WorldWideScience

Sample records for etched ferroelectric thin-film

  1. Performance Enhancement of Tunable Bandpass Filters Using Selective Etched Ferroelectric Thin Films

    Science.gov (United States)

    Miranda, Felix A.; Mueller, Carl H.; VanKeuls, Fred W.; Subramanyam, Guru; Vignesparamoorthy, Sivaruban

    2003-01-01

    The inclusion of voltage-tunable barium strontium titanate (BSTO) thin films into planar band pass filters offers tremendous potential to increase their versatility. The ability to tune the passband so as to correct for minor deviations in manufacturing tolerances, or to completely reconfigure the operating frequencies of a microwave communication system, are highly sought-after goals. However, use of ferroelectric films in these devices results in higher dielectric losses, which in turn increase the insertion loss and decrease the quality factors of the filters. This study explores the use of patterned ferroelectric layers to minimize dielectric losses without degrading tunability. Patterning the ferroelectric layers enables us to constrict the width of the ferroelectric layers between the coupled microstrip lines, and minimize losses due to ferroelectric layers. Coupled one-pole microstrip bandpass filters with fundamental resonances at approx. 7.2 GHz and well defined harmonic resonances at approx. 14.4 and approx. 21.6 GHz, were designed, simulated and tested. For one of the filters, experimental results verified that its center frequency was tunable by 528 MHz at a center frequency of 21.957 GHz, with insertion losses varying from 4.3 to 2.5 dB, at 0 and 3.5 V/micron, respectively. These data demonstrate that the tuning-to-loss figure of merit of tunable microstrip filters can be greatly improved using patterned ferroelectric thin films as the tuning element, and tuning can be controlled by engineering the ferroelectric constriction in the coupled sections.

  2. Thermally tunable ferroelectric thin film photonic crystals.

    Energy Technology Data Exchange (ETDEWEB)

    Lin, P. T.; Wessels, B. W.; Imre, A.; Ocola, L. E.; Northwestern Univ.

    2008-01-01

    Thermally tunable PhCs are fabricated from ferroelectric thin films. Photonic band structure and temperature dependent diffraction are calculated by FDTD. 50% intensity modulation is demonstrated experimentally. This device has potential in active ultra-compact optical circuits.

  3. Nanomechanics of Ferroelectric Thin Films and Heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yulan; Hu, Shenyang Y.; Chen , L.Q.

    2016-08-31

    The focus of this chapter is to provide basic concepts of how external strains/stresses altering ferroelectric property of a material and how to evaluate quantitatively the effect of strains/stresses on phase stability, domain structure, and material ferroelectric properties using the phase-field method. The chapter starts from a brief introduction of ferroelectrics and the Landau-Devinshire description of ferroelectric transitions and ferroelectric phases in a homogeneous ferroelectric single crystal. Due to the fact that ferroelectric transitions involve crystal structure change and domain formation, strains and stresses can be produced inside of the material if a ferroelectric transition occurs and it is confined. These strains and stresses affect in turn the domain structure and material ferroelectric properties. Therefore, ferroelectrics and strains/stresses are coupled to each other. The ferroelectric-mechanical coupling can be used to engineer the material ferroelectric properties by designing the phase and structure. The followed section elucidates calculations of the strains/stresses and elastic energy in a thin film containing a single domain, twinned domains to complicated multidomains constrained by its underlying substrate. Furthermore, a phase field model for predicting ferroelectric stable phases and domain structure in a thin film is presented. Examples of using substrate constraint and temperature to obtain interested ferroelectric domain structures in BaTiO3 films are demonstrated b phase field simulations.

  4. Ferroelectricity in Sodium Nitrite Thin Films | Britwum | Journal of the ...

    African Journals Online (AJOL)

    Investigations have been conducted on the ferroelectric property of thin films of NaNO2. The thin films were prepared with the dip coating technique. The phase transition was investigated by observing the change in the dielectric constant with temperature change. The presence of ferro-electricity was investigated with a ...

  5. Dimensional scaling of perovskite ferroelectric thin films

    Science.gov (United States)

    Keech, Ryan R.

    Dimensional size reduction has been the cornerstone of the exponential improvement in silicon based logic devices for decades. However, fundamental limits in the device physics were reached ˜2003, halting further reductions in clock speed without significant penalties in power consumption. This has motivated the research into next generation transistors and switching devices to reinstate the scaling laws for clock speed. This dissertation aims to support the scaling of devices that are based on ferroelectricity and piezoelectricity and to provide a roadmap for the corresponding materials performance. First, a scalable growth process to obtain highly {001}-oriented lead magnesium niobate - lead titanate (PMN-PT) thin films was developed, motivated by the high piezoelectric responses observed in bulk single crystals. It was found that deposition of a 2-3 nm thick PbO buffer layer on {111} Pt thin film bottom electrodes, prior to chemical solution deposition of PMN-PT reduces the driving force for Pb diffusion from the PMN-PT to the bottom electrode, and facilitates nucleation of {001}-oriented perovskite grains. Energy dispersive spectroscopy demonstrated that up to 10% of the Pb from a PMN-PT precursor solution may diffuse into the bottom electrode. PMN-PT grains with a mixed {101}/{111} orientation in a matrix of Pb-deficient pyrochlore phase were then promoted near the interface. When this is prevented, phase pure films with {001} orientation with Lotgering factors of 0.98-1.0, can be achieved. The resulting films of only 300 nm in thickness exhibit longitudinal effective d33,f coefficients of ˜90 pm/V and strain values of ˜1% prior to breakdown. 300 nm thick epitaxial and polycrystalline lead magnesium niobate - lead titanate (70PMN-30PT) blanket thin films were studied for the relative contributions to property thickness dependence from interfacial and grain boundary low permittivity layers. Epitaxial PMN-PT films were grown on SrRuO 3 /(001)SrTiO3, while

  6. Nanoscale phenomena in ferroelectric thin films

    Science.gov (United States)

    Ganpule, Chandan S.

    Ferroelectric materials are a subject of intense research as potential candidates for applications in non-volatile ferroelectric random access memories (FeRAM), piezoelectric actuators, infrared detectors, optical switches and as high dielectric constant materials for dynamic random access memories (DRAMs). With current trends in miniaturization, it becomes important that the fundamental aspects of scaling of ferroelectric and piezoelectric properties in these devices be studied thoroughly and their impact on the device reliability assessed. In keeping with this spirit of miniaturization, the dissertation has two broad themes: (a) Scaling of ferroelectric and piezoelectric properties and (b) The key reliability issue of retention loss. The thesis begins with a look at results on scaling studies of focused-ion-beam milled submicron ferroelectric capacitors using a variety of scanning probe characterization tools. The technique of piezoresponse microscopy, which is rapidly becoming an accepted form of domain imaging in ferroelectrics, has been used in this work for another very important application: providing reliable, repeatable and quantitative numbers for the electromechanical properties of submicron structures milled in ferroelectric films. This marriage of FIB and SPM based characterization of electromechanical and electrical properties has proven unbeatable in the last few years to characterize nanostructures qualitatively and quantitatively. The second half of this dissertation focuses on polarization relaxation in FeRAMs. In an attempt to understand the nanoscale origins of back-switching of ferroelectric domains, the time dependent relaxation of remnant polarization in epitaxial lead zirconate titanate (PbZr0.2Ti0.8O 3, PZT) ferroelectric thin films (used as a model system), containing a uniform 2-dimensional grid of 90° domains (c-axis in the plane of the film) has been examined using voltage modulated scanning force microscopy. A novel approach of

  7. Identifying intrinsic ferroelectricity of thin film with piezoresponse force microscopy

    Directory of Open Access Journals (Sweden)

    Zhao Guan

    2017-09-01

    Full Text Available Piezoresponse force microscopy (PFM is a powerful technique to characterize ferroelectric thin films by measuring the dynamic electromechanical response. The ferroelectricity is commonly demonstrated by the PFM hysteresis loops and a 180o phase difference of PFM images before and after poling. Such ferroelectric-like behaviors, however, recently are also found in many non-ferroelectrics. Consequently, it is still a challenge to identify intrinsic ferroelectricity in various kinds of thin films. Here, using PFM, we systematically studied the electromechanical responses in ferroelectric thin films with fast (BaTiO3 and slow (PVDF switch dynamics, and also in the non-ferroelectric (Al2O3 thin films. It is found that both of the ac voltage (Vac and pulsed dc voltage (Vdc play an important role in the PFM measurement. When the Vac amplitude is higher than a explicit threshold voltage (Vc, collapse of the PFM hysteresis loops is observed for the films with fast switch dynamics. By measuring PFM hysteresis loops at various Vdc frequencies, an explicit Vc could be found in ferroelectric rather than in non-ferroelectric. The existence of an explicit Vc as well as nonvolatile behavior is proposed as an important approach to unambiguously identify intrinsic ferroelectricity in materials regardless of switch dynamics.

  8. Ferroelectric Properties of Large Area Evaporated Vinylidene Fluoride Thin Films

    Science.gov (United States)

    Foreman, Keith; Poddar, Shashi; Workman, Adam; Callori, Sara; Ducharme, Stephen; Adenwalla, Shireen

    Organic electronics provide advantages in price, processing, and functionality. Poly(vinylidene fluoride) (PVDF) is a popular organic ferroelectric used a in wide variety of applications. The VDF oligomer features a higher surface charge density than PVDF and its copolymers and oligomer thin films can be deposited in vacuum, allowing for deposition on a metallic thin film without breaking vacuum. Despite these advantages, there has been little work towards employing the VDF oligomer in devices. Here, we report on stable and tunable ferroelectric behavior of large area VDF oligomer thin films and the interface with Co thin films. Pyroelectric measurements are used to identify the operating temperature of VDF oligomer-based devices and probe the stability of the ferroelectric polarization states over long periods of time. Using capacitance-voltage, current-voltage, and x-ray diffraction measurements, the remanent polarization and crystalline phase are reported, and the effects of annealing are clarified. X-ray photoelectron spectroscopy is used to characterize the VDF/Co interface. Finally, piezoresponse force microscopy is used to demonstrate large area ferroelectric domain writing VDF oligomer thin films. This work sets the stage for VDF oligomer based organic electronics. Supported by NSF ECCS-1101256 and MRSEC DMR-1420645.

  9. Nonlinear dielectric response in ferroelectric thin films

    Directory of Open Access Journals (Sweden)

    Lente, M. H.

    2004-08-01

    Full Text Available Electrical permittivity dependence on electric external bias field was investigated in PZT thin films. The results revealed the existence of two mechanisms contributing to the electrical permittivity. The first one was related to the domain reorientation, which was responsible for a strong no linear dielectric behavior, acting only during the poling process. The second mechanism was associated with the domain wall vibrations, which presented a reasonable linear electrical behavior with the applied bias field, contributing always to the permittivity independently of the poling state of the sample. The results also indicated that the gradual reduction of the permittivity with the increase of the bias field strength may be related to the gradual bending of the domain walls. It is believed that the domain wall bending induces a hardening and/or a thinning of the walls, thus reducing the electrical permittivity. A reinterpretation of the model proposed in the literature to explain the dielectric characteristics of ferroelectric materials at high electric field regime is proposed.

    Se ha estudiado la dependencia de la permitividad eléctrica con un campo bias externo en láminas delgadas de PZT. Los resultados revelaron la existencia de dos mecanismos que contribuyen a la permitividad eléctrica. El primero está relacionado con la reorientación de dominios, actúa sólo durante el proceso de polarización y es responsable de un comportamiento dieléctrico fuertemente no lineal. El segundo mecanismo se asocia a las vibraciones de las paredes de dominio, presentando un comportamiento eléctrico razonablemente lineal con el campo bias aplicado, contribuyendo siempre a la permitividad independientemente del estado de polarización de la muestra. Los resultados indicaron también que la reducción gradual de la permitividad con el aumento de la fuerza del campo bias podría estar relacionada con el “bending” gradual de las paredes de dominio

  10. Effect of microstructure on irradiated ferroelectric thin films

    Science.gov (United States)

    Brewer, Steven J.; Zhou, Hanhan; Williams, Samuel C.; Rudy, Ryan Q.; Rivas, Manuel; Polcawich, Ronald G.; Cress, Cory D.; Glaser, Evan R.; Paisley, Elizabeth A.; Ihlefeld, Jon F.; Jones, Jacob L.; Bassiri-Gharb, Nazanin

    2017-06-01

    This work investigates the role of microstructure on radiation-induced changes to the functional response of ferroelectric thin films. Chemical solution-deposited lead zirconate titanate thin films with columnar and equiaxed grain morphologies are exposed to a range of gamma radiation doses up to 10 Mrad and the resulting trends in functional response degradation are quantified using a previously developed phenomenological model. The observed trends of global degradation as well as local rates of defect saturation suggest strong coupling between ferroelectric thin film microstructure and material radiation hardness. Radiation-induced degradation of domain wall motion is thought to be the major contributor to the reduction in ferroelectric response. Lower rates of defect saturation are noted in samples with columnar grains, due to increased grain boundary density offering more sites to act as defect sinks, thus reducing the interaction of defects with functional material volume within the grain interior. Response trends for measurements at low electric field show substantial degradation of polarization and piezoelectric properties (up to 80% reduction in remanent piezoelectric response), while such effects are largely diminished at increased electric fields, indicating that the defects created/activated are primarily of low pinning energy. The correlation of film microstructure to radiation-induced changes to the functional response of ferroelectric thin films can be leveraged to tune and tailor the eventual properties of devices relying on these materials.

  11. Structural, dielectric and ferroelectric characterization of PZT thin films

    Directory of Open Access Journals (Sweden)

    Araújo E.B.

    1999-01-01

    Full Text Available In this work ferroelectric thin films of PZT were prepared by the oxide precursor method, deposited on Pt/Si substrate. Films of 0.5 mm average thickness were obtained. Electrical and ferroelectric characterization were carried out in these films. The measured value of the dielectric constant for films was 455. Ferroelectricity was confirmed by Capacitance-Voltage (C-V characteristics and P-E hysteresis loops. Remanent polarization for films presented value around 5.0 µC/cm2 and a coercive field of 88.8 kV/cm.

  12. Dynamics of ferroelastic domains in ferroelectric thin films.

    Science.gov (United States)

    Nagarajan, V; Roytburd, A; Stanishevsky, A; Prasertchoung, S; Zhao, T; Chen, L; Melngailis, J; Auciello, O; Ramesh, R

    2003-01-01

    Dynamics of domain interfaces in a broad range of functional thin-film materials is an area of great current interest. In ferroelectric thin films, a significantly enhanced piezoelectric response should be observed if non-180 degrees domain walls were to switch under electric field excitation. However, in continuous thin films they are clamped by the substrate, and therefore their contribution to the piezoelectric response is limited. In this paper we show that when the ferroelectric layer is patterned into discrete islands using a focused ion beam, the clamping effect is significantly reduced, thereby facilitating the movement of ferroelastic walls. Piezo-response scanning force microscopy images of such islands in PbZr0.2Ti0.8O3 thin films clearly point out that the 90 degrees domain walls can move. Capacitors 1 microm2 show a doubling of the remanent polarization at voltages higher than approximately 15 V, associated with 90 degrees domain switching, coupled with a d33 piezoelectric coefficient of approximately 250 pm V-1 at remanence, which is approximately three times the predicted value of 87 pm V-1 for a single domain single crystal.

  13. Pulse sharpening effects of thin film ferroelectric transmission lines

    Science.gov (United States)

    Sleezer, Robert J.

    Advances in material science have resulted in the development of electrically nonlinear high dielectric thin film ferroelectrics, which have led to new opportunities for the creation of novel devices. This dissertation investigated one such device: a low voltage nonlinear transmission line (NLTL). A finite element simulation of ferroelectric transmission lines showed that NLTLs are capable of creating shockwaves. Additionally, if the losses are kept sufficiently low, it was shown that voltage gain should be possible. Furthermore, a method of accounting for material dispersion was developed. Results from simulations including material dispersion showed that temporal solitons might be possible from a continuous ferroelectric based nonlinear transmission line. Fabrication of a thin film ferroelectric NLTL required the growth of a ferroelectric material on a conductive substrate. Barium titanate (BTO), which has been gaining popularity due to its high dielectric constant, strong nonlinearity, and lack of lead, was grown. Molecular beam epitaxy and sol-gel growth were both explored and sol-gel was chosen as the growth method for the final device, in part due to its ability to grow BTO thin films on highly conductive nickel substrates. Samples approximately 330 nm thick were grown by this method. Oxygen vacancies in the as grown BTO films were filled by annealing in low pressure oxygen environments. X-ray diffraction measurements were used to determine an O2 pressure for oxidation that was slightly less than the pressure at which NiO forms to ensure maximum filling of the vacancies in the BTO. Grown samples were successfully shown to have ferroelectric properties. A lumped element transmission line was fabricated using discrete capacitors and inductors with a sample as described above. Test capacitors were fabricated and used to determine the dielectric constant of the BTO thin film. This was used to select capacitor pad sizes and inductor values to create a 50 Ohm line

  14. Ferroelectric thin films using oxides as raw materials

    Directory of Open Access Journals (Sweden)

    E.B. Araújo

    1999-01-01

    Full Text Available This work describes an alternative method for the preparation of ferroelectric thin films based on pre-calcination of oxides, to be used as precursor material for a solution preparation. In order to show the viability of the proposed method, PbZr0.53Ti0.47O3 and Bi4Ti3O12 thin films were prepared on fused quartz and Si substrates. The results were analyzed by X-ray Diffraction (XRD, Scanning Electron Microscopy (SEM, Infrared Spectroscopy (IR and Rutherford Backscattering Spectroscopy (RBS. The films obtained show good quality, homogeneity and the desired stoichiometry. The estimated thickness for one layer deposition was approximately 1000 Å and 1500 Å for Bi4Ti3O12 and PbZr0.53Ti0.47O3 films, respectively.

  15. Characterisation of ferroelectric bulk materials and thin films

    CERN Document Server

    Cain, Markys G

    2014-01-01

    This book presents a comprehensive review of the most important methods used in the characterisation of piezoelectric, ferroelectric and pyroelectric materials. It covers techniques for the analysis of bulk materials and thick and thin film materials and devices. There is a growing demand by industry to adapt and integrate piezoelectric materials into ever smaller devices and structures. Such applications development requires the joint development of reliable, robust, accurate and - most importantly - relevant and applicable measurement and characterisation methods and models. In the past f

  16. Effects on Ferroelectric Thin-Film Stacks and Devices for Piezoelectric MEMS Applications at Varied Total Ionizing Dose (TID)

    Science.gov (United States)

    2017-03-01

    Effects on Ferroelectric Thin- Film Stacks and Devices for Piezoelectric MEMS Applications at Varied Total Ionizing Dose (TID) Manuel Rivas1...Atlanta, GA, USA, 30332 Abstract: Lead zirconate titanate (PZT) based thin films play a key role in a wide variety of applications due to its...strain; ferroelectric; dielectric; piezoelectric Introduction Ferroelectric thin films and devices are vital components for numerous

  17. Discriminator Stabilized Superconductor/Ferroelectric Thin Film Local Oscillator

    Science.gov (United States)

    Romanofsky, Robert R. (Inventor); Miranda, Felix A. (Inventor)

    2000-01-01

    A tunable local oscillator with a tunable circuit that includes a resonator and a transistor as an active element for oscillation. Tuning of the circuit is achieved with an externally applied dc bias across coupled lines on the resonator. Preferably the resonator is a high temperature superconductor microstrip ring resonator with integral coupled lines formed over a thin film ferroelectric material. A directional coupler samples the output of the oscillator which is fed into a diplexer for determining whether the oscillator is performing at a desired frequency. The high-pass and lowpass outputs of the diplexer are connected to diodes respectively for inputting the sampled signals into a differential operational amplifier. The amplifier compares the sampled signals and emits an output signal if there is a difference between the resonant and crossover frequencies. Based on the sampled signal, a bias supplied to the ring resonator is either increased or decreased for raising or lowering the resonant frequency by decreasing or increasing, respectively, the dielectric constant of the ferroelectric.

  18. Quinuclidinium salt ferroelectric thin-film with duodecuple-rotational polarization-directions

    Science.gov (United States)

    You, Yu-Meng; Tang, Yuan-Yuan; Li, Peng-Fei; Zhang, Han-Yue; Zhang, Wan-Ying; Zhang, Yi; Ye, Heng-Yun; Nakamura, Takayoshi; Xiong, Ren-Gen

    2017-04-01

    Ferroelectric thin-films are highly desirable for their applications on energy conversion, data storage and so on. Molecular ferroelectrics had been expected to be a better candidate compared to conventional ferroelectric ceramics, due to its simple and low-cost film-processability. However, most molecular ferroelectrics are mono-polar-axial, and the polar axes of the entire thin-film must be well oriented to a specific direction to realize the macroscopic ferroelectricity. To align the polar axes, an orientation-controlled single-crystalline thin-film growth method must be employed, which is complicated, high-cost and is extremely substrate-dependent. In this work, we discover a new molecular ferroelectric of quinuclidinium periodate, which possesses six-fold rotational polar axes. The multi-axes nature allows the thin-film of quinuclidinium periodate to be simply prepared on various substrates including flexible polymer, transparent glasses and amorphous metal plates, without considering the crystallinity and crystal orientation. With those benefits and excellent ferroelectric properties, quinuclidinium periodate shows great potential in applications like wearable devices, flexible materials, bio-machines and so on.

  19. High density plasma reactive ion etching of Ru thin films using non-corrosive gas mixture

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Su Min; Garay, Adrian Adalberto; Lee, Wan In; Chung, Chee Won, E-mail: cwchung@inha.ac.kr

    2015-07-31

    Inductively coupled plasma reactive ion etching (ICPRIE) of Ru thin films patterned with TiN hard masks was investigated using a CH{sub 3}OH/Ar gas mixture. As the CH{sub 3}OH concentration in CH{sub 3}OH/Ar increased, the etch rates of Ru thin films and TiN hard masks decreased. However, the etch selectivity of Ru films on TiN hard masks increased and the etch slope of Ru film improved at 25% CH{sub 3}OH/Ar. With increasing ICP radiofrequency power and direct current bias voltage and decreasing process pressure, the etch rates of Ru films increased, and the etch profiles were enhanced without redeposition on the sidewall. Optical emission spectroscopy and X-ray photoelectron spectroscopy were employed to analyze the plasma and surface chemistry. Based on these results, Ru thin films were oxidized to RuO{sub 2} and RuO{sub 3} compounds that were removed by sputtering of ions and the etching of Ru thin films followed a physical sputtering with the assistance of chemical reaction. - Highlights: • Etching of Ru films in CH{sub 3}OH/Ar was investigated. • High selectivity and etch profile with high degree of anisotropy were obtained. • XPS analysis was examined to identify the etch chemistry. • During etching Ru was oxidized to RuO{sub 2} and RuO{sub 3} can be easily sputtered off.

  20. Chemical etching of zinc oxide for thin-film silicon solar cells.

    Science.gov (United States)

    Hüpkes, Jürgen; Owen, Jorj I; Pust, Sascha E; Bunte, Eerke

    2012-01-16

    Chemical etching is widely applied to texture the surface of sputter-deposited zinc oxide for light scattering in thin-film silicon solar cells. Based on experimental findings from the literature and our own results we propose a model that explains the etching behavior of ZnO depending on the structural material properties and etching agent. All grain boundaries are prone to be etched to a certain threshold, that is defined by the deposition conditions and etching solution. Additionally, several approaches to modify the etching behavior through special preparation and etching steps are provided. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Ferroelectric properties of lead-free polycrystalline CaBi2Nb2O9 thin films on glass substrates

    Science.gov (United States)

    Ahn, Yoonho; Jang, Joonkyung; Son, Jong Yeog

    2016-03-01

    CaBi2Nb2O9 (CBNO) thin film, a lead-free ferroelectric material, was prepared on a Pt/Ta/glass substrate via pulsed laser deposition. The Ta film was deposited on the glass substrate for a buffer layer. A (115) preferred orientation of the polycrystalline CBNO thin film was verified via X-ray diffraction measurements. The CBNO thin film on a glass substrate exhibited good ferroelectric properties with a remnant polarization of 4.8 μC/cm2 (2Pr ˜9.6 μC/cm2), although it had lower polarization than the epitaxially c-oriented CBNO thin film reported previously. A mosaic-like ferroelectric domain structure was observed via piezoresponse force microscopy. Significantly, the polycrystalline CBNO thin film showed much faster switching behavior within about 100 ns than that of the epitaxially c-oriented CBNO thin film.

  2. The effects of layering in ferroelectric Si-doped HfO{sub 2} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Lomenzo, Patrick D.; Nishida, Toshikazu, E-mail: nishida@ufl.edu [Department of Electrical and Computer Engineering, University of Florida, Gainesville, Florida 32611 (United States); Takmeel, Qanit; Moghaddam, Saeed [Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, Florida 32611 (United States); Zhou, Chuanzhen; Liu, Yang; Fancher, Chris M.; Jones, Jacob L. [Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27696-7907 (United States)

    2014-08-18

    Atomic layer deposited Si-doped HfO{sub 2} thin films approximately 10 nm thick are deposited with various Si-dopant concentrations and distributions. The ferroelectric behavior of the HfO{sub 2} thin films are shown to be dependent on both the Si mol. % and the distribution of Si-dopants. Metal-ferroelectric-insulator-semiconductor capacitors are shown to exhibit a tunable remanent polarization through the adjustment of the Si-dopant distribution at a constant Si concentration. Inhomogeneous layering of Si-dopants within the thin films effectively lowers the remanent polarization. A pinched hysteresis loop is observed for higher Si-dopant concentrations and found to be dependent on the Si layering distribution.

  3. Structural, Electrical, Magnetic and Resistive Switching Properties of the Multiferroic/Ferroelectric Bilayer Thin Films

    Directory of Open Access Journals (Sweden)

    Ming-Cheng Kao

    2017-11-01

    Full Text Available Bi0.8Pr0.2Fe0.95Mn0.05O3/Bi3.96Gd0.04Ti2.95W0.05O12 (BPFMO/BGTWO bilayer thin films with Multiferroic/Ferroelectric (MF/FE structures were deposited onto Pt(111/Ti/SiO2/Si(100 substrates by using the sol-gel method with rapid thermal annealing. The BPFMO/BGTWO thin films exhibited well-saturated ferromagnetic and ferroelectric hysteresis loops because of the electro-magnetic coupling induced by the MF/FE structure. The remnant magnetization (2Mr and remnant polarization (2Pr were 4.6 emu/cm3 and 62 μC/cm2, respectively. Moreover, the bipolar I-V switching curves of BPFMO/BGTWO bilayer thin films resistive random access memory (RRAM devices were discussed, and investigated for LRS/HRS.

  4. Switching dynamics in ferroelectric P(VDF-TrFE) thin films

    NARCIS (Netherlands)

    Zhao, D.; Katsouras, I.; Asadi, K.; Blom, P.W.M.; Leeuw, D.M. de

    2015-01-01

    Switching, i.e., polarization reversal, of ferroelectric P(VDF-TrFE) thin films has been investigated in a wide range of applied electric field and temperature. The measured polarization transients can be quantitatively described by a compressed exponential function as originally formulated by

  5. Ferroelectric Thin Films Basic Properties and Device Physics for Memory Applications

    CERN Document Server

    Okuyama, Masanori

    2005-01-01

    Ferroelectric thin films continue to attract much attention due to their developing, diverse applications in memory devices, FeRAM, infrared sensors, piezoelectric sensors and actuators. This book, aimed at students, researchers and developers, gives detailed information about the basic properties of these materials and the associated device physics. All authors are acknowledged experts in the field.

  6. Morphology-dependent photo-induced polarization recovery in ferroelectric thin films

    Science.gov (United States)

    Wang, J. Y.; Liu, G.; Sando, D.; Nagarajan, V.; Seidel, J.

    2017-08-01

    We investigate photo-induced ferroelectric domain switching in a series of Pb(Zr0.2Ti0.8)O3/La0.7Sr0.3MnO3 (PZT/LSMO) bilayer thin films with varying surface morphologies by piezoresponse force microscopy under light illumination. We demonstrate that reverse poled ferroelectric regions can be almost fully recovered under laser irradiation of the PZT layer and that the recovery process is dependent on the surface morphology on the nanometer scale. The recovery process is well described by the Kolmogorov-Avrami-Ishibashi model, and the evolution speed is controlled by light intensity, sample thickness, and initial write voltage. Our findings shed light on optical control of the domain structure in ferroelectric thin films with different surface morphologies.

  7. Tunable Microwave Filter Design Using Thin-Film Ferroelectric Varactors

    Science.gov (United States)

    Haridasan, Vrinda

    Military, space, and consumer-based communication markets alike are moving towards multi-functional, multi-mode, and portable transceiver units. Ferroelectric-based tunable filter designs in RF front-ends are a relatively new area of research that provides a potential solution to support wideband and compact transceiver units. This work presents design methodologies developed to optimize a tunable filter design for system-level integration, and to improve the performance of a ferroelectric-based tunable bandpass filter. An investigative approach to find the origins of high insertion loss exhibited by these filters is also undertaken. A system-aware design guideline and figure of merit for ferroelectric-based tunable band- pass filters is developed. The guideline does not constrain the filter bandwidth as long as it falls within the range of the analog bandwidth of a system's analog to digital converter. A figure of merit (FOM) that optimizes filter design for a specific application is presented. It considers the worst-case filter performance parameters and a tuning sensitivity term that captures the relation between frequency tunability and the underlying material tunability. A non-tunable parasitic fringe capacitance associated with ferroelectric-based planar capacitors is confirmed by simulated and measured results. The fringe capacitance is an appreciable proportion of the tunable capacitance at frequencies of X-band and higher. As ferroelectric-based tunable capac- itors form tunable resonators in the filter design, a proportionally higher fringe capacitance reduces the capacitance tunability which in turn reduces the frequency tunability of the filter. Methods to reduce the fringe capacitance can thus increase frequency tunability or indirectly reduce the filter insertion-loss by trading off the increased tunability achieved to lower loss. A new two-pole tunable filter topology with high frequency tunability (> 30%), steep filter skirts, wide stopband

  8. Improve the Properties of p-i-n α-Si:H Thin-Film Solar Cells Using the Diluted Hydrochloric Acid-Etched GZO Thin Films

    Directory of Open Access Journals (Sweden)

    Fang-Hsing Wang

    2013-01-01

    Full Text Available Gallium-doped zinc oxide (GZO thin films were deposited on glass, and the process parameters are RF power of 50 W and working pressure of 5 mTorr, and the substrate temperature was changed from room temperature to 300°C. At first, the thickness was around 300 nm by controlling the deposition time. The effects of substrate temperature on the crystallinity, lattice constant (c, carrier mobility, carrier concentration, resistivity, and optical transmission rate of the GZO thin films were studied. The 200°C-deposited GZO thin films had the best crystallinity, the larger carrier concentration and carrier mobility, and the lowest resistivity. For that, the thickness of the GZO thin films was extended to around 1000 nm. Hydrochloric (HCl acid solutions with different concentrations (0.1%, 0.2%, and 0.5% were used to etch the surfaces of the GZO thin films, which were then used as the substrate electrodes to fabricate the p-i-n α-Si:H thin-film solar cells. The haze ratio of the GZO thin films increased with increasing HCl concentration, and that would effectively enhance light trapping inside the absorber material of solar cells and then improve the efficiency of the fabricated thin-film solar cells.

  9. Dry Etching of Copper Phthalocyanine Thin Films: Effects on Morphology and Surface Stoichiometry

    Directory of Open Access Journals (Sweden)

    Michael J. Brett

    2012-08-01

    Full Text Available We investigate the evolution of copper phthalocyanine thin films as they are etched with argon plasma. Significant morphological changes occur as a result of the ion bombardment; a planar surface quickly becomes an array of nanopillars which are less than 20 nm in diameter. The changes in morphology are independent of plasma power, which controls the etch rate only. Analysis by X-ray photoelectron spectroscopy shows that surface concentrations of copper and oxygen increase with etch time, while carbon and nitrogen are depleted. Despite these changes in surface stoichiometry, we observe no effect on the work function. The absorbance and X-ray diffraction spectra show no changes other than the peaks diminishing with etch time. These findings have important implications for organic photovoltaic devices which seek nanopillar thin films of metal phthalocyanine materials as an optimal structure.

  10. Ferroelectric Polarization in Nanocrystalline Hydroxyapatite Thin Films on Silicon

    Science.gov (United States)

    Lang, S. B.; Tofail, S. A. M.; Kholkin, A. L.; Wojtaś, M.; Gregor, M.; Gandhi, A. A.; Wang, Y.; Bauer, S.; Krause, M.; Plecenik, A.

    2013-01-01

    Hydroxyapatite nanocrystals in natural form are a major component of bone- a known piezoelectric material. Synthetic hydroxyapatite is widely used in bone grafts and prosthetic pyroelectric coatings as it binds strongly with natural bone. Nanocrystalline synthetic hydroxyapatite films have recently been found to exhibit strong piezoelectricity and pyroelectricity. While a spontaneous polarization in hydroxyapatite has been predicted since 2005, the reversibility of this polarization (i.e. ferroelectricity) requires experimental evidence. Here we use piezoresponse force microscopy to demonstrate that nanocrystalline hydroxyapatite indeed exhibits ferroelectricity: a reversal of polarization under an electrical field. This finding will strengthen investigations on the role of electrical polarization in biomineralization and bone-density related diseases. As hydroxyapatite is one of the most common biocompatible materials, our findings will also stimulate systematic exploration of lead and rare-metal free ferroelectric devices for potential applications in areas as diverse as in vivo and ex vivo energy harvesting, biosensing and electronics. PMID:23884324

  11. Optical characterization of ferroelectric PZT thin films by variable angle spectroscopic ellipsometry

    Science.gov (United States)

    Rahman, Md. Shafiqur; Garcia, Carlos D.; Bhalla, Amar; Guo, Ruyan

    2014-09-01

    Ferroelectric thin films are used as high dielectric constant capacitors, infrared detectors, piezoelectric transducers, optical modulators, optical waveguides, and nonvolatile memory chips for dynamic random access memory (DRAM) etc. While ferroelectric and dielectric properties of these films have been extensively investigated, their optical properties have been comparatively less studied and of limited use in quantitative evaluation of multilayer thin films. In this work we explored the variable angle spectroscopic ellipsometry (VASE) technique for its effectiveness in physical property characterization. The VASE combined with its computer modeling tool enables nondestructive, nonintrusive, and contactless optical means for optical characterization. Crystalline Lead Zirconium Titanate PbZr0.52Ti0.48O3 (PZT) thin films, fabricated on SrTiO3 layer atop of Si substrates, were characterized using VASE (J.A. Woollam; Lincoln, NE, USA) by determining the ellipsometric parameters Ψ and Δ as a function of wavelengths (200-1000 nm) and incident angles (65°, 70°,75°) at room temperature. A physical representation of the multilayer system was constructed by a six layer model (analysis software WVASE32, J.A. Woollam) through a step-by-step method. Other physical properties characterized by several well-known techniques on structure, morphology and topographical features correspond well with the models developed using VASE alone. The technique and the methodology developed have shown promises in identifying the respective thickness and optical properties of multilayer thin film system, with limited input of processing or composition information.

  12. Extrinsic scaling effects on the dielectric response of ferroelectric thin films

    Science.gov (United States)

    Ihlefeld, Jon F.; Vodnick, Aaron M.; Baker, Shefford P.; Borland, William J.; Maria, Jon-Paul

    2008-04-01

    Scaling effects in polycrystalline ferroelectric thin films were investigated by preparing barium titanate in a manner that maintained constant composition and film thickness while allowing systematically increased grain size and crystalline coherence. The average grain dimensions ranged from 60to110nm, and temperature dependence of permittivity analysis revealed diffuse phase transitions in all cases. Maximum permittivity values ranged from 380 to 2040 for the smallest to largest sizes, respectively. Dielectric hysteresis is evident at room temperature for all materials, indicating stability of the ferroelectric phase. Comparison of permittivity values at high electric fields indicates that the intrinsic dielectric response is identical and microstructural artifacts likely have a minimal influence on film properties across the sample series. Permittivity values, however, are substantially smaller than those reported for bulk material with similar grain dimensions. X-ray line broadening measurements were taken for the grain size series at the Cornell High Energy Synchrotron Source (CHESS), which revealed coherent scattering dimensions substantially smaller than the microscopy-determined grain size. Collectively these data sets suggest that permittivity values are influenced not only by grain size but also by the mosaic structure existing within each grain, and that thin film thermal budgets, which are several hundred degrees lower than used for bulk processing, are responsible for reduced crystalline coherence, and likely the origin of degraded electromechanical response in thin film ferroelectrics.

  13. The Rayleigh law in silicon doped hafnium oxide ferroelectric thin films

    Energy Technology Data Exchange (ETDEWEB)

    Guan, Yan; Liu, Xiaohua [Key Laboratory of Materials Modification by Laser, Ion, and Electron Beams (Ministry of Education), School of Materials Science and Engineering, Dalian University of Technology, Dalian (China); Zhou, Dayu [Key Laboratory of Materials Modification by Laser, Ion, and Electron Beams (Ministry of Education), School of Materials Science and Engineering, Dalian University of Technology, Dalian (China); State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu (China); Xu, Jin [Department of Electronic Engineering, Dalian Neusoft University of Information, Dalian (China); Cao, Fei; Dong, Xianlin [Key Laboratory of Inorganic Functional Materials and Devices, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai (China); Mueller, Johannes [Fraunhofer IPMS-CNT, Dresden (Germany); Schenk, Tony; Schroeder, Uwe [NaMLab gGmbH/TU Dresden (Germany)

    2015-10-15

    A wealth of studies have confirmed that the low-field hysteresis behaviour of ferroelectric bulk ceramics and thin films can be described using Rayleigh relations, and irreversible domain wall motion across the array of pining defects has been commonly accepted as the underlying micro-mechanism. Recently, HfO{sub 2} thin films incorporated with various dopants were reported to show pronounced ferroelectricity, however, their microscopic domain structure remains unclear till now. In this work, the effects of the applied electric field amplitude, frequency and temperature on the sub-coercive polarization reversal properties were investigated for 10 nm thick Si-doped HfO{sub 2} thin films. The applicability of the Rayleigh law to ultra-thin ferroelectric films was first confirmed, indicating the existence of a multi-domain structure. Since the grain size is about 20-30 nm, a direct observation of domain walls within the grains is rather challenging and this indirect method is a feasible approach to resolve the domain structure. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Tin etching from metallic and oxidized scandium thin films

    Science.gov (United States)

    Pachecka, M.; Lee, C. J.; Sturm, J. M.; Bijkerk, F.

    2017-08-01

    The role of oxide on Sn adhesion to Sc surfaces was studied with in-situ ellipsometry, X-ray photoelectron spectroscopy and secondary electron microscopy. Sn etching with hydrogen radicals was performed on metallic Sc, metallic Sc with a native oxide, and a fully oxidized Sc layer. The results show that Sn adsorbs rather weakly to a non-oxidized Sc surface, and is etched relatively easily by atomic hydrogen. In contrast, the presence of native oxide on Sc allows Sn to adsorb more strongly to the surface, slowing the etching. Furthermore, thinner layers of scandium oxide result in weaker Sn adsorption, indicating that the layer beneath the oxide plays a significant role in determining the adsorption strength. Unexpectedly, for Sn on Sc2O3, and, to a lesser extent, for Sn on Sc, the etch rate shows a variation over time, which is explained by surface restructuring, temperature change, and hydrogen adsorption saturation.

  15. Tin etching from metallic and oxidized scandium thin films

    Directory of Open Access Journals (Sweden)

    M. Pachecka

    2017-08-01

    Full Text Available The role of oxide on Sn adhesion to Sc surfaces was studied with in-situ ellipsometry, X-ray photoelectron spectroscopy and secondary electron microscopy. Sn etching with hydrogen radicals was performed on metallic Sc, metallic Sc with a native oxide, and a fully oxidized Sc layer. The results show that Sn adsorbs rather weakly to a non-oxidized Sc surface, and is etched relatively easily by atomic hydrogen. In contrast, the presence of native oxide on Sc allows Sn to adsorb more strongly to the surface, slowing the etching. Furthermore, thinner layers of scandium oxide result in weaker Sn adsorption, indicating that the layer beneath the oxide plays a significant role in determining the adsorption strength. Unexpectedly, for Sn on Sc2O3, and, to a lesser extent, for Sn on Sc, the etch rate shows a variation over time, which is explained by surface restructuring, temperature change, and hydrogen adsorption saturation.

  16. Electrical characterisation of ferroelectric field effect transistors based on ferroelectric HfO{sub 2} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Yurchuk, Ekaterina

    2015-02-06

    Ferroelectric field effect transistor (FeFET) memories based on a new type of ferroelectric material (silicon doped hafnium oxide) were studied within the scope of the present work. Utilisation of silicon doped hafnium oxide (Si:HfO{sub 2}) thin films instead of conventional perovskite ferroelectrics as a functional layer in FeFETs provides compatibility to the CMOS process as well as improved device scalability. The influence of different process parameters on the properties of Si:HfO{sub 2} thin films was analysed in order to gain better insight into the occurrence of ferroelectricity in this system. A subsequent examination of the potential of this material as well as its possible limitations with the respect to the application in non-volatile memories followed. The Si:HfO{sub 2}-based ferroelectric transistors that were fully integrated into the state-of-the-art high-k metal gate CMOS technology were studied in this work for the first time. The memory performance of these devices scaled down to 28 nm gate length was investigated. Special attention was paid to the charge trapping phenomenon shown to significantly affect the device behaviour.

  17. Texture-Etched SnO2 Glasses Applied to Silicon Thin-Film Solar Cells

    Directory of Open Access Journals (Sweden)

    Bing-Rui Wu

    2014-01-01

    Full Text Available Transparent electrodes of tin dioxide (SnO2 on glasses were further wet-etched in the diluted HCl:Cr solution to obtain larger surface roughness and better light-scattering characteristic for thin-film solar cell applications. The process parameters in terms of HCl/Cr mixture ratio, etching temperature, and etching time have been investigated. After etching process, the surface roughness, transmission haze, and sheet resistance of SnO2 glasses were measured. It was found that the etching rate was increased with the additions in etchant concentration of Cr and etching temperature. The optimum texture-etching parameters were 0.15 wt.% Cr in 49% HCl, temperature of 90°C, and time of 30 sec. Moreover, silicon thin-film solar cells with the p-i-n structure were fabricated on the textured SnO2 glasses using hot-wire chemical vapor deposition. By optimizing the texture-etching process, the cell efficiency was increased from 4.04% to 4.39%, resulting from the increment of short-circuit current density from 14.14 to 15.58 mA/cm2. This improvement in cell performances can be ascribed to the light-scattering effect induced by surface texturization of SnO2.

  18. Ferroelectricity and the phase transition in large area evaporated vinylidene fluoride oligomer thin films

    Science.gov (United States)

    Foreman, K.; Poddar, Shashi; Ducharme, Stephen; Adenwalla, S.

    2017-05-01

    Organic ferroelectric materials, including the well-known poly(vinylidene fluoride) and its copolymers, have been extensively studied and used for a variety of applications. In contrast, the VDF oligomer has not been thoroughly investigated and is not widely used, if used at all. One key advantage the oligomer has over the polymer is that it can be thermally evaporated in vacuum, allowing for the growth of complex heterostructures while maintaining interfacial cleanliness. Here, we report on the ferroelectric properties of high-quality VDF oligomer thin films over relatively large areas on the order of mm2. The operating temperature is identified via differential scanning calorimetry and pyroelectric measurements. Pyroelectric measurements also reveal a stable remanent polarization for these films which persists over very long time scales, an important result for non-volatile data storage. Temperature dependent pyroelectric and capacitance measurements provide compelling evidence for the phase transition in these films. Capacitance-voltage and current-voltage measurements are used to confirm ferroelectricity, quantify the dielectric loss, and calculate the spontaneous polarization. Finally, piezoresponse force microscopy is used to demonstrate large area, low-voltage ferroelectric domain reading/writing in VDF oligomer thin films. This work enables new channels for VDF oligomer applications and research.

  19. Hysteresis loop behaviors of ferroelectric thin films: A Monte Carlo simulation study

    Science.gov (United States)

    M. Bedoya-Hincapié, C.; H. Ortiz-Álvarez, H.; Restrepo-Parra, E.; J. Olaya-Flórez, J.; E. Alfonso, J.

    2015-11-01

    The ferroelectric response of bismuth titanate Bi4Ti3O12 (BIT) thin film is studied through a Monte Carlo simulation of hysteresis loops. The ferroelectric system is described by using a Diffour Hamiltonian with three terms: the electric field applied in the z direction, the nearest dipole-dipole interaction in the transversal (x-y) direction, and the nearest dipole-dipole interaction in the direction perpendicular to the thin film (the z axis). In the sample construction, we take into consideration the dipole orientations of the monoclinic and orthorhombic structures that can appear in BIT at low temperature in the ferroelectric state. The effects of temperature, stress, and the concentration of pinned dipole defects are assessed by using the hysteresis loops. The results indicate the changes in the hysteresis area with temperature and stress, and the asymmetric hysteresis loops exhibit evidence of the imprint failure mechanism with the emergence of pinned dipolar defects. The simulated shift in the hysteresis loops conforms to the experimental ferroelectric response. Project sponsored by the research departments of the Universidad Nacional de Colombia DIMA and DIB under Project 201010018227-“Crecimiento y caracterización eléctrica y estructural de películas delgadas de BixTiyOz producidas mediante Magnetrón Sputtering” and Project 12920-“Desarrollo teóricoexperimental de nanoestructuras basadas en Bismuto y materiales similares” and “Bisnano Project.”

  20. Tin etching from metallic and oxidized scandium thin films

    NARCIS (Netherlands)

    Pachecka, Malgorzata; Lee, Christopher James; Sturm, J.M.; Bijkerk, Frederik

    The role of oxide on Sn adhesion to Sc surfaces was studied with in-situ ellipsometry, X-ray photoelectron spectroscopy and secondary electron microscopy. Sn etching with hydrogen radicals was performed on metallic Sc, metallic Sc with a native oxide, and a fully oxidized Sc layer. The results show

  1. Characterization of the effective electrostriction coefficients in ferroelectric thin films

    Energy Technology Data Exchange (ETDEWEB)

    Kholkin, A. L.; Akdogan, E. K.; Safari, A.; Chauvy, P.-F.; Setter, N.

    2001-06-15

    Electromechanical properties of a number of ferroelectric films including PbZr{sub x}Ti{sub 1{minus}x}O{sub 3}(PZT), 0.9PbMg{sub 1/3}Nb{sub 2/3}O{sub 3}{endash}0.1PbTiO{sub 3}(PMN-PT), and SrBi{sub 2}Ta{sub 2}O{sub 9}(SBT) are investigated using laser interferometry combined with conventional dielectric measurements. Effective electrostriction coefficients of the films, Q{sub eff}, are determined using a linearized electrostriction equation that couples longitudinal piezoelectric coefficient, d{sub 33}, with the polarization and dielectric constant. It is shown that, in PZT films, electrostriction coefficients slightly increase with applied electric field, reflecting the weak contribution of non-180{degree} domains to piezoelectric properties. In contrast, in PMN-PT and SBT films electrostriction coefficients are field independent, indicating the intrinsic nature of the piezoelectric response. The experimental values of Q{sub eff} are significantly smaller than those of corresponding bulk materials due to substrate clamping and possible size effects. Electrostriction coefficients of PZT layers are shown to depend strongly on the composition and preferred orientation of the grains. In particular, Q{sub eff} of (100) textured rhombohedral films (x=0.7) is significantly greater than that of (111) layers. Thus large anisotropy of the electrostrictive coefficients is responsible for recently observed large piezoelectric coefficients of (100) textured PZT films. Effective electrostriction coefficients obtained by laser interferometry allow evaluation of the electromechanical properties of ferroelectric films based solely on the dielectric parameters and thus are very useful in the design and fabrication of microsensors and microactuators. {copyright} 2001 American Institute of Physics.

  2. Characterization of the effective electrostriction coefficients in ferroelectric thin films

    Science.gov (United States)

    Kholkin, A. L.; Akdogan, E. K.; Safari, A.; Chauvy, P.-F.; Setter, N.

    2001-06-01

    Electromechanical properties of a number of ferroelectric films including PbZrxTi1-xO3(PZT), 0.9PbMg1/3Nb2/3O3-0.1PbTiO3(PMN-PT), and SrBi2Ta2O9(SBT) are investigated using laser interferometry combined with conventional dielectric measurements. Effective electrostriction coefficients of the films, Qeff, are determined using a linearized electrostriction equation that couples longitudinal piezoelectric coefficient, d33, with the polarization and dielectric constant. It is shown that, in PZT films, electrostriction coefficients slightly increase with applied electric field, reflecting the weak contribution of non-180° domains to piezoelectric properties. In contrast, in PMN-PT and SBT films electrostriction coefficients are field independent, indicating the intrinsic nature of the piezoelectric response. The experimental values of Qeff are significantly smaller than those of corresponding bulk materials due to substrate clamping and possible size effects. Electrostriction coefficients of PZT layers are shown to depend strongly on the composition and preferred orientation of the grains. In particular, Qeff of (100) textured rhombohedral films (x=0.7) is significantly greater than that of (111) layers. Thus large anisotropy of the electrostrictive coefficients is responsible for recently observed large piezoelectric coefficients of (100) textured PZT films. Effective electrostriction coefficients obtained by laser interferometry allow evaluation of the electromechanical properties of ferroelectric films based solely on the dielectric parameters and thus are very useful in the design and fabrication of microsensors and microactuators.

  3. Nonlinear dynamics of domain-wall propagation in epitaxial ferroelectric thin films.

    Science.gov (United States)

    Jo, J Y; Yang, S M; Kim, T H; Lee, H N; Yoon, J-G; Park, S; Jo, Y; Jung, M H; Noh, T W

    2009-01-30

    We investigated the ferroelectric domain-wall propagation in epitaxial Pb(Zr,Ti)O3 thin film over a wide temperature range (3-300 K). We measured the domain-wall velocity under various electric fields and found that the velocity data is strongly nonlinear with electric fields, especially at low temperature. We found that, as one of surface growth issues, our domain-wall velocity data from ferroelectric epitaxial film could be classified into the creep, depinning, and flow regimes due to competition between disorder and elasticity. The measured values of velocity and dynamical exponents indicate that the ferroelectric domain walls in the epitaxial films are fractal and pinned by a disorder-induced local field.

  4. Multiferroic YCrO3 thin films: Structural, ferroelectric and magnetic properties

    Science.gov (United States)

    Gervacio-Arciniega, J. J.; Murillo-Bracamontes, E.; Contreras, O.; Siqueiros, J. M.; Raymond, O.; Durán, A.; Bueno-Baques, D.; Valdespino, D.; Cruz-Valeriano, E.; Enríquez-Flores, C. I.; Cruz, M. P.

    2018-01-01

    Highly oriented and locally epitaxial multiferroic YCrO3 (001) thin films, 20 nm thick, were deposited by r.f. magnetron sputtering on SrTiO3 (110) substrates at 890 °C. The structure was investigated by x-ray diffraction and cross section high resolution transmition electron microscopy, a clear local matching between the YCrO3 film and the substrate was observed. Ferroelectricity was confirmed by means of switching areas with opposite polarization directions, first and second harmonic electromechanical signals, and local hysteresis ferroelectric curves obtained by piezoresponse force microscopy. Additionally, below the Néel temperature, a clear ferromagnetic hysteresis loop was observed. These results will encourage further studies on the mechanism that promotes the ferroelectric nature in YCrO3 compound.

  5. Metal-assisted chemical etching of CIGS thin films for grain size analysis

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Chaowei [Research and Development Centre, Hanergy Thin Film Power Group Limited, Chengdu (China); Loi, Huu-Ha; Duong, Anh; Parker, Magdalena [Failure Analysis Department, MiaSole Hi-Tech Corp., Santa Clara, CA (United States)

    2016-09-15

    Grain size of the CIGS absorber is an important monitoring factor in the CIGS solar cell manufacturing. Electron backscatter diffraction (EBSD) analysis is commonly used to perform CIGS grain size analysis in the scanning electron microscope (SEM). Although direct quantification on SEM image using the average grain intercept (AGI) method is faster and simpler than EBSD, it is hardly applicable on CIGS thin films. The challenge is that, not like polycrystalline silicon, to define grain boundaries by selective chemical etching is not easily realizable for the multi-component CIGS alloy. In this Letter, we present direct quantification of CIGS thin film grain size using the AGI method by developing metal-assisted wet chemical etching process to define CIGS grain boundaries. The calculated value is similar to EBSD result. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. Room Temperature Ferroelectricity and Photovoltaic Effect in Atomic Layer Deposited SnTiOX Thin Films

    Science.gov (United States)

    Agarwal, R.; Sharma, Y.; Chang, S.; Nakhmanson, S.; Takoudis, C.; Katiyar, R.; Hong, S.

    We have studied ferroelectricity and photovoltaic effects in atomic layer deposited 40 nm thick SnTiOX films. These films showed well-defined and repeatable polarization hysteresis loops at room temperature, as detected by polarization versus electric field (P-E) and field cycling measurements. A photo-induced enhancement in ferroelectricity was also observed as the spontaneous polarization increased under white-light illumination, indicating photoferroelectric nature of SnTiOX films. Interestingly, we observed ferroelectric photovoltaic behavior in these films under the illumination of wide spectrum of light, from visible to ultraviolet regions. A short circuit current of 3 micro Amp. and open circuit voltage of 0.12 V were observed under visible light, while these values were found to be slightly lower in ultraviolet illumination. Though, the origin of ferroelectricity is not very clear yet, but we believe that either the formation of non-centrosymmetric crystalline phases in the film matrix during the growth or presence of charged defects in non-stoichiometric SnTiOX could be the possible reasons. Our study provides a way to develop green ferroelectric SnTiOx thin films, which are compatible to semiconducting processes, and can be used for various ferroelectric applications.

  7. Reduction of leakage currents in ferroelectric thin films by flexoelectricity: a phase field study

    Science.gov (United States)

    Xu, Xiaofei; Jiang, Limei; Zhou, Yichun

    2017-11-01

    With the development of integrated circuit technology and the decreasing size of devices, ferroelectric films used in nano ferroelectric devices must become thinner and thinner. Along with the downscaling of the ferroelectric film is the increasing serious leakage current which has seriously hindered the broad application of ferroelectric devices. Here we tuned the leakage currents in Pb(Zr0.1Ti0.9)O3 ferroelectric thin films through flexoelectricity by means of the phase field method with diffusion equations for the electron/hole. It is shown that the strain gradient generated by the local compressive force can raise the hole current but reduce the electron current in ferroelectric film. Pure mechanical force can therefore be used to diminish the leakage current. With the further study of the effects of different flexoelectric coupling types on leakage current, we demonstrate that the flexocoupling type described by the longitudinal flexoelectric coefficient promotes the increase of the hole current but has a side-effect on the increase of the electron current. In contrast, the role of the flexocoupling type described by the transverse flexoelectric coefficient is just the opposite.

  8. Effect of surface ionic screening on polarization reversal scenario in ferroelectric thin films: crossover from ferroionic to antiferroionic states

    OpenAIRE

    Morozovska, Anna N.; Eliseev, Eugene A.; Kurchak, Anatolii I.; Morozovsky, Nicholas V.; Vasudevan, Rama K.; Strikha, Maksym V.; Kalinin, Sergei V.

    2017-01-01

    Nonlinear electrostatic interaction between the surface ions of electrochemical nature and ferroelectric dipoles gives rise to the coupled ferroionic states in nanoscale ferroelectrics. Here, we investigated the role of the surface ions formation energy value on the polarization states and polarization reversal mechanisms, domain structure and corresponding phase diagrams of ferroelectric thin films. Using 3D finite elements modeling we analyze the distribution and hysteresis loops of ferroel...

  9. Periodic arrays of flux-closure domains in ferroelectric thin films with oxide electrodes

    Science.gov (United States)

    Li, S.; Zhu, Y. L.; Wang, Y. J.; Tang, Y. L.; Liu, Y.; Zhang, S. R.; Ma, J. Y.; Ma, X. L.

    2017-07-01

    Flux-closure domain structures in ferroelectric thin films are considered to have potential applications in electronic devices. It is usually believed that these structures are stabilized by the depolarization field and the contact with electrodes tends to screen the depolarization field and may limit their formation. In this work, the influence of oxide electrodes (SrRuO3 and La0.7Sr0.3MnO3) on the formation of flux-closure domains in PbTiO3 thin films deposited on (110)-oriented GdScO3 substrates by pulsed laser deposition was investigated by Cs-corrected transmission electron microscopy. It is found that periodic flux-closure domain arrays can be stabilized in PbTiO3 films when the top and bottom electrodes are symmetric, while a/c domains appear when asymmetric electrodes are applied. The influence of asymmetric electrodes on the domain configuration is proposed to have a connection with their different work functions and conductivity types. These results are expected to shed light on understanding the nature of flux-closure domains in ferroelectrics and open some research possibilities, such as the evolution of these structures under external electric fields.

  10. Inductive couple plasma reactive ion etching characteristics of TiO{sub 2} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Garay, Adrian Adalberto; Hwang, Su Min; Chung, Chee Won, E-mail: cwchung@inha.ac.kr

    2015-07-31

    Changes in the inductively coupled plasma reactive ion etching characteristics of TiO{sub 2} thin films in response to the addition of HBr, Cl{sub 2} and C{sub 2}F{sub 6} to Ar gas were investigated. As the HBr, Cl{sub 2} and C{sub 2}F{sub 6} concentration increased, the etch rate increased; however, the etch profile degree of anisotropy followed a different trend. As HBr concentration increased, the greatest anisotropic etch profile was obtained at 100% HBr, while the greatest anisotropic etch profile was obtained at concentrations of 25% when etching was conducted under C{sub 2}F{sub 6} and Cl{sub 2}. Field emission scanning electron microscopy revealed that 25% C{sub 2}F{sub 6} generated the greatest vertical etch profile; hence, etch parameters were varied at this concentration. The effects of rf power, dc-bias voltage and gas pressure on the etch rate and etch profile were also investigated. The etch rate and degree of anisotropy in the etch profile increased with increasing rf power and dc-bias voltage and decreasing gas pressure. X-ray photoelectron spectroscopy analysis of the films etched under a C{sub 2}F{sub 6}/Ar gas mixture revealed the existence of etch byproducts containing F (i.e. TiF{sub x}) over the film. C{sub x}F{sub y} compounds were not detected on the film surface, probably due to contamination with atmospheric carbon. - Highlights: • Reactive ion etching of TiO{sub 2} films under HBr, C{sub 2}F{sub 6}, and Cl{sub 2} gases was studied. • Etch rate and etch profile of TiO{sub 2} films were investigated under each gas chemistry. • The highest degree of anisotropy was achieved at 25% C{sub 2}F{sub 6}/Ar. • Strong etch conditions at 25% C{sub 2}F{sub 6}/Ar increased etch rate and degree of anisotropy. • X-ray photoelectron spectroscopy revealed the existence of F-containing etch residues.

  11. Origin of thermally stable ferroelectricity in a porous barium titanate thin film synthesized through block copolymer templating

    Directory of Open Access Journals (Sweden)

    Norihiro Suzuki

    2017-07-01

    Full Text Available A porous barium titanate (BaTiO3 thin film was chemically synthesized using a surfactant-assisted sol-gel method in which micelles of amphipathic diblock copolymers served as structure-directing agents. In the Raman spectrum of the porous BaTiO3 thin film, a peak corresponding to the ferroelectric tetragonal phase was observed at around 710 cm−1, and it remained stable at much higher temperature than the Curie temperature of bulk single-crystal BaTiO3 (∼130 °C. Measurements revealed that the ferroelectricity of the BaTiO3 thin film has high thermal stability. By analyzing high-resolution transmission electron microscope images of the BaTiO3 thin film by the fast Fourier transform mapping method, the spatial distribution of stress in the BaTiO3 framework was clearly visualized. Careful analysis also indicated that the porosity in the BaTiO3 thin film introduced anisotropic compressive stress, which deformed the crystals. The resulting elongated unit cell caused further displacement of the Ti4+ cation from the center of the lattice. This displacement increased the electric dipole moment of the BaTiO3 thin film, effectively enhancing its ferro(piezoelectricity.

  12. Origin of thermally stable ferroelectricity in a porous barium titanate thin film synthesized through block copolymer templating

    Science.gov (United States)

    Suzuki, Norihiro; Osada, Minoru; Billah, Motasim; Alothman, Zeid Abdullah; Bando, Yoshio; Yamauchi, Yusuke; Hossain, Md. Shahriar A.

    2017-07-01

    A porous barium titanate (BaTiO3) thin film was chemically synthesized using a surfactant-assisted sol-gel method in which micelles of amphipathic diblock copolymers served as structure-directing agents. In the Raman spectrum of the porous BaTiO3 thin film, a peak corresponding to the ferroelectric tetragonal phase was observed at around 710 cm-1, and it remained stable at much higher temperature than the Curie temperature of bulk single-crystal BaTiO3 (˜130 °C). Measurements revealed that the ferroelectricity of the BaTiO3 thin film has high thermal stability. By analyzing high-resolution transmission electron microscope images of the BaTiO3 thin film by the fast Fourier transform mapping method, the spatial distribution of stress in the BaTiO3 framework was clearly visualized. Careful analysis also indicated that the porosity in the BaTiO3 thin film introduced anisotropic compressive stress, which deformed the crystals. The resulting elongated unit cell caused further displacement of the Ti4+ cation from the center of the lattice. This displacement increased the electric dipole moment of the BaTiO3 thin film, effectively enhancing its ferro(piezo)electricity.

  13. Fatigue mechanism of yttrium-doped hafnium oxide ferroelectric thin films fabricated by pulsed laser deposition.

    Science.gov (United States)

    Huang, Fei; Chen, Xing; Liang, Xiao; Qin, Jun; Zhang, Yan; Huang, Taixing; Wang, Zhuo; Peng, Bo; Zhou, Peiheng; Lu, Haipeng; Zhang, Li; Deng, Longjiang; Liu, Ming; Liu, Qi; Tian, He; Bi, Lei

    2017-02-01

    Owing to their prominent stability and CMOS compatibility, HfO2-based ferroelectric films have attracted great attention as promising candidates for ferroelectric random-access memory applications. A major reliability issue for HfO2 based ferroelectric devices is fatigue. So far, there have been a few studies on the fatigue mechanism of this material. Here, we report a systematic study of the fatigue mechanism of yttrium-doped hafnium oxide (HYO) ferroelectric thin films deposited by pulsed laser deposition. The influence of pulse width, pulse amplitude and temperature on the fatigue behavior of HYO during field cycling is studied. The temperature dependent conduction mechanism is characterized after different fatigue cycles. Domain wall pinning caused by carrier injection at shallow defect centers is found to be the major fatigue mechanism of this material. The fatigued device can fully recover to the fatigue-free state after being heated at 90 °C for 30 min, confirming the shallow trap characteristic of the domain wall pinning defects.

  14. Quadrilateral Micro-Hole Array Machining on Invar Thin Film: Wet Etching and Electrochemical Fusion Machining.

    Science.gov (United States)

    Choi, Woong-Kirl; Kim, Seong-Hyun; Choi, Seung-Geon; Lee, Eun-Sang

    2018-01-19

    Ultra-precision products which contain a micro-hole array have recently shown remarkable demand growth in many fields, especially in the semiconductor and display industries. Photoresist etching and electrochemical machining are widely known as precision methods for machining micro-holes with no residual stress and lower surface roughness on the fabricated products. The Invar shadow masks used for organic light-emitting diodes (OLEDs) contain numerous micro-holes and are currently machined by a photoresist etching method. However, this method has several problems, such as uncontrollable hole machining accuracy, non-etched areas, and overcutting. To solve these problems, a machining method that combines photoresist etching and electrochemical machining can be applied. In this study, negative photoresist with a quadrilateral hole array pattern was dry coated onto 30-µm-thick Invar thin film, and then exposure and development were carried out. After that, photoresist single-side wet etching and a fusion method of wet etching-electrochemical machining were used to machine micro-holes on the Invar. The hole machining geometry, surface quality, and overcutting characteristics of the methods were studied. Wet etching and electrochemical fusion machining can improve the accuracy and surface quality. The overcutting phenomenon can also be controlled by the fusion machining. Experimental results show that the proposed method is promising for the fabrication of Invar film shadow masks.

  15. Misfit strain dependence of ferroelectric and piezoelectric properties of clamped (001) epitaxial Pb(Zr0.52,Ti0.48)O3 thin films

    Science.gov (United States)

    Nguyen, Minh D.; Dekkers, Matthijn; Houwman, Evert; Steenwelle, Ruud; Wan, Xin; Roelofs, Andreas; Schmitz-Kempen, Thorsten; Rijnders, Guus

    2011-12-01

    A study on the effects of the residual strain in Pb(Zr0.52Ti0.48)O3 (PZT) thin films on the ferroelectric and piezoelectric properties is presented. Epitaxial (001)-oriented PZT thin film capacitors are sandwiched between SrRuO3 electrodes. The thin film stacks are grown on different substrate-buffer-layer combinations by pulsed laser deposition. Compressive or tensile strain caused by the difference in thermal expansion of the PZT film and substrate influences the ferroelectric and piezoelectric properties. All the PZT stacks show ferroelectric and piezoelectric behavior that is consistent with the theoretical model for strained thin films in the ferroelectric r-phase. We conclude that clamped (001) oriented Pb(Zr0.52Ti0.48)O3 thin films strained by the substrate always show rotation of the polarization vector.

  16. Structuring of DLC:Ag nanocomposite thin films employing plasma chemical etching and ion sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Tamulevičius, Tomas, E-mail: Tomas.Tamulevicius@ktu.lt; Tamulevičienė, Asta; Virganavičius, Dainius; Vasiliauskas, Andrius; Kopustinskas, Vitoldas; Meškinis, Šarūnas; Tamulevičius, Sigitas

    2014-12-15

    Highlights: • CF{sub 4}/O{sub 2} dry etching of DLC:Ag films revealed the embedded Ag nanoparticles. • Plasma processed samples with more than 5 at.% Ag demonstrated Ostwald ripening. • 4 μm period patterns in aluminum and photoresist were imposed in the DLC:Ag film. • Different micro patterns are formed depending on the selected processing route. - Abstract: We analyze structuring effects of diamond like carbon based silver nanocomposite (DLC:Ag) thin films by CF{sub 4}/O{sub 2} plasma chemical etching and Ar{sup +} sputtering. DLC:Ag films were deposited employing unbalanced reactive magnetron sputtering of silver target with Ar{sup +} in C{sub 2}H{sub 2} gas atmosphere. Films with different silver content (0.6–12.9 at.%) were analyzed. The films (as deposited and exposed to plasma chemical etching) were characterized employing scanning electron microscopy and energy dispersive X-ray analysis (SEM/EDS), optical microscopy, ultraviolet–visible light (UV–VIS) spectroscopy and Fourier transform infrared (FTIR) spectroscopy. After deposition, the films were plasma chemically etched in CF{sub 4}/O{sub 2} mixture plasma for 2–6 min. It is shown that optical properties of thin films and silver nano particle size distribution can be tailored during deposition changing the magnetron current and C{sub 2}H{sub 2}/Ar ratio or during following plasma chemical etching. The plasma etching enabled to reveal the silver filler particle size distribution and to control silver content on the surface that was found to be dependent on Ostwald ripening process of silver nano-clusters. Employing contact lithography and 4 μm period mask in photoresist or aluminum the films were patterned employing CF{sub 4}/O{sub 2} mixture plasma chemical etching, direct Ar{sup +} sputtering or combined etching processes. It is shown that different processing recipes result in different final grating structures. Selective carbon etching in CF{sub 4}/O{sub 2} gas mixture with

  17. Enhanced Switchable Ferroelectric Photovoltaic Effects in Hexagonal Ferrite Thin Films via Strain Engineering.

    Science.gov (United States)

    Han, Hyeon; Kim, Donghoon; Chu, Kanghyun; Park, Jucheol; Nam, Sang Yeol; Heo, Seungyang; Yang, Chan-Ho; Jang, Hyun Myung

    2018-01-17

    Ferroelectric photovoltaics (FPVs) are being extensively investigated by virtue of switchable photovoltaic responses and anomalously high photovoltages of ∼10 4 V. However, FPVs suffer from extremely low photocurrents due to their wide band gaps (E g ). Here, we present a promising FPV based on hexagonal YbFeO 3 (h-YbFO) thin-film heterostructure by exploiting its narrow E g . More importantly, we demonstrate enhanced FPV effects by suitably exploiting the substrate-induced film strain in these h-YbFO-based photovoltaics. A compressive-strained h-YbFO/Pt/MgO heterojunction device shows ∼3 times enhanced photovoltaic efficiency than that of a tensile-strained h-YbFO/Pt/Al 2 O 3 device. We have shown that the enhanced photovoltaic efficiency mainly stems from the enhanced photon absorption over a wide range of the photon energy, coupled with the enhanced polarization under a compressive strain. Density functional theory studies indicate that the compressive strain reduces E g substantially and enhances the strength of d-d transitions. This study will set a new standard for determining substrates toward thin-film photovoltaics and optoelectronic devices.

  18. Low temperature dielectric relaxation and charged defects in ferroelectric thin films

    Directory of Open Access Journals (Sweden)

    A. Artemenko

    2013-04-01

    Full Text Available We report a dielectric relaxation in BaTiO3-based ferroelectric thin films of different composition and with several growth modes: sputtering (with and without magnetron and sol-gel. The relaxation was observed at cryogenic temperatures (T < 100 K for frequencies from 100 Hz up to 10 MHz. This relaxation activation energy is always lower than 200 meV and is very similar to the relaxation that we reported in the parent bulk perovskites. Based on our Electron Paramagnetic Resonance (EPR investigation, we ascribe this dielectric relaxation to the hopping of electrons among Ti3+-V(O charged defects. Being dependent on the growth process and on the amount of oxygen vacancies, this relaxation can be a useful probe of defects in actual integrated capacitors with no need for specific shaping.

  19. Nanosecond domain wall dynamics in ferroelectric Pb(Zr, Ti)O(3) thin films.

    Science.gov (United States)

    Grigoriev, Alexei; Do, Dal-Hyun; Kim, Dong Min; Eom, Chang-Beom; Adams, Bernhard; Dufresne, Eric M; Evans, Paul G

    2006-05-12

    Domain wall motion during polarization switching in ferroelectric thin films is fundamentally important and poses challenges for both experiments and modeling. We have visualized the switching of a Pb(Zr, Ti)O(3) capacitor using time-resolved x-ray microdiffraction. The structural signatures of switching include a reversal in the sign of the piezoelectric coefficient and a change in the intensity of x-ray reflections. The propagation of polarization domain walls is highly reproducible from cycle to cycle of the electric field. Domain wall velocities of 40 m s(-1) are consistent with the results of other methods, but are far less than saturation values expected at high electric fields.

  20. A Reconfigurable Coplanar Waveguide Bowtie Antenna Using an Integrated Ferroelectric Thin-Film Varactor

    Directory of Open Access Journals (Sweden)

    K. C. Pan

    2012-01-01

    Full Text Available A novel printed antenna with a frequency reconfigurable feed network is presented. The antenna consists of a bowtie structure patch radiating element in the inner space of an annulus that is on a nongrounded substrate with a ferroelectric (FE Barium Strontium Titanate (BST thin film. The bowtie patch is fed by a coplanar waveguide (CPW transmission line that also includes a CPW-based BST shunt varactor. Reconfiguration of the compact 8 mm × 8 mm system has been demonstrated by shifting the antenna system’s operating frequency 500 MHz in the 7–9 GHz band by applying a DC voltage bias.

  1. Improved ferroelectric property and domain structure of highly a-oriented polycrystalline CaBi2Nb2O9 thin film

    Science.gov (United States)

    Ahn, Yoonho; Son, Jong Yeog

    2015-12-01

    A Lead-free ferroelectric CaBi2Nb2O9 (CBNO) thin film was deposited on Si substrate by pulsed laser deposition. TiO2 buffer layer was employed and Pt electrode was used for nano-scale capacitor. The x-ray diffraction reveals that the CBNO thin film has highly a-oriented polycrystalline structure. The highly a-oriented polycrystalline CBNO thin film significantly exhibit the enhanced ferroelectric property with a remnant polarization of 10 μC/cm2 compared to other values reported previously. In particular, the highly a-oriented polycrystalline CBNO thin film show faster ferroelectric switching characteristics than the epitaxially c-oriented CBNO thin film.

  2. Silicon-doped hafnium oxide anti-ferroelectric thin films for energy storage

    Science.gov (United States)

    Ali, Faizan; Liu, Xiaohua; Zhou, Dayu; Yang, Xirui; Xu, Jin; Schenk, Tony; Müller, Johannes; Schroeder, Uwe; Cao, Fei; Dong, Xianlin

    2017-10-01

    Motivated by the development of ultracompact electronic devices as miniaturized energy autonomous systems, great research efforts have been expended in recent years to develop various types of nano-structural energy storage components. The electrostatic capacitors characterized by high power density are competitive; however, their implementation in practical devices is limited by the low intrinsic energy storage density (ESD) of linear dielectrics like Al2O3. In this work, a detailed experimental investigation of energy storage properties is presented for 10 nm thick silicon-doped hafnium oxide anti-ferroelectric thin films. Owing to high field induced polarization and slim double hysteresis, an extremely large ESD value of 61.2 J/cm3 is achieved at 4.5 MV/cm with a high efficiency of ˜65%. In addition, the ESD and the efficiency exhibit robust thermal stability in 210-400 K temperature range and an excellent endurance up to 109 times of charge/discharge cycling at a very high electric field of 4.0 MV/cm. The superior energy storage performance together with mature technology of integration into 3-D arrays suggests great promise for this recently discovered anti-ferroelectric material to replace the currently adopted Al2O3 in fabrication of nano-structural supercapacitors.

  3. Nd and Ru co-doped bismuth titanate polycrystalline thin films with improved ferroelectric properties

    Science.gov (United States)

    Sahoo, Kishor Kumar; Singh Rajput, Shailendra; Gupta, Rajeev; Roy, Amritendu; Garg, Ashish

    2018-02-01

    We report the ferroelectric properties of pulsed laser deposited thin films of Nd and Ru co-doped bismuth titanate (Bi4‑x Nd x Ti3‑y Ru y O12). Structural analysis of the as-grown films, using x-ray diffraction, showed a single-phase formation with a polycrystalline structure. In comparison to un-doped and Nd-doped films, ferroelectric measurements on co-doped films demonstrated improved properties with remnant polarization (P r) ~ 12.5 µC cm‑2 and an enhanced electrical fatigue life for Bi3.25Nd0.75Ti2.8Ru0.20O12 films. The enhancement in remanent polarization is attributed to microscopic changes, such as local structural distortion and the modification of the dynamical/effective charges on constituent ions due to chemical strain upon simultaneous Bi- (A) and Ti- (B) site doping with Nd and Ru, which has a far stronger effect than only A-site doping with Nd. Piezoresponse force microscopy further confirmed the polar structure and domain switching at nanoscale. The films exhibit small yet finite magnetization at 10 K resulting from strain.

  4. Microwave a.c. conductivity of domain walls in ferroelectric thin films

    Science.gov (United States)

    Tselev, Alexander; Yu, Pu; Cao, Ye; Dedon, Liv R.; Martin, Lane W.; Kalinin, Sergei V.; Maksymovych, Petro

    2016-01-01

    Ferroelectric domain walls are of great interest as elementary building blocks for future electronic devices due to their intrinsic few-nanometre width, multifunctional properties and field-controlled topology. To realize the electronic functions, domain walls are required to be electrically conducting and addressable non-destructively. However, these properties have been elusive because conducting walls have to be electrically charged, which makes them unstable and uncommon in ferroelectric materials. Here we reveal that spontaneous and recorded domain walls in thin films of lead zirconate and bismuth ferrite exhibit large conductance at microwave frequencies despite being insulating at d.c. We explain this effect by morphological roughening of the walls and local charges induced by disorder with the overall charge neutrality. a.c. conduction is immune to large contact resistance enabling completely non-destructive walls read-out. This demonstrates a technological potential for harnessing a.c. conduction for oxide electronics and other materials with poor d.c. conduction, particularly at the nanoscale. PMID:27240997

  5. Highly mobile ferroelastic domain walls in compositionally graded ferroelectric thin films.

    Science.gov (United States)

    Agar, J C; Damodaran, A R; Okatan, M B; Kacher, J; Gammer, C; Vasudevan, R K; Pandya, S; Dedon, L R; Mangalam, R V K; Velarde, G A; Jesse, S; Balke, N; Minor, A M; Kalinin, S V; Martin, L W

    2016-05-01

    Domains and domain walls are critical in determining the response of ferroelectrics, and the ability to controllably create, annihilate, or move domains is essential to enable a range of next-generation devices. Whereas electric-field control has been demonstrated for ferroelectric 180° domain walls, similar control of ferroelastic domains has not been achieved. Here, using controlled composition and strain gradients, we demonstrate deterministic control of ferroelastic domains that are rendered highly mobile in a controlled and reversible manner. Through a combination of thin-film growth, transmission-electron-microscopy-based nanobeam diffraction and nanoscale band-excitation switching spectroscopy, we show that strain gradients in compositionally graded PbZr1-xTixO3 heterostructures stabilize needle-like ferroelastic domains that terminate inside the film. These needle-like domains are highly labile in the out-of-plane direction under applied electric fields, producing a locally enhanced piezoresponse. This work demonstrates the efficacy of novel modes of epitaxy in providing new modalities of domain engineering and potential for as-yet-unrealized nanoscale functional devices.

  6. Electric characteristics of organic thin-film transistors and logic circuits with a ferroelectric gate insulator

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yong Suk [Electronics and Telecommunications Research Institute, Yuseong, Daejon 305-350 (Korea, Republic of)], E-mail: jullios@etri.re.kr; Chu, Hye Yong; Kim, Seong Hyun; Lim, Sang Chul; Koo, Jae Bon; Lee, Jung Hun; Ku, Chan Hoe; Lee, Jeong-Ik; Do, Lee-Mi; Hwang, Chi Sun; Park, Sang-He Ko; Kim, Gi Heon; Jung, Sung Mook [Electronics and Telecommunications Research Institute, Yuseong, Daejon 305-350 (Korea, Republic of)

    2007-07-16

    Organic electronic devices using a pentacene have improved importantly in the last several years. We fabricated pentacene organic thin-film transistors (OTFTs) with dielectric SiO{sub 2} and ferroelectric Pb(Zr{sub 0.3},Ti{sub 0.7})O{sub 3} (PZT) gate insulators. The organic devices using SiO{sub 2} and PZT films had the field-effect mobility of approximately 0.1 and 0.004 cm{sup 2}/V s, respectively. The drain current in the transfer curve of pentacene/PZT transistors showed a hysteresis behavior originated in a ferroelectric polarization switching. In order to investigate the polarization effect of PZT gate dielectrics in a logic circuit, the simple voltage inverter using SiO{sub 2} and PZT films was fabricated and measured by an output-input measurement. The gain of inverter at the poling-down state was approximately 7.2 and it was three times larger than the value measured at the poling-up state.

  7. Polarization enhancement and ferroelectric switching enabled by interacting magnetic structures in DyMnO3 thin films

    KAUST Repository

    Lu, Chengliang

    2013-12-02

    The mutual controls of ferroelectricity and magnetism are stepping towards practical applications proposed for quite a few promising devices in which multiferroic thin films are involved. Although ferroelectricity stemming from specific spiral spin ordering has been reported in highly distorted bulk perovskite manganites, the existence of magnetically induced ferroelectricity in the corresponding thin films remains an unresolved issue, which unfortunately halts this step. In this work, we report magnetically induced electric polarization and its remarkable response to magnetic field (an enhancement of ?800% upon a field of 2 Tesla at 2 K) in DyMnO3 thin films grown on Nb-SrTiO3 substrates. Accompanying with the large polarization enhancement, the ferroelectric coercivity corresponding to the magnetic chirality switching field is significantly increased. A picture based on coupled multicomponent magnetic structures is proposed to understand these features. Moreover, different magnetic anisotropy related to strain-suppressed GdFeO 3-type distortion and Jahn-Teller effect is identified in the films.

  8. Enhanced fatigue and retention in ferroelectric thin film memory capacitors by post-top electrode anneal treatment

    Science.gov (United States)

    Thakoor, Sarita (Inventor)

    1994-01-01

    Thin film ferroelectric capacitors (10) comprising a ferroelectric film (18) sandwiched between electrodes (16 and 20) for nonvolatile memory operations are rendered more stable by subjecting the capacitors to an anneal following deposition of the top electrode (20). The anneal is done so as to form the interface (22) between the ferroelectric film and the top electrode. Heating in an air oven, laser annealing, or electron bombardment may be used to form the interface. Heating in an air oven is done at a temperature at least equal to the crystallization temperature of the ferroelectric film. Where the ferroelectric film comprises lead zirconate titanate, annealing is done at about 550.degree. to 600.degree. C. for about 10 to 15 minutes. The formation treatment reduces the magnitude of charge associated with the non-switching pulse in the thin film ferroelectric capacitors. Reduction of this charge leads to significantly more stable nonvolatile memory operations in both digital and analog memory devices. The formation treatment also reduces the ratio of change of the charge associated with the non-switching pulse as a function of retention time. These improved memory devices exhibit greater performance in retention and reduced fatigue in memory arrays.

  9. Direct current field adjustable ferroelectric behaviour in (Pb, Nb)(Zr, Sn, Ti)O{sub 3} antiferroelectric thin films

    Energy Technology Data Exchange (ETDEWEB)

    Zhai Jiwei [Department of Physics and Materials Science, City University of Hong Kong, Kowloon, Hong Kong (China); Chen, Haydn [Department of Physics and Materials Science, City University of Hong Kong, Kowloon, Hong Kong (China); Colla, Eugene V [Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL (United States); Wu, T B [Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, Taiwan (China)

    2003-02-19

    (Pb, Nb)(Zr, Sn, Ti)O{sub 3} antiferroelectric (AFE) thin films have been fabricated on LaNiO{sub 3}/Pt/Ti/SiO{sub 2}/Si wafers using a sol-gel process. The electric field-induced antiferroelectric-to-ferroelectric (AFE-FE) phase transformation behaviour and its dependence on the temperature were examined by investigating the dielectric constant and dielectric loss versus temperature and electrical field. The AFE-FE phase transformation temperature can be adjusted as a function of the DC bias field and the thickness of the thin film. With increasing DC bias field, the FE phase region was enlarged, the AFE-FE transformation temperature shifted to lower temperature, and the ferroelectric-to-paraelectric transformation temperature shifted to higher temperature. With increasing film thickness, the modulation effect of the DC bias field on the AFE-FE phase transformation temperature is increased.

  10. The Integration and Applications of Organic Thin Film Transistors and Ferroelectric Polymers

    Science.gov (United States)

    Hsu, Yu-Jen

    Organic thin film transistors and ferroelectric polymer (polyvinylidene difluoride) sheet material are integrated to form various sensors for stress/strain, acoustic wave, and Infrared (heat) sensing applications. Different from silicon-based transistors, organic thin film transistors can be fabricated and processed in room-temperature and integrated with a variety of substrates. On the other hand, polyvinylidene difluoride (PVDF) exhibits ferroelectric properties that are highly useful for sensor applications. The wide frequency bandwidth (0.001 Hz to 10 GHz), vast dynamic range (100n to 10M psi), and high elastic compliance (up to 3 percent) make PVDF a more suitable candidate over ceramic piezoelectric materials for thin and flexible sensor applications. However, the low Curie temperature may have impeded its integration with silicon technology. Organic thin film transistors, however, do not have the limitation of processing temperature, hence can serve as transimpedance amplifiers to convert the charge signal generated by PVDF into current signal that are more measurable and less affected by any downstream parasitics. Piezoelectric sensors are useful for a range of applications, but passive arrays suffer from crosstalk and signal attenuation which have complicated the development of array-based PVDF sensors. We have used organic field effect transistors, which are compatible with the low Curie temperature of a flexible piezoelectric polymer,PVDF, to monolithically fabricate transimpedance amplifiers directly on the sensor surface and convert the piezoelectric charge signal into a current signal which can be detected even in the presence of parasitic capacitances. The device couples the voltage generated by the PVDF film under strain into the gate of the organic thin film transistors (OFET) using an arrangement that allows the full piezoelectric voltage to couple to the channel, while also increasing the charge retention time. A bipolar detector is created by

  11. Electron emission from ferroelectric thin films enhanced by the presence of 90 degree ferroelectric domains.

    Science.gov (United States)

    Suchaneck, Gunnar; Vidyarthi, Vinay S; Gerlach, Gerald; Solnyshkin, Alexander V; Kislova, Inna L

    2007-12-01

    In this work, a ferroelectric domain-enhanced electron emission mechanism is proposed. The polarization distribution near 90 degrees domain walls is calculated by solving a set of second order differential equations, including the Poisson's one and equations derived from an expansion of the free energy Phi(P) in power series of the polarization according to the Devonshire-Landau-Ginzburg theory. Domain walls intersecting the emitting surface cause sufficient electric fields and lower the potential barrier for electron emission. This induces centers of enhanced electron emission. Relaxing domain walls were found to excite trapped excess electrons in front of the wall.

  12. Magnetoelastic coupling in multilayered ferroelectric/ferromagnetic thin films: A quantitative evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Chiolerio, A., E-mail: alessandro.chiolerio@iit.it [Applied Science and Technology Department, Politecnico di Torino, Corso Duca degli Abruzzi 24, IT-10129 Turin (Italy); Center for Space Human Robotics, Istituto Italiano di Tecnologia, Corso Trento 21, IT-10129 Turin (Italy); Quaglio, M. [Center for Space Human Robotics, Istituto Italiano di Tecnologia, Corso Trento 21, IT-10129 Turin (Italy); Lamberti, A. [Applied Science and Technology Department, Politecnico di Torino, Corso Duca degli Abruzzi 24, IT-10129 Turin (Italy); Center for Space Human Robotics, Istituto Italiano di Tecnologia, Corso Trento 21, IT-10129 Turin (Italy); Celegato, F. [Electromagnetism Division, INRIM, Strada delle Cacce 91, IT-10135 Turin (Italy); Balma, D.; Allia, P. [Applied Science and Technology Department, Politecnico di Torino, Corso Duca degli Abruzzi 24, IT-10129 Turin (Italy)

    2012-08-01

    The electrical control of magnetization in a thin film, achieved by means of magnetoelastic coupling between a ferroelectric and a ferromagnetic layer represents an attractive way to implement magnetic information storage and processing within logical architectures known as Magnetic Quantum Cellular Automata (MQCA). Such systems have been addressed as multiferroics. We exploited cost-effective techniques to realize multi-layered multiferroic systems, such as sol-gel deposition and RF sputtering, introducing a specific technique to control the crystal structure and film roughness effect on the magnetic domain wall motion and reconfiguration, induced by magnetoelastic coupling, by evaluating the 2-dimensional statistical properties of enhanced MFM matrices. A RF sputtered 50-nm-thick Co layer on a Si/SiO{sub 2}/Si{sub 3}N{sub 4}/Ti/Pt/PbTiO{sub 3}/Pb(Zr{sub 0.53}Ti{sub 0.47})O{sub 3} substrate was realized, exploiting two differently engineered PZT nano-crystalline structures and the conditions leading to a favorable compromise in order to realize functional devices were elucidated.

  13. Deposition of nanosized grains of ferroelectric lead zirconate titanate on thin films using dense plasma focus

    Science.gov (United States)

    Gupta, Ruby; Srivastava, M. P.; Balakrishnan, V. R.; Kodama, R.; Peterson, M. C.

    2004-04-01

    Pb(Zr0.53Ti0.47)O3 (PZT) thin films have been successfully deposited on glass, silicon and ITO coated glass substrates by a 3.3 kJ Mather type dense plasma focus device. The x-ray diffraction spectra of the films deposited on glass substrates kept at a distance of 4.2 cm from the top of the anode with 10, 15 and 25 shots show peaks at 2thgr = 31.3° corresponding to the perovskite phase of PZT. Transmission electron microscopy shows the presence of 0.5 nm grains of PZT. The leakage current density is found to be 10-6 A cm-2 at a reverse voltage of 1 V, from current density-voltage (J-V) characteristics. The capacitance-voltage (C-V) characteristics show a counter-clockwise hysteresis loop with a memory window of 1.2 V. The ferroelectric characteristic has been confirmed using the polarization-field hysteresis loop. The resistance of the film is about 1 GOHgr. The spontaneous polarization, remanent polarization and coercive field values are found to be 20.1 µC cm-2, 8.6 µC cm-2 and 79.9 kV cm-1, respectively.

  14. Thin film ferroelectric photonic crystals and their application to thermo-optic switches

    Science.gov (United States)

    Lin, Pao Tai; Imre, Alexandra; Ocola, Leonidas E.; Wessels, B. W.

    2009-08-01

    Two-dimensional photonic crystals (PhC) using epitaxial ferroelectric, barium titanate (BTO) thin films as the dielectric medium were fabricated and their thermo-optical response measured and compared to theory. The nanopatterned PhC consists of a square array of air holes 300 nm deep, a period of 780 nm and area 200 × 200 μm 2. The large refractive index of BTO leads to a high contrast structure that shows strong optical diffraction. Optical diffraction is analyzed along the and directions from phase grating measurements. The thermal tunability of BTO PhC is characterized from the attenuation of the first order diffraction. There is a 3 dB extinction ratio when the temperature increases by 120 °C, which corresponds to an increase of 0.05 in the BTO refractive index. Finite difference time domain (FDTD) technique is used to calculate the PhC band structure and the temperature dependence of the diffraction efficiency. The large change in the diffraction efficiency indicates that thermally tunable BTO PhCs may be useful as active ultra-compact photonic switches.

  15. Ferroelectric Properties of CaBi4Ti4O15 Thin Films on Ito/glass Substrates Prepared by Sol-Gel Technology

    Science.gov (United States)

    Cheng, Chien-Min; Kuan, Ming-Chang; Chen, Kai-Hunag; Tsai, Jen-Hwan

    In this study, ferroelectric CaBi4Ti4O15 (CBT) thin films prepared by sol-gel method and deposited on ITO/glass substrates for applications in system-on-panel (SOP) devices were fabricated and investigated. The electrical and physical characteristics of as-deposited and annealed CBT thin films for metal-ferroelectric-metal (MFM) structures was discussed and investigated. In addition, the ferroelectric properties in annealed CBT thin films on ITO/glass substrate showed and exhibited clear polarization versus electrical field curves. From p-E curves, the 2Pr value and coercive field of annealed CBT thin films were calculated to be 10μC/cm2 and 180 kV/cm, respectively. Finally, the maximum capacitance, leakage current density, and transmittance within the ultraviolet-visible (UV-vis) spectrum were also investigated and discussed.

  16. Magnetic, ferroelectric and leakage current properties of gadolinium doped bismuth ferrite thin films by sol–gel method

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Hone-Zern, E-mail: hzc@hust.edu.tw [Department of Electronic Engineering, Hsiuping University of Science and Technology, Taichung, Taiwan (China); Kao, Ming-Cheng, E-mail: kmc@hust.edu.tw [Department of Electronic Engineering, Hsiuping University of Science and Technology, Taichung, Taiwan (China); Young, San-Lin [Department of Electronic Engineering, Hsiuping University of Science and Technology, Taichung, Taiwan (China); Hwang, Jun-Dar [Department of Electrophysics, National Chiayi University, Chiayi, Taiwan (China); Chiang, Jung-Lung [Department of Mobile Technology, Toko University, Chiayi, Taiwan (China); Chen, Po-Yen [Department of Electronic Engineering, Hsiuping University of Science and Technology, Taichung, Taiwan (China)

    2015-05-01

    Bi{sub 0.9}Gd{sub 0.1}FeO{sub 3} (BGFO) thin films were fabricated on Pt(111)/Ti/SiO{sub 2}/Si(100) substrates by using the sol–gel technology. The effects of annealing temperature (400–700 °C) on microstructure and multiferroic properties of thin films were investigated. The X-ray diffraction analysis showed that the BGFO thin films had an orthorhombic structure. The thin films showed ferroelectric and ferromagnetic properties with remanent polarization (2P{sub r}) of 10 μC/cm{sup 2}, remnant magnetization (2M{sub r}) of 2.4 emu/g and saturation magnetization (M{sub s}) of 5.3 emu/g. A small leakage current density (J) was 4.64×10{sup −8} A/cm{sup 2} under applied field 100 kV/cm. It was found that more than one conduction mechanism is involved in the electric field range used in these experiments. The leakage current mechanisms were controlled by Poole–Frenkel emission in the low electric field region and by Schottky emission from the Pt electrode in the high field region. - Highlights: • Bi{sub 3.96}Pr{sub 0.04}Ti{sub 2.95}Nb{sub 0.05}O{sub 12} thin films were prepared by sol–gel technology. • Thin films showed 2P{sub r} of 10 μC/cm{sup 2}, 2M{sub r} of 2.4 emu/g and M{sub s} of 5.3 emu/g. • Leakage current mechanisms were controlled by Poole–Frenkel and Schottky emission.

  17. Slow wave structures integrated with ferromagnetic and ferro-electric thin films for smart RF applications

    Science.gov (United States)

    Rahman, B. M. Farid

    Modern communications systems are following a common trend to increase the operational frequency, level of integration and number of frequency bands. Although 90-95% components in a cell phone are passives which take 80% of the total board area. High performance RF passive components play limited role and are desired towards this technological advancement. Slow wave structure is one of the most promising candidates to design compact RF and mm-Wave passive components. Slow wave structures are the specially designed transmission line realized by placing the alternate narrow and wide signal conductors in order to reduce the physical size of the components. This dissertation reports multiband slow wave structures integrated with ferromagnetic and ferroelectric thin films and their RF applications. A comparative study on different types of coplanar wave-guide (CPW) slow wave structures (SWS) has been demonstrated for the first time. Slow wave structures with various shapes have been investigated and optimized with various signal conductor shapes, ground conductor shapes and pitch of the sections. Novel techniques i.e. the use of the defected ground structure and the different signal conductor length has been implemented to achieve higher slow wave effect with minimum loss. The measured results have shown the reduction of size over 43.47% and 37.54% in the expense of only 0.27dB and 0.102dB insertion loss respectively which can reduce the area of a designed branch line coupler by 68% and 61% accordingly. Permalloy (Py) is patterned on top of the developed SWS for the first time to further increase the slow wave effect and provide tunable inductance value. High frequency applications of Py are limited by its ferro-magnetic resonance frequency since the inductance value decreases beyond that. Sub-micrometer patterning of Py has increased FMR frequency until 6.3GHz and 3.2GHz by introducing the shape anisotropy. For the SWS with patterned Py, the size of the quarter

  18. THIN FILMS OF A NEW ORGANIC SINGLE-COMPONENT FERROELECTRIC 2-METHYLBENZIMIDAZOLE

    Directory of Open Access Journals (Sweden)

    E. V. Balashova

    2016-09-01

    Full Text Available Subject of Research.We present results of structural and dielectric study of organic ferroelectric 2-methylbenzimidazole (MBI thin films. Method. The films have been grown on substrates of leuco-sapphire, fused and crystalline silica, neodymium gallate, bismuth germanate, gold, aluminium, platinum. The films have been grown by two different methods: substrate covering by ethanol solution of MBI and subsequent ethanol evaporation; sublimation at the temperature near 375 K under atmospheric pressure. Crystallographic orientation studies have been performed by means of «DRON-3» X-ray diffractometer, block structure of the films has been determined by «LaboPol-3» polarizing microscope. Small-signal dielectric response has been received with the use of «MIT 9216A» digital LCR-meter, while strong-signal dielectric response has been studied by Sawyer-Tower circuit. Main Resuts. We have shown that the films obtained by evaporation are continuous and textured. Obtained film structure depends on the concentration of the solution. Films may consist of blocks that are splitted crystals like spherulite. Spontaneous polarization components in such films may be directed both perpendicularly and in the film plane. We have also obtained structures consisting of single-crystal blocks with spontaneous polarization components being allocated in the film plane. Block sizes vary from a few to hundreds of microns. Films obtained by sublimation are amorphous or dendritic. The dielectric properties of the films obtained by evaporation have been studied. We have shown that the dielectric constant and dielectric loss tangent increase under heating. The dielectric hysteresis loops are observed at the temperature equal to 291-379 K. The remnant polarization increases with temperature for constant amplitude of the external electric field, and achieves 4.5mC/cm2, while the coercive field remains constant. We propose that such behavior is explained by increase of the

  19. In situ x-ray diffraction of solution-derived ferroelectric thin films for quantitative phase and texture evolution measurement

    Science.gov (United States)

    Nittala, Krishna; Mhin, Sungwook; Jones, Jacob L.; Robinson, Douglas S.; Ihlefeld, Jon F.; Brennecka, Geoff L.

    2012-11-01

    An in situ measurement technique is developed and presented, which utilizes x-rays from a synchrotron source with a two-dimensional detector to measure thin film microstructural and crystallographic evolution during heating. A demonstration experiment is also shown wherein the measured diffraction patterns are used to describe phase and texture evolution during heating and crystallization of solution-derived thin films. The diffraction images are measured sequentially while heating the thin film with an infrared lamp. Data reduction methodologies and representations are also outlined to extract phase and texture information from the diffraction images as a function of time and temperature. These techniques and data reduction methods are demonstrated during crystallization of solution-derived lead zirconate titanate ferroelectric thin films heated at a rate of 30 °C/min and using an acquisition time of 8 s. During heating and crystallization, a PtxPb type phase was not observed. A pyrochlore phase was observed prior to the formation and growth of the perovskite phase. The final crystallized films are observed to have both 111 and 100 texture components. The in situ measurement methodology developed in this work allows for acquiring diffraction images in times as low as 0.25 s and can be used to investigate changes during crystallization at faster heating rates. Moreover, the experiments are shown to provide unique information during materials processing.

  20. Ferroelectric domain structures of epitaxial CaBi2Nb2O9 thin films on single crystalline Nb doped (1 0 0) SrTiO3 substrates

    Science.gov (United States)

    Ahn, Yoonho; Seo, Jeong Dae; Son, Jong Yeog

    2015-07-01

    Epitaxial CaBi2Nb2O9 (CBNO) thin films were deposited on Nb-doped SrTiO3 substrates. The CBNO thin films as a lead-free ferroelectric material exhibit a good ferroelectric property with the remanent polarization of 10.6 μC/cm2. In the fatigue resistance test, the CBNO thin films have no degradation in polarization up to 1×1012 switching cycles, which is applicable for non-volatile ferroelectric random access memories (FeRAMs). Furthermore, piezoresponse force microscopy study (PFM) reveals that the CBNO thin films have larger ferroelectric domain structures than those of PbTiO3 thin films. From the Landau, Lifshiftz, and Kittel's scaling law, it is inferred that the domain wall energy of CBNO thin films is probably very similar to that of the PbTiO3 thin films.

  1. Preparation of Layer-Structured CaBi2Ta2O9 Ferroelectric Thin Films through a Triple Alkoxide Route

    Science.gov (United States)

    Kato, Kazumi; Suzuki, Kazuyuki; Nishizawa, Kaori; Miki, Takeshi

    2000-09-01

    A triple alkoxide solution for CaBi2Ta2O9 (CBT) thin films was prepared. CBT thin films were deposited on Pt-passivated silicon and Pt-passivated quartz glass substrates. The thin films on Pt-passivated silicon crystallized to form the perovskite structure at low temperatures and showed preferred orientation along the c-axis. The thin films did not show ferroelectric P-E hysteresis loops. In contrast, the 750°C-annealed thin film on Pt-passivated quartz glass showed random orientation and exhibited excellent P-E hysteresis loops. The remanent polarization (Pr) and the coercive electric field (Ec) at 13 V were 6.9 μC/cm2 and 170 kV/cm, respectively.

  2. High energy storage responses in all-oxide epitaxial relaxor ferroelectric thin films with the coexistence of relaxor and antiferroelectric-like behaviors

    NARCIS (Netherlands)

    Nguyen, Chi T.Q.; Nguyen, Duc Minh; Vu, H.T.; Houwman, Evert Pieter; Vu, Hung N.; Rijnders, A.J.H.M.

    2017-01-01

    Relaxor ferroelectric Pb0.9La0.1(Zr0.52Ti0.48)O3 (PLZT) thin films have been epitaxially grown via pulsed laser deposition on SrRuO3/SrTiO3 single crystal with different orientations. The high recoverable energy-storage density and energy-storage efficiency in the epitaxial PLZT thin films are

  3. Ferroelectric properties of alkoxy-derived CaBi2Ta2O9 thin films

    Science.gov (United States)

    Kato, Kazumi; Suzuki, Kazuyuki; Nishizawa, Kaori; Miki, Takeshi

    2000-09-01

    CaBi2Ta2O9 thin films were deposited on Pt-passivated quartz glass substrates. The 750 °C-annealed thin film was a single phase of layer-structured perovskite and showed random orientation. The thin film exhibited a P-E hysteresis loop. The remanent polarization (Pr) and coercive electric field (Ec) at 13 V were 6 μC/cm2 and 160 kV/cm, respectively. The polarization did not show fatigue after 2×1010 switching cycles.

  4. Ferroelectric properties of lead-free polycrystalline CaBi{sub 2}Nb{sub 2}O{sub 9} thin films on glass substrates

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Yoonho, E-mail: yahn@khu.ac.kr; Son, Jong Yeog, E-mail: jyson@khu.ac.kr [Department of Applied Physics and Institute of Natural Sciences, Kyung Hee University, Yongin 446-701 (Korea, Republic of); Jang, Joonkyung [Department of Nanoenergy Engineering, Pusan National University, Busan 609-735 (Korea, Republic of)

    2016-03-15

    CaBi{sub 2}Nb{sub 2}O{sub 9} (CBNO) thin film, a lead-free ferroelectric material, was prepared on a Pt/Ta/glass substrate via pulsed laser deposition. The Ta film was deposited on the glass substrate for a buffer layer. A (115) preferred orientation of the polycrystalline CBNO thin film was verified via X-ray diffraction measurements. The CBNO thin film on a glass substrate exhibited good ferroelectric properties with a remnant polarization of 4.8 μC/cm{sup 2} (2P{sub r} ∼9.6 μC/cm{sup 2}), although it had lower polarization than the epitaxially c-oriented CBNO thin film reported previously. A mosaic-like ferroelectric domain structure was observed via piezoresponse force microscopy. Significantly, the polycrystalline CBNO thin film showed much faster switching behavior within about 100 ns than that of the epitaxially c-oriented CBNO thin film.

  5. Growth, etching, and stability of sputtered ZnO:Al for thin-film silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Owen, Jorj Ian

    2011-07-01

    Aluminum-doped zinc oxide (ZnO:Al) can fulfill many requirements in thin-film solar cells, acting as (1) a transparent contact through which the incident light is transmitted, (2) part of the back reflector, and (3) a source of light scattering. Magnetron sputtered ZnO:Al thin-films are highly transparent, conductive, and are typically texturized by post-deposition etching in a dilute hydrochloric acid (HCl) solution to achieve light scattering. The ZnO:Al thin-film electronic and optical properties, as well as the surface texture after etching, depend on the deposition conditions and the post-deposition treatments. Despite having been used in thin-film solar cells for more than a decade, many aspects regarding the growth, effects of heat treatments, environmental stability, and etching of sputtered ZnO:Al are not fully understood. This work endeavors to further the understanding of ZnO:Al for the purpose improving silicon thin-film solar cell efficiency and reducing ZnO:Al production costs. With regard to the growth of ZnO:Al, the influence of various deposition conditions on the resultant electrical and structural properties and their evolution with film thickness were studied. The surface electrical properties extracted from a multilayer model show that while carrier concentration of the surface layer saturates already at film thickness of 100 nm, the surface mobility continues to increases with film thickness, and it is concluded that electronic transport across grain boundaries limits mobility in ZnO:Al thin films. ZnO:Al deposited onto a previously etched ZnO:Al surface grows epitaxially, preserving both the original orientation and grain structure. Further, it is determined that a typical ZnO:Al used in thin-film silicon solar cells grows Zn-terminated on glass substrates. Concerning the affects of heat treatments and stability, it is demonstrated that a layer of amorphous silicon can protect ZnO:Al from degradation during annealing, and the mobility of Zn

  6. Pyrolyzed thin film carbon

    Science.gov (United States)

    Tai, Yu-Chong (Inventor); Liger, Matthieu (Inventor); Harder, Theodore (Inventor); Konishi, Satoshi (Inventor); Miserendino, Scott (Inventor)

    2010-01-01

    A method of making carbon thin films comprises depositing a catalyst on a substrate, depositing a hydrocarbon in contact with the catalyst and pyrolyzing the hydrocarbon. A method of controlling a carbon thin film density comprises etching a cavity into a substrate, depositing a hydrocarbon into the cavity, and pyrolyzing the hydrocarbon while in the cavity to form a carbon thin film. Controlling a carbon thin film density is achieved by changing the volume of the cavity. Methods of making carbon containing patterned structures are also provided. Carbon thin films and carbon containing patterned structures can be used in NEMS, MEMS, liquid chromatography, and sensor devices.

  7. Thin film processes II

    CERN Document Server

    Kern, Werner

    1991-01-01

    This sequel to the 1978 classic, Thin Film Processes, gives a clear, practical exposition of important thin film deposition and etching processes that have not yet been adequately reviewed. It discusses selected processes in tutorial overviews with implementation guide lines and an introduction to the literature. Though edited to stand alone, when taken together, Thin Film Processes II and its predecessor present a thorough grounding in modern thin film techniques.Key Features* Provides an all-new sequel to the 1978 classic, Thin Film Processes* Introduces new topics, and sever

  8. Piezoelectric Properties of CaBi4Ti4O15 Ferroelectric Thin Films Investigated by Atomic Force Microscopy

    Science.gov (United States)

    Fu, Desheng; Suzuki, Kazuyuki; Kato, Kazumi

    2003-09-01

    Atomic force microscopy (AFM) is used to probe the local piezoelectric properties of CaBi4Ti4O15 (CBT) bismuth-layer-structured ferroelectric thin films. Calibration with Z-cut LaTiO3 and X-cut quartz crystals shows that a conductive AFM tip can be employed as a top electrode to accurately evaluate the piezoelectric displacement in ferroelectric materials without a top electrode. Our measurements on individual grains in CBT film clearly reveal that the local piezoelectric properties are determined by the polarization state in the grain. In a grain with a polar axis very close to the normal direction, a piezoelectric coefficient of 16 pm/V was attained after poling.

  9. Growth and physical properties of highly oriented La-doped (K,Na)NbO{sub 3} ferroelectric thin films

    Energy Technology Data Exchange (ETDEWEB)

    Vendrell, X., E-mail: xavier.vendrell@ub.edu [Departament de Química Inorgànica, Universitat de Barcelona, 08028 Barcelona (Spain); Raymond, O. [Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, AP 14, Ensenada 22860, Baja California (Mexico); Ochoa, D.A.; García, J.E. [Department of Applied Physics, Universitat Politècnica de Catalunya — BarcelonaTech, 08034 Barcelona (Spain); Mestres, L. [Departament de Química Inorgànica, Universitat de Barcelona, 08028 Barcelona (Spain)

    2015-02-27

    Lead-free (K,Na)NbO{sub 3} (KNN) and La doped (K,Na)NbO{sub 3} (KNN-La) thin films are grown on SrTiO{sub 3} substrates using the chemical solution deposition method. The effect of adding different amounts of Na and K excess (0–20 mol%) is investigated. The results confirm the necessity of adding 20 mol% excess amounts of Na and K precursor solutions in order to avoid the formation of the secondary phase, K{sub 4}Nb{sub 6}O{sub 17}, as confirmed by X-ray diffraction and Raman spectroscopy. Moreover, when adding a 20 mol% of alkaline metal excess, the thin films are highly textured with out-of-plane preferential orientation in the [100] direction of the [100] orientation of the substrate. Doping with lanthanum results in a decrease of the leakage current density at low electric field, and an increase in the dielectric permittivity across the whole temperature range (80–380 K). Although the (100)-oriented KNN and KNN-La films exhibited rounded hysteresis loops, at low temperatures the films show the typical ferroelectric hysteresis loops. - Highlights: • (K{sub 0.5}Na{sub 0.5})NbO{sub 3} and [(K{sub 0.5}Na{sub 0.5}){sub 0.985}La{sub 0.005}]NbO{sub 3} thin films have been prepared. • The obtained thin films show an excellent (100) preferred orientation. • Doping with lanthanum results in a decrease of the leakage current density. • The dielectric properties are enhanced when doping with lanthanum.

  10. Controlling the ferroelectric and resistive switching properties of a BiFeO3 thin film prepared using sub-5 nm dimension nanoparticles.

    Science.gov (United States)

    Shirolkar, Mandar M; Li, Jieni; Dong, Xiaolei; Li, Ming; Wang, Haiqian

    2017-10-04

    In recent years, BiFeO3 has attracted significant attention as an interesting multiferroic material in the exploration of fundamental science and development of novel applications. Our previous study (Phys. Chem. Chem. Phys.18, 2016, 25409) highlighted the interesting physicochemical features of BiFeO3 of sub-5 nm dimension. The study also accentuated the existence of weak ferroelectricity at sub-5 nm dimensions in BiFeO3. Based on this feature, we have prepared thin films using sub-5 nm BiFeO3 nanoparticles and explored various physicochemical properties of the thin film. We report that during the formation of the thin film, the nanoparticles aggregated; particularly, annihilation of their nanotwinning nature was observed. Qualitatively, the Gibbs free energy change ΔG governed the abovementioned processes. The thin film exhibited an R3c phase and enhanced Bi-O-Fe coordination as compared to the sub-5 nm nanoparticles. Raman spectroscopy under the influence of a magnetic field shows a magnetoelectric effect, spin phonon coupling, and magnetic anisotropy. We report room-temperature ferroelectric behavior in the thin film, which enhances with the application of a magnetic field; this confirms the multiferroic nature of the thin film. The thin film shows polarization switching ability at multiple voltages and read-write operation at low bias (±0.5 V). Furthermore, the thin film shows negative differential-complementary resistive switching behavior in the nano-microampere current range. We report nearly stable 1-bit operation for 102 cycles, 105 voltage pulses, and 105 s, demonstrating the paradigm device applications. The observed results thus show that the thin films prepared using sub-5 nm BiFeO3 nanoparticles are a promising candidate for future spintronics and memory applications. The reported approach can also be pertinent to explore the physicochemical properties and develop potential applications of several other nanoparticles.

  11. Influence of sputtering conditions on the optical and electrical properties of laser-annealed and wet-etched room temperature sputtered ZnO:Al thin films

    Energy Technology Data Exchange (ETDEWEB)

    Boukhicha, Rym, E-mail: rym.boukhicha@polytechnique.edu [CNRS, LPICM, Ecole Polytechnique, 91128 Palaiseau (France); Charpentier, Coralie [CNRS, LPICM, Ecole Polytechnique, 91128 Palaiseau (France); Total S and M — New Energies Division, R and D Division, Department of Solar Energies EN/BO/RD/SOL, Tour Michelet, 24 cours Michelet, La Défense 10, 92069 Paris La Défense Cedex (France); Prod' Homme, Patricia [Total S and M — New Energies Division, R and D Division, Department of Solar Energies EN/BO/RD/SOL, Tour Michelet, 24 cours Michelet, La Défense 10, 92069 Paris La Défense Cedex (France); Roca i Cabarrocas, Pere [CNRS, LPICM, Ecole Polytechnique, 91128 Palaiseau (France); Lerat, Jean-François; Emeraud, Thierry [Photovoltaic Business Unit, Excico Group NV, Kempische Steenweg 305/2, B-3500 Hasselt (Belgium); Johnson, Erik [CNRS, LPICM, Ecole Polytechnique, 91128 Palaiseau (France)

    2014-03-31

    We explore the influence of the sputtering deposition conditions on the outcome of an excimer laser anneal and chemical etching process with the goal of producing highly textured substrates for thin film silicon solar cells. Aluminum-doped zinc oxide (ZnO:Al) thin films were prepared on glass substrates by radio frequency magnetron sputtering from a ceramic target at room temperature. The effects of the process pressure (0.11–1.2 Pa) and oxygen flow (0–2 sccm) on the optical and electrical properties of ZnO:Al thin films have been studied both before and after an excimer laser annealing treatment followed by a dilute HCl chemical etch. The as-deposited films varied from completely opaque to yellowish. Thin film laser annealing dramatically improves the optical properties of the most opaque thin films. After laser annealing at the optimum fluence, the average transmittance in the visible wavelength range was around 80% for most films, and reasonable electrical performance was obtained for the films deposited at lower pressures and without oxygen flux (7 Ω/□ for films of 1 μm). After etching, all films displayed a dramatic improvement in haze, but only the low pressure, low oxygen films retained acceptable electrical properties (< 11 Ω/□). - Highlights: • Al:ZnO thin films were deposited at room temperature. • The ZnO:Al films were excimer laser annealed and then wet-etched. • The optical and electrical properties were studied in details.

  12. Microfabrication of a scanning probe with NV centers in a selectively grown diamond thin film through a xenon difluoride etching process

    Science.gov (United States)

    Zhu, Minjie; Li, Jinhua; Toda, Masaya; Ono, Takahito

    2017-12-01

    A scanning probe with nitrogen vacancy (NV) centers in diamond thin film was fabricated via a standard micro/nano electromechanical system process. The diamond thin film was selectively grown by microwave plasma enhanced chemical vapor deposition on a partially nucleated silicon surface. NV centers are embedded during the diamond growth with a pure nitrogen gas flow to the growth chamber. The existence of NV centers in the diamond thin film was confirmed by photoluminescence measurements. In addition, we found that a xenon difluoride (XeF2) etching process and anneal treatment have an influence on the existence of NV centers in the diamond. The fabricated scanning probe with NV centers in diamond thin film can be used as a magnetic scanning sensor. It is anticipated that the alternative method of selectively growing diamond thin film provides various diamond structures in diverse applications.

  13. Nano-embossing technology on ferroelectric thin film Pb(Zr0.3,Ti0.7O3 for multi-bit storage application

    Directory of Open Access Journals (Sweden)

    Lu Qian

    2011-01-01

    Full Text Available Abstract In this work, we apply nano-embossing technique to form a stagger structure in ferroelectric lead zirconate titanate [Pb(Zr0.3, Ti0.7O3 (PZT] films and investigate the ferroelectric and electrical characterizations of the embossed and un-embossed regions, respectively, of the same films by using piezoresponse force microscopy (PFM and Radiant Technologies Precision Material Analyzer. Attributed to the different layer thickness of the patterned ferroelectric thin film, two distinctive coercive voltages have been obtained, thereby, allowing for a single ferroelectric memory cell to contain more than one bit of data.

  14. Multiscale numerical study on ferroelectric nonlinear response of PZT thin films (Conference Presentation)

    Science.gov (United States)

    Wakabayashi, Hiroki; Uetsuji, Yasutomo; Tsuchiya, Kazuyoshi

    2017-06-01

    PZT thin films have excellent performance in deformation precision and response speed, so it is used widely for actuators and sensors of Micro Electro Mechanical System (MEMS). Although PZT thin films outputs large piezoelectricity at morphotropic phase bounfary (MPB), it shows a complicated hysteresis behavior caused by domain switching and structural phase transition between tetragonal and rhombohedral. In general, PZT thin films have some characteristic crystal morphologies. Additionally mechanical strains occur by lattice mismatch with substrate. Therefore it is important for fabrication and performance improvement of PZT thin films to understand the relation between macroscopic hysteresis response and microstructural changes. In this study, a multiscale nonlinear finite element simulation was proposed for PZT thin films at morphotropic phase boundary (MPB) on the substrate. The homogenization theory was employed for scale-bridging between macrostructure and microstructure. Figure 1 shows the proposed multiscale nonlinear simulation [1-3] based on the homogenization theory. Macrostructure is a homogeneous structure to catch the whole behaviors of actuators and sensors. And microstructure is a periodic inhomogeneous structure consisting of domains and grains. Macrostructure and microstructure are connected perfectly by homogenization theory and are analyzed by finite element method. We utilized an incremental form of fundamental constitutive law in consideration with physical property change caused by domain switching and structural phase transition. The developed multiscale finite element method was applied to PZT thin films with lattice mismatch strain on the substrate, and the relation between the macroscopic hysteresis response and microscopic domain switching and structural phase transition were investigated. Especially, we discuss about the effect of crystal morphologies and lattice mismatch strain on hysteresis response.

  15. Thin Film Processes

    CERN Document Server

    Vossen, John L.

    1991-01-01

    This sequel to the 1978 classic, Thin Film Processes, gives a clear, practical exposition of important thin film deposition and etching processes that have not yet been adequately reviewed. It discusses selected processes in tutorial overviews with implementation guide lines and an introduction to the literature. Though edited to stand alone, when taken together, Thin Film Processes II and its predecessor present a thorough grounding in modern thin film techniques. Key Features * Provides an all-new sequel to the 1978 classic, Thin Film Processes * Introduces new topics, and several key topics presented in the original volume are updated * Emphasizes practical applications of major thin film deposition and etching processes * Helps readers find the appropriate technology for a particular application

  16. Platinum-assisted phase transition in bismuth-based layer-structured ferroelectric CaBi4Ti4O15 thin films

    Science.gov (United States)

    Kato, Kazumi; Suzuki, Kazuyuki; Fu, Desheng; Nishizawa, Kaori; Miki, Takeshi

    2002-10-01

    The phase transition of nonferroelectric pyrochlore to ferroelectric perovskite in CaBi4Ti4O15 thin films depends on platinum bottom electrodes. Rather than the strain and crystallinity of the bottom electrode, matching of the atomic arrangement to the Ca-Bi-Ti-O thin films is predominant. CaBi4Ti4O15 thin films crystallized on (200)-oriented platinum at 650 degC showed c-axis orientation. In contrast, thin films crystallized on highly crystalline (111)-oriented platinum at the same temperature contained pyrochlore grains which were about several tens of nanometers in diameter and located in the interface region. They showed P-V hysteresis loops. The remanent polarization and coercive electric field depended on platinum top electrode size.

  17. Optical and microwave properties of CaBi4Ti4O15 ferroelectric thin films deposited by pulsed laser deposition

    Science.gov (United States)

    Emani, Sivanagi Reddy; Joseph, Andrews; Raju, K. C. James

    2016-05-01

    Transparent CaBi4Ti4O15 (CBTi) ferroelectric thin films are deposited by pulsed laser deposition method. The structural, optical and microwave dielectric properties were investigated. CBTi thin films had polycrystalline bismuth-layered perovskite structure and exhibited excellent optical properties. The X-ray analysis of the thin film demonstrates the phase formation and crystallinity. The optical transmission studies show that film is transparent in VIS-NIR region with a direct band gap of 3.53 EV. Morphological studies provide surface roughness as 3 mm. Dielectric constant and loss factors were 48 and 0.060 respectively, at 10GHz. These results suggest that CBTi thin films are promising multifunctional materials for applications in optoelectronic and microwave devices.

  18. Highly oriented ferroelectric CaBi2Nb2O9 thin films deposited on Si(100) by pulsed laser deposition

    Science.gov (United States)

    Desu, S. B.; Cho, H. S.; Joshi, P. C.

    1997-03-01

    We report the successful deposition of highly c-axis oriented CaBi2Nb2O9 (CBN) thin films directly on p-type Si(100) substrates by pulsed laser deposition. The CBN thin films exhibited good structural, dielectric, and CBN/Si interface characteristics. The electrical measurements were conducted on CBN thin films in a metal-ferroelectric-semiconductor (MFS) capacitor configuration. The typical measured small signal dielectric constant and the dissipation factor at a frequency of 100 kHz were 80 and 0.051, respectively. The leakage current of the MFS capacitor structure was governed by the Schottky barrier conduction mechanism and the leakage current density was lower than 10-7A/cm2 at an applied electric field of 100 kV/cm. The capacitance-voltage measurements on MFS capacitors established good ferroelectric polarization switching characteristics.

  19. Fabrication and leakage current and ferroelectric characteristics of multiferroic Fe3O4/(Bi3.25Nd0.65Eu0.10)Ti3O12 composite thin films with Fe3O4 magnetic electrodes micropatterned by reactive ion etching

    Science.gov (United States)

    Kobune, Masafumi; Nishimine, Takuya; Matsunaga, Takuya; Fujita, Satoshi; Kikuchi, Takeyuki; Fujisawa, Hironori; Shimizu, Masaru; Kanda, Kensuke; Maenaka, Kazusuke

    2017-10-01

    Regardless of the deposition time (30-90 min), almost single-phase magnetite (Fe3O4) films with a cubic inverse-spinel structure were produced at a substrate temperature of 500 °C by metalorganic chemical vapor deposition (MOCVD). The Fe3O4/(Bi3.25Nd0.65Eu0.10)Ti3O12 (BNEuT) composite film deposited at 500 °C for 90 min by MOCVD exhibited excellent room-temperature magnetic properties, such as a saturation magnetization of 480 emu/cm3, a residual magnetization of 160 emu/cm3, and a coercivity of 297 Oe. Ferromagnetic Fe3O4 electrodes micropatterned using a combination of photolithography and reactive ion etching were fabricated after MOCVD, and their structural, leakage current, and ferroelectric characteristics were investigated. The room-temperature leakage current density-applied electric field and polarization-electric field (P-E) characteristics of the composite films were successfully measured using Fe3O4 electrodes. The room-temperature P-E hysteresis loop for a sample with the structure Fe3O4/BNEuT/Nb:TiO2/Ti had a relatively good shape, with a remanent polarization of 8 µC/cm2 and a coercive field of 193 kV/cm.

  20. Integration and High-Temperature Characterization of Ferroelectric Vanadium-Doped Bismuth Titanate Thin Films on Silicon Carbide

    Science.gov (United States)

    Ekström, Mattias; Khartsev, Sergiy; Östling, Mikael; Zetterling, Carl-Mikael

    2017-07-01

    4H-SiC electronics can operate at high temperature (HT), e.g., 300°C to 500°C, for extended times. Systems using sensors and amplifiers that operate at HT would benefit from microcontrollers which can also operate at HT. Microcontrollers require nonvolatile memory (NVM) for computer programs. In this work, we demonstrate the possibility of integrating ferroelectric vanadium-doped bismuth titanate (BiTV) thin films on 4H-SiC for HT memory applications, with BiTV ferroelectric capacitors providing memory functionality. Film deposition was achieved by laser ablation on Pt (111)/TiO2/4H-SiC substrates, with magnetron-sputtered Pt used as bottom electrode and thermally evaporated Au as upper contacts. Film characterization by x-ray diffraction analysis revealed predominately (117) orientation. P- E hysteresis loops measured at room temperature showed maximum 2 P r of 48 μC/cm2, large enough for wide read margins. P- E loops were measurable up to 450°C, with losses limiting measurements above 450°C. The phase-transition temperature was determined to be about 660°C from the discontinuity in dielectric permittivity, close to what is achieved for ceramics. These BiTV ferroelectric capacitors demonstrate potential for use in HT NVM applications for SiC digital electronics.

  1. Effect of etching stop layer on characteristics of amorphous IGZO thin film transistor fabricated at low temperature

    Directory of Open Access Journals (Sweden)

    Xifeng Li

    2013-03-01

    Full Text Available Transparent bottom-gate amorphous Indium-Gallium-Zinc Oxide (a-IGZO thin-film transistors (TFTs had been successfully fabricated at relative low temperature. The influence of reaction gas ratio of N2O and SiH4 during the growth of etching stop layer (SiOx on the characteristics of a-IGZO TFTs was investigated. The transfer characteristics of the TFTs were changed markedly because active layer of a-IGZO films was modified by plasma in the growth process of SiOx. By optimizing the deposition parameters of etching stop layer process, a-IGZO TFTs were manufactured and exhibited good performance with a field-effect mobility of 8.5 cm2V-1s-1, a threshold voltage of 1.3 V, and good stability under gate bias stress of 20 V for 10000 s.

  2. Dissociation of grain boundary dislocations in SrBi2Ta2O9 ferroelectric thin films

    Science.gov (United States)

    Zhu, Xinhua; Zhu, Jianmin; Zhou, Shunhua; Li, Qi; Liu, Zhiguo; Ming, Naiben

    2001-08-01

    In this work, the dissociation of grain boundary dislocations (GBDs) is reported in SrBi2Ta2O9 (SBT) ferroelectric thin films with c-axis orientation grown by pulsed-laser deposition on Pt/TiO2/SiO2/Si(100) substrates. Small-angle (8.2°) [001] tilt grain boundaries with a boundary plane close to the (110) plane exhibit partial GBDs separated by stacking faults. The dissociated grain-boundary structures have twice the number of GBDs and interdislocation core channel width smaller than that Frank's geometrical rule predicts. At the equilibrium, the repulsive elastic force between partial dislocations is balanced by an attractive force produced by the formation of a stacking fault between the partials. Based on this, the stacking fault energy is evaluated to be 0.27-0.29 J/m2. The relationship between the leakage current of SBT films and dissociation of GBDs is also discussed.

  3. Growth of ferroelectric CaBi_2Ta_2O9 Thin Film Using rf Magnetron Sputtering

    Science.gov (United States)

    Peng, Jin; Huang, Z. J.; Jiang, Q. D.; Brazdeikis, A.; Zhang, Z. H.; Liu, J. R.; Chu, W. K.; Chu, C. W.

    1998-03-01

    Ferroelectric CaBi_2Ta_2O_9(CBTO) films were deposited at various temperature on SrTiO_3(001) and SrTiO_3(111), MgO(001) and R-cut sapphire and Pt-buffered SrTiO3 (001) and SrTi O_3(111), MgO(001) and R-cut sapphire substrate by rf magnetron sputtering. It is found that crystallinity and chemical composition of CBTO thin films were strongly dependent on substrate and temperature. X-ray diffraction, scanning electron microscopy, atomic force microscopy and rutherford backscattering were employed to examine the structure, surface morphology and composition. In addition, comparisons of growth orientation and stoichiometry between CBTO and SrBi_2Ta_2O9 were made.

  4. Ferroelectrics onto silicon prepared by chemical solution deposition methods: from the thin film to the self-assembled systems

    Directory of Open Access Journals (Sweden)

    Calzada, M. L.

    2006-06-01

    Full Text Available The work of the authors during the last years on ferroelectric thin and ultra-thin films deposited by Chemical Solution Deposition (CSD onto silicon based substrates is reviewed in this paper. Ferroelectric layers integrated with silicon substrates have potential use in the new micro/nanoelectronic devices. Two hot issues are here considered: 1 the use of low processing temperatures of the ferroelectric film, with the objective of not producing any damage on the different elements of the device heterostructure, and 2 the downscaling of the ferroelectric material with the aim of achieving the high densities of integration required in the next generation of nanoelectronic devices. The UV-assisted Rapid Thermal Processing has successfully been used in our laboratory for the fabrication of ferroelectric films at low temperatures. Preliminary results on the CSD preparation of nanosized ferroelectric structures are shown.

    Este artículo revisa el trabajo realizado por los autores durante los últimos años sobre lámina delgada y ultra-delgada ferroeléctrica preparada mediante el depósito químico de disoluciones (CSD sobre substratos de silicio. Las películas ferroeléctricas integradas con silicio tienen potenciales usos en los nuevos dispositivos micro/nanoelectrónicos. Dos aspectos claves son aquí considerados: 1 el uso de bajas temperaturas de procesado de la lámina ferroeléctrica, con el fin de no dañar los diferentes elementos que forman la heteroestructura del dispositivo y 2 la disminución de tamaño del material ferroeléctrico con el fin de conseguir las altas densidades de integración requeridas en la próxima generación de dispositivos nanoelectróncos. Los procesos térmicos rápidos asistidos con irradiación UV se están usando en nuestro laboratorio para conseguir la fabricación del material ferroeléctrico a temperaturas bajas compatibles con la tecnología del silicio. Se muestran resultados preliminares sobre

  5. Ferroelectric properties of lightly doped La:HfO2 thin films grown by plasma-assisted atomic layer deposition

    Science.gov (United States)

    Kozodaev, M. G.; Chernikova, A. G.; Korostylev, E. V.; Park, M. H.; Schroeder, U.; Hwang, C. S.; Markeev, A. M.

    2017-09-01

    The structural and ferroelectric properties of lightly La-doped (1 mol. %) HfO2 thin films grown by plasma-assisted atomic layer deposition were examined. An annealing temperature as low as 400 °C crystallized the film into the desired orthorhombic phase, which resulted in it displaying promising ferroelectric performance. The remanent polarization (Pr) increased with annealing temperature, but the performance enhancement seemed to saturate at 500 °C. A slight decrease in the dielectric constant, which was associated with the preferential formation of a polar orthorhombic phase at higher temperatures, was also observed. The long-term wake-up effect, i.e., a marked rise in the 2Pr value during field cycling, was demonstrated for films processed at all annealing temperatures. The presence of domain groups with opposite internal electric biases was found in the pristine state, while the internal bias distribution became more uniform during wake-up. The endurance of up to 4 × 108 switching cycles without marked fatigue using bipolar pulses with a duration of 600 ns, and an amplitude of ±3 MV/cm was demonstrated.

  6. Ferroelectric photovoltaic properties in doubly substituted (Bi0.9La0.1)(Fe0.97Ta0.03)O3 thin films

    Science.gov (United States)

    Katiyar, R. K.; Sharma, Y.; Barrionuevo, D.; Kooriyattil, S.; Pavunny, S. P.; Young, J. S.; Morell, G.; Weiner, B. R.; Katiyar, R. S.; Scott, J. F.

    2015-02-01

    Doubly substituted [Bi0.9La0.1][Fe0.97Ta0.03]O3 (BLFTO) films were fabricated on Pt/TiO2/SiO2/Si substrates by pulsed laser deposition. The ferroelectric photovoltaic properties of ZnO:Al/BLFTO/Pt thin film capacitor structures were evaluated under white light illumination. The open circuit voltage and short circuit current density were observed to be ˜0.20 V and ˜1.35 mA/cm2, respectively. The band gap of the films was determined to be ˜2.66 eV, slightly less than that of pure BiFeO3 (2.67 eV). The PV properties of BLFTO thin films were also studied for various pairs of planar electrodes in different directions in polycrystalline thin films.

  7. AES study on the chemical composition of ferroelectric BaTiO3 thin films RF sputter-deposited on silicon

    Science.gov (United States)

    Dharmadhikari, V. S.; Grannemann, W. W.

    1983-01-01

    AES depth profiling data are presented for thin films of BaTiO3 deposited on silicon by RF sputtering. By profiling the sputtered BaTiO3/silicon structures, it was possible to study the chemical composition and the interface characteristics of thin films deposited on silicon at different substrate temperatures. All the films showed that external surface layers were present, up to a few tens of angstroms thick, the chemical composition of which differed from that of the main layer. The main layer had stable composition, whereas the intermediate film-substrate interface consisted of reduced TiO(2-x) oxides. The thickness of this intermediate layer was a function of substrate temperature. All the films showed an excess of barium at the interface. These results are important in the context of ferroelectric phenomena observed in BaTiO3 thin films.

  8. Large Piezoelectric Effect in a Lead-Free Molecular Ferroelectric Thin Film.

    Science.gov (United States)

    Liao, Wei-Qiang; Tang, Yuan-Yuan; Li, Peng-Fei; You, Yu-Meng; Xiong, Ren-Gen

    2017-12-13

    Piezoelectric materials have been widely used in various applications, such as high-voltage sources, actuators, sensors, motors, frequency standard, vibration reducer, and so on. In the past decades, lead zirconate titanate (PZT) binary ferroelectric ceramics have dominated the commercial piezoelectric market due to their excellent properties near the morphotropic phase boundary (MPB), although they contain more than 60% toxic lead element. Here, we report a lead-free and one-composition molecular ferroelectric trimethylbromomethylammonium tribromomanganese(II) (TMBM-MnBr 3 ) with a large piezoelectric coefficient d 33 of 112 pC/N along polar axis, comparable with those of typically one-composition piezoceramics such as BaTiO 3 along polar axis [001] (∼90 pC/N) and much greater than those of most known molecular ferroelectrics (almost below 40 pC/N). More significantly, the effective local piezoelectric coefficient of TMBM-MnBr 3 films is comparable to that of its bulk crystals. In terms of ferroelectric performance, it is the low coercive voltages, combined with the multiaxial characteristic, that ensure the feasibility of piezo film applications. Based on these, along with the common superiorities of molecular ferroelectrics like light weight, flexibility, low acoustical impedance, easy and environmentally friendly processing, it will open a new avenue for the exploration of next-generation piezoelectric devices in industrial and medical applications.

  9. Polarization Switching in Ferroelectric Thin Films Undergoing First-Order Phase Transitions

    Directory of Open Access Journals (Sweden)

    L. A. Bakaleinikov

    2010-01-01

    Full Text Available The main switching properties in ferroelectrics undergoing first-order phase transitions are simulated within the framework of the extended Ishibashi dipole-lattice model including the dipole-dipole interaction in a two-dimensional case for ferroelectric nanoscale objects. The peculiarities of the temperature dependence of the switching rate and the pyroelectric coefficient are discussed in the range of coexistence of the metastable states. The used coefficients of the long-range and short-range interactions between the dipoles are taken from the dielectric and structure measurements in BaTiO3.

  10. Effects of doping on ferroelectric properties and leakage current behavior of KNN-LT-LS thin films on SrTiO3 substrate

    Science.gov (United States)

    Abazari, M.; Safari, A.

    2009-05-01

    We report the effects of Ba, Ti, and Mn dopants on ferroelectric polarization and leakage current of (K0.44Na0.52Li0.04)(Nb0.84Ta0.1Sb0.06)O3 (KNN-LT-LS) thin films deposited by pulsed laser deposition. It is shown that donor dopants such as Ba2+, which increased the resistivity in bulk KNN-LT-LS, had an opposite effect in the thin film. Ti4+ as an acceptor B-site dopant reduces the leakage current by an order of magnitude, while the polarization values showed a slight degradation. Mn4+, however, was found to effectively suppress the leakage current by over two orders of magnitude while enhancing the polarization, with 15 and 23 μC/cm2 remanent and saturated polarization, whose values are ˜70% and 82% of the reported values for bulk composition. This phenomenon has been associated with the dual effect of Mn4+ in KNN-LT-LS thin film, by substituting both A- and B-site cations. A detailed description on how each dopant affects the concentrations of vacancies in the lattice is presented. Mn-doped KNN-LT-LS thin films are shown to be a promising candidate for lead-free thin films and applications.

  11. Interface and domain engineering in ferroelectric BiFeO3 thin films

    NARCIS (Netherlands)

    Solmaz, A.

    2017-01-01

    BiFeO3 (BFO) is one of the most important multiferroic materials that have seen a significant boost in the academic research in the last decades. Coupling between the ferroelectric and antiferromagnetic order parameters of BFO at room temperature promises a groundbreaking technology for

  12. Homo-junction ferroelectric field-effect-transistor memory device using solution-processed lithium-doped zinc oxide thin films

    KAUST Repository

    Nayak, Pradipta K.

    2012-06-22

    High performance homo-junction field-effect transistor memory devices were prepared using solution processed transparent lithium-doped zinc oxide thin films for both the ferroelectric and semiconducting active layers. A highest field-effect mobility of 8.7 cm2/Vs was obtained along with an Ion/Ioff ratio of 106. The ferroelectric thin filmtransistors showed a low sub-threshold swing value of 0.19 V/dec and a significantly reduced device operating voltage (±4 V) compared to the reported hetero-junction ferroelectrictransistors, which is very promising for low-power non-volatile memory applications.

  13. Structure and switching of in-plane ferroelectric nano-domains in strained PbxSr1-xTiO3 thin films

    Energy Technology Data Exchange (ETDEWEB)

    Matzen, Sylivia [University of Groningen, The Netherlands; Nesterov, Okeksiy [ORNL; Rispens, Gregory [University of Groningen, The Netherlands; Heuver, J. A. [University of Groningen, The Netherlands; Bark, C [University of Wisconsin, Madison; Biegalski, Michael D [ORNL; Christen, Hans M [ORNL; Noheda, Beatriz [University of Groningen, The Netherlands

    2014-01-01

    Nanoscale ferroelectrics, the active elements of a variety of nanoelectronic devices, develop denser and richer domain structures than the bulk counterparts. With shrinking device sizes understanding and controlling domain formation in nanoferroelectrics is being intensely studied. Here we show that a precise control of the epitaxy and the strain allows stabilizing a hierarchical domain architecture in PbxSr1-xTiO3 thin films, showing periodic, purely in-plane polarized, ferroelectric nano-domains that can be switched by a scanning probe.

  14. Optimization of time on CF{sub 4}/O{sub 2} etchant for inductive couple plasma reactive ion etching of TiO{sub 2} thin film

    Energy Technology Data Exchange (ETDEWEB)

    Adzhri, R., E-mail: adzhri@gmail.com; Fathil, M. F. M.; Ruslinda, A. R.; Gopinath, Subash C. B.; Voon, C. H.; Foo, K. L.; Nuzaihan, M. N. M.; Azman, A. H.; Zaki, M. [Institute of Nano Electronic Engineering (INEE), Universiti Malaysia Perlis (UniMAP), Perlis (Malaysia); Arshad, M. K. Md., E-mail: mohd.khairuddin@unimap.edu.my; Hashim, U.; Ayub, R. M. [Institute of Nano Electronic Engineering (INEE), Universiti Malaysia Perlis (UniMAP), Perlis (Malaysia); School of Microelectronic Engineering, Universiti Malaysia Perlis (UniMAP), Perlis (Malaysia)

    2016-07-06

    In this work, we investigate the optimum etching of titanium dioxide (TiO{sub 2}) using inductive couple plasma reactive ion etching (ICP-RIE) on our fabricated devices. By using a combination of CF{sub 4}/O{sub 2} gases as plasma etchant with ratio of 3:1, three samples of TiO{sub 2} thin film were etched with different time duration of 10 s, 15 s and 20 s. The ion bombardment of CF{sub 4} gases with plasma enhancement by O{sub 2} gas able to break the oxide bond of TiO{sub 2} and allow anisotropic etch profile with maximum etch rate of 18.6 nm/s. The sample was characterized by using optical profilometer to determine the depth of etched area and scanning electron microscopy (SEM) for etch profile characterization.

  15. Enhancement of local piezoelectric properties of a perforated ferroelectric thin film visualized via piezoresponse force microscopy

    Science.gov (United States)

    Ivanov, M. S.; Sherstyuk, N. E.; Mishina, E. D.; Khomchenko, V. A.; Tselev, A.; Mukhortov, V. M.; Paixão, J. A.; Kholkin, A. L.

    2017-10-01

    The local piezoresponse in a Ba0.8Sr0.2TiO3 epitaxial ferroelectric film perforated by cylindrical channels has been investigated experimentally by means of piezoresponse force microscopy (PFM). A large enhancement of the effective values for both lateral and vertical components of piezoelectric tensor was experimentally detected in the perforated film as compared to non-perforated structure—by a factor of 8 for the lateral and by a factor 2 for the vertical piezoresponse. This result is consistent with the previously reported enhancement of the optical second harmonic generation over perforated films observed in macroscopic experiments. We assume that a possible mechanism for the increased PFM response is due to reduction of stress and clamping in the film imposed by the substrate. The obtained insight is critical for understanding nanoscale piezo- and ferroelectric responses in photonic crystals fabricated by focused ion beam milling.

  16. Preparation of ferroelectric bi-layered thin films using the modified polymeric precursor method

    Directory of Open Access Journals (Sweden)

    S.M. Zanetti

    2001-07-01

    Full Text Available The modified polymeric precursor method was used to synthesize ferroelectric bismuth-layered compounds such as, SrBi2Ta2O9 (SBT and SrBi2Nb2O9 (SBN. This method allows for the use of precursor reagents such as oxide, carbonate or nitrate as cation sources, with the additional advantage of not requiring special equipment for the synthesis. The films were deposited by spin coating on Pt/Ti/SiO2/Si(100 and SrTiO3(100 (STO substrates and crystallized at temperatures between 700 and 800 °C in the case of SBT films and 650 °C to 750 °C in that of SBN films. The crystallographic and microstructural characterizations were carried out by X-ray diffraction (XRD, scanning electron microscopy (SEM and atomic force microscopy (AFM. The ferroelectric and dielectric properties of the films indicate their applicability in ferroelectric memories and optical devices.

  17. CaBi2Ta2O9 ferroelectric thin films prepared by pulsed laser deposition

    Science.gov (United States)

    Das, Rasmi R.; Rodriguéz, R. J.; Katiyar, Ram S.; Krupanidhi, S. B.

    2001-05-01

    Thin films of CaBi2Ta2O9 (CBT) were deposited on Pt/TiO2/SiO2/Si substrates using the pulsed laser deposition technique at temperatures ranging from 500 to 700 °C. The presence of (115) and (0010¯) orientations confirm the phase formation at the lower temperature (500 °C). Microstructure evolution of CBT films with oxygen pressure of 100-200 mTorr at a substrate temperature of 650 °C shows that the films deposited at lower pressure have a relatively smaller grain size and less surface roughness. The films grown at 650 °C exhibited a maximum polarization of (2Pm) 17 μC/cm2, remanent polarization of (2Pr) 8 μC/cm2 and coercive field of (Ec) 128 kV/cm, with fatigue endurance up to 1010 switching cycles. The higher dielectric constant (˜115 at 100 kHz) with a relatively lower dissipation factor (0.02) at higher growth temperature (700 °C) was explained by the increased grain size. The higher leakage current density (˜10-7A/cm2) at higher deposition temperature is attributed to the interfacial diffusion of the film and the substrate.

  18. Strategies for Inorganic Incorporation using Neat Block Copolymer Thin Films for Etch Mask Function and Nanotechnological Application.

    Science.gov (United States)

    Cummins, Cian; Ghoshal, Tandra; Holmes, Justin D; Morris, Michael A

    2016-07-01

    Block copolymers (BCPs) and their directed self-assembly (DSA) has emerged as a realizable complementary tool to aid optical patterning of device elements for future integrated circuit advancements. Methods to enhance BCP etch contrast for DSA application and further potential applications of inorganic nanomaterial features (e.g., semiconductor, dielectric, metal and metal oxide) are examined. Strategies to modify, infiltrate and controllably deposit inorganic materials by utilizing neat self-assembled BCP thin films open a rich design space to fabricate functional features in the nanoscale regime. An understanding and overview on innovative ways for the selective inclusion/infiltration or deposition of inorganic moieties in microphase separated BCP nanopatterns is provided. Early initial inclusion methods in the field and exciting contemporary reports to further augment etch contrast in BCPs for pattern transfer application are described. Specifically, the use of evaporation and sputtering methods, atomic layer deposition, sequential infiltration synthesis, metal-salt inclusion and aqueous metal reduction methodologies forming isolated nanofeatures are highlighted in di-BCP systems. Functionalities and newly reported uses for electronic and non-electronic technologies based on the inherent properties of incorporated inorganic nanostructures using di-BCP templates are highlighted. We outline the potential for extension of incorporation methods to triblock copolymer features for more diverse applications. Challenges and emerging areas of interest for inorganic infiltration of BCPs are also discussed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Fabrication of a capacitive relative humidity sensor using aluminum thin films deposited on etched printed circuit board

    Directory of Open Access Journals (Sweden)

    Lee Jacqueline Ann L.

    2016-01-01

    Full Text Available A capacitive humidity-sensing device was created by thermal evaporation of 99.999% aluminum. The substrate used for the coating was etched double-sided printed circuit board. The etched printed circuit board serves as the dielectric of the capacitor while the aluminum thin films deposited on either side serve as the plates of the capacitor. The capacitance was measured before and after exposure to humidity. The device was then calibrated by comparing the readings of capacitance with that of the relative humidity sensor of the Vernier LabQuest2. It was found that there is a linear relationship between the capacitance and relative humidity given by the equation C=1.418RH+29.139 where C is the capacitance and RH is the relative humidity. The surface of the aluminum films is porous and it is through these pores that water is adsorbed and capillary condensation occurs, thereby causing the capacitance to change upon exposure to humidity.

  20. Effect of Coercive Voltage and Charge Injection on Performance of a Ferroelectric-Gate Thin-Film Transistor

    Directory of Open Access Journals (Sweden)

    P. T. Tue

    2013-01-01

    Full Text Available We adopted a lanthanum oxide capping layer between semiconducting channel and insulator layers for fabrication of a ferroelectric-gate thin-film transistor memory (FGT which uses solution-processed indium-tin-oxide (ITO and lead-zirconium-titanate (PZT film as a channel layer and a gate insulator, respectively. Good transistor characteristics such as a high “on/off” current ratio, high channel mobility, and a large memory window of 108, 15.0 cm2 V−1 s−1, and 3.5 V were obtained, respectively. Further, a correlation between effective coercive voltage, charge injection effect, and FGT’s memory window was investigated. It is found that the charge injection from the channel to the insulator layer, which occurs at a high electric field, dramatically influences the memory window. The memory window’s enhancement can be explained by a dual effect of the capping layer: (1 a reduction of the charge injection and (2 an increase of effective coercive voltage dropped on the insulator.

  1. Ferroelectric response from lead zirconate titanate thin films prepared directly on low-resistivity copper substrates

    Science.gov (United States)

    Losego, Mark D.; Jimison, Leslie H.; Ihlefeld, Jon F.; Maria, Jon-Paul

    2005-04-01

    We demonstrate films of the well-known ferroelectric lead zirconate titanate (PZT) prepared directly on copper foils by chemical solution deposition (CSD). The films exhibit saturating polarization hysteresis, remanent polarization values of 26μC/cm2, and permittivities of 800; these properties are comparable to those achieved using semiconductor-grade substrates. The preparation methodology is founded upon an understanding of solution chemistry as opposed to conventional gas-phase / condensed-phase equilibrium approaches. By adopting this technique, base-metal compatibility can be achieved using much lower temperatures, and a broader set of devices can be prepared offering intimate contact with high conductivity, easily patternable, or ferromagnetic metals.

  2. Study of the etching mechanism of tantalum thin films by argon actinometry

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sang Hoon; Woo, Sang Gyun; Ju, Sup Youl; Lee, Kyung Jong; Ahn, Jin Ho [Hanyang Univ., Seoul (Korea, Republic of)

    2002-01-01

    The mechanism of etching a tantalum film with pure chlorine plasma was studied using an electron cyclotron resonance plasma system. The emission intensity was measured by using optical emission spectroscopy, and the relative density of Cl radicals was estimated by using Ar actinometry. The chemical reaction between Cl and Ta resulting in the formation of TaCl{sub x} with a low vapor pressure, can proceed only after the removal of the native Ta oxide on the surface. The sputter-assisted dissociation of TaCl{sub x} into TaCl{sub x-1} and atomic Cl plays an important role in Ta etching. The microloading effect can be effectively suppressed by double-step etching and the formation of a passivation layer with a thicker sidewall. Also, 0.15-{mu}m line and space patterns were successfully obtained.

  3. A new method of dielectric characterization in the microwave range for high-k ferroelectric thin films

    OpenAIRE

    Nadaud, Kevin; Gundel, Hartmut,; Borderon, Caroline; Gillard, Raphaël; Fourn, Erwan

    2013-01-01

    International audience; In this paper we propose a new method of dielectric characterization of high-k thin films based on the measurement of coplanar capacitor inserts between two coplanar waveguide transmission lines. The measurement geometry is deposed on the thin film which is elaborate on an insulating substrate. The thin film permittivity is extracted with the help of a mathematical model describing the capacitance between two conductor plates deposed on a 2-layers substrate. A simple c...

  4. Switching of both local ferroelectric and magnetic domains in multiferroic Bi0.9La0.1FeO3 thin film by mechanical force.

    Science.gov (United States)

    Jia, Tingting; Kimura, Hideo; Cheng, Zhenxiang; Zhao, Hongyang

    2016-08-22

    Cross-coupling of ordering parameters in multiferroic materials by multiple external stimuli other than electric field and magnetic field is highly desirable from both practical application and fundamental study points of view. Recently, mechanical force has attracted great attention in switching of ferroic ordering parameters via electro-elastic coupling in ferroelectric materials. In this work, mechanical force induced both polarization and magnetization switching were visualized in a polycrystalline multiferroic Bi0.9La0.1FeO3 thin film using a scanning probe microscopy system. The piezoresponse force microscopy and magnetic force microscopy responses suggest that both the ferroelectric domains and the magnetic domains in Bi0.9La0.1FeO3 film could be switched by mechanical force as well as by electric field. High tip stress applied on our thin film is demonstrated as able to induce ferroelastic switching and thus induce both ferroelectric dipole and magnetic spin flipping, as a consequence of electro-elastic coupling and magneto-electric coupling. The demonstration of mechanical force control of both the ferroelectric and the magnetic domains at room temperature provides a new freedom for manipulation of multiferroics and could result in devices with novel functionalities.

  5. Fabrication of SiNx Thin Film of Micro Dielectric Barrier Discharge Reactor for Maskless Nanoscale Etching

    Directory of Open Access Journals (Sweden)

    Qiang Li

    2016-12-01

    Full Text Available The prevention of glow-to-arc transition exhibited by micro dielectric barrier discharge (MDBD, as well as its long lifetime, has generated much excitement across a variety of applications. Silicon nitride (SiNx is often used as a dielectric barrier layer in DBD due to its excellent chemical inertness and high electrical permittivity. However, during fabrication of the MDBD devices with multilayer films for maskless nano etching, the residual stress-induced deformation may bring cracks or wrinkles of the devices after depositing SiNx by plasma enhanced chemical vapor deposition (PECVD. Considering that the residual stress of SiNx can be tailored from compressive stress to tensile stress under different PECVD deposition parameters, in order to minimize the stress-induced deformation and avoid cracks or wrinkles of the MDBD device, we experimentally measured stress in each thin film of a MDBD device, then used numerical simulation to analyze and obtain the minimum deformation of multilayer films when the intrinsic stress of SiNx is −200 MPa compressive stress. The stress of SiNx can be tailored to the desired value by tuning the deposition parameters of the SiNx film, such as the silane (SiH4–ammonia (NH3 flow ratio, radio frequency (RF power, chamber pressure, and deposition temperature. Finally, we used the optimum PECVD process parameters to successfully fabricate a MDBD device with good quality.

  6. Impact of mechanical stress on ferroelectricity in (Hf{sub 0.5}Zr{sub 0.5})O{sub 2} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Shiraishi, Takahisa [Department of Innovative and Engineered Materials, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8502 (Japan); Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Katayama, Kiliha; Yokouchi, Tatsuhiko; Oikawa, Takahiro [Department of Innovative and Engineered Materials, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8502 (Japan); Shimizu, Takao [Materials Research Center for Element Strategy, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8502 (Japan); Sakata, Osami [Department of Innovative and Engineered Materials, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8502 (Japan); Synchrotron X-ray Station at SPring-8, National Institute for Materials Science (NIMS), Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148 (Japan); Japan Synchrotron Radiation Research Institute (JASRI), Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan); Uchida, Hiroshi [Department of Materials and Life Sciences, Sophia University, Chiyoda, Tokyo 102-8554 (Japan); Imai, Yasuhiko [Japan Synchrotron Radiation Research Institute (JASRI), Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan); Kiguchi, Takanori; Konno, Toyohiko J. [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Funakubo, Hiroshi, E-mail: funakubo.h.aa@m.titech.ac.jp [Department of Innovative and Engineered Materials, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8502 (Japan); Materials Research Center for Element Strategy, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8502 (Japan); Department of Materials Science and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8502 (Japan)

    2016-06-27

    To investigate the impact of mechanical stress on their ferroelectric properties, polycrystalline (Hf{sub 0.5}Zr{sub 0.5})O{sub 2} thin films were deposited on (111)Pt-coated SiO{sub 2}, Si, and CaF{sub 2} substrates with thermal expansion coefficients of 0.47, 4.5, and 22 × 10{sup −6}/ °C, respectively. In-plane X-ray diffraction measurements revealed that the (Hf{sub 0.5}Zr{sub 0.5})O{sub 2} thin films deposited on SiO{sub 2} and Si substrates were under in-plane tensile strain and that their volume fraction of monoclinic phase decreased as this strain increased. In contrast, films deposited on CaF{sub 2} substrates were under in-plane compressive strain, and their volume fraction of monoclinic phase was the largest among the three kinds of substrates. The maximum remanent polarization of 9.3 μC/cm{sup 2} was observed for Pt/(Hf{sub 0.5}Zr{sub 0.5})O{sub 2}/Pt/TiO{sub 2}/SiO{sub 2}, while ferroelectricity was barely observable for Pt/(Hf{sub 0.5}Zr{sub 0.5})O{sub 2}/Pt/TiO{sub 2}/SiO{sub 2}/CaF{sub 2}. This result suggests that the in-plane tensile strain effectively enhanced the ferroelectricity of the (Hf{sub 0.5}Zr{sub 0.5})O{sub 2} thin films.

  7. Approaches Towards the Minimisation of Toxicity in Chemical Solution Deposition Processes of Lead-Based Ferroelectric Thin Films

    Science.gov (United States)

    Bretos, Iñigo; Calzada, M. Lourdes

    The ever-growing environmental awareness in our lives has also been extended to the electroceramics field during the past decades. Despite the strong regulations that have come up (RoHS directive), a number of scientists work on ferroelectric thin film ceramics containing lead. Although the use of these materials in piezoelectric devices is exempt from the RoHS directive, successful ways of decreasing toxic load must be considered a crucial challenge. Within this framework, a few significant advances are presented here, based on different Chemical Solution Deposition strategies. Firstly, the UV sol-gel photoannealing technique (Photochemical Solution Deposition) avoids the volatilisation of hazardous lead from lead-based ferroelectric films, usually observed at conventional annealing temperatures. The key point of this approach lies in the photo-excitation of a few organic components in the gel film. There is also a subsequent annealing of the photo-activated film at temperatures low enough to prevent lead volatilisation, but allowing crystallisation of the pure perovskite phase. Ozonolysis of the films is also promoted when UV-irradiation is carried out in an oxygen atmosphere. This is known to improve electrical response. By this method, nominally stoichiometric solution (i.e., a solution without PbO-excess) derived films with reliable properties, and free of compositional gradients, may be prepared at temperatures as low as 450°C. A PtxPb interlayer between the ferroelectric film and the Pt silicon substrate is observed in the heterostructure of the low-temperature processed films. This is when lead excesses are present in their microstructure. The influence of this interface on the compositional depth profile of the films will be discussed. We will evaluate the feasibility of the UV sol-gel photoannealing technique in fabricating functional films while fulfilling environmental and technological aspects (like integration with silicon IC technology). The second

  8. Influence of Au nanoparticles on the photoluminescent and electrical properties of Bi3.6Eu0.4Ti3O12 ferroelectric thin films

    Science.gov (United States)

    Su, Li; Qin, Ni; Xie, Wei; Fu, Jianhui; Bao, Dinghua

    2014-07-01

    Au-doped Bi3.6Eu0.4Ti3O12 (BET) thin films were prepared on fused silica and Pt/Ti/SiO2/Si substrates by a chemical solution deposition method. The existence of Au nanoparticles (NPs) has been confirmed by X-ray diffraction, X-ray photoelectron spectroscopy, and transmission electron microscope analysis. Enhanced photoluminescence (PL) of Eu3+ ions was obtained in a wide range of Au doping level. Role of the Au NPs in the PL enhancement was investigated by means of optical absorption, excitation, and emission spectra, as well as decay lifetime measurements. The results indicated that the intra-4f transition of Eu3+ ions can be intensively activated by the coupling of the charge transfer band of BET with the 5D0 state of Eu3+ ions. The influence of Au NPs on the PL properties of Eu3+ ions in the present thin films was attributed to the band bending at Au/BET interface and the localized surface plasma resonance absorption of Au NPs in the visible light region. The dielectric and ferroelectric properties of Au-doped BET thin films were investigated as well.

  9. High haze textured surface B-doped ZnO-TCO films on wet-chemically etched glass substrates for thin film solar cells

    Science.gov (United States)

    Xinliang, Chen; Jieming, Liu; Jia, Fang; Ze, Chen; Ying, Zhao; Xiaodan, Zhang

    2016-08-01

    Textured glass substrates with crater-like feature sizes of ˜5-30 μm were obtained using the chemical etching method through adjusting the treatment round (R). Pyramid-like boron-doped zinc oxide (ZnO:B) films with feature sizes of ˜300-800 nm were deposited on the etched glass substrates by the metal organic chemical deposition (MOCVD) technique using water, diethylzinc and 1%-hydrogen-diluted diborane. The ZnO:B films on the etched glass with micro/nano double textures presented a much stronger light-scattering capability than the conventional ZnO:B on the flat glass and their electrical properties changed little. Typical etched glass-3R/ZnO:B exhibited a high root mean square (RMS) roughness of ˜160 nm. The haze values at the wavelengths of 550 nm and 850 nm for etched glass-3R/ZnO:B sample were 61% and 42%, respectively. Finally, the optimized etched glass/ZnO:B was applied in the silicon (Si) based thin film solar cells. The high haze etched glass/ZnO:B substrates have potential merits for thin film solar cells. Project supported by the State Key Development Program for Basic Research of China (Nos. 2011CBA00706, 2011CBA00707), the Tianjin Applied Basic Research Project and Cutting-Edge Technology Research Plan (No. 13JCZDJC26900), the Tianjin Major Science and Technology Support Project (No. 11TXSYGX22100), the National High Technology Research and Development Program of China (No. 2013AA050302), and the Fundamental Research Funds for the Central Universities (No. 65010341).

  10. Thin film processes

    CERN Document Server

    Vossen, John L

    1978-01-01

    Remarkable advances have been made in recent years in the science and technology of thin film processes for deposition and etching. It is the purpose of this book to bring together tutorial reviews of selected filmdeposition and etching processes from a process viewpoint. Emphasis is placed on the practical use of the processes to provide working guidelines for their implementation, a guide to the literature, and an overview of each process.

  11. Modeling of cross-talk phenomena in thin film ferroelectric nanocapacitor arrays by finite element method combined with Monte Carlo calculations

    Science.gov (United States)

    Padurariu, Leontin; Mitoseriu, Liliana

    2017-10-01

    In the last few years, the interest in developing ferroelectric systems with high recording density close to 1Tb/in.2 has strongly increased. The ferroelectric thin films are subjected to the electric field applied by using nanocapacitors (diameters of ˜70 nm) containing a ferroelectric active material. In order to increase the memory density, the nanocapacitor dimensions and the distance between them have to be strongly decreased. However, if the lateral distance between the nanoelectrodes is reduced too much, a domain wall propagation from the nanocapacitor subjected to the voltage to the neighboring capacitors (so-called "cross talk") is observed. This phenomenon is undesired because the memory spatial resolution is affected. In the present paper, the role of the geometrical characteristics (electrode radius, lateral distance between the electrodes and the film thickness) is investigated, by using a combined Finite Element Method with the Monte Carlo model to describe the local switching properties. The distributions of the electrical potential and local fields were computed by using the Finite Element Method. After describing the conditions for the appearance of the "cross-talk" phenomenon in ferroelectric nanocapacitor systems, some valuable solutions to avoid it are presented.

  12. Surface engineering on continuous VO2 thin films to improve thermochromic properties: Top-down acid etching and bottom-up self-patterning.

    Science.gov (United States)

    Wang, Ning; Peh, Yew Keat; Magdassi, Shlomo; Long, Yi

    2018-02-15

    Surface engineering is an effective method to improve the thermochromic performance of VO2. In this paper, an acid-etching top down method was proposed to tailor the VO2 surface morphology from the continuous dense-packed surface to patterned structure, which exhibited the enhanced integrated visible transmittance (Tlum) and the enlarged solar modulating abilities (ΔTsol). Moreover, a self-patterning approach was also illustrated to improve the thermochromic properties. The proposed surface engineering methods represent a facile and cost-effective approach for enhancing thermochromic properties that could promote the application of VO2 thin films in smart windows. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Performance improvement inpolymer-based thin film transistor using modified bottom-contact structures with etched SiO{sub 2} layers

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jeong Woo [R and D Center, Samsung Corning Precision Materials Co., Ltd, Asan (Korea, Republic of); You, Young Jun; Shim, Jae Won [Dept. of Electronics and Electrical Engineering, Dongguk University-Seoul, Seoul (Korea, Republic of)

    2017-02-15

    Polymer-based thin film transistors (TFTs) with a modified bottom-contact structure and etched SiO{sub 2} layer were developed and investigated. An increase in the field-effect mobility in the developed TFTs compared to TFTs with a normal bottom-contact structure was ascertained. A bottom-contact structure and the photolithographic processing method were used to ensure that the developed TFTs were suitable for commercial applications. Increased mobility of the modified bottom-contact structure was attributed to direct contact of the Au electrode with the active polymer layer.

  14. Surface-screening mechanisms in ferroelectric thin films and their effect on polarization dynamics and domain structures.

    Science.gov (United States)

    Kalinin, Sergei V; Kim, Yunseok; Fong, Dillon D; Morozovska, Anna N

    2018-03-01

    For over 70 years, ferroelectric materials have been one of the central research topics for condensed matter physics and material science, an interest driven both by fundamental science and applications. However, ferroelectric surfaces, the key component of ferroelectric films and nanostructures, still present a significant theoretical and even conceptual challenge. Indeed, stability of ferroelectric phase per se necessitates screening of polarization charge. At surfaces, this can lead to coupling between ferroelectric and semiconducting properties of material, or with surface (electro) chemistry, going well beyond classical models applicable for ferroelectric interfaces. In this review, we summarize recent studies of surface-screening phenomena in ferroelectrics. We provide a brief overview of the historical understanding of the physics of ferroelectric surfaces, and existing theoretical models that both introduce screening mechanisms and explore the relationship between screening and relevant aspects of ferroelectric functionalities starting from phase stability itself. Given that the majority of ferroelectrics exist in multiple-domain states, we focus on local studies of screening phenomena using scanning probe microscopy techniques. We discuss recent studies of static and dynamic phenomena on ferroelectric surfaces, as well as phenomena observed under lateral transport, light, chemical, and pressure stimuli. We also note that the need for ionic screening renders polarization switching a coupled physical-electrochemical process and discuss the non-trivial phenomena such as chaotic behavior during domain switching that stem from this.

  15. Growth of KOH etched AZO nanorods and investigation of its back scattering effect in thin film a-Si solar cell

    Science.gov (United States)

    Sharma, Jayasree Roy; Mitra, Suchismita; Ghosh, Hemanta; Das, Gourab; Bose, Sukanta; Mandal, Sourav; Mukhopadhyay, Sumita; Saha, Hiranmay; Barua, A. K.

    2018-02-01

    In order to increase the stabilized efficiencies of thin film silicon (TFS) solar cells it is necessary to use better light management techniques. Texturization by etching of sputtered aluminum doped zinc oxide (Al:ZnO or AZO) films has opened up a variety of promises to optimize light trapping schemes. RF sputtered AZO film has been etched by potassium hydroxide (KOH). A systematic study of etching conditions such as etchant concentration, etching time, temperature management etc. have been performed in search of improved electrical and optical performances of the films. The change in etching conditions has exhibited a noticeable effect on the structure of AZO films for which the light trapping effect differs. After optimizing the etching conditions, nanorods have been found on the substrate. Hence, nanorods have been developed only by chemical etching, rather than the conventional development method (hydrothermal method, sol-gel method, electrolysis method etc.). The optimized etched substrate has 82% transmittance, moderate haze in the visible range and sheet resistance ∼13 (Ω/□). The developed nanorods (optimized etched substrate) provide better light trapping within the cell as the optical path length has been increased by using the nanorods. This provides an effect on carrier collection as well as the efficiency in a-Si solar cells. Finite difference time domain (FDTD) simulations have been performed to observe the light trapping by AZO nanorods formed on sputtered AZO films. For a p-i-n solar cell developed on AZO nanorods coated with sputtered AZO films, it has been found through simulations that, the incident light is back scattered into the absorbing layer, leading to an increase in photogenerated current and hence higher efficiency. It has been found that, the light that passes through the nanorods is not getting absorbed and maximum amount of light is back scattered towards the solar cell.

  16. A Self-Aligned a-IGZO Thin-Film Transistor Using a New Two-Photo-Mask Process with a Continuous Etching Scheme

    Directory of Open Access Journals (Sweden)

    Ching-Lin Fan

    2014-08-01

    Full Text Available Minimizing the parasitic capacitance and the number of photo-masks can improve operational speed and reduce fabrication costs. Therefore, in this study, a new two-photo-mask process is proposed that exhibits a self-aligned structure without an etching-stop layer. Combining the backside-ultraviolet (BUV exposure and backside-lift-off (BLO schemes can not only prevent the damage when etching the source/drain (S/D electrodes but also reduce the number of photo-masks required during fabrication and minimize the parasitic capacitance with the decreasing of gate overlap length at same time. Compared with traditional fabrication processes, the proposed process yields that thin-film transistors (TFTs exhibit comparable field-effect mobility (9.5 cm2/V·s, threshold voltage (3.39 V, and subthreshold swing (0.3 V/decade. The delay time of an inverter fabricated using the proposed process was considerably decreased.

  17. Crystal structure and polarization hysteresis properties of ferroelectric BaTiO3 thin-film capacitors on (Ba,Sr)TiO3-buffered substrates

    Science.gov (United States)

    Maki, Hisashi; Noguchi, Yuji; Kutsuna, Kazutoshi; Matsuo, Hiroki; Kitanaka, Yuuki; Miyayama, Masaru

    2016-10-01

    Ferroelectric BaTiO3 (BT) thin-film capacitors with a buffer layer of (Ba1- x Sr x )TiO3 (BST) have been fabricated on (001) SrTiO3 (STO) single-crystal substrates by a pulsed laser deposition method, and the crystal structure and polarization hysteresis properties have been investigated. X-ray diffraction reciprocal space mapping shows that the BST buffer effectively reduces the misfit strain relaxation of the BT films on SrRuO3 (SRO) electrodes. The BT capacitor with the SRO electrodes on the BST (x = 0.3) buffer exhibits a well-saturated hysteresis loop with a remanent polarization of 29 µC/cm2. The hysteresis loop displays a shift toward a specific field direction, which is suggested to stem from the flexoelectric coupling between the out-of-plane polarization and the strain gradient adjacent to the bottom interface.

  18. Effect of dopants on ferroelectric and piezoelectric properties of lead zirconate titanate thin films on Si substrates

    NARCIS (Netherlands)

    Nguyen, Duc Minh; Trinh, Thong Q.; Dekkers, Jan M.; Houwman, Evert Pieter; Vu, Hung Ngoc; Rijnders, Augustinus J.H.M.

    2014-01-01

    Lead zirconate titanate Pb(Zr0.52Ti0.48)O3 (undoped PZT) and doped PZT thin films with thickness of about 500 nm were grown on Pt/Ti/SiO2/Si substrates by pulsed laser deposition (PLD). In this study, 1.0 mol% Nb-doping (at Zr/Ti site) as donor, 1.0 mol% Fe-doping (at Zr/Ti) as acceptor and 10 mol%

  19. Ferroelectric ultrathin perovskite films

    Science.gov (United States)

    Rappe, Andrew M; Kolpak, Alexie Michelle

    2013-12-10

    Disclosed herein are perovskite ferroelectric thin-film. Also disclosed are methods of controlling the properties of ferroelectric thin films. These films can be used in a variety materials and devices, such as catalysts and storage media, respectively.

  20. Highly tunable microwave stub resonator on ferroelectric KTa0.5Nb0.5O3 thin film

    Science.gov (United States)

    Simon, Q.; Corredores, Y.; Castel, X.; Benzerga, R.; Sauleau, R.; Mahdjoubi, K.; Le Febvrier, A.; Députier, S.; Guilloux-Viry, M.; Zhang, L.; Laurent, P.; Tanné, G.

    2011-08-01

    A coplanar waveguide (CPW) stub resonator has been fabricated on a pulsed-laser deposited KTa0.5Nb0.5O3 (KTN) thin film (600 nm-thick) onto a r-plane sapphire substrate. It was designed to operate at 10 GHz when the applied bias voltage is zero. We show experimentally that the resonance frequency is shifted by 44% under a 70 kV/cm DC applied electric field. In addition, the dielectric characteristics of the KTN film have been assessed through post-processed measurements of CPW 50-Ω transmission lines using the conformal mapping method.

  1. Understanding ferroelectric Al:HfO2 thin films with Si-based electrodes for 3D applications

    Science.gov (United States)

    Florent, K.; Lavizzari, S.; Popovici, M.; Di Piazza, L.; Celano, U.; Groeseneken, G.; Van Houdt, J.

    2017-05-01

    Ferroelectric hafnium oxide is a promising candidate for logic and memory applications as it maintains excellent ferroelectric properties at nm-size ensuring compatibility with state of the art semiconductor manufacturing. Most of the published papers report on the study of this material through Metal-Insulator-Metal capacitors or Metal-Insulator-Silicon transistors. However, for 3D vertical transistors in which both the channel and gate are polysilicon, the case of silicon-based electrodes cannot be ignored. In this paper, we report the fabrication of various ferroelectric capacitors with silicon (S) based conductive layers and titanium nitride metal (M) electrodes using aluminum doped hafnium oxide (I). The ferroelectric device with silicon-based electrodes shows superior polarization and steeper switching. These results pave the way toward 3D integration for potential 3D NAND replacement.

  2. Tailoring Lattice Strain and Ferroelectric Polarization of Epitaxial BaTiO3Thin Films on Si(001).

    Science.gov (United States)

    Lyu, Jike; Fina, Ignasi; Solanas, Raul; Fontcuberta, Josep; Sánchez, Florencio

    2018-01-11

    Ferroelectric BaTiO 3 films with large polarization have been integrated with Si(001) by pulsed laser deposition. High quality c-oriented epitaxial films are obtained in a substrate temperature range of about 300 °C wide. The deposition temperature critically affects the growth kinetics and thermodynamics balance, resulting on a high impact in the strain of the BaTiO 3 polar axis, which can exceed 2% in films thicker than 100 nm. The ferroelectric polarization scales with the strain and therefore deposition temperature can be used as an efficient tool to tailor ferroelectric polarization. The developed strategy overcomes the main limitations of the conventional strain engineering methodologies based on substrate selection: it can be applied to films on specific substrates including Si(001) and perovskites, and it is not restricted to ultrathin films.

  3. Structural and optical properties of thin films porous amorphous silicon carbide formed by Ag-assisted photochemical etching

    Energy Technology Data Exchange (ETDEWEB)

    Boukezzata, A., E-mail: assiab2006@yahoo.fr [Silicon Technology Development Unit (UDTS), 02 Bd. Frantz FANON, B.P. 140 Algiers (Algeria); Keffous, A., E-mail: keffousa@yahoo.fr [Silicon Technology Development Unit (UDTS), 02 Bd. Frantz FANON, B.P. 140 Algiers (Algeria); Cheriet, A.; Belkacem, Y.; Gabouze, N.; Manseri, A. [Silicon Technology Development Unit (UDTS), 02 Bd. Frantz FANON, B.P. 140 Algiers (Algeria); Nezzal, G. [Houari Boumediene University (USTHB), Chemical Faculty, Algiers (Algeria); Kechouane, M.; Bright, A. [Houari Boumediene University, Physical Faculty, Algiers (Algeria); Guerbous, L. [Algerian Nuclear Research Center (CRNA), Algiers (Algeria); Menari, H. [Silicon Technology Development Unit (UDTS), 02 Bd. Frantz FANON, B.P. 140 Algiers (Algeria)

    2010-07-01

    In this work, we present the formation of porous layers on hydrogenated amorphous SiC (a-SiC: H) by Ag-assisted photochemical etching using HF/K{sub 2}S{sub 2}O{sub 8} solution under UV illumination at 254 nm wavelength. The amorphous films a-SiC: H were elaborated by d.c. magnetron sputtering using a hot pressed polycrystalline 6H-SiC target. Because of the high resistivity of the SiC layer, around 1.6 M{Omega} cm and in order to facilitate the chemical etching, a thin metallic film of high purity silver (Ag) has been deposited under vacuum onto the thin a-SiC: H layer. The etched surface was characterized by scanning electron microscopy, secondary ion mass spectroscopy, infrared spectroscopy and photoluminescence. The results show that the morphology of etched a-SiC: H surface evolves with etching time. For an etching time of 20 min the surface presents a hemispherical crater, indicating that the porous SiC layer is perforated. Photoluminescence characterization of etched a-SiC: H samples for 20 min shows a high and an intense blue PL, whereas it has been shown that the PL decreases for higher etching time. Finally, a dissolution mechanism of the silicon carbide in 1HF/1K{sub 2}S{sub 2}O{sub 8} solution has been proposed.

  4. Characterization of the high density plasma etching process of CCTO thin films for the fabrication of very high density capacitors

    Energy Technology Data Exchange (ETDEWEB)

    Altamore, C; Tringali, C; Sparta' , N; Marco, S Di; Grasso, A; Ravesi, S [STMicroelectronics, Industial and Multi-segment Sector R and D, Catania (Italy)

    2010-02-15

    In this work the feasibility of CCTO (Calcium Copper Titanate) patterning by etching process is demonstrated and fully characterized in a hard to etch materials etcher. CCTO sintered in powder shows a giant relative dielectric constant (10{sup 5}) measured at 1 MHz at room temperature. This feature is furthermore coupled with stability from 10{sup 1} Hz to 10{sup 6} Hz in a wide temperature range (100K - 600K). In principle, this property can allow to fabricate very high capacitance density condenser. Due to its perovskite multi-component structure, CCTO can be considered a hard to etch material. For high density capacitor fabrication, CCTO anisotropic etching is requested by using high density plasma. The behavior of etched CCTO was studied in a HRe- (High Density Reflected electron) plasma etcher using Cl{sub 2}/Ar chemistry. The relationship between the etch rate and the Cl{sub 2}/Ar ratio was also studied. The effects of RF MHz, KHz Power and pressure variation, the impact of HBr addiction to the Cl{sub 2}/Ar chemistry on the CCTO etch rate and on its selectivity to Pt and photo resist was investigated.

  5. Engineering 180° ferroelectric domains in epitaxial PbTiO{sub 3} thin films by varying the thickness of the underlying (La,Sr)MnO{sub 3} layer

    Energy Technology Data Exchange (ETDEWEB)

    Jin, L., E-mail: l.jin@fz-juelich.de [Peter Grünberg Institute and Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons, Research Centre Jülich, D-52425 Jülich (Germany); Jia, C. L. [Peter Grünberg Institute and Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons, Research Centre Jülich, D-52425 Jülich (Germany); International Center for Dielectric Research, Xi' an Jiaotong University, Xi' an 710049 (China); Vrejoiu, I. [Max Planck Institute for Solid State Research, Heisenbergstr. 1, D-70569 Stuttgart (Germany)

    2014-09-29

    Epitaxial ferroelectric thin films of PbTiO{sub 3} (PTO) grown on top of nominally La{sub 0.7}Sr{sub 0.3}MnO{sub 3} (LSMO) submicron hillocks on Nb-doped SrTiO{sub 3} (100) substrate were investigated by means of scanning transmission electron microscopy. 180° ferroelectric domains were observed in the c-axis oriented PTO films. The formation and configuration of ferroelectric domains and domain walls were found to exhibit strong correlation with the thickness of the underlying LSMO hillocks. The domain walls start at the locations of the hillocks where the LSMO layer has a thickness of about 3 nm. Our results demonstrate that controlling the thickness variation (shape) of the LSMO hillocks can manipulate the position and density of the ferroelectric domain walls, which are considered to be the active elements for future nanoelectronics.

  6. Formation of (111) orientation-controlled ferroelectric orthorhombic HfO{sub 2} thin films from solid phase via annealing

    Energy Technology Data Exchange (ETDEWEB)

    Mimura, Takanori; Katayama, Kiliha [Department of Innovative and Engineered Materials, Tokyo Institute of Technology, Yokohama 226-8502 (Japan); Shimizu, Takao [Materials Research Center for Element Strategy, Tokyo Institute of Technology, Yokohama 226-8503 (Japan); Uchida, Hiroshi [Department of Materials and Life Sciences, Sophia University, Tokyo 102-8554 (Japan); Kiguchi, Takanori; Akama, Akihiro; Konno, Toyohiko J. [Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Sakata, Osami [Synchrotron X-ray Station at SPring-8 and Synchrotron X-ray Group, National Institute for Materials Science, Sayo, Hyogo 679-5148 (Japan); Funakubo, Hiroshi, E-mail: funakubo.h.aa@m.titech.ac.jp [Department of Innovative and Engineered Materials, Tokyo Institute of Technology, Yokohama 226-8502 (Japan); Materials Research Center for Element Strategy, Tokyo Institute of Technology, Yokohama 226-8503 (Japan); School of Materials and Chemical Technology, Tokyo Institute of Technology, Yokohama 226-8502 (Japan)

    2016-08-01

    0.07YO{sub 1.5}-0.93HfO{sub 2} (YHO7) films were prepared on various substrates by pulse laser deposition at room temperature and subsequent heat treatment to enable a solid phase reaction. (111)-oriented 10 wt. % Sn-doped In{sub 2}O{sub 3}(ITO)//(111) yttria-stabilized zirconia, (111)Pt/TiO{sub x}/SiO{sub 2}/(001)Si substrates, and (111)ITO/(111)Pt/TiO{sub x}/SiO{sub 2}/(001)Si substrates were employed for film growth. In this study, X-ray diffraction measurements including θ–2θ measurements, reciprocal space mappings, and pole figure measurements were used to study the films. The film on (111)ITO//(111)yttria-stabilized zirconia was an (111)-orientated epitaxial film with ferroelectric orthorhombic phase; the film on (111)ITO/(111)Pt/TiO{sub x}/SiO{sub 2}/(001)Si was an (111)-oriented uniaxial textured film with ferroelectric orthorhombic phase; and no preferred orientation was observed for the film on the (111)Pt/TiO{sub x}/SiO{sub 2}/(001)Si substrate, which does not contain ITO. Polarization–hysteresis measurements confirmed that the films on ITO covered substrates had saturated ferroelectric hysteresis loops. A remanent polarization (P{sub r}) of 9.6 and 10.8 μC/cm{sup 2} and coercive fields (E{sub c}) of 1.9 and 2.0 MV/cm were obtained for the (111)-oriented epitaxial and uniaxial textured YHO7 films, respectively. These results demonstrate that the (111)-oriented ITO bottom electrodes play a key role in controlling the orientation and ferroelectricity of the phase formation of the solid films deposited at room temperature.

  7. On-axis radio frequency magnetron sputtering of stoichiometric BaTiO{sub 3} target: Localized re-sputtering and substrate etching during thin film growth

    Energy Technology Data Exchange (ETDEWEB)

    Vargas, F.A. [Nanoelectronics-Nanophotonics, INRS-Énergie Matériaux et Télécommunications, 1650 Lionel-Boulet, Varennes, Québec J3X1S2 (Canada); Nouar, R. [Plasmionique Inc., 1650 Lionel-Boulet, Varennes, Québec J3X1S2 (Canada); Said Bacar, Z.; Higuera, B. [Nanoelectronics-Nanophotonics, INRS-Énergie Matériaux et Télécommunications, 1650 Lionel-Boulet, Varennes, Québec J3X1S2 (Canada); Porter, R.; Sarkissian, A. [Plasmionique Inc., 1650 Lionel-Boulet, Varennes, Québec J3X1S2 (Canada); Thomas, R., E-mail: etreji@yahoo.com [Nanoelectronics-Nanophotonics, INRS-Énergie Matériaux et Télécommunications, 1650 Lionel-Boulet, Varennes, Québec J3X1S2 (Canada); Ruediger, A., E-mail: ruediger@emt.inrs.ca [Nanoelectronics-Nanophotonics, INRS-Énergie Matériaux et Télécommunications, 1650 Lionel-Boulet, Varennes, Québec J3X1S2 (Canada)

    2015-12-01

    BaTiO{sub 3} thin films were prepared on Nb–SrTiO{sub 3} (100) and Pt/Al{sub 2}O{sub 3}/SiO{sub 2}/Si substrates by radio frequency (rf) magnetron sputtering using a stoichiometric BaTiO{sub 3} ceramic target. This on-axis BaTiO{sub 3} thin film growth encountered severe re-sputtering and substrate etching, above a threshold power density (4 W/cm{sup 2}), due to negative ion formation at the target surface and subsequent acceleration towards the substrate. However, the film deposition with reduced or negligible re-sputtering was possible below 4 W/cm{sup 2} of rf-power. The rf-voltage vs. power curve showed two distinct linear regimes with high and low slopes; the change in the slope coincides with substrate etching. Optical emission spectroscopy was employed to establish the link between the onset of excessive re-sputtering and could be used as a control tool. Since, negative oxygen ions (O{sup −}) are responsible for the re-sputtering, additional processing parameters like the oxygen partial pressure [P{sub o} = (O{sub 2} ∕ O{sub 2} + Ar) %] and total pressure were also adjusted to realize target stoichiometry on the grown films. Finally, through optimization steps, as revealed by the X-ray photoelectron spectroscopy, stoichiometric BaTiO{sub 3} films were obtained, at a pressure ≥ 2.7 Pa, power density of 2 W/cm{sup 2} and P{sub o} around 50%. - Highlights: • BaTiO{sub 3} films were grown on Nb–SrTiO{sub 3} (100) and Pt/Al{sub 2}O{sub 3}/SiO{sub 2}/Si by magnetron sputtering. • The on-axis sputtering encountered severe re-sputtering and substrate etching by O{sup −} ions. • Intensity of Ba and Ti in the emission spectra could be used as a deposition control parameter. • Stoichiometric BaTiO{sub 3} films were realized at 20 mTorr and 2 W/cm{sup 2} (10 W) rf-power. • At low power, re-sputtering can be controlled and is imperative for the growth of BaTiO{sub 3} films.

  8. Damage-free back channel wet-etch process in amorphous indium-zinc-oxide thin-film transistors using a carbon-nanofilm barrier layer.

    Science.gov (United States)

    Luo, Dongxiang; Zhao, Mingjie; Xu, Miao; Li, Min; Chen, Zikai; Wang, Lang; Zou, Jianhua; Tao, Hong; Wang, Lei; Peng, Junbiao

    2014-07-23

    Amorphous indium-zinc-oxide thin film transistors (IZO-TFTs) with damage-free back channel wet-etch (BCE) process were investigated. A carbon (C) nanofilm was inserted into the interface between IZO layer and source/drain (S/D) electrodes as a barrier layer. Transmittance electron microscope images revealed that the 3 nm-thick C nanofilm exhibited a good corrosion resistance to a commonly used H3PO4-based etchant and could be easily eliminated. The TFT device with a 3 nm-thick C barrier layer showed a saturated field effect mobility of 14.4 cm(2) V(-1) s(-1), a subthreshold swing of 0.21 V/decade, an on-to-off current ratio of 8.3 × 10(10), and a threshold voltage of 2.0 V. The favorable electrical performance of this kind of IZO-TFTs was due to the protection of the inserted C to IZO layer in the back-channel-etch process. Moreover, the low contact resistance of the devices was proved to be due to the graphitization of the C nanofilms after annealing. In addition, the hysteresis and thermal stress testing confirmed that the usage of C barrier nanofilms is an effective method to fabricate the damage-free BCE-type devices with high reliability.

  9. Structural characterization and ferroelectric properties of strontium barium niobate (Sr xBa1-xNb2O6 thin films

    Directory of Open Access Journals (Sweden)

    R.G. Mendes

    2001-01-01

    Full Text Available Strontium barium niobate (SBN thin films of good quality were deposited on Pt/Ti/SiO2/Si substrate using a polymeric resin containing metallic ions. Films were crystallized at different temperatures and for different duration of time. The structure of these films was studied using X-ray diffraction. The coexistence of SrNb2O6 (SN and SBN was observed in films crystallized at 700 °C. The amount of SN decreases when the crystallization time increases. Ferroelectric properties were determined for films crystallized at 700 °C for 1 and 5 h. For SBN film crystallized at 700 °C for 1 h, the remanent polarization (Pr and the coercive field (Ec were 2.6 muC/cm² and 71.9 kV/cm, respectively. For the film crystallized at 700 °C for 5 h these parameters were Pr = 1.1 muC/cm² and Ec = 50.5 kV/cm.

  10. Dielectric and ferroelectric properties of strain-relieved epitaxial lead-free KNN-LT-LS ferroelectric thin films on SrTiO3 substrates

    Science.gov (United States)

    Abazari, M.; Akdoǧan, E. K.; Safari, A.

    2008-05-01

    We report the growth of single-phase (K0.44,Na0.52,Li0.04)(Nb0.84,Ta0.10,Sb0.06)O3 thin films on SrRuO3 coated ⟨001⟩ oriented SrTiO3 substrates by using pulsed laser deposition. Films grown at 600°C under low laser fluence exhibit a ⟨001⟩ textured columnar grained nanostructure, which coalesce with increasing deposition temperature, leading to a uniform fully epitaxial highly stoichiometric film at 750°C. However, films deposited at lower temperatures exhibit compositional fluctuations as verified by Rutherford backscattering spectroscopy. The epitaxial films of 400-600nm thickness have a room temperature relative permittivity of ˜750 and a loss tangent of ˜6% at 1kHz. The room temperature remnant polarization of the films is 4μC /cm2, while the saturation polarization is 7.1μC/cm2 at 24kV/cm and the coercive field is ˜7.3kV/cm. The results indicate that approximately 50% of the bulk permittivity and 20% of bulk spontaneous polarization can be retained in submicron epitaxial KNN-LT-LS thin film, respectively. The conductivity of the films remains to be a challenge as evidenced by the high loss tangent, leakage currents, and broad hysteresis loops.

  11. Room temperature ferroelectric and magnetic investigations and detailed phase analysis of Aurivillius phase Bi5Ti3Fe0.7Co0.3O15 thin films

    Science.gov (United States)

    Keeney, Lynette; Kulkarni, Santosh; Deepak, Nitin; Schmidt, Michael; Petkov, Nikolay; Zhang, Panfeng F.; Cavill, Stuart; Roy, Saibal; Pemble, Martyn E.; Whatmore, Roger W.

    2012-09-01

    Aurivillius phase Bi5Ti3Fe0.7Co0.3O15 (BTF7C3O) thin films on α-quartz substrates were fabricated by a chemical solution deposition method and the room temperature ferroelectric and magnetic properties of this candidate multiferroic were compared with those of thin films of Mn3+ substituted, Bi5Ti3Fe0.7Mn0.3O15 (BTF7M3O). Vertical and lateral piezoresponse force microscopy (PFM) measurements of the films conclusively demonstrate that BTF7C3O and BTF7M3O thin films are piezoelectric and ferroelectric at room temperature, with the major polarization vector in the lateral plane of the films. No net magnetization was observed for the in-plane superconducting quantum interference device (SQUID) magnetometry measurements of BTF7M3O thin films. In contrast, SQUID measurements of the BTF7C3O films clearly demonstrated ferromagnetic behavior, with a remanent magnetization, Br, of 6.37 emu/cm3 (or 804 memu/g), remanent moment = 4.99 × 10-5 emu. The BTF7C3O films were scrutinized by x-ray diffraction, high resolution transmission electron microscopy, scanning transmission electron microscopy, and energy dispersive x-ray analysis mapping to assess the prospect of the observed multiferroic properties being intrinsic to the main phase. The results of extensive micro-structural phase analysis demonstrated that the BTF7C3O films comprised of a 3.95% Fe/Co-rich spinel phase, likely CoFe2 - xTixO4, which would account for the observed magnetic moment in the films. Additionally, x-ray magnetic circular dichroism photoemission electron microscopy (XMCD-PEEM) imaging confirmed that the majority of magnetic response arises from the Fe sites of Fe/Co-rich spinel phase inclusions. While the magnetic contribution from the main phase could not be determined by the XMCD-PEEM images, these data however imply that the Bi5Ti3Fe0.7Co0.3O15 thin films are likely not single phase multiferroics at room temperature. The PFM results presented demonstrate that the naturally 2D nanostructured Bi5Ti3

  12. Structural, ferroelectric and leakage current properties of Bi{sub 3.96}Pr{sub 0.04}Ti{sub 2.95}Nb{sub 0.05}O{sub 12} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Kao, Ming-Cheng, E-mail: kmc@mail.hust.edu.tw [Department of Electronic Engineering, Hsiuping University of Science and Technology, Taichung 412, Taiwan (China); Chen, Hone-Zern, E-mail: hzc@mail.hust.edu.tw [Department of Electronic Engineering, Hsiuping University of Science and Technology, Taichung 412, Taiwan (China); Young, San-Lin [Department of Electronic Engineering, Hsiuping University of Science and Technology, Taichung 412, Taiwan (China); Kao, Ming-Hui [Department of Electronic Engineering, Chung Chou University of Science and Technology, Changhua 510, Taiwan (China)

    2014-11-03

    Praseodymium and niobium-substituted bismuth titanate (Bi{sub 3.96}Pr{sub 0.04}Ti{sub 2.95}Nb{sub 0.05}O{sub 12}, BPTNO) thin films were deposited on Pt(111)/Ti/SiO{sub 2}/Si(100) substrates by a sol–gel technology. The effects of annealing temperature (500 ∼ 800 °C) on microstructure and electric properties of thin films were investigated. X-ray diffraction analysis shows that the BPTNO thin films have a bismuth-layered perovskite structure with preferred (117) orientation. The intensities of (117) peak increases with increasing annealing temperature. With the increase of annealing temperature from 500 °C to 800 °C, the grain size of BPTNO thin films increases. The highly (117)-oriented BPTNO thin films exhibits a high remnant polarization (2P{sub r}) of 48 μC/cm{sup 2} and a low coercive field (2E{sub c}) of 110 kV/cm, fatigue free characteristics up to > 10{sup 8} switching cycles. A small leakage current density (J) was 6.23 × 10{sup −8} A/cm{sup 2} at 200 kV/cm. The leakage current mechanisms were controlled by Poole–Frenkel emission in the low electric field region and by Schottky emission in the high field region. - Highlights: • Bi{sub 3.96}Pr{sub 0.04}Ti{sub 2.95}Nb{sub 0.05}O{sub 12} thin films were prepared by sol–gel technology. • Films show preferred (117) orientation. • The Pr and Nb-doping decrease the oxygen vacancy concentration. • The Pr and Nb-doping improved the ferroelectric and leakage current properties.

  13. Crystal defects and cation ordering domains in epitaxial PbSc{sub 0.5}Ta{sub 0.5}O{sub 3} relaxor ferroelectric thin films investigated by high-resolution transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Birajdar, B.I., E-mail: balaji.birajdar@ww.uni-erlangen.de [Max Planck Institute of Microstructure Physics, D-06120 Halle (Germany); Chopra, A.; Alexe, M.; Hesse, D. [Max Planck Institute of Microstructure Physics, D-06120 Halle (Germany)

    2011-06-15

    Highlights: > Epitaxial thin films of PbSc{sub 0.5}Ta{sub 0.5}O{sub 3} grown by pulsed laser deposition. > Microstructure studied by transmission electron microscopy. > Microstructural defects: {pi} stacking faults and cation ordering domains. > Explanation for the formation of defects. > Explanation of reduced dielectric constant of relaxor thin films. - Abstract: Epitaxial thin films of the relaxor ferroelectric PbSc{sub 0.5}Ta{sub 0.5}O{sub 3} (PST) were grown by pulsed laser deposition on an SrTiO{sub 3} substrate with an SrRuO{sub 3} buffer layer and investigated by diffraction contrast imaging and high-resolution transmission electron microscopy (TEM) in cross-section and plan-view. Crystal defects, viz. misfit dislocations, {pi} stacking faults and cation ordering domains, have been characterized and the mechanism of their formation is discussed. The state of the structural disorder in PST relaxor thin films is characterized by the high density of {pi} stacking faults and the rather small size (<10 nm) of the cation ordering domains, and is therefore markedly distinct from the state of the disorder in bulk relaxor PST. Polar nanoregions, supposed to be essential for explaining the relaxor properties, could not be detected using TEM, possibly due to their high fluctuation frequency. The dielectric constant of the relaxor PST thin films is about an order of magnitude smaller than that of bulk relaxor PST, which is attributed to the large density of {pi} stacking faults in the thin films.

  14. Thin film corrosion. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Raut, M.K.

    1980-06-01

    Corrosion of chromium/gold (Cr/Au) thin films during photolithography, prebond etching, and cleaning was evaluated. Vapors of chromium etchant, tantalum nitride etchant, and especially gold etchant were found to corrosively attack chromium/gold films. A palladium metal barrier between the gold and chromium layers was found to reduce the corrosion from gold etchant.

  15. Orientation control and domain structure analysis of {100}-oriented epitaxial ferroelectric orthorhombic HfO{sub 2}-based thin films

    Energy Technology Data Exchange (ETDEWEB)

    Katayama, Kiliha [Department of Innovative and Engineered Materials, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8502 (Japan); Shimizu, Takao [Materials Research Center for Element Strategy, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503 (Japan); Sakata, Osami [Synchrotron X-ray Station at SPring-8, National Institute for Materials Science (NIMS), 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148 (Japan); Shiraishi, Takahisa; Nakamura, Shogo; Kiguchi, Takanori; Akama, Akihiro; Konno, Toyohiko J. [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Uchida, Hiroshi [Department of Materials and Life Sciences, Sophia University, Chiyoda, Tokyo 102-8554 (Japan); Funakubo, Hiroshi, E-mail: funakubo.h.aa@m.titech.ac.jp [Department of Innovative and Engineered Materials, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8502 (Japan); Materials Research Center for Element Strategy, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503 (Japan)

    2016-04-07

    Orientation control of {100}-oriented epitaxial orthorhombic 0.07YO{sub 1.5}-0.93HfO{sub 2} films grown by pulsed laser deposition was investigated. To achieve in-plane lattice matching, indium tin oxide (ITO) and yttria-stabilized zirconia (YSZ) were selected as underlying layers. We obtained (100)- and (001)/(010)-oriented films on ITO and YSZ, respectively. Ferroelastic domain formation was confirmed for both films by X-ray diffraction using the superlattice diffraction that appeared only for the orthorhombic symmetry. The formation of ferroelastic domains is believed to be induced by the tetragonal–orthorhombic phase transition upon cooling the films after deposition. The present results demonstrate that the orientation of HfO{sub 2}-based ferroelectric films can be controlled in the same manner as that of ferroelectric films composed of conventional perovskite-type material such as Pb(Zr, Ti)O{sub 3} and BiFeO{sub 3}.

  16. Effect of potassium content on electrostrictive properties of Na{sub 0.5}Bi{sub 0.5}TiO{sub 3}-based relaxor ferroelectric thin films with morphotropic phase boundary

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, X.J., E-mail: zhengxuejun@usst.edu.cn [School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093 (China); Faculty of Materials, Optoelectronics and Physics, Xiangtan University, Xiangtan, Hunan 411105 (China); Liu, J.Y.; Peng, J.F.; Liu, X.; Gong, Y.Q. [Faculty of Materials, Optoelectronics and Physics, Xiangtan University, Xiangtan, Hunan 411105 (China); Zhou, K.S.; Huang, D.H. [School of Physics Science and Technology, Central South University, Changsha, Hunan 410083 (China)

    2013-12-02

    (1 − x)Na{sub 0.5}Bi{sub 0.5}TiO{sub 3}–xK{sub 0.5}Bi{sub 0.5}TiO{sub 3} (NBT–KBT100x) (x = 0.13, 0.15, 0.18, 0.20, 0.25) thin films were prepared by metal–organic decomposition, and the crystalline structures, surface morphologies, leakage current densities and dielectric, piezoelectric, and ferroelectric properties were investigated by X-ray diffractometer, scanning electron microscopy, semiconductor characterization system, scanning probe microscopy, and ferroelectric tester, respectively. The electrostrictive equation in phenomenological theory is used to model the piezoelectric and electrostriction behaviors of relaxor ferroelectric thin films, and the electrostriction coefficient couples effective piezoelectric coefficient with the polarization and relative permittivity. The electrostriction strains are larger than the piezoelectric strains for NBT–KBT100x thin films, and the electrostriction coefficients and electrostrictive strains are at the ranges of 0.019–0.025 m{sup 4}/C{sup 2} and 0.12%–0.26%, respectively. NBT–KBT15 thin film is of the largest electrostriction coefficient and electrostrictive strain, and it is attributed to the appropriate potassium content near morphotropic phase boundary and the equivalent energy for the phase coexistence. The results indicate that NBT-based thin film with high electrostrictive properties is a promising candidate for the application in electromechanical devices. - Highlights: • Na{sub 0.5}Bi{sub 0.5}TiO{sub 3}–xK{sub 0.5}Bi{sub 0.5}TiO{sub 3} films were prepared by metal–organic decomposition. • The electrostrictive properties were measured based on the electrostrictive equation. • Largest electrostriction coefficient and strain were 0.025 m{sup 4}/C{sup 2} and 0.26%. • Na{sub 0.5}Bi{sub 0.5}TiO{sub 3}–xK{sub 0.5}Bi{sub 0.5}TiO{sub 3} thin films are promising for transducer applications.

  17. Pulsed laser deposition of lead-free (Na0.5Bi0.5)1-xBaxTiO3 ferroelectric thin films with enhanced dielectric properties

    Science.gov (United States)

    Andrei, A.; Scarisoreanu, N. D.; Birjega, R.; Dinescu, M.; Stanciu, G.; Craciun, F.; Galassi, C.

    2013-08-01

    Ferroelectric lead-free (Na0.5Bi0.5)1-xBaxTiO3 thin films obtained by pulsed laser deposition have been structurally and electrically investigated for compositions, x = 0 and x = 0.06, in and out of the morphotropic phase boundary (MPB). Sodium bismuth titanate Na0.5Bi0.5TiO3 (NBT), pure or in solid solution with other materials (like BaTiO3), is considered to be the best candidate material for lead-free ferroelectric and piezoelectric applications such as actuators and nonvolatile memory devices. Bulk solid solutions with BaTiO3 (BT), (1-x)NBT-xBT (NBT-x%BT) have been investigated widely, also due to a morphotropic phase boundary (MPB) with enhanced dielectric and ferroelectric properties between a rhombohedral and a tetragonal ferroelectric phase, at x = 0.06. Nonetheless, to transpose bulk properties to NBT-BT thin films is a major achievement. XRD technique has been used for structural characterizations of NBT-BT films. Dielectric spectroscopy measurements were performed at room temperature in the frequency range 100 Hz-1 MHz. The best films show pure perovskite phase and good crystalline structure, as a function of specific deposition conditions. Unusual characteristics, especially dielectric constant values higher than those for bulk, have been found for films with specific crystallographic orientations.

  18. Emergence of ambient temperature ferroelectricity in meso-tetrakis(1-methylpyridinium-4-yl)porphyrin chloride thin films

    Science.gov (United States)

    Vasilopoulou, Maria; Dimitrakis, Panagiotis; Georgiadou, Dimitra G.; Velessiotis, Dimitrios; Papadimitropoulos, Georgios; Davazoglou, Dimitris; Coutsolelos, Athanassios G.; Argitis, Panagiotis

    2013-07-01

    Here, we demonstrate that the meso-tetrakis(1-methylpyridinium-4-yl)porphyrin chloride, [H2TMPyP]4+Cl4, with a face-to-face orientation directed along a single direction displays ferroelectric properties at room temperature. This is attributed to its spontaneous polarization, due to an extensive hydrogen-bonded network. From C-V measurements, a remnant polarization of approximately 0.5 μC cm-2 was estimated for pristine porphyrin film, which increases linearly up to about 1.7 μC cm-2 after applying 2 V at the top electrode and further to 9.6 μC cm-2 after 5 V positive poling. This large—for practical utilization—level of remnant polarization of [H2TMPyP]4+Cl4 makes it promising for future applications.

  19. Chemical etching of Tungsten thin films for high-temperature surface acoustic wave-based sensor devices

    Energy Technology Data Exchange (ETDEWEB)

    Spindler, M., E-mail: m.spindler@ifw-dresden.de [IFW Dresden, SAWLab Saxony, P.O. Box 270116, D-01171 Dresden (Germany); Herold, S.; Acker, J. [BTU Cottbus – Senftenberg, Faculty of Sciences, P.O. Box 101548, 01968 Senftenberg (Germany); Brachmann, E.; Oswald, S.; Menzel, S.; Rane, G. [IFW Dresden, SAWLab Saxony, P.O. Box 270116, D-01171 Dresden (Germany)

    2016-08-01

    Surface acoustic wave devices are widely used as wireless sensors in different application fields. Recent developments aimed to utilize those devices as temperature sensors even in the high temperature range (T > 300 °C) and in harsh environmental conditions. Therefore, conventional materials, which are used for the substrate and for the interdigital transducer finger electrodes such as multilayers or alloys based on Al or Cu have to be exchanged by materials, which fulfill some important criteria regarding temperature related effects. Electron beam evaporation as a standard fabrication method is not well applicable for depositing high temperature stable electrode materials because of their very high melting points. Magnetron sputtering is an alternative deposition process but is also not applicable for lift-off structuring without any further improvement of the structuring process. Due to a relatively high Ar gas pressure of about 10{sup −1} Pa, the sidewalls of the photoresist line structures are also covered by the metallization, which subsequently prevents a successful lift-off process. In this study, we investigate the chemical etching of thin tungsten films as an intermediate step between magnetron sputtering deposition of thin tungsten finger electrodes and the lift-off process to remove sidewall covering for a successful patterning process of interdigital transducers. - Highlights: • We fabricated Tungsten SAW Electrodes by magnetron sputtering technology. • An etching process removes sidewall covering of photoresist, which allows lift-off. • Tungsten etching rates based on a hydrogen peroxide solutions were determined.

  20. Large Energy Storage Density and High Thermal Stability in a Highly Textured (111)-Oriented Pb0.8Ba0.2ZrO3 Relaxor Thin Film with the Coexistence of Antiferroelectric and Ferroelectric Phases.

    Science.gov (United States)

    Peng, Biaolin; Zhang, Qi; Li, Xing; Sun, Tieyu; Fan, Huiqing; Ke, Shanming; Ye, Mao; Wang, Yu; Lu, Wei; Niu, Hanben; Zeng, Xierong; Huang, Haitao

    2015-06-24

    A highly textured (111)-oriented Pb0.8Ba0.2ZrO3 (PBZ) relaxor thin film with the coexistence of antiferroelectric (AFE) and ferroelectric (FE) phases was prepared on a Pt/TiOx/SiO2/Si(100) substrate by using a sol-gel method. A large recoverable energy storage density of 40.18 J/cm(3) along with an efficiency of 64.1% was achieved at room temperature. Over a wide temperature range of 250 K (from room temperature to 523 K), the variation of the energy density is within 5%, indicating a high thermal stability. The high energy storage performance was endowed by a large dielectric breakdown strength, great relaxor dispersion, highly textured orientation, and the coexistence of FE and AFE phases. The PBZ thin film is believed to be an attractive material for applications in energy storage systems over a wide temperature range.

  1. Nonlinear optical absorption tuning in Bi{sub 3.15}Nd{sub 0.85}Ti{sub 3}O{sub 12} ferroelectric thin films by thickness

    Energy Technology Data Exchange (ETDEWEB)

    Li, S.; Zhong, X. L., E-mail: xlzhong@xtu.edu.cn, E-mail: jbwang@xtu.edu.cn; Zhang, Y.; Wang, J. B., E-mail: xlzhong@xtu.edu.cn, E-mail: jbwang@xtu.edu.cn; Song, H. J.; Tan, C. B.; Li, B. [Key Laboratory of Materials Design and Preparation Technology of Hunan Province, School of Materials Science and Engineering, Xiangtan University, Hunan, Xiangtan 411105 (China); Hunan Provincial National Defense Key Laboratory of Key Film Materials and Application for Equipment, School of Materials Science and Engineering, Xiangtan University, Hunan, Xiangtan 411105 (China); Cheng, G. H.; Liu, X. [State Key Laboratory of Transient Optics and Photonics, Xi' an Institute of Optics and Precision Mechanics, CAS, Shanxi, Xi' an 710119 (China)

    2015-04-06

    The tunability of nonlinear optical (NLO) absorption in Bi{sub 3.15}Nd{sub 0.85}Ti{sub 3}O{sub 12} (BNT) ferroelectric thin films was investigated through the open aperture Z-scan method with femtosecond laser pulses at the wavelength of 800 nm. NLO absorption responses of the BNT films were observed to be highly sensitive to the film thickness. As the film thickness increases from 106.8 to 139.7 nm, the NLO absorption changes from saturable absorption (SA) to reverse saturable absorption (RSA). When the film thickness further increases to 312.9 nm, the RSA effect is enhanced. A band-gap-related competition between the ground-state excitation and the two-photon absorption is responsible for the absorption switching behavior. Such a tunable NLO absorption can widen the photonic application of the BNT thin films.

  2. Leakage current behavior in lead-free ferroelectric (K,Na)NbO3-LiTaO3-LiSbO3 thin films

    Science.gov (United States)

    Abazari, M.; Safari, A.

    2010-12-01

    Conduction mechanisms in epitaxial (001)-oriented pure and 1 mol % Mn-doped (K0.44,Na0.52,Li0.04)(Nb0.84,Ta0.1,Sb0.06)O3 (KNN-LT-LS) thin films on SrTiO3 substrate were investigated. Temperature dependence of leakage current density was measured as a function of applied electric field in the range of 200-380 K. It was shown that the different transport mechanisms dominate in pure and Mn-doped thin films. In pure (KNN-LT-LS) thin films, Poole-Frenkel emission was found to be responsible for the leakage, while Schottky emission was the dominant mechanism in Mn-doped thin films at higher electric fields. This is a remarkable yet clear indication of effect of 1 mol % Mn on the resistive behavior of such thin films.

  3. Ba and Ti co-doped BiFeO3 thin films via a modified chemical route with synchronous improvement in ferroelectric and magnetic behaviors

    Science.gov (United States)

    Wang, Yao; Li, Jing; Chen, Jingyi; Deng, Yuan

    2013-03-01

    A modified chemical route via the layer-by-layer alternative deposition of BaTiO3 and BiFeO3 two compositions followed by the solution processing has been developed to prepare Ba and Ti co-doped multiferroic BiFeO3 thin films. The Ba and Ti co-doped BiFeO3 films crystallize in single perovskite phase and are composed of uniformly distributed grains of tens of nanometers as evidenced by X-ray diffraction and scanning electron microscopy images, respectively. But the films show local composition fluctuation with further high-resolution transmission electron microscope analysis, which leads to increased inner strain and thus a phase transition from R3c to P4mm occurs as Ba and Ti contents reach 50 mol. %. Accompanying the structural phase transition, a saturated P-E hysteresis loop with Pr ˜ 27 μC/cm2 and Ps ˜ 87 μC/cm2 and, moreover, a transition from antiferromagnetic to ferromagnetic state with Mr ˜ 1.46 emu/cm3 and Hc ˜ 1000 Oe have been observed. A strain induced structural change is proposed to explain for the observed synchronous enhancement in ferroelectric and magnetic properties, and elastic energy calculation is carried out to verify the viewpoint on magnetic behavior. The modified multiferroic behaviors of Ba, Ti co-doped BiFeO3 film imply an improved magnetoelectric coupling, which makes the material good candidate as memory devices and sensors.

  4. Suppression of slow capacitance relaxation phenomenon in Pt/Ba0.3Sr0.7TiO3/Pt thin film ferroelectric structures by annealing in oxygen atmosphere

    KAUST Repository

    Altynnikov, A. G.

    2014-01-27

    The impact of oxygen annealing on the switching time of ferroelectric thin film capacitor structures Pt/Ba0.3Sr0.7TiO3/Pt was investigated. The response of their capacitance on pulsed control voltages before and after annealing was experimentally measured. It was demonstrated that the annealing results in suppression of the capacitance slow relaxation processes and increase of the threshold control voltages. These structures can therefore be attractive for fabrication of fast acting microwave devices. © 2014 Author(s).

  5. Atmospheric-pressure argon plasma etching of spin-coated 3,4-polyethylenedioxythiophene:polystyrenesulfonic acid (PEDOT:PSS) films for cupper phtalocyanine (CuPc)/C{sub 60} heterojunction thin-film solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Ino, Tomohisa; Hayashi, Tatsuya; Ueno, Keiji; Shirai, Hajime, E-mail: shirai@fms.saitama-u.ac.jp

    2011-08-01

    Depth profiles of the optical constants, carrier mobility, and carrier density of spin-coated 3,4-polyethylenedioxythiophene:polystyrenesulfonic acid (PEDOT:PSS) films were investigated by real-time characterization by the spectroscopic ellipsometry (SE) during argon plasma etching at atmospheric pressure. Spectral analysis revealed that homogeneous etching occurred within 10-15 nm of the top surface, followed by the appearance of a conductive PEDOT phase and surface roughning, which originated from the depth profile of the PEDOT-to-PSS molar concentration ratio. The use of the plasma-etched PEDOT:PSS layer improved relatively the performance of the copper phtalocyanine (CuPc)/C{sub 60} organic thin-films solar cells as a hole-transport layer with higher optical transmittance by adjusting the plasma etching condition.

  6. Optical, ferroelectric and magnetic properties of multiferroelectric BiFeO3-(K0.5Na0.5)0.4(Sr 0.6Ba0.4)0.8Nb2O6 thin films

    KAUST Repository

    Yao, Yingbang

    2014-02-01

    Multiferroic BiFeO3-(K0.5Na0.5) 0.4(Sr0.6Ba0.4)0.8Nb 2O6 (BFO-KNSBN) trilayer thin films, were epitaxially grown on MgO(0 0 1) and SrTiO3(0 0 1) by using pulsed laser deposition (PLD). Their ferroelectric, magnetic, dielectric and optical properties were investigated. It was found that both ferroelectric polarization and dielectric constant of the films were enhanced by introducing KNSBN as a barrier layer. Meanwhile, ferromagnetism of BFO was maintained. More interestingly, a double hysteresis magnetic loop was observed in the KNSBN-BFO-KNSBN trilayer films, where exchange bias and secondary phase in the BFO layer played crucial roles. Interactions between adjacent layers were revealed by temperature-dependent Raman spectroscopic measurements. © 2013 Elsevier B.V. All rights reserved.

  7. Ferroelectric and piezoelectric responses of (110) and (001)-oriented epitaxial Pb(Zr{sub 0.52}Ti{sub 0.48})O{sub 3} thin films on all-oxide layers buffered silicon

    Energy Technology Data Exchange (ETDEWEB)

    Vu, Hien Thu [International Training Institute for Materials Science (ITIMS), Hanoi University of Science and Technology, No.1 Dai Co Viet Road, Hanoi 10000 (Viet Nam); Nguyen, Minh Duc, E-mail: minh.nguyen@itims.edu.vn [International Training Institute for Materials Science (ITIMS), Hanoi University of Science and Technology, No.1 Dai Co Viet Road, Hanoi 10000 (Viet Nam); Inorganic Materials Science (IMS), MESA + Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede (Netherlands); SolMateS B.V., Drienerlolaan 5, Building 6, 7522 NB Enschede (Netherlands); Houwman, Evert; Boota, Muhammad [Inorganic Materials Science (IMS), MESA + Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede (Netherlands); Dekkers, Matthijn [SolMateS B.V., Drienerlolaan 5, Building 6, 7522 NB Enschede (Netherlands); Vu, Hung Ngoc [International Training Institute for Materials Science (ITIMS), Hanoi University of Science and Technology, No.1 Dai Co Viet Road, Hanoi 10000 (Viet Nam); Rijnders, Guus [Inorganic Materials Science (IMS), MESA + Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede (Netherlands)

    2015-12-15

    Graphical abstract: The cross sections show a very dense structure in the (001)-oriented films (c,d), while an open columnar growth structure is observed in the case of the (110)-oriented films (a,b). The (110)-oriented PZT films show a significantly larger longitudinal piezoelectric coefficient (d33{sub ,f}), but smaller transverse piezoelectric coefficient (d31{sub ,f}) than the (001) oriented films. - Highlights: • We fabricate all-oxide, epitaxial piezoelectric PZT thin films on Si. • The orientation of the films can be controlled by changing the buffer layer stack. • The coherence of the in-plane orientation of the grains and grain boundaries affects the ferroelectric properties. • Good cycling stability of the ferroelectric properties of (001)-oriented PZT thin films. The (110)-oriented PZT thin films show a larger d33{sub ,f} but smaller d31{sub ,f} than the (001)-oriented films. - Abstract: Epitaxial ferroelectric Pb(Zr{sub 0.52}Ti{sub 0.48})O{sub 3} (PZT) thin films were fabricated on silicon substrates using pulsed laser deposition. Depending on the buffer layers and perovskite oxide electrodes, epitaxial films with different orientations were grown. (110)-oriented PZT/SrRuO{sub 3} (and PZT/LaNiO{sub 3}) films were obtained on YSZ-buffered Si substrates, while (001)-oriented PZT/SrRuO{sub 3} (and PZT/LaNiO{sub 3}) were fabricated with an extra CeO{sub 2} buffer layer (CeO{sub 2}/YSZ/Si). There is no effect of the electrode material on the properties of the films. The initial remnant polarizations in the (001)-oriented films are higher than those of (110)-oriented films, but it increases to the value of the (001) films upon cycling. The longitudinal piezoelectric d33{sub ,f} coefficients of the (110) films are larger than those of the (001) films, whereas the transverse piezoelectric d31{sub ,f} coefficients in the (110)-films are less than those in the (001)-oriented films. The difference is ascribed to the lower density (connectivity between

  8. Ferroelectric properties of alkoxy-derived CaBi4Ti4O15 thin films on Pt-passivated Si

    Science.gov (United States)

    Kato, Kazumi; Suzuki, Kazuyuki; Nishizawa, Kaori; Miki, Takeshi

    2001-02-01

    CaBi4Ti4O15 (CBTi144) thin films were prepared by spin coating a precursor solution of metal alkoxides. As-deposited thin films began crystallization below 550 °C and reached full crystallinity of a single phase of layered perovskite at 650 °C via rapid thermal annealing in oxygen. The 650 °C annealed CBTi144 thin film showed random orientation on Pt-passivated Si substrate and exhibited P-E hysteresis loops. The remanent polarization (Pr) and coercive electric field (Ec) were 9.4 μC/cm2 and 106 kV/cm, respectively, at 11 V. The dielectric constant and loss factor were 300 and 0.033, respectively, at 100 kHz.

  9. Giant negative electrocaloric effect in PbZrO3/0.88BaTiO3-0.12Bi(Mg1/2,Ti1/2)O3 multilayered composite ferroelectric thin film for solid-state refrigeration

    Science.gov (United States)

    Huang, D.; Wang, J. B.; Zhong, X. L.; Li, B.; Zhang, Y.; Jin, C.; Zheng, D. F.; Meng, X. J.

    2017-11-01

    A giant negative electrocaloric (EC) effect in a PbZrO3/(0.88BaTiO3-0.12 Bi(Mg1/2,Ti1/2)O3) (PZ/(BT-BMT)) multilayered composite ferroelectric (MCFE) thin film which is grown on Pt(111)/Ti/SiO2/Si(100) substrates by the sol-gel method is investigated in this work. The negative EC effect in the PZ/(BMT-BT) MCFE thin film is greatly higher than that in the PZ AFE thin film with an adiabatic temperature change (ATC) ΔT = 1.5 K. The ATC ΔT of the PZ/(BMT-BT) MCFE thin film is -32 K under the applied electric field change ΔE = 1151 kV/cm. The result is conducive to enhance the EC refrigeration efficiency greatly.

  10. Stability of spin-driven ferroelectricity in the thin-film limit: Coupling of magnetic and electric order in multiferroic TbMnO3 films

    Energy Technology Data Exchange (ETDEWEB)

    Becher, Carsten [ETH Zurich, Switzerland; Voigt, Jörg [JCNS and JARA-FIT; Schierle, Enrico [Helmholtz-Zentrum Berlin; Weschke, Eugen [Helmholtz-Zentrum Berlin; Fiebig, Manfred [ETH Zurich, Switzerland; Brückel, Thomas [JCNS and JARA-FIT

    2013-01-01

    We demonstrate spin-spiral-induced ferroelectricity in epitaxial TbMnO3 films grown on YAlO3 substrates down to a film thickness of 6nm. The ferroelectric polarization is identified by optical second-harmonic generation. Using x-ray resonant magnetic scattering we directly prove the existence of a noncollinear magnetic structure in the ferroelectric phase and thus bulk-like multiferroicity. The electric-field-induced reversal of the magnetic domains along with the reversal of the ferroelectric polarization evidences the rigid coupling of magnetic and ferroelectric order and hence a giant magnetoelectric effect in the films.

  11. Phase transition, ferroelectric, and dielectric properties of layer-structured perovskite CaBi3Ti3O12-δ thin films

    Science.gov (United States)

    Kato, Kazumi; Suzuki, Kazuyuki; Nishizawa, Kaori; Miki, Takeshi

    2001-07-01

    Thin films of a bismuth-based layer-structured perovskite compound with a number of oxygen octahedron along the c axis between Bi-O layers of three, CaBi3Ti3O12-δ, were prepared using a mixture solution of complex alkoxides. The films crystallized below 550 °C. The crystal structure and surface morphology of these films changed between 600 and 650 °C. The 650 °C-annealed thin film consisted of well-developed grains and exhibited polarization-electric hysteresis loops. The remanent polarization and coercive electric field were 8.5 μC/cm2 and 124 kV/cm, respectively, at 7 V. The dielectric constant and loss factor were about 250 and 0.048, respectively, at 100 kHz.

  12. Microstructure and nanoscale piezoelectric/ferroelectric properties in La{sub 2}Ti{sub 2}O{sub 7} thin films grown on (110)-oriented doped Nb:SrTiO{sub 3} substrates

    Energy Technology Data Exchange (ETDEWEB)

    Shao, Zhenmian [Universite Lille Nord de France, F-59000 Lille (France); CNRS, UMR 8181, F-59650 Villeneuve d' Ascq (France); Universite d' Artois, UCCS, F-62300 Lens (France); USTL, ENSCL, UCCS, F-59652 Villeneuve d' Ascq (France); Saitzek, Sebastien; Ferri, Anthony; Bruyer, Emilie; Sayede, Adlane; Desfeux, Rachel [Universite Lille Nord de France, F-59000 Lille (France); CNRS, UMR 8181, F-59650 Villeneuve d' Ascq (France); Universite d' Artois, UCCS, F-62300 Lens (France); Roussel, Pascal [Unite de Catalyse et de Chimie du Solide, UCCS CNRS UMR 8181, F-59652 Villeneuve d' Ascq (France); Universite Lille Nord de France, F-59000 Lille (France); CNRS, UMR 8181, F-59650 Villeneuve d' Ascq (France); USTL, ENSCL, UCCS, F-59652 Villeneuve d' Ascq (France); Rguiti, Mohamed [Universite Lille Nord de France, F-59000 Lille (France); Universite de Valenciennes et du Hainaut-Cambresis, LMCPA, EA 2443, F-59600 Maubeuge (France); Mentre, Olivier [Universite Lille Nord de France, F-59000 Lille (France); CNRS, UMR 8181, F-59650 Villeneuve d' Ascq (France); USTL, ENSCL, UCCS, F-59652 Villeneuve d' Ascq (France)

    2011-10-15

    (00l)-Oriented La{sub 2}Ti{sub 2}O{sub 7} (LTO) thin films with monoclinic perovskite-layer structure [a = 7.806(2)A, b = 5.552(3)A, c = 13.015(5)A, {beta} = 98.62(2) ] have been grown by a sol-gel route on conducting (110)-oriented doped Nb:SrTiO{sub 3} (STO) substrates. The narrow rocking curves (0.24 width for 004{sub LTO} peak) demonstrate the sharp mosaicity of the films. Using high-resolution X-ray diffraction (HR-XRD), epitaxial relationships between the LTO, and the STO substrate are given. In addition, HR-XRD evidences the existence of (212)-oriented crystallites 1.5 disoriented with respect to the plane of the substrate. We confirm, by DFT calculations, that the polarization vector lies in the b-axis of the LTO cell and consequently, the existence of these (212)-oriented crystallites enables to explain the origin of the various contrasts observed both on the in-plane and out-of-plane images when collected by piezoresponse force microscopy. Finally, both successful poling experiments performed via the tip of atomic force microscope and the existence of local piezoloops within the domains, unambiguously confirm the ferroelectric state of the films at the nanoscale level. Once again, this study demonstrates that a clear understanding of nanoscale piezoelectric/ferroelectric phenomena in oriented thin films passes through a carefully structural analysis as performed by HR-XRD. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. Metallic Thin-Film Bonding and Alloy Generation

    Science.gov (United States)

    Fryer, Jack Merrill (Inventor); Campbell, Geoff (Inventor); Peotter, Brian S. (Inventor); Droppers, Lloyd (Inventor)

    2016-01-01

    Diffusion bonding a stack of aluminum thin films is particularly challenging due to a stable aluminum oxide coating that rapidly forms on the aluminum thin films when they are exposed to atmosphere and the relatively low meting temperature of aluminum. By plating the individual aluminum thin films with a metal that does not rapidly form a stable oxide coating, the individual aluminum thin films may be readily diffusion bonded together using heat and pressure. The resulting diffusion bonded structure can be an alloy of choice through the use of a carefully selected base and plating metals. The aluminum thin films may also be etched with distinct patterns that form a microfluidic fluid flow path through the stack of aluminum thin films when diffusion bonded together.

  14. Optical thin film devices

    Science.gov (United States)

    Mao, Shuzheng

    1991-11-01

    Thin film devices are applied to almost all modern scientific instruments, and these devices, especially optical thin film devices, play an essential role in the performances of the instruments, therefore, they are attracting more and more attention. Now there are numerous kinds of thin film devices and their applications are very diversified. The 300-page book, 'Thin Film Device and Applications,' by Prof. K. L. Chopra gives some general ideas, and my paper also outlines the designs, fabrication, and applications of some optical thin film devices made in my laboratory. Optical thin film devices have been greatly developed in the recent decades. Prof. A. Thelan has given a number of papers on the theory and techniques, Prof. H. A. Macleod's book, 'Thin Film Optical Filters,' has concisely concluded the important concepts of optical thin film devices, and Prof. J. A. Dobrowobski has proposed many successful designs for optical thin film devices. Recently, fully-automatic plants make it easier to produce thin film devices with various spectrum requirements, and some companies, such as Balzers, Leybold AG, Satis Vacuum AG, etc., have manufactured such kinds of coating plants for research or mass-production, and the successful example is the production of multilayer antireflection coatings with high stability and reproducibility. Therefore, it could be said that the design of optical thin film devices and coating plants is quite mature. However, we cannot expect that every problem has been solved, the R&D work still continues, the competition still continues, and new design concepts, new techniques, and new film materials are continually developed. Meanwhile, the high-price of fully-automatic coating plants makes unpopular, and automatic design of coating stacks is only the technique for optimizing the manual design according to the physical concepts and experience, in addition, not only the optical system, but also working environment should be taken into account when

  15. Thin Film & Deposition Systems (Windows)

    Data.gov (United States)

    Federal Laboratory Consortium — Coating Lab: Contains chambers for growing thin film window coatings. Plasma Applications Coating Lab: Contains chambers for growing thin film window coatings. Solar...

  16. Enhanced ferroelectric and dielectric properties of (111)-oriented highly cation-ordered PbSc{sub 0.5}Ta{sub 0.5}O{sub 3} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Chopra, Anuj [Max Planck Institute of Microstructure Physics, Weinberg 2, D-06120 Halle (Saale) (Germany); Faculty of Science and Technology, MESA Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede (Netherlands); Birajdar, Balaji I. [Max Planck Institute of Microstructure Physics, Weinberg 2, D-06120 Halle (Saale) (Germany); Special Centre for Nano Sciences, Jawaharlal Nehru University, New Delhi 110067 (India); Kim, Yunseok [Max Planck Institute of Microstructure Physics, Weinberg 2, D-06120 Halle (Saale) (Germany); School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 440-746 (Korea, Republic of); Alexe, Marin [Max Planck Institute of Microstructure Physics, Weinberg 2, D-06120 Halle (Saale) (Germany); Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom); Hesse, Dietrich [Max Planck Institute of Microstructure Physics, Weinberg 2, D-06120 Halle (Saale) (Germany)

    2013-12-14

    Cation-ordered (111)-oriented epitaxial PbSc{sub 0.5}Ta{sub 0.5}O{sub 3} (PST) thin films were deposited by pulsed laser deposition on SrRuO{sub 3}-electroded SrTiO{sub 3} (111) substrates at three different temperatures of 525 °C, 550 °C, and 575 °C. All the films were well crystalline and (111)-oriented at all the three growth temperatures; however, the films deposited at the temperatures other than 550 °C exhibited the presence of a pyrochlore phase. X-ray diffraction analysis and transmission electron microscopy measurements revealed that the films were epitaxial and highly cation-ordered. In comparison to (001)-oriented PST films, (111)-oriented films on SrRuO{sub 3}/SrTiO{sub 3} (111) exhibited enhanced ferroelectric and dielectric properties with a broad size distribution of cation-ordered domains (5–100 nm). At a measurement temperature of 100 K, the remnant polarization of PST (111) films is almost √3 times larger than the remnant polarization observed for (001)-oriented PST films, which is attributed to the (111) orientation of the films, as the spontaneous polarization in PST lies close to the [111] direction. The observed dielectric constant and loss at 1 kHz were around 1145 and 0.11, respectively. The dielectric constant is thus almost three times higher than for previously reported (001)-oriented PST thin films, most probably due to the enhancement in cation-ordering.

  17. Local polarization switching in epitaxial thin films of ferroelectric (Bi1/2Na1/2TiO3

    Directory of Open Access Journals (Sweden)

    Yuuki Kitanaka

    2015-06-01

    Full Text Available We have investigated the local polarization switching behaviors of epitaxial (Bi1/2Na1/2TiO3 (BNT thin films obtained by a pulsed laser deposition (PLD. Using ozone gas as a deposition atmosphere of PLD, epitaxial growth of BNT films was achieved on SrRuO3/SrTiO3(1 0 0 electrode substrates. Piezoresponse force microscopy (PFM revealed that BNT grains in the films have a single-domain structure without domain walls. These domain structures and the local polarization switching measured by PFM indicate that the oxidizing atmosphere of ozone gas is considered to suppress the generation of bismuth and oxygen vacancies in the deposited BNT layers. We propose that the PLD method using ozone is effective in obtaining high-quality single-phase BNT films with a less concentration of lattice vacancies.

  18. Ferroelectric properties of neodymium-doped Sr{sub 2}Bi{sub 4}Ti{sub 5}O{sub 18} thin film prepared by solgel route

    Energy Technology Data Exchange (ETDEWEB)

    Cui, L. [Suqian College, fundamental department, Suqian 223800 (China); Hu, Y.J. [Hubei University of Automotive Industries Technology, Shiyan 442011 (China)], E-mail: eric8222@126.com

    2009-01-15

    Sr{sub 2}Bi{sub 4}Ti{sub 5}O{sub 18} (SBTi) and Nd-modified SBTi (SBNT) thin films were deposited on Pt/Ti/SiO{sub 2}/Si (1 0 0) substrates using a sol-gel method. Structure, morphology and electric properties were investigated systematically. These films were randomly oriented and composed of rod-like grains. The remanent polarization (2P{sub r}) and coercive field (E{sub c}) of SBNT films were 30 {mu}C/cm{sup 2} and 55 kV/cm, respectively. This value of 2P{sub r} was much higher than the reported value of SBTi prepared by pulsed-laser deposition. More importantly, the SBNT films showed high fatigue resistance against continuous switching up to 3x10{sup 9} cycles and excellent charge-retaining ability up to 3x10{sup 4} s.

  19. Thin film device applications

    CERN Document Server

    Kaur, Inderjeet

    1983-01-01

    Two-dimensional materials created ab initio by the process of condensation of atoms, molecules, or ions, called thin films, have unique properties significantly different from the corresponding bulk materials as a result of their physical dimensions, geometry, nonequilibrium microstructure, and metallurgy. Further, these characteristic features of thin films can be drasti­ cally modified and tailored to obtain the desired and required physical characteristics. These features form the basis of development of a host of extraordinary active and passive thin film device applications in the last two decades. On the one extreme, these applications are in the submicron dimensions in such areas as very large scale integration (VLSI), Josephson junction quantum interference devices, magnetic bubbles, and integrated optics. On the other extreme, large-area thin films are being used as selective coatings for solar thermal conversion, solar cells for photovoltaic conver­ sion, and protection and passivating layers. Ind...

  20. Ceramic Composite Thin Films

    Science.gov (United States)

    Ruoff, Rodney S. (Inventor); Stankovich, Sasha (Inventor); Dikin, Dmitriy A. (Inventor); Nguyen, SonBinh T. (Inventor)

    2013-01-01

    A ceramic composite thin film or layer includes individual graphene oxide and/or electrically conductive graphene sheets dispersed in a ceramic (e.g. silica) matrix. The thin film or layer can be electrically conductive film or layer depending the amount of graphene sheets present. The composite films or layers are transparent, chemically inert and compatible with both glass and hydrophilic SiOx/silicon substrates. The composite film or layer can be produced by making a suspension of graphene oxide sheet fragments, introducing a silica-precursor or silica to the suspension to form a sol, depositing the sol on a substrate as thin film or layer, at least partially reducing the graphene oxide sheets to conductive graphene sheets, and thermally consolidating the thin film or layer to form a silica matrix in which the graphene oxide and/or graphene sheets are dispersed.

  1. Multifunctional thin film surface

    Science.gov (United States)

    Brozik, Susan M.; Harper, Jason C.; Polsky, Ronen; Wheeler, David R.; Arango, Dulce C.; Dirk, Shawn M.

    2015-10-13

    A thin film with multiple binding functionality can be prepared on an electrode surface via consecutive electroreduction of two or more aryl-onium salts with different functional groups. This versatile and simple method for forming multifunctional surfaces provides an effective means for immobilization of diverse molecules at close proximities. The multifunctional thin film has applications in bioelectronics, molecular electronics, clinical diagnostics, and chemical and biological sensing.

  2. Preparation and characterization of ferroelectric Hf0.5Zr0.5O2 thin films grown by reactive sputtering

    Science.gov (United States)

    Lee, Young Hwan; Kim, Han Joon; Moon, Taehwan; Do Kim, Keum; Dam Hyun, Seung; Park, Hyeon Woo; Lee, Yong Bin; Park, Min Hyuk; Hwang, Cheol Seong

    2017-07-01

    HfO2-ZrO2 solid-solution films were prepared by radio frequency sputtering, and the subsequent annealing process was optimized to render enhanced ferroelectric behavior. The target power, working pressure and O2 partial pressure ratios were varied, along with the annealing gas, time and temperature. Then, the film’s structural and electrical properties were carefully scrutinized. Oxygen-deficient conditions were necessary during the sputter deposition to suppress grain growth, while annealing by O2 gas was critical to avoid defects and leakage problems. It is expected that the grain size difference under various deposition conditions combined with the degree of TiN top and bottom electrode oxidation by O2 gas will result in different ferroelectric behaviors. As a result, Hf0.5Zr0.5O2 prepared by radio frequency sputtering showed optimized ferroelectricity at 0% of O2 reactive gas, with a doubled remnant polarization value of ˜20 μC cm-2 at a thickness of 11 nm. Film growth conditions with a high growth rate (4-5 nm min-1) were favorable for achieving the ferroelectric phase film, which feasibly suppressed both the grain growth and accompanying monoclinic phase formation.

  3. High-performance low-cost back-channel-etch amorphous gallium-indium-zinc oxide thin-film transistors by curing and passivation of the damaged back channel.

    Science.gov (United States)

    Park, Jae Chul; Ahn, Seung-Eon; Lee, Ho-Nyeon

    2013-12-11

    High-performance, low-cost amorphous gallium-indium-zinc oxide (a-GIZO) thin-film-transistor (TFT) technology is required for the next generation of active-matrix organic light-emitting diodes. A back-channel-etch structure is the most appropriate device structure for high-performance, low-cost a-GIZO TFT technology. However, channel damage due to source/drain etching and passivation-layer deposition has been a critical issue. To solve this problem, the present work focuses on overall back-channel processes, such as back-channel N2O plasma treatment, SiOx passivation deposition, and final thermal annealing. This work has revealed the dependence of a-GIZO TFT characteristics on the N2O plasma radio-frequency (RF) power and frequency, the SiH4 flow rate in the SiOx deposition process, and the final annealing temperature. On the basis of these results, a high-performance a-GIZO TFT with a field-effect mobility of 35.7 cm(2) V(-1) s(-1), a subthreshold swing of 185 mV dec(-1), a switching ratio exceeding 10(7), and a satisfactory reliability was successfully fabricated. The technology developed in this work can be realized using the existing facilities of active-matrix liquid-crystal display industries.

  4. Composition dependence of the ferroelectric properties of lanthanum-modified bismuth titanate thin films grown by using pulsed-laser deposition

    CERN Document Server

    Bu, S D; Park, B H; Noh, T W

    2000-01-01

    Lanthanum-modified bismuth titanate, Bi sub 4 sub - sub x La sub x Ti sub 3 O sub 1 sub 2 (BLT), thin films with a La concentration of 0.25<=x<=1.00 were grown on Pt/Ti/SiO sub 2 /Si substrates by using pulsed-laser deposition. The BLT films showed well-saturated polarization-electric field curves whose remnant polarizations were 16.1 mu C/cm sup 2 , 27.8 mu C/cm sup 2 , 19.6 mu C/cm sup 2 , and 2.7 mu C/cm sup 2 , respectively, for x=0.25, 0.05, 0.75, and 1.00. The fatigue characteristics became better with increasing x up to 0.75. The Au/BLT/Pt capacitor with a La concentration of 0.50 showed an interesting dependence of the remanent polarization on the number of repetitive read/write cycles. On the other hand, the capacitor with a La concentration of 0.75 showed fatigue-free characteristics.

  5. Insight into magnetic, ferroelectric and elastic properties of strained BiFeO{sub 3} thin films through Mössbauer spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Agbelele, A.; Jouen, S.; Le Breton, J.-M.; Juraszek, J., E-mail: jean.juraszek@univ-rouen.fr [Normandie Univ., UNIROUEN, INSA Rouen, CNRS, Groupe de Physique des Matériaux, 76000 Rouen (France); Sando, D. [Unité Mixte de Physique CNRS/Thales, 1 av. Fresnel, 91767 Palaiseau & Université Paris-Sud, 91405 Orsay (France); School of Materials Science and Engineering, University of New South Wales, 2052 Sydney (Australia); Infante, I. C.; Dkhil, B. [Laboratoire SPMS, Centrale-Supélec, CNRS-UMR 8580, Université Paris-Saclay, 92290 Châtenay-Malabry (France); Carrétéro, C.; Barthélémy, A.; Bibes, M. [Unité Mixte de Physique CNRS/Thales, 1 av. Fresnel, 91767 Palaiseau & Université Paris-Sud, 91405 Orsay (France)

    2016-07-25

    We have studied the magnetic order of highly strained (001)-oriented BiFeO{sub 3} (BFO) thin films using {sup 57}Fe Conversion Electron Mössbauer Spectrometry. From 90 K to 620 K the films exhibit a collinear antiferromagnetic structure, in contrast with the cycloidal structure observed in bulk BFO. Moreover, we find that both the planar magnetic anisotropy for compressive strain and out-of-plane anisotropy for tensile strain persist from 90 K up to the Néel temperature (T{sub N}), which itself shows only a weak strain dependence. An analysis of the line asymmetry of the paramagnetic doublet for temperatures above T{sub N} is used to reveal the strain-dependent rotation of the polarization direction, consistent with previous observations. Our results show that the lattice dynamics in BFO films are strongly strain-dependent, offering avenues toward acoustic phonon devices. Finally, we use the versatility of Mössbauer spectroscopy technique to reveal various multi-property features including magnetic states, polarization direction and elastic strain.

  6. Intrinsic stability of ferroelectric and piezoelectric properties of epitaxial PbZr0.45Ti0.55O3 thin films on silicon in relation to grain tilt

    Directory of Open Access Journals (Sweden)

    Evert P Houwman, Minh D Nguyen, Matthijn Dekkers and Guus Rijnders

    2013-01-01

    Full Text Available Piezoelectric thin films of PbZr0.45Ti0.55O3 were grown on Si substrates in four different ways, resulting in different crystalline structures, as determined by x-ray analysis. The crystalline structures were different in the spread in tilt angle and the in-plane alignment of the crystal planes between different grains. It is found that the deviations of the ferroelectric polarization loop from that of the ideal rectangular loop (reduction of the remanent polarization with respect to the saturation polarization, dielectric constant of the film, slanting of the loop, coercive field value all scale with the average tilt angle. A model is derived based on the assumption that the tilted grain boundaries between grains affect the film properties locally. This model describes the observed trends. The effective piezoelectric coefficient d33,eff shows also a weak dependence on the average tilt angle for films grown in a single layer, whereas it is strongly reduced for the films deposited in multiple layers. The least affected properties are obtained for the most epitaxial films, i.e. grown on a SrTiO3 epitaxial seed layer, by pulsed laser deposition. These films are intrinsically stable and do not require poling to acquire these stable properties.

  7. Intrinsic stability of ferroelectric and piezoelectric properties of epitaxial PbZr0.45Ti0.55O3 thin films on silicon in relation to grain tilt

    Science.gov (United States)

    Houwman, Evert P.; Nguyen, Minh D.; Dekkers, Matthijn; Rijnders, Guus

    2013-08-01

    Piezoelectric thin films of PbZr0.45Ti0.55O3 were grown on Si substrates in four different ways, resulting in different crystalline structures, as determined by x-ray analysis. The crystalline structures were different in the spread in tilt angle and the in-plane alignment of the crystal planes between different grains. It is found that the deviations of the ferroelectric polarization loop from that of the ideal rectangular loop (reduction of the remanent polarization with respect to the saturation polarization, dielectric constant of the film, slanting of the loop, coercive field value) all scale with the average tilt angle. A model is derived based on the assumption that the tilted grain boundaries between grains affect the film properties locally. This model describes the observed trends. The effective piezoelectric coefficient d33,eff shows also a weak dependence on the average tilt angle for films grown in a single layer, whereas it is strongly reduced for the films deposited in multiple layers. The least affected properties are obtained for the most epitaxial films, i.e. grown on a SrTiO3 epitaxial seed layer, by pulsed laser deposition. These films are intrinsically stable and do not require poling to acquire these stable properties.

  8. Transparent conducting oxide layers for thin film silicon solar cells

    NARCIS (Netherlands)

    Rath, J.K.|info:eu-repo/dai/nl/304830585; Liu, Y.|info:eu-repo/dai/nl/304831743; de Jong, M.M.|info:eu-repo/dai/nl/325844208; de Wild, J.|info:eu-repo/dai/nl/314641378; Schuttauf, J.A.|info:eu-repo/dai/nl/314118039; Brinza, M.|info:eu-repo/dai/nl/304823325; Schropp, R.E.I.|info:eu-repo/dai/nl/072502584

    2009-01-01

    Texture etching of ZnO:1%Al layers using diluted HCl solution provides excellent TCOs with crater type surface features for the front contact of superstrate type of thin film silicon solar cells. The texture etched ZnO:Al definitely gives superior performance than Asahi SnO2:F TCO in case of

  9. Configuration and local elastic interaction of ferroelectric domains and misfit dislocation in PbTiO3/SrTiO3 epitaxial thin films

    Directory of Open Access Journals (Sweden)

    Takanori Kiguchi, Kenta Aoyagi, Yoshitaka Ehara, Hiroshi Funakubo, Tomoaki Yamada, Noritaka Usami and Toyohiko J Konno

    2011-01-01

    Full Text Available We have studied the strain field around the 90° domains and misfit dislocations in PbTiO3/SrTiO3 (001 epitaxial thin films, at the nanoscale, using the geometric phase analysis (GPA combined with high-resolution transmission electron microscopy (HRTEM and high-angle annular dark field––scanning transmission electron microscopy (HAADF-STEM. The films typically contain a combination of a/c-mixed domains and misfit dislocations. The PbTiO3 layer was composed from the two types of the a-domain (90° domain: a typical a/c-mixed domain configuration where a-domains are 20–30 nm wide and nano sized domains with a width of about 3 nm. In the latter case, the nano sized a-domain does not contact the film/substrate interface; it remains far from the interface and stems from the misfit dislocation. Strain maps obtained from the GPA of HRTEM images show the elastic interaction between the a-domain and the dislocations. The normal strain field and lattice rotation match each other between them. Strain maps reveal that the a-domain nucleation takes place at the misfit dislocation. The lattice rotation around the misfit dislocation triggers the nucleation of the a-domain; the normal strains around the misfit dislocation relax the residual strain in a-domain; then, the a-domain growth takes place, accompanying the introduction of the additional dislocation perpendicular to the misfit dislocation and the dissociation of the dislocations into two pairs of partial dislocations with an APB, which is the bottom boundary of the a-domain. The novel mechanism of the nucleation and growth of 90° domain in PbTiO3/SrTiO3 epitaxial system has been proposed based on above the results.

  10. Section 1: Interfacial reactions and grain growth in ferroelectric SrBi{sub 2}Ta{sub 2}O (SBT) thin films on Si substrates

    Energy Technology Data Exchange (ETDEWEB)

    Dickerson, B.D.; Zhang, X.; Desu, S.B. [Virginia Polytechnic Institute and State Univ., Blacksburg, VA (United States)] [and others

    1997-04-01

    Much of the cost of traditional infrared cameras based on narrow-bandgap photoelectric semiconductors comes from the cryogenic cooling systems required to achieve high detectivity. Detectivity is inversely proportional to noise. Generation-recombination noise in photoelectric detectors increases roughly exponentially with temperature, but thermal noise in photoelectric detectors increases only linearly with temperature. Therefore `thermal detectors perform far better at room temperature than 8-14 {mu}m photon detectors.` Although potentially more affordable, uncooled pyroelectric cameras are less sensitive than cryogenic photoelectric cameras. One way to improve the sensitivity to cost ratio is to deposit ferroelectric pixels with good electrical properties directly on mass-produced, image-processing chips. `Good` properties include a strong temperature dependence of the remanent polarization, P{sub r}, or the relative dielectric constant, {epsilon}{sub r}, for sensitive operation in pyroelectric or dielectric mode, respectively, below or above the Curie temperature, which is 320 C for SBT. When incident infrared radiation is chopped, small oscillations in pixel temperature produce pyroelectric or dielectric alternating currents. The sensitivity of ferroelectric thermal detectors depends strongly on pixel microstructure, since P{sub r} and {epsilon}{sub r} increase with grain size during annealing. To manufacture SBT pixels on Si chips, acceptable SBT grain growth must be achieved at the lowest possible oxygen annealing temperature, to avoid damaging the Si chip below. Therefore current technical progress describes how grain size, reaction layer thickness, and electrical properties develop during the annealing of SBT pixels deposited on Si.

  11. Thin film ceramic thermocouples

    Science.gov (United States)

    Gregory, Otto (Inventor); Fralick, Gustave (Inventor); Wrbanek, John (Inventor); You, Tao (Inventor)

    2011-01-01

    A thin film ceramic thermocouple (10) having two ceramic thermocouple (12, 14) that are in contact with each other in at least on point to form a junction, and wherein each element was prepared in a different oxygen/nitrogen/argon plasma. Since each element is prepared under different plasma conditions, they have different electrical conductivity and different charge carrier concentration. The thin film thermocouple (10) can be transparent. A versatile ceramic sensor system having an RTD heat flux sensor can be combined with a thermocouple and a strain sensor to yield a multifunctional ceramic sensor array. The transparent ceramic temperature sensor that could ultimately be used for calibration of optical sensors.

  12. Thin Film Photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Zweibel, K.

    1998-11-19

    The motivation to develop thin film technologies dates back to the inception of photovoltaics. It is an idea based on achieving truly low-cost photovoltaics appropriate for mass production and energy significant markets. The key to the idea is the use of pennies worth of active materials. Since sunlight carries relatively little energy in comparison with combustion-based energy sources, photovoltaic (PV) modules must be cheap to produce energy that can be competitive. Thin films are presumed to be the answer to that low-cost requirement. But how cheap do they have to be? The following is an oversimplified analysis that allows some insight into this question.

  13. A study of the temperature dependence of the local ferroelectric properties of c-axis oriented Bi6Ti3Fe2O18 Aurivillius phase thin films: Illustrating the potential of a novel lead-free perovskite material for high density memory applications

    Directory of Open Access Journals (Sweden)

    Ahmad Faraz

    2015-08-01

    Full Text Available The ability to control the growth, texture and orientation of self-nanostructured lead-free Aurivillius phase thin films can in principle, greatly improve their ferroelectric properties, since in these materials the polarization direction is dependent on crystallite orientation. Here, we report the growth of c-plane oriented Bi6Ti3Fe2O18 (B6TFO functional oxide Aurivillius phase thin films on c-plane sapphire substrates by liquid injection chemical vapour deposition (LI-CVD. Microstructural analysis reveals that B6TFO thin films annealed at 850°C are highly crystalline, well textured (Lotgering factor of 0.962 and single phase. Typical Aurivillius plate-like morphology with an average film thickness of 110nm and roughness 24nm was observed. The potential of B6TFO for use as a material in lead-free piezoelectric and ferroelectric data storage applications was explored by investigating local electromechanical (piezoelectric and ferroelectric properties at the nano-scale. Vertical and lateral piezoresponse force microscopy (PFM reveals stronger in-plane polarization due to the controlled growth of the a-axis oriented grains lying in the plane of the B6TFO films. Switching spectroscopy PFM (SS-PFM hysteresis loops obtained at higher temperatures (up to 200°C and at room temperature reveal a clear ferroelectric signature with only minor changes in piezoresponse observed with increasing temperature. Ferroelectric domain patterns were written at 200°C using PFM lithography. Hysteresis loops generated inside the poled regions at room and higher temperatures show a significant increase in piezoresponse due to alignment of the c-axis polarization components under the external electric field. No observable change in written domain patterns was observed after 20hrs of PFM scanning at 200°C, confirming that B6TFO retains polarization over this finite period of time. These studies demonstrate the potential of B6TFO thin films for use in piezoelectric

  14. Thin film metal-oxides

    CERN Document Server

    Ramanathan, Shriram

    2009-01-01

    Presents an account of the fundamental structure-property relations in oxide thin films. This title discusses the functional properties of thin film oxides in the context of applications in the electronics and renewable energy technologies.

  15. Research Update: Enhanced energy storage density and energy efficiency of epitaxial Pb0.9La0.1(Zr0.52Ti0.48O3 relaxor-ferroelectric thin-films deposited on silicon by pulsed laser deposition

    Directory of Open Access Journals (Sweden)

    Minh D. Nguyen

    2016-08-01

    Full Text Available Pb0.9La0.1(Zr0.52Ti0.48O3 (PLZT relaxor-ferroelectric thin films were grown on SrRuO3/SrTiO3/Si substrates by pulsed laser deposition. A large recoverable storage density (Ureco of 13.7 J/cm3 together with a high energy efficiency (η of 88.2% under an applied electric field of 1000 kV/cm and at 1 kHz frequency was obtained in 300-nm-thick epitaxial PLZT thin films. These high values are due to the slim and asymmetric hysteresis loop when compared to the values in the reference undoped epitaxial lead zirconate titanate Pb(Zr0.52Ti0.48O3 ferroelectric thin films (Ureco = 9.2 J/cm3 and η = 56.4% which have a high remanent polarization and a small shift in the hysteresis loop, under the same electric field.

  16. Downward self-polarization of lead-free (K{sub 0.5}Na{sub 0.5})(Mn{sub 0.005}Nb{sub 0.995})O{sub 3} ferroelectric thin films on Nb:SrTiO{sub 3} substrate

    Energy Technology Data Exchange (ETDEWEB)

    Seog, Hae Jin; Ahn, Chang Won; Cho, Shinuk; Kim, Ill Won [Department of Physics and Energy Harvest-Storage Research Center, University of Ulsan (Korea, Republic of); Kim, Kwang-Eun; Yang, Chan-Ho [Department of Physics, KAIST, Daejion (Korea, Republic of); Koo, Tae Yeong [Pohang Accelerator Laboratory, Pohang, Gyungbuk (Korea, Republic of); Lee, Sun-Young; Kim, Jong Pil [Division of Analysis and Research, Korea Basic Science Institute, Busan (Korea, Republic of)

    2017-01-15

    Spontaneously appearing macroscopic polarization (self-polarization) in ferroelectrics without an electrode or an external electric field would enable the freedom to design many ferroelectric heterostructures and devices. The (K{sub 0.5}Na{sub 0.5})(Mn{sub 0.005}Nb{sub 0.995})O{sub 3} (KNMN) thin film was grown on Nb:SrTiO{sub 3} single-crystal substrate and the resultant self-polarization behavior due to strain relaxation was investigated. The lattice mismatch and difference in TEC between the KNMN thin film and the Nb:SrTiO{sub 3} substrate creates a compressive strain. The compressive strain gradient may be the main cause for the observed downward self-polarization. The downward self-polarization of the KNMN thin film can be explained by the strong inhomogeneous compressive strain caused by strain relaxation. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. Research Update: Enhanced energy storage density and energy efficiency of epitaxial Pb0.9La0.1(Zr0.52Ti0.48)O3 relaxor-ferroelectric thin-films deposited on silicon by pulsed laser deposition

    Science.gov (United States)

    Nguyen, Minh D.; Houwman, Evert P.; Dekkers, Matthijn; Nguyen, Chi T. Q.; Vu, Hung N.; Rijnders, Guus

    2016-08-01

    Pb0.9La0.1(Zr0.52Ti0.48)O3 (PLZT) relaxor-ferroelectric thin films were grown on SrRuO3/SrTiO3/Si substrates by pulsed laser deposition. A large recoverable storage density (Ureco) of 13.7 J/cm3 together with a high energy efficiency (η) of 88.2% under an applied electric field of 1000 kV/cm and at 1 kHz frequency was obtained in 300-nm-thick epitaxial PLZT thin films. These high values are due to the slim and asymmetric hysteresis loop when compared to the values in the reference undoped epitaxial lead zirconate titanate Pb(Zr0.52Ti0.48)O3 ferroelectric thin films (Ureco = 9.2 J/cm3 and η = 56.4%) which have a high remanent polarization and a small shift in the hysteresis loop, under the same electric field.

  18. Epitaxial thin films

    Science.gov (United States)

    Hunt, Andrew Tye; Deshpande, Girish; Lin, Wen-Yi; Jan, Tzyy-Jiuan

    2006-04-25

    Epitatial thin films for use as buffer layers for high temperature superconductors, electrolytes in solid oxide fuel cells (SOFC), gas separation membranes or dielectric material in electronic devices, are disclosed. By using CCVD, CACVD or any other suitable deposition process, epitaxial films having pore-free, ideal grain boundaries, and dense structure can be formed. Several different types of materials are disclosed for use as buffer layers in high temperature superconductors. In addition, the use of epitaxial thin films for electrolytes and electrode formation in SOFCs results in densification for pore-free and ideal gain boundary/interface microstructure. Gas separation membranes for the production of oxygen and hydrogen are also disclosed. These semipermeable membranes are formed by high-quality, dense, gas-tight, pinhole free sub-micro scale layers of mixed-conducting oxides on porous ceramic substrates. Epitaxial thin films as dielectric material in capacitors are also taught herein. Capacitors are utilized according to their capacitance values which are dependent on their physical structure and dielectric permittivity. The epitaxial thin films of the current invention form low-loss dielectric layers with extremely high permittivity. This high permittivity allows for the formation of capacitors that can have their capacitance adjusted by applying a DC bias between their electrodes.

  19. Etching process optimization using NH{sub 4}Cl aqueous solution to texture ZnO:Al films for efficient light trapping in flexible thin film solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, S., E-mail: susanamaria.fernandez@ciemat.es [CIEMAT, Departamento de Energias Renovables, Madrid (Spain); Abril, O. de [ISOM and Departamento de Fisica Aplicada, Escuela Tecnica Superior de Ingenieros de Telecomunicacion, Universidad Politecnica de Madrid, Ciudad Universitaria s/n, 28040 Madrid (Spain); Naranjo, F.B. [Grupo de Ingenieria Fotonica, Universidad de Alcala, Departamento de Electronica, Alcala de Henares, Madrid (Spain); Gandia, J.J. [CIEMAT, Departamento de Energias Renovables, Madrid (Spain)

    2012-04-02

    0.5 {mu}m-thick aluminum-doped zinc oxide (ZnO:Al) films were deposited at 100 Degree-Sign C on polyethylene terephthalate substrates by Radio Frequency magnetron sputtering. The as-deposited films were compact and dense, showing grain sizes of 32.0 {+-} 6.4 nm and resistivities of (8.5 {+-} 0.7) Multiplication-Sign 10{sup -4} {Omega} cm. The average transmittance in the visible wavelength range of the structure ZnO:Al/PET was around 77%. The capability of a novel two-step chemical etching using diluted NH{sub 4}Cl aqueous solution to achieve efficient textured surfaces for light trapping was analyzed. The results indicated that both the aqueous solution and the etching method resulted appropriated to obtain etched surfaces with a surface roughness of 32 {+-} 5 nm, haze factors at 500 nm of 9% and light scattering at angles up to 50 Degree-Sign . To validate all these results, a commercially ITO coated PET substrate was used for comparison.

  20. Effect of substrate temperature in the structural, optical and ferroelectric properties of thin films of BaTiO{sub 3} deposited by RF sputtering; Efecto de la temperatura de substrato en las propiedades estructurales, opticas y ferroelectricas de peliculas delgadas de BaTiO{sub 3} depositadas por RF sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Marquez H, A. [Universidad Autonoma de San Luis Potosi, Coordinacion Academica Region Altiplano, Carretera a Cedral Km. 5 -600, Matehuala, 78800 San Luis Potosi (Mexico); Hernandez R, E.; Zapata T, M. [IPN, Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada, Unidad Legaria, Calz. Legaria 694, Col. Irrigacion, 11500 Mexico D. F. (Mexico); Calzadilla A, O. [Universidad de la Habana, Facultad de Fisica-IMRE, San Lazaro y L. Municipio Plaza de la Revolucion, La Habana (Cuba); Melendez L, M. [IPN, Centro de Investigacion y de Estudios Avanzados, Departamento de Fisica, Apdo. Postal 14-740, 07000 Mexico D. F. (Mexico)

    2012-07-01

    Thin films of Barium Titanate (BaTiO{sub 3}) were grown on nichrome and quartz substrates, using a BaTiO{sub 3} target, by RF sputtering technique. We varied the substrate temperature in order to study its effect on the structural, optical and ferroelectric properties of the samples. The results of the X-ray diffraction showed tetragonal structure with increases of the crystallinity as increases the substrate temperature. Furthermore, it observed by ultraviolet-visible spectroscopy that the band gap decreased as the substrate temperature increases showing abrupt sharp decrease at 494.8{sup o} C. The ferroelectric properties of the films showed a dependence with substrate temperature, the best ferroelectric answer was obtained at 494.8{sup o} C. (Author)

  1. Thin film superconductor magnetic bearings

    Science.gov (United States)

    Weinberger, Bernard R.

    1995-12-26

    A superconductor magnetic bearing includes a shaft (10) that is subject to a load (L) and rotatable around an axis of rotation, a magnet (12) mounted to the shaft, and a stator (14) in proximity to the shaft. The stator (14) has a superconductor thin film assembly (16) positioned to interact with the magnet (12) to produce a levitation force on the shaft (10) that supports the load (L). The thin film assembly (16) includes at least two superconductor thin films (18) and at least one substrate (20). Each thin film (18) is positioned on a substrate (20) and all the thin films are positioned such that an applied magnetic field from the magnet (12) passes through all the thin films. A similar bearing in which the thin film assembly (16) is mounted on the shaft (10) and the magnet (12) is part of the stator (14) also can be constructed.

  2. Biomimetic thin film deposition

    Energy Technology Data Exchange (ETDEWEB)

    Rieke, P.R.; Graff, G.E.; Campbell, A.A.; Bunker, B.C.; Baskaran, S.; Song, L.; Tarasevich, B.J.; Fryxell, G.E.

    1995-09-01

    Biological mineral deposition for the formation of bone, mollusk shell and other hard tissues provides materials scientists with illustrative materials processing strategies. This presentation will review the key features of biomineralization and how these features can be of technical importance. We have adapted existing knowledge of biomineralization to develop a unique method of depositing inorganic thin films and coating. Our approach to thin film deposition is to modify substrate surfaces to imitate the proteins found in nature that are responsible for controlling mineral deposition. These biomimetic surfaces control the nucleation and growth of the mineral from a supersaturated aqueous solution. This has many processing advantages including simple processing equipment, environmentally benign reagents, uniform coating of highly complex shapes, and enhanced adherence of coating. Many different types of metal oxide, hydroxide, sulfide and phosphate materials with useful mechanical, optical, electronic and biomedical properties can be deposited.

  3. Sputtered Thin Film Research

    Science.gov (United States)

    1974-11-01

    and Idonllly hy block numbor) Reactive Sputtering, Heteroepitaxy, Thin Films Single Crystal Zinc Oxide, Titanium Dioxide, Aluminum Nitride, Gallium...Conditions were determined for the deposition of amorphous neodymium ultra- phosphate films. This material holds the potential for the fabrication...reaching the substrate at any time during sputtering. A 17.2 cm diameter quartz plate was covered with a thin coating of zinc sulflde and placed on

  4. Fabrication of high T(sub c) superconductor thin film devices: Center director's discretionary fund

    Science.gov (United States)

    Sisk, R. C.

    1992-01-01

    This report describes a technique for fabricating superconducting weak link devices with micron-sized geometries etched in laser ablated Y1Ba2Cu3O(x) (YBCO) thin films. Careful placement of the weak link over naturally occurring grain boundaries exhibited in some YBCO thin films produces Superconducting Quantum Interference Devices (SQUID's) operating at 77 K.

  5. Thin film photovoltaic device

    Science.gov (United States)

    Catalano, A.W.; Bhushan, M.

    1982-08-03

    A thin film photovoltaic solar cell which utilizes a zinc phosphide semiconductor is of the homojunction type comprising an n-type conductivity region forming an electrical junction with a p-type region, both regions consisting essentially of the same semiconductor material. The n-type region is formed by treating zinc phosphide with an extrinsic dopant such as magnesium. The semiconductor is formed on a multilayer substrate which acts as an opaque contact. Various transparent contacts may be used, including a thin metal film of the same chemical composition as the n-type dopant or conductive oxides or metal grids. 5 figs.

  6. Thin-film solar cell

    NARCIS (Netherlands)

    Metselaar, J.W.; Kuznetsov, V.I.

    1998-01-01

    The invention relates to a thin-film solar cell provided with at least one p-i-n junction comprising at least one p-i junction which is at an angle alpha with that surface of the thin-film solar cell which collects light during operation and at least one i-n junction which is at an angle beta with

  7. Thin films: Past, present, future

    Energy Technology Data Exchange (ETDEWEB)

    Zweibel, K

    1995-04-01

    This report describes the characteristics of the thin film photovoltaic modules necessary for an acceptable rate of return for rural areas and underdeveloped countries. The topics of the paper include a development of goals of cost and performance for an acceptable PV system, a review of current technologies for meeting these goals, issues and opportunities in thin film technologies.

  8. Residual stress development and effect on the piezoelectric performance of sol-gel derived lead zirconate titanate (PZT) thin films

    Science.gov (United States)

    Berfield, Thomas A.

    Ferroelectric thin films have higher energy densities, larger strain capabilities and more rapid response times than their bulk counterparts. Typical applications include micro-actuators, micro-sensors and ultrasonic motors for MEMs applications, as well as, nonvolatile computer memories and switching capacitors for integrated circuitry. The electro-mechanical performance of ceramic thin films is greatly influenced by many factors, including grain size, orientation, film thickness, and residual stress level. Residual stresses which arise during the various processing phases of thin film manufacturing can be quite high due to substantial mismatches in substrate-film thermal properties, intrinsic sources (such as grain boundary interactions, etc.), and other external factors. This dissertation examines the relationship between field-induced displacement response and residual stress level for lead zirconate-titanate (PZT) thin films. The film piezoelectric properties are characterized via interferometric measurements for two different loading cases, while the residual stress is determined experimentally from wafer curvature measurements. Additionally two patterning methods, traditional chemical wet-etching and a novel soft lithographic technique, are explored as a means to reduce residual stress within film features. For the soft lithographic technique, film features are created by selective film cracking, a result of poor substrate adhesion promoted by a mediated, self-assembled monolayer. Wafer curvature stress measurements and DIC-based strain measurements of mediated monolayer patterned features reveal that the in-plane stress/strain development is reduced compared to the blanket film case. Critical in-plane strains at crack initiation are also measured using a new digital image correlation technique, in which fluorescent nanoparticles (c.a. 140 nm) provide the speckle pattern. A corresponding increase in the field induced displacements is observed for the film

  9. Intelligent Processing of Ferroelectric Thin Films

    Science.gov (United States)

    1994-05-31

    processing. In-situ sensors can monitor complex characteristics such as microstructures in real time and combine this data with conventionally sensed data...reaction is described as: M 8 + (OH.)b = Mb(OH)I In the hdroxide ion system, it is known that three kind of iigands are related to the reaction. : aquo ...that the existence of complex types of metal hydroxides such as TiO(OH 2),2 , Ti(OH)(OH 2)3 , Zr(OHXOH 2);3, Zr(OH2)s’,and so on. Fig. 2 represents the

  10. Intelligent Processing of Ferroelectric Thin Films

    Science.gov (United States)

    1993-09-03

    the conditions of Type 3 Selection of the best coprecipitation condition coprecipitation (i.e., 0.5M oxalic acid titrated at 24 Td cc/min at 21 0C...PLZT modulator provides L JEb +Esin~t IV w Figure 2 A grap’,ic analysis of the operation modes of the PLZT phase modulator with and without dc bias

  11. Polyimide Aerogel Thin Films

    Science.gov (United States)

    Meador, Mary Ann; Guo, Haiquan

    2012-01-01

    Polyimide aerogels have been crosslinked through multifunctional amines. This invention builds on "Polyimide Aerogels With Three-Dimensional Cross-Linked Structure," and may be considered as a continuation of that invention, which results in a polyimide aerogel with a flexible, formable form. Gels formed from polyamic acid solutions, end-capped with anhydrides, and cross-linked with the multifunctional amines, are chemically imidized and dried using supercritical CO2 extraction to give aerogels having density around 0.1 to 0.3 g/cubic cm. The aerogels are 80 to 95% porous, and have high surface areas (200 to 600 sq m/g) and low thermal conductivity (as low as 14 mW/m-K at room temperature). Notably, the cross-linked polyimide aerogels have higher modulus than polymer-reinforced silica aerogels of similar density, and can be fabricated as both monoliths and thin films.

  12. Thin film hydrogen sensor

    Science.gov (United States)

    Lauf, R.J.; Hoffheins, B.S.; Fleming, P.H.

    1994-11-22

    A hydrogen sensor element comprises an essentially inert, electrically-insulating substrate having a thin-film metallization deposited thereon which forms at least two resistors on the substrate. The metallization comprises a layer of Pd or a Pd alloy for sensing hydrogen and an underlying intermediate metal layer for providing enhanced adhesion of the metallization to the substrate. An essentially inert, electrically insulating, hydrogen impermeable passivation layer covers at least one of the resistors, and at least one of the resistors is left uncovered. The difference in electrical resistances of the covered resistor and the uncovered resistor is related to hydrogen concentration in a gas to which the sensor element is exposed. 6 figs.

  13. Nonlinear optical thin films

    Science.gov (United States)

    Leslie, Thomas M.

    1993-01-01

    A focused approach to development and evaluation of organic polymer films for use in optoelectronics is presented. The issues and challenges that are addressed include: (1) material synthesis, purification, and the tailoring of the material properties; (2) deposition of uniform thin films by a variety of methods; (3) characterization of material physical properties (thermal, electrical, optical, and electro-optical); and (4) device fabrication and testing. Photonic materials, devices, and systems were identified as critical technology areas by the Department of Commerce and the Department of Defense. This approach offers strong integration of basic material issues through engineering applications by the development of materials that can be exploited as the active unit in a variety of polymeric thin film devices. Improved materials were developed with unprecedented purity and stability. The absorptive properties can be tailored and controlled to provide significant improvement in propagation losses and nonlinear performance. Furthermore, the materials were incorporated into polymers that are highly compatible with fabrication and patterning processes for integrated optical devices and circuits. By simultaneously addressing the issues of materials development and characterization, keeping device design and fabrication in mind, many obstacles were overcome for implementation of these polymeric materials and devices into systems. We intend to considerably improve the upper use temperature, poling stability, and compatibility with silicon based devices. The principal device application that was targeted is a linear electro-optic modulation etalon. Organic polymers need to be properly designed and coupled with existing integrated circuit technology to create new photonic devices for optical communication, image processing, other laser applications such as harmonic generation, and eventually optical computing. The progression from microscopic sample to a suitable film

  14. Effects of Hydrogen Plasma on the Electrical Properties of F-Doped ZnO Thin Films and p-i-n α-Si:H Thin Film Solar Cells

    Directory of Open Access Journals (Sweden)

    Fang-Hsing Wang

    2014-01-01

    Full Text Available 1.5 wt% zinc fluoride (ZnF2 was mixed with zinc oxide powder to form the F-doped ZnO (FZO composition. At first, the FZO thin films were deposited at room temperature and 5×10-3 Torr in pure Ar under different deposition power. Hall measurements of the as-deposited FZO thin films were investigated, and then the electrical properties were used to find the deposition power causing the FZO thin films with minimum resistance. The FZO thin films with minimum resistance were further treated by H2 plasma and then found their variations in the electrical properties by Hall measurements. Hydrochloric (HCl acid solutions with different concentrations (0.1%, 0.2%, and 0.5% were used to etch the surfaces of the FZO thin films. Finally, the as-deposited, HCl-etched as-deposited, and HCl-etched H2-plasma-treated FZO thin films were used as transparent electrodes to fabricate the p-i-n α-Si:H thin film solar cells and their characteristics were compared in this study. We would show that using H2-plasma-treated and HCl-etched FZO thin films as transparent electrodes would improve the efficiency of the fabricated thin film solar cells.

  15. Grating coupler on single-crystal lithium niobate thin film

    Science.gov (United States)

    Chen, Zhihua; Wang, Yiwen; Jiang, Yunpeng; Kong, Ruirui; Hu, Hui

    2017-10-01

    The grating coupler on single-crystal lithium niobate thin film (lithium niobate on insulator, LNOI) was designed. A bottom reflector was added in the LNOI material to improve the coupling efficiency. The grating structure was optimized by FDTD method. The material parameters such as layer thickness of lithium niobate thin film, SiO2 thickness were discussed with respect to the coupling efficiency, and the tolerances of grating period, etch depth, groove width and fiber position were also studied systematically. The simulated maximum coupling efficiency from a grating coupler with (without) bottom reflector to a single-mode fiber is about 78% (40%) in z-cut LNOI for TE polarization.

  16. Handbook of thin film technology

    CERN Document Server

    Frey, Hartmut

    2015-01-01

    “Handbook of Thin Film Technology” covers all aspects of coatings preparation, characterization and applications. Different deposition techniques based on vacuum and plasma processes are presented. Methods of surface and thin film analysis including coating thickness, structural, optical, electrical, mechanical and magnetic properties of films are detailed described. The several applications of thin coatings and a special chapter focusing on nanoparticle-based films can be found in this handbook. A complete reference for students and professionals interested in the science and technology of thin films.

  17. Multiferroic iron oxide thin films at room temperature.

    Science.gov (United States)

    Gich, Martí; Fina, Ignasi; Morelli, Alessio; Sánchez, Florencio; Alexe, Marin; Gàzquez, Jaume; Fontcuberta, Josep; Roig, Anna

    2014-07-16

    Multiferroic behaviour at room temperature is demonstrated in ε-Fe2 O3 . The simple composition of this new ferromagnetic ferroelectric oxide and the discovery of a robust path for its thin film growth by using suitable seed layers may boost the exploitation of ε-Fe2 O3 in novel devices. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Pulsed Laser Deposition of BaTiO3 Thin Films on Different Substrates

    Directory of Open Access Journals (Sweden)

    Yaodong Yang

    2010-01-01

    Full Text Available We have studied the deposition of BaTiO3 (BTO thin films on various substrates. Three representative substrates were selected from different types of material systems: (i SrTiO3 single crystals as a typical oxide, (ii Si wafers as a semiconductor, and (iii Ni foils as a magnetostrictive metal. We have compared the ferroelectric properties of BTO thin films obtained by pulsed laser deposition on these diverse substrates.

  19. Mechanism for leakage current conduction in manganese doped Bi{sub 3.25}La{sub 0.75}Ti{sub 3}O{sub 12} (BLT) ferroelectric thin films

    Energy Technology Data Exchange (ETDEWEB)

    Gautam, Prikshit, E-mail: pgautam.physics.du@gmail.com [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India); Singh, Sushil K. [Functional Materials Division, SSPL, Timarpur, New Delhi 110054 (India); Tandon, R.P. [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India)

    2014-09-01

    Highlights: • Mn doped Bi{sub 3.25}La{sub 0.75}Ti{sub 3}O{sub 12} (BLT) thin films prepared by chemical solution deposition technique. • Well saturated hysteresis loops are obtained for all the samples. • Charge transport phenomena in BLT and first time in Mn doped BLT thin films studied. • Conduction mechanisms viz Schottky, Modified Schottky, Poole–Frenkel, Lampert’s theory studied. • Lampert’s theory in an insulator with traps found to be the leakage current conduction mechanism in these films. - Abstract: Bi{sub 3.25}La{sub 0.75}Ti{sub 3}O{sub 12} (BLT) is one of the prospective candidate materials for data storage devices application. In order to understand the leakage current conduction mechanism in BLT we have studied Mn doped Bi{sub 3.25}La{sub 0.75}Ti{sub 3}O{sub 12} (BLT) thin films with varying concentration of Mn. These films were prepared by chemical solution deposition technique. The structure and phase analysis of these films was performed at room temperature by X-ray diffraction, and scanning electron microscope was used to investigate the surface morphology. Different leakage current conduction mechanisms, e.g., Schottky emission, Modified Schottky, Poole–Frenkel emission and space charge limited (Lampert’s theory) conduction were examined to explain the true nature of charge transport phenomena in BLT and Mn doped BLT thin films. It was found that BLT and Mn doped BLT thin films leakage current conduction mechanism follows the Lampert’s theory of space charge limited conduction in an insulator with traps.

  20. Characterization of organic thin films

    CERN Document Server

    Ulman, Abraham; Evans, Charles A

    2009-01-01

    Thin films based upon organic materials are at the heart of much of the revolution in modern technology, from advanced electronics, to optics to sensors to biomedical engineering. This volume in the Materials Characterization series introduces the major common types of analysis used in characterizing of thin films and the various appropriate characterization technologies for each. Materials such as Langmuir-Blodgett films and self-assembled monolayers are first introduced, followed by analysis of surface properties and the various characterization technologies used for such. Readers will find detailed information on: -Various spectroscopic approaches to characterization of organic thin films, including infrared spectroscopy and Raman spectroscopy -X-Ray diffraction techniques, High Resolution EELS studies, and X-Ray Photoelectron Spectroscopy -Concise Summaries of major characterization technologies for organic thin films, including Auger Electron Spectroscopy, Dynamic Secondary Ion Mass Spectrometry, and Tra...

  1. Rare Earth Oxide Thin Films

    CERN Document Server

    Fanciulli, Marco

    2007-01-01

    Thin rare earth (RE) oxide films are emerging materials for microelectronic, nanoelectronic, and spintronic applications. The state-of-the-art of thin film deposition techniques as well as the structural, physical, chemical, and electrical properties of thin RE oxide films and of their interface with semiconducting substrates are discussed. The aim is to identify proper methodologies for the development of RE oxides thin films and to evaluate their effectiveness as innovative materials in different applications.

  2. Uncooled thin film pyroelectric IR detector with aerogel thermal isolation

    Energy Technology Data Exchange (ETDEWEB)

    Ruffner, J.A.; Clem, P.G.; Tuttle, B.A. [and others

    1998-01-01

    Uncooled pyroelectric IR imaging systems, such as night vision goggles, offer important strategic advantages in battlefield scenarios and reconnaissance surveys. Until now, the current technology for fabricating these devices has been limited by low throughput and high cost which ultimately limit the availability of these sensor devices. We have developed and fabricated an alternative design for pyroelectric IR imaging sensors that utilizes a multilayered thin film deposition scheme to create a monolithic thin film imaging element on an active silicon substrate for the first time. This approach combines a thin film pyroelectric imaging element with a thermally insulating SiO{sub 2} aerogel thin film to produce a new type of uncooled IR sensor that offers significantly higher thermal, spatial, and temporal resolutions at a substantially lower cost per unit. This report describes the deposition, characterization and optimization of the aerogel thermal isolation layer and an appropriate pyroelectric imaging element. It also describes the overall integration of these components along with the appropriate planarization, etch stop, adhesion, electrode, and blacking agent thin film layers into a monolithic structure. 19 refs., 8 figs., 6 tabs.

  3. Dry Etching

    DEFF Research Database (Denmark)

    Stamate, Eugen; Yeom, Geun Young

    2016-01-01

    for the higher processing rates in FPDs, high-density plasma processing tools that can handle larger-area substrate uniformly are more intensively studied especially for the dry etching of polysilicon thin films. In the case of FPD processing, the current substrate size ranges from 730 × 920 mm (fourth...

  4. Chemical surface treatment of Ge2Sb2Te5 thin films for phase change memory application

    Science.gov (United States)

    Mikhailova, M. S.; Nemtseva, S. Y.; Glukhenkaya, V. B.; Lazarenko, P. I.; Sherchenkov, A. A.; Kozyukhin, S. A.; Timoshenkov, S. P.

    2016-12-01

    Influence of the alkalis (KOH, NaOH), acids (HNO3, HCl, H3PO4, H2SO4) and solvents (C3H7NO, deionized water) on the Ge2Sb2Te5 thin films was investigated. Most possible etching mechanism of GST225 thin films by HNO3 solution was proposed.

  5. Thin Films for Thermoelectric Applications

    Science.gov (United States)

    Silva, M. F.; Ribeiro, J. F.; Carmo, J. P.; Gonçalves, L. M.; Correia, J. H.

    The introduction of nanotechnology opened new horizons previously unattainable by thermoelectric devices. The nano-scale phenomena began to be exploited through techniques of thin-film depositions to increase the efficiency of thermoelectric films. This chapter reviews the fundamentals of the phenomenon of thermoelectricity and its evolution since it was discovered in 1822. This chapter also reviews the thermoelectric devices, the macro to nano devices, describing the most used techniques of physical vapor depositions to deposit thermoelectric thin-films. A custom made deposition chamber for depositing thermoelectric thin films by the thermal co-evaporation technique, where construction issues and specifications are discussed, is then presented. All the steps for obtaining a thermoelectric generator in flexible substrate with the custom deposition chamber (to incorporate in thermoelectric microsystems) are described. The aim of thermoelectric microsystem relays is to introduce an energy harvesting application to power wireless sensor networks (WSN) or biomedical devices. The scanning probe measuring system for characterization of the thermoelectric thin films are also described in this chapter. Finally, a few of the prototypes of thermoelectric thin films (made of bismuth and antimony tellurides, {Bi}2{Te}3, and {Sb}2{Te}3, respectively) obtained by co-evaporation (using the custom made deposition chamber) and characterized for quality assessment are dealt with. All the issues involved in the co-evaporation and characterization are objects of analysis in this chapter.

  6. The synthesis and characterization of multifunctional oxide thin films

    Science.gov (United States)

    Kharel, Parashu Ram

    2008-10-01

    Multifunctional materials offer a number of very interesting properties for developing new generation novel devices. Motivated by this fact, we concentrated our research efforts on investigating two different class of multifunctional materials namely: Diluted Magnetic Semiconducting Oxides (DMSO) and Multiferroic Oxides. The primary goal of this study was to determine how to resolve the controversy concerning the origin of room temperature ferromagnetic order in DMSO and to demonstrate the theoretically predicted coupling between ferroelectric and magnetic order parameters in multiferroic oxides. We chose several materials of current interest such as TiO2, ZnOand In2O3 (DMSO) and Ni3V2O8 and BiFeO 3 (multiferroic oxides) as the experimental specimens. We synthesized thin film samples of these materials using metal organic decomposition by spin coating and RF magnetron sputtering techniques. We succeeded in growing single phase polycrystalline thin films using both of the techniques with the sputter deposited samples showing highly preferred orientations. We did not observe any secondary phases and accidental impurities leading to robust ferromagnetic order in our samples within the detection limit of XRD, Raman spectroscopy and TEM. We have demonstrated that the lattice defects such as oxygen vacancies and cation vacancies play crucial role in the development of ferromagnetic order in DMSO materials. Based on the investigation carried out on TiO 2, ZnO and In2O3, we conclude that ferromagnetism can be developed in oxygen deficient DMSO thin films without the subbstitution of any external magnetic impurities but the incorporation of magnetic impurities may help in stabilizing the observed ferromagnetic order. Most importantly, we demonstrated with the direct measurement of spin polarization in In 2O3 and Cr doped In2O3 thin films that the charge carriers responsible for the ferromagnetic order are spin polarized. We have successfully demonstrated that the low

  7. Ferroelectric switching of poly(vinylidene difluoride-trifluoroethylene) in metal-ferroelectric-semiconductor non-volatile memories with an amorphous oxide semiconductor

    Energy Technology Data Exchange (ETDEWEB)

    Gelinck, G. H., E-mail: Gerwin.Gelinck@tno.nl [Holst Centre/TNO, High Tech Campus 31, 5656 AE Eindhoven (Netherlands); Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Breemen, A. J. J. M. van; Cobb, B. [Holst Centre/TNO, High Tech Campus 31, 5656 AE Eindhoven (Netherlands)

    2015-03-02

    Ferroelectric polarization switching of poly(vinylidene difluoride-trifluoroethylene) is investigated in different thin-film device structures, ranging from simple capacitors to dual-gate thin-film transistors (TFT). Indium gallium zinc oxide, a high mobility amorphous oxide material, is used as semiconductor. We find that the ferroelectric can be polarized in both directions in the metal-ferroelectric-semiconductor (MFS) structure and in the dual-gate TFT under certain biasing conditions, but not in the single-gate thin-film transistors. These results disprove the common belief that MFS structures serve as a good model system for ferroelectric polarization switching in thin-film transistors.

  8. Wafer-scale growth of highly textured piezoelectric thin films by pulsed laser deposition for micro-scale sensors and actuators

    NARCIS (Netherlands)

    Nguyen, M. D.; Tiggelaar, R.; Aukes, Thomas; Rijnders, G.; Roelof, G.

    2017-01-01

    Piezoelectric lead-zirconate-Titanate (PZT) thin films were deposited on 4-inch (111)Pt/Ti/SiO2/Si(001) wafers using large-Area pulsed laser deposition (PLD). This study was focused on the homogeneity in film thickness, microstructure, ferroelectric and piezoelectric properties of PZT thin films.

  9. Nanocrystal thin film fabrication methods and apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Kagan, Cherie R.; Kim, David K.; Choi, Ji-Hyuk; Lai, Yuming

    2018-01-09

    Nanocrystal thin film devices and methods for fabricating nanocrystal thin film devices are disclosed. The nanocrystal thin films are diffused with a dopant such as Indium, Potassium, Tin, etc. to reduce surface states. The thin film devices may be exposed to air during a portion of the fabrication. This enables fabrication of nanocrystal-based devices using a wider range of techniques such as photolithography and photolithographic patterning in an air environment.

  10. Laser applications in thin-film photovoltaics

    OpenAIRE

    Bartlome, R.; Strahm, B.; Sinquin, Y.; Feltrin, A.; Ballif, C.

    2009-01-01

    We review laser applications in thin-film photovoltaics (thin-film Si, CdTe, and Cu(In,Ga)Se2 solar cells). Lasers are applied in this growing field to manufacture modules, to monitor Si deposition processes, and to characterize opto-electrical properties of thin films. Unlike traditional panels based on crystalline silicon wafers, the individual cells of a thin-film photovoltaic module can be serially interconnected by laser scribing during fabrication. Laser scribing applications are descri...

  11. Magnetization in permalloy thin films

    Indian Academy of Sciences (India)

    RACHANA GUPTA1,∗, MUKUL GUPTA2 and THOMAS GUTBERLET3. 1VES College of Arts, Science and Commerce, Sindhi Society, Chembur, Mumbai 400 071,. India. 2UGC-DAE Consortium for ... E-mail: dr.rachana.gupta@gmail.com. Abstract. Thin films of permalloy (Ni80Fe20) were prepared using an Ar+N2 mixture.

  12. Center for Thin Film Studies

    Science.gov (United States)

    1988-10-31

    12 (3.22) To understand (3.22) requires a basic knowledge of differential geometry (Do Carmo , 1976). The determinant and trace of M1dj are the...A.G. Dirks and H.J. Leamy, "Columnar Microstructure in Vapour Deposited Thin Films," Thin Solid Films 47 219-233 (1977). M.P. Do Carmo , Differential

  13. Characterization of nanocrystalline cadmium telluride thin films ...

    Indian Academy of Sciences (India)

    Unknown

    tion method, successive ionic layer adsorption and reaction (SILAR), are described. For deposition of CdTe thin films, cadmium ... By conducting several trials optimization of the adsorption, reaction and rinsing time duration for CdTe thin film deposition was ... 3.1 Reaction mechanism. CdTe thin films were grown on micro ...

  14. Effects of ferroelectric-poling-induced strain on the electronic transport and magnetic properties of (001)- and (111)-oriented La{sub 0.5}Ba{sub 0.5}MnO{sub 3} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Li, X.Y. [Department of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094 (China); State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Zheng, M.; Zhu, Q.X.; Yang, M.M.; Li, X.M.; Shi, X. [State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Yuan, G.L., E-mail: yuanguoliang@mail.njust.edu.cn [Department of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094 (China); Wang, Y.; Chan, H.L.W. [Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong (China); Li, X.G. [Hefei National Laboratory for Physical Sciences at Microscale and Department of Physics, University of Science and Technology of China, Hefei 230026 (China); Luo, H.S. [State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Zheng, R.K., E-mail: zrk@ustc.edu [State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China)

    2014-04-01

    We epitaxially grew La{sub 0.5}Ba{sub 0.5}MnO{sub 3} (LBMO) films on (001)- and (111)-oriented ferroelectric single-crystal substrates and reduced the in-plane tensile strain of LBMO films by poling the ferroelectric substrates along the 〈001〉 or 〈111〉 direction. Upon poling, a large decrease in the resistance and a considerable increase in the magnetization, Curie temperature, and magnetoresistance were observed for the LBMO film, which are driven by interface strain coupling. Such strain effects can be significantly enhanced by the application of a magnetic field. An overall analysis of the findings reveals that the mutual interaction between the strain and the magnetic field is mediated by the electronic phase separation which is sensitive to both strain and magnetic field. Our findings highlight that the electronic phase separation is crucial in understanding the electric-field-manipulated strain effects in manganite film/ferroelectric crystal heterostructures. - Highlights: • La{sub 0.5}Ba{sub 0.5}MnO{sub 3} films were epitaxially grown on ternary ferroelectric single crystals. • Ferroelectric poling modifies the strain and physical properties of films. • Magnetic field enhances the strain effects of films. • Phase separation is crucial to understand the magnetic-field-tuned strain effect.

  15. Measurement of longitudinal piezoelectric coefficient of thin films by a laser-scanning vibrometer.

    Science.gov (United States)

    Yao, Kui; Tay, Francis Eng Hock

    2003-02-01

    A laser scanning vibrometer (LSV) was used for the first time to measure the piezoelectric coefficient of ferroelectric thin films based on the converse piezoelectric effect. The significant advantages of the use of the LSV for this purpose were demonstrated. Several key points were discussed in order to achieve reliable and accurate results.

  16. Resistance switching in polyvinylidene fluoride (PVDF) thin films

    Energy Technology Data Exchange (ETDEWEB)

    Pramod, K.; Sahu, Binaya Kumar; Gangineni, R. B., E-mail: rameshg.phy@pondiuni.edu.in [Department of Physics, Pondicherry University, R. V. Nagar, Kalapet, Puducherry – 605014 (India)

    2015-06-24

    Polyvinylidene fluoride (PDVF), one of the best electrically active polymer material & an interesting candidate to address the electrical control of its functional properties like ferroelectricity, piezoelectricity, pyroelectricity etc. In the current work, with the help of spin coater and DC magnetron sputtering techniques, semi-crystallized PVDF thin films prominent in alpha phase is prepared in capacitor like structure and their electrical characterization is emphasized. In current-voltage (I-V) and resistance-voltage (R-V) measurements, clear nonlinearity and resistance switching has been observed for films prepared using 7 wt% 2-butanone and 7 wt% Dimethyl Sulfoxide (DMSO) solvents.

  17. Thin films of soft matter

    CERN Document Server

    Kalliadasis, Serafim

    2007-01-01

    A detailed overview and comprehensive analysis of the main theoretical and experimental advances on free surface thin film and jet flows of soft matter is given. At the theoretical front the book outlines the basic equations and boundary conditions and the derivation of low-dimensional models for the evolution of the free surface. Such models include long-wave expansions and equations of the boundary layer type and are analyzed via linear stability analysis, weakly nonlinear theories and strongly nonlinear analysis including construction of stationary periodic and solitary wave and similarity solutions. At the experimental front a variety of very recent experimental developments is outlined and the link between theory and experiments is illustrated. Such experiments include spreading drops and bubbles, imbibitions, singularity formation at interfaces and experimental characterization of thin films using atomic force microscopy, ellipsometry and contact angle measurements and analysis of patterns using Minkows...

  18. On device design for steep-slope negative-capacitance field-effect-transistor operating at sub-0.2V supply voltage with ferroelectric HfO2 thin film

    Science.gov (United States)

    Kobayashi, Masaharu; Hiramoto, Toshiro

    2016-02-01

    Internet-of-Things (IoT) technologies require a new energy-efficient transistor which operates at ultralow voltage and ultralow power for sensor node devices employing energy-harvesting techniques as power supply. In this paper, a practical device design guideline for low voltage operation of steep-slope negative-capacitance field-effect-transistors (NCFETs) operating at sub-0.2V supply voltage is investigated regarding operation speed, material requirement and energy efficiency in the case of ferroelectric HfO2 gate insulator, which is the material fully compatible to Complementary Metal-Oxide-Semiconductor (CMOS) process technologies. A physics-based numerical simulator was built to design NCFETs with the use of experimental HfO2 material parameters by modeling the ferroelectric gate insulator and FET channel simultaneously. The simulator revealed that NCFETs with ferroelectric HfO2 gate insulator enable hysteresis-free operation by setting appropriate operation point with a few nm thick gate insulator. It also revealed that, if the finite response time of spontaneous polarization of the ferroelectric gate insulator is 10-100psec, 1-10MHz operation speed can be achieved with negligible hysteresis. Finally, by optimizing material parameters and tuning negative capacitance, 2.5 times higher energy efficiency can be achieved by NCFET than by conventional MOSFETs. Thus, NCFET is expected to be a new CMOS technology platform for ultralow power IoT.

  19. Ferroelectric materials and their applications

    CERN Document Server

    Xu, Y

    2013-01-01

    This book presents the basic physical properties, structure, fabrication methods and applications of ferroelectric materials. These are widely used in various devices, such as piezoelectric/electrostrictive transducers and actuators, pyroelectric infrared detectors, optical integrated circuits, optical data storage, display devices, etc. The ferroelectric materials described in this book include a relatively complete list of practical and promising ferroelectric single crystals, bulk ceramics and thin films. Included are perovskite-type, lithium niobate, tungsten-bronze-type, water-soluable

  20. High index glass thin film processing for photonics and photovoltaic (PV) applications

    Science.gov (United States)

    Ogbuu, Okechukwu Anthony

    To favorably compete with fossil-fuel technology, the greatest challenge for thin film solar-cells is to improve efficiency and reduce material cost. Thickness scaling to thin film reduces material cost but affects the light absorption in the cells; therefore a concept that traps incident photons and increases its optical path length is needed to boost absorption in thin film solar cells. One approach is the integration of low symmetric gratings (LSG), using high index material, on either the front-side or backside of 30 um thin c-Si cells. In this study, Multicomponent TeO2--Bi2O 3--ZnO (TBZ) glass thin films were prepared using RF magnetron sputtering under different oxygen flow rates. The influences of oxygen flow rate on the structural and optical properties of the resulting thin films were investigated. The structural origin of the optical property variation was studied using X-ray diffraction, X-ray photoelectron spectroscopy, Raman Spectroscopy, and transmission electron microscopy. The results indicate that TBZ glass thin film is a suitable material for front side LSG material photovoltaic and photonics applications due to their amorphous nature, high refractive index (n > 2), broad band optical transparency window, low processing temperature. We developed a simple maskless method to pattern sputtered tellurite based glass thin films using unconventional agarose hydrogel mediated wet etching. Conventional wet etching process, while claiming low cost and high throughput, suffers from reproducibility and pattern fidelity issues due to the isotropic nature of wet chemical etching when applied to glasses and polymers. This method overcomes these challenges by using an agarose hydrogel stamp to mediate a conformal etching process. In our maskless method, agarose hydrogel stamps are patterned following a standard soft lithography and replica molding process from micropatterned masters and soaked in a chemical etchant. The micro-scale features on the stamp are

  1. Chemical homogeneity effects on the nonlinear dielectric response of lead zirconate titanate thin films

    Science.gov (United States)

    Ihlefeld, Jon F.; Shelton, Christopher T.

    2012-07-01

    Rayleigh analysis has been used to investigate dielectric nonlinearity in polycrystalline lead zirconate titanate thin films that possess a chemically homogeneous B-site and those with titanium/zirconium gradients through the film thickness. Chemically homogeneous films possess greater irreversible and reversible contributions and greater ratios of irreversible to reversible contributions to dielectric nonlinearity than chemically heterogeneous films. These measurements demonstrate that the ferroelectric performance improvements observed in chemically homogeneous Pb(Zr,Ti)O3 thin films, with compositions near the morphotropic phase boundary, are associated with enhanced extrinsic contributions owing to improved domain wall mobility.

  2. MCP performance improvement using alumina thin film

    Science.gov (United States)

    Yang, Yuzhen; Yan, Baojun; Liu, Shulin; Zhao, Tianchi; Yu, Yang; Wen, Kaile; Li, Yumei; Qi, Ming

    2017-10-01

    The performance improvement using alumina thin film on a dual microchannel plate (MCP) detector for single electron counting was investigated. The alumina thin film was coated on all surfaces of the MCPs by atomic layer deposition method. It was found that the gain, the single electron resolution and the peak-to-valley ratio of the dual MCP detector were significantly enhanced by coating the alumina thin film. The optimum operating conditions of the new dual MCP detector have been studied.

  3. Testing thin film adhesion strength acoustically

    Science.gov (United States)

    Madanshetty, Sameer I.; Wanklyn, Kevin M.; Ji, Hang

    2004-05-01

    A new method of measuring the adhesion strength of thin films to their substrates is reported. The method is based on an analogy with the common tensile test of materials. This is an acoustic method that uses acoustic microcavitation to bring about controlled erosion of the thin film. Based on the insonification pressure and the time to complete erosion, the adhesion strength is assessed. The measurements correctly rank order a set of thin film samples of known adhesion strengths.

  4. Growth and characterization of PNZST thin films

    Energy Technology Data Exchange (ETDEWEB)

    Zhai Jiwei; Li, X.; Yao, Y.; Chen, Haydn

    2003-05-25

    We have grown and compared microstructures and dielectric properties of PNZST thin films prepared on two different substrates by sol-gel methods. To ensure a complete single-phase perovskite PNZST thin film, a capping layer of PbO must be added to the top surface of the thin film before final heat treatment. Microstructure characterization was examined with X-ray diffraction, scanning and transmission electron microscopy. Dielectric and antiferroelectric properties were investigated as a function of temperature.

  5. Numerical modeling of thin film optical filters

    Science.gov (United States)

    Topasna, Daniela M.; Topasna, Gregory A.

    2009-06-01

    Thin films are an important and sometimes essential component in many optical and electrical devices. As part of their studies in optics, students receive a basic grounding in the propagation of light through thin films of various configurations. Knowing how to calculate the transmission and reflection of light of various wavelengths through thin film layers is essential training that students should have. We present exercises where students use Mathcad to numerically model the transmission and reflection of light from various thin film configurations. By varying the number of layers and their optical parameters, students learn how to adjust the transmission curves in order to tune particular filters to suit needed applications.

  6. Analysis of Hard Thin Film Coating

    Science.gov (United States)

    Shen, Dashen

    1998-01-01

    MSFC is interested in developing hard thin film coating for bearings. The wearing of the bearing is an important problem for space flight engine. Hard thin film coating can drastically improve the surface of the bearing and improve the wear-endurance of the bearing. However, many fundamental problems in surface physics, plasma deposition, etc, need further research. The approach is using electron cyclotron resonance chemical vapor deposition (ECRCVD) to deposit hard thin film an stainless steel bearing. The thin films in consideration include SiC, SiN and other materials. An ECRCVD deposition system is being assembled at MSFC.

  7. Thin films for emerging applications v.16

    CERN Document Server

    Francombe, Maurice H

    1992-01-01

    Following in the long-standing tradition of excellence established by this serial, this volume provides a focused look at contemporary applications. High Tc superconducting thin films are discussed in terms of ion beam and sputtering deposition, vacuum evaporation, laser ablation, MOCVD, and other deposition processes in addition to their ultimate applications. Detailed treatment is also given to permanent magnet thin films, lateral diffusion and electromigration in metallic thin films, and fracture and cracking phenomena in thin films adhering to high-elongation substrates.

  8. Thin film solar energy collector

    Science.gov (United States)

    Aykan, Kamran; Farrauto, Robert J.; Jefferson, Clinton F.; Lanam, Richard D.

    1983-11-22

    A multi-layer solar energy collector of improved stability comprising: (1) a substrate of quartz, silicate glass, stainless steel or aluminum-containing ferritic alloy; (2) a solar absorptive layer comprising silver, copper oxide, rhodium/rhodium oxide and 0-15% by weight of platinum; (3) an interlayer comprising silver or silver/platinum; and (4) an optional external anti-reflective coating, plus a method for preparing a thermally stable multi-layered solar collector, in which the absorptive layer is undercoated with a thin film of silver or silver/platinum to obtain an improved conductor-dielectric tandem.

  9. Tantalum oxide thin films as protective coatings for sensors

    DEFF Research Database (Denmark)

    Christensen, Carsten; Reus, Roger De; Bouwstra, Siebe

    1999-01-01

    Reactively sputtered tantalum oxide thin-films have been investigated as protective coating for aggressive media exposed sensors. Tantalum oxide is shown to be chemically very robust. The etch rate in aqueous potassium hydroxide with pH 11 at 140°C is lower than 0.008 Å/h. Etching in liquids with p......H values in the range from pH 2-11 have generally given etch rates below 0.04 Å/h. On the other hand patterning is possible in hydrofluoric acid. Further, the passivation behaviour of amorphous tantalum oxide and polycrystalline Ta2O5 is different in buffered hydrofluoric acid. By ex-situ annealing in O2...... the residual thin-film stress can be altered from compressive to tensile and annealing at 450°C for 30 minutes gives a stress-free film. The step coverage of the sputter deposited amorphous tantalum oxide is reasonable, but metallisation lines are hard to cover. Sputtered tantalum oxide exhibits high...

  10. Tantalum oxide thin films as protective coatings for sensors

    DEFF Research Database (Denmark)

    Christensen, Carsten; Reus, Roger De; Bouwstra, Siebe

    1999-01-01

    Reactively sputtered tantalum oxide thin films have been investigated as protective coatings for aggressive media exposed sensors. Tantalum oxide is shown to be chemically very robust. The etch rate in aqueous potassium hydroxide with pH 11 at 140°C is lower than 0.008 Å h-l. Etching in liquids...... with pH values in the range from pH 2 to 11 have generally given etch rates below 0.04 Å h-l. On the other hand patterning is possible in hydrofluoric acid. Further, the passivation behaviour of amorphous tantalum oxide and polycrystalline Ta2O5 is different in buffered hydrofluoric acid. By ex situ...... annealing O2 in the residual thin-film stress can be altered from compressive to tensile and annealing at 450°C for 30 minutes gives a stress-free film. The step coverage of the sputter deposited amorphous tantalum oxide is reasonable, but metallization lines are hard to cover. Sputtered tantalum oxide...

  11. Strain-induced phenomenon in complex oxide thin films

    Science.gov (United States)

    Haislmaier, Ryan

    Complex oxide materials wield an immense spectrum of functional properties such as ferroelectricity, ferromagnetism, magnetoelectricity, optoelectricity, optomechanical, magnetoresistance, superconductivity, etc. The rich coupling between charge, spin, strain, and orbital degrees of freedom makes this material class extremely desirable and relevant for next generation electronic devices and technologies which are trending towards nanoscale dimensions. Development of complex oxide thin film materials is essential for realizing their integration into nanoscale electronic devices, where theoretically predicted multifunctional capabilities of oxides could add tremendous value. Employing thin film growth strategies such as epitaxial strain and heterostructure interface engineering can greatly enhance and even unlock novel material properties in complex oxides, which will be the main focus of this work. However, physically incorporating oxide materials into devices remains a challenge. While advancements in molecular beam epitaxy (MBE) of thin film oxide materials has led to the ability to grow oxide materials with atomic layer precision, there are still major limitations such as controlling stoichiometric compositions during growth as well as creating abrupt interfaces in multi-component layered oxide structures. The work done in this thesis addresses ways to overcome these limitations in order to harness intrinsic material phenomena. The development of adsorption-controlled stoichiometric growth windows of CaTiO3 and SrTiO3 thin film materials grown by hybrid MBE where Ti is supplied using metal-organic titanium tetraisopropoxide material is thoroughly outlined. These growth windows enable superior epitaxial strain-induced ferroelectric and dielectric properties to be accessed as demonstrated by chemical, structural, electrical, and optical characterization techniques. For tensile strained CaTiO3 and compressive strained SrTiO 3 films, the critical effects of

  12. Flexible thin film magnetoimpedance sensors

    Energy Technology Data Exchange (ETDEWEB)

    Kurlyandskaya, G.V., E-mail: galina@we.lc.ehu.es [Universidad del País Vasco, UPV/EHU, Departamento de Electricidad y Electrónica, P.O. Box 644, Bilbao 48080 (Spain); Ural Federal University, Laboratory of Magnetic sensoric, Lenin Ave. 51, 620083 Ekaterinburg (Russian Federation); Fernández, E. [BCMaterials UPV-EHU, Vizcaya Science and Technology Park, 48160 Derio (Spain); Svalov, A. [Universidad del País Vasco, UPV/EHU, Departamento de Electricidad y Electrónica, P.O. Box 644, Bilbao 48080 (Spain); Ural Federal University, Laboratory of Magnetic sensoric, Lenin Ave. 51, 620083 Ekaterinburg (Russian Federation); Burgoa Beitia, A. [Universidad del País Vasco, UPV/EHU, Departamento de Electricidad y Electrónica, P.O. Box 644, Bilbao 48080 (Spain); García-Arribas, A. [Universidad del País Vasco, UPV/EHU, Departamento de Electricidad y Electrónica, P.O. Box 644, Bilbao 48080 (Spain); BCMaterials UPV-EHU, Vizcaya Science and Technology Park, 48160 Derio (Spain); Larrañaga, A. [SGIker, Servicios Generales de Investigación, Universidad del País Vasco (UPV/EHU), 48080 Bilbao (Spain)

    2016-10-01

    Magnetically soft thin film deposited onto polymer substrates is an attractive option for flexible electronics including magnetoimpedance (MI) applications. MI FeNi/Ti based thin film sensitive elements were designed and prepared using the sputtering technique by deposition onto rigid and flexible substrates at different deposition rates. Their structure, magnetic properties and MI were comparatively analyzed. The main structural features were sufficiently accurately reproduced in the case of deposition onto cyclo olefine polymer substrates compared to glass substrates for the same conditions. Although for the best condition (28 nm/min rate) of the deposition onto polymer a significant reduction of the MI field sensitivity was found satisfactory for sensor applications sensitivity: 45%/Oe was obtained for a frequency of 60 MHz. - Highlights: • [FeNi/Ti]{sub 3}/Cu/[FeNi/Ti]{sub 3} films were prepared by sputtering at different deposition rates. • Polymer substrates insure sufficiently accurate reproducibility of the film structure. • High deposition rate of 28 nm/min insures the highest values of the magnetoimpedance sensitivity. • Deposition onto polymer results in the satisfactory magnetoimpedance sensitivity of 45%/Oe.

  13. Investigation of thickness effects on the dielectric constant barium strontium titanate thin films

    CERN Document Server

    Grattan, L J

    2002-01-01

    The collapse in dielectric constant at small thickness commonly observed in ferroelectric thin films was measured and investigated in barium strontium titanate (Ba sub 0 sub . sub 5 Sr sub 0 sub . sub 5 TiO sub 3). The possible mechanisms responsible for this effect are reviewed. Functional measurements were performed on BST thin films, of 7.5 to 950 nm, by incorporating them into capacitor structures with bottom electrodes of strontium ruthenate (SRO) and thermally- evaporated Au top electrodes. A discussion on thin film growth considerations, optimal PLD conditions and the measurement techniques employed in the project is presented. The experimentally determined dielectric constant - thickness profile was fitted using the series capacitor model assuming low dielectric constant interfacial layers in series with the bulk. Consideration of the case where the combined 'dead layer' thickness was close to the total BST thickness revealed that, for this system, the total 'dead layer' thickness had to be less than ...

  14. Intrinsically conductive polymer thin film piezoresistors

    DEFF Research Database (Denmark)

    Lillemose, Michael; Spieser, Martin; Christiansen, N.O.

    2008-01-01

    We report on the piezoresistive effect in the intrinsically conductive polymer, polyaniline. A process recipe for indirect patterning of thin film polyaniline has been developed. Using a specially designed chip, the polyaniline thin films have been characterised with respect to resistivity...

  15. Block copolymer directed nanoporous metal thin films.

    NARCIS (Netherlands)

    Arora, H.; Li, Z.H.; Sai, H.; Kamperman, M.M.G.; Warren, S.C.; Wiesner, U.

    2010-01-01

    Porous metal thin films have high potential for use in applications such as catalysis, electrical contacts, plasmonics, as well as energy storage and conversion. Structuring metal thin films on the nanoscale to generate high surface areas poses an interesting challenge as metals have high surface

  16. Phase field simulation of domain switching dynamics in multiaxial lead zirconate titanate thin films

    Science.gov (United States)

    Britson, Jason

    The defining characteristic of ferroelectric materials is their ability to be switched between energetically equivalent polarization states. This behavior has led to an interest in ferroelectrics for a wide range of bulk and thin film applications such as mechanical actuators and ferroelectric random access memory devices. Ferroelectric switching depends on domain wall motion, however, and is critically influenced by the existence of defects such as dislocations and preexisting domains. Domain wall motion in thin film applications can be controlled by individual local defects due to the reduced length scale of the system. This dissertation describes the impact of preexisting ferroelastic domains and misfits dislocations in coherent (001)-oriented Pb(Zr0.2,Ti0.8)O3 (PZT) thin films on the switching response and domain structure. A phase field model based on the Landau-Ginzburg-Devonshire theory that accounts for the electrostatic and mechanical interactions is used to describe domain structures in ferroelectric PZT thin films. To solve the governing equations a semi-implicit Fourier-Spectral scheme is developed that accommodates boundary conditions appropriate to the thin film geometry. Errors are reduced in the solutions at the film edges through extensions to the model developed to correct the Fourier transform around stationary discontinuities at the thin film edges. This correction is shown to result in increased accuracy of the phase field model needed to appropriately describe dynamic switching responses in the thin film. Investigation of switching around preexisting ferroelastic domains showed these defects are strong obstacles to switching in PZT thin films. Directly above the ferroelastic domain the magnitude of the required nucleation bias underneath a tip-like electrode was found to be elevated compared to the required bias far from the domain. Locally both the piezoelectric and dielectric responses of the thin film were found to be suppressed, which is

  17. A monolithic thin film electrochromic window

    Energy Technology Data Exchange (ETDEWEB)

    Goldner, R.B.; Arntz, F.O.; Berera, G.; Haas, T.E.; Wong, K.K. [Tufts Univ., Medford, MA (United States). Electro-Optics Technology Center; Wei, G. [Mobil Solar Energy Corp., Billerica, MA (United States); Yu, P.C. [PPG Industries, Inc., Monroeville, PA (United States)

    1991-12-31

    Three closely related thin film solid state ionic devices that are potentially important for applications are: electrochromic smart windows, high energy density thin film rechargeable batteries, and thin film electrochemical sensors. Each usually has at least on mixed ion/electron conductor, an electron-blocking ion conductor, and an ion-blocking electron conductor, and many of the technical issues associated with thin film solid state ionics are common to all three devices. Since the electrochromic window has the added technical requirement of electrically-controlled optical modulation, (over the solar spectrum), and since research at the authors` institution has focused primarily on the window structure, this paper will address the electrochromic window, and particularly a monolithic variable reflectivity electrochromic window, as an illustrative example of some of the challenges and opportunities that are confronting the thin film solid state ionics community. 33 refs.

  18. Zinc oxide thin film acoustic sensor

    Energy Technology Data Exchange (ETDEWEB)

    Mohammed, Ali Jasim; Salih, Wafaa Mahdi; Hassan, Marwa Abdul Muhsien; Nusseif, Asmaa Deiaa; Kadhum, Haider Abdullah [Department of Physics , College of Science, Al-Mustansiriyah University, Baghdad (Iraq); Mansour, Hazim Louis [Department of Physics , College of Education, Al-Mustansiriyah University, Baghdad (Iraq)

    2013-12-16

    This paper reports the implementation of (750 nm) thickness of Zinc Oxide (ZnO) thin film for the piezoelectric pressure sensors. The film was prepared and deposited employing the spray pyrolysis technique. XRD results show that the growth preferred orientation is the (002) plane. A polycrystalline thin film (close to mono crystallite like) was obtained. Depending on the Scanning Electron Microscopy photogram, the film homogeneity and thickness were shown. The resonance frequency measured (about 19 kHz) and the damping coefficient was calculated and its value was found to be about (2.5538), the thin film be haves as homogeneous for under and over damped. The thin film pressure sensing was approximately exponentially related with frequency, the thin film was observed to has a good response for mechanical stresses also it is a good material for the piezoelectric properties.

  19. Dielectric and piezoelectric properties of lead-free (Bi,Na)TiO3-based thin films

    Science.gov (United States)

    Abazari, M.; Safari, A.; Bharadwaja, S. S. N.; Trolier-McKinstry, S.

    2010-02-01

    Dielectric and piezoelectric properties of morphotropic phase boundary (Bi,Na)TiO3-(Bi,K)TiO3-BaTiO3 epitaxial thin films deposited on SrRuO3 coated SrTiO3 substrates were reported. Thin films of 350 nm thickness exhibited small signal dielectric permittivity and loss tangent values of 750 and 0.15, respectively, at 1 kHz. Ferroelectric hysteresis measurements indicated a remanent polarization value of 30 μC/cm2 with a coercive field of 85-100 kV/cm. The thin film transverse piezoelectric coefficient (e31,f) of these films after poling at 600 kV/cm was found to be -2.2 C/m2. The results indicate that these BNT-based thin films are a potential candidate for lead-free piezoelectric devices.

  20. Morphology of Cellulose and Cellulose Blend Thin FilmsMorphology of cellulose and cellulose blend thin films

    Science.gov (United States)

    Lu, Rui

    Cellulose is the most abundant, renewable, biocompatible and biodegradable natural polymer. Cellulose exhibits excellent chemical and mechanical stability, which makes it useful for applications such as construction, filtration, bio-scaffolding and packaging. It is useful to study amorphous cellulose as most reactions happen in the non-crystalline regions first and at the edge of crystalline regions. In this study, amorphous thin films of cotton linter cellulose with various thicknesses were spincoated on silicon wafers from cellulose solutions in dimethyl sulfoxide / ionic liquid mixtures. Optical microscopy and atomic force microscopy indicated that the morphology of as-cast films was sensitive to the film preparation conditions. A sample preparation protocol with low humidity system was developed to achieve featureless smooth films over multiple length scales from nanometers to tens of microns. X-ray reflectivity, X-ray diffraction, Fourier transform infrared spectroscopy and high resolution sum-frequency generation vibrational spectroscopy were utilized to confirm that there were no crystalline regions in the films. One- and three- layer models were used to analyze the X-ray reflectivity data to obtain information about roughness, density and interfacial roughness as a function of film thickness from 10-100nm. Stability tests of the thin films were conducted under harsh conditions including hot water, acid and alkali solutions. The stability of thin films of cellulose blended with the synthetic polymer, polyacrylonitrile, was also investigated. The blend thin films improved the etching resistance to alkali solutions and retained the stability in hot water and acid solutions compared to the pure cellulose films.

  1. Polycrystalline thin films : A review

    Energy Technology Data Exchange (ETDEWEB)

    Valvoda, V. [Charles Univ., Prague (Czech Republic). Faculty of Mathematics and Physics

    1996-09-01

    Polycrystalline thin films can be described in terms of grain morphology and in terms of their packing by the Thornton`s zone model as a function of temperature of deposition and as a function of energy of deposited atoms. Grain size and preferred grain orientation (texture) can be determined by X-ray diffraction (XRD) methods. A review of XRD analytical methods of texture analysis is given with main attention paid to simple empirical functions used for texture description and for structure analysis by joint texture refinement. To illustrate the methods of detailed structure analysis of thin polycrystalline films, examples of multilayers are used with the aim to show experiments and data evaluation to determine layer thickness, periodicity, interface roughness, lattice spacing, strain and the size of diffraction coherent volumes. The methods of low angle and high angle XRD are described and discussed with respect to their complementary information content.

  2. Nanoscale characterization and local piezoelectric properties of lead-free KNN-LT-LS thin films

    Energy Technology Data Exchange (ETDEWEB)

    Abazari, M; Safari, A [Glenn Howatt Electroceramics Laboratories, Department of Materials Science and Engineering, Rutgers-The state University of New Jersey, Piscataway, NJ 08854 (United States); Choi, T; Cheong, S-W [Rutgers Center for Emergent Materials, Department of Physics and Astronomy, Rutgers-The state University of New Jersey, Piscataway, NJ 08854 (United States)

    2010-01-20

    We report the observation of domain structure and piezoelectric properties of pure and Mn-doped (K{sub 0.44},Na{sub 0.52},Li{sub 0.04})(Nb{sub 0.84},Ta{sub 0.1},Sb{sub 0.06})O{sub 3} (KNN-LT-LS) thin films on SrTiO{sub 3} substrates. It is revealed that, using piezoresponse force microscopy, ferroelectric domain structure in such 500 nm thin films comprised of primarily 180{sup 0} domains. This was in accordance with the tetragonal structure of the films, confirmed by relative permittivity measurements and x-ray diffraction patterns. Effective piezoelectric coefficient (d{sub 33}) of the films were calculated using piezoelectric displacement curves and shown to be {approx}53 pm V{sup -1} for pure KNN-LT-LS thin films. This value is among the highest values reported for an epitaxial lead-free thin film and shows a great potential for KNN-LT-LS to serve as an alternative to PZT thin films in future applications.

  3. Nanoscale characterization and local piezoelectric properties of lead-free KNN-LT-LS thin films

    Science.gov (United States)

    Abazari, M.; Choi, T.; Cheong, S.-W.; Safari, A.

    2010-01-01

    We report the observation of domain structure and piezoelectric properties of pure and Mn-doped (K0.44,Na0.52,Li0.04)(Nb0.84,Ta0.1,Sb0.06)O3 (KNN-LT-LS) thin films on SrTiO3 substrates. It is revealed that, using piezoresponse force microscopy, ferroelectric domain structure in such 500 nm thin films comprised of primarily 180° domains. This was in accordance with the tetragonal structure of the films, confirmed by relative permittivity measurements and x-ray diffraction patterns. Effective piezoelectric coefficient (d33) of the films were calculated using piezoelectric displacement curves and shown to be ~53 pm V-1 for pure KNN-LT-LS thin films. This value is among the highest values reported for an epitaxial lead-free thin film and shows a great potential for KNN-LT-LS to serve as an alternative to PZT thin films in future applications.

  4. Permittivity scaling in Ba1-xSrxTiO3 thin films and ceramics

    Science.gov (United States)

    Aygün, Seymen M.; Ihlefeld, Jon F.; Borland, William J.; Maria, Jon-Paul

    2011-02-01

    A dramatic enhancement in the electromechanical response of barium titanate thin films is demonstrated by understanding and optimizing the relationship between organic removal, crystallization, and microstructure, which therefore results in pore elimination, larger grain sizes, and superior densification. The combination enables one to produce bulk-like dielectric properties in a thin film with a room temperature permittivity value above 3000. This advancement in complex oxide thin film processing science creates a new perspective from which to compare, parameterize, and better understand a collection of literature data concerning the manner in which the dielectric response of BaTiO3 depends upon physical dimensions. We are consequently able to apply a single physical model to bulk ceramic and thin film systems, and so demonstrate that the existence of parasitic interfacial layers are not needed to explain dielectric scaling. This work is instrumental in illustrating that extrinsic contributions to scaling are predominant, and that a fundamental understanding of material synthesis provides important opportunities to broaden the spectrum of nonlinear electromechanical properties that can be achieved in ferroelectric thin films.

  5. Macro stress mapping on thin film buckling

    Energy Technology Data Exchange (ETDEWEB)

    Goudeau, P.; Villain, P.; Renault, P.-O.; Tamura, N.; Celestre, R.S.; Padmore, H.A.

    2002-11-06

    Thin films deposited by Physical Vapour Deposition techniques on substrates generally exhibit large residual stresses which may be responsible of thin film buckling in the case of compressive stresses. Since the 80's, a lot of theoretical work has been done to develop mechanical models but only a few experimental work has been done on this subject to support these theoretical approaches and nothing concerning local stress measurement mainly because of the small dimension of the buckling (few 10th mm). This paper deals with the application of micro beam X-ray diffraction available on synchrotron radiation sources for stress mapping analysis of gold thin film buckling.

  6. Stabilized thin film heterostructure for electrochemical applications

    DEFF Research Database (Denmark)

    2015-01-01

    The invention provides a method for the formation of a thin film multi-layered heterostructure upon a substrate, said method comprising the steps of: a. providing a substrate; b. depositing a buffer layer upon said substrate, said buffer layer being a layer of stable ionic conductor (B); c...... or less; and e. repeating steps b. and c. a total of N times, such that N repeating pairs of layers (A/B) are built up, wherein N is 1 or more. The invention also provides a thin film multi-layered heterostructure as such, and the combination of a thin film multi-layered heterostructure and a substrate...

  7. Nanostructured thin films and coatings functional properties

    CERN Document Server

    Zhang, Sam

    2010-01-01

    The second volume in ""The Handbook of Nanostructured Thin Films and Coatings"" set, this book focuses on functional properties, including optical, electronic, and electrical properties, as well as related devices and applications. It explores the large-scale fabrication of functional thin films with nanoarchitecture via chemical routes, the fabrication and characterization of SiC nanostructured/nanocomposite films, and low-dimensional nanocomposite fabrication and applications. The book also presents the properties of sol-gel-derived nanostructured thin films as well as silicon nanocrystals e

  8. Raman spectroscopy of thin films

    Science.gov (United States)

    Burgess, James Shaw

    Raman spectroscopy was used in conjunction with x-ray diffraction and x-ray photoelectron spectroscopy to elucidate structural and compositional information on a variety of samples. Raman was used on the unique La 2NiMnO6 mixed double perovskite which is a member of the LaMnO3 family of perovskites and has multiferroic properties. Raman was also used on nanodiamond films as well as some boron-doped carbon compounds. Finally, Raman was used to identify metal-dendrimer bonds that have previously been overlooked. Vibrational modes for La2NiMnO6 were ascribed by comparing spectra with that for LaMnO3 bulk and thin film spectra. The two most prominent modes were labeled as an asymmetric stretch (A g) centered around 535 cm-1 and a symmetric stretch (B g) centered around 678 cm. The heteroepitaxial quality of La2NiMnO 6 films on SrTiO3 (100) and LaAlO3 (100) substrates were examined using the Raman microscope by way of depth profile experiments and by varying the thickness of the films. It was found that thin films (10 nm) had much greater strain on the LaAlO3 substrate than on the SrTiO3 substrate by examining the shifts of the Ag and the Bg modes from their bulk positions. Changes in the unit cell owing to the presence of oxygen defects were also monitored using Raman spectroscopy. It was found that the Ag and Bg modes shifted between samples formed with different oxygen partial pressures. These shifts could be correlated to changes in the symmetry of the manganese centers due to oxygen defects. Raman spectroscopy was used to examine the structural and compositional characteristics of carbon materials. Nanocrystalline diamond coated cutting tools were examined using the Raman Microscope. Impact, abrasion, and depth profile experiments indicated that delamination was the primary cause of film failure in these systems. Boron doped material of interest as catalyst supports were also examined. Monitoring of the G-mode and intensities of the D- and G-modes indicated that

  9. Microfabricated structures and devices featuring nanostructured titania thin films

    Science.gov (United States)

    Monkowski, Adam J.

    2007-05-01

    When titanium reacts with hydrogen peroxide at 80°C--100°C, a nanostructured titania (NST) thin film is formed on the titanium surface. This nanostructured film is particularly suited for integration with thin film and bulk microfabrication techniques. The ability to manufacture devices in a batch format is a principal advantage of microfabrication-based production. To reliably produce arrays of micro-patterned NST thin films on the wafer scale, a patterning guideline must be considered. The formation of NST relies on a re-deposition process; adequate ti-peroxo species must be generated and remain at the solid-solution interface. Numerical analysis of the characteristic transient diffusion behavior for various micro-patterns has been compared with experimental data to generate a criterion to guide the design of NST micro-patterns. Wafer scale arrays of NST micro gas-sensors have been fabricated using standard thin film techniques. Sensing elements are 20 mum on a side. High sensitivity to hydrogen is achieved by modification of the sensors with platinum nanoparticles. When exposed to a 10 mT partial pressure of hydrogen at 250°C, the functionalized devices exhibit more than one order of magnitude resistance decrease with a response time of approximately 7 sec. Titanium microstructures formed using the titanium ICP deep etch (TIDE) process have been integrated with NST films to produce an ordered nanostructure-microstructure composite (3D-NST). The process developed allows for the incorporation of a planar top surface, advantageous for bonding and sealing applications, in which the nanostructured thin film is formed only on feature sidewalls and floors. When titanium microstructures are spaced less than 1 mum apart, titania nanostructures bridge adjacent features. NST and 3D-NST structures have been assembled and tested in a dye-sensitized solar cell (DSSC) device. The NST film is approximately 900nm thick; this yielded a DSSC with an efficiency of 1.8%, similar

  10. Nonlinear current-voltage behavior in PZT thin films

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Mi; Zhang, Weikang; Zhang, Zebin; Li, Shida; Zhang, Ping; Lan, Kuibo [Tianjin University, School of Electrical and Information Engineering, Tianjin (China)

    2017-05-15

    In this paper, Pb(Zr{sub 0.52}Ti{sub 0.48})O{sub 3} (PZT) thin films were prepared by sol-gel synthesis and characterized by X-ray diffraction, field emission scanning electron microscopy and current-voltage measurements. Here, we demonstrate that in addition to the outstanding ferroelectric and dielectric properties, the PZT films also have remarkably nonlinear current-voltage characteristics. Considering the contact of semi-conductive grains in the PZT films, a double Schottky barrier (DSB) model may be responsible for such phenomena. The test results show that with the decrease of annealing temperature and the increase of the film thickness, the threshold voltages (V{sub th}) increase obviously. The maximum V{sub th} value of 60.95 V and the minimum value of 6.9 V in our experiments were obtained from the five-layered samples annealed at 600 C and the two-layered samples annealed at 700 C, respectively. As a result, PZT thin film may lead to efficient switching and sensing devices. (orig.)

  11. Chemical Strain Engineering of Magnetism in Oxide Thin Films.

    Science.gov (United States)

    Copie, Olivier; Varignon, Julien; Rotella, Hélène; Steciuk, Gwladys; Boullay, Philippe; Pautrat, Alain; David, Adrian; Mercey, Bernard; Ghosez, Philippe; Prellier, Wilfrid

    2017-06-01

    Transition metal oxides having a perovskite structure form a wide and technologically important class of compounds. In these systems, ferroelectric, ferromagnetic, ferroelastic, or even orbital and charge orderings can develop and eventually coexist. These orderings can be tuned by external electric, magnetic, or stress field, and the cross-couplings between them enable important multifunctional properties, such as piezoelectricity, magneto-electricity, or magneto-elasticity. Recently, it has been proposed that additional to typical fields, the chemical potential that controls the concentration of ion vacancies in these systems may reveal an efficient alternative parameter to further tune their properties and achieve new functionalities. In this study, concretizing this proposal, the authors show that the control of the content of oxygen vacancies in perovskite thin films can indeed be used to tune their magnetic properties. Growing PrVO 3 thin films epitaxially on an SrTiO 3 substrate, the authors reveal a concrete pathway to achieve this effect. The authors demonstrate that monitoring the concentration of oxygen vacancies through the oxygen partial pressure or the growth temperature can produce a substantial macroscopic tensile strain of a few percent. In turn, this strain affects the exchange interactions, producing a nontrivial evolution of Néel temperature in a range of 30 K. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Mechanical Properties of Silicon Carbonitride Thin Films

    Science.gov (United States)

    Peng, Xiaofeng; Hu, Xingfang; Wang, Wei; Song, Lixin

    2003-02-01

    Silicon carbonitride thin films were synthesized by reactive rf sputtering a silicon carbide target in nitrogen and argon atmosphere, or sputtering a silicon nitride target in methane and argon atmosphere, respectively. The Nanoindentation technique (Nanoindenter XP system with a continuous stiffness measurement technique) was employed to measure the hardness and elastic modulus of thin films. The effects of sputtering power on the mechanical properties are different for the two SiCN thin films. With increasing sputtering power, the hardness and the elastic modulus decrease for the former but increase for the latter. The tendency is similar to the evolution trend of Si-C bonds in SiCN materials. This reflects that Si-C bonds provide greater hardness for SiCN thin films than Si-N and C-N bonds.

  13. Highly stretchable wrinkled gold thin film wires

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Joshua, E-mail: joshuk7@uci.edu; Park, Sun-Jun; Nguyen, Thao [Department of Chemical Engineering and Materials Science, University of California, Irvine, California 92697 (United States); Chu, Michael [Department of Biomedical Engineering, University of California, Irvine, California 92697 (United States); Pegan, Jonathan D. [Department of Materials and Manufacturing Technology, University of California, Irvine, California 92697 (United States); Khine, Michelle, E-mail: mkhine@uci.edu [Department of Chemical Engineering and Materials Science, University of California, Irvine, California 92697 (United States); Department of Biomedical Engineering, University of California, Irvine, California 92697 (United States)

    2016-02-08

    With the growing prominence of wearable electronic technology, there is a need to improve the mechanical reliability of electronics for more demanding applications. Conductive wires represent a vital component present in all electronics. Unlike traditional planar and rigid electronics, these new wearable electrical components must conform to curvilinear surfaces, stretch with the body, and remain unobtrusive and low profile. In this paper, the piezoresistive response of shrink induced wrinkled gold thin films under strain demonstrates robust conductive performance in excess of 200% strain. Importantly, the wrinkled metallic thin films displayed negligible change in resistance of up to 100% strain. The wrinkled metallic wires exhibited consistent performance after repetitive strain. Importantly, these wrinkled thin films are inexpensive to fabricate and are compatible with roll to roll manufacturing processes. We propose that these wrinkled metal thin film wires are an attractive alternative to conventional wires for wearable applications.

  14. Integrated Substrate and Thin Film Design Methods

    National Research Council Canada - National Science Library

    Thaler, Stephen

    1999-01-01

    .... However, since modem thin film technology allows a wide range of exotic compositions and stoichiometries via deposition, surface treatments, and nano-fabrication, it is anticipated that this newly...

  15. Thin films for geothermal sensing: Final report

    Energy Technology Data Exchange (ETDEWEB)

    1987-09-01

    The report discusses progress in three components of the geothermal measurement problem: (1) developing appropriate chemically sensitive thin films; (2) discovering suitably rugged and effective encapsulation schemes; and (3) conducting high temperature, in-situ electrochemical measurements. (ACR)

  16. Mechanism of polarization switching in wurtzite-structured zinc oxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Konishi, Ayako; Ogawa, Takafumi; Fisher, Craig A. J.; Kuwabara, Akihide; Moriwake, Hiroki, E-mail: moriwake@jfcc.or.jp [Nanostructures Research Laboratory, Japan Fine Ceramics Center, Nagoya 456-8587 (Japan); Shimizu, Takao; Yasui, Shintaro; Itoh, Mitsuru [Materials and Structures Laboratory, Tokyo Institute Technology, Yokohama 226-8503 (Japan)

    2016-09-05

    The properties of a potentially new class of ferroelectric materials based on wurtzite-structured ZnO thin films are examined using the first-principles calculations. Theoretical P-E hysteresis loops were calculated using the fixed-D method for both unstrained and (biaxially) strained single crystals. Ferroelectric polarization switching in ZnO (S.G. P6{sub 3}mc) is shown to occur via an intermediate non-polar structure with centrosymmetric P6{sub 3}/mmc symmetry by displacement of cations relative to anions in the long-axis direction. The calculated coercive electric field (E{sub c}) for polarization switching was estimated to be 7.2 MV/cm for defect-free monocrystalline ZnO. During switching, the short- and long-axis lattice parameters expand and contract, respectively. The large structural distortion required for switching may explain why ferroelectricity in this compound has not been reported experimentally for pure ZnO. Applying an epitaxial tensile strain parallel to the basal plane is shown to be effective in lowering E{sub c} during polarization, with a 5% biaxial expansion resulting in a decrease of E{sub c} to 3.5 MV/cm. Comparison with calculated values for conventional ferroelectric materials suggests that the ferroelectric polarization switching of wurtzite-structured ZnO may be achievable by preparing high-quality ZnO thin films with suitable strain levels and low defect concentrations.

  17. Multiferroic properties of a YCrO3/BiFeO3 bilayered thin film prepared by a sol-gel method

    Science.gov (United States)

    Kuang, Daihong; Yang, Fangyuan; Jing, Weiwen; Yang, Zhanjin

    2018-02-01

    YCrO3 (YCO), BiFeO3 (BFO), and YCrO3/BiFeO3 (YCO-BFO) thin films were prepared on quartz substrates using spin coating by a sol-gel method. X-ray diffraction demonstrated that YCO and BFO thin films had a perovskite orthorhombic, and rhombohedral structure, respectively. The stronger and sharper diffraction intensity of YCO-BFO bilayered thin film indicated that the bottom YCO layer was able to promote the grain growth of BFO film, which was further verified by scanning electron microscope. The ferroelectric test demonstrated that the leakage current density of YCO-BFO bilayered film was reduced by one order of magnitude compared to that of BFO film, which had a better ferroelectric property. Optical absorption spectra indicated that the band gap of YCO-BFO thin film was lower than that of BFO film, suggesting their potential application as UV and blue-green-driven photocatalysts. The magnetic test verified that the ferromagnetic property of YCO-BFO film was obviously enhanced compared to those of BFO and YCO thin films. The results revealed that YCO layer played an important role for improving multiferroic properties of BFO thin film. The mechanisms of the effects of bottom YCO layer on optical and multiferroic properties of BFO thin film in the YCO-BFO bilayered film were discussed in detail.

  18. Resistive switching in polycrystalline YMnO3 thin films

    Directory of Open Access Journals (Sweden)

    A. Bogusz

    2014-10-01

    Full Text Available We report a unipolar, nonvolatile resistive switching in polycrystalline YMnO3 thin films grown by pulsed laser deposition and sandwiched between Au top and Ti/Pt bottom electrodes. The ratio of the resistance in the OFF and ON state is larger than 103. The observed phenomena can be attributed to the formation and rupture of conductive filaments within the multiferroic YMnO3 film. The generation of conductive paths under applied electric field is discussed in terms of the presence of grain boundaries and charged domain walls inherently formed in hexagonal YMnO3. Our findings suggest that engineering of the ferroelectric domains might be a promising route for designing and fabrication of novel resistive switching devices.

  19. Epitaxy, thin films and superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Jagd Christensen, Morten

    1997-05-01

    This report is the result of structural investigations of 3d transition metal superlattices consisting of Fe/V, Cr/Mn, V/Mn and Fe/Mn, and a structural and magnetic study of a series of Ho/Pr alloys. The work includes preparation and characterization of substrates as well as growth of thin films and Fe/V superlattices by molecular beam epitaxy, including in-situ characterization by reflection high energy electron diffraction and Auger electron spectroscopy. Structural characterization has been done by x-ray diffraction and neutron diffraction. The x-ray diffraction experiments have been performed on the rotating copper anode at Risoe, and at synchrotron facilities in Hamburg and Brookhaven, and the neutron scattering was done at the Danish research reactor DR3 at Risoe. In addition to longitudinal scans, giving information about the structural parameters in the modulation direction, non-specular scans were also performed. This type of scans gives information about in-plane orientation and lattice parameters. From the analysis, structural information is obtained about lattice parameters, epitaxial strain, coherence lengths and crystallographic orientation for the superlattice systems, except Fe/Mn superlattices, which could not be modelled. For the Ho/Pr alloys, x-ray magnetic scattering was performed, and the crystal and magnetic structure was investigated. (au) 14 tabs.; 58 ills., 96 refs.

  20. Aging phenomena in polystyrene thin films

    OpenAIRE

    Fukao, Koji; Koizumi, Hiroki

    2008-01-01

    The aging behavior is investigated for thin films of atactic polystyrene through measurements of complex electric capacitance. During isothermal aging process the real part of the electric capacitance increases with aging time, while the imaginary part decreases with aging time. This result suggests that the aging time dependence of the real and imaginary parts are mainly associated with change in thickness and dielectric permittivity, respectively. In thin films, the thickness depends on the...

  1. Multilayer Thin Film Sensors for Damage Diagnostics

    Science.gov (United States)

    Protasov, A. G.; Gordienko, Y. G.; Zasimchuk, E. E.

    2006-03-01

    The new innovative approach to damage diagnostics within the production and maintenance/servicing procedures in industry is proposed. It is based on the real-time multiscale monitoring of the smart-designed multilayer thin film sensors of fatigue damage with the standard electrical input/output interfaces which can be connected to the embedded and on-board computers. The multilayer thin film sensors supply information about the actual unpredictable deformation damage, actual fatigue life, strain localization places, damage spreading, etc.

  2. Laser processing for thin-film photovoltaics

    Science.gov (United States)

    Compaan, Alvin D.

    1995-04-01

    Over the past decade major advances have occurred in the field of thin- film photovoltaics (PV) with many of them a direct consequence of the application of laser processing. Improved cell efficiencies have been achieved in crystalline and polycrystalline Si, in hydrogenated amorphous silicon, and in two polycrystalline thin-film materials. The use of lasers in photovoltaics includes laser hole drilling for emitter wrap-through, laser trenching for buried bus lines, and laser texturing of crystalline and polycrystalline Si cells. In thin-film devices, laser scribing is gaining increased importance for module interconnects. Pulsed laser recrystallization of boron-doped hydrogenated amorphous silicon is used to form highly conductive p-layers in p-i-n amorphous silicon cells and in thin-film transistors. Optical beam melting appears to be an attractive method for forming metal semiconductor alloys for contact formation. Finally, pulsed lasers are used for deposition of the entire semiconductor absorber layer in two types of polycrystalline thin-film cells-those based on copper indium diselenide and those based on cadmium telluride. In our lab we have prepared and studied heavily doped polycrystalline silicon thin films and also have used laser physical vapor deposition (LPVD) to prepare 'all-LPVD' CdS/CdTe solar cells on glass with efficiencies tested at NREL at 10.5%. LPVD is highly flexible and ideally suited for prototyping PV cells using ternary or quaternary alloys and for exploring new dopant combinations.

  3. Laser applications in thin-film photovoltaics

    Science.gov (United States)

    Bartlome, R.; Strahm, B.; Sinquin, Y.; Feltrin, A.; Ballif, C.

    2010-08-01

    We review laser applications in thin-film photovoltaics (thin-film Si, CdTe, and Cu(In,Ga)Se2 solar cells). Lasers are applied in this growing field to manufacture modules, to monitor Si deposition processes, and to characterize opto-electrical properties of thin films. Unlike traditional panels based on crystalline silicon wafers, the individual cells of a thin-film photovoltaic module can be serially interconnected by laser scribing during fabrication. Laser scribing applications are described in detail, while other laser-based fabrication processes, such as laser-induced crystallization and pulsed laser deposition, are briefly reviewed. Lasers are also integrated into various diagnostic tools to analyze the composition of chemical vapors during deposition of Si thin films. Silane (SiH4), silane radicals (SiH3, SiH2, SiH, Si), and Si nanoparticles have all been monitored inside chemical vapor deposition systems. Finally, we review various thin-film characterization methods, in which lasers are implemented.

  4. Dewetting of thin films on flexible substrates via direct-write laser exposure

    Science.gov (United States)

    Ferrer, Anthony Jesus

    Microelectromechanical systems (MEMS) have enabled a wide variety of technologies both in the consumer space and in industrial/research areas. At the market level, such devices advance by the invention and innovation of production techniques. Additionally, there has been increased demand for flexible versions of such MEMS devices. Thin film patterning, represents a key technology for the realization of such flexible electronics. Patterns and methods that can be directly written into the thin film allow for design modification on the fly with the need for harsh chemicals and long etching steps. Laser-induced dewetting has the potential to create patterns in thin films at both the microscopic and nanoscopic level without wasting deposited material. This thesis presents the first demonstration of high-speed direct-write patterning of metallic thin films that uses a laser-induced dewetting phenomenon to prevent material loss. The ability to build film material with this technique is explored using various scanning geometries. Finally, demonstrations of direct-write dewetting of a variety of thin films will be presented with special consideration for high melting point metals deposited upon polymer substrates.

  5. Photoelectrochemical water splitting on nanoporous GaN thin films for energy conversion under visible light

    Science.gov (United States)

    Cao, Dezhong; Xiao, Hongdi; Fang, Jiacheng; Liu, Jianqiang; Gao, Qingxue; Liu, Xiangdong; Ma, Jin

    2017-01-01

    Nanoporous (NP) GaN thin films, which were fabricated by an electrochemical etching method at different voltages, were used as photoelectrodes during photoelectrochemical (PEC) water splitting in 1 M oxalic acid solution. Upon illumination at a power density of 100 mW cm-2 (AM 1.5), water splitting is observed in NP GaN thin films, presumably resulting from the valence band edge which is more positive than the redox potential of the oxidizing species. In comparison with NP GaN film fabricated at 8 V, NP GaN obtained at 18 V shows nearly twofold enhancement in photocurrent with the maximum photo-to-hydrogen conversion efficiency of 1.05% at ~0 V (versus Ag/AgCl). This enhancement could be explained with (i) the increase of surface area and surface states, and (ii) the decrease of resistances and carrier concentration in the NP GaN thin films. High stability of the NP GaN thin films during the PEC water splitting further confirms that the NP GaN thin film could be applied to the design of efficient solar cells and solar fuel devices.

  6. Optimization of excess Bi doping to enhance ferroic orders of spin casted BiFeO{sub 3} thin film

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Surbhi; Gupta, Vinay, E-mail: drguptavinay@gmail.com [Department of Physics and Astrophysics, University of Delhi, Delhi (India); Tomar, Monika [Department of Physics, Miranda Housea, University of Delhi, Delhi (India); James, A. R. [Defence Metallurgical Research Laboratory, Hyderabad (India); Pal, Madhuparna; Guo, Ruyan; Bhalla, Amar [Department of Electrical and Computer Engineering, College of Engineering, University of Texas at SanAntonio, San Antonio 78249 (United States)

    2014-06-21

    Multiferroic Bismuth Ferrite (BiFeO{sub 3}) thin films with varying excess bismuth (Bi) concentration were grown by chemical solution deposition technique. Room temperature multiferroic properties (ferromagnetism, ferroelectricity, and piezoelectricity) of the deposited BiFeO{sub 3} thin films have been studied. High resolution X-ray diffraction and Raman spectroscopy studies reveal that the dominant phases formed in the prepared samples change continuously from a mixture of BiFeO{sub 3} and Fe{sub 2}O{sub 3} to pure BiFeO{sub 3} phase and, subsequently, to a mixture of BiFeO{sub 3} and Bi{sub 2}O{sub 3} with increase in the concentration of excess Bi from 0% to 15%. BiFeO{sub 3} thin films having low content (0% and 2%) of excess Bi showed the traces of ferromagnetic phase (γ-Fe{sub 2}O{sub 3}). Deterioration in ferroic properties of BiFeO{sub 3} thin films is also observed when prepared with higher content (15%) of excess Bi. Single-phased BiFeO{sub 3} thin film prepared with 5% excess Bi concentration exhibited the soft ferromagnetic hysteresis loops and ferroelectric characteristics with remnant polarization 4.2 μC/cm{sup 2} and saturation magnetization 11.66 emu/g. The switching of fine spontaneous domains with applied dc bias has been observed using piezoresponse force microscopy in BiFeO{sub 3} thin films having 5% excess Bi. The results are important to identify optimum excess Bi concentration needed for the formation of single phase BiFeO{sub 3} thin films exhibiting the improved multiferroic properties.

  7. Surface and interface magnetism in nanostructures and thin films

    Science.gov (United States)

    Frey, Natalie A.

    Nanostructured systems composed of two or more technologically important materials are useful for device applications and intriguing for the new fundamental physics they may display. Magnetism at the nanoscale is dominated by size and surface effects which combined with other media lead to new spin dynamics and interfacial coupling phenomena. These new properties may prove to be useful for optimizing sensors and devices, increasing storage density for magnetic media, as well as for biomedical applications such as drug delivery, MRI contrast enhancement, and hyperthermia treatment for cancer. In this project we have examined the surface and interface magnetism of composite nanoparticles and multilayer thin films by using conventional DC magnetization and AC susceptibility as well as transverse susceptibility, a method for directly probing the magnetic anisotropy of materials. Au and Fe3O4 synthesized together into three different nanoparticle configurations and ranging in size for 60 nm down to 9nm are used to study how the size, shape, and interfaces affect the most fundamental properties of magnetism in the Au-Fe3O 4 system. The findings have revealed ways in which the magnetic properties can be enhanced by tuning these parameters. We have shown that by changing the configurations of the Au and Fe3O4 particles, exotic behavior can be observed such as a large increase in anisotropy field (H K ranging from 435 Oe to 1650 Oe) and the presence of exchange bias. Multilayer thin films have been studied as well which combine the important classes of ferromagnetic and ferroelectric materials. In one case, barium hexaferrite/barium strontium titanate thin films, the anisotropic behavior of the ferromagnet is shown to change due to the introduction of the secondary material. In the other example, CrO2/Cr2O3 bilayers, exchange coupling is observed as Cr2O3 is an antiferromagnet as well as a ferroelectric. This coupling is manifest as a uniaxial anisotropy rather than the

  8. Liquid-Phase Processing of Barium Titanate Thin Films

    Science.gov (United States)

    Harris, David Thomas

    Processing of thin films introduces strict limits on the thermal budget due to substrate stability and thermal expansion mismatch stresses. Barium titanate serves as a model system for the difficulty in producing high quality thin films because of sensitivity to stress, scale, and crystal quality. Thermal budget restriction leads to reduced crystal quality, density, and grain growth, depressing ferroelectric and nonlinear dielectric properties. Processing of barium titanate is typically performed at temperatures hundreds of degrees above compatibility with metalized substrates. In particular integration with silicon and other low thermal expansion substrates is desirable for reductions in costs and wider availability of technologies. In bulk metal and ceramic systems, sintering behavior has been encouraged by the addition of a liquid forming second phase, improving kinetics and promoting densification and grain growth at lower temperatures. This approach is also widespread in the multilayer ceramic capacitor industry. However only limited exploration of flux processing with refractory thin films has been performed despite offering improved dielectric properties for barium titanate films at lower temperatures. This dissertation explores physical vapor deposition of barium titanate thin films with addition of liquid forming fluxes. Flux systems studied include BaO-B2O3, Bi2O3-BaB2O 4, BaO-V2O5, CuO-BaO-B2O3, and BaO-B2O3 modified by Al, Si, V, and Li. Additions of BaO-B2O3 leads to densification and an increase in average grain size from 50 nm to over 300 nm after annealing at 900 °C. The ability to tune permittivity of the material improved from 20% to 70%. Development of high quality films enables engineering of ferroelectric phase stability using residual thermal expansion mismatch in polycrystalline films. The observed shifts to TC match thermodynamic calculations, expected strain from the thermal expansion coefficients, as well as x-ray diffract measurements

  9. Corrosion Resistance of Atomic Layer Deposition-Generated Amorphous Thin Films.

    Science.gov (United States)

    Anderson, Michael D; Aitchison, Brad; Johnson, David C

    2016-11-09

    Atomic layer deposition (ALD) was used to prepare amorphous thin films of Al2O3, Nb2O5, and Ta2O5 on both silicon substrates and aluminum blocks. Etch rates in 10 M NH4OH were determined from X-ray reflectometry data collected as a function of time. Amorphous Al2O3 thin films were found to have an etch rate of 0.5 nm min(-1) and an increase in roughness of ∼0.01 nm min(-1). Electron microscopy data showed etch pits, consistent with the increase in roughness. Amorphous Nb2O5 and Ta2O5 films showed no appreciable etching or roughening over the course of a ∼500 h continuous immersion. An Nb2O5-coated aluminum block showed no corrosion after immersion in 10 M NH4OH for over 200 h, suggesting that the coatings were pinhole-free. These results suggest that amorphous ALD thin films of Nb2O5 and Ta2O5 are candidates as barrier layers for aluminum in caustic environments.

  10. Patterning and bonding of TiNi shape memory thin film for fabrication of micropump

    Science.gov (United States)

    Makino, Eiji; Mitsuya, Takashi; Nakatsuji, Tae; Shibata, Takayuki

    1999-03-01

    In order to develop a micropump driven by shape memory actuation, we require a TiNi diaphragm structure with a cap to act as a chamber for applying bias pressure to the diaphragm. With the purpose of realizing such a structure, we studied the photoetching of TiNi thin film on a Si substrate and two bonding processes-diffusion bonding and anodic bonding- for patterning and assembling. TiNi thin film deposited on Si substrates by flash evaporation was etched in HF/HNO3/H2O solutions using negative photoresist masks. HF:HNO3:H2O equals 1:1:4 solution proved capable of etching it at a rate of about 30 nm/s without etching of the Si substrate. Patterned TiNi thin film of 6 micrometers in thickness on a Si substrate was diffusion bonded to another Si substrate coated with the same TiNi thin film at a thickness of 300 nm. Bonding was conducted in a vacuum at a bonding pressure of 210 MPa. TiNi-TiNi diffusion bonding was obtained at temperatures of more than 300 degrees C. A 4-point bending test revealed that the bond strength of specimens bonded at 400 degrees C was 15-20 MPa. Anodic bonding was conducted between TiNi thin film on a Si substrate and a Pyrex 7740 glass substrate at an applied voltage of 600 V. Two substrates were bonded in nitrogen ambient at temperatures of more than 350 degrees C, giving a bond strength of about 15 MPa at 400 degrees C bonding.

  11. Preparation and properties of the (Sr,BaNb2O6 thin films by using the sputtering method

    Directory of Open Access Journals (Sweden)

    Diao Chien-Chen

    2017-01-01

    Full Text Available Strontium barium niobate (Sr0.3Ba0.7Nb2O6, SBN thin films were deposited on silicon substrate by using the radio frequency magnetron sputtering and under different deposition power and time at room temperature. Surface morphology and thicknesses of the SBN thin films were characterized by field emission scanning electron microscopy. The crystallization films at different deposition power and time were analyzed by X-ray diffraction (XRD using CuKα radiation from a Rigaku rotating anode with an incident angle of 2°. The remnant polarization (Pr, saturation polarization (Ps, and minimum coercive field (Ec properties of the metal-ferroelectric-metal (MFM structure were measured using ferroelectric material test instrument. The SBN thin films deposited at 90 min and 125 W had the maximum Pr, Ps, and minimum Ec of 1.26 μC/cm2, 2.41 μC/cm2, and 201.6 kV/cm, respectively. From above results, it knows that the SBN thin films suit for application on ferroelectric random access memory (FeRAM.

  12. Thin film dielectric composite materials

    Science.gov (United States)

    Jia, Quanxi; Gibbons, Brady J.; Findikoglu, Alp T.; Park, Bae Ho

    2002-01-01

    A dielectric composite material comprising at least two crystal phases of different components with TiO.sub.2 as a first component and a material selected from the group consisting of Ba.sub.1-x Sr.sub.x TiO.sub.3 where x is from 0.3 to 0.7, Pb.sub.1-x Ca.sub.x TiO.sub.3 where x is from 0.4 to 0.7, Sr.sub.1-x Pb.sub.x TiO.sub.3 where x is from 0.2 to 0.4, Ba.sub.1-x Cd.sub.x TiO.sub.3 where x is from 0.02 to 0.1, BaTi.sub.1-x Zr.sub.x O.sub.3 where x is from 0.2 to 0.3, BaTi.sub.1-x Sn.sub.x O.sub.3 where x is from 0.15 to 0.3, BaTi.sub.1-x Hf.sub.x O.sub.3 where x is from 0.24 to 0.3, Pb.sub.1-1.3x La.sub.x TiO.sub.3+0.2x where x is from 0.23 to 0.3, (BaTiO.sub.3).sub.x (PbFeo.sub.0.5 Nb.sub.0.5 O.sub.3).sub.1-x where x is from 0.75 to 0.9, (PbTiO.sub.3).sub.- (PbCo.sub.0.5 W.sub.0.5 O.sub.3).sub.1-x where x is from 0.1 to 0.45, (PbTiO.sub.3).sub.x (PbMg.sub.0.5 W.sub.0.5 O.sub.3).sub.1-x where x is from 0.2 to 0.4, and (PbTiO.sub.3).sub.x (PbFe.sub.0.5 Ta.sub.0.5 O.sub.3).sub.1-x where x is from 0 to 0.2, as the second component is described. The dielectric composite material can be formed as a thin film upon suitable substrates.

  13. Thin film absorber for a solar collector

    Science.gov (United States)

    Wilhelm, William G.

    1985-01-01

    This invention pertains to energy absorbers for solar collectors, and more particularly to high performance thin film absorbers. The solar collectors comprising the absorber of this invention overcome several problems seen in current systems, such as excessive hardware, high cost and unreliability. In the preferred form, the apparatus features a substantially rigid planar frame with a thin film window bonded to one planar side of the frame. An absorber in accordance with the present invention is comprised of two thin film layers that are sealed perimetrically. In a preferred embodiment, thin film layers are formed from a metal/plastic laminate. The layers define a fluid-tight planar envelope of large surface area to volume through which a heat transfer fluid flows. The absorber is bonded to the other planar side of the frame. The thin film construction of the absorber assures substantially full envelope wetting and thus good efficiency. The window and absorber films stress the frame adding to the overall strength of the collector.

  14. Characterization methodology for lead zirconate titanate thin films with interdigitated electrode structures

    Science.gov (United States)

    Nigon, R.; Raeder, T. M.; Muralt, P.

    2017-05-01

    The accurate evaluation of ferroelectric thin films operated with interdigitated electrodes is quite a complex task. In this article, we show how to correct the electric field and the capacitance in order to obtain identical polarization and CV loops for all geometrical variants. The simplest model is compared with corrections derived from Schwartz-Christoffel transformations, and with finite element simulations. The correction procedure is experimentally verified, giving almost identical curves for a variety of gaps and electrode widths. It is shown that the measured polarization change corresponds to the average polarization change in the center plane between the electrode fingers, thus at the position where the electric field is most homogeneous with respect to the direction and size. The question of maximal achievable polarization in the various possible textures, and compositional types of polycrystalline lead zirconate titanate thin films is revisited. In the best case, a soft (110) textured thin film with the morphotropic phase boundary composition should yield a value of 0.95Ps, and in the worst case, a rhombohedral (100) textured thin film should deliver a polarization of 0.74Ps.

  15. Organic thin films and surfaces directions for the nineties

    CERN Document Server

    Ulman, Abraham

    1995-01-01

    Physics of Thin Films has been one of the longest running continuing series in thin film science consisting of 20 volumes since 1963. The series contains some of the highest quality studies of the properties ofvarious thin films materials and systems.In order to be able to reflect the development of todays science and to cover all modern aspects of thin films, the series, beginning with Volume 20, will move beyond the basic physics of thin films. It will address the most important aspects of both inorganic and organic thin films, in both their theoretical as well as technological aspects. Ther

  16. Voigt Size-Strain Broadening Of Pd Thin Films

    Directory of Open Access Journals (Sweden)

    Vladimir Zucha

    2004-01-01

    Full Text Available Pd thin films were deposited onto Si (100 and glass/Pd/etching substrates by means of r.f. reactive sputtering under the same sputtering condition in order to appreciate the influence of substrate structure. The aim of this study was to appreciate the main X-ray diffraction line profile characteristic by the approximation method. As an approximation function was used the Voigt profile which was calculated by convolution of Gaussian and Cauchy profiles. As an instrumental standart was used ceramic Al2O3 from Nist. Results of size-strain analysis was obtained according to Langford method for one diffraction line and method suggested by Balzar and Ledbetter for two orders of the same diffraction line.

  17. Thin film transistors for displays on plastic substrates

    Science.gov (United States)

    Lee, M. J.; Judge, C. P.; Wright, S. W.

    2000-08-01

    We have successfully made thin film transistors on transparent, flexible polymer substrates. These transistors have electrical properties suitable for driving the pixels in active matrix liquid crystal displays and also for building integrated row driver circuits. The devices are fabricated on polyethylene naphthalate using a low temperature CdSe process at a maximum temperature of 150°C, by evaporation and radio frequency sputtering onto unheated substrates, with pattern definition using standard photolithography and etching. Electrical properties achieved include carrier field effect mobilities of >30 cm 2/V s, threshold voltages of ˜2 V, switching ratio >10 6, an off-state leakage current of 1 μA with a gate voltage swing of <10 V, and a sub-threshold slope of 0.25 V/decade for devices of unity aspect ratio. The electrical properties were found to scale with device channel length and width.

  18. Vibration welding system with thin film sensor

    Science.gov (United States)

    Cai, Wayne W; Abell, Jeffrey A; Li, Xiaochun; Choi, Hongseok; Zhao, Jingzhou

    2014-03-18

    A vibration welding system includes an anvil, a welding horn, a thin film sensor, and a process controller. The anvil and horn include working surfaces that contact a work piece during the welding process. The sensor measures a control value at the working surface. The measured control value is transmitted to the controller, which controls the system in part using the measured control value. The thin film sensor may include a plurality of thermopiles and thermocouples which collectively measure temperature and heat flux at the working surface. A method includes providing a welder device with a slot adjacent to a working surface of the welder device, inserting the thin film sensor into the slot, and using the sensor to measure a control value at the working surface. A process controller then controls the vibration welding system in part using the measured control value.

  19. Plasmonic modes in thin films: quo vadis?

    Directory of Open Access Journals (Sweden)

    Antonio ePolitano

    2014-07-01

    Full Text Available Herein, we discuss the status and the prospect of plasmonic modes in thin films. Plasmons are collective longitudinal modes of charge fluctuation in metal samples excited by an external electric field. Surface plasmons (SPs are waves that propagate along the surface of a conductor with applications in magneto-optic data storage, optics, microscopy, and catalysis. In thin films the electronic response is influenced by electron quantum confinement. Confined electrons modify the dynamical screening processes at the film/substrate interface by introducing novel properties with potential applications and, moreover, they affect both the dispersion relation of SP frequency and the damping processes of the SP.Recent calculations indicate the emergence of acoustic surface plasmons (ASP in Ag thin films exhibiting quantum well states and in graphene films. The slope of the dispersion of ASP decreases with film thickness. We also discuss open issues in research on plasmonic modes in graphene/metal interfaes.

  20. Solid surfaces, interfaces and thin films

    CERN Document Server

    Lüth, Hans

    2015-01-01

    This book emphasises both experimental and theoretical aspects of surface, interface and thin-film physics. As in previous editions the preparation of surfaces and thin films, their atomic and morphological structure, their vibronic and electronic properties as well as fundamentals of adsorption are treated. Because of their importance in modern information technology and nanostructure research, particular emphasis is paid to electronic surface and interface states, semiconductor space charge layers and heterostructures. A special chapter of the book is devoted to collective phenomena at interfaces and in thin films such as superconductivity and magnetism. The latter topic includes the meanwhile important issues giant magnetoresistance and spin-transfer torque mechanism, both effects being of high interest in information technology. In this new edition, for the first time, the effect of spin-orbit coupling on surface states is treated. In this context the class of the recently detected topological insulators,...

  1. Multifractal characteristics of titanium nitride thin films

    Directory of Open Access Journals (Sweden)

    Ţălu Ştefan

    2015-09-01

    Full Text Available The study presents a multi-scale microstructural characterization of three-dimensional (3-D micro-textured surface of titanium nitride (TiN thin films prepared by reactive DC magnetron sputtering in correlation with substrate temperature variation. Topographical characterization of the surfaces, obtained by atomic force microscopy (AFM analysis, was realized by an innovative multifractal method which may be applied for AFM data. The surface micromorphology demonstrates that the multifractal geometry of TiN thin films can be characterized at nanometer scale by the generalized dimensions Dq and the singularity spectrum f(α. Furthermore, to improve the 3-D surface characterization according with ISO 25178-2:2012, the most relevant 3-D surface roughness parameters were calculated. To quantify the 3-D nanostructure surface of TiN thin films a multifractal approach was developed and validated, which can be used for the characterization of topographical changes due to the substrate temperature variation.

  2. Nanostructured thin films and coatings mechanical properties

    CERN Document Server

    2010-01-01

    The first volume in "The Handbook of Nanostructured Thin Films and Coatings" set, this book concentrates on the mechanical properties, such as hardness, toughness, and adhesion, of thin films and coatings. It discusses processing, properties, and performance and provides a detailed analysis of theories and size effects. The book presents the fundamentals of hard and superhard nanocomposites and heterostructures, assesses fracture toughness and interfacial adhesion strength of thin films and hard nanocomposite coatings, and covers the processing and mechanical properties of hybrid sol-gel-derived nanocomposite coatings. It also uses nanomechanics to optimize coatings for cutting tools and explores various other coatings, such as diamond, metal-containing amorphous carbon nanostructured, and transition metal nitride-based nanolayered multilayer coatings.

  3. Domains in Ferroic Crystals and Thin Films

    CERN Document Server

    Tagantsev, Alexander K; Fousek, Jan

    2010-01-01

    Domains in Ferroic Crystals and Thin Films presents experimental findings and theoretical understanding of ferroic (non-magnetic) domains developed during the past 60 years. It addresses the situation by looking specifically at bulk crystals and thin films, with a particular focus on recently-developed microelectronic applications and methods for observation of domains with techniques such as scanning force microscopy, polarized light microscopy, scanning optical microscopy, electron microscopy, and surface decorating techniques. Domains in Ferroic Crystals and Thin Films covers a large area of material properties and effects connected with static and dynamic properties of domains, which are extremely relevant to materials referred to as ferroics. In most solid state physics books, one large group of ferroics is customarily covered: those in which magnetic properties play a dominant role. Numerous books are specifically devoted to magnetic ferroics and cover a wide spectrum of magnetic domain phenomena. In co...

  4. Micromachined thin-film sensors for SOI-CMOS co-integration

    CERN Document Server

    Laconte, Jean; Raskin, Jean-Pierre

    2006-01-01

    Co-integration of MEMS and MOS in SOI technology is promising and well demonstrated hereThe impact of Micromachining on SOI devices is deeply analyzed for the first timeInclude extensive TMAH etching, residual stress, microheaters, gas-flow sensors reviewResidual stresses in thin films need to be more and more monitored in MEMS designsTMAH micromachining is an attractive alternative to KOH.

  5. PZT thin films for piezoelectric MEMS mechanical energy harvesting

    Science.gov (United States)

    Yeager, Charles

    damage to the PZT film. An energy harvester was fabricated by etching the MgO substrate down to 10-20 mum under a circular diaphragm device; this structure had a natural frequency of 2.7 kHz and was estimated to provide a maximum RMS power of 8.8 muW/cm2-g2. Due to the lack of selectivity in the patterning, MgO was not as versatile as silicon substrates, which can be etched rapidly by wet and dry methods. To successfully release a PZT film onto a polymer passive elastic layer, dry (gas) etch methods were preferable. This protected the interfacial bonding between PZT films and Parylene. A 2 cm2 thin film membrane (15 mum Parylene/ 3 mum Cyclotene 4022/ 0.1 mum Pt-Ti/ 1.4 mum PZT (52/48)/ 0.14 mum Pt-Ti/ 1 mum SiO2) was released from a silicon substrate and operated with a 5 Hz natural frequency, the lowest reported for a thin film energy harvester operating in resonant excitation. Though problems existed with buckling of the beam due to tension in the Cyclotene 4022 (a benzocyclobutene, BCB, resin) from curing on a silicon substrate, the cantilevered device was calculated to output up to RMS 0.53 muW/cm2 when swept through an arc >30°. Silicon substrates facilitated scaling in size and quantity of devices compared to MgO substrates, which motivated an investigation into the reduction of 90° domain walls for thin films released from substrate clamping conditions. Circular test structures were designed to produce systematic changes in the clamping condition of {001} PZT thin films. The stiffness of the substrate interface was modified either by using a PZT buffer layer on the substrate or by removing the substrate completely. Films allowed to stress relax upon release, via curling, had reduced domain wall restoring force compared to fully clamped structures, leading to a 72% increase in irreversible domain wall contributions for freestanding 300 mum features. The irreversible dielectric Raleigh coefficient, alpha, for a 1.64 mum {001} PZT film measured at 20 Hz increased

  6. Feasibility Study of Thin Film Thermocouple Piles

    Science.gov (United States)

    Sisk, R. C.

    2001-01-01

    Historically, thermopile detectors, generators, and refrigerators based on bulk materials have been used to measure temperature, generate power for spacecraft, and cool sensors for scientific investigations. New potential uses of small, low-power, thin film thermopiles are in the area of microelectromechanical systems since power requirements decrease as electrical and mechanical machines shrink in size. In this research activity, thin film thermopile devices are fabricated utilizing radio frequency sputter coating and photoresist lift-off techniques. Electrical characterizations are performed on two designs in order to investigate the feasibility of generating small amounts of power, utilizing any available waste heat as the energy source.

  7. Laser thermoreflectance for semiconductor thin films metrology

    Science.gov (United States)

    Gailly, P.; Hastanin, J.; Duterte, C.; Hernandez, Y.; Lecourt, J.-B.; Kupisiewicz, A.; Martin, P.-E.; Fleury-Frenette, K.

    2012-06-01

    We present a thermoreflectance-based metrology concept applied to compound semiconductor thin films off-line characterization in the solar cells scribing process. The presented thermoreflectance setup has been used to evaluate the thermal diffusivity of thin CdTe films and to measure eventual changes in the thermal properties of 5 μm CdTe films ablated by nano and picosecond laser pulses. The temperature response of the CdTe thin film to the nanosecond heating pulse has been numerically investigated using the finite-difference time-domain (FDTD) method. The computational and experimental results have been compared.

  8. Ferroelectric switching of poly(vinylidene difluoride-trifluoroethylene) in metal-ferroelectric-semiconductor non-volatile memories with an amorphous oxide semiconductor

    NARCIS (Netherlands)

    Gelinck, G.H.; Breemen, A.J.J.M. van; Cobb, B.

    2015-01-01

    Ferroelectric polarization switching of poly(vinylidene difluoride-trifluoroethylene) is investigated in different thin-film device structures, ranging from simple capacitors to dual-gate thin-film transistors (TFT). Indium gallium zinc oxide, a high mobility amorphous oxide material, is used as

  9. Lattice Dynamical Properties of Ferroelectric Thin Films at the Nanoscale

    Energy Technology Data Exchange (ETDEWEB)

    Xi, Xiaoxing [Temple University

    2014-01-13

    In this project, we have successfully demonstrated atomic layer-by-layer growth by laser MBE from separate targets by depositing SrTiO3 films from SrO and TiO2 targets. The RHEED intensity oscillation was used to monitor and control the growth of each SrO and TiO2 layer. We have shown that by using separate oxide targets, laser MBE can achieve the same level of stoichiometry control as the reactive MBE. We have also studied strain relaxation in LaAlO3 films and its effect on the 2D electron gas at LaAlO3/SrTiO3 interface. We found that there are two layers of different in-plane lattice constants in the LaAlO3 films, one next to the SrTiO3 substrate nearly coherently strained, while the top part relaxed as the film thickness increases above 20 unit cells. This strain relaxation significantly affect the transport properties of the LaAlO3/SrTiO3 interface.

  10. Atomic layer deposition of (K,Na)(Nb,Ta)O{sub 3} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Sønsteby, Henrik Hovde, E-mail: henrik.sonsteby@kjemi.iuio.no; Nilsen, Ola; Fjellvåg, Helmer [Department of Chemistry, University of Oslo, Sem Sælands vei 26, 0371 Oslo (Norway)

    2016-07-15

    Thin films of complex alkali oxides are frequently investigated due to the large range of electric effects that are found in this class of materials. Their piezo- and ferroelectric properties also place them as sustainable lead free alternatives in optoelectronic devices. Fully gas-based routes for deposition of such compounds are required for integration into microelectronic devices that need conformal thin films with high control of thickness- and composition. The authors here present a route for deposition of materials in the (K,Na)(Nb,Ta)O{sub 3}-system, including the four end members NaNbO{sub 3}, KNbO{sub 3}, NaTaO{sub 3}, and KTaO{sub 3}, using atomic layer deposition with emphasis on control of stoichiometry in such mixed quaternary and quinary compunds.

  11. (Fe3O4) thin films

    Indian Academy of Sciences (India)

    Unknown

    resistance vs temperature measurements. Implantation decreases the change in resistance at 120 K and this effect saturates beyond 3 × 1014 ions/cm2. The Verwey transition temperature, TV, shifts towards lower temperatures with increase in ion dose. Keywords. Implantation; magnetite; thin films; pulsed laser ablation; ...

  12. Thermoviscoelastic models for polyethylene thin films

    DEFF Research Database (Denmark)

    Li, Jun; Kwok, Kawai; Pellegrino, Sergio

    2016-01-01

    This paper presents a constitutive thermoviscoelastic model for thin films of linear low-density polyethylene subject to strains up to yielding. The model is based on the free volume theory of nonlinear thermoviscoelasticity, extended to orthotropic membranes. An ingredient of the present approach...

  13. Recent progress in thin film organic photodiodes

    NARCIS (Netherlands)

    Inganäs, Olle; Roman, Lucimara S.; Zhang, Fengling; Johansson, D.M.; Andersson, M.R.; Hummelen, J.C.

    2001-01-01

    We review current developments in organic photodiodes, with special reference to multilayer thin film optics, and modeling of organic donor-acceptor photodiodes. We indicate possibilities to enhance light absorption in devices by nanopatterning as well as by blending, and also discuss materials

  14. Restructuring in block copolymer thin films

    DEFF Research Database (Denmark)

    Posselt, Dorthe; Zhang, Jianqi; Smilgies, Detlef-M.

    2017-01-01

    Block copolymer (BCP) thin films have been proposed for a number of nanotechnology applications, such as nanolithography and as nanotemplates, nanoporous membranes and sensors. Solvent vapor annealing (SVA) has emerged as a powerful technique for manipulating and controlling the structure of BCP ...

  15. Amorphous silicon for thin-film transistors

    NARCIS (Netherlands)

    Schropp, Rudolf Emmanuel Isidore

    1987-01-01

    Hydrogenated amorphous silicon (a-Si:H) has considerable potential as a semiconducting material for large-area photoelectric and photovoltaic applications. Moreover, a-Si:H thin-film transistors (TFT’s) are very well suited as switching devices in addressable liquid crystal display panels and

  16. Tailored piezoelectric thin films for energy harvester

    NARCIS (Netherlands)

    Wan, X.

    2013-01-01

    Piezoelectric materials are excellent materials to transfer mechanical energy into electrical energy, which can be stored and used to power other devices. PiezoMEMS is a good way to combine silicon wafer processing and piezoelectric thin film technology and lead to a variety of miniaturized and

  17. Thin-Film Solid Oxide Fuel Cells

    Science.gov (United States)

    Chen, Xin; Wu, Nai-Juan; Ignatiev, Alex

    2009-01-01

    The development of thin-film solid oxide fuel cells (TFSOFCs) and a method of fabricating them have progressed to the prototype stage. This can result in the reduction of mass, volume, and the cost of materials for a given power level.

  18. Incipient plasticity in metallic thin films

    NARCIS (Netherlands)

    Soer, W. A.; De Hosson, J. Th. M.; Minor, A. M.; Shan, Z.; Asif, S. A. Syed; Warren, O. L.

    2007-01-01

    The authors have compared the incipient plastic behaviors of Al and Al-Mg thin films during indentation under load control and displacement control. In Al-Mg, solute pinning limits the ability of dislocations to propagate into the crystal and thus substantially affects the appearance of plastic

  19. Flexible thin-film NFC tags

    NARCIS (Netherlands)

    Myny, K.; Tripathi, A.K.; Steen, J.L. van der; Cobb, B.

    2015-01-01

    Thin-film transistor technologies have great potential to become the key technology for leafnode Internet of Things by utilizing the NFC protocol as a communication medium. The main requirements are manufacturability on flexible substrates at a low cost while maintaining good device performance

  20. Humidity sensing characteristics of hydrotungstite thin films

    Indian Academy of Sciences (India)

    Thin films of the hydrated phase of tungsten oxide, hydrotungstite (H2WO4.H2O), have been grown on glass substrates using a dip-coating technique. The -axis oriented films have been characterized by X-ray diffraction and scanning electron microscopy. The electrical conductivity of the films is observed to vary with ...

  1. Reliability growth of thin film resistors contact

    Directory of Open Access Journals (Sweden)

    Lugin A. N.

    2010-10-01

    Full Text Available Necessity of resistive layer growth under the contact and in the contact zone of resistive element is shown in order to reduce peak values of current flow and power dissipation in the contact of thin film resistor, thereby to increase the resistor stability to parametric and catastrophic failures.

  2. High Curie point CaBi2Nb2O9 thin films: A potential candidate for lead-free thin-film piezoelectrics

    Science.gov (United States)

    Simões, A. Z.; Ries, A.; Riccardi, C. S.; Gonzalez, A. H. M.; Longo, E.; Varela, J. A.

    2006-10-01

    CaBi2Nb2O9 (CBNO) thin films deposited on platinum coated silicon substrates by the polymeric precursor method exhibited good structural, dielectric, and piezoelectric characteristics. Capacitance-voltage measurements indicated good ferroelectric polarization switching characteristics. Remanent polarization and drive voltage values were 4.2μC /cm2 and 1.7V for a maximum applied voltage of 10V. The film has a piezoelectric coefficient d33 equal to 60pm/V, current density of 0.7μA/cm2, and Curie temperature of 940°C. The polar-axis-oriented CBNO is a promising candidate for use in lead-free high Curie point in ferroelectric and piezoelectric devices.

  3. Practical design and production of optical thin films

    CERN Document Server

    Willey, Ronald R

    2002-01-01

    Fundamentals of Thin Film Optics and the Use of Graphical Methods in Thin Film Design Estimating What Can Be Done Before Designing Fourier Viewpoint of Optical Coatings Typical Equipment for Optical Coating Production Materials and Process Know-How Process Development Monitoring and Control of Thin Film Growth Appendix: Metallic and Semiconductor Material Graphs Author IndexSubject Index

  4. Magnetoelectric coupling of multiferroic chromium doped barium titanate thin film probed by magneto-impedance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Shah, Jyoti, E-mail: shah.jyoti1@gmail.com; Kotnala, Ravinder K., E-mail: rkkotnala@nplindia.org, E-mail: rkkotnala@gmail.com [Multiferroic and Magnetics Laboratory, CSIR-National Physical Laboratory, Dr. K.S. Krishnan Road, New Delhi 110012 (India)

    2014-04-07

    Thin film of BaTiO{sub 3} doped with 0.1 at. % Cr (Cr:BTO) has been prepared by pulsed laser deposition technique. Film was deposited on Pt/SrTiO{sub 3} substrate at 500 °C in 50 mTorr Oxygen gas pressure using KrF (298 nm) laser. Polycrystalline growth of single phase Cr:BTO thin film has been confirmed by grazing angle X-ray diffraction. Cr:BTO film exhibited remnant polarization 6.4 μC/cm{sup 2} and 0.79 MV/cm coercivity. Magnetization measurement of Cr:BTO film showed magnetic moment 12 emu/cc. Formation of weakly magnetic domains has been captured by magnetic force microscopy. Theoretical impedance equation fitted to experimental data in Cole-Cole plot for thin film in presence of transverse magnetic field resolved the increase in grain capacitance from 4.58 × 10{sup −12} to 5.4 × 10{sup −11} F. Film exhibited high value 137 mV/cm-Oe magneto-electric (ME) coupling coefficient at room temperature. The high value of ME coupling obtained can reduce the typical processing steps involved in multilayer deposition to obtain multiferrocity in thin film. Barium titanate being best ferroelectric material has been tailored to be multiferroic by non ferromagnetic element, Cr, doping in thin film form opens an avenue for more stable and reliable spintronic material for low power magnetoelectric random excess memory applications.

  5. Conformal Thin Film Packaging for SiC Sensor Circuits in Harsh Environments

    Science.gov (United States)

    Scardelletti, Maximilian C.; Karnick, David A.; Ponchak, George E.; Zorman, Christian A.

    2011-01-01

    In this investigation sputtered silicon carbide annealed at 300 C for one hour is used as a conformal thin film package. A RF magnetron sputterer was used to deposit 500 nm silicon carbide films on gold metal structures on alumina wafers. To determine the reliability and resistance to immersion in harsh environments, samples were submerged in gold etchant for 24 hours, in BOE for 24 hours, and in an O2 plasma etch for one hour. The adhesion strength of the thin film was measured by a pull test before and after the chemical immersion, which indicated that the film has an adhesion strength better than 10(exp 8) N/m2; this is similar to the adhesion of the gold layer to the alumina wafer. MIM capacitors are used to determine the dielectric constant, which is dependent on the SiC anneal temperature. Finally, to demonstrate that the SiC, conformal, thin film may be used to package RF circuits and sensors, an LC resonator circuit was fabricated and tested with and without the conformal SiC thin film packaging. The results indicate that the SiC coating adds no appreciable degradation to the circuits RF performance. Index Terms Sputter, silicon carbide, MIM capacitors, LC resonators, gold etchants, BOE, O2 plasma

  6. Zinc Oxide Grown by CVD Process as Transparent Contact for Thin Film Solar Cell Applications

    Science.gov (United States)

    Faÿ, S.; Shah, A.

    Metalorganic chemical vapor deposition of ZnO films (MOCVD) [1] started to be comprehensively investigated in the 1980s, when thin film industries were looking for ZnO deposition processes especially useful for large-scale coatings at high growth rates. Later on, when TCO for thin film solar cells started to be developed, another advantage of growing TCO films by the CVD process has been highlighted: the surface roughness. Indeed, a large number of studies on CVD ZnO revealed that an as-grown rough surface cn be obtained with this deposition process [2-4]. A rough surface induces a light scattering effect, which can significantly improve light trapping (and therefore current photo-generation) within thin film silicon solar cells. The CVD process, indeed, directly leads to as-grown rough ZnO films without any post-etching step (the latter is often introduced to obtain a rough surface, when working with as-deposited flat sputtered ZnO). This fact could turn out to be a significant advantage when upscaling the manufacturing process for actual commercial production of thin film solar modules. The zinc and oxygen sources for CVD growth of ZnO films are given in Table 6.1.

  7. Effects of hydrogen flow on properties of hydrogen doped ZnO thin films prepared by RF magnetron sputtering

    Science.gov (United States)

    Hu, Yuehui; Chen, Yichuan; Chen, Jun; Chen, Xinhua; Ma, Defu

    2014-03-01

    , the optical reflectance of the thin films decreased, indicating the higher roughness of the films surface. It was noteworthy that etching effect of H plasma was obvious in the process of heavy hydrogen doping.

  8. Proceedings of the 8th International Symposium on Applications of Ferroelectrics

    Science.gov (United States)

    Liu, M.; Safari, A.; Kingon, A.; Haertling, G.

    1993-02-01

    The eighth International Symposium on the Applications of Ferroelectrics was held in Greenville, SC, on August 30 to Sept 2, 1992. It was attended by approximately 260 scientists and engineers who presented nearly 200 oral and poster papers. The three plenary presentations covered ferroelectric materials which are currently moving into commercial exploitation or have strong potential to do so. These were (1) pyroelectric imaging, (2) ferroelectric materials integrated with silicon for use as micromotors and microsensors and (3) research activity in Japan on high permittivity materials for DRAM's. Invited papers covered such subjects as pyroelectric and electrooptic properties of thin films, photorefractive effects, ferroelectric polymers, piezoelectric transducers, processing of ferroelectrics, domain switching in ferroelectrics, thin film memories, thin film vacuum deposition techniques and the fabrication of chemically prepared PZT and PLZT thin films. The papers continued to reflect the large interest in ferroelectric thin films. It was encouraging that there have been substantial strides made in both the processing and understanding of the films in the last two years. It was equally clear, however, that much still remains to be done before reliable thin film devices will be available in the marketplace.

  9. Multiferroic BiFeO3 thin films and nanodots grown on highly oriented pyrolytic graphite substrates

    Science.gov (United States)

    Shin, Hyun Wook; Son, Jong Yeog

    2017-12-01

    Multiferroic BiFeO3 (BFO) thin films and nanodots are deposited on highly oriented pyrolytic graphite (HOPG) substrates via a pulsed laser deposition technique, where the HOPG surface has a honeycomb lattice structure made of carbon atoms, similar to graphene. A graphene/BFO/HOPG capacitor exhibited multiferroic properties, namely ferroelectricity (a residual polarization of 26.8 μC/cm2) and ferromagnetism (a residual magnetization of 1.1 × 10-5 emu). The BFO thin film had high domain wall energies and demonstrated switching time of approximately 82 ns. An 8-nm BFO nanodot showed a typical piezoelectric hysteresis loop with an effective residual piezoelectric constant of approximately 110 pm/V and exhibited two clearly separated current curves depending on the ferroelectric polarization direction.

  10. A Fast Room-Temperature Poling Process of Piezoelectric Pb(Zr0.45Ti0.55)O3 Thin Films

    NARCIS (Netherlands)

    Nguyen, Duc Minh; Houwman, Evert Pieter; Dekkers, Jan M.; Vu, Hung Ngoc; Rijnders, Augustinus J.H.M.

    2014-01-01

    The effect of two poling processes on the ferroelectric and piezoelectric properties of sol–gel and pulsedlaser-deposited Pb(Zr0.45Ti0.55)O3 (PZT) thin films has been investigated as a function of the poling field, poling temperature and poling time. In the case of dc-electric field poling at an

  11. Dielectric properties of (Bi0.9La0.1)(2)NiMnO6 thin films : Determining the intrinsic electric and magnetoelectric response

    NARCIS (Netherlands)

    Langenberg, E.; Fina, I.; Ventura, J.; Noheda, Beatriz; Varela, M.; Fontcuberta, J.

    2012-01-01

    We have used temperature-dependent impedance spectroscopy to study the dielectric response of thin films of ferromagnetic and ferroelectric (Bi0.9La0.1)(2)NiMnO6 oxide. This technique has allowed us to disentangle its intrinsic dielectric response and extract the dielectric permittivity of similar

  12. Hardware Modifications to the US Army Research Laboratory’s Metalorganic Chemical Vapor Deposition (MOCVD) System for Optimization of Complex Oxide Thin Film Fabrication

    Science.gov (United States)

    2015-04-01

    19 11. Li T, Hsu ST. The development of MOCVD techniques for ferroelectric and dielectric thin film depositions. Journal De Physique IV...Advanced Materials. 1994:165–176. 52. Kaul AR, Seleznev BV. New principle of feeding for flash evaporation MOCVD devices. Journal De Physique IV. 1993;3

  13. Effects of BaBi2Ta2O9 thin buffer layer on crystallization and electrical properties of CaBi2Ta2O9 thin films on Pt-coated silicon

    Science.gov (United States)

    Kato, Kazumi; Suzuki, Kazuyuki; Nishizawa, Kaori; Miki, Takeshi

    2001-05-01

    Non-c-axis oriented CaBi2Ta2O9 (CBT) thin films have been successfully deposited via the triple alkoxide solution method on Pt-coated Si substrates by inserting BaBi2Ta2O9 (BBT) thin buffer layers. The BBT thin buffer layer, which was prepared on Pt-coated Si, was a key material for suppression of the nonpolar c-axis orientation and promoting the ferroelectric structure perpendicular to the in-plane direction of CBT thin film. The annealing temperature and thickness of the BBT thin buffer layers affected the dielectric, ferroelectric, and fatigue properties of the stacked CBT/BBT thin films. The resultant 650 °C annealed CBT/BBT(30 nm) thin film exhibited good P-E hysteresis properties and fatigue behaviors.

  14. Thin film bismuth iron oxides useful for piezoelectric devices

    Science.gov (United States)

    Zeches, Robert J.; Martin, Lane W.; Ramesh, Ramamoorthy

    2016-05-31

    The present invention provides for a composition comprising a thin film of BiFeO.sub.3 having a thickness ranging from 20 nm to 300 nm, a first electrode in contact with the BiFeO.sub.3 thin film, and a second electrode in contact with the BiFeO.sub.3 thin film; wherein the first and second electrodes are in electrical communication. The composition is free or essentially free of lead (Pb). The BFO thin film is has the piezoelectric property of changing its volume and/or shape when an electric field is applied to the BFO thin film.

  15. Nanostructured thin film coatings with different strengthening effects

    Directory of Open Access Journals (Sweden)

    Panfilov Yury

    2017-01-01

    Full Text Available A number of articles on strengthening thin film coatings were analyzed and a lot of unusual strengthening effects, such as super high hardness and plasticity simultaneously, ultra low friction coefficient, high wear-resistance, curve rigidity increasing of drills with small diameter, associated with process formation of nanostructured coatings by the different thin film deposition methods were detected. Vacuum coater with RF magnetron sputtering system and ion-beam source and arc evaporator for nanostructured thin film coating manufacture are represented. Diamond Like Carbon and MoS2 thin film coatings, Ti, Al, Nb, Cr, nitride, carbide, and carbo-nitride thin film materials are described as strengthening coatings.

  16. Interfacial dislocations in TiN/GaN thin films

    Science.gov (United States)

    Komninou, Ph; Dimitrakopulos, G. P.; Nouet, G.; Kehagias, Th; Ruterana, P.; Karakostas, Th

    2000-12-01

    Thin films of stoichiometric cubic TiN for ohmic contact formation are directly deposited, by rf magnetron sputtering at room temperature, on (0001) surfaces of GaN epilayers grown on c-plane sapphire. Chemical etching and in situ dry etching of the free GaN surface allows an epitaxial growth of the deposited TiN films as revealed by high resolution electron microscopy observations. Taking into account the experimentally determined orientation relationship of the two structures, (0001) GaN∥(111) TiN, [11∥[1 bar 1 0] TiN, families of dislocations are expected in the interface plane to accommodate the misfit (~5.8%) with a spacing of 4.5 nm. The mathematical formulation of the circuit mapping technique is used to analyse the misfit dislocation content on HREM images since it allows the exact determination of the Burgers vector. This gives a result ½[01 bar 1] TiN or (1/3)[1 bar 2 10] GaN. A demistep of height cGaN/2 is observed at the TiN/GaN interface and from there a (11 bar 2) twin emanates into the TiN layer. It appears that such demisteps have an important role in mediating the columnar growth of the TiN material.

  17. Optical thin films and coatings from materials to applications

    CERN Document Server

    Flory, Francois

    2013-01-01

    Optical coatings, including mirrors, anti-reflection coatings, beam splitters, and filters, are an integral part of most modern optical systems. This book provides an overview of thin film materials, the properties, design and manufacture of optical coatings and their use across a variety of application areas.$bOptical coatings, including mirrors, anti-reflection coatings, beam splitters, and filters, are an integral part of most modern optical systems. Optical thin films and coatings provides an overview of thin film materials, the properties, design and manufacture of optical coatings and their use across a variety of application areas. Part one explores the design and manufacture of optical coatings. Part two highlights unconventional features of optical thin films including scattering properties of random structures in thin films, optical properties of thin film materials at short wavelengths, thermal properties and colour effects. Part three focusses on novel materials for optical thin films and coatings...

  18. Design and Fabrication of Modulated Index Thin Films for Diffractive Optics

    Science.gov (United States)

    Chen, Frederick Ta.

    This thesis is an extensive study of the use of dielectric gratings effectively behaving as thin films as building blocks in the design and fabrication of diffractive optical elements. Numerical simulations using MATLAB have been carried out to evaluate the optical properties of these gratings, as well as the conditions under which they arise. Results of these calculations have been used in the design of diffractive optical elements which are equivalent to modulated-index thin films. A special bilayer resist process (SHARP) has been developed to fabricate these optical elements since they contain high aspect-ratio features. Several gratings designed for beam deflection, each with a different index modulation design, have been fabricated by means of SHARP, and characterized with a measurement of the diffraction spectra. The spectra show sharp deviations from theoretical expectations. It is believed that these deviations are due in part to the non -uniform etching of deep submicron holes. A diffractive lens has also been fabricated with the use of SHARP. Special care was taken in the design to avoid the etching of deep holes. A 53% efficiency was measured, 8% short of the expected value. A focal spot with the theoretical full-width-half-maximum value was imaged by the lens. The devices described in this thesis are the first modulated index thin film structures to be used at a visible wavelength.

  19. Optically tuned dielectric property of barium titanate thin film by THz spectroscopy

    Science.gov (United States)

    Zhou, Siyan; Ji, Jie; Tian, Yue; Ling, Furi; Yu, Wenfeng

    2017-11-01

    The dielectric property of ferroelectric barium titanate (BaTiO3) thin film with optical field was investigated by terahertz time-domain spectroscopy at room temperature. Experimental results showed that dielectric constant of BTO film was increased with the optical pump powers, and tunability of the real part of dielectric constant could be reached to74%. The reason of realizing high modulation depth could be explained as photorefractive and photothermal effects. Furthermore, the variation of refractive index displayed a monotonically increase with the optical powers.

  20. Multiferroic oxide thin films and heterostructures

    Science.gov (United States)

    Lu, Chengliang; Hu, Weijin; Tian, Yufeng; Wu, Tom

    2015-06-01

    Multiferroic materials promise a tantalizing perspective of novel applications in next-generation electronic, memory, and energy harvesting technologies, and at the same time they also represent a grand scientific challenge on understanding complex solid state systems with strong correlations between multiple degrees of freedom. In this review, we highlight the opportunities and obstacles in growing multiferroic thin films with chemical and structural integrity and integrating them in functional devices. Besides the magnetoelectric effect, multiferroics exhibit excellent resistant switching and photovoltaic properties, and there are plenty opportunities for them to integrate with other ferromagnetic and superconducting materials. The challenges include, but not limited, defect-related leakage in thin films, weak magnetism, and poor control on interface coupling. Although our focuses are Bi-based perovskites and rare earth manganites, the insights are also applicable to other multiferroic materials. We will also review some examples of multiferroic applications in spintronics, memory, and photovoltaic devices.

  1. Shunts in thin-film photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Malek, Stephanie; Riedel, Ingo; Parisi, Juergen [Energy and Semiconductor Research Laboratory, Department of Physics, University of Oldenburg, 26111 Oldenburg (Germany); Wischnath, Uli F. [aleo solar Deutschland GmbH, 26122 Oldenburg (Germany); Rechid, Juan [CIS Solartechnik GmbH and Co. KG, 20539 Hamburg (Germany)

    2011-07-01

    Shunts can lead to severe performance reduction in thin film solar cells. This work reports on a microscopic approach to locate and characterize the details of shunts in order to reveal their origin. Localization of hot spots and film disruptions is commonly addressed by lock-in infrared thermography (LIT) through visualization of the Joule heating. The resolution of this method is restricted to the {mu}m-range. We use different methods of LIT for the fast localization of local-lateral peculiarities in order to identify positions of interest. For a more detailed analysis of these features we use high resolution microscopy like Scanning Electron Microscopy (SEM) and AFM-based methods. These small-scale investigations can for example reveal whether areas of high heat dissipation are rather related to the inner structure of the involved thin films or to accidentally incorporated imperfections.

  2. Thin Film Electrodes for Rare Event Detectors

    Science.gov (United States)

    Odgers, Kelly; Brown, Ethan; Lewis, Kim; Giordano, Mike; Freedberg, Jennifer

    2017-01-01

    In detectors for rare physics processes, such as neutrinoless double beta decay and dark matter, high sensitivity requires careful reduction of backgrounds due to radioimpurities in detector components. Ultra pure cylindrical resistors are being created through thin film depositions onto high purity substrates, such as quartz glass or sapphire. By using ultra clean materials and depositing very small quantities in the films, low radioactivity electrodes are produced. A new characterization process for cylindrical film resistors has been developed through analytic construction of an analogue to the Van Der Pauw technique commonly used for determining sheet resistance on a planar sample. This technique has been used to characterize high purity cylindrical resistors ranging from several ohms to several tera-ohms for applications in rare event detectors. The technique and results of cylindrical thin film resistor characterization will be presented.

  3. Gradient Solvent Vapor Annealing of Thin Films

    Science.gov (United States)

    Albert, Julie; Bogart, Timothy; Lewis, Ronald; Epps, Thomas

    2011-03-01

    The development of block copolymer materials for emerging nanotechnologies requires an understanding of how surface energy/chemistry and annealing conditions affect thin film self-assembly. Specifically, in solvent vapor annealing (SVA), the use of solvent mixtures and the manipulation of solvent vapor concentration are promising approaches for obtaining a desired morphology or nanostructure orientation. We designed and fabricated solvent-resistant devices to produce discrete SVA gradients in composition and/or concentration to efficiently explore SVA parameter space. We annealed copolymer films containing poly(styrene), poly(isoprene), and/or poly(methyl methacrylate) blocks, monitored film thicknesses during annealing, and characterized film morphologies with atomic force microscopy. Morphological changes across the gradients such as the transformation from parallel cylinders to spheres with increasing solvent selectivity provided insight into thin film self-assembly, and the gradient device has enabled us to determine transition compositions and/or concentrations.

  4. Electrostatic thin film chemical and biological sensor

    Science.gov (United States)

    Prelas, Mark A.; Ghosh, Tushar K.; Tompson, Jr., Robert V.; Viswanath, Dabir; Loyalka, Sudarshan K.

    2010-01-19

    A chemical and biological agent sensor includes an electrostatic thin film supported by a substrate. The film includes an electrostatic charged surface to attract predetermined biological and chemical agents of interest. A charge collector associated with said electrostatic thin film collects charge associated with surface defects in the electrostatic film induced by the predetermined biological and chemical agents of interest. A preferred sensing system includes a charge based deep level transient spectroscopy system to read out charges from the film and match responses to data sets regarding the agents of interest. A method for sensing biological and chemical agents includes providing a thin sensing film having a predetermined electrostatic charge. The film is exposed to an environment suspected of containing the biological and chemical agents. Quantum surface effects on the film are measured. Biological and/or chemical agents can be detected, identified and quantified based on the measured quantum surface effects.

  5. DNA Strand Patterns on Aluminium Thin Films

    Directory of Open Access Journals (Sweden)

    Fatemeh Shahhosseini

    2011-06-01

    Full Text Available A new patterning method using Deoxyribose Nucleic Acid (DNA strands capable of producing nanogaps of less than 100 nm is proposed and investigated in this work. DNA strands from Bosenbergia rotunda were used as the fundamental element in patterning DNA on thin films of aluminium (Al metal without the need for any lithographic techniques. The DNA strands were applied in buffer solutions onto thin films of Al on silicon (Si and the chemical interactions between the DNA strands and Al creates nanometer scale arbitrary patterning by direct transfer of the DNA strands onto the substrate. This simple and cost-effective method can be utilized in the fabrication of various components in electronic chips for microelectronics and Nano Electronic Mechanical System (NEMS applications in general.

  6. Multiferroic oxide thin films and heterostructures

    KAUST Repository

    Lu, Chengliang

    2015-05-26

    Multiferroic materials promise a tantalizing perspective of novel applications in next-generation electronic, memory, and energy harvesting technologies, and at the same time they also represent a grand scientific challenge on understanding complex solid state systems with strong correlations between multiple degrees of freedom. In this review, we highlight the opportunities and obstacles in growing multiferroic thin films with chemical and structural integrity and integrating them in functional devices. Besides the magnetoelectric effect, multiferroics exhibit excellent resistant switching and photovoltaic properties, and there are plenty opportunities for them to integrate with other ferromagnetic and superconducting materials. The challenges include, but not limited, defect-related leakage in thin films, weak magnetism, and poor control on interface coupling. Although our focuses are Bi-based perovskites and rare earth manganites, the insights are also applicable to other multiferroic materials. We will also review some examples of multiferroic applications in spintronics, memory, and photovoltaic devices.

  7. Thin Films of Polypyrrole on Particulate Aluminum

    Science.gov (United States)

    2009-02-01

    C H R I S T O P H E R V E T T E R , X I A O N I N G Q I , S U B R A M A N Y A M V . K A S I S O M A Y A J U L A , A N D Thin Films of Polypyrrole on...1. REPORT DATE FEB 2009 2. REPORT TYPE 3. DATES COVERED 00-00-2009 to 00-00-2009 4. TITLE AND SUBTITLE Thin Films of Polypyrrole on...layer 3 Why Polypyrrole /Flake? Polypyrrole  Poor mechanical properties  Poor adhesion  Solubility issues  Continuous layer needed 4 Polypyrrole Coated

  8. Improved electrical properties in La- and V-co-doped Na{sub 0.5}Bi{sub 4.5}Ti{sub 4}O{sub 15} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Do, Dalhyun; Kim, Jin Won; Kim, Sang Su [Changwon National University, Department of Physics, Changwon, Gyungnam (Korea, Republic of)

    2012-08-15

    Ferroelectric La- and V-co-doped Na{sub 0.5}Bi{sub 4.5}Ti{sub 4}O{sub 15} (NLBTV) thin film was prepared on Pt(111)/Ti/SiO{sub 2}/Si substrates by using a chemical solution deposition method and annealed at 750 C under oxygen atmosphere. Crystal structure of the thin film was investigated by X-ray diffraction and Raman scattering. Surface morphology of the thin film was investigated by scanning electron microscopy. The NLBTV thin film capacitor exhibited better ferroelectric properties such as larger remnant polarization and smaller coercive electric field than Na{sub 0.5}Bi{sub 4.5}Ti{sub 4}O{sub 15} (NBT) thin film capacitor. Reduced leakage current was observed in the NLBTV thin film capacitor compared to the NBT thin film capacitor. Almost no polarization fatigue was observed up to 1.44 x 10{sup 10} switching cycles. (orig.)

  9. Magnetic Surfaces, Thin Films, and Multilayers

    Science.gov (United States)

    1992-01-01

    Laboratory, Berkeley CA 94720. ABSTRACT A brief review of the state of the art in the field of surface, inter- face and thin-film magnetism is presented... art and maturing science [I]. In particular, growing epitaxial films of monolayer or near-monolayer thickness allows the investigation of two...understood considering steps. A such study is under progress. Aknowledgments This work was partially supported by " Acciones Integradas Hispano-Francesas

  10. Perovskite Thin Films via Atomic Layer Deposition

    KAUST Repository

    Sutherland, Brandon R.

    2014-10-30

    © 2014 Wiley-VCH Verlag GmbH & Co. KGaA. (Graph Presented) A new method to deposit perovskite thin films that benefit from the thickness control and conformality of atomic layer deposition (ALD) is detailed. A seed layer of ALD PbS is place-exchanged with PbI2 and subsequently CH3NH3PbI3 perovskite. These films show promising optical properties, with gain coefficients of 3200 ± 830 cm-1.

  11. Superconductivity of Thin Film Intermetallic Compounds.

    Science.gov (United States)

    1985-09-15

    D-RISE 2?I SUPERCONDUCTIVITY OF THIN FILM INTERMETLLIC COMPOUNDS I/i. (U) MINNESOTR UNIV MINNERPOLIS SCHOOL OF PHYSICS AND RSTRONOMY R M GOLDMRN 15...parameters to either higher temperatures of higher critical fields. Materials under study are the superconducting Chevrel phase compounds, selected Heavy...superconducting field effect. Processing of the Chevrel Phase I compounds is carried out in a multi-source deposition system. The latter has been upgraded and

  12. Flexible magnetic thin films and devices

    Science.gov (United States)

    Sheng, Ping; Wang, Baomin; Li, Runwei

    2018-01-01

    Flexible electronic devices are highly attractive for a variety of applications such as flexible circuit boards, solar cells, paper-like displays, and sensitive skin, due to their stretchable, biocompatible, light-weight, portable, and low cost properties. Due to magnetic devices being important parts of electronic devices, it is essential to study the magnetic properties of magnetic thin films and devices fabricated on flexible substrates. In this review, we mainly introduce the recent progress in flexible magnetic thin films and devices, including the study on the stress-dependent magnetic properties of magnetic thin films and devices, and controlling the properties of flexible magnetic films by stress-related multi-fields, and the design and fabrication of flexible magnetic devices. Project supported by the National Key R&D Program of China (No. 2016YFA0201102), the National Natural Science Foundation of China (Nos. 51571208, 51301191, 51525103, 11274321, 11474295, 51401230), the Youth Innovation Promotion Association of the Chinese Academy of Sciences (No. 2016270), the Key Research Program of the Chinese Academy of Sciences (No. KJZD-EW-M05), the Ningbo Major Project for Science and Technology (No. 2014B11011), the Ningbo Science and Technology Innovation Team (No. 2015B11001), and the Ningbo Natural Science Foundation (No. 2015A610110).

  13. Mesoscale simulations of confined Nafion thin films

    Science.gov (United States)

    Vanya, P.; Sharman, J.; Elliott, J. A.

    2017-12-01

    The morphology and transport properties of thin films of the ionomer Nafion, with thicknesses on the order of the bulk cluster size, have been investigated as a model system to explain the anomalous behaviour of catalyst/electrode-polymer interfaces in membrane electrode assemblies. We have employed dissipative particle dynamics (DPD) to investigate the interaction of water and fluorocarbon chains, with carbon and quartz as confining materials, for a wide range of operational water contents and film thicknesses. We found confinement-induced clustering of water perpendicular to the thin film. Hydrophobic carbon forms a water depletion zone near the film interface, whereas hydrophilic quartz results in a zone with excess water. There are, on average, oscillating water-rich and fluorocarbon-rich regions, in agreement with experimental results from neutron reflectometry. Water diffusivity shows increasing directional anisotropy of up to 30% with decreasing film thickness, depending on the hydrophilicity of the confining material. A percolation analysis revealed significant differences in water clustering and connectivity with the confining material. These findings indicate the fundamentally different nature of ionomer thin films, compared to membranes, and suggest explanations for increased ionic resistances observed in the catalyst layer.

  14. Study of zinc oxide thin film characteristics

    Science.gov (United States)

    Johari, Shazlina; Yazmin Muhammad, Nazalea; Rosydi Zakaria, Mohd

    2017-11-01

    This paper presents the characterization of ZnO thin films with the thickness of 8nm, 30nm, and 200nm. The thin films were prepared using sol-gel method and has been deposited onto different substrate of silicon wafer, glass and quartz. The thin films were annealed at 400, 500 and 600°C. By using UV-Vis, the optical transmittance measurement were recorded by using a single beam spectrophotometer in the wavelength 250nm to 800nm. However, the transmittance in the visible range is hardly influenced by the film thickness, substrate used and annealed temperature and the averages are all above 80%. On surface morphology observed by AFM and FESEM, the results show that the increase of film thickness and annealed temperature will increase the mean grain size, surface-to-volume ration and RMS roughness. Besides that, higher annealing temperature cause the crystalline quality to gradually improve and the wurtzite structure of ZnO can be seen more clearly. Nonetheless, the substrate used had no effect on surface morphology, yet the uniformity of deposition on silicon wafer is better than glass and quartz.

  15. Enhanced stimulated emission in ZnO thin films using microdisk top-down structuring

    Energy Technology Data Exchange (ETDEWEB)

    Nomenyo, K.; Kostcheev, S.; Lérondel, G. [Laboratoire de Nanotechnologie et d' Instrumentation Optique, Institut Charles Delaunay, CNRS UMR 6281, Université de Technologie de Troyes, 12 rue Marie Curie, CS 42060, 10004 Troyes Cedex (France); Gadallah, A.-S. [Laboratoire de Nanotechnologie et d' Instrumentation Optique, Institut Charles Delaunay, CNRS UMR 6281, Université de Technologie de Troyes, 12 rue Marie Curie, CS 42060, 10004 Troyes Cedex (France); Department of Laser Sciences and Interactions, National Institute of Laser Enhanced Sciences, Cairo University, Giza (Egypt); Rogers, D. J. [Nanovation, 8, route de Chevreuse, 78117 Châteaufort (France)

    2014-05-05

    Microdisks were fabricated in zinc oxide (ZnO) thin films using a top-down approach combining electron beam lithography and reactive ion etching. These microdisk structured thin films exhibit a stimulated surface emission between 3 and 7 times higher than that from a reference film depending on the excitation power density. Emission peak narrowing, reduction in lasing threshold and blue-shifting of the emission wavelength were observed along with enhancement in the emitted intensity. Results indicate that this enhancement is due to an increase in the internal quantum efficiency combined with an amplification of the stimulated emission. An analysis in terms of waveguiding is presented in order to explain these effects. These results demonstrate that very significant gains in emission can be obtained through conventional microstructuration without the need for more onerous top-down nanostructuration techniques.

  16. Implementation of Carbon Thin Film Coatings in the Super Proton Synchrotron (SPS) for Electron Cloud Mitigation

    CERN Document Server

    Costa Pinto, P; Basso, T; Edwards, P; Mensi, M; Sublet, A; Taborelli, M

    2014-01-01

    Low Secondary Electron Yield (SEY) carbon thin films eradicate electron multipacting in accelerator beam pipes. Two magnetic cells of the SPS were coated with such material and installed. In total more than forty vacuum vessels and magnet interconnections were treated. The feasibility of the coating process was validated. The performance of the carbon thin film will be tested with LHC nominal beams after the end of the long shutdown 1. Particular attention will be drawn to the long term behaviour. This paper presents the sputtering techniques used to coat the different components; their characterization (SEY measurements on coupons, RF multipacting tests and pump down curves); and the technology to etch the carbon film in case of a faulty coating. The strategy to coat the entire SPS will also be described.

  17. Self-assembled single-phase perovskite nanocomposite thin films.

    Science.gov (United States)

    Kim, Hyun-Suk; Bi, Lei; Paik, Hanjong; Yang, Dae-Jin; Park, Yun Chang; Dionne, Gerald F; Ross, Caroline A

    2010-02-10

    Thin films of perovskite-structured oxides with general formula ABO(3) have great potential in electronic devices because of their unique properties, which include the high dielectric constant of titanates, (1) high-T(C) superconductivity in cuprates, (2) and colossal magnetoresistance in manganites. (3) These properties are intimately dependent on, and can therefore be tailored by, the microstructure, orientation, and strain state of the film. Here, we demonstrate the growth of cubic Sr(Ti,Fe)O(3) (STF) films with an unusual self-assembled nanocomposite microstructure consisting of (100) and (110)-oriented crystals, both of which grow epitaxially with respect to the Si substrate and which are therefore homoepitaxial with each other. These structures differ from previously reported self-assembled oxide nanocomposites, which consist either of two different materials (4-7) or of single-phase distorted-cubic materials that exhibit two or more variants. (8-12) Moreover, an epitaxial nanocomposite SrTiO(3) overlayer can be grown on the STF, extending the range of compositions over which this microstructure can be formed. This offers the potential for the implementation of self-organized optical/ferromagnetic or ferromagnetic/ferroelectric hybrid nanostructures integrated on technologically important Si substrates with applications in magnetooptical or spintronic devices.

  18. Role of the defect in determining the properties of PbTi0.9Ni0.1O3 thin films

    Science.gov (United States)

    Luo, Bingcheng

    2017-11-01

    PbTiO3 with oxygen-vacancy-stabilized d8 ion substitution has attracted significant attention as a promising photo-ferroelectric material, but less effort to understand the effect of defect structures on its macroscopic properties limits further modification of the functionality via defect engineering. Herein, a comparable investigation of highly-(111) oriented PbTiO3 (PTO) and PbTi0.9Ni0.1O3 (PTN) thin films is reported to realize the critical role of defect structures on the evolution of electrical and photovoltaic properties. It is found that the PTO thin film shows the space-charge-limited-current mechanism, while the PTN thin film obeys the Poole-Frenkel emission mechanism. Also, the dielectric abnormal peak emerges in the PTN thin film. Notably, the ferroelectric polarization still keeps a large value but the band gap is lowered, and thus a significant increment of photovoltaic properties is achieved in the PTN thin film. These experimental results can be well explained if the formation of dopant-vacancy complexes is taken into account.

  19. The origin of local strain in highly epitaxial oxide thin films.

    Science.gov (United States)

    Ma, Chunrui; Liu, Ming; Chen, Chonglin; Lin, Yuan; Li, Yanrong; Horwitz, J S; Jiang, Jiechao; Meletis, E I; Zhang, Qingyu

    2013-10-31

    The ability to control the microstructures and physical properties of hetero-epitaxial functional oxide thin films and artificial structures is a long-sought goal in functional materials research. Normally, only the lattice misfit between the film and the substrate is considered to govern the physical properties of the epitaxial films. In fact, the mismatch of film unit cell arrangement and the Surface-Step-Terrace (SST) dimension of the substrate, named as "SST residual matching", is another key factor that significantly influence the properties of the epitaxial film. The nature of strong local strain induced from both lattice mismatch and the SST residual matching on ferroelectric (Ba,Sr)TiO3 and ferromagnetic (La,Ca)MnO3 thin films are systematically investigated and it is demonstrated that this combined effect has a dramatic impact on the physical properties of highly epitaxial oxide thin films. A giant anomalous magnetoresistance effect (~10(10)) was achieved from the as-designed vicinal surfaces.

  20. PLD-grown thin film saturable absorbers

    Energy Technology Data Exchange (ETDEWEB)

    Tellkamp, Friedjof

    2012-11-01

    The subject of this thesis is the preparation and characterization of thin films made of oxidic dielectrics which may find their application as saturable absorber in passively Q-switched lasers. The solely process applied for fabrication of the thin films was the pulsed laser deposition (PLD) which stands out against other processes by its flexibility considering the composition of the systems to be investigated. Within the scope of this thesis the applied saturable absorbers can be divided into two fundamentally different kinds of functional principles: On the one hand, saturable absorption can be achieved by ions embedded in a host medium. Most commonly applied bulk crystals are certain garnets like YAG (Y{sub 3}Al{sub 5}O{sub 12}) or the spinel forsterite (Mg{sub 2}SiO{sub 4}), in each case with chromium as dopant. Either of these media was investigated in terms of their behavior as PLD-grown saturable absorber. Moreover, experiments with Mg{sub 2}GeO{sub 4}, Ca{sub 2}GeO{sub 4}, Sc{sub 2}O{sub 3}, and further garnets like YSAG or GSGG took place. The absorption coefficients of the grown films of Cr{sup 4+}:YAG were determined by spectroscopic investigations to be one to two orders of magnitude higher compared to commercially available saturable absorbers. For the first time, passive Q-switching of a Nd:YAG laser at 1064 nm with Cr{sup 4+}:YAG thin films could be realized as well as with Cr:Sc{sub 2}O{sub 3} thin films. On the other hand, the desirable effect of saturable absorption can also be generated by quantum well structures. For this purpose, several layer system like YAG/LuAG, Cu{sub 2}O/MgO, and ZnO/corumdum were investigated. It turned out that layer systems with indium oxide (In{sub 2}O{sub 3}) did not only grew in an excellent way but also showed up a behavior regarding their photo luminescence which cannot be explained by classical considerations. The observed luminescence at roughly 3 eV (410 nm) was assumed to be of excitonic nature and its

  1. Investigation of the effects of misfit strain on barium strontium titanate thin films deposited on base metal substrates by a modified phenomenological model

    Science.gov (United States)

    Dong, Hanting; Li, Hongfang; Chen, Jianguo; Jin, Dengren; Cheng, Jinrong

    2017-10-01

    The Landau-Devonshire phenomenological model, which has been utilized to investigate epitaxial barium strontium titanate (BST) thin films, was modified to investigate the effects of misfit strain on the dielectric properties of polycrystalline BST thin films deposited on base metal substrates. The modification considers the relaxation of lattice misfit stress resulting from the formation of in-plane misfit dislocations. The modified lattice misfit strain was calculated by referring to the ferroelectric critical grain size. Moreover, the misfit strain and dielectric properties of BST thin films with different structures and substrates were investigated by the models. It was found that the measured dielectric constant and tunability of BST thin films on different metal substrates overall agreed with the computed data. In addition, the good agreement was also observed for sandwich-like structural BST thin films deposited on LNO buffered stainless steel plates. Our results indicated that the modified L-D models might be utilized to predict dielectric properties of polycrystalline BST thin films for varied substrates and multilayer structures.

  2. Bismuth ferrite based thin films, nanofibers, and field effect transistor devices

    Science.gov (United States)

    Rivera-Beltran, Rut

    In this research an attempt has been made to explore bismuth ferrite thin films with low leakage current and nanofibers with high photoconductivity. Thin films were deposited with pulsed laser deposition (PLD) method. An attempt has been made to develop thin films under different deposition parameters with following target compositions: i) 0.6BiFeO3-0.4(Bi0.5 K0.5)TiO3 (BFO-BKT) and ii) bi-layered 0.88Bi 0.5Na0.5TiO3-0.08Bi0.5K0.5TiO 3-0.04BaTiO3/BiFeO3 (BNT-BKT-BT/BFO). BFO-BKT thin film shows suppressed leakage current by about four orders of magnitude which in turn improve the ferroelectric and dielectric properties of the films. The optimum remnant polarization is 19 muC.cm-2 at the oxygen partial pressure of 300 mtorr. The BNT-BKT-BT/BFO bi-layered thin films exhibited ferroelectric behavior as: Pr = 22.0 muC.cm-2, Ec = 100 kV.cm-1 and epsilonr = 140. The leakage current of bi-layered thin films have been reduced two orders of magnitude compare to un-doped bismuth ferrite. Bismuth ferrite nanofibers were developed by electrospinning technique and its electronic properties such as photoconductivity and field effect transistor performance were investigated extensively. Nanofibers were deposited by electrospinning of sol-gel solution on SiO2/Si substrate at driving voltage of 10 kV followed by heat treatment at 550 °C for 2 hours. The composition analysis through energy dispersive detector and electron energy loss spectroscopy revealed the heterogeneous nature of the composition with Bi rich and Fe deficient regions. X-ray photoelectron spectroscopy results confirmed the combination of Fe3+ and Fe2+ valence state in the fibers. The photoresponse result is almost hundred times higher for a fiber of 40 nm diameter compared to a fiber with 100 nm diameter. This effect is described by a size dependent surface recombination mechanism. A single and multiple BFO nanofibers field effect transistors devices were fabricated and characterized. Bismuth ferrite FET behaves

  3. Process for production of solution-derived (Pb,La)(Nb,Sn,Zr,Ti)O.sub.3 thin films and powders

    Science.gov (United States)

    Boyle, Timothy J.

    1999-01-01

    A simple and rapid process for synthesizing (Pb,La)(Nb,Sn,Zr,Ti)O.sub.3 precursor solutions and subsequent ferroelectric thin films and powders of the perovskite phase of these materials has been developed. This process offers advantages over standard methods, including: rapid solution synthesis (solution synthesis. For lanthanum-doped ferroelectric materials, the lanthanum source can be added with total synthesis time less than 10 minutes. Films and powders are crystallized at approximately 650.degree. C. and exhibit ferroelectric properties comparable to films and powders produced by other techniques which require higher crystallization temperatures.

  4. Process for production of solution-derived (Pb,La)(Nb,Sn,Zr,Ti)O{sub 3} thin films and powders

    Science.gov (United States)

    Boyle, T.J.

    1999-01-12

    A simple and rapid process for synthesizing (Pb,La)(Nb,Sn,Zr,Ti)O{sub 3} precursor solutions and subsequent ferroelectric thin films and powders of the perovskite phase of these materials has been developed. This process offers advantages over standard methods, including: rapid solution synthesis (solution synthesis. For lanthanum-doped ferroelectric materials, the lanthanum source can be added with total synthesis time less than 10 minutes. Films and powders are crystallized at approximately 650 C and exhibit ferroelectric properties comparable to films and powders produced by other techniques which require higher crystallization temperatures. 2 figs.

  5. Room temperature multiferroic properties of (Fe{sub x}, Sr{sub 1−x})TiO{sub 3} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyoung-Tae; Kim, Cheolbok; Fang, Sheng-Po; Yoon, Yong-Kyu, E-mail: ykyoon@ece.ufl.edu [Department of Electrical and Computer Engineering, University of Florida, Gainesville, Florida 32611 (United States)

    2014-09-08

    This letter reports the structural, dielectric, ferroelectric, and magnetic properties of Fe substituted SrTiO{sub 3} thin films in room temperature. The structural data obtained from x-ray diffraction indicates that (Fe{sub x},Sr{sub 1−x})TiO{sub 3}, the so called FST, transforms from pseudocubic to tetragonal structures with increase of the Fe content in SrTiO{sub 3} thin films, featuring the ferroelectricity, while vibrating sample magnetometer measurements show magnetic hysteresis loops for the samples with low iron contents indicating their ferromagnetism. The characterized ferroelectricity and ferromagnetism confirms strong multiferroitism of the single phase FST thin films in room temperature. Also, an FST thin film metal-insulator-metal multiferroic capacitor has been fabricated and characterized in microwave frequencies between 10 MHz and 5 GHz. A capacitor based on Fe{sub 0.1}Sr{sub 0.9}TiO{sub 3} with a thickness of 260 nm shows a high electric tunability of 18.6% at 10 V and a maximum magnetodielectric value of 1.37% at 0.4 mT with a loss tangent of 0.021 at 1 GHz. This high tuning and low loss makes this material as a good candidate for frequency agile microwave devices such as tunable filters, phase shifters, and antennas.

  6. Low-Cost Detection of Thin Film Stress during Fabrication

    Science.gov (United States)

    Nabors, Sammy A.

    2015-01-01

    NASA's Marshall Space Flight Center has developed a simple, cost-effective optical method for thin film stress measurements during growth and/or subsequent annealing processes. Stress arising in thin film fabrication presents production challenges for electronic devices, sensors, and optical coatings; it can lead to substrate distortion and deformation, impacting the performance of thin film products. NASA's technique measures in-situ stress using a simple, noncontact fiber optic probe in the thin film vacuum deposition chamber. This enables real-time monitoring of stress during the fabrication process and allows for efficient control of deposition process parameters. By modifying process parameters in real time during fabrication, thin film stress can be optimized or controlled, improving thin film product performance.

  7. A thermally robust and thickness independent ferroelectric phase in laminated hafnium zirconium oxide

    Directory of Open Access Journals (Sweden)

    S. Riedel

    2016-09-01

    Full Text Available Ferroelectric properties in hafnium oxide based thin films have recovered the scaling potential for ferroelectric memories due to their ultra-thin-film- and CMOS-compatibility. However, the variety of physical phenomena connected to ferroelectricity allows a wider range of applications for these materials than ferroelectric memory. Especially mixed HfxZr1-xO2 thin films exhibit a broad compositional range of ferroelectric phase stability and provide the possibility to tailor material properties for multiple applications. Here it is shown that the limited thermal stability and thick-film capability of HfxZr1-xO2 can be overcome by a laminated approach using alumina interlayers.

  8. Overview and Challenges of Thin Film Solar Electric Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Ullal, H. S.

    2008-12-01

    In this paper, we report on the significant progress made worldwide by thin-film solar cells, namely, amorphous silicon (a-Si), cadmium telluride (CdTe), and copper indium gallium diselenide (CIGS). Thin-film photovoltaic (PV) technology status is also discussed in detail. In addition, R&D and technology challenges in all three areas are elucidated. The worldwide estimated projection for thin-film PV technology production capacity announcements are estimated at more than 5000 MW by 2010.

  9. Polarized Neutron Reflectivity Simulation of Ferromagnet/ Antiferromagnet Thin Films

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ki Yeon; Lee, Jeong Soo

    2008-02-15

    This report investigates the current simulating and fitting programs capable of calculating the polarized neutron reflectivity of the exchange-biased ferromagnet/antiferromagnet magnetic thin films. The adequate programs are selected depending on whether nonspin flip and spin flip reflectivities of magnetic thin films and good user interface are available or not. The exchange-biased systems such as Fe/Cr, Co/CoO, CoFe/IrMn/Py thin films have been simulated successfully with selected programs.

  10. Polycrystalline-thin-film thermophotovoltaic cells

    Science.gov (United States)

    Dhere, Neelkanth G.

    1996-02-01

    Thermophotovoltaic (TPV) cells convert thermal energy to electricity. Modularity, portability, silent operation, absence of moving parts, reduced air pollution, rapid start-up, high power densities, potentially high conversion efficiencies, choice of a wide range of heat sources employing fossil fuels, biomass, and even solar radiation are key advantages of TPV cells in comparison with fuel cells, thermionic and thermoelectric convertors, and heat engines. The potential applications of TPV systems include: remote electricity supplies, transportation, co-generation, electric-grid independent appliances, and space, aerospace, and military power applications. The range of bandgaps for achieving high conversion efficiencies using low temperature (1000-2000 K) black-body or selective radiators is in the 0.5-0.75 eV range. Present high efficiency convertors are based on single crystalline materials such as In1-xGaxAs, GaSb, and Ga1-xInxSb. Several polycrystalline thin films such as Hg1-xCdxTe, Sn1-xCd2xTe2, and Pb1-xCdxTe, etc., have great potential for economic large-scale applications. A small fraction of the high concentration of charge carriers generated at high fluences effectively saturates the large density of defects in polycrystalline thin films. Photovoltaic conversion efficiencies of polycrystalline thin films and PV solar cells are comparable to single crystalline Si solar cells, e.g., 17.1% for CuIn1-xGaxSe2 and 15.8% for CdTe. The best recombination-state density Nt is in the range of 10-15-10-16 cm-3 acceptable for TPV applications. Higher efficiencies may be achieved because of the higher fluences, possibility of bandgap tailoring, and use of selective emitters such as rare earth oxides (erbia, holmia, yttria) and rare earth-yttrium aluminium garnets. As compared to higher bandgap semiconductors such as CdTe, it is easier to dope the lower bandgap semiconductors. TPV cell development can benefit from the more mature PV solar cell and opto

  11. Elastic Properties of Molecular Glass Thin Films

    Science.gov (United States)

    Torres, Jessica

    2011-12-01

    This dissertation provides a fundamental understanding of the impact of bulk polymer properties on the nanometer length scale modulus. The elastic modulus of amorphous organic thin films is examined using a surface wrinkling technique. Potential correlations between thin film behavior and intrinsic properties such as flexibility and chain length are explored. Thermal properties, glass transition temperature (Tg) and the coefficient of thermal expansion, are examined along with the moduli of these thin films. It is found that the nanometer length scale behavior of flexible polymers correlates to its bulk Tg and not the polymers intrinsic size. It is also found that decreases in the modulus of ultrathin flexible films is not correlated with the observed Tg decrease in films of the same thickness. Techniques to circumvent reductions from bulk modulus were also demonstrated. However, as chain flexibility is reduced the modulus becomes thickness independent down to 10 nm. Similarly for this series minor reductions in T g were obtained. To further understand the impact of the intrinsic size and processing conditions; this wrinkling instability was also utilized to determine the modulus of small organic electronic materials at various deposition conditions. Lastly, this wrinkling instability is exploited for development of poly furfuryl alcohol wrinkles. A two-step wrinkling process is developed via an acid catalyzed polymerization of a drop cast solution of furfuryl alcohol and photo acid generator. The ability to control the surface topology and tune the wrinkle wavelength with processing parameters such as substrate temperature and photo acid generator concentration is also demonstrated. Well-ordered linear, circular, and curvilinear patterns are also obtained by selective ultraviolet exposure and polymerization of the furfuryl alcohol film. As a carbon precursor a thorough understanding of this wrinkling instability can have applications in a wide variety of

  12. Crystalline thin films: The electrochemical atomic layer deposition (ECALD) view

    CSIR Research Space (South Africa)

    Modibedi, M

    2011-09-01

    Full Text Available Electrochemical atomic layer deposition technique is selected as one of the methods to prepare thin films for various applications, including electrocatalytic materials and compound....

  13. Sputtering materials for VLSI and thin film devices

    CERN Document Server

    Sarkar, Jaydeep

    2010-01-01

    An important resource for students, engineers and researchers working in the area of thin film deposition using physical vapor deposition (e.g. sputtering) for semiconductor, liquid crystal displays, high density recording media and photovoltaic device (e.g. thin film solar cell) manufacturing. This book also reviews microelectronics industry topics such as history of inventions and technology trends, recent developments in sputtering technologies, manufacturing steps that require sputtering of thin films, the properties of thin films and the role of sputtering target performance on overall p

  14. Characterizations of photoconductivity of graphene oxide thin films

    Directory of Open Access Journals (Sweden)

    Shiang-Kuo Chang-Jian

    2012-06-01

    Full Text Available Characterizations of photoresponse of a graphene oxide (GO thin film to a near infrared laser light were studied. Results showed the photocurrent in the GO thin film was cathodic, always flowing in an opposite direction to the initial current generated by the preset bias voltage that shows a fundamental discrepancy from the photocurrent in the reduced graphene oxide thin film. Light illumination on the GO thin film thus results in more free electrons that offset the initial current. By examining GO thin films reduced at different temperatures, the critical temperature for reversing the photocurrent from cathodic to anodic was found around 187°C. The dynamic photoresponse for the GO thin film was further characterized through the response time constants within the laser on and off durations, denoted as τon and τoff, respectively. τon for the GO thin film was comparable to the other carbon-based thin films such as carbon nanotubes and graphenes. τoff was, however, much larger than that of the other's. This discrepancy was attributable to the retardation of exciton recombination rate thanks to the existing oxygen functional groups and defects in the GO thin films.

  15. Thin-Film Materials Synthesis and Processing Facility

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Provides a wide capability for deposition and processing of thin films, including sputter and ion-beam deposition, thermal evaporation, electro-deposition,...

  16. Physics of thin films advances in research and development

    CERN Document Server

    Hass, Georg; Vossen, John L

    2013-01-01

    Physics of Thin Films: Advances in Research and Development, Volume 12 reviews advances that have been made in research and development concerning the physics of thin films. This volume covers a wide range of preparative approaches, physics phenomena, and applications related to thin films. This book is comprised of four chapters and begins with a discussion on metal coatings and protective layers for front surface mirrors used at various angles of incidence from the ultraviolet to the far infrared. Thin-film materials and deposition conditions suitable for minimizing reflectance changes with

  17. Cell patterning using microstructured ferromagnetic thin films

    Science.gov (United States)

    Lai, Mei-Feng; Chen, Chia-Yi; Lee, Chiun-Peng; Huang, Hao-Ting; Ger, Tzong-Rong; Wei, Zung-Hang

    2010-05-01

    Magnetic cell patterning is demonstrated through controlling the micromagnetic states in microstructured ferromagnetic thin films. The number of magnetic nanoparticles entering the cells by endocytosis can be determined by magnetophoresis experiment and is found to be dependent of the cocultured extracellular magnetic nanoparticles concentrations. In zigzag magnetic films the effects of cell patterning differ for magnetic films at as-deposited state and at remanent states after applying fields in different directions. Remanent states of concentric rings are proposed for cell patterning. Cells can be arranged at any positions in sequence by selectively changing the magnetic field directions.

  18. Birefringent thin films and polarizing elements

    CERN Document Server

    Hodgkinson, Ian J

    1997-01-01

    This book describes the propagation of light in biaxial media, the properties of biaxial thin films, and applications such as birefringent filters for tuning the wavelength of dye lasers.A novel feature of the first part is the parallel treatment of Stokes, Jones, and Berreman matrix formalisms in a chapter-by-chapter development of wave equations, basis vectors, transfer matrices, reflection and transmission equations, and guided waves. Computational tools for MATLAB are included.The second part focuses on an emerging planar technology in which anisotropic microstructures are formed by obliqu

  19. Thin-film optical shutter. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Matlow, S.L.

    1981-02-01

    A specific embodiment of macroconjugated macromolecules, the poly (p-phenylene)'s, has been chosen as the one most likely to meet all of the requirements of the Thin Film Optical Shutter project (TFOS). The reason for this choice is included. In order to be able to make meaningful calculations of the thermodynamic and optical properties of the poly (p-phenylene)'s a new quantum mechanical method was developed - Equilibrium Bond Length (EBL) Theory. Some results of EBL Theory are included.

  20. Slip effects in polymer thin films

    OpenAIRE

    Baeumchen, O.; Jacobs, K.

    2009-01-01

    Probing the fluid dynamics of thin films is an excellent tool to study the solid/liquid boundary condition. There is no need for external stimulation or pumping of the liquid due to the fact that the dewetting process, an internal mechanism, acts as a driving force for liquid flow. Viscous dissipation within the liquid and slippage balance interfacial forces. Thereby, friction at the solid/liquid interface plays a key role towards the flow dynamics of the liquid. Probing the temporal and spat...

  1. Pyroelectric coupling in thin film photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Karpov, Victor G.; Shvydka, Diana [Department of Physics and Astronomy, University of Toledo, OH (United States)

    2007-07-15

    We propose a theory of thin film photovoltaics in which one of the polycrystalline films is made of a pyroelectric material grains such as CdS. That film is shown to generate strong polarization improving the device open circuit voltage. Implications and supporting facts for the major photovoltaic types based on CdTe and CuIn(Ga)Se{sub 2} absorber layers are discussed. Band diagram of a pyroelectric (CdS) based PV junction. Arrows represent the charge carrier photo-generation. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  2. Thin-Film Photovoltaic Device Fabrication

    Science.gov (United States)

    Scofield, John H.

    2003-01-01

    This project will primarily involve the fabrication and characterization of thin films and devices for photovoltaic applications. The materials involved include Il-VI materials such as zinc oxide, cadmium sulfide, and doped analogs. The equipment ot be used will be sputtering and physical evaporations. The types of characterization includes electrical, XRD, SEM and CV and related measurements to establish the efficiency of the devices. The faculty fellow will be involved in a research team composed of NASA and University researchers as well as students and other junior researchers.

  3. Infrared control coating of thin film devices

    Energy Technology Data Exchange (ETDEWEB)

    Berland, Brian Spencer; Stowell, Jr., Michael Wayne; Hollingsworth, Russell

    2017-02-28

    Systems and methods for creating an infrared-control coated thin film device with certain visible light transmittance and infrared reflectance properties are disclosed. The device may be made using various techniques including physical vapor deposition, chemical vapor deposition, thermal evaporation, pulsed laser deposition, sputter deposition, and sol-gel processes. In particular, a pulsed energy microwave plasma enhanced chemical vapor deposition process may be used. Production of the device may occur at speeds greater than 50 Angstroms/second and temperatures lower than 200.degree. C.

  4. Interface Effects in Perovskite Thin Films

    Science.gov (United States)

    Lepetit, Marie-Bernadette; Mercey, Bernard; Simon, Charles

    2012-02-01

    The control of matter properties (transport, magnetic, dielectric,…) using synthesis as thin films is strongly hindered by the lack of reliable theories, able to guide the design of new systems, through the understanding of the interface effects and of the way the substrate constraints are imposed on the material. The present Letter analyzes the energetic contributions at the interfaces, and proposes a model describing the microscopic mechanisms governing the interactions at an epitaxial interface between a manganite and another transition metal oxide in perovskite structure (as for instance SrTiO3). The model is checked against experimental results and literature analysis.

  5. Polymer surfaces, interfaces and thin films

    Energy Technology Data Exchange (ETDEWEB)

    Stamm, M. [Max-Planck-Institut fuer Polymerforschung, Mainz (Germany)

    1996-11-01

    Neutron reflectometry can be used in various ways to investigate surfaces, interfaces and thin films of polymers. Its potential comes mostly from the possibilities offered by selective deuteration, where a particular component can be made visible with respect to its activity at the interface. In addition the depth resolution is much better than with most other direct techniques, and details of the profiles may be resolved. Several examples will be discussed including the segment diffusion at the interface between two polymer films, the determination of the narrow interfaces between incompatible polymer blends and the development of order in thin diblock copolymer films. (author) 10 figs., 2 tabs., 38 refs.

  6. Excimer laser etching of polyimide

    Science.gov (United States)

    Brannon, J. H.; Lankard, J. R.; Baise, A. I.; Burns, F.; Kaufman, J.

    1985-09-01

    It is reported that thin films of polyimide are efficiently etched in air at pulsed excimer laser wavelengths of 248, 308, and 351 nm. Etch rate versus incident fluence data are found to obey a Beer-Lambert etching relation. Sharp laser fluence thresholds for significant etching are found to correlate with the wavelength-dependent absorption coefficient. The absorbed energy density required to initiate significant etching is found, within experimental error, to be independent of the wavelengths examined. It is felt that this information demonstrates the predominantly thermal nature of the laser etching mechanism. Additionally, infrared spectroscopy and coupled gas chromatography/mass spectroscopy were used to identify several gases evolved during pulsed laser etching of polyimide in both air and vacuum.

  7. Chemical resistance of thin film materials based on metal oxides grown by atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Sammelselg, Väino, E-mail: vaino.sammelselg@ut.ee [Institute of Physics, University of Tartu, Riia 142, 51014 Tartu (Estonia); Institute of Chemistry, University of Tartu, Ravila 14a, 50411 Tartu (Estonia); Netšipailo, Ivan; Aidla, Aleks; Tarre, Aivar; Aarik, Lauri; Asari, Jelena; Ritslaid, Peeter; Aarik, Jaan [Institute of Physics, University of Tartu, Riia 142, 51014 Tartu (Estonia)

    2013-09-02

    Etching rate of technologically important metal oxide thin films in hot sulphuric acid was investigated. The films of Al-, Ti-, Cr-, and Ta-oxides studied were grown by atomic layer deposition (ALD) method on silicon substrates from different precursors in large ranges of growth temperatures (80–900 °C) in order to reveal process parameters that allow deposition of coatings with higher chemical resistance. The results obtained demonstrate that application of processes that yield films with lower concentration of residual impurities as well as crystallization of films in thermal ALD processes leads to significant decrease of etching rate. Crystalline films of materials studied showed etching rates down to values of < 5 pm/s. - Highlights: • Etching of atomic layer deposited thin metal oxide films in hot H{sub 2}SO{sub 4} was studied. • Smallest etching rates of < 5 pm/s for TiO{sub 2}, Al{sub 2}O{sub 3}, and Cr{sub 2}O{sub 3} were reached. • Highest etching rate of 2.8 nm/s for Al{sub 2}O{sub 3} was occurred. • Remarkable differences in etching of non- and crystalline films were observed.

  8. Integration of Multi-Functional Oxide Thin Film Heterostructures with III-V Semiconductors

    Science.gov (United States)

    Rahman, Md. Shafiqur

    Integration of multi-functional oxide thin films with semiconductors has attracted considerable attention in recent years due to their potential applications in sensing and logic functionalities that can be incorporated in future system-on-a-chip devices. III-V semiconductor, for example, GaAs, have higher saturated electron velocity and mobility allowing transistors based on GaAs to operate at a much higher frequency with less noise compared to Si. In addition, because of its direct bandgap a number of efficient optical devices are possible and by oxide integrating with other III-V semiconductors the wavelengths can be made tunable through hetero-engineering of the bandgap. This study, based on the use of SrTiO3 (STO) films grown on GaAs (001) substrates by molecular beam epitaxy (MBE) as an intermediate buffer layer for the hetero-epitaxial growth of ferromagnetic La0.7Sr 0.3MnO3 (LSMO) and room temperature multiferroic BiFeO 3 (BFO) thin films and superlattice structures using pulsed laser deposition (PLD). The properties of the multilayer thin films in terms of growth modes, lattice spacing/strain, interface structures and texture were characterized by the in-situ reflection high energy electron diffraction (RHEED). The crystalline quality and chemical composition of the complex oxide heterostructures were investigated by a combination of X-ray diffraction (XRD) and X-ray photoelectron absorption spectroscopy (XPS). Surface morphology, piezo-response with domain structure, and ferroelectric switching observations were carried out on the thin film samples using a scanning probe microscope operated as a piezoresponse force microscopy (PFM) in the contact mode. The magnetization measurements with field cooling exhibit a surprising increment in magnetic moment with enhanced magnetic hysteresis squareness. This is the effect of exchange interaction between the antiferromagnetic BFO and the ferromagnetic LSMO at the interface. The integration of BFO materials with

  9. XPS and UPS Investigation of NH4OH-Exposed Cu(In,Ga)Se2 Thin Films

    Energy Technology Data Exchange (ETDEWEB)

    Perkins, C. L.; Hasoon, F. S.; Al-Thani, H. A.; Asher, S. E.; Sheldon, P.

    2005-02-01

    Photoelectron spectroscopy was used to determine the compositional and electronic changes occurring in Cu(In,Ga)Se2 thin films as a result of immersion in aqueous ammonia solution. We find that NH4OH-treated CIGS surfaces are preferentially etched of indium and gallium, resulting in the formation of a thin layer of a degenerate Cu-Se compound that we tentatively identify as Cu2Se. The work function of ammonia-treated samples is found to increase by 0.6 eV relative to as-grown CIGS thin films. The uniformity of chemical bath effects (etching & deposition) was found to be improved by the addition to the bath of a non-ionic surfactant. Initial device results show that the new surfactant-based chemical bath deposition (CBD) method may lead to better and thinner CdS buffer layers.

  10. Processing Chip for Thin Film Bulk Acoustic Resonator Mass Sensor

    Directory of Open Access Journals (Sweden)

    Pengcheng Jin

    2012-01-01

    Full Text Available Aimed at portable application, a new integrated process chip for thin film bulk acoustic resonator (FBAR mass sensor is proposed and verified with 0.18 um CMOS processing in this paper. The longitudinal mode FBAR with back-etched structure is fabricated, which has resonant frequency 1.878 GHz and factor 1200. The FBAR oscillator, based on the current-reuse structure, is designed with Modified Butterworth Van Dyke (MBVD model. The result shows that the FBAR oscillator operates at 1.878 GHz with a phase noise of −107 dBc/Hz and −135 dBc/Hz at 10 KHz and 100 KHz frequency offset, respectively. The whole process chip size with pads is 1300 μm × 950 μm. The FBAR and process chip are bonded together to sense tiny mass. The measurement results show that this chip precision is 1 KHz with the FBAR frequency gap from 25 kHz to 25 MHz.

  11. Analysis of thin-film photonic crystal microstructures

    CERN Document Server

    Pottage, J M

    2003-01-01

    Optical-scale microstructures containing thin-film photonic crystals (TFPCs) are modelled by transfer/scattering matrix methods, based on Fourier-series expansion of the optical Bloch eigenmodes. The majority of the TFPCs considered consist of 2D arrays of holes arranged in a triangular lattice, etched into high-index Al sub x Ga sub 1 sub - sub x As and placed on a low-index oxidised substrate. These TFPCs can be easily fabricated by standard electron-beam lithography techniques. Unlike most photonic crystal devices that have been proposed, our 'intra-pass-band' TFPCs would work by exploiting the somewhat surprising properties of propagating optical Bloch waves rather than directly relying on photonic bandgaps. By numerical modelling, it is demonstrated that 2D-patterned TFPCs can support highly dispersive high-Q quasi-guided and truly-guided resonant modes, and the unusual properties of these modes are explained in terms of their Bloch-wave compositions. Modal dispersion diagrams of TFPCs, showing the loci ...

  12. Model‐Based Analysis of the ZrO2 Etching Mechanism in Inductively Coupled BCl3/Ar and BCl3/CHF3/Ar Plasmas

    National Research Council Canada - National Science Library

    Kim, Mansu; Min, Nam‐Ki; Yun, Sun Jin; Lee, Hyun Woo; Efremov, Alexander M; Kwon, Kwang‐Ho

    2008-01-01

    The etching mechanism of ZrO 2 thin films and etch selectivity over some materials in both BCl 3 /Ar and BCl3/CHF3/Ar plasmas are investigated using a combination of experimental and modeling methods...

  13. Thin-film Rechargeable Lithium Batteries

    Science.gov (United States)

    Bates, J. B.; Gruzalski, G. R.; Dudney, N. J.; Luck, C. F.; Yu, X.

    1993-11-01

    Rechargeable thin films batteries with lithium metal anodes, an amorphous inorganic electrolyte, and cathodes of lithium intercalation compounds have been fabricated and characterized. The cathodes include TiS{sub 2}, the {omega} phase of V{sub 2}O{sub 5}, and the cubic spinel Li{sub x}Mn{sub 2}O{sub 4} with open circuit voltages at full charge of about 2.5 V, 3.7 V, and 4.2 V, respectively. The development of these robust cells, which can be cycled thousands of times, was possible because of the stability of the amorphous lithium electrolyte, lithium phosphorus oxynitride. This material has a typical composition of Li{sub 2.9}PO{sub 3.3}N{sub 0.46} and a conductivity at 25 C of 2 {mu}S/cm. Thin film cells have been cycled at 100% depth of discharge using current densities of 2 to 100 {mu}A/cm{sup 2}. The polarization resistance of the cells is due to the slow insertion rate of Li{sup +} ions into the cathode. Chemical diffusion coefficients for Li{sup +} ions in the three types of cathodes have been estimated from the analysis of ac impedance measurements.

  14. Pulsed laser deposition of pepsin thin films

    Energy Technology Data Exchange (ETDEWEB)

    Kecskemeti, G. [Department of Optics and Quantum Electronics, University of Szeged, H-6720 Szeged, Dom ter 9 (Hungary)]. E-mail: kega@physx.u-szeged.hu; Kresz, N. [Department of Optics and Quantum Electronics, University of Szeged, H-6720 Szeged, Dom ter 9 (Hungary); Smausz, T. [Hungarian Academy of Sciences and University of Szeged, Research Group on Laser Physics, H-6720 Szeged, Dom ter 9 (Hungary); Hopp, B. [Hungarian Academy of Sciences and University of Szeged, Research Group on Laser Physics, H-6720 Szeged, Dom ter 9 (Hungary); Nogradi, A. [Department of Ophthalmology, University of Szeged, H-6720, Szeged, Koranyi fasor 10-11 (Hungary)

    2005-07-15

    Pulsed laser deposition (PLD) of organic and biological thin films has been extensively studied due to its importance in medical applications among others. Our investigations and results on PLD of a digestion catalyzing enzyme, pepsin, are presented. Targets pressed from pepsin powder were ablated with pulses of an ArF excimer laser ({lambda} = 193 nm, FWHM = 30 ns), the applied fluence was varied between 0.24 and 5.1 J/cm{sup 2}. The pressure in the PLD chamber was 2.7 x 10{sup -3} Pa. The thin layers were deposited onto glass and KBr substrates. Our IR spectroscopic measurements proved that the chemical composition of deposited thin films is similar to that of the target material deposited at 0.5 and 1.3 J/cm{sup 2}. The protein digesting capacity of the transferred pepsin was tested by adapting a modified 'protein cube' method. Dissolution of the ovalbumin sections proved that the deposited layers consisted of catalytically active pepsin.

  15. Ta-based amorphous metal thin films

    Energy Technology Data Exchange (ETDEWEB)

    McGlone, John M., E-mail: mcglone@eecs.oregonstate.edu [School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, OR 97331-5501 (United States); Olsen, Kristopher R. [Department of Chemistry, Oregon State University, Corvallis, OR 97331-4003 (United States); Stickle, William F.; Abbott, James E.; Pugliese, Roberto A.; Long, Greg S. [Hewlett-Packard Company, Corvallis, OR, 97333 (United States); Keszler, Douglas A. [Department of Chemistry, Oregon State University, Corvallis, OR 97331-4003 (United States); Wager, John F. [School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, OR 97331-5501 (United States)

    2015-11-25

    With their lack of grains and grain boundaries, amorphous metals are known to possess advantageous mechanical properties and enhanced chemical stability relative to crystalline metals. Commonly, however, they exhibit poor high-temperature stability because of their metastable nature. Here, we describe two new Ta-based ternary metal thin films that retain thermal stability to 600 °C and above. The new thin-film compositions, Ta{sub 2}Ni{sub 2}Si{sub 1} and Ta{sub 2}Mo{sub 2}Si{sub 1}, are amorphous, exhibiting ultra-smooth surfaces (<0.4 nm) and resistivities typical of amorphous metals (224 and 177 μΩ cm, respectively). - Highlights: • New Ta-based amorphous metals were sputter deposited from individual targets. • As-deposited amorphous structure was confirmed through diffraction techniques. • Electrical and surface properties were characterized and possess smooth surfaces. • No evidence of crystallization up to 600 °C (TaNiSi) and 800 °C (TaMoSi). • Ultra-smooth surfaces remained unchanged up to crystallization temperature.

  16. Ultrafast Photovoltaic Response in Ferroelectric Nanolayers

    Energy Technology Data Exchange (ETDEWEB)

    Daranciang, Dan

    2012-02-15

    We show that light drives large-amplitude structural changes in thin films of the prototypical ferroelectric PbTiO3 via direct coupling to its intrinsic photovoltaic response. Using time-resolved x-ray scattering to visualize atomic displacements on femtosecond timescales, photoinduced changes in the unit-cell tetragonality are observed. These are driven by the motion of photogenerated free charges within the ferroelectric and can be simply explained by a model including both shift and screening currents, associated with the displacement of electrons first antiparallel to and then parallel to the ferroelectric polarization direction.

  17. Chemical segregation and self polarisation in ferroelectrics

    Directory of Open Access Journals (Sweden)

    Bernard E. Watts

    2009-06-01

    Full Text Available Chemical partitioning or segregation is commonly encountered in solid-state syntheses. It is driven by compositional, thermal and electric field gradients. These phenomena can be quite extreme in thin films and lead to notable effects on the electrical properties of ferroelectrics. The segregation in ferroelectric thin films will be illustrated and the mechanisms explained in terms of diffusion processes driven by a potential gradient of the oxygen. The hypothesis can also explain self polarisation and imprint in ferroelectric hysteresis.

  18. The development of potassium tantalate niobate thin films for satellite-based pyroelectric detectors

    Energy Technology Data Exchange (ETDEWEB)

    Cherry, Hilary B.B. [Univ. of California, Berkeley, CA (United States). Dept. of Materials Science and Mineral Engineering

    1997-05-01

    Potassium tantalate niobate (KTN) pyroelectric detectors are expected to provide detectivities, of 3.7 x 1011 cmHz 1/2W-1 for satellite-based infrared detection at 90 K. The background limited detectivity for a room-temperature thermal detector is 1.8 x 1010 cmHz1/2W-1 . KTN is a unique ferroelectric for this application because of the ability to tailor the temperature of its pyroelectric response by adjusting its ratio of tantalum to niobium. The ability to fabricate high quality KTN thin films on Si-based substrates is crucial to the development of KTN pyroelectric detectors. SixNymembranes created on the Si substrate will provide the weak thermal link necessary to reach background limited detectivities. The device dimensions obtainable by thin film processing are expected to increase the ferroelectric response by 20 times over bulk fabricated KTN detectors. In addition, microfabrication techniques allow for easier array development. This is the first reported attempt at growth of KTN films on Si-based substrates. Pure phase perovskite films were grown by pulsed laser deposition on SrRuO3/Pt/Ti/SixNy/Si and SrRuO3/SixNy/Si structures; room temperature dielectric permittivities for the KTN films were 290 and 2.5, respectively. The dielectric permittivity for bulk grown, single crystal KTN is ~380. In addition to depressed dielectric permittivities, no ferroelectric hysteresis was found between 80 and 300 K for either structure. RBS, AES, TEM and multi-frequency dielectric measurements were used to investigate the origin of this apparent lack of ferroelectricity. Other issues addressed by this dissertation include: the role of oxygen and target density during pulsed laser deposition of KTN thin films; the use of YBCO, LSC and Pt as direct contact bottom electrodes to the KTN films, and the adhesion of the bottom

  19. Antibacterial effects of silver-doped hydroxyapatite thin films sputter deposited on titanium

    Energy Technology Data Exchange (ETDEWEB)

    Trujillo, Nathan A. [Dept. of Mechanical Engineering, Colorado State University, Fort Collins, CO 80523-1374 (United States); School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80523-1376 (United States); Oldinski, Rachael A. [College of Engineering and Mathematical Science, University of Vermont, Burlington, VT 05405 (United States); Dept. of Bioengineering, University of Washington, Seattle, WA 98195-5061 (United States); Ma, Hongyan; Bryers, James D. [Dept. of Bioengineering, University of Washington, Seattle, WA 98195-5061 (United States); Williams, John D. [Dept. of Mechanical Engineering, Colorado State University, Fort Collins, CO 80523-1374 (United States); Popat, Ketul C., E-mail: Ketul.Popat@colostate.edu [Dept. of Mechanical Engineering, Colorado State University, Fort Collins, CO 80523-1374 (United States); School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80523-1376 (United States)

    2012-12-01

    Since many orthopedic implants fail as a result of loosening, wear, and inflammation caused by repeated loading on the joints, coatings such as hydroxyapatite (HAp) on titanium with a unique topography have been shown to improve the interface between the implant and the natural tissue. Another serious problem with long-term or ideally permanent implants is infection. It is important to prevent initial bacterial colonization as existing colonies have the potential to become encased in an extracellular matrix polymer (biofilm) that is resistant to antibacterial agents. In this study, plasma-based ion implantation was used to examine the effects of pre-etching on plain titanium. Topographical changes to the titanium samples were examined and compared via scanning electron microscopy. Hydroxyapatite and silver-doped hydroxyapatite thin films were then sputter deposited on titanium substrates etched at - 700 eV. For silver-doped films, two concentrations of silver ({approx} 0.5 wt.% and {approx} 1.5 wt.%) were used. Silver concentrations in the film were determined using energy dispersive X-ray spectroscopy. Hydroxyapatite film thicknesses were determined by measuring the surface profile using contact profilometry. Staphylococcus epidermidis and Pseudomonas aeruginosa adhesion studies were performed on plain titanium, titanium coated with hydroxyapatite, titanium coated with {approx} 0.5 wt.% silver-doped hydroxyapatite, and titanium coated with {approx} 1.5 wt.% silver-doped hydroxyapatite. Results indicate that less bacteria adhered to surfaces containing hydroxyapatite and silver; further, as the hydroxyapatite films delaminated, silver ions were released which killed bacteria in suspension. - Highlights: Black-Right-Pointing-Pointer We have developed a combination of plasma-based ion implantation and ion beam sputter deposition technique. Black-Right-Pointing-Pointer Silver-doped hydroxyapatite thin films on titanium were developed. Black-Right-Pointing-Pointer The

  20. Thin films of metal-organic compounds and metal nanoparticle ...

    Indian Academy of Sciences (India)

    Thin films based on two very different metal-organic systems are developed and some nonlinear optical applications are explored. A family of zinc complexes which form perfectly polar assemblies in their crystalline state are found to organize as uniaxially oriented crystallites in vapor deposited thin films on glass substrate.

  1. Deposition of metal chalcogenide thin films by successive ionic layer ...

    Indian Academy of Sciences (India)

    In the present review article, we have described in detail, successive ionic layer adsorption and reaction (SILAR) method of metal chalcogenide thin films. An extensive survey of thin film materials prepared during past years is made to demonstrate the versatility of SILAR method. Their preparative parameters and structural, ...

  2. Synthesis and characterization of zinc oxide thin films prepared by ...

    African Journals Online (AJOL)

    Synthesis and characterization of zinc oxide thin films prepared by chemical the bath technique. ... The band gap energy of the samples deduced from the fundamental absorption edge gave the values of 1.60 – 2.80 eV for the direct ... Keywords: Chemical bath technique, zinc oxide thin films, x-ray, photovoltaic cells ...

  3. Optimized grid design for thin film solar panels

    NARCIS (Netherlands)

    Deelen, J. van; Klerk, L.; Barink, M.

    2014-01-01

    There is a gap in efficiency between record thin film cells and mass produced thin film solar panels. In this paper we quantify the effect of monolithic integration on power output for various configurations by modeling and present metallization as a way to improve efficiency of solar panels. Grid

  4. Cadmium sulphide thin film for application in gamma radiation ...

    African Journals Online (AJOL)

    Cadmium Sulphide (CdS) thin film was prepared using pyrolytic spraying technique and then irradiated at varied gamma dosage. The CdS thin film absorption before gamma irradiation was 0.6497. Absorbed doses were computed using standard equation established for an integrating dosimeter. The plot of absorbed dose ...

  5. Fabrication and Performance Study of Uniform Thin Film Integrated ...

    African Journals Online (AJOL)

    The transmission line model of a uniform rectangular thin film R-C-KR structure consisting of a dielectric layer of constant per unit shunt capacitance C sandwiched between two resistive thin films of constant per unit length resistances R and KR has been analysed using the concept of matrix parameter functions. The above ...

  6. Tools to Synthesize the Learning of Thin Films

    Science.gov (United States)

    Rojas, Roberto; Fuster, Gonzalo; Slusarenko, Viktor

    2011-01-01

    After a review of textbooks written for undergraduate courses in physics, we have found that discussions on thin films are mostly incomplete. They consider the reflected and not the transmitted light for two instead of the four types of thin films. In this work, we complement the discussion in elementary textbooks, by analysing the phase…

  7. Plasmonic versus dielectric enhancement in thin-film solar cells

    DEFF Research Database (Denmark)

    Dühring, Maria Bayard; Mortensen, N. Asger; Sigmund, Ole

    2012-01-01

    Several studies have indicated that broadband absorption of thin-film solar cells can be enhanced by use of surface-plasmon induced resonances of metallic parts like strips or particles. The metallic parts may create localized modes or scatter incoming light to increase absorption in thin-film se...

  8. Photoconductivity of ZnTe thin films at elevated temperatures

    Indian Academy of Sciences (India)

    Unknown

    made to assess the predominance of the Poole–Frenkel con- duction mechanism in the dark and photoconductivities of. ZnTe thin films at room temperature and higher ambient temperatures. 2. Experimental. ZnTe thin films of different thicknesses were deposited on properly cleaned glass substrates with the help of a Hind.

  9. Experimental and modeling analysis of highly oriented octithiophene thin films

    NARCIS (Netherlands)

    Videlot, C; Grayer, [No Value; Ackermann, J; El Kassmi, A; Fichou, D; Hadziioannou, G

    2003-01-01

    We present a detailed study on the structure and morphology of highly oriented thin films of octithiophene (8T), the longest non-substituted oligothiophene so far. 8T thin films are vacuum-deposited on glass substrates and oriented either vertically by adjusting deposition rate and substrate

  10. Ultra thin films of nanocrystalline Ge studied by AFM and ...

    Indian Academy of Sciences (India)

    Unknown

    possibility of developing quantum lasers, single electron transistors and various other applications.2 ... In the initial growth of thin films, three types of growth can occur, depending on the surface free energy of the ... nano devices and single electron transistors.9 In this context, initial growth stages of Ge ultra thin films on ...

  11. Characterization of ZnO thin films grown on different p-Si substrate elaborated by solgel spin-coating method

    Energy Technology Data Exchange (ETDEWEB)

    Chebil, W., E-mail: Chbil.widad@live.fr [Laboratoire Physico-chimie des Matériaux, Unité de Service Commun de Recherche “High resolution X-ray diffractometer”, Département de Physique, Université de Monastir, Faculté des Sciences de Monastir, Avenue de l’Environnement, 5019 Monastir (Tunisia); Fouzri, A. [Laboratoire Physico-chimie des Matériaux, Unité de Service Commun de Recherche “High resolution X-ray diffractometer”, Département de Physique, Université de Monastir, Faculté des Sciences de Monastir, Avenue de l’Environnement, 5019 Monastir (Tunisia); Institut Supérieur des Sciences Appliquées et de Technologie de Sousse, Université de Sousse (Tunisia); Fargi, A. [Laboratoire de Microélectronique et Instrumentation, Faculté des Sciences de Monastir, Université de Monastir, Avenue de l’environnement, 5019 Monastir (Tunisia); Azeza, B.; Zaaboub, Z. [Laboratoire Micro-Optoélectroniques et Nanostructures, Faculté des Sciences de Monastir, Université de Monastir, Avenue de l' environnement, 5019 Monastir (Tunisia); and others

    2015-10-15

    Highlights: • High quality ZnO thin films grown on different p-Si substrates were successful obtained by sol–gel process. • PL measurement revealed that ZnO thin film grown on porous Si has the better optical quality. • I–V characteristics for all heterojunctions exhibit successful diode formation. • The diode ZnO/PSi shows a better photovoltaic effect under illumination with a maximum {sub Voc} of 0.2 V. - Abstract: In this study, ZnO thin films are deposited by sol–gel technique on p-type crystalline silicon (Si) with [100] orientation, etched silicon and porous silicon. The structural analyses showed that the obtained thin films were polycrystalline with a hexagonal wurtzite structure and preferentially oriented along the c-axis direction. Morphological study revealed the presence of rounded and facetted grains irregularly distributed on the surface of all samples. PL spectra at room temperature revealed that ZnO thin film grown on porous Si has a strong UV emission with low defects in the visible region comparing with ZnO grown on plat Si and etched Si surface. The heterojunction parameters were evaluated from the (I–V) under dark and illumination at room temperature. The ideality factor, barrier height and series resistance of heterojunction grown on different p-Si substrates are determined by using different methods. Best electrical properties are obtained for ZnO layer deposited on porous silicon.

  12. Synthesis, deposition and characterization of ferroelectric films for electrooptic devices

    Science.gov (United States)

    Tunaboylu, Bahadir

    The use of integrable ferroelectric electro-optic thin films is a revolutionary approach in the development of high-speed, low-voltage and high-contrast ratio integrated electro-optic spatial light modulators (SLM) for free-space optoelectronic interconnects. Thin films offer improved performance over bulk ferroelectric (FE) materials because of their lower modulator capacitance and operation at high speeds with low switching energies. Integration of ferroelectric thin films with silicon technology will also impact both the uncooled infrared sensor and dynamic and nonvolatile memory technologies. Ferroelectrics such as lead lanthanum zirconate titanate (PLZT) and patassium tantalate niobate (KTN) present great potential for SLMs due to their large electro-optic (EO) effect in the bulk form. The development of thin-film SLMs require electro-optic films of high optical quality with good dielectric and EO properties. High quality thin films of PLZT and KTN were deposited using RF magnetron sputtering on r-plane sapphire substrates which offer integration capability with semiconductor devices. PLZT films with extremely large peak dielectric constant, 2800 at the Curie temperature of 180sp°C, were achieved with remarkably low dissipation loss factor leap forward for the FE-SLM technology with respect to the goal of fully integrated thin film electrooptic light modulators. Microstructural development and phase transformation kinetics in PLZT films were also analyzed for the first time and are presented here. Energy required for the formation of desirable perovskite phase was determined to be 322 kJ/mol. Single-phase PLZT films with larger average grain size showed higher dielectric constants and better EO properties as compared to films with smaller grain size. Furthermore, a method of sol-gel synthesis of KTN with reproducible characteristics was developed for fabrication of both thin films and homogeneous sputtering targets. Also for the first time, a stoichiometric

  13. Alloy Design Criteria for Solid Metal Dealloying of Thin Films

    Science.gov (United States)

    McCue, Ian; Demkowicz, Michael J.

    2017-11-01

    Liquid metal dealloying is a promising route for making metal nanocomposites with a wide range of microstructure morphologies. However, it is not well suited for synthesizing nanocomposites in thin-film form. We propose a new route to fabricating fully dense nanocomposite thin films by dealloying a binary parent alloy in a unary solid metal solvent. We fabricated and tested three thin-film diffusion couples to understand the alloy design criteria for synthesizing dealloyed thin films free of cracks and voids. We find that the best-quality dealloyed thin films may be obtained from alloys that do not undergo large volume changes upon dealloying and that exhibit minimal net vacancy flux during interdiffusion.

  14. Infrared analysis of thin films amorphous, hydrogenated carbon on silicon

    CERN Document Server

    Jacob, W; Schwarz-Selinger, T

    2000-01-01

    The infrared analysis of thin films on a thick substrate is discussed using the example of plasma-deposited, amorphous, hydrogenated carbon layers (a-C:H) on silicon substrates. The framework for the optical analysis of thin films is presented. The main characteristic of thin film optics is the occurrence of interference effects due to the coherent superposition of light multiply reflected at the various internal and external interfaces of the optical system. These interference effects lead to a sinusoidal variation of the transmitted and reflected intensity. As a consequence, the Lambert-Beer law is not applicable for the determination of the absorption coefficient of thin films. Furthermore, observable changes of the transmission and reflection spectra occur in the vicinity of strong absorption bands due to the Kramers-Kronig relation. For a sound data evaluation these effects have to be included in the analysis. To be able to extract the full information contained in a measured optical thin film spectrum, ...

  15. Nanocoatings and ultra-thin films technologies and applications

    CERN Document Server

    Tiginyanu, Ion

    2011-01-01

    Gives a comprehensive account of the developments of nanocoatings and ultra-thin films. This book covers the fundamentals, processes of deposition and characterisation of nanocoatings, as well as the applications. It is suitable for the glass and glazing, automotive, electronics, aerospace, construction and biomedical industries in particular.$bCoatings are used for a wide range of applications, from anti-fogging coatings for glass through to corrosion control in the aerospace and automotive industries. Nanocoatings and ultra-thin films provides an up-to-date review of the fundamentals, processes of deposition, characterisation and applications of nanocoatings. Part one covers technologies used in the creation and analysis of thin films, including chapters on current and advanced coating technologies in industry, nanostructured thin films from amphiphilic molecules, chemical and physical vapour deposition methods and methods for analysing nanocoatings and ultra-thin films. Part two focuses on the applications...

  16. An overview of thin film nitinol endovascular devices.

    Science.gov (United States)

    Shayan, Mahdis; Chun, Youngjae

    2015-07-01

    Thin film nitinol has unique mechanical properties (e.g., superelasticity), excellent biocompatibility, and ultra-smooth surface, as well as shape memory behavior. All these features along with its low-profile physical dimension (i.e., a few micrometers thick) make this material an ideal candidate in developing low-profile medical devices (e.g., endovascular devices). Thin film nitinol-based devices can be collapsed and inserted in remarkably smaller diameter catheters for a wide range of catheter-based procedures; therefore, it can be easily delivered through highly tortuous or narrow vascular system. A high-quality thin film nitinol can be fabricated by vacuum sputter deposition technique. Micromachining techniques were used to create micro patterns on the thin film nitinol to provide fenestrations for nutrition and oxygen transport and to increase the device's flexibility for the devices used as thin film nitinol covered stent. In addition, a new surface treatment method has been developed for improving the hemocompatibility of thin film nitinol when it is used as a graft material in endovascular devices. Both in vitro and in vivo test data demonstrated a superior hemocompatibility of the thin film nitinol when compared with commercially available endovascular graft materials such as ePTFE or Dacron polyester. Promising features like these have motivated the development of thin film nitinol as a novel biomaterial for creating endovascular devices such as stent grafts, neurovascular flow diverters, and heart valves. This review focuses on thin film nitinol fabrication processes, mechanical and biological properties of the material, as well as current and potential thin film nitinol medical applications. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  17. Evaluation of Thin-Film Photodiodes and Development of Thin-Film Phototransistor

    Science.gov (United States)

    Yamashita, Takehiko; Shima, Takehiro; Nishizaki, Yoshitaka; Kimura, Mutsumi; Hara, Hiroyuki; Inoue, Satoshi

    2008-03-01

    First, a p/i/n thin-film photodiode (TFPD) is evaluated, and it is found that the photoinduced current (Iphoto) is relatively large. Next, a p/n TFPD is evaluated, and it is found that the Iphoto is independent of the applied voltage (Vapply). However, it is difficult to simultaneously achieve a large and independent Iphoto. Therefore, a p/i/n thin-film phototransistor (TFPT) is developed, and it is found that the Iphoto can be both relatively large and independent of the Vapply by optimizing the gate voltage. These characteristics are obtained because the depletion layer is formed in the entire intrinsic region and the electric field is always high. It is expected that these characteristics are preferable for some types of photosensor application such as artificial retina.

  18. Sulfated cellulose thin films with antithrombin affinity

    Directory of Open Access Journals (Sweden)

    2009-11-01

    Full Text Available Cellulose thin films were chemically modified by in situ sulfation to produce surfaces with anticoagulant characteristics. Two celluloses differing in their degree of polymerization (DP: CEL I (DP 215–240 and CEL II (DP 1300–1400 were tethered to maleic anhydride copolymer (MA layers and subsequently exposed to SO3•NMe3 solutions at elevated temperature. The impact of the resulting sulfation on the physicochemical properties of the cellulose films was investigated with respect to film thickness, atomic composition, wettability and roughness. The sulfation was optimized to gain a maximal surface concentration of sulfate groups. The scavenging of antithrombin (AT by the surfaces was determined to conclude on their potential anticoagulant properties.

  19. Scanning tunneling spectroscopy of Pb thin films

    Energy Technology Data Exchange (ETDEWEB)

    Becker, Michael

    2010-12-13

    The present thesis deals with the electronic structure, work function and single-atom contact conductance of Pb thin films, investigated with a low-temperature scanning tunneling microscope. The electronic structure of Pb(111) thin films on Ag(111) surfaces is investigated using scanning tunneling spectroscopy (STS). Quantum size effects, in particular, quantum well states (QWSs), play a crucial role in the electronic and physical properties of these films. Quantitative analysis of the spectra yields the QWS energies as a function of film thickness, the Pb bulk-band dispersion in {gamma}-L direction, scattering phase shifts at the Pb/Ag interface and vacuum barrier as well as the lifetime broadening at anti {gamma}. The work function {phi} is an important property of surfaces, which influences catalytic reactivity and charge injection at interfaces. It controls the availability of charge carriers in front of a surface. Modifying {phi} has been achieved by deposition of metals and molecules. For investigating {phi} at the atomic scale, scanning tunneling microscopy (STM) has become a widely used technique. STM measures an apparent barrier height {phi}{sub a}, which is commonly related to the sample work function {phi}{sub s} by: {phi}{sub a}=({phi}{sub s}+{phi}{sub t}- vertical stroke eV vertical stroke)/2, with {phi}{sub t} the work function of the tunneling tip, V the applied tunneling bias voltage, and -e the electron charge. Hence, the effect of the finite voltage in STM on {phi}{sub a} is assumed to be linear and the comparison of {phi}{sub a} measured at different surface sites is assumed to yield quantitative information about work function differences. Here, the dependence of {phi}{sub a} on the Pb film thickness and applied bias voltage V is investigated. {phi}{sub a} is found to vary significantly with V. This bias dependence leads to drastic changes and even inversion of contrast in spatial maps of {phi}{sub a}, which are related to the QWSs in the Pb

  20. Levan nanostructured thin films by MAPLE assembling.

    Science.gov (United States)

    Sima, Felix; Mutlu, Esra Cansever; Eroglu, Mehmet S; Sima, Livia E; Serban, Natalia; Ristoscu, Carmen; Petrescu, Stefana M; Oner, Ebru Toksoy; Mihailescu, Ion N

    2011-06-13

    Synthesis of nanostructured thin films of pure and oxidized levan exopolysaccharide by matrix-assisted pulsed laser evaporation is reported. Solutions of pure exopolysaccharides in dimethyl sulfoxide were frozen in liquid nitrogen to obtain solid cryogenic pellets that have been used as targets in pulsed laser evaporation experiments with a KrF* excimer source. The expulsed material was collected and assembled onto glass slides and Si wafers. The contact angle studies evidenced a higher hydrophilic behavior in the case of oxidized levan structures because of the presence of acidic aldehyde-hydrogen bonds of the coating formed after oxidation. The obtained films preserved the base material composition as confirmed by Fourier transform infrared spectroscopy. They were compact with high specific surface areas, as demonstrated by scanning electron and atomic force microscopy investigations. In vitro colorimetric assays revealed a high potential for cell proliferation for all coatings with certain predominance for oxidized levan.

  1. Review of Zinc Oxide Thin Films

    Science.gov (United States)

    2014-12-23

    oriented ZnO:Ga  thin   films   deposited  on  glass  by  laser   ablation   at  different  deposition  temperatures.  The  surface  morphology,  crystalline...Standard Form 298 (Rev. 8/98) Prescribed by ANSI Std. Z39.18 1    Review of Zinc Oxide Thin Films   Abstract  The present review  paper  reports on the...resistivity provided by indium‐doped  tin  oxide (ITO)  ~ 0.7 x 10‐4 Ω‐cm achieved by deposition of  ITO  films  on glass at 300 oC by pulsed  Laser

  2. Amperometric noise at thin film band electrodes.

    Science.gov (United States)

    Larsen, Simon T; Heien, Michael L; Taboryski, Rafael

    2012-09-18

    Background current noise is often a significant limitation when using constant-potential amperometry for biosensor application such as amperometric recordings of transmitter release from single cells through exocytosis. In this paper, we fabricated thin-film electrodes of gold and conductive polymers and measured the current noise in physiological buffer solution for a wide range of different electrode areas. The noise measurements could be modeled by an analytical expression, representing the electrochemical cell as a resistor and capacitor in series. The studies revealed three domains; for electrodes with low capacitance, the amplifier noise dominated, for electrodes with large capacitances, the noise from the resistance of the electrochemical cell was dominant, while in the intermediate region, the current noise scaled with electrode capacitance. The experimental results and the model presented here can be used for choosing an electrode material and dimensions and when designing chip-based devices for low-noise current measurements.

  3. Amperometric Noise at Thin Film Band Electrodes

    DEFF Research Database (Denmark)

    Larsen, Simon T.; Heien, Michael L.; Taboryski, Rafael

    2012-01-01

    ; for electrodes with low capacitance, the amplifier noise dominated, for electrodes with large capacitances, the noise from the resistance of the electrochemical cell was dominant, while in the intermediate region, the current noise scaled with electrode capacitance. The experimental results and the model......Background current noise is often a significant limitation when using constant-potential amperometry for biosensor application such as amperometric recordings of transmitter release from single cells through exocytosis. In this paper, we fabricated thin-film electrodes of gold and conductive...... polymers and measured the current noise in physiological buffer solution for a wide range of different electrode areas. The noise measurements could be modeled by an analytical expression, representing the electrochemical cell as a resistor and capacitor in series. The studies revealed three domains...

  4. Thermal properties of methyltrimethoxysilane aerogel thin films

    Directory of Open Access Journals (Sweden)

    Leandro N. Acquaroli

    2016-10-01

    Full Text Available Aerogels are light and porous solids whose properties, largely determined by their nanostructure, are useful in a wide range of applications, e.g., thermal insulation. In this work, as-deposited and thermally treated air-filled silica aerogel thin films synthesized using the sol-gel method were studied for their thermal properties using the 3-omega technique, at ambient conditions. The thermal conductivity and diffusivity were found to increase as the porosity of the aerogel decreased. Thermally treated films show a clear reduction in thermal conductivity compared with that of as-deposited films, likely due to an increase of porosity. The smallest thermal conductivity and diffusivity found for our aerogels were 0.019 W m−1 K−1 and 9.8 × 10-9 m2 s−1. A model was used to identify the components (solid, gaseous and radiative of the total thermal conductivity of the aerogel.

  5. Digital thin-film color optical memory

    Science.gov (United States)

    Chi, C. J.; Steckl, A. J.

    2001-01-01

    A promising optical memory device called digital thin-film (DTF) color optical memory is presented. The DTF optical memory utilizes localized regions of varying thickness to adjust the spectral characteristic of reflected light from a broad band source. The DTF structure has been fabricated by Ga+ focused ion beam milling on thermally grown silicon dioxide on Si to prove the concept. A charge-coupled device array is used as the optical detector for the readout of the stored data. The reflected light image of the DTF memory reveals easily discriminated color levels and proves the suitability of using optical means to extract the stored data. DTF optical memory structures with 16 physical levels or 4 bits/pixel have been fabricated providing an equivalent storage density in excess of 5 Gb/in.2

  6. Modelling the tribology of thin film interfaces

    CERN Document Server

    Zugic, R

    2000-01-01

    substrate). Within each group of simulations, three lubricant film thicknesses are studied to examine the effect of varying lubricant thickness. Statistical data are collected from each simulation and presented in this work. Via these data, together with the evolution, of atomic and molecular configurations, a very detailed picture of the properties of this thin film interface is presented. In particular, we conclude that perfluoropolyether lubricant forms distinct molecular layers when confined between two substrates, the rate of heat generation under shearing conditions typical of those in a head-disk interface is insufficient for thermal mechanisms to result directly in lubricant degradation, and mechanical stresses attained in the head-disk interface are unlikely to result in any significant degree of lubricant degradation. This thesis examines the tribology of a head-disk interface in an operating hard disk drive via non-equilibrium molecular dynamics computer simulations. The aim of this work is to deri...

  7. Galvanostatic Ion Detrapping Rejuvenates Oxide Thin Films.

    Science.gov (United States)

    Arvizu, Miguel A; Wen, Rui-Tao; Primetzhofer, Daniel; Klemberg-Sapieha, Jolanta E; Martinu, Ludvik; Niklasson, Gunnar A; Granqvist, Claes G

    2015-12-09

    Ion trapping under charge insertion-extraction is well-known to degrade the electrochemical performance of oxides. Galvanostatic treatment was recently shown capable to rejuvenate the oxide, but the detailed mechanism remained uncertain. Here we report on amorphous electrochromic (EC) WO3 thin films prepared by sputtering and electrochemically cycled in a lithium-containing electrolyte under conditions leading to severe loss of charge exchange capacity and optical modulation span. Time-of-flight elastic recoil detection analysis (ToF-ERDA) documented pronounced Li(+) trapping associated with the degradation of the EC properties and, importantly, that Li(+) detrapping, caused by a weak constant current drawn through the film for some time, could recover the original EC performance. Thus, ToF-ERDA provided direct and unambiguous evidence for Li(+) detrapping.

  8. Thin Film Femtosecond Laser Damage Competition

    Energy Technology Data Exchange (ETDEWEB)

    Stolz, C J; Ristau, D; Turowski, M; Blaschke, H

    2009-11-14

    In order to determine the current status of thin film laser resistance within the private, academic, and government sectors, a damage competition was started at the 2008 Boulder Damage Symposium. This damage competition allows a direct comparison of the current state of the art of high laser resistance coatings since they are tested using the same damage test setup and the same protocol. In 2009 a high reflector coating was selected at a wavelength of 786 nm at normal incidence at a pulse length of 180 femtoseconds. A double blind test assured sample and submitter anonymity so only a summary of the results are presented here. In addition to the laser resistance results, details of deposition processes, coating materials and layer count, and spectral results will also be shared.

  9. Transparent Conductive Oxides in Thin Film Photovoltaics

    Science.gov (United States)

    Hamelmann, Frank U.

    2014-11-01

    This paper show results from the development of transparent conductive oxides (TCO's) on large areas for the use as front electrode in thin film silicon solar modules. It is focused on two types of zinc oxide, which are cheap to produce and scalable to a substrate size up to 6 m2. Low pressure CVD with temperatures below 200°C can be used for the deposition of boron doped ZnO with a native surface texture for good light scattering, while sputtered aluminum doped ZnO needs a post deposition treatment in an acid bath for a rough surface. The paper presents optical and electrical characterization of large area samples, and also results about long term stability of the ZnO samples with respect to the so called TCO corrosion.

  10. Thin film oxygen partial pressure sensor

    Science.gov (United States)

    Wortman, J. J.; Harrison, J. W.; Honbarrier, H. L.; Yen, J.

    1972-01-01

    The development is described of a laboratory model oxygen partial pressure sensor using a sputtered zinc oxide thin film. The film is operated at about 400 C through the use of a miniature silicon bar. Because of the unique resistance versus temperature relation of the silicon bar, control of the operational temperature is achieved by controlling the resistance. A circuit for accomplishing this is described. The response of sputtered zinc oxide films of various thicknesses to oxygen, nitrogen, argon, carbon dioxide, and water vapor caused a change in the film resistance. Over a large range, film conductance varied approximately as the square root of the oxygen partial pressure. The presence of water vapor in the gas stream caused a shift in the film conductance at a given oxygen partial pressure. A theoretical model is presented to explain the characteristic features of the zinc oxide response to oxygen.

  11. Tension Tests of Copper Thin Films

    Energy Technology Data Exchange (ETDEWEB)

    Park, Kyung Jo; Kim, Chung Youb [Chonnam Nat’l Univ., Gwangju (Korea, Republic of)

    2017-08-15

    Tension tests for copper thin films with thickness of 12 μm were performed by using a digital image correlation method based on consecutive digital images. When calculating deformation using digital image correlation, a large deformation causes errors in the calculated result. In this study, the calculation procedure was improved to reduce the error, so that the full field deformation and the strain of the specimen could be accurately and directly measured on its surface. From the calculated result, it can be seen that the strain distribution is not uniform and its variation is severe, unlike the distribution in a common bulk specimen. This might result from the surface roughness introduced in the films during the fabrication process by electro-deposition.

  12. Gadolinium thin films as benchmark for magneto-caloric thin films

    Science.gov (United States)

    Helmich, Lars; Bartke, Marianne; Teichert, Niclas; Schleicher, Benjamin; Fähler, Sebastian; Hütten, Andreas

    2017-05-01

    We report on the preparation of Gadolinium thin films by means of sputter deposition on Silicon Oxide wafers. A series of samples with different buffer layers and various substrate temperatures has been produced. The film on an amorphous Tantalum buffer deposited at 773 K shows the highest increase of magnetization during the phase transition at the Curie temperature. Further detailed analysis of the magnetic properties has been conducted by VSM.

  13. Thin Film Approaches to the SRF Cavity Problem Fabrication and Characterization of Superconducting Thin Films

    Energy Technology Data Exchange (ETDEWEB)

    Beringer, Douglas [College of William and Mary, Williamsburg, VA (United States)

    2017-08-01

    Superconducting Radio Frequency (SRF) cavities are responsible for the acceleration of charged particles to relativistic velocities in most modern linear accelerators, such as those employed at high-energy research facilities like Thomas Jefferson National Laboratory’s CEBAF and the LHC at CERN. Recognizing SRF as primarily a surface phenomenon enables the possibility of applying thin films to the interior surface of SRF cavities, opening a formidable tool chest of opportunities by combining and designing materials that offer greater performance benefit. Thus, while improvements in radio frequency cavity design and refinements in cavity processing techniques have improved accelerator performance and efficiency – 1.5 GHz bulk niobium SRF cavities have achieved accelerating gradients in excess of 35 MV/m – there exist fundamental material bounds in bulk superconductors limiting the maximally sustained accelerating field gradient (≈ 45 MV/m for Nb) where inevitable thermodynamic breakdown occurs. With state of the art Nb based cavity design fast approaching these theoretical limits, novel material innovations must be sought in order to realize next generation SRF cavities. One proposed method to improve SRF performance is to utilize thin film superconducting-insulating-superconducting (SIS) multilayer structures to effectively magnetically screen a bulk superconducting layer such that it can operate at higher field gradients before suffering critically detrimental SRF losses. This dissertation focuses on the production and characterization of thin film superconductors for such SIS layers for radio frequency applications. Correlated studies on structure, surface morphology and superconducting properties of epitaxial Nb and MgB2 thin films are presented.

  14. Magnetoimpedance spectroscopy of epitaxial multiferroic thin films

    Science.gov (United States)

    Schmidt, Rainer; Ventura, Jofre; Langenberg, Eric; Nemes, Norbert M.; Munuera, Carmen; Varela, Manuel; Garcia-Hernandez, Mar; Leon, Carlos; Santamaria, Jacobo

    2012-07-01

    The detection of true magnetocapacitance (MC) as a manifestation of magnetoelectric coupling (MEC) in multiferroic materials is a nontrivial task, because pure magnetoresistance (MR) of an extrinsic Maxwell-Wagner-type dielectric relaxation can lead to changes in capacitance [G. Catalan, Appl. Phys. Lett.APPLAB0003-695110.1063/1.2177543 88, 102902 (2006)]. In order to clarify such difficulties involved with dielectric spectroscopy on multiferroic materials, we have simulated the dielectric permittivity ɛ' of two dielectric relaxations in terms of a series of one intrinsic film-type and one extrinsic Maxwell-Wagner-type relaxation. Such a series of two relaxations was represented in the frequency- (f-) and temperature- (T-) dependent notations ɛ' vs f and ɛ' vs T by a circuit model consisting in a series of two ideal resistor-capacitor (RC) elements. Such simulations enabled rationalizing experimental f-, T-, and magnetic field- (H-) dependent dielectric spectroscopy data from multiferroic epitaxial thin films of BiMnO3 (BMO) and BiFeO3 (BFO) grown on Nb-doped SrTiO3. Concomitantly, the deconvolution of intrinsic film and extrinsic Maxwell-Wagner relaxations in BMO and BFO films was achieved by fitting f-dependent dielectric data to an adequate equivalent circuit model. Analysis of the H-dependent data in the form of determining the H-dependent values of the equivalent circuit resistors and capacitors then yielded the deconvoluted MC and MR values for the separated intrinsic dielectric relaxations in BMO and BFO thin films. Substantial intrinsic MR effects up to 65% in BMO films below the magnetic transition (TC≈100 K) and perceptible intrinsic MEC up to -1.5% near TC were identified unambiguously.

  15. Materials availability for thin film solar cells

    Science.gov (United States)

    Makita, Yunosuke

    1997-04-01

    Materials availability is one of the most important factors when we consider the mass-production of next generation photovoltaic devices. "In (indium)" is a vital element to produce high efficient thin film solar cells such as InP and CuIn(Ga)Se2 but its lifetime as a natural resource is suggested to be of order of 10˜15 years. The lifetime of a specific natural resource as an element to produce useful device substances is directly related with its abundance in the earth's crust, consumption rate and recycling rate (if recycling is economically meaningful). The chemical elements having long lifetime as a natural resource are those existing in the atmosphere such as N (nitrogen) and O (oxygen); the rich elements in the earth's crust such as Si, Ca, Sr and Ba; the mass-used metals such as Fe (iron), Al (aluminum) and Cu (copper) that reached the stage of large-scale recycling. We here propose a new paradigm of semiconductor material-science for the future generation thin film solar cells in which only abundant chemical elements are used. It is important to remark that these abundant chemical elements are normally not toxic and are fairly friendly to the environment. β-FeSi2 is composed of two most abundant and nontoxic chemical elements. This material is one of the most promising device materials for future generation energy devices (solar cells and thermoelectric device that is most efficient at temperature range of 700-900 °C). One should remind of the versatility of β-FeSi2 that this material can be used not only as energy devices but also as photodetector, light emitting diode and/or laser diode at the wavelength of 1.5 μm that can be monolithically integrated on Si substrates due to the relatively small lattice mismatch.

  16. Titanium nitride thin films for minimizing multipactoring

    Science.gov (United States)

    Welch, Kimo M.

    1979-01-01

    Applying a thin film coating to the surface of a workpiece, in particular, applying a coating of titanium nitride to a klystron window by means of a crossed-field diode sputtering array. The array is comprised of a cohesive group of numerous small hollow electrically conducting cylinders and is mounted so that the open ends of the cylinders on one side of the group are adjacent a titanium cathode plate. The workpiece is mounted so as to face the open ends of the other side of the group. A magnetic field is applied to the array so as to be coaxial with the cylinders and a potential is applied across the cylinders and the cathode plate, the cylinders as an anode being positive with respect to the cathode plate. The cylinders, the cathode plate and the workpiece are situated in an atmosphere of nitrogen which becomes ionized such as by field emission because of the electric field between the cylinders and cathode plate, thereby establishing an anode-cathode discharge that results in sputtering of the titanium plate. The sputtered titanium coats the workpiece and chemically combines with the nitrogen to form a titanium nitride coating on the workpiece. Gas pressure, gas mixtures, cathode material composition, voltages applied to the cathode and anode, the magnetic field, cathode, anode and workpiece spacing, and the aspect ratio (ratio of length to inner diameter) of the anode cylinders, all may be controlled to provide consistent optimum thin film coatings of various compositions and thicknesses. Another facet of the disclosure is the coating of microwave components per se with titanium nitride to reduce multipactoring under operating conditions of the components.

  17. Ion irradiation as a tool for modifying the surface and optical properties of plasma polymerised thin films

    Energy Technology Data Exchange (ETDEWEB)

    Grant, Daniel S. [College of Science, Technology and Engineering, James Cook University, Townsville, Queensland 4811 (Australia); Bazaka, Kateryna [College of Science, Technology and Engineering, James Cook University, Townsville, Queensland 4811 (Australia); School of Chemistry, Physics, and Mechanical Engineering, Queensland University of Technology, Brisbane, Queensland 4000 (Australia); Siegele, Rainer [Institute for Environmental Research, Australian Nuclear Science and Technology Organisation, Lucas Heights, New South Wales 2234 (Australia); Holt, Stephen A. [Bragg Institute, Australian Nuclear Science and Technology Organisation, Lucas Heights, New South Wales 2234 (Australia); Jacob, Mohan V., E-mail: Mohan.Jacob@jcu.edu.au [College of Science, Technology and Engineering, James Cook University, Townsville, Queensland 4811 (Australia)

    2015-10-01

    Radio frequency (R.F.) glow discharge polyterpenol thin films were prepared on silicon wafers and irradiated with I{sup 10+} ions to fluences of 1 × 10{sup 10} and 1 × 10{sup 12} ions/cm{sup 2}. Post-irradiation characterisation of these films indicated the development of well-defined nano-scale ion entry tracks, highlighting prospective applications for ion irradiated polyterpenol thin films in a variety of membrane and nanotube-fabrication functions. Optical characterisation showed the films to be optically transparent within the visible spectrum and revealed an ability to selectively control the thin film refractive index as a function of fluence. This indicates that ion irradiation processing may be employed to produce plasma-polymer waveguides to accommodate a variety of wavelengths. XRR probing of the substrate-thin film interface revealed interfacial roughness values comparable to those obtained for the uncoated substrate’s surface (i.e., both on the order of 5 Å), indicating minimal substrate etching during the plasma deposition process.

  18. Ultrashort pulse laser patterning of indium tin oxide thin films on glass by uniform diffractive beam patterns

    Science.gov (United States)

    Kuang, Zheng; Perrie, Walter; Liu, Dun; Fitzsimons, Paul; Edwardson, Stuart P.; Fearon, Eamonn; Dearden, Geoff; Watkins, Ken G.

    2012-07-01

    In the last decade, indium tin oxide (ITO) has been most commonly employed to create transparent conducting oxides (TCOs) thin films for many industrial applications. It is usually necessary to pattern ITO thin films to create functional structures for specific applications. Direct-write micro-patterning of ITO thin films by ultra-short pulse lasers has demonstrated high quality without requiring multiple processing stations, compared with conventional patterning technologies (e.g. wet-etch lithography). However, the processing efficiency and throughput with a single beam can be insufficient because of the high level of attenuation needed for the output to meet the required ‘thermal-free' parameters. In this paper, high throughput surface direct micro-structuring of ITO on glass is demonstrated by parallel processing using diffractive multiple ultrashort pulse laser beams (λ = 1064 nm, τp = 10 ps). By avoiding periodic and symmetrical geometry design, the diffractive multiple beam pattern generated by a spatial light modulator has high uniformity (the energy variation between each diffractive beam is thin film is removed by laser ablation of 25 identical beams at the same time without any damage to the glass substrate. Additionally, by synchronizing a scanning galvanometer, the processing demonstrates high flexibility to generate various surface patterns.

  19. Ultrashort pulse laser patterning of indium tin oxide thin films on glass by uniform diffractive beam patterns

    Energy Technology Data Exchange (ETDEWEB)

    Kuang Zheng, E-mail: z.kuang@liv.ac.uk [Laser Group, School of Engineering, University of Liverpool, Brownlow Street, Liverpool L69 3GQ (United Kingdom); Perrie, Walter; Liu Dun; Fitzsimons, Paul; Edwardson, Stuart P.; Fearon, Eamonn; Dearden, Geoff; Watkins, Ken G. [Laser Group, School of Engineering, University of Liverpool, Brownlow Street, Liverpool L69 3GQ (United Kingdom)

    2012-07-15

    In the last decade, indium tin oxide (ITO) has been most commonly employed to create transparent conducting oxides (TCOs) thin films for many industrial applications. It is usually necessary to pattern ITO thin films to create functional structures for specific applications. Direct-write micro-patterning of ITO thin films by ultra-short pulse lasers has demonstrated high quality without requiring multiple processing stations, compared with conventional patterning technologies (e.g. wet-etch lithography). However, the processing efficiency and throughput with a single beam can be insufficient because of the high level of attenuation needed for the output to meet the required 'thermal-free' parameters. In this paper, high throughput surface direct micro-structuring of ITO on glass is demonstrated by parallel processing using diffractive multiple ultrashort pulse laser beams ({lambda} = 1064 nm, {tau}p = 10 ps). By avoiding periodic and symmetrical geometry design, the diffractive multiple beam pattern generated by a spatial light modulator has high uniformity (the energy variation between each diffractive beam is <9%). The ITO thin film is removed by laser ablation of 25 identical beams at the same time without any damage to the glass substrate. Additionally, by synchronizing a scanning galvanometer, the processing demonstrates high flexibility to generate various surface patterns.

  20. Galvanic corrosion of structural non-stoichiometric silicon nitride thin films and its implications on reliability of microelectromechanical devices

    Energy Technology Data Exchange (ETDEWEB)

    Broas, M., E-mail: mikael.broas@aalto.fi; Mattila, T. T.; Paulasto-Kröckel, M. [Department of Electrical Engineering and Automation, Aalto University, Espoo, P.O. Box 13500, FIN-00076 Aalto (Finland); Liu, X.; Ge, Y. [Department of Materials Science and Engineering, Aalto University, Espoo, P.O. Box 16200, FIN-00076 Aalto (Finland)

    2015-06-28

    This paper describes a reliability assessment and failure analysis of a poly-Si/non-stoichiometric silicon nitride thin film composite structure. A set of poly-Si/SiN{sub x} thin film structures were exposed to a mixed flowing gas (MFG) environment, which simulates outdoor environments, for 90 days, and an elevated temperature and humidity (85 °C/95% R.H.) test for 140 days. The mechanical integrity of the thin films was observed to degrade during exposure to the chemically reactive atmospheres. The degree of degradation was analyzed with nanoindentation tests. Statistical analysis of the forces required to initiate a fracture in the thin films indicated degradation due to the exposure to the MFG environment in the SiN{sub x} part of the films. Scanning electron microscopy revealed a porous-like reaction layer on top of SiN{sub x}. The morphology of the reaction layer resembled that of galvanically corroded poly-Si. Transmission electron microscopy further clarified the microstructure of the reaction layer which had a complex multi-phase structure extending to depths of ∼100 nm. Furthermore, the layer was oxidized two times deeper in a 90 days MFG-tested sample compared to an untested reference. The formation of the layer is proposed to be caused by galvanic corrosion of elemental silicon in non-stoichiometric silicon nitride during hydrofluoric acid etching. The degradation is proposed to be due uncontrolled oxidation of the films during the stress tests.

  1. Fluorine and oxygen plasma influence on nanoparticle formation and aggregation in metal oxide thin film transistors

    Science.gov (United States)

    MÄ dzik, Mateusz; Elamurugu, Elangovan; Viegas, Jaime

    2017-03-01

    Despite recent advances in metal oxide thin-film transistor technology, there are no foundry processes available yet for large-scale deployment of metal oxide electronics and photonics, in a similar way as found for silicon based electronics and photonics. One of the biggest challenges of the metal oxide platform is the stability of the fabricated devices. Also, there is wide dispersion on the measured specifications of fabricated TFT, from lot-to-lot and from different research groups. This can be partially explained by the importance of the deposition method and its parameters, which determine thin film microstructure and thus its electrical properties. Furthermore, substrate pretreatment is an important factor, as it may act as a template for material growth. Not so often mentioned, plasma processes can also affect the morphology of deposited films on further deposition steps, such as inducing nanoparticle formation, which strongly impact the conduction mechanism in the channel layer of the TFT. In this study, molybdenum doped indium oxide is sputtered onto ALD deposited HfO2 with or without pattering, and etched by RIE chlorine based processing. Nanoparticle formation is observed when photoresist is removed by oxygen plasma ashing. HfO2 etching in CF4/Ar plasma prior to resist stripping in oxygen plasma promotes the aggregation of nanoparticles into nanosized branched structures. Such nanostructuring is absent when oxygen plasma steps are replaced by chemical wet processing with acetone. Finally, in order to understand the electronic transport effect of the nanoparticles on metal oxide thin film transistors, TFT have been fabricated and electrically characterized.

  2. Role of SiNx Barrier Layer on the Performances of Polyimide Ga₂O₃-doped ZnO p-i-n Hydrogenated Amorphous Silicon Thin Film Solar Cells.

    Science.gov (United States)

    Wang, Fang-Hsing; Kuo, Hsin-Hui; Yang, Cheng-Fu; Liu, Min-Chu

    2014-02-07

    In this study, silicon nitride (SiNx) thin films were deposited on polyimide (PI) substrates as barrier layers by a plasma enhanced chemical vapor deposition (PECVD) system. The gallium-doped zinc oxide (GZO) thin films were deposited on PI and SiNx/PI substrates at room temperature (RT), 100 and 200 °C by radio frequency (RF) magnetron sputtering. The thicknesses of the GZO and SiNx thin films were controlled at around 160 ± 12 nm and 150 ± 10 nm, respectively. The optimal deposition parameters for the SiNx thin films were a working pressure of 800 × 10-3 Torr, a deposition power of 20 W, a deposition temperature of 200 °C, and gas flowing rates of SiH₄ = 20 sccm and NH₃ = 210 sccm, respectively. For the GZO/PI and GZO-SiNx/PI structures we had found that the GZO thin films deposited at 100 and 200 °C had higher crystallinity, higher electron mobility, larger carrier concentration, smaller resistivity, and higher optical transmittance ratio. For that, the GZO thin films deposited at 100 and 200 °C on PI and SiNx/PI substrates with thickness of ~1000 nm were used to fabricate p-i-n hydrogenated amorphous silicon (α-Si) thin film solar cells. 0.5% HCl solution was used to etch the surfaces of the GZO/PI and GZO-SiNx/PI substrates. Finally, PECVD system was used to deposit α-Si thin film onto the etched surfaces of the GZO/PI and GZO-SiNx/PI substrates to fabricate α-Si thin film solar cells, and the solar cells' properties were also investigated. We had found that substrates to get the optimally solar cells' efficiency were 200 °C-deposited GZO-SiNx/PI.

  3. Role of SiNx Barrier Layer on the Performances of Polyimide Ga2O3-doped ZnO p-i-n Hydrogenated Amorphous Silicon Thin Film Solar Cells

    Directory of Open Access Journals (Sweden)

    Fang-Hsing Wang

    2014-02-01

    Full Text Available In this study, silicon nitride (SiNx thin films were deposited on polyimide (PI substrates as barrier layers by a plasma enhanced chemical vapor deposition (PECVD system. The gallium-doped zinc oxide (GZO thin films were deposited on PI and SiNx/PI substrates at room temperature (RT, 100 and 200 °C by radio frequency (RF magnetron sputtering. The thicknesses of the GZO and SiNx thin films were controlled at around 160 ± 12 nm and 150 ± 10 nm, respectively. The optimal deposition parameters for the SiNx thin films were a working pressure of 800 × 10−3 Torr, a deposition power of 20 W, a deposition temperature of 200 °C, and gas flowing rates of SiH4 = 20 sccm and NH3 = 210 sccm, respectively. For the GZO/PI and GZO-SiNx/PI structures we had found that the GZO thin films deposited at 100 and 200 °C had higher crystallinity, higher electron mobility, larger carrier concentration, smaller resistivity, and higher optical transmittance ratio. For that, the GZO thin films deposited at 100 and 200 °C on PI and SiNx/PI substrates with thickness of ~1000 nm were used to fabricate p-i-n hydrogenated amorphous silicon (α-Si thin film solar cells. 0.5% HCl solution was used to etch the surfaces of the GZO/PI and GZO-SiNx/PI substrates. Finally, PECVD system was used to deposit α-Si thin film onto the etched surfaces of the GZO/PI and GZO-SiNx/PI substrates to fabricate α-Si thin film solar cells, and the solar cells’ properties were also investigated. We had found that substrates to get the optimally solar cells’ efficiency were 200 °C-deposited GZO-SiNx/PI.

  4. Role of SiNx Barrier Layer on the Performances of Polyimide Ga2O3-doped ZnO p-i-n Hydrogenated Amorphous Silicon Thin Film Solar Cells

    Science.gov (United States)

    Wang, Fang-Hsing; Kuo, Hsin-Hui; Yang, Cheng-Fu; Liu, Min-Chu

    2014-01-01

    In this study, silicon nitride (SiNx) thin films were deposited on polyimide (PI) substrates as barrier layers by a plasma enhanced chemical vapor deposition (PECVD) system. The gallium-doped zinc oxide (GZO) thin films were deposited on PI and SiNx/PI substrates at room temperature (RT), 100 and 200 °C by radio frequency (RF) magnetron sputtering. The thicknesses of the GZO and SiNx thin films were controlled at around 160 ± 12 nm and 150 ± 10 nm, respectively. The optimal deposition parameters for the SiNx thin films were a working pressure of 800 × 10−3 Torr, a deposition power of 20 W, a deposition temperature of 200 °C, and gas flowing rates of SiH4 = 20 sccm and NH3 = 210 sccm, respectively. For the GZO/PI and GZO-SiNx/PI structures we had found that the GZO thin films deposited at 100 and 200 °C had higher crystallinity, higher electron mobility, larger carrier concentration, smaller resistivity, and higher optical transmittance ratio. For that, the GZO thin films deposited at 100 and 200 °C on PI and SiNx/PI substrates with thickness of ~000 nm were used to fabricate p-i-n hydrogenated amorphous silicon (α-Si) thin film solar cells. 0.5% HCl solution was used to etch the surfaces of the GZO/PI and GZO-SiNx/PI substrates. Finally, PECVD system was used to deposit α-Si thin film onto the etched surfaces of the GZO/PI and GZO-SiNx/PI substrates to fabricate α-Si thin film solar cells, and the solar cells’ properties were also investigated. We had found that substrates to get the optimally solar cells’ efficiency were 200 °C-deposited GZO-SiNx/PI. PMID:28788494

  5. Sputtered of ZnO:Al thin Films for Application in Photovoltaic Solar Cells

    Directory of Open Access Journals (Sweden)

    Sona Flickyngerova

    2008-01-01

    Full Text Available High transparent and conductive, aluminium - doped zinc oxide thin films (ZnO:Al, were prepared by radio –frequency (RF diode sputtering from ZnO+2 wt. % Al2O3 target on Eutal glass substrates. Surfaces of the samples weretreated by various technological steps during preparation. The ion bombardment and the substrate temperature modified theirstructure, surface morphology, electrical and optical parameters. In this work we present changes between samples preparedat room temperature (RT and at 200°C, between samples on ion etched substrate and non-modified substrate, and effect ofion etching of the sample surface. We measured transmittance, resistivity and microroughness by AFM on all samples.

  6. Thin-film multilayer interconnect technology for YBa2Cu3O7 - x

    Science.gov (United States)

    Wellstood, F. C.; Kingston, J. J.; Clarke, John

    1994-01-01

    The construction of microelectronic circuits from high-transition-temperature (Tc) superconductors requires techniques for producing thin-film wires, insulating crossovers, and vias (window contacts) between wires. Together, these three components form a superconducting interconnect technology. The challenges encountered in developing such a technology for high-Tc superconductors involve factors associated with the materials, the circuits and the fabrication techniques. The use of pulsed laser deposition in conjunction with shadow mask patterning, photolithographic pattern definition, acid etching, ion-beam etching, and surface cleaning to produce multilayer interconnects from YBa2Cu3O7-x (YBCO) is discussed. These processes have been used to construct a variety of passive high-temperature superconducting components and circuits, including crossovers, window contacts, multiturn coils, and flux transformers. Integrated magnetometers incorporating superconducting quantum interference devices, multichip modules with semiconductor die bonded to YBCO interconnect structures, and analog-to-digital converters have also been successfully demonstrated.

  7. Atomic Structure Control of Silica Thin Films on Pt(111)

    KAUST Repository

    Crampton, Andrew S

    2015-05-27

    Metal oxide thin films grown on metal single crystals are commonly used to model heterogeneous catalyst supports. The structure and properties of thin silicon dioxide films grown on metal single crystals have only recently been thoroughly characterized and their spectral properties well established. We report the successful growth of a three- dimensional, vitreous silicon dioxide thin film on the Pt(111) surface and reproduce the closed bilayer structure previously reported. The confirmation of the three dimensional nature of the film is unequivocally shown by the infrared absorption band at 1252 cm−1. Temperature programmed desorption was used to show that this three-dimensional thin film covers the Pt(111) surface to such an extent that its application as a catalyst support for clusters/nanoparticles is possible. The growth of a three-dimensional film was seen to be directly correlated with the amount of oxygen present on the surface after the silicon evaporation process. This excess of oxygen is tentatively attributed to atomic oxygen being generated in the evaporator. The identification of atomic oxygen as a necessary building block for the formation of a three-dimensional thin film opens up new possibilities for thin film growth on metal supports, whereby simply changing the type of oxygen enables thin films with different atomic structures to be synthesized. This is a novel approach to tune the synthesis parameters of thin films to grow a specific structure and expands the options for modeling common amorphous silica supports under ultra high vacuum conditions.

  8. Effects of background oxygen pressure on dielectric and ferroelectric properties of epitaxial (K0.44,Na0.52,Li0.04)(Nb0.84,Ta0.10,Sb0.06)O3 thin films on SrTiO3

    Science.gov (United States)

    Abazari, M.; Akdoǧan, E. K.; Safari, A.

    2008-11-01

    Oxygen partial pressure (PO_2) in pulsed laser deposition significantly influences the composition, microstructure, and electrical properties of epitaxial misfit strain-relieved 450nm ⟨001⟩ oriented epitaxial (K0.44,Na0.52,Li0.04)(Nb0.84,Ta0.10,Sb0.06)O3 thin films on SrRuO3 coated SrTiO3. Films deposited at 400mTorr exhibit high remnant and saturated polarization of 7.5 and 16.5μC /cm2, respectively, which is ˜100% increase over the ones grown at 100mTorr. The dielectric constant linearly increases from 220 to 450 with increasing PO2. The observed changes in surface morphology of the films and their properties are shown to be due to the suppression of volatile A-site cation loss.

  9. Plasma polymerized hexamethyldisiloxane thin films for corrosion protection

    Science.gov (United States)

    Saloum, S.; Alkhaled, B.; Alsadat, W.; Kakhia, M.; Shaker, S. A.

    2018-01-01

    This study focused on the corrosion protection performance of plasma polymerized HMDSO thin films in two different corrosive medias, 0.3M NaCl and 0.3M H2SO4. The pp-HMDSO thin films were deposited on steel substrates for electrochemical tests using the potentiodynamic polarization technique, they were deposited also on aluminum and silicon substrates to investigate their resistance to corrosion, through the analysis of the degradation of microhardness and morphology, respectively, after immersion of the substrates for one week in the corrosive media. The results showed promising corrosion protection properties of the pp-HMDSO thin films.

  10. Optical modeling and simulation of thin-film photovoltaic devices

    CERN Document Server

    Krc, Janez

    2013-01-01

    In wafer-based and thin-film photovoltaic (PV) devices, the management of light is a crucial aspect of optimization since trapping sunlight in active parts of PV devices is essential for efficient energy conversions. Optical modeling and simulation enable efficient analysis and optimization of the optical situation in optoelectronic and PV devices. Optical Modeling and Simulation of Thin-Film Photovoltaic Devices provides readers with a thorough guide to performing optical modeling and simulations of thin-film solar cells and PV modules. It offers insight on examples of existing optical models

  11. Magnetostriction of sputtered Sm-Fe thin films

    Energy Technology Data Exchange (ETDEWEB)

    Honda, T. (Tokin Corp., Sendai (Japan). Sendai Research Lab.); Hayashi, Y.; Arai, K.I.; Ishiyama, K.; Yamaguchi, M. (Tohoku Univ., Sendai (Japan). Research Institute of Electrical Communication)

    1993-11-01

    The magnetostriction and the magnetic properties of amorphous Sm[sub x]Fe[sub 100[minus]x] thin films prepared by sputtering were investigated at room temperature. The magnetostriction, -[lambda], of these films increased rapidly in low fields (<1kOe) and reached the maximum values of 300--400[times]10[sup [minus]6] at 16kOe for x = 30--40. These results suggest that Sm-Fe thin films could be used for micro-actuators. lie magnetic properties of Sm-Fe thin films did not show clear dependence on the sputtering conditions such as input power, Ar gas pressure, and substrate temperature.

  12. Copper zinc tin sulfide-based thin film solar cells

    CERN Document Server

    Ito, Kentaro

    2014-01-01

    Beginning with an overview and historical background of Copper Zinc Tin Sulphide (CZTS) technology, subsequent chapters cover properties of CZTS thin films, different preparation methods of CZTS thin films, a comparative study of CZTS and CIGS solar cell, computational approach, and future applications of CZTS thin film solar modules to both ground-mount and rooftop installation. The semiconducting compound (CZTS) is made up earth-abundant, low-cost and non-toxic elements, which make it an ideal candidate to replace Cu(In,Ga)Se2 (CIGS) and CdTe solar cells which face material scarcity and tox

  13. Organic nanostructured thin film devices and coatings for clean energy

    CERN Document Server

    Zhang, Sam

    2010-01-01

    Authored by leading experts from around the world, the three-volume Handbook of Nanostructured Thin Films and Coatings gives scientific researchers and product engineers a resource as dynamic and flexible as the field itself. The first two volumes cover the latest research and application of the mechanical and functional properties of thin films and coatings, while the third volume explores the cutting-edge organic nanostructured devices used to produce clean energy. This third volume, Organic Nanostructured Thin Film Devices and Coatings for Clean Energy, addresses various aspects of the proc

  14. Thin films and coatings toughening and toughness characterization

    CERN Document Server

    Zhang, Sam

    2015-01-01

    Thin Films and Coatings: Toughening and Toughness Characterization captures the latest developments in the toughening of hard coatings and in the measurement of the toughness of thin films and coatings. Featuring chapters contributed by experts from Australia, China, Czech Republic, Poland, Singapore, Spain, and the United Kingdom, this first-of-its-kind book:Presents the current status of hard-yet-tough ceramic coatingsReviews various toughness evaluation methods for films and hard coatingsExplores the toughness and toughening mechanisms of porous thin films and laser-treated surfacesExamines

  15. Process compilation methods for thin film devices

    Science.gov (United States)

    Zaman, Mohammed Hasanuz

    This doctoral thesis presents the development of a systematic method of automatic generation of fabrication processes (or process flows) for thin film devices starting from schematics of the device structures. This new top-down design methodology combines formal mathematical flow construction methods with a set of library-specific available resources to generate flows compatible with a particular laboratory. Because this methodology combines laboratory resource libraries with a logical description of thin film device structure and generates a set of sequential fabrication processing instructions, this procedure is referred to as process compilation, in analogy to the procedure used for compilation of computer programs. Basically, the method developed uses a partially ordered set (poset) representation of the final device structure which describes the order between its various components expressed in the form of a directed graph. Each of these components are essentially fabricated "one at a time" in a sequential fashion. If the directed graph is acyclic, the sequence in which these components are fabricated is determined from the poset linear extensions, and the component sequence is finally expanded into the corresponding process flow. This graph-theoretic process flow construction method is powerful enough to formally prove the existence and multiplicity of flows thus creating a design space {cal D} suitable for optimization. The cardinality Vert{cal D}Vert for a device with N components can be large with a worst case Vert{cal D}Vert≤(N-1)! yielding in general a combinatorial explosion of solutions. The number of solutions is hence controlled through a-priori estimates of Vert{cal D}Vert and condensation (i.e., reduction) of the device component graph. The mathematical method has been implemented in a set of algorithms that are parts of the software tool MISTIC (Michigan Synthesis Tools for Integrated Circuits). MISTIC is a planar process compiler that generates

  16. Effect of Li doping on the electric and pyroelectric properties of ZnO thin films

    Science.gov (United States)

    Trinca, L. M.; Galca, A. C.; Boni, A. G.; Botea, M.; Pintilie, L.

    2018-01-01

    Un-doped ZnO (UDZO) and Li-doped ZnO (LZO) polycrystalline thin films were grown on platinized silicon by pulsed laser deposition (PLD). The electrical properties were investigated on as-grown and annealed UDZO and LZO films with capacitor configuration, using top and bottom platinum electrodes. In the case of the as-grown films it was found that the introduction of Li increases the resistivity of ZnO and induces butterfly shape in the C-V characteristic, suggesting ferroelectric-like behavior in LZO films. The properties of LZO samples does not significantly changes after thermal annealing while the properties of UDZO samples show significant changes upon annealing, manifested in a butterfly shape of the C-V characteristic and resistive-like switching. However, the butterfly shape disappears if long delay time is used in the C-V measurement, the characteristic remaining non-linear. Pyroelectric signal could be measured only on annealed films. Comparing the UDZO results with those obtained in the case of Li:ZnO, it was found that the pyroelectric properties are considerably enhanced by Li doping, leading to pyroelectric signal with about one order of magnitude larger at low modulation frequencies than for un-doped samples. Although the results of this study hint towards a ferroelectric-like behavior of Li doped ZnO, the presence of real ferroelectricity in this material remains controversial.

  17. Ferroelectric-gate field effect transistor memories device physics and applications

    CERN Document Server

    Ishiwara, Hiroshi; Okuyama, Masanori; Sakai, Shigeki; Yoon, Sung-Min

    2016-01-01

    This book provides comprehensive coverage of the materials characteristics, process technologies, and device operations for memory field-effect transistors employing inorganic or organic ferroelectric thin films. This transistor-type ferroelectric memory has interesting fundamental device physics and potentially large industrial impact. Among the various applications of ferroelectric thin films, the development of nonvolatile ferroelectric random access memory (FeRAM) has progressed most actively since the late 1980s and has achieved modest mass production levels for specific applications since 1995. There are two types of memory cells in ferroelectric nonvolatile memories. One is the capacitor-type FeRAM and the other is the field-effect transistor (FET)-type FeRAM. Although the FET-type FeRAM claims ultimate scalability and nondestructive readout characteristics, the capacitor-type FeRAMs have been the main interest for the major semiconductor memory companies, because the ferroelectric FET has fatal handic...

  18. Revealing the role of defects in ferroelectric switching with atomic resolution.

    Science.gov (United States)

    Gao, Peng; Nelson, Christopher T; Jokisaari, Jacob R; Baek, Seung-Hyub; Bark, Chung Wung; Zhang, Yi; Wang, Enge; Schlom, Darrell G; Eom, Chang-Beom; Pan, Xiaoqing

    2011-12-20

    Ferroelectric materials are characterized by a spontaneous polarization, which can be reoriented with an applied electric field. The switching between polarized domains is mediated by nanoscale defects. Understanding the role of defects in ferroelectric switching is critical for practical applications such as non-volatile memories. This is especially the case for ferroelectric nanostructures and thin films in which the entire switching volume is proximate to a defective surface. Here we report the nanoscale ferroelectric switching of a tetragonal PbZr(0.2)Ti(0.8)O(3) thin film under an applied electric field using in situ transmission electron microscopy. We found that the intrinsic electric fields formed at ferroelectric/electrode interfaces determine the nucleation sites and growth rates of ferroelectric domains and the orientation and mobility of domain walls, whereas dislocations exert a weak pinning force on domain wall motion.

  19. Orthorhombic polar Nd-doped BiFeO{sub 3} thin film on MgO substrate

    Energy Technology Data Exchange (ETDEWEB)

    Leontyev, I N; Janolin, P-E; Dkhil, B [Laboratoire Structures, Proprietes et Modelisation des Solides, UMR CNRS-Ecole Centrale Paris, 92295 Chatenay-Malabry Cedex (France); Yuzyuk, Yu I [Faculty of Physics, Southern Federal University, Zorge 5, Rostov-on-Don 344090 (Russian Federation); El-Marssi, M [Laboratoire de Physique de la Matiere Condensee, Universite de Picardie Jules Verne, 33 rue Saint Leu, 80039 Amiens (France); Chernyshov, D; Dmitriev, V [Swiss-Norwegian Beam Lines at ESRF, Boite Postale 220, F-38043 Grenoble (France); Golovko, Yu I; Mukhortov, V M, E-mail: i.leontiev@rambler.ru [Southern Scientific Center RAS, Rostov-on-Don, 344006 (Russian Federation)

    2011-08-24

    A Nd-doped BiFeO{sub 3} thin film deposited on MgO substrate was studied by synchrotron diffraction. The ferroelectric nature of the film is proven by in-plane remanent polarization measurement. The highest possible symmetry of the film is determined to be orthorhombic, within the Fm2m space group. Such a structure is rotated by 45{sup 0} with respect to the substrate and is consistent with tilts of oxygen octahedra doubling the unit cell. This polar structure presents a rather unusual strain-accommodation mechanism. (fast track communication)

  20. Ferromagnetism at Room Temperature Induced by Spin Structure Change in BiFe1-x Cox O3 Thin Films.

    Science.gov (United States)

    Hojo, Hajime; Kawabe, Ryo; Shimizu, Keisuke; Yamamoto, Hajime; Mibu, Ko; Samanta, Kartik; Saha-Dasgupta, Tanusri; Azuma, Masaki

    2017-03-01

    The coexistence and coupling of ferromagnetic and ferroelectric orders in a single material is crucial for realizing next-generation multifunctional applications. The coexistence of such orders is confirmed at room temperature in epitaxial thin films of BiFe1-x Cox O3 (x ≤ 0.15), which manifests a spin structure change from a low-temperature cycloidal one to a high-temperature collinear one with canted ferromagnetism. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Direct observations of retention failure in ferroelectric memories.

    Science.gov (United States)

    Gao, Peng; Nelson, Christopher T; Jokisaari, Jacob R; Zhang, Yi; Baek, Seung-Hyub; Bark, Chung Wung; Wang, Enge; Liu, Yuanming; Li, Jiangyu; Eom, Chang-Beom; Pan, Xiaoqing

    2012-02-21

    Nonvolatile ferroelectric random-access memory uses ferroelectric thin films to save a polar state written by an electric field that is retained when the field is removed. After switching, the high energy of the domain walls separating regions of unlike polarization can drive backswitching resulting in a loss of switched domain volume, or in the case of very small domains, complete retention loss. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Miniaturized acceleration sensors with in-plane polarized piezoelectric thin films produced by micromachining.

    Science.gov (United States)

    Shanmugavel, Saravanan; Yao, Kui; Luong, Trung Dung; Oh, Sharon Roslyn; Chen, Yifan; Tan, Chin Yaw; Gaunekar, Ajit; Ng, Peter Hon Yu; Li, Marchy Hing Leung

    2011-11-01

    Miniaturized acceleration sensors employing piezoelectric thin films were fabricated through batch micromachining with silicon and silicon-on-insulator (SOI) wafers. The acceleration sensors comprised multiple suspension beams supporting a central seismic mass. Ferroelectric (Pb,La)(Zr,Ti) O(3) (PLZT) thin films were coated and in-plane polarized on the surfaces of the suspension beams for realizing electromechanical conversion through the piezoelectric effect. Interdigital electrodes were formed on the PLZT films and connected in parallel. Finite element analyses were conducted for the stress and strain distributions, providing guidance to the structural design, including optimizing electrode positioning for collecting the electrical output constructively. Uniformity of the beam thickness and sample consistency were significantly improved by using SOI wafers instead of silicon wafers. The measurement results showed that all the sensor samples had fundamental resonances of symmetric out-of-plane vibration mode at frequencies in the range of 8 to 35 kHz, depending on the sample dimensions. These sensors exhibited stable electrical outputs in response to acceleration input, achieving a high signal-to-noise ratio without any external amplifier or signal conditioning.

  3. Broadband back grating design for thin film solar cells

    KAUST Repository

    Janjua, Bilal

    2013-01-01

    In this paper, design based on tapered circular grating structure was studied, to provide broadband enhancement in thin film amorphous silicon solar cells. In comparison to planar structure an absorption enhancement of ~ 7% was realized.

  4. Density of organic thin films in organic photovoltaics

    Science.gov (United States)

    Zhao, Cindy X.; Xiao, Steven; Xu, Gu

    2015-07-01

    A practical parameter, the volume density of organic thin films, found to affect the electronic properties and in turn the performance of organic photovoltaics (OPVs), is investigated in order to benefit the polymer synthesis and thin film preparation in OPVs. To establish the correlation between film density and device performance, the density of organic thin films with various treatments was obtained, by two-dimensional X-ray diffraction measurement using the density mapping with respect to the crystallinity of thin films. Our results suggest that the OPV of higher performance has a denser photoactive layer, which may hopefully provide a solution to the question of whether the film density matters in organic electronics, and help to benefit the OPV industry in terms of better polymer design, standardized production, and quality control with less expenditure.

  5. Biomolecular papain thin films growth by laser techniques.

    Science.gov (United States)

    György, Enikö; Santiso, Jose; Figueras, Albert; Socol, Gabriel; Mihailescu, Ion N

    2007-08-01

    Papain thin films were synthesised by matrix assisted and conventional pulsed laser deposition (PLD) techniques. The targets submitted to laser radiation consisted on a frozen composite obtained by dissolving the biomaterials in distilled water. For the deposition of the thin films by conventional PLD pressed biomaterial powder targets were submitted to laser irradiation. An UV KrF* excimer laser source was used in the experiments at 0.5 J/cm(2) incident fluence value, diminished one order of magnitude as compared to irradiation of inorganic materials. The surface morphology of the obtained thin films was studied by atomic force profilometry and atomic force microscopy. The investigations showed that the growth mode and surface quality of the deposited biomaterial thin films is strongly influenced by the target preparation procedure.

  6. Comparison of metallization systems for thin film hybrid microcircuits

    Energy Technology Data Exchange (ETDEWEB)

    Hines, R.A.; Raut, M.K.

    1980-08-01

    Five metallization systems were evaluated for fabricating thin film hybrid microcircuits. The titanium/palladium/electroplated gold system proved superior in terms of thermocompression bondability, corrosion resistance, and solderability.

  7. Review of the fundamentals of thin-film growth.

    Science.gov (United States)

    Kaiser, Norbert

    2002-06-01

    The properties of a thin film of a given material depend on the film's real structure. The real structure is defined as the link between a thin film's deposition parameters and its properties. To facilitate engineering the properties of a thin film by manipulating its real structure, thin-film formation is reviewed as a process starting with nucleation followed by coalescence and subsequent thickness growth, all stages of which can be influenced by deposition parameters. The focus in this review is on dielectric and metallic films and their optical properties. In contrast to optoelectronics all these film growth possibilities for the engineering of novel optical films with extraordinary properties are just beginning to be used.

  8. Modeling surface imperfections in thin films and nanostructured surfaces

    DEFF Research Database (Denmark)

    Hansen, Poul-Erik; Madsen, J. S.; Jensen, S. A.

    2017-01-01

    Accurate scatterometry and ellipsometry characterization of non-perfect thin films and nanostructured surfaces are challenging. Imperfections like surface roughness make the associated modelling and inverse problem solution difficult due to the lack of knowledge about the imperfection...

  9. Chemical solution deposition of functional oxide thin films

    CERN Document Server

    Schneller, Theodor; Kosec, Marija

    2014-01-01

    Chemical Solution Deposition (CSD) is a highly-flexible and inexpensive technique for the fabrication of functional oxide thin films. Featuring nearly 400 illustrations, this text covers all aspects of the technique.

  10. Electrical properties of silver selenide thin films prepared by reactive ...

    Indian Academy of Sciences (India)

    Unknown

    2001-07-29

    805 Å. Keywords. Thin film; silver selenide; reactive evaporation; electrical conductivity. 1. Introduction. Silver selenide attracts the interest of researchers because of its application in the switching devices. The binary and ternary ...

  11. A thin film hydroponic system for plant studies

    Science.gov (United States)

    Hines, Robert; Prince, Ralph; Muller, Eldon; Schuerger, Andrew

    1990-01-01

    The Land Pavillion, EPCOT Center, houses a hydroponic, thin film growing system identical to that residing in NASA's Biomass Production Chamber at Kennedy Space Center. The system is targeted for plant disease and nutrition studies. The system is described.

  12. Rip-Stop Reinforced Thin Film Sun Shield Structure Project

    Data.gov (United States)

    National Aeronautics and Space Administration — During a proposed Phase I and Phase II program, PSI will advance the TRL from 3 to 6 for the ripstop reinforcement of thin film membranes used for large deployable...

  13. Surface Morphology of Zinc Oxide Thin Films deposited by TCVD

    Science.gov (United States)

    Rafaie, H. A.; Noor, F. W. M.; Amizam, S.; Abdullah, S.; Rusop, M.

    2010-03-01

    Surface morphology study of Zinc Oxide (ZnO) thin films by using Thermal Chemical Vapor Deposition (Thermal-CVD) was investigated. The ZnO compound was synthesized from zinc acetate dehydrate which act as a starting material to form the ZnO thin films. It was deposited on as-prepared Nanonstructured Silicon (NSi) with deposition temperature ranging from 400-600° C without catalyst-assisted. The surface morphology of the samples before and after the deposition process was examined by using Analytical Scanning Electron Microscope (SEM). The result shows that the obtained ZnO thin films possess good crystalline structure at deposition temperature of 600° C and the surface morphologies of the ZnO thin films improved greatly with an increase in deposition temperature. XRD was employed to study the evolution of the crystalline orientation using X-Ray Diffractrometer (XRD).

  14. Polycrystalline Thin-Film Research: Cadmium Telluride (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2011-06-01

    Capabilities fact sheet that includes scope, core competencies and capabilities, and contact/web information for Polycrystalline Thin-Film Research: Cadmium Telluride at the National Center for Photovoltaics.

  15. Polycrystalline Thin-Film Research: Cadmium Telluride (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2013-06-01

    This National Center for Photovoltaics sheet describes the capabilities of its polycrystalline thin-film research in the area of cadmium telluride. The scope and core competencies and capabilities are discussed.

  16. Role of Microstructural Phenomena in Magnetic Thin Films. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Laughlin, D. E.; Lambeth, D. N.

    2001-04-30

    Over the period of the program we systematically varied microstructural features of magnetic thin films in an attempt to better identify the role which each feature plays in determining selected extrinsic magnetic properties. This report summarizes the results.

  17. Retention Characteristics of CBTi144 Thin Films Explained by Means of X-Ray Photoemission Spectroscopy

    Directory of Open Access Journals (Sweden)

    G. Biasotto

    2010-01-01

    Full Text Available CaBi4Ti4O15 (CBTi144 thin films were grown on Pt/Ti/SiO2/Si substrates using a soft chemical solution and spin-coating method. Structure and morphology of the films were characterized by the X-ray Diffraction (XRD, Fourier-transform infrared spectroscopy (FT-IR, Raman analysis, X-ray photoemission spectroscopy (XPS, and transmission electron microscopy (TEM. The films present a single phase of layered-structured perovskite with polar axis orient. The a/b-axis orientation of the ferroelectric film is considered to be associated with the preferred orientation of the Pt bottom electrode. XPS measurements were employed to understand the nature of defects on the retention behavior of CBTi144 films. We have observed that the main source of retention-free characteristic of the capacitors is the oxygen environment in the CBTi144 lattice.

  18. Polarization-tuned diode behaviour in multiferroic BiFeO3 thin films

    KAUST Repository

    Yao, Yingbang

    2012-12-28

    Asymmetric rectifying I-V behaviour of multiferroic BiFeO3 (BFO) thin films grown on transparent ITO-coated glass was quantitatively studied as a function of ferroelectric polarization. Different polarized states were established by unipolar or bipolar poling with various applied electric fields. The effects of polarization relaxation and fatigue on the currents were also investigated. We found that the conduction currents and the associated rectifications were controlled by the amplitude and direction of the polarization. We clearly observed the linear dependence of the current on the polarization. It is suggested that the space-charge-limited conduction and the charge injection at the Schottky interface between the film and the electrodes dominate the current. The electrically controlled rectifying behaviour observed in this study may be useful in nonvolatile resistance memory devices or tunable diodes. © 2013 IOP Publishing Ltd.

  19. Controllable magnetization and resistivity jumps of manganite thin films on BaTiO3 substrate

    Directory of Open Access Journals (Sweden)

    Wengang Wei

    2015-11-01

    Full Text Available Manganites thin films grown on ferroelectric BaTiO3 (BTO exhibit dramatic jumps for both magnetization and resistivity upon cooling in accordance with the temperature-dependent structural transitions of the BTO substrate. Both upward and downward jumps have been reported at the same temperature point where BTO undergoes a structural transition from monoclinic to rhombohedral. Using La5/8Ca3/8MnO3/BaTiO3 as protype system, we solve the puzzle by showing that the direction of the jumps can be controlled by applying an electric field during post growth cooling which determines the orientation of the c-axis of the BTO substrate at room temperature. This offers a convenient way to control the magnetic and transport behavior of manganites films using electric field.

  20. Inverse bilayer magnetoelectric thin film sensor

    Energy Technology Data Exchange (ETDEWEB)

    Yarar, E.; Piorra, A.; Quandt, E., E-mail: eq@tf.uni-kiel.de [Chair for Inorganic Functional Materials, Institute for Materials Science, Faculty of Engineering, Kiel University, Kaiserstraße 2, D-24143 Kiel (Germany); Salzer, S.; Höft, M.; Knöchel, R. [Microwave Laboratory, Institute of Electrical and Information Engineering, Faculty of Engineering, Kiel University, Kaiserstraße 2, D-24143 Kiel (Germany); Hrkac, V.; Kienle, L. [Chair for Synthesis and Real Structure, Institute for Materials Science, Faculty of Engineering, Kiel University, Kaiserstraße 2, D-24143 Kiel (Germany)

    2016-07-11

    Prior investigations on magnetoelectric (ME) thin film sensors using amorphous FeCoSiB as a magnetostrictive layer and AlN as a piezoelectric layer revealed a limit of detection (LOD) in the range of a few pT/Hz{sup 1/2} in the mechanical resonance. These sensors are comprised of a Si/SiO{sub 2}/Pt/AlN/FeCoSiB layer stack, as dictated by the temperatures required for the deposition of the layers. A low temperature deposition route of very high quality AlN allows the reversal of the deposition sequence, thus allowing the amorphous FeCoSiB to be deposited on the very smooth Si substrate. As a consequence, the LOD could be enhanced by almost an order of magnitude reaching 400 fT/Hz{sup 1/2} at the mechanical resonance of the sensor. Giant ME coefficients (α{sub ME}) as high as 5 kV/cm Oe were measured. Transmission electron microscopy investigations revealed highly c-axis oriented growth of the AlN starting from the Pt-AlN interface with local epitaxy.

  1. Cerium Dioxide Thin Films Using Spin Coating

    Directory of Open Access Journals (Sweden)

    D. Channei

    2013-01-01

    Full Text Available Cerium dioxide (CeO2 thin films with varying Ce concentrations (0.1 to 0.9 M, metal basis were deposited on soda-lime-silica glass substrates using spin coating. It was found that all films exhibited the cubic fluorite structure after annealing at 500°C for 5 h. The laser Raman microspectroscopy and GAXRD analyses revealed that increasing concentrations of Ce resulted in an increase in the degree of crystallinity. FIB and FESEM images confirmed the laser Raman and GAXRD analyses results owing to the predicted increase in film thickness with increasing Ce concentration. However, porosity and shrinkage (drying cracking of the films also increased significantly with increasing Ce concentrations. UV-VIS spectrophotometry data showed that the transmission of the films decreased with increasing Ce concentrations due to the increasing crack formation. Furthermore, a red shift was observed with increasing Ce concentrations, which resulted in a decrease in the optical indirect band gap.

  2. Degradation analysis of thin film photovoltaic modules

    Energy Technology Data Exchange (ETDEWEB)

    Radue, C., E-mail: chantelle.radue@nmmu.ac.z [Department of Physics, PO Box 77000, Nelson Mandela Metropolitan University, Port Elizabeth 6031 (South Africa); Dyk, E.E. van [Department of Physics, PO Box 77000, Nelson Mandela Metropolitan University, Port Elizabeth 6031 (South Africa)

    2009-12-01

    Five thin film photovoltaic modules were deployed outdoors under open circuit conditions after a thorough indoor evaluation. Two technology types were investigated: amorphous silicon (a-Si:H) and copper indium gallium diselenide (CIGS). Two 14 W a-Si:H modules, labelled Si-1 and Si-2, were investigated. Both exhibited degradation, initially due to the well-known light-induced degradation described by Staebler and Wronski [Applied Physics Letters 31 (4) (1977) 292], and thereafter due to other degradation modes such as cell degradation. The various degradation modes contributing to the degradation of the a-Si:H modules will be discussed. The initial maximum power output (P{sub MAX}) of Si-1 was 9.92 W, with the initial light-induced degradation for Si-1 approx30% and a total degradation of approx42%. For Si-2 the initial P{sub MAX} was 7.93 W, with initial light-induced degradation of approx10% and a total degradation of approx17%. Three CIGS modules were investigated: two 20 W modules labelled CIGS-1 and CIGS-2, and a 40 W module labelled CIGS-3. CIGS-2 exhibited stable performance while CIGS-1 and CIGS-3 exhibited degradation. CIGS is known to be stable over long periods of time, and thus the possible reasons for the degradation of the two modules are discussed.

  3. Dynamic Characterization of Thin Film Magnetic Materials

    Science.gov (United States)

    Gu, Wei

    A broadband dynamic method for characterizing thin film magnetic material is presented. The method is designed to extract the permeability and linewidth of thin magnetic films from measuring the reflection coefficient (S11) of a house-made and short-circuited strip line testing fixture with or without samples loaded. An adaptive de-embedding method is applied to remove the parasitic noise of the housing. The measurements were carried out with frequency up to 10GHz and biasing magnetic fields up to 600 Gauss. Particular measurement setup and 3-step experimental procedures are described in detail. The complex permeability of a 330nm thick continuous FeGaB, 435nm thick laminated FeGaB film and a 100nm thick NiFe film will be induced dynamically in frequency-biasing magnetic field spectra and compared with a theoretical model based on Landau-Lifshitz-Gilbert (LLG) equations and eddy current theories. The ferromagnetic resonance (FMR) phenomenon can be observed among these three magnetic materials investigated in this thesis.

  4. Product reliability and thin-film photovoltaics

    Science.gov (United States)

    Gaston, Ryan; Feist, Rebekah; Yeung, Simon; Hus, Mike; Bernius, Mark; Langlois, Marc; Bury, Scott; Granata, Jennifer; Quintana, Michael; Carlson, Carl; Sarakakis, Georgios; Ogden, Douglas; Mettas, Adamantios

    2009-08-01

    Despite significant growth in photovoltaics (PV) over the last few years, only approximately 1.07 billion kWhr of electricity is estimated to have been generated from PV in the US during 2008, or 0.27% of total electrical generation. PV market penetration is set for a paradigm shift, as fluctuating hydrocarbon prices and an acknowledgement of the environmental impacts associated with their use, combined with breakthrough new PV technologies, such as thin-film and BIPV, are driving the cost of energy generated with PV to parity or cost advantage versus more traditional forms of energy generation. In addition to reaching cost parity with grid supplied power, a key to the long-term success of PV as a viable energy alternative is the reliability of systems in the field. New technologies may or may not have the same failure modes as previous technologies. Reliability testing and product lifetime issues continue to be one of the key bottlenecks in the rapid commercialization of PV technologies today. In this paper, we highlight the critical need for moving away from relying on traditional qualification and safety tests as a measure of reliability and focus instead on designing for reliability and its integration into the product development process. A drive towards quantitative predictive accelerated testing is emphasized and an industrial collaboration model addressing reliability challenges is proposed.

  5. Thin Films for X-ray Optics

    Science.gov (United States)

    Conley, Raymond

    Focusing x-rays with refraction requires an entire array of lens instead of a single element, each contributing a minute amount of focusing to the system. In contrast to their visible light counterparts, diffractive optics require a certain depth along the optical axis in order to provide sufficient phase shift. Mirrors reflect only at very shallow angles. In order to increase the angle of incidence, contribution from constructive interference within many layers needs to be collected. This requires a multilayer coating. Thin films have become a central ingredient for many x-ray optics due to the ease of which material composition and thickness can be controlled. Chapter 1 starts with a short introduction and survey of the field of x-ray optics. This begins with an explanation of reflective multilayers. Focusing optics are presented next, including mirrors, zone plates, refractive lenses, and multilayer Laue lens (MLL). The strengths and weaknesses of each "species" of optic are briefly discussed, alongside fabrication issues and the ultimate performance for each. Practical considerations on the use of thin-films for x-ray optics fabrication span a wide array of topics including material systems selection and instrumentation design. Sputter deposition is utilized exclusively for the work included herein because this method of thin-film deposition allows a wide array of deposition parameters to be controlled. This chapter also includes a short description of two deposition systems I have designed. Chapter 2 covers a small sampling of some of my work on reflective multilayers, and outlines two of the deposition systems I have designed and built at the Advanced Photon Source. A three-stripe double multilayer monochromator is presented as a case study in order to detail specifications, fabrication, and performance of this prolific breed of x-ray optics. The APS Rotary Deposition System was the first deposition system in the world designed specifically for multilayer

  6. Thin film deposition using rarefied gas jet

    Science.gov (United States)

    Pradhan, Sahadev, , Dr.

    2017-06-01

    The rarefied gas jet of aluminium is studied at Mach number Ma = (Uj /√{ kbTj / mg }) in the range .01 physical vapor deposition (PVD) process for the development of the highly oriented pure metallic aluminum thin film with uniform thickness and strong adhesion on the surface of the substrate in the form of ionic plasma, so that the substrate can be protected from corrosion and oxidation and thereby enhance the lifetime and safety, and to introduce the desired surface properties for a given application. Here, H is the characteristic dimension, U_j and T_j are the jet velocity and temperature, n_d is the number density of the jet, m and d are the molecular mass and diameter, and kbis the Boltzmann constant. An important finding is that the capture width (cross-section of the gas jet deposited on the substrate) is symmetric around the centerline of the substrate, and decreases with increased Mach number due to an increase in the momentum of the gas molecules. DSMC simulation results reveals that at low Knudsen number ((Kn=0.01); shorter mean free paths), the atoms experience more collisions, which direct them toward the substrate. However, the atoms also move with lower momentum at low Mach number, which allows scattering collisions to rapidly direct the atoms to the substrate.

  7. Laser scribing of polycrystalline thin films

    Science.gov (United States)

    Compaan, A. D.; Matulionis, I.; Nakade, S.

    2000-07-01

    We have investigated the use of several different types of lasers for scribing of the polycrystalline materials used for thin-film solar cells: CdTe, CuInGaSe 2 (CIGS), ZnO, SnO 2, Mo, Al, and Au. The lasers included four different neodymium-yttrium-aluminum garnet (Nd:YAG) (both 1064 and 532 nm wavelengths), a Cu vapor (511/578 nm), an XeCl excimer (308 nm), and a KrF excimer (248 nm). Pulse durations ranged from ˜0.1 to ˜250 ns. We found that the fundamental and frequency-doubled wavelengths of the Nd:YAG systems work well for almost all of the above materials except for the transparent conductor ZnO. The diode-laser-pumped Nd:YAG was particularly convenient to use. For ZnO the uv wavelengths of the two excimer lasers produced good results. Pulse duration was found generally not to be critical except for the case of CIGS on Mo where longer pulse durations (≥250 ns) are advantageous. The frequently observed problem of ridge formation along the edges of scribe lines in the semiconductor films can be eliminated by control of intensity gradients at the film through adjustment of the focus conditions.

  8. Silicon Thin-Film Solar Cells

    Directory of Open Access Journals (Sweden)

    Guy Beaucarne

    2007-01-01

    with plasma-enhanced chemical vapor deposition (PECVD. In spite of the fundamental limitation of this material due to its disorder and metastability, the technology is now gaining industrial momentum thanks to the entry of equipment manufacturers with experience with large-area PECVD. Microcrystalline Si (also called nanocrystalline Si is a material with crystallites in the nanometer range in an amorphous matrix, and which contains less defects than amorphous silicon. Its lower bandgap makes it particularly appropriate as active material for the bottom cell in tandem and triple junction devices. The combination of an amorphous silicon top cell and a microcrystalline bottom cell has yielded promising results, but much work is needed to implement it on large-area and to limit light-induced degradation. Finally thin-film polysilicon solar cells, with grain size in the micrometer range, has recently emerged as an alternative photovoltaic technology. The layers have a grain size ranging from 1 μm to several tens of microns, and are formed at a temperature ranging from 600 to more than 1000∘C. Solid Phase Crystallization has yielded the best results so far but there has recently been fast progress with seed layer approaches, particularly those using the aluminum-induced crystallization technique.

  9. Transparent conducting thin films for spacecraft applications

    Science.gov (United States)

    Perez-Davis, Marla E.; Malave-Sanabria, Tania; Hambourger, Paul; Rutledge, Sharon K.; Roig, David; Degroh, Kim K.; Hung, Ching-Cheh

    1994-01-01

    Transparent conductive thin films are required for a variety of optoelectronic applications: automotive and aircraft windows, and solar cells for space applications. Transparent conductive coatings of indium-tin-oxide (ITO)-magnesium fluoride (MgF2) and aluminum doped zinc oxide (AZO) at several dopant levels are investigated for electrical resistivity (sheet resistance), carrier concentration, optical properties, and atomic oxygen durability. The sheet resistance values of ITO-MgF2 range from 10(exp 2) to 10(exp 11) ohms/square, with transmittance of 75 to 86 percent. The AZO films sheet resistances range from 10(exp 7) to 10(exp 11) ohms/square with transmittances from 84 to 91 percent. It was found that in general, with respect to the optical properties, the zinc oxide (ZnO), AZO, and the high MgF2 content ITO-MgF2 samples, were all durable to atomic oxygen plasma, while the low MgF2 content of ITO-MgF2 samples were not durable to atomic oxygen plasma exposure.

  10. Collective Behavior of Amoebae in Thin Films

    Science.gov (United States)

    Bae, Albert

    2005-03-01

    We have discovered new aspects of social behavior in Dictyostelium discoideum by culturing high density colonies in liquid media depleted of nutrients in confined geometries by using three different preparations: I. thin (15-40um thick) and II. ultrathin (media with a mineral oil overlayer, and III. microfluidic chambers fabricated in PDMS (˜7um tall). We find greatly reduced, if not eliminated, cell on cell layering in the microfluidic system when compared to the wetting layer preparations. The ultrathin films reveal robust behavior of cells despite flattening that increased their areas by over an order of magnitude. We also observed that the earliest synchronized response of cells following the onset of starvation, a precursor to aggregation, was hastened by reducing the thickness of the aqueous culture layer. We were surprised to find that the threshold concentration for aggregation was raised by thin film confinement when compared to bulk behavior. Finally, both the ultra thin and microfluidic preparations reveal, with new clarity, vortex states of aggregation.

  11. CO2 gas sensitivity of sputtered zinc oxide thin films

    Indian Academy of Sciences (India)

    TECS

    Abstract. For the first time, sputtered zinc oxide (ZnO) thin films have been used as a CO2 gas sensor. Zinc oxide thin films have been synthesized using reactive d.c. sputtering method for gas sensor applications, in the deposition temperature range from 130–153°C at a chamber pressure of 8⋅5 mbar for 18 h. Argon and ...

  12. Liquid phase epitaxial growth of heterostructured hierarchical MOF thin films

    KAUST Repository

    Chernikova, Valeriya

    2017-05-10

    Precise control of epitaxial growth of MOF-on-MOF thin films, for ordered hierarchical tbo-type structures is demonstrated. The heterostructured MOF thin film was fabricated by successful sequential deposition of layers from two different MOFs. The 2-periodic layers, edge-transitive 4,4-square lattices regarded as supermolecular building layers, were commendably cross-linked using a combination of inorganic/organic and organic pillars.

  13. Scanned probe microscopy for thin film superconductor development

    Energy Technology Data Exchange (ETDEWEB)

    Moreland, J. [National Institute of Standards and Technology, Boulder, CO (United States)

    1996-12-31

    Scanned probe microscopy is a general term encompassing the science of imaging based on piezoelectric driven probes for measuring local changes in nanoscale properties of materials and devices. Techniques like scanning tunneling microscopy, atomic force microscopy, and scanning potentiometry are becoming common tools in the production and development labs in the semiconductor industry. The author presents several examples of applications specific to the development of high temperature superconducting thin films and thin-film devices.

  14. Methods for producing thin film charge selective transport layers

    Energy Technology Data Exchange (ETDEWEB)

    Hammond, Scott Ryan; Olson, Dana C.; van Hest, Marinus Franciscus Antonius Maria

    2018-01-02

    Methods for producing thin film charge selective transport layers are provided. In one embodiment, a method for forming a thin film charge selective transport layer comprises: providing a precursor solution comprising a metal containing reactive precursor material dissolved into a complexing solvent; depositing the precursor solution onto a surface of a substrate to form a film; and forming a charge selective transport layer on the substrate by annealing the film.

  15. No fear of thin films; Frykter ikke tynnfilm

    Energy Technology Data Exchange (ETDEWEB)

    Abelsen, Atle

    2006-07-01

    New investments in crystalline silicon based solar cells are made by the Norwegian companies Elkem Solar and REC Group, despite the increased competition from polymer based thin film solar cells. A new production method named solar grade silicon will reduce the production costs. Thin films are also less effective, with 5-6 percent efficiency compared to silicon based solar cells with 15-20 percent efficiency.

  16. Health, safety and environmental issues in thin film manufacturing

    OpenAIRE

    Alsema, E.A.; Baumann, A.E.; Hill, R.; Patterson, M.H.

    1997-01-01

    An investigation is made of Health, Safety and Environmental (HSE) aspects for the manufacturing, use and decommissioning of CdTe, CIS and a-Si modules. Issues regarding energy requirements, resource availability, emissions of toxic materials, occupational health and safety and module waste treatment are reviewed. Waste streams in thin film module manufacturing are analyzed in detail and treatment methods are discussed. Finally the technological options for thin film module recycling are inve...

  17. Novel photon management for thin-film photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Menon, Rajesh [Univ. of Utah, Salt Lake City, UT (United States)

    2016-11-11

    The objective of this project is to enable commercially viable thin-film photovoltaics whose efficiencies are increased by over 10% using a novel optical spectral-separation technique. A thin planar diffractive optic is proposed that efficiently separates the solar spectrum and assigns these bands to optimal thin-film sub-cells. An integrated device that is comprised of the optical element, an array of sub-cells and associated packaging is proposed.

  18. Molecular simulation of freestanding amorphous nickel thin films

    Energy Technology Data Exchange (ETDEWEB)

    Dong, T.Q. [Université Paris-Est, Laboratoire Modélisation et Simulation Multi Echelle, UMR 8208 CNRS, 5 Boulevard Descartes, 77454 Marne-la-Vallée, Cedex 2 (France); Hoang, V.V., E-mail: vvhoang2002@yahoo.com [Department of Physics, Institute of Technology, National University of Ho Chi Minh City, 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City (Viet Nam); Lauriat, G. [Université Paris-Est, Laboratoire Modélisation et Simulation Multi Echelle, UMR 8208 CNRS, 5 Boulevard Descartes, 77454 Marne-la-Vallée, Cedex 2 (France)

    2013-10-31

    Size effects on glass formation in freestanding Ni thin films have been studied via molecular dynamics simulation with the n-body Gupta interatomic potential. Atomic mechanism of glass formation in the films is determined via analysis of the spatio-temporal arrangements of solid-like atoms occurred upon cooling from the melt. Solid-like atoms are detected via the Lindemann ratio. We find that solid-like atoms initiate and grow mainly in the interior of the film and grow outward. Their number increases with decreasing temperature and at a glass transition temperature they dominate in the system to form a relatively rigid glassy state of a thin film shape. We find the existence of a mobile surface layer in both liquid and glassy states which can play an important role in various surface properties of amorphous Ni thin films. We find that glass formation is size independent for models containing 4000 to 108,000 atoms. Moreover, structure of amorphous Ni thin films has been studied in details via coordination number, Honeycutt–Andersen analysis, and density profile which reveal that amorphous thin films exhibit two different parts: interior and surface layer. The former exhibits almost the same structure like that found for the bulk while the latter behaves a more porous structure containing a large amount of undercoordinated sites which are the origin of various surface behaviors of the amorphous Ni or Ni-based thin films found in practice. - Highlights: • Glass formation is analyzed via spatio-temporal arrangements of solid-like atoms. • Amorphous Ni thin film exhibits two different parts: surface and interior. • Mobile surface layer enhances various surface properties of the amorphous Ni thin films. • Undercoordinated sites play an important role in various surface activities.

  19. Mechanical Robustness and Hermeticity Monitoring for MEMS Thin Film Encapsulation

    OpenAIRE

    Santagata, F.

    2011-01-01

    Many Micro-Electro-Mechanical-Systems (MEMS) require encapsulation, to prevent delicate sensor structures being exposed to external perturbations such as dust, humidity, touching, and gas pressure. An upcoming and cost-effective way of encapsulation is zero-level packaging or thin-film encapsulation. With this method, MEMS are already sealed during wafer processing. Thin-film encapsulation poses a number of challenges, in particular to hermeticity, mechanical robustness, and compatibility wit...

  20. Growth of cuprate high temperature superconductor thin films

    Directory of Open Access Journals (Sweden)

    H-U Habermeier

    2006-09-01

    Full Text Available   This paper reviews briefly the development of physical vapour deposition based HTS thin film preparation technologies to today’s state-of-the-art methods. It covers the main trends of in-situ process and growth control. The current activities to fabricate tapes for power applications as well as to tailor interfaces in cuprate are described. Some future trends in HTS thin film research, both for science as well as application driven activities are outlined.