsed building information based on pixel-oriented and object-oriented theories. The pixel-oriented method is based on multi-layer regional segments that embody the core layers and segments of the object-oriented method. The key idea is to mask layer by layer all image information, including that on the collapsed buildings. Compared with traditional techniques, the pixel-oriented method is innovative because it allows considerably rapid computer processing. As for the object-oriented method, a multi-scale segment algorithm was applied to build a three-layer hierarchy. By analyzing the spectrum, texture, shape, location, and context of individual object classes in different layers, the fuzzy determined rule system was established for the extraction of earthquake-collapsed building information. We compared the two sets of results using three variables: precision assessment, visual effect, and principle. Both methods can extract earthquake-collapsed building information quickly and accurately. The object-oriented method successfully overcomes the pepper salt noise caused by the spectral diversity of high-resolution remote sensing data and solves the problem of same object, different spectrums and that of same spectrum, different objects. With an overall accuracy of 90.38%, the method achieves more scientific and accurate results compared with the pixel-oriented method (76.84%). The object-oriented image analysis method can be extensively applied in the extraction of earthquake disaster information based on high-resolution remote sensing
The Final Stage of Gravitationally Collapsed Thick Matter Layers
Directory of Open Access Journals (Sweden)
Piero Nicolini
2013-01-01
Full Text Available In the presence of a minimal length, physical objects cannot collapse to an infinite density, singular, matter point. In this paper, we consider the possible final stage of the gravitational collapse of “thick” matter layers. The energy momentum tensor we choose to model these shell-like objects is a proper modification of the source for “noncommutative geometry inspired,” regular black holes. By using higher momenta of Gaussian distribution to localize matter at finite distance from the origin, we obtain new solutions of the Einstein equation which smoothly interpolates between Minkowski’s geometry near the center of the shell and Schwarzschild’s spacetime far away from the matter layer. The metric is curvature singularity free. Black hole type solutions exist only for “heavy” shells; that is, M ≥Me, where Me is the mass of the extremal configuration. We determine the Hawking temperature and a modified area law taking into account the extended nature of the source.
DEFF Research Database (Denmark)
Lopdrup-Hjorth, Thomas
2015-01-01
This paper explores the erosion and problematization of ‘the organization’ as a demarcated entity. Utilizing Foucault's reflections on ‘state-phobia’ as a source of inspiration, I show how an organization-phobia has gained a hold within Organization Theory (OT). By attending to the history...... of this organization-phobia, the paper argues that OT has become increasingly incapable of speaking about its core object. I show how organizations went from being conceptualized as entities of major importance to becoming theoretically deconstructed and associated with all kinds of ills. Through this history......, organizations as distinct entities have been rendered so problematic that they have gradually come to be removed from the center of OT. The costs of this have been rather significant. Besides undermining the grounds that gave OT intellectual credibility and legitimacy to begin with, the organization-phobia...
Identification and behavior of collapsible soils : [technical summary].
2011-01-01
Collapsible soils are susceptible to large volumetric strains when they become saturated. Numerous soil types : fall in the general category of collapsible soils, including : loess, a well-known aeolian deposit, present throughout : most of Indiana. ...
Dynamic Control of Collapse in a Vortex Airy Beam
Chen, Rui-Pin; Chew, Khian-Hooi; He, Sailing
2013-01-01
Here we study systematically the self-focusing dynamics and collapse of vortex Airy optical beams in a Kerr medium. The collapse is suppressed compared to a non-vortex Airy beam in a Kerr medium due to the existence of vortex fields. The locations of collapse depend sensitively on the initial power, vortex order, and modulation parameters. The collapse may occur in a position where the initial field is nearly zero, while no collapse appears in the region where the initial field is mainly distributed. Compared with a non-vortex Airy beam, the collapse of a vortex Airy beam can occur at a position away from the area of the initial field distribution. Our study shows the possibility of controlling and manipulating the collapse, especially the precise position of collapse, by purposely choosing appropriate initial power, vortex order or modulation parameters of a vortex Airy beam. PMID:23518858
Unifying Research on Social-Ecological Resilience and Collapse.
Cumming, Graeme S; Peterson, Garry D
2017-09-01
Ecosystems influence human societies, leading people to manage ecosystems for human benefit. Poor environmental management can lead to reduced ecological resilience and social-ecological collapse. We review research on resilience and collapse across different systems and propose a unifying social-ecological framework based on (i) a clear definition of system identity; (ii) the use of quantitative thresholds to define collapse; (iii) relating collapse processes to system structure; and (iv) explicit comparison of alternative hypotheses and models of collapse. Analysis of 17 representative cases identified 14 mechanisms, in five classes, that explain social-ecological collapse. System structure influences the kind of collapse a system may experience. Mechanistic theories of collapse that unite structure and process can make fundamental contributions to solving global environmental problems. Copyright © 2017. Published by Elsevier Ltd.
mode of collapse of square single panel reinforced concrete space
African Journals Online (AJOL)
The models were loaded directly till collapse. The estimated and actual collapse loads of the five models were compared. The estimated collapse load for the slab was 35 kN/m2. Also, the numerical estimate of the collapse load for the beam was 10.2kN/m (with an equivalent slab load of 40.8kN/m2), while the shear capacity ...
Collapse and revival in holographic quenches
International Nuclear Information System (INIS)
Silva, Emilia da; Lopez, Esperanza; Mas, Javier; Serantes, Alexandre
2015-01-01
We study holographic models related to global quantum quenches in finite size systems. The holographic set up describes naturally a CFT, which we consider on a circle and a sphere. The enhanced symmetry of the conformal group on the circle motivates us to compare the evolution in both cases. Depending on the initial conditions, the dual geometry exhibits oscillations that we holographically interpret as revivals of the initial field theory state. On the sphere, this only happens when the energy density created by the quench is small compared to the system size. However on the circle considerably larger energy densities are compatible with revivals. Two different timescales emerge in this latter case. A collapse time, when the system appears to have dephased, and the revival time, when after rephasing the initial state is partially recovered. The ratio of these two times depends upon the initial conditions in a similar way to what is observed in some experimental setups exhibiting collapse and revivals.
HII regions in collapsing massive molecular clouds
International Nuclear Information System (INIS)
Yorke, H.W.; Bodenheimer, P.; Tenorio-Tagle, G.
1982-01-01
Results of two-dimensional numerical calculations of the evolution of HII regions associated with self-gravitating, massive molecular clouds are presented. Depending on the location of the exciting star, a champagne flow can occur concurrently with the central collapse of a nonrotating cloud. Partial evaporation of the cloud at a rate of about 0.005 solar masses/yr results. When 100 O-stars are placed at the center of a freely falling cloud of 3x10 5 solar masses no evaporation takes place. Rotating clouds collapse to disks and the champagne flow can evaporate the cloud at a higher rate (0.01 solar masses/yr). It is concluded that massive clouds containing OB-stars have lifetimes of no more than 10 7 yr. (Auth.)
Collapse and bounce of null fluids
Creelman, Bradley; Booth, Ivan
2016-01-01
Exact solutions describing the spherical collapse of null fluids can contain regions which violate the energy conditions. Physically the violations occur when the infalling matter continues to move inwards even when non-gravitational repulsive forces become stronger than gravity. In 1991 Ori proposed a resolution for these violations: spacetime surgery should be used to replace the energy condition violating region with an outgoing solution. The matter bounces. We revisit and implement this p...
Analysis of power system collapse risk
International Nuclear Information System (INIS)
Eleschova, Z.; Belan, A.; Cintula, B.; Smitkova, M.
2012-01-01
In this paper are analysed the initialization events with considering different scenarios and their impact on the power system transient stability. As an initialization event is considered a short circuit at various places of power line. In each scenario are considered protection failures (backup protection), circuit-breaker failures (breaker failure relay activation). The individual states are analysed and the power system collapse risk assessed based on the simulation experiments results (Authors)
Distributed Monitoring of Voltage Collapse Sensitivity Indices
Simpson-Porco, John W.; Bullo, Francesco
2016-01-01
The assessment of voltage stability margins is a promising direction for wide-area monitoring systems. Accurate monitoring architectures for long-term voltage instability are typically centralized and lack scalability, while completely decentralized approaches relying on local measurements tend towards inaccuracy. Here we present distributed linear algorithms for the online computation of voltage collapse sensitivity indices. The computations are collectively performed by processors embedded ...
Rate of stellar collapses in the Galaxy
International Nuclear Information System (INIS)
Lande, K.; Stephens, W.E.
1977-01-01
From an analysis of pulsar spatial and luminosity distributions, the number density of observed pulsars in the local region is determined to be 1.1+-0.4x10 -7 pulsar pc -3 . Multiplication by the detection factor and by the ratio of Galaxy mass to local matter density and division by a mean lifetime of pulsars of 3x10 6 yr suggests a pulsar birth every 4 yr. A stellar collapse might occur even more often. (Auth.)
Asymmetric explosion of core-collapse supernovae
International Nuclear Information System (INIS)
Kazeroni, Remi
2016-01-01
A core-collapse supernova represents the ultimate stage of the evolution of massive stars.The iron core contraction may be followed by a gigantic explosion which gives birth to a neutron star.The multidimensional dynamics of the innermost region, during the first hundreds milliseconds, plays a decisive role on the explosion success because hydrodynamical instabilities are able to break the spherical symmetry of the collapse. Large scale transverse motions generated by two instabilities, the neutrino-driven convection and the Standing Accretion Shock Instability (SASI),increase the heating efficiency up to the point of launching an asymmetric explosion and influencing the birth properties of the neutron star. In this thesis, hydrodynamical instabilities are studied using numerical simulations of simplified models. These models enable a wide exploration of the parameter space and a better physical understanding of the instabilities, generally inaccessible to realistic models.The non-linear regime of SASI is analysed to characterize the conditions under which a spiral mode prevails and to assess its ability to redistribute angular momentum radially.The influence of rotation on the shock dynamics is also addressed. For fast enough rotation rates, a corotation instability overlaps with SASI and greatly impacts the dynamics. The simulations enable to better constrain the effect of non-axisymmetric modes on the angular momentum budget of the iron core collapsing into a neutron star. SASI may under specific conditions spin up or down the pulsar born during the explosion. Finally, an idealised model of the heating region is studied to characterize the non-linear onset of convection by perturbations such as those produced by SASI or pre-collapse combustion inhomogeneities. The dimensionality issue is examined to stress the beneficial consequences of the three-dimensional dynamics on the onset of the explosion. (author) [fr
Cooperation, cheating, and collapse in microbial populations
Gore, Jeff
2012-02-01
Natural populations can suffer catastrophic collapse in response to small changes in environmental conditions, and recovery after such a collapse can be exceedingly difficult. We have used laboratory yeast populations to study proposed early warning signals of impending extinction. Yeast cooperatively breakdown the sugar sucrose, meaning that there is a minimum number of cells required to sustain the population. We have demonstrated experimentally that the fluctuations in the population size increase in magnitude and become slower as the population approaches collapse. The cooperative nature of yeast growth on sucrose suggests that the population may be susceptible to cheater cells, which do not contribute to the public good and instead merely take advantage of the cooperative cells. We have confirmed this possibility experimentally by using a cheater yeast strain that lacks the gene encoding the cooperative behavior [1]. However, recent results in the lab demonstrate that the presence of a bacterial competitor may drive cooperation within the yeast population.[4pt] [1] Gore et al, Nature 459, 253 -- 256 (2009)
Collapse of experimental capsules under external pressure
International Nuclear Information System (INIS)
Simonen, F.A.; Shippell, R.J. Jr.
1980-01-01
Stress analyses and developmental tests of capsules fabricated from thick-walled tubing were performed for an external pressure design condition. In the design procedure no credit was taken for the expected margin in pressure between yielding of the capsule wall and catastrophic collapse or flattening. In tests of AISI-1018 low carbon steel capsules, a significant margin was seen between yield and collapse pressure. However, the experimental yield pressures were significantly below predictions, essentially eliminating the safety margin present in the conservative design approach. The differences between predictions and test results are attributed to deficiencies in the plasticity theories commonly in use for engineering stress analyses. The results of this study show that the von Mises yield condition does not accurately describe the yield behavior of the AISI-1018 steel tubing material for the triaxial stress conditions of interest. Finite element stress analyses successfully predicted the transition between uniform inward plastic deformation and ovalization that leads to catastrophic collapse. After adjustments to correct for the unexpected yield behavior of the tube material, the predicted pressure-deflection trends were found to follow the experimental data
Collapse of tall granular columns in fluid
Kumar, Krishna; Soga, Kenichi; Delenne, Jean-Yves
2017-06-01
Avalanches, landslides, and debris flows are geophysical hazards, which involve rapid mass movement of granular solids, water, and air as a multi-phase system. In order to describe the mechanism of immersed granular flows, it is important to consider both the dynamics of the solid phase and the role of the ambient fluid. In the present study, the collapse of a granular column in fluid is studied using 2D LBM - DEM. The flow kinematics are compared with the dry and buoyant granular collapse to understand the influence of hydrodynamic forces and lubrication on the run-out. In the case of tall columns, the amount of material destabilised above the failure plane is larger than that of short columns. Therefore, the surface area of the mobilised mass that interacts with the surrounding fluid in tall columns is significantly higher than the short columns. This increase in the area of soil - fluid interaction results in an increase in the formation of turbulent vortices thereby altering the deposit morphology. It is observed that the vortices result in the formation of heaps that significantly affects the distribution of mass in the flow. In order to understand the behaviour of tall columns, the run-out behaviour of a dense granular column with an initial aspect ratio of 6 is studied. The collapse behaviour is analysed for different slope angles: 0°, 2.5°, 5° and 7.5°.
Collapse postulate for observables with continuous area
International Nuclear Information System (INIS)
Srinivas, M.D.
1979-03-01
In order to provide a mathematical framework for discussing the statistical correlations between the outcomes, when an arbitrary sequence of observables are measured, it is necessary to generalize the conventional von Neumann-Lueders collapse postulate to observables with a continuous spectrum. It is shown that the standard prescription in conventional quantum theory for the joint probabilities of compatible observables is sufficient to characterize, more or less completely, the appropriate ''generalized collapse postulate'' which associates with each observable a unique ''finitely additive expectation valued measure''. An interesting feature of the collapse associated with observables with continuous spectra, which again follows from the basic principles of conventional quantum theory, is that it must be formulated in terms of the so-called non-normal conditional expectations, which implies that the joint probabilities associated with successive observations of such observables are not in general σ-additive. The implications of this non-σ-additivity on the determination of expectation values, correlation functions etc., are also investigated. It is demonstrated that the basic prescriptions introduced in this paper constitute a natural completion of the framework of conventional quantum theory for discussing the statistics of an arbitrary sequence of observations
The Collapse of Ecosystem Engineer Populations
Directory of Open Access Journals (Sweden)
José F. Fontanari
2018-01-01
Full Text Available Humans are the ultimate ecosystem engineers who have profoundly transformed the world’s landscapes in order to enhance their survival. Somewhat paradoxically, however, sometimes the unforeseen effect of this ecosystem engineering is the very collapse of the population it intended to protect. Here we use a spatial version of a standard population dynamics model of ecosystem engineers to study the colonization of unexplored virgin territories by a small settlement of engineers. We find that during the expansion phase the population density reaches values much higher than those the environment can support in the equilibrium situation. When the colonization front reaches the boundary of the available space, the population density plunges sharply and attains its equilibrium value. The collapse takes place without warning and happens just after the population reaches its peak number. We conclude that overpopulation and the consequent collapse of an expanding population of ecosystem engineers is a natural consequence of the nonlinear feedback between the population and environment variables.
Precombination Cloud Collapse and Baryonic Dark Matter
Hogan, Craig J.
1993-01-01
A simple spherical model of dense baryon clouds in the hot big bang 'strongly nonlinear primordial isocurvature baryon fluctuations' is reviewed and used to describe the dependence of cloud behavior on the model parameters, baryon mass, and initial over-density. Gravitational collapse of clouds before and during recombination is considered including radiation diffusion and trapping, remnant type and mass, and effects on linear large-scale fluctuation modes. Sufficiently dense clouds collapse early into black holes with a minimum mass of approx. 1 solar mass, which behave dynamically like collisionless cold dark matter. Clouds below a critical over-density, however, delay collapse until recombination, remaining until then dynamically coupled to the radiation like ordinary diffuse baryons, and possibly producing remnants of other kinds and lower mass. The mean density in either type of baryonic remnant is unconstrained by observed element abundances. However, mixed or unmixed spatial variations in abundance may survive in the diffuse baryon and produce observable departures from standard predictions.
Collapse postulate for observables with continuous spectra
International Nuclear Information System (INIS)
Srinivas, M.D.; Madras Univ.
1980-01-01
In order to provide a mathematical framework for discussing the statistical correlations between the outcomes, when an arbitrary sequence of observables are measured, it is necessary to generalize the conventional von Neumann-Lueders collapse postulate to observables with a continuous spectrum. It is shown that the standard prescription in conventional quantum theory for the joint probabilities of compatible observables is sufficient to characterize, more or less completely, the appropriate 'generalized collapse postulate' which associates with each observable a unique 'finitely additive expectation valued measure'. An interesting feature of the collapse associated with observables with continuous spectra, which again follows from the basic principles of conventional quantum theory, is that it must be formulated in terms of the so-called non-normal conditional expectations, which implies that the joint probabilities associated with successive observations of such observables are not in general sigma-additive. The implications of this non-sigma-additivity on the determination of expectation values, correlation functions etc., are also investigated. It is demonstrated that the basic prescriptions introduced in this paper constitute a natural completion of the framework of conventional quantum theory for discussing the statistics of an arbitrary sequence of observations. (orig.) 891 HJ/orig. 892 CKA
Asymmetric core collapse of rapidly rotating massive star
Gilkis, Avishai
2018-02-01
Non-axisymmetric features are found in the core collapse of a rapidly rotating massive star, which might have important implications for magnetic field amplification and production of a bipolar outflow that can explode the star, as well as for r-process nucleosynthesis and natal kicks. The collapse of an evolved rapidly rotating MZAMS = 54 M⊙ star is followed in three-dimensional hydrodynamic simulations using the FLASH code with neutrino leakage. A rotating proto-neutron star (PNS) forms with a non-zero linear velocity. This can contribute to the natal kick of the remnant compact object. The PNS is surrounded by a turbulent medium, where high shearing is likely to amplify magnetic fields, which in turn can drive a bipolar outflow. Neutron-rich material in the PNS vicinity might induce strong r-process nucleosynthesis. The rapidly rotating PNS possesses a rotational energy of E_rot ≳ 10^{52} erg. Magnetar formation proceeding in a similar fashion will be able to deposit a portion of this energy later on in the supernova ejecta through a spin-down mechanism. These processes can be important for rare supernovae generated by rapidly rotating progenitors, even though a complete explosion is not simulated in the present study.
Oscillating shells: A model for a variable cosmic object
Nunez, Dario
1997-01-01
A model for a possible variable cosmic object is presented. The model consists of a massive shell surrounding a compact object. The gravitational and self-gravitational forces tend to collapse the shell, but the internal tangential stresses oppose the collapse. The combined action of the two types of forces is studied and several cases are presented. In particular, we investigate the spherically symmetric case in which the shell oscillates radially around a central compact object.
Directory of Open Access Journals (Sweden)
Anja Skapin
2012-12-01
Full Text Available German Romanticism and its rich tradition remain deeply rooted to this day. Despite stereotypical linking of German culture with reason, the essence of German literary (and as well philosophical ideology is nevertheless the dark side of human nature and all the raging emotions that comprise it. Social crisis, which is reflected as well, and primarily, in literature as a subtle and refined indicator of social conditions, is dealt with by revival of traditional narrative forms, particularly coming-of-age story (Ger. Bildungsroman with its subgenre artist novel (Ger. Künstlerroman. Man is doomed to eternal suffering and longing (Schopenhauer and the human history to eternal recurrence of the same forms and ideas (Nietzsche. Consequently, one cannot ignore the fact that the literary movement surging to the forefront of German literary production time and again is precisely the one that revealed and defined this human fate: romanticism. No matter what the crisis, literature places an artist in the foreground and portrays him as a protagonist who utilizes his emotions and Dionysian nature in the fight against society. Numerous protagonists are, however, doomed to either physical or mental decay in the same fashion as the human nature is predisposed to decadent (self-destruction.
Collapse dynamics of ultrasound contrast agent microbubbles
King, Daniel Alan
Ultrasound contrast agents (UCAs) are micron-sized gas bubbles encapsulated with thin shells on the order of nanometers thick. The damping effects of these viscoelastic coatings are widely known to significantly alter the bubble dynamics for linear and low-amplitude behavior; however, their effects on strongly nonlinear and destruction responses are much less studied. This dissertation examines the behaviors of single collapsing shelled microbubbles using experimental and theoretical methods. The study of their dynamics is particularly relevant for emerging experimental uses of UCAs which seek to leverage localized mechanical forces to create or avoid specialized biomedical effects. The central component in this work is the study of postexcitation rebound and collapse, observed acoustically to identify shell rupture and transient inertial cavitation of single UCA microbubbles. This time-domain analysis of the acoustic response provides a unique method for characterization of UCA destruction dynamics. The research contains a systematic documentation of single bubble postexcitation collapse through experimental measurement with the double passive cavitation detection (PCD) system at frequencies ranging from 0.9 to 7.1 MHz and peak rarefactional pressure amplitudes (PRPA) ranging from 230 kPa to 6.37 MPa. The double PCD setup is shown to improve the quality of collected data over previous setups by allowing symmetric responses from a localized confocal region to be identified. Postexcitation signal percentages are shown to generally follow trends consistent with other similar cavitation metrics such as inertial cavitation, with greater destruction observed at both increased PRPA and lower frequency over the tested ranges. Two different types of commercially available UCAs are characterized and found to have very different collapse thresholds; lipid-shelled Definity exhibits greater postexcitation at lower PRPAs than albumin-shelled Optison. Furthermore, by altering
Mitigation of the collapse of asbestos cement light covers by hurricane winds
Directory of Open Access Journals (Sweden)
R. A. Estrada Cingualbres
2017-09-01
Full Text Available The Caribbean region, the Gulf of Mexico and the Strait of Florida, is an area of high vulnerability to high-level hurricanes. Light covers are the most vulnerable during the occurrence of these phenomena, their collapse generates a great danger to the life of the residents of these homes, as well as a high economic and social impact. The objective of this research has been the characterization of the lightweight fiber cement roofs (asbestos-cement most commonly used in Cuba and through the modeling of the Finite Element Method to determine the causes of the collapse of these when extreme winds occur due to high intensity hurricanes, perform the comparative analysis of the resistive behavior of the covers studied and to mitigate the collapse of the covered ones.
Directory of Open Access Journals (Sweden)
Zamir, Sara
2011-12-01
Full Text Available The term Eternal-Feminine, or Das Ewig-Weibliche, first appeared in the last verses of the second part of Goethe’s Faust (completed 1832. It, subsequently, became the subject of speculation and a riddle which scholars have been trying to solve ever since. The term gradually came to represent a cultural principle regarding the image of femininity and it reached its Romantic apex, in the 19th Century, when various female archetypes were fused into a singe heroine. The present article aims to explore Isabella’s character in Rossini’s L’Italiana in Algeri in the light of the principle of the Eternal-Feminine. Although Goethe was still in the process of writing the second part of Faust when L’Italiana premiered (1813 in Italy, the cultural principle of the Eternal- Feminine can be used retrospectively in the analysis of Isabella as the central female protagonist of the opera. A thorough reading of her character suggests an aesthetic approach that makes use of certain Romantic aspects of the Eternal-Feminine principle. The present article focuses specifi cally on the Cruda sorte! Amor tiranno! scene and briefl y refers to other scenes as well.La expresión Eterno Femenino (Eternal-Feminine, o Das Ewig-Weibliche, apareció por primera vez en los últimos versos de la segunda parte del Fausto de Goethe (acabado en 1832. Posteriormente, se convirtió en tema de especulación, y en un enigma que los estudiosos han estado intentando resolver desde entonces. La expresión vino a identificar, con el paso del tiempo, un principio cultural relacionado con la imagen de la feminidad y alcanzó su extremo romántico, en el siglo XIX, cuando diversos arquetipos femeninos se fundieron en una sola heroína. El presente artículo pretende explorar el personaje de Isabella en La italianaen Argel de Rossini, a la luz del principio del Eterno Femenino. Aunque Goethe se encontraba todavía escribiendo la segunda parte de su Fausto cuando se estrenó La italiana
Inflation including collapse of the wave function: the quasi-de Sitter case
Energy Technology Data Exchange (ETDEWEB)
Leon, Gabriel [Universidad de Buenos Aires, Ciudad Universitaria-PabI, Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Buenos Aires (Argentina); Landau, Susana J. [Universidad de Buenos Aires y IFIBA, CONICET, Ciudad Universitaria-PabI, Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Buenos Aires (Argentina); Piccirilli, Maria Pia [Universidad Nacional de La Plata, Grupo de Astrofisica, Relatividad y Cosmologia, Facultad de Ciencias Astronomicas y Geofisicas, Pcia de Buenos Aires (Argentina)
2015-08-15
The precise physical mechanism describing the emergence of the seeds of cosmic structure from a perfect isotropic and homogeneous universe has not been fully explained by the standard version of inflationary models. To handle this shortcoming, D. Sudarsky and collaborators have developed a proposal: the self-induced collapse hypothesis. In this scheme, the objective collapse of the inflaton wave function is responsible for the emergence of inhomogeneity and anisotropy at all scales. In previous papers, the proposal was developed with an almost exact de Sitter space-time approximation for the background that led to a perfect scale-invariant power spectrum. In the present article, we consider a full quasi-de Sitter expansion and calculate the primordial power spectrum for three different choices of the self-induced collapse. The consideration of a quasi-de Sitter background allows us to distinguish departures from an exact scale-invariant power spectrum that are due to the inclusion of the collapse hypothesis. These deviations are also different from the prediction of standard inflationary models with a running spectral index. A comparison with the primordial power spectrum and the CMB temperature fluctuation spectrum preferred by the latest observational data is also discussed. From the analysis performed in this work, it follows that most of the collapse schemes analyzed in this paper are viable candidates to explain the present observations of the CMB fluctuation spectrum. (orig.)
Inflation including collapse of the wave function: the quasi-de Sitter case
International Nuclear Information System (INIS)
Leon, Gabriel; Landau, Susana J.; Piccirilli, Maria Pia
2015-01-01
The precise physical mechanism describing the emergence of the seeds of cosmic structure from a perfect isotropic and homogeneous universe has not been fully explained by the standard version of inflationary models. To handle this shortcoming, D. Sudarsky and collaborators have developed a proposal: the self-induced collapse hypothesis. In this scheme, the objective collapse of the inflaton wave function is responsible for the emergence of inhomogeneity and anisotropy at all scales. In previous papers, the proposal was developed with an almost exact de Sitter space-time approximation for the background that led to a perfect scale-invariant power spectrum. In the present article, we consider a full quasi-de Sitter expansion and calculate the primordial power spectrum for three different choices of the self-induced collapse. The consideration of a quasi-de Sitter background allows us to distinguish departures from an exact scale-invariant power spectrum that are due to the inclusion of the collapse hypothesis. These deviations are also different from the prediction of standard inflationary models with a running spectral index. A comparison with the primordial power spectrum and the CMB temperature fluctuation spectrum preferred by the latest observational data is also discussed. From the analysis performed in this work, it follows that most of the collapse schemes analyzed in this paper are viable candidates to explain the present observations of the CMB fluctuation spectrum. (orig.)
Coppi, B.
2018-05-01
The presence of well organized plasma structures around binary systems of collapsed objects [1,2] (black holes and neutron stars) is proposed in which processes can develop [3] leading to high energy electromagnetic radiation emission immediately before the binary collapse. The formulated theoretical model supporting this argument shows that resonating plasma collective modes can be excited in the relevant magnetized plasma structure. Accordingly, the collapse of the binary approaches, with the loss of angular momentum by emission of gravitational waves [2], the resonance conditions with vertically standing plasma density and magnetic field oscillations are met. Then, secondary plasma modes propagating along the magnetic field are envisioned to be sustained with mode-particle interactions producing the particle populations responsible for the observable electromagnetic radiation emission. Weak evidence for a precursor to the binary collapse reported in Ref. [2], has been offered by the Agile X-γ-ray observatory [4] while the August 17 (2017) event, identified first by the LIGO-Virgo detection of gravitational waves and featuring the inferred collapse of a neutron star binary, improves the evidence of such a precursor. A new set of experimental observations is needed to reassess the presented theory.
Collapse of Incoherent Light Beams in Inertial Bulk Kerr Media
DEFF Research Database (Denmark)
Bang, Ole; Edmundson, Darran; Królikowski, Wieslaw
1999-01-01
We use the coherent density function theory to show that partially coherent beams are unstable and may collapse in inertial bulk Kerr media. The threshold power for collapse, and its dependence on the degree of coherence, is found analytically and checked-numerically. The internal dynamics of the...... of the walk-off modes is illustrated for collapsing and diffracting partially coherent beams.......We use the coherent density function theory to show that partially coherent beams are unstable and may collapse in inertial bulk Kerr media. The threshold power for collapse, and its dependence on the degree of coherence, is found analytically and checked-numerically. The internal dynamics...
Gravitational collapse from smooth initial data with vanishing radial pressure
International Nuclear Information System (INIS)
Mahajan, Ashutosh; Goswami, Rituparno; Joshi, Pankaj S
2005-01-01
We study here the spherical gravitational collapse assuming initial data to be necessarily smooth, as motivated by requirements based on physical reasonableness. A tangential pressure model is constructed and analysed in order to understand the final fate of collapse explicitly in terms of the density and pressure parameters at the initial epoch from which the collapse develops. It is seen that both black holes and naked singularities are produced as collapse end states even when the initial data are smooth. We show that the outcome is decided entirely in terms of the initial data, as given by density, pressure and velocity profiles at the initial epoch, from which the collapse evolves
Directory of Open Access Journals (Sweden)
Mary Kennan Herbert
2009-01-01
Full Text Available All my life I will hear this disembodied voice announcing:evacuate this car immediately. Get the hell out.A fire alarm has sounded (incorrectly, as it turns out,urging us to flee. Clickety-clack. We might go down in flames,but we are moping our way across a star-crossed map,earthbound, not flying with the angels, but gropingour way along bum-blessed tracks, guided by hobo molesblinking at signals, ghost Barrymores of the Twentieth Century.We are somewhere near Lake Erie, not in a 747in troub...
Casting Footprints for Eternity
1999-01-01
Apollo 11 Astronaut Buzz Aldrin has his footprints casted during the dedication ceremony of the rocket fountain at Building 4200 at Marshall Space Flight Center. The casts of Aldrin's footprints will be placed in the newly constructed Von Braun courtyard representing the accomplishments of the Apollo 11 lunar landing.
International Nuclear Information System (INIS)
Linde, A.D.
1986-05-01
It is shown that the universe evolution in the chaotic inflation scenario has no end and may have no beginning. According to this scenario, the universe consists of exponentially large number of different mini-universes inside which all possible metastable vacuum states and all possible types of compactification are realized. (author)
Indian Academy of Sciences (India)
2015-11-07
Nov 7, 2015 ... Einstein's eqns. a nonlinear version of Maxwell eqns. Linear approximation. Wave equation admitting plane wave solutions. Two independent polarisations like EM but now tensorial, not vectorial (spin two instead of spin one). Natural to consider quanta of these waves - gravitons. gµ⌫(x). Aµ(x). gµ⌫(x) ...
International Nuclear Information System (INIS)
Novello, M.; Heintzmann, H.
1983-01-01
A new generalized solution of Maxwell-Einstein equations (which are non-minimally coupled) which leads to some fascinating aspects of the Universe is presented. The Cosmos has no singularity due to the coupling of longitudinal electromagnetism with space-time. It contains the Milne-Schucking cosmos as a limiting case. This model contains a free parameter (the longitudinal electromagnetic field) which allows one to fix the density of highest compression of the Cosmos. Alternativelly the parameter allows one to adjust our cosmos to the presently observed Hubble constant and the deceleration parameter. The model seems to be a viable candidate for our real cosmos as it allows one to extend the time scale of the Universe to arbitrarily large values i.e., it is able to provide the necessary time scale for the origin of life. It is speculated that the entropy is finite but intelligence in the Universe may be infinite. (Author) [pt
Institute of Scientific and Technical Information of China (English)
2002-01-01
FIVE years ago, an ancient Chinese air was beamed to outer space as a PR exercise. To humankind, music is a universal language, so the tune seemed an ideal medium for communication with extraterrestrial intelligence. So far there has been no response, but it is believed that the tune will play for a billion years, and eventually be heard and understood. The melody is called High Mountain and Flowing Stream, and it is played on the guqin, a seven-stringed classical musical instrument similar to the zither.
Collapse of the wave function models, ontology, origin, and implications
2018-01-01
This is the first single volume about the collapse theories of quantum mechanics, which is becoming a very active field of research in both physics and philosophy. In standard quantum mechanics, it is postulated that when the wave function of a quantum system is measured, it no longer follows the Schrödinger equation, but instantaneously and randomly collapses to one of the wave functions that correspond to definite measurement results. However, why and how a definite measurement result appears is unknown. A promising solution to this problem are collapse theories in which the collapse of the wave function is spontaneous and dynamical. Chapters written by distinguished physicists and philosophers of physics discuss the origin and implications of wave-function collapse, the controversies around collapse models and their ontologies, and new arguments for the reality of wave function collapse. This is an invaluable resource for students and researchers interested in the philosophy of physics and foundations of ...
Thermal and Chemical Evolution of Collapsing Filaments
Energy Technology Data Exchange (ETDEWEB)
Gray, William J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Scannapieco, Evan [Arizona State Univ., Mesa, AZ (United States). School of Earth and Space Exploration
2013-01-15
Intergalactic filaments form the foundation of the cosmic web that connect galaxies together, and provide an important reservoir of gas for galaxy growth and accretion. Here we present very high resolution two-dimensional simulations of the thermal and chemical evolution of such filaments, making use of a 32 species chemistry network that tracks the evolution of key molecules formed from hydrogen, oxygen, and carbon. We study the evolution of filaments over a wide range of parameters including the initial density, initial temperature, strength of the dissociating UV background, and metallicity. In low-redshift, Z ≈ 0.1Z_{⊙} filaments, the evolution is determined completely by the initial cooling time. If this is sufficiently short, the center of the filament always collapses to form dense, cold core containing a substantial fraction of molecules. In high-redshift, Z = 10^{-3}Z_{⊙} filaments, the collapse proceeds much more slowly. This is due mostly to the lower initial temperatures, which leads to a much more modest increase in density before the atomic cooling limit is reached, making subsequent molecular cooling much less efficient. Finally, we study how the gravitational potential from a nearby dwarf galaxy affects the collapse of the filament and compare this to NGC 5253, a nearby starbusting dwarf galaxy thought to be fueled by the accretion of filament gas. In contrast to our fiducial case, a substantial density peak forms at the center of the potential. This peak evolves faster than the rest of the filament due to the increased rate at which chemical species form and cooling occur. We find that we achieve similar accretion rates as NGC 5253, but our two-dimensional simulations do not recover the formation of the giant molecular clouds that are seen in radio observations.
Holographic probes of collapsing black holes
International Nuclear Information System (INIS)
Hubeny, Veronika E.; Maxfield, Henry
2014-01-01
We continue the programme of exploring the means of holographically decoding the geometry of spacetime inside a black hole using the gauge/gravity correspondence. To this end, we study the behaviour of certain extremal surfaces (focusing on those relevant for equal-time correlators and entanglement entropy in the dual CFT) in a dynamically evolving asymptotically AdS spacetime, specifically examining how deep such probes reach. To highlight the novel effects of putting the system far out of equilibrium and at finite volume, we consider spherically symmetric Vaidya-AdS, describing black hole formation by gravitational collapse of a null shell, which provides a convenient toy model of a quantum quench in the field theory. Extremal surfaces anchored on the boundary exhibit rather rich behaviour, whose features depend on dimension of both the spacetime and the surface, as well as on the anchoring region. The main common feature is that they reach inside the horizon even in the post-collapse part of the geometry. In 3-dimensional spacetime, we find that for sub-AdS-sized black holes, the entire spacetime is accessible by the restricted class of geodesics whereas in larger black holes a small region near the imploding shell cannot be reached by any boundary-anchored geodesic. In higher dimensions, the deepest reach is attained by geodesics which (despite being asymmetric) connect equal time and antipodal boundary points soon after the collapse; these can attain spacetime regions of arbitrarily high curvature and simultaneously have smallest length. Higher-dimensional surfaces can penetrate the horizon while anchored on the boundary at arbitrarily late times, but are bounded away from the singularity. We also study the details of length or area growth during thermalization. While the area of extremal surfaces increases monotonically, geodesic length is neither monotonic nor continuous
Rai, Nirmal Kumar; Schmidt, Martin J.; Udaykumar, H. S.
2017-04-01
Void collapse in energetic materials leads to hot spot formation and enhanced sensitivity. Much recent work has been directed towards simulation of collapse-generated reactive hot spots. The resolution of voids in calculations to date has varied as have the resulting predictions of hot spot intensity. Here we determine the required resolution for reliable cylindrical void collapse calculations leading to initiation of chemical reactions. High-resolution simulations of collapse provide new insights into the mechanism of hot spot generation. It is found that initiation can occur in two different modes depending on the loading intensity: Either the initiation occurs due to jet impact at the first collapse instant or it can occur at secondary lobes at the periphery of the collapsed void. A key observation is that secondary lobe collapse leads to large local temperatures that initiate reactions. This is due to a combination of a strong blast wave from the site of primary void collapse and strong colliding jets and vortical flows generated during the collapse of the secondary lobes. The secondary lobe collapse results in a significant lowering of the predicted threshold for ignition of the energetic material. The results suggest that mesoscale simulations of void fields may suffer from significant uncertainty in threshold predictions because unresolved calculations cannot capture the secondary lobe collapse phenomenon. The implications of this uncertainty for mesoscale simulations are discussed in this paper.
Calculations of three-dimensional collapse and fragmentation
International Nuclear Information System (INIS)
Larson, R.B.
1978-01-01
Calculations of the fragmentation of an isothermally collapsing cloud have been carried out using a method that follows the motion of individual fluid particles and includes pressure and viscosity forces between neighbouring particles. In a cloud or region whose mass is comparable to the Jeans mass, a highly condensed core forms, surrounded by a diffuse envelope that continues to accrete on to the core; in the presence of rotation, the inner part of the envelope becomes essentially an accretion disc. If the mass exceeds the Jeans mass, several such accreting cores are formed, the number being comparable to the initial number of jeans masses in the cloud. Binary systems and hierarchical multiple systems are frequently obtained. The mass of the largest object formed is independent of the Jeans mass but depends on the angular momentum and viscosity of the cloud, and is essentially the maximum mass accretable by a single object. The resulting mass spectrum may be determined by the development of a hierarchy of accreting objects of different sizes, such that each object has several smaller ones associated with it. The hypothesis of a self-similar accretion hierarchy predicts a power-law mass spectrum, which in the limit of inefficient accretion has an exponent x = 1, in reasonable agreement with observations. (author)
Electromagnetic wave collapse in a radiation background
International Nuclear Information System (INIS)
Marklund, Mattias; Brodin, Gert; Stenflo, Lennart
2003-01-01
The nonlinear interaction, due to quantum electrodynamical (QED) effects between an electromagnetic pulse and a radiation background, is investigated by combining the methods of radiation hydrodynamics with the QED theory for photon-photon scattering. For the case of a single coherent electromagnetic pulse, we obtain a Zakharov-like system, where the radiation pressure of the pulse acts as a driver of acoustic waves in the photon gas. For a sufficiently intense pulse and/or background energy density, there is focusing and the subsequent collapse of the pulse. The relevance of our results for various astrophysical applications are discussed
Formation and collapse of internal transport barrier
International Nuclear Information System (INIS)
Fukuyama, A.; Itoh, K.; Itoh, S.I.; Yagi, M.
1999-01-01
A theoretical model of internal transport barrier (ITB) is developed. The transport model based on the self-sustained turbulence theory of the current-diffusive ballooning mode is extended to include the effects of ExB rotation shear. Delayed formation of ITB is observed in transport simulations. The influence of finite gyroradius is also discussed. Simulation of the current ramp-up experiment successfully described the radial profile of density, temperature and safety factor. A model of ITB collapse due to magnetic braiding is proposed. Sudden enhancement of transport triggered by overlapping of magnetic islands terminates ITB. The possibility of destabilizing global low-n modes is also discussed. (author)
Formation and collapse of internal transport barrier
International Nuclear Information System (INIS)
Fukuyama, A.; Itoh, K.; Itoh, S.-I.; Yagi, M.
2001-01-01
A theoretical model of internal transport barrier (ITB) is developed. The transport model based on the self-sustained turbulence theory of the current-diffusive ballooning mode is extended to include the effects of ExB rotation shear. Delayed formation of ITB is observed in transport simulations. The influence of finite gyroradius is also discussed. Simulation of the current ramp-up experiment successfully described the radial profile of density, temperature and safety factor. A model of ITB collapse due to magnetic braiding is proposed. Sudden enhancement of transport triggered by overlaping of magnetic islands terminates ITB. The possibility of destabilizing global low-n modes is also discussed. (author)
Karst collapse in cities and mining areas, China
International Nuclear Information System (INIS)
Jian Chen
1988-01-01
Karst collapse is a dynamic geological phenomenon, in which the rock mass or deposits overlying the karstified zone subsides down along the karst cavity, resulting in a collapse pit or sinkhole. After discussing the typical examples of collapse emerging in the karst cities and mines in provinces and regions of South China, such as Guangdong, Guangxi, Hunan, Hubei, Zhejiang, Yunnan, Guizhou, and Jiangxi, it is considered that human activities of economy and production have become a major effect in causing karst collapse. Man-made collapses make 66.4 percent of the total, whereas natural ones 33.6 percent. Most of the collapses occurred to the area with soil overburden (96.7 percent), only a few in areas of bedrock overburden (3.3 percent). The karst collapses have a close relationship with the extent of karst development, the character and the thickness of overburden, and the dynamic condition of underground water. Collapse usually occurs in those parts of an area that are more intensely karstified, with soil thickness less than 5 m and a high amplitude of water table fluctuation. Many kinds of mechanical effects are caused by pumping or draining on the over-burden and destroying its equilibrium, leading to the collapse. These effects included the support loss and load-added effect, penetrating suffusion, gas explosion, water-hammer, suction pressure erosion, and liquefaction effects. The collapses are the result of varied comprehensive effects, particularly the support loss and load-added, and penetrating suffusion
Numerical simulations of stellar collapse in scalar-tensor theories of gravity
International Nuclear Information System (INIS)
Gerosa, Davide; Sperhake, Ulrich; Ott, Christian D
2016-01-01
We present numerical-relativity simulations of spherically symmetric core collapse and compact-object formation in scalar-tensor theories of gravity. The additional scalar degree of freedom introduces a propagating monopole gravitational-wave mode. Detection of monopole scalar waves with current and future gravitational-wave experiments may constitute smoking gun evidence for strong-field modifications of general relativity. We collapse both polytropic and more realistic pre-supernova profiles using a high-resolution shock-capturing scheme and an approximate prescription for the nuclear equation of state. The most promising sources of scalar radiation are protoneutron stars collapsing to black holes. In case of a galactic core collapse event forming a black hole, Advanced LIGO may be able to place independent constraints on the parameters of the theory at a level comparable to current solar-system and binary-pulsar measurements. In the region of the parameter space admitting spontaneously scalarised stars, transition to configurations with prominent scalar hair before black-hole formation further enhances the emitted signal. Although a more realistic treatment of the microphysics is necessary to fully investigate the occurrence of spontaneous scalarisation of neutron star remnants, we speculate that formation of such objects could constrain the parameters of the theory beyond the current bounds obtained with solar-system and binary-pulsar experiments. (paper)
Anomalous polymer collapse winding angle distributions
Narros, A.; Owczarek, A. L.; Prellberg, T.
2018-03-01
In two dimensions polymer collapse has been shown to be complex with multiple low temperature states and multi-critical points. Recently, strong numerical evidence has been provided for a long-standing prediction of universal scaling of winding angle distributions, where simulations of interacting self-avoiding walks show that the winding angle distribution for N-step walks is compatible with the theoretical prediction of a Gaussian with a variance growing asymptotically as Clog N . Here we extend this work by considering interacting self-avoiding trails which are believed to be a model representative of some of the more complex behaviour. We provide robust evidence that, while the high temperature swollen state of this model has a winding angle distribution that is also Gaussian, this breaks down at the polymer collapse point and at low temperatures. Moreover, we provide some evidence that the distributions are well modelled by stretched/compressed exponentials, in contradistinction to the behaviour found in interacting self-avoiding walks. Dedicated to Professor Stu Whittington on the occasion of his 75th birthday.
Finite-element modeling of magma chamber-host rock interactions prior to caldera collapse
Kabele, Petr; Žák, Jiří; Somr, Michael
2017-06-01
Gravity-driven failure of shallow magma chamber roofs and formation of collapse calderas are commonly accompanied by ejection of large volumes of pyroclastic material to the Earth's atmosphere and thus represent severe volcanic hazards. In this respect, numerical analysis has proven as a key tool in understanding the mechanical conditions of caldera collapse. The main objective of this paper is to find a suitable approach to finite-element simulation of roof fracturing and caldera collapse during inflation and subsequent deflation of shallow magma chambers. Such a model should capture the dominant mechanical phenomena, for example, interaction of the host rock with magma and progressive deformation of the chamber roof. To this end, a comparative study, which involves various representations of magma (inviscid fluid, nearly incompressible elastic, or plastic solid) and constitutive models of the host rock (fracture and plasticity), was carried out. In particular, the quasi-brittle fracture model of host rock reproduced well the formation of tension-induced radial and circumferential fractures during magma injection into the chamber (inflation stage), especially at shallow crustal levels. Conversely, the Mohr-Coulomb shear criterion has shown to be more appropriate for greater depths. Subsequent magma withdrawal from the chamber (deflation stage) results in further damage or even collapse of the chamber roof. While most of the previous studies of caldera collapse rely on the elastic stress analysis, the proposed approach advances modeling of the process by incorporating non-linear failure phenomena and nearly incompressible behaviour of magma. This leads to a perhaps more realistic representation of the fracture processes preceding roof collapse and caldera formation.
Non-Spherical Gravitational Collapse of Strange Quark Matter
Institute of Scientific and Technical Information of China (English)
Zade S S; Patil K D; Mulkalwar P N
2008-01-01
We study the non-spherical gravitational collapse of the strange quark null fluid.The interesting feature which emerges is that the non-spherical collapse of charged strange quark matter leads to a naked singularity whereas the gravitational collapse of neutral quark matter proceeds to form a black hole.We extend the earlier work of Harko and Cheng[Phys.Lett.A 266 (2000) 249]to the non-spherical case.
Collapsing dynamics of attractive Bose-Einstein condensates
DEFF Research Database (Denmark)
Bergé, L.; Juul Rasmussen, J.
2002-01-01
The self-similar collapse of 3D and quasi-2D atom condensates with negative scattering length is examined. 3D condensates are shown to blow up following the scenario of weak collapse, for which 3-body recombination weakly dissipates the atoms. In contrast, 2D condensates undergo a strong collapse......, that absorbs a significant amount of particles. (C) 2002 Elsevier Science B.V. All rights reserved....
Simulation of weak and strong Langmuir collapse regimes
International Nuclear Information System (INIS)
Hadzievski, L.R.; Skoric, M.M.; Kono, M.; Sato, T.
1998-01-01
In order to check the validity of the self-similar solutions and the existence of weak and strong collapse regimes, direct two dimensional simulation of the time evolution of a Langmuir soliton instability is performed. Simulation is based on the Zakharov model of strong Langmuir turbulence in a weakly magnetized plasma accounting for the full ion dynamics. For parameters considered, agreement with self-similar dynamics of the weak collapse type is found with no evidence of the strong Langmuir collapse. (author)
The collapse of acoustic waves in dispersive media
International Nuclear Information System (INIS)
Kuznetsov, E.A.; Musher, S.L.; Shafarenko, A.V.
1983-01-01
The existence of the collapse of acoustic waves with a positive dispersion is demonstrated. A qualitative description of wave collapse, based on the analysis of invariants, is proposed. Through the use of a numerical simulation, it is established that, in the Kadomtsev-Petviashvili three-dimensional equation, collapse is accompanied by the formation of a weakly turbulent background by the wave radiation from the cavity
Radiologic evaluation of right middle lobe collapse
International Nuclear Information System (INIS)
Kwun, Dae Young; Kim, Jong Deok; Kim, Jong Chul
1989-01-01
There are many pathogenetic factors for collapse of right middle lobe; profuse peribronchial clustering of lymph nodes about the right middle lobe bronchus, poor drainage of the bronchus because of its acute angle of take-off from the intermediate bronchus, and the isolation of this small lobe from the right upper and lower lobes, and thus from the aerating effects of collateral ventilation. Retrospectively we reviewed 36 cases of right of right middle lobe collapse of which causes were confirmed by histopathologic or bronchographic findings during the recent 6 years from March 1983 to February 1988 at Inje College Pusan Paik Hospital, and obtained the following results: 1. Male to female ratio was 1:1:4,and peak incidence (64%) was in the fifth and sixth decades with the mean age of 51.1 years. 2. Bronchiectasis was the most common cause (30.6%), and the others were chronic bronchitis (25.0%), pulmonary tuberculosis (19.4%), lung cancer (16.7%), and non-specific inflammatory disease (8.3%). This suggests benign disease is 5 times more common cause of right middle lobe collapse than lung cancer. 3. Among the plain chest radiolograph findings, obliteration of right cardiac border and triangular radiopaque density were the most frequent findings(77.8% in each) and the next was downward and anterior displacement of minor and major fissures (55.6%) 4. Bronchography was done in 11 cases; bronchiectasis was found in 8 cases and chronic bronchitis in 3 cases. Right middle lobe bronchus was obstructed in 2 cases of chronic bronchitis. 5. Chest CT scan was performed in 4 cases of lung cancer, 2 of non-specific inflammatory disease, and 1 of pulmonary tuberculosis: all of lung cancer revealed hilar mass, budged or lobulated fissures, in homogenous density, and mediastinal lymph node enlargement, and all benign disease showed homogenous density and flat to concave fissures. Right middle lobar bronchus narrowing was seen in 5 cases and its obstruction in 2 cases
Spherical collapse of dark energy with an arbitrary sound speed
International Nuclear Information System (INIS)
Basse, Tobias; Bjælde, Ole Eggers; Wong, Yvonne Y.Y.
2011-01-01
We consider a generic type of dark energy fluid, characterised by a constant equation of state parameter w and sound speed c s , and investigate the impact of dark energy clustering on cosmic structure formation using the spherical collapse model. Along the way, we also discuss in detail the evolution of dark energy perturbations in the linear regime. We find that the introduction of a finite sound speed into the picture necessarily induces a scale-dependence in the dark energy clustering, which in turn affects the dynamics of the spherical collapse in a scale-dependent way. As with other, more conventional fluids, we can define a Jeans scale for the dark energy clustering, and hence a Jeans mass M J for the dark matter which feels the effect of dark energy clustering via gravitational interactions. For bound objects (halos) with masses M >> M J , the effect of dark energy clustering is maximal. For those with M J , the dark energy component is effectively homogeneous, and its role in the formation of these structures is reduced to its effects on the Hubble expansion rate. To compute quantitatively the virial density and the linearly extrapolated threshold density, we use a quasi-linear approach which is expected to be valid up to around the Jeans mass. We find an interesting dependence of these quantities on the halo mass M, given some w and c s . The dependence is the strongest for masses lying in the vicinity of M ∼ M J . Observing this M-dependence will be a tell-tale sign that dark energy is dynamic, and a great leap towards pinning down its clustering properties
The onset of coherence collapse in DBR lasers
International Nuclear Information System (INIS)
Woodward, S.L.; Koch, T.L.; Koren, U.
1990-01-01
The authors investigate how the onset of coherence collapse depends on laser output power. The lasers were three-section multiquantum-well distributed-Bragg-reflector (MQW-DBR) lasers. The fraction of light reflected back into the lasing mode was varied, and the point at which the transition to coherence collapse occurred was measured. This feedback level varies approximately linearly with laser output power. For these lasers, when the output power is 1 mW, the transition to coherence collapse beings when the optical feedback into the lasing mode is below - 40 dBm; when the feedback power is - 35 dBm the laser line is completely collapsed
Developing empirical collapse fragility functions for global building types
Jaiswal, K.; Wald, D.; D'Ayala, D.
2011-01-01
Building collapse is the dominant cause of casualties during earthquakes. In order to better predict human fatalities, the U.S. Geological Survey’s Prompt Assessment of Global Earthquakes for Response (PAGER) program requires collapse fragility functions for global building types. The collapse fragility is expressed as the probability of collapse at discrete levels of the input hazard defined in terms of macroseismic intensity. This article provides a simple procedure for quantifying collapse fragility using vulnerability criteria based on the European Macroseismic Scale (1998) for selected European building types. In addition, the collapse fragility functions are developed for global building types by fitting the beta distribution to the multiple experts’ estimates for the same building type (obtained from EERI’s World Housing Encyclopedia (WHE)-PAGER survey). Finally, using the collapse probability distributions at each shaking intensity level as a prior and field-based collapse-rate observations as likelihood, it is possible to update the collapse fragility functions for global building types using the Bayesian procedure.
The Jeans Condition and Collapsing Molecular Cloud Cores: Filaments or Binaries?
International Nuclear Information System (INIS)
Boss, Alan P.; Fisher, Robert T.; Klein, Richard I.; McKee, Christopher F.
2000-01-01
The 1997 and 1998 studies by Truelove and colleagues introduced the Jeans condition as a necessary condition for avoiding artificial fragmentation during protostellar collapse calculations. They found that when the Jeans condition was properly satisfied with their adaptive mesh refinement (AMR) code, an isothermal cloud with an initial Gaussian density profile collapsed to form a thin filament rather than the binary or quadruple protostar systems found in previous calculations. Using a completely different self-gravitational hydrodynamics code introduced by Boss and Myhill in 1992 (B and M), we present here calculations that reproduce the filamentary solution first obtained by Truelove et al. in 1997. The filamentary solution only emerged with very high spatial resolution with the B and M code, with effectively 12,500 radial grid points (R12500). Reproducing the filamentary collapse solution appears to be an excellent means for testing the reliability of self-gravitational hydrodynamics codes, whether grid-based or particle-based. We then show that in the more physically realistic case of an identical initial cloud with nonisothermal heating (calculated in the Eddington approximation with code B and M), thermal retardation of the collapse permits the Gaussian cloud to fragment into a binary protostar system at the same maximum density where the isothermal collapse yields a thin filament. However, the binary clumps soon thereafter evolve into a central clump surrounded by spiral arms containing two more clumps. A roughly similar evolution is obtained using the AMR code with a barotropic equation of state--formation of a transient binary, followed by decay of the binary to form a central object surrounded by spiral arms, though in this case the spiral arms do not form clumps. When the same barotropic equation of state is used with the B and M code, the agreement with the initial phases of the AMR calculation is quite good, showing that these two codes yield mutually
Improvement of group collapsing in TRANSX code
International Nuclear Information System (INIS)
Jeong, Hyun Tae; Kim, Young Cheol; Kim, Young In; Kim, Young Kyun
1996-07-01
A cross section generating and processing computer code TRANSX version 2.15 in the K-CORE system, being developed by the KAERI LMR core design technology development team produces various cross section input files appropriated for flux calculation options from the cross section library MATXS. In this report, a group collapsing function of TRANSX has been improved to utilize the zone averaged flux file RZFLUX written in double precision as flux weighting functions. As a result, an iterative calculation system using double precision RZFLUX consisting of the cross section data library file MATXS, the effective cross section producing and processing code TRANSX, and the transport theory calculation code TWODANT has been set up and verified through a sample model calculation. 4 refs. (Author)
Magnetorotational Explosions of Core-Collapse Supernovae
Directory of Open Access Journals (Sweden)
Gennady S. Bisnovatyi-Kogan
2014-12-01
Full Text Available Core-collapse supernovae are accompanied by formation of neutron stars. The gravitation energy is transformed into the energy of the explosion, observed as SN II, SN Ib,c type supernovae. We present results of 2-D MHD simulations, where the source of energy is rotation, and magnetic eld serves as a "transition belt" for the transformation of the rotation energy into the energy of the explosion. The toroidal part of the magnetic energy initially grows linearly with time due to dierential rotation. When the twisted toroidal component strongly exceeds the poloidal eld, magneto-rotational instability develops, leading to a drastic acceleration in the growth of magnetic energy. Finally, a fast MHD shock is formed, producing a supernova explosion. Mildly collimated jet is produced for dipole-like type of the initial field. At very high initial magnetic field no MRI development was found.
Inhomogeneities from quantum collapse scheme without inflation
Energy Technology Data Exchange (ETDEWEB)
Bengochea, Gabriel R., E-mail: gabriel@iafe.uba.ar [Instituto de Astronomía y Física del Espacio (IAFE), UBA-CONICET, CC 67, Suc. 28, 1428 Buenos Aires (Argentina); Cañate, Pedro, E-mail: pedro.canate@nucleares.unam.mx [Instituto de Ciencias Nucleares, UNAM, México D.F. 04510, México (Mexico); Sudarsky, Daniel, E-mail: sudarsky@nucleares.unam.mx [Instituto de Ciencias Nucleares, UNAM, México D.F. 04510, México (Mexico)
2015-04-09
In this work, we consider the problem of the emergence of seeds of cosmic structure in the framework of the non-inflationary model proposed by Hollands and Wald. In particular, we consider a modification to that proposal designed to account for breaking the symmetries of the initial quantum state, leading to the generation of the primordial inhomogeneities. This new ingredient is described in terms of a spontaneous reduction of the wave function. We investigate under which conditions one can recover an essentially scale free spectrum of primordial inhomogeneities, and which are the dominant deviations that arise in the model as a consequence of the introduction of the collapse of the quantum state into that scenario.
Asymptotic safety, singularities, and gravitational collapse
International Nuclear Information System (INIS)
Casadio, Roberto; Hsu, Stephen D.H.; Mirza, Behrouz
2011-01-01
Asymptotic safety (an ultraviolet fixed point with finite-dimensional critical surface) offers the possibility that a predictive theory of quantum gravity can be obtained from the quantization of classical general relativity. However, it is unclear what becomes of the singularities of classical general relativity, which, it is hoped, might be resolved by quantum effects. We study dust collapse with a running gravitational coupling and find that a future singularity can be avoided if the coupling becomes exactly zero at some finite energy scale. The singularity can also be avoided (pushed off to infinite proper time) if the coupling approaches zero sufficiently rapidly at high energies. However, the evolution deduced from perturbation theory still implies a singularity at finite proper time.
On spontaneous photon emission in collapse models
International Nuclear Information System (INIS)
Adler, Stephen L; Bassi, Angelo; Donadi, Sandro
2013-01-01
We reanalyze the problem of spontaneous photon emission in collapse models. We show that the extra term found by Bassi and Dürr is present for non-white (colored) noise, but its coefficient is proportional to the zero frequency Fourier component of the noise. This leads one to suspect that the extra term is an artifact. When the calculation is repeated with the final electron in a wave packet and with the noise confined to a bounded region, the extra term vanishes in the limit of continuum state normalization. The result obtained by Fu and by Adler and Ramazanoğlu from application of the Golden Rule is then recovered. (paper)
Gas and vapor bubble growth and collapse
International Nuclear Information System (INIS)
Bonnin, J.; Reali, M.; Sardella, L.
1976-01-01
The rate of growth or collapse of a spherical bubble of gas or vapor under the effect of a nonequilibrium with the ambient liquid can be expressed in terms of generalized parameters taking into account either mass or heat diffusion. Diffusion equations have been solved either by numerical computation or under the form of a asymptotical solution, for a growing bubble only and with a constant nonequilibrium. Solutions are compared between them and with already published ones. Experimental results obtained match with a unique nonequilibrium parameter, analogous to a Jacob number. Discrepancies with asymptotical solutions can require in some cases complete numerical computation. But taking into account convection due to bubble lift will require a more sophisticated numerical computation [fr
Aksenov, A. G.; Chechetkin, V. M.
2018-04-01
Most of the energy released in the gravitational collapse of the cores of massive stars is carried away by neutrinos. Neutrinos play a pivotal role in explaining core-collape supernovae. Currently, mathematical models of the gravitational collapse are based on multi-dimensional gas dynamics and thermonuclear reactions, while neutrino transport is considered in a simplified way. Multidimensional gas dynamics is used with neutrino transport in the flux-limited diffusion approximation to study the role of multi-dimensional effects. The possibility of large-scale convection is discussed, which is interesting both for explaining SN II and for setting up observations to register possible high-energy (≳10MeV) neutrinos from the supernova. A new multi-dimensional, multi-temperature gas dynamics method with neutrino transport is presented.
Can a collapse of global civilization be avoided?
Ehrlich, Paul R.; Ehrlich, Anne H.
2013-01-01
Environmental problems have contributed to numerous collapses of civilizations in the past. Now, for the first time, a global collapse appears likely. Overpopulation, overconsumption by the rich and poor choices of technologies are major drivers; dramatic cultural change provides the main hope of averting calamity.
Can a collapse of global civilization be avoided?
Ehrlich, Paul R; Ehrlich, Anne H
2013-03-07
Environmental problems have contributed to numerous collapses of civilizations in the past. Now, for the first time, a global collapse appears likely. Overpopulation, overconsumption by the rich and poor choices of technologies are major drivers; dramatic cultural change provides the main hope of averting calamity.
Collapse in a forced three-dimensional nonlinear Schrodinger equation
DEFF Research Database (Denmark)
Lushnikov, P.M.; Saffman, M.
2000-01-01
We derive sufficient conditions for the occurrence of collapse in a forced three-dimensional nonlinear Schrodinger equation without dissipation. Numerical studies continue the results to the case of finite dissipation.......We derive sufficient conditions for the occurrence of collapse in a forced three-dimensional nonlinear Schrodinger equation without dissipation. Numerical studies continue the results to the case of finite dissipation....
Collapse arresting in an inhomogeneous quintic nonlinear Schrodinger model
DEFF Research Database (Denmark)
Gaididei, Yuri Borisovich; Schjødt-Eriksen, Jens; Christiansen, Peter Leth
1999-01-01
Collapse of (1 + 1)-dimensional beams in the inhomogeneous one-dimensional quintic nonlinear Schrodinger equation is analyzed both numerically and analytically. It is shown that in the vicinity of a narrow attractive inhomogeneity, the collapse of beams in which the homogeneous medium would blow up...
Collapse of thin wall tubes with small initial ovality
International Nuclear Information System (INIS)
Moreno, A.
1977-01-01
A simple model of creep collapse of tubes based on the bending theory of curved beams is developed. The model is compared with more complex models. The main result of this study is the definition of a new model of creep collapse of tubes with a minimum of limited hypothesis. (author) [es
Collapse of thin wall tubes small initial ovality
International Nuclear Information System (INIS)
Moreno, A.
1977-01-01
In this work a simple model of creep collapse of tubes based on the bending theory of curved beams, is developed. The model is compared with more complex models. The main result of this work is the definition of a new model of creep collapse of tubes with a minimum of limitative hypothesis. (Author) 6 refs
Maternal Postpartum Role Collapse as a Theory of Postpartum Depression
Amankwaa, Linda Clark
2005-01-01
The purpose of this paper is to discuss the development of a theory of maternal postpartum role collapse. The influences of traditional role theory and symbolic interactionism are presented. The development of the maternal postpartum role collapse theory emerged from the study of postpartum depression among African-American women (Amankwaa, 2000).…
Directory of Open Access Journals (Sweden)
A. A. Bosov
2015-04-01
Full Text Available Purpose. The development of complicated techniques of production and management processes, information systems, computer science, applied objects of systems theory and others requires improvement of mathematical methods, new approaches for researches of application systems. And the variety and diversity of subject systems makes necessary the development of a model that generalizes the classical sets and their development – sets of sets. Multiple objects unlike sets are constructed by multiple structures and represented by the structure and content. The aim of the work is the analysis of multiple structures, generating multiple objects, the further development of operations on these objects in application systems. Methodology. To achieve the objectives of the researches, the structure of multiple objects represents as constructive trio, consisting of media, signatures and axiomatic. Multiple object is determined by the structure and content, as well as represented by hybrid superposition, composed of sets, multi-sets, ordered sets (lists and heterogeneous sets (sequences, corteges. Findings. In this paper we study the properties and characteristics of the components of hybrid multiple objects of complex systems, proposed assessments of their complexity, shown the rules of internal and external operations on objects of implementation. We introduce the relation of arbitrary order over multiple objects, we define the description of functions and display on objects of multiple structures. Originality.In this paper we consider the development of multiple structures, generating multiple objects.Practical value. The transition from the abstract to the subject of multiple structures requires the transformation of the system and multiple objects. Transformation involves three successive stages: specification (binding to the domain, interpretation (multiple sites and particularization (goals. The proposed describe systems approach based on hybrid sets
Nucleosynthesis in Core-Collapse Supernovae
Stevenson, Taylor Shannon; Viktoria Ohstrom, Eva; Harris, James Austin; Hix, William R.
2018-01-01
The nucleosynthesis which occurs in core-collapse supernovae (CCSN) is one of the most important sources of elements in the universe. Elements from Oxygen through Iron come predominantly from supernovae, and contributions of heavier elements are also possible through processes like the weak r-process, the gamma process and the light element primary process. The composition of the ejecta depends on the mechanism of the explosion, thus simulations of high physical fidelity are needed to explore what elements and isotopes CCSN can contribute to Galactic Chemical Evolution. We will analyze the nucleosynthesis results from self-consistent CCSN simulations performed with CHIMERA, a multi-dimensional neutrino radiation-hydrodynamics code. Much of our understanding of CCSN nucleosynthesis comes from parameterized models, but unlike CHIMERA these fail to address essential physics, including turbulent flow/instability and neutrino-matter interaction. We will present nucleosynthesis predictions for the explosion of a 9.6 solar mass first generation star, relying both on results of the 160 species nuclear reaction network used in CHIMERA within this model and on post-processing with a more extensive network. The lowest mass iron core-collapse supernovae, like this model, are distinct from their more massive brethren, with their explosion mechanism and nucleosynthesis being more like electron capture supernovae resulting from Oxygen-Neon white dwarves. We will highlight the differences between the nucleosynthesis in this model and more massive supernovae. The inline 160 species network is a feature unique to CHIMERA, making this the most sophisticated model to date for a star of this type. We will discuss the need and mechanism to extrapolate the post-processing to times post-simulation and analyze the uncertainties this introduces for supernova nucleosynthesis. We will also compare the results from the inline 160 species network to the post-processing results to study further
Seepage Model for PA Including Drift Collapse
International Nuclear Information System (INIS)
Li, G.; Tsang, C.
2000-01-01
The purpose of this Analysis/Model Report (AMR) is to document the predictions and analysis performed using the Seepage Model for Performance Assessment (PA) and the Disturbed Drift Seepage Submodel for both the Topopah Spring middle nonlithophysal and lower lithophysal lithostratigraphic units at Yucca Mountain. These results will be used by PA to develop the probability distribution of water seepage into waste-emplacement drifts at Yucca Mountain, Nevada, as part of the evaluation of the long term performance of the potential repository. This AMR is in accordance with the ''Technical Work Plan for Unsaturated Zone (UZ) Flow and Transport Process Model Report'' (CRWMS M andO 2000 [153447]). This purpose is accomplished by performing numerical simulations with stochastic representations of hydrological properties, using the Seepage Model for PA, and evaluating the effects of an alternative drift geometry representing a partially collapsed drift using the Disturbed Drift Seepage Submodel. Seepage of water into waste-emplacement drifts is considered one of the principal factors having the greatest impact of long-term safety of the repository system (CRWMS M andO 2000 [153225], Table 4-1). This AMR supports the analysis and simulation that are used by PA to develop the probability distribution of water seepage into drift, and is therefore a model of primary (Level 1) importance (AP-3.15Q, ''Managing Technical Product Inputs''). The intended purpose of the Seepage Model for PA is to support: (1) PA; (2) Abstraction of Drift-Scale Seepage; and (3) Unsaturated Zone (UZ) Flow and Transport Process Model Report (PMR). Seepage into drifts is evaluated by applying numerical models with stochastic representations of hydrological properties and performing flow simulations with multiple realizations of the permeability field around the drift. The Seepage Model for PA uses the distribution of permeabilities derived from air injection testing in niches and in the cross drift to
Seepage Model for PA Including Dift Collapse
Energy Technology Data Exchange (ETDEWEB)
G. Li; C. Tsang
2000-12-20
The purpose of this Analysis/Model Report (AMR) is to document the predictions and analysis performed using the Seepage Model for Performance Assessment (PA) and the Disturbed Drift Seepage Submodel for both the Topopah Spring middle nonlithophysal and lower lithophysal lithostratigraphic units at Yucca Mountain. These results will be used by PA to develop the probability distribution of water seepage into waste-emplacement drifts at Yucca Mountain, Nevada, as part of the evaluation of the long term performance of the potential repository. This AMR is in accordance with the ''Technical Work Plan for Unsaturated Zone (UZ) Flow and Transport Process Model Report'' (CRWMS M&O 2000 [153447]). This purpose is accomplished by performing numerical simulations with stochastic representations of hydrological properties, using the Seepage Model for PA, and evaluating the effects of an alternative drift geometry representing a partially collapsed drift using the Disturbed Drift Seepage Submodel. Seepage of water into waste-emplacement drifts is considered one of the principal factors having the greatest impact of long-term safety of the repository system (CRWMS M&O 2000 [153225], Table 4-1). This AMR supports the analysis and simulation that are used by PA to develop the probability distribution of water seepage into drift, and is therefore a model of primary (Level 1) importance (AP-3.15Q, ''Managing Technical Product Inputs''). The intended purpose of the Seepage Model for PA is to support: (1) PA; (2) Abstraction of Drift-Scale Seepage; and (3) Unsaturated Zone (UZ) Flow and Transport Process Model Report (PMR). Seepage into drifts is evaluated by applying numerical models with stochastic representations of hydrological properties and performing flow simulations with multiple realizations of the permeability field around the drift. The Seepage Model for PA uses the distribution of permeabilities derived from air injection testing in
Asymmetric explosions of core collapse supernovae
International Nuclear Information System (INIS)
Guilet, Jerome
2010-01-01
This thesis is devoted to the study of several hydrodynamic and magnetohydrodynamic phenomena that could create an asymmetry in core collapse supernovae. In the first part giving the general context, we first describe the theoretical and observational indications suggesting an important asymmetry. We then present several instabilities that could break the initial spherical symmetry, insisting particularly on the role of the Stationary Accretion Shock Instability (SASI). The second part is dedicated to an hydrodynamic study of the Standing Accretion shock instability. We first give an argument using the frequency of unstable modes that enables us to distinguish between the two mechanisms proposed to explain the linear growth of SASI. As a second step, we study the non-linear dynamics of SASI and propose for the first time a mechanism responsible for its saturation. In this scenario, the saturation occurs when parasitic instabilities are able to grow fast enough on a SASI mode. The semi-analytical prediction of the saturation amplitude is successfully compared with published numerical simulations. The third part studies the effect of a moderate magnetic field. We find that such a magnetic field can have either a stabilizing or a destabilizing effect on SASI depending on its geometry. We then concentrate on the dynamics of the Alfven surface, where the Alfven and the advection speed coincide. We show that the amplification of Alfven waves near this surface creates a pressure feedback, which could affect significantly the dynamics of the shock if the magnetic energy is comparable to the kinetic energy. (author) [fr
Tulsa Oklahoma Oktoberfest Tent Collapse Report
Directory of Open Access Journals (Sweden)
Kelly E. Deal
2012-01-01
Full Text Available Background. On October 17, 2007, a severe weather event collapsed two large tents and several smaller tents causing 23 injuries requiring evacuation to emergency departments in Tulsa, OK. Methods. This paper is a retrospective analysis of the regional health system’s response to this event. Data from the Tulsa Fire Department, The Emergency Medical Services Authority (EMSA, receiving hospitals and coordinating services were reviewed and analyzed. EMS patient care reports were reviewed and analyzed using triage designators assigned in the field, injury severity scores, and critical mortality. Results. EMT's and paramedics from Tulsa Fire Department and EMSA provided care at the scene under unified incident command. Of the 23 patients transported by EMS, four were hospitalized, one with critical spinal injury and one with critical head injury. One patient is still in ongoing rehabilitation. Discussion. Analysis of the 2007 Tulsa Oktoberfest mass casualty incident revealed rapid police/fire/EMS response despite challenges of operations at dark under severe weather conditions and the need to treat a significant number of injured victims. There were no fatalities. Of the patients transported by EMS, a minority sustained critical injuries, with most sustaining injuries amenable to discharge after emergency department care.
Flux-driven simulations of turbulence collapse
Energy Technology Data Exchange (ETDEWEB)
Park, G. Y.; Kim, S. S.; Jhang, Hogun; Rhee, T. [National Fusion Research Institute, Daejeon 305-333 (Korea, Republic of); Diamond, P. H. [National Fusion Research Institute, Daejeon 305-333 (Korea, Republic of); CASS and Department of Physics, University of California, San Diego, La Jolla, California 92093-0429 (United States); Xu, X. Q. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States)
2015-03-15
Using three-dimensional nonlinear simulations of tokamak turbulence, we show that an edge transport barrier (ETB) forms naturally once input power exceeds a threshold value. Profiles, turbulence-driven flows, and neoclassical coefficients are evolved self-consistently. A slow power ramp-up simulation shows that ETB transition is triggered by the turbulence-driven flows via an intermediate phase which involves coherent oscillation of turbulence intensity and E×B flow shear. A novel observation of the evolution is that the turbulence collapses and the ETB transition begins when R{sub T} > 1 at t = t{sub R} (R{sub T}: normalized Reynolds power), while the conventional transition criterion (ω{sub E×B}>γ{sub lin} where ω{sub E×B} denotes mean flow shear) is satisfied only after t = t{sub C} ( >t{sub R}), when the mean flow shear grows due to positive feedback.
Colony collapse disorder: a descriptive study.
Directory of Open Access Journals (Sweden)
Dennis Vanengelsdorp
Full Text Available BACKGROUND: Over the last two winters, there have been large-scale, unexplained losses of managed honey bee (Apis mellifera L. colonies in the United States. In the absence of a known cause, this syndrome was named Colony Collapse Disorder (CCD because the main trait was a rapid loss of adult worker bees. We initiated a descriptive epizootiological study in order to better characterize CCD and compare risk factor exposure between populations afflicted by and not afflicted by CCD. METHODS AND PRINCIPAL FINDINGS: Of 61 quantified variables (including adult bee physiology, pathogen loads, and pesticide levels, no single measure emerged as a most-likely cause of CCD. Bees in CCD colonies had higher pathogen loads and were co-infected with a greater number of pathogens than control populations, suggesting either an increased exposure to pathogens or a reduced resistance of bees toward pathogens. Levels of the synthetic acaricide coumaphos (used by beekeepers to control the parasitic mite Varroa destructor were higher in control colonies than CCD-affected colonies. CONCLUSIONS/SIGNIFICANCE: This is the first comprehensive survey of CCD-affected bee populations that suggests CCD involves an interaction between pathogens and other stress factors. We present evidence that this condition is contagious or the result of exposure to a common risk factor. Potentially important areas for future hypothesis-driven research, including the possible legacy effect of mite parasitism and the role of honey bee resistance to pesticides, are highlighted.
Tourism's collapse puts Gambian women at risk.
Coker, M S
1995-06-01
Despite efforts of the Gambian government, which established a ministry in 1981 that would tackle gender issues, improve women's health, and promote empowerment, women are underrepresented in government and business, and 84% are illiterate. Child mortality is among the highest in Africa; 134 children per 1000 die before their fifth birthday. In the mid-1980s austerity measures adopted by the World Bank and IMF left the ministry without funds. Rice and vegetable production, the main source of income for women, fell in the 1990s. In 1994, paddy production dropped 23% from the previous year; this was due to a lack of technical and financial assistance. The collapse of tourism with Capt. Yahya Jammeh's seizure of power has put prostitutes catering to tourists out of work, but women who have lost jobs in the hotel industry may be pushed into local prostitution to survive. The impact of this on the HIV/AIDS epidemic is unclear. Although Gambia is one of the world's most aid-dependent countries (more than a quarter of the GNP before the coup), corruption and mismanagement in the nongovernmental sector is widespread. The director of the Women in Development Programme, a $15m World Bank project, was forced to resign over allegations of fraud. The political process sidelines women; only village chiefs, who are traditionally men, are allowed to vote when new heads are elected.
Collapsing avian community on a Hawaiian island
Paxton, Eben H.; Camp, Richard J.; Gorresen, P. Marcos; Crampton, Lisa H.; Leonard, David L.; VanderWerf, Eric
2016-01-01
The viability of many species has been jeopardized by numerous negative factors over the centuries, but climate change is predicted to accelerate and increase the pressure of many of these threats, leading to extinctions. The Hawaiian honeycreepers, famous for their spectacular adaptive radiation, are predicted to experience negative responses to climate change, given their susceptibility to introduced disease, the strong linkage of disease distribution to climatic conditions, and their current distribution. We document the rapid collapse of the native avifauna on the island of Kaua‘i that corresponds to changes in climate and disease prevalence. Although multiple factors may be pressuring the community, we suggest that a tipping point has been crossed in which temperatures in forest habitats at high elevations have reached a threshold that facilitates the development of avian malaria and its vector throughout these species’ ranges. Continued incursion of invasive weeds and non-native avian competitors may be facilitated by climate change and could also contribute to declines. If current rates of decline continue, we predict multiple extinctions in the coming decades. Kaua‘i represents an early warning for the forest bird communities on the Maui and Hawai‘i islands, as well as other species around the world that are trapped within a climatic space that is rapidly disappearing.
Energy Technology Data Exchange (ETDEWEB)
Yin, Xiangbiao, E-mail: yin.x.aa@m.titech.ac.jp [Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-ku, Tokyo 152-8550 (Japan); Wang, Xinpeng [College of Resources and Metallurgy, Guangxi University, 100 Daxue East Road, Nanning 530004 (China); Wu, Hao; Ohnuki, Toshihiko; Takeshita, Kenji [Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-ku, Tokyo 152-8550 (Japan)
2017-03-15
Highlights: • Desorption of Cs{sup +} fixed in collapsed interlayer region of vermiculite was studied. • Monovalent cations readily induced interlayer collapse inhibiting Cs{sup +} desorption. • Larger hydrous ionic radii of divalent cations greatly prevented Cs{sup +} desorption. • Effect of divalent cation on Cs{sup +} desorption changes depending on thermal treatment. • ∼100% removal of saturated Cs{sup +} was achieved by hydrothermal treatment at 250 °C. - Abstract: Adsorption of cesium (Cs) on phyllosilicates has been intensively investigated because natural soils have strong ability of immobilizing Cs within clay minerals resulting in difficulty of decontamination. The objectives of present study are to clarify how Cs fixation on vermiculite is influenced by structure change caused by Cs sorption at different loading levels and how Cs desorption is affected by various replacing cations induced at different treating temperature. As a result, more than 80% of Cs was readily desorbed from vermiculite with loading amount of 2% saturated Cs (5.49 × 10{sup −3} mmol g{sup −1}) after four cycles of treatment of 0.01 M Mg{sup 2+}/Ca{sup 2+} at room temperature, but less than 20% of Cs was desorbed from saturated vermiculite. These distinct desorption patterns were attributed to inhibition of Cs desorption by interlayer collapse of vermiculite, especially at high Cs loadings. In contrast, elevated temperature significantly facilitated divalent cations to efficiently desorb Cs from collapsed regions. After five cycles of treatment at 250 °C with 0.01 M Mg{sup 2+}, ∼100% removal of saturated Cs was achieved. X-ray diffraction analysis results suggested that Cs desorption was completed through enhanced diffusion of Mg{sup 2+} cations into collapsed interlayer space under hydrothermal condition resulting in subsequent interlayer decollapse and readily release of Cs{sup +}.
Michael, L.; Nikiforakis, N.
2018-02-01
This work is concerned with the effect of cavity collapse in non-ideal explosives as a means of controlling their sensitivity. The main objective is to understand the origin of localised temperature peaks (hot spots) which play a leading order role at the early stages of ignition. To this end, we perform two- and three-dimensional numerical simulations of shock-induced single gas-cavity collapse in liquid nitromethane. Ignition is the result of a complex interplay between fluid dynamics and exothermic chemical reaction. In the first part of this work, we focused on the hydrodynamic effects in the collapse process by switching off the reaction terms in the mathematical formulation. In this part, we reinstate the reactive terms and study the collapse of the cavity in the presence of chemical reactions. By using a multi-phase formulation which overcomes current challenges of cavity collapse modelling in reactive media, we account for the large density difference across the material interface without generating spurious temperature peaks, thus allowing the use of a temperature-based reaction rate law. The mathematical and physical models are validated against experimental and analytic data. In Part I, we demonstrated that, compared to experiments, the generated hot spots have a more complex topological structure and that additional hot spots arise in regions away from the cavity centreline. Here, we extend this by identifying which of the previously determined high-temperature regions in fact lead to ignition and comment on the reactive strength and reaction growth rate in the distinct hot spots. We demonstrate and quantify the sensitisation of nitromethane by the collapse of the isolated cavity by comparing the ignition times of nitromethane due to cavity collapse and the ignition time of the neat material. The ignition in both the centreline hot spots and the hot spots generated by Mach stems occurs in less than half the ignition time of the neat material. We compare
Bugayenko, Yegor
2017-01-01
There are 23 practical recommendations for object-oriented programmers. Most of them are completely against everything you've read in other books. For example, static methods, NULL references, getters, setters, and mutable classes are called evil. Compound variable names, validators, private static literals, configurable objects, inheritance, annotations, MVC, dependency injection containers, reflection, ORM and even algorithms are our enemies.
Olczak, Eugene G. (Inventor)
2011-01-01
An objective lens and a method for using same. The objective lens has a first end, a second end, and a plurality of optical elements. The optical elements are positioned between the first end and the second end and are at least substantially symmetric about a plane centered between the first end and the second end.
Jiang, Xiang; Liu, Hanlong; Main, Ian G.; Salje, Ekhard K. H.
2017-08-01
The quest for predictive indicators for the collapse of coal mines has led to a robust criterion from scale-model tests in the laboratory. Mechanical collapse under uniaxial stress forms avalanches with a power-law probability distribution function of radiated energy P ˜E-ɛ , with exponent ɛ =1.5 . Impending major collapse is preceded by a reduction of the energy exponent to the mean-field value ɛ =1.32 . Concurrently, the crackling noise increases in intensity and the waiting time between avalanches is reduced when the major collapse is approaching. These latter criteria were so-far deemed too unreliable for safety assessments in coal mines. We report a reassessment of previously collected extensive collapse data sets using "record-breaking analysis," based on the statistical appearance of "superjerks" within a smaller spectrum of collapse events. Superjerks are defined as avalanche signals with energies that surpass those of all previous events. The final major collapse is one such superjerk but other "near collapse" events equally qualify. In this way a very large data set of events is reduced to a sparse sequence of superjerks (21 in our coal sample). The main collapse can be anticipated from the sequence of energies and waiting times of superjerks, ignoring all weaker events. Superjerks are excellent indicators for the temporal evolution, and reveal clear nonstationarity of the crackling noise at constant loading rate, as well as self-similarity in the energy distribution of superjerks as a function of the number of events so far in the sequence Es j˜nδ with δ =1.79 . They are less robust in identifying the precise time of the final collapse, however, than the shift of the energy exponents in the whole data set which occurs only over a short time interval just before the major event. Nevertheless, they provide additional diagnostics that may increase the reliability of such forecasts.
International Nuclear Information System (INIS)
Martin-Viera Cueto, J. A.; Benitez Villegas, E. M.; Bodineau Gil, C.; Parra Osorio, V.; Garcia Pareja, S.; Casado Villalon, F. J.
2013-01-01
The objective of this study is to verify the characterization of the collapsed cone algorithm of an SP using this Protocol. In addition, given that it only offers details of dose values measured at discrete points, measures are complemented by a gamma test distributions 2D of doses in different cases using film radiochromic. (Author)
Muhs, B.E.; Balm, R.; White, G.H.; Verhagen, H.J.M.
2007-01-01
OBJECTIVE: The potentially devastating complication of total or near total thoracic endoprosthesis collapse has been described with the TAG device (W. L. Gore & Associates, Flagstaff, Ariz). This rare complication has resulted in a warning to clinicians and speculation about the etiology of this
Muhs, Bart E.; Balm, Ron; White, Geoffrey H.; Verhagen, Hence J. M.
2007-01-01
OBJECTIVE: The potentially devastating complication of total or near total thoracic endoprosthesis collapse has been described with the TAG device (W. L. Gore & Associates, Flagstaff, Ariz). This rare complication has resulted in a warning to clinicians and speculation about the etiology of this
Directory of Open Access Journals (Sweden)
David Mandler
2011-01-01
Full Text Available Ágai, Adolf. Az örök zsidó. Régi naplók, életképek (1862-1906 [The Eternal Jew: OldDiaries and Life Sketches (1862-1906]. Budapest-Jerusalem: Múlt és Jövő Kiadó,2010. Reviewed by David Mandler, Stuyvesant High School, New York City.
Study of film boiling collapse behavior during vapor explosion
International Nuclear Information System (INIS)
Yagi, Masahiro; Yamano, Norihiro; Sugimoto, Jun; Abe, Yutaka; Adachi, Hiromichi; Kobayashi, Tomoyoshi.
1996-06-01
Possible large scale vapor explosions are safety concern in nuclear power plants during severe accident. In order to identify the occurrence of the vapor explosion and to estimate the magnitude of the induced pressure pulse, it is necessary to investigate the triggering condition for the vapor explosion. As a first step of this study, scooping analysis was conducted with a simulation code based on thermal detonation model. It was found that the pressure at the collapse of film boiling much affects the trigger condition of vapor explosion. Based on this analytical results, basic experiments were conducted to clarify the collapse conditions of film boiling on a high temperature solid ball surface. Film boiling condition was established by flooding water onto a high temperature stainless steel ball heated by a high frequency induction heater. After the film boiling was established, the pressure pulse generated by a shock tube was applied to collapse the steam film on the ball surface. As the experimental boundary conditions, materials and size of the balls, magnitude of pressure pulse and initial temperature of the carbon and stainless steel balls were varied. The transients of pressure and surface temperature were measured. It was found that the surface temperature on the balls sharply decreased when the pressure wave passed through the film on balls. Based on the surface temperature behavior, the film boiling collapse pattern was found to be categorized into several types. Especially, the pattern for stainless steel ball was categorized into three types; no collapse, collapse and reestablishment after collapse. It was thus clarified that the film boiling collapse behavior was identified by initial conditions and that the pressure required to collapse film boiling strongly depended on the initial surface temperature. The present results will provide a useful information for the analysis of vapor explosions based on the thermal detonation model. (J.P.N.)
Collapse of a marine mammal species driven by human impacts.
Directory of Open Access Journals (Sweden)
Tero Harkonen
Full Text Available Understanding historical roles of species in ecosystems can be crucial for assessing long term human impacts on environments, providing context for management or restoration objectives, and making conservation evaluations of species status. In most cases limited historical abundance data impedes quantitative investigations, but harvested species may have long-term data accessible from hunting records. Here we make use of annual hunting records for Caspian seals (Pusa caspica dating back to the mid-19(th century, and current census data from aerial surveys, to reconstruct historical abundance using a hind-casting model. We estimate the minimum numbers of seals in 1867 to have been 1-1.6 million, but the population declined by at least 90% to around 100,000 individuals by 2005, primarily due to unsustainable hunting throughout the 20(th century. This collapse is part of a broader picture of catastrophic ecological change in the Caspian over the 20(th Century. Our results combined with fisheries data show that the current biomass of top predators in the Caspian is much reduced compared to historical conditions. The potential for the Caspian and other similar perturbed ecosystems to sustain natural resources of much greater biological and economic value than at present depends on the extent to which a number of anthropogenic impacts can be harnessed.
Evaluation of plastic collapse behavior for multiple cracked structures
International Nuclear Information System (INIS)
Moon, Seong In; Chang, Yoon Suk; Kim, Young Jin; Lee, Jin Ho; Song, Myung Ho; Choi, Young Hwan; Hwang, Seong Sik
2004-01-01
Until now, the 40% of wall thickness criterion, which is generally used for the plugging of steam generator tubes, has been applied only to a single cracked geometry. In the previous study by the authors, a total number of 9 local failure prediction models were introduced to estimate the coalescence load of two collinear through-wall cracks and, then, the reaction force model and plastic zone contact model were selected as the optimum ones. The objective of this study is to estimate the coalescence load of two collinear through-wall cracks in steam generator tube by using the optimum local failure prediction models. In order to investigate the applicability of the optimum local failure prediction models, a series of plastic collapse tests and corresponding finite element analyses for two collinear through-wall cracks in steam generator tube were carried out. Thereby, the applicability of the optimum local failure prediction models was verified and, finally, a coalescence evaluation diagram which can be used to determine whether the adjacent cracks detected by NDE coalesce or not has been developed
Estimating structural collapse fragility of generic building typologies using expert judgment
Jaiswal, Kishor S.; Wald, D.J.; Perkins, D.; Aspinall, W.P.; Kiremidjian, Anne S.; Deodatis, George; Ellingwood, Bruce R.; Frangopol, Dan M.
2014-01-01
The structured expert elicitation process proposed by Cooke (1991), hereafter referred to as Cooke’s approach, is applied for the first time in the realm of structural collapse-fragility assessment for selected generic construction types. Cooke’s approach works on the principle of objective calibration scoring of judgments coupled with hypothesis testing used in classical statistics. The performance-based scoring system reflects the combined measure of an expert’s informativeness about variables in the problem area under consideration, and their ability to enumerate, in a statistically accurate way through expressing their true beliefs, the quantitative uncertainties associated with their assessments. We summarize the findings of an expert elicitation workshop in which a dozen earthquake-engineering professionals from around the world were engaged to estimate seismic collapse fragility for generic construction types. Development of seismic collapse fragility functions was accomplished by combining their judgments using weights derived from Cooke’s method. Although substantial effort was needed to elicit the inputs of these experts successfully, we anticipate that the elicitation strategy described here will gain momentum in a wide variety of earthquake seismology and engineering hazard and risk analyses where physical model and data limitations are inherent and objective professional judgment can fill gaps.
SEEPAGE MODEL FOR PA INCLUDING DRIFT COLLAPSE
International Nuclear Information System (INIS)
C. Tsang
2004-01-01
The purpose of this report is to document the predictions and analyses performed using the seepage model for performance assessment (SMPA) for both the Topopah Spring middle nonlithophysal (Tptpmn) and lower lithophysal (Tptpll) lithostratigraphic units at Yucca Mountain, Nevada. Look-up tables of seepage flow rates into a drift (and their uncertainty) are generated by performing numerical simulations with the seepage model for many combinations of the three most important seepage-relevant parameters: the fracture permeability, the capillary-strength parameter 1/a, and the percolation flux. The percolation flux values chosen take into account flow focusing effects, which are evaluated based on a flow-focusing model. Moreover, multiple realizations of the underlying stochastic permeability field are conducted. Selected sensitivity studies are performed, including the effects of an alternative drift geometry representing a partially collapsed drift from an independent drift-degradation analysis (BSC 2004 [DIRS 166107]). The intended purpose of the seepage model is to provide results of drift-scale seepage rates under a series of parameters and scenarios in support of the Total System Performance Assessment for License Application (TSPA-LA). The SMPA is intended for the evaluation of drift-scale seepage rates under the full range of parameter values for three parameters found to be key (fracture permeability, the van Genuchten 1/a parameter, and percolation flux) and drift degradation shape scenarios in support of the TSPA-LA during the period of compliance for postclosure performance [Technical Work Plan for: Performance Assessment Unsaturated Zone (BSC 2002 [DIRS 160819], Section I-4-2-1)]. The flow-focusing model in the Topopah Spring welded (TSw) unit is intended to provide an estimate of flow focusing factors (FFFs) that (1) bridge the gap between the mountain-scale and drift-scale models, and (2) account for variability in local percolation flux due to
Gravitational collapse of charged dust shell and maximal slicing condition
International Nuclear Information System (INIS)
Maeda, Keiichi
1980-01-01
The maximal slicing condition is a good time coordinate condition qualitatively when pursuing the gravitational collapse by the numerical calculation. The analytic solution of the gravitational collapse under the maximal slicing condition is given in the case of a spherical charged dust shell and the behavior of time slices with this coordinate condition is investigated. It is concluded that under the maximal slicing condition we can pursue the gravitational collapse until the radius of the shell decreases to about 0.7 x (the radius of the event horizon). (author)
Search for stellar gravitational collapses with the MACRO detector
Ambrosio, M; Baldini, A; Barbarino, G C; Barish, B C; Battistoni, G; Bellotti, R; Bemporad, C; Bernardini, P; Bilokon, H; Bloise, C; Bower, C; Brigida, M; Bussino, S; Cafagna, F; Campana, D; Carboni, M; Cecchini, S; Cei, F; Chiarella, V; Choudhary, B C; Coutu, S; Cozzi, M; De Cataldo, G; De Marzo, C; De Mitri, I; De Vincenzi, M; Dekhissi, H; Derkaoui, J; Di Credico, A; Favuzzi, C; Forti, C; Fusco, P; Giacomelli, G; Giannini, G; Giglietto, N; Giorgini, M; Grassi, M; Grillo, A; Gustavino, C; Habig, A; Hanson, K; Heinz, R; Iarocci, E; Katsavounidis, E; Katsavounidis, I; Kearns, E; Kim, H; Kyriazopoulou, S; Lamanna, E; Lane, C; Levin, D S; Lipari, P; Longley, N P; Longo, M J; Loparco, F; Maaroufi, F; Mancarella, G; Mandrioli, G; Margiotta, A; Marini, A; Martello, D; Marzari-Chiesa, A; Mazziotta, M N; Michael, D G; Monacelli, P; Montaruli, T; Monteno, M; Mufson, S; Musser, J; Nicolò, D; Nolty, R; Orth, C; Osteria, G; Palamara, O; Patera, V; Patrizii, L; Pazzi, R; Peck, C W; Perrone, L; Petrera, S; Popa, V; Raino, J A; Reynoldson, J; Ronga, F; Satriano, C; Scapparone, E; Scholberg, K; Sciubba, A; Sioli, M; Sirri, G; Sitta, M; Spinelli, P; Spinetti, M; Spurio, M; Steinberg, R; Stone, J L; Sulak, L R; Surdo, A; Tarle, G; Togo, V; Vakili, M; Walter, C W; Webb, R; 10.1140/epjc/s2004-01981-3
2004-01-01
We present the final results of the search for stellar gravitational collapses obtained by the MACRO experiment. The detector was active for a stellar collapse search for more than 11 years and it was sensitive to collapses occurring all over in our galaxy for 8.6 years. A real time system for a prompt recognition of neutrino bursts was developed and was operating on-line for almost the whole life of the experiment. No signal compatible with a neutrino burst from a galactic supernova was observed.
Recoverable and Programmable Collapse from Folding Pressurized Origami Cellular Solids.
Li, S; Fang, H; Wang, K W
2016-09-09
We report a unique collapse mechanism by exploiting the negative stiffness observed in the folding of an origami solid, which consists of pressurized cells made by stacking origami sheets. Such a collapse mechanism is recoverable, since it only involves rigid folding of the origami sheets and it is programmable by pressure control and the custom design of the crease pattern. The collapse mechanism features many attractive characteristics for applications such as energy absorption. The reported results also suggest a new branch of origami study focused on its nonlinear mechanics associated with folding.
Coexistence of collapse and stable spatiotemporal solitons in multimode fibers
Shtyrina, Olga V.; Fedoruk, Mikhail P.; Kivshar, Yuri S.; Turitsyn, Sergei K.
2018-01-01
We analyze spatiotemporal solitons in multimode optical fibers and demonstrate the existence of stable solitons, in a sharp contrast to earlier predictions of collapse of multidimensional solitons in three-dimensional media. We discuss the coexistence of blow-up solutions and collapse stabilization by a low-dimensional external potential in graded-index media, and also predict the existence of stable higher-order nonlinear waves such as dipole-mode spatiotemporal solitons. To support the main conclusions of our numerical studies we employ a variational approach and derive analytically the stability criterion for input powers for the collapse stabilization.
Hamiltonian treatment of the gravitational collapse of thin shells
International Nuclear Information System (INIS)
Crisostomo, Juan; Olea, Rodrigo
2004-01-01
A Hamiltonian treatment of the gravitational collapse of thin shells is presented. The direct integration of the canonical constraints reproduces the standard shell dynamics for a number of known cases. The formalism is applied in detail to three-dimensional spacetime and the properties of the (2+1)-dimensional charged black hole collapse are further elucidated. The procedure is also extended to deal with rotating solutions in three dimensions. The general form of the equations providing the shell dynamics implies the stability of black holes, as they cannot be converted into naked singularities by any shell collapse process
Scalar field collapse in Gauss-Bonnet gravity
Banerjee, Narayan; Paul, Tanmoy
2018-02-01
We consider a "scalar-Einstein-Gauss-Bonnet" theory in four dimension, where the scalar field couples non-minimally with the Gauss-Bonnet (GB) term. This coupling with the scalar field ensures the non-topological character of the GB term. In this scenario, we examine the possibility for collapsing of the scalar field. Our result reveals that such a collapse is possible in the presence of Gauss-Bonnet gravity for suitable choices of parametric regions. The singularity formed as a result of the collapse is found to be a curvature singularity which is hidden from the exterior by an apparent horizon.
Scalar field collapse in Gauss-Bonnet gravity
Energy Technology Data Exchange (ETDEWEB)
Banerjee, Narayan [Indian Institute of Science Education and Research Kolkata, Department of Physical Sciences, Nadia, West Bengal (India); Paul, Tanmoy [Indian Association for the Cultivation of Science, Department of Theoretical Physics, Kolkata (India)
2018-02-15
We consider a ''scalar-Einstein-Gauss-Bonnet'' theory in four dimension, where the scalar field couples non-minimally with the Gauss-Bonnet (GB) term. This coupling with the scalar field ensures the non-topological character of the GB term. In this scenario, we examine the possibility for collapsing of the scalar field. Our result reveals that such a collapse is possible in the presence of Gauss-Bonnet gravity for suitable choices of parametric regions. The singularity formed as a result of the collapse is found to be a curvature singularity which is hidden from the exterior by an apparent horizon. (orig.)
Self-similar Langmuir collapse at critical dimension
International Nuclear Information System (INIS)
Berge, L.; Dousseau, Ph.; Pelletier, G.; Pesme, D.
1991-01-01
Two spherically symmetric versions of a self-similar collapse are investigated within the framework of the Zakharov equations, namely, one relative to a vectorial electric field and the other corresponding to a scalar modeling of the Langmuir field. Singular solutions of both of them depend on a linear time contraction rate ξ(t) = V(t * -t), where t * and V = -ξ denote, respectively, the collapse time and the constant collapse velocity. It is shown that under certain conditions, only the scalar model admits self-similar solutions, varying regularly as a function of the control parameter V from the subsonic (V >1) regime. (author)
International Nuclear Information System (INIS)
Creutz, M.
1976-01-01
After some disconnected comments on the MIT bag and string models for extended hadrons, I review current understanding of extended objects in classical conventional relativistic field theories and their quantum mechanical interpretation
International Nuclear Information System (INIS)
CAMPBELL, PHILIP L.; PIERSON, LYNDON G.; WITZKE, EDWARD L.
1999-01-01
In the world of computers a trusted object is a collection of possibly-sensitive data and programs that can be allowed to reside and execute on a computer, even on an adversary's machine. Beyond the scope of one computer we believe that network-based agents in high-consequence and highly reliable applications will depend on this approach, and that the basis for such objects is what we call ''faithful execution.''
Hydromagnetic instabilities and magnetic field amplification in core collapse supernovae
Energy Technology Data Exchange (ETDEWEB)
Cerda-Duran, P; Obergaulinger, M; Mueller, E [Max-Planck-Institut fuer Astrophysik, Karl-Schwarzschild-st. 1, 85748 Garching (Germany); Aloy, M A; Font, J A, E-mail: cerda@mpa-garching.mpg.de [Departamento de Astronomia y Astrofisica, Universidad de Valencia, 46100 Burjassot, Valencia (Spain)
2011-09-22
Some of the most violent events in the universe, the gamma ray burst, could be related to the gravitational collapse of massive stellar cores. The recent association of long GRBs to some class of type Ic supernova seems to support this view. In such scenario fast rotation, strong magnetic fields and general relativistic effects are key ingredients. It is thus important to understand the mechanism that amplifies the magnetic field under that conditions. I present global simulations of the magneto-rotational collapse of stellar cores in general relativity and semi-global simulations of hydromagnetic instabilities under core collapse conditions. I discuss effect of the magneto-rotational instability and the magnetic field amplification during the collapse, the uncertainties in this process and the dynamical effects in the supernova explosion.
The role of fluid viscosity in an immersed granular collapse
Yang, Geng Chao; Kwok, Chung Yee; Sobral, Yuri Dumaresq
2017-06-01
Instabilities of immersed slopes and cliffs can lead to catastrophic events that involve a sudden release of huge soil mass. The scaled deposit height and runout distance are found to follow simple power laws when a granular column collapses on a horizontal plane. However, if the granular column is submerged in a fluid, the mobility of the granular collapse due to high inertia effects will be reduced by fluid-particle interactions. In this study, the effects of fluid viscosity on granular collapse is investigated qualitatively by adopting a numerical approach based on the coupled lattice Boltzmann method (LBM) and discrete element method (DEM). It is found that the granular collapse can be dramatically slowed down due to the presence of viscous fluids. For the considered granular configuration, when the fluid viscosity increases. the runout distance decreases and the final deposition shows a larger deposit angle.
The role of fluid viscosity in an immersed granular collapse
Directory of Open Access Journals (Sweden)
Yang Geng Chao
2017-01-01
Full Text Available Instabilities of immersed slopes and cliffs can lead to catastrophic events that involve a sudden release of huge soil mass. The scaled deposit height and runout distance are found to follow simple power laws when a granular column collapses on a horizontal plane. However, if the granular column is submerged in a fluid, the mobility of the granular collapse due to high inertia effects will be reduced by fluid-particle interactions. In this study, the effects of fluid viscosity on granular collapse is investigated qualitatively by adopting a numerical approach based on the coupled lattice Boltzmann method (LBM and discrete element method (DEM. It is found that the granular collapse can be dramatically slowed down due to the presence of viscous fluids. For the considered granular configuration, when the fluid viscosity increases. the runout distance decreases and the final deposition shows a larger deposit angle.
Rotating collapse of stellar iron cores in general relativity
International Nuclear Information System (INIS)
Ott, C D; Dimmelmeier, H; Marek, A; Janka, H-T; Zink, B; Hawke, I; Schnetter, E
2007-01-01
We present results from the first 2 + 1 and 3 + 1 simulations of the collapse of rotating stellar iron cores in general relativity employing a finite-temperature equation of state and an approximate treatment of deleptonization during collapse. We compare full 3 + 1 and conformally-flat spacetime evolution methods and find that the conformally-flat treatment is sufficiently accurate for the core-collapse supernova problem. We focus on the gravitational wave (GW) emission from rotating collapse, core bounce and early postbounce phases. Our results indicate that the GW signature of these phases is much more generic than previously estimated. In addition, we track the growth of a nonaxisymmetric instability of dominant m = 1 character in two of our models that leads to prolonged narrow-band GW emission at ∼920-930 Hz over several tens of milliseconds
Important Details in Performing and Interpreting the Scratch Collapse Test.
Kahn, Lorna C; Yee, Andrew; Mackinnon, Susan E
2018-02-01
The utility of the scratch collapse test has been demonstrated in examination of patients with carpal and cubital tunnel syndromes and long thoracic and peroneal nerve compressions. In the authors' clinic, this lesser known test plays a key role in peripheral nerve examination where localization of the nerve irritation or injury is not fully understood. Test utility and accuracy in patients with more challenging presentations likely correlate with tester understanding and experience. This article offers a clear outline of all stages of the test to improve interrater reliability. The nuances of test performance are described, including a description of situations where the scratch collapse test is deemed inappropriate. Four clinical scenarios where the scratch collapse test may be useful are included. Corresponding video content is provided to improve performance and interpretation of the scratch collapse test. Diagnostic, V.
Probing spontaneous wave-function collapse with entangled levitating nanospheres
Zhang, Jing; Zhang, Tiancai; Li, Jie
2017-01-01
Wave-function collapse models are considered to be the modified theories of standard quantum mechanics at the macroscopic level. By introducing nonlinear stochastic terms in the Schrödinger equation, these models (different from standard quantum mechanics) predict that it is fundamentally impossible to prepare macroscopic systems in macroscopic superpositions. The validity of these models can only be examined by experiments, and hence efficient protocols for these kinds of experiments are greatly needed. Here we provide a protocol that is able to probe the postulated collapse effect by means of the entanglement of the center-of-mass motion of two nanospheres optically trapped in a Fabry-Pérot cavity. We show that the collapse noise results in a large reduction of the steady-state entanglement, and the entanglement, with and without the collapse effect, shows distinguishable scalings with certain system parameters, which can be used to determine unambiguously the effect of these models.
Collapse above the world's largest potash mine (Ural, Russia.
Directory of Open Access Journals (Sweden)
Andrejchuk Vjacheslav
2002-01-01
Full Text Available This paper reports the results of the study of a huge collapse that occurred in June 1986 within the area of the 3rd Berezniki potash mine (the Verkhnekamsky potash deposit, Ural. Processes that took place between the first appearance of a water inflow through the mine roof and the eventual collapse are reconstructed in detail. The origin and development of a cavity that induced the collapse are revealed. Two factors played a major role in the formation of the collapse: the presence of a tectonic fold/rupture zone with in both the salt sequence and the overburden (the zone of crush and enhanced permeability, and the ductile pillars mining system.
Forecasting giant, catastrophic slope collapse: lessons from Vajont, Northern Italy
Kilburn, Christopher R. J.; Petley, David N.
2003-08-01
Rapid, giant landslides, or sturzstroms, are among the most powerful natural hazards on Earth. They have minimum volumes of ˜10 6-10 7 m 3 and, normally preceded by prolonged intervals of accelerating creep, are produced by catastrophic and deep-seated slope collapse (loads ˜1-10 MPa). Conventional analyses attribute rapid collapse to unusual mechanisms, such as the vaporization of ground water during sliding. Here, catastrophic collapse is related to self-accelerating rock fracture, common in crustal rocks at loads ˜1-10 MPa and readily catalysed by circulating fluids. Fracturing produces an abrupt drop in resisting stress. Measured stress drops in crustal rock account for minimum sturzstrom volumes and rapid collapse accelerations. Fracturing also provides a physical basis for quantitatively forecasting catastrophic slope failure.
Spherical collapse in quintessence models with zero speed of sound
International Nuclear Information System (INIS)
Creminelli, Paolo; D'Amico, Guido; Noreña, Jorge; Senatore, Leonardo; Vernizzi, Filippo
2010-01-01
We study the spherical collapse model in the presence of quintessence with negligible speed of sound. This case is particularly motivated for w Q /Ω m . This gives a distinctive modification of the total mass function at low redshift
Modelling the self-organization and collapse of complex networks
Indian Academy of Sciences (India)
Modelling the self-organization and collapse of complex networks. Sanjay Jain Department of Physics and Astrophysics, University of Delhi Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore Santa Fe Institute, Santa Fe, New Mexico.
Science objectives and first results from the SMART-1/AMIE multicolour micro-camera
Josset, J.-L.; Beauvivre, S.; Cerroni, P.; de Sanctis, M. C.; Pinet, P.; Chevrel, S.; Langevin, Y.; Barucci, M. A.; Plancke, P.; Koschny, D.; Almeida, M.; Sodnik, Z.; Mancuso, S.; Hofmann, B. A.; Muinonen, K.; Shevchenko, V.; Shkuratov, Yu.; Ehrenfreund, P.; Foing, B. H.
The Advanced Moon micro-Imager Experiment (AMIE), on-board SMART-1, the first European mission to the Moon, is an imaging system with scientific, technical and public outreach objectives. The science objectives are to image the lunar South Pole, permanent shadow areas (ice deposit), eternal light (crater rims), ancient lunar non-mare volcanism, local spectrophotometry and physical state of the lunar surface, and to map high latitudes regions (south) mainly at far side (South Pole Aitken basin). The technical objectives are to perform a Laserlink experiment (detection of laser beam emitted by ESA/Tenerife ground station), flight demonstration of new technologies and on-board autonomy navigation. The public outreach and educational objectives are to promote planetary exploration and space. We present here the first results obtained during the cruise phase.
Dynamic Deformation and Collapse of Granular Columns
Uenishi, K.; Tsuji, K.; Doi, S.
2009-12-01
Large dynamic deformation of granular materials may be found in nature not only in the failure of slopes and cliffs — due to earthquakes, rock avalanches, debris flows and landslides — but also in earthquake faulting itself. Granular surface flows often consist of solid grains and intergranular fluid, but the effect of the fluid may be usually negligible because the volumetric concentration of grains is in many cases high enough for interparticle forces to dominate momentum transport. Therefore, the investigation of dry granular flow of a mass might assist in further understanding of the above mentioned geophysical events. Here, utilizing a high-speed digital video camera system, we perform a simple yet fully-controlled series of laboratory experiments related to the collapse of granular columns. We record, at an interval of some microseconds, the dynamic transient granular mass flow initiated by abrupt release of a tube that contains dry granular materials. The acrylic tube is partially filled with glass beads and has a cross-section of either a fully- or semi-cylindrical shape. Upon sudden removal of the tube, the granular solid may fragment under the action of its own weight and the particles spread on a rigid horizontal plane. This study is essentially the extension of the previous ones by Lajeunesse et al. (Phys. Fluids 2004) and Uenishi and Tsuji (JPGU 2008), but the striped layers of particles in a semi-cylindrical tube, newly introduced in this contribution, allow us to observe the precise particle movement inside the granular column: The development of slip lines inside the column and the movement of particles against each other can be clearly identified. The major controlling parameters of the spreading dynamics are the initial aspect ratio of the granular (semi-)cylindrical column, the frictional properties of the horizontal plane (substrate) and the size of beads. We show the influence of each parameter on the average flow velocity and final radius
Ocean wave generation by collapsing ice shelves
Macayeal, D. R.; Bassis, J. N.; Okal, E. A.; Aster, R. C.; Cathles, L. M.
2008-12-01
The 28-29 February, 2008, break-up of the Wilkins Ice Shelf, Antarctica, exemplifies the now-familiar, yet largely unexplained pattern of explosive ice-shelf break-up. While environmental warming is a likely ultimate cause of explosive break-up, several key aspects of their short-term behavior need to be explained: (1) The abrupt, near-simultaneous onset of iceberg calving across long spans of the ice front margin; (2) High outward drift velocity (about 0.3 m/s) of a leading phalanx of tabular icebergs that originate from the seaward edge of the intact ice shelf prior to break-up; (3) Rapid coverage of the ocean surface in the wake of this leading phalanx by small, capsized and dismembered tabular icebergs; (4) Extremely large gravitational potential energy release rates, e.g., up to 3 × 1010 W; (5) Lack of proximal iceberg-calving triggers that control the timing of break-up onset and that maintain the high break-up calving rates through to the conclusion of the event. Motivated by seismic records obtained from icebergs and the Ross Ice Shelf that show hundreds of micro- tsunamis emanating from near the ice shelf front, we re-examine the basic dynamic features of ice- shelf/ocean-wave interaction and, in particular, examine the possibility that collapsing ice shelves themselves are a source of waves that stimulate the disintegration process. We propose that ice-shelf generated surface-gravity waves associated with initial calving at an arbitrary seed location produce stress perturbations capable of triggering the onset of calving on the entire ice front. Waves generated by parting detachment rifts, iceberg capsize and break-up act next to stimulate an inverted submarine landslide (ice- slide) process, where gravitational potential energy released by upward movement of buoyant ice is radiated as surface gravity waves in the wake of the advancing phalanx of tabular icebergs. We conclude by describing how field research and remote sensing can be used to test the
Growing quasi-modes in dynamics of supersonic collapse
International Nuclear Information System (INIS)
Malkin, V.M.; Khudik, V.N.
1989-01-01
The hypothesis of globally stable self-similar regimes existence for supersonic Langmuir collapse plays a significant role in the attempts to construct a theory of strong Langmuir turbulence. A possibility for destruction of the stable against infinitely small perturbations self-similar regime of supersonic collapse by growing quasi-modes is demonstrated via the numerical solution of Cauchi problem for Zakharov equations. The quantitative criterion for the destruction of self-similar regimes is formulated. 9 refs.; 5 figs
De Novo Collapsing Glomerulopathy in a Renal Allograft Recipient
Directory of Open Access Journals (Sweden)
Kanodia K
2008-01-01
Full Text Available Collapsing glomerulopathy (CG, characterized histologically by segmental/global glomerular capillary collapse, podocyte hypertrophy and hypercellularity and tubulo-interstitial injury; is characterized clinically by massive proteinuria and rapid progressive renal failure. CG is known to recur in renal allograft and rarely de novo. We report de novo CG 3 years post-transplant in a patient who received renal allograft from haplo-identical type donor.
Wave function collapse implies divergence of average displacement
Marchewka, A.; Schuss, Z.
2005-01-01
We show that propagating a truncated discontinuous wave function by Schr\\"odinger's equation, as asserted by the collapse axiom, gives rise to non-existence of the average displacement of the particle on the line. It also implies that there is no Zeno effect. On the other hand, if the truncation is done so that the reduced wave function is continuous, the average coordinate is finite and there is a Zeno effect. Therefore the collapse axiom of measurement needs to be revised.
Naked singularities in self-similar spherical gravitational collapse
International Nuclear Information System (INIS)
Ori, A.; Piran, T.
1987-01-01
We present general-relativistic solutions of self-similar spherical collapse of an adiabatic perfect fluid. We show that if the equation of state is soft enough (Γ-1<<1), a naked singularity forms. The singularity resembles the shell-focusing naked singularities that arise in dust collapse. This solution increases significantly the range of matter fields that should be ruled out in order that the cosmic-censorship hypothesis will hold
Axisymmetric accretion flows very near black holes and Rosen-collapsed objects
International Nuclear Information System (INIS)
Stoeger, W.R.
1979-01-01
Motivated by the need for stronger observational leverage on the black hole hypothesis and for a more detailed characterization of axisymmetric accretion flows across the marginally stable circular orbit rsub(ms), a general approach for describing the non-Keplerian accretion in the region rsub(H) 0 , where rsub(H) = radius of the event horizon and r 0 > = rsub(ms) is developed. The procedure possesses many advantages, including easily imposed consistency with the Keplerian for r > rsub(o), the avoidance of ad hoc boundary conditions at rsub(ms) and/or at rsub(H) and its application also to accretion in Rosen's bimetric theory, whose spherically symmetric solution has the same qualitative orbital topography as that of general relativity. It becomes apparent, furthermore, that the particular viscosity law chosen in this procedure will have a crucial bearing on the flow in the region rsub(ms) 0 . (author)
Field Experiment on Soaking Characteristics of Collapsible Loess
Directory of Open Access Journals (Sweden)
Zhichao Wang
2017-01-01
Full Text Available In collapsible loess area, migration of soil moisture often causes the temporal discontinuity and spatial nonuniformity of collapsibility, which leads to great damage for infrastructures. Therefore, the research on water infiltration is the key to solving the problem of collapsibility. The aim of this paper is to investigate the spatiotemporal evolution of infiltration characteristics of collapsible loess. A field soaking experiment was conducted on collapsible loess in western China, in which a soaking pool with diameter of 15 m was built. Time-Domain-Reflectometry (TDR system and soil sampling were employed to measure the water content within the depth of 12 m. Then the saturation isograms were drawn for visualization of the process of infiltration. Also, a pilot tunnel was excavated to investigate how the free face can affect the infiltration behaviors. The experimental results revealed the characteristics of infiltration in both horizontal and vertical directions. Moreover, the response of free face on infiltration behaviors was also found. These findings of research could provide the data for the infiltration laws of unsaturated loess and thereby provide the basis for integrated treatment of collapsible loess.
Correlated random walks induced by dynamical wavefunction collapse
Bedingham, Daniel
2015-03-01
Wavefunction collapse models modify Schrödinger's equation so that it describes the collapse of a superposition of macroscopically distinguishable states as a genuine physical process [PRA 42, 78 (1990)]. This provides a basis for the resolution of the quantum measurement problem. An additional generic consequence of the collapse mechanism is that it causes particles to exhibit a tiny random diffusive motion. Furthermore, the diffusions of two sufficiently nearby particles are positively correlated -- it is more likely that the particles diffuse in the same direction than would happen if they behaved independently [PRA 89, 032713 (2014)]. The use of this effect is proposed as an experimental test of wave function collapse models in which pairs of nanoparticles are simultaneously released from nearby traps and allowed a brief period of free fall. The random displacements of the particles are then measured. The experiment must be carried out at sufficiently low temperature and pressure for the collapse effects to dominate over the ambient environmental noise. It is argued that these constraints can be satisfied by current technologies for a large class of viable wavefunction collapse models. Work supported by the Templeton World Charity Foundation.
Gravitational radiation from stellar collapse: The initial burst
International Nuclear Information System (INIS)
Shapiro, S.L.
1977-01-01
The burst of gravitational radiation emitted during the initial collapse and rebound of a homogeneous, uniformly rotating spheroid with internal pressure is analyzed numerically. The surface of the collapsing spheroid is assumed to start at rest from infinity with negligible eccentricity (''zero-energy collapse''). The adopted internal pressure function is constant on self-similar spheroidal surfaces, and its central value is described by a polytropic law with index n< or =3. The Newtonian equations of motion are integrated numerically to follow the initial collapse and rebound of the configuration for the special case in which the collapse is time-reversal invariant about the moment of maximum compression, and the total energy and frequency spectrum of the emitted quadrupole radiation are computed. The results are employed to estimate the (approx.minimum) total energy and frequency distribution of the initial burst of gravitational radiation emitted during the formation of low-mass (Mapproximately-less-thanM/sub sun/) neutron stars and during the collapse of supermassive gas clouds
Vapour and air bubble collapse analysis in viscous compressible water
Directory of Open Access Journals (Sweden)
Gil Bazanini
2001-01-01
Full Text Available Numerical simulations of the collapse of bubbles (or cavities are shown, using the finite difference method, taking into account the compressibility of the liquid, expected to occur in the final stages of the collapse process. Results are compared with experimental and theoretical data for incompressible liquids, to see the influence of the compressibility of the water in the bubble collapse. Pressure fields values are calculated in an area of 800 x 800 mm, for the case of one bubble under the hypothesis of spherical symmetry. Results are shown as radius versus time curves for the collapse (to compare collapse times, and pressure curves in the plane, for pressure fields. Such calculations are new because of their general point of view, since the existing works do not take into account the existence of vapour in the bubble, neither show the pressure fields seen here. It is also expected to see the influence of the compressibility of the water in the collapse time, and in the pressure field, when comparing pressure values.
Inertial collapse of bubble pairs near a solid surface
Alahyari Beig, Shahaboddin; Johnsen, Eric
2017-11-01
Cavitation occurs in a variety of applications ranging from naval structures to biomedical ultrasound. One important consequence is structural damage to neighboring surfaces following repeated inertial collapse of vapor bubbles. Although the mechanical loading produced by the collapse of a single bubble has been widely investigated, less is known about the detailed dynamics of the collapse of multiple bubbles. In such a problem, the bubble-bubble interactions typically affect the dynamics, e.g., by increasing the non-sphericity of the bubbles and amplifying/hindering the collapse intensity depending on the flow parameters. Here, we quantify the effects of bubble-bubble interactions on the bubble dynamics, as well as the pressures/temperatures produced by the collapse of a pair of gas bubbles near a rigid surface. We perform high-resolution simulations of this problem by solving the three-dimensional compressible Navier-Stokes equations for gas/liquid flows. The results are used to investigate the non-spherical bubble dynamics and characterize the pressure and temperature fields based on the relevant parameters entering the problem: stand-off distance, geometrical configuration (angle, relative size, distance), collapse strength. This research was supported in part by ONR Grant N00014-12-1-0751 and NSF Grant CBET 1253157.
Interfacial dynamics of dissolving objects in fluid flow
Rycroft, Chris; Bazant, Martin
2013-11-01
An advection-diffusion-limited dissolution model of an object being eroded by a two-dimensional potential flow will be presented. By taking advantage of conformal invariance of the model, a numerical method will be introduced that tracks the evolution of the object boundary in terms of a time-dependent Laurent series. Simulations of several dissolving objects will be shown, all of which show collapse to a single point in finite time. The simulations reveal a surprising connection between the position of the collapse point and the initial Laurent coefficients, which was subsequently derived analytically using residue calculus.
Dvorkin, Eduardo N
2013-01-01
This book presents a detailed discussion of the models that were developed to simulate the collapse and post-collapse behavior of steel pipes. The finite element method offers to engineers the possibility of developing models to simulate the collapse behavior of casings inside oil wells and the collapse behavior of deepwater pipelines. However, if technological decisions are going to be reached from these model results, with implications for the economic success of industrial operations, for the occupational safety and health and for the environment, the engineering models need to be highly reliable. Using these models engineers can quantify the effect of manufacturing tolerances, wear, corrosion, etc. This book describes in great details the experimental programs that are developed to validate the numerical results.
DEFF Research Database (Denmark)
Andersen, Bjørn Schiermer
2009-01-01
-- an outline which at the same time indicates the need for transformations of the Durkheimian model on decisive points. Thus, thirdly, it returns to Durkheim and undertakes to develop his concepts in a direction suitable for a sociological theory of fashion. Finally, it discusses the theoretical implications......This article attempts to create a framework for understanding modern fashion phenomena on the basis of Durkheim's sociology of religion. It focuses on Durkheim's conception of the relation between the cult and the sacred object, on his notion of 'exteriorisation', and on his theory of the social...... symbol in an attempt to describe the peculiar attraction of the fashion object and its social constitution. However, Durkheim's notions of cult and ritual must undergo profound changes if they are to be used in an analysis of fashion. The article tries to expand the Durkheimian cult, radically enlarging...
International Nuclear Information System (INIS)
Cousin, Y.; Fabian, H.U.
1996-01-01
The policy of French and german utilities is to make use of nuclear energy as a long term, competitive and environmentally friendly power supply. The world electricity generation is due to double within the next 30 years. In the next 20 to 30 years the necessity of nuclear energy will be broadly recognized. More than for most industries, to deal properly with nuclear energy requires the combination of a consistent political will, of a proper institutional framework, of strong and legitimate control authorities, of a sophisticated industry and of operators with skilled management and human resources. One of the major risk facing nuclear energy is the loss of competitiveness. This can be achieved only through the combination of an optimized design, a consistent standardization, a proper industrial partnership and a stable long term strategy. Although the existing plants in Western Europe are already very safe, the policy is clearly to enhance the safety of the next generation of nuclear plants which are designing today. The French and German utilities have chosen an evolutionary approach based on experience and proven technologies, with an enhanced defense in depth and an objective of easier operation and maintenance. The cost objective is to maintain and improve what has been achieved in the best existing power plants in both countries. This calls for rational choices and optimized design to meet the safety objectives, a strong standardization policy, short construction times, high availability and enough flexibility to enable optimization of the fuel cycle throughout the lifetime of the plants. The conceptual design phase has proven that the French and German teams from industry and from the utilities are able to pursue both the safety and the cost objectives, basing their decision on a rational approach which could be accepted by the safety authorities. (J.S.)
The formation of stars by gravitational collapse rather than competitive accretion
Krumholz, Mark R.; McKee, Christopher F.; Klein, Richard I.
2005-11-01
There are two dominant models of how stars form. Under gravitational collapse, star-forming molecular clumps, of typically hundreds to thousands of solar masses (Msolar), fragment into gaseous cores that subsequently collapse to make individual stars or small multiple systems. In contrast, competitive accretion theory suggests that at birth all stars are much smaller than the typical stellar mass (~0.5Msolar), and that final stellar masses are determined by the subsequent accretion of unbound gas from the clump. Competitive accretion models interpret brown dwarfs and free-floating planets as protostars ejected from star-forming clumps before they have accreted much mass; key predictions of this model are that such objects should lack disks, have high velocity dispersions, form more frequently in denser clumps, and that the mean stellar mass should vary within the Galaxy. Here we derive the rate of competitive accretion as a function of the star-forming environment, based partly on simulation, and determine in what types of environments competitive accretion can occur. We show that no observed star-forming region can undergo significant competitive accretion, and that the simulations that show competitive accretion do so because the assumed properties differ from those determined by observation. Our result shows that stars form by gravitational collapse, and explains why observations have failed to confirm predictions of the competitive accretion model.
Endograft Collapse After Endovascular Treatment for Thoracic Aortic Disease
International Nuclear Information System (INIS)
Bandorski, Dirk; Brueck, Martin; Guenther, Hans-Ulrich; Manke, Christoph
2010-01-01
Endovascular treatment is an established therapy for thoracic aortic disease. Collapse of the endograft is a potentially fatal complication. We reviewed 16 patients with a thoracic endograft between 2001 and 2006. Medical records of the treated patients were studied. Data collected include age, gender, diagnosis, indication for endoluminal treatment, type of endograft, and time of follow up. All patients (n = 16; mean age, 61 years; range, 21-82 years) underwent computed tomography (CT) for location of the lesion and planning of the intervention. Time of follow-up with CT scan ranged from 1 to 61 months. Indications for endovascular treatment were degenerative aneurysm (n = 7; 44%), aortic dissection (n = 2; 12%), perforated aortic ulcer (n = 4; 25%), and traumatic aortic injury (n = 3; 19%). Three patients suffered from a collapse of the endograft (one patient distal, two patients proximal) between 3 and 8 days after endovascular treatment. These patients were younger (mean age, 37 ± 25 years vs. 67 ± 16 years; P 0.05]; distal, 45 ± 23.5% vs. 38 ± 21.7% [P > 0.05]). Proximal collapse was corrected by placing a bare stent. In conclusion, risk factors for stent-graft collapse are a small lumen of the aorta and a small radius of the aortic arch curvature (young patients), as well as oversizing, which is an important risk factor and is described for different types of endografts and protheses (Gore TAG and Cook Zenith). Dilatation of the collapsed stent-graft is not sufficient. Following therapy implantation of a second stent or surgery is necessary in patients with a proximal endograft collapse. Distal endograft collapse can possibly be treated conservatively under close follow-up.
Steroid-associated hip joint collapse in bipedal emus.
Directory of Open Access Journals (Sweden)
Li-Zhen Zheng
Full Text Available In this study we established a bipedal animal model of steroid-associated hip joint collapse in emus for testing potential treatment protocols to be developed for prevention of steroid-associated joint collapse in preclinical settings. Five adult male emus were treated with a steroid-associated osteonecrosis (SAON induction protocol using combination of pulsed lipopolysaccharide (LPS and methylprednisolone (MPS. Additional three emus were used as normal control. Post-induction, emu gait was observed, magnetic resonance imaging (MRI was performed, and blood was collected for routine examination, including testing blood coagulation and lipid metabolism. Emus were sacrificed at week 24 post-induction, bilateral femora were collected for micro-computed tomography (micro-CT and histological analysis. Asymmetric limping gait and abnormal MRI signals were found in steroid-treated emus. SAON was found in all emus with a joint collapse incidence of 70%. The percentage of neutrophils (Neut % and parameters on lipid metabolism significantly increased after induction. Micro-CT revealed structure deterioration of subchondral trabecular bone. Histomorphometry showed larger fat cell fraction and size, thinning of subchondral plate and cartilage layer, smaller osteoblast perimeter percentage and less blood vessels distributed at collapsed region in SAON group as compared with the normal controls. Scanning electron microscope (SEM showed poor mineral matrix and more osteo-lacunae outline in the collapsed region in SAON group. The combination of pulsed LPS and MPS developed in the current study was safe and effective to induce SAON and deterioration of subchondral bone in bipedal emus with subsequent femoral head collapse, a typical clinical feature observed in patients under pulsed steroid treatment. In conclusion, bipedal emus could be used as an effective preclinical experimental model to evaluate potential treatment protocols to be developed for prevention of
Shock-induced nanobubble collapse and its applications
Vedadi, Mohammad Hossein
The shock-induced collapse of nanobubbles in water is investigated using molecular dynamics simulations based on a reactive force field. Monitoring the collapse of a cavitation nanobubble, we observe a focused nanojet at the onset of bubble shrinkage and a water hammer shock wave upon bubble collapse. The nanojet length scales linearly with the nanobubble radius, as observed in experiments on micron-to-millimeter size bubbles. The shock induces dramatic structural changes, including an ice-VII-like structural motif at a particle velocity of approximately 1 km/s. The incipient ice VII formation and the calculated Hugoniot curve are in good agreement with experimental results. Moreover, a substantial number of positive and negative ions appear when the nanojet hits the distal side of the nanobubble and the water hammer shock forms. Furthermore, two promising applications of shock-induced nanobubble collapse have been explored. Our simulations of poration in lipid bilayers due to shock-induced collapse of nanobubbles reveal penetration of nanojets into lipid bilayers. The nanojet impact generates shear flow of water on bilayer leaflets and pressure gradients across them, which transiently enhance the bilayer permeability by creating nanopores through which water molecules translocate across the bilayer. The effects of nanobubble size and temperature on the porosity of lipid bilayers are examined. Finally, the shock-induced collapse of CO2-filled nanobubbles in water is investigated. The energetic nanojet and high-pressure water hammer shock formed during and after collapse of the nanobubble trigger mechano-chemical H2O-CO2 reactions, some of which lead to splitting of water molecules. The dominant pathways through which splitting of water molecules occur are identified.
Constraining quantum collapse inflationary models with CMB data
Energy Technology Data Exchange (ETDEWEB)
Benetti, Micol; Alcaniz, Jailson S. [Departamento de Astronomia, Observatório Nacional, 20921-400, Rio de Janeiro, RJ (Brazil); Landau, Susana J., E-mail: micolbenetti@on.br, E-mail: slandau@df.uba.ar, E-mail: alcaniz@on.br [Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and IFIBA, CONICET, Ciudad Universitaria, PabI, Buenos Aires 1428 (Argentina)
2016-12-01
The hypothesis of the self-induced collapse of the inflaton wave function was proposed as responsible for the emergence of inhomogeneity and anisotropy at all scales. This proposal was studied within an almost de Sitter space-time approximation for the background, which led to a perfect scale-invariant power spectrum, and also for a quasi-de Sitter background, which allows to distinguish departures from the standard approach due to the inclusion of the collapse hypothesis. In this work we perform a Bayesian model comparison for two different choices of the self-induced collapse in a full quasi-de Sitter expansion scenario. In particular, we analyze the possibility of detecting the imprint of these collapse schemes at low multipoles of the anisotropy temperature power spectrum of the Cosmic Microwave Background (CMB) using the most recent data provided by the Planck Collaboration. Our results show that one of the two collapse schemes analyzed provides the same Bayesian evidence of the minimal standard cosmological model ΛCDM, while the other scenario is weakly disfavoured with respect to the standard cosmology.
Can static regular black holes form from gravitational collapse?
International Nuclear Information System (INIS)
Zhang, Yiyang; Zhu, Yiwei; Modesto, Leonardo; Bambi, Cosimo
2015-01-01
Starting from the Oppenheimer-Snyder model, we know how in classical general relativity the gravitational collapse of matter forms a black hole with a central spacetime singularity. It is widely believed that the singularity must be removed by quantum-gravity effects. Some static quantum-inspired singularity-free black hole solutions have been proposed in the literature, but when one considers simple examples of gravitational collapse the classical singularity is replaced by a bounce, after which the collapsing matter expands for ever. We may expect three possible explanations: (i) the static regular black hole solutions are not physical, in the sense that they cannot be realized in Nature, (ii) the final product of the collapse is not unique, but it depends on the initial conditions, or (iii) boundary effects play an important role and our simple models miss important physics. In the latter case, after proper adjustment, the bouncing solution would approach the static one. We argue that the ''correct answer'' may be related to the appearance of a ghost state in de Sitter spacetimes with super Planckian mass. Our black holes have indeed a de Sitter core and the ghost would make these configurations unstable. Therefore we believe that these black hole static solutions represent the transient phase of a gravitational collapse but never survive as asymptotic states. (orig.)
Core-Collapse Supernovae, Neutrinos, and Gravitational Waves
Energy Technology Data Exchange (ETDEWEB)
Ott, C.D. [TAPIR, California Institute of Technology, Pasadena, California (United States); Kavli Institute for the Physics and Mathematics of the Universe, Kashiwa, Chiba (Japan); O' Connor, E.P. [Canadian Institute for Theoretical Astrophysics, Toronto, Ontario (Canada); Gossan, S.; Abdikamalov, E.; Gamma, U.C.T. [TAPIR, California Institute of Technology, Pasadena, California (United States); Drasco, S. [Grinnell College, Grinnell, Iowa (United States); TAPIR, California Institute of Technology, Pasadena, California (United States)
2013-02-15
Core-collapse supernovae are among the most energetic cosmic cataclysms. They are prodigious emitters of neutrinos and quite likely strong galactic sources of gravitational waves. Observation of both neutrinos and gravitational waves from the next galactic or near extragalactic core-collapse supernova will yield a wealth of information on the explosion mechanism, but also on the structure and angular momentum of the progenitor star, and on aspects of fundamental physics such as the equation of state of nuclear matter at high densities and low entropies. In this contribution to the proceedings of the Neutrino 2012 conference, we summarize recent progress made in the theoretical understanding and modeling of core-collapse supernovae. In this, our emphasis is on multi-dimensional processes involved in the explosion mechanism such as neutrino-driven convection and the standing accretion shock instability. As an example of how supernova neutrinos can be used to probe fundamental physics, we discuss how the rise time of the electron antineutrino flux observed in detectors can be used to probe the neutrino mass hierarchy. Finally, we lay out aspects of the neutrino and gravitational-wave signature of core-collapse supernovae and discuss the power of combined analysis of neutrino and gravitational wave data from the next galactic core-collapse supernova.
Self-Gravitating Stellar Collapse: Explicit Geodesics and Path Integration
International Nuclear Information System (INIS)
Balakrishna, Jayashree; Bondarescu, Ruxandra; Moran, Christine C.
2016-01-01
We extend the work of Oppenheimer and Synder to model the gravitational collapse of a star to a black hole by including quantum mechanical effects. We first derive closed-form solutions for classical paths followed by a particle on the surface of the collapsing star in Schwarzschild and Kruskal coordinates for space-like, time-like, and light-like geodesics. We next present an application of these paths to model the collapse of ultra-light dark matter particles, which necessitates incorporating quantum effects. To do so we treat a particle on the surface of the star as a wavepacket and integrate over all possible paths taken by the particle. The waveform is computed in Schwarzschild coordinates and found to exhibit an ingoing and an outgoing component, where the former contains the probability of collapse, while the latter contains the probability that the star will disperse. These calculations pave the way for investigating the possibility of quantum collapse that does not lead to black hole formation as well as for exploring the nature of the wavefunction inside r = 2M.
Core-Collapse Supernovae, Neutrinos, and Gravitational Waves
International Nuclear Information System (INIS)
Ott, C.D.; O'Connor, E.P.; Gossan, S.; Abdikamalov, E.; Gamma, U.C.T.; Drasco, S.
2013-01-01
Core-collapse supernovae are among the most energetic cosmic cataclysms. They are prodigious emitters of neutrinos and quite likely strong galactic sources of gravitational waves. Observation of both neutrinos and gravitational waves from the next galactic or near extragalactic core-collapse supernova will yield a wealth of information on the explosion mechanism, but also on the structure and angular momentum of the progenitor star, and on aspects of fundamental physics such as the equation of state of nuclear matter at high densities and low entropies. In this contribution to the proceedings of the Neutrino 2012 conference, we summarize recent progress made in the theoretical understanding and modeling of core-collapse supernovae. In this, our emphasis is on multi-dimensional processes involved in the explosion mechanism such as neutrino-driven convection and the standing accretion shock instability. As an example of how supernova neutrinos can be used to probe fundamental physics, we discuss how the rise time of the electron antineutrino flux observed in detectors can be used to probe the neutrino mass hierarchy. Finally, we lay out aspects of the neutrino and gravitational-wave signature of core-collapse supernovae and discuss the power of combined analysis of neutrino and gravitational wave data from the next galactic core-collapse supernova
Self-Gravitating Stellar Collapse: Explicit Geodesics and Path Integration
Energy Technology Data Exchange (ETDEWEB)
Balakrishna, Jayashree [Department of Mathematics and Natural Sciences, College of Arts and Sciences, Harris-Stowe State University, St. Louis, MO (United States); Bondarescu, Ruxandra [Department of Physics, University of Zurich, Zurich (Switzerland); Moran, Christine C., E-mail: corbett@tapir.caltech.edu [TAPIR, Department of Theoretical Astrophysics, California Institute of Technology, Pasadena, CA (United States)
2016-11-25
We extend the work of Oppenheimer and Synder to model the gravitational collapse of a star to a black hole by including quantum mechanical effects. We first derive closed-form solutions for classical paths followed by a particle on the surface of the collapsing star in Schwarzschild and Kruskal coordinates for space-like, time-like, and light-like geodesics. We next present an application of these paths to model the collapse of ultra-light dark matter particles, which necessitates incorporating quantum effects. To do so we treat a particle on the surface of the star as a wavepacket and integrate over all possible paths taken by the particle. The waveform is computed in Schwarzschild coordinates and found to exhibit an ingoing and an outgoing component, where the former contains the probability of collapse, while the latter contains the probability that the star will disperse. These calculations pave the way for investigating the possibility of quantum collapse that does not lead to black hole formation as well as for exploring the nature of the wavefunction inside r = 2M.
A novel animal model for hyperdynamic airway collapse.
Tsukada, Hisashi; O'Donnell, Carl R; Garland, Robert; Herth, Felix; Decamp, Malcolm; Ernst, Armin
2010-12-01
Tracheobronchomalacia (TBM) is increasingly recognized as a condition associated with significant pulmonary morbidity. However, treatment is invasive and complex, and because there is no appropriate animal model, novel diagnostic and treatment strategies are difficult to evaluate. We endeavored to develop a reliable airway model to simulate hyperdynamic airway collapse in humans. Seven 20-kg male sheep were enrolled in this study. Tracheomalacia was created by submucosal resection of > 50% of the circumference of 10 consecutive cervical tracheal cartilage rings through a midline cervical incision. A silicone stent was placed in the trachea to prevent airway collapse during recovery. Tracheal collapsibility was assessed at protocol-specific time points by bronchoscopy and multidetector CT imaging while temporarily removing the stent. Esophageal pressure and flow data were collected to assess flow limitation during spontaneous breathing. All animals tolerated the surgical procedure well and were stented without complications. One sheep died at 2 weeks because of respiratory failure related to stent migration. In all sheep, near-total forced inspiratory airway collapse was observed up to 3 months postprocedure. Esophageal manometry demonstrated flow limitation associated with large negative pleural pressure swings during rapid spontaneous inhalation. Hyperdynamic airway collapse can reliably be induced with this technique. It may serve as a model for evaluation of novel diagnostic and therapeutic strategies for TBM.
3-D collapse of rotating stars to Kerr black holes
International Nuclear Information System (INIS)
Baiotti, L; Hawke, I; Montero, P J; Loeffler, F L; Rezzolla, L; Stergioulas, N; Font, J A; Seidel, E
2005-01-01
We study gravitational collapse of uniformly rotating neutron stars to Kerr black holes, using a new three-dimensional, fully general relativistic hydrodynamics code, which uses high-resolution shock-capturing techniques and a conformal traceless formulation of the Einstein equations. We investigate the gravitational collapse by carefully studying not only the dynamics of the matter, but also that of the trapped surfaces, i.e. of both the apparent and event horizons formed during the collapse. The use of these surfaces, together with the dynamical horizon framework, allows for a precise measurement of the black-hole mass and spin. The ability to successfully perform these simulations for sufficiently long times relies on excising a region of the computational domain which includes the singularity and is within the apparent horizon. The dynamics of the collapsing matter is strongly influenced by the initial amount of angular momentum in the progenitor star and, for initial models with sufficiently high angular velocities, the collapse can lead to the formation of an unstable disc in differential rotation
Dark sector impact on gravitational collapse of an electrically charged scalar field
Energy Technology Data Exchange (ETDEWEB)
Nakonieczna, Anna [Institute of Physics, Maria Curie-Skłodowska University,Plac Marii Curie-Skłodowskiej 1, 20-031 Lublin (Poland); Institute of Agrophysics, Polish Academy of Sciences,Doświadczalna 4, 20-290 Lublin (Poland); Rogatko, Marek [Institute of Physics, Maria Curie-Skłodowska University,Plac Marii Curie-Skłodowskiej 1, 20-031 Lublin (Poland); Nakonieczny, Łukasz [Institute of Theoretical Physics, Faculty of Physics, University of Warsaw,Pasteura 5, 02-093 Warszawa (Poland)
2015-11-04
Dark matter and dark energy are dominating components of the Universe. Their presence affects the course and results of processes, which are driven by the gravitational interaction. The objective of the paper was to examine the influence of the dark sector on the gravitational collapse of an electrically charged scalar field. A phantom scalar field was used as a model of dark energy in the system. Dark matter was modeled by a complex scalar field with a quartic potential, charged under a U(1)-gauge field. The dark components were coupled to the electrically charged scalar field via the exponential coupling and the gauge field-Maxwell field kinetic mixing, respectively. Complete non-linear simulations of the investigated process were performed. They were conducted from regular initial data to the end state, which was the matter dispersal or a singularity formation in a spacetime. During the collapse in the presence of dark energy dynamical wormholes and naked singularities were formed in emerging spacetimes. The wormhole throats were stabilized by the violation of the null energy condition, which occurred due to a significant increase of a value of the phantom scalar field function in its vicinity. The square of mass parameter of the dark matter scalar field potential controlled the formation of a Cauchy horizon or wormhole throats in the spacetime. The joint impact of dark energy and dark matter on the examined process indicated that the former decides what type of an object forms, while the latter controls the amount of time needed for the object to form. Additionally, the dark sector suppresses the natural tendency of an electrically charged scalar field to form a dynamical Reissner-Nordström spacetime during the gravitational collapse.
Indicators of collapse in systems undergoing unsustainable growth.
Ridolfi, Luca; D'Odorico, Paolo; Laio, Francesco
2015-02-01
Unsustainable growth is typical of systems that rely on a finite pool of non-renewable resources that are tapped until they are depleted. The decrease in resource availability eventually leads these systems to a decline. Here we investigate the dynamics of systems that exhibit unsustainable growth and are prone to a collapse to an alternative ("degraded") state. For these systems the possible imminent occurrence of a collapse is difficult to avert because they keep growing as they approach the transition point. It is therefore important to identify some early warning signs that can be used to predict whether the system is approaching a critical and likely irreversible transition to an undesired and degraded state. This study evaluates whether existing theories of precursors of phase transitions based on the critical slowing down phenomenon are applicable as leading indicators of state shift in unsustainable growth dynamics. It is found that such indicators fail to serve as reliable early warning signs of the system's collapse.
Flow-induced plastic collapse of stacked fuel plates
Energy Technology Data Exchange (ETDEWEB)
Davis, D C; Scarton, H A
1985-03-01
Flow-induced plastic collapse of stacked fuel plate assemblies was first noted in experimental reactors such as the ORNL High Flux Reactor Assembly and the Engineering Test Reactor (ETR). The ETR assembly is a stack of 19 thin flat rectangular fuel plates separated by narrow channels through which a coolant flows to remove the heat generated by fission of the fuel within the plates. The uranium alloyed plates have been noted to buckle laterally and plastically collapse at the system design coolant flow rate of 10.7 m/s, thus restricting the coolant flow through adjacent channels. A methodology and criterion are developed for predicting the plastic collapse of ETR fuel plates. The criterion is compared to some experimental results and the Miller critical velocity theory.
Production Potential Of Nchanga Underground Mines Collapsed Blocks
Directory of Open Access Journals (Sweden)
Eugie Kabwe
2015-08-01
Full Text Available Abstract the main purpose of this study is to recommend modification to block caving at Nchanga ensure that it meets anticipated production levels and address the adverse ground conditions of the intensely fractured orebody. Excavations of current methods are driven close to the incompetent orebody. Determination of the appropriate method based on criteria of selection techniques together with the analysis of operating costs and safety. Reclamation of ore in the collapsed blocks entirely depended on maximizing revenue recovery of the mineral and safe working environment for equipment and personnel. On recommendation of a suitable method extent of the collapsed blocks was another aspect considered. The proposed methods of extraction were variants of block caving further shortlisted based on the extent of collapse. Economic appraisal of both the recommended and current mining methods employed included extraction recovery development reclamation costs revenue estimation and revenue raised from finished copper.
Gravitational collapse of a magnetized fermion gas with finite temperature
Energy Technology Data Exchange (ETDEWEB)
Delgado Gaspar, I. [Instituto de Geofisica y Astronomia (IGA), La Habana (Cuba); Perez Martinez, A. [Instituto de Cibernetica, Matematica y Fisica (ICIMAF), La Habana (Cuba); Sussman, Roberto A. [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico (ICN-UNAM), Mexico (Mexico); Ulacia Rey, A. [Instituto de Cibernetica, Matematica y Fisica (ICIMAF), La Habana (Cuba); Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico (ICN-UNAM), Mexico (Mexico)
2013-07-15
We examine the dynamics of a self-gravitating magnetized fermion gas at finite temperature near the collapsing singularity of a Bianchi-I spacetime. Considering a general set of appropriate and physically motivated initial conditions, we transform Einstein-Maxwell field equations into a complete and self-consistent dynamical system amenable for numerical work. The resulting numerical solutions reveal the gas collapsing into both, isotropic (''point-like'') and anisotropic (''cigar-like''), singularities, depending on the initial intensity of the magnetic field. We provide a thorough study of the near collapse behavior and interplay of all relevant state and kinematic variables: temperature, expansion scalar, shear scalar, magnetic field, magnetization, and energy density. A significant qualitative difference in the behavior of the gas emerges in the temperature range T/m{sub f} {proportional_to} 10{sup -6} and T/m{sub f} {proportional_to} 10{sup -3}. (orig.)
Localized microjetting in the collapse of surface macrocavities
Olney, K. L.; Chiu, P.-H.; Benson, D. J.; Higgins, A.; Serge, M.; Nesterenko, V. F.
2015-02-01
This paper focuses on the multiscale mechanism of collapse of hemicylindrical annular surface macrocavities in steel caused by high-strain, high-strain rate plastic flow of copper. Experiments and simulations revealed that a two-stage process is responsible for the observed microjetting phenomena: the formation of lateral copper microjets from the localized shear flow in copper at the interface during the filling of the cavity, and their subsequent collision at the apex of the macrocavity generating two additional horizontal microjets. The lengths of these microjets were an order of magnitude smaller than the cavity size but linearly scaled with the cavity radius. This process of microjet development is sensitive to the cavity geometry and is unlike the previously observed jetting phenomena in cavitation, impact crater collapse, or shock-induced cavity collapse.
Collapse of a cavitation bubble near a free surface
International Nuclear Information System (INIS)
Chahine, G.
1976-01-01
The interaction between a collapsing bubble and a free surface is investigated theoretically and experimentally using high speed photography. A limiting value for the distance from the free surface to the center of the bubble reported to its radius is found. Under this limit the free surface is not disturbed during the collapse, in the first approximation. Only in this case, the method of images can be used and the free surface be replaced by an image-source, symmetrical with respect to the free surface to the sink representing the bubble. Above this limit, observations show a singular perturbation in the free surface with the formation of a thin spike directed to the air. In all cases the bubble is repelled from the free surface and the re-entering jet, formed during collapse, is oriented away from it [fr
A Critique: Jared Diamond’s Collapse Put In Perspective
Directory of Open Access Journals (Sweden)
Emma Gause
2014-09-01
Full Text Available Jared Diamond’s book 'Collapse' captivated readers with its tales of past great civilizations succumbing to dramatic cycles of decline, and among them are the ancient Maya. Diamond’s model of the Maya collapse has become quite popular since its publication, however numerous other divergent theories exist as well, which attempt to explain the phenomenon. Diamond, buoyed by the success of his book and his renown as an author, is the assumed authority, despite academic criticism. By comparing Diamond’s 'Collapse' with current research I hope to critique Diamond and thus elucidate the condition of the Maya decline concerning the roles of the environment, the regional variability of various sociopolitical dynamics, such as those that were played out in the Petexbatun region, and the extent of Post Classic continuation of Maya tradition.
Shock waves from non-spherically collapsing cavitation bubbles
Supponen, Outi; Obreschkow, Danail; Farhat, Mohamed
2017-11-01
Combining simultaneous high-speed imaging and hydrophone measurements, we uncover details of the multiple shock wave emission from laser-induced cavitation bubbles collapsing in a non-spherical way. For strongly deformed bubbles collapsing near a free surface, we identify the distinct shock waves caused by the jet impact onto the opposite bubble wall and by the individual collapses of the remaining bubble segments. The energy carried by each of these shocks depends on the level of bubble deformation, quantified by the anisotropy parameter ζ, the dimensionless equivalent of the Kelvin impulse. For jetting bubbles, at ζ water hammer as ph = 0.45 (ρc2 Δp) 1 / 2ζ-1 .
Improved Noninterferometric Test of Collapse Models Using Ultracold Cantilevers
Vinante, A.; Mezzena, R.; Falferi, P.; Carlesso, M.; Bassi, A.
2017-09-01
Spontaneous collapse models predict that a weak force noise acts on any mechanical system, as a consequence of the collapse of the wave function. Significant upper limits on the collapse rate have been recently inferred from precision mechanical experiments, such as ultracold cantilevers and the space mission LISA Pathfinder. Here, we report new results from an experiment based on a high-Q cantilever cooled to millikelvin temperatures, which is potentially able to improve the current bounds on the continuous spontaneous localization (CSL) model by 1 order of magnitude. High accuracy measurements of the cantilever thermal fluctuations reveal a nonthermal force noise of unknown origin. This excess noise is compatible with the CSL heating predicted by Adler. Several physical mechanisms able to explain the observed noise have been ruled out.
Fate of accreting white dwarfs: Type I supernovae vs collapse
International Nuclear Information System (INIS)
Nomoto, Ken'ichi.
1986-01-01
The final fate of accreting C + O white dwarfs is either thermonuclear explosion or collapse, if the white dwarf mass grows to the Chandrasekhar mass. We discuss how the fate depends on the initial mass, age, composition of the white dwarf and the mass accretion rate. Relatively fast accretion leads to a carbon deflagration at low central density that gives rise to a Type Ia supernova. Slower accretion induces a helium detonation that could be observed as a Type Ib supernova. If the initial mass of the C + O white dwarf is larger than 1.2 Msub solar, a carbon deflagration starts at high central density and induces a collapse of the white dwarf to form a neutron star. We examine the critical condition for which a carbon deflagration leads to collapse, not explosion. For the case of explosion, we discuss to what extent the nucleosynthesis models are consistent with spectra of Type Ia and Ib supernovae. 61 refs., 18 figs
Energy Technology Data Exchange (ETDEWEB)
Michon, Laurent; Catry, Thibault; Merle, Olivier [Laboratoire GeoSciences Reunion, Universite de la Reunion, Institut de Physique du Globe de Paris, CNRS, UMR 7154 - Geologie des Systemes Volcaniques, 15 avenue Rene Cassin, 97715 Saint Denis (France); Villeneuve, Nicolas [Institut de Recherche pour le Developpement, US 140, BP172, 97492 Sainte-Clotilde cedex (France)], E-mail: laurent.michon@univ-reunion.fr
2008-10-01
In April 2007, Piton de la Fournaise volcano experienced a caldera collapse during its largest historical eruption. We present here the resulting deformation and a synthesis of the seismicity recorded during recent caldera collapses. It allows us to propose a unifying mechanism that explains the pulsating collapse dynamics.
Cortassa, Carina
2016-05-01
After several years of loud and clear rejection, the idea of a public cognitive deficit insistently reappears in the agenda of Science Communication and Public Understanding of Science studies. This essay addresses two different kinds of reason - practical and epistemic - converging at that point. In the first part, it will be argued that the hypothesis of the lack of knowledge among laypeople and its controversial relationships with their interests and attitudes towards science prevails because it is an intuitive and optimistic way to frame the gap between science and society and, therefore, to cope with its causes and consequences. In the second part, a deeper level of reasons will be examined, in order to show that the persistence of the idea has its roots in the objective epistemic asymmetry between scientists and the public, the scope of which is not always properly judged. To recognize this asymmetry as a previous condition for their interactions may help to surpass the byzantine debate: deficit yes or no and open up original questions for the field, summarized in the closing remarks. © The Author(s) 2016.
Gravitational Collapse of Massless Fields in an Expanding Universe
Directory of Open Access Journals (Sweden)
Yoo Chul-Moon
2018-01-01
Full Text Available Gravitational collapse of a massless scalar field with the periodic boundary condition in a cubic box is reported. This system can be regarded as a lattice universe model. The initial data is constructed for a Gaussian like profile of the scalar field taking the integrability condition associated with the periodic boundary condition into account. For a large initial amplitude, a black hole is formed after a certain period of time. While the scalar field spreads out in the whole region for a small initial amplitude. The difference of the late time expansion law of the lattice universe depending on the final fate of the gravitational collapse is discussed.
Collapse of triangular channels in a soft elastomer
Tepáyotl-Ramírez, Daniel; Lu, Tong; Park, Yong-Lae; Majidi, Carmel
2013-01-01
We extend classical solutions in contact mechanics to examine the collapse of channels in a soft elastomer. These channels have triangular cross-section and collapse when pressure is applied to the surrounding elastomer. Treating the walls of the channel as indenters that penetrate the channel base, we derive an algebraic mapping between pressure and cross-sectional area. These theoretical predictions are in strong agreement with results that we obtain through finite element analysis and experimental measurements. This is accomplished without data fitting and suggests that the theoretical approach may be generalized to a broad range of cross-sectional geometries in soft microfluidics.
Evaluating nuclear physics inputs in core-collapse supernova models
Lentz, E.; Hix, W. R.; Baird, M. L.; Messer, O. E. B.; Mezzacappa, A.
Core-collapse supernova models depend on the details of the nuclear and weak interaction physics inputs just as they depend on the details of the macroscopic physics (transport, hydrodynamics, etc.), numerical methods, and progenitors. We present preliminary results from our ongoing comparison studies of nuclear and weak interaction physics inputs to core collapse supernova models using the spherically-symmetric, general relativistic, neutrino radiation hydrodynamics code Agile-Boltztran. We focus on comparisons of the effects of the nuclear EoS and the effects of improving the opacities, particularly neutrino--nucleon interactions.
Statistical evidence against simple forms of wavefunction collapse
International Nuclear Information System (INIS)
Page, Don N.
2013-01-01
If the initial quantum state of the universe is a multiverse superposition over many different sets of values of the effective coupling ‘constants’ of physics, and if this quantum state collapses to an eigenstate of the set of coupling ‘constants’ with a probability purely proportional to the absolute square of the amplitude (with no additional factor for something like life or consciousness), then one should not expect that the coupling ‘constants’ would be so biophilic as they are observed to be. Therefore, the observed biophilic values (apparent fine tuning) of the coupling ‘constants’ is statistical evidence against such simple forms of wavefunction collapse
Collapse mechanisms and strength prediction of reinforced concrete pile caps
DEFF Research Database (Denmark)
Jensen, Uffe G.; Hoang, Linh Cao
2012-01-01
. Calculations have been compared with nearly 200 test results found in the literature. Satisfactory agreement has been found. The analyses are conducted on concentrically loaded caps supported by four piles. The paper briefly outlines how the approach may be extended to more complicated loadings and geometries......This paper describes an upper bound plasticity approach for strength prediction of reinforced concrete pile caps. A number of collapse mechanisms are identified and analysed. The procedure leads to an estimate of the load-carrying capacity and an identification of the critical collapse mechanism...
Two-dimensional collapse calculations of cylindrical clouds
International Nuclear Information System (INIS)
Bastien, P.; Mitalas, R.
1979-01-01
A two-dimensional hydrodynamic computer code has been extensively modified and expanded to study the collapse of non-rotating interstellar clouds. The physics and the numerical methods involved are discussed. The results are presented and discussed in terms of the Jeans number. The critical Jeans number for collapse of non-rotating cylindrical clouds whose length is the same as their diameter is 1.00. No evidence for fragmentation has been found for these clouds, but fragmentation seems quite likely for more elongated cylindrical clouds. (author)
Statistical evidence against simple forms of wavefunction collapse
Energy Technology Data Exchange (ETDEWEB)
Page, Don N., E-mail: profdonpage@gmail.com [Theoretical Physics Institute, Department of Physics, University of Alberta, Room 238 CEB, 11322-89 Avenue, Edmonton, Alberta, T6G 2G7 (Canada)
2013-02-26
If the initial quantum state of the universe is a multiverse superposition over many different sets of values of the effective coupling ‘constants’ of physics, and if this quantum state collapses to an eigenstate of the set of coupling ‘constants’ with a probability purely proportional to the absolute square of the amplitude (with no additional factor for something like life or consciousness), then one should not expect that the coupling ‘constants’ would be so biophilic as they are observed to be. Therefore, the observed biophilic values (apparent fine tuning) of the coupling ‘constants’ is statistical evidence against such simple forms of wavefunction collapse.
Diagnosis of ischemic vertebral collapse using selective spinal angiography
International Nuclear Information System (INIS)
Stojanovic, J.; Kovac, V.
1981-01-01
During the year of 1980 we observed 3 patients with a vertebral collapse of indistinct origin. As there was no recent trauma in the past history, selective spinal angiography (SSA) was used to clarify the diagnosis. In each of the three cases we found evident rarefaction, in some places even an occlusion of the arteries of the adjacent affected vertebra. On the bases of this finding we concluded that this might be an ischemic vertebral collapse, an entity which had been under discussion long ago but not exactly confirmed so far. (orig.) [de
Gravitational collapse, chaos in CFT correlators and the information paradox
Energy Technology Data Exchange (ETDEWEB)
Farahi, Arya, E-mail: aryaf@umich.edu; Pando Zayas, Leopoldo A., E-mail: lpandoz@umich.edu
2014-06-27
We consider gravitational collapse of a massless scalar field in asymptotically anti-de Sitter spacetime. Following the AdS/CFT dictionary we further study correlations in the field theory side by way of the Klein–Gordon equation of a probe scalar field in the collapsing background. We present evidence that in a certain regime the probe scalar field behaves chaotically, thus supporting Hawking's argument in the black hole information paradox proposing that although the information can be retrieved in principle, deterministic chaos impairs, in practice, the process of unitary extraction of information from a black hole. We emphasize that quantum chaos will change this picture.
Weak Interaction processes in core-collapse supernova
International Nuclear Information System (INIS)
Martinez-Pinedo, Gabriel
2008-01-01
In this manuscript we review the role that weak interaction processes play in supernova. This includes electron captures and inelastic neutrino-nucleus scattering (INNS). Electron captures during the collapse occur mainly in heavy nuclei, however the proton contribution is responsible for the convergence of different models to a 'norm' stellar trajectory. Neutrino-nucleus cross sections at supernova neutrino energies can be determined from precise data on the magnetic dipole strength. The results agree well with large-scale shell-model calculations. When incorporated in core-collapse simulations INNS increases the neutrino opacities noticeably and strongly reduces the high-energy part of the supernova spectrum
Gravitational Collapse of Radiating Dyon Solution and Cosmic Censorship Hypothesis
International Nuclear Information System (INIS)
Patil, K. D.; Zade, S. S.; Mohod, A. N.
2008-01-01
We investigate the possibility of cosmic censorship violation in the gravitational collapse of radiating dyon solution. It is shown that the final outcome of the collapse depends sensitively on the electric and magnetic charge parameters. The graphs of the outer apparent horizon, inner Cauchy horizon for different values of parameters are drawn. It is found that the electric and magnetic components push the apparent horizon towards the retarded time-coordinate axis, which in turn reduces the radius of the apparent horizon in Vaidya spacetime. Also, we extend the earlier work of Chamorro and Virbhadra [Pramana, J. Phys. 45 (1995) 181
Flow and oscillations in collapsible tubes: Physiological applications ...
Indian Academy of Sciences (India)
pressure changes associated with fluid flow in the tube may be enough to generate large area changes. Collapsible ... As a very simple model, consider a single, uniform pipe containing viscous fluid flowing steadily at volume ..... (1986). For each mode the instability occurs through a Hopf bifurcation, which is supercritical.
Scanning the parameter space of collapsing rotating thin shells
Rocha, Jorge V.; Santarelli, Raphael
2018-06-01
We present results of a comprehensive study of collapsing and bouncing thin shells with rotation, framing it in the context of the weak cosmic censorship conjecture. The analysis is based on a formalism developed specifically for higher odd dimensions that is able to describe the dynamics of collapsing rotating shells exactly. We analyse and classify a plethora of shell trajectories in asymptotically flat spacetimes. The parameters varied include the shell’s mass and angular momentum, its radial velocity at infinity, the (linear) equation-of-state parameter and the spacetime dimensionality. We find that plunges of rotating shells into black holes never produce naked singularities, as long as the matter shell obeys the weak energy condition, and so respects cosmic censorship. This applies to collapses of dust shells starting from rest or with a finite velocity at infinity. Not even shells with a negative isotropic pressure component (i.e. tension) lead to the formation of naked singularities, as long as the weak energy condition is satisfied. Endowing the shells with a positive isotropic pressure component allows for the existence of bouncing trajectories satisfying the dominant energy condition and fully contained outside rotating black holes. Otherwise any turning point occurs always inside the horizon. These results are based on strong numerical evidence from scans of numerous sections in the large parameter space available to these collapsing shells. The generalisation of the radial equation of motion to a polytropic equation-of-state for the matter shell is also included in an appendix.
Acoustical signature of the collapse of a cavitation bubble
International Nuclear Information System (INIS)
Chahine, G.L.
1978-10-01
The influence of the proximity of a wall on the noise emitted when an isolated cavitation bubble collapses is studied qualitatively by correlation between the noise emitted and the dynamics of the bubble, by amplitude analysis and by time analysis [fr
Excision technique in constrained formulations of Einstein equations: collapse scenario
International Nuclear Information System (INIS)
Cordero-Carrión, I; Vasset, N; Novak, J; Jaramillo, J L
2015-01-01
We present a new excision technique used in constrained formulations of Einstein equations to deal with black hole in numerical simulations. We show the applicability of this scheme in several scenarios. In particular, we present the dynamical evolution of the collapse of a neutron star to a black hole, using the CoCoNuT code and this excision technique. (paper)
Three-dimensional simulations of void collapse in energetic materials
Rai, Nirmal Kumar; Udaykumar, H. S.
2018-03-01
The collapse of voids in porous energetic materials leads to hot-spot formation and reaction initiation. This work advances the current knowledge of the dynamics of void collapse and hot-spot formation using 3D reactive void collapse simulations in HMX. Four different void shapes, i.e., sphere, cylinder, plate, and ellipsoid, are studied. For all four shapes, collapse generates complex three-dimensional (3D) baroclinic vortical structures. The hot spots are collocated with regions of intense vorticity. The differences in the vortical structures for the different void shapes are shown to significantly impact the relative sensitivity of the voids. Voids of high surface area generate hot spots of greater intensity; intricate, highly contorted vortical structures lead to hot spots of corresponding tortuosity and therefore enhanced growth rates of reaction fronts. In addition, all 3D voids are shown to be more sensitive than their two-dimensional (2D) counterparts. The results provide physical insights into hot-spot formation and growth and point to the limitations of 2D analyses of hot-spot formation.
Simulation of the collapse and dissipation of Langmuir wave packets
International Nuclear Information System (INIS)
Newman, D.L.; Winglee, R.M.; Robinson, P.A.; Glanz, J.; Goldman, M.V.
1990-01-01
The collapse of isolated Langmuir wave packets is studied numerically in two dimensions using both particle-in-cell (PIC) simulations and by integrating the Zakharov partial differential equations (PDE's). The initial state consists of a localized Langmuir wave packet in an ion background that either is uniform or has a profile representative of the density wells in which wave packets form during strong plasma turbulence. Collapse thresholds are determined numerically and compared to analytical estimates. A model in which Langmuir damping is significantly stronger than Landau damping is constructed which, when included in the PDE simulations, yields good agreement with the collapse dynamics observed in PIC simulations for wave packets with initial wave energy densities small compared to the thermal level. For more intense initial Langmuir fields, collapse is arrested in PIC simulations at lower field strengths than in PDE simulations. Neither nonlinear saturation of the density perturbation nor fluid electron nonlinearities can account for the difference between simulation methods in this regime. However, at these wave levels inhomogeneous electron heating and coherent jets of transit-time accelerated electrons in phase space are observed, resulting in further enhancement of wave damping and the consequent reduction of fields in the PIC simulations
Heterogeneous economic resilience and the great recession's world trade collapse
van Bergeijk, Peter A.G.; Brakman, Steven; van Marrewijk, Charles
2017-01-01
This special section aims to fill a gap in the regional resilience literature and to stimulate future spatial studies of resilience to include the international dimension in empirical analyses. It demonstrates the do-ability and relevance by the natural experience of the global trade collapse that
An experimental investigation of untriggered film boiling collapse
International Nuclear Information System (INIS)
Naylor, P.
1985-03-01
Film boiling has been investigated in a stagnant pool, using polished brass or anodised aluminium alloy rods in water. Experimental boiling curves were obtained, and pronounced ripples on the vapour/liquid interface were photographed. A criterion for untriggered film boiling collapse is proposed, consistent with experimental results. Application of the results to molten fuel coolant interaction studies is discussed. (U.K.)
Electron sheath collapse in an applied-B ion diode
International Nuclear Information System (INIS)
Grechikha, A.V.
1996-01-01
The effect of the electron sheath collapse in an applied-B ion diode due to the presence of the resistive anode plasma layer was found. This effect is more damaging at higher diode voltages and may be responsible for the parasitic load effect observed in the experiments. (author). 4 figs., 2 refs
Modelling Technique for Demonstrating Gravity Collapse Structures in Jointed Rock.
Stimpson, B.
1979-01-01
Described is a base-friction modeling technique for studying the development of collapse structures in jointed rocks. A moving belt beneath weak material is designed to simulate gravity. A description is given of the model frame construction. (Author/SA)
On stellar collapse: continual or oscillatory. A short comment
International Nuclear Information System (INIS)
Leung, P.T.
1980-01-01
We comment on a previously published paper on the oscillatory dynamics of stellar collapse and conclude that the Schwarzschild interior solution applied to the 'inflection points' can never give rise to a 'turning back' motion, in spite of the fact that the geodesic equation really does not always describe an attractive gravitational acceleration
Explosive X-point collapse in relativistic magnetically dominated plasma
Lyutikov, Maxim; Sironi, Lorenzo; Komissarov, Serguei S.; Porth, Oliver
2017-12-01
The extreme properties of the gamma-ray flares in the Crab nebula present a clear challenge to our ideas on the nature of particle acceleration in relativistic astrophysical plasma. It seems highly unlikely that standard mechanisms of stochastic type are at work here and hence the attention of theorists has switched to linear acceleration in magnetic reconnection events. In this series of papers, we attempt to develop a theory of explosive magnetic reconnection in highly magnetized relativistic plasma which can explain the extreme parameters of the Crab flares. In the first paper, we focus on the properties of the X-point collapse. Using analytical and numerical methods (fluid and particle-in-cell simulations) we extend Syrovatsky's classical model of such collapse to the relativistic regime. We find that the collapse can lead to the reconnection rate approaching the speed of light on macroscopic scales. During the collapse, the plasma particles are accelerated by charge-starved electric fields, which can reach (and even exceed) values of the local magnetic field. The explosive stage of reconnection produces non-thermal power-law tails with slopes that depend on the average magnetization . For sufficiently high magnetizations and vanishing guide field, the non-thermal particle spectrum consists of two components: a low-energy population with soft spectrum that dominates the number census; and a high-energy population with hard spectrum that possesses all the properties needed to explain the Crab flares.
Review of literature on the asymmetric collapse of vapor bubbles
International Nuclear Information System (INIS)
Fremd, R.; Froehlich, G.
1977-06-01
This report contains a review of literature on the asymmetric collape of vapor bubbles by cavitation with special consideration to vapor explosions. Two numerical models, which describe the collapse of cavities in the neighbourhood of a solid surface, are presented. Moreover experimental results for this case are provided. Propositions to apply the numerical models to vapor explosions are made. (orig.) [de
Building Failures And Collapses: A Case Study Of Portharcourt ...
African Journals Online (AJOL)
The Cases of Building failures and consequent collapse in Nigeria has reached an alarming and lamentable stage. It is a disaster comparable to flood disaster, earthquake and aeroplane clash considering the loss of life and destruction of property. Building failure are mostly observed in big cities where there are multiple ...
Surviving a cluster collapse: risk aversion as a core value
Schiele, Holger; Hospers, Gerrit J.; van der Zee, D.J.
2012-01-01
Purpose – This paper analyses firms, which survived in a collapsed regional cluster. The target is to analyze whether the principles for enduring success identified researching success factors of very old firms also apply in such an environment. Design/methodology/approach – The authors conduct a
Averting biodiversity collapse in tropical forest protected areas
Czech Academy of Sciences Publication Activity Database
Laurence, W. F.; Novotný, Vojtěch
2012-01-01
Roč. 489, č. 7415 (2012), s. 290-294 ISSN 0028-0836 Grant - others:NSF grant(AU) RCN-0741956 Institutional support: RVO:60077344 Keywords : biodiversity * tropical forest * collapse Subject RIV: EH - Ecology, Behaviour Impact factor: 38.597, year: 2012 http://www.nature.com/nature/journal/vaop/ncurrent/pdf/nature11318.pdf
Rayleigh-Taylor convective overturn in stellar collapse
International Nuclear Information System (INIS)
Bruenn, S.W.; Buchler, J.R.; Livio, M.
1979-01-01
Rayleigh--Taylor convective overturn in collapsing stellar cores is modeled with a one-dimensional parametrization. The results of a numerical hydrodynamic study are very encouraging and indicate that such an overturn could well be a dominant feature in the supernova explosion mechanism
The collapse of an anti-de Sitter bubble
International Nuclear Information System (INIS)
Abbott, L.F.; Coleman, S.
1985-01-01
We prove that the ultimate fate of a bubble of negative energy density which forms in a metastable universe of zero energy density is gravitational collapse. We improve on previous treatments in that we allow departures from O(3,1) symmetry in the initial state, so long as they are not too great. (orig.)
Spherical collapse model in time varying vacuum cosmologies
International Nuclear Information System (INIS)
Basilakos, Spyros; Plionis, Manolis; Sola, Joan
2010-01-01
We investigate the virialization of cosmic structures in the framework of flat Friedmann-Lemaitre-Robertson-Walker cosmological models, in which the vacuum energy density evolves with time. In particular, our analysis focuses on the study of spherical matter perturbations, as they decouple from the background expansion, 'turn around', and finally collapse. We generalize the spherical collapse model in the case when the vacuum energy is a running function of the Hubble rate, Λ=Λ(H). A particularly well-motivated model of this type is the so-called quantum field vacuum, in which Λ(H) is a quadratic function, Λ(H)=n 0 +n 2 H 2 , with n 0 ≠0. This model was previously studied by our team using the latest high quality cosmological data to constrain its free parameters, as well as the predicted cluster formation rate. It turns out that the corresponding Hubble expansion history resembles that of the traditional ΛCDM cosmology. We use this Λ(t)CDM framework to illustrate the fact that the properties of the spherical collapse model (virial density, collapse factor, etc.) depend on the choice of the considered vacuum energy (homogeneous or clustered). In particular, if the distribution of the vacuum energy is clustered, then, under specific conditions, we can produce more concentrated structures with respect to the homogeneous vacuum energy case.
Collapse arrest and soliton stabilization in nonlocal nonlinear media
DEFF Research Database (Denmark)
Bang, Ole; Krolikowski, Wieslaw; Wyller, John
2002-01-01
that nonlocality of the nonlinearity prevents collapse in, e.g., Bose-Einstein condensates and optical Kerr media in all physical dimensions. The nonlocal nonlinear response must be symmetric and have a positive definite Fourier spectrum, but can otherwise be of completely arbitrary shape and degree of nonlocality...
Pore collapse and regrowth in silicon electrodes for rechargeable batteries
Energy Technology Data Exchange (ETDEWEB)
DeCaluwe, S. C. [Department of Mechanical Engineering; Colorado School of Mines; USA; Center for Neutron Research; National Institute of Standards and Technology; Dhar, B. M. [Institute for Materials Research and Dept. of Mechanical Engineering; State University of New York; Binghamton; USA; Material Measurement Laboratory; Huang, L. [Institute for Materials Research and Dept. of Mechanical Engineering; State University of New York; Binghamton; USA; He, Y. [Institute for Materials Research and Dept. of Mechanical Engineering; State University of New York; Binghamton; USA; Department of Physics and Astronomy; Yang, K. [Institute for Materials Research and Dept. of Mechanical Engineering; State University of New York; Binghamton; USA; Owejan, J. P. [Department of Mechanical and Electrical Engineering Technology; State University of New York; Alfred; USA; Zhao, Y. [Department of Physics and Astronomy; University of Georgia; Athens; USA; Talin, A. A. [Center for Nanoscale Science and Technology; National Institute of Standards and Technology; Gaithersburg; USA; Sandia National Laboratories; Dura, J. A. [Center for Neutron Research; National Institute of Standards and Technology; Gaithersburg; USA; Wang, H. [Department of Materials Science and Engineering; University of Maryland; College Park; USA; Institute for Materials Research and Dept. of Mechanical Engineering
2015-01-01
In-operando Neutron Reflectometry establishes the pore collapse and regrowth (PCRG) mechanism in amorphous Si. Upon lithiation, porosity is first consumed by expansion of solid Si domains, with little thickness increase. After, the whole film expands. Porosity returns upon delithiation.
Automatic lung segmentation in the presence of alveolar collapse
Directory of Open Access Journals (Sweden)
Noshadi Areg
2017-09-01
Full Text Available Lung ventilation and perfusion analyses using chest imaging methods require a correct segmentation of the lung to offer anatomical landmarks for the physiological data. An automatic segmentation approach simplifies and accelerates the analysis. However, the segmentation of the lungs has shown to be difficult if collapsed areas are present that tend to share similar gray values with surrounding non-pulmonary tissue. Our goal was to develop an automatic segmentation algorithm that is able to approximate dorsal lung boundaries even if alveolar collapse is present in the dependent lung areas adjacent to the pleura. Computed tomography data acquired in five supine pigs with injured lungs were used for this purpose. First, healthy lung tissue was segmented using a standard 3D region growing algorithm. Further, the bones in the chest wall surrounding the lungs were segmented to find the contact points of ribs and pleura. Artificial boundaries of the dorsal lung were set by spline interpolation through these contact points. Segmentation masks of the entire lung including the collapsed regions were created by combining the splines with the segmentation masks of the healthy lung tissue through multiple morphological operations. The automatically segmented images were then evaluated by comparing them to manual segmentations and determining the Dice similarity coefficients (DSC as a similarity measure. The developed method was able to accurately segment the lungs including the collapsed regions (DSCs over 0.96.
The final outcome of dissipative collapse in the presence of
Indian Academy of Sciences (India)
in the gravitational collapse of conformally flat, radiating spheres. ... Comprehensive studies of static fluid spheres in the presence of a cosmological constant have led .... tions with isotropic pressures in the presence of heat flux and cosmological constant ..... radiation from the stellar surface reaches our observer at infinity.
Influence Of Collapsing Matter On The Enveloping Expanding Universe
Choudhury, A. Latif
2005-01-01
Using a collapsing matter model at the center of an expanding universe as described by Weinberg we assume a special type of generated pressure. This pressure transmits into the surrounding expanding universe. Under certain restriction the ensuing hubble parameter is positive. The deacceleration parameter fluctuates with time, indicating that the universe accelerates for certain time and decelerates for other time intervals.
Cosmic censorship in a Kerr-like collapse scenario
Energy Technology Data Exchange (ETDEWEB)
Rudnicki, W. [Institute of Physics, Pedagogical University, Rzeszow (Poland)
1998-04-01
In this contribution we discuss a recent result which shows that a gravitational collapse cannot in generic situations lead to the formation of a final state resembling the Kerr solution with a naked singularity. This result supports the validity of the cosmic censorship hypothesis. (author)
Stability of a collapsed scalar field and cosmic censorship
International Nuclear Information System (INIS)
Abe, S.
1988-01-01
The static and asymptotically flat solution to the Einstein-massless-scalar model with spherical symmetry describes the spacetime with a naked singularity when it has a nonvanishing scalar charge. We show that such a solution is unstable against the spherical scalar monopole perturbation. This suggests the validity of the cosmic censorship hypothesis in the spherical collapse of the scalar field
Cosmic censorship in a Kerr-like collapse scenario
International Nuclear Information System (INIS)
Rudnicki, W.
1998-01-01
In this contribution we discuss a recent result which shows that a gravitational collapse cannot in generic situations lead to the formation of a final state resembling the Kerr solution with a naked singularity. This result supports the validity of the cosmic censorship hypothesis. (author)
Electron sheath collapse in an applied-B ion diode
Energy Technology Data Exchange (ETDEWEB)
Grechikha, A V [Forschungszentrum Karlsruhe (Germany). Institut fuer Neutronenphysik und Reaktortechnik
1997-12-31
The effect of the electron sheath collapse in an applied-B ion diode due to the presence of the resistive anode plasma layer was found. This effect is more damaging at higher diode voltages and may be responsible for the parasitic load effect observed in the experiments. (author). 4 figs., 2 refs.
Geophysical Assessment of Two Collapsed and Concealed Septic ...
African Journals Online (AJOL)
... m and depth of about 2.9 m. The delineated clayey soils at shallow depths suggest that there could be seasonal soil swelling and shrinkages due to seasonal variation in moisture content of the clay. These most likely led to annual ground movements, cumulative soil creep and the subsequent collapse of the septic tanks.
Dangers of collapsible ventricular drainage systems. Technical note.
Kaye, A H; Wallace, D
1982-02-01
Ventricular drainage systems employing a collapsible plastic bag for fluid collection were postulated to cause an increasing back-pressure produced in part by the elasticity of the bag. This postulate was shown to be correct in an experimental situation. There was a logarithmic rise in cerebrospinal fluid pressure as the bag filled. By increasing the size of the bag, the problem was overcome.
Prediction of the wetting-induced collapse behaviour using the soil-water characteristic curve
Xie, Wan-Li; Li, Ping; Vanapalli, Sai K.; Wang, Jia-Ding
2018-01-01
Collapsible soils go through three distinct phases in response to matric suction decrease during wetting: pre-collapse phase, collapse phase and post-collapse phase. It is reasonable and conservative to consider a strain path that includes a pre-collapse phase in which constant volume is maintained and a collapse phase that extends to the final matric suction to be experienced by collapsible soils during wetting. Upon this assumption, a method is proposed for predicting the collapse behaviour due to wetting. To use the proposed method, two parameters, critical suction and collapse rate, are required. The former is the suction value below which significant collapse deformations take place in response to matric suction decease, and the later is the rate at which void ratio reduces with matric suction in the collapse phase. The value of critical suction can be estimated from the water-entry value taking account of both the microstructure characteristics and collapse mechanism of fine-grained collapsible soils; the wetting soil-water characteristic curve thus can be used as a tool. Five sets of data of wetting tests on both compacted and natural collapsible soils reported in the literature were used to validate the proposed method. The critical suction values were estimated from the water-entry value with parameter a that is suggested to vary between 0.10 and 0.25 for compacted soils and to be lower for natural collapsible soils. The results of a field permeation test in collapsible loess soils were also used to validate the proposed method. The relatively good agreement between the measured and estimated collapse deformations suggests that the proposed method can provide reasonable prediction of the collapse behaviour due to wetting.
Key variables influencing patterns of lava dome growth and collapse
Husain, T.; Elsworth, D.; Voight, B.; Mattioli, G. S.; Jansma, P. E.
2013-12-01
Lava domes are conical structures that grow by the infusion of viscous silicic or intermediate composition magma from a central volcanic conduit. Dome growth can be characterized by repeated cycles of growth punctuated by collapse, as the structure becomes oversized for its composite strength. Within these cycles, deformation ranges from slow long term deformation to sudden deep-seated collapses. Collapses may range from small raveling failures to voluminous and fast-moving pyroclastic flows with rapid and long-downslope-reach from the edifice. Infusion rate and magma rheology together with crystallization temperature and volatile content govern the spatial distribution of strength in the structure. Solidification, driven by degassing-induced crystallization of magma leads to the formation of a continuously evolving frictional talus as a hard outer shell. This shell encapsulates the cohesion-dominated soft ductile core. Here we explore the mechanics of lava dome growth and failure using a two-dimensional particle-dynamics model. This meshless model follows the natural evolution of a brittle carapace formed by loss of volatiles and rheological stiffening and avoids difficulties of hour-glassing and mesh-entangelment typical in meshed models. We test the fidelity of the model against existing experimental and observational models of lava dome growth. The particle-dynamics model follows the natural development of dome growth and collapse which is infeasible using simple analytical models. The model provides insight into the triggers that lead to the transition in collapse mechasnism from shallow flank collapse to deep seated sector collapse. Increase in material stiffness due to decrease in infusion rate results in the transition of growth pattern from endogenous to exogenous. The material stiffness and strength are strongly controlled by the magma infusion rate. Increase in infusion rate decreases the time available for degassing induced crystallization leading to a
Intense electromagnetic outbursts from collapsing hypermassive neutron stars
Lehner, Luis; Palenzuela, Carlos; Liebling, Steven L.; Thompson, Christopher; Hanna, Chad
2012-11-01
We study the gravitational collapse of a magnetized neutron star using a novel numerical approach able to capture both the dynamics of the star and the behavior of the surrounding plasma. In this approach, a fully general relativistic magnetohydrodynamics implementation models the collapse of the star and provides appropriate boundary conditions to a force-free model which describes the stellar exterior. We validate this strategy by comparing with known results for the rotating monopole and aligned rotator solutions and then apply it to study both rotating and nonrotating stellar collapse scenarios and contrast the behavior with what is obtained when employing the electrovacuum approximation outside the star. The nonrotating electrovacuum collapse is shown to agree qualitatively with a Newtonian model of the electromagnetic field outside a collapsing star. We illustrate and discuss a fundamental difference between the force-free and electrovacuum solutions, involving the appearance of large zones of electric-dominated field in the vacuum case. This provides a clear demonstration of how dissipative singularities appear generically in the nonlinear time evolution of force-free fluids. In both the rotating and nonrotating cases, our simulations indicate that the collapse induces a strong electromagnetic transient, which leaves behind an uncharged, unmagnetized Kerr black hole. In the case of submillisecond rotation, the magnetic field experiences strong winding, and the transient carries much more energy. This result has important implications for models of gamma-ray bursts. Even when the neutron star is surrounded by an accretion torus (as in binary merger and collapsar scenarios), a magnetosphere may emerge through a dynamo process operating in a surface shear layer. When this rapidly rotating magnetar collapses to a black hole, the electromagnetic energy released can compete with the later output in a Blandford-Znajek jet. Much less electromagnetic energy is
On the possibility of a two-bang supernova collapse
International Nuclear Information System (INIS)
Berezinsky, V.S.; Castagnoli, C.; Dokuchaev, V.I.; Galeotti, P.
1988-01-01
The possibility of a two-bang stellar collapse originating SN 1987a, and having the characteristics of the events recorded in Mont Blanc and Kamiokande, is discussed here. According to the ''standard'' collapse models of nonrotating stars, which predict the formation of a neutrino-sphere with a nondegenerate neutrino gas inside the star, the Mont Blanc and kamiokande data for the first burst give a too large stellar mass. On the contrary, a degenerate neutrino gas with low temperature T ∼ 0.5 MeV, and chemical potential μ ∼ (12-15), predicts a relatively low total energy outflow W ν ∼ (2-6) x 10 54 erg, and a small number of expected interactions in Kamiokande. A possible scenario is suggested: a massive (M ∼ 20M o ) rotating star is fragmented into two pieces, one light and the other heavy, at the onset of the collapse.The massive component collapses to a black hole, and produces the first burst. Neutrinos are trapped inside the collapsing star because of elastic scattering in the outer core off heavy nuclei, with A ∼ 300. It is shown that neutrinos fill up the quantum states, producing a degenerate neutrino gas. The second burst is explained by coalescence of the light fragment (M ∼ (1-3)M o ) onto the massive black hole. The time delay between the two observed bursts (4.7h) is mostly connected with gravitational braking, when the light fragment falls down onto the black hole, with an accompanying emission of gravitational waves for times of order of hours
International Nuclear Information System (INIS)
Sharapov, R
2014-01-01
The paper deals with the definition of karst collapse intensity. The technique for determining the intensity of karst formation and collapse on the basis of calculation and probabilistic method is given. Karst collapse formation is affected by a great variety of natural and anthropogenic factors. Each factor can vary quite widely. The paper describes a technique for determining karst collapse intensity from incomplete data. It uses karst processes monitoring data in the area and monitoring data of areas with similar values of the most significant factors leading to the karst collapses. The method used for determination of karst collapse intensity indicator in area of Nizhny Novgorod nuclear power plant construction
Eternal stretchers, eternal wretches Eternas macas, eternas marcas
Directory of Open Access Journals (Sweden)
José de Arimathéia Cordeiro Custódio
2006-12-01
Full Text Available This article analyses photographs of reports published by two daily newspapers of Londrina-Paraná. It shows the building of certain meanings around the concept of public health, especially on the phenomenon of hospital overcapacity in that town. The focus is on reports published in the year of 2004, all of them about the same theme. It begins with a description of subjective issues exposed in the newspapers, not corresponding to reality, but able to influence the imaginary of the readers. On a second moment, the essay analyses some photographs deeper and exposes the repetition of the images as an argumentative scheme for persuading and fixing a certain idea in the reader’s mind. Este artigo analisa fotografias de matérias publicadas em dois jornais diários da cidade de Londrina-PR. Demonstra a construção de determinados sentidos em torno do conceito de saúde pública, especificamente no que se refere ao fenômeno da superlotação hospitalar na referida cidade. Enfoca fotografias de matérias publicadas no ano de 2004, todas sobre o mesmo tema. Inicia com uma descrição do tema e da sua exposição pelos jornais, nem sempre correspondentes à realidade, mas que podem influenciar no imaginário do leitor. Num segundo momento, analisa algumas fotografias mais profundamente, e expõe a própria repetição de imagens como artifício argumentativo de convencimento e fixação de uma idéia determinada na mente do leitor.
Shinde, R. B.; Mali, K. D.
2018-04-01
Collapsible impact energy absorbers play an important role of protecting automotive components from damage during collision. Collision of the two objects results into the damage to one or both of them. Damage may be in the form of crack, fracture and scratch. Designers must know about how the material and object behave under impact event. Owing to above reasons different types of collapsible impact energy absorbers are developed. In the past different studies were undertaken to improve such collapsible impact energy absorbers. This article highlights such studies on common shapes of collapsible impact energy absorber and their impact behaviour under the axial compression. The literature based on studies and analyses of effects of different geometrical parameters on the crushing behaviour of impact energy absorbers is presented in detail. The energy absorber can be of different shape such as circular tube, square tube, and frustums of cone and pyramids. The crushing behaviour of energy absorbers includes studies on crushing mechanics, modes of deformation, energy absorbing capacity, effect on peak and mean crushing load. In this work efforts are made to cover major outcomes from past studies on such behavioural parameters. Even though the major literature reviewed is related to metallic energy absorbers, emphasis is also laid on covering literature on use of composite tube, fiber metal lamination (FML) member, honeycomb plate and functionally graded thickness (FGT) tube as a collapsible impact energy absorber.
Explosions of Thorne-Żytkow objects
Moriya, Takashi J.
2018-03-01
We propose that massive Thorne-Żytkow objects can explode. A Thorne-Żytkow object is a theoretically predicted star that has a neutron core. When nuclear reactions supporting a massive Thorne-Żytkow object terminate, a strong accretion occurs towards the central neutron core. The accretion rate is large enough to sustain a super-Eddington accretion towards the neutron core. The neutron core may collapse to a black hole after a while. A strong large-scale outflow or a jet can be launched from the super-Eddington accretion disc and the collapsing Thorne-Żytkow object can be turned into an explosion. The ejecta have about 10 M⊙ but the explosion energy depends on when the accretion is suppressed. We presume that the explosion energy could be as low as ˜1047 erg and such a low-energy explosion could be observed like a failed supernova. The maximum possible explosion energy is ˜1052 erg and such a high-energy explosion could be observed as an energetic Type II supernova or a superluminous supernova. Explosions of Thorne-Żytkow objects may provide a new path to spread lithium and other heavy elements produced through the irp process such as molybdenum in the Universe.
Monte Carlo investigation of collapsed versus rotated IMRT plan verification.
Conneely, Elaine; Alexander, Andrew; Ruo, Russell; Chung, Eunah; Seuntjens, Jan; Foley, Mark J
2014-05-08
IMRT QA requires, among other tests, a time-consuming process of measuring the absorbed dose, at least to a point, in a high-dose, low-dose-gradient region. Some clinics use a technique of measuring this dose with all beams delivered at a single gantry angle (collapsed delivery), as opposed to the beams delivered at the planned gantry angle (rotated delivery). We examined, established, and optimized Monte Carlo simulations of the dosimetry for IMRT verification of treatment plans for these two different delivery modes (collapsed versus rotated). The results of the simulations were compared to the treatment planning system dose calculations for the two delivery modes, as well as to measurements taken. This was done in order to investigate the validity of the use of a collapsed delivery technique for IMRT QA. The BEAMnrc, DOSXYZnrc, and egs_chamber codes were utilized for the Monte Carlo simulations along with the MMCTP system. A number of different plan complexity metrics were also used in the analysis of the dose distributions in a bid to qualify why verification in a collapsed delivery may or may not be optimal for IMRT QA. Following the Alfonso et al. formalism, the kfclin,frefQclin,Q correction factor was calculated to correct the deviation of small fields from the reference conditions used for beam calibration. We report on the results obtained for a cohort of 20 patients. The plan complexity was investigated for each plan using the complexity metrics of homogeneity index, conformity index, modulation complexity score, and the fraction of beams from a particular plan that intersect the chamber when performing the QA. Rotated QA gives more consistent results than the collapsed QA technique. The kfclin,frefQclin,Qfactor deviates less from 1 for rotated QA than for collapsed QA. If the homogeneity index is less than 0.05 then the kfclin,frefQclin,Q factor does not deviate from unity by more than 1%. A value this low for the homogeneity index can only be obtained
Distinct Element modeling of geophysical signatures during sinkhole collapse
Al-Halbouni, Djamil; Holohan, Eoghan P.; Taheri, Abbas; Dahm, Torsten
2017-04-01
A sinkhole forms due to the collapse of rocks or soil near the Earth's surface into an underground cavity. Such cavities represent large secondary pore spaces derived by dissolution and subrosion in the underground. By changing the stress field in the surrounding material, the growth of cavities can lead to a positive feedback, in which expansion and mechanical instability in the surrounding material increases or generates new secondary pore space (e.g. by fracturing), which in turn increases the cavity size, etc. A sinkhole forms due to the eventual subsidence or collapse of the overburden that becomes destabilized and fails all the way to the Earth's surface. Both natural processes like (sub)surface water movement and earthquakes, and human activities, such as mining, construction and groundwater extraction, intensify such feedbacks. The development of models for the mechanical interaction of a growing cavity and fracturing of its surrounding material, thus capturing related precursory geophysical signatures, has been limited, however. Here we report on the advances of a general, simplified approach to simulating cavity growth and sinkhole formation by using 2D Distinct Element Modeling (DEM) PFC5.0 software and thereby constraining pre-, syn- and post-collapse geophysical and geodetic signatures. This physically realistic approach allows for spontaneous cavity development and dislocation of rock mass to be simulated by bonded particle formulation of DEM. First, we present calibration and validation of our model. Surface subsidence above an instantaneously excavated circular cavity is tracked and compared with an incrementally increasing dissolution zone both for purely elastic and non-elastic material.This validation is important for the optimal choice of model dimensions and particles size with respect to simulation time. Second, a cavity growth approach is presented and compared to a well-documented case study, the deliberately intensified sinkhole collapse at
Publisher Correction: Eternal blood vessels
Hindson, Jordan
2018-05-01
This article was originally published with an incorrect reference for the original article. The reference has been amended. Please see the correct reference below. Qiu, Y. et al. Microvasculature-on-a-chip for the long-term study of endothelial barrier dysfunction and microvascular obstruction in disease. Nat. Biomed. Eng. https://doi.org/10.1038/s41551-018-0224-z (2018)
Automation in organizations: Eternal conflict
Dieterly, D. L.
1981-01-01
Some ideas on and insights into the problems associated with automation in organizations are presented with emphasis on the concept of automation, its relationship to the individual, and its impact on system performance. An analogy is drawn, based on an American folk hero, to emphasize the extent of the problems encountered when dealing with automation within an organization. A model is proposed to focus attention on a set of appropriate dimensions. The function allocation process becomes a prominent aspect of the model. The current state of automation research is mentioned in relation to the ideas introduced. Proposed directions for an improved understanding of automation's effect on the individual's efficiency are discussed. The importance of understanding the individual's perception of the system in terms of the degree of automation is highlighted.
Indian Academy of Sciences (India)
at different distances (that is, at different epochs in the past) to come to this ... that the expansion started billions of years ago from an explosive Big Bang. Recent research sheds new light on the key cosmological question about the distant ...
Efficiency criterion for teleportation via channel matrix, measurement matrix and collapsed matrix
Directory of Open Access Journals (Sweden)
Xin-Wei Zha
Full Text Available In this paper, three kinds of coefficient matrixes (channel matrix, measurement matrix, collapsed matrix associated with the pure state for teleportation are presented, the general relation among channel matrix, measurement matrix and collapsed matrix is obtained. In addition, a criterion for judging whether a state can be teleported successfully is given, depending on the relation between the number of parameter of an unknown state and the rank of the collapsed matrix. Keywords: Channel matrix, Measurement matrix, Collapsed matrix, Teleportation
Coupled dynamics of translation and collapse of acoustically driven microbubbles.
Reddy, Anil J; Szeri, Andrew J
2002-10-01
Pressure gradients drive the motion of microbubbles relative to liquids in which they are suspended. Examples include the hydrostatic pressure due to a gravitational field, and the pressure gradients in a sound field, useful for acoustic levitation. In this paper, the equations describing the coupled dynamics of radial oscillation and translation of a microbubble are given. The formulation is based on a recently derived expression for the hydrodynamic force on a bubble of changing size in an incompressible liquid [J. Magnaudet and D. Legendre, Phys. Fluids 10, 550-556 (1998)]. The complex interaction between radial and translation dynamics is best understood by examination of the added momentum associated with the liquid motion caused by the moving bubble. Translation is maximized when the bubble collapses violently. The new theory for coupled collapse and translation dynamics is compared to past experiments and to previous theories for decoupled translation dynamics. Special attention is paid to bubbles of relevance in biomedical applications.
Collapse of Non-Rectangular Channels in a Soft Elastomer
Tepayotl-Ramirez, Daniel; Park, Yong-Lae; Lu, Tong; Majidi, Carmel
2013-03-01
We examine the collapse of microchannels in a soft elastomer by treating the sidewalls as in- denters that penetrate the channel base. This approach leads to a closed-form algebraic mapping between applied pressure and cross-sectional deformation that are in strong agreement with ex- perimental measurements and Finite Element Analysis (FEA) simulation. Applications of this new approach to modeling soft microchannel collapse range from lab-on-a-chip microfluidics for pressure-controlled protein filtration to soft-matter pressures sensing. We demonstrate the latter by comparing theoretical predictions with experimental measurements of the pressure-controlled electrical resistance of liquid-phase Gallium alloy microchannels embedded in a soft silicone elas- tomer.
Space shuttle solid rocket booster water entry cavity collapse loads
Keefe, R. T.; Rawls, E. A.; Kross, D. A.
1982-01-01
Solid rocket booster cavity collapse flight measurements included external pressures on the motor case and aft skirt, internal motor case pressures, accelerometers located in the forward skirt, mid-body area, and aft skirt, as well as strain gages located on the skin of the motor case. This flight data yielded applied pressure longitudinal and circumferential distributions which compare well with model test predictions. The internal motor case ullage pressure, which is below atmospheric due to the rapid cooling of the hot internal gas, was more severe (lower) than anticipated due to the ullage gas being hotter than predicted. The structural dynamic response characteristics were as expected. Structural ring and wall damage are detailed and are considered to be attributable to the direct application of cavity collapse pressure combined with the structurally destabilizing, low internal motor case pressure.
Quantum gravitational collapse: non-singularity and non-locality
International Nuclear Information System (INIS)
Greenwood, Eric; Stojkovic, Dejan
2008-01-01
We investigate gravitational collapse in the context of quantum mechanics. We take primary interest in the behavior of the collapse near the horizon and near the origin (classical singularity) from the point of view of an infalling observer. In the absence of radiation, quantum effects near the horizon do not change the classical conclusions for an infalling observer, meaning the horizon is not an obstacle for him. However, quantum effects are able to remove the classical singularity at the origin, since the wave function is non-singular at the origin. Also, near the classical singularity, some non-local effects become important. In the Schrodinger equation describing behavior near the origin, derivatives of the wave function at one point are related to the value of the wave function at some other distant point.
Gravitational perfect fluid collapse in Gauss-Bonnet gravity
Energy Technology Data Exchange (ETDEWEB)
Abbas, G.; Tahir, M. [The Islamia University of Bahawalpur, Department of Mathematics, Bahawalpur (Pakistan)
2017-08-15
The Einstein Gauss-Bonnet theory of gravity is the low-energy limit of heterotic super-symmetric string theory. This paper deals with gravitational collapse of a perfect fluid in Einstein-Gauss-Bonnet gravity by considering the Lemaitre-Tolman-Bondi metric. For this purpose, the closed form of the exact solution of the equations of motion has been determined by using the conservation of the stress-energy tensor and the condition of marginally bound shells. It has been investigated that the presence of a Gauss-Bonnet coupling term α > 0 and the pressure of the fluid modifies the structure and time formation of singularity. In this analysis a singularity forms earlier than a horizon, so the end state of the collapse is a naked singularity depending on the initial data. But this singularity is weak and timelike, which goes against the investigation of general relativity. (orig.)
Quantum continual measurements and a posteriori collapse on CCR
International Nuclear Information System (INIS)
Belavkin, V.P.
1992-01-01
A quantum stochastic model for the Markovian dynamics of an open system under the nondemolition unsharp observation which is continuous in time, is given. A stochastic equation for the posterior evolution of a quantum continuously observed system is derived and the spontaneous collapse (stochastically continuous reduction of the wave packet) is described. The quantum Langevin evolution equation is solved for the case of a quasi-free Hamiltonian in the initial CCR algebra with a linear output channel, and the posterior dynamics corresponding to an initial Gaussian state is found. It is shown for an example of the posterior dynamics of a quantum oscillator that any mixed state under a complete nondemolition measurement collapses exponentially to a pure Gaussian one. (orig.)
Heat flow during sawtooth collapse in tokamak plasmas
International Nuclear Information System (INIS)
Hanada, Kazuaki
1994-01-01
Heat flow during sawtooth collapse was studied on the WT-3 tokamak by using temporal evolution of soft X-ray intensity profile in the poloidal cross section in a lower hybrid current driven plasma as well as an electron cyclotron heated plasma. Two phase in sawtooth collapses were observed. In the first phases, the hottest spot that is the peak of the soft X-ray distribution approaches the inversion surface and heat flows out through a narrow gate on the inversion surface. In the second phase, the hottest spot stays on the inversion surface, and heat flows out through the whole inversion surface. This suggests that magnetic reconnection as predicted by Kadomtsev's model occurs in the first phase, but in the second phase, a different mechanism dominates heat flow. (author)
Collapsing radiating stars with various equations of state
Brassel, Byron P.; Goswami, Rituparno; Maharaj, Sunil D.
2017-06-01
We study the gravitational collapse of radiating stars in the context of the cosmic censorship conjecture. We consider a generalized Vaidya spacetime with three concentric regions. The local internal atmosphere is a two-component system consisting of standard pressure-free, null radiation and an additional string fluid with energy density and nonzero pressure obeying all physically realistic energy conditions. The middle region is purely radiative which matches to a third region which is the Schwarzschild exterior. We outline the general mathematical framework to study the conditions on the mass function so that future-directed nonspacelike geodesics can terminate at the singularity in the past. Mass functions for several equations of state are analyzed using this framework and it is shown that the collapse in each case terminates at a locally naked central singularity. We calculate the strength of these singularities to show that they are strong curvature singularities which implies that no extension of spacetime through them is possible.
The Strong Disjoint Blow-Up/Collapse Property
Directory of Open Access Journals (Sweden)
Héctor N. Salas
2013-01-01
Full Text Available Let be a topological vector space, and let be the algebra of continuous linear operators on . The operators are disjoint hypercyclic if there is such that the orbit is dense in . Bès and Peris have shown that if satisfy the Disjoint Blow-up/Collapse property, then they are disjoint hypercyclic. In a recent paper Bès, Martin, and Sanders, among other things, have characterized disjoint hypercyclic -tuples of weighted shifts in terms of this property. We introduce the Strong Disjoint Blow-up/Collapse property and prove that if satisfy this new property, then they have a dense linear manifold of disjoint hypercyclic vectors. This allows us to give a partial affirmative answer to one of their questions.
Gravitational collapse and evolution of holographic black holes
Energy Technology Data Exchange (ETDEWEB)
Casadio, R [Dipartimento di Fisica, Universita di Bologna and I.N.F.N., Sezione di Bologna, via Irnerio 46, 40126 Bologna (Italy); Germani, C [D.A.M.T.P., Centre for Mathematical Sciences, University of Cambridge, Wilberforce road, Cambridge CB3 0WA (United Kingdom)
2006-03-01
Gravitational collapse is analyzed in the Brane-World by arguing that regularity of five-dimensional geodesics require that stars on the brane have an atmosphere. For the simple case of a spherically symmetric cloud of non-dissipating dust, conditions are found for which the collapsing star evaporates and approaches the Hawking behavior as the (apparent) horizon is being formed. The effective energy of the star vanishes at a finite radius and the star afterwards re-expands and 'anti-evaporates'. Israel junction conditions across the brane (holographically related to the matter trace anomaly) and the projection of the Weyl tensor on the brane (holographically interpreted as the quantum back-reaction on the brane metric) contribute to the total energy as, respectively, an 'anti-evaporation' and an 'evaporation' term.
Rates of collapse and evaporation of globular clusters
Hut, Piet; Djorgovski, S.
1992-01-01
Observational estimates of the dynamical relaxation times of Galactic globular clusters are used here to estimate the present rate at which core collapse and evaporation are occurring in them. A core collapse rate of 2 +/- 1 per Gyr is found, which for a Galactic age of about 12 Gyr agrees well with the fact that 27 clusters have surface brightness profiles with the morphology expected for the postcollapse phase. A destruction and evaporation rate of 5 +/- 3 per Gyr is found, suggesting that a significant fraction of the Galaxy's original complement of globular clusters have perished through the combined effects of mechanisms such as relaxation-driven evaporation and shocking due to interaction with the Galactic disk and bulge.
Fire-induced collapse mechanisms of steel buildings
DEFF Research Database (Denmark)
Giuliani, Luisa; Aiuti, Riccardo; Bontempi, Franco
2013-01-01
This paper presents a study on the failure modes of steel building in fire, with the aim of identify basic collapse mechanisms and design characteristics that play a role in the development and propagation of failures through the structural system. In particular, the effect of deformations...... and eigen-stresses induced by a restrained thermal expansion are not considered by current design methods and regulations, but are known to have driven the collapse of several steel and composite structures. In this study, the effect of restrained thermal expansions of steel beams exposed to fire...... is investigated with respect to two different structural typologies, i.e. single- and multi-story frames. In single-story buildings, such as car parks or industrial halls, the presence of stiff beams, typically required by large spans and higher service loads due to the different occupancy of the premises, may...
Collapse of white dwarfs in low mass binary systems
International Nuclear Information System (INIS)
Isern, J.; Canal, R.; Garcia-Berro, E.; Hernanz, M.; Labay, J.
1987-01-01
Low-mass binary X-ray sources and cataclysmic variables are composed of a compact star plus a non-degenerate star with a mass of the order of 1 M sun . In the first case, the degenerate star is a neutron star. In the second case, the star is a white dwarf. The similarities of both systems are so high that it is worthwhile to look for the possibility of obtaining a neutron star from the collapse of a white dwarf that accretes matter. The present work shows that massive, initially cold white dwarfs can collapse non-explosively if they accrete mass at a rate greater than 1.0E-7 M sun per year. (Author)
Kax and kol: Collapse and resilience in lowland Maya civilization
Dunning, Nicholas P.; Beach, Timothy P.; Luzzadder-Beach, Sheryl
2012-01-01
Episodes of population loss and cultural change, including the famous Classic Collapse, punctuated the long course of Maya civilization. In many cases, these downturns in the fortunes of individual sites and entire regions included significant environmental components such as droughts or anthropogenic environmental degradation. Some afflicted areas remained depopulated for long periods, whereas others recovered more quickly. We examine the dynamics of growth and decline in several areas in the Maya Lowlands in terms of both environmental and cultural resilience and with a focus on downturns that occurred in the Terminal Preclassic (second century Common Era) and Terminal Classic (9th and 10th centuries CE) periods. This examination of available data indicates that the elevated interior areas of the Yucatán Peninsula were more susceptible to system collapse and less suitable for resilient recovery than adjacent lower-lying areas. PMID:22371571
Fast Radio Bursts from the Collapse of Strange Star Crusts
Zhang, Yue; Geng, Jin-Jun; Huang, Yong-Feng
2018-05-01
Fast radio bursts (FRBs) are transient radio sources at cosmological distances. No counterparts in other bands have been observed for non-repeating FRBs. Here we suggest the collapse of strange star (SS) crusts as a possible origin for FRBs. SSs, which are composed of almost equal numbers of u, d, and s quarks, may be encapsulated by a thin crust of normal hadronic matter. When a SS accretes matter from its environment, the crust becomes heavier and heavier. It may finally collapse, leading to the release of a large amount of magnetic energy and plenty of electron/positron pairs on a very short timescale. Electron/positron pairs in the polar cap region of the SS can be accelerated to relativistic velocities, streaming along the magnetic field lines to form a thin shell. FRBs are produced by coherent emission from these electrons when the shell is expanding. Basic characteristics of observed FRBs can be explained in our model.
Gravitational collapse with rotating thin shells and cosmic censorship
International Nuclear Information System (INIS)
Delsate, Térence; Rocha, Jorge V; Santarelli, Raphael
2015-01-01
The study of gravitational collapse is a subject of great importance, both from an astrophysical and a holographic point of view. In this respect, exact solutions can be very helpful but known solutions are very scarce, especially when considering dynamical processes with rotation. We describe a setup in which gravitational collapse of rotating matter shells can be addressed with analytic tools, at the expense of going to higher dimensions and considering equal angular momenta spacetimes. The framework for an exact treatment of the dynamics, relying on a thin shell approximation, is developed. Our analysis allows the inclusion of a non-vanishing cosmological constant. Finally, we discuss applications of this machinery to the construction of stationary solutions describing matter around rotating black holes and to the cosmic censorship conjecture. (paper)
Scalar field critical collapse in 2+1 dimensions
Jałmużna, Joanna; Gundlach, Carsten; Chmaj, Tadeusz
2015-01-01
We carry out numerical experiments in the critical collapse of a spherically symmetric massless scalar field in 2+1 spacetime dimensions in the presence of a negative cosmological constant and compare them against a new theoretical model. We approximate the true critical solution as the $n=4$ Garfinkle solution, matched at the lightcone to a Vaidya-like solution, and corrected to leading order for the effect of $\\Lambda
The Great Gatsby and the Collapse of American Dream
Institute of Scientific and Technical Information of China (English)
逄红
2014-01-01
Gatsby's dream is a typical American Dream. His failure signified the decay of the American post-war spirit. His death belled the alarm for the other disillusioned people from fantasy dreams and set them to reconsider the social reality.This thesis would discuss the collapse of the Gatsby's dream and that of American dream based on the book plot and the background of 1920s.
Velocity structure of protostellar envelopes: gravitational collapse and rotation
International Nuclear Information System (INIS)
Belloche, Arnaud
2002-01-01
Stars form from the gravitational collapse of pre-stellar condensations in molecular clouds. The major aim of this thesis is to compare the predictions of collapse models with observations of both very young (class 0) protostars and starless condensations in millimeter molecular lines. We wish to understand what determines the masses of forming stars and whether the initial conditions have an effect on the dynamical evolution of a condensation. Using a Monte-Carlo radiative transfer code, we analyze rotation and infall spectroscopic signatures to study the velocity structure of a sample of protostellar condensations. We show that the envelope of the class 0 protostar IRAM 04191 in the Taurus molecular cloud is undergoing both extended, subsonic infall and fast, differential rotation. We propose that the inner part of the envelope is a magnetically supercritical core in the process of decoupling from the ambient cloud still supported by the magnetic field. We suggest that the kinematical properties observed for IRAM 04191 are representative of the physical conditions characterizing isolated protostars shortly after point mass formation. On the other hand, a similar study for the pre-stellar condensations of the Rho Ophiuchi proto-cluster yields mass accretion rates that are an order of magnitude higher than in IRAM 04191. This suggests that individual protostellar collapse in clusters is induced by external disturbances. Moreover, we show that the condensations do not have time to orbit significantly through the proto-cluster gas before evolving into protostars and pre-main-sequence stars. This seems inconsistent with models which resort to dynamical interactions and competitive accretion to build up a mass spectrum comparable to the stellar initial mass function. We conclude that protostellar collapse is nearly spontaneous in regions of isolated star formation such as the Taurus cloud but probably strongly induced in proto-clusters. (author) [fr
Multidimensional, multiphysics simulations of core-collapse supernovae
Energy Technology Data Exchange (ETDEWEB)
Messer, O E B [National Center for Computational Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6008 (United States); Bruenn, S W [Department of Physics, Florida Atlantic University, Boca Raton, FL 33431-0991 (United States); Blondin, J M [Department of Physics, North Carolina State University, Raleigh, NC 27695-8202 (United States); Hix, W R; Mezzacappa, A [Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6354 (United States)
2008-07-15
CHIMERA is a multi-dimensional radiation hydrodynamics code designed to study core-collapse supernovae. The code is made up of three essentially independent parts: a hydrodynamics module, a nuclear burning module, and a neutrino transport solver combined within an operator-split approach. We review the code's architecture and some recently improved implementations used in the code. We also briefly discuss preliminary results obtained with the code in three spatial dimensions.
Lower bounds of collapse loads in axisymmetrical vessels
International Nuclear Information System (INIS)
Fonseca Neto, J. de D.; Ebecken, N.F.F.
1981-01-01
The rigid-plastic limit analysis of shells of revolution subject to rotationally symmetric loadings, is presented. After assembling the finite elements, the limit analysis program is reduced to a simple application of the non-linear programming technique, where the sequential unconstrained minimization technique (SUMT) is utilized for the statically admissible approach. Lower bounds of the collapse loads are presented and compared with the results described in the literature. (Author) [pt
Effects of Gas Dynamics on Rapidly Collapsing Bubbles
Bauman, Spenser; Fomitchev-Zamilov, Max
2013-01-01
The dynamics of rapidly collapsing bubbles are of great interest due to the high degree of energy focusing that occurs withing the bubble. Molecular dynamics provides a way to model the interior of the bubble and couple the gas dynamics with the equations governing the bubble wall. While much theoretical work has been done to understand how a bubble will respond to an external force, the internal dynamics of the gas system are usually simplified greatly in such treatments. This paper shows ho...
Dynamics of zonal shear collapse with hydrodynamic electrons
Hajjar, R. J.; Diamond, P. H.; Malkov, M. A.
2018-06-01
This paper presents a theory for the collapse of the edge zonal shear layer, as observed at the density limit at low β. This paper investigates the scaling of the transport and mean profiles with the adiabaticity parameter α, with special emphasizes on fluxes relevant to zonal flow (ZF) generation. We show that the adiabaticity parameter characterizes the strength of production of zonal flows and so determines the state of turbulence. A 1D reduced model that self-consistently describes the spatiotemporal evolution of the mean density n ¯ , the azimuthal flow v¯ y , and the turbulent potential enstrophy ɛ=⟨(n˜ -∇2ϕ˜ ) 2/2 ⟩ —related to fluctuation intensity—is presented. Quasi-linear analysis determines how the particle flux Γn and vorticity flux Π=-χy∇2vy+Πre s scale with α, in both hydrodynamic and adiabatic regimes. As the plasma response passes from adiabatic (α > 1) to hydrodynamic (α y=Πre s/χy —representative of the strength of the shear—also drops. The shear layer then collapses and turbulence is enhanced. The collapse is due to a decrease in ZF production, not an increase in damping. A physical picture for the onset of collapse is presented. The findings of this paper are used to motivate an explanation of the phenomenology of low β density limit evolution. A change from adiabatic ( α=kz2vth 2/(|ω|νei)>1 ) to hydrodynamic (α < 1) electron dynamics is associated with the density limit.
Algebraic collapsing acceleration of the characteristics method with anisotropic scattering
International Nuclear Information System (INIS)
Le Tellier, R.; Hebert, A.; Roy, R.
2004-01-01
In this paper, the characteristics solvers implemented in the lattice code Dragon are extended to allow a complete anisotropic treatment of the collision operator. An efficient synthetic acceleration method, called Algebraic Collapsing Acceleration (ACA), is presented. Tests show that this method can substantially speed up the convergence of scattering source iterations. The effect of boundary conditions, either specular or white reflections, on anisotropic scattering lattice-cell problems is also considered. (author)
Numerical study of rotating interstellar clouds: equilibrium and collapse
International Nuclear Information System (INIS)
Norman, M.L.
1980-06-01
Equilibrium and collapse of rotating, axisymmetric, idealized interstellar gas clouds is calculated with a 2D hydrodynamics code. The hydrodynamics features an improved angular momentum advection algorithm. Angular momentum is advected consistently with mass by deriving angular momentum fluxes from mass fluxes and the local distribution of specific angular momentum. Local conservation is checked by a graph of mass versus specific angular momentum for the cloud as a whole
Gravitational wave extraction in simulations of rotating stellar core collapse
International Nuclear Information System (INIS)
Reisswig, C.; Ott, C. D.; Sperhake, U.; Schnetter, E.
2011-01-01
We perform simulations of general relativistic rotating stellar core collapse and compute the gravitational waves (GWs) emitted in the core-bounce phase of three representative models via multiple techniques. The simplest technique, the quadrupole formula (QF), estimates the GW content in the spacetime from the mass-quadrupole tensor only. It is strictly valid only in the weak-field and slow-motion approximation. For the first time, we apply GW extraction methods in core collapse that are fully curvature based and valid for strongly radiating and highly relativistic sources. These techniques are not restricted to weak-field and slow-motion assumptions. We employ three extraction methods computing (i) the Newman-Penrose (NP) scalar Ψ 4 , (ii) Regge-Wheeler-Zerilli-Moncrief master functions, and (iii) Cauchy-characteristic extraction (CCE) allowing for the extraction of GWs at future null infinity, where the spacetime is asymptotically flat and the GW content is unambiguously defined. The latter technique is the only one not suffering from residual gauge and finite-radius effects. All curvature-based methods suffer from strong nonlinear drifts. We employ the fixed-frequency integration technique as a high-pass waveform filter. Using the CCE results as a benchmark, we find that finite-radius NP extraction yields results that agree nearly perfectly in phase, but differ in amplitude by ∼1%-7% at core bounce, depending on the model. Regge-Wheeler-Zerilli-Moncrief waveforms, while, in general, agreeing in phase, contain spurious high-frequency noise of comparable amplitudes to those of the relatively weak GWs emitted in core collapse. We also find remarkably good agreement of the waveforms obtained from the QF with those obtained from CCE. The results from QF agree very well in phase and systematically underpredict peak amplitudes by ∼5%-11%, which is comparable to the NP results and is certainly within the uncertainties associated with core collapse physics.
A model for voltage collapse study considering load characteristics
Energy Technology Data Exchange (ETDEWEB)
Aguiar, L B [Companhia de Energia Eletrica da Bahia (COELBA), Salvador, BA (Brazil)
1994-12-31
This paper presents a model for analysis of voltage collapse and instability problem considering the load characteristics. The model considers fundamentally the transmission lines represented by exact from through the generalized constants A, B, C, D and the loads as function of the voltage, emphasizing the cases of constant power, constant current and constant impedance. the study treats of the system behavior on steady state and presents illustrative graphics about the problem. (author) 12 refs., 4 figs.
Physics of collapses. Probabilistic occurrence of ELMs and crashes
International Nuclear Information System (INIS)
Itoh, S.-I.; Toda, S.; Yagi, M.; Itoh, K.; Fukuyama, A.
1997-01-01
Statistical picture for the collapse is proposed. The physics picture of the crash phenomena, which is based on the turbulence-turbulence transition, is extended to include the statistical variance of observables. The dynamics of the plasma gradient and the turbulence level is studied, with the hysteresis nature in the flux-gradient relation. The probabilistic excitation is predicted. The critical condition is described by the statistical probability. (author)
Neutrino-induced nucleosynthesis in core-collapse supernovae
International Nuclear Information System (INIS)
Hartmann, D.H.; Haxton, W.C.; Hoffman, R.D.; Woosley, S.E.; California Univ., Santa Cruz, CA
1990-01-01
Almost all of the 3·10 53 ergs liberated in a core collapse supernova is radiated as neutrinos by the cooling neutron star. The neutrinos can excite nuclei in the mantle of the star by their neutral and charged current reactions. The resulting spallation reactions are an important nuleosynthesis mechanism that may be responsible for the galactic abundances of 7 Li, 11 B, 19 F, 138 La, 180 Ta, and number of other nuclei. 10 refs., 1 fig., 1 tab
Managing organizational errors: Three theoretical lenses on a bank collapse
Giolito, Vincent
2015-01-01
Errors have been shown to be a major source of organizational disasters, yet scant research has paid attention to the management of errors that is, what managers do once errors have occurred and how actions may determine outcomes. In an early attempt to build a theory of the management of organizational errors, this paper examines how extant theory applies to the collapse of a bank. The financial industry was chosen because of the systemic risks it entails, as demonstrated by the financial cr...
Collapse, conquest and Maya survival at Lamanai, Belize
Directory of Open Access Journals (Sweden)
Elizabeth Graham
2000-11-01
Full Text Available The Maya civilization of Central America prompts visions of mysterious stone temples now buried in tropical forest. It is commonly supposed to have collapsed suddenly in the ninth century AD, but some Maya settlements, such as Lamanai, survived into the colonial period. Here a new member of the Institute's academic staff gives a personal account of how working in Belize transformed her understanding of Maya civilization and its aftermath.
Collapse, conquest and Maya survival at Lamanai, Belize
Graham, Elizabeth
2000-01-01
The Maya civilization of Central America prompts visions of mysterious stone temples now buried in tropical forest. It is commonly supposed to have collapsed suddenly in the ninth century AD, but some Maya settlements, such as Lamanai, survived into the colonial period. Here a new member of the Institute's academic staff gives a personal account of how working in Belize transformed her understanding of Maya civilization and its aftermath.
Universality of collapsing two-dimensional self-avoiding trails
International Nuclear Information System (INIS)
Foster, D P
2009-01-01
Results of a numerically exact transfer matrix calculation for the model of interacting self-avoiding trails are presented. The results lead to the conclusion that at the collapse transition, self-avoiding trails are in the same universality class as the O(n = 0) model of Bloete and Nienhuis (or vertex-interacting self-avoiding walk), which has thermal exponent ν = 12/23, contrary to previous conjectures. (fast track communication)
Collapse arresting in an inhomogeneous two-dimensional nonlinear Schrodinger model
DEFF Research Database (Denmark)
Schjødt-Eriksen, Jens; Gaididei, Yuri Borisovich; Christiansen, Peter Leth
2001-01-01
Collapse of (2 + 1)-dimensional beams in the inhomogeneous two-dimensional cubic nonlinear Schrodinger equation is analyzed numerically and analytically. It is shown that in the vicinity of a narrow attractive inhomogeneity, the collapse of beams that in a homogeneous medium would collapse may...
The spectral appearance of solar-type collapsing protostellar clouds
International Nuclear Information System (INIS)
Bertout, C.; Yorke, H.W.
1978-04-01
In this paper, we review the spectral properties of collapsing protostellar clouds, based on radiative transfer computations in hydrodynamic protostar models. In the first section, the basic results of protostar evolution computations in spherically symmetric and axially symmetry geometries, as they pertain to the appearance of protostars, are briefly reviewed. In the second section, we discuss the continuum appearance of spherically symmetric protostars with various masses. Also, we present recent results for the continuum appearance of an axially symmetric protostellar cloud. The third section deals with the line formation problem and describes preliminary results for a OH molecule in an axially symmetric collapsing cloud. Then we review recent theoretical and observational results obtained for the last evolutionary phase of protostars, known as the YY Orionis phase, when the stellar core first becomes visible in the optical range. Some of the new results and conclusions presented here can be summarized as follows: Rotating collapsing clouds are in general less luminous and cooler than corresponding non-rotating clouds - due to the longer evolutionary time scale. Nevertheless, high resolution studies (resolution [de
INTERPLAY OF NEUTRINO OPACITIES IN CORE-COLLAPSE SUPERNOVA SIMULATIONS
Energy Technology Data Exchange (ETDEWEB)
Lentz, Eric J. [Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996-1200 (United States); Mezzacappa, Anthony; Hix, W. Raphael [Physics Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831-6354 (United States); Messer, O. E. Bronson [National Center for Computational Sciences, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831-6164 (United States); Bruenn, Stephen W., E-mail: elentz@utk.edu [Department of Physics, Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431-0991 (United States)
2012-11-20
We have conducted a series of numerical experiments using spherically symmetric, general relativistic, neutrino radiation hydrodynamics with the code Agile-BOLTZTRAN to examine the effects of modern neutrino opacities on the development of supernova simulations. We test the effects of opacities by removing opacities or by undoing opacity improvements for individual opacities and groups of opacities. We find that improvements to electron capture (EC) on nuclei, namely EC on an ensemble of nuclei using modern nuclear structure models rather than the simpler independent-particle approximation (IPA) for EC on a mean nucleus, plays the most important role during core collapse of all tested neutrino opacities. Low-energy neutrinos emitted by modern nuclear EC preferentially escape during collapse without the energy downscattering on electrons required to enhance neutrino escape and deleptonization for the models with IPA nuclear EC. During shock breakout the primary influence on the emergent neutrinos arises from non-isoenergetic scattering (NIS) on electrons. For the accretion phase, NIS on free nucleons and pair emission by e {sup +} e {sup -} annihilation have the largest impact on the neutrino emission and shock evolution. Other opacities evaluated, including nucleon-nucleon bremsstrahlung and especially neutrino-positron scattering, have little measurable impact on neutrino emission or shock dynamics. Modern treatments of nuclear EC, e {sup +} e {sup -}-annihilation pair emission, and NIS on electrons and free nucleons are critical elements of core-collapse simulations of all dimensionality.
A model for particle acceleration in lower hybrid collapse
International Nuclear Information System (INIS)
Retterer, J.M.
1997-01-01
A model for particle acceleration during the nonlinear collapse of lower hybrid waves is described. Using the Musher-Sturman wave equation to describe the effects of nonlinear processes and a velocity diffusion equation for the particle velocity distribution, the model self-consistently describes the exchange of energy between the fields and the particles in the local plasma. Two-dimensional solutions are presented for the modulational instability of a plane wave and the collapse of a cylindrical wave packet. These calculations were motivated by sounding rocket observations in the vicinity of auroral arcs in the Earth close-quote s ionosphere, which have revealed the existence of large-amplitude lower-hybrid wave packets associated with ions accelerated to energies of 100 eV. The scaling of the sizes of these wave packets is consistent with the theory of lower-hybrid collapse and the observed lower-hybrid field amplitudes are adequate to accelerate the ionospheric ions to the observed energies
HYPERCRITICAL ACCRETION, INDUCED GRAVITATIONAL COLLAPSE, AND BINARY-DRIVEN HYPERNOVAE
Energy Technology Data Exchange (ETDEWEB)
Fryer, Chris L. [CCS-2, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Rueda, Jorge A.; Ruffini, Remo [ICRANet, Piazza della Repubblica 10, I-65122 Pescara (Italy)
2014-10-01
The induced gravitational collapse (IGC) paradigm has been successfully applied to the explanation of the concomitance of gamma-ray bursts (GRBs) with supernovae (SNe) Ic. The progenitor is a tight binary system composed of a carbon-oxygen (CO) core and a neutron star (NS) companion. The explosion of the SN leads to hypercritical accretion onto the NS companion, which reaches the critical mass, hence inducing its gravitational collapse to a black hole (BH) with consequent emission of the GRB. The first estimates of this process were based on a simplified model of the binary parameters and the Bondi-Hoyle-Lyttleton accretion rate. We present here the first full numerical simulations of the IGC phenomenon. We simulate the core-collapse and SN explosion of CO stars to obtain the density and ejection velocity of the SN ejecta. We follow the hydrodynamic evolution of the accreting material falling into the Bondi-Hoyle surface of the NS all the way up to its incorporation in the NS surface. The simulations go up to BH formation when the NS reaches the critical mass. For appropriate binary parameters, the IGC occurs in short timescales ∼10{sup 2}-10{sup 3} s owing to the combined effective action of the photon trapping and the neutrino cooling near the NS surface. We also show that the IGC scenario leads to a natural explanation for why GRBs are associated only with SNe Ic with totally absent or very little helium.
RADIO TRANSIENTS FROM ACCRETION-INDUCED COLLAPSE OF WHITE DWARFS
International Nuclear Information System (INIS)
Moriya, Takashi J.
2016-01-01
We investigate observational properties of accretion-induced collapse (AIC) of white dwarfs (WDs) in radio frequencies. If AIC is triggered by accretion from a companion star, a dense circumstellar medium can be formed around the progenitor system. Then, the ejecta from AIC collide with the dense circumstellar medium, creating a strong shock. The strong shock can produce synchrotron emission that can be observed in radio frequencies. Even if AIC occurs as a result of WD mergers, we argue that AIC may cause fast radio bursts (FRBs) if a certain condition is satisfied. If AIC forms neutron stars (NSs) that are so massive that rotation is required to support themselves (i.e., supramassive NSs), the supramassive NSs may immediately lose their rotational energy by the r-mode instability and collapse to black holes. If the collapsing supramassive NSs are strongly magnetized, they may emit FRBs, as previously proposed. The AIC radio transients from single-degenerate systems may be detected in future radio transient surveys like the Very Large Array Sky Survey or the Square Kilometer Array transient survey. Because AIC has been proposed as a source of gravitational waves (GWs), GWs from AIC may be accompanied by radio-bright transients that can be used to confirm the AIC origin of observed GWs.
RADIO TRANSIENTS FROM ACCRETION-INDUCED COLLAPSE OF WHITE DWARFS
Energy Technology Data Exchange (ETDEWEB)
Moriya, Takashi J., E-mail: takashi.moriya@nao.ac.jp [Division of Theoretical Astronomy, National Astronomical Observatory of Japan, National Institutes of Natural Sciences, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan)
2016-10-20
We investigate observational properties of accretion-induced collapse (AIC) of white dwarfs (WDs) in radio frequencies. If AIC is triggered by accretion from a companion star, a dense circumstellar medium can be formed around the progenitor system. Then, the ejecta from AIC collide with the dense circumstellar medium, creating a strong shock. The strong shock can produce synchrotron emission that can be observed in radio frequencies. Even if AIC occurs as a result of WD mergers, we argue that AIC may cause fast radio bursts (FRBs) if a certain condition is satisfied. If AIC forms neutron stars (NSs) that are so massive that rotation is required to support themselves (i.e., supramassive NSs), the supramassive NSs may immediately lose their rotational energy by the r-mode instability and collapse to black holes. If the collapsing supramassive NSs are strongly magnetized, they may emit FRBs, as previously proposed. The AIC radio transients from single-degenerate systems may be detected in future radio transient surveys like the Very Large Array Sky Survey or the Square Kilometer Array transient survey. Because AIC has been proposed as a source of gravitational waves (GWs), GWs from AIC may be accompanied by radio-bright transients that can be used to confirm the AIC origin of observed GWs.
Axisymmetric core collapse simulations using characteristic numerical relativity
International Nuclear Information System (INIS)
Siebel, Florian; Mueller, Ewald; Font, Jose A.; Papadopoulos, Philippos
2003-01-01
We present results from nonrotating axisymmetric stellar core collapse simulations in general relativity. Our hydrodynamics code has proved robust and accurate enough to allow for a detailed analysis of the global dynamics of the collapse. Contrary to traditional approaches based on the 3+1 formulation of the gravitational field equations, our framework uses a foliation based on a family of outgoing light cones, emanating from a regular center, and terminating at future null infinity. Such a coordinate system is well adapted to the study of interesting dynamical spacetimes in relativistic astrophysics such as stellar core collapse and neutron star formation. Perhaps most importantly this procedure allows for the extraction of gravitational waves at future null infinity, along with the commonly used quadrupole formalism for the gravitational wave extraction. Our results concerning the gravitational wave signals show noticeable disagreement when those are extracted by computing the Bondi news at future null infinity on the one hand and by using the quadrupole formula on the other hand. We have a strong indication that for our setup the quadrupole formula on the null cone does not lead to physical gravitational wave signals. The Bondi gravitational wave signals extracted at infinity show typical oscillation frequencies of about 0.5 kHz
Multidimensional simulations of core-collapse supernovae with CHIMERA
Lentz, Eric J.; Bruenn, S. W.; Yakunin, K.; Endeve, E.; Blondin, J. M.; Harris, J. A.; Hix, W. R.; Marronetti, P.; Messer, O. B.; Mezzacappa, A.
2014-01-01
Core-collapse supernovae are driven by a multidimensional neutrino radiation hydrodynamic (RHD) engine, and full simulation requires at least axisymmetric (2D) and ultimately symmetry-free 3D RHD simulation. We present recent and ongoing work with our multidimensional RHD supernova code CHIMERA to understand the nature of the core-collapse explosion mechanism and its consequences. Recently completed simulations of 12-25 solar mass progenitors(Woosley & Heger 2007) in well resolved (0.7 degrees in latitude) 2D simulations exhibit robust explosions meeting the observationally expected explosion energy. We examine the role of hydrodynamic instabilities (standing accretion shock instability, neutrino driven convection, etc.) on the explosion dynamics and the development of the explosion energy. Ongoing 3D and 2D simulations examine the role that simulation resolution and the removal of the imposed axisymmetry have in the triggering and development of an explosion from stellar core collapse. Companion posters will explore the gravitational wave signals (Yakunin et al.) and nucleosynthesis (Harris et al.) of our simulations.
Topographic stress and catastrophic collapse of volcanic islands
Moon, S.; Perron, J. T.; Martel, S. J.
2017-12-01
Flank collapse of volcanic islands can devastate coastal environments and potentially induce tsunamis. Previous studies have suggested that factors such as volcanic eruption events, gravitational spreading, the reduction of material strength due to hydrothermal alteration, steep coastal cliffs, or sea level change may contribute to slope instability and induce catastrophic collapse of volcanic flanks. In this study, we examine the potential influence of three-dimensional topographic stress perturbations on flank collapses of volcanic islands. Using a three-dimensional boundary element model, we calculate subsurface stress fields for the Canary and Hawaiian islands to compare the effects of stratovolcano and shield volcano shapes on topographic stresses. Our model accounts for gravitational stresses from the actual shapes of volcanic islands, ambient stress in the underlying plate, and the influence of pore water pressure. We quantify the potential for slope failure of volcanic flanks using a combined model of three-dimensional topographic stress and slope stability. The results of our analysis show that subsurface stress fields vary substantially depending on the shapes of volcanoes, and can influence the size and spatial distribution of flank failures.
Jim Peters' collapse in the 1954 Vancouver Empire Games marathon.
Noakes, Tim; Mekler, Jackie; Pedoe, Dan Tunstall
2008-08-01
On 7 August 1954, the world 42 km marathon record holder, Jim Peters, collapsed repeatedly during the final 385 metres of the British Empire and Commonwealth Games marathon held in Vancouver, Canada. It has been assumed that Peters collapsed from heatstroke because he ran too fast and did not drink during the race, which was held in windless, cloudless conditions with a dry-bulb temperature of 28 degrees C. Hospital records made available to us indicate that Peters might not have suffered from exertional heatstroke, which classically produces a rectal temperature > 42 degrees C, cerebral effects and, usually, a fatal outcome without vigorous active cooling. Although Peters was unconscious on admission to hospital approximately 60 minutes after he was removed from the race, his rectal temperature was 39.4 degrees C and he recovered fully, even though he was managed conservatively and not actively cooled. We propose that Peters' collapse was more likely due to a combination of hyperthermia-induced fatigue which caused him to stop running; exercise-associated postural hypotension as a result of a low peripheral vascular resistance immediately he stopped running; and combined cerebral effects of hyperthermia, hypertonic hypernatraemia associated with dehydration, and perhaps undiagnosed hypoglycaemia. But none of these conditions should cause prolonged unconsciousness, raising the possibility that Peters might have suffered from a transient encephalopathy, the exact nature of which is not understood.
Crucial Physical Dependencies of the Core-Collapse Supernova Mechanism
Burrows, A.; Vartanyan, D.; Dolence, J. C.; Skinner, M. A.; Radice, D.
2018-02-01
We explore with self-consistent 2D F ornax simulations the dependence of the outcome of collapse on many-body corrections to neutrino-nucleon cross sections, the nucleon-nucleon bremsstrahlung rate, electron capture on heavy nuclei, pre-collapse seed perturbations, and inelastic neutrino-electron and neutrino-nucleon scattering. Importantly, proximity to criticality amplifies the role of even small changes in the neutrino-matter couplings, and such changes can together add to produce outsized effects. When close to the critical condition the cumulative result of a few small effects (including seeds) that individually have only modest consequence can convert an anemic into a robust explosion, or even a dud into a blast. Such sensitivity is not seen in one dimension and may explain the apparent heterogeneity in the outcomes of detailed simulations performed internationally. A natural conclusion is that the different groups collectively are closer to a realistic understanding of the mechanism of core-collapse supernovae than might have seemed apparent.
Tunneling into microstate geometries: quantum effects stop gravitational collapse
International Nuclear Information System (INIS)
Bena, Iosif; Mayerson, Daniel R.; Puhm, Andrea; Vercnocke, Bert
2016-01-01
Collapsing shells form horizons, and when the curvature is small classical general relativity is believed to describe this process arbitrarily well. On the other hand, quantum information theory based (fuzzball/firewall) arguments suggest the existence of some structure at the black hole horizon. This structure can only form if classical general relativity stops being the correct description of the collapsing shell before it reaches the horizon size. We present strong evidence that classical general relativity can indeed break down prematurely, by explicitly computing the quantum tunneling amplitude of a collapsing shell of branes into smooth horizonless microstate geometries. We show that the amplitude for tunneling into microstate geometries with a large number of topologically non-trivial cycles is parametrically larger than e −S BH , which indicates that the shell can tunnel into a horizonless configuration long before the horizon has any chance to form. We also use this technology to investigate the tunneling of M2 branes into LLM bubbling geometries.
BLACK HOLE FORMATION IN FAILING CORE-COLLAPSE SUPERNOVAE
International Nuclear Information System (INIS)
O'Connor, Evan; Ott, Christian D.
2011-01-01
We present results of a systematic study of failing core-collapse supernovae and the formation of stellar-mass black holes (BHs). Using our open-source general-relativistic 1.5D code GR1D equipped with a three-species neutrino leakage/heating scheme and over 100 presupernova models, we study the effects of the choice of nuclear equation of state (EOS), zero-age main sequence (ZAMS) mass and metallicity, rotation, and mass-loss prescription on BH formation. We find that the outcome, for a given EOS, can be estimated, to first order, by a single parameter, the compactness of the stellar core at bounce. By comparing protoneutron star (PNS) structure at the onset of gravitational instability with solutions of the Tolman-Oppenheimer-Volkof equations, we find that thermal pressure support in the outer PNS core is responsible for raising the maximum PNS mass by up to 25% above the cold NS value. By artificially increasing neutrino heating, we find the critical neutrino heating efficiency required for exploding a given progenitor structure and connect these findings with ZAMS conditions, establishing, albeit approximately, for the first time based on actual collapse simulations, the mapping between ZAMS parameters and the outcome of core collapse. We also study the effect of progenitor rotation and find that the dimensionless spin of nascent BHs may be robustly limited below a* = Jc/GM 2 = 1 by the appearance of nonaxisymmetric rotational instabilities.
Nonlinear analysis of collapse mechanism in superstructure vehicle
Nor, M. K. Mohd; Ho, C. S.; Ma'at, N.
2017-04-01
The EU directive 2001/85/EC is an official European text which describes the specifications for "single deck class II and III vehicles" required to be approved by the regulation UN/ECE no.66 (R66). To prevent the catastrophic consequences by occupant during an accident, the Malaysian government has reinforced the same regulation upon superstructure construction. This paper discusses collapse mechanism analysis of a superstructure vehicle using a Crash D nonlinear analysis computer program based on this regulation. The analysis starts by hand calculation to define the required energy absorption by the chosen structure. Simple calculations were then performed to define the weakest collapse mechanism after undesirable collapse modes are eliminated. There are few factors highlighted in this work to pass the regulation. Using the selected cross section, Crash D simulation showed a good result. Generally, the deformation is linearly correlates to the energy absorption for the structure with low stiffness. Failure of critical members such as vertical lower side wall must be avoided to sustain safety of the passenger compartment and prevent from severe and fatal injuries to the trapped occupant.
Research in nuclear astrophysics: stellar collapse and supernovae. Progress report
International Nuclear Information System (INIS)
Burrows, A.; Lattimer, J.M.; Yahil, A.
1986-01-01
The interaction between nuclear theory and some outstanding problems in astrophysics is examined. The chief emphasis of our program is on stellar collapse, supernovae and neutron star formation. Central to these topics are the parallel development of both an equation of state of hot, dense matter and a novel type of hydrodynamical code. The LLPR compressible liquid drop model is the basis of the former. We are refining it to include both curvature corrections to the surface energy nuclear force parameters which are in better agreement with recently determined experimental quantities. Our study of the equation of state has the added bonus that our results can be used to analyze intermediate energy heavy ion collisions, which, in turn, may illuminate the nucleon-nucleon force. The hydrodynamical code includes a fast, but accurate, approximation to the complete LLPR equation of state. We model not only the stellar collapse leading up to a supernova, but also the quasi-static deleptonization and cooling stages of the nascent neutron star. Our detailed studies of the role of neutrinos in stellar collapse and neutron star formation concentrate on their detectability and signatures. Complementary studies include modelling both mass accretion in the nuclei of galaxies and investigating both galaxy clustering and the large scale structure of the universe. These studies are intended to shed light on the early history of the universe, in which both nuclear and elementary particle physics play a crucial role
Research in nuclear astrophysics: stellar collapse and supernovae. Progress report
International Nuclear Information System (INIS)
Burrows, A.; Lattimer, J.M.; Yahil, A.
1984-01-01
The interaction between nuclear theory and some outstanding problems in astrophysics is examined. The chief emphasis of our program is on stellar collapse, supernovae and neutron star formation. Central to these topics are the parallel development of the equation of state of hot, dense matter and a novel type of hydrodynamical code. The LLPR compressible liquid drop model forms the basis for the former, and we propose to further refine it by including curvature corrections to the surface energy and by considering other nuclear force parameters which are in better agreement with experimentally determined quantities. The development of the equation of state has another bonus - it can be used to analyze intermediate energy heavy ion collisions, which, in turn, may illuminate the nucleon-nucleon force. The hydrodynamical code includes detailed neutrino transport and a fast, but accurate, approximation to the complete LLPR equation of state, which is necessary for numerical use. We propose to model not only the stellar collapse leading up to a supernova, but also the quasi-static deleptonization and cooling stages of the nascent neutron star. Our detailed studies of the role of neutrinos in stellar collapse and neutron star formation concentrate on their detectability and signatures - after all, neutrinos are the only direct method of observationally checking supernova theory. Complementary studies include modelling both mass accretion in the nuclei of galaxies (which is probably responsible for the quasar phenomenon) and investigations of galaxy clustering and the large scale structure of the universe
Collapse of differentially rotating neutron stars and cosmic censorship
International Nuclear Information System (INIS)
Giacomazzo, Bruno; Rezzolla, Luciano; Stergioulas, Nikolaos
2011-01-01
We present new results on the dynamics and gravitational-wave emission from the collapse of differentially rotating neutron stars. We have considered a number of polytropic stellar models having different values of the dimensionless angular momentum J/M 2 , where J and M are the asymptotic angular momentum and mass of the star, respectively. For neutron stars with J/M 2 2 >1, i.e. 'supra-Kerr' models, on the other hand, we were not able to find models that are dynamically unstable and all of the computed supra-Kerr models were found to be far from the stability threshold. For these models a gravitational collapse is possible only after a very severe and artificial reduction of the pressure, which then leads to a torus developing nonaxisymmetric instabilities and eventually contracting to a stable axisymmetric stellar configuration. While this does not exclude the possibility that a naked singularity can be produced by the collapse of a differentially rotating star, it also suggests that cosmic censorship is not violated and that generic conditions for a supra-Kerr progenitor do not lead to a naked singularity.
Relativistic structure, stability, and gravitational collapse of charged neutron stars
International Nuclear Information System (INIS)
Ghezzi, Cristian R.
2005-01-01
Charged stars have the potential of becoming charged black holes or even naked singularities. We present a set of numerical solutions of the Tolman-Oppenheimer-Volkov equations that represents spherical charged compact stars in hydrostatic equilibrium. The stellar models obtained are evolved forward in time integrating the Einstein-Maxwell field equations. We assume an equation of state of a neutron gas at zero temperature. The charge distribution is taken as being proportional to the rest mass density distribution. The set of solutions present an unstable branch, even with charge-to-mass ratios arbitrarily close to the extremum case. We perform a direct check of the stability of the solutions under strong perturbations and for different values of the charge-to-mass ratio. The stars that are in the stable branch oscillate and do not collapse, while models in the unstable branch collapse directly to form black holes. Stars with a charge greater than or equal to the extreme value explode. When a charged star is suddenly discharged, it does not necessarily collapse to form a black hole. A nonlinear effect that gives rise to the formation of a shell of matter (in supermassive stars), is negligible in the present simulations. The results are in agreement with the third law of black hole thermodynamics and with the cosmic censorship conjecture
Gravitational instability in a primordial collapsing gas cloud
International Nuclear Information System (INIS)
Lacey, C.G.
1989-01-01
This paper presents an analysis of the linear evolution of short-wavelength perturbations in a background fluid flow which is undergoing gravitational collapse on large scales. Local evolution equations for perturbations to an arbitrary flow are derived in the linear regime and the short-wavelength limit. Local perturbation behavior in an inhomogeneous flow is found to be the same as that in a homogeneous anisotropic flow having the same local velocity field. Background flows in which the scale factors vary as power laws in time are considered to illustrate the relative effects of self-gravity, pressure and kinematics of the background flow on the density perturbation evolution. Perturbation analyses are then presented for more realistic background flows arising from the evolution into the nonlinear regime of initially small density perturbations in an isotropically expanding cosmological model. For low-pressure, inhomogeneous collapses, kinematic effects tend to dominate over self-gravity in driving perturbation growth as the collapse proceeds. 28 references
Horn, Jacqueline; Friess, Wolfgang
2018-01-01
The collapse temperature (Tc) and the glass transition temperature of freeze-concentrated solutions (Tg’) as well as the crystallization behavior of excipients are important physicochemical characteristics which guide the cycle development in freeze-drying. The most frequently used methods to determine these values are differential scanning calorimetry (DSC) and freeze-drying microscopy (FDM). The objective of this study was to evaluate the optical fiber system (OFS) unit as alternative tool for the analysis of Tc, Tg’ and crystallization events. The OFS unit was also tested as a potential online monitoring tool during freeze-drying. Freeze/thawing and freeze-drying experiments of sucrose, trehalose, stachyose, mannitol and highly concentrated IgG1 and lysozyme solutions were carried out and monitored by the OFS. Comparative analyses were performed by DSC and FDM. OFS and FDM results correlated well. The crystallization behavior of mannitol could be monitored by the OFS during freeze/thawing as it can be done by DSC. Online monitoring of freeze-drying runs detected collapse of amorphous saccharide matrices. The OFS unit enabled the analysis of both Tc and crystallization processes, which is usually carried out by FDM and DSC. The OFS can hence be used as novel measuring device. Additionally, detection of these events during lyophilization facilitate online-monitoring. Thus the OFS is a new beneficial tool for the development and monitoring of freeze-drying processes.
Directory of Open Access Journals (Sweden)
Jacqueline Horn
2018-01-01
Full Text Available The collapse temperature (Tc and the glass transition temperature of freeze-concentrated solutions (Tg' as well as the crystallization behavior of excipients are important physicochemical characteristics which guide the cycle development in freeze-drying. The most frequently used methods to determine these values are differential scanning calorimetry (DSC and freeze-drying microscopy (FDM. The objective of this study was to evaluate the optical fiber system (OFS unit as alternative tool for the analysis of Tc, Tg' and crystallization events. The OFS unit was also tested as a potential online monitoring tool during freeze-drying. Freeze/thawing and freeze-drying experiments of sucrose, trehalose, stachyose, mannitol, and highly concentrated IgG1 and lysozyme solutions were carried out and monitored by the OFS. Comparative analyses were performed by DSC and FDM. OFS and FDM results correlated well. The crystallization behavior of mannitol could be monitored by the OFS during freeze/thawing as it can be done by DSC. Online monitoring of freeze-drying runs detected collapse of amorphous saccharide matrices. The OFS unit enabled the analysis of both Tc and crystallization processes, which is usually carried out by FDM and DSC. The OFS can hence be used as novel measuring device. Additionally, detection of these events during lyophilization facilitates online-monitoring. Thus the OFS is a new beneficial tool for the development and monitoring of freeze-drying processes.
Collapsing supra-massive magnetars: FRBs, the repeating FRB121102 and GRBs
Gupta, Patrick Das; Saini, Nidhi
2018-02-01
Fast Radio Bursts (FRBs) last for ˜ few milli-seconds and, hence, are likely to arise from the gravitational collapse of supra-massive, spinning neutron stars after they lose the centrifugal support (Falcke & Rezzolla 2014). In this paper, we provide arguments to show that the repeating burst, FRB 121102, can also be modeled in the collapse framework provided the supra-massive object implodes either into a Kerr black hole surrounded by highly magnetized plasma or into a strange quark star. Since the estimated rates of FRBs and SN Ib/c are comparable, we put forward a common progenitor scenario for FRBs and long GRBs in which only those compact remnants entail prompt γ -emission whose kick velocities are almost aligned or anti-aligned with the stellar spin axes. In such a scenario, emission of detectable gravitational radiation and, possibly, of neutrinos are expected to occur during the SN Ib/c explosion as well as, later, at the time of magnetar implosion.
International Nuclear Information System (INIS)
Kim, Jin-Weon; Na, Man-Gyun; Park, Chi-Yong
2008-01-01
The objective of this study was to investigate the effect of local wall thinning on the collapse behavior of pipe elbows subjected to a combined internal pressure and in-plane bending load. This study evaluated the global deformation behavior and collapse moment of the elbows, which contained various types of local wall-thinning defects at their intrados or extrados, using three-dimensional elastic-plastic finite element analysis. The analysis results showed that the global deformation behavior of locally wall-thinned elbows was largely governed by the mode of the bending and the elbow geometry rather than the wall-thinning parameters, except for elbows with considerably large and deep wall thinning that showed plastic instabilities induced by local buckling and plastic collapsing in the thinned area. The reduction in the collapse moment with wall-thinning depth was considerable when local buckling occurred in the thinned areas, whereas the effect of the thinning depth was small when ovalization occurred. The effects of the circumferential thinning angle and thinning length on the collapse moment of elbows were not major for shallow wall-thinning cases. For deeper wall-thinning cases, however, their effects were significant and the dependence of collapse moment on the axial thinning length was governed by the stress type applied to the wall-thinned area. Typically, the reduction in the collapse moment due to local wall thinning was clearer when the thinning defect was located at the intrados rather than the extrados, and it was apparent for elbows with larger bend radius
Collapse and Revival of an Atomic Beam Interacting with a Coherent State Light Field
International Nuclear Information System (INIS)
Ben, Li; Jing-Biao, Chen
2009-01-01
We report on the phenomena of the periodic spontaneous collapse and revival in the dynamics of an atomic beam interacting with a single-mode and coherent-state light field. Conventional collapse and revival by Eberly et al. [Phys. Rev. Lett. 44 (1980) 1323] are presented in the case of the evolution with time of the population inversion. Here, we study the evolution with coupling strength of population inversion. We define the collapse and revival coupling strengths as characteristic parameters to describe the above collapse and revival. Furthermore, we present the analytic formulas for the population inversion, the collapse and revival coupling strengths
Structural elements of collapses in shallow water flows with horizontally nonuniform density
Energy Technology Data Exchange (ETDEWEB)
Goncharov, V. P., E-mail: v.goncharov@rambler.ru [Russian Academy of Sciences, Obukhov Institute of Atmospheric Physics (Russian Federation); Pavlov, V. I., E-mail: Vadim.Pavlov@univ-lille1.fr [Universite de Lille 1, UFR de Mathematiques Pures et Appliquees-LML UMR 8107 (France)
2013-10-15
The mechanisms and structural elements of instability whose evolution results in the occurrence of the collapse are studied in the scope of the rotating shallow water model with a horizontally nonuniform density. The diagram stability based on the integral collapse criterion is suggested to explain system behavior in the space of constants of motion. Analysis of the instability shows that two collapse scenarios are possible. One scenario implies anisotropic collapse during which the contact area of a collapsing drop-like fragment with the bottom contracts into a rotating segment. The other implies isotropic contraction of the area into a point.