WorldWideScience

Sample records for etchable glass technologies

  1. Formation of etchable tracks in plastics

    International Nuclear Information System (INIS)

    Katz, R.

    1984-01-01

    It is proposed that etchable tracks in plastics are formed by the interaction of delta-rays with polymer clusters, paralleling the formation of developable tracks in emulsion. We speak of a latent image, a grain count regime, and a track-width regime for the tracks of single particles. We may speak of 'ion-kill' and 'gamma-kill', as in radiobiology, when dealing with irradiation by a beam of particles. Existing but incomplete experimental evidence is consistent with these concepts. Such evidence as there is suggests that CR-39 is a 1-or more hit detector. (author)

  2. MINERGY CORPORATION GLASS FURNACE TECHNOLOGY EVALUATION: INNOVATION TECHNOLOGY EVALUATION REPORT

    Science.gov (United States)

    This report presents performance and economic data for a U.S. Environmental Protection Agency (EPA) Superfund Innovative Technology Evaluation (SITE) Program demonstration of the Minergy Corporation (Minergy) Glass Furnace Technology (GFT). The demonstration evaluated the techno...

  3. Glass science tutorial: Lecture No. 7, Waste glass technology for Hanford

    International Nuclear Information System (INIS)

    Kruger, A.A.

    1995-07-01

    This paper presents the details of the waste glass tutorial session that was held to promote knowledge of waste glass technology and how this can be used at the Hanford Reservation. Topics discussed include: glass properties; statistical approach to glass development; processing properties of nuclear waste glass; glass composition and the effects of composition on durability; model comparisons of free energy of hydration; LLW glass structure; glass crystallization; amorphous phase separation; corrosion of refractories and electrodes in waste glass melters; and glass formulation for maximum waste loading

  4. Google Glass - Dazzling Yet Brittle Technology

    Directory of Open Access Journals (Sweden)

    Saideep Koppaka

    2015-08-01

    Full Text Available In todays digital world everyones carrying a mobile phone a laptop and a tablet. All the devices mentioned above need to be carried by an individual in his bag or in his pocket. Google tried to bring up a wearable revolution with the introduction of Google glass. It is a wearable computer with an optical head mounted display that is worn like a pair of glasses. This paper will discuss the technology working benefits and concerns over the first wearable computer.

  5. SITE - DEMONSTRATION BULLETIN - MINERGY GLASS FURNACE TECHNOLOGY - MINERGY CORPORATION

    Science.gov (United States)

    The Glass Furnace Technology (GFT) was developed by Minergy Corporation (Minergy), of Waukesha, Wisconsin. Minergy originally developed vitrification technologies to process wastewater sludge into glass aggregate that could be sold as a commercial product. Minergy modified a st...

  6. Wearable technology smart watches to Google Glass for libraries

    CERN Document Server

    Bruno, Tom

    2015-01-01

    Emerging devices are placing powerful computing abilities into the wardrobes of consumers through wearable technology which combines fashion and function in new and exciting ways. The most recognizable of these emerging gadgets is Google Glass. Wearable Technology: Smart Watches to Google Glass for Libraries provides a comprehensive overview of the current wearable technology landscape, the types of devices and functionality available, the benefits and limitations of this type of technology, and how you can make use of it in yo

  7. Crystallinity, etchability, electrical and mechanical properties of Ga doped amorphous indium tin oxide thin films deposited by direct current magnetron sputtering

    International Nuclear Information System (INIS)

    Lee, Hyun-Jun; Song, Pung-Keun

    2014-01-01

    Indium tin oxide (ITO) and Ga-doped ITO (ITO:Ga) films were deposited on glass and polyimide (PI) substrates by direct current (DC) magnetron sputtering using different ITO:Ga targets (doped-Ga: 0, 0.1 and 2.9 wt.%). The films were deposited with a thickness of 50 nm and then post-annealed at various temperatures (room temperature-250 °C) in a vacuum chamber for 30 min. The amorphous ITO:Ga (0.1 wt.% Ga) films post-annealed at 220 °C exhibited relatively low resistivity (4.622x10 −4 Ω cm), indicating that the crystallinity of the ITO:Ga films decreased with increasing Ga content. In addition, the amorphous ITO:Ga films showed a better surface morphology, etchability and mechanical properties than the ITO films. - Highlights: • The Ga doped indium tin oxide (ITO) films crystallized at higher temperatures than the ITO films. • The amorphisation of ITO films increases with increasing Ga content. • Similar resistivity was observed between crystalline ITO and amorphous Ga doped ITO films. • Etching property of ITO film was improved with increasing Ga content

  8. DWPF Glass Melter Technology Manual: Volume 4

    International Nuclear Information System (INIS)

    Iverson, D.C.

    1993-01-01

    This document details information about the design of a glass melter to be used at the Defense Waste Processing Facility located at the Savannah River Plant. Information contained in this document consists solely of a machine drawing and parts list and purchase orders with specifications of equipment used in the development of the melter

  9. DWPF Glass Melter Technology Manual: Volume 4

    Energy Technology Data Exchange (ETDEWEB)

    Iverson, D.C.

    1993-12-31

    This document details information about the design of a glass melter to be used at the Defense Waste Processing Facility located at the Savannah River Plant. Information contained in this document consists solely of a machine drawing and parts list and purchase orders with specifications of equipment used in the development of the melter.

  10. DWPF Glass Melter Technology Manual: Volume 3

    Energy Technology Data Exchange (ETDEWEB)

    Iverson, D.C.

    1993-12-31

    This document details information about the design of a glass melter to be used at the Defense Waste Processing Facility located at the Savannah River Site. Topics discussed include: Information collected during testing, equipment, materials, design basis, feed tubes, and an evaluation of the performance of various components. Information is conveyed using many diagrams and photographs.

  11. DWPF Glass Melter Technology Manual: Volume 3

    International Nuclear Information System (INIS)

    Iverson, D.C.

    1993-01-01

    This document details information about the design of a glass melter to be used at the Defense Waste Processing Facility located at the Savannah River Site. Topics discussed include: Information collected during testing, equipment, materials, design basis, feed tubes, and an evaluation of the performance of various components. Information is conveyed using many diagrams and photographs

  12. DWPF Glass Melter Technology Manual: Volume 1

    International Nuclear Information System (INIS)

    Iverson, D.C.

    1993-01-01

    This document details information about the design of a glass melter to be used at the Defense Waste Processing Facility located at the Savannah River Site. Topics include: melter overview, design basis, materials, vessel configuration, insulation, refractory configuration, electrical isolation, electrodes, riser and pour spout heater design, dome heaters, feed tubes, drain valves, differential pressure pouring, and melter test results. Information is conveyed using many diagrams and photographs

  13. Rediscovering ancient glass technologies through the examination of opacifier crystals

    Science.gov (United States)

    Lahlil, S.; Biron, I.; Galoisy, L.; Morin, G.

    2008-07-01

    The aim of the study is to understand how antimonate opacifying crystals were obtained throughout history. Two archaeological glass productions opacified with calcium and lead antimonates are studied in this paper, in order to rediscover ancient opaque glass technologies: Roman mosaic tesserae (1st cent. B.C. 4th cent. A.D.) and Nevers lampworking glass (18th cent. A.D.). The fine examination of crystalline phases and of the vitreous matrix is undertaken using various and complementary techniques. Results are compared with a modern reference production, for which the technological process is well known. We demonstrate that Ca-antimonate opacifiers in Roman mosaic tesserae, as well as in Nevers lampworking glass, were obtained by in situ crystallization. Nevertheless, Roman and Nevers glass would have undergone different firing processes. We propose that the addition of previously synthesized crystals or the use of “anime” could be the process used to obtain Pb-antimonate opacified glass, for both productions studied. We demonstrate that CaO, PbO and Sb2O3 concentrations in the bulk compositions and in the matrices, and their evolution with the crystallinity ratio, offer robust criteria for the distinction of the opacification process used. Also, the different crystalline structures help to provide information on the experimental conditions.

  14. Arctic Glass: Innovative Consumer Technology in Support of Arctic Research

    Science.gov (United States)

    Ruthkoski, T.

    2015-12-01

    The advancement of cyberinfrastructure on the North Slope of Alaska is drastically limited by location-specific conditions, including: unique geophysical features, remoteness of location, and harsh climate. The associated cost of maintaining this unique cyberinfrastructure also becomes a limiting factor. As a result, field experiments conducted in this region have historically been at a technological disadvantage. The Arctic Glass project explored a variety of scenarios where innovative consumer-grade technology was leveraged as a lightweight, rapidly deployable, sustainable, alternatives to traditional large-scale Arctic cyberinfrastructure installations. Google Glass, cloud computing services, Internet of Things (IoT) microcontrollers, miniature LIDAR, co2 sensors designed for HVAC systems, and portable network kits are several of the components field-tested at the Toolik Field Station as part of this project. Region-specific software was also developed, including a multi featured, voice controlled Google Glass application named "Arctic Glass". Additionally, real-time sensor monitoring and remote control capability was evaluated through the deployment of a small cluster of microcontroller devices. Network robustness was analyzed as the devices delivered streams of abiotic data to a web-based dashboard monitoring service in near real time. The same data was also uploaded synchronously by the devices to Amazon Web Services. A detailed overview of solutions deployed during the 2015 field season, results from experiments utilizing consumer sensors, and potential roles consumer technology could play in support of Arctic science will be discussed.

  15. Wafer-level manufacturing technology of glass microlenses

    Science.gov (United States)

    Gossner, U.; Hoeftmann, T.; Wieland, R.; Hansch, W.

    2014-08-01

    In high-tech products, there is an increasing demand to integrate glass lenses into complex micro systems. Especially in the lighting industry LEDs and laser diodes used for automotive applications require encapsulated micro lenses. To enable low-cost production, manufacturing of micro lenses on wafer level base using a replication technology is a key technology. This requires accurate forming of thousands of lenses with a diameter of 1-2 mm on a 200 mm wafer compliant with mass production. The article will discuss the technical aspects of a lens manufacturing replication process and the challenges, which need to be solved: choice of an appropriate master for replication, thermally robust interlayer coating, choice of replica glass, bonding and separation procedure. A promising approach for the master substrate material is based on a lens structured high-quality glass wafer with high melting point covered by a coating layer of amorphous silicon or germanium. This layer serves as an interlayer for the glass bonding process. Low pressure chemical vapor deposition and plasma enhanced chemical vapor deposition processes allow a deposition of layer coatings with different hydrogen and doping content influencing their chemical and physical behavior. A time reduced molding process using a float glass enables the formation of high quality lenses while preserving the recyclability of the mother substrate. The challenge is the separation of the replica from the master mold. An overview of chemical methods based on optimized etching of coating layer through small channels will be given and the impact of glass etching on surface roughness is discussed.

  16. Development of Self-Luminous Glass Tube (SLGT) Manufacturing Technology

    International Nuclear Information System (INIS)

    Kim, Kwang Sin; Kim, Kyeong Sook; Chung, Eun Su; Song, Kyu Min; Lee, Sook Kyung; Son, Soon Hwan

    2005-01-01

    Tritium produced from the Wolsong Tritium Removal Facility (WTRF) will be a radioactive waste when it is stored in the vault inside the WTRF, which requires maintenance cost and is a troublesome waste such that it cannot be sent to the radioactive waste disposal facility. However, when tritium is utilized it can be valuable resource for many applications. As a starting point to utilize tritium we tried to domesticate the selfluminous glass tube (SLGT) manufacturing technology. As a hydrogen isotope, tritium has similar chemical properties to hydrogen but slightly different physical properties. Due to its unstable nature, tritium emits beta rays, which are streams of electrons, with 0∼18.6 keV (5.7 keV in average) energies and 12.323 years of a half-life. The energy level of tritium is relatively low and the biological effects of tritium to the human body are not significant, which makes tritium a popular radioactive isotope for use in industries. The electrons in a beta ray collide with phosphor to produce light so that tritium sealed in phosphor coated glass tubes can make the tubes glow without an external supply of energy. To manufacture these SLGTs, 4 core technologies are needed: coating technology, tritium injection technology, laser sealing/cutting technology and tritium handling technology

  17. Liquid nitrogen enhancement of partially annealed fission tracks in glass; and reply

    International Nuclear Information System (INIS)

    Wagner, G.A.; Carpenter, B.S.; Pilione, L.J.; Gold, D.P.

    1977-01-01

    Pilione and Gold (Nature 262: 773 (1976)) stated that it was possible to reveal partially annealed fission tracks in glass by immersion in liquid N 2 , and that it was possible to increase the total number of etchable tracks by increasing the immersion time. The present authors attempted to duplicate the work of the former authors using the same glass. They found no significant change in the number of etchable tracks after immersion in liquid N 2 , and they concluded that the latter has no effect on annealed tracks in glass. Any observed enhancement of partially annealed tracks is probably a surface effect and has no effect on the interior matrix of the glass. A reply by Pilione and Gold is appended. (U.K.)

  18. Technological advances in tellurite glasses properties, processing, and applications

    CERN Document Server

    Manzani, Danilo

    2017-01-01

    This book is the first to provide a comprehensive introduction to the synthesis, optical properties, and photonics applications of tellurite glasses. The book begins with an overview of tellurite glasses, followed by expert chapters on synthesis, properties, and state-of-the-art applications ranging from laser glass, optical fibers, and optical communications through color tuning, plasmonics, supercontinuum generation, and other photonic devices. The book provides in-depth information on the the structural, linear, and non-linear optical properties of tellurite glasses and their implications for device development. Real-world examples give the reader valuable insight into the applications of tellurite glass. A detailed discussion of glass production methods, including raw materials and melting and refining oxide- and fluoro-tellurite glasses, is also included. The book features an extensive reference list for further reading. This highly readable and didactic text draws on chemical composition, glass science,...

  19. Development of glass fibre reinforced composites using microwave heating technology

    Science.gov (United States)

    Köhler, T.; Vonberg, K.; Gries, T.; Seide, G.

    2017-10-01

    Fibre reinforced composites are differentiated by the used matrix material (thermoplastic versus duroplastic matrix) and the level of impregnation. Thermoplastic matrix systems get more important due to their suitability for mass production, their good shapeability and their high impact resistance. A challenge in the processing of these materials is the reduction of the melt flow paths of the thermoplastic matrix. The viscosity of molten thermoplastic material is distinctly higher than the viscosity of duroplastic material. An approach to reduce the flow paths of the thermoplastic melt is given by a commingling process. Composites made from commingling hybrid yarns consist of thermoplastic and reinforcing fibres. Fabrics made from these hybrid yarns are heated and consolidated by the use of heat pressing to form so called organic sheets. An innovative heating system is given by microwaves. The advantage of microwave heating is the volumetric heating of the material, where the energy of the electromagnetic radiation is converted into thermal energy inside the material. In this research project microwave active hybrid yarns are produced and examined at the Institute for Textile Technology of RWTH Aachen University (ITA). The industrial research partner Fricke und Mallah Microwave Technology GmbH, Peine, Germany develops an innovative pressing systems based on a microwave heating system. By implementing the designed microwave heating technology into an existing heat pressing process, FRTCs are being manufactured from glass and nanomodified polypropylene fibre woven fabrics. In this paper the composites are investigated for their mechanical and optical properties.

  20. Deep glass etched microring resonators based on silica-on-silicon technology

    DEFF Research Database (Denmark)

    Ou, Haiyan; Rottwitt, Karsten; Philipp, Hugh Taylor

    2006-01-01

    Microring resonators fabricated on silica-on-silicon technology using deep glass etching are demonstrated. The fabrication procedures are introduced and the transmission spectrum of a resonator is presented.......Microring resonators fabricated on silica-on-silicon technology using deep glass etching are demonstrated. The fabrication procedures are introduced and the transmission spectrum of a resonator is presented....

  1. Glasses

    DEFF Research Database (Denmark)

    Dyre, Jeppe

    2004-01-01

    The temperature dependence of the viscosity of most glassforming liquids is known to depart significantly from the classical Arrhenius behaviour of simple fluids. The discovery of an unexpected correlation between the extent of this departure and the Poisson ratio of the resulting glass could lead...... to new understanding of glass ageing and viscous liquid dynamics....

  2. Physical Characteristics and Technology of Glass Foam from Waste Cathode Ray Tube Glass

    Directory of Open Access Journals (Sweden)

    G. Mucsi

    2013-01-01

    Full Text Available This paper deals with the laboratory investigation of cathode-ray-tube- (CRT- glass-based glass foam, the so-called “Geofil-Bubbles” which can be applied in many fields, mainly in the construction industry (lightweight concrete aggregate, thermal and sound insulation, etc.. In this study, the main process engineering material properties of raw materials, such as particle size distribution, moisture content, density, and specific surface area, are shown. Then, the preparation of raw cathode ray tube glass waste is presented including the following steps: crushing, grinding, mixing, heat curing, coating, and sintering. Experiments were carried out to optimize process circumstances. Effects of sintering conditions—such as temperature, residence time, and particle size fraction of green pellet—on the mechanical stability and particle density of glass foam particles were investigated. The mechanical stability (abrasion resistance was tested by abrasion test in a Deval drum. Furthermore, the cell structure was examined with optical microscopy and SEM. We found that it was possible to produce foam glass (with proper mechanical stability and particle density from CRT glass. The material characteristics of the final product strongly depend on the sintering conditions. Optimum conditions were determined: particle size fraction was found to be 4–6 mm, temperature 800°C, and residence time 7.5 min.

  3. Laboratory testing of glasses for Lockheed Idaho Technology Company: Final report

    International Nuclear Information System (INIS)

    Ellison, A.J.G.; Buck, E.C.; Dietz, N.L.; Ebert, W.L.; Luo, J.S.; Wolf, S.F.; Bates, J.K.

    1997-06-01

    Tests have been conducted at Argonne National Laboratory (ANL) in support of the efforts of Lockheed Idaho Technology Company (LITCO) to vitrify high-level waste calcines. Tests were conducted with three classes of LITCO glass formulations: Formula 127 (fluorine-bearing), Formula 532 (fluorine-free), and 630 series (both single- and mixed-alkali) glasses. The test matrices included, as appropriate, the Product Consistency Test Method B (PCT-B), the Materials Characterization Center Test 1 (MCC-1), and the Argonne vapor hydration test (VHT). Test durations ranged from 7 to 183 d. In 7-d PCT-Bs, normalized mass losses of major glass-forming elements for the LITCO glasses are similar to, or lower than, normalized mass losses obtained for other domestic candidate waste glasses. Formula 532 glasses form zeolite alteration phases relatively early in their reaction with water. The formation of those phases increased the dissolution rate. In contrast, the Formula 127 glass is highly durable and forms alteration phases only after prolonged exposure to water in tests with very high surface area to volume ratios; these alteration phases have a relatively small effect on the rate of glass corrosion. No alteration phases formed within the maximum test duration of 183 d in PCT-Bs with the 630 series glasses. The corrosion behavior of the mixed-alkali 630 series glasses is similar to that of 630 series glasses containing sodium alone. In VHTs, both single- and mixed-alkali glasses form zeolite phases that increase the rate of glass reaction. The original 630 series glasses and those based on a revised surrogate calcine formulation react at the same rate in PCT-Bs and form the same major alteration phases in VHTs

  4. PREFACE: International Seminar on Science and Technology of Glass Materials (ISSTGM-2009)

    Science.gov (United States)

    Veeraiah, N.

    2009-07-01

    The progress of the human race is linked with the development of new materials and also the values they acquired in the course of time. Though the art of glass forming has been known from Egyptian civilization, the understanding and use of these glasses for technological applications only became possible once the structural aspects were revealed by the inspiring theories proposed by William H Zachariasen. Glass and glass ceramics have become the essential materials for modern technology. The applications of these materials are wide and cover areas such as optical communication, laser host, innovative architecture, bio-medical, automobile and space technology. As we master the technology, we must also learn to use it judiciously and for the overall development of all in this global village. The International Seminar on Science and Technology of Glass Materials (ISSTGM-2009) is organized to bring together scientists, academia and industry in order to discuss various aspects of the technology and to inspire young scholars to take up fruitful research. Various topics such as glass formation and glass-ceramics, glass structure, applications of glass and glass ceramics in nuclear waste management, radiation dosimetry, electronics and information technology, biotechnological applications, bulk metallic glasses, glasses containing nano-particles, hybrid glasses, novel glasses and applications in photonics, Non-linear optics and energy generation were discussed. In this volume, 59 research articles covering 18 invited talks, 10 oral presentations and 31 poster presentations are included. We hope these will serve as a valuable resource to all the scientists and scholars working with glass materials. Acharya Nagarjuna University, established in 1976, is named after the great Buddhist preceptor and philosopher, Acharya Nagarjuna, who founded a university on the banks of river Krishna some centuries ago. The University is situated between Vijayawada and Guntur, the famous

  5. Production of coloured glass-ceramics from incinerator ash using thermal plasma technology.

    Science.gov (United States)

    Cheng, T W; Huang, M Z; Tzeng, C C; Cheng, K B; Ueng, T H

    2007-08-01

    Incineration is a major treatment process for municipal solid waste in Taiwan. It is estimated that over 1.5 Mt of incinerator ash are produced annually. This study proposes using thermal plasma technology to treat incinerator ash. Sintered glass-ceramics were produced using quenched vitrified slag with colouring agents added. The experimental results showed that the major crystalline phases developed in the sintered glass-ceramics were gehlenite and wollastonite, but many other secondary phases also appeared depending on the colouring agents added. The physical/mechanical properties, chemical resistance and toxicity characteristic leaching procedure of the coloured glass-ceramics were satisfactory. The glass-ceramic products obtained from incinerator ash treated with thermal plasma technology have great potential for building applications.

  6. Through the Looking Glass: Examining Technology Integration in School Librarianship

    Science.gov (United States)

    Green, Lucy Santos

    2014-01-01

    The school library profession has begun to develop a reputation for tech-savviness. Several school librarians are nationally recognized technology leaders and present at conferences where instructional technology is at the forefront. Unfortunately, while school librarians have done a wonderful job of marketing their technological expertise in the…

  7. Glass sealing

    Energy Technology Data Exchange (ETDEWEB)

    Brow, R.K.; Kovacic, L.; Chambers, R.S. [Sandia National Labs., Albuquerque, NM (United States)

    1996-04-01

    Hernetic glass sealing technologies developed for weapons component applications can be utilized for the design and manufacture of fuel cells. Design and processing of of a seal are optimized through an integrated approach based on glass composition research, finite element analysis, and sealing process definition. Glass sealing procedures are selected to accommodate the limits imposed by glass composition and predicted calculations.

  8. On the frequency distributions per unit area of the projected and etchable lengths of surface-intersecting fission tracks: influences of track revelation, observation and measurement

    International Nuclear Information System (INIS)

    Jonckheere, R.; Haute, P. van den

    1999-01-01

    In addition to the statistical bounds discussed, thermal history analysis based on the projected and etchable length distributions of surface intersecting fission tracks is limited by systematic factors related to track revelation, observation and measurement. The effects of track revelation, in particular, distort these distributions in the length intervals of interest. An observation threshold poses a problem if it is described by a critical angle θ c , but not if it is described by other criteria proposed in the literature. Measurement imprecisions, predictably, blur the thermal history information contained in these distributions. Measurements of semi-confined tracks, added as a result of surface etching, are a more promising alternative to confined track length measurements for accessing the thermal history record in the fission track length distribution. On the other hand, measurements of the projected lengths of surface intersecting tracks offer the theoretical possibility of determining the true volumetric density N and true mean length m of an arbitrary population of fission tracks, thus allowing direct determination of the corrected age of samples with complex thermal histories. On a methodical level, knowledge of N and m allows to determine the efficiency with which fission tracks are counted under the optical microscope under exactly the same conditions as those under which fission track counts for routine dating purposes are performed

  9. Laboratory testing of glasses for Lockheed Idaho Technology Co. - fiscal year 1994 report

    International Nuclear Information System (INIS)

    Ellison, A.J.G.; Wolf, S.F.; Bates, J.K.

    1995-04-01

    The purpose of this project is to measure the intermediate and long-term durability of vitrified waste forms developed by Lockheed Idaho Technology Co. (LITCO) for the immobilization of calcined radioactive wastes at Idaho National Engineering Laboratory. Two vitreous materials referred to as Formula 127 and Formula 532, have been subjected to accelerated durability tests to measure their long-term performance. Formula 127 consists of a glass matrix containing 5-10 vol % fluorite (CaF 2 ) as a primary crystalline phase. It shows low releases of glass components to solution in 7-, 28-, 70-, and 140-day Product Consistency Tests performed at 2000 m -1 at 90 degrees C. In these tests, release rates for glass-forming components were similar to those found for durable waste glasses. The Ca and F released by the glass as it corrodes appear to reprecipitate as fluorite. Formula 532 consists of a glass matrix containing 5-10 vol % of an Al-Si-rich primary crystalline phase. The release rates for components other than aluminum are relatively low, but aluminum is released at a much higher rate than is typical for durable waste glasses. Secondary crystalline phases form relatively early during the corrosion of Formula 532 and appear to consist almost entirely of the Al-Si-rich primary phase (or a crystal with the same Al:Si ratio) and a sodium-bearing zeolite. Future test results are expected to highlight the relative importance of primary and secondary crystalline phases to the rate of corrosion of Formula 127 and Formula 532

  10. Single-mode glass waveguide technology for optical interchip communication on board level

    Science.gov (United States)

    Brusberg, Lars; Neitz, Marcel; Schröder, Henning

    2012-01-01

    The large bandwidth demand in long-distance telecom networks lead to single-mode fiber interconnects as result of low dispersion, low loss and dense wavelength multiplexing possibilities. In contrast, multi-mode interconnects are suitable for much shorter lengths up to 300 meters and are promising for optical links between racks and on board level. Active optical cables based on multi-mode fiber links are at the market and research in multi-mode waveguide integration on board level is still going on. Compared to multi-mode, a single-mode waveguide has much more integration potential because of core diameters of around 20% of a multi-mode waveguide by a much larger bandwidth. But light coupling in single-mode waveguides is much more challenging because of lower coupling tolerances. Together with the silicon photonics technology, a single-mode waveguide technology on board-level will be the straight forward development goal for chip-to-chip optical interconnects integration. Such a hybrid packaging platform providing 3D optical single-mode links bridges the gap between novel photonic integrated circuits and the glass fiber based long-distance telecom networks. Following we introduce our 3D photonic packaging approach based on thin glass substrates with planar integrated optical single-mode waveguides for fiber-to-chip and chip-to-chip interconnects. This novel packaging approach merges micro-system packaging and glass integrated optics. It consists of a thin glass substrate with planar integrated singlemode waveguide circuits, optical mirrors and lenses providing an integration platform for photonic IC assembly and optical fiber interconnect. Thin glass is commercially available in panel and wafer formats and characterizes excellent optical and high-frequency properties. That makes it perfect for microsystem packaging. The paper presents recent results in single-mode waveguide technology on wafer level and waveguide characterization. Furthermore the integration in a

  11. An innovative energy-saving in-flight melting technology and its application to glass production

    Directory of Open Access Journals (Sweden)

    Yaochun Yao et al

    2008-01-01

    Full Text Available The conventional method used for glass melting is air-fuel firing, which is inefficient, energy-intensive and time-consuming. In this study, an innovative in-flight melting technology was developed and applied to glass production for the purposes of energy conservation and environmental protection. Three types of heating sources, radio-frequency (RF plasma, a 12-phase alternating current (ac arc and an oxygen burner, were used to investigate the in-flight melting behavior of granulated powders. Results show that the melted particles are spherical with a smooth surface and compact structure. The diameter of the melted particles is about 50% of that of the original powders. The decomposition and vitrification degrees of the prepared powders decrease in the order of powders prepared by RF plasma, the 12-phase ac arc and the oxygen burner. The largest heat transfer is from RF plasma to particles, which results in the highest particle temperature (1810 °C and the greatest vitrification degree of the raw material. The high decomposition and vitrification degrees, which are achieved in milliseconds, shorten the melting and fining times of the glass considerably. Our results indicate that the proposed in-flight melting technology is a promising method for use in the glass industry.

  12. Video-based self-review: comparing Google Glass and GoPro technologies.

    Science.gov (United States)

    Paro, John A M; Nazareli, Rahim; Gurjala, Anadev; Berger, Aaron; Lee, Gordon K

    2015-05-01

    Professionals in a variety of specialties use video-based review as a method of constant self-evaluation. We believe critical self-reflection will allow a surgical trainee to identify methods for improvement throughout residency and beyond. We have used 2 new popular technologies to evaluate their role in accomplishing the previously mentioned objectives. Our group investigated Google Glass and GoPro cameras. Medical students, residents, and faculty were invited to wear each of the devices during a scheduled operation. After the case, each participant was asked to comment on a number of features of the device including comfort, level of distraction/interference with operating, ease of video acquisition, and battery life. Software and hardware specifications were compiled and compared by the authors. A "proof-of-concept" was also performed using the video-conferencing abilities of Google Glass to perform a simulated flap check. The technical specifications of the 2 cameras favor GoPro over Google Glass. Glass records in 720p with 5-MP still shots, and the GoPro records in 1080p with 12-MP still shots. Our tests of battery life showed more than 2 hours of continuous video with GoPro, and less than 1 hour for Glass. Favorable features of Google Glass included comfort and relative ease of use; they could not comfortably wear loupes while operating, and would have preferred longer hands-free video recording. The GoPro was slightly more cumbersome and required a nonsterile team member to activate all pictures or video; however, loupes could be worn. Google Glass was successfully used in the hospital for a simulated flap check, with overall audio and video being transmitted--fine detail was lost, however. There are benefits and limitations to each of the devices tested. Google Glass is in its infancy and may gain a larger intraoperative role in the future. We plan to use Glass as a way for trainees to easily acquire intraoperative footage as a means to "review tape" and

  13. Using the Technology: Introducing Point of View Video Glasses Into the Simulated Clinical Learning Environment.

    Science.gov (United States)

    Metcalfe, Helene; Jonas-Dwyer, Diana; Saunders, Rosemary; Dugmore, Helen

    2015-10-01

    The introduction of learning technologies into educational settings continues to grow alongside the emergence of innovative technologies into the healthcare arena. The challenge for health professionals such as medical, nursing, and allied health practitioners is to develop an improved understanding of these technologies and how they may influence practice and contribute to healthcare. For nurse educators to remain contemporary, there is a need to not only embrace current technologies in teaching and learning but to also ensure that students are able to adapt to this changing pedagogy. One recent technological innovation is the use of wearable computing technology, consisting of video recording with the capability of playback analysis. The authors of this article discuss the introduction of the use of wearable Point of View video glasses by a cohort of nursing students in a simulated clinical learning laboratory. Of particular interest was the ease of use of the glasses, also termed the usability of this technology, which is central to its success. Students' reflections were analyzed together with suggestions for future use.

  14. Study into the feasibility of manufacturing liquid glass using resource-saving technology

    Directory of Open Access Journals (Sweden)

    Mizyuryaev Sergey

    2017-01-01

    Full Text Available The authors’ views on the problem of resource-saving in the production of building materials are outlined, with three main modes of resource-saving indicated: the use of cheap raw materials, a reduction in the production costs, and an increase in the efficiency of the produced materials and products. The research provides information on the production and use of liquid glass in industry, including the construction industry. The theoretical substantiation of the possibility of developing a resource-saving technology for the production of liquid glass for construction purposes is given. The work provides information on promising alternative raw material components - diatomite, natural rock and black ash, industrial waste. Their properties are given as well as the justification of their effective use as raw materials. The method of preparation of the components and their mixtures, the preparation of sodium silicate through roasting, and the identification of the suitability of the obtained product for the manufacture of efficient building materials are described. Conclusions are made in regards to the feasibility of producing liquid glass using resource-saving technology.

  15. Eco-technological process of glass-ceramic production from galvanic sludge and aluminium slag

    Directory of Open Access Journals (Sweden)

    Stanisavljević M.

    2010-01-01

    Full Text Available Methods of purification of waste water which are most commonly used in the Republic of Serbia belong to the type of conventional systems for purification such as chemical oxidation and reduction, neutralization, sedimentation, coagulation, and flocculation. Consequently, these methods generate waste sludge which, unless adequately stabilized, represents hazardous matter. The aluminium slag generated by melting or diecasting aluminium and its alloys is also hazardous matter. In this sense, this paper establishes ecological risk of galvanic waste sludge and aluminium slag and then describes the process of stabilization of these waste materials by means of transformation into a glass-ceramic structure through sintering. The obtained product was analyzed with Fourier Transform Infrared Spectroscopy (FT-IR and X-ray diffraction (XRD. The object of the paper is the eco-technological process of producing glass-ceramics from galvanic sludge and aluminium slag. The aim of the paper is to incorporate toxic metals from galvanic sludge and aluminium slag into the glass-ceramic product, in the form of solid solutions.

  16. Glass Glimpsed

    DEFF Research Database (Denmark)

    Lock, Charles

    2015-01-01

    Glass in poetry as it reflects the viewer and as its power of reflection are both reduced and enhanced by technology.......Glass in poetry as it reflects the viewer and as its power of reflection are both reduced and enhanced by technology....

  17. Properties and Clinical Application of Three Types of Dental Glass-Ceramics and Ceramics for CAD-CAM Technologies

    Science.gov (United States)

    Ritzberger, Christian; Apel, Elke; Höland, Wolfram; Peschke, Arnd; Rheinberger, Volker M.

    2010-01-01

    The main properties (mechanical, thermal and chemical) and clinical application for dental restoration are demonstrated for three types of glass-ceramics and sintered polycrystalline ceramic produced by Ivoclar Vivadent AG. Two types of glass-ceramics are derived from the leucite-type and the lithium disilicate-type. The third type of dental materials represents a ZrO2 ceramic. CAD/CAM technology is a procedure to manufacture dental ceramic restoration. Leucite-type glass-ceramics demonstrate high translucency, preferable optical/mechanical properties and an application as dental inlays, onlays and crowns. Based on an improvement of the mechanical parameters, specially the strength and toughness, the lithium disilicate glass-ceramics are used as crowns; applying a procedure to machine an intermediate product and producing the final glass-ceramic by an additional heat treatment. Small dental bridges of lithium disilicate glass-ceramic were fabricated using a molding technology. ZrO2 ceramics show high toughness and strength and were veneered with fluoroapatite glass-ceramic. Machining is possible with a porous intermediate product.

  18. Preliminary Technology Maturation Plan for Immobilization of High-Level Waste in Glass Ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Vienna, John D.; Crum, Jarrod V.; Sevigny, Gary J.; Smith, G L.

    2012-09-30

    A technology maturation plan (TMP) was developed for immobilization of high-level waste (HLW) raffinate in a glass ceramics waste form using a cold-crucible induction melter (CCIM). The TMP was prepared by the following process: 1) define the reference process and boundaries of the technology being matured, 2) evaluate the technology elements and identify the critical technology elements (CTE), 3) identify the technology readiness level (TRL) of each of the CTE’s using the DOE G 413.3-4, 4) describe the development and demonstration activities required to advance the TRLs to 4 and 6 in order, and 5) prepare a preliminary plan to conduct the development and demonstration. Results of the technology readiness assessment identified five CTE’s and found relatively low TRL’s for each of them: • Mixing, sampling, and analysis of waste slurry and melter feed: TRL-1 • Feeding, melting, and pouring: TRL-1 • Glass ceramic formulation: TRL-1 • Canister cooling and crystallization: TRL-1 • Canister decontamination: TRL-4 Although the TRL’s are low for most of these CTE’s (TRL-1), the effort required to advance them to higher values. The activities required to advance the TRL’s are listed below: • Complete this TMP • Perform a preliminary engineering study • Characterize, estimate, and simulate waste to be treated • Laboratory scale glass ceramic testing • Melter and off-gas testing with simulants • Test the mixing, sampling, and analyses • Canister testing • Decontamination system testing • Issue a requirements document • Issue a risk management document • Complete preliminary design • Integrated pilot testing • Issue a waste compliance plan A preliminary schedule and budget were developed to complete these activities as summarized in the following table (assuming 2012 dollars). TRL Budget Year MSA FMP GCF CCC CD Overall $M 2012 1 1 1 1 4 1 0.3 2013 2 2 1 1 4 1 1.3 2014 2 3 1 1 4 1 1.8 2015 2 3 2 2 4 2 2.6 2016 2 3 2 2 4 2 4

  19. Management practices for end-of-life cathode ray tube glass: Review of advances in recycling and best available technologies.

    Science.gov (United States)

    Iniaghe, Paschal O; Adie, Gilbert U

    2015-11-01

    Cathode ray tubes are image display units found in computer monitors and televisions. In recent years, cathode ray tubes have been generated as waste owing to the introduction of newer and advanced technologies in image displays, such as liquid crystal displays and high definition televisions, among others. Generation and subsequent disposal of end-of-life cathode ray tubes presents a challenge owing to increasing volumes and high lead content embedded in the funnel and neck sections of the glass. Disposal in landfills and open dumping are anti-environmental practices considering the large-scale contamination of environmental media by the potential of toxic metals leaching from glass. Mitigating such environmental contamination will require sound management strategies that are environmentally friendly and economically feasible. This review covers existing and emerging management practices for end-of-life cathode ray tubes. An in-depth analysis of available technologies (glass smelting, detoxification of cathode ray tube glass, lead extraction from cathode ray tube glass) revealed that most of the techniques are environmentally friendly, but are largely confined to either laboratory scale, or are often limited owing to high cost to mount, or generate secondary pollutants, while a closed-looped method is antiquated. However, recycling in cementitious systems (cement mortar and concrete) gives an added advantage in terms of quantity of recyclable cathode ray tube glass at a given time, with minimal environmental and economic implications. With significant quantity of waste cathode ray tube glass being generated globally, cementitious systems could be economically and environmentally acceptable as a sound management practice for cathode ray tube glass, where other technologies may not be applicable. © The Author(s) 2015.

  20. Silicate glasses

    International Nuclear Information System (INIS)

    Lutze, W.

    1988-01-01

    Vitrification of liquid high-level radioactive wastes has received the greatest attention, world-wide, compared to any other HLW solidification process. The waste form is a borosilicate-based glass. The production of phosphate-based glass has been abandoned in the western world. Only in the Soviet Union are phosphate-based glasses still being developed. Vitrification techniques, equipment and processes and their remote operation have been developed and studied for almost thirty years and have reached a high degree of technical maturity. Industrial demonstration of the vitrification process has been in progress since 1978. This chapter is a survey of world-wide research and development efforts in nuclear waste glasses and its production technology. The principal glasses considered are silicate glasses which contain boron, i.e., borosilicate glasses

  1. Biological wastewater treatment technology with application of multihole glasses. Takoshitsu glass wo riyoshita biseibutsu ni yoru haisui shoriho no kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Honda, S; Murayama, Y; Tanaka, H; Yazawa, T; Eguchi, K [Government Industrial Research Institute, Osaka (Japan)

    1991-11-25

    This paper describes efficiency improvement in wastewater treatment to separate SS component using anaerobic fermentation with fixable microorganisms and multihole glass separation films. Measurement of microorganism deposition on microporous PVF resin in a fermentation tank revealed that hydrophilic resins with smooth surface have better deposition, and the suitable carrier hole diameters were from 300[mu]m to 500[mu]m. Adding slightly-soluble carbonate when bacteria are fixed collectively is effective in preserving the entire methane fermentation reaction system and stabilizing the carriers. A composite film comprising SiO2-ZrO2-based porous glass made by using a sol-gel process and porous ceramics had the maximum desalination rate reaching 90%. The permeation rate at a film thickness of 2[mu]m was 46 times as much of that for 500-[mu]m single-layer porous glass. As a result of reforming the pore surface by introducing -Si(CH3)3, the film has turned affinitive to non-polar solvent, repelling water to permeate. In an experiment for fermentation liquid permeation of separation film composite bioreactor using digestive sludge, the higher the SS particle concentration, the more the initial clogging was difficult to occur. The film permeating flow velocity showed a maximum value at hole diameters of about 0.2[mu]m. 3 refs., 6 figs., 2 tabs.

  2. Transition to Glass: Pilot Training for High-Technology Transport Aircraft

    Science.gov (United States)

    Wiener, Earl L.; Chute, Rebecca D.; Moses, John H.

    1999-01-01

    This report examines the activities of a major commercial air carrier between 1993 and late 1996 as it acquired an advanced fleet of high-technology aircraft (Boeing 757). Previously, the airline's fleet consisted of traditional (non-glass) aircraft, and this report examines the transition from a traditional fleet to a glass one. A total of 150 pilots who were entering the B-757 transition training volunteered for the study, which consisted of three query phases: (1) first day of transition training, (2) 3 to 4 months after transition training, and (3) 12 to 14 months after initial operating experience. Of these initial 150 pilots, 99 completed all three phases of the study, with each phase consisting of probes on attitudes and experiences associated with their training and eventual transition to flying the line. In addition to the three questionnaires, 20 in-depth interviews were conducted. Although the primary focus of this study was on the flight training program, additional factors such as technical support, documentation, and training aids were investigated as well. The findings generally indicate that the pilot volunteers were highly motivated and very enthusiastic about their training program. In addition, the group had low levels of apprehension toward automation and expressed a high degree of satisfaction toward their training. However, there were some concerns expressed regarding the deficiencies in some of the training aids and lack of a free-play flight management system training device.

  3. PNL vitrification technology development project glass formulation strategy for LLW vitrification

    International Nuclear Information System (INIS)

    Kim, D.; Hrma, P.R.; Westsik, J.H. Jr.

    1996-03-01

    This Glass Formulation Strategy describes development approaches to optimize glass compositions for Hanford's low-level waste vitrification between now and the projected low-level waste facility start-up in 2005. The objectives of the glass formulation task are to develop optimized glass compositions with satisfactory long-term durability, acceptable processing characteristics, adequate flexibility to handle waste variations, maximize waste loading to practical limits, and to develop methodology to respond to further waste variations

  4. Exploring Technology-Enhanced Learning Using Google Glass to Offer Students a Unique Instructor's Point of View Live Laboratory Demonstration

    Science.gov (United States)

    Man, Fung Fun

    2016-01-01

    Technology-enhanced learning (TEL) is fast gaining momentum among educational institutions all over the world. The usual way in which laboratory instructional videos are filmed takes the third-person view. However, such videos are not as realistic and sensorial. With the advent of Google Glass and GoPro cameras, a more personal and effective way…

  5. Through the Looking Glass: Real-Time Video Using 'Smart' Technology Provides Enhanced Intraoperative Logistics.

    Science.gov (United States)

    Baldwin, Andrew C W; Mallidi, Hari R; Baldwin, John C; Sandoval, Elena; Cohn, William E; Frazier, O H; Singh, Steve K

    2016-01-01

    In the setting of increasingly complex medical therapies and limited physician resources, the recent emergence of 'smart' technology offers tremendous potential for improved logistics, efficiency, and communication between medical team members. In an effort to harness these capabilities, we sought to evaluate the utility of this technology in surgical practice through the employment of a wearable camera device during cardiothoracic organ recovery. A single procurement surgeon was trained for use of an Explorer Edition Google Glass (Google Inc., Mountain View, CA) during the recovery process. Live video feed of each procedure was securely broadcast to allow for members of the home transplant team to remotely participate in organ assessment. Primary outcomes involved demonstration of technological feasibility and validation of quality assurance through group assessment. The device was employed for the recovery of four organs: a right single lung, a left single lung, and two bilateral lung harvests. Live video of the visualization process was remotely accessed by the home transplant team, and supplemented final verification of organ quality. In each case, the organs were accepted for transplant without disruption of standard procurement protocols. Media files generated during the procedures were stored in a secure drive for future documentation, evaluation, and education purposes without preservation of patient identifiers. Live video streaming can improve quality assurance measures by allowing off-site members of the transplant team to participate in the final assessment of donor organ quality. While further studies are needed, this project suggests that the application of mobile 'smart' technology offers not just immediate value, but the potential to transform our approach to the practice of medicine.

  6. Fiscal 1999 international cooperation project report. R and D on convection control technology of glass melts by microgravity experiment; 1999 nendo bisho juryoku kankyo wo riyoshita glass yuekinai tairyu seigyo gijutsu no kenkyu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    This R and D aims at development of convection simulation technology of glass melts based on measurement of accurate glass melt properties, and development of convection control technology of glass melts through the model experiment and small tank furnace experiment. Experiment was made on measurement of surface tension while levitating glass melts under the microgravity condition obtained by the drop tower of Japan Microgravity Center in Hokkaido. The shape of glass melt changes into a real sphere under the microgravity condition, and surface tension can be obtained by measuring its frequency, however, such frequency of glass could not be measured in this experiment. Levitation, fusion and oscillation experiment of glass was carried out by using an aero-acoustic levitator of CRT at Chicago. The experiment result is now in analysis. This study also aims the analysis in consideration of a surface tension flow effect. The calculation result showed generation of surface tension flow due to temperature gradient on a liquid surface. Various information were obtained through the model experiment using silicon oil, and glass convention observation by using a small tank furnace. (NEDO)

  7. The usage of carbon fiber reinforcement polymer and glass fiber reinforcement polymer for retrofit technology building

    Science.gov (United States)

    Tarigan, Johannes; Meka, Randi; Nursyamsi

    2018-03-01

    Fiber Reinforcement Polymer has been used as a material technology since the 1970s in Europe. Fiber Reinforcement Polymer can reinforce the structure externally, and used in many types of buildings like beams, columns, and slabs. It has high tensile strength. Fiber Reinforcement Polymer also has high rigidity and strength. The profile of Fiber Reinforcement Polymer is thin and light, installation is simple to conduct. One of Fiber Reinforcement Polymer material is Carbon Fiber Reinforcement Polymer and Glass Fiber Reinforcement Polymer. These materials is tested when it is installed on concrete cylinders, to obtain the comparison of compressive strength CFRP and GFRP. The dimension of concrete is diameter of 15 cm and height of 30 cm. It is amounted to 15 and divided into three groups. The test is performed until it collapsed to obtain maximum load. The results of research using CFRP and GFRP have shown the significant enhancement in compressive strength. CFRP can increase the compressive strength of 26.89%, and GFRP of 14.89%. For the comparison of two materials, CFRP is more strengthening than GFRP regarding increasing compressive strength. The usage of CFRP and GFRP can increase the loading capacity.

  8. Development and application of high-precision laser welding technology for manufacturing Ti alloy frames of glasses

    International Nuclear Information System (INIS)

    Kim, S. S.; Yang, M. S.; Kim, W. K.; Lee, D. Y.; Kim, J. M.; Leem, B. C.; Shin, J. S.; Lee, D. H.

    1999-12-01

    The research and development efforts of the high precision laser welding technology for manufacturing titanium alloy frames of glasses. For this purpose, laser welding device with the high beam quality is designed and fabricated, which consists of a optical fiber transmission part, a welding monitoring part and a welding controller. The welding nozzle and holding fixtures for manufacturing titanium and shape memory alloy frames of glasses. Titanium and shape memory alloy frames of glasses to be developed were experimentally manufactured by utilizing the laser welding using the optical fiber of GI 400 μm. As a result, the seam welding with the bead width of 0.3 mm or less and the weld penetration of 0.3-0.4mm could be accomplished. The fundamental technology was established through design of welding jigs with a variety of configurations and adequate welding conditions. Also, for the purpose to enable the companies participating in this project to commercialize the developed technology acceleratedly, a training program for the engineers belonging to such companies was conducted along with the technology transfer through joint experiments with the engineers. (author)

  9. Fine-pitch glass GEM for high-resolution X-ray imaging

    International Nuclear Information System (INIS)

    Fujiwara, T.; Toyokawa, H.; Mitsuya, Y.

    2016-01-01

    We have developed a fine-pitch glass gas electron multiplier (G-GEM) for high-resolution X-ray imaging. The fine-pitch G-GEM is made of a 400 μm thick photo-etchable glass substrate with 150 μm pitch holes. It is fabricated using the same wet etching technique as that for the standard G-GEM. In this work, we present the experimental results obtained with a single fine-pitch G-GEM with a 50 × 50 mm 2 effective area. We recorded an energy resolution of 16.2% and gas gain up to 5,500 when the detector was irradiated with 5.9 keV X-rays. We present a 50 × 50 mm 2 X-ray radiograph image acquired with a scintillation gas and optical readout system.

  10. Accuracy of remote electrocardiogram interpretation with the use of Google Glass technology.

    Science.gov (United States)

    Jeroudi, Omar M; Christakopoulos, George; Christopoulos, George; Kotsia, Anna; Kypreos, Megan A; Rangan, Bavana V; Banerjee, Subhash; Brilakis, Emmanouil S

    2015-02-01

    We sought to investigate the accuracy of remote electrocardiogram (ECG) interpretation using Google Glass (Google, Mountain View, California). Google Glass is an optical head mounted display device with growing applications in medicine. We compared interpretation of 10 ECGs with 21 clinically important findings by faculty and fellow cardiologists by (1) viewing the electrocardiographic image at the Google Glass screen; (2) viewing a photograph of the ECG taken using Google Glass and interpreted on a mobile device; (3) viewing the original paper ECG; and (4) viewing a photograph of the ECG taken with a high-resolution camera and interpreted on a mobile device. One point was given for identification of each correct finding. Subjective rating of the user experience was also recorded. Twelve physicians (4 faculty and 8 fellow cardiologists) participated. The average electrocardiographic interpretation score (maximum 21 points) as viewed through the Google Glass, Google Glass photograph on a mobile device, on paper, and high-resolution photograph on a mobile device was 13.5 ± 1.8, 16.1 ± 2.6, 18.3 ± 1.7, and 18.6 ± 1.5, respectively (p = 0.0005 between Google Glass and mobile device, p = 0.0005 between Google Glass and paper, and p = 0.002 between mobile device and paper). Of the 12 physicians, 9 (75%) were dissatisfied with ECGs viewing on the prism display of Google Glass. In conclusion, further improvements are needed before Google Glass can be reliably used for remote electrocardiographic analysis. Published by Elsevier Inc.

  11. Luminescence of Eu(3+) doped SiO2 Thin Films and Glass Prepared by Sol-gel Technology

    Science.gov (United States)

    Castro, Lymari; Jia, Weiyi; Wang, Yanyun; Santiago, Miguel; Liu, Huimin

    1998-01-01

    Trivalent europium ions are an important luminophore for lighting and display. The emission of (5)D0 to (7)F2 transition exhibits a red color at about 610 nm, which is very attractive and fulfills the requirement for most red-emitting phosphors including lamp and cathode ray phosphorescence materials. Various EU(3+) doped phosphors have been developed, and luminescence properties have been extensively studied. On the other hand, sol-gel technology has been well developed by chemists. In recent years, applications of this technology to optical materials have drawn a great attention. Sol-gel technology provides a unique way to obtain homogeneous composition distribution and uniform doping, and the processing temperature can be very low. In this work, EU(3+) doped SiO2 thin films and glasses were prepared by sol-gel technology and their spectroscopic properties were investigated.

  12. A laser-based technology for fabricating a soda-lime glass based microfluidic device for circulating tumour cell capture.

    Science.gov (United States)

    Nieto, Daniel; Couceiro, Ramiro; Aymerich, Maria; Lopez-Lopez, Rafael; Abal, Miguel; Flores-Arias, María Teresa

    2015-10-01

    We developed a laser-based technique for fabricating microfluidic microchips on soda-lime glass substrates. The proposed methodology combines a laser direct writing, as a manufacturing tool for the fabrication of the microfluidics structures, followed by a post-thermal treatment with a CO2 laser. This treatment will allow reshaping and improving the morphological (roughness) and optical qualities (transparency) of the generated microfluidics structures. The use of lasers commonly implemented for material processing makes this technique highly competitive when compared with other glass microstructuring approaches. The manufactured chips were tested with tumour cells (Hec 1A) after being functionalized with an epithelial cell adhesion molecule (EpCAM) antibody coating. Cells were successfully arrested on the pillars after being flown through the device giving our technology a translational application in the field of cancer research. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. High-pitch metal-on-glass technology for pad pitch adaptation between detectors and readout electronics

    CERN Document Server

    Ullán, Miguel; Campabadal, Francesca; Fleta, Celeste; Garcia, Carmen; Gonzalez, Francisco; Bernabeu, Jose

    2004-01-01

    Modern high-energy physics and astrophysics strip detectors have increased channel density to levels at which their connection with readout electronics has become very complex due to high pad pitch. Also, direct wire bonding is prevented by the fact that typically detector's pad pitch and electronics' pad pitch do not match. A high- pitch metal-on-glass technology is presented, that allows pad pitch adaptation between detectors and readout electronics. It consists of high-density metal lines on top of an insulating glass substrate. A photoresist layer is deposited covering the metal tracks for passivation and protection The technology is tested for conductivity, bondability, bonding pull force, peel off, and radiation hardness, and it is an established technology in the clean room of the CNM Institute in Barcelona. This technology has been chosen by the ATLAS Collaboration for the pad pitch adapters (PPA) of the SCT Endcap Modules, by a Compton camera project, and by other HEP groups for interconnection betwe...

  14. Study on construction technology of metro tunnel under a glass curtain wall

    Science.gov (United States)

    Zhang, Jian; Yu, Deqiang

    2018-03-01

    To ensure the safety of the glass curtain wall building above loess tunnel and get an optimal scheme, an elastic-plastic FEM model is established to simulate three reinforcement schemes based on a tunnel section in Xi’an Metro Line 3. The results show that the settlement value of the optimal scheme is reduced by 69.89% compared with the drainage measures, and the uneven settlement value is reduced by 57.5%. The construction points, technical processes and technical indexes of the optimal scheme are introduced. According to the actual project, the cumulative settlement of the building under construction is 16mm, which meets the control standards. According to the actual project, the cumulative settlement of the glass curtain wall building is 16mm, which meets the control standards. The reinforcement scheme can provide some reference for the design and construction of the metro in loess area.

  15. Trans-Regional technologies and the Lapita problem: characterisation of volcanic glass inclusions by electron microprobe

    International Nuclear Information System (INIS)

    Grave, P.; Nockolds, C.; White, P.

    1997-01-01

    Full text: Analysis of pre-modern pottery of the Pacific has long attempted to formulate measures independent of style for constructing archaeologically meaningful groups. However, the variable character of fabrics and the longevity of production (Lapita and post-Lapita wares from 3000 years ago to the present) have tended to obscure differences due to changes in production practices and resources through time and differences relating to the exchange of ceramics between islands or regions. In this poster we outline a preliminary study that employs an economical and robust technique to distinguish both within- and between-region groups. This is achieved with electron microprobe analysis of small volcanic glass fragments present in wares tempered with volcanic sands, and interpretation based on Principal Components Analysis. The method builds on the chemical groupings for glass from different volcanic complexes in the Pacific established through high energy ion beam (PIXE-PIGME) analysis. The purpose of this study is to characterise a selection of samples of pottery from the Duke of York's peninsula using electron microprobe analysis of very small glass fragments in the sections that ranged in size from around 0.05 mm to 1 mm.. The study involved the identification and elemental characterisation of individual fragments of glass in a section. Principal Component Analysis was used to identify structure latent in the dataset. The results of the study show that clear characterisation is possible to enable the wider application of the technique to Lapita and post Lapita ceramics produced originating in volcanic areas of the Pacific

  16. Characterization of glass and glass ceramic nuclear waste forms

    International Nuclear Information System (INIS)

    Lutze, W.; Borchardt, J.; De, A.K.

    1979-01-01

    Characteristics of solidified nuclear waste forms, glass and glass ceramic compositions and the properties (composition, thermal stability, crystallization, phase behavior, chemical stability, mechanical stability, and radiation effects) of glasses and glass ceramics are discussed. The preparation of glass ceramics may be an optional step for proposed vitrification plants if tailored glasses are used. Glass ceramics exhibit some improved properties with respect to glasses. The overall leach resistance is similar to that of glasses. An increased leach resistance may become effective for single radionuclides being hosted in highly insoluble crystal phases mainly when higher melting temperatures are applicable in order to get more leach resistant residual glass phases. The development of glass ceramic is going on. The technological feasibility is still to be demonstrated. The potential gain of stability when using glass ceramics qualifies the material as an alternative nuclear waste form

  17. Hot slumping glass technology for the grazing incidence optics of future missions with particular reference to IXO

    Science.gov (United States)

    Ghigo, M.; Basso, S.; Bavdaz, M.; Conconi, P.; Citterio, O.; Civitani, M.; Friedrich, P.; Gallieni, D.; Guldimann, B.; Martelli, F.; Negri, R.; Pagano, G.; Pareschi, G.; Parodi, G.; Proserpio, L.; Salmaso, B.; Scaglione, F.; Spiga, D.; Tagliaferri, G.; Terzi, L.; Tintori, M.; Vongehr, M.; Wille, E.; Winter, A.; Zambra, A.

    2010-07-01

    The mirrors of the International X-ray Observatory (IXO) consist of a large number of high quality segments delivering a spatial resolution better than 5 arcsec. A study concerning the slumping of thin glass foils for the IXO mirrors is under development in Europe, funded by ESA and led by the Brera Observatory. We are investigating two approaches, the "Direct" and "Indirect" slumping technologies, being respectively based on the use of convex and concave moulds. In the first case during the thermal cycle the optical surface of the glass is in direct contact with the mould surface, while in the second case it is the rear side of the foil which touches the master. Both approaches present pros and cons and aim of this study is also to make an assessment of both processes and to perform a trade-off between the two. The thin plates are made of D263glass produced by Schott. Each plate is 0.4 mm thick, with a reflecting area of 200 mm x 200 mm; the mould are made of Fused Silica. After the thermal cycle the slumped MPs are characterized to define their optical quality and microroughness. The adopted integration process foresees the bonding of the slumped foils to a rigid backplane by means of reinforcing ribs. During the bonding process the plates are constrained to stay in close contact to the surface of the master (i.e. the same mould used for the hot slumping process) by the application of a vacuum pump suction. In this way spring-back deformations and low frequency errors still present on the foil profile after slumping can be corrected. In this paper we present the preliminary results concerning achieved during the first part of the project.

  18. Microstructuring of glasses

    CERN Document Server

    Hülsenberg, Dagmar; Bismarck, Alexander

    2008-01-01

    As microstructured glass becomes increasingly important for microsystems technology, the main application fields include micro-fluidic systems, micro-analysis systems, sensors, micro-actuators and implants. And, because glass has quite distinct properties from silicon, PMMA and metals, applications exist where only glass devices meet the requirements. The main advantages of glass derive from its amorphous nature, the precondition for its - theoretically - direction-independent geometric structurability. Microstructuring of Glasses deals with the amorphous state, various glass compositions and their properties, the interactions between glasses and the electromagnetic waves used to modify it. Also treated in detail are methods for influencing the geometrical microstructure of glasses by mechanical, chemical, thermal, optical, and electrical treatment, and the methods and equipment required to produce actual microdevices.

  19. Key Processes of Silicon-On-Glass MEMS Fabrication Technology for Gyroscope Application.

    Science.gov (United States)

    Ma, Zhibo; Wang, Yinan; Shen, Qiang; Zhang, Han; Guo, Xuetao

    2018-04-17

    MEMS fabrication that is based on the silicon-on-glass (SOG) process requires many steps, including patterning, anodic bonding, deep reactive ion etching (DRIE), and chemical mechanical polishing (CMP). The effects of the process parameters of CMP and DRIE are investigated in this study. The process parameters of CMP, such as abrasive size, load pressure, and pH value of SF1 solution are examined to optimize the total thickness variation in the structure and the surface quality. The ratio of etching and passivation cycle time and the process pressure are also adjusted to achieve satisfactory performance during DRIE. The process is optimized to avoid neither the notching nor lag effects on the fabricated silicon structures. For demonstrating the capability of the modified CMP and DRIE processes, a z-axis micro gyroscope is fabricated that is based on the SOG process. Initial test results show that the average surface roughness of silicon is below 1.13 nm and the thickness of the silicon is measured to be 50 μm. All of the structures are well defined without the footing effect by the use of the modified DRIE process. The initial performance test results of the resonant frequency for the drive and sense modes are 4.048 and 4.076 kHz, respectively. The demands for this kind of SOG MEMS device can be fulfilled using the optimized process.

  20. Integrating Personalized Technology in Toxicology: Sensors, Smart Glass, and Social Media Applications in Toxicology Research.

    Science.gov (United States)

    Carreiro, Stephanie; Chai, Peter R; Carey, Jennifer; Chapman, Brittany; Boyer, Edward W

    2017-06-01

    Rapid proliferation of mobile technologies in social and healthcare spaces create an opportunity for advancement in research and clinical practice. The application of mobile, personalized technology in healthcare, referred to as mHealth, has not yet become routine in toxicology. However, key features of our practice environment, such as frequent need for remote evaluation, unreliable historical data from patients, and sensitive subject matter, make mHealth tools appealing solutions in comparison to traditional methods that collect retrospective or indirect data. This manuscript describes the features, uses, and costs associated with several of common sectors of mHealth research including wearable biosensors, ingestible biosensors, head-mounted devices, and social media applications. The benefits and novel challenges associated with the study and use of these applications are then discussed. Finally, opportunities for further research and integration are explored with a particular focus on toxicology-based applications.

  1. Performing in Glass: Reproduction, Technology, \\ud Performance and the Bio-Spectacular

    OpenAIRE

    Furse, Anna F. D.

    2006-01-01

    Feminist Futures? sets out to ask if and in what ways feminism remains relevant to theatre and performance practice of the twenty-first century. Responding to this question is an excellent, cross-generational mix of theatre scholars and practitioners whose essays engage in lively, cutting edge critical debates on issues such as citizenship, autobiography, cultural heritage, political agency, and body/technology, as circulating in contemporary feminism and performance today. A timely contribut...

  2. The nature of science and technology for pre-service chemistry teacher: A case of techno-chemistry experiment "From Stannum Metalicum to conductive glass"

    Science.gov (United States)

    Mudzakir, A.; Widhiyanti, T.; Hernani, Arifin, M.; Lestari, A. N.; Jauhariansyah, S.

    2017-08-01

    The study was conducted to address the problems related to low Indonesian students' scientific literacy as revealed in the PISA (Program for International Student Assessment) since 2000-2015. Science teachers (e.g. chemistry teacher) must recognize the nature of science (NOS) to assist their students in preparing an explanation of a phenomenon scientifically correctly. Teachers also need to understand critically about nature of technology (NOT) and it relationship with science as well as society. To integrate those two kinds of knowledge (NOS and NOT), we can conduct a techno-science activity, which integrate the technology to science course in pre-service teacher education program, so that they can improve their knowledge about nature of science and technology (NOST) and pedagogical content knowledge related to NOST. The purpose of this study was to construct an inquiry based laboratory activity worksheet for making conductive glass so that the pre-service teacher could explain how the structure of the semiconductor Fluor doped Tin Oxide (SnO2.F) affect their performance. This study we conducted, described how to design a pre-service chemistry teacher education course that can improve recognizing view of NOST by using a framework called model of educational reconstruction (MER). The scientific activities in the course were guided inquiry based techno-chemistry experiments involving "From Stannum Metallicum to Conductive Glass". Conductive glasses are interesting subject research for several reason. The application of this technology could be found on solar cell, OLED, and display panel. The doped Tin dioxide has been deposited on glass substrate using the spray pyrolysis technique at 400-550°C substrate temperature, 4-5 times, 20 cm gap between glass and sprayer and 450 angle to form a thin film which will act as electrical contact. The resistivity is about 0.5 - 15Ω. The product resulted on this study was rated by several expert to find if the worksheet could

  3. Player-Tracking Technology: Half-Full or Half-Empty Glass?

    Science.gov (United States)

    Buchheit, Martin; Simpson, Ben Michael

    2017-04-01

    With the ongoing development of microtechnology, player tracking has become one of the most important components of load monitoring in team sports. The 3 main objectives of player tracking are better understanding of practice (provide an objective, a posteriori evaluation of external load and locomotor demands of any given session or match), optimization of training-load patterns at the team level, and decision making on individual players' training programs to improve performance and prevent injuries (eg, top-up training vs unloading sequences, return to play progression). This paper discusses the basics of a simple tracking approach and the need to integrate multiple systems. The limitations of some of the most used variables in the field (including metabolic-power measures) are debated, and innovative and potentially new powerful variables are presented. The foundations of a successful player-monitoring system are probably laid on the pitch first, in the way practitioners collect their own tracking data, given the limitations of each variable, and how they report and use all this information, rather than in the technology and the variables per se. Overall, the decision to use any tracking technology or new variable should always be considered with a cost/benefit approach (ie, cost, ease of use, portability, manpower/ability to affect the training program).

  4. Research on vitrification technology to immobilize radioactive sludge generated from Fukushima Daiichi power plant. Enhanced glass medium

    International Nuclear Information System (INIS)

    Amamoto, Ippei; Kobayashi, Hidekazu; Kitamura, Naoto; Takebe, Hiromichi; Mitamura, Naoki; Tsuzuki, Tatsuya; Fukayama, Daigen; Nagano, Yuichi; Jantzen, Tatjana; Hack, Klaus

    2016-01-01

    The search for an enhanced glass medium to immobilize the sludge at the Fukushima Daiichi Nuclear Power Plant is our main purpose. The iron phosphate glass (IPG) is a potential candidate as we set about assessing it by means of theoretical and experimental investigation. Based on the results of this study, the IPG showed favorable characteristics as a vitrification medium for the sludge. (author)

  5. FY 1999 report on the results of the development of recycling technology of waste architectural materials, glass, etc. Development of the simple glass coloring/decoloring technology; 1999 nendo kenchiku haizai glass nado recycle gijutsu kaihatsu seika hokokusho. Kan'igata glass chakudasshoku gijutsu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    For the purpose of increasing the ratio of recycling of waste architectural materials, glass, etc., the development was proceeded with of easy coloring of colorless glass by light irradiation and decoloring of it by heat treatment. The important point for technical development is to develop glass materials which are colored by light and decolored by heat at a level of technique with practicality and to develop coloring/decoloring device. Studies were made in the following three fields: 1) optimization of coloring/decoloring conditions for coloring/decoloring occurring from defects (color centers) under light irradiation; 2) optimization of coloring/decoloring conditions occurring from colorless ions and particulate formation under light irradiation; 3) development of a visible drawing device. In 1), bottle, sheet glass, and soda-lime silicate glass are colored brown by X-ray/UV radiation, but the coloring is bad in stability. However, it was found that the addition of silver oxide improved stability. In 2), it was recognized that when the glass containing a trace of Mn was melted in the reducing atmosphere, it became colorless, and when radiated by X-ray and heat-treated at approximately 200 degrees C, it was colored bluish violet which was vivid and stable. (NEDO)

  6. Electrochromic Glasses.

    Science.gov (United States)

    1980-07-31

    this glass and that dipole-dipole correlations contribute to the "ferroelectric-like" character of this amorphous system. The TeO2 -W03 glasses can only...shows the dielectric constant and Fig. I(b) glass from pure TeO2 ot pure WO. In addition, glass the tan 8 of the WO glass as a function of temperature... glasses containing WO, in various glass forming nitworks of LifO-B1O0, Na:O-BzO,, and TeO2 were prepared from reagent grade oxides at 800 C - 9SO C in

  7. A blinded assessment of video quality in wearable technology for telementoring in open surgery: the Google Glass experience.

    Science.gov (United States)

    Hashimoto, Daniel A; Phitayakorn, Roy; Fernandez-del Castillo, Carlos; Meireles, Ozanan

    2016-01-01

    The goal of telementoring is to recreate face-to-face encounters with a digital presence. Open-surgery telementoring is limited by lack of surgeon's point-of-view cameras. Google Glass is a wearable computer that looks like a pair of glasses but is equipped with wireless connectivity, a camera, and viewing screen for video conferencing. This study aimed to assess the safety of using Google Glass by assessing the video quality of a telementoring session. Thirty-four (n = 34) surgeons at a single institution were surveyed and blindly compared via video captured with Google Glass versus an Apple iPhone 5 during the open cholecystectomy portion of a Whipple. Surgeons were asked to evaluate the quality of the video and its adequacy for safe use in telementoring. Thirty-four of 107 invited surgical attendings (32%) responded to the anonymous survey. A total of 50% rated the Google Glass video as fair with the other 50% rating it as bad to poor. A total of 52.9% of respondents rated the Apple iPhone video as good. A significantly greater proportion of respondents felt Google Glass video quality was inadequate for telementoring versus the Apple iPhone's (82.4 vs 26.5%, p safe telementoring. As the device is still in initial phases of development, future iterations or competitor devices may provide a better telementoring application for wearable devices.

  8. Silicate glasses. Chapter 1

    International Nuclear Information System (INIS)

    Lutze, W.

    1988-01-01

    This chapter is a survey of world-wide research and development efforts in nuclear waste glasses and its production technology. The principal glasses considered are silicate glasses which contain boron, i.e. borosilicate glass. A historical overview of waste form development programs in nine countries is followed by a summary of the design criteria for borosilicate glass compositions glass compositions. In the sections on glass properties the waste form is characterized in terms of potential alterations under the influence of heat, thermal gradients, radiation, aqueous solutions and combinations thereof. The topics are phase transformations, mechanical properties, radiation effects and chemical durability. The results from studies of volcanic glasses, as natural analogues for borosilicate nuclear waste glasses in order to verify predictions obtained from short-term tests in the laboratory, have been compiled in a special section on natural analogues. A special section on advanced vitrification techniques summarizes the various actual and potential processing schemes and describes the facilities. The literature has been considered until 1985. (author). 430 refs.; 68 figs.; 29 tabs

  9. Development of Advanced Sensor Technologies for the United States Glass Industry - Final Report - 07/20/1995 - 08/19/1999; FINAL

    International Nuclear Information System (INIS)

    Conner, B. L.; Cannon, C.

    1999-01-01

    The glass industry, with support from the U.S. Department of Energy (DOE), undertook a project to significantly improve temperature measurement in glass melters, thereby reducing energy usage through improved process control. AccuTru International determined that a new kind of protective sheath would improve the life and range of applications of the temperature measuring thermocouples. In cooperation with Corning, Inc., the University of Missouri-Rolla ceramics department conducted tests on a proprietary alumina sheath technology, which shows significant promise. In addition, AccuTru obtained DOE funding to develop a self-verifying sensor. The new sensor, with alumina sheath, was tested at a Corning facility, and the results exceeded expectations. Areas for additional development efforts were identified

  10. 浮法玻璃品种改换的工艺技术研究%Technology study on Conversion to the Production of Other Float Glass

    Institute of Scientific and Technical Information of China (English)

    李晓青; 王自强; 陈江

    2011-01-01

    运用质量守恒定律和浮法玻璃成形理论,对影响浮法玻璃改换品种的工艺条件进行研究,提出在改换品种时拉引量、主传动、拉边机等关键参数的设计操作原则,通过科学设计改品种程序,实现不同品种间的平稳快速过渡。%Investigation on effect of technology parameters on product-conversion of float glass was carried out by means of the mass conservation law and float glass forming theory.Some design operating rules of daily output,main transmission and edge roller parameters during product conversion were presented.The smooth and rapid transition of production can be realized by scientifically programmed schedule of species conversion.

  11. Glass consistency and glass performance

    International Nuclear Information System (INIS)

    Plodinec, M.J.; Ramsey, W.G.

    1994-01-01

    Glass produced by the Defense Waste Processing Facility (DWPF) will have to consistently be more durable than a benchmark glass (evaluated using a short-term leach test), with high confidence. The DWPF has developed a Glass Product Control Program to comply with this specification. However, it is not clear what relevance product consistency has on long-term glass performance. In this report, the authors show that DWPF glass, produced in compliance with this specification, can be expected to effectively limit the release of soluble radionuclides to natural environments. However, the release of insoluble radionuclides to the environment will be limited by their solubility, and not glass durability

  12. Glass ... current issues

    International Nuclear Information System (INIS)

    Wright, A.F.; Dupuy, J.

    1985-01-01

    The objectives of the School were twofold. Firstly to inform participants of actual and developing technological applications of glassy materials in which fundamental science makes a strong contribution, and secondly to bring together scientists from the widely different backgrounds of glass science and technology to promote mutual understanding and collaboration. (orig.)

  13. Colloidal glasses

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Colloidal glasses. Glassy state is attained when system fails to reach equilibrium due to crowding of constituent particles. In molecular glasses, glassy state is reached by rapidly lowering the temperature. In colloidal glasses, glassy state is reached by increasing the ...

  14. Crystallization of Yttrium and Samarium Aluminosilicate Glasses

    OpenAIRE

    Lago, Diana Carolina; Prado, Miguel Oscar

    2016-01-01

    Aluminosilicate glasses containing samarium and yttrium (SmAS and YAS glasses) exhibit high glass transition temperatures, corrosion resistance, and glass stability on heating which make them useful for technological applications. Yttrium aluminosilicate glass microspheres are currently being used for internal selective radiotherapy of liver cancer. During the preparation process, crystallization needs to be totally or partially avoided depending on the final application. Thus knowing the cry...

  15. Crystallization study of Te–Bi–Se glasses

    Indian Academy of Sciences (India)

    Unknown

    Thermal stability; chalcogenide glasses; glass forming ability; glass transition temperature. 1. Introduction ... as well as their wide technological applications including threshold and ... are other important aspects such as ON-state current,.

  16. Synthesis for Lunar Simulants: Glass, Agglutinate, Plagioclase, Breccia

    Science.gov (United States)

    Weinstein, Michael; Wilson, Stephen A.; Rickman, Douglas L.; Stoeser, Douglas

    2012-01-01

    The video describes a process for making glass for lunar regolith simulants that was developed from a patented glass-producing technology. Glass composition can be matched to simulant design and specification. Production of glass, pseudo agglutinates, plagioclase, and breccias is demonstrated. The system is capable of producing hundreds of kilograms of high quality glass and simulants per day.

  17. Recycle Glass in Foam Glass Production

    DEFF Research Database (Denmark)

    Petersen, Rasmus Rosenlund; König, Jakob; Yue, Yuanzheng

    The foam glass industry turn recycle glass into heat insulating building materials. The foaming process is relative insensitive to impurities in the recycle glass. It is therefore considered to play an important role in future glass recycling. We show and discuss trends of use of recycled glasses...... in foam glass industry and the supply sources and capacity of recycle glass....

  18. Cosmos & Glass

    DEFF Research Database (Denmark)

    Beim, Anne

    1996-01-01

    The article unfolds the architectural visions of glass by Bruno Taut. It refers to inspirations by Paul Sheerbart and litterature and the Crystal Chain, also it analyses the tectonic univers that can be found in the glass pavillion for the Werkbund exposition in Cologne....

  19. Spin glasses

    CERN Document Server

    Bovier, Anton

    2007-01-01

    Spin glass theory is going through a stunning period of progress while finding exciting new applications in areas beyond theoretical physics, in particular in combinatorics and computer science. This collection of state-of-the-art review papers written by leading experts in the field covers the topic from a wide variety of angles. The topics covered are mean field spin glasses, including a pedagogical account of Talagrand's proof of the Parisi solution, short range spin glasses, emphasizing the open problem of the relevance of the mean-field theory for lattice models, and the dynamics of spin glasses, in particular the problem of ageing in mean field models. The book will serve as a concise introduction to the state of the art of spin glass theory, usefull to both graduate students and young researchers, as well as to anyone curious to know what is going on in this exciting area of mathematical physics.

  20. Complexity of Curved Glass Structures

    Science.gov (United States)

    Kosić, T.; Svetel, I.; Cekić, Z.

    2017-11-01

    Despite the increasing number of research on the architectural structures of curvilinear forms and technological and practical improvement of the glass production observed over recent years, there is still a lack of comprehensive codes and standards, recommendations and experience data linked to real-life curved glass structures applications regarding design, manufacture, use, performance and economy. However, more and more complex buildings and structures with the large areas of glass envelope geometrically complex shape are built every year. The aim of the presented research is to collect data on the existing design philosophy on curved glass structure cases. The investigation includes a survey about how architects and engineers deal with different design aspects of curved glass structures with a special focus on the design and construction process, glass types and structural and fixing systems. The current paper gives a brief overview of the survey findings.

  1. Laboratory testing of LITCO glasses

    International Nuclear Information System (INIS)

    Ellison, A.; Wolf, S.; Buck, E.; Luo, J.S.; Dietz, N.; Bates, J.K.; Ebert, W.L.

    1995-01-01

    The purpose of this program is to measure, the intermediate and long-term durability of glasses developed by Lockheed Idaho Technology Co. (LITCO) for the immobilization of calcined radioactive wastes. The objective is to use accelerated corrosion tests as an aid in developing durable waste form compositions. This is a report of tests performed on two LITCO glass compositions, Formula 127 and Formula 532. The main avenue for release of radionuclides into the environment in a geologic repository is the reaction of a waste glass with ground water, which alters the glass and releases its components into solution. These stages in glass corrosion are analyzed by using accelerated laboratory tests in which the ratio of sample surface area to solution volume, SA/V, is varied. At low SA/V, the solution concentrations of glass corrosion products remain low and the reaction approaches the forward rate. At higher SA/V the solution approaches saturation levels for glass corrosion products. At very high SA/V the solution is rapidly saturated in glass corrosion products and secondary crystalline phases precipitate. Tests at very high SA/V provide information about the composition of the solution at saturation or, when no solution is recovered, the identities and the order of appearance of secondary crystalline phases. Tests were applied to Formula 127 and Formula 532 glasses to provide information about the interim and long-term stages in glass corrosion

  2. Glass containing radioactive nuclear waste

    International Nuclear Information System (INIS)

    Boatner, L.A.; Sales, B.C.

    1985-01-01

    Lead-iron phosphate glasses containing a high level of Fe 2 O 3 for use as a storage medium for high-level-radioactive nuclear waste. By combining lead-iron phosphate glass with various types of simulated high-level nuclear waste, a highly corrosion resistant, homogeneous, easily processed glass can be formed. For corroding solutions at 90 C, with solution pH values in the range between 5 and 9, the corrosion rate of the lead-iron phosphate nuclear waste glass is at least 10 2 to 10 3 times lower than the corrosion rate of a comparable borosilicate nuclear waste glass. The presence of Fe 2 O 3 in forming the lead-iron phosphate glass is critical. Lead-iron phosphate nuclear waste glass can be prepared at temperatures as low as 800 C, since they exhibit very low melt viscosities in the 800 to 1050 C temperature range. These waste-loaded glasses do not readily devitrify at temperatures as high as 550 C and are not adversely affected by large doses of gamma radiation in H 2 O at 135 C. The lead-iron phosphate waste glasses can be prepared with minimal modification of the technology developed for processing borosilicate glass nuclear waste forms. (author)

  3. Transferability of glass lens molding

    Science.gov (United States)

    Katsuki, Masahide

    2006-02-01

    Sphere lenses have been used for long time. But it is well known that sphere lenses theoretically have spherical aberration, coma and so on. And, aspheric lenses attract attention recently. Plastic lenses are molded easily with injection machines, and are relatively low cost. They are suitable for mass production. On the other hand, glass lenses have several excellent features such as high refractive index, heat resistance and so on. Many aspheric glass lenses came to be used for the latest digital camera and mobile phone camera module. It is very difficult to produce aspheric glass lenses by conventional process of curve generating and polishing. For the solution of this problem, Glass Molding Machine was developed and is spreading through the market. High precision mold is necessary to mold glass lenses with Glass Molding Machine. The mold core is ground or turned by high precision NC aspheric generator. To obtain higher transferability of the mold core, the function of the molding machine and the conditions of molding are very important. But because of high molding temperature, there are factors of thermal expansion and contraction of the mold and glass material. And it is hard to avoid the factors. In this session, I introduce following items. [1] Technology of glass molding and the machine is introduced. [2] The transferability of glass molding is analyzed with some data of glass lenses molded. [3] Compensation of molding shape error is discussed with examples.

  4. Rapid thermal processing of nano-crystalline indium tin oxide transparent conductive oxide coatings on glass by flame impingement technology

    International Nuclear Information System (INIS)

    Schoemaker, S.; Willert-Porada, M.

    2009-01-01

    Indium tin oxide (ITO) is still the best suited material for transparent conductive oxides, when high transmission in the visible range, high infrared reflection or high electrical conductivity is needed. Current approaches on powder-based printable ITO coatings aim at minimum consumption of active coating and low processing costs. The paper describes how fast firing by flame impingement is used for effective sintering of ITO-coatings applied on glass. The present study correlates process parameters of fast firing by flame impingement with optoelectronic properties and changes in the microstructure of suspension derived nano-particulate films. With optimum process parameters the heat treated coatings had a sheet resistance below 0.5 kΩ/ □ combined with a transparency higher than 80%. To characterize the influence of the burner type on the process parameters and the coating functionality, two types of methane/oxygen burner were compared: a diffusion burner and a premixed burner

  5. FY 1999 report on the development of technology to recycle architectural waste materials, glass, etc. Development of technology to recycle architectural waste materials; 1999 nendo kenchiku haizai glass nado recycle gijutsu kaihatsu seika hokokusho. Kenchiku haizai recycle gijutsu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-09-01

    Waste wood materials in the materials discharged from architectural disassembly were regarded as a potential wood resource, and the R and D of the technology to recycle these were conducted. Studies were made on the technology to finely grind waste wood materials, technology to compress/form waste wood materials and ground wood powder, verification of strength characteristics/dimension stability of the formed wood materials, etc. As to the wood materials which were badly degraded under ultra violet rays, they were coloring-processed by the steam treatment, and a possibility of coating substitution was confirmed. In relation to the technology to produce compressed wood materials, the optimization of heat treatment conditions was experimentally conducted. About the technology to give dimensional stability, dimensional stability was improved as a result of the improvement of chemicals feeding and the development of chemically processed drugs. In the development of light formed products, the board was successfully formed which is light in weight using lignocelluloses/inorganic hydrates and has the bending strength higher than that of the plaster board. In the development of interior materials, the technology was developed in which ground wood powder and thermo-plastic resin are mixed for die molding, and the OA floor using this was commercialized. (NEDO)

  6. Shielding Efficiency of a Fabric Based on Amorphous Glass-Covered Magnetic Microwires to Radiation Emitted by a Mobile Phone in 2G and 3G Communication Technologies

    Directory of Open Access Journals (Sweden)

    Miclăuş Simona

    2017-12-01

    Full Text Available A dual band mobile phone model was used to check the shielding properties of an amorphous ferromagnetic textile against the radiation emitted by the handset. Two frequencies belonging to the 2nd and 3rd generation of mobile emission technologies were used, 897 MHz and 1950 MHz. The specific absorption rate (SAR of energy deposition in a human head phantom was measured in standardized conditions. The textile contained micrometric-diameter wires of a ferromagnetic mixture embedded in a thin glass coat and weaved in a specific way. A set of fabric orientations and configurations (layering were provided in the experiment in order to achieve a better shielding to the phone’s radiation. Compared with the non-shielded handset, SAR deposited in the head while using the fabric-covered phone could be decreased up to 30 % of its initial value – in case of 2G technology and up to 24 % – in case of 3G technology. This type of material shows one of the highest shielding efficiencies of the electric-field component in near-field exposure conditions reported until now. A cubic curve of SAR decrease in depth of the head was revealed in both uncovered and covered handset, the effect of shielding being larger at the higher frequency.

  7. GLASS BOX

    National Research Council Canada - National Science Library

    Curtis, Laura

    2008-01-01

    The goals of this effort were to develop Glass Box capabilities to allow for the capturing of analyst activities and the associated data resources, track and log the results of automated processing...

  8. Intelligent glasses, watches and vests…oh my! Rethinking the meaning of "harm" in the age of wearable technologies.

    Science.gov (United States)

    Jadad, Alejandro R; Fandiño, Marcela; Lennox, Robin

    2015-02-05

    The widespread release and adoption of wearable devices will likely accelerate the "hybrid era", already initiated by mobile digital devices, with progressively deeper levels of human-technology co-evolution and increasing blurring of our boundaries with machines. Questions about the potentially harmful nature of information and communication technologies have been asked before, since the introduction of the telephone, the Web, and more recently, mobile phones. Our capacity to answer them now is limited by outdated conceptual approaches to harm, mostly derived from drug evaluation; and by the slow and static nature of traditional research tools. In this article, we propose a re-conceptualizing of the meaning of "harm", which builds on a global effort focused on health, adding flexibility and richness within a context that acknowledges the physical, mental, and social domains in which it can occur.

  9. Light scattering in glass-ceramics

    International Nuclear Information System (INIS)

    Hendy, S.C.

    2002-01-01

    Full text: Glass-ceramic materials with microstructures comprised of dispersed nanocrystallites in a residual glass matrix show promise for many new technological applications. In particular, transparent glass-ceramics offer low thermal expansion and stability, in addition to the prospect of novel non-linear optical properties that can arise from the nanocrystallites. Good transparency requires low optical scattering and low atomic absorption. Light scattering in the glass-ceramic arises primarily from the glass-crystallite interface. The attenuation due to scattering (turbidity) will depend upon the difference in refractive index of the two phases and the size and distribution of nanocrystallites in the glass. Here we consider models of glass-ceramic structure formation and look at scattering in these model structures to increase our understanding of the transparency of glass-ceramics

  10. Large Area Sputter Coating on Glass

    Science.gov (United States)

    Katayama, Yoshihito

    Large glass has been used for commercial buildings, housings and vehicles for many years. Glass size for flat displays is getting larger and larger. The glass for the 8th generation is more than 5 m2 in area. Demand of the large glass is increasing not only in these markets but also in a solar cell market growing drastically. Therefore, large area coating is demanded to plus something else on glass more than ever. Sputtering and pyrolysis are the major coating methods on large glass today. Sputtering process is particularly popular because it can deposit a wide variety of materials in good coating uniformity on the glass. This paper describes typical industrial sputtering system and recent progress in sputtering technology. It also shows typical coated glass products in architectural, automotive and display fields and comments on their functions, film stacks and so on.

  11. FY 1999 results of the regional consortium R and D project/the regional consortium energy R and D. 1st year. Development of the energy-saving type production technology of high-purity/transparent silica glass; 1999 nendo kojundo tomei sekiei glass no sho energy gata seizo gijutsu no kaihatsu seika hokokusho. 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    For the purpose of achieving the remarkable energy conservation, high accuracy and low cost in the production of high-purity/transparent silica glass, the developmental research was conducted on slip casting method. In the development of technology to synthesize silica powder by the sol-gel method, monodisperse - polydisperse high-purity colloidal silica was obtained. In the development of technology to make silica power ultra-highly pure, a process was found out in which silica particles can be obtained by applying moderate amounts of ammonium bicarbonate and aqueous ammonia to the solution of silicic acid for heating. In the slip cast forming, a high-density forming body with a mean particle size of 1.5{mu}m was obtained. In the trial manufacture of reflector model, a translucent silica glass sintered body was obtained by transcribing the gypsum type dimensional shape in high purity. Besides, experimental researches were conducted on the examination of gypsum type/resin type and evaluation of physical properties, heat deterioration characteristics of the actual multi-layer film and trial manufacture of the heat resistant film, analysis/evaluation of trace impurities inside silica glass, conditions for the manufacture of dense silica glass sheets, etc. (NEDO)

  12. Glass compositions

    Energy Technology Data Exchange (ETDEWEB)

    France, P W

    1985-05-30

    A fluoride glass for use in the production of optical fibres has an enhanced D/H ratio, preferably such that OD:OH is at least 9:1. In the example, such a glass is prepared by treating with D/sub 2/O a melt comprising 51.53 mole per cent ZrF/sub 4/, 20.47 mole per cent BaF/sub 2/, 5.27 mole per cent LaF/sub 3/, 3.24 mole per cent AlF/sub 3/, and 19.49 mole per cent LiF.

  13. High Tech Art: Chameleon Glass

    Science.gov (United States)

    1993-01-01

    Dichroic Glass is a technology wherein extremely thin films of metal are vacuum deposited on a glass surface. The coated glass shields spacecraft instruments from cosmic radiation and protects human vision from unfiltered sunlight in space. Because the coating process allows some wavelengths of light and color to reflect and others to pass through, a chameleon effect is produced. Murray Schwartz, a former aerospace engineer, has based his business KROMA on this NASA optical technology. He produces dichroic stained glass windows, mobiles and jewelry. The technique involves deposition of super thin layers of metal oxides applied one layer at a time in a specific order and thickness for the desired effect. His product line is unique and has been very successful.

  14. Plutonium dioxide dissolution in glass

    Energy Technology Data Exchange (ETDEWEB)

    Vienna, J.D.; Alexander, D.L.; Li, Hong [and others

    1996-09-01

    In the aftermath of the Cold War, the U.S. Department of Energy`s (DOE) Office of Fissile Materials Disposition (OFMD) is charged with providing technical support for evaluation of disposition options for excess fissile materials manufactured for the nation`s defense. One option being considered for the disposition of excess plutonium (Pu) is immobilization by vitrification. The vitrification option entails immobilizing Pu in a host glass and waste package that are criticality-safe (immune to nuclear criticality), proliferation-resistant, and environmentally acceptable for long-term storage or disposal. To prove the technical and economic feasibility of candidate vitrification options it is necessary to demonstrate that PuO{sub 2} feedstock can be dissolved in glass in sufficient quantity. The OFMD immobilization program has set a Pu solubility goal of 10 wt% in glass. The life cycle cost of the vitrification options are strongly influenced by the rate at which PUO{sub 2} dissolves in glass. The total number of process lines needed for vitrification of 50 t of Pu in 10 years is directly dependent upon the time required for Pu dissolution in glass. The objective of this joint Pacific Northwest National Laboratory (PNNL) - Savannah River Technology Center (SRTC) study was to demonstrate a high Pu solubility in glass and to identify on a rough scale the time required for Pu dissolution in the glass. This study was conducted using a lanthanide borosilicate (LaBS) glass composition designed at the SRTC for the vitrification of actinides.

  15. Plutonium dioxide dissolution in glass

    International Nuclear Information System (INIS)

    Vienna, J.D.; Alexander, D.L.; Li, Hong

    1996-09-01

    In the aftermath of the Cold War, the U.S. Department of Energy's (DOE) Office of Fissile Materials Disposition (OFMD) is charged with providing technical support for evaluation of disposition options for excess fissile materials manufactured for the nation's defense. One option being considered for the disposition of excess plutonium (Pu) is immobilization by vitrification. The vitrification option entails immobilizing Pu in a host glass and waste package that are criticality-safe (immune to nuclear criticality), proliferation-resistant, and environmentally acceptable for long-term storage or disposal. To prove the technical and economic feasibility of candidate vitrification options it is necessary to demonstrate that PuO 2 feedstock can be dissolved in glass in sufficient quantity. The OFMD immobilization program has set a Pu solubility goal of 10 wt% in glass. The life cycle cost of the vitrification options are strongly influenced by the rate at which PUO 2 dissolves in glass. The total number of process lines needed for vitrification of 50 t of Pu in 10 years is directly dependent upon the time required for Pu dissolution in glass. The objective of this joint Pacific Northwest National Laboratory (PNNL) - Savannah River Technology Center (SRTC) study was to demonstrate a high Pu solubility in glass and to identify on a rough scale the time required for Pu dissolution in the glass. This study was conducted using a lanthanide borosilicate (LaBS) glass composition designed at the SRTC for the vitrification of actinides

  16. Proceedings of the national conference on functional glasses/glass-ceramics and ceramics: souvenir

    International Nuclear Information System (INIS)

    2015-01-01

    This conference deals with issues relevant to functional glasses and glass ceramics which are technologically important materials for lasers, radioactive waste immobilization, radiation shielding, bio-glasses etc. It covers wide range of subjects and their applications right from managing the side effects of nuclear wastes and shielding the radiation, to sol-gel based bio-glass and its composites. Papers relevant to INIS are indexed separately

  17. Flexural strength using Steel Plate, Carbon Fiber Reinforced Polymer (CFRP) and Glass Fiber Reinforced Polymer (GFRP) on reinforced concrete beam in building technology

    Science.gov (United States)

    Tarigan, Johannes; Patra, Fadel Muhammad; Sitorus, Torang

    2018-03-01

    Reinforced concrete structures are very commonly used in buildings because they are cheaper than the steel structures. But in reality, many concrete structures are damaged, so there are several ways to overcome this problem, by providing reinforcement with Fiber Reinforced Polymer (FRP) and reinforcement with steel plates. Each type of reinforcements has its advantages and disadvantages. In this study, researchers discuss the comparison between flexural strength of reinforced concrete beam using steel plates and Fiber Reinforced Polymer (FRP). In this case, the researchers use Carbon Fiber Reinforced Polymer (CFRP) and Glass Fiber Reinforced Polymer (GFRP) as external reinforcements. The dimension of the beams is 15 x 25 cm with the length of 320 cm. Based on the analytical results, the strength of the beam with CFRP is 1.991 times its initial, GFRP is 1.877 times while with the steel plate is 1.646 times. Based on test results, the strength of the beam with CFRP is 1.444 times its initial, GFRP is 1.333 times while the steel plate is 1.167 times. Based on these test results, the authors conclude that beam with CFRP is the best choice for external reinforcement in building technology than the others.

  18. Study of the mechanical stability and bioactivity of Bioglass(®) based glass-ceramic scaffolds produced via powder metallurgy-inspired technology.

    Science.gov (United States)

    Boccardi, Elena; Melli, Virginia; Catignoli, Gabriele; Altomare, Lina; Jahromi, Maryam Tavafoghi; Cerruti, Marta; Lefebvre, Louis-Philippe; De Nardo, Luigi

    2016-02-02

    Large bone defects are challenging to heal, and often require an osteoconductive and stable support to help the repair of damaged tissue. Bioglass-based scaffolds are particularly promising for this purpose due to their ability to stimulate bone regeneration. However, processing technologies adopted so far do not allow for the synthesis of scaffolds with suitable mechanical properties. Also, conventional sintering processes result in glass de-vitrification, which generates concerns about bioactivity. In this work, we studied the bioactivity and the mechanical properties of Bioglass(®) based scaffolds, produced via a powder technology inspired process. The scaffolds showed compressive strengths in the range of 5-40 MPa, i.e. in the upper range of values reported so far for these materials, had tunable porosity, in the range between 55 and 77%, and pore sizes that are optimal for bone tissue regeneration (100-500 μm). We immersed the scaffolds in simulated body fluid (SBF) for 28 d and analyzed the evolution of the scaffold mechanical properties and microstructure. Even if, after sintering, partial de-vitrification occurred, immersion in SBF caused ion release and the formation of a Ca-P coating within 2 d, which reached a thickness of 10-15 μm after 28 d. This coating contained both hydroxyapatite and an amorphous background, indicating microstructural amorphization of the base material. Scaffolds retained a good compressive strength and structural integrity also after 28 d of immersion (6 MPa compressive strength). The decrease in mechanical properties was mainly related to the increase in porosity, caused by its dissolution, rather than to the amorphization process and the formation of a Ca-P coating. These results suggest that Bioglass(®) based scaffolds produced via powder metallurgy-inspired technique are excellent candidates for bone regeneration applications.

  19. Fracture Resistance, Surface Defects and Structural Strength of Glass

    OpenAIRE

    Rodichev, Y.M.; Veer, F.A.

    2010-01-01

    This paper poses the theory that the fracture resistance of basic float glass is dependent on it physicochemical properties and the surface defects fonned under the float glass production, glass processing and handling at the service conditions compose the aggregate basis for structural glass strength assessment. The effect of loading conditions, constructional and technological factors on the engineering strength of glass can be evaluated in certain cases using fracture mechanics with inform...

  20. Glass: Rotary Electric Glass Furnace

    Energy Technology Data Exchange (ETDEWEB)

    Recca, L.

    1999-01-29

    Compared to conventional gas-fired furnaces, the new rotary electric furnace will increase energy efficiency while significantly reducing air emissions, product turnaround time, and labor costs. As this informative new fact sheet explains, the thousand different types of glass optical blanks produced for the photonics industry are used for lasers, telescopes, cameras, lights, and many other products.

  1. Glass Ceramic Formulation Data Package

    International Nuclear Information System (INIS)

    Crum, Jarrod V.; Rodriguez, Carmen P.; McCloy, John S.; Vienna, John D.; Chung, Chul-Woo

    2012-01-01

    A glass ceramic waste form is being developed for treatment of secondary waste streams generated by aqueous reprocessing of commercial used nuclear fuel (Crum et al. 2012b). The waste stream contains a mixture of transition metals, alkali, alkaline earths, and lanthanides, several of which exceed the solubility limits of a single phase borosilicate glass (Crum et al. 2009; Caurant et al. 2007). A multi-phase glass ceramic waste form allows incorporation of insoluble components of the waste by designed crystallization into durable heat tolerant phases. The glass ceramic formulation and processing targets the formation of the following three stable crystalline phases: (1) powellite (XMoO4) where X can be (Ca, Sr, Ba, and/or Ln), (2) oxyapatite Yx,Z(10-x)Si6O26 where Y is alkaline earth, Z is Ln, and (3) lanthanide borosilicate (Ln5BSi2O13). These three phases incorporate the waste components that are above the solubility limit of a single-phase borosilicate glass. The glass ceramic is designed to be a single phase melt, just like a borosilicate glass, and then crystallize upon slow cooling to form the targeted phases. The slow cooling schedule is based on the centerline cooling profile of a 2 foot diameter canister such as the Hanford High-Level Waste canister. Up to this point, crucible testing has been used for glass ceramic development, with cold crucible induction melter (CCIM) targeted as the ultimate processing technology for the waste form. Idaho National Laboratory (INL) will conduct a scaled CCIM test in FY2012 with a glass ceramic to demonstrate the processing behavior. This Data Package documents the laboratory studies of the glass ceramic composition to support the CCIM test. Pacific Northwest National Laboratory (PNNL) measured melt viscosity, electrical conductivity, and crystallization behavior upon cooling to identify a processing window (temperature range) for melter operation and cooling profiles necessary to crystallize the targeted phases in the

  2. Database and Interim Glass Property Models for Hanford HLW Glasses

    International Nuclear Information System (INIS)

    Hrma, Pavel R; Piepel, Gregory F; Vienna, John D; Cooley, Scott K; Kim, Dong-Sang; Russell, Renee L

    2001-01-01

    The purpose of this report is to provide a methodology for an increase in the efficiency and a decrease in the cost of vitrifying high-level waste (HLW) by optimizing HLW glass formulation. This methodology consists in collecting and generating a database of glass properties that determine HLW glass processability and acceptability and relating these properties to glass composition. The report explains how the property-composition models are developed, fitted to data, used for glass formulation optimization, and continuously updated in response to changes in HLW composition estimates and changes in glass processing technology. Further, the report reviews the glass property-composition literature data and presents their preliminary critical evaluation and screening. Finally the report provides interim property-composition models for melt viscosity, for liquidus temperature (with spinel and zircon primary crystalline phases), and for the product consistency test normalized releases of B, Na, and Li. Models were fitted to a subset of the screened database deemed most relevant for the current HLW composition region

  3. Wastes based glasses and glass-ceramics

    Directory of Open Access Journals (Sweden)

    Barbieri, L.

    2001-12-01

    Full Text Available Actually, the inertization, recovery and valorisation of the wastes coming from municipal and industrial processes are the most important goals from the environmental and economical point of view. An alternative technology capable to overcome the problem of the dishomogeneity of the raw material chemical composition is the vitrification process that is able to increase the homogeneity and the constancy of the chemical composition of the system and to modulate the properties in order to address the reutilization of the waste. Moreover, the glasses obtained subjected to different controlled thermal treatments, can be transformed in semy-cristalline material (named glass-ceramics with improved properties with respect to the parent amorphous materials. In this review the tailoring, preparation and characterization of glasses and glass-ceramics obtained starting from municipal incinerator grate ash, coal and steel fly ashes and glass cullet are described.

    Realmente la inertización, recuperación y valorización de residuos que proceden de los procesos de incineración de residuos municipales y de residuos industriales son metas importantes desde el punto de vista ambiental y económico. Una tecnología alternativa capaz de superar el problema de la heterogeneidad de la composición química de los materiales de partida es el proceso de la vitrificación que es capaz de aumentar la homogeneidad y la constancia de la composición química del sistema y modular las propiedades a fin de la reutilización del residuo. En este artículo se presentan los resultados de vitrificación en que los vidrios fueron sometidos a tratamientos térmicos controlados diferentes, de manera que se transforman en materiales semicristalinos (también denominados vitrocerámicos con mejores propiedades respecto a los materiales amorfos originales. En esta revisión se muestra el diseño, preparación y caracterización de vidrios y vitrocerámicos partiendo de

  4. Nitrate glass

    International Nuclear Information System (INIS)

    Kirilenko, I.A.; Vinogradov, E.E.

    1977-01-01

    Experimental evidence on behaviour of nitrate glasses is reviewed in terms of relationships between the presence of water in vitrescent nitrate systems and the properties of the systems. The glasses considered belong to systems of Mg(NO 3 ) 2 - Nd(NO 3 ) 3 ; Hg(NO 3 ) 2 -Nd(NO 3 ) 3 ; NaNO 3 -Mg(NO 3 ) 2 -Nd(NO 3 ) 3 ; M-Zn(NO 3 ) 3 , where M is a mixture of 20% mass NaNO 3 and 80% mass Mg(NO 3 ) 2 , and Zn is a rare earth ion. Nitrate glass is shown to be a product of dehydration. Vitrification may be regarded as a resusl of formation of molecular complexes in the chain due to hydrogen bonds of two types, i.e. water-water, or water-nicrate group. Chain formation, along with low melting points of the nitrates, hinder crystallization of nitrate melts. Provided there is enough water, this results in vitrification

  5. Micro-hybrid electric vehicle application of valve-regulated lead-acid batteries in absorbent glass mat technology: Testing a partial-state-of-charge operation strategy

    Energy Technology Data Exchange (ETDEWEB)

    Schaeck, S.; Stoermer, A.O.; Hockgeiger, E. [BMW Group, Powertrain Development, Energy Storage, Hufelandstrasse 4, 80788 Muenchen (Germany)

    2009-05-01

    The BMW Group has launched two micro-hybrid functions in high volume models in order to contribute to reduction of fuel consumption in modern passenger cars. Both the brake energy regeneration (BER) and the auto-start-stop function (ASSF) are based on the conventional 14 V vehicle electrical system and current series components with only little modifications. An intelligent control algorithm of the alternator enables recuperative charging in braking and coasting phases, known as BER. By switching off the internal combustion engine at a vehicle standstill the idling fuel consumption is effectively reduced by ASSF. By reason of economy and package a lead-acid battery is used as electrochemical energy storage device. The BMW Group assembles valve-regulated lead-acid (VRLA) batteries in absorbent glass mat (AGM) technology in the micro-hybrid electrical power system since special challenges arise for the batteries. By field data analysis a lower average state-of-charge (SOC) due to partial state-of-charge (PSOC) operation and a higher cycling rate due to BER and ASSF are confirmed in this article. Similar to a design of experiment (DOE) like method we present a long-term lab investigation. Two types of 90 Ah VRLA AGM batteries are operated with a test bench profile that simulates the micro-hybrid vehicle electrical system under varying conditions. The main attention of this lab testing is focused on capacity loss and charge acceptance over cycle life. These effects are put into context with periodically refresh charging the batteries in order to prevent accelerated battery aging due to hard sulfation. We demonstrate the positive effect of refresh chargings concerning preservation of battery charge acceptance. Furthermore, we observe moderate capacity loss over 90 full cycles both at 25 C and at 3 C battery temperature. (author)

  6. Micro-hybrid electric vehicle application of valve-regulated lead-acid batteries in absorbent glass mat technology: Testing a partial-state-of-charge operation strategy

    Science.gov (United States)

    Schaeck, S.; Stoermer, A. O.; Hockgeiger, E.

    The BMW Group has launched two micro-hybrid functions in high volume models in order to contribute to reduction of fuel consumption in modern passenger cars. Both the brake energy regeneration (BER) and the auto-start-stop function (ASSF) are based on the conventional 14 V vehicle electrical system and current series components with only little modifications. An intelligent control algorithm of the alternator enables recuperative charging in braking and coasting phases, known as BER. By switching off the internal combustion engine at a vehicle standstill the idling fuel consumption is effectively reduced by ASSF. By reason of economy and package a lead-acid battery is used as electrochemical energy storage device. The BMW Group assembles valve-regulated lead-acid (VRLA) batteries in absorbent glass mat (AGM) technology in the micro-hybrid electrical power system since special challenges arise for the batteries. By field data analysis a lower average state-of-charge (SOC) due to partial state-of-charge (PSOC) operation and a higher cycling rate due to BER and ASSF are confirmed in this article. Similar to a design of experiment (DOE) like method we present a long-term lab investigation. Two types of 90 Ah VRLA AGM batteries are operated with a test bench profile that simulates the micro-hybrid vehicle electrical system under varying conditions. The main attention of this lab testing is focused on capacity loss and charge acceptance over cycle life. These effects are put into context with periodically refresh charging the batteries in order to prevent accelerated battery aging due to hard sulfation. We demonstrate the positive effect of refresh chargings concerning preservation of battery charge acceptance. Furthermore, we observe moderate capacity loss over 90 full cycles both at 25 °C and at 3 °C battery temperature.

  7. Glass manufacturing through induction

    International Nuclear Information System (INIS)

    Boen, R.; Paya, B.; Roscini, M.; Fautrelle, Y.; Tuaz, F.; Delage, D.

    1991-01-01

    Oxides and glasses are electrical and thermal insulators, but show the characteristic of being weakly conductors of electricity when they are melt. It is then possible to heat them through HF induction. This interesting property allows the development of a melting process in cold crucible induction furnace. The process is being studied and developed by a consortium made up of CFEI, CEA Marcoule, ELECTRICITE DE FRANCE and MADYLAM laboratory. The studies include 2 parts: a) One experimental part to develop the technology and research for satisfying configurations, through a small size platform (10 to 30 kg/h). The long run continuous pouring melting tests made on different kinds of glass allow to go-on with industrial range units. b) One theoretical part to understand the magneto-thermo-hydraulic phenomenon hardly in relation with the heavy dependence of the physical characteristics (electrical and heat conductivities, viscosity) according to temperature. 6 refs., 4 figs [fr

  8. Glass-Graphite Composite Materials

    International Nuclear Information System (INIS)

    Mayzan, M.Z.H.; Lloyd, J.W.; Heath, P.G.; Stennett, M.C.; Hyatt, N.C.; Hand, R.J.

    2016-01-01

    A summary is presented of investigations into the potential of producing glass-composite materials for the immobilisation of graphite or other carbonaceous materials arising from nuclear power generation. The methods are primarily based on the production of base glasses which are subsequently sintered with powdered graphite or simulant TRISO particles. Consideration is also given to the direct preparation of glass-graphite composite materials using microwave technology. Production of dense composite wasteforms with TRISO particles was more successful than with powdered graphite, as wasteforms containing larger amounts of graphite were resistant to densification and the glasses tried did not penetrate the pores under the pressureless conditions used. Based on the results obtained it is concluded that the production of dense glassgraphite composite wasteforms will require the application of pressure. (author)

  9. Element analysis on Japanese ancient glass by PIXE method

    International Nuclear Information System (INIS)

    Koizumi, Y.; Kobayashi, K.

    2001-01-01

    The authors analyzed ancient glasses using PIXE (particle induced X-ray emission) method associated with the accelerator used for the trace analysis of environments and organisms. They examined whether the material properties of the glasses made by ancient technology have correlation with those of each era or each region both in and out of Japan. The alkali lime glasses excavated from Japanese ancient ruins are classified as soda lime glasses and potash lime glasses, and intermediate glasses containing both are also detected. As for the glasses between the late Yayoi period and the early Tumulus period in eastern Japan, glass beads were mostly classified as potash lime glasses. In the mid and late Tumulus periods, soda lime glasses and the glasses with an intermediate composition increased in addition to potash lime glasses. In the analysis of the glass beads excavated from the ruins of the late Yayoi period to the early Tumult period in Tsushima, potash lime glasses and soda lime glasses coexisted in the same period. Most of the coloring components of deep-blue system mostly found in eastern Japan were manganese and iron, and the coloring components such as blue, green, sky blue, etc. were copper. Yellow was the color expressed with lead or lead - iron. The coloring materials were common regardless of the classification of glasses based on main components. (A.O.)

  10. Polyamorphism in metalic glass.

    Energy Technology Data Exchange (ETDEWEB)

    Sheng, H. W.; Liu, H. Z.; Cheng, Y. Q.; Wen, J.; Lee, P.L.; Luo, W.K.; Shastri, S.D.; Ma, E.; X-Ray Science Division; Johns Hopkins Univ.; Chinese Academy of Sciences

    2007-03-01

    A metal, or an alloy, can often exist in more than one crystal structure. The face-centered-cubic and body-centered-cubic forms of iron (or steel) are a familiar example of such polymorphism. When metallic materials are made in the amorphous form, is a parallel 'polyamorphism' possible? So far, polyamorphic phase transitions in the glassy state have been observed only in glasses involving directional and open (such as tetrahedral) coordination environments. Here, we report an in situ X-ray diffraction observation of a pressure-induced transition between two distinct amorphous polymorphs in a Ce{sub 55}Al{sub 45} metallic glass. The large density difference observed between the two polyamorphs is attributed to their different electronic and atomic structures, in particular the bond shortening revealed by ab initio modeling of the effects of f-electron delocalization. This discovery offers a new perspective of the amorphous state of metals, and has implications for understanding the structure, evolution and properties of metallic glasses and related liquids. Our work also opens a new avenue towards technologically useful amorphous alloys that are compositionally identical but with different thermodynamic, functional and rheological properties due to different bonding and structural characteristics.

  11. Energy conservation in the EC glass industry

    Energy Technology Data Exchange (ETDEWEB)

    Waal, H. de [TNO Institute of Applied Physics, Delft (Netherlands)

    1994-12-31

    The data presented in this survey are based mainly on a recent study, performed by the Energy Technology Support Unit ETSU. Harwell Laboratory, United Kingdom, in the context of the EC-Thermie programme. Also, use has been made of a paper `Glass Manufacture, energy and CO{sub 2}-emissions`, presented by G.J. Copley of the British Glass Manufacturers Confederation, Sheffield, United Kingdom, presented at the Thermie Seminar in Wiesbaden, 1992. A third source of information has been the data collected by the CPIV, the European Glass Manufacturers Federation on the present and future economic situation of the EC Glass Industry. (orig.)

  12. Compliant Glass Seals for SOFC Stacks

    Energy Technology Data Exchange (ETDEWEB)

    Chou, Yeong -Shyung [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Choi, Jung-Pyung [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Xu, Wei [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Stephens, Elizabeth V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Koeppel, Brian J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Stevenson, Jeffry W. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lara-Curzio, Edgar [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2014-04-30

    This report summarizes results from experimental and modeling studies performed by participants in the Solid-State Energy Conversion Alliance (SECA) Core Technology Program, which indicate that compliant glass-based seals offer a number of potential advantages over conventional seals based on de-vitrifying glasses, including reduced stresses during stack operation and thermal cycling, and the ability to heal micro-damage induced during thermal cycling. The properties and composition of glasses developed and/or investigated in these studies are reported, along with results from long-term (up to 5,800h) evaluations of seals based on a compliant glass containing ceramic particles or ceramic fibers.

  13. CRYSTALLIZATION IN MULTICOMPONENT GLASSES

    Energy Technology Data Exchange (ETDEWEB)

    KRUGER AA; HRMA PR

    2009-10-08

    In glass processing situations involving glass crystallization, various crystalline forms nucleate, grow, and dissolve, typically in a nonuniform temperature field of molten glass subjected to convection. Nuclear waste glasses are remarkable examples of multicomponent vitrified mixtures involving partial crystallization. In the glass melter, crystals form and dissolve during batch-to-glass conversion, melter processing, and product cooling. Crystals often agglomerate and sink, and they may settle at the melter bottom. Within the body of cooling glass, multiple phases crystallize in a non-uniform time-dependent temperature field. Self-organizing periodic distribution (the Liesegnang effect) is common. Various crystallization phenomena that occur in glass making are reviewed.

  14. Crystallization In Multicomponent Glasses

    International Nuclear Information System (INIS)

    Kruger, A.A.; Hrma, P.R.

    2009-01-01

    In glass processing situations involving glass crystallization, various crystalline forms nucleate, grow, and dissolve, typically in a nonuniform temperature field of molten glass subjected to convection. Nuclear waste glasses are remarkable examples of multicomponent vitrified mixtures involving partial crystallization. In the glass melter, crystals form and dissolve during batch-to-glass conversion, melter processing, and product cooling. Crystals often agglomerate and sink, and they may settle at the melter bottom. Within the body of cooling glass, multiple phases crystallize in a non-uniform time-dependent temperature field. Self-organizing periodic distribution (the Liesegnang effect) is common. Various crystallization phenomena that occur in glass making are reviewed.

  15. Technical Status Report: Preliminary Glass Formulation Report for INEEL HAW

    International Nuclear Information System (INIS)

    Peeler, D.; Reamer, I.; Vienna, J.; Crum, J.A.

    1998-03-01

    This study was performed by a team comprising experts in glass chemistry, glass technology, and statistics at both SRTC and PNNL. This joint effort combined the strengths of each discipline and site to quickly develop a glass formulation for specific INEEL HAW

  16. Analysis of form deviation in non-isothermal glass molding

    Science.gov (United States)

    Kreilkamp, H.; Grunwald, T.; Dambon, O.; Klocke, F.

    2018-02-01

    Especially in the market of sensors, LED lighting and medical technologies, there is a growing demand for precise yet low-cost glass optics. This demand poses a major challenge for glass manufacturers who are confronted with the challenge arising from the trend towards ever-higher levels of precision combined with immense pressure on market prices. Since current manufacturing technologies especially grinding and polishing as well as Precision Glass Molding (PGM) are not able to achieve the desired production costs, glass manufacturers are looking for alternative technologies. Non-isothermal Glass Molding (NGM) has been shown to have a big potential for low-cost mass manufacturing of complex glass optics. However, the biggest drawback of this technology at the moment is the limited accuracy of the manufactured glass optics. This research is addressing the specific challenges of non-isothermal glass molding with respect to form deviation of molded glass optics. Based on empirical models, the influencing factors on form deviation in particular form accuracy, waviness and surface roughness will be discussed. A comparison with traditional isothermal glass molding processes (PGM) will point out the specific challenges of non-isothermal process conditions. Furthermore, the underlying physical principle leading to the formation of form deviations will be analyzed in detail with the help of numerical simulation. In this way, this research contributes to a better understanding of form deviations in non-isothermal glass molding and is an important step towards new applications demanding precise yet low-cost glass optics.

  17. Effect of stirring on striae in glass melts

    DEFF Research Database (Denmark)

    Jensen, Martin; Yue, Yuanzheng

    2012-01-01

    Chemical striae have often negative effect on the glass properties, and hence, elimination of striae has been a key issue in glass science and technology. To produce highly homogeneous glasses, it is necessary to stir melts during the melting process. To explore the physical origin of the stria...

  18. Using glass as a shielding material

    International Nuclear Information System (INIS)

    Yousef, S.

    2002-04-01

    Different theoretical and technological concepts and problems in using glass as a shielding material was discussed, some primarily designs for different types of radiation shielding windows were illustrated. (author)

  19. Using glass as a shielding material

    International Nuclear Information System (INIS)

    Yousef, S.

    2003-01-01

    Different theoretical and technological concepts and problems in using glass as a shielding material was discussed, some primarily designs for different types of radiation shielding windows were illustrated. (author)

  20. Recycling of Glass

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Damgaard, Anders

    2011-01-01

    Glass is used for many purposes, but in the waste system glass is predominantly found in terms of beverage and food containers with a relatively short lifetime before ending up in the waste. Furthermore there is a large amount of flat glass used in building materials which also ends up in the waste...... system; this glass though has a long lifetime before ending up in the waste. Altogether these product types add up to 82% of the production of the European glass industry (IPCC, 2001). Recycling of glass in terms of cleaning and refilling of bottles as well as the use of broken glass in the production...... of new glass containers is well established in the glass industry. This chapter describes briefly howglass is produced and howwaste glass is recycled in the industry. Quality requirements and use of recycled products are discussed, as are the resource and environmental issues of glass recycling....

  1. Late Byzantine mineral soda high alumina glasses from Asia Minor: a new primary glass production group.

    Directory of Open Access Journals (Sweden)

    Nadine Schibille

    Full Text Available The chemical characterisation of archaeological glass allows the discrimination between different glass groups and the identification of raw materials and technological traditions of their production. Several lines of evidence point towards the large-scale production of first millennium CE glass in a limited number of glass making factories from a mixture of Egyptian mineral soda and a locally available silica source. Fundamental changes in the manufacturing processes occurred from the eight/ninth century CE onwards, when Egyptian mineral soda was gradually replaced by soda-rich plant ash in Egypt as well as the Islamic Middle East. In order to elucidate the supply and consumption of glass during this transitional period, 31 glass samples from the assemblage found at Pergamon (Turkey that date to the fourth to fourteenth centuries CE were analysed by electron microprobe analysis (EPMA and by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS. The statistical evaluation of the data revealed that the Byzantine glasses from Pergamon represent at least three different glass production technologies, one of which had not previously been recognised in the glass making traditions of the Mediterranean. While the chemical characteristics of the late antique and early medieval fragments confirm the current model of glass production and distribution at the time, the elemental make-up of the majority of the eighth- to fourteenth-century glasses from Pergamon indicate the existence of a late Byzantine glass type that is characterised by high alumina levels. Judging from the trace element patterns and elevated boron and lithium concentrations, these glasses were produced with a mineral soda different to the Egyptian natron from the Wadi Natrun, suggesting a possible regional Byzantine primary glass production in Asia Minor.

  2. Development of continuous glass melting for production of Nd-doped phosphate glasses for the NIF and LMJ laser system

    International Nuclear Information System (INIS)

    Campbell, J. H.; Ficini-Dorn, G.; Hawley-Fedder, R.; McLean, M. J.; Suratwala, T.; Trombert, J. H.

    1998-01-01

    The NIF and LMJ laser systems require about 3380 and 4752 Nd-doped laser glass slabs, respectively. Continuous laser glass melting and forming will be used for the first time to manufacture these slabs. Two vendors have been chosen to produce the glass: Hoya Corporation and Schott Glass Technologies. The laser glass melting systems that each of these two vendors have designed, built and tested are arguably the most advanced in the world. Production of the laser glass will begin on a pilot scale in the fall of 1999

  3. GLASS PLATES FOR MOTOR VEHICLES AND OTHER MEANS OF TRANSPORT

    Directory of Open Access Journals (Sweden)

    Camelia CĂPĂŢÎNĂ

    2012-05-01

    Full Text Available At present, the majority of high quality glass plate is used in vehicle industry. The paper presents the technological process for obtaining glass plate, used in vehicle industry. Besides the usual attributes of high quality plane glass, those used in vehicle industry must not result in sharp and cutting splinters when broken, being dangerous for the passengers. This quality, due to which it is called safety glass, is obtained by various methods.

  4. Spin glasses

    International Nuclear Information System (INIS)

    Mookerjee, Abhijit

    1976-01-01

    ''Spin glasses'', are entire class of magnetic alloys of moderate dilution, in which the magnetic atoms are far enough apart to be unlike the pure metal, but close enough so that the indirect exchange energy between them (mediated by the s-d interaction between local moments and conduction electrons) dominates all other energies. Characteristic critical phenomena displayed such as freezing of spin orientation at 'Tsub(c)' and spreading of magnetic ordering, are pointed out. Anomalous behaviour, associated with these critical phenomena, as reflected in : (i) Moessbauer spectroscopy giving hyperfine splitting at Tsub(c), (ii) maxima in susceptibility and remanent magnetism, (iii) thermopower maxima and change in slope, (iv) Characteristic cusp in susceptibility and its removal by very small magnetic fields, and (v) conductivity-resistivity measurements, are discussed. Theoretical developments aimed at explaining these phenomena, in particular, the ideas from percolation and localisation theories, and the approach based on the gellations of polymers, are discussed. Finally, a new approach based on renormalisation group in disordered systems is also briefly mentioned. (K.B.)

  5. The first success of glass eel production in the world: basic biology on fish reproduction advances new applied technology in aquaculture.

    Science.gov (United States)

    Kagawa, Hirohiko; Tanaka, Hideki; Ohta, Hiromi; Unuma, Tatsuya; Nomura, Kazuharu

    2005-04-01

    The eel has long been esteemed as an important food fish in the world, especially in Japan, and has been used as an experimental fish for many fields of fish physiology. However, the decreases in eel resources have been a serious concern in recent years. The catches of glass eels as seedlings for aquaculture have shown a long-term decrease in both Europe and East Asia. To increase eel resources, the development of techniques for artificial induction of maturation and spawning and rearing their larvae have been eagerly desired. Recent progress of reproductive physiology of fish, especially mechanisms of oocyte maturation and ovulation in female and of spermatozoa maturation in male, facilitate to establish techniques for hormonal induction of maturation and spawning in sexually immature eels. With persistent effort to development of rearing techniques of larvae, we have first succeeded to produce glass eel. These applied techniques are may contribute to understand the basic reproductive physiology of the eel.

  6. Test plan for glass melter system technologies for vitrification of hign-sodium content low-level radioactive liquid waste, Project No. RDD-43288

    International Nuclear Information System (INIS)

    Higley, B.A.

    1995-01-01

    This document provides a test plan for the conduct of combustion fired cyclone vitrification testing by a vendor in support of the Hanford Tank Waste Remediation System, Low-Level Waste Vitrification Program. The vendor providing this test plan and conducting the work detailed within it is the Babcock ampersand Wilcox Company Alliance Research Center in Alliance, Ohio. This vendor is one of seven selected for glass melter testing

  7. Research on the Properties of the Waste Glass Concrete Composite Foundation

    Science.gov (United States)

    Jia, Shilong; Chen, Kaihui; Chen, Zhongliang

    2018-02-01

    The composite foundation of glass concrete can not only reuse the large number of waste glass, but also improve the bearing capacity of weak foundation and soil with special properties. In this paper, the engineering properties of glass concrete composite foundation are studied based on the development situation of glass concrete and the technology of composite foundation.

  8. lead glass brick

    CERN Multimedia

    When you look through the glass at a picture behind, the picture appears raised up because light is slowed down in the dense glass. It is this density (4.06 gcm-3) that makes lead glass attractive to physicists. The refractive index of the glass is 1.708 at 400nm (violet light), meaning that light travels in the glass at about 58% its normal speed. At CERN, the OPAL detector uses some 12000 blocks of glass like this to measure particle energies.

  9. Supporting Inquiry-based Learning with Google Glass (GPIM)

    NARCIS (Netherlands)

    Suarez, Angel; Ternier, Stefaan; Kalz, Marco; Specht, Marcus

    2015-01-01

    Wearable technology is a new genre of technology that is appearing to enhance learning in context. This manuscript introduces a Google Glass application to support Inquiry-based Learning (IBL). Applying Google Glass to IBL, we aim to transform the learning process into a more seamless, personal and

  10. Reduction of the heat demand of cabins of electric-powered vehicles by means of an alternative glass technology; Reduzierung des Heizbedarfs von Elektrofahrzeugkabinen durch alternative Scheibentechnik

    Energy Technology Data Exchange (ETDEWEB)

    Lorenz, Manuel; Spinnler, Markus; Sattelmayer, Thomas [Technische Univ. Muenchen (Germany). Lehrstuhl fuer Thermodynamik

    2012-11-01

    Cruising range is a key factor in market penetration of electric vehicles (EVs) for the near future. Today, EVs achieve acceptable cruising range only through heavy and expensive batteries. Air-conditioning - and in temperate zones especially heating - of the passenger cabin are significant auxiliary loads that can reduce range substantially. At low ambient temperatures the necessary heating power can exceed the average drive power, thus reducing range by over 50%. This study, carried out in cooperation with AUDI AG under the BMBF research project ''e performance'' addresses measures that can potentially lead to a reduced heating demand. In addition to the rather poor insulation of today's vehicles, ventilation losses have been identified as a source of heating and defrosting load of up to 12kW in wintry conditions. At low ambient temperatures a high rate of air exchange is required to keep the humidity level low enough to avoid window fogging. Due to poor window insulation and high exterior heat transfer for a moving vehicle, temperatures at the inside surface of glass windows lie only slightly above the ambient temperature. Improving window insulation leads not only to reduced heat losses but also to higher allowable air humidity before condensation occurs, since the interior window surface is warmer. The air exchange rate can then be minimized as long as air quality standards remain satisfied. In this study steady-state air and window surface temperatures as well as humidity distributions in the cabin are determined by CFD-simulation of the interior flow-field. Window materials such as polycarbonate and double-pane glass are compared to glass at partly recirculated and fresh-air flow. (orig.)

  11. Forming Glasses from Se and Te

    Directory of Open Access Journals (Sweden)

    Pierre Lucas

    2009-10-01

    Full Text Available Despite being close neighbors on the Periodic Table, selenium and tellurium present a totally different abilities to form glasses. Se is a very good glass former, and gives rise to numerous glass compositions which are popular for their transparency in the infrared range and their stability against crystallization. These glasses can be shaped into sophisticated optical devices such as optical fibers, planar guides or lenses. Nevertheless, their transparencies are limited at about 12 μm (depending on the thickness of the optical systems due to the relatively small mass of the Se element. On the other hand, tellurium is heavier and its use in substitution for Se permits to shift the IR cutoff beyond 20 μm. However, the semimetallic nature of Te limits its glass formation ability and this glass family is known to be unstable and consequently has found application as phase change material in the Digital Versatile Disk (DVD technology. In this paper, after a review of selenide glasses and their applications, it will be shown how, in a recent past, it has been possible to stabilize tellurium glasses by introducing new elements like Ga or I in their compositions.

  12. Energy Efficient Glass Melting - The Next Generation Melter

    Energy Technology Data Exchange (ETDEWEB)

    David Rue

    2008-03-01

    The objective of this project is to demonstrate a high intensity glass melter, based on the submerged combustion melting technology. This melter will serve as the melting and homogenization section of a segmented, lower-capital cost, energy-efficient Next Generation Glass Melting System (NGMS). After this project, the melter will be ready to move toward commercial trials for some glasses needing little refining (fiberglass, etc.). For other glasses, a second project Phase or glass industry research is anticipated to develop the fining stage of the NGMS process.

  13. Glass and nuclear wastes

    International Nuclear Information System (INIS)

    Sombret, C.

    1982-10-01

    Glass shows interesting technical and economical properties for long term storage of solidified radioactive wastes by vitrification or embedding. Glass composition, vitrification processes, stability under irradiation, thermal stability and aqueous corrosion are studied [fr

  14. Bioactive glasses materials, properties and applications

    CERN Document Server

    Ylänen, Heimo

    2011-01-01

    Due to their biocompatibility and bioactivity, bioactive glasses are used as highly effective implant materials throughout the human body to replace or repair damaged tissue. As a result, they have been in continuous use since shortly after their invention in the late 1960s and are the subject of extensive research worldwide.Bioactive glasses provides readers with a detailed review of the current status of this unique material, its properties, technologies and applications. Chapters in part one deal with the materials and mechanical properties of bioactive glass, examining topics such

  15. Immobilization of Uranium Silicides in Sintered Glass

    International Nuclear Information System (INIS)

    Mateos, P.; Russo, D.O.; Heredia, A.D.; Sanfilippo, M.

    2003-01-01

    High activity nuclear spent fuels vitrification by fusion is a well known technology which has industrial scale in France, England, Japan, EEUU. Borosilicates glasses are used in this process.Sintered glasses are an alternative to the immobilization task in which there is also a wide experience around the world.The available technics are: cold pressing and sintering , hot-pressing and hot isostatic pressing.This work compares Borosilicates and Iron silicates sintered glasses behaviour when different ammounts of nuclear simulated waste is added

  16. Surgical Vision: Google Glass and Surgery.

    Science.gov (United States)

    Chang, Johnny Yau Cheung; Tsui, Lok Yee; Yeung, Keith Siu Kay; Yip, Stefanie Wai Ying; Leung, Gilberto Ka Kit

    2016-08-01

    Google Glass is, in essence, a smartphone in the form of a pair of spectacles. It has a display system, a bone conduction "speaker," video camera, and connectivity via WiFi or Bluetooth technologies. It can also be controlled by voice command. Seizing Google Glass' capabilities as windows of opportunity, surgeons have been the first group of doctors trying to incorporate the technology into their daily practices. Experiences from different groups have demonstrated Google Glass' potential in improving perioperative care, intraoperative communication and documentation, surgical outcome as well as surgical training. On the other hand, the device has technical limitations, notably suboptimal image qualities and a short battery life. Its operational functions also bring forth concerns on the protection of patient privacy. Nonetheless, the technological advances that this device embodies hold promises in surgical innovations. Further studies are required, and surgeons should explore, investigate, and embrace similar technologies with keen and informed anticipation. © The Author(s) 2016.

  17. Measurement of optical glasses

    International Nuclear Information System (INIS)

    Nicolau-Rebigan, S.

    1978-11-01

    The possibilities of measurement of the optical glasses parameters needed in building optical devices especially in lasers devices are presented. In the first chapter the general features of the main optical glasses as well as the modalities of obtaining them are given. Chapter two defines the optical glass parameters, and the third chapter describes the measuring methods of the optical glass parameters. Finally, the conclusions which point out the utilization of this paper are presented. (author)

  18. Mechanically reinforced glass beams

    DEFF Research Database (Denmark)

    Nielsen, Jens Henrik; Olesen, John Forbes

    2007-01-01

    laminated float glass beam is constructed and tested in four-point bending. The beam consist of 4 layers of glass laminated together with a slack steel band glued onto the bottom face of the beam. The glass parts of the tested beams are \\SI{1700}{mm} long and \\SI{100}{mm} high, and the total width of one...

  19. Research on fabrication technology for thin film solar cells for practical use. Research on low-cost fabrication technology for large-area modules (Over-layered TCO on tempered glass for solar cell); Usumaku taiyo denchi seizo gijutsu no jitsuyoka kenkyu. Daimenseki module no tei cost seizo gijutsu (kyoka class fukugo tomei doden kiban seizo no gijutsu kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    Tatsuta, M [New Energy and Industrial Technology Development Organization, Tokyo (Japan)

    1994-12-01

    This paper reports the study results on the fabrication technology of over-layered TCO on tempered glass in fiscal 1994. (1) On the fabrication technology of heat-resistant over-layered TCO, thermal deformation of TCO substrates was studied by both experiment and numerical computation. The thermal deformation increased with carrier concentration. As the observation result on change in lattice strain of heated TCO films by high-temperature X-ray diffraction, lattice strain was largely affected by thermal expansion. (2) On development of the low-temperature heat treatment method of TCO films, a technological prospect was obtained for fabrication of low-resistance TCO films by heat treatment without strength deterioration of tempered TCO substrates. (3) On development of cost reduction technology, the large-area CVD equipment was devised on the basis of the inline tempering method which tempers substrate glass by air cooling after formation of SnO2 film as fabrication method of tempered TCO. The TCO substrate tempered by air cooling could endure the drop test of 227g and 1.5m. 5 figs., 1 tab.

  20. Spectroscopic study of silicate glass structure. Application to the case of iron and magnesium

    International Nuclear Information System (INIS)

    Rossano, Stephanie

    2008-01-01

    During the last 10 years, I focused my research topics on silicate glass structure. More specifically I have been interested by two main components of natural and technological silicate glasses, Fe and Mg. Using solid state spectroscopic methods adapted to the disordered nature of glass coupled to molecular dynamics simulation and modeling or ab initio calculation, I have studied the environment of iron and magnesium and their impact on glass properties. Information on the distribution of environments in glasses have been extracted. (author)

  1. Evaluation of 3D printed optofluidic smart glass prototypes.

    Science.gov (United States)

    Wolfe, Daniel; Goossen, K W

    2018-01-22

    Smart glass or smart windows are an innovative technology used for thermal management, energy efficiency, and privacy applications. Notable commercially available smart glass relies on an electric stimuli to modulate the glass from a transparent to a translucent mode of operation. However, the current market technologies, such as electrochromic, polymer dispersed liquid crystal, and suspended particle devices are expensive and suffer from solar absorption, poor transmittance modulation, and in some cases, continuous power consumption. The authors of this paper present a novel optofluidic smart glass prototype capable of modulating visible light transmittance from 8% to 85%.

  2. Fluoride glass fiber optics

    CERN Document Server

    Aggarwal, Ishwar D

    1991-01-01

    Fluoride Glass Fiber Optics reviews the fundamental aspects of fluoride glasses. This book is divided into nine chapters. Chapter 1 discusses the wide range of fluoride glasses with an emphasis on fluorozirconate-based compositions. The structure of simple fluoride systems, such as BaF2 binary glass is elaborated in Chapter 2. The third chapter covers the intrinsic transparency of fluoride glasses from the UV to the IR, with particular emphasis on the multiphonon edge and electronic edge. The next three chapters are devoted to ultra-low loss optical fibers, reviewing methods for purifying and

  3. Multiple Glass Ceilings

    OpenAIRE

    Russo, Giovanni; Hassink, Wolter

    2011-01-01

    Both vertical (between job levels) and horizontal (within job levels) mobility can be sources of wage growth. We find that the glass ceiling operates at both margins. The unexplained part of the wage gap grows across job levels (glass ceiling at the vertical margin) and across the deciles of the intra-job-level wage distribution (glass ceiling at the horizontal margin). This implies that women face many glass ceilings, one for each job level above the second, and that the glass ceiling is a p...

  4. Homogeneity of Inorganic Glasses

    DEFF Research Database (Denmark)

    Jensen, Martin; Zhang, L.; Keding, Ralf

    2011-01-01

    Homogeneity of glasses is a key factor determining their physical and chemical properties and overall quality. However, quantification of the homogeneity of a variety of glasses is still a challenge for glass scientists and technologists. Here, we show a simple approach by which the homogeneity...... of different glass products can be quantified and ranked. This approach is based on determination of both the optical intensity and dimension of the striations in glasses. These two characteristic values areobtained using the image processing method established recently. The logarithmic ratio between...

  5. Leaching of glass

    International Nuclear Information System (INIS)

    Hench, L.L.

    1977-01-01

    Understanding surface compositional profiles of glasses over a range of 0-2000 A with a variety of analytical instruments shows that five general types of glass surfaces exist. The surface character of a glass article depends upon bulk composition and environmental history during which surface dealkalization, film formation, and network dissolution can occur. Environmental-surface interactions generally result in complex compositional profiles of all the constituents in a glass. Durable glasses almost always develop a stable surface film which has a higher concentration of network formers than the bulk composition. Compositional effects that are used to improve glass durability usually improve the stability of the surface films. Durability tests or service conditions that lead to film destruction are especially severe for the most silicate glasses. 43 references

  6. Premixing hydrogen burners for surface refinement of glass; Vormischende Wasserstoffbrenner zur Oberflaechenbearbeitung von Glas

    Energy Technology Data Exchange (ETDEWEB)

    Goerisch, Matthias [Linde AG, Linde Gas Deutschland, Nuernberg (Germany)

    2013-02-15

    As a result, inter alia, of unceasing globalisation, European glass producers in practically all sectors - flat glass, container glass, crystal glass and special glasses - are faced with ever tougher competition from Asia. In the 2012 to 2015 period and beyond, the principal focuses in the manufacture of glass products will again be on reducing overall production costs and increasing process efficiency wherever possible, on greater productivity and on enhanced product (surface) quality. To meet these challenges in the field of surface refinement and flame polishing of glass products as efficiently as possible, Linde AG/Linde Gases Division has developed premixing Hydropox {sup registered} burner technology for hydrogen/oxygen fuels. (orig.)

  7. Investigation of lead-iron-phosphate glass for SRP waste

    International Nuclear Information System (INIS)

    Jantzen, C.M.

    1986-10-01

    The search for a host solid for the immobilization of nuclear waste has focused on various vitreous waste forms. Recently, lead-iron-phosphate (LIP) glasses have been proposed for solidification of all types of HLLW. Investigation of this glass for vitrification of SRP waste demonstrated that the phosphate glass is incompatible with the current borosilicate glass technology. The durability of LIP glasses in deionized water was comparable to current borosilicate waste glass formulations, and the LIP glass has a low melt temperature. However, many of the defense waste constituents have low solubility in the phosphate melt, producing an inhomogeneous product. Also, the LIP melt is highly corrosive which prevents the use of current melter materials, in particular Inconel 690, and thus requires more exotic materials of construction such as platinum

  8. Plutonium recovery from spent glass fiber paper fine air filter

    International Nuclear Information System (INIS)

    Rovnyj, S.I.; Guzhavin, V.I.; Pyatin, N.P.; Evlanov, D.S.

    2002-01-01

    Investigations into the realizing technology of plutonium recovery from waste glass paper filters of fine purification were conducted. Two process schemes involving the nitro-fluoro-acid treatment of glass paper in the mixture of nitric and hydrofluoric acids and the previous alkali treatment of glass paper with the following nitro-fluoro-acid leaching of plutonium from pulp by the mixture of nitric and hydrofluoric acids were developed. Alkali, nitrate solutions and insoluble precipitants were analyzed for plutonium content [ru

  9. Improvement of database on glass dissolution

    International Nuclear Information System (INIS)

    Hayashi, Maki; Sasamoto, Hiroshi; Yoshikawa, Hideki

    2008-03-01

    In geological disposal system, high-level radioactive waste (HLW) glass is expected to retain radionuclide for the long term as the first barrier to prevent radionuclide release. The advancement of its performance assessment technology leads to the reliability improvement of the safety assessment of entire geological disposal system. For this purpose, phenomenological studies for improvement of scientific understanding of dissolution/alteration mechanisms, and development of robust dissolution/alteration model based on the study outcomes are indispensable. The database on glass dissolution has been developed for supporting these studies. This report describes improvement of the prototype glass database. Also, this report gives an example of the application of the database for reliability assessment of glass dissolution model. (author)

  10. GlasKon `99 - 7th Innovation Forum for Glass, Architecture, and Technology from January 18 to 23, 1999; GlasKon `99: 7. Innovations-Forum Glas, Architektur, Technik - Kongress und Ausstellung in Verbindung mit der Bau `99; GlasKon `99 - 7th Innovation Forum for Glass, Architecture, and Technology from January 18 to 23, 1999

    Energy Technology Data Exchange (ETDEWEB)

    Krewinkel, H.W.; Seger, P.E.; Achenbach, J. [comps.

    1999-10-01

    Thanks to its basic properties, i.e. transparency, weather resistance, and easy recyclability, glass is very well suited as a ``solar radiation-trapping`` building material. This congress and exhibition report presents, amongst other things, a solar glass of variable light and energy transmission, possibilities of passivsolar energy recovery in non-transparent facades, glazing for intelligent daylight utilisation, and innovative facades with photovoltaics. Four contributions have been abstracted individually for the Energy Database. [Deutsch] Der Baustoff Glas mit seinen grundlegenden Eigenschaften - Transparenz, Wetterbestaendigkeit sowie problemlose Recyclebarkeit dient auch als `` solare Strahlenfalle``. Im Folgenden werden ein Sonnenschutzglas mit veraenderbarer Licht-und Energietransmission, Moeglichkeiten der passiven solaren Energiegewinnung im nicht-transparentern Fassadenbereich, Verglasungen fuer die intelligente Tageslichtnutzung sowie innovative Fassaden mit Photovoltaik vorgestellt. Fuer die Datenbank Energy wurden vier Beitraege einzeln aufgenommen.

  11. Wet water glass production plant

    Directory of Open Access Journals (Sweden)

    Stanković Mirjana S.

    2003-01-01

    Full Text Available The IGPC Engineering Department designed basic projects for a wet hydrate dissolution plant, using technology developed in the IGPC laboratories. Several projects were completed: technological, machine, electrical, automation. On the basis of these projects, a production plant of a capacity of 75,000 t/y was manufactured, at "Zeolite Mira", Mira (VE, Italy, in 1997. and 1998, increasing detergent zeolite production, from 50,000 to 100,000 t/y. Several goals were realized by designing a wet hydrate dissolution plant. The main goal was increasing the detergent zeolite production. The technological cycle of NaOH was closed, and no effluents emitted, and there is no pollution (except for the filter cake. The wet water glass production process is fully automatized, and the product has uniform quality. The production process can be controlled manually, which is necessary during start - up, and repairs. By installing additional process equipment (centrifugal pumps and heat exchangers technological bottlenecks were overcome, and by adjusting the operation of autoclaves, and water glass filters and also by optimizing the capacities of process equipment.

  12. Development Of Glass Matrices For HLW Radioactive Wastes

    International Nuclear Information System (INIS)

    Jantzen, C.

    2010-01-01

    Vitrification is currently the most widely used technology for the treatment of high level radioactive wastes (HLW) throughout the world. Most of the nations that have generated HLW are immobilizing in either borosilicate glass or phosphate glass. One of the primary reasons that glass has become the most widely used immobilization media is the relative simplicity of the vitrification process, e.g. melt waste plus glass forming frit additives and cast. A second reason that glass has become widely used for HLW is that the short range order (SRO) and medium range order (MRO) found in glass atomistically bonds the radionuclides and governs the melt properties such as viscosity, resistivity, sulphate solubility. The molecular structure of glass controls contaminant/radionuclide release by establishing the distribution of ion exchange sites, hydrolysis sites, and the access of water to those sites. The molecular structure is flexible and hence accounts for the flexibility of glass formulations to waste variability. Nuclear waste glasses melt between 1050-1150 C which minimizes the volatility of radioactive components such as Tc 99 , Cs 137 , and I 129 . Nuclear waste glasses have good long term stability including irradiation resistance. Process control models based on the molecular structure of glass have been mechanistically derived and have been demonstrated to be accurate enough to control the world's largest HLW Joule heated ceramic melter in the US since 1996 at 95% confidence.

  13. Three-dimensional printing of transparent fused silica glass

    Science.gov (United States)

    Kotz, Frederik; Arnold, Karl; Bauer, Werner; Schild, Dieter; Keller, Nico; Sachsenheimer, Kai; Nargang, Tobias M.; Richter, Christiane; Helmer, Dorothea; Rapp, Bastian E.

    2017-04-01

    Glass is one of the most important high-performance materials used for scientific research, in industry and in society, mainly owing to its unmatched optical transparency, outstanding mechanical, chemical and thermal resistance as well as its thermal and electrical insulating properties. However, glasses and especially high-purity glasses such as fused silica glass are notoriously difficult to shape, requiring high-temperature melting and casting processes for macroscopic objects or hazardous chemicals for microscopic features. These drawbacks have made glasses inaccessible to modern manufacturing technologies such as three-dimensional printing (3D printing). Using a casting nanocomposite, here we create transparent fused silica glass components using stereolithography 3D printers at resolutions of a few tens of micrometres. The process uses a photocurable silica nanocomposite that is 3D printed and converted to high-quality fused silica glass via heat treatment. The printed fused silica glass is non-porous, with the optical transparency of commercial fused silica glass, and has a smooth surface with a roughness of a few nanometres. By doping with metal salts, coloured glasses can be created. This work widens the choice of materials for 3D printing, enabling the creation of arbitrary macro- and microstructures in fused silica glass for many applications in both industry and academia.

  14. DEVELOPMENT OF GLASS MATRICES FOR HLW RADIOACTIVE WASTES

    Energy Technology Data Exchange (ETDEWEB)

    Jantzen, C.

    2010-03-18

    Vitrification is currently the most widely used technology for the treatment of high level radioactive wastes (HLW) throughout the world. Most of the nations that have generated HLW are immobilizing in either borosilicate glass or phosphate glass. One of the primary reasons that glass has become the most widely used immobilization media is the relative simplicity of the vitrification process, e.g. melt waste plus glass forming frit additives and cast. A second reason that glass has become widely used for HLW is that the short range order (SRO) and medium range order (MRO) found in glass atomistically bonds the radionuclides and governs the melt properties such as viscosity, resistivity, sulphate solubility. The molecular structure of glass controls contaminant/radionuclide release by establishing the distribution of ion exchange sites, hydrolysis sites, and the access of water to those sites. The molecular structure is flexible and hence accounts for the flexibility of glass formulations to waste variability. Nuclear waste glasses melt between 1050-1150 C which minimizes the volatility of radioactive components such as Tc{sup 99}, Cs{sup 137}, and I{sup 129}. Nuclear waste glasses have good long term stability including irradiation resistance. Process control models based on the molecular structure of glass have been mechanistically derived and have been demonstrated to be accurate enough to control the world's largest HLW Joule heated ceramic melter in the US since 1996 at 95% confidence.

  15. Fractography of glass

    CERN Document Server

    Tressler, Richard

    1994-01-01

    As the first major reference on glass fractography, contributors to this volume offer a comprehensive account of the fracture of glass as well as various fracture surface topography Contributors discuss optical fibers, glass containers, and flatglass fractography In addition, papers explore fracture origins; the growth of the original flaws of defects; and macroscopic fracture patterns from which fracture patterns evolve This volume is complete with photographs and schematics

  16. Diamond turning of glass

    Energy Technology Data Exchange (ETDEWEB)

    Blackley, W.S.; Scattergood, R.O.

    1988-12-01

    A new research initiative will be undertaken to investigate the critical cutting depth concepts for single point diamond turning of brittle, amorphous materials. Inorganic glasses and a brittle, thermoset polymer (organic glass) are the principal candidate materials. Interrupted cutting tests similar to those done in earlier research are Ge and Si crystals will be made to obtain critical depth values as a function of machining parameters. The results will provide systematic data with which to assess machining performance on glasses and amorphous materials

  17. Glass to contain wastes

    International Nuclear Information System (INIS)

    Moncouyoux, M.; Jacquet-Francillon, M.

    1994-01-01

    Here are the tables and figures presented during the conference on the glass to confine high level radioactive wastes: definition, fabrication, storage and disposal. The composition of glasses are detailed, their properties and the vitrification proceeding. The behaviour of these glasses in front of water, irradiation and heat are shown. The characteristics of parcels are given according to the radiation protection rule, ALARA principle, the concept of multi-barriers and the geological stability

  18. Glass microspheres for brachytherapy

    International Nuclear Information System (INIS)

    Prado, Miguel O.; Prastalo, Simon; Blaumann, Herman; Longhino, Juan M.; Repetto Llamazares, A.H.V.

    2007-01-01

    We developed the capacity to produce glass microspheres containing in their structure one or more radioactive isotopes useful for brachytherapy. We studied the various facts related with their production: (Rare earth) alumino silicate glass making, glass characterization, microspheres production, nuclear activation through (n,γ) nuclear reactions, mechanical characterization before and after irradiation. Corrosion tests in simulated human plasma and mechanical properties characterization were done before and after irradiation. (author) [es

  19. Glass and vitrification

    International Nuclear Information System (INIS)

    Barton, J.L.; Vacher, R.; Moncouyoux, J.P.; Vernaz, E.

    1997-01-01

    Most glasses used as materials are oxides glasses that are produced by a quick quench of a liquid. Glasses are characterized by the absence of periodicity in the atomic arrangements, they do not have symmetries and do not present order over a long distance. This series of 4 short articles present: 1) the properties of glass and its industrial story, 2) the glass structure, 3) a forty years long story of glass as dies used to confine wastes and 4) the methodology used to study the behaviour of glass over very long periods of time. This methodology is based on 5 steps: 1) define and specify the material to study (the prediction of long term alteration of a material is nonsense unless you know well its initial properties), 2) identify all the alteration processes that are likely to happen, determine their kinetics and the influence of environmental parameters, 3) develop mathematical models in order to simulate long-term behaviour of glasses, 4) determine the release rates of the radionuclides confined in the glass, and 5) validate data and models, it is not possible to expect a complete validation of a model that will be extrapolated over tens of thousands of years, nevertheless some ways of validation can lead to a satisfactory level of confidence taking into account reasonable uncertainties. (A.C.)

  20. Cold-crucible fabrication of nuclear glasses

    International Nuclear Information System (INIS)

    Boen, R.

    2010-01-01

    Vitrification has stood the nuclear industry in good stead, for many years now, as a safe long-term conditioning technology for high-level waste. Major advances are nonetheless still being made, with the development of the cold-crucible technology, affording as it does new possibilities, in terms of volume reduction, and of extending the range of waste products amenable to incorporation. Indeed, by allowing higher melting temperatures to be achieved (1200 - 1400 C degrees), this process opens the way to a considerable increase in glass production capacities, and the fabrication of novel matrices, involving higher incorporation rates than current glasses. In the cold-crucible technology, materials put into the crucible are heated directly through induction. The crucible made of metal is cooled by water circulation. Where the glass comes into contact with the cold wall, a thin layer of solidified glass forms, with a thickness of 5-10 mm preventing the metal forming the crucible from coming into contact with the molten glass. A full scale pilot of the cold crucible was constructed at the La Hague vitrification workshop

  1. Relaxations in spin glasses: Similarities and differences from ordinary glasses

    International Nuclear Information System (INIS)

    Ngai, K.L.; Rajagopal, A.K.; Huang, C.Y.

    1984-01-01

    Relaxation phenomena have become a major concern in the physics of spin glasses. There are certain resemblances of these relaxation properties to those of ordinary glasses. In this work, we compare the relaxation properties of spin glasses near the freezing temperature with those of glasses near the glass transition temperature. There are similarities between the two types of glasses. Moreover, the relaxation properties of many glasses and spin glasses are in conformity with two coupled ''universality'' relations predicted by a recent model of relaxations in condensed matter

  2. Evaluation of Structural Cellular Glass

    Science.gov (United States)

    Adams, M. A.; Zwissler, J. G.

    1984-01-01

    Preliminary design information presented. First report discusses state of structural-cellular-glass programs as of June 1979. Second report gives further details of program to develop improved cellular glasses and to characterize properties of glasses and commercially available materials.

  3. Electric glass capturing markets

    Energy Technology Data Exchange (ETDEWEB)

    Wikman, K.; Wikstroem, T.

    1996-11-01

    Electric glass has found its place on the construction market. In public buildings, electrically heatable windows are becoming the leading option for large glass walls. Studies on detached houses, both new and renovated, show that floor heating combined with electrically heatable windowpanes is the best choice with respect to resident`s comfort. (orig.)

  4. Radioresistance of inorganic glasses

    International Nuclear Information System (INIS)

    Vorob'ev, A.A.; Zavadovskaya, E.K.; Fedorov, B.V.; Starodubtsev, V.A.

    1977-01-01

    Regularities are considered in the variation of properties of glass due to irradiations. On the basis of previous theoretical statements and experimental investigations, it is inferred that the irradiation resistance of glasses of the same type, synthesis conditions, content of impurities and amount of imperfections, is a function of the ''element-oxygen'' bond energy. The irradiation resistance depends on the number and the nature of glass structure imperfections. The averaged level of bonding forces is indicative of the glass formation temperature; the imperfections in glasses are formed in structure elements whose amount predominates as compared to the others. Electric charges which accumulate on the crack surface tend to increase its size, thus lessening even further the electric strength of the dielectric. The greater the irradiation time, the greater the number of irradiation imperfections causing a drop in the electric strength of glass. When choosing a glass for service in a radiation field, it is necessary to select those of a highest temperature of glass formation and with a least amount of imperfections

  5. Nucleation in ZBLAN glasses

    NARCIS (Netherlands)

    de Leede, G.L.A.; Waal, de H.

    1989-01-01

    Nucleation rates were detd. in a ZrF4-BaF2-NaF-LaF3-AlF3 glass (ZBLAN) using an optical method. The results were compared with a similar glass having a slightly different compn. The difference in the nucleation rate is explained by classical nucleation theory using calcd. free-energy differences

  6. Mechanical relaxation in glasses

    International Nuclear Information System (INIS)

    Hiki, Y.

    2004-01-01

    The basic properties of glasses and the characteristics of mechanical relaxation in glasses were briefly reviewed, and then our studies concerned were presented. Experimental methods adopted were viscosity, internal friction, ultrasonic attenuation, and Brillouin scattering measurements. The specimens used were several kinds of inorganic, organic, and metallic glasses. The measurements were mainly carried out from the room temperature up to the glass transition temperature, and the relaxation time was determined as a function of temperature. The 'double relaxation' composed of two Arrhenius-type relaxations was observed in many materials. In both relaxations, the 'compensation effect' showing a correlation of the pre-exponential factor and the activation energy was observed. These results were explained by considering the 'complex relaxation' due to cooperative motions of atoms or group of atoms. Values of activation energy near the glass transition determined by the various experimental methods were compared with each other

  7. Polymorphism in glasses

    International Nuclear Information System (INIS)

    Landa, L.M.; Nikolaeva, I.N.

    1979-01-01

    To defect phase interfaces and spasmodic properties change, the inhomogeneity and the second radiation effects in quartz glass, metamict phase and intermediate states have been investigated. When irradiating with fast neutrons the transformation of quartz glass - metamict phase occurs completely. The transformation is completed at 2x10 20 part./cm 2 dose. Thermal treatment not only increases the number of inhomogeneities but also results in increasing quartz glass density. Annealing transforms the metamict phase into common quartz glass at 1400 K. The fact, that thermal treatment results in the complete transformation of metamict phase into quartz glass, and the inverse transformation occurs only partially, is quite regular, as the metamict phase has a lesser entropy and is a more ordered state. It is shown that different amorphous phases of a chemical composition have different structures and properties, that there are interfaces between them, and the transformation from one state to another in microvolumes is realized spasmodically and requires expenditure of energy

  8. Glass leaching performance

    International Nuclear Information System (INIS)

    Chick, L.A.; Turcotte, R.P.

    1983-05-01

    Current understanding of the leaching performance of high-level nuclear waste (HLW) glass is summarized. The empirical model of waste glass leaching behavior developed shows that at high water flow rates the glass leach rate is kinetically limited to a maximum value. At intermediate water flow rates, leaching is limited by the solution concentration of silica and decreases with decreasing water flow rates. Release of soluble elements is controlled by silica dissolution because silica forms the binding network of the glass. At low water flow rates, mass loss rates reach values controlled by formation rates of alteration minerals, or by diffusion of dissolution products through essentially stagnant water. The parameters reviewed with respect to their quantifiable influence on leaching behavior include temperature, pH, leachant composition, glass composition, thermal history, and radiation. Of these, temperature is most important since the rate of mass loss approximately doubles with each 10 0 C increase in dilute solutions. The pH has small effects within the 4 to 10 range. The chemical composition of the leachant is most important with regard to its influence on alteration product formation. Glass composition exhibits the largest effects at high flow rates where improved glasses leach from ten to thirty times slower than glass 76 to 68. The effects of the thermal history (devitrification) of the glass are not likely to be significant. Radiation effects are important primarily in that radiolysis can potentially drive pH values to less than 4. Radiation damage to the glass causes insignificant changes in leaching performance

  9. Achievement report for fiscal 2000 on development of technology related to new recycled products. Research and development of simultaneous recovery of chlorine contained in waste plastics and alkali contained in waste glass bottles; 2000 nendo shinki recycle seihin nado kanren gijutsu kaihatsu seika hokokusho. Hai plastic gan'yu enso to hai glass bin gan'yu alkali no doji kaishu ni kakawaru kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    Researches have been made on a technology to have alkali contained in waste glass bottles reacted with chlorine contained in waste plastics to separate and remove salt, and reuse the residues as a resource for cement raw material. This paper summarizes the achievements in fiscal 2000. In the research, glass powder pulverized to 5 to 10 {mu} m, calcium carbonate, iron oxide, and alumina were used to prepare raw material for the ordinary Portland cement. Vinyl chloride pulverized to 3 mm was added into this cement raw material so that chlorine-alkali equivalent ration will be 1.0, and the material was sintered in a rotary kiln at 800 to 1,400 degrees C. As a result, it was discovered that salt is produced from the alkali in glass and the chlorine in vinyl chloride, whereas the produced salt volatilizes when heated to 1,200 degrees C or higher, and clinker containing low chlorine and alkali can be produced. The test result reveals that the control range of the chlorine and alkali ratio is from 1.0 to 1.1. The remaining problems are measures against carbon monoxide and dioxin contained in the exhaust gas, and treatment of dust containing salt. (NEDO)

  10. Comparison of mechanical properties of three machinable ceramics with an experimental fluorophlogopite glass ceramic.

    Science.gov (United States)

    Leung, Brian T W; Tsoi, James K H; Matinlinna, Jukka P; Pow, Edmond H N

    2015-09-01

    Fluorophlogopite glass ceramic (FGC) is a biocompatible, etchable, and millable ceramic with fluoride releasing property. However, its mechanical properties and reliability compared with other machinable ceramics remain undetermined. The purpose of this in vitro study was to compare the mechanical properties of 3 commercially available millable ceramic materials, IPS e.max CAD, Vitablocs Mark II, and Vita Enamic, with an experimental FGC. Each type of ceramic block was sectioned into beams (n=15) of standard dimensions of 2×2×15 mm. Before mechanical testing, specimens of the IPS e.max CAD group were further fired for final crystallization. Flexural strength was determined by the 3-point bend test with a universal loading machine at a cross head speed of 1 mm/min. Hardness was determined with a hardness tester with 5 Vickers hardness indentations (n=5) using a 1.96 N load and a dwell time of 15 seconds. Selected surfaces were examined by scanning electron microscopy and energy-dispersive x-ray spectroscopy. Data were analyzed by the 1-way ANOVA test and Weibull analysis (α=.05). Weibull parameters, including the Weibull modulus (m) as well as the characteristic strength at 63.2% (η) and 10.0% (B10), were obtained. A significant difference in flexural strength (PVita Enamic (145.95 ±12.65 MPa)>Vitablocs Mark II (106.67 ±18.50 MPa), and FGC (117.61 ±7.62 MPa). The Weibull modulus ranged from 6.93 to 18.34, with FGC showing the highest Weibull modulus among the 4 materials. The Weibull plot revealed that IPS e.max CAD>Vita Enamic>FGC>Vitablocs Mark II for the characteristic strength at both 63.2% (η) and 10.0% (B10). Significant difference in Vickers hardness among groups (PVitablocs Mark II (594.74 ±25.22 H(V))>Vita Enamic (372.29 ±51.23 H(V))>FGC (153.74 ±23.62 H(V)). The flexural strength and Vickers hardness of IPS e.max CAD were significantly higher than those of the 3 materials tested. The FGC's flexural strength was comparable with Vitablocs Mark II

  11. Bruno Taut and the Glass House

    DEFF Research Database (Denmark)

    Beim, Anne

    1997-01-01

    The Paper presents a tectonic analysis of the Glass House of Bruno Taut,  exhibited at the 1925 Wrkbund Exposition in Cologne, 1925. This is discussed in correlation with the cultural ideas and artistic inspiration he was influenced by and the innovative technological development that ruled...

  12. Distance Learning and Assistance Using Smart Glasses

    Science.gov (United States)

    Spitzer, Michael; Nanic, Ibrahim; Ebner, Martin

    2018-01-01

    With the everyday growth of technology, new possibilities arise to support activities of everyday life. In education and training, more and more digital learning materials are emerging, but there is still room for improvement. This research study describes the implementation of a smart glasses app and infrastructure to support distance learning…

  13. The Role of Glass in Interior Architecture: Aesthetics, Community, and Privacy

    Science.gov (United States)

    Ziff, Matthew

    2004-01-01

    Advances in glass technologies are being applied in contemporary interior architecture. Glass forms and surfaces are appearing in settings and applications that offer vivid aesthetic experiences for users, but create ambiguous messages concerning community and privacy. Where a modernist application of glass may have been directed toward creating a…

  14. Processing of high-temperature simulated waste glass in a continuous ceramic melter

    International Nuclear Information System (INIS)

    Barnes, S.M.; Brouns, R.A.; Hanson, M.S.

    1980-01-01

    Recent operations have demonstrated that high-melting-point glasses and glass-ceramics can be successfully processed in joule-heated, ceramic-lined melters with minor modifications to the existing technology. Over 500 kg of simulated waste glasses have been processed at temperatures up to 1410 0 C. The processability of the two high-temperature waste forms tested is similar to existing borosilicate waste glasses. High-temperature waste glass formulations produced in the bench-scale melter exhibit quality comparing favorably to standard waste glass formulations

  15. Formulation and Characterization of Waste Glasses with Varying Processing Temperature

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong-Sang; Schweiger, M. J.; Rodriguez, Carmen P.; Lepry, William C.; Lang, Jesse B.; Crum, Jarrod V.; Vienna, John D.; Johnson, Fabienne; Marra, James C.; Peeler, David K.

    2011-10-17

    This report documents the preliminary results of glass formulation and characterization accomplished within the finished scope of the EM-31 technology development tasks for WP-4 and WP-5, including WP-4.1.2: Glass Formulation for Next Generation Melter, WP-5.1.2.3: Systematic Glass Studies, and WP-5.1.2.4: Glass Formulation for Specific Wastes. This report also presents the suggested studies for eventual restart of these tasks. The initial glass formulation efforts for the cold crucible induction melter (CCIM), operating at {approx}1200 C, with selected HLW (AZ-101) and LAW (AN-105) successfully developed glasses with significant increase of waste loading compared to that is likely to be achieved based on expected reference WTP formulations. Three glasses formulated for AZ-101HLW and one glass for AN-105 LAW were selected for the initial CCIM demonstration melter tests. Melter tests were not performed within the finished scope of the WP-4.1.2 task. Glass formulations for CCIM were expanded to cover additional HLWs that have high potential to successfully demonstrate the unique advantages of the CCIM technologies based on projected composition of Hanford wastes. However, only the preliminary scoping tests were completed with selected wastes within the finished scope. Advanced glass formulations for the reference WTP melter, operating at {approx}1200 C, were initiated with selected specific wastes to determine the estimated maximum waste loading. The incomplete results from these initial formulation efforts are summarized. For systematic glass studies, a test matrix of 32 high-aluminum glasses was completed based on a new method developed in this study.

  16. Formulation and Characterization of Waste Glasses with Varying Processing Temperature

    International Nuclear Information System (INIS)

    Kim, Dong-Sang; Schweiger, M.J.; Rodriguez, Carmen P.; Lepry, William C.; Lang, Jesse B.; Crum, Jarrod V.; Vienna, John D.; Johnson, Fabienne; Marra, James C.; Peeler, David K.

    2011-01-01

    This report documents the preliminary results of glass formulation and characterization accomplished within the finished scope of the EM-31 technology development tasks for WP-4 and WP-5, including WP-4.1.2: Glass Formulation for Next Generation Melter, WP-5.1.2.3: Systematic Glass Studies, and WP-5.1.2.4: Glass Formulation for Specific Wastes. This report also presents the suggested studies for eventual restart of these tasks. The initial glass formulation efforts for the cold crucible induction melter (CCIM), operating at ∼1200 C, with selected HLW (AZ-101) and LAW (AN-105) successfully developed glasses with significant increase of waste loading compared to that is likely to be achieved based on expected reference WTP formulations. Three glasses formulated for AZ-101HLW and one glass for AN-105 LAW were selected for the initial CCIM demonstration melter tests. Melter tests were not performed within the finished scope of the WP-4.1.2 task. Glass formulations for CCIM were expanded to cover additional HLWs that have high potential to successfully demonstrate the unique advantages of the CCIM technologies based on projected composition of Hanford wastes. However, only the preliminary scoping tests were completed with selected wastes within the finished scope. Advanced glass formulations for the reference WTP melter, operating at ∼1200 C, were initiated with selected specific wastes to determine the estimated maximum waste loading. The incomplete results from these initial formulation efforts are summarized. For systematic glass studies, a test matrix of 32 high-aluminum glasses was completed based on a new method developed in this study.

  17. Thermal Conductivity of Foam Glass

    DEFF Research Database (Denmark)

    Petersen, Rasmus Rosenlund; König, Jakob; Yue, Yuanzheng

    Due to the increased focus on energy savings and waste recycling foam glass materials have gained increased attention. The production process of foam glass is a potential low-cost recycle option for challenging waste, e.g. CRT glass and industrial waste (fly ash and slags). Foam glass is used...... as thermal insulating material in building and chemical industry. The large volume of gas (porosity 90 – 95%) is the main reason of the low thermal conductivity of the foam glass. If gases with lower thermal conductivity compared to air are entrapped in the glass melt, the derived foam glass will contain...... only closed pores and its overall thermal conductivity will be much lower than that of the foam glass with open pores. In this work we have prepared foam glass using different types of recycled glasses and different kinds of foaming agents. This enabled the formation of foam glasses having gas cells...

  18. Glass: a candidate engineered material for management of high level nuclear waste

    International Nuclear Information System (INIS)

    Mishra, R.K.; Kaushik, C.P.

    2011-01-01

    While the commercial importance of glass is generally recognized, a few people are aware of extremely wide range of glass formulations that can be made and of the versatility of this engineered material. Some of the recent developments in the field of glass leading to various technological applications include glass fiber reinforcement of cement to give new building materials, substrates for microelectronics circuitry in form of semiconducting glasses, nuclear waste immobilization and specific medical applications. The present paper covers fundamental understanding of glass structure and its application for immobilization of high level radioactive liquid waste. High level radioactive liquid waste (HLW) arising during reprocessing of spent fuel are immobilized in sodium borosilicate glass matrix developed indigenously. Glass compositions are modified according to the composition of HLW to meet the criteria of desirable properties in terms. These glass matrices have been characterized for different properties like homogeneity, chemical durability, thermal stability and radiation stability. (author)

  19. Toward Molecular Engineering of Polymer Glasses

    Energy Technology Data Exchange (ETDEWEB)

    Freed, Karl F. [Univ. of Chicago, IL (United States); Xu, Wen-Sheng [Univ. of Chicago, IL (United States); Dudowicz, Jacek B. [Univ. of Chicago, IL (United States); Douglas, Jack F. [National Inst. of Standards and Technology (NIST), Boulder, CO (United States)

    2017-04-05

    Glass formation has been central to fabrication technologies since the dawn of civilization. Glasses not only encompass window panes, the insulation in our homes, the optical fibers supplying our cable TV, and vessels for eating and drinking, but they also include a vast array of ‘‘plastic’’ polymeric materials. Glasses find applications in high technology (e.g., producing microelectronic materials, etc., amorphous semiconductors), and recent advances have created ‘‘plastic metallic glasses’’ that are promising for fabricating everyday structural materials. Many commercially relevant systems, such as microemulsions and colloidal suspensions, have complex molecular structures and thus solidify by glass formation. Despite the importance of understanding the fundamental nature of glass formation for the synthesis of new materials, a predictive molecular theory has been lacking. Much of our understanding of glass formation derives from the analysis of experimental data, a process that has uncovered a number of interesting universal behaviors, namely, relations between properties that are independent of molecular details. However, these empirically derived relations and their limitations remain to be understood on the basis of theories, and, more importantly, there is strong need for theories of the explicit variation with molecular system to enable the rational design and tailoring of new materials. We have recently developed the generalized entropy theory, the only analytic, theory that enables describing the dependence of the properties of glass-formation on monomer molecular structures. These properties include the two central quantities of glass formation, the glass transition temperature and the glass fragility parameter, material dependent properties that govern how a material may be processed (e.g., by extrusion, ink jet, molding, etc.) Our recent works, which are further described below, extend the studies of glass formation in polymer systems

  20. Connectivity of glass structure. Oxygen number

    Science.gov (United States)

    Medvedev, E. F.; Min'ko, N. I.

    2018-03-01

    With reference to mathematics, crystal chemistry and chemical technology of synthesis of glass structures in the solution (sol-gel technology), the paper is devoted to the study of the degree of connectivity of a silicon-oxygen backbone (fSi) and the oxygen number (R) [1]. It reveals logical contradictions and uncertainty of mathematical expressions of parameters, since fSi is not similar to the oxygen number. The connectivity of any structure is a result of various types of bonds: ion-covalent, donor-acceptor, hydrogen bonds, etc. Besides, alongside with SiO2, many glass compositions contain other glass-forming elements due to tetrahedral sites thus formed. The connectivity function of a glassy network with any set of glass-forming elements is roughly ensured by connectivity factor Y [2], which has monovalent elements loosening a glassy network. The paper considers the existence of various structural motives in hydrogen-impermeable glasses containing B2O3, Al2O3, PbO, Na2O, K2O and rare-earth elements. Hence, it also describes gradual nucleation, change of crystal forms, and structure consolidation in the process of substance intake from a matrix solution according to sol-gel technology. The crystal form varied from two-dimensional plates to three-dimensional and dendritical ones [3]. Alternative parameters, such as the oxygen number (O) and the structure connectivity factor (Y), were suggested. Functional dependence of Y=f(O) to forecast the generated structures was obtained for two- and multicomponent glass compositions.

  1. Effect of different glasses in glass bonded zeolite

    International Nuclear Information System (INIS)

    Lewis, M.A.; Ackerman, J.P.; Verma, S.

    1995-01-01

    A mineral waste form has been developed for chloride waste salt generated during the pyrochemical treatment of spent nuclear fuel. The waste form consists of salt-occluded zeolite powders bound within a glass matrix. The zeolite contains the salt and immobilizes the fission products. The zeolite powders are hot pressed to form a mechanically stable, durable glass bonded zeolite. Further development of glass bonded zeolite as a waste form requires an understanding of the interaction between the glass and the zeolite. Properties of the glass that enhance binding and durability of the glass bonded zeolite need to be identified. Three types of glass, boroaluminosilicate, soda-lime silicate, and high silica glasses, have a range of properties and are now being investigated. Each glass was hot pressed by itself and with an equal amount of zeolite. MCC-1 leach tests were run on both. Soda-lime silicate and high silica glasses did not give a durable glass bonded zeolite. Boroaluminosilicate glasses rich in alkaline earths did bind the zeolite and gave a durable glass bonded zeolite. Scanning electron micrographs suggest that the boroaluminosilicate glasses wetted the zeolite powders better than the other glasses. Development of the glass bonded zeolite as a waste form for chloride waste salt is continuing

  2. Oxynitride glasses: a review

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, A.R.; Clausell, C.; Barba, A.

    2016-07-01

    Oxynitride glasses are special types of silicates or silicoaluminates which have been the object of many studies over the last forty years. They can be prepared by means of various complex methods, leading to variable levels of nitrogen incorporation, though in all cases giving limited transparency in the visible range. More recently, a new family of oxynitride glasses incorporating fluorine has been investigated. This paper outlines the effect of composition, in particular nitrogen and fluorine content, on properties such as glass transition temperature, hardness, Young's modulus, compactness and molar volume. (Author)

  3. Orbital glass in HTSC

    International Nuclear Information System (INIS)

    Kusmartsev, F.V.

    1992-10-01

    The physical reasons why the orbital glass may exist in granular high-temperature superconductors and the existing experimental data appeared recently are discussed. The orbital glass is characterized by the coexistence of the orbital paramagnetic state with the superconducting state and occurs at small magnetic fields H c0 c1 . The transition in orbital glass arises at the critical field H c0 which is inversely proportional to the surface cross-area S of an average grain. In connection with theoretical predictions the possible experiments are proposed. (author). 10 refs

  4. Bioactive glasses and glass-ceramics

    Directory of Open Access Journals (Sweden)

    de Aza, P. N.

    2007-04-01

    Full Text Available Since the late 1960´s, a great interest in the use of bioceramic materials for biomedical applications has been developed. In a previous paper, the authors reviewed crystalline bioceramic materials “sensus stricto”, it is to say, those ceramic materials, constituted for non-metallic inorganic compounds, crystallines and consolidates by thermal treatment of powders at high temperature. In the present review, the authors deal with those called bioactive glasses and glassceramics. Although all of them are also obtained by thermal treatment at high temperature, the first are amorphous and the second are obtained by devitrification of a glass, although the vitreous phase normally prevails on the crystalline phases. After an introduction to the concept of bioactive materials, a short historical review of the bioactive glasses development is made. Its preparation, reactivity in physiological media, mechanism of bonding to living tissues and mechanical strength of the bone-implant interface is also reported. Next, the concept of glass-ceramic and the way of its preparation are exposed. The composition, physicochemical properties and biological behaviour of the principal types of bioactive glasses and glass-ceramic materials: Bioglass®, Ceravital®, Cerabone®, Ilmaplant® and Bioverit® are also reviewed. Finally, a short review on the bioactive-glass coatings and bioactive-composites and most common uses of bioactive-glasses and glass-ceramics are carried out too.

    Desde finales de los años sesenta, se ha despertado un gran interés por el uso de los materiales biocerámicos para aplicaciones biomédicas. En un trabajo previo, los autores hicieron una revisión de los denominados materiales biocerámicos cristalinos en sentido estricto, es decir, de aquellos materiales, constituidos por compuestos inorgánicos no metálicos, cristalinos y consolidados mediante tratamientos térmicos a altas temperaturas. En el presente trabajo, los autores

  5. Crafting glass vessels: current research on the ancient glass collections in the Freer Gallery of Art, Washington, D.C.

    Science.gov (United States)

    Nagel, Alexander; McCarthy, Blythe; Bowe, Stacy

    Our knowledge of glass production in ancient Egypt has been well augmented by the publication of recently excavated materials and glass workshops, but also by more recent materials analysis, and experiments of modern glass-makers attempting to reconstruct the production process of thin-walled coreformed glass vessels. From the mounting of a prefabricated core to the final glass product our understanding of this profession has much improved. The small but well preserved glass collection of the Freer Gallery of Art in Washington, D.C. is a valid tool for examining and studying the technology and production of ancient Egyptian core formed glass vessels. Charles Lang Freer (1854-1919) acquired most of the material from Giovanni Dattari in Cairo in 1909. Previously the glass had received only limited discussion, suggesting that most of these vessels were produced in the 18th Dynasty in the 15th and 14th centuries BCE, while others date from the Hellenistic period and later. In an ongoing project we conducted computed radiography in conjunction with qualitative x-ray fluorescence analysis on a selected group of vessels to understand further aspects of the ancient production process. This paper will provide an overview of our recent research and present our data-gathering process and preliminary results. How can the examinations of core formed glass vessels in the Freer Gallery contribute to our understanding of ancient glass production and technology? By focusing on new ways of looking at old assumptions using the Freer Gallery glass collections, we hope to increase understanding of the challenges of the production process of core-vessel technology as represented by these vessels.

  6. Silicates materials of high vacuum technology

    CERN Document Server

    Espe, Werner

    2013-01-01

    Materials of High Vacuum Technology, Volume 2: Silicates covers silicate insulators of special importance to vacuum technology. The book discusses the manufacture, composition, and physical and chemical properties of technical glasses, quartz glass, quartzware, vycor glass, ceramic materials, mica, and asbestos.

  7. The mineral phase evolution behaviour in the production of glass-ceramics from municipal solid waste incineration fly ash by melting technology.

    Science.gov (United States)

    Luan, Jingde; Chai, Meiyun; Li, Rundong; Yao, Pengfei; Khan, Agha Saood

    2016-01-01

    High energy consumption was the major obstacle to the widespread application of melting technology in the treatment of municipal solid waste incineration fly ash. Aiming to lower the ash-melting temperature (AMT) for energy-saving, differential scanning calorimetry, X-ray diffraction and the scanning electron microscope were used to investigate the relations between AMT and the mineral evolution. The results indicated that the change of AMT was determined by the types and the contents of mineral crystals. The transition from refractory minerals to fluxing minerals was the key. The transition of the main crystalline phase from pseudowollastonite (Ca3(Si3O9)) to wollastonite (CaSiO3) played a significant role in AMT reduction. A quantum chemistry calculation was carried out to investigate the effect of crystal reaction activity on AMT. In the chemical reaction, the highest occupied molecular orbital and the lowest unoccupied molecular orbital played a more important role than any other orbits. Cations (Ca(2+), Mg(2+), Na(+), K(+)) were apt to enter into the crystal lattice of wollastonite and gehlenite mainly through Si (3), O (1), Si (6), O (10) and Al (2), O (10), and broke the covalent bonds of Si (3)-O (7), Al (1)-O (9) and Al (1)-O (15), respectively. This deconstruction behaviour provided convenient conditions for restructuring and promoted the formation of fluxing minerals. In melts, the excess SiO2 monomers which existed in the form of cristobalite and quartz caused AMT increase.

  8. Technology.

    Science.gov (United States)

    Online-Offline, 1998

    1998-01-01

    Focuses on technology, on advances in such areas as aeronautics, electronics, physics, the space sciences, as well as computers and the attendant progress in medicine, robotics, and artificial intelligence. Describes educational resources for elementary and middle school students, including Web sites, CD-ROMs and software, videotapes, books,…

  9. Fun with Singing Wine Glasses

    Science.gov (United States)

    Boone, Christine; Galloway, Melodie; Ruiz, Michael J.

    2018-01-01

    A fun activity is presented using singing wine glasses for introductory physics students. Students tune a white wine glass and a red wine glass to as many semitones as possible by filling the glasses with the appropriate amounts of water. A smart phone app is used to measure the frequencies of equal-temperament tones. Then plots of frequency…

  10. Waste glass weathering

    International Nuclear Information System (INIS)

    Bates, J.K.; Buck, E.C.

    1994-01-01

    The weathering of glass is reviewed by examining processes that affect the reaction of commercial, historical, natural, and nuclear waste glass under conditions of contact with humid air and slowly dripping water, which may lead to immersion in nearly static solution. Radionuclide release data from weathered glass under conditions that may exist in an unsaturated environment are presented and compared to release under standard leaching conditions. While the comparison between the release under weathering and leaching conditions is not exact, due to variability of reaction in humid air, evidence is presented of radionuclide release under a variety of conditions. These results suggest that both the amount and form of radionuclide release can be affected by the weathering of glass

  11. Super ionic conductive glass

    Science.gov (United States)

    Susman, S.; Volin, K.J.

    Described is an ionically conducting glass for use as a solid electrolyte in a power or secondary cell containing an alkali metal-containing anode and a cathode separated by an alkali metal ion conducting glass having an ionic transference number of unity and the general formula: A/sub 1 + x/D/sub 2-x/3/Si/sub x/P/sub 3 - x/O/sub 12 - 2x/3/, wherein A is a network modifier for the glass and is an alkali metal of the anode, D is an intermediate for the glass and is selected from the class consisting of Zr, Ti, Ge, Al, Sb, Be, and Zn and X is in the range of from 2.25 to 3.0. Of the alkali metals, Na and Li are preferred and of the intermediate, Zr, Ti and Ge are preferred.

  12. Phosphate glasses, containing nitrogen

    International Nuclear Information System (INIS)

    Lisitsyna, E.A.; Khalilev, V.D.; Koryavin, A.A.; Goncharova, L.N.

    1987-01-01

    Possibilities of nitrogen-containing glass synthesis by the introduction into the charge of ammonium salts, as well as aluminium nitride, are studied. Zinc alumoyttrium phosphate glass (mol. %) Zn(PO 3 ) 2 - 4O, Al(PO 3 ) 3 - 3O, Y(PO 3 ) 3 -3O is suggested as a matrix. It is shown that the effect of amide and imide groups on the properties of the glass is less noticeable than the effect of nitride groups. Direct introduction of nitride constituent was realized using AlN, but aluminium introduction was taken into account so that the oxide was subtracted. The attempt to introduce more than 2.5 mass % of nitrogen into initial matrix by aluminium nitride has failed due to repeated restoration of glass with amorphous phosphorus isolation

  13. Baseline LAW Glass Formulation Testing

    International Nuclear Information System (INIS)

    Kruger, Albert A.; Mooers, Cavin; Bazemore, Gina; Pegg, Ian L.; Hight, Kenneth; Lai, Shan Tao; Buechele, Andrew; Rielley, Elizabeth; Gan, Hao; Muller, Isabelle S.; Cecil, Richard

    2013-01-01

    The major objective of the baseline glass formulation work was to develop and select glass formulations that are compliant with contractual and processing requirements for each of the LAW waste streams. Other objectives of the work included preparation and characterization of glasses with respect to the properties of interest, optimization of sulfate loading in the glasses, evaluation of ability to achieve waste loading limits, testing to demonstrate compatibility of glass melts with melter materials of construction, development of glass formulations to support ILAW qualification activities, and identification of glass formulation issues with respect to contract specifications and processing requirements

  14. DWPF GLASS BEADS AND GLASS FRIT TRANSPORT DEMONSTRATION

    Energy Technology Data Exchange (ETDEWEB)

    Adamson, D; Bradley Pickenheim, B

    2008-11-24

    DWPF is considering replacing irregularly shaped glass frit with spherical glass beads in the Slurry Mix Evaporator (SME) process to decrease the yield stress of the melter feed (a non-Newtonian Bingham Plastic). Pilot-scale testing was conducted on spherical glass beads and glass frit to determine how well the glass beads would transfer when compared to the glass frit. Process Engineering Development designed and constructed the test apparatus to aid in the understanding and impacts that spherical glass beads may have on the existing DWPF Frit Transfer System. Testing was conducted to determine if the lines would plug with the glass beads and the glass frit slurry and what is required to unplug the lines. The flow loop consisted of vertical and horizontal runs of clear PVC piping, similar in geometry to the existing system. Two different batches of glass slurry were tested: a batch of 50 wt% spherical glass beads and a batch of 50 wt% glass frit in process water. No chemicals such as formic acid was used in slurry, only water and glass formers. The glass beads used for this testing were commercially available borosilicate glass of mesh size -100+200. The glass frit was Frit 418 obtained from DWPF and is nominally -45+200 mesh. The spherical glass beads did not have a negative impact on the frit transfer system. The transferring of the spherical glass beads was much easier than the glass frit. It was difficult to create a plug with glass bead slurry in the pilot transfer system. When a small plug occurred from setting overnight with the spherical glass beads, the plug was easy to displace using only the pump. In the case of creating a man made plug in a vertical line, by filling the line with spherical glass beads and allowing the slurry to settle for days, the plug was easy to remove by using flush water. The glass frit proved to be much more difficult to transfer when compared to the spherical glass beads. The glass frit impacted the transfer system to the point

  15. Optimized Synthesis of Foam Glass from Recycled CRT Panel Glass

    DEFF Research Database (Denmark)

    Petersen, Rasmus Rosenlund; König, Jakob; Yue, Yuanzheng

    Most of the panel glass from cathode ray tubes (CRTs) is landfilled today. Instead of landfilling, the panel glass can be turned into new environment-friendly foam glass. Low density foam glass is an effective heat insulating material and can be produced just by using recycle glass and foaming...... additives. In this work we recycle the CRT panel glass to synthesize the foam glass as a crucial component of building and insulating materials. The synthesis conditions such as foaming temperature, duration, glass particle size, type and concentrations of foaming agents, and so on are optimized...... by performing systematic experiments. In particular, the concentration of foaming agents is an important parameter that influences the size of bubbles and the distribution of bubbles throughout the sample. The foam glasses are characterised regarding density and open/closed porosity. Differential scanning...

  16. DWPF GLASS BEADS AND GLASS FRIT TRANSPORT DEMONSTRATION

    International Nuclear Information System (INIS)

    Adamson, D.; Pickenheim, Bradley

    2008-01-01

    DWPF is considering replacing irregularly shaped glass frit with spherical glass beads in the Slurry Mix Evaporator (SME) process to decrease the yield stress of the melter feed (a non-Newtonian Bingham Plastic). Pilot-scale testing was conducted on spherical glass beads and glass frit to determine how well the glass beads would transfer when compared to the glass frit. Process Engineering Development designed and constructed the test apparatus to aid in the understanding and impacts that spherical glass beads may have on the existing DWPF Frit Transfer System. Testing was conducted to determine if the lines would plug with the glass beads and the glass frit slurry and what is required to unplug the lines. The flow loop consisted of vertical and horizontal runs of clear PVC piping, similar in geometry to the existing system. Two different batches of glass slurry were tested: a batch of 50 wt% spherical glass beads and a batch of 50 wt% glass frit in process water. No chemicals such as formic acid was used in slurry, only water and glass formers. The glass beads used for this testing were commercially available borosilicate glass of mesh size -100+200. The glass frit was Frit 418 obtained from DWPF and is nominally -45+200 mesh. The spherical glass beads did not have a negative impact on the frit transfer system. The transferring of the spherical glass beads was much easier than the glass frit. It was difficult to create a plug with glass bead slurry in the pilot transfer system. When a small plug occurred from setting overnight with the spherical glass beads, the plug was easy to displace using only the pump. In the case of creating a man made plug in a vertical line, by filling the line with spherical glass beads and allowing the slurry to settle for days, the plug was easy to remove by using flush water. The glass frit proved to be much more difficult to transfer when compared to the spherical glass beads. The glass frit impacted the transfer system to the point

  17. Glasses impregnated with lead for radiation shielding

    International Nuclear Information System (INIS)

    Abd El Monem, A.M.; Kansouh, W.A.; Megahid, R.M.; Ismail, A.L.; Awad, E.M.

    2005-01-01

    The attenuation properties of glasses with different concentration of lead have been investigated for the attenuation of gamma-rays from cesium-137 and for total gamma rays using a beam of neutrons and gamma rays emitted from californium-252 source. Measurements have been performed using a gamma-ray spectrometer with Nal(T1) detector for gamma-rays emitted from 137 Cs and a neutron/gamma spectrometer with stilbene scintillator for measurement of total gamma-rays from 252 Cf neutron source. The latter applied the pulse shape discrimination technique to distinguish between recoil proton and recoil electron pulses. The obtained results given the form displayed pulse height spectra and attenuation relations which were used to derive the linear attenuation coefficient (μ), and the mass attenuation coefficient (mu/p) of the investigated glasses. In addition, calculations were performed to determine the attenuation properties of glass shields under investigation using XCOM code given by the others. A comparison of the shielding properties of these glasses with some standard shielding materials indicated that, the investigated glasses process the shielding advantages required for different nuclear technology applications

  18. Lessons Learned From Google Glass: Telemedical Spark or Unfulfilled Promise?

    Science.gov (United States)

    Yu, Jonathan; Ferniany, William; Guthrie, Barton; Parekh, Selene G; Ponce, Brent

    2016-04-01

    Wearable devices such as Google Glass could potentially be used in the health care setting to expand access and improve quality of care. This study aims to assess the demographics of Google Glass users in health care and determine the obstacles to using Google Glass by surveying those who are known to use the device. A 48-question survey was designed to assess demographics of users, technological limitations of Google Glass, and obstacles to implementation of the device. The physicians surveyed worked in various fields of health care, with 50% of the respondents being surgeons. Potential participants were found using an Internet search for physicians using Google Glass in their practice. Outcome measures were divided into demographic information of users, technological limitations of the device, and administrative obstacles. A 43.6% response rate was observed. The majority of users were male, assistant professors, in academic hospitals, and in the United States. Numerous technological limitations were observed by the majority, including device ergonomics, display location, video quality, and audio quality. Patient confidentiality and data security were the major concerns among administrative obstacles. Despite the potential of Google Glass, numerous obstacles exist that limit its use in health care. While Google Glass has been discontinued, the results of this study may be used to guide future designs of wearable devices. © The Author(s) 2015.

  19. Technology

    Directory of Open Access Journals (Sweden)

    Xu Jing

    2016-01-01

    Full Text Available The traditional answer card reading method using OMR (Optical Mark Reader, most commonly, OMR special card special use, less versatile, high cost, aiming at the existing problems proposed a method based on pattern recognition of the answer card identification method. Using the method based on Line Segment Detector to detect the tilt of the image, the existence of tilt image rotation correction, and eventually achieve positioning and detection of answers to the answer sheet .Pattern recognition technology for automatic reading, high accuracy, detect faster

  20. Float glass innovation in the flat glass industry

    CERN Document Server

    Uusitalo, Olavi

    2014-01-01

    A thorough industry analysis is of utmost importance for a study on the impact of technological changes on industry structure. This book evaluates the consequences of a vaguely chosen level of an industry analysis. Too broad a definition of the industry may disaggregate sub-industries, processing industries and international aspects. This is illustrated by revisiting an industry study upon which the dominant design model was based. Readers will see and understand the consequences of too broadly defined industries together with quantitative research approach can have. The book argues that the nature of the industry should define the level of the analysis. This is done by revisiting the flat glass industry study, on which Anderson and Tushman’s (1990) dominant design model is partly based. In their study Anderson and Tushman defined the flat glass industry based on four-digit SIC codes. It is argued that this definition was too broad and it disaggregated important sub-industries, processing industries and int...

  1. Color tunable green–yellow–orange–red Er{sup 3+}/Eu{sup 3+}-codoped PbGeO{sub 3}:PbF{sub 2}:CdF{sub 2} glass phosphor for application in white-LED technology

    Energy Technology Data Exchange (ETDEWEB)

    Souza, W.S.; Domingues, R.O.; Bueno, L.A.; Costa, E.B. da; Gouveia-Neto, A.S., E-mail: artur@df.ufrpe.br

    2013-12-15

    Color tunable wide gamut light covering the greenish, yellow–green, yellow, orange, and reddish tone chromaticity region in Er{sup 3+}/Eu{sup 3+}-codoped lead–cadmium–germanate PbGeO{sub 3}:PbF{sub 2}:CdF{sub 2} glass phosphor is presented. The phosphors were synthesized, and their light emission properties examined under UV and blue LED excitation. Luminescence emission around 525, 550, 590, 610, and 660 nm was obtained and analyzed as a function of Eu/Er concentration, excitation wavelength, and glass host composition. The color tunability was actually obtained via proper combination of Er{sup 3+} and Eu{sup 3+} active ions concentration. The combination of the emission tone with blue LEDs in the region of 400–460 nm, yielded a mixture of light with color in the white-light region presenting a color correlated temperature in the range of 2000–4000 K. Results indicate that the color-tunable fluorolead germanate erbium/europium co-doped glass phosphor herein reported is a promising novel contender for application in LED-based solid-state illumination technology -- Highlights: • Color tunability in the red–orange–yellow–green spectral region. • White-light generation presenting a CCT in the range of 2000–4000 K. • New europium/erbium co-doped lead–cadmium–germanate glass phosphor.

  2. Nuclear waste glass corrosion mechanisms

    International Nuclear Information System (INIS)

    Jantzen, C.M.

    1987-04-01

    Dissolution of nuclear waste glass occurs by corrosion mechanisms similar to those of other solids, e.g., metallurgical and mineralogic systems. Metallurgical phenomena such as active corrosion, passivation and immunity have been observed to be a function of the glass composition and the solution pH. Hydration thermodynamics was used to quantify the role of glass composition and its effect on the solution pH during dissolution. A wide compositional range of natural, lunar, medieval, and nuclear waste glasses, as well as some glass-ceramics were investigated. The factors observed to affect dissolution in deionized water are pertinent to the dissolution of glass in natural environments such as the groundwaters anticipated to interact with nuclear waste glass in a geologic repository. The effects of imposed pH and oxidation potential (Eh) conditions existing in natural environments on glass dissolution is described in the context of Pourbaix diagrams, pH potential diagrams, for glass

  3. Electrical properties of phosphate glasses

    International Nuclear Information System (INIS)

    Mogus-Milankovic, A; Santic, A; Reis, S T; Day, D E

    2009-01-01

    Investigation of the electrical properties of phosphate glasses where transition metal oxide such as iron oxide is the network former and network modifier is presented. Phosphate glasses containing iron are electronically conducting glasses where the polaronic conduction is due to the electron hopping from low to high iron valence state. The identification of structural defects caused by ion/polaron migration, the analysis of dipolar states and electrical conductivity in iron phosphate glasses containing various alkali and mixed alkali ions was performed on the basis of the impedance spectroscopy (IS). The changes in electrical conductivity from as-quenched phosphate glass to fully crystallized glass (glass-ceramics) by IS are analyzed. A change in the characteristic features of IS follows the changes in glass and crystallized glass network. Using IS, the contribution of glass matrix, crystallized grains and grain boundary to the total electrical conductivity for iron phosphate glasses was analyzed. It was shown that decrease in conductivity is caused by discontinuities in the conduction pathways as a result of the disruption of crystalline network where two or more crystalline phases are formed. Also, phosphate-based glasses offer a unique range of biomaterials, as they form direct chemical bonding with hard/soft tissue. The surface charges of bioactive glasses are recognized to be the most important factors in determining biological responses. The improved bioactivity of the bioactive glasses as a result of the effects of the surface charges generated by electrical polarization is discussed.

  4. Retro reflective glass mosaic; Mosaico Vitreo Retrorreflectante

    Energy Technology Data Exchange (ETDEWEB)

    Belda, A.; Orts, M. J.; Viciano, F.; Lucas, F.

    2012-07-01

    Salquisa and Alttoglass have developed a very innovative product : the retro reflective glass mosaic. This new product can be used in both horizontal and vertical signposting and also in interior design and architecture. This particular product has many advantages compare to the traditional methods used for signposting, design or architecture. One of them is that the product is mainly made of glass therefore it can last much longer than paints for example. The used of glass mosaic for civil engineering it is opened up especially for signposting and it contributes to improve visibility at night not only in standard conditions but also in the hard ones such as wind, fog or rain at nighttimes. Higher visibility = higher security. We should remember that a high percentage of accidents occur under rain conditions at night. The glass mosaic is presented in a mesh which allows the use in both plane and curve surfaces in signposting, interior design and architecture. The retro reflective effect last under the water therefore the mosaic can be fixed in ornamental and decorative fountains, swimming pools, etc. Furthermore, the retro reflective effect can also be applied on big size ceramic tiles. This project was developed along with the Institute of Ceramic Technology (ITC), it was supported by the Center for Industrial Technological Development (CDTI) and it is also patented. (Author)

  5. Theory of glass

    International Nuclear Information System (INIS)

    Rivier, N.

    1985-01-01

    The physical properties of glass are direct consequences of its non-crystalline structure. The structure is described from a topological point of view, since topology is the only geometry surviving non-crystallinity, i.e. absence of metric and trivial space group. This fact has two main consequences: the overall homogeneity of glass is a gauge symmetry, and the only extended, structurally stable constituents are odd lines (or 2π-disclinations in the elastic continuum limit). A gauge theory of glass, based on odd lines as sources of frozen-in strain, can explain those properties of glasses which are both specific to, and universal in amorphous solids: low-temperature excitations, and relaxation at high temperatures. The methods of statistical mechanics can be applied to give a minimal description of amorphous structures in statistical equilibrium. Criteria for statistical equilibrium of the structure and detailed balance are given, together with structural equations of state, which turn out to be well-known empirically among botanists and metallurgists. This review is based on lectures given in 1984 in Niteroi. It contains five parts: I - Structure, from a topological viewpoint; II - gauge invariance; III - Tunneling modes; IV - Supercooled liquid and the glass transitions; V - Statistical crystallography. (Author) [pt

  6. Sol-Gel Glasses

    Science.gov (United States)

    Mukherjee, S. P.

    1985-01-01

    Multicomponent homogeneous, ultrapure noncrystalline gels/gel derived glasses are promising batch materials for the containerless glass melting experiments in microgravity. Hence, ultrapure, homogeneous gel precursors could be used to: (1) investigate the effect of the container induced nucleation on the glass forming ability of marginally glass forming compositions; and (2) investigate the influence of gravity on the phase separation and coarsening behavior of gel derived glasses in the liquid-liquid immiscibility zone of the nonsilicate systems having a high density phase. The structure and crystallization behavior of gels in the SiO2-GeO2 as a function of gel chemistry and thermal treatment were investigated. As are the chemical principles involved in the distribution of a second network former in silica gel matrix being investigated. The procedures for synthesizing noncrystalline gels/gel-monoliths in the SiO2-GeO2, GeO2-PbO systems were developed. Preliminary investigations on the levitation and thermal treatment of germania silicate gel-monoliths in the Pressure Facility Acoustic Levitator were done.

  7. Introduction to the crystallization phenomenon in nuclear glass

    International Nuclear Information System (INIS)

    Jacquet Francillon, N.

    1997-01-01

    Crystallization is a subject for concern because of its potentially detrimental effects on the technological feasibility of high-temperature melting, and on the chemical durability of the material at intermediate and low temperatures during interim storage or after disposal. The tendency of glass to crystallize depends to a large extent on the composition of the frit and/or of the waste to be solidified. It depends too of the thermal history of the glass generally, the knowledge is mainly upon determination of the time-temperature-transition (TTT) curves, crystal identification and quantification techniques, and their effects on the durability of the glass matrix. French experience is presented. Only a few authors addressed the long-term development of crystalline phases, notably at temperatures below the vitreous transition temperature Tg. Some recommendations for glass crystallization studies are made but glass crystallization after disposal is acceptable provided some conditions are met. (author)

  8. Characterization of enameled glass excavated from Laem Pho, southern Thailand

    Science.gov (United States)

    Dhanmanonda, W.; Won-in, K.; Tancharakorn, S.; Tantanuch, W.; Thongleurm, C.; Kamwanna, T.; Dararutana, P.

    2012-07-01

    Laem Pho in Surat Thani, southern province of Thailand is one of the most important historic site on the eastern shore of the Gulf of Thailand. In this work, the enameled glass fragments which looked-like Islamic glass mainly excavated from this site were analyzed using SEM-EDS, PIXE and μ-XRF, in order to understand the chemical composition by comparing the archaeological data and topology. The structure of the enameled decoration was also studied. The resulting data indicated that high-magnesia alkali-lime silicate glass was produced. The presence of transition metals such as copper, iron and manganese were affected on the glass colorations. Typological classifications, technological observations and comparative studies serve to clarify the development and cultural inter-relationships of various glass objects along the trade and exchange networks in ancient maritime.

  9. Characterization of enameled glass excavated from Laem Pho, southern Thailand

    International Nuclear Information System (INIS)

    Dhanmanonda, W; Won-in, K; Tancharakorn, S; Tantanuch, W; Thongleurm, C; Kamwanna, T; Dararutana, P

    2012-01-01

    Laem Pho in Surat Thani, southern province of Thailand is one of the most important historic site on the eastern shore of the Gulf of Thailand. In this work, the enameled glass fragments which looked-like Islamic glass mainly excavated from this site were analyzed using SEM-EDS, PIXE and μ-XRF, in order to understand the chemical composition by comparing the archaeological data and topology. The structure of the enameled decoration was also studied. The resulting data indicated that high-magnesia alkali-lime silicate glass was produced. The presence of transition metals such as copper, iron and manganese were affected on the glass colorations. Typological classifications, technological observations and comparative studies serve to clarify the development and cultural inter-relationships of various glass objects along the trade and exchange networks in ancient maritime.

  10. Lead iron phosphate glass as a containment medium for disposal of high-level nuclear waste

    International Nuclear Information System (INIS)

    Boatner, L.A.; Sales, B.C.

    1989-01-01

    This patent describes lead-iron phosphate glasses containing a high level of Fe 2 O 3 for use as a storage medium for high-level radioactive nuclear waste. By combining lead-iron phosphate glass with various types of simulated high-level nuclear waste, a highly corrosion resistant, homogeneous, easily processed glass can be formed. For corroding solutions at 90 0 C, with solution pH values in the range between 5 and 9, the corrosion rate of the lead-iron phosphate nuclear waste glass is at least 10 2 to 10 3 times lower than the corrosion rate of a comparable borosilicate nuclear waste glass. The presence of Fe 2 O 3 in forming the lead-iron phosphate glass is critical. The lead-iron phosphate waste glasses can be prepared with minimal modification of the technology developed for processing borosilicate glass nuclear wasteforms

  11. Comparison of glass surfaces as a countertop material to existing surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Turo, Laura A.; Winschell, Abigail E.

    2011-09-01

    Gleen Glass, a small production glass company that creates countertops, was selected for the Technology Assistance Program through Pacific Northwest National Laboratory. Gleen Glass was seeking material property analysis comparing glass as a countertop material to current surfaces (i.e. marble, granite and engineered stone). With samples provided from Gleen Glass, testing was done on granite, marble, and 3 different glass surfaces ('Journey,' 'Pebble,' and 'Gleen'). Results showed the glass surfaces have a lower density, lower water absorption, and are stronger in compressive and flexural tests as compared to granite and marble. Thermal shock tests showed the glass failed when objects with a high thermal mass are placed directly on them, whereas marble and granite did not fracture under these conditions.

  12. Ion exchange for glass strengthening

    International Nuclear Information System (INIS)

    Gy, Rene

    2008-01-01

    This paper presents a short overview of silicate glass strengthening by exchange of alkali ions in a molten salt, below the glass transition temperature (chemical tempering). The physics of alkali inter-diffusion is briefly explained and the main parameters of the process, which control the glass reinforcement, are reviewed. Methods for characterizing the obtained residual stress state and the strengthening are described, along with the simplified modelling of the stress build-up. The fragmentation of chemically tempered glass is discussed. The concept of engineered stress profile glass is presented, and finally, the effect of glass and salt compositions is overviewed

  13. Perspectives on spin glasses

    CERN Document Server

    Contucci, Pierluigi

    2013-01-01

    Presenting and developing the theory of spin glasses as a prototype for complex systems, this book is a rigorous and up-to-date introduction to their properties. The book combines a mathematical description with a physical insight of spin glass models. Topics covered include the physical origins of those models and their treatment with replica theory; mathematical properties like correlation inequalities and their use in the thermodynamic limit theory; main exact solutions of the mean field models and their probabilistic structures; and the theory of the structural properties of the spin glass phase such as stochastic stability and the overlap identities. Finally, a detailed account is given of the recent numerical simulation results and properties, including overlap equivalence, ultrametricity and decay of correlations. The book is ideal for mathematical physicists and probabilists working in disordered systems.

  14. Waste glass melting stages

    International Nuclear Information System (INIS)

    Anderson, L.D.; Dennis, T.; Elliott, M.L.; Hrma, P.

    1994-01-01

    Three simulated nuclear waste glass feeds, consisting of dried waste and glass frit, were heat treated for 1 hour in a gradient furnace at temperatures ranging from approximately 600 degrees C to 1000 degrees C. Simulated melter feeds from the Hanford Waste Vitrification Plant (HWVP), the Defense Waste Processing Facility (DWPF), and Kernforschungszentru Karlsruhe (KfK) in Germany were used. The samples were thin sectioned and examined by optical microscopy to investigate the stages of the conversion from feed to glass. Various phenomena were seen, such as frit softening, bubble formation, foaming, bubble motion and removal, convective mixing, and homogenization. The behavior of different feeds was similar, although the degree of gas generation and melt homogenization varied. 2 refs., 8 tabs

  15. Waste glass melting stages

    International Nuclear Information System (INIS)

    Anderson, L.D.; Dennis, T.; Elliott, M.L.; Hrma, P.

    1993-04-01

    Three different simulated nuclear waste glass feeds, consisting of dried waste and glass frit, were heat treated for 1 hour in a gradient furnace at temperatures ranging from approximately 600 degrees C--1000 degrees C. Simulated melter feeds from the Hanford Waste Vitrification Plant (HWVP), the Defense Waste Processing Facility (DWPF), and Kernforschungszentrum Karlsruhe (KfK) in Germany were used. The samples were thin-sectioned and examined by optical microscopy to investigate the stages of the conversion from feed to glass. Various phenomena were seen, such as frit softening, bubble formation, foaming, bubble motion and removal, convective mixing, and homogenization. Behavior of different feeds was similar, although the degree of gas generation and melt homogenization varied

  16. Using physical properties of molten glass to estimate glass composition

    International Nuclear Information System (INIS)

    Choi, Kwan Sik; Yang, Kyoung Hwa; Park, Jong Kil

    1997-01-01

    A vitrification process is under development in KEPRI for the treatment of low-and medium-level radioactive waste. Although the project is for developing and building Vitrification Pilot Plant in Korea, one of KEPRI's concerns is the quality control of the vitrified glass. This paper discusses a methodology for the estimation of glass composition by on-line measurement of molten glass properties, which could be applied to the plant for real-time quality control of the glass product. By remotely measuring viscosity and density of the molten glass, the glass characteristics such as composition can be estimated and eventually controlled. For this purpose, using the database of glass composition vs. physical properties in isothermal three-component system of SiO 2 -Na 2 O-B 2 O 3 , a software TERNARY has been developed which determines the glass composition by using two known physical properties (e.g. density and viscosity)

  17. Superductile bulk metallic glass

    International Nuclear Information System (INIS)

    Yao, K.F.; Ruan, F.; Yang, Y.Q.; Chen, N.

    2006-01-01

    Usually, monolithic bulk metallic glasses undergo inhomogeneous plastic deformation and exhibit poor ductility (<2%) at room temperature. We report a newly developed Pd-Si binary bulk metallic glass, which exhibits a uniform plastic deformation and a large plastic engineering strain of 82% and a plastic true strain of 170%, together with initial strain hardening, slight strain softening and final strain hardening characteristics. The uniform shear deformation and the ultrahigh plasticity are mainly attributed to strain hardening, which results from the nanoscale inhomogeneity due to liquid phase separation. The formed nanoscale inhomogeneity will hinder, deflect, and bifurcate the propagation of shear bands

  18. Bioactive and inert dental glass-ceramics.

    Science.gov (United States)

    Montazerian, Maziar; Zanotto, Edgar Dutra

    2017-02-01

    The global market for dental materials is predicted to exceed 10 billion dollars by 2020. The main drivers for this growth are easing the workflow of dentists and increasing the comfort of patients. Therefore, remarkable research projects have been conducted and are currently underway to develop improved or new dental materials with enhanced properties or that can be processed using advanced technologies, such as CAD/CAM or 3D printing. Among these materials, zirconia, glass or polymer-infiltrated ceramics, and glass-ceramics (GCs) are of great importance. Dental glass-ceramics are highly attractive because they are easy to process and have outstanding esthetics, translucency, low thermal conductivity, high strength, chemical durability, biocompatibility, wear resistance, and hardness similar to that of natural teeth, and, in certain cases, these materials are bioactive. In this review article, we divide dental GCs into the following two groups: restorative and bioactive. Most restorative dental glass-ceramics (RDGCs) are inert and biocompatible and are used in the restoration and reconstruction of teeth. Bioactive dental glass-ceramics (BDGCs) display bone-bonding ability and stimulate positive biological reactions at the material/tissue interface. BDGCs are suggested for dentin hypersensitivity treatment, implant coating, bone regeneration and periodontal therapy. Throughout this paper, we elaborate on the history, processing, properties and applications of RDGCs and BDGCs. We also report on selected papers that address promising types of dental glass-ceramics. Finally, we include trends and guidance on relevant open issues and research possibilities. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 619-639, 2017. © 2016 Wiley Periodicals, Inc.

  19. Investigation of waste glass pouring behavior over a knife edge

    International Nuclear Information System (INIS)

    Ebadian, M.A.

    1998-01-01

    The development of vitrification technology for converting radioactive waste into a glass solid began in the early 1960s. Some problems encountered in the vitrification process are still waiting for a solution. One of them is wicking. During pouring, the glass stream flows down the wall of the pour spout until it reaches an angled cut in the wall. At this point, the stream is supposed to break cleanly away from the wall of the pour spout and fall freely into the canister. However, the glass stream is often pulled toward the wall and does not always fall into the canister, a phenomenon known as wicking. Phase 1 involves the assembly, construction, and testing of a melter capable of supplying molten glass at operational flow rates over a break-off point knife edge. Phase 2 will evaluate the effects of glass and pour spout temperatures as well as glass flow rates on the glass flow behavior over the knife edge. Phase 3 will identify the effects on wicking resulting from varying the knife edge diameter and height as well as changing the back-cut angle of the knife edge. The following tasks were completed in FY97: Design the experimental system for glass melting and pouring; Acquire and assemble the melter system; and Perform initial research work

  20. Aging in a Structural Glass

    OpenAIRE

    Kob, Walter; Barrat, Jean-Louis

    1998-01-01

    We discuss the relaxation dynamics of a simple structural glass which has been quenched below its glass transition temperature. We demonstrate that time correlation functions show strong aging effects and investigate in what way the fluctuation dissipation theorem is violated.

  1. Foam Glass for Construction Materials

    DEFF Research Database (Denmark)

    Petersen, Rasmus Rosenlund

    2016-01-01

    Foaming is commonly achieved by adding foaming agents such as metal oxides or metal carbonates to glass powder. At elevated temperature, the glass melt becomes viscous and the foaming agents decompose or react to form gas, causing a foamy glass melt. Subsequent cooling to room temperature, result...... in a solid foam glass. The foam glass industry employs a range of different melt precursors and foaming agents. Recycle glass is key melt precursors. Many parameters influence the foaming process and optimising the foaming conditions is very time consuming. The most challenging and attractive goal is to make...... low density foam glass for thermal insulation applications. In this thesis, it is argued that the use of metal carbonates as foaming agents is not suitable for low density foam glass. A reaction mechanism is proposed to justify this result. Furthermore, an in situ method is developed to optimise...

  2. Glass ceilings of professionalisation.

    Science.gov (United States)

    Stott, Dawn L

    2016-04-01

    The term glass ceiling is a political term often used to describe an unbreakable barrier that isnot visible with the human eye, but it keeps minorities from rising up i.e. it is a barrier to minoritygroups, in the past (and sometimes still) for women, that stops them from achieving theirtrue potential.

  3. What Glass Ceiling?

    Science.gov (United States)

    Lynch, Michael; Post, Katherine

    1996-01-01

    A recent study drawing on data from the Census Bureau and the Bureau of Labor Statistics suggests that the wage gap between men and women has virtually disappeared, and that the so-called "glass ceiling" results more from age and qualifications than from explicit discrimination. (SLD)

  4. Metallic glasses: structural models

    International Nuclear Information System (INIS)

    Nassif, E.

    1984-01-01

    The aim of this work is to give a summary of the attempts made up to the present in order to discribe by structural models the atomic arrangement in metallic glasses, showing also why the structure factors and atomic distribution functions cannot be always experimentally determined with a reasonable accuracy. (M.W.O.) [pt

  5. Microchips on glass

    NARCIS (Netherlands)

    Nanver, L.; De Vreede, L.; Keulemans, M.

    2007-01-01

    Microchips on glass. What about a mobile phone that uses a single microchip to receive all the available frequency bands, plus extras such as television, gps, and Internet access? Or, in due time, see-though implants that will monitor your state of health, and equipment that will let you see through

  6. Glass as matter

    DEFF Research Database (Denmark)

    Beim, Anne

    2000-01-01

    Refraiming the Moderns - Substitute Windows and Glass. In general terms, the seminar has contributed to the growing interest in the problems concerning the restoration of Modern Movement architecture. More particularly, it has of course drawn our attention to modern windows, which are increasingly...

  7. Stained Glass and Flu

    Centers for Disease Control (CDC) Podcasts

    2017-02-01

    Dr. Robert Webster, an Emeritus member of the Department of Infectious Diseases at St. Jude Children's Research Hospital, discusses his cover art story on stained glass and influenza.  Created: 2/1/2017 by National Center for Emerging and Zoonotic Infectious Diseases (NCEZID).   Date Released: 2/1/2017.

  8. Tritium application: self-luminous glass tube(SLGT)

    International Nuclear Information System (INIS)

    Kim, K.; Lee, S.K.; Chung, E.S.; Kim, K.S.; Kim, W.S.; Nam, G.J.

    2005-01-01

    To manufacture SLGTs (self-luminous glass tubes), 4 core technologies are needed: coating technology, tritium injection technology, laser sealing/cutting technology and tritium handling technology. The inside of the glass tubes is coated with greenish ZnS phosphor particles with sizes varying from 4∝5 [μm], and Cu, and Al as an activator and a co-dopant, respectively. We also found that it would be possible to produce a phosphor coated glass tube for the SLGT using the well established cold cathode fluorescent lamp (CCFL) bulb manufacturing technology. The conceptual design of the main process loop (PL) is almost done. A delicate technique will be needed for the sealing/cutting of the glass tubes. Instead of the existing torch technology, a new technology using a pulse-type laser is under investigation. The design basis of the tritium handling facilities is to minimize the operator's exposure to tritium uptake and the emission of tritium to the environment. To fulfill the requirements, major tritium handling components are located in the secondary containment such as the glove boxes (GBs) and/or the fume hoods. The tritium recovery system (TRS) is connected to a GB and PL to minimize the release of tritium as well as to remove the moisture and oxygen in the GB. (orig.)

  9. Tritium application: self-luminous glass tube(SLGT)

    Energy Technology Data Exchange (ETDEWEB)

    Kim, K.; Lee, S.K.; Chung, E.S.; Kim, K.S.; Kim, W.S. [Nuclear Power Lab., Korea Electric Power Research Inst. (KEPRI), Daejeon (Korea); Nam, G.J. [Engineering Information Technology Center, Inst. for Advanced Engineering (IAE), Kyonggi-do (Korea)

    2005-07-01

    To manufacture SLGTs (self-luminous glass tubes), 4 core technologies are needed: coating technology, tritium injection technology, laser sealing/cutting technology and tritium handling technology. The inside of the glass tubes is coated with greenish ZnS phosphor particles with sizes varying from 4{proportional_to}5 [{mu}m], and Cu, and Al as an activator and a co-dopant, respectively. We also found that it would be possible to produce a phosphor coated glass tube for the SLGT using the well established cold cathode fluorescent lamp (CCFL) bulb manufacturing technology. The conceptual design of the main process loop (PL) is almost done. A delicate technique will be needed for the sealing/cutting of the glass tubes. Instead of the existing torch technology, a new technology using a pulse-type laser is under investigation. The design basis of the tritium handling facilities is to minimize the operator's exposure to tritium uptake and the emission of tritium to the environment. To fulfill the requirements, major tritium handling components are located in the secondary containment such as the glove boxes (GBs) and/or the fume hoods. The tritium recovery system (TRS) is connected to a GB and PL to minimize the release of tritium as well as to remove the moisture and oxygen in the GB. (orig.)

  10. Glasses and nuclear waste vitrification

    International Nuclear Information System (INIS)

    Ojovan, Michael I.

    2012-01-01

    Glass is an amorphous solid material which behaves like an isotropic crystal. Atomic structure of glass lacks long-range order but possesses short and most probably medium range order. Compared to crystalline materials of the same composition glasses are metastable materials however crystallisation processes are kinetically impeded within times which typically exceed the age of universe. The physical and chemical durability of glasses combined with their high tolerance to compositional changes makes glasses irreplaceable when hazardous waste needs immobilisation for safe long-term storage, transportation and consequent disposal. Immobilisation of radioactive waste in glassy materials using vitrification has been used successfully for several decades. Nuclear waste vitrification is attractive because of its flexibility, the large number of elements which can be incorporated in the glass, its high corrosion durability and the reduced volume of the resulting wasteform. Vitrification involves melting of waste materials with glass-forming additives so that the final vitreous product incorporates the waste contaminants in its macro- and micro-structure. Hazardous waste constituents are immobilised either by direct incorporation into the glass structure or by encapsulation when the final glassy material can be in form of a glass composite material. Both borosilicate and phosphate glasses are currently used to immobilise nuclear wastes. In addition to relatively homogeneous glasses novel glass composite materials are used to immobilise problematic waste streams. (author)

  11. Cross-craft interactions between metal and glass working: slag additions to early Anglo-Saxon red glass

    Science.gov (United States)

    Peake, James R. N.; Freestone, Ian C.

    Opaque red glass has been extensively studied over the years, but its compositional complexity and variability means that the way in which it was manufactured is still not fully understood. Previous studies have suggested the use of metallurgical by-products in its manufacture, but until now the evidence has been limited. SEM-EDS analysis of glass beads from the early Anglo-Saxon cemetery complex at Eriswell, southeast England, has provided further insights into the production and technology of opaque red glass, which could only have been possible through invasive sampling. The matrix of the red glasses contains angular particles of slag, the main phases of which typically correspond to either fayalite (Fe2SiO4) or kirschsteinite (CaFeSiO4), orthosilicate (olivine-type) minerals characteristic of some copper- and iron-smelting slags. This material appears to have been added in part as a reducing agent, to promote the precipitation of sub-micrometer particles of the colorant phase, copper metal. Its use represents a sophisticated, if empirical, understanding of materials and can only have resulted through deliberate experimentation with metallurgical by-products by early glass workers. Slag also seems to have been added as a source of iron to colour `black' glass. The compositions of the opaque red glasses appear to be strongly paralleled by Merovingian beads from northern Europe and Anglo-Saxon beads from elsewhere in England, suggesting that this technology is likely to have been quite widespread.

  12. Looking at plastic surgery through Google Glass: part 1. Systematic review of Google Glass evidence and the first plastic surgical procedures.

    Science.gov (United States)

    Davis, Christopher R; Rosenfield, Lorne K

    2015-03-01

    Google Glass has the potential to become a ubiquitous and translational technological tool within clinical plastic surgery. Google Glass allows clinicians to remotely view patient notes, laboratory results, and imaging; training can be augmented via streamed expert master classes; and patient safety can be improved by remote advice from a senior colleague. This systematic review identified and appraised every Google Glass publication relevant to plastic surgery and describes the first plastic surgical procedures recorded using Google Glass. A systematic review was performed using PubMed National Center for Biotechnology Information, Ovid MEDLINE, and the Cochrane Central Register of Controlled Trials, following modified Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Key search terms "Google" and "Glass" identified mutually inclusive publications that were screened for inclusion. Eighty-two publications were identified, with 21 included for review. Google Glass publications were formal articles (n = 3), editorial/commentary articles (n = 7), conference proceedings (n = 1), news reports (n = 3), and online articles (n = 7). Data support Google Glass' positive impact on health care delivery, clinical training, medical documentation, and patient safety. Concerns exist regarding patient confidentiality, technical issues, and limited software. The first plastic surgical procedure performed using Google Glass was a blepharoplasty on October 29, 2013. Google Glass is an exciting translational technology with the potential to positively impact health care delivery, medical documentation, surgical training, and patient safety. Further high-quality scientific research is required to formally appraise Google Glass in the clinical setting.

  13. Potash - a key raw material of glass batch for Bohemian glasses from 14th-17th centuries?

    Czech Academy of Sciences Publication Activity Database

    Cílová, Z.; Woitsch, Jiří

    2012-01-01

    Roč. 39, č. 2 (2012), s. 371-380 ISSN 0305-4403 R&D Projects: GA AV ČR KJB900580701 Institutional research plan: CEZ:AV0Z90580513 Keywords : Wood ash * Potash * Medieval glass * Chemical composition * Glass batch * archaeological experiment * Reconstruction of technology Subject RIV: AC - Archeology, Anthropology, Ethnology Impact factor: 1.889, year: 2012 http://www.sciencedirect.com/science/article/pii/S0305440311003505

  14. Achievement report in fiscal 2000 on technical development to recycle waste building materials and glasses. Development of waste building material recycling technology (Research and development of wooden board manufacturing technology using demolished building lumbers); 2000 nendo kenchiku glass nado recycle gijutsu kaihatsu seika hokokusho. Kenhciku haizai recycle gijutsu kaihatsu (kenchiku kaitai mokuzai wo mochiita mokushitsu board seizo gijutsu no kenkyu kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    Research and development has been made on a wooden board manufacturing technology re-utilizing demolished building lumbers and waste plastics with an intention of saving resources and reducing wastes. This paper summarizes the achievements in fiscal 2000. In developing the technology to re-use demolished building lumbers, a method for removing metals attached to demolished building lumbers was established by using a magnetic separator and a metal detector, with which it was verified that iron can be removed nearly 100%. With regard to waste plastics, simultaneous use of specific gravity separation utilizing centrifugal force and electrostatic separation provided a prospect that metals and plastics of high melting points can be removed from mixed resins in waste household electric appliances, and that polypropylene (PP), polystyrene (PS), and ABS can be classified at high accuracy. In manufacturing waste wood and waste plastic boards, pilot plants were built to use the 'melt spray method', 'melt blow method', and 'laminating method' as the means to spray molten resin onto wood raw materials, wherein trials were performed on mixing molten resins with wood flakes, and on board forming. (NEDO)

  15. Apollo 12 ropy glasses revisited

    Science.gov (United States)

    Wentworth, S. J.; Mckay, D. S.; Lindstrom, D. J.; Basu, A.; Martinez, R. R.; Bogard, D. D.; Garrison, D. H.

    1994-01-01

    We analyzed ropy glasses from Apollo 12 soils 12032 and 12033 by a variety of techniques including SEM/EDX, electron microprobe analysis, INAA, and Ar-39-Ar-40 age dating. The ropy glasses have potassium rare earth elements phosphorous (KREEP)-like compositions different from those of local Apollo 12 mare soils; it is likely that the ropy glasses are of exotic origin. Mixing calculations indicate that the ropy glasses formed from a liquid enriched in KREEP and that the ropy glass liquid also contained a significant amount of mare material. The presence of solar Ar and a trace of regolith-derived glass within the ropy glasses are evidence that the ropy glasses contain a small regolith component. Anorthosite and crystalline breccia (KREEP) clasts occur in some ropy glasses. We also found within these glasses clasts of felsite (fine-grained granitic fragments) very similar in texture and composition to the larger Apollo 12 felsites, which have a Ar-39-Ar-40 degassing age of 800 +/- 15 Ma. Measurements of 39-Ar-40-Ar in 12032 ropy glass indicate that it was degassed at the same time as the large felsite although the ropy glass was not completely degassed. The ropy glasses and felsites, therefore, probably came from the same source. Most early investigators suggested that the Apollo 12 ropy glasses were part of the ejecta deposited at the Apollo 12 site from the Copernicus impact. Our new data reinforce this model. If these ropy glasses are from Copernicus, they provide new clues to the nature of the target material at the Copernicus site, a part of the Moon that has not been sampled directly.

  16. Plutonium immobilization in glass and ceramics

    International Nuclear Information System (INIS)

    Knecht, D.A.; Murphy, W.M.

    1996-01-01

    The Materials Research Society Nineteenth Annual Symposium on the Scientific Basis for Nuclear Waste Management was held in Boston on November 27 to December 1, 1995. Over 150 papers were presented at the Symposium dealing with all aspects of nuclear waste management and disposal. Fourteen oral sessions and on poster session included a Plenary session on surplus plutonium dispositioning and waste forms. The proceedings, to be published in April, 1996, will provide a highly respected, referred compilation of the state of scientific development in the field of nuclear waste management. This paper provides a brief overview of the selected Symposium papers that are applicable to plutonium immobilization and plutonium waste form performance. Waste forms that were described at the Symposium cover most of the candidate Pu immobilization options under consideration, including borosilicate glass with a melting temperature of 1150 degrees C, a higher temperature (1450 degrees C) lanthanide glass, single phase ceramics, multi-phase ceramics, and multi-phase crystal-glass composites (glass-ceramics or slags). These Symposium papers selected for this overview provide the current status of the technology in these areas and give references to the relevant literature

  17. Plutonium immobilization in glass and ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Knecht, D.A. [Lockheed Martin Idaho Technologies, Idaho Falls (United States); Murphy, W.M. [Southwest Research Institute, San Antonio, TX (United States)

    1996-05-01

    The Materials Research Society Nineteenth Annual Symposium on the Scientific Basis for Nuclear Waste Management was held in Boston on November 27 to December 1, 1995. Over 150 papers were presented at the Symposium dealing with all aspects of nuclear waste management and disposal. Fourteen oral sessions and on poster session included a Plenary session on surplus plutonium dispositioning and waste forms. The proceedings, to be published in April, 1996, will provide a highly respected, referred compilation of the state of scientific development in the field of nuclear waste management. This paper provides a brief overview of the selected Symposium papers that are applicable to plutonium immobilization and plutonium waste form performance. Waste forms that were described at the Symposium cover most of the candidate Pu immobilization options under consideration, including borosilicate glass with a melting temperature of 1150 {degrees}C, a higher temperature (1450 {degrees}C) lanthanide glass, single phase ceramics, multi-phase ceramics, and multi-phase crystal-glass composites (glass-ceramics or slags). These Symposium papers selected for this overview provide the current status of the technology in these areas and give references to the relevant literature.

  18. Glass bead cultivation of fungi

    DEFF Research Database (Denmark)

    Droce, Aida; Sørensen, Jens Laurids; Giese, H.

    2013-01-01

    Production of bioactive compounds and enzymes from filamentous fungi is highly dependent on cultivation conditions. Here we present an easy way to cultivate filamentous fungi on glass beads that allow complete control of nutrient supply. Secondary metabolite production in Fusarium graminearum...... and Fusarium solani cultivated on agar plates, in shaking liquid culture or on glass beads was compared. Agar plate culture and glass bead cultivation yielded comparable results while liquid culture had lower production of secondary metabolites. RNA extraction from glass beads and liquid cultures was easier...... to specific nutrient factors. •Fungal growth on glass beads eases and improves fungal RNA extraction....

  19. Sodium diffusion in boroaluminosilicate glasses

    DEFF Research Database (Denmark)

    Smedskjaer, Morten M.; Zheng, Qiuju; Mauro, John C.

    2011-01-01

    of isothermal sodium diffusion in BAS glasses by ion exchange, inward diffusion, and tracer diffusion experiments. By varying the [SiO2]/[Al2O3] ratio of the glasses, different structural regimes of sodium behavior are accessed. We show that the mobility of the sodium ions decreases with increasing [SiO2]/[Al2O......Understanding the fundamentals of alkali diffusion in boroaluminosilicate (BAS) glasses is of critical importance for advanced glass applications, e.g., the production of chemically strengthened glass covers for personal electronic devices. Here, we investigate the composition dependence...

  20. Sol-gel processing of glasses and glass-ceramics for microelectronic packaging

    International Nuclear Information System (INIS)

    Sriram, M.A.; Kumta, P.N.

    1992-01-01

    In recent years considerable progress has been made in electronic packaging substrate technology. The future need of miniaturization of devices to increase the signal processing speeds calls for an increase in the device density requiring the substrates to be designed for better thermal, mechanical and electrical efficiency. Fast signal propagation with minimum delay requires the substrate to possess very low dielectric constant. Several glasses and glass-ceramic materials have been identified over the years which show good promise as candidate substrate materials. among these borophosphate and borophosphosilicate glass-ceramics have been recently identified to have the lowest dielectric constant. This paper reports that sol-gel processing has been used to synthesize borosilicate, borophosphosilicate and borophosphate glasses and glass-ceramics using inexpensive boron oxide and phosphorus pentoxide precursors. Preliminary results of the processing of these gels and the effect of volatility of boron alkoxide and its modification on the gel structure are described. X-ray diffraction, Differential thermal analyses and FTIR have been used to characterize the as-prepared and heat treated gels

  1. Low thermal expansion glass ceramics

    CERN Document Server

    1995-01-01

    This book is one of a series reporting on international research and development activities conducted by the Schott group of companies With the series, Schott aims to provide an overview of its activities for scientists, engineers, and managers from all branches of industry worldwide where glasses and glass ceramics are of interest Each volume begins with a chapter providing a general idea of the current problems, results, and trends relating to the subjects treated This volume describes the fundamental principles, the manufacturing process, and applications of low thermal expansion glass ceramics The composition, structure, and stability of polycrystalline materials having a low thermal expansion are described, and it is shown how low thermal expansion glass ceramics can be manufactured from appropriately chosen glass compositions Examples illustrate the formation of this type of glass ceramic by utilizing normal production processes together with controlled crystallization Thus glass ceramics with thermal c...

  2. Fun with singing wine glasses

    Science.gov (United States)

    Boone, Christine; Galloway, Melodie; Ruiz, Michael J.

    2018-05-01

    A fun activity is presented using singing wine glasses for introductory physics students. Students tune a white wine glass and a red wine glass to as many semitones as possible by filling the glasses with the appropriate amounts of water. A smart phone app is used to measure the frequencies of equal-temperament tones. Then plots of frequency against water volume percent are made using a spreadsheet. Students can also play combinations of pitches with several glasses. A video (Ruiz 2018 Video: Singing glasses http://mjtruiz.com/ped/wineglasses/) is provided which includes an excerpt of a beautiful piece written for singing glasses and choir: Stars by Latvian composer Ēriks Ešenvalds.

  3. Bulk metallic glass matrix composites

    International Nuclear Information System (INIS)

    Choi-Yim, H.; Johnson, W.L.

    1997-01-01

    Composites with a bulk metallic glass matrix were synthesized and characterized. This was made possible by the recent development of bulk metallic glasses that exhibit high resistance to crystallization in the undercooled liquid state. In this letter, experimental methods for processing metallic glass composites are introduced. Three different bulk metallic glass forming alloys were used as the matrix materials. Both ceramics and metals were introduced as reinforcement into the metallic glass. The metallic glass matrix remained amorphous after adding up to a 30 vol% fraction of particles or short wires. X-ray diffraction patterns of the composites show only peaks from the second phase particles superimposed on the broad diffuse maxima from the amorphous phase. Optical micrographs reveal uniformly distributed particles in the matrix. The glass transition of the amorphous matrix and the crystallization behavior of the composites were studied by calorimetric methods. copyright 1997 American Institute of Physics

  4. The borosilicate glass for 'PAMELA'

    International Nuclear Information System (INIS)

    Schiewer, E.

    1986-01-01

    The low enriched waste concentrate (LEWC) stored at Mol, Belgium, will be solidified in the vitrification plant 'PAMELA'. An alkali-borosilicate glass was developed by the Hahn-Meitner-Institut, Berlin, which dissolves (11 +- 3)wt% waste oxides while providing sufficient flexibility for changes in the process parameters. The development of the glass labelled SM513LW11 is described. Important properties of the glass melt (viscosity, resistivity, formation of yellow phase) and of the glass (corrosion in aqueous solutions, crystallization) are reported. The corrosion data of this glass are similar to those of other HLW-glasses. Less than five wt% of crystalline material are produced upon cooling of large glass blocks. Crystallization does not affect the chemical durability. (Auth.)

  5. Production of glass or glass-ceramic to metal seals with the application of pressure

    Science.gov (United States)

    Kelly, Michael D.; Kramer, Daniel P.

    1987-11-10

    In a process for preparing a glass or glass-ceramic to metal seal comprising contacting the glass with the metal and heat-treating the glass and metal under conditions whereby the glass to metal seal is effected and, optionally, the glass is converted to a glass-ceramic, an improvement comprises carrying out the heat-treating step using hot isostatic pressing.

  6. Glasses for Mali

    CERN Multimedia

    PH Department

    2008-01-01

    We are collecting old pairs of glasses to take out to Mali, where they can be re-used by people there. The price for a pair of glasses can often exceed 3 months salary, so they are prohibitively expensive for many people. If you have any old spectacles you can donate, please put them in the special box in the ATLAS secretariat, Bldg.40-4-D01 before the Christmas closure on 19 December so we can take them with us when we leave for Africa at the end of the month. (more details in ATLAS e-news edition of 29 September 2008: http://atlas-service-enews.web.cern.ch/atlas-service-enews/news/news_mali.php) many thanks! Katharine Leney co-driver of the ATLAS car on the Charity Run to Mali

  7. Glass matrix armor

    International Nuclear Information System (INIS)

    Calkins, N.C.

    1991-01-01

    This patent describes an armor system which utilizes glass. A plurality of constraint cells are mounted on a surface of a substrate, which is metal armor plate or a similar tough material, such that the cells almost completely cover the surface of the substrate. Each constraint cell has a projectile receiving wall parallel to the substrate surface and has sides which are perpendicular to and surround the perimeter of the receiving wall. The cells are mounted such that, in one embodiment, the substrate surface serves as a sixth side or closure for each cell. Each cell has inside of it a plate, termed the front plate, which is parallel to and in contact with substantially all of the insides surface of the receiving wall. The balance of each cell is completely filled with a projectile-abrading material consisting of glass and a ceramic material and, in certain embodiments, a polymeric material

  8. Breaking the glass ceiling.

    Science.gov (United States)

    Lazarus, A

    1997-03-01

    The glass ceiling is a form of organizational bias and discrimination that prevents qualified professionals from achieving positions of top governance and leadership. This article examines glass ceiling barriers that keep physicians from the upper reaches of management. While these factors apply mainly to women and minority physicians in academia, and are attributable to sexual harassment and discrimination, physicians as a class are frequently denied executive management positions. Such denial results from inadequate preparation for a career in health care administration. Important issues in the professional development of physician executives include mentoring, training and education, administrative experience, and cultural and personality factors. All of those must be considered when making the transition from medicine to management.

  9. HLW immobilization in glass

    International Nuclear Information System (INIS)

    Leroy, P.; Jacquet-Francillon, N.; Runge, S.

    1992-01-01

    The immobilization of High Level Waste in glass in France is a long history which started as early as in the 1950's. More than 30 years of Research and Development have been invested in that field. Two industrial facilities are operating (AVM and R7) and a third one (T7), under cold testing, is planned to start active operation in the mid-92. While vitrification has been demonstrated to be an industrially mastered process, the question of the quality of the final waste product, i.e. the HLW glass, must be addressed. The scope of the present paper is to focus on the latter point from both standpoints of the R and D and of the industrial reality

  10. Nuclear traces in glass

    International Nuclear Information System (INIS)

    Segovia A, M. de N.

    1978-01-01

    The charged particles produce, in dielectric materials, physical and chemical effects which make evident the damaged zone along the trajectory of the particle. This damaged zone is known as the latent trace. The latent traces can be enlarged by an etching of the detector material. This treatment attacks preferently the zones of the material where the charged particles have penetrated, producing concavities which can be observed through a low magnification optical microscope. These concavities are known as developed traces. In this work we describe the glass characteristics as a detector of the fission fragments traces. In the first chapter we present a summary of the existing basic theories to explain the formation of traces in solids. In the second chapter we describe the etching method used for the traces development. In the following chapters we determine some chatacteristics of the traces formed on the glass, such as: the development optimum time; the diameter variation of the traces and their density according to the temperature variation of the detector; the glass response to a radiation more penetrating than that of the fission fragments; the distribution of the developed traces and the existing relation between this ditribution and the fission fragments of 252 Cf energies. The method which has been used is simple and cheap and can be utilized in laboratories whose resources are limited. The commercial glass which has been employed allows the registration of the fission fragments and subsequently the realization of experiments which involve the counting of the traces as well as the identification of particles. (author)

  11. Amorphous gauge glass theory

    International Nuclear Information System (INIS)

    Nielsen, H.B.; Bennett, D.L.

    1987-08-01

    Assuming that a lattice gauge theory describes a fundamental attribute of Nature, it should be pointed out that such a theory in the form of a gauge glass is a weaker assumption than a regular lattice model in as much as it is not constrained by the imposition of translational invariance; translational invariance is, however, recovered approximately in the long wavelength or continuum limit. (orig./WL)

  12. Diffusion in glass

    Energy Technology Data Exchange (ETDEWEB)

    Mubarak, A S

    1991-12-31

    Rutherford backscattering spectromertry technique (RBS) was used to characterize and investigate the depth distribution profiles of Ca-impurities of Ca-doped soda-time glass. The purposely added Ca-impurities were introduced inti the glass matrix by a normal ion exchange diffusion process. The measurements and analysis were performed using 2 MeV {sup 2}He{sup +} ions supplied from the University of Jordan Van de Graff acceierator (JOVAG). The normalized concetration versus depth profile distributions for the Ca-imourities were determined, both theoretically and experimentally. The theoretical treatment was carried out by setting up and soiving the diffusion equation under the conditions of the experiment. The resulting profiles are characterized by a compiementary error function. the theoretical treeatment was extended to include the various methods of enhancing the diffusion process, e.g. using an electric field. The diffusion coefficient, assumed constant, of the Ca-impurities exchanged in the soda-lime glass was determined to be 1.23 x 10{sup 13} cm{sup 2}/s. A comparison between theoretically and experimentally determined profiles is made and commented at, where several conclusions are drawn and suggestions for future work are mentioned. (author). 38 refs., 21 figs., 10 Tabs.

  13. Radiation shielding glass

    International Nuclear Information System (INIS)

    Kido, Kazuhiro; Ueda, Hajime.

    1997-01-01

    It was found that a glass composition comprising, as essential ingredients, SiO 2 , PbO, Gd 2 O 3 and alkali metal oxides can provide a shielding performance against electromagnetic waves, charged particles and neutrons. The present invention provides radiation shielding glass containing at least from 16 to 46wt% of SiO 2 , from 47 to 75wt% of PbO, from 1 to 10wt% of Gd 2 O 3 , from 0 to 3wt% of Li 2 O, from 0 to 7wt% of Na 2 O, from 0 to 7wt% of K 2 O provided that Li 2 O + Na 2 O + K 2 O is from 1 to 10wt%, B 2 O 3 is from 0 to 10wt%, CeO 2 is from 0 to 3wt%, As 2 O 3 is from 0 to 1wt% and Sb 2 O 3 is from 0 to 1wt%. Since the glass can shield electromagnetic waves, charged particles and neutrons simultaneously, radiation shielding windows can be designed and manufactured at a reduced thickness and by less constitutional numbers in a circumstance where they are present altogether. (T.M.)

  14. Helium behaviour in nuclear glasses

    International Nuclear Information System (INIS)

    Fares, T.

    2011-01-01

    The present thesis focuses on the study of helium behavior in R7T7 nuclear waste glass. Helium is generated by the minor actinides alpha decays incorporated in the glass matrix. Therefore, four types of materials were used in this work. These are non radioactive R7T7 glasses saturated with helium under pressure, glasses implanted with 3 He + ions, glasses doped with curium and glasses irradiated in nuclear reactor. The study of helium solubility in saturated R7T7 glass has shown that helium atoms are inserted in the glass free volume. The results yielded a solubility of about 10 16 at. cm -3 atm. -1 . The incorporation limit of helium in this type of glass has been determined; its value amounted to about 2*10 21 at. cm -3 , corresponding to 2.5 at.%. Diffusion studies have shown that the helium migration is controlled by the single population dissolved in the glass free volume. An ideal diffusion model was used to simulate the helium release data which allowed to determine diffusion coefficients obeying to the following Arrhenius law: D = D 0 exp(-E a /kBT), where D 0 = 2.2*10 -2 and 5.4*10 -3 cm 2 s -1 and E a = 0.61 eV for the helium saturated and the curium doped glass respectively. These results reflect a thermally activated diffusion mechanism which seems to be not influenced by the glass radiation damage and helium concentrations studied in the present work (up to 8*10 19 at. g -1 , corresponding to 0.1 at.%). Characterizations of the macroscopic, structural and microstructural properties of glasses irradiated in nuclear reactor did not reveal any impact associated with the presence of helium at high concentrations. The observed modifications i.e. a swelling of 0.7 %, a decrease in hardness by 38 %, an increase between 8 and 34 % of the fracture toughness and a stabilization of the glass structure under irradiation, were attributed to the glass nuclear damage induced by the irradiation in reactor. Characterizations by SEM and TEM of R7T7 glasses implanted

  15. Defining the Glass Composition Limits for SRS Contaminated Soils

    International Nuclear Information System (INIS)

    Cicero, C.A.; Bickford, D.F.; Crews, W.O.

    1995-01-01

    Contaminated soil resulting from the excavation, repair, and decommissioning of facilities located at the Savannah River Site (SRS) is currently being disposed of by shallow land burial or is being stored when considered only hazardous. Vitrification of this waste is being investigated, since it will bind the hazardous and radioactive species in a stable and durable glass matrix, which will reduce the risk of ground water contamination. However, the composition limits for producing durable glass have to be determined before the technology can be applied. Glass compositions, consisting of SRS soil and glass forming additives, were tested on a crucible-scale in three ternary phase systems. Nine different glass compositions were produced, with waste loadings ranging from 43 to 58 weight percent. These were characterized using varoius chemical methods and tested for durability in both alkaline and acidic environments. All nine performed well in alkaline environments, but only three met the strictest criteria for the acidic environment tests. Although the glasses did not meet all of the limits for the acidic tests, the test was performed on very conservative size samples, so the results were also conservative. Therefore, enough evidence was found to provide proof that SRS soil can be vitrified in a durable glass matrix

  16. Analytical Plan for Roman Glasses

    Energy Technology Data Exchange (ETDEWEB)

    Strachan, Denis M.; Buck, Edgar C.; Mueller, Karl T.; Schwantes, Jon M.; Olszta, Matthew J.; Thevuthasan, Suntharampillai; Heeren, Ronald M.

    2011-01-01

    Roman glasses that have been in the sea or underground for about 1800 years can serve as the independent “experiment” that is needed for validation of codes and models that are used in performance assessment. Two sets of Roman-era glasses have been obtained for this purpose. One set comes from the sunken vessel the Iulia Felix; the second from recently excavated glasses from a Roman villa in Aquileia, Italy. The specimens contain glass artifacts and attached sediment or soil. In the case of the Iulia Felix glasses quite a lot of analytical work has been completed at the University of Padova, but from an archaeological perspective. The glasses from Aquileia have not been so carefully analyzed, but they are similar to other Roman glasses. Both glass and sediment or soil need to be analyzed and are the subject of this analytical plan. The glasses need to be analyzed with the goal of validating the model used to describe glass dissolution. The sediment and soil need to be analyzed to determine the profile of elements released from the glass. This latter need represents a significant analytical challenge because of the trace quantities that need to be analyzed. Both pieces of information will yield important information useful in the validation of the glass dissolution model and the chemical transport code(s) used to determine the migration of elements once released from the glass. In this plan, we outline the analytical techniques that should be useful in obtaining the needed information and suggest a useful starting point for this analytical effort.

  17. Bioactive glass in tissue engineering

    Science.gov (United States)

    Rahaman, Mohamed N.; Day, Delbert E.; Bal, B. Sonny; Fu, Qiang; Jung, Steven B.; Bonewald, Lynda F.; Tomsia, Antoni P.

    2011-01-01

    This review focuses on recent advances in the development and use of bioactive glass for tissue engineering applications. Despite its inherent brittleness, bioactive glass has several appealing characteristics as a scaffold material for bone tissue engineering. New bioactive glasses based on borate and borosilicate compositions have shown the ability to enhance new bone formation when compared to silicate bioactive glass. Borate-based bioactive glasses also have controllable degradation rates, so the degradation of the bioactive glass implant can be more closely matched to the rate of new bone formation. Bioactive glasses can be doped with trace quantities of elements such as Cu, Zn and Sr, which are known to be beneficial for healthy bone growth. In addition to the new bioactive glasses, recent advances in biomaterials processing have resulted in the creation of scaffold architectures with a range of mechanical properties suitable for the substitution of loaded as well as non-loaded bone. While bioactive glass has been extensively investigated for bone repair, there has been relatively little research on the application of bioactive glass to the repair of soft tissues. However, recent work has shown the ability of bioactive glass to promote angiogenesis, which is critical to numerous applications in tissue regeneration, such as neovascularization for bone regeneration and the healing of soft tissue wounds. Bioactive glass has also been shown to enhance neocartilage formation during in vitro culture of chondrocyte-seeded hydrogels, and to serve as a subchondral substrate for tissue-engineered osteochondral constructs. Methods used to manipulate the structure and performance of bioactive glass in these tissue engineering applications are analyzed. PMID:21421084

  18. Research on Glass Frit Deposition Based on the Electrospray Process

    Directory of Open Access Journals (Sweden)

    Yifang Liu

    2016-04-01

    Full Text Available In this paper, the electrospray technology is used to easily deposit the glass frit into patterns at a micro-scale level. First, far-field electrospray process was carried out with a mixture of glass frit in the presence of ethanol. A uniform, smooth, and dense glass frit film was obtained, verifying that the electrospray technology was feasible. Then, the distance between the nozzle and the substrate was reduced to 2 mm to carry out near-field electrospray. The experimental process was improved by setting the range of the feed rate of the substrate to match both the concentration and the flow rate of the solution. Spray diameter could be less at the voltage of 2 kV, in which the glass frit film was expected to reach the minimum line width. A uniform glass frit film with a line width within the range of 400–500 μm was prepared when the speed of the substrate was 25 mm/s. It indicates that electrospray is an efficient technique for the patterned deposition of glass frit in wafer-level hermetic encapsulation.

  19. Archaeological and historical glasses: A bibliometric study

    Directory of Open Access Journals (Sweden)

    Villegas, M. A.

    2009-08-01

    Full Text Available Glass is one of the materials more widely developed throughout History. In the last decades, it has been stated a growing demand in the application of chemical-physical techniques to obtain more detailed information on technology and production of glasses in past societies. This research field lies within the domain of archaeometry. Results of a bibliometric study undertaken on 201 scientific articles published on ancient and historical glasses between 1987 and 2008 are presented in this paper. The study was carried out with the aim to address the evolution of glass archaeometric investigations in the last 20 years. Date of publication, journal and article types, topic, glass typology, analytical techniques, origin country of authors, and geographic location of samples were analyzed in this study, among other parameters. Resulting data indicate that archaeometric research on glasses has experienced an exponential growth in the period 2000-2008. Roman and Medieval glasses have been the materials more frequently investigated.

    El vidrio es uno de los materiales que más se ha utilizado a lo largo de la historia. En las últimas décadas se ha producido un aumento en la aplicación de técnicas químico-físicas para estudiar de forma más detallada la tecnología y producción de vidrio en las sociedades del pasado. Este tipo de investigación se encuadra en la disciplina conocida como Arqueometría. En este trabajo se ha realizado un estudio bibliométrico que abarca 201 artículos científicos sobre vidrio arqueológico e histórico publicados entre 1987 y 2008. El estudio se llevó a cabo con el objetivo de conocer la evolución de las investigaciones arqueométricas sobre vidrio en los últimos 21 años. Los parámetros analizados en este estudio bibliométrico fueron: fecha de publicación, tipo de revista y de artículo, tema, tipología del vidrio, técnicas analíticas, origen de los autores y localización geográfica de las

  20. On the Evaluation of the Mechanical Behaviour of Structural Glass Elements

    OpenAIRE

    Costa, S.; Miranda, M.; Varum, H.; Teixeira-Dias, F.

    2005-01-01

    Glass can be considered to be a high-technology engineering material with a multifunctional potential for structural applications. However, the conventional approach to the use of glass is often based only on its proper-ties of transparency and isolation. It is thus highly appropriate and necessary to study the mechanical behaviour of this material and to develop adequate methods and models leading to its characterisation. It is evident that the great potential of growth for structural glass ...

  1. On-site Raman analysis of ancient glasses and stained-glass windows: modeling, procedure, lixiviation and characterization

    International Nuclear Information System (INIS)

    Tournie, Aurelie

    2009-01-01

    The aim of this study is to estimate the possibilities of Raman spectrometry to identify on site old glasses (objects, stained-glass windows...) whatever been their preserving state. The efficiency of Raman analysis depends strongly of the structural organization of glasses and then of their technological history. In order to differentiate the great silicate family compounds from their Raman analysis, a methodology has been developed: data acquisition and spectrum processing, Raman parameters extraction and classification of these glasses. This approach has then been extended to crystalline phosphates and silicates. Beforehand, correlations between crystallo-chemical parameters and vibrational signatures have been considered. The old glasses are often recovered by a corrosion layer which induces important changes on the Raman signature. Four layers have been identified and characterized by a multi-scale study: leached porous layer, transition zone, cracked zone and sound glass. The results show that only an analytical chemistry approach (databases of Raman signatures) is not sufficient and that a solid chemistry and physics approach is required to explain the spectral answers and extract the relevant parameters from glasses preserving [fr

  2. NEW ERBIUM DOPED ANTIMONY GLASSES FOR LASER AND GLASS AMPLIFICATION

    Directory of Open Access Journals (Sweden)

    B. Tioua

    2015-07-01

    Full Text Available Because of the special spectroscopic properties of the rare earth ions, rare earth doped glasses are widely used in bulk and fiber lasers or amplifiers. The modelling of lasers and searching for new laser transitions require a precise knowledge of the spectroscopic properties of rare earth ions in different host glasses. In this poster will offer new doped erbium glasses synthesized in silicate crucibles were obtained in the combination Sb2O3-WO3-Na2O. Several properties are measured and correlated with glass compositions. The absorption spectral studies have been performed for erbium doped glasses. The intensities of various absorption bands of the doped glasses are measured and the Judd-Ofelt parameters have been computed. From the theory of Judd-Ofelt, various radiative properties, such as transition probability, branching ratio and radiative life time for various emission levels of these doped glasses have been determined and reported. These results confirm the ability of antimony glasses for glass amplification.

  3. Mechanical failure and glass transition in metallic glasses

    International Nuclear Information System (INIS)

    Egami, T.

    2011-01-01

    Research highlights: → We review the recent results of molecular dynamics simulations on metallic glasses. → They show the equivalence of mechanical failure and glass transition. → We discuss the microscopic mechanism behind this equivalence. → We show that the density of defects in metallic glasses is as high as a quarter. → Our concepts about the defect state in glasses need to be changed. - Abstract: The current majority view on the phenomenon of mechanical failure in metallic glasses appears to be that it is caused by the activity of some structural defects, such as free-volumes or shear transformation zones, and the concentration of such defects is small, only of the order of 1%. However, the recent results compel us to revise this view. Through molecular dynamics simulation it has been shown that mechanical failure is the stress-induced glass transition. According to our theory the concentration of the liquid-like sites (defects) is well over 20% at the glass transition. We suggest that the defect concentration in metallic glasses is actually very high, and percolation of such defects causes atomic avalanche and mechanical failure. In this article we discuss the glass transition, mechanical failure and viscosity from such a point of view.

  4. Influence of Glass Property Restrictions on Hanford HLW Glass Volume

    International Nuclear Information System (INIS)

    Kim, Dong-Sang; Vienna, John D.

    2001-01-01

    A systematic evaluation of Hanford High-Level Waste (HLW) loading in alkali-alumino-borosilicate glasses was performed. The waste feed compositions used were obtained from current tank waste composition estimates, Hanford's baseline retrieval sequence, and pretreatment processes. The waste feeds were sorted into groups of like composition by cluster analysis. Glass composition optimization was performed on each cluster to meet property and composition constraints while maximizing waste loading. Glass properties were estimated using property models developed for Hanford HLW glasses. The impacts of many constraints on the volume of HLW glass to be produced at Hanford were evaluated. The liquidus temperature, melting temperature, chromium concentration, formation of multiple phases on cooling, and product consistency test response requirements for the glass were varied one- or many-at-a-time and the resultant glass volume was calculated. This study shows clearly that the allowance of crystalline phases in the glass melter can significantly decrease the volume of HLW glass to be produced at Hanford.

  5. Intrinsic luminescence of un-doped borate glasses

    International Nuclear Information System (INIS)

    Kindrat, I.I.; Padlyak, B.V.; Drzewiecki, A.

    2017-01-01

    The nature of intrinsic luminescence in the un-doped borate glasses of different compositions has been investigated using spectroscopic methods including photoluminescence, optical absorption, electron paramagnetic resonance (EPR), and thermally stimulated luminescence (TSL). The un-doped borate glasses with Li 2 B 4 O 7 , LiKB 4 O 7 , CaB 4 O 7 , and LiCaBO 3 basic compositions were obtained from corresponding polycrystalline compounds in the air with usage the standard technology of glasses. Three different broad emission bands in the UV–Visible spectral range have been observed under different wavelength of photoexcitation. The luminescence kinetics of the observed emission bands have been registered and analysed. The nature and possible mechanisms of the intrinsic luminescence in the investigated borate glasses are considered and discussed based on the obtained results and referenced data.

  6. The Potential of Thermophotovoltaic Heat Recovery for the Glass Industry

    Science.gov (United States)

    Bauer, T.; Forbes, I.; Penlington, R.; Pearsall, N.

    2003-01-01

    This paper aims to provide an overview of heat recovery by thermophotovoltaics (TPV) from industrial high-temperature processes and uses the glass industry in the UK as an example. The work is part of a study of potential industrial applications of TPV in the UK being carried out by the Northumbria Photovoltaics Applications Centre. The paper reviews the relevant facts about TPV technology and the glass industry and identifies locations of use for TPV. These are assessed in terms of glass sector, furnace type, process temperature, impact on the existing process, power scale and development effort of TPV. Knowledge of these factors should contribute to the design of an optimum TPV system. The paper estimates possible energy savings and reductions of CO2 emissions using TPV in the glass industry.

  7. PREPARATION AND CHARACTERIZATION OF POROUS WALLED HOLLOW GLASS MICROSPHERES

    Energy Technology Data Exchange (ETDEWEB)

    Raszewski, F; Erich Hansen, E; Ray Schumacher, R; David Peeler, D

    2008-04-21

    Porous-walled hollow glass microspheres (PWHGMs) of a modified alkali borosilicate composition have been successfully fabricated by combining the technology of producing hollow glass microspheres (HGMs) with the knowledge associated with porous glasses. HGMs are first formed by a powder glass--flame process, which are then transformed to PWHGMs by heat treatment and subsequent treatment in acid. Pore diameter and pore volume are most influenced by heat treatment temperature. Pore diameter is increased by a factor of 10 when samples are heat treated prior to acid leaching; 100 {angstrom} in non-heat treated samples to 1000 {angstrom} in samples heat treated at 600 C for 8 hours. As heat treatment time is increased from 8 hours to 24 hours there is a slight shift increase in pore diameter and little or no change in pore volume.

  8. Multi-megajoule Nd: glass fusion laser design

    International Nuclear Information System (INIS)

    Manes, K.R.

    1986-01-01

    New technologies make multi-megajoule glass lasers economically feasible. Laser architectures using harmonic switchout, target plane holographic injection, phase conjugation, continuous apodization and higher amplifier efficiencies have been devised. A plan for a multi-megajoule laser which can be built for an acceptable cost relies on manufacturing economies of scale and the demonstration of the new technologies presented here. These include continuous pour glass production, rapid harmonic crystal growth, switching of large blocks of power using larger capcaitors packed more economically and by using large identical parts counts

  9. Glass optimization for vitrification of Hanford Site low-level tank waste

    International Nuclear Information System (INIS)

    Feng, X.; Hrma, P.R.; Westsik, J.H. Jr.

    1996-03-01

    The radioactive defense wastes stored in 177 underground single-shell tanks (SST) and double-shell tanks (DST) at the Hanford Site will be separated into low-level and high-level fractions. One technology activity underway at PNNL is the development of glass formulations for the immobilization of the low-level tank wastes. A glass formulation strategy has been developed that describes development approaches to optimize glass compositions prior to the projected LLW vitrification facility start-up in 2005. Implementation of this strategy requires testing of glass formulations spanning a number of waste loadings, compositions, and additives over the range of expected waste compositions. The resulting glasses will then be characterized and compared to processing and performance specifications yet to be developed. This report documents the glass formulation work conducted at PNL in fiscal years 1994 and 1995 including glass formulation optimization, minor component impacts evaluation, Phase 1 and Phase 2 melter vendor glass development, liquidus temperature and crystallization kinetics determination. This report also summarizes relevant work at PNNL on high-iron glasses for Hanford tank wastes conducted through the Mixed Waste Integrated Program and work at Savannah River Technology Center to optimize glass formulations using a Plackett-Burnam experimental design

  10. Luminescence properties of the Sm-doped borate glasses

    International Nuclear Information System (INIS)

    Kindrat, I.I.; Padlyak, B.V.; Drzewiecki, A.

    2015-01-01

    The optical absorption and photoluminescence (emission and excitation) spectra as well as decay kinetics of a series of the Sm-doped glasses with Li 2 B 4 O 7 , LiKB 4 O 7 , CaB 4 O 7 , and LiCaBO 3 compositions were investigated and analysed. The Li 2 B 4 O 7 :Sm, LiKB 4 O 7 :Sm, CaB 4 O 7 :Sm, and LiCaBO 3 :Sm glasses of high optical quality have been obtained from the corresponding polycrystalline compounds in the air atmosphere, using a standard glass technology. On the basis of electron paramagnetic resonance (EPR) and optical spectra analysis it was shown that the samarium impurity is incorporated into the glass network as Sm 3+ (4f 5 , 6 H 5/2 ) ions, exclusively. All observed 4f – 4f transitions of the Sm 3+ centres in the optical absorption and luminescence spectra of the investigated glasses are identified. Most intense emission band of the Sm 3+ ions peaked about 598 nm ( 4 G 5/2 → 6 H 7/2 transition) is characterised by a single exponential decay with typical lifetime values, which depend on the basic glass composition as well as concentration and local structure of the Sm 3+ luminescence centres. The quantum efficiency has been evaluated for observed transitions of the Sm 3+ centres using obtained experimental lifetimes and radiative lifetimes calculated by Judd–Ofelt theory. The calculated high quantum efficiencies and measured quantum yields of luminescence show that the investigated borate glasses are perspective luminescence materials. Energy transfer from the Ce 3+ non-controlled impurity and intrinsic luminescence centres to the Sm 3+ centres has been observed. Peculiarities of the Sm 3+ local structure in the network of investigated glasses have been discussed based on the obtained spectroscopic results and structural data. - Highlights: • The Sm-doped Li 2 B 4 O 7 , LiKB 4 O 7 , CaB 4 O 7 , and LiCaBO 3 glasses of high quality were obtained. • EPR, optical absorption and luminescence spectra of Sm 3+ ions in obtained glasses were

  11. Glass - the challenge for the 21st century

    Directory of Open Access Journals (Sweden)

    Beerkens, R.

    2008-12-01

    Full Text Available The International Commission on Glass (ICG invited international experts to take a look into the future of glass. The ICG organized a Top-level expert meeting on the “Future of Advanced Materials and Glass-Melting Technologies for the year 2020” in Brig (Switzerland, In March 2008, financed by the European Union within the framework of the EFONGA project. Two expert workshops were held in parallel and covered the topics “Advances in materials: glasses, glass-ceramics, ceramics” as well as “Innovation in glass melting technology: revolution or evolution”. Three months later, the 9th ESG Conference along with the Annual Meeting of the ICG, hosted by the Slovak Glass Society, was held in June 2008 in Trenčín, Slovakia. The conference was intended to deal not only with the state-of-the art in the areas (glass science and technology today concerned, but also to address the questions of future developments, applications and challenges in glass science and technology. Special attention was paid to the future role of the ICG (International Commission on Glass.

    La Comisión Internacional del Vidrio (ICG organizó un encuentro de expertos en Brig, Suiza, en marzo de 2008 para discutir acerca del futuro del vidrio. El Workshop “Materiales futuros y avanzados y tecnologías para el año 2020”, fue financiado por la UE a través del proyecto EFONGA. Se celebraron dos sesiones paralelas que cubrieron una serie importante de temas, bajo los títulos de “Avances en materiales: vidrios, vitrocerámicos, cerámicos” e “Innovaciones en tecnologías de fusión de vidrio: revolución o evolución”. Tres meses más tarde, en Trencin, Eslovaquia, se celebró la 9ª conferencia de la Sociedad Europea del Vidrio (ESG junto con la reunión anual de la ICG. La conferencia no solo trató el estado del arte en ciencia y tecnología del vidrio sino que abordó las cuestiones clave de futuros desarrollos, aplicaciones y desafíos del sector

  12. Analysis of glass fibre sizing

    DEFF Research Database (Denmark)

    Petersen, Helga Nørgaard; Kusano, Yukihiro; Brøndsted, Povl

    2014-01-01

    Glass fibre reinforced polymer composites are widely used for industrial and engineering applications which include construction, aerospace, automotive and wind energy industry. During the manufacturing glass fibres, they are surface-treated with an aqueous solution. This process and the treated...... surfaces are called sizing. The sizing influences the properties of the interface between fibres and a matrix, and subsequently affects mechanical properties of composites. In this work the sizing of commercially available glass fibres was analysed so as to study the composition and chemical structures....... Soxhlet extraction was used to extract components of the sizing from the glass fibres. The glass fibres, their extracts and coated glass plates were analysed by Thermo-Gravimetric Analysis combined with a mass spectrometer (TGA-MS), and Attenuated Total Reflectance Fourier Transform Infrared (ATR...

  13. Low Thermal Expansion Glass Ceramics

    CERN Document Server

    Bach, Hans

    2005-01-01

    This book appears in the authoritative series reporting the international research and development activities conducted by the Schott group of companies. This series provides an overview of Schott's activities for scientists, engineers, and managers from all branches of industry worldwide in which glasses and glass ceramics are of interest. Each volume begins with a chapter providing a general idea of the current problems, results, and trends relating to the subjects treated. This new extended edition describes the fundamental principles, the manufacturing process, and applications of low thermal expansion glass ceramics. The composition, structure, and stability of polycrystalline materials having a low thermal expansion are described, and it is shown how low thermal expansion glass ceramics can be manufactured from appropriately chosen glass compositions. Examples illustrate the formation of this type of glass ceramic by utilizing normal production processes together with controlled crystallization. Thus g...

  14. Electronic structure of metallic glasses

    International Nuclear Information System (INIS)

    Oelhafen, P.; Lapka, R.; Gubler, U.; Krieg, J.; DasGupta, A.; Guentherodt, H.J.; Mizoguchi, T.; Hague, C.; Kuebler, J.; Nagel, S.R.

    1981-01-01

    This paper is organized in six sections and deals with (1) the glassy transition metal alloys, their d-band structure, the d-band shifts on alloying and their relation to the alloy heat of formation (ΔH) and the glass forming ability, (2) the glass to crystal phase transition viewed by valence band spectroscopy, (3) band structure calculations, (4) metallic glasses prepared by laser glazing, (5) glassy normal metal alloys, and (6) glassy hydrides

  15. PLZT capacitor on glass substrate

    Science.gov (United States)

    Fairchild, M. Ray; Taylor, Ralph S.; Berlin, Carl W.; Wong, Celine W. K.; Ma, Beihai; Balachandran, Uthamalingam

    2016-01-05

    A lead-lanthanum-zirconium-titanate (PLZT) capacitor on a substrate formed of glass. The first metallization layer is deposited on a top side of the substrate to form a first electrode. The dielectric layer of PLZT is deposited over the first metallization layer. The second metallization layer deposited over the dielectric layer to form a second electrode. The glass substrate is advantageous as glass is compatible with an annealing process used to form the capacitor.

  16. Evaluation of a Novel Temperature Sensing Probe for Monitoring and Controlling Glass Temperature in a Joule-Heated Glass Melter

    International Nuclear Information System (INIS)

    Watkins, A. D.; Musick, C. A.; Cannon, C.; Carlson, N. M.; Mullenix, P.D.; Tillotson, R. D.

    1999-01-01

    A self-verifying temperature sensor that employs advanced contact thermocouple probe technology was tested in a laboratory-scale, joule-heated, refractory-lined glass melter used for radioactive waste vitrification. The novel temperature probe monitors melt temperature at any given level of the melt chamber. The data acquisition system provides the real-time temperature for molten glass. Test results indicate that the self-verifying sensor is more accurate and reliable than classic platinum/rhodium thermocouple and sheath assemblies. The results of this test are reported as well as enhancements being made to the temperature probe. To obtain more reliable temperature measurements of the molten glass for improving production efficiency and ensuring consistent glass properties, optical sensing was reviewed for application in a high temperature environment

  17. Dense and porous glass and glass ceramics from natural and waste raw materials

    OpenAIRE

    Marangoni, Mauro

    2016-01-01

    The main goal of the herewith presented research activities was to develop innovative processes and materials for building applications adapted to the needs of Saudi Arabia according to the information exchanged with the partners from KACST (King Abdulaziz City of Science and Technology). The research activity focused on the development of a wide range of ceramic components via sinter-crystallization of glasses produced from waste (fly ash, slag, sludge) with or without the addition of vit...

  18. Glass corrosion in natural environments

    Science.gov (United States)

    Thorpe, Arthur N.; Barkatt, Aaron

    1992-01-01

    Experiments carried out during the progress period are summarized. Experiments carried out involving glass samples exposed to solutions of Tris have shown the appearance of 'spikes' upon monitoring glass dissolution as a function of time. The periodic 'spikes' observed in Tris-based media were interpreted in terms of cracking due to excessive stress in the surface region of the glass. Studies of the interactions of silicate glasses with metal ions in buffered media were extended to systems containing Al. Caps buffer was used to establish the pH. The procedures used are described and the results are given. Preliminary studies were initiated as to the feasibility of adding a slowly dissolving solid compound of the additive to the glass-water system to maintain a supply of dissolved additive. It appears that several magnesium compounds have a suitable combination of solubility and affinity towards silicate glass surfaces to have a pronounced retarding effect on the extraction of uranium from the glass. These preliminary findings raise the possibility that introducing a magnesium source into geologic repositories for nuclear waste glass in the form of a sparingly soluble Mg-based backfill material may cause a substantial reduction in the extent of long-term glass corrosion. The studies described also provide mechanistic understanding of the roles of various metal solutes in the leachant. Such understanding forms the basis for developing long-term predictions of nuclear waste glass durability under repository conditions. From what is known about natural highly reduced glasses such as tektites, it is clear that iron is dissolved as ferrous iron with little or no ferric iron. The reducing conditions were high enough to cause metallic iron to exsolve out of the glass in the form of submicroscopic spherules. As the nuclear waste glass is much less reduced, a study was initiated on other natural glasses in addition to the nuclear waste glass. Extensive measurements were

  19. Crystallization of copper metaphosphate glass

    Science.gov (United States)

    Bae, Byeong-Soo; Weinberg, Michael C.

    1993-01-01

    The effect of the valence state of copper in copper metaphosphate glass on the crystallization behavior and glass transition temperature has been investigated. The crystallization of copper metaphosphate is initiated from the surface and its main crystalline phase is copper metaphosphate (Cu(PO)3),independent of the (Cu sup 2+)/(Cu(total)). However, the crystal morphology, the relative crystallization rates, and their temperature dependences are affected by the (Cu sup 2+)/(Cu (total)) ratio in the glass. On the other hand, the totally oxidized glass crystallizes from all over the surface. The relative crystallization rate of the reduced glass to the totally oxidized glass is large at low temperature, but small at high temperature. The glass transition temperature of the glass increases as the (Cu sup 2+)/(Cu(total)) ratio is raised. It is also found that the atmosphere used during heat treatment does not influence the crystallization of the reduced glass, except for the formation of a very thin CuO surface layer when heated in air.

  20. Fabrication of Radiation Shielding Glass

    International Nuclear Information System (INIS)

    Tavichai, Nattaya; Pormsean, Suriyont; Dararutana, Pisutti; Sirikulrat, Narin

    2003-06-01

    In this work, lead glass doped with 50%, 55%,60%, 65%, and 70% w/w Pb 3 O 4 . After that, glass mixtures were melt at 1,250οC with 4 hours soaking time. Molten glass was shaped by mould casting technique then annealed at 700οC and cooled down to room temperature. It was found that the glass with 60%w/w Pb 3 O 4 show maximum absorption coefficient of about 0.383 cm -1 with I-131 at energy 364 keV. The observed refractive indices of the samples range between 1.5908 to 1.5922

  1. Compositional threshold for Nuclear Waste Glass Durability

    International Nuclear Information System (INIS)

    Kruger, Albert A.; Farooqi, Rahmatullah; Hrma, Pavel R.

    2013-01-01

    Within the composition space of glasses, a distinct threshold appears to exist that separates 'good' glasses, i.e., those which are sufficiently durable, from 'bad' glasses of a low durability. The objective of our research is to clarify the origin of this threshold by exploring the relationship between glass composition, glass structure and chemical durability around the threshold region

  2. Transforming Polar Research with Google Glass Augmented Reality (Invited)

    Science.gov (United States)

    Ruthkoski, T.

    2013-12-01

    Augmented reality is a new technology with the potential to accelerate the advancement of science, particularly in geophysical research. Augmented reality is defined as a live, direct or indirect, view of a physical, real-world environment whose elements are augmented (or supplemented) by computer-generated sensory input such as sound, video, graphics or GPS data. When paired with advanced computing techniques on cloud resources, augmented reality has the potential to improve data collection techniques, visualizations, as well as in-situ analysis for many areas of research. Google is currently a pioneer of augmented reality technology and has released beta versions of their wearable computing device, Google Glass, to a select number of developers and beta testers. This community of 'Glass Explorers' is the vehicle from which Google shapes the future of their augmented reality device. Example applications of Google Glass in geophysical research range from use as a data gathering interface in harsh climates to an on-site visualization and analysis tool. Early participation in the shaping of the Google Glass device is an opportunity for researchers to tailor this new technology to their specific needs. The purpose of this presentation is to provide geophysical researchers with a hands-on first look at Google Glass and its potential as a scientific tool. Attendees will be given an overview of the technical specifications as well as a live demonstration of the device. Potential applications to geophysical research in polar regions will be the primary focus. The presentation will conclude with an open call to participate, during which attendees may indicate interest in developing projects that integrate Google Glass into their research. Application Mockup: Penguin Counter Google Glass Augmented Reality Device

  3. Recycling of inorganic waste in monolithic and cellular glass-based materials for structural and functional applications.

    Science.gov (United States)

    Rincón, Acacio; Marangoni, Mauro; Cetin, Suna; Bernardo, Enrico

    2016-07-01

    The stabilization of inorganic waste of various nature and origin, in glasses, has been a key strategy for environmental protection for the last decades. When properly formulated, glasses may retain many inorganic contaminants permanently, but it must be acknowledged that some criticism remains, mainly concerning costs and energy use. As a consequence, the sustainability of vitrification largely relies on the conversion of waste glasses into new, usable and marketable glass-based materials, in the form of monolithic and cellular glass-ceramics. The effective conversion in turn depends on the simultaneous control of both starting materials and manufacturing processes. While silica-rich waste favours the obtainment of glass, iron-rich wastes affect the functionalities, influencing the porosity in cellular glass-based materials as well as catalytic, magnetic, optical and electrical properties. Engineered formulations may lead to important reductions of processing times and temperatures, in the transformation of waste-derived glasses into glass-ceramics, or even bring interesting shortcuts. Direct sintering of wastes, combined with recycled glasses, as an example, has been proven as a valid low-cost alternative for glass-ceramic manufacturing, for wastes with limited hazardousness. The present paper is aimed at providing an up-to-date overview of the correlation between formulations, manufacturing technologies and properties of most recent waste-derived, glass-based materials. © 2016 The Authors. Journal of Chemical Technology & Biotechnology published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

  4. Restorative Glass : Reversible, discreet restoration using structural glass components

    NARCIS (Netherlands)

    Oikonomopoulou, F.; Bristogianni, T.; Barou, L.; van Hees, R.P.J.; Nijsse, R.; Veer, F.A.; Henk, Schellen; van Schijndel, Jos

    2016-01-01

    The application of structural glass as the principal material in restoration and conservation practices is a distinguishable, yet discreet approach. The transparency of glass allows the simultaneous perception of the monument at both its original and present condition, preserving its historical and

  5. New Erbium Doped Antimony Glasses for Laser and Glass ...

    African Journals Online (AJOL)

    Because of the special spectroscopic properties of the rare earth ions, rare earth doped glasses are widely used in bulk and fiber lasers or amplifiers. The modelling of lasers and searching for new laser transitions require a precise knowledge of the spectroscopic properties of rare earth ions in different host glasses.

  6. The glass sphinx: a massive stacked glass structure

    NARCIS (Netherlands)

    Bos, F.P.; Heijden, van der T.; Schreurs, P.; Bos, F.; Louter, C.; Nijsse, R.; Veer, F.

    The refurbishment of the Meuse river boulevard in Venlo instigated Scheuten Glass to donate a giant-sized, 6 metre high version of the stacked glass statue the Sphinx, which had originally been made as a 80 cm sculpture to commemorate the city's 650th anniversary back in 1993. Many hurdles had to be

  7. Structural Glass Beams with Embedded Glass Fibre Reinforcement

    NARCIS (Netherlands)

    Louter, P.C.; Leung, Calvin; Kolstein, M.H.; Vambersky, J.N.J.A.; Bos, Freek; Louter, Pieter Christiaan; Veer, Fred

    2010-01-01

    This paper investigates the possibilities of pultruded glass fibre rods as embedded reinforcement in SentryGlas (SG) laminated glass beams. To do so, a series of pullout tests, to investigate the bond strength of the rods to the laminate, and a series of beam tests, to investigate the post-breakage

  8. Glass-Industry of the Future; Industrial Partnerships: Advancing Energy and Environmental Goals

    International Nuclear Information System (INIS)

    DOE Office of Industrial Technologies

    2001-01-01

    This tri-fold brochure describe the partnering activities of the Office of Industrial Technologies' (OIT) Industries of the Future (IOF) for Glass. Information on what works for the Glass industry, examples of successful partnerships, and benefits of partnering with OIT are included

  9. Glass ceramic fibres

    International Nuclear Information System (INIS)

    Blaschek, O.; Paulitsch, P.

    1983-01-01

    As the correlation between mineralogical phase and chemical composition influences the type of application at different high temperatures, we studied the mineralogical phases of nine crystal glass fibres of the temperature ranges 1 150 degrees Celsius (Type 1), 1 400 degrees Celsius (Type 2) and 1 500 degrees Celsius (Type 3) at various high temperatures. The methods used in the study were microscopy, X-ray diffraction, transmission electron microscopy and differential thermal analysis. The investigations showed that mullite forms in glassy fibres of the system Al 2 O 3 . SiO 2 from 850 degrees Celsius to 990 degrees Celsius as 2/1 mullite; 3/2 mullite appeared above 990 degrees Celsius besides the crystallization of cristobalite. Fibres with 95 per cent Al 2 O 3 include the phases delta-Al 2 O 3 and alpha- Al 2 O 3 and mullite. Delta- Al 2 O 3 is stable up to 1 100 degrees Celsius. Alpha-Al 2 O 3 and mullite are only stable phases at 1 400 degrees Celsius. These different crystal phases influence the quality of the technical fibre according to the stability field of glass and crystals. This study has determined that it is possible to identify different fibres from different productions by their mineralogical compositions and to relate them to the high temperature application

  10. Spheroidization of glass powders for glass ionomer cements.

    Science.gov (United States)

    Gu, Y W; Yap, A U J; Cheang, P; Kumar, R

    2004-08-01

    Commercial angular glass powders were spheroidized using both the flame spraying and inductively coupled radio frequency plasma spraying techniques. Spherical powders with different particle size distributions were obtained after spheroidization. The effects of spherical glass powders on the mechanical properties of glass ionomer cements (GICs) were investigated. Results showed that the particle size distribution of the glass powders had a significant influence on the mechanical properties of GICs. Powders with a bimodal particle size distribution ensured a high packing density of glass ionomer cements, giving relatively high mechanical properties of GICs. GICs prepared by flame-spheroidized powders showed low strength values due to the loss of fine particles during flame spraying, leading to a low packing density and few metal ions reacting with polyacrylic acid to form cross-linking. GICs prepared by the nano-sized powders showed low strength because of the low bulk density of the nano-sized powders and hence low powder/liquid ratio of GICs.

  11. An acceptance model for smart glasses based tourism augmented reality

    Science.gov (United States)

    Obeidy, Waqas Khalid; Arshad, Haslina; Huang, Jiung Yao

    2017-10-01

    Recent mobile technologies have revolutionized the way people experience their environment. Although, there is only limited research on users' acceptance of AR in the cultural tourism context, previous researchers have explored the opportunities of using augmented reality (AR) in order to enhance user experience. Recent AR research lack works that integrates dimensions which are specific to cultural tourism and smart glass specific context. Hence, this work proposes an AR acceptance model in the context of cultural heritage tourism and smart glasses capable of performing augmented reality. Therefore, in this paper we aim to present an AR acceptance model to understand the AR usage behavior and visiting intention for tourists who use Smart Glass based AR at UNESCO cultural heritage destinations in Malaysia. Furthermore, this paper identifies information quality, technology readiness, visual appeal, and facilitating conditions as external variables and key factors influencing visitors' beliefs, attitudes and usage intention.

  12. Influence of the sintering temperature in the microstructure of foam glass obtained from waste glass

    International Nuclear Information System (INIS)

    Pokorny, A.; Vicenzi, J.; Bergmann, C.P.

    2012-01-01

    In this work, foam glasses were produced from grounded soda-lime glass and a synthetic carbonate, used as a foaming agent, with a similar composition to a dolomite lime, added with different oxides (SiO 2 , Al 2 O 3 , Fe 2 O 3 , MnO 2 , Na 2 O, K 2 O, TiO 2 and P 2 O 5 ). The objective was to evaluate the influence of sintering temperature on the properties and microstructure of the obtained material. In addition, the effect of addition of the oxides in the expansion of the ceramic bodies was evaluated. The ceramic bodies were formulated with 3 weight percent of synthetic carbonate, uniaxially pressed and fired within the temperature range from 700 deg C to 950 deg C, with a heating rate of 150K/h. The technological characterization of the ceramic bodies involved the determination of the volumetric expansion and their microstructures have been characterized by optical microscopy and scanning electron microscopy. The experimental results have shown foam glass can be obtained from grounded soda-lime glass, using synthetic carbonate, with the introduction of the different oxides, as foaming agent. (author)

  13. Laser cutting sandwich structure glass-silicon-glass wafer with laser induced thermal-crack propagation

    Science.gov (United States)

    Cai, Yecheng; Wang, Maolu; Zhang, Hongzhi; Yang, Lijun; Fu, Xihong; Wang, Yang

    2017-08-01

    Silicon-glass devices are widely used in IC industry, MEMS and solar energy system because of their reliability and simplicity of the manufacturing process. With the trend toward the wafer level chip scale package (WLCSP) technology, the suitable dicing method of silicon-glass bonded structure wafer has become necessary. In this paper, a combined experimental and computational approach is undertaken to investigate the feasibility of cutting the sandwich structure glass-silicon-glass (SGS) wafer with laser induced thermal-crack propagation (LITP) method. A 1064 nm semiconductor laser cutting system with double laser beams which could simultaneously irradiate on the top and bottom of the sandwich structure wafer has been designed. A mathematical model for describing the physical process of the interaction between laser and SGS wafer, which consists of two surface heating sources and two volumetric heating sources, has been established. The temperature stress distribution are simulated by using finite element method (FEM) analysis software ABAQUS. The crack propagation process is analyzed by using the J-integral method. In the FEM model, a stationary planar crack is embedded in the wafer and the J-integral values around the crack front edge are determined using the FEM. A verification experiment under typical parameters is conducted and the crack propagation profile on the fracture surface is examined by the optical microscope and explained from the stress distribution and J-integral value.

  14. Characterization and Morphological Properties of Glass Fiber ...

    African Journals Online (AJOL)

    PROF HORSFALL

    used as the matrix for the glass fibre-epoxy resin formation. E- Glass fibre ... reinforcement of composites, coatings of materials, and other ..... composite for the manufacture of glass-ceramic materials ... reinforced epoxy composites with carbon.

  15. Optical properties of alkaline earth borate glasses

    African Journals Online (AJOL)

    user

    The alkaline earth borate glasses containing heavy metal oxides show good solubility of rare-earth ions. Glasses containing PbO exhibit low glass transition temperature (Tg) and high ..... These oxygen ions carry a partial negative charge and.

  16. Optical properties of alkaline earth borate glasses

    African Journals Online (AJOL)

    user

    ... devices; radiation shields, surgical lasers and their glass ceramic counter ... Alkaline earth oxides improve glass forming capability while heavy metal ... reports on optical properties of MO-B2O3 glasses containing alkaline earth oxides.

  17. Properties of gallium lanthanum sulphide glass

    OpenAIRE

    Bastock, P.; Craig, C.; Khan, K.; Weatherby, E.; Yao, J.; Hewak, D.W.

    2015-01-01

    A series of gallium lanthanum sulphide (GLS) glasses has been studied in order to ascertain properties across the entire glass forming region. This is the first comprehensive study of GLS glass over a wide compositional range.

  18. Yttrium aluminum garnet coating on glass substrate

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Camila M.A.; Freiria, Gabriela S.; Faria, Emerson H. de; Rocha, Lucas A.; Ciuffi, Katia J.; Nassar, Eduardo J., E-mail: eduardo.nassar@unifran.edu.br

    2016-02-15

    Thin luminescent films have seen great technological advances and are applicable in the production of a variety of materials such as sensors, solar cells, photovoltaic devices, optical magnetic readers, waveguides, lasers, and recorders. Systems that contain yttrium aluminum oxide are important hosts for lanthanide ions and serve as light emission devices. This work deals with the deposition of yttrium aluminum garnet (YAG) film doped with Eu{sup 3+} onto a glass substrate obtained by the sol–gel methodology. Spray pyrolysis furnished the yttrium aluminum oxide powder. Dip-coating at a withdrawal speed of 10 mm min{sup −1} and evaporation led to deposition of different numbers of layers of the YAG:Eu{sup 3+} film onto the glass substrate from a YAG:Eu{sup 3+} powder suspension containing ethanol, water, and tetraethylorthosilicate. Photoluminescence, X-ray diffraction, scanning electron microscopy, and transparency measurements aided film characterization. The emission spectra revealed that the number of layers influenced film properties. - Highlights: • The spray pyrolysis was used to obtain luminescent YAG:Eu{sup 3+}. • The matrix was deposited as transparent films. • The YAG:Eu{sup 3+} was deposited by sol–gel process onto glass substrate.

  19. Spectroscopic enhancement in nanoparticles embedded glasses

    Energy Technology Data Exchange (ETDEWEB)

    Sahar, M. R., E-mail: mrahim057@gmail.com; Ghoshal, S. K., E-mail: mrahim057@gmail.com [Advanced Optical Material Research Group, Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, 81310, Skudai, Johor Bahru, Johor (Malaysia)

    2014-09-25

    This presentation provides an overview of the recent progress in the enhancement of the spectroscopic characteristics of the glass embedded with nanoparticles (NPs). Some of our research activities with few significantly new results are highlighted and facilely analyzed. The science and technology dealing with the manipulation of the physical properties of rare earth doped inorganic glasses by embedding metallic NPs or nanoclusters produce the so-called 'nanoglass'. Meanwhile, the spectroscopic enhancement relates the intensity of the luminescence measured at certain transition. The enhancement which expectedly due to the 'plasmonics wave' (referring to the coherent coupling of photons to free electron oscillations called plasmon) occurs at the interface between a conductor and a dielectric. Plasmonics being an emerging concept in advanced optical material of nanophotonics has given this material the ability to exploit the optical response at nanoscale and opened up a new avenue in metal-based glass optics. There is a vast array of plasmonic NPs concepts yet to be explored, with applications spanning solar cells, (bio) sensing, communications, lasers, solid-state lighting, waveguides, imaging, optical data transfer, display and even bio-medicine. Localized surface plasmon resonance (LSPR) can enhance the optical response of nanoglass by orders of magnitude as observed. The luminescence enhancement and surface enhanced Raman scattering (SERS) are new paradigm of research. The enhancement of luminescence due to the influence of metallic NPs is the recurring theme of this paper.

  20. Yttrium aluminum garnet coating on glass substrate

    International Nuclear Information System (INIS)

    Ferreira, Camila M.A.; Freiria, Gabriela S.; Faria, Emerson H. de; Rocha, Lucas A.; Ciuffi, Katia J.; Nassar, Eduardo J.

    2016-01-01

    Thin luminescent films have seen great technological advances and are applicable in the production of a variety of materials such as sensors, solar cells, photovoltaic devices, optical magnetic readers, waveguides, lasers, and recorders. Systems that contain yttrium aluminum oxide are important hosts for lanthanide ions and serve as light emission devices. This work deals with the deposition of yttrium aluminum garnet (YAG) film doped with Eu 3+ onto a glass substrate obtained by the sol–gel methodology. Spray pyrolysis furnished the yttrium aluminum oxide powder. Dip-coating at a withdrawal speed of 10 mm min −1 and evaporation led to deposition of different numbers of layers of the YAG:Eu 3+ film onto the glass substrate from a YAG:Eu 3+ powder suspension containing ethanol, water, and tetraethylorthosilicate. Photoluminescence, X-ray diffraction, scanning electron microscopy, and transparency measurements aided film characterization. The emission spectra revealed that the number of layers influenced film properties. - Highlights: • The spray pyrolysis was used to obtain luminescent YAG:Eu 3+ . • The matrix was deposited as transparent films. • The YAG:Eu 3+ was deposited by sol–gel process onto glass substrate.

  1. Achievement report in fiscal 2000 on technological development to recycle waste building materials and glasses. Development of waste building material recycling technology (Research and development of recycling technology corresponding to grades of demolished building lumbers); 2000 nendo kenchiku haizai glass nado recycle gijutsu kaihatsu seika hokokusho. Kenchiku haizai recycle gijutsu kaihatsu (kenchiku kaitai mokuzai no hin'i ni taioshita recycle gijutsu no kenkyu kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    With an objective to reduce wastes, and promote effective utilization of wood resources, research and development has been made on a demolished building material recycling technology. This paper summarizes the achievements in fiscal 2000. In developing the technology to manufacture high water resistant wood boards, discussions were given on resor type phenolic resin as an adhesive, and on the medium density fiberboard (MDF) being a substitute material for plywood as the wooden board. As a result, a highly water resistant MDF that can clear JIS E0 has been developed. In the research of a technology to enhance durability of wooden boards, the in-liquid roll press method was devised to perform impregnation of chemicals into board raw materials continually and simply, whose device was fabricated on a trial basis. With regard to recycling of medium to low grade wood-based wastes, researches were performed on pulverization of the wastes, fabrication of liquefied woods, and effective utilization of the liquefied woods. Both of a hammer mill and a chip saw crusher fabricated wood powder with nearly uniform grain size regardless of types of the wood-based wastes. Liquefaction of plywood and PB boards required more stringent reaction conditions than liquefaction of such ordinary members as pillar materials and laminated lumbers. (NEDO)

  2. Laser properties of an improved average-power Nd-doped phosphate glass

    International Nuclear Information System (INIS)

    Payne, S.A.; Marshall, C.D.; Bayramian, A.J.

    1995-01-01

    The Nd-doped phosphate laser glass described herein can withstand 2.3 times greater thermal loading without fracture, compared to APG-1 (commercially-available average-power glass from Schott Glass Technologies). The enhanced thermal loading capability is established on the basis of the intrinsic thermomechanical properties (expansion, conduction, fracture toughness, and Young's modulus), and by direct thermally-induced fracture experiments using Ar-ion laser heating of the samples. This Nd-doped phosphate glass (referred to as APG-t) is found to be characterized by a 29% lower gain cross section and a 25% longer low-concentration emission lifetime

  3. The effect of chromium oxide on the properties of simulated nuclear waste glasses

    International Nuclear Information System (INIS)

    Vojtech, O.; Sussmilch, J.; Urbanec, Z.

    1996-02-01

    A study of the effect of chromium on the properties of selected glasses was performed in the frame of a Contract between Battelle, Pacific Northwest Laboratories and Nuclear Research Institute, ReZ. In the period from July 1994 to June 1995 two borosilicate glasses of special composition were prepared according to the PNL procedure and their physical and structural characteristics of glasses were studied. This Final Report contains a vast documentation on the properties of all glasses studied. For the preparation of the respective technology more detailed study of physico-chemical properties and crystallinity of investigated systems would be desirable

  4. Who will buy smart glasses?

    DEFF Research Database (Denmark)

    Rauschnabel, Philipp; Brem, Alexander; Ivens, Bjørn S.

    2015-01-01

    Recent market studies reveal that augmented reality (AR) devices, such as smart glasses, will substantially influence the media landscape. Yet, little is known about the intended adoption of smart glasses, particularly: Who are the early adopters of such wearables? We contribute to the growing bo...

  5. Superconductive analogue of spin glasses

    International Nuclear Information System (INIS)

    Feigel'man, M.; Ioffe, L.; Vinokur, V.; Larkin, A.

    1987-07-01

    The properties of granular superconductors in magnetic fields, namely the existence of a new superconductive state analogue of the low-temperature superconductive state in spin glasses are discussed in the frame of the infinite-range model and the finite-range models. Experiments for elucidation of spin-glass superconductive state in real systems are suggested. 30 refs

  6. Zirconium based bulk metallic glasses

    International Nuclear Information System (INIS)

    Dey, G.K.; Neogy, S.; Savalia, R.T.; Tewari, R.; Srivastava, D.; Banerjee, S.

    2006-01-01

    Metallic glasses have come into prominence in recent times because their nanocrystalline atomic arrangement imparts many useful and unusual properties to these metallic solids. In this study, bulk glasses have been obtained in Zr based multicomponent alloy by induction melting these alloys in silica crucibles and casting these in form of rods 3 and 6 mm in diameter in a copper mould

  7. International Congress on Glass XII

    Energy Technology Data Exchange (ETDEWEB)

    Doremus, R H; LaCourse, W C; Mackenzie, J D; Varner, J R; Wolf, W W [eds.

    1980-01-01

    A total of 158 papers are included under nine headings: structure and glass formation; optical properties; electrical and magnetic properties; mechanical properties and relaxation; mass transport; chemical durability and surfaces; nucleation; crystallization; and glass ceramics; processing; and automatic controls. Separate abstracts were prepared for eight papers; four of the remaining papers had been processed previously for the data base. (DLC)

  8. OPAL Various Lead Glass Blocks

    CERN Multimedia

    These lead glass blocks were part of a CERN detector called OPAL (one of the four experiments at the LEP particle detector). OPAL uses some 12 000 blocks of glass like this to measure particle energies in the electromagnetic calorimeter. This detector measured the energy deposited when electrons and photons were slowed down and stopped.

  9. Lead-iron phosophate glass

    International Nuclear Information System (INIS)

    Sales, B.C.; Boatner, L.A.

    1988-01-01

    The lead-iron phosphate nuclear waste glasses (LIPNWG) are the subject of the present chapter. They were discovered in 1984 while the authors were attempting to find a sintering aid for certain types of crystalline monazite ceramic high-level nuclear waste forms. In the present chapter, the term waste glass is synonymous with nuclear waste glass (NWG), and the acronym LIP is often used for lead-iron phosphate. Lead-iron phosphate glasses, like many of the previously studied phosphate glasses, are corrosion resistant in aqueous solutions at temperatures below 100 degrees C, and they can be melted and poured at temperatures that are relatively low in comparison with the processing temperatures required for current silicate glass compositions. Unlike the phosphate glasses investigated previously, however, LIPNWGs do not suffer from alteration due to devitrification during realistic and readily, achievable cooling periods. Additionally, lead-iron phosphate glass melts are not nearly as corrosive as the sodium phosphate melts investigated during the 1960s; and, therefore, they can be melted and processed using crucibles made from a variety of materials

  10. Radiation effects in silicate glasses

    International Nuclear Information System (INIS)

    Bibler, N.E.; Howitt, D.G.

    1988-01-01

    The study of radiation effects in complex silicate glasses has received renewed attention because of their use in special applications such as high level nuclear waste immobilization and fiber optics. Radiation changes the properties of these glasses by altering their electronic and atomic configurations. These alterations or defects may cause dilatations or microscopic phase changes along with absorption centers that limit the optical application of the glasses. Atomic displacements induced in the already disordered structure of the glasses may affect their use where heavy irradiating particles such as alpha particles, alpha recoils, fission fragments, or accelerated ions are present. Large changes (up to 1%) in density may result. In some cases the radiation damage may be severe enough to affect the durability of the glass in aqueous solutions. In the paper, the authors review the literature concerning radiation effects on density, durability, stored energy, microstructure and optical properties of silicate glasses. Both simple glasses and complex glasses used for immobilization of nuclear waste are considered

  11. Glass Furnace Project, October 1982-March 1983

    International Nuclear Information System (INIS)

    Armstrong, K.M.; Klingler, L.M.

    1983-01-01

    In the Glass Furnace Project currently under way at Mound, a treatment technology for low-level radioactive waste is being evaluated that will combine volume reduction and immobilization in one step. Initial work focused on demonstrating the ability of the furnace to efficiently incinerate nonradioactive, simulated power-plant waste and on determining the adequacy of immobilization in a soda-lime silica matrix. Further evaluation of the system will involve a demonstration of the combustion and containment of radioactive waste. In preparation for this next phase of the program, preliminary investigation and design work were conducted during the past six months. 5 figures, 1 table

  12. PHILIP GlASS: SCREEN MUSIC

    Directory of Open Access Journals (Sweden)

    Neretina Maina S.

    2012-12-01

    Full Text Available Research is devoted to the music of contemporary composer Philip Glass, which he wrote specifically for the movies including feature and documentary films by American, British and Australian directors (M.Scorsese, E.Morris, S.Daldry, P.Weir etc.. It makes a connection of the composition technologies between his filmmusic and his artmusic written in the aesthetics of minimalism (the repetition and additive processes. The works in collaboration with director G.Reggio highlights as top Glass’ creative at the film industry. It also covers the principles of compilation the composer’s music for a variety of screen opuses, movies and commercials.

  13. Current status and technology development of Reprocessing Plant in Japan Nuclear Fuel Limited

    International Nuclear Information System (INIS)

    Ochi, Eiji

    2013-01-01

    It is a problem that the vitrified waste could not be produced at the down nozzle in glass furnace by accumulation of platinum group metals contented in high-level radioactive waste. This article describes our efforts to solve the problem. The glass furnace, glassification process, development of glassification technology in Japan, structure of glass furnace, improvement of glass furnace now in use, improvement of glassification technology, and development of new glass furnace and new glass materials are explained. Configuration drawing of glass furnace, heating method, glass flow from the down nozzle, existing state of platinum group metals in glass, comparison between the current glass furnace and advance furnace, analysis result of inner part of furnace, and measurement result of density, viscosity and heat capacity of molten glass are illustrated. (S.Y.)

  14. Phonon scattering in metallic glasses

    International Nuclear Information System (INIS)

    Black, J.L.

    1979-01-01

    The purpose of this article is to review some recent theoretical and experimental developments in the study of metallic glasses at temperatures near or below 1K. In this temperature regime, it appears that practically all glasses, whether metallic or insulating, behave in a similar fashion. The fact that such similarities occur, despite substantial structural differences between metallic and insulating glasses, constitutes a major theoretical challenge. This challenge, however, is not directly addressed in what follows. Instead, the evidence for universal behavior and the theory which is necessary to understand this evidence are emphasized. It turns out that most of this evidence involves a comparison of phonon scattering in metallic glasses with its counterpart in insulating glasses

  15. Color and dichroism of silver-stained glasses

    International Nuclear Information System (INIS)

    Molina, Gloria; Murcia, Sonia; Molera, Judit; Roldan, Clodoaldo; Crespo, Daniel; Pradell, Trinitat

    2013-01-01

    Yellow decorations in glasses have been produced since the beginning of the fourteenth century by incorporating metallic silver nanoparticles into the glass (from a few to some tens of nanometers). The optical response of the glass-particles composite is determined by the surface plasmon resonance absorption and scattering of the nanometric metallic particles. Generally, the same color is perceived in reflection and in transmission although dichroic effects are occasionally observed. As silver-stained glasses were designed to be observed in transmission, tuning the transmission color from yellow to red was of technological interest. The relationship between the color observed both in transmission and reflection and the composition and nanostructure of regular (yellow) and dichroic (yellow and red) silver stains from the Renaissance (late fifteenth and sixteenth century, respectively) is related to the presence of a layer (of about 10–20 μm thick) of metallic silver nanoparticles (from few to 100 nm in size). The correlation between the colors observed and the silver stain nanostructure is studied with particular emphasis on the origin of the dichroic behavior. The optical response is computed and compared to the experimental data. Differences in the synthesis parameters responsible for the colors and for the dichroic behavior of the silver stain glasses are proposed. This is essential for the replication of the glass pieces which are required as replacements in the restoration/conservation of the windows but is also of broader interest

  16. Color and dichroism of silver-stained glasses

    Energy Technology Data Exchange (ETDEWEB)

    Molina, Gloria [Universitat Politecnica de Catalunya, Center for Research in NanoEngineering (Spain); Murcia, Sonia [Universidad de Valencia, Instituto de Ciencia de los Materiales (Spain); Molera, Judit [Universitat de Vic, GRTD, Escola Politecnica Superior (Spain); Roldan, Clodoaldo [Universidad de Valencia, Instituto de Ciencia de los Materiales (Spain); Crespo, Daniel; Pradell, Trinitat, E-mail: Trinitat.Pradell@upc.edu [Universitat Politecnica de Catalunya, Center for Research in NanoEngineering (Spain)

    2013-09-15

    Yellow decorations in glasses have been produced since the beginning of the fourteenth century by incorporating metallic silver nanoparticles into the glass (from a few to some tens of nanometers). The optical response of the glass-particles composite is determined by the surface plasmon resonance absorption and scattering of the nanometric metallic particles. Generally, the same color is perceived in reflection and in transmission although dichroic effects are occasionally observed. As silver-stained glasses were designed to be observed in transmission, tuning the transmission color from yellow to red was of technological interest. The relationship between the color observed both in transmission and reflection and the composition and nanostructure of regular (yellow) and dichroic (yellow and red) silver stains from the Renaissance (late fifteenth and sixteenth century, respectively) is related to the presence of a layer (of about 10-20 {mu}m thick) of metallic silver nanoparticles (from few to 100 nm in size). The correlation between the colors observed and the silver stain nanostructure is studied with particular emphasis on the origin of the dichroic behavior. The optical response is computed and compared to the experimental data. Differences in the synthesis parameters responsible for the colors and for the dichroic behavior of the silver stain glasses are proposed. This is essential for the replication of the glass pieces which are required as replacements in the restoration/conservation of the windows but is also of broader interest.

  17. Smart-Glasses: Exposing and Elucidating the Ethical Issues.

    Science.gov (United States)

    Hofmann, Bjørn; Haustein, Dušan; Landeweerd, Laurens

    2017-06-01

    The objective of this study is to provide an overview over the ethical issues relevant to the assessment, implementation, and use of smart-glasses. The purpose of the overview is to facilitate deliberation, decision making, and the formation of knowledge and norms for this emerging technology. An axiological question-based method for human cognitive enhancement including an extensive literature search on smart-glasses is used to identify relevant ethical issues. The search is supplemented with relevant ethical issues identified in the literature on human cognitive enhancement (in general) and in the study of the technical aspects of smart-glasses. Identified papers were subject to traditional content analysis: 739 references were identified of which 247 were regarded as relevant for full text examinations, and 155 were included in the study. A wide variety of ethical issues with smart-glasses have been identified, such as issues related to privacy, safety, justice, change in human agency, accountability, responsibility, social interaction, power and ideology. Smart-glasses are envisioned to change individual human identity and behavior as well as social interaction. Taking these issues into account appears to be relevant when developing, deliberating, deciding on, implementing, and using smart-glasses.

  18. Development of AZS refractories for the glass industry

    International Nuclear Information System (INIS)

    Guzman, A.M.; Rodriguez, P.

    2004-01-01

    Refractory materials can support high temperatures, thermal strength and the contact with aggressive environments, for this reason they are widely used in the cement, glass and steel industry. Commercial AZS (alumina-zirconia-silica) refractories are a good alternative in refractory materials for the glass industry' because they can support the aggressive conditions during liquid processing of glass. However, another problem encountered in glass industry is contamination by refractory' material that fall into the molten glass, which can produce a series of defects in the final product. This research was conducted to develop new formulations of AZS refractories with different amounts of ZrO 2 with the purpose of improving the characteristics, properties and the work conditions in the glass melting furnaces and, at the same time, lower the costs this type of refractories. The results obtained indicate that the composition with low content of ZrO 2 can provide better properties than the commercial product, with some modifications in the particle size distribution. Copyright (2004) AD-TECH - International Foundation for the Advancement of Technology Ltd

  19. Application of Kissinger analysis to glass transition and study of ...

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 35; Issue 4. Application of Kissinger analysis to glass transition and study of thermal degradation kinetics of phenolic–acrylic IPNs ... Author Affiliations. S Goswami1 K Kiran1. Department of Polymer Engineering, Birla Institute of Technology, Ranchi 835 215, India ...

  20. IR study of Pb–Sr titanate borosilicate glasses

    Indian Academy of Sciences (India)

    Administrator

    IR study of Pb–Sr titanate borosilicate glasses. C R GAUTAM*, DEVENDRA KUMAR. † and OM PARKASH. †. Department of Physics, University of Lucknow, Lucknow 226 007, India. †. Department of Ceramic Engineering, Institute of Technology, Banaras Hindu University, Varanasi 221 005, India. MS received 3 January ...

  1. Study of optical properties of Erbium doped Tellurite glass-polymer composite

    Energy Technology Data Exchange (ETDEWEB)

    Sushama, D., E-mail: sushasukumar@gmail.com [Research Awardee, LAMP, Dept. of Physics, Nit, Calicut, India and Dept. of Physics, M.S.M. College, Kayamkulam, Kerala (India)

    2014-10-15

    Chalcogenide glasses have wide applications in optical device technology. But it has some disadvantages like thermal instability. Among them Tellurite glasses exhibits high thermal Stability. Doping of rare earth elements into the Tellurite glasses improve its optical properties. To improve its mechanical properties composites of this Tellurite glasses with polymer are prepared. Bulk samples of Er{sub 2}O{sub 3} doped TeO{sub 2}‐WO{sub 3}‐La{sub 2}O{sub 3} Tellurite glasses are prepared from high purity oxide mixtures, melting in an alumina crucible in air atmosphere. Composites of this Tellurite glasses with polymer are prepared by powder mixing method and the thin films of these composites are prepared using polymer press. Variations in band gap of these composites are studied from the UV/Vis/NIR absorption.

  2. Effect of additional materials on the properties of glass-ceramic produced from incinerator fly ashes.

    Science.gov (United States)

    Cheng, T W

    2004-07-01

    There are 21 Metro-waste incinerators in Taiwan under construction and are expected to be finished at year 2003. It is estimated that these incinerators will produce about two million tons of incinerator ash. In order to reduce the volume and eliminate contamination problems, high temperature molten technology studies have been conducted. The purpose of this research was that of trying to control the chemical composition of the glass-ceramic produced from incinerator fly ash, in order to improve the characteristics of the glass-ceramic. The experimental results showed that the additional materials, Mg(OH)2 and waste glass cullet, can change glass-ceramic phases from gehlenite to augite, pigeonite, and diopside. The physical, mechanical and chemical resistance properties of the glass-ceramic also showed much better characteristics than prepared glass-ceramic using incinerator fly ash alone.

  3. Study of optical properties of Erbium doped Tellurite glass-polymer composite

    International Nuclear Information System (INIS)

    Sushama, D.

    2014-01-01

    Chalcogenide glasses have wide applications in optical device technology. But it has some disadvantages like thermal instability. Among them Tellurite glasses exhibits high thermal Stability. Doping of rare earth elements into the Tellurite glasses improve its optical properties. To improve its mechanical properties composites of this Tellurite glasses with polymer are prepared. Bulk samples of Er 2 O 3 doped TeO 2 ‐WO 3 ‐La 2 O 3 Tellurite glasses are prepared from high purity oxide mixtures, melting in an alumina crucible in air atmosphere. Composites of this Tellurite glasses with polymer are prepared by powder mixing method and the thin films of these composites are prepared using polymer press. Variations in band gap of these composites are studied from the UV/Vis/NIR absorption

  4. Study of optical properties of Erbium doped Tellurite glass-polymer composite

    Science.gov (United States)

    Sushama, D.

    2014-10-01

    Chalcogenide glasses have wide applications in optical device technology. But it has some disadvantages like thermal instability. Among them Tellurite glasses exhibits high thermal Stability. Doping of rare earth elements into the Tellurite glasses improve its optical properties. To improve its mechanical properties composites of this Tellurite glasses with polymer are prepared. Bulk samples of Er2O3 doped TeO2-WO3-La2O3 Tellurite glasses are prepared from high purity oxide mixtures, melting in an alumina crucible in air atmosphere. Composites of this Tellurite glasses with polymer are prepared by powder mixing method and the thin films of these composites are prepared using polymer press. Variations in band gap of these composites are studied from the UV/Vis/NIR absorption.

  5. Measurements of diameters of selectively etchable tracks produced in polymer by heavy ions

    International Nuclear Information System (INIS)

    Apel', P.Yu.

    1981-01-01

    The process of pore formation in polyethyleneterephtalate films irradiated by the 136 Xe, 84 Kr, 40 Ar ions was investigated by measuring the conductivity of the samples during etching. The diameters of the damaged tracks within which the local etching rate was larger than etching rate for non-destroyed polymer were determined. In the case of the 136 Xe ions measurements have been carried out at different ion energies [ru

  6. Suppressed beta relaxations and reduced heat capacity in ultrastable organic glasses prepared by physical vapor deposition

    Science.gov (United States)

    Ediger, Mark

    Glasses play an important role in technology as a result of their macroscopic homogeneity (e.g., the clarity of window glass) and our ability to tune properties through composition changes. A problem with liquid-cooled glasses is that they exhibit marginal kinetic stability and slowly evolve towards lower energy glasses and crystalline states. In contrast, we have shown that physical vapor deposition can prepare glasses with very high kinetic stability. These materials have properties expected for ``million-year-old'' glasses, including high density, low enthalpy, and high mechanical moduli. We have used nanocalorimetry to show that these high stability glasses have lower heat capacities than liquid-cooled glasses for a number of molecular systems. Dielectric relaxation has been used to show that the beta relaxation can be suppressed by nearly a factor of four in vapor-deposited toluene glasses, indicating a very tight packing environment. Consistent with this view, computer simulations of high stability glasses indicate reduced Debye-Waller factors. These high stability materials raise interesting questions about the limiting properties of amorphous packing arrangements.

  7. Study of mosaic glasses from the Alpha Basilica (sixth century of Nikopolis in Epirus, Greece

    Directory of Open Access Journals (Sweden)

    Cesare Fiori

    2014-02-01

    Full Text Available After collecting the essential historical, archaeological, and artistic information relative to the ancient town of Nikopolis in Epirus and its Alpha (or Doumetios Basilica, built in the sixth century A.D., glass tesserae belonging to degraded and lost parts of the mosaic floors of the basilica were analysed, determining their chemical composition and the possible presence of crystalline phases. As in all glasses produced in the Mediterranean area in that epoch, they are soda-lime silicate glasses, in part with lead, obtained using natron as a flux. The typology of the glass corresponds to that of Roman glasses, of the first centuries A.D., and is the same as that employed for the basilicas of Ravenna in the fifth and sixth centuries; in particular, a comparison was made with the glass tesserae of the St Vitale Basilica. The technological base for producing coloured glasses is also practically the same as that of the mosaic glasses of Ravenna. In particular, antimony was used as an opacifying element and a fusion was carried out under reducing conditions to obtain red glass with microparticles of metallic copper. Thus, it can be supposed there was a common source of production of the mosaic glasses used in Nikopolis and Ravenna in the sixth century and that this source was in the Near Orient.

  8. Lead iron phosphate glass as a containment medium for disposal of high-level nuclear waste

    Science.gov (United States)

    Boatner, Lynn A.; Sales, Brian C.

    1989-01-01

    Lead-iron phosphate glasses containing a high level of Fe.sub.2 O.sub.3 for use as a storage medium for high-level radioactive nuclear waste. By combining lead-iron phosphate glass with various types of simulated high-level nuclear waste, a highly corrosion resistant, homogeneous, easily processed glass can be formed. For corroding solutions at 90.degree. C., with solution pH values in the range between 5 and 9, the corrosion rate of the lead-iron phosphate nuclear waste glass is at least 10.sup.2 to 10.sup.3 times lower than the corrosion rate of a comparable borosilicate nuclear waste glass. The presence of Fe.sub.2 O.sub.3 in forming the lead-iron phosphate glass is critical. Lead-iron phosphate nuclear waste glass can be prepared at temperatures as low as 800.degree. C., since they exhibit very low melt viscosities in the 800.degree. to 1050.degree. C. temperature range. These waste-loaded glasses do not readily devitrify at temperatures as high as 550.degree. C. and are not adversely affected by large doses of gamma radiation in H.sub.2 O at 135.degree. C. The lead-iron phosphate waste glasses can be prepared with minimal modification of the technology developed for processing borosilicate glass nuclear wasteforms.

  9. Joints in Tempered Glass Using Glass Dowel Discs

    DEFF Research Database (Denmark)

    Nielsen, Jens Henrik; Poulsen, Peter Noe

    One of the major reasons for using glass in structures is its transparency; however, traditional mechanical joints such as friction joints and steel dowel pinned connections are compromising the transparency. The present paper describes a novel joint which is practically maintaining the complete...... transparency of the glass. This is achieved by using a dowel disc made entirely of tempered glass. The concept of the joint is proved by pilot tests and numerical models. From the work it is seen that the load-carrying capacity of such a connection is similar to what is found for traditionally in-plane loaded...

  10. The descent into glass formation in polymer fluids.

    Science.gov (United States)

    Freed, Karl F

    2011-03-15

    Glassy materials have been fundamental to technology since the dawn of civilization and remain so to this day: novel glassy systems are currently being developed for applications in energy storage, electronics, food, drugs, and more. Glass-forming fluids exhibit a universal set of transitions beginning at temperatures often in excess of twice the glass transition temperature T(g) and extending down to T(g), below which relaxation becomes so slow that systems no longer equilibrate on experimental time scales. Despite the technological importance of glasses, no prior theory explains this universal behavior nor describes the huge variations in the properties of glass-forming fluids that result from differences in molecular structure. Not surprisingly, the glass transition is currently regarded by many as the deepest unsolved problem in solid state theory. In this Account, we describe our recently developed theory of glass formation in polymer fluids. Our theory explains the origin of four universal characteristic temperatures of glass formation and their dependence on monomer-monomer van der Waals energies, conformational energies, and pressure and, perhaps most importantly, on molecular details, such as monomer structure, molecular weight, size of side groups, and so forth. The theory also provides a molecular explanation for fragility, a parameter that quantifies the rate of change with temperature of the viscosity and other dynamic mechanical properties at T(g). The fragility reflects the fluid's thermal sensitivity and determines the manner in which glass-formers can be processed, such as by extrusion, casting, or inkjet spotting. Specifically, the theory describes the change in thermodynamic properties and fragility of polymer glasses with variations in the monomer structure, the rigidity of the backbone and side groups, the cohesive energy, and so forth. The dependence of the structural relaxation time at lower temperatures emerges from the theory as the Vogel

  11. Science and Technology of Ceramics

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 5; Issue 2. Science and Technology of Ceramics - Advanced Ceramics: Structural Ceramics and Glasses. Sheela K Ramasesha. Series Article Volume 5 Issue 2 February 2000 pp 4-11 ...

  12. Characteristics of diffusion zone in changing glass-metal composite processing conditions

    Science.gov (United States)

    Lyubimova, O. N.; Morkovin, A. V.; Andreev, V. V.

    2018-03-01

    The influence of manufacturing technology on the characteristics of the glass and steel contact zone in manufacturing new structural material - glass-metal composite is studied theoretically and experimentally. Different types of structures in the contact zone and its dimensions affect the strength characteristics of the composite. Knowledge about changing the width of the glass and steel contact zone after changing such parameters of the technological regime as temperature, holding time and use of solders will allow one to control the structure and characteristics of the glass-metal composite. Experimental measurements of the width of the diffusion zone in the glass-metal composite for different regimes and their statistical processing according to the full factor experiment are presented in this article. The results of analysis of some mechanical characteristics of the diffusion zone are presented: microhardness and modulus of elasticity for samples, prepared according to different processing regimes.

  13. Glass packages in interim storage

    International Nuclear Information System (INIS)

    Jacquet-Francillon, N.

    1994-10-01

    This report summarize the current state of knowledge concerning the behavior of type C waste packages consisting of vitrified high-level solutions produced by reprocessing spent fuel. The composition and the physical and chemical properties of the feed solutions are reviewed, and the vitrification process is described. Sodium alumino-borosilicate glass compositions are generally employed - the glass used at la Hague for LWR fuel solutions, for example, contains 45 % SiO 2 . The major physical, chemical, mechanical and thermal properties of the glass are reviewed. In order to allow their thermal power to diminish, the 3630 glass packages produced (as of January 1993) in the vitrification facilities at Marcoule and La Hague are placed in interim storage for several decades. The actual interim storage period has not been defined, as it is closely related to the concept and organization selected for the final destination of the packages: a geological repository. The glass behavior under irradiation is described. Considerable basic and applied research has been conducted to assess the aqueous leaching behavior of nuclear containment glass. The effects of various repository parameters (temperature, flow rate, nature of the environmental materials) have been investigated. The experimental findings have been used to specify a model describing the kinetics of aqueous corrosion of the glass. More generally all the ''source term'' models developed in France by the CEA or by ANDRA are summarized. (author). 152 refs., 33 figs

  14. Glass ceramic seals to inconel

    Science.gov (United States)

    McCollister, Howard L.; Reed, Scott T.

    1983-11-08

    A glass ceramic composition prepared by subjecting a glass composition comprising, by weight, 65-80% SiO.sub.2, 8-16%, Li.sub.2 O, 2-8% , Al.sub.2 O.sub.3, 1-8% K.sub.2 O, 1-5% P.sub.2 O.sub.5 and 1.5-7% B.sub.2 O.sub.3, to the following processing steps of heating the glass composition to a temperature sufficient to crystallize lithium metasilicate therein, holding the glass composition at a temperature and for a time period sufficient to dissolve the lithium metasilicate therein thereby creating cristobalite nucleii, cooling the glass composition and maintaining the composition at a temperature and for a time period sufficient to recrystallize lithium metasilicate therein, and thermally treating the glass composition at a temperature and for a time period sufficient to cause growth of cristobalite and further crystallization of lithium metasilicate producing a glass ceramic composition having a specific thermal expansion coefficient and products containing said composition.

  15. Proceedings of the national symposium on materials and processing: functional glass/glass-ceramics, advanced ceramics and high temperature materials

    International Nuclear Information System (INIS)

    Ghosh, A.; Sahu, A.K.; Viswanadham, C.S.; Ramanathan, S.; Hubli, R.C.; Kothiyal, G.P.

    2012-10-01

    With the development of materials science it is becoming increasingly important to process some novel materials in the area of glass, advanced ceramics and high temperature metals/alloys, which play an important role in the realization of many new technologies. Such applications demand materials with tailored specifications. Glasses and glass-ceramics find exotic applications in areas like radioactive waste storage, optical communication, zero thermal expansion coefficient telescopic mirrors, human safety gadgets (radiation resistance windows, bullet proof apparels, heat resistance components etc), biomedical (implants, hyperthermia treatment, bone cement, bone grafting etc). Advanced ceramic materials have been beneficial in biomedical applications due to their strength, biocompatibility and wear resistance. Non-oxide ceramics such as carbides, borides, silicides, their composites, refractory metals and alloys are useful as structural and control rod components in high temperature fission/ fusion reactors. Over the years a number of novel processing techniques like selective laser melting, microwave heating, nano-ceramic processing etc have emerged. A detailed understanding of the various aspects of synthesis, processing and characterization of these materials provides the base for development of novel technologies for different applications. Keeping this in mind and realizing the need for taking stock of such developments a National Symposium on Materials and Processing -2012 (MAP-2012) was planned. The topics covered in the symposium are ceramics, glass/glass-ceramics and metals and materials. Papers relevant to INIS are indexed separately

  16. Glass Formulation Development for INEEL Sodium-Bearing Waste

    International Nuclear Information System (INIS)

    Vienna, J.D.; Schweiger, M.J.; Smith, D.E.; Smith, H.D.; Crum, J.V.; Peeler, D.K.; Reamer, I.A.; Musick, C.A.; Tillotson, R.D.

    1999-01-01

    For about four decades, radioactive wastes have been collected and calcined from nuclear fuels reprocessing at the Idaho Nuclear Technology and Engineering Center (INTEC), formerly Idaho Chemical Processing Plant (ICPP). Over this time span, secondary radioactive wastes have also been collected and stored as liquid from decontamination, laboratory activities, and fuel-storage activities. These liquid wastes are collectively called sodium-bearing wastes (SBW). About 5.7 million liters of these wastes are temporarily stored in stainless steel tanks at the Idaho National Engineering and Environmental Laboratory (INEEL). Vitrification is being considered as an immobilization step for SBW with a number of treatment and disposal options. A systematic study was undertaken to develop a glass composition to demonstrate direct vitrification of INEEL's SBW. The objectives of this study were to show the feasibility of SBW vitrification, not a development of an optimum formulation. The waste composition is relatively high in sodium, aluminum, and sulfur. A specific composition and glass property restrictions, discussed in Section 2, were used as a basis for the development. Calculations based on first-order expansions of selected glass properties in composition and some general tenets of glass chemistry led to an additive (fit) composition (68.69 mass % SiO 2 , 14.26 mass% B 2 O 3 , 11.31 mass% Fe 2 O 3 , 3.08 mass% TiO 2 , and 2.67 mass % Li 2 O) that meets all property restrictions when melted with 35 mass % of SBW on an oxide basis, The glass was prepared using oxides, carbonates, and boric acid and tested to confirm the acceptability of its properties. Glass was then made using waste simulant at three facilities, and limited testing was performed to test and optimize processing-related properties and confirm results of glass property testing. The measured glass properties are given in Section 4. The viscosity at 1150 C, 5 Pa·s, is nearly ideal for waste-glass processing in

  17. A method for making a glass supported system, such glass supported system, and the use of a glass support therefor

    NARCIS (Netherlands)

    Unnikrishnan, S.; Jansen, Henricus V.; Berenschot, Johan W.; Fazal, I.; Louwerse, M.C.; Mogulkoc, B.; Sanders, Remco G.P.; de Boer, Meint J.; Elwenspoek, Michael Curt

    2008-01-01

    The invention relates to a method for making a glass supported micro or nano system, comprising the steps of: i) providing a glass support; ii) mounting at least one system on at least one glass support; and iii) bonding the system to the glass support, such that the system is circumferentially

  18. Glass enamel and glass-ceramic coatings for chemical apparatus

    International Nuclear Information System (INIS)

    Es'kov, A.S.; Oleinik, M.I.; Shabrova, E.A.

    1984-01-01

    Among the known anticorrosion coatings used in chemical engineering, glass enamel base coatings are distinguished by such advantages as a high degree of continuity and chemical resistance. The paper describes basic principles for the creation of acid and alkali resistant glass enamel and ceramic coatings for chemical apparatus. As the result of investgations, glass enamel coatings with increased electrical conductivity and also experimental production compositions of chemical, temperature and radiation resistant coatings for protection of chemical equipment of 12Kh18N10T stainless steel have been developed. The coatings have successfully passed testing under service conditions. A new type of coating is short-term glass enamel, which may be recommended for use in chemical machinery manufacturing and other branches of industry in oxidation-free heating and forming of stainless steels

  19. Restorative glass: reversible, discreet restoration using structural glass components

    Directory of Open Access Journals (Sweden)

    Faidra Oikonomopoulou

    2017-12-01

    Full Text Available The application of structural glass as the principal material in restoration and conservation practices is a distinguishable, yet discreet approach. The transparency of glass allows the simultaneous perception of the monument at both its original and present condition, preserving its historical and aesthetical integrity. Concurrently, the material’s unique mechanical properties enable the structural consolidation of the monument. As a proof of concept, the restoration of Lichtenberg Castle is proposed. Solid cast glass units are suggested to complete the missing parts, in respect to the existing construction technique and aesthetics of the original masonry. Aiming for a reversible system, the glass units are interlocking, ensuring the overall stability without necessitating permanent, adhesive connections. This results in an elegant and reversible intervention.

  20. GLASS COMPOSITION-TCLP RESPONSE MODEL FOR WASTE GLASSES

    International Nuclear Information System (INIS)

    Kim, Dong-Sang; Vienna, John D.

    2004-01-01

    A first-order property model for normalized Toxicity Characteristic Leaching Procedure (TCLP) release as a function of glass composition was developed using data collected from various studies. The normalized boron release is used to estimate the release of toxic elements based on the observation that the boron release represents the conservative release for those constituents of interest. The current TCLP model has two targeted application areas: (1) delisting of waste-glass product as radioactive (not mixed) waste and (2) designating the glass wastes generated from waste-glass research activities as hazardous or non-hazardous. This paper describes the data collection and model development for TCLP releases and discusses the issues related to the application of the model

  1. The ions displacement through glasses

    International Nuclear Information System (INIS)

    Sevegnani, F.X.

    1980-01-01

    A method to introduce sodium, potassium, lithium, calcium, iron and other ions in vacuum or gas light bulb by mean of a strong stationay electric field. The experiments showed that the mass deposited inside the bulbs obey Faraday's law of electrolysis, although the process of mass transfer is not that of a conventional electrolysis. A method which allows to show that hydrogen ions do not penetrate the glass structure is also described. Using radioactive tracers, it is shown that heavy ions, such PO 4 --- do not penetrate the glass structure. The vitreous state and the glass properties were studied for interpreting experimental results. (Author) [pt

  2. Recent developments in laser glasses

    International Nuclear Information System (INIS)

    Weber, M.J.

    1983-01-01

    The past decade has witnessed a proliferation of new glass-forming compositions including oxides, halides, oxyhalides, and chalcogenides. Many of these glasses are applicable to lasers and have greatly expanded the range of optical properties and spectroscopic parameters available to the laser designer. Our knowledge and understanding of many properties of interest for laser action - transparency, linear and nonlinear refractive indices, and damage threshold of the host glass and the absorption spectrum, radiative and nonradiative transition probabilities, fluorescence wavelength, stimulated emission cross section, and spectroscopic inhomogeneities of the lasing ion Nd 3 + - are reviewed

  3. Effects of system size and cooling rate on the structure and properties of sodium borosilicate glasses from molecular dynamics simulations.

    Science.gov (United States)

    Deng, Lu; Du, Jincheng

    2018-01-14

    Borosilicate glasses form an important glass forming system in both glass science and technologies. The structure and property changes of borosilicate glasses as a function of thermal history in terms of cooling rate during glass formation and simulation system sizes used in classical molecular dynamics (MD) simulation were investigated with recently developed composition dependent partial charge potentials. Short and medium range structural features such as boron coordination, Si and B Q n distributions, and ring size distributions were analyzed to elucidate the effects of cooling rate and simulation system size on these structure features and selected glass properties such as glass transition temperature, vibration density of states, and mechanical properties. Neutron structure factors, neutron broadened pair distribution functions, and vibrational density of states were calculated and compared with results from experiments as well as ab initio calculations to validate the structure models. The results clearly indicate that both cooling rate and system size play an important role on the structures of these glasses, mainly by affecting the 3 B and 4 B distributions and consequently properties of the glasses. It was also found that different structure features and properties converge at different sizes or cooling rates; thus convergence tests are needed in simulations of the borosilicate glasses depending on the targeted properties. The results also shed light on the complex thermal history dependence on structure and properties in borosilicate glasses and the protocols in MD simulations of these and other glass materials.

  4. Effects of system size and cooling rate on the structure and properties of sodium borosilicate glasses from molecular dynamics simulations

    Science.gov (United States)

    Deng, Lu; Du, Jincheng

    2018-01-01

    Borosilicate glasses form an important glass forming system in both glass science and technologies. The structure and property changes of borosilicate glasses as a function of thermal history in terms of cooling rate during glass formation and simulation system sizes used in classical molecular dynamics (MD) simulation were investigated with recently developed composition dependent partial charge potentials. Short and medium range structural features such as boron coordination, Si and B Qn distributions, and ring size distributions were analyzed to elucidate the effects of cooling rate and simulation system size on these structure features and selected glass properties such as glass transition temperature, vibration density of states, and mechanical properties. Neutron structure factors, neutron broadened pair distribution functions, and vibrational density of states were calculated and compared with results from experiments as well as ab initio calculations to validate the structure models. The results clearly indicate that both cooling rate and system size play an important role on the structures of these glasses, mainly by affecting the 3B and 4B distributions and consequently properties of the glasses. It was also found that different structure features and properties converge at different sizes or cooling rates; thus convergence tests are needed in simulations of the borosilicate glasses depending on the targeted properties. The results also shed light on the complex thermal history dependence on structure and properties in borosilicate glasses and the protocols in MD simulations of these and other glass materials.

  5. Shattered glass seeking the densest matter: the color glass condensate

    CERN Multimedia

    Appell, D

    2004-01-01

    "Physicists investigating heavy-particle collisions believe they are on the track of a universal form of matter, one common to very high energy particles ranging from protons to heavy nuclei such as uranium. Some think that this matter, called a color glass condensate, may explain new nuclear properties and the process of particle formation during collisions. Experimentalists have recently reported intriguing data that suggest a color glass condensate has actually formed in past work" (1 page)

  6. Effects of various polishing media and techniques on the surface finish and behavior of laser glasses

    International Nuclear Information System (INIS)

    Landingham, R.L.; Casey, A.W.; Lindahl, R.O.

    1978-01-01

    The advance of high-power laser technology is dependent on the rate of advancement in laser glass forming and surface preparation. The threshold damage of glass surfaces continues to be a weak link in the overall advancement of laser technology. Methods were developed and used in the evaluation of existing glass surface preparation techniques. Modified procedures were evaluated to reduce surface contamination and subsurface defects. Polishing rates were monitored under controlled polishing conditions (purity, pH, particle size distribution, particle concentration, etc.). Future work at LLL for this ongoing investigation is described

  7. Undercooling Limits and Thermophysical Properties in Glass Forming Alloys

    Science.gov (United States)

    Rhim, Won-Kyu; Ohsaka, Kenichi; Spjut, R. Erik

    1999-01-01

    The primary objective of this program is to produce deeply undercooled metallic liquids and to identify factors that limit undercooling and glass formation. The main research objectives are: (1) Investigating undercooling limits in glass-forming alloys and identifying factors that affect undercooling; (2) Measuring thermophysical properties and investigating the validity of the classical nucleation theory and other existing theories in the extreme undercooled states; and (3) To investigate the limits of electrostatic levitation technology in the ground base and to identify thermophysical parameters that might require reduced-g environment.

  8. Glass Ceramic Waste Forms for Combined CS+LN+TM Fission Products Waste Streams

    International Nuclear Information System (INIS)

    Crum, Jarrod V.; Turo, Laura A.; Riley, Brian J.; Tang, Ming; Kossoy, Anna; Sickafus, Kurt E.

    2010-01-01

    In this study, glass ceramics were explored as an alternative waste form for glass, the current baseline, to be used for immobilizing alkaline/alkaline earth + lanthanide (CS+LN) or CS+LN+transition metal (TM) fission-product waste streams generated by a uranium extraction (UREX+) aqueous separations type process. Results from past work on a glass waste form for the combined CS+LN waste streams showed that as waste loading increased, large fractions of crystalline phases precipitated upon slow cooling.(1) The crystalline phases had no noticeable impact on the waste form performance by the 7-day product consistency test (PCT). These results point towards the development of a glass ceramic waste form for treating CS+LN or CS+LN+TM combined waste streams. Three main benefits for exploring glass ceramics are: (1) Glass ceramics offer increased solubility of troublesome components in crystalline phases as compared to glass, leading to increased waste loading; (2) The crystalline network formed in the glass ceramic results in higher heat tolerance than glass; and (3) These glass ceramics are designed to be processed by the same melter technology as the current baseline glass waste form. It will only require adding controlled canister cooling for crystallization into a glass ceramic waste form. Highly annealed waste form (essentially crack free) with up to 50X lower surface area than a typical High-Level Waste (HLW) glass canister. Lower surface area translates directly into increased durability. This was the first full year of exploring glass ceramics for the Option 1 and 2 combined waste stream options. This work has shown that dramatic increases in waste loading are achievable by designing a glass ceramic waste form as an alternative to glass. Table S1 shows the upper limits for heat, waste loading (based on solubility), and the decay time needed before treatment can occur for glass and glass ceramic waste forms. The improvements are significant for both combined waste

  9. Glass Ceramic Waste Forms for Combined CS+LN+TM Fission Products Waste Streams

    Energy Technology Data Exchange (ETDEWEB)

    Crum, Jarrod V.; Turo, Laura A.; Riley, Brian J.; Tang, Ming; Kossoy, Anna; Sickafus, Kurt E.

    2010-09-23

    In this study, glass ceramics were explored as an alternative waste form for glass, the current baseline, to be used for immobilizing alkaline/alkaline earth + lanthanide (CS+LN) or CS+LN+transition metal (TM) fission-product waste streams generated by a uranium extraction (UREX+) aqueous separations type process. Results from past work on a glass waste form for the combined CS+LN waste streams showed that as waste loading increased, large fractions of crystalline phases precipitated upon slow cooling.[1] The crystalline phases had no noticeable impact on the waste form performance by the 7-day product consistency test (PCT). These results point towards the development of a glass ceramic waste form for treating CS+LN or CS+LN+TM combined waste streams. Three main benefits for exploring glass ceramics are: (1) Glass ceramics offer increased solubility of troublesome components in crystalline phases as compared to glass, leading to increased waste loading; (2) The crystalline network formed in the glass ceramic results in higher heat tolerance than glass; and (3) These glass ceramics are designed to be processed by the same melter technology as the current baseline glass waste form. It will only require adding controlled canister cooling for crystallization into a glass ceramic waste form. Highly annealed waste form (essentially crack free) with up to 50X lower surface area than a typical High-Level Waste (HLW) glass canister. Lower surface area translates directly into increased durability. This was the first full year of exploring glass ceramics for the Option 1 and 2 combined waste stream options. This work has shown that dramatic increases in waste loading are achievable by designing a glass ceramic waste form as an alternative to glass. Table S1 shows the upper limits for heat, waste loading (based on solubility), and the decay time needed before treatment can occur for glass and glass ceramic waste forms. The improvements are significant for both combined waste

  10. Discourses of Technology

    DEFF Research Database (Denmark)

    Sommer, Jannek K.; Knudsen, Gry Høngsmark

    In this poster we address consumption of technology from the perspective of failure. A large body of studies of consumption of technology have focused on consumer acceptance (Kozinets, 2008). These studies have identified particular narratives about social and economic progress, and pleasure...... (Kozinets, 2008) as drivers of consumer acceptance of new technology. Similarly, Giesler (2008) has conceptualized consumer acceptance of technology as a form of marketplace drama, in which market ideologies are negotiated between consumers and media discourses. We suggest to study discourses around failed...... technology products to explore the negotiation of the familiar and alien that makes consumers reject or embrace a new technology. Thus, this particular project sets out to analyze consumer discourses surrounding the Google Glass video “How it Feels [through Google Glass]” on YouTube, because we want...

  11. Properties Of Soda/Yttria/Silica Glasses

    Science.gov (United States)

    Angel, Paul W.; Hann, Raiford E.

    1994-01-01

    Experimental study of glass-formation compositional region of soda/ yttria/silicate system and of selected physical properties of glasses within compositional region part of continuing effort to identify glasses with high coefficients of thermal expansion and high softening temperatures, for use as coatings on superalloys and as glass-to-metal seals.

  12. An Insulating Glass Knowledge Base

    Energy Technology Data Exchange (ETDEWEB)

    Michael L. Doll; Gerald Hendrickson; Gerard Lagos; Russell Pylkki; Chris Christensen; Charlie Cureija

    2005-08-01

    This report will discuss issues relevant to Insulating Glass (IG) durability performance by presenting the observations and developed conclusions in a logical sequential format. This concluding effort discusses Phase II activities and focuses on beginning to quantifying IG durability issues while continuing the approach presented in the Phase I activities (Appendix 1) which discuss a qualitative assessment of durability issues. Phase II developed a focus around two specific IG design classes previously presented in Phase I of this project. The typical box spacer and thermoplastic spacer design including their Failure Modes and Effect Analysis (FMEA) and Fault Tree diagrams were chosen to address two currently used IG design options with varying components and failure modes. The system failures occur due to failures of components or their interfaces. Efforts to begin quantifying the durability issues focused on the development and delivery of an included computer based IG durability simulation program. The focus/effort to deliver the foundation for a comprehensive IG durability simulation tool is necessary to address advancements needed to meet current and future building envelope energy performance goals. This need is based upon the current lack of IG field failure data and the lengthy field observation time necessary for this data collection. Ultimately, the simulation program is intended to be used by designers throughout the current and future industry supply chain. Its use is intended to advance IG durability as expectations grow around energy conservation and with the growth of embedded technologies as required to meet energy needs. In addition the tool has the immediate benefit of providing insight for research and improvement prioritization. Included in the simulation model presentation are elements and/or methods to address IG materials, design, process, quality, induced stress (environmental and other factors), validation, etc. In addition, acquired data

  13. Structural principles in network glasses

    International Nuclear Information System (INIS)

    Boolchand, P.

    1986-01-01

    Substantial progress in decoding the structure of network glasses has taken place in the past few years. Crucial insights into the molecular structure of glasses have emerged by application of Raman bond and Moessbauer site spectroscopy. In this context, the complimentary role of each spectroscopy as a check on the interpretation of the other, is perhaps one of the more significant developments in the field. New advances in the theory of the subject have also taken place. It is thus appropriate to inquire what general principles if any, have emerged on the structure of real glasses. The author reviews some of the principal ideas on the structure of inorganic network glasses with the aid of specific examples. (Auth.)

  14. Neutron diffraction studies of glasses

    International Nuclear Information System (INIS)

    Wright, A.C.

    1987-01-01

    A survey is given of the application of neutron diffraction to structural studies of oxide and halide glasses. As with crystalline materials, neutron and X-ray diffraction are the major structural probes for glasses and other amorphous solids, particularly in respect of intermediate range order. The glasses discussed mostly have structures which are dominated by a network in which the bonding is predominantly covalent. The examples discussed demonstrate the power of the neutron diffraction technique in the investigation of the structures of inorganic glasses. The best modern diffraction experiments are capable of providing accurate data with high real space resolution, which if used correctly, are an extremely fine filter for the various structural models proposed in the literature. 42 refs

  15. Inorganic glass ceramic slip rings

    Science.gov (United States)

    Glossbrenner, E. W.; Cole, S. R.

    1972-01-01

    Prototypes of slip rings have been fabricated from ceramic glass, a material which is highly resistant to deterioration due to high temperature. Slip ring assemblies were not structurally damaged by mechanical tests and performed statisfactorily for 200 hours.

  16. Turning nuclear waste into glass

    Energy Technology Data Exchange (ETDEWEB)

    Pegg, Ian L.

    2015-02-15

    Vitrification has emerged as the treatment option of choice for the most dangerous radioactive waste. But dealing with the nuclear waste legacy of the Cold War will require state-of-the-art facilities and advanced glass formulations.

  17. Glass microspheres for medical applications

    Science.gov (United States)

    Conzone, Samuel David

    Radioactive dysprosium lithium borate glass microspheres have been developed as biodegradable radiation delivery vehicles for the radiation synovectomy treatment of rheumatoid arthritis. Once injected into a diseased joint, the microspheres deliver a potent dose of radiation to the diseased tissue, while a non-uniform chemical reaction converts the glass into an amorphous, porous, hydrated dysprosium phosphate reaction product. The non-radioactive, lithium-borate component is dissolved from the glass (up to 94% weight loss), while the radioactive 165Dy reacts with phosphate anions in the body fluids, and becomes "chemically" trapped in a solid, dysprosium phosphate reaction product that has the same size as the un-reacted glass microsphere. Ethylene diamine tetraacetate (EDTA) chelation therapy can be used to dissolve the dysprosium phosphate reaction product after the radiation delivery has subsided. The dysprosium phosphate reaction product, which formed in vivo in the joint of a Sprague-Dawley rat, was dissolved by EDTA chelation therapy in 100 Gy) of localized beta radiation to a treatment site within the body, followed by complete biodegradability. The non-uniform reaction process is a desirable characteristic for a biodegradable radiation delivery vehicle, but it is also a novel material synthesis technique that can convert a glass to a highly porous materials with widely varying chemical composition by simple, low-temperature, glass/solution reaction. The reaction product formed by nonuniform reaction occupies the same volume as the un-reacted glass, and after drying for 1 h at 300°C, has a specific surface area of ≈200 m2/g, a pore size of ≈30 nm, and a nominal crushing strength of ≈10 MPa. Finally, rhenium glass microspheres, composed of micron-sized, metallic rhenium particles dispersed within a magnesium alumino borate glass matrix were produced by sintering ReO2 powder and glass frit at 1050°C. A 50 mg injection of radioactive rhenium glass

  18. Cesium glass irradiation sources

    International Nuclear Information System (INIS)

    Plodinec, M.J.

    1982-01-01

    The precipitation process for the decontamination of soluble SRP wastes produces a material whose radioactivity is dominated by 137 Cs. Potentially, this material could be vitrified to produce irradiation sources similar to the Hanford CsCl sources. In this report, process steps necessary for the production of cesium glass irradiation sources (CGS), and the nature of the sources produced, are examined. Three options are considered in detail: direct vitrification of precipitation process waste; direct vitrification of this waste after organic destruction; and vitrification of cesium separated from the precipitation process waste. Direct vitrification is compatible with DWPF equipment, but process rates may be limited by high levels of combustible materials in the off-gas. Organic destruction would allow more rapid processing. In both cases, the source produced has a dose rate of 2 x 10 4 rads/hr at the surface. Cesium separation produces a source with a dose rate of 4 x 10 5 at the surface, which is nearer that of the Hanford sources (2 x 10 6 rads/hr). Additional processing steps would be required, as well as R and D to demonstrate that DWPF equipment is compatible with this intensely radioactive material

  19. Sustainable Innovation of Glass Design and Craft

    DEFF Research Database (Denmark)

    Sparre-Petersen, Maria

    2014-01-01

    , reduction of production and transportation of new glass is desirable (Environmental Protection Agency, 2012), and can be realized by recycling glass, that has already been manufactured, used and collected for recycling, but has ended up in landfills due to the market mechanisms that allow manufacturing...... and deposition of glass is reduced Today glass production predominantly consists of window glass, glass wool for insulation and containers such as bottles and jelly jars. Glass craft and design hold only a fraction of the market. Still there is reason to believe that generation and implementation of new...

  20. Contrasting the magnetic response between magnetic-glass and reentrant spin-glass

    OpenAIRE

    Roy, S. B.; Chattopadhyay, M. K.

    2008-01-01

    Magnetic-glass is a recently identified phenomenon in various classes of magnetic systems undergoing a first order magnetic phase transition. We shall highlight here a few experimentally determined characteristics of magnetic-glass and the relevant set of experiments, which will enable to distinguish a magnetic-glass unequivocally from the well known phenomena of spin-glass and reentrant spin-glass.

  1. Glass science tutorial: Lecture number-sign 2, Operating electric glass melters. James N. Edmonson, Lecturer

    International Nuclear Information System (INIS)

    Kruger, A.A.

    1994-10-01

    This report contains basic information on electric furnaces used for glass melting and on the properties of glass useful for the stabilization of radioactive wastes. Furnace nomenclature, furnace types, typical silicate glass composition and properties, thermal conductivity information, kinetics of the melting process, glass furnace refractory materials composition and thermal conductivity, and equations required for the operation of glass melters are included

  2. Investigations on vanadium doped glasses

    International Nuclear Information System (INIS)

    Madhusudana Rao, P.

    2013-01-01

    The glass samples studied in the present work have been prepared by melt quenching technique. They were prepared by mixing and grinding together by appropriate amounts of Li 2 O - Na 2 O - B 2 O 3 doped with V 2 O 5 in an agate motor before transferring into crucible. The mixtures were heated in an electric furnace at 1225K for 20 mm. The melt was then quenched to room temperature by pouring it on plane brass plate and pressing it with another brass plate. White and yellow coloured glasses have been obtained with good optical quality and high transparency. Finally the vitreous sample were annealed for 3 hrs at 423K to relieve residual internal stress and slowly cooled to room temperature. The polished glasses have been used for XRD, FTIR analysis and for DSC report. The DSC thermo grams for all the glasses were recorded on in the temperature range 50-550℃ with a heating rate of 10℃/min. Electron spin resonance and optical absorption of 20Li 2 O - 10 Na 2 O - (70-X)B 2 O 3 doped with XV 2 O 5 glass system are studied. ESR spectra of V 4+ ions doped in the glass exhibit peak at g =1.98. Spin Hamiltonian parameters are calculated. It was found that these parameters are dependent upon alkali ion concentration in the glass and the VO +2 ion in an octahedral coordination with a tetragonal compression. The physical parameters of all glasses were also evaluated with respect to the composition

  3. Perspective: Highly stable vapor-deposited glasses

    Science.gov (United States)

    Ediger, M. D.

    2017-12-01

    This article describes recent progress in understanding highly stable glasses prepared by physical vapor deposition and provides perspective on further research directions for the field. For a given molecule, vapor-deposited glasses can have higher density and lower enthalpy than any glass that can be prepared by the more traditional route of cooling a liquid, and such glasses also exhibit greatly enhanced kinetic stability. Because vapor-deposited glasses can approach the bottom of the amorphous part of the potential energy landscape, they provide insights into the properties expected for the "ideal glass." Connections between vapor-deposited glasses, liquid-cooled glasses, and deeply supercooled liquids are explored. The generality of stable glass formation for organic molecules is discussed along with the prospects for stable glasses of other types of materials.

  4. Production of lightweight foam glass (invited talk)

    DEFF Research Database (Denmark)

    Petersen, Rasmus Rosenlund; König, Jakob; Yue, Yuanzheng

    The foam glass production allows low cost recycling of postconsumer glass and industrial waste materials as foaming agent or as melt resource. Foam glass is commonly produced by utilising milled glass mixed with a foaming agent. The powder mixture is heat-treated to around 10^3.7 – 10^6 Pa s, which...... result in viscous sintering and subsequent foaming of the glass melt. The porous glass melt is cooled down to room temperature to freeze-in the foam structure. The resulting foam glass is applied in constructions as a light weight material to reduce load bearing capacity and as heat insulating material...... in buildings and industry. We foam panel glass from old televisions with different foaming agents. We discuss the foaming ability and the foaming mechanism of different foaming systems. We compare several studies to define a viscous window for preparing low density foam glass. However, preparing foam glass...

  5. Determination of the specific surface energy of oxides and glasses in the solid-state

    International Nuclear Information System (INIS)

    Andryushechkin, S.; Karpman, M.

    2000-01-01

    The production and application of coatings on glasses are used widely in technology. The coatings on glass are used for the regulation of optical, decorative, conducting and other technological and physical properties of glass. In particular, it is important to mention the application of glass fibres for the development of composite materials. However, the specific surface energy of glass and, consequently, its adhesion characteristics are relatively low. The values of these characteristics can be changed by the application of different metallic and nonmetallic coatings is characterised by high surface energy. To produce metallic coatings with the required adhesion strength of glass, it is necessary to have information on the specific surface energy of inorganic glass of different chemical composition. The determination of the relationships between the properties and composition of glass is one of the fundamental problems. At present, a large amount of investigations have been carried out into the investigations of the properties of glass in relation to its composition. However, the problem of establishment of relationships between the properties and composition of glass are especially difficult when examining multicomponent systems (technical glass). It is therefore, in to analyse in each case the properties of not the entire system has a whole but the variation of the properties with temperature of the individual components included in the system, the subsequent application of the additivity principle. The large majority of the glasses represent combinations of oxides of the elements of groups I-III and oxides of the transition metals, forming the mixtures, solid solutions of chemical compounds in the glass production process. Thus, analysis of the characteristics of oxides of the alkali, alkali-earth and transition metals makes it possible to obtain initial data for the evaluation of the surface energy, density, molecular mass of glass containing these oxides

  6. BNFL Report Glass Formers Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Schumacher, R.F.

    2000-07-27

    The objective of this task was to obtain powder property data on candidate glass former materials, sufficient to guide conceptual design and estimate the cost of glass former handling facilities as requested under Part B1 of BNFL Technical and Development Support. Twenty-nine glass forming materials were selected and obtained from vendors for the characterization of their physical properties, durability in caustic solution, and powder flow characteristics. A glass former was selected based on the characterization for each of the ten oxide classes required for Envelope A, B, and C mixtures. Three blends (A, B, and C) were prepared based on formulations provided by Vitreous State Laboratory and evaluated with the same methods employed for the glass formers. The properties obtained are presented in a series of attached Tables. It was determined that five of the ten glass formers, (kyanite, iron oxide, titania, zircon, and zinc oxide) have the potential to cause some level of solids f low problems. The problems might include arching or ratholing in the silo/hopper. In addition, all of the blends may require consideration for their handling.

  7. BNFL Report Glass Formers Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Schumacher, R.F.

    2000-07-27

    The objective of this task was to obtain powder property data on candidate glass former materials, sufficient to guide conceptual design and estimate the cost of glass former handling facilities as requested under Part B1 of BNFL Technical and Development Support. Twenty-nine glass forming materials were selected and obtained from vendors for the characterization of their physical properties, durability in caustic solution, and powder flow characteristics. A glass former was selected based on the characterization for each of the ten oxide classes required for Envelope A, B, and C mixtures. Three blends (A, B, and C) were prepared based on formulations provided by Vitreous State Laboratory and evaluated with the same methods employed for the glass formers. The properties obtained are presented in a series of attached Tables. It was determined that five of the ten glass formers, (kyanite, iron oxide, titania, zircon, and zinc oxide) have the potential to cause some level of solids f low problems. In addition, all of the blends may require consideration for their handling. A number of engineering considerations and recommendations were prepared based on the experimental findings, experience, and other process considerations. Recommendations for future testing are included. In conjunction with future work, it is recommended that a professional consultant be engaged to guide and assist with testing and design input.

  8. BNFL Report Glass Formers Characterization

    International Nuclear Information System (INIS)

    Schumacher, R.F.

    2000-01-01

    The objective of this task was to obtain powder property data on candidate glass former materials, sufficient to guide conceptual design and estimate the cost of glass former handling facilities as requested under Part B1 of BNFL Technical and Development Support. Twenty-nine glass forming materials were selected and obtained from vendors for the characterization of their physical properties, durability in caustic solution, and powder flow characteristics. A glass former was selected based on the characterization for each of the ten oxide classes required for Envelope A, B, and C mixtures. Three blends (A, B, and C) were prepared based on formulations provided by Vitreous State Laboratory and evaluated with the same methods employed for the glass formers. The properties obtained are presented in a series of attached Tables. It was determined that five of the ten glass formers, (kyanite, iron oxide, titania, zircon, and zinc oxide) have the potential to cause some level of solids f low problems. In addition, all of the blends may require consideration for their handling. A number of engineering considerations and recommendations were prepared based on the experimental findings, experience, and other process considerations. Recommendations for future testing are included. In conjunction with future work, it is recommended that a professional consultant be engaged to guide and assist with testing and design input

  9. Bioactive glasses: Frontiers and challenges

    Directory of Open Access Journals (Sweden)

    Larry L. Hench

    2015-11-01

    Full Text Available Bioactive glasses were discovered in 1969 and provided for the first time an alternative to nearly inert implant materials. Bioglass formed a rapid, strong and stable bond with host tissues. This article examines the frontiers of research crossed to achieve clinical use of bioactive glasses and glass-ceramics. In the 1980’s it was discovered that bioactive glasses could be used in particulate form to stimulate osteogenesis, which thereby led to the concept of regeneration of tissues. Later, it was discovered that the dissolution ions from the glasses behaved like growth factors, providing signals to the cells. This article summarizes the frontiers of knowledge crossed during four eras of development of bioactive glasses that have led from concept of bioactivity to widespread clinical and commercial use, with emphasis on the first composition, 45S5 Bioglass®. The four eras are: a discovery; b clinical application; c tissue regeneration; and d innovation. Questions still to be answered for the fourth era are included to stimulate innovation in the field and exploration of new frontiers that can be the basis for a general theory of bioactive stimulation of regeneration of tissues and application to numerous clinical needs.

  10. BNFL Report Glass Formers Characterization

    International Nuclear Information System (INIS)

    Schumacher, R.F.

    2000-01-01

    The objective of this task was to obtain powder property data on candidate glass former materials, sufficient to guide conceptual design and estimate the cost of glass former handling facilities as requested under Part B1 of BNFL Technical and Development Support. Twenty-nine glass forming materials were selected and obtained from vendors for the characterization of their physical properties, durability in caustic solution, and powder flow characteristics. A glass former was selected based on the characterization for each of the ten oxide classes required for Envelope A, B, and C mixtures. Three blends (A, B, and C) were prepared based on formulations provided by Vitreous State Laboratory and evaluated with the same methods employed for the glass formers. The properties obtained are presented in a series of attached Tables. It was determined that five of the ten glass formers, (kyanite, iron oxide, titania, zircon, and zinc oxide) have the potential to cause some level of solids f low problems. The problems might include arching or ratholing in the silo/hopper. In addition, all of the blends may require consideration for their handling

  11. Glass-ceramics with multibarrier structure obtained from industrial waste

    Energy Technology Data Exchange (ETDEWEB)

    Berzina, L.; Cimdins, R.; Rozenstrauha, I. [Riga Tech. Univ. (Latvia). Fac. of Chem. Technol.; Bossert, J. [Technisches Inst.: Materialwissenschaft, Friedrich-Schiller-Univ., Jena (Germany); Kravtchenko, I. [Inst. for Problems of Material Science, Kiev (Ukraine)

    1997-12-31

    Recycling problem for various kind of waste is solved by processing the waste to ecological depositable products with multibarrier structure. In order to form a multibarrier structure the ecologically incompatible substances may be diluted and chemically bound until their recycling products gain a structure like natural mineral or glass (I. barrier). After that, remineralized materials are converted into a new product by melting or powder technology using an ecological compatible type of waste as a matrix phase (II. barrier). Waste which are treated this way could be applied to produce ceramic building materials and goods such as floor tiles, stone pavement and casting products. Industrial waste from the metallurgical factory in Latvia ``Liepajas metalurgs`` are metallurgical slag, filter dust, etching waste and sewage used in technologies. The main constituents of chemical compositions of these waste are: Fe, Ca, Si, Mg, Al, Mn etc. In some types of waste a small amount of ecologically risky elements such as Cr, Ni, Zr, Sn and Pb can occur. The combination of metallurgical waste with peat ashes from Riga thermal power station, oil shale ashes or glass waste under controlled sintering procedure gives bulk materials with surface or/and bulkcrystallization. The structure of glass-ceramics built this way may prevent the migration of ecologically risky elements into environment due to corrosion or friction. Physical-chemical properties and thermal behaviour (DTA, dilatometry, melting) of waste define the range of sintering for production of glass-ceramics (powder technology) and decorative glass-ceramic materials (melting and powder technology). (orig.) 5 refs.

  12. Commercial Ion Exchange Resin Vitrification in Borosilicate Glass

    International Nuclear Information System (INIS)

    Cicero-Herman, C.A.; Workman, P.; Poole, K.; Erich, D.; Harden, J.

    1998-05-01

    Bench-scale studies were performed to determine the feasibility of vitrification treatment of six resins representative of those used in the commercial nuclear industry. Each resin was successfully immobilized using the same proprietary borosilicate glass formulation. Waste loadings varied from 38 to 70 g of resin/100 g of glass produced depending on the particular resin, with volume reductions of 28 percent to 68 percent. The bench-scale results were used to perform a melter demonstration with one of the resins at the Clemson Environmental Technologies Laboratory (CETL). The resin used was a weakly acidic meth acrylic cation exchange resin. The vitrification process utilized represented a approximately 64 percent volume reduction. Glass characterization, radionuclide retention, offgas analyses, and system compatibility results will be discussed in this paper

  13. Glass Membrane For Controlled Diffusion Of Gases

    Science.gov (United States)

    Shelby, James E.; Kenyon, Brian E.

    2001-05-15

    A glass structure for controlled permeability of gases includes a glass vessel. The glass vessel has walls and a hollow center for receiving a gas. The glass vessel contains a metal oxide dopant formed with at least one metal selected from the group consisting of transition metals and rare earth metals for controlling diffusion of the gas through the walls of the glass vessel. The vessel releases the gas through its walls upon exposure to a radiation source.

  14. Crack-resistant Al2O3–SiO2 glasses

    Science.gov (United States)

    Rosales-Sosa, Gustavo A.; Masuno, Atsunobu; Higo, Yuji; Inoue, Hiroyuki

    2016-01-01

    Obtaining “hard” and “crack-resistant” glasses have always been of great important in glass science and glass technology. However, in most commercial glasses both properties are not compatible. In this work, colorless and transparent xAl2O3–(100–x)SiO2 glasses (30 ≤ x ≤ 60) were fabricated by the aerodynamic levitation technique. The elastic moduli and Vickers hardness monotonically increased with an increase in the atomic packing density as the Al2O3 content increased. Although a higher atomic packing density generally enhances crack formation in conventional oxide glasses, the indentation cracking resistance increased by approximately seven times with an increase in atomic packing density in binary Al2O3–SiO2 glasses. In particular, the composition of 60Al2O3•40SiO2 glass, which is identical to that of mullite, has extraordinary high cracking resistance with high elastic moduli and Vickers hardness. The results indicate that there exist aluminosilicate compositions that can produce hard and damage-tolerant glasses. PMID:27053006

  15. Crack-resistant Al2O3-SiO2 glasses.

    Science.gov (United States)

    Rosales-Sosa, Gustavo A; Masuno, Atsunobu; Higo, Yuji; Inoue, Hiroyuki

    2016-04-07

    Obtaining "hard" and "crack-resistant" glasses have always been of great important in glass science and glass technology. However, in most commercial glasses both properties are not compatible. In this work, colorless and transparent xAl2O3-(100-x)SiO2 glasses (30 ≤ x ≤ 60) were fabricated by the aerodynamic levitation technique. The elastic moduli and Vickers hardness monotonically increased with an increase in the atomic packing density as the Al2O3 content increased. Although a higher atomic packing density generally enhances crack formation in conventional oxide glasses, the indentation cracking resistance increased by approximately seven times with an increase in atomic packing density in binary Al2O3-SiO2 glasses. In particular, the composition of 60Al2O3 • 40SiO2 glass, which is identical to that of mullite, has extraordinary high cracking resistance with high elastic moduli and Vickers hardness. The results indicate that there exist aluminosilicate compositions that can produce hard and damage-tolerant glasses.

  16. Leachates analysis of glass from black and white and color televisions sets

    Directory of Open Access Journals (Sweden)

    Radovan Kukla

    2012-01-01

    Full Text Available The aim of work was to determine the content of selected elements in the glass from color and black and white television (TV sets. The amount of back taken TV sets in the Czech Republic increases annualy, which is associated with higher production of the waste glass. Currently there is 1.4 television sets for each household and the number of it should increase in future, because of higher standard of living and new technologies used. Waste glass treatment or landfilling may present, because of composition of the waste glass threat to the environment. One of the indicators of the polution from waste glass is leachate analysis, which can show us the content of hazardous substances in the waste glass, which can be released to the environment. A qualitative analysis of leachate samples was carried out by UV-VIS spectrophotometer. The results showed concentration of potencionaly hazardous substances contained in leachate samples. This was especially content of aluminum, cadmium, chromium, copper, molybdenum, nickel, lead, tin and zinc. Results of analyzes of the aqueous extract of glass were confronted with the limits specified in the currently valid legislation. Based on the results there is clear that in the case of landfilling of the glass from television sets, there is possibility of the contamination of landfill leachate by the elements, which are presented in the glass.

  17. Validation Assessment of a Glass-to-Metal Seal Finite-Element Model

    Energy Technology Data Exchange (ETDEWEB)

    Jamison, Ryan Dale [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Buchheit, Thomas E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Emery, John M [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Romero, Vicente J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Stavig, Mark E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Newton, Clay S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Brown, Arthur [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-10-01

    Sealing glasses are ubiquitous in high pressure and temperature engineering applications, such as hermetic feed-through electrical connectors. A common connector technology are glass-to-metal seals where a metal shell compresses a sealing glass to create a hermetic seal. Though finite-element analysis has been used to understand and design glass-to-metal seals for many years, there has been little validation of these models. An indentation technique was employed to measure the residual stress on the surface of a simple glass-to-metal seal. Recently developed rate- dependent material models of both Schott 8061 and 304L VAR stainless steel have been applied to a finite-element model of the simple glass-to-metal seal. Model predictions of residual stress based on the evolution of material models are shown. These model predictions are compared to measured data. Validity of the finite- element predictions is discussed. It will be shown that the finite-element model of the glass-to-metal seal accurately predicts the mean residual stress in the glass near the glass-to-metal interface and is valid for this quantity of interest.

  18. Ultrasound-guided central venous access using Google Glass.

    Science.gov (United States)

    Wu, Teresa S; Dameff, Christian J; Tully, Jeffrey L

    2014-12-01

    The use of ultrasound during invasive bedside procedures is quickly becoming the standard of care. Ultrasound machine placement during procedures often requires the practitioner to turn their head during the procedure to view the screen. Such turning has been implicated in unintentional hand movements in novices. Google Glass is a head-mounted computer with a specialized screen capable of projecting images and video into the view of the wearer. Such technology may help decrease unintentional hand movements. Our aim was to evaluate whether or not medical practitioners at various levels of training could use Google Glass to perform an ultrasound-guided procedure, and to explore potential advantages of this technology. Forty participants of varying training levels were randomized into two groups. One group used Google Glass to perform an ultrasound-guided central line. The other group used traditional ultrasound during the procedure. Video recordings of eye and hand movements were analyzed. All participants from both groups were able to complete the procedure without difficulty. Google Glass wearers took longer to perform the procedure at all training levels (medical student year 1 [MS1]: 193 s vs. 77 s, p > 0.5; MS4: 197s vs. 91s, p ≤ 0.05; postgraduate year 1 [PGY1]: 288s vs. 125 s, p > 0.5; PGY3: 151 s vs. 52 s, p ≤ 0.05), and required more needle redirections (MS1: 4.4 vs. 2.0, p > 0.5; MS4: 4.8 vs. 2.8, p > 0.5; PGY1: 4.4 vs. 2.8, p > 0.5; PGY3: 2.0 vs. 1.0, p > 0.5). In this study, it was possible to perform ultrasound-guided procedures with Google Glass. Google Glass wearers, on average, took longer to gain access, and had more needle redirections, but less head movements were noted. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Characteristics of the Arcing Plasma Formation Effect in Spark-Assisted Chemical Engraving of Glass, Based on Machine Vision

    OpenAIRE

    Chao-Ching Ho; Dung-Sheng Wu

    2018-01-01

    Spark-assisted chemical engraving (SACE) is a non-traditional machining technology that is used to machine electrically non-conducting materials including glass, ceramics, and quartz. The processing accuracy, machining efficiency, and reproducibility are the key factors in the SACE process. In the present study, a machine vision method is applied to monitor and estimate the status of a SACE-drilled hole in quartz glass. During the machining of quartz glass, the spring-fed tool electrode was p...

  20. Glass-based integrated optical splitters: engineering oriented research

    Science.gov (United States)

    Hao, Yinlei; Zheng, Weiwei; Yang, Jianyi; Jiang, Xiaoqing; Wang, Minghua

    2010-10-01

    Optical splitter is one of most typical device heavily demanded in implementation of Fiber To The Home (FTTH) system. Due to its compatibility with optical fibers, low propagation loss, flexibility, and most distinguishingly, potentially costeffectiveness, glass-based integrated optical splitters made by ion-exchange technology promise to be very attractive in application of optical communication networks. Aiming at integrated optical splitters applied in optical communication network, glass ion-exchange waveguide process is developed, which includes two steps: thermal salts ion-exchange and field-assisted ion-diffusion. By this process, high performance optical splitters are fabricated in specially melted glass substrate. Main performance parameters of these splitters, including maximum insertion loss (IL), polarization dependence loss (PDL), and IL uniformity are all in accordance with corresponding specifications in generic requirements for optic branching components (GR-1209-CORE). In this paper, glass based integrated optical splitters manufacturing is demonstrated, after which, engineering-oriented research work results on glass-based optical splitter are presented.

  1. High-Level Waste Glass Formulation Model Sensitivity Study 2009 Glass Formulation Model Versus 1996 Glass Formulation Model

    International Nuclear Information System (INIS)

    Belsher, J.D.; Meinert, F.L.

    2009-01-01

    This document presents the differences between two HLW glass formulation models (GFM): The 1996 GFM and 2009 GFM. A glass formulation model is a collection of glass property correlations and associated limits, as well as model validity and solubility constraints; it uses the pretreated HLW feed composition to predict the amount and composition of glass forming additives necessary to produce acceptable HLW glass. The 2009 GFM presented in this report was constructed as a nonlinear optimization calculation based on updated glass property data and solubility limits described in PNNL-18501 (2009). Key mission drivers such as the total mass of HLW glass and waste oxide loading are compared between the two glass formulation models. In addition, a sensitivity study was performed within the 2009 GFM to determine the effect of relaxing various constraints on the predicted mass of the HLW glass.

  2. Achievement report for fiscal 2000 on research and development of high level waste glass utilization system of CO2 emission suppression type; 2000 nendo CO2 haishutsu yokuseigata hai glass kodo riyo system no kenkyu kaihatsu seika hokokusho (kokaiyo)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    With an objective to establish a waste glass recycling system of low cost and requiring less CO2 emission amount and energy consumption, research and development has been made on classification of waste glasses into particle composition that is required in regenerated commercial products. This paper summarizes the achievements in fiscal 2000. In the research of a waste glass reusing and supplying system designed by using LCA, discussions were given on items required in circulating and recycling waste glass resources, and quality control on raw materials and products. Evaluations of product quality control items were made on crystallized glass, sintered glasswool, automotive window glass, electric bulbs, fluorescent lamp glass, and quartz glass. Utilization tests were carried out for Mashiko porcelain china clay with an intention of expanding the application of waste glass, whereas the relationship between waste glass addition amount and optimal sintering temperature range was verified, disclosing that the limit of the waste glass addition is 10%. In the research on multi-functional hybrid materials, discussions were given on light-weight tiles and water permeating blocks with regard to the manufacturing technology, facility specifications, product quality, effects of the functions, and durability. (NEDO)

  3. Natural analogues of nuclear waste glass corrosion

    International Nuclear Information System (INIS)

    Abrajano, T.A. Jr.; Ebert, W.L.; Luo, J.S.

    1999-01-01

    This report reviews and summarizes studies performed to characterize the products and processes involved in the corrosion of natural glasses. Studies are also reviewed and evaluated on how well the corrosion of natural glasses in natural environments serves as an analogue for the corrosion of high-level radioactive waste glasses in an engineered geologic disposal system. A wide range of natural and experimental corrosion studies has been performed on three major groups of natural glasses: tektite, obsidian, and basalt. Studies of the corrosion of natural glass attempt to characterize both the nature of alteration products and the reaction kinetics. Information available on natural glass was then compared to corresponding information on the corrosion of nuclear waste glasses, specifically to resolve two key questions: (1) whether one or more natural glasses behave similarly to nuclear waste glasses in laboratory tests, and (2) how these similarities can be used to support projections of the long-term corrosion of nuclear waste glasses. The corrosion behavior of basaltic glasses was most similar to that of nuclear waste glasses, but the corrosion of tektite and obsidian glasses involves certain processes that also occur during the corrosion of nuclear waste glasses. The reactions and processes that control basalt glass dissolution are similar to those that are important in nuclear waste glass dissolution. The key reaction of the overall corrosion mechanism is network hydrolysis, which eventually breaks down the glass network structure that remains after the initial ion-exchange and diffusion processes. This review also highlights some unresolved issues related to the application of an analogue approach to predicting long-term behavior of nuclear waste glass corrosion, such as discrepancies between experimental and field-based estimates of kinetic parameters for basaltic glasses

  4. Natural analogues of nuclear waste glass corrosion.

    Energy Technology Data Exchange (ETDEWEB)

    Abrajano, T.A. Jr.; Ebert, W.L.; Luo, J.S.

    1999-01-06

    This report reviews and summarizes studies performed to characterize the products and processes involved in the corrosion of natural glasses. Studies are also reviewed and evaluated on how well the corrosion of natural glasses in natural environments serves as an analogue for the corrosion of high-level radioactive waste glasses in an engineered geologic disposal system. A wide range of natural and experimental corrosion studies has been performed on three major groups of natural glasses: tektite, obsidian, and basalt. Studies of the corrosion of natural glass attempt to characterize both the nature of alteration products and the reaction kinetics. Information available on natural glass was then compared to corresponding information on the corrosion of nuclear waste glasses, specifically to resolve two key questions: (1) whether one or more natural glasses behave similarly to nuclear waste glasses in laboratory tests, and (2) how these similarities can be used to support projections of the long-term corrosion of nuclear waste glasses. The corrosion behavior of basaltic glasses was most similar to that of nuclear waste glasses, but the corrosion of tektite and obsidian glasses involves certain processes that also occur during the corrosion of nuclear waste glasses. The reactions and processes that control basalt glass dissolution are similar to those that are important in nuclear waste glass dissolution. The key reaction of the overall corrosion mechanism is network hydrolysis, which eventually breaks down the glass network structure that remains after the initial ion-exchange and diffusion processes. This review also highlights some unresolved issues related to the application of an analogue approach to predicting long-term behavior of nuclear waste glass corrosion, such as discrepancies between experimental and field-based estimates of kinetic parameters for basaltic glasses.

  5. Chiral-glass transition and replica symmetry breaking of a three-dimensional Heisenberg spin glass

    OpenAIRE

    Hukushima, K.; Kawamura, H.

    2000-01-01

    Extensive equilibrium Monte Carlo simulations are performed for a three-dimensional Heisenberg spin glass with the nearest-neighbor Gaussian coupling to investigate its spin-glass and chiral-glass orderings. The occurrence of a finite-temperature chiral-glass transition without the conventional spin-glass order is established. Critical exponents characterizing the transition are different from those of the standard Ising spin glass. The calculated overlap distribution suggests the appearance ...

  6. Aqueous corrosion of silicate glasses. Analogy between volcanic glasses and the French nuclear waste glass R7T7

    International Nuclear Information System (INIS)

    Goldschmidt, F.

    1991-01-01

    The behaviour of borosilicate glasses upon aqueous corrosion is controlled for long periods of time (>10,000 years) by processes which are not directly accessible by means of laboratory experiments. The analogical approach consists here to compare leaching performances between the french nuclear waste glass R7T7 and natural volcanic glasses, basaltic and rhyolitic ones. The three glasses were leached in the same conditions; open system, 90 deg C, initial pH of 9.7. Basaltic and R7T7 glasses having the same kinetic of dissolution, the basaltic glass was chosen as the best analogue. (author). refs., figs., tabs

  7. Relative leach behavior of waste glasses and naturally occurring glasses

    International Nuclear Information System (INIS)

    Adams, P.B.

    1979-01-01

    Simulated nuclear waste glasses of the sodium-borosilicate type with a low waste loading and of the zinc-borosilicate type with a high waste loading have been compared with obsidians. The resuls indicate that the waste glasses would corrode in normal natural environments at a rate of about 0.1 μm per year at 30 0 C and about 5 μm per year at 90 0 C, compared with obsidians which seem to corrode at, or less than, about 0.01 μm per year at 30 0 C and less than 1 μm per year at 90 0 C. Activation energies for reactions of the two waste glasses with pure water are about 20 kcal/g-mol. 3 figures, 7 tables

  8. Material development in the SI{sub 3}N{sub 4} system using glass encapsulated Hip`ing. Final report, Phase 2: DOE/ORNL Ceramic Technology Project

    Energy Technology Data Exchange (ETDEWEB)

    Corbin, N.D.; Sundberg, G.J.; Siebein, K.N.; Willkens, C.A.; Pujari, V.K.; Rossi, G.A.; Hansen, J.S.; Chang, C.L.; Hammarstrom, J.L.

    1992-04-01

    This report covers a two-year program to develop fully dense Si{sub 3}N{sub 4} matrix SiC whisker composites with enhanced properties over monolithic Si{sub 3}N{sub 4} materials. The primary goal was to develop a composite with a fracture toughness > 10 MPa{radical}m, capable of using high pressure glass encapsulated HIP`ing. Coating methods were developed to apply thin (<150nm) stoichiometric BN layers to SiC whiskers and also to apply a dual coating of SiC over carbon to the whiskers. Fracture toughness of the composites was determined to increase as the quantity of whiskers (or elongated grains) with their axis perpendicular to the crack plane increased. Of the interface compositions evaluated in this effort, carbon was determined to be the most effective for increasing toughness. The highest toughnesses (6.8--7.0 MPa{radical}m) were obtained with uniaxially aligned carbon coated whiskers. There was no evidence of the carbon coating compromising the oxidation resistance of the composites at 1370{degree}C.

  9. Database for waste glass composition and properties

    International Nuclear Information System (INIS)

    Peters, R.D.; Chapman, C.C.; Mendel, J.E.; Williams, C.G.

    1993-09-01

    A database of waste glass composition and properties, called PNL Waste Glass Database, has been developed. The source of data is published literature and files from projects funded by the US Department of Energy. The glass data have been organized into categories and corresponding data files have been prepared. These categories are glass chemical composition, thermal properties, leaching data, waste composition, glass radionuclide composition and crystallinity data. The data files are compatible with commercial database software. Glass compositions are linked to properties across the various files using a unique glass code. Programs have been written in database software language to permit searches and retrievals of data. The database provides easy access to the vast quantities of glass compositions and properties that have been studied. It will be a tool for researchers and others investigating vitrification and glass waste forms

  10. Through a glass, darkly.

    Science.gov (United States)

    Rittenberry, Ronnie

    2005-10-01

    The technology available in today's auto-darkening welding helmets was the stuff of science fiction to welders 30 years ago. A single lens capable of darkening automatically to a variable, preset shade level the instant an arc is struck would have sounded about as realistic as a "Star Trek"-style "transporter" or a cell phone that can take pictures. "It would have been complete and total science fiction," said Kevin Coughlin, president of Hoodlum Welding Gear, Minneapolis. "The technology really didn't exist, so it would be like me telling you your car will be flying in 20 years--you'd look at me and laugh. Even 25 years ago, if someone had told me [the lens] would go from clear to dark when you spark, I'd have said, 'Yeah, right, sure it does.' "

  11. Google Glass: An Evolution in Education or the Next Segway?

    Science.gov (United States)

    Bailey, J. E.

    2013-12-01

    When the Segway was unveiled in 2001, amid a cloud of internet buzz, it was supposed to revolutionize personal transportation. There is no denying the Segway is a remarkable piece of technological engineering but that ingenuity never transformed into sales or integration into society outside of security guards and tour guides. When Google announced Glass in 2012, to date the most high profile development from their "moonshot thinking" Project X engineering think-tank, similar life changing proclamations were made. Whether Google Glass will permeate everyday society is still unknown as the device has yet to be made available to the general public, and currently there are fewer than 10,000 pairs in circulation worldwide. However, the possibilities remain intriguing, particularly in the area of educational technology and understanding of student learning. The concept of virtual fieldtrips is well established, but the idea that Glass (using Google Hangouts) can be used to present in and connect to classrooms anywhere in the world, whilst showing views directly from a teacher's perspective is exciting. Alternatively, the idea that a teacher can follow the actions and movements of a student working on an assignment from that student's viewpoint offers huge potential for understanding cognitive learning. This presentation will pose some of the question surrounding Google Glass in education, and seek answers and opinions from others. The device itself will also be demonstrated, and the pros and cons of its design discussed.

  12. Baseline Glass Development for Combined Fission Products Waste Streams

    International Nuclear Information System (INIS)

    Crum, Jarrod V.; Billings, Amanda Y.; Lang, Jesse B.; Marra, James C.; Rodriguez, Carmen P.; Ryan, Joseph V.; Vienna, John D.

    2009-01-01

    Borosilicate glass was selected as the baseline technology for immobilization of the Cs/Sr/Ba/Rb (Cs), lanthanide (Ln) and transition metal fission product (TM) waste steams as part of a cost benefit analysis study.(1) Vitrification of the combined waste streams have several advantages, minimization of the number of waste forms, a proven technology, and similarity to waste forms currently accepted for repository disposal. A joint study was undertaken by Pacific Northwest National Laboratory (PNNL) and Savannah River National Laboratory (SRNL) to develop acceptable glasses for the combined Cs + Ln + TM waste streams (Option 1) and Cs + Ln combined waste streams (Option 2) generated by the AFCI UREX+ set of processes. This study is aimed to develop baseline glasses for both combined waste stream options and identify key waste components and their impact on waste loading. The elemental compositions of the four-corners study were used along with the available separations data to determine the effect of burnup, decay, and separations variability on estimated waste stream compositions.(2-5) Two different components/scenarios were identified that could limit waste loading of the combined Cs + LN + TM waste streams, where as the combined Cs + LN waste stream has no single component that is perceived to limit waste loading. Combined Cs + LN waste stream in a glass waste form will most likely be limited by heat due to the high activity of Cs and Sr isotopes.

  13. Volumetric change of simulated radioactive waste glass irradiated by electron accelerator. [Silica glass

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Seichi; Furuya, Hirotaka; Inagaki, Yaohiro; Kozaka, Tetsuo; Sugisaki, Masayasu

    1987-11-01

    Density changes of simulated radioactive waste glasses, silica glass and Pyrex glass irradiated by an electron accelerator were measured by a ''sink-float'' technique. The density changes of the waste and silica glasses were less than 0.05 %, irradiated at 2.0 MeV up to the fluence of 1.7 x 10/sup 17/ ecm/sup 2/, while were remarkably smaller than that of Pyrex glass of 0.18 % shrinkage. Precision of the measurements in the density changes of the waste glass was lower than that of Pyrex glass possibly because of the inhomogeneity of the waste glass

  14. Glass Industry Bandwidth Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Rue, David M. [Gas Technology Inst., Des Plaines, IL (United States)

    2006-07-01

    This is a study on energy use and potential savings, or "bandwidth" study, for several glassmaking processes. Intended to provide a realistic estimate of the potential amount of energy that can be saved in an industrial process, the "bandwidth" refers to the difference between the amount of energy that would be consumed in a process using commercially available technology versus the minimum amount of energy needed to achieve those same results.

  15. Industrial Glass Bandwidth Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Rue, David M. [Gas Technology Inst., Des Plaines, IL (United States); Servaites, James [Gas Technology Inst., Des Plaines, IL (United States); Wolf, Warren [Gas Technology Inst., Des Plaines, IL (United States)

    2007-08-01

    This is a study on energy use and potential savings, or "bandwidth" study, for several glassmaking processes. Intended to provide a realistic estimate of the potential amount of energy that can be saved in an industrial process, the "bandwidth" refers to the difference between the amount of energy that would be consumed in a process using commercially available technology versus the minimum amount of energy needed to achieve those same results.

  16. Ultrasonic relaxations in borate glasses

    International Nuclear Information System (INIS)

    D'Angelo, G.; Tripodo, G.; Carini, G.; Cosio, E.; Bartolotta, A.; Di Marco, G.

    2004-01-01

    The attenuation and velocity of ultrasonic waves of frequencies in the range from 10 to 70 MHz have been measured in M 2 O-B 2 O 3 borate glasses (M: Li or Ag) as a function of temperature between 15 and 350 K. The velocity of sound waves decreases with increasing temperature in all the glasses, the decrease as the temperature is increased is larger in glasses containing silver than in those with lithium. A broad relaxation peak characterises the attenuation behaviour of the lithium and silver borate glasses at temperatures below 100 K and is paralleled by a corresponding dispersive behaviour of the sound velocity. Above 100 K, the ultrasonic velocity shows a nearly linear behaviour regulated by the vibrational anharmonicity, which decreases with increasing content of modifier oxide and is smaller in lithium than in silver borates. These results suggest that the relaxation of structural defects and the anharmonicity of borate glasses are strongly affected by two parameters: the number of bridging bonds per network forming ion and the polarising power of network modifier ions which occupy sites in the existing interstices

  17. Yield point of metallic glass

    International Nuclear Information System (INIS)

    Shimizu, Futoshi; Ogata, Shigenobu; Li, Ju

    2006-01-01

    Shear bands form in most bulk metallic glasses (BMGs) within a narrow range of uniaxial strain ε y ≅ 2%. We propose this critical condition corresponds to embryonic shear band (ESB) propagation, not its nucleation. To propagate an ESB, the far-field shear stress τ ∞ ∼ Eε y /2 must exceed the quasi-steady-state glue traction τ glue of shear-alienated glass until the glass transition temperature is approached internally due to frictional heating, at which point ESB matures as a runaway shear crack. The incubation length scale l inc necessary for this maturation is estimated to be ∼10 2 nm for Zr-based BMGs, below which sample size-scale shear localization does not happen. In shear-alienated glass, the last resistance against localized shearing comes from extremely fast downhill dissipative dynamics of timescale comparable to atomic vibrations, allowing molecular dynamics (MD) simulations to capture this recovery process which governs τ glue . We model four metallic glasses: a binary Lennard-Jones system, two binary embedded atom potential systems and a quinternary embedded atom system. Despite vast differences in the structure and interatomic interactions, the four MD calculations give ε y predictions of 2.4%, 2.1%, 2.6% and 2.9%, respectively

  18. HLW Glass Studies: Development of Crystal-Tolerant HLW Glasses

    Energy Technology Data Exchange (ETDEWEB)

    Matyas, Josef; Huckleberry, Adam R.; Rodriguez, Carmen P.; Lang, Jesse B.; Owen, Antionette T.; Kruger, Albert A.

    2012-04-02

    In our study, a series of lab-scale crucible tests were performed on designed glasses of different compositions to further investigate and simulate the effect of Cr, Ni, Fe, Al, Li, and RuO2 on the accumulation rate of spinel crystals in the glass discharge riser of the HLW melter. The experimental data were used to expand the compositional region covered by an empirical model developed previously (Matyáš et al. 2010b), improving its predictive performance. We also investigated the mechanism for agglomeration of particles and impact of agglomerates on accumulation rate. In addition, the TL was measured as a function of temperature and composition.

  19. Self-assembled nanotextures impart broadband transparency to glass windows and solar cell encapsulants

    Science.gov (United States)

    Liapis, Andreas C.; Rahman, Atikur; Black, Charles T.

    2017-10-01

    Most optoelectronic components and consumer display devices require glass or plastic covers for protection against the environment. Optical reflections from these encapsulation layers can degrade the device performance or lessen the user experience. Here, we use a highly scalable self-assembly based approach to texture glass surfaces at the nanoscale, reducing reflections by such an extent so as to make the glass essentially invisible. Our nanotextures provide broadband antireflection spanning visible and infrared wavelengths (450-2500 nm) that is effective even at large angles of incidence. This technology can be used to improve the performance of photovoltaic devices by eliminating reflection losses, which can be as much as 8% for glass encapsulated cells. In contrast, solar cells encapsulated with nanotextured glass generate the same photocurrent as when operated without a cover. Ultra-transparent windows having surface nanotextures on both sides can withstand three times more optical fluence than commercial broadband antireflection coatings, making them useful for pulsed laser applications.

  20. Influence of iron ions on the structural properties of some inorganic glasses

    International Nuclear Information System (INIS)

    Music, S.; Gotic, M.; Popovic, S.; Grzeta, B.

    1987-01-01

    The effects of iron on the structural properties of Zn-borosilicate glass and Pb-metaphosphate glass were studied using x-ray diffraction, 57 Fe Moessbauer spectroscopy and IR spectroscopy. At high concentration of iron the crystallization of zinc ferrite in the glass matrix takes place. X-ray diffraction and 57 Fe Moessbauer spectroscopy showed that the amount of zinc ferrite in Zn-borosilicate glass decreases. In Pb-metaphosphate glass doped with high concentration of α-Fe 2 O 3 , the crystallization of Fe 3 (PO 4 ) 2 is pronounced. The assignments of IR band positions and the corresponding interpretation are given. The importance of this study for the technology of vitrification of high-level radioactive wastes is emphasized. (author) 31 refs.; 6 figs,.; 6 tabs

  1. Towards optimization of nuclear waste glass: Constraints, property models, and waste loading

    International Nuclear Information System (INIS)

    Hrma, P.

    1994-04-01

    Vitrification of both low- and high-level wastes from 177 tanks at Hanford poses a great challenge to glass makers, whose task is to formulate a system of glasses that are acceptable to the federal repository for disposal. The enormous quantity of the waste requires a glass product of the lowest possible volume. The incomplete knowledge of waste composition, its variability, and lack of an appropriate vitrification technology further complicates this difficult task. A simple relationship between the waste loading and the waste glass volume is presented and applied to the predominantly refractory (usually high-activity) and predominantly alkaline (usually low-activity) waste types. Three factors that limit waste loading are discussed, namely product acceptability, melter processing, and model validity. Glass formulation and optimization problems are identified and a broader approach to uncertainties is suggested

  2. Exoelectron emission from magnesium borate glass ceramics

    International Nuclear Information System (INIS)

    Kawamoto, Takamichi; Yanagisawa, Hideo; Nakamichi, Hiroshi; Kikuchi, Riichi; Kawanishi, Masaharu.

    1986-01-01

    Thermally stimulated exoelectron emission (TSEE) of a magnesium borate glass ceramics was investigated for its application to dosemetric use. It has been found that the TSEE glow patterns of the magnesium borate glass ceramics as well as a Li 2 B 4 O 7 glass ceramics depend on the kind of the radiation used and that the heat resistance of the magnesium borate glass ceramics is higher than that of the Li 2 B 4 O 7 glass ceramics. Therefore, the TSEE glow patterns of the magnesium borate glass ceramics indicate a possibility to be used as the dose measurement for each kind of radiation in the mixed radiation field. (author)

  3. Studies of glasses by positron annihilation

    International Nuclear Information System (INIS)

    Brauer, G.; Boden, G.

    1981-04-01

    Investigations of silica glasses, pyrocerams and metallic glasses by positron annihilation (lifetime, Doppler broadening) are presented. The measurements on silica glasses showed, that silica glass fused from naturally occuring quartz exhibits a higher order than that one produced from SiCl 4 . Furthermore it was found that the order of silica glasses increases after heat treatment above 900 0 C. Thus the X-amorphous state of silica glasses could be characterized by positron annihilation what is impossible at present by diffraction methods. (author)

  4. Oxycarbonitride glass formation by melt solidification

    Energy Technology Data Exchange (ETDEWEB)

    Imon, M M; Risbud, S H

    1986-04-01

    Experimental results are presented from the synthesis and characterization of multianion oxycarbonitride glasses composed of MgSiAlON glass powders with SiC additions of 5, 10, or 15 wt pct. Nitrogen additions to the oxide MgO-Al2O3-SiO2 glasses increased devitrification resistance, but carbon additions to MgSiAlON glasses promote crystal nucleation. These properties are relevant to the oxycarbonitride glasses use in refractory glass-ceramic and ceramic-ceramic composite systems with good elevated temperature performance. 9 references.

  5. Benefits of a STEAM Collaboration in Newark, New Jersey: Volcano Simulation through a Glass-Making Experience

    Science.gov (United States)

    Gates, Alexander E.

    2017-01-01

    A simulated physical model of volcanic processes using a glass art studio greatly enhanced enthusiasm and learning among urban, middle- to high-school aged, largely underrepresented minority students in Newark, New Jersey. The collaboration of a geoscience department with a glass art studio to create a science, technology, engineering, arts, and…

  6. Heterogeneities in nuclear waste glass

    International Nuclear Information System (INIS)

    Ladirat, Ch.

    1997-01-01

    The industrial vitrification of high level radioactive wastes is a 2 stage process. During the first stage, the concentrated solution is heated in a spinning resistance oven at the temperature of 400 Celsius degrees till evaporation and calcination. The second stage begins when the dry residue falls into a melting pot that is maintained at a temperature of 1100-1150 Celsius degrees. Glass fretting is added and the glass is elaborated through the fusion of the different elements present in the melting pot. Heterogeneities in the glass may be associated to: - the presence in the solution to vitrify of insoluble elements from the dissolution of the fuel (RuO 2 , Rh, Pd), - the presence of minuscule metal scraps (Zr) that have been produced during the cutting of the fuel element, - the failures to conform to the technical specifications of the vitrification process, for instance, temperatures or flow rates when introducing the different elements in the melting pot. (A.C.)

  7. Gauge theory of glass transition

    International Nuclear Information System (INIS)

    Vasin, Mikhail

    2011-01-01

    A new analytical approach for the description of the glass transition in a frustrated system is suggested. The theory is based on the non-equilibrium dynamics technique, and takes into account the interaction of the local order field with the massive gauge field, which describes frustration-induced plastic deformation. The glass transition is regarded as a phase transition interrupted because of the premature critical slowing-down of one of the degrees of freedom caused by the frustrations. It is shown that freezing of the system appears when the correlation length and relaxation time of the gauge field diverge. The Vogel–Fulcher–Tammann relation for the transition kinetics and the critical exponent for the nonlinear susceptibility, 2.5∼ t correlation function dependence on time, and explains the boson peak appearance on this curve. In addition, the function of the glass transition temperature value with cooling rate is derived; this dependence fully conforms with known experimental data

  8. Glasses obtained from industrial wastes

    International Nuclear Information System (INIS)

    Bortoluzzi, D.; Oliveira Fillho, J.; Uggioni, E.; Bernardin, A.M.

    2009-01-01

    This paper deals with the study of the vitrification mechanism as an inertization method for industrial wastes contaminated with heavy metals. Ashes from coal (thermoelectric), wastes from mining (fluorite and feldspar) and plating residue were used to compose vitreous systems planed by mixture design. The chemical composition of the wastes was determined by XRF and the formulations were melted at 1450 deg C for 2h using 10%wt of CaCO 3 (fluxing agent). The glasses were poured into a mold and annealed (600 deg C). The characteristic temperatures were determined by thermal analysis (DTA, air, 20 deg C/min) and the mechanical behavior by Vickers microhardness. As a result, the melting temperature is strongly dependent on silica content of each glass, and the fluorite residue, being composed mainly by silica, strongly affects Tm. The microhardness of all glasses is mainly affected by the plating residue due to the high iron and zinc content of this waste. (author)

  9. X-ray luminescent glasses

    International Nuclear Information System (INIS)

    Takahashi, T.; Yamada, O.

    1981-01-01

    X-ray luminescent glasses comprising a divalent cation such as an alkaline earth metal or other divalent cations such as pb, cd, or zn, and certain rare earth metaphosphates are suitable as vitreous, x-ray phosphors or x-ray luminescent glass fibers in an x-ray intensifying screen. The glasses have the composition n(Mo X p2o5)((1-y)tb2o3 X yce2o3 X 3p2o5) wherein N is greater than zero but less than or equal to 16, M is an alkaline earth metal or other divalent cation such as pb, cd, or zn, and Y is greater than or equal to zero but less than one

  10. Phase transitions and glass transition in a hyperquenched silica–alumina glass

    DEFF Research Database (Denmark)

    Zhang, Y.F.; Zhao, D.H.; Yue, Yuanzheng

    2017-01-01

    We investigate phase transitions, glass transition, and dynamic behavior in the hyperquenched 69SiO2–31Al2O3 (mol%) glass (SA glass). Upon reheating, the SA glass exhibits a series of thermal responses. Subsequent to the sub-Tg enthalpy release, the glass undergoes a large jump in isobaric heat...... capacity (ΔCp) during glass transition, implying the fragile nature of the SA glass. The mullite starts to form before the end of glass transition, indicating that the SA glass is extremely unstable against crystallization. After the mullite formation, the remaining glass phase exhibits an increased Tg...... and a suppressed ΔCp. The formation of cristobalite at 1553 K indicates the dominance of silica in the remaining glass matrix. The cristobalite gradually re-melts as the isothermal heat-treatment temperature is raised from 1823 to 1853 K, which is well below the melting point of cristobalite, while the amount...

  11. Glass Foreign Body Hand Radiograph

    Directory of Open Access Journals (Sweden)

    Hamid Ehsani-Nia, DO

    2018-04-01

    Full Text Available History of present illness: A 27-year-old female sustained an injury to her left hand after she tripped and fell on a vase. She presented to the emergency department (ED complaining of pain over the laceration. Upon examination, patient presented with multiple small abrasions of the medial aspect of the left 5thdigit that are minimally tender. Additionally, she has one 0.5cm linear laceration of the medial aspect of the 5thmetacarpal with severe tenderness in the area and palpable underlying foreign body. Significant findings: Left hand plain radiography demonstrated a subcutaneous foreign body medial to the 5thmetacarpal that is radiopaque, trapezoidal in shape, and measures approximately 11mm x 3mm. Discussion: Laceration repairs are amongst the most common procedures in the emergency department; however, consideration for foreign body is often underdiagnosed. Imaging is performed in only about 11% of all traumatic wounds in the ED.1 Of those injuries relating to the hand that are subsequently imaged, about 15% are found to have a foreign body.2,3 Additionally, it is estimated that foreign bodies are present in 7% to 8.7% of all wounds caused by glass objects.4,5 Glass is among the most common foreign bodies in lacerations, and fortunately they are radiopaque and relatively well visualized radiographically. It has been demonstrated that 2mm glass foreign bodies have a 99% detection rate with radiography, and 1mm glass foreign bodies an 83% detection rate.6 Patient perception of foreign body has a positive predictive value of 31%, making it a poor source in influencing clinical decision-making to obtain wound radiographs.3 Clinicians should have a high suspicion for foreign body in lacerations, particularly those caused by glass, and utilize close physical examination and imaging for evaluation. Topics: Radiography, glass, foreign body, trauma

  12. Fission tracks diameters in glasses

    International Nuclear Information System (INIS)

    Garzon Ruiperez, L.; Veiguela, J.

    1974-01-01

    Standard glass microscope slides have been irradiated with fission fragments from the uranium. The etching track conditions have been the same for the series, having changed the etching time only for each specimen. For each glass, a minimum of 250 measurements of the tracks diameters have been made, the distributions of which are the bimodal type. Diameters-etching dependence with time is roughly lineal. Energy determinations have been made with the help of the diameters-energy relations. The calculated values agree very well with the know ones. (author) [es

  13. Plate shell structures of glass

    DEFF Research Database (Denmark)

    Bagger, Anne

    to their curved shape. A plate shell structure maintains a high stiffness-to-weight ratio, while facilitating the use of plane structural elements. The study focuses on using laminated glass panes for the load bearing facets. Various methods of generating a plate shell geometry are suggested. Together with Ghent......, such as facet size, imperfections, and connection characteristics. The critical load is compared to that of a similar, but smoothly curved, shell structure. Based on the investigations throughout the study, a set of guidelines for the structural design of plate shells of glass is proposed....

  14. Characteristics of radiophotoluminescent glass dosimeters

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Masashi; Shiraishi, Akemi; Murakami, Hiroyuki [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-07-01

    In Japan Atomic Energy Research Institute, a film badge is recently replaced by a new type radiophotoluminescent (RPL) glass dosimeter for external personal monitoring. Some fundamental characteristics of this dosimeter, such as dose dependence linearity, energy dependence, angular dependence, dose evaluation accuracy at mixed irradiation conditions, fading, etc., were examined at the Facility of Radiation Standard (FRS), JAERI. The results have proved that the RPL glass dosimeter has sufficient characteristics for practical use as a personal dosimeter for all of the items examined. (author)

  15. START - glass model of PWR

    International Nuclear Information System (INIS)

    Marn, J.; Ramsak, M.

    1998-01-01

    Recognizing the importance of nuclear engineering in the area of process engineering the University of Maribor, Faculty of Mechanical Engineering has invested in procuring and erecting glass model of pressurized water reactor. This paper deals with description of the model, its capabilities, and plans for its use within nuclear engineering community of Slovenia. The model, made primarily of glass, serves three purposes: educational, professional development and research. As an example, medium break loss of coolant accident is presented in the paper. Temperatures within primary and secondary side, and pressure on primary side of reactor coolant system are followed. The characteristic points are emphasized, and commented.(author)

  16. Glass Ceiling : Women in management

    OpenAIRE

    Rantala, Virve

    2010-01-01

    This study has examined the phenomenon called Glass Ceiling. It has approached the phenomenon in two different views. One is career development and another one is women in management. Main purpose for this study was to inspect women working life and career opportunities. Why women’s career developments end in a certain level? What is glass ceiling and how to break it? Paper also investigates reasons behind the effect. Prejudices and biases are the worst enemies for women’s career. How to chan...

  17. Complexing agents and pH influence on chemical durability of type I moulded glass containers.

    Science.gov (United States)

    Biavati, Alberto; Poncini, Michele; Ferrarini, Arianna; Favaro, Nicola; Scarpa, Martina; Vallotto, Marta

    2017-06-16

    Among the factors that affect the glass surface chemical durability, pH and complexing agents presence in aqueous solution have the main role (1). Glass surface attack can be also related to the delamination issue with glass particles appearance in the pharmaceutical preparation. A few methods to check for glass containers delamination propensity and some control guidelines have been proposed (2,3). The present study emphasizes the possible synergy between a few complexing agents with pH on the borosilicate glass chemical durability. Hydrolytic attack was performed in small volume 23 ml type I glass containers autoclaved according to EP or USP for 1 hour at 121°C, in order to enhance the chemical attack due to time, temperature and the unfavourable surface/volume ratio. 0,048 M or 0.024 M (moles/liter) solutions of the acids citric, glutaric, acetic, EDTA (ethylenediaminetetraacetic acid) and sodium phosphate with water for comparison, were used for the trials. The pH was adjusted ± 0,05 units at fixed values 5,5-6,6-7-7,4-8-9 by LiOH diluted solution. Since silicon is the main glass network former, silicon release into the attack solutions was chosen as the main index of the glass surface attack and analysed by ICPAES. The work was completed by the analysis of the silicon release in the worst attack conditions, of moulded glass, soda lime type II and tubing borosilicate glass vials to compare different glass compositions and forming technologies. Surface analysis by SEM was finally performed to check for the surface status after the worst chemical attack condition by citric acid. Copyright © 2017, Parenteral Drug Association.

  18. Criticality in Bulk Metallic Glass Constituent Elements

    Science.gov (United States)

    Mota, Rodrigo Miguel Ojeda; Graedel, T. E.; Pekarskaya, Evgenia; Schroers, Jan

    2017-11-01

    Bulk metallic glasses (BMGs), which readily form amorphous phases during solidification, are increasingly being used in first applications of watch components, electronic casings, and sporting goods. The compositions of BMGs typically include four to six elements. Various political and geological factors have recently led to supply disruptions for several metals, including some present in BMG compositions. In this work, we assess the "criticality" of 22 technologically interesting BMG compositions, compare the results with those for three common engineering alloy groups, and derive recommendations for BMG composition choices from a criticality perspective. The criticality of BMGs is found to be generally much higher compared with those for the established engineering alloys. Therefore, criticality concerns should also be considered in the choice between existing and developing novel BMGs.

  19. Precision diamond grinding of ceramics and glass

    Energy Technology Data Exchange (ETDEWEB)

    Smith, S.; Paul, H.; Scattergood, R.O.

    1988-12-01

    A new research initiative will be undertaken to investigate the effect of machine parameters and material properties on precision diamond grinding of ceramics and glass. The critical grinding depth to initiate the plastic flow-to-brittle fracture regime will be directly measured using plunge-grind tests. This information will be correlated with machine parameters such as wheel bonding and diamond grain size. Multiaxis grinding tests will then be made to provide data more closely coupled with production technology. One important aspect of the material property studies involves measuring fracture toughness at the very short crack sizes commensurate with grinding damage. Short crack toughness value`s can be much less than the long-crack toughness values measured in conventional fracture tests.

  20. Printed electronic on flexible and glass substrates

    Science.gov (United States)

    Futera, Konrad; Jakubowska, Małgorzata; Kozioł, Grażyna

    2010-09-01

    Organic electronics is a platform technology that enables multiple applications based on organic electronics but varied in specifications. Organic electronics is based on the combination of new materials and cost-effective, large area production processes that provide new fields of application. Organic electronic by its size, weight, flexibility and environmental friendliness electronics enables low cost production of numerous electrical components and provides for such promising fields of application as: intelligent packaging, low cost RFID, flexible solar cells, disposable diagnostic devices or games, and printed batteries [1]. The paper presents results of inkjetted electronics elements on flexible and glass substrates. The investigations was target on characterizing shape, surface and geometry of printed structures. Variety of substrates were investigated, within some, low cost, non specialized substrate, design for other purposes than organic electronic.

  1. Thermal fracture and pump limit of Nd: glass

    International Nuclear Information System (INIS)

    Wang Mingzhe; Ma Wen; Tan Jichun; Zhang Yongliang; Li Mingzhong; Jing Feng

    2011-01-01

    Based on published fracture experiments and 3D transient finite-element analyses, and taking the first principal stress as the criterion and the Griffith crack theory to determine the critical fracture stress, a Weibull statistical model is established to predict the fracture possibility of Nd: glass with certain pump parameters. Other issues which limit the pump power are also presented. The results show that the fracture limit of laser medium depends on the optical polishing technology. For a short pulse and high energy Nd: glass laser, taking America's polishing technology in the 1990s as reference,the pump saturation limits the pump power to 18 kW/cm 2 when the repetition rate is lower than 1 Hz, while the thermal fracture limits the pump power when the repetition rate is higher than 10 Hz. (authors)

  2. Luminescence properties of the Sm-doped borate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Kindrat, I.I. [University of Zielona Góra, Institute of Physics, Division of Spectroscopy of Functional Materials, 4a Szafrana Street, 65-516 Zielona Góra (Poland); Padlyak, B.V., E-mail: B.Padlyak@if.uz.zgora.pl [University of Zielona Góra, Institute of Physics, Division of Spectroscopy of Functional Materials, 4a Szafrana Street, 65-516 Zielona Góra (Poland); Vlokh Institute of Physical Optics, 23 Dragomanov Street, 79-005 Lviv (Ukraine); Drzewiecki, A. [University of Zielona Góra, Institute of Physics, Division of Spectroscopy of Functional Materials, 4a Szafrana Street, 65-516 Zielona Góra (Poland)

    2015-10-15

    The optical absorption and photoluminescence (emission and excitation) spectra as well as decay kinetics of a series of the Sm-doped glasses with Li{sub 2}B{sub 4}O{sub 7}, LiKB{sub 4}O{sub 7}, CaB{sub 4}O{sub 7}, and LiCaBO{sub 3} compositions were investigated and analysed. The Li{sub 2}B{sub 4}O{sub 7}:Sm, LiKB{sub 4}O{sub 7}:Sm, CaB{sub 4}O{sub 7}:Sm, and LiCaBO{sub 3}:Sm glasses of high optical quality have been obtained from the corresponding polycrystalline compounds in the air atmosphere, using a standard glass technology. On the basis of electron paramagnetic resonance (EPR) and optical spectra analysis it was shown that the samarium impurity is incorporated into the glass network as Sm{sup 3+} (4f{sup 5}, {sup 6}H{sub 5/2}) ions, exclusively. All observed 4f – 4f transitions of the Sm{sup 3+} centres in the optical absorption and luminescence spectra of the investigated glasses are identified. Most intense emission band of the Sm{sup 3+} ions peaked about 598 nm ({sup 4}G{sub 5/2} → {sup 6}H{sub 7/2} transition) is characterised by a single exponential decay with typical lifetime values, which depend on the basic glass composition as well as concentration and local structure of the Sm{sup 3+} luminescence centres. The quantum efficiency has been evaluated for observed transitions of the Sm{sup 3+} centres using obtained experimental lifetimes and radiative lifetimes calculated by Judd–Ofelt theory. The calculated high quantum efficiencies and measured quantum yields of luminescence show that the investigated borate glasses are perspective luminescence materials. Energy transfer from the Ce{sup 3+} non-controlled impurity and intrinsic luminescence centres to the Sm{sup 3+} centres has been observed. Peculiarities of the Sm{sup 3+} local structure in the network of investigated glasses have been discussed based on the obtained spectroscopic results and structural data. - Highlights: • The Sm-doped Li{sub 2}B{sub 4}O{sub 7}, LiKB{sub 4}O{sub 7}, Ca

  3. Recycling of post-consumer glass: energy savings, CO2 emission reduction, effects on glass quality and glass melting

    NARCIS (Netherlands)

    Beerkens, R.G.C.; Kers, G.; Santen, E. van

    2011-01-01

    This presentation shows the advantages of re-melting post-consumer glass, but also the potential risks of using contaminated cullet in the raw material batch of glass furnaces (e.g. container glass furnaces). As an example of potential advantages: increasing the cullet % in the batch of an efficient

  4. Glass Transition, Crystallization of Glass-Forming Melts, and Entropy

    Directory of Open Access Journals (Sweden)

    Jürn W. P. Schmelzer

    2018-02-01

    Full Text Available A critical analysis of possible (including some newly proposed definitions of the vitreous state and the glass transition is performed and an overview of kinetic criteria of vitrification is presented. On the basis of these results, recent controversial discussions on the possible values of the residual entropy of glasses are reviewed. Our conclusion is that the treatment of vitrification as a process of continuously breaking ergodicity with entropy loss and a residual entropy tending to zero in the limit of zero absolute temperature is in disagreement with the absolute majority of experimental and theoretical investigations of this process and the nature of the vitreous state. This conclusion is illustrated by model computations. In addition to the main conclusion derived from these computations, they are employed as a test for several suggestions concerning the behavior of thermodynamic coefficients in the glass transition range. Further, a brief review is given on possible ways of resolving the Kauzmann paradox and its implications with respect to the validity of the third law of thermodynamics. It is shown that neither in its primary formulations nor in its consequences does the Kauzmann paradox result in contradictions with any basic laws of nature. Such contradictions are excluded by either crystallization (not associated with a pseudospinodal as suggested by Kauzmann or a conventional (and not an ideal glass transition. Some further so far widely unexplored directions of research on the interplay between crystallization and glass transition are anticipated, in which entropy may play—beyond the topics widely discussed and reviewed here—a major role.

  5. Conversion of plutonium scrap and residue to boroilicate glass using the GMODS process

    International Nuclear Information System (INIS)

    Forsberg, C.W.; Beahm, E.C.; Parker, G.W.; Rudolph, J.; Elam, K.R.; Ferrada, J.J.

    1995-01-01

    Plutonium scrap and residue represent major national and international concerns because (1) significant environmental, safety, and health (ES ampersand H) problems have been identified with their storage; (2) all plutonium recovered from the black market in Europe has been from this category; (3) storage costs are high; and (4) safeguards are difficult. It is proposed to address these problems by conversion of plutonium scrap and residue to a CRACHIP (CRiticality, Aerosol, and CHemically Inert Plutonium) glass using the Glass Material Oxidation and Dissolution System (GMODS). CRACHIP refers to a set of requirements for plutonium storage forms that minimize ES ampersand H concerns. The concept is several decades old. Conversion of plutonium from complex chemical mixtures and variable geometries into a certified, qualified, homogeneous CRACHIP glass creates a stable chemical form that minimizes ES ampersand H risks, simplifies safeguards and security, provides an easy-to-store form, decreases storage costs, and allows for future disposition options. GMODS is a new process to directly convert metals, ceramics, and amorphous solids to glass; oxidize organics with the residue converted to glass; and convert chlorides to borosilicate glass and a secondary sodium chloride stream. Laboratory work has demonstrated the conversion of cerium (a plutonium surrogate), uranium (a plutonium surrogate), Zircaloy, stainless steel, and other materials to glass. GMODS is an enabling technology that creates new options. Conventional glassmaking processes require conversion of feeds to oxide-like forms before final conversion to glass. Such chemical conversion and separation processes are often complex and expensive

  6. Formation of superhydrophobic soda-lime glass surface using femtosecond laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Ahsan, Md. Shamim, E-mail: shamim@kaist.ac.kr [Photonics Application Lab, Department of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro (373-1 Guseong-dong), Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Electronics and Communication Engineering Discipline, School of Science, Engineering and Technology, Khulna University, Khulna-9208 (Bangladesh); Dewanda, Fadia, E-mail: fdewanda@kaist.ac.kr [Photonics Application Lab, Department of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro (373-1 Guseong-dong), Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Lee, Man Seop, E-mail: leems1502@kaist.ac.kr [Photonics Application Lab, Department of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro (373-1 Guseong-dong), Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Sekita, Hitoshi, E-mail: sekita@cyber-laser.com [Cyber Laser Inc., 7-7 Sinkawasaki, KBIC 101 205, Saiwai-ku, Kawasaki 212-0032 (Japan); Sumiyoshi, Tetsumi, E-mail: sumiy@cyber-laser.com [Cyber Laser Inc., 7-7 Sinkawasaki, KBIC 101 205, Saiwai-ku, Kawasaki 212-0032 (Japan)

    2013-01-15

    Highlights: Black-Right-Pointing-Pointer We formed superhydrophobic soda-lime glass surface by femtosecond laser pulses. Black-Right-Pointing-Pointer Periodic microstructures are printed on the glass surface for superhydrophobicity. Black-Right-Pointing-Pointer The contact angle of water droplet on the microstructured glass surface is 155 Degree-Sign . Black-Right-Pointing-Pointer The transparency of superhydrophobic glass is higher than 77% in visible spectrum. Black-Right-Pointing-Pointer We explain the formation mechanism of superhydrophobic soda-lime glass surface. - Abstract: This paper demonstrates the fabrication of superhydrophobic soda-lime glass surface by engineering periodic microgratings with self-formed periodic micro-ripples inside the microgratings using a single beam femtosecond laser. The wetting property of the microstructured surface is improved from hydrophobic to superhydrophobic, presenting a water droplet contact angle ranges from 152 Degree-Sign to 155 Degree-Sign . The microstructured glass surface shows excellent transparency, which is higher than 77% in the visible spectrum. We strongly believe that our proposed technology can achieve superhydrophobic glass surfaces over a large area for applications in diverse fields.

  7. Formation of superhydrophobic soda-lime glass surface using femtosecond laser pulses

    International Nuclear Information System (INIS)

    Ahsan, Md. Shamim; Dewanda, Fadia; Lee, Man Seop; Sekita, Hitoshi; Sumiyoshi, Tetsumi

    2013-01-01

    Highlights: ► We formed superhydrophobic soda-lime glass surface by femtosecond laser pulses. ► Periodic microstructures are printed on the glass surface for superhydrophobicity. ► The contact angle of water droplet on the microstructured glass surface is 155°. ► The transparency of superhydrophobic glass is higher than 77% in visible spectrum. ► We explain the formation mechanism of superhydrophobic soda-lime glass surface. - Abstract: This paper demonstrates the fabrication of superhydrophobic soda-lime glass surface by engineering periodic microgratings with self-formed periodic micro-ripples inside the microgratings using a single beam femtosecond laser. The wetting property of the microstructured surface is improved from hydrophobic to superhydrophobic, presenting a water droplet contact angle ranges from 152° to 155°. The microstructured glass surface shows excellent transparency, which is higher than 77% in the visible spectrum. We strongly believe that our proposed technology can achieve superhydrophobic glass surfaces over a large area for applications in diverse fields.

  8. Calibration and Measurement of the Viscosity of DWPF Start-Up Glass

    International Nuclear Information System (INIS)

    Schumacher, R.F.

    2001-01-01

    The Harrop, High-Temperature Viscometer has been in operation at the Savannah River Technology Center (SRTC) for several years and has proven itself to be reasonably accurate and repeatable. This is particularly notable when taking into consideration the small amount of glass required to make the viscosity determination. The volume of glass required is only 2.60 cc or about 6 to 7 grams of glass depending on the glass density. This may be compared to the more traditional viscosity determinations, which generally require between 100 to 1000 grams of glass. Before starting the present investigation, the unit was re-aligned and the furnace thermal gradients measured. The viscometer was again calibrated with available NIST Standard Reference Material glasses (717a and 710a) and a spindle constant equation was determined. Standard DWPF Waste Compliance Glasses (Purex, HM, and Batch 1) were used to provide additional verification for the determinations at low temperature. The Harrop, High-Temperature Viscometer was then used to determine the viscosity of three random samples of ground and blended DWPF, Black, Start -Up Frit, which were obtained from Pacific Northwest National Laboratory (PNNL). The glasses were in powder form and required melting prior to the viscosity determination. The results from this evaluation will be compared to ''Round Robin'' measurements from other DOE laboratories and a number of commercial laboratories

  9. Evaluation of lead-iron-phosphate glass as a high-level waste form

    International Nuclear Information System (INIS)

    Chick, L.A.; Bunnell, L.R.; Strachan, D.M.; Kissinger, H.E.; Hodges, F.N.

    1986-09-01

    The lead-iron-phosphate (Pb-Fe-P) glass developed at Oak Ridge National Laboratory was evaluated for its potential as an improvement over the current reference nuclear waste form, borosilicate (B-Si) glass. The evaluation was conducted as part of the Second Generation HLW Technology Subtask of the Nuclear Waste Treatment Program at Pacific Northwest Laboratory. The purpose of this work was to investigate possible alternatives to B-Si glass as second-generation waste forms. While vitreous Pb-Fe-P glass appears to have substantially better chemical durability than B-Si glass, severe crystallization or devitrification leading to deteriorated chemical durability would result if this glass were poured into large canisters as is the procedure with B-Si glass. Cesium leach rates from this crystallized material are orders of magnitude greater than those from B-Si glass. Therefore, to realize the potential performance advantages of the Pb-Fe-P material in a nuclear waste form, the processing method would have to cool the material rapidly to retain its vitreous structure

  10. Specialty glass development for radiation shielding windows and nuclear waste immobilization

    International Nuclear Information System (INIS)

    Mandal, S.; Ghorui, S.; Roy Chowdhury, A.; Sen, R.; Chakraborty, A.K.; Sen, S.; Maiti, H.S.

    2015-01-01

    The technology of two important varieties of specialty glasses, namely high density Radiation Shielding Window (RSW) glass and specialty glass beads of borosilicate composition have been successfully developed in CGCRI with an aim to meet the countries requirement. Radiation Shielding Windows used in nuclear installations, are viewing devices, which allow direct viewing into radioactive areas while still providing adequate protection to the operating personnel. The glass blocks are stabilized against damage from radiation by introducing cerium in definite proportions. Considering the essentially of developing an indigenous technology to make the country self-sufficient for this critical item, CGCRI has taken up a major programme to develop high lead containing glasses required for RSWs under a MoD with BARC. On the other hand, the specialty glass bead of specific composition and properties is a critical material required for management of radioactive waste in a closed nuclear fuel cycle that is followed by India. During reprocessing of the spent nuclear fuel, high level radio-active liquid waste (HLW) is produced containing unwanted radio isotopes some of which remain radioactive for thousands of years. The need is to immobilize them within a molecular structure so that they will not come out and be released to the ambience and thereby needs to be resolved if nuclear power is to make a significant contribution to the country's power requirement. Borosilicate glass has emerged as the material of choice for immobilization due to its unique random network structure

  11. Formation and stability of aluminum-based metallic glasses in Al-Fe-Gd alloys

    International Nuclear Information System (INIS)

    He, Y.; Poon, S.J.; Shiflet, G.J.

    1988-01-01

    Metallic glasses, a class of amorphous alloys made by rapid solidification, have been studied quite extensively for almost thirty years. It has been recognized for a long time that metallic glasses are usually very strong and ductile, and exhibit high corrosion resistance relative to crystalline alloys with the same compositions. Recently, metallic glasses containing as much as 90 atomic percent aluminum have been discovered independently by two groups. This discovery has both scientific and technological implications. The formability of these new glasses have been found to be unusual. Studies of mechanical properties in these new metallic glasses show that many of them have tensile strengths over 800MPa, greatly exceeding the strongest commercial aluminum alloys. The high strengths of aluminum-rich metallic glasses can be of significant importance in obtaining high strength low density materials. Therefore, from both scientific and technological standpoints, it is important to understand the formation and thermal stability of these metallic glasses. Al-Fe-Gd alloys were chosen for a more detailed study since they exhibit high tensile strengths

  12. Flight Deck I-Glasses, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Flight Deck i-Glasses is a color, stereoscopic 3-D display mounted on consumer style eye glass frames that will enhance operator performance and multi-modal...

  13. Foaming Glass Using High Pressure Sintering

    DEFF Research Database (Denmark)

    Østergaard, Martin Bonderup; Petersen, Rasmus Rosenlund; König, Jakob

    Foam glass is a high added value product which contributes to waste recycling and energy efficiency through heat insulation. The foaming can be initiated by a chemical or physical process. Chemical foaming with aid of a foaming agent is the dominant industrial process. Physical foaming has two...... to expand. After heat-treatment foam glass can be obtained with porosities of 80–90 %. In this study we conduct physical foaming of cathode ray tube (CRT) panel glass by sintering under high pressure (5-25 MPa) using helium, nitrogen, or argon at 640 °C (~108 Pa s). Reheating a sample in a heating...... variations. One way is by saturation of glass melts with gas. The other involves sintering of powdered glass under a high gas pressure resulting in glass pellets with high pressure bubbles entrapped. Reheating the glass pellets above the glass transition temperature under ambient pressure allows the bubbles...

  14. Packaging glass with hierarchically nanostructured surface

    KAUST Repository

    He, Jr-Hau

    2017-08-03

    An optical device includes an active region and packaging glass located on top of the active region. A top surface of the packaging glass includes hierarchical nanostructures comprised of honeycombed nanowalls (HNWs) and nanorod (NR) structures extending from the HNWs.

  15. Packaging glass with hierarchically nanostructured surface

    KAUST Repository

    He, Jr-Hau; Fu, Hui-Chun

    2017-01-01

    An optical device includes an active region and packaging glass located on top of the active region. A top surface of the packaging glass includes hierarchical nanostructures comprised of honeycombed nanowalls (HNWs) and nanorod (NR) structures

  16. Manganese activated phosphate glass for dosimetry

    International Nuclear Information System (INIS)

    Regulla, D.

    1975-01-01

    A measuring element comprises a metaphosphate glass doped with manganese as an activator. The manganese activated metaphosphate glass can detect and determine radiation doses in the range between milliroentgens and more than 10 megaroentgens. (auth)

  17. Some recent developments in spin glasses

    Indian Academy of Sciences (India)

    I give some experimental and theoretical background to spin glasses, and then discuss the ... Results of Monte Carlo simulations of the Heisenberg spin glass model in three dimensions are presented. ..... with equal probability. This has a ...

  18. A variety of neutron sensors based on scintillating glass waveguides

    International Nuclear Information System (INIS)

    Bliss, M.; Craig, R.A.

    1995-05-01

    Pacific Northwest Laboratory (PNL) has fabricated cerium-activated, lithium-silicate glass scintillating fiber neutron sensors via a hot-downdraw process. These fibers typically have a transmission length (e -1 length) of greater than 2 meters. The underlying physics of, the properties of, and selected devices incorporating these fibers are described. These fibers constitute an enabling technology for a wide variety of neutron sensors

  19. Ultrasonic detection of cracks in uniaxial glass fibre rods

    CSIR Research Space (South Africa)

    Loveday, PW

    2006-01-01

    Full Text Available Conference on Computational and Applied Mechanics SACAM06 Cape Town, 16-18 January 2006 �SACAM ULTRASONIC DETECTION OF CRACKS IN UNIAXIAL GLASS FIBRE RODS Derren Wood and Philip Loveday Sensor Science and Technology, CSIR Materials Science... means of detecting internal and/or surface damage in composites which is safe, quick and relatively cost effective. Various ultrasonic techniques have been applied in the past to detect defects in composite media, the most well known being perhaps...

  20. A Participatory Agent-Based Simulation for Indoor Evacuation Supported by Google Glass

    Directory of Open Access Journals (Sweden)

    Jesús M. Sánchez

    2016-08-01

    Full Text Available Indoor evacuation systems are needed for rescue and safety management. One of the challenges is to provide users with personalized evacuation routes in real time. To this end, this project aims at exploring the possibilities of Google Glass technology for participatory multiagent indoor evacuation simulations. Participatory multiagent simulation combines scenario-guided agents and humans equipped with Google Glass that coexist in a shared virtual space and jointly perform simulations. The paper proposes an architecture for participatory multiagent simulation in order to combine devices (Google Glass and/or smartphones with an agent-based social simulator and indoor tracking services.

  1. Using machine learning for improving knowledge on antibacterial effect of bioactive glass.

    Science.gov (United States)

    Echezarreta-López, M M; Landin, M

    2013-09-10

    The aim of this work was to find relationships between critical bioactive glass characteristics and their antibacterial behaviour using an artificial intelligence tool. A large dataset including ingredients and process variables of the bioactive glasses production, bacterial characteristics and microbiological experimental conditions was generated from literature and analyzed by neurofuzzy logic technology. Our findings allow an explanation on the variability in antibacterial behaviour found by different authors and to obtain general conclusions about critical parameters of bioactive glasses to be considered in order to achieve activity against some of the most common skin and implant surgery pathogens. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Heating-induced glass-glass and glass-liquid transformations in computer simulations of water

    Science.gov (United States)

    Chiu, Janet; Starr, Francis W.; Giovambattista, Nicolas

    2014-03-01

    Water exists in at least two families of glassy states, broadly categorized as the low-density (LDA) and high-density amorphous ice (HDA). Remarkably, LDA and HDA can be reversibly interconverted via appropriate thermodynamic paths, such as isothermal compression and isobaric heating, exhibiting first-order-like phase transitions. We perform out-of-equilibrium molecular dynamics simulations of glassy water using the ST2 model to study the evolution of LDA and HDA upon isobaric heating. Depending on pressure, glass-to-glass, glass-to-crystal, glass-to-vapor, as well as glass-to-liquid transformations are found. Specifically, heating LDA results in the following transformations, with increasing heating pressures: (i) LDA-to-vapor (sublimation), (ii) LDA-to-liquid (glass transition), (iii) LDA-to-HDA-to-liquid, (iv) LDA-to-HDA-to-liquid-to-crystal, and (v) LDA-to-HDA-to-crystal. Similarly, heating HDA results in the following transformations, with decreasing heating pressures: (a) HDA-to-crystal, (b) HDA-to-liquid-to-crystal, (c) HDA-to-liquid (glass transition), (d) HDA-to-LDA-to-liquid, and (e) HDA-to-LDA-to-vapor. A more complex sequence may be possible using lower heating rates. For each of these transformations, we determine the corresponding transformation temperature as function of pressure, and provide a P-T "phase diagram" for glassy water based on isobaric heating. Our results for isobaric heating dovetail with the LDA-HDA transformations reported for ST2 glassy water based on isothermal compression/decompression processes [Chiu et al., J. Chem. Phys. 139, 184504 (2013)]. The resulting phase diagram is consistent with the liquid-liquid phase transition hypothesis. At the same time, the glass phase diagram is sensitive to sample preparation, such as heating or compression rates. Interestingly, at least for the rates explored, our results suggest that the LDA-to-liquid (HDA-to-liquid) and LDA-to-HDA (HDA-to-LDA) transformation lines on heating are related

  3. Heating-induced glass-glass and glass-liquid transformations in computer simulations of water

    International Nuclear Information System (INIS)

    Chiu, Janet; Giovambattista, Nicolas; Starr, Francis W.

    2014-01-01

    Water exists in at least two families of glassy states, broadly categorized as the low-density (LDA) and high-density amorphous ice (HDA). Remarkably, LDA and HDA can be reversibly interconverted via appropriate thermodynamic paths, such as isothermal compression and isobaric heating, exhibiting first-order-like phase transitions. We perform out-of-equilibrium molecular dynamics simulations of glassy water using the ST2 model to study the evolution of LDA and HDA upon isobaric heating. Depending on pressure, glass-to-glass, glass-to-crystal, glass-to-vapor, as well as glass-to-liquid transformations are found. Specifically, heating LDA results in the following transformations, with increasing heating pressures: (i) LDA-to-vapor (sublimation), (ii) LDA-to-liquid (glass transition), (iii) LDA-to-HDA-to-liquid, (iv) LDA-to-HDA-to-liquid-to-crystal, and (v) LDA-to-HDA-to-crystal. Similarly, heating HDA results in the following transformations, with decreasing heating pressures: (a) HDA-to-crystal, (b) HDA-to-liquid-to-crystal, (c) HDA-to-liquid (glass transition), (d) HDA-to-LDA-to-liquid, and (e) HDA-to-LDA-to-vapor. A more complex sequence may be possible using lower heating rates. For each of these transformations, we determine the corresponding transformation temperature as function of pressure, and provide a P-T “phase diagram” for glassy water based on isobaric heating. Our results for isobaric heating dovetail with the LDA-HDA transformations reported for ST2 glassy water based on isothermal compression/decompression processes [Chiu et al., J. Chem. Phys. 139, 184504 (2013)]. The resulting phase diagram is consistent with the liquid-liquid phase transition hypothesis. At the same time, the glass phase diagram is sensitive to sample preparation, such as heating or compression rates. Interestingly, at least for the rates explored, our results suggest that the LDA-to-liquid (HDA-to-liquid) and LDA-to-HDA (HDA-to-LDA) transformation lines on heating are related

  4. Heating-induced glass-glass and glass-liquid transformations in computer simulations of water

    Energy Technology Data Exchange (ETDEWEB)

    Chiu, Janet; Giovambattista, Nicolas [Department of Physics, Brooklyn College of the City University of New York, Brooklyn, New York 11210 (United States); Starr, Francis W. [Department of Physics, Wesleyan University, Middletown, Connecticut 06459 (United States)

    2014-03-21

    Water exists in at least two families of glassy states, broadly categorized as the low-density (LDA) and high-density amorphous ice (HDA). Remarkably, LDA and HDA can be reversibly interconverted via appropriate thermodynamic paths, such as isothermal compression and isobaric heating, exhibiting first-order-like phase transitions. We perform out-of-equilibrium molecular dynamics simulations of glassy water using the ST2 model to study the evolution of LDA and HDA upon isobaric heating. Depending on pressure, glass-to-glass, glass-to-crystal, glass-to-vapor, as well as glass-to-liquid transformations are found. Specifically, heating LDA results in the following transformations, with increasing heating pressures: (i) LDA-to-vapor (sublimation), (ii) LDA-to-liquid (glass transition), (iii) LDA-to-HDA-to-liquid, (iv) LDA-to-HDA-to-liquid-to-crystal, and (v) LDA-to-HDA-to-crystal. Similarly, heating HDA results in the following transformations, with decreasing heating pressures: (a) HDA-to-crystal, (b) HDA-to-liquid-to-crystal, (c) HDA-to-liquid (glass transition), (d) HDA-to-LDA-to-liquid, and (e) HDA-to-LDA-to-vapor. A more complex sequence may be possible using lower heating rates. For each of these transformations, we determine the corresponding transformation temperature as function of pressure, and provide a P-T “phase diagram” for glassy water based on isobaric heating. Our results for isobaric heating dovetail with the LDA-HDA transformations reported for ST2 glassy water based on isothermal compression/decompression processes [Chiu et al., J. Chem. Phys. 139, 184504 (2013)]. The resulting phase diagram is consistent with the liquid-liquid phase transition hypothesis. At the same time, the glass phase diagram is sensitive to sample preparation, such as heating or compression rates. Interestingly, at least for the rates explored, our results suggest that the LDA-to-liquid (HDA-to-liquid) and LDA-to-HDA (HDA-to-LDA) transformation lines on heating are related

  5. Structural relaxation in annealed hyperquenched basaltic glasses

    DEFF Research Database (Denmark)

    Guo, Xiaoju; Mauro, John C.; Potuzak, M.

    2012-01-01

    The enthalpy relaxation behavior of hyperquenched (HQ) and annealed hyperquenched (AHQ) basaltic glass is investigated through calorimetric measurements. The results reveal a common onset temperature of the glass transition for all the HQ and AHQ glasses under study, indicating that the primary...... relaxation is activated at the same temperature regardless of the initial departure from equilibrium. The analysis of secondary relaxation at different annealing temperatures provides insights into the enthalpy recovery of HQ glasses....

  6. Granular packing as model glass formers

    International Nuclear Information System (INIS)

    Wang Yujie

    2017-01-01

    Static granular packings are model hard-sphere glass formers. The nature of glass transition has remained a hotly debated issue. We review recent experimental progresses in using granular materials to study glass transitions. We focus on the growth of glass order with five-fold symmetry in granular packings and relate the findings to both geometric frustration and random first-order phase transition theories. (paper)

  7. Volcanic glasses, their origins and alteration processes

    Science.gov (United States)

    Friedman, I.; Long, W.

    1984-01-01

    Natural glass can be formed by volcanic processes, lightning (fulgarites) burning coal, and by meteorite impact. By far the most common process is volcanic - basically the glass is rapidly chilled molten rock. All natural glasses are thermodynamically unstable and tend to alter chemically or to crystallize. The rate of these processes is determined by the chemical composition of the magma. The hot and fluid basaltic melts have a structure that allows for rapid crystal growth, and seldom forms glass selvages greater than a few centimeters thick, even when the melt is rapidly cooled by extrusion in the deep sea. In contrast the cooler and very viscous rhyolitic magmas can yield bodies of glass that are tens of meters thick. These highly polymerized magmas have a high silica content - often 71-77% SiO2. Their high viscosity inhibits diffusive crystal growth. Basalt glass in sea water forms an alteration zone called palagonite whose thickness increases linearly with time. The rate of diffusion of water into rhyolitic glass, which follows the relationship - thickness = k (time) 1 2, has been determined as a function of the glass composition and temperature. Increased SiO2 increases the rate, whereas increased CaO, MgO and H2O decrease the rate. The activation energy of water diffusion varies from about 19 to 22 kcal/mol. for the glasses studied. The diffusion of alkali out of rhyolite glass occurs simultaneously with water diffusion into the glass. The rate of devitrification of rhyolitic glass is a function of the glass viscosity, which in turn is a function of water content and temperature. Although all of the aforementioned processes tend to destroy natural glasses, the slow rates of these processes, particularly for rhyolitic glass, has allowed samples of glass to persist for 60 million years. ?? 1984.

  8. Embedded adhesive connection for laminated glass plates

    DEFF Research Database (Denmark)

    Hansen, Jens Zangenberg; Poulsen, S.H.; Bagger, A.

    2012-01-01

    The structural behavior of a new connection design, the embedded adhesive connection, used for laminated glass plates is investigated. The connection consists of an aluminum plate encapsulated in-between two adjacent triple layered laminated glass plates. Fastening between glass and aluminum...... usage in a design situation. The embedded connection shows promising potential as a future fastening system for load-carrying laminated glass plates....

  9. Energy Saving Glass Lamination via Selective Radio-Frequency Heating

    Energy Technology Data Exchange (ETDEWEB)

    Shulman, Holly S.; Allan, Shawn M.

    2009-11-11

    This Inventions and Innovations program supported the technical and commercial research and development needed to elevate Ceralink's energy saving process for flat glass lamination from bench scale to a self-supporting technology with significant potential for growth. Radio-frequency heating was any un-explored option for laminating glass prior to this program. With significant commercial success through time and energy savings in the wood, paper, and plastics industries, RF heating was found to have significant promise for the energy intensive glass lamination industry. A major technical goal of the program was to demonstrate RF lamination across a wide range of laminate sizes and materials. This was successfully accomplished, dispelling many skeptics' concerns about the abilities of the technology. Ceralink laminated panels up to 2 ft x 3 ft, with four sets processed simultaneously, in a 3 minute cycle. All major categories of interlayer materials were found to work with RF lamination. In addition to laminating glass, other materials including photovoltaic silicon solar cells, light emitting diodes, metallized glass, plastics (acrylic and polycarbonate), and ceramics (alumina) were found compatible with the RF process. This opens up a wide range of commercial opportunities beyond the initially targeted automotive industry. The dramatic energy savings reported for RF lamination at the bench scale were found to be maintained through the scale up of the process. Even at 2 ft x 3 ft panel sizes, energy savings are estimated to be at least 90% compared to autoclaving or vacuum lamination. With targeted promotion through conference presentations, press releases and internet presence, RF lamination has gained significant attention, drawing large audiences at American Ceramic Society meetings. The commercialization success of the project includes the establishment of a revenue-generating business model for providing process development and demonstrations for

  10. Effect of small glass composition changes on flue gas emissions of glass furnaces

    NARCIS (Netherlands)

    Limpt, J.A.C. van; Beerkens, R.G.C.; Kersbergen, M.J. van

    2008-01-01

    Relatively small changes in glass composition might have drastic consequences on the evaporation rates of volatile glass components in glass melting furnaces. Transpiration evaporation tests have been applied to measure the impact of minor glass composition changes on the evaporation rates of

  11. Percolation and spin glass transition

    International Nuclear Information System (INIS)

    Sadiq, A.; Tahir-Kheli, R.A.; Wortis, M.; Bhatti, N.A.

    1980-10-01

    The behaviour of clusters of curved and normal plaquette particles in a bond random, +-J, Ising model is studied in finite square and triangular lattices. Computer results for the concentration of antiferromagnetic bonds when percolating clusters first appears are found to be close to those reported for the occurrence and disappearance of spin glass phases in these systems. (author)

  12. Moessbauerspectroscopy on Gold Ruby Glass

    International Nuclear Information System (INIS)

    Haslbeck, S.

    2005-01-01

    In this thesis, the chemical states of gold and the physical mechanisms of the growing process of the particles under the influence of additional ingredients like tin, lead, antimony and selenium before, during and after the colouring process are investigated by using the Moessbauer spectroscopy on 197 Au, 119 Sn and 121 Sb, optical spectroscopy and X-ray-diffraction. Gold in an unnealed, colourless state of the glasses consists of monovalent forming linear bonds to two neighbouring oxygen atoms. The Lamb-Moessbauer factor of these gold oxide bondings is observed as 0.095 at 4.2 K. The gold in it's oxide state transforms to gold particles with a diameter of 3 nm to 60 nm. The size of the gold particles is quite definable within the optical spectra and certain sizes are also discernable within the Moessbauer spectra. One component of the Moessbauer spectra is assigned to the surface layer of the gold particles. By comparing this surface component with the amount of the bulk metallic core, one can calculate the size of the gold particles. In the Moessbauer spectra of the colourless glass one also can find parts of bulk metallic gold. Investigations with X-ray diffraction show that these are gold particles with a diameter of 100 nm to 300 nm and therefore have no additional colouring effect within the visible spectrum. The Moessbauer spectra on gold of the remelt glasses are similar to those which have been measured on the initial colourless glasses

  13. Physical ageing of silicate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Nemilov, S.V. [S. I. Vavilov State Optical Inst., St. Petersburg (Russian Federation)

    2003-02-01

    The presented review has been devoted to the problem of volume-determined properties relaxation of silicate glasses at room temperature. It is shown that the experimental data are described by the simple Debye exponential law or by a superposition of two exponents. Their parameters are calculated and systematized. A molecular-kinetic model is proposed for these ageing processes. It proceeds from the possibility of volume relaxation due to the cooperative β-relaxation mechanism with no change in the system's topology. The characteristic ageing times can be calculated according to equations obtained based on the viscosity data in the glass transition range. The precision of the calculations is about {+-} 15% at the time variations from a few weeks up to about 15 years. The system of calculated parameters is proposed which characterizes the completeness of ageing and its rate at any glass age. Optical and thermometric glasses have been ranked by their tendency to ageing. The scheme of future investigations predetermined by practice is defined. (orig.)

  14. Spin glasses and neural networks

    International Nuclear Information System (INIS)

    Parga, N.; Universidad Nacional de Cuyo, San Carlos de Bariloche

    1989-01-01

    The mean-field theory of spin glass models has been used as a prototype of systems with frustration and disorder. One of the most interesting related systems are models of associative memories. In these lectures we review the main concepts developed to solve the Sherrington-Kirkpatrick model and its application to neural networks. (orig.)

  15. The segmentation of the HMD market: optics for smart glasses, smart eyewear, AR and VR headsets

    Science.gov (United States)

    Kress, Bernard; Saeedi, Ehsan; Brac-de-la-Perriere, Vincent

    2014-09-01

    This paper reviews the various optical technologies that have been developed to implement HMDs (Head Mounted Displays), both as AR (Augmented Reality) devices, VR (Virtual Reality) devices and more recently as smart glasses, smart eyewear or connected glasses. We review the typical requirements and optical performances of such devices and categorize them into distinct groups, which are suited for different (and constantly evolving) market segments, and analyze such market segmentation.

  16. Durable Glass For Thousands Of Years

    International Nuclear Information System (INIS)

    Jantzen, C.

    2009-01-01

    The durability of natural glasses on geological time scales and ancient glasses for thousands of years is well documented. The necessity to predict the durability of high level nuclear waste (HLW) glasses on extended time scales has led to various thermodynamic and kinetic approaches. Advances in the measurement of medium range order (MRO) in glasses has led to the understanding that the molecular structure of a glass, and thus the glass composition, controls the glass durability by establishing the distribution of ion exchange sites, hydrolysis sites, and the access of water to those sites. During the early stages of glass dissolution, a 'gel' layer resembling a membrane forms through which ions exchange between the glass and the leachant. The hydrated gel layer exhibits acid/base properties which are manifested as the pH dependence of the thickness and nature of the gel layer. The gel layer ages into clay or zeolite minerals by Ostwald ripening. Zeolite mineral assemblages (higher pH and Al 3+ rich glasses) may cause the dissolution rate to increase which is undesirable for long-term performance of glass in the environment. Thermodynamic and structural approaches to the prediction of glass durability are compared versus Ostwald ripening.

  17. Mechanical Properties of Stable Glasses Using Nanoindentation

    Science.gov (United States)

    Wolf, Sarah; Liu, Tianyi; Jiang, Yijie; Ablajan, Keyume; Zhang, Yue; Walsh, Patrick; Turner, Kevin; Fakhraai, Zahra

    Glasses with enhanced stability over ordinary, liquid quenched glasses have been formed via the process of Physical Vapor Deposition (PVD) by using a sufficiently slow deposition rate and a substrate temperature slightly below the glass transition temperature. These stable glasses have been shown to exhibit higher density, lower enthalpy, and better kinetic stability over ordinary glass, and are typically optically birefringent, due to packing and orientational anisotropy. Given these exceptional properties, it is of interest to further investigate how the properties of stable glasses compare to those of ordinary glass. In particular, the mechanical properties of stable glasses remain relatively under-investigated. While the speed of sound and elastic moduli have been shown to increase with increased stability, little is known about their hardness and fracture toughness compared to ordinary glasses. In this study, glasses of 9-(3,5-di(naphthalen-1-yl)phenyl)anthracene were deposited at varying temperatures relative to their glass transition temperature, and their mechanical properties measured by nanoindentation. Hardness and elastic modulus of the glasses were compared across substrate temperatures. After indentation, the topography of these films were studied using Atomic Force Microscopy (AFM) in order to further compare the relationship between thermodynamic and kinetic stability and mechanical failure. Z.F. and P.W. acknowledge funding from NSF(DMREF-1628407).

  18. Characterization of Fe -doped silver phosphate glasses

    Indian Academy of Sciences (India)

    ... to their several spe- cial properties such as large thermal expansion coefficients, ... increase the conductivity of these glasses is to increase the modifier or dopant ... phosphate glasses were measured by the a.c. impedance spectroscopic .... and Fe2O3-doped Ag2O–P2O5 glasses were determined from. DSC curves and ...

  19. Some recent developments in spin glasses

    Indian Academy of Sciences (India)

    I give some experimental and theoretical background to spin glasses, and then discuss the nature of the phase transition in spin glasses with vector spins. Results of Monte Carlo simulations of the Heisenberg spin glass model in three dimensions are presented. A finite-size scaling analysis of the correlation length of the ...

  20. Nickel-iron spherules from aouelloul glass

    Science.gov (United States)

    Chao, E.C.T.; Dwornik, E.J.; Merrill, C.W.

    1966-01-01

    Nickel-iron spherules, ranging from less than 0.2 to 50 microns in diameter and containing 1.7 to 9.0 percent Ni by weight, occur in glass associated with the Aouelloul crater. They occur in discrete bands of siliceous glass enriched in dissolved iron. Their discovery is significant tangible evidence that both crater and glass originated from terrestrial impact.

  1. Jagged Edges of the Glass Ceiling

    Science.gov (United States)

    Robinson, Victoria L.

    2004-01-01

    Although many aspiring young women might believe the glass ceiling was shattered a decade ago, they still need to understand how that glass ceiling impacted an older generation of women in educational leadership. They also must be aware that some segments of the glass ceiling might still exist. This article provides a historical overview of the…

  2. Review of glass ceramic waste forms

    International Nuclear Information System (INIS)

    Rusin, J.M.

    1981-01-01

    Glass ceramics are being considered for the immobilization of nuclear wastes to obtain a waste form with improved properties relative to glasses. Improved impact resistance, decreased thermal expansion, and increased leach resistance are possible. In addition to improved properties, the spontaneous devitrification exhibited in some waste-containing glasses can be avoided by the controlled crystallization after melting in the glass-ceramic process. The majority of the glass-ceramic development for nuclear wastes has been conducted at the Hahn-Meitner Institute (HMI) in Germany. Two of their products, a celsian-based (BaAl 3 Si 2 O 8 ) and a fresnoite-based (Ba 2 TiSi 2 O 8 ) glass ceramic, have been studied at Pacific Northwest Laboratory (PNL). A basalt-based glass ceramic primarily containing diopsidic augite (CaMgSi 2 O 6 ) has been developed at PNL. This glass ceramic is of interest since it would be in near equilibrium with a basalt repository. Studies at the Power Reactor and Nuclear Fuel Development Corporation (PNC) in Japan have favored a glass-ceramic product based upon diopside (CaMgSi 2 O 6 ). Compositions, processing conditions, and product characterization of typical commercial and nuclear waste glass ceramics are discussed. In general, glass-ceramic waste forms can offer improved strength and decreased thermal expansion. Due to typcially large residual glass phases of up to 50%, there may be little improvement in leach resistance

  3. Aging in chalcohalide glasses: Origin and consequences

    DEFF Research Database (Denmark)

    Jensen, Martin; Smedskjær, Morten Mattrup; Wang, W.

    2012-01-01

    the elemental concentration depth profiles in the surface layer of the glasses by using secondary neutral mass spectroscopy. The results show that anionic diffusion processes occur in the glasses during aging. The aging process leads to a decrease in microhardness of the studied glasses, which is attributed...

  4. DURABLE GLASS FOR THOUSANDS OF YEARS

    Energy Technology Data Exchange (ETDEWEB)

    Jantzen, C.

    2009-12-04

    The durability of natural glasses on geological time scales and ancient glasses for thousands of years is well documented. The necessity to predict the durability of high level nuclear waste (HLW) glasses on extended time scales has led to various thermodynamic and kinetic approaches. Advances in the measurement of medium range order (MRO) in glasses has led to the understanding that the molecular structure of a glass, and thus the glass composition, controls the glass durability by establishing the distribution of ion exchange sites, hydrolysis sites, and the access of water to those sites. During the early stages of glass dissolution, a 'gel' layer resembling a membrane forms through which ions exchange between the glass and the leachant. The hydrated gel layer exhibits acid/base properties which are manifested as the pH dependence of the thickness and nature of the gel layer. The gel layer ages into clay or zeolite minerals by Ostwald ripening. Zeolite mineral assemblages (higher pH and Al{sup 3+} rich glasses) may cause the dissolution rate to increase which is undesirable for long-term performance of glass in the environment. Thermodynamic and structural approaches to the prediction of glass durability are compared versus Ostwald ripening.

  5. Grinding Glass Disks On A Belt Sander

    Science.gov (United States)

    Lyons, James J., III

    1995-01-01

    Small machine attached to table-top belt sander makes possible to use belt sander to grind glass disk quickly to specified diameter within tolerance of about plus or minus 0.002 in. Intended to be used in place of production-shop glass grinder. Held on driveshaft by vacuum, glass disk rotated while periphery ground by continuous sanding belt.

  6. Effects of composition on waste glass properties

    International Nuclear Information System (INIS)

    Mellinger, G.B.; Chick, L.A.

    1979-01-01

    The electrical conductivity, viscosity, chemical durability, devitrification, and crystallinity of a defense waste glass were measured. Each oxide component in the glass was varied to determine its effect on these properties. A generic study is being developed which will determine the effects of 26 oxides on the above and additional properties of a wide field of possible waste glasses. 5 figures, 2 tables

  7. Spin-glass transition in disordered terbium

    International Nuclear Information System (INIS)

    Hauser, J.J.

    1985-01-01

    While crystalline Tb is a helix antiferromagnet with a Neel temperature of 229 K which becomes ferromagnetic at 222 K, disordered Tb exhibits a spin-glass transition. The spin-glass freezing temperature ranges from 183 to 53 K, the lowest temperatures corresponding to the greatest degree of atomic disorder. These experiments constitute the first evidence for an elemental spin-glass. (author)

  8. Superconducting state parameters of ternary metallic glasses

    Indian Academy of Sciences (India)

    Administrator

    to binary metallic glasses. They are of interest since third element can modify the physical properties of binary metallic glasses and can also be used as a probe to study the host. ..... conducting nature in the present case. When we. Figure 6. Variation of transition temperature (TC) with valance (Z) of ternary metallic glasses.

  9. The corrosion behavior of DWPF glasses

    International Nuclear Information System (INIS)

    Ebert, W.L.; Bates, J.K.

    1995-01-01

    The authors analyzed the corroded surfaces of reference glasses developed for the Defense Waste Processing Facility (DWPF) to characterize their corrosion behavior. The corrosion mechanism of nuclear waste glasses must be known in order to provide source terms describing radionuclide release for performance assessment calculations. Different DWPF reference glasses were corroded under conditions that highlighted various aspects of the corrosion process and led to different extents of corrosion. The glasses corroded by similar mechanisms, and a phenomenological description of their corrosion behavior is presented here. The initial leaching of soluble glass components results in the formation of an amorphous gel layer on the glass surface. The gel layer is a transient phase that transforms into a layer of clay crystallites, which equilibrates with the solution as corrosion continues. The clay layer does not act as a barrier to either water penetration or glass dissolution, which continues beneath it, and may eventually separate from the glass. Solubility limits for glass components may be established by the eventual precipitation of secondary phases; thus, corrosion of the glass becomes controlled by the chemical equilibrium between the solution and the assemblage of secondary phases. In effect, the solution is an intermediate phase through which the glass transforms to an energetically more favorable assemblage of phases. Implications regarding the prediction of long-term glass corrosion behavior are discussed

  10. Friction behavior of glass and metals in contact with glass in various environments

    Science.gov (United States)

    Buckley, D. H.

    1973-01-01

    Sliding friction experiments have been conducted for heat-resistant glass and metals in contact with glass. These experiments were conducted in various environments including vacuum, moist air, dry air, octane, and stearic acid in hexadecane. Glass exhibited a higher friction force in moist air than it did in vacuum when in sliding contact with itself. The metals, aluminum, iron, and gold, all exhibited the same friction coefficient when sliding on glass in vacuum as glass sliding on glass. Gold-to-glass contacts were extremely sensitive to the environment despite the relative chemical inertness of gold.

  11. An Evaluation of Google Glass : Design, Implementation and Evaluation of a Product Assembly Application for Google Glass and Smartphones

    OpenAIRE

    Häger, Johan

    2015-01-01

    Assembling components in a production line could potentially be a tedious task, if performed stepwise by the book. However, an employee who is assembling many different products may not know all the steps by heart. As such they will be reliant on an instruction manual. However, an instruction manual must be carried around and, while assembling components, placed in the assembler's line of sight. Instead new technology could make the process more efficient. Google Glass places a display slight...

  12. Spherical 2+p spin-glass model: An exactly solvable model for glass to spin-glass transition

    International Nuclear Information System (INIS)

    Crisanti, A.; Leuzzi, L.

    2004-01-01

    We present the full phase diagram of the spherical 2+p spin-glass model with p≥4. The main outcome is the presence of a phase with both properties of full replica symmetry breaking phases of discrete models, e.g., the Sherrington-Kirkpatrick model, and those of one replica symmetry breaking. This phase has a finite complexity which leads to different dynamic and static properties. The phase diagram is rich enough to allow the study of different kinds of glass to spin glass and spin glass to spin glass phase transitions

  13. Analysis of early medieval glass beads - Glass in the transition period

    Energy Technology Data Exchange (ETDEWEB)

    Smit, Ziga, E-mail: ziga.smit@ijs.si [Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, SI-1000 Ljubljana (Slovenia); Jozef Stefan Institute, Jamova 39, P.O.B. 3000, SI-1001 Ljubljana (Slovenia); Knific, Timotej [National Museum of Slovenia, Presernova 20, SI-1000 Ljubljana (Slovenia); Jezersek, David [Jozef Stefan Institute, Jamova 39, P.O.B. 3000, SI-1001 Ljubljana (Slovenia); Istenic, Janka [National Museum of Slovenia, Presernova 20, SI-1000 Ljubljana (Slovenia)

    2012-05-01

    Glass beads from graves excavated in Slovenia and dated archaeologically to the 7th-10th century AD were analysed by the combined PIXE-PIGE method. The results indicate two groups of glass; natron glass made in the Roman tradition and glass made with alkalis from the ash of halophytic plants, which gradually replaced natron glass after c. 800 AD. The alkalis used in the second group of glass seem to be in close relation to a variant of the Venetian white glass that appeared several centuries later. The origin of this glass may be traced to glass production in Mesopotamia and around the Aral Sea. All the mosaic beads with eye decoration, as well as most of the drawn-segmented and drawn-cut beads analysed, are of plant-ash glass, which confirms their supposed oriental origin.

  14. Complexing Agents and pH Influence on Chemical Durability of Type I Molded Glass Containers.

    Science.gov (United States)

    Biavati, Alberto; Poncini, Michele; Ferrarini, Arianna; Favaro, Nicola; Scarpa, Martina; Vallotto, Marta

    2017-01-01

    Among the factors that affect the glass surface chemical durability, pH and complexing agents present in aqueous solution have the main role. Glass surface attack can be also related to the delamination issue causing glass particles' appearance in the pharmaceutical preparation. A few methods to check for glass containers delamination propensity and some control guidelines have been proposed. The present study emphasizes the possible synergy between a few complexing agents with pH on borosilicate glass chemical durability.Hydrolytic attack was performed in small-volume 23 mL type I glass containers autoclaved according to the European Pharmacopoeia or United States Pharmacopeia for 1 h at 121 °C, in order to enhance the chemical attack due to time, temperature, and the unfavorable surface/volume ratio. Solutions of 0.048 M or 0.024 M (M/L) of the acids citric, glutaric, acetic, EDTA (ethylenediaminetetraacetic acid), together with sodium phosphate with water for comparison, were used for the trials. The pH was adjusted ±0.05 units at fixed values 5.5, 6.6, 7, 7.4, 8, and 9 by LiOH diluted solution.Because silicon is the main glass network former, silicon release into the attack solutions was chosen as the main index of the glass surface attack and analysed by inductively coupled plasma atomic emission spectrophotometry. The work was completed by the analysis of the silicon release in the worst attack conditions of molded glass, soda lime type II glass, and tubing borosilicate glass vials to compare different glass compositions and forming technologies. Surface analysis by scanning electron microscopy was finally performed to check for the surface status after the worst chemical attack condition by citric acid. LAY ABSTRACT: Glass, like every packaging material, can have some usage limits, mainly in basic pH solutions. The issue of glass surface degradation particles that appear in vials (delamination) has forced a number of drug product recalls in recent years

  15. A simple method for tuning the glass transition process in inorganic phosphate glasses

    OpenAIRE

    Fulchiron, Ren?; Belyamani, Imane; Otaigbe, Joshua U.; Bounor-Legar?, V?ronique

    2015-01-01

    The physical modification of glass transition temperature (Tg ) and properties of materials via blending is a common practice in industry and academia and has a large economic advantage. In this context, simple production of hitherto unattainable new inorganic glass blends from already existing glass compositions via blending raises much hope with the potential to provide new glasses with new and improved properties, that cannot be achieved with classical glass synthesis, for a plethora of ap...

  16. Effect of Gamma Irradiation on Some Properties of Bismuth Silicate Glasses and Their Glass Derivatives

    International Nuclear Information System (INIS)

    Abo Hussein, E.M.K.

    2014-01-01

    Glasses containing bismuth oxide have attracted considerable attention, although it is non-conventional glass forming oxide, but it has wide applications. In this work, it is aimed to prove that bismuth silicate glass can act as a good shielding material for γ- rays. For this purpose glass containing 20% bismuth oxide and 80% SiO_2 was prepared using melting-annealing technique. Also effects of adding some alkali heavy metal oxides to this glass such as PbO, BaO or SrO were also studied. The formed glasses were also heat treated at 450 degree C for 4 hours to give the corresponding heat treated glasses. Electron Paramagnetic Resonance (EPR) measurements show that the prepared glasses and heat treated glasses have very good stability when exposed to γ- irradiation, which encourage the assumption of using these glasses as gamma ray shielding materials. Many properties have been investigated, such as density to understand the structural properties, also mechanical properties were verified by measuring microhardness, while the chemical resistance was identified by testing their durability in both acidic and basic solutions. The EPR results were supported by measuring electrical conductivity of the glass and heat treated glass samples at different temperatures ranging from 298 to 553 K, which proved that these glasses have very low conductivity even at high temperature. The formed phases of heat treated glass or glass ceramic samples were demonstrated by means of X-ray diffraction (XRD). Also studying the structure of glasses and heat treated glasses before and after irradiation was investigated by the Infrared transmitting spectra. Calculations of optical band gap energies were demonstrated for some selected glasses and heat treated glasses from the data of UV optical absorption spectra to support the probability of using these bismuth silicate glasses for gamma radiation shielding processing.

  17. Melting, solidification, remelting, and separation of glass and metal

    International Nuclear Information System (INIS)

    Ebadian, M.A.; Xin, R.C.; Liu, Y.Z.

    1998-01-01

    Several high-temperature vitrification technologies have been developed for the treatment of a wide range of mixed waste types in both the low-level waste and transuranic (TRU) mixed waste categories currently in storage at DOE sites throughout the nation. The products of these processes are an oxide slag phase and a reduced metal phase. The metal phase has the potential to be recycled within the DOE Complex. Enhanced slag/metal separation methods are needed to support these processes. This research project involves an experimental investigation of the melting, solidification, remelting, and separation of glass and metal and the development of an efficient separation technology. The ultimate goal of this project is to find an efficient way to separate the slag phase from the metal phase in the molten state. This two-year project commenced in October 1995 (FY96). In the first fiscal year, the following tasks were accomplished: (1) A literature review and an assessment of the baseline glass and metal separation technologies were performed. The results indicated that the baseline technology yields a high percentage of glass in the metal phase, requiring further separation. (2) The main melting and solidification system setup was established. A number of melting and solidification tests were conducted. (3) Temperature distribution, solidification patterns, and flow field in the molten metal pool were simulated numerically for the solidification processes of molten aluminum and iron steel. (4) Initial designs of the laboratory-scale DCS and CS technologies were also completed. The principal demonstration separation units were constructed. (5) An application for a patent for an innovative liquid-liquid separation technology was submitted and is pending

  18. Process, structure, property and applications of metallic glasses

    Directory of Open Access Journals (Sweden)

    B. Geetha Priyadarshini

    2016-07-01

    Full Text Available Metallic glasses (MGs are gaining immense technological significance due to their unique structure-property relationship with renewed interest in diverse field of applications including biomedical implants, commercial products, machinery parts, and micro-electro-mechanical systems (MEMS. Various processing routes have been adopted to fabricate MGs with short-range ordering which is believed to be the genesis of unique structure. Understanding the structure of these unique materials is a long-standing unsolved mystery. Unlike crystalline counterpart, the outstanding properties of metallic glasses owing to the absence of grain boundaries is reported to exhibit high hardness, excellent strength, high elastic strain, and anti-corrosion properties. The combination of these remarkable properties would significantly contribute to improvement of performance and reliability of these materials when incorporated as bio-implants. The nucleation and growth of metallic glasses is driven by thermodynamics and kinetics in non-equilibrium conditions. This comprehensive review article discusses the various attributes of metallic glasses with an aim to understand the fundamentals of relationship process-structure-property existing in such unique class of material.

  19. Innovative hydrogen storage in hollow glass-microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Keding, M.; Schmid, G.; Tajmar, M. [Austrian Research Centers, Vienna (Austria)

    2009-07-01

    Hydrogen storage technologies are becoming increasingly important for a number of future applications. The Austrian Research Centers (ARC) are developing a unique hydrogen storage system that combines the advantages of both hollow glass microsphere and chemical compound hydrogen storage, but eliminates their respective drawbacks. Water is utilized as a functional liquid to carry the hollow glass microspheres that are loaded with up to 700 bar of hydrogen gas. Sodium borohydride (NaBH{sub 4}) is then injected together with the glass microspheres into a reaction chamber where the water reacts catalytically with the NaBH{sub 4} producing hydrogen and heat. The heat is then utilized to release the hydrogen from the hollow glass microspheres providing a double hydrogen generation process without any external energy or heat during storage or gas release. The paper described this hydrogen storage system with particular reference to microspheres, the coating process, the experimental facility and NaBH{sub 4} test results. It was concluded that hydrogen storage and production on demand is possible with microspheres and sodium borohydride solution. 9 refs., 16 figs.

  20. Glass Durability Modeling, Activated Complex Theory (ACT)

    International Nuclear Information System (INIS)

    CAROL, JANTZEN

    2005-01-01

    The most important requirement for high-level waste glass acceptance for disposal in a geological repository is the chemical durability, expressed as a glass dissolution rate. During the early stages of glass dissolution in near static conditions that represent a repository disposal environment, a gel layer resembling a membrane forms on the glass surface through which ions exchange between the glass and the leachant. The hydrated gel layer exhibits acid/base properties which are manifested as the pH dependence of the thickness and nature of the gel layer. The gel layer has been found to age into either clay mineral assemblages or zeolite mineral assemblages. The formation of one phase preferentially over the other has been experimentally related to changes in the pH of the leachant and related to the relative amounts of Al +3 and Fe +3 in a glass. The formation of clay mineral assemblages on the leached glass surface layers ,lower pH and Fe +3 rich glasses, causes the dissolution rate to slow to a long-term steady state rate. The formation of zeolite mineral assemblages ,higher pH and Al +3 rich glasses, on leached glass surface layers causes the dissolution rate to increase and return to the initial high forward rate. The return to the forward dissolution rate is undesirable for long-term performance of glass in a disposal environment. An investigation into the role of glass stoichiometry, in terms of the quasi-crystalline mineral species in a glass, has shown that the chemistry and structure in the parent glass appear to control the activated surface complexes that form in the leached layers, and these mineral complexes ,some Fe +3 rich and some Al +3 rich, play a role in whether or not clays or zeolites are the dominant species formed on the leached glass surface. The chemistry and structure, in terms of Q distributions of the parent glass, are well represented by the atomic ratios of the glass forming components. Thus, glass dissolution modeling using simple

  1. Strong-Superstrong Transition in Glass Transition of Metallic Glass

    International Nuclear Information System (INIS)

    Dan, Wang; Hong-Yan, Peng; Xiao-Yu, Xu; Bao-Ling, Chen; Chun-Lei, Wu; Min-Hua, Sun

    2010-01-01

    Dynamic fragility of bulk metallic glass (BMG) of Zr 64 Cu 16 Ni 10 Al 10 alloy is studied by three-point beam bending methods. The fragility parameter mfor Zr 64 Cu 16 Ni 10 Al 10 BMG is calculated to be 24.5 at high temperature, which means that the liquid is a 'strong' liquid, while to be 13.4 at low temperature which means that the liquid is a 'super-strong' liquid. The dynamical behavior of Zr 64 Cu 16 Ni 10 Al 10 BMG in the supercooled region undergoes a strong to super-strong transition. To our knowledge, it is the first time that a strong-to-superstrong transition is found in the metallic glass. Using small angle x-ray scattering experiments, we find that this transition is assumed to be related to a phase separation process in supercooled liquid. (condensed matter: structure, mechanical and thermal properties)

  2. Inelastic neutron scattering from glass formers

    International Nuclear Information System (INIS)

    Buchenau, U.

    1997-01-01

    Neutron spectra below and above the glass transition temperature show a pronounced difference between strong and fragile glass formers in Angell's fragility scheme. The strong anharmonic increase of the inelastic scattering with increasing temperature in fragile substances is absent in the strongest glass former SiO 2 . That difference is reflected in the temperature dependence of Brillouin sound velocities above the glass transition. Coherent inelastic neutron scattering data indicate a mixture of sound waves and local modes at the low frequency boson peak. A relation between the fragility and the temperature dependence of the transverse hypersound velocity at the glass temperature is derived. (author)

  3. A new glass option for parenteral packaging.

    Science.gov (United States)

    Schaut, Robert A; Peanasky, John S; DeMartino, Steven E; Schiefelbein, Susan L

    2014-01-01

    Glass is the ideal material for parenteral packaging because of its chemical durability, hermeticity, strength, cleanliness, and transparency. Alkali borosilicate glasses have been used successfully for a long time, but they do have some issues relating to breakage, delamination, and variation in hydrolytic performance. In this paper, alkali aluminosilicate glasses are introduced as a possible alternative to alkali borosilicate glasses. An example alkali aluminosilicate glass is shown to meet the compendial requirements, and to have similar thermal, optical, and mechanical attributes as the current alkali borosilicate glasses. In addition, the alkali aluminosilicate performed as well or better than the current alkali borosilicates in extractables tests and stability studies, which suggests that it would be suitable for use with the studied liquid product formulation. The physical, mechanical, and optical properties of glass make it an ideal material for packaging injectable drugs and biologics. Alkali borosilicate glasses have been used successfully for a long time for these applications, but there are some issues. In this paper, alkali aluminosilicate glasses are introduced as a possible alternative to alkali borosilicate glasses. An example alkali aluminosilicate glass is shown to meet the requirements for packaging injectable drugs and biologics, and to be suitable for use with a particular liquid drug. © PDA, Inc. 2014.

  4. Identifying glass compositions in fly ash

    Directory of Open Access Journals (Sweden)

    Katherine eAughenbaugh

    2016-01-01

    Full Text Available In this study, four Class F fly ashes were studied with a scanning electron microscope; the glassy phases were identified and their compositions quantified using point compositional analysis with k-means clustering and multispectral image analysis. The results showed that while the bulk oxide contents of the fly ashes were different, the four fly ashes had somewhat similar glassy phase compositions. Aluminosilicate glasses (AS, calcium aluminosilicate glasses (CAS, a mixed glass, and, in one case, a high iron glass were identified in the fly ashes. Quartz and iron crystalline phases were identified in each fly ash as well. The compositions of the three main glasses identified, AS, CAS, and mixed glass, were relatively similar in each ash. The amounts of each glass were varied by fly ash, with the highest calcium fly ash containing the most of calcium-containing glass. Some of the glasses were identified as intermixed in individual particles, particularly the calcium-containing glasses. Finally, the smallest particles in the fly ashes, with the most surface area available to react in alkaline solution, such as when mixed with portland cement or in alkali-activated fly ash, were not different in composition than the large particles, with each of the glasses represented. The method used in the study may be applied to a fly ash of interest for use as a cementing material in order to understand its potential for reactivity.

  5. Bioactive Glasses in Dentistry: A Review

    Directory of Open Access Journals (Sweden)

    Abbasi Z

    2015-03-01

    Full Text Available Bioactive glasses are silicate-based and can form a strong chemical bond with the tissues. These biomaterials are highly biocompatible and can form a hydroxyapatite layer when implanted in the body or soaked in the simulated body fluid. Due to several disadvantages, conventional glass processing method including melting of glass components, is replaced by sol-gel method with a large number of benefits such as low processing temperature, higher purity and homogeneity and therefore better control of bioactivity. Bioactive glasses have a wide range of applications, particularly in dentistry. These glasses can be used as particulates or monolithic shapes and porous or dense constructs in different applications such as remineralization or hypersensitivity treatment. Some properties of bioactive glasses such as antibacterial properties can be promoted by adding different elements into the glass. Bioactive glasses can also be used to modify different biocompatible materials that need to be bioactive. This study reviews the significant developments of bioactive glasses in clinical application, especially dentistry. Furthermore, we will discuss the field of bioactive glasses from beginning to the current developments, which includes processing methods, applications, and properties of these glasses.

  6. Evaluation of Behaviours of Laminated Glass

    Science.gov (United States)

    Sable, L.; Japins, G.; Kalnins, K.

    2015-11-01

    Visual appearance of building facades and other load bearing structures, which now are part of modern architecture, is the reason why it is important to investigate in more detail the reliability of laminated glass for civil structures. Laminated glass in particular has become one of the trendy materials, for example Apple© stores have both load carrying capacity and transparent appearance. Glass has high mechanical strength and relatively medium density, however, the risk of sudden brittle failure like concrete or other ceramics determine relatively high conservatism in design practice of glass structures. This should be changed as consumer requirements evolve calling for a safe and reliable design methodology and corresponding building standards. A design methodology for glass and glass laminates should be urgently developed and included as a chapter in Eurocode. This paper presents initial experimental investigation of behaviour of simple glass sheets and laminated glass samples in 4-point bending test. The aim of the current research is to investigate laminated glass characteristic values and to verify the obtained experimental results with finite element method for glass and EVA material in line with future European Structural Design of Glass Components code.

  7. Control of radioactive waste-glass melters

    International Nuclear Information System (INIS)

    Bickford, D.F.; Smith, P.K.; Hrma, P.; Bowan, B.W.

    1987-01-01

    Radioactive waste-glass melters require physical control limits and redox control of glass to assure continuous operation, and maximize production rates. Typical waste-glass melter operating conditions, and waste-glass chemical reaction paths are discussed. Glass composition, batching and melter temperature control are used to avoid the information of phases which are disruptive to melting or reduce melter life. The necessity and probable limitations of control for electric melters with complex waste feed compositions are discussed. Preliminary control limits, their bases, and alternative control methods are described for use in the Defense Waste Processing Facility (DWPF) at the US Department of Energy's Savannah River Plant (SRP), and at the West Valley Demonstration Project (WVDP). Slurries of simulated high level radioactive waste and ground glass frit or glass formers have been isothermally reacted and analyzed to identify the sequence of the major chemical reactions in waste vitrification, and their effect on waste-glass production rates. Relatively high melting rates of waste batches containing mixtures of reducing agents (formic acid, sucrose) and nitrates are attributable to exothermic reactions which occur at critical stages in the vitrification process. The effect of foaming on waste glass production rates is analyzed, and limits defined for existing waste-glass melters, based upon measurable thermophysical properties. Through balancing the high nitrate wastes of the WVDP with reducing agents, the high glass melting rates and sustained melting without foaming required for successful WVDP operations have been demonstrated. 65 refs., 4 figs., 15 tabs

  8. Development of Models to Predict the Redox State of Nuclear Waste Containment Glass

    Energy Technology Data Exchange (ETDEWEB)

    Pinet, O.; Guirat, R.; Advocat, T. [Commissariat a l' Energie Atomique (CEA), Departement de Traitement et de Conditionnement des Dechets, Marcoule, BP 71171, 30207 Bagnols-sur-Ceze Cedex (France); Phalippou, J. [Universite de Montpellier II, Laboratoire des Colloides, Verres et Nanomateriaux, 34095 Montpellier Cedex 5 (France)

    2008-07-01

    Vitrification is one of the recommended immobilization routes for nuclear waste, and is currently implemented at industrial scale in several countries, notably for high-level waste. To optimize nuclear waste vitrification, research is conducted to specify suitable glass formulations and develop more effective processes. This research is based not only on experiments at laboratory or technological scale, but also on computer models. Vitrified nuclear waste often contains several multi-valent species whose oxidation state can impact the properties of the melt and of the final glass; these include iron, cerium, ruthenium, manganese, chromium and nickel. Cea is therefore also developing models to predict the final glass redox state. Given the raw materials and production conditions, the model predicts the oxygen fugacity at equilibrium in the melt. It can also estimate the ratios between the oxidation states of the multi-valent species contained in the molten glass. The oxidizing or reductive nature of the atmosphere above the glass melt is also taken into account. Unlike the models used in the conventional glass industry based on empirical methods with a limited range of application, the models proposed are based on the thermodynamic properties of the redox species contained in the waste vitrification feed stream. The thermodynamic data on which the model is based concern the relationship between the glass redox state and the oxygen fugacity in the molten glass. The model predictions were compared with oxygen fugacity measurements for some fifty glasses. The experiments carried out at laboratory and industrial scale with a cold crucible melter. The oxygen fugacity of the glass samples was measured by electrochemical methods and compared with the predicted value. The differences between the predicted and measured oxygen fugacity values were generally less than 0.5 Log unit. (authors)

  9. Effect of CeO2 addition on electrical and optical properties of lithium borate glasses

    International Nuclear Information System (INIS)

    Gedam, R.S.; Ramteke, D.D.

    2011-01-01

    Rare earth (RE) ions play an important role in modern technology as an active ion in many optical materials. RE-doped glasses were used in many optical devices because of abundant number of the absorption and emission bands arising from the transitions between the RE elements energy levels. Among all rare earth, glasses containing CeO 2 are extensively studied for scintillating applications. Radiation length of CeO 2 containing lithium silicate glasses decreases and absorption edge in transmittance shift towards longer wavelength. In the present study an attempt has been made to verify similar results in borate containing glasses. Therefore glass series 15Li 2 O-xCeO 2 -(85''x)B 2 O 3 where x= 0.25, 0.5, 0.75, 1 mol% was prepared by conventional melt quench technique. Their electrical and optical properties have been investigated. It is observed that the conductivity of these glasses decreases while density, glass transition temperature and refractive index increases with the addition of CeO 2 . The conductivity of the glasses is mostly controlled by the activation energy. Since the lithium fraction in the present series is kept constant, the decrease in conductivity for glasses may be attributed to the reduction in the number of available vacant sites for the mobile lithium ions when boron is substituted with CeO 2 . The radiation length was determined using density values and it was found to decrease with the addition of CeO 2 . The absorption coefficient a were determined near the absorption edge of different photon energy for all glass samples and plot of (αhν) 1/2 Vs. hν (Tauc's plot) is shown. It is observed that the optical band gap energy (E g Opt ) decreases with the addition of CeO 2

  10. Moessbauer effect and infrared study of some borate glass containing Mn and Fe oxides

    International Nuclear Information System (INIS)

    Gabr, M.

    2005-01-01

    Lithium borate glasses containing transition metals appeared now of very high technological and scientific interest. Therefore some lithium borate glasses containing mixed transition metal ions (manganese and iron) were investigated. The glass batches were melted at 1250 degree C for three hours and annealed at 350 degree C -over night- to obtain strain free glasses. Moessbauer Effect spectroscopy and Infrared analysis were employed to investigate the structural changes due to the change of their batches composition. Differential thermal analysis, magnetic susceptibility, density and molar volume measurements were also performed to study the effect of changing both manganese and iron oxides at the expense of boron oxide on these properties. Infrared analysis indicated the presence of different structural groups such as BO 3 , BO 4 , FeO 4 and MnO 6 as well as different vibrations indicated the presence of various bonds in the glass network. The values of the characteristic temperatures (T g , T c and T m ) showed gradual increase except those of the last sample where they showed a decrease. The mid sample showed the lowest stability value. It was found that the molar volume showed its highest value at R=0.33 [where R is the ratio of glass network modifier to the glass network former]. After that it showed gradual linear decrease. The magnetic susceptibility measurements showed approximately stable value between R=0.29 and 0.33, then it increased up to R=0.38, and after that, it decreased up to R= 0.43. The obtained magnetic susceptibility values indicated that all these glasses are paramagnetic. The obtained Moessbauer spectra and the calculated parameters confirmed that iron ions participated in the glass network as network former cations. It confirmed also that all glasses reflect paramagnetic character. The observed structural change were explained and correlated with the change of the measured physical properties

  11. Durability of Silicate Glasses: An Historical Approach

    International Nuclear Information System (INIS)

    Farges, Francois; Etcheverry, Marie-Pierre; Haddi, Amine; Trocellier, Patrick; Curti, Enzo; Brown, Gordon E. Jr.

    2007-01-01

    We present a short review of current theories of glass weathering, including glass dissolution, and hydrolysis of nuclear waste glasses, and leaching of historical glasses from an XAFS perspective. The results of various laboratory leaching experiments at different timescales (30 days to 12 years) are compared with results for historical glasses that were weathered by atmospheric gases and soil waters over 500 to 3000 years. Good agreement is found between laboratory experiments and slowly leached historical glasses, with a strong enrichment of metals at the water/gel interface. Depending on the nature of the transition elements originally dissolved in the melt, increasing elemental distributions are expected to increase with time for a given glass durability context

  12. Durability of Silicate Glasses: An Historical Approach

    Energy Technology Data Exchange (ETDEWEB)

    Farges, Francois; /Museum Natl. Hist. Natur. /Stanford U., Geo. Environ. Sci.; Etcheverry, Marie-Pierre; /Marne la Vallee U.; Haddi, Amine; /Marne la Valle U.; Trocellier,; /Saclay; Curti, Enzo; /PSI, Villigen; Brown, Gordon E., Jr.; /SLAC, SSRL

    2007-01-02

    We present a short review of current theories of glass weathering, including glass dissolution, and hydrolysis of nuclear waste glasses, and leaching of historical glasses from an XAFS perspective. The results of various laboratory leaching experiments at different timescales (30 days to 12 years) are compared with results for historical glasses that were weathered by atmospheric gases and soil waters over 500 to 3000 years. Good agreement is found between laboratory experiments and slowly leached historical glasses, with a strong enrichment of metals at the water/gel interface. Depending on the nature of the transition elements originally dissolved in the melt, increasing elemental distributions are expected to increase with time for a given glass durability context.

  13. Characterization of Savannah River Plant waste glass

    International Nuclear Information System (INIS)

    Plodinec, M.J.

    1985-01-01

    The objective of the glass characterization programs at the Savannah River Laboratory (SRL) is to ensure that glass containing Savannah River Plant high-level waste can be permanently stored in a federal repository, in an environmentally acceptable manner. To accomplish this objective, SRL is carrying out several experimental programs, including: fundamental studies of the reactions between waste glass and water, particularly repository groundwater; experiments in which candidate repository environments are simulated as accurately as possible; burial tests of simulated waste glass in candidate repository geologies; large-scale tests of glass durability; and determination of the effects of process conditions on glass quality. In this paper, the strategy and current status of each of these programs is discussed. The results indicate that waste packages containing SRP waste glass will satisfy emerging regulatory criteria

  14. Phase separation in an ionomer glass

    DEFF Research Database (Denmark)

    Pedersen, Malene Thostrup; Tian, K.V.; Dobó-Nagy, C.

    2015-01-01

    The G338 ionomer glass is a fluoro-alumino-silicate system, which is used as the powder component of glass ionomer cements (GICs) in dental applications. However, despite progress in understanding the nature of this glass, chemical identity of its separated amorphous phases has not yet been...... amorphous phases in G388 are Ca/Na-Al-Si-O, Ca-Al-F and Ca-P-O-F phases, respectively. However, the exact chemical compositions of the three phases still require further exploration. The results of this work are important for understanding the impact of phase separation within ionomer glasses on the setting...... conclusively determined. In this work, we identify these phases by performing differential scanning calorimetry (DSC) and X-ray diffraction (XRD) analyses on both the as-received glass and heat-treated samples. We detected three glass transitions in the as-received G338 glass during DSC upscaning, implying...

  15. Glasses, ceramics, and composites from lunar materials

    Science.gov (United States)

    Beall, George H.

    1992-01-01

    A variety of useful silicate materials can be synthesized from lunar rocks and soils. The simplest to manufacture are glasses and glass-ceramics. Glass fibers can be drawn from a variety of basaltic glasses. Glass articles formed from titania-rich basalts are capable of fine-grained internal crystallization, with resulting strength and abrasion resistance allowing their wide application in construction. Specialty glass-ceramics and fiber-reinforced composites would rely on chemical separation of magnesium silicates and aluminosilicates as well as oxides titania and alumina. Polycrystalline enstatite with induced lamellar twinning has high fracture toughness, while cordierite glass-ceramics combine excellent thermal shock resistance with high flexural strengths. If sapphire or rutile whiskers can be made, composites of even better mechanical properties are envisioned.

  16. Controlling Mackey-Glass chaos

    Science.gov (United States)

    Kiss, Gábor; Röst, Gergely

    2017-11-01

    The Mackey-Glass equation is the representative example of delay induced chaotic behavior. Here, we propose various control mechanisms so that otherwise erratic solutions are forced to converge to the positive equilibrium or to a periodic orbit oscillating around that equilibrium. We take advantage of some recent results of the delay differential literature, when a sufficiently large domain of the phase space has been shown to be attractive and invariant, where the system is governed by monotone delayed feedback and chaos is not possible due to some Poincaré-Bendixson type results. We systematically investigate what control mechanisms are suitable to drive the system into such a situation and prove that constant perturbation, proportional feedback control, Pyragas control, and state dependent delay control can all be efficient to control Mackey-Glass chaos with properly chosen control parameters.

  17. Controlling Mackey-Glass chaos.

    Science.gov (United States)

    Kiss, Gábor; Röst, Gergely

    2017-11-01

    The Mackey-Glass equation is the representative example of delay induced chaotic behavior. Here, we propose various control mechanisms so that otherwise erratic solutions are forced to converge to the positive equilibrium or to a periodic orbit oscillating around that equilibrium. We take advantage of some recent results of the delay differential literature, when a sufficiently large domain of the phase space has been shown to be attractive and invariant, where the system is governed by monotone delayed feedback and chaos is not possible due to some Poincaré-Bendixson type results. We systematically investigate what control mechanisms are suitable to drive the system into such a situation and prove that constant perturbation, proportional feedback control, Pyragas control, and state dependent delay control can all be efficient to control Mackey-Glass chaos with properly chosen control parameters.

  18. Formulation of heat absorbing glasses

    Directory of Open Access Journals (Sweden)

    Álvarez-Casariego, Pedro

    1996-06-01

    Full Text Available In the thermal exchanges between buildings and environment, glazing is an element of major importance, for it largely influences the so-called Solar Heat Gain and Thermal Losses. These parameters can be modified by applying different type of coatings onto glass surface or by adding colorant compounds during glass melting. The latter is a cheaper way to control the Solar Heat Gain. The knowledge of the laws governing the interaction between colorant compounds and solar radiation, allows us to define glass formulations achieving specific aesthetic requirements and solar energy absorption. In this paper two examples of application of the modelling of glass colorants spectral absorptance are presented. First is addressed to obtaining a glass with high luminous transmittance and low solar energy transmittance, and the other one to obtaining a glass with neutral colour appearance and minimized solar energy transmittance. Calculation formulas are defined together with photometric properties so-obtained. These type of glasses are particularly suitable to be used as building and automotive glazing, for they retain the mechanical characteristics and possibilities of transformation of standard glass.

    En los intercambios de energía entre un edificio y el medio exterior, el vidrio es el elemento de mayor importancia, por su influencia en la Ganancia de Calor Solar y en las Pérdidas Térmicas. Estos parámetros pueden ser modificados mediante el depósito de capas sobre el vidrio o mediante la adición de compuestos absorbentes de la radiación solar. Esta última vía es la más económica para controlar la Ganancia de Calor Solar. El conocimiento de las leyes que gobiernan la interacción de los diversos colorantes con la radiación solar, permite definir formulaciones de vidrios con características especificas de tipo estético y de absorción energética. En este trabajo se presentan dos ejemplos de aplicación de esta modelización de las

  19. Development of a glass GEM

    International Nuclear Information System (INIS)

    Takahashi, Hiroyuki; Mitsuya, Yuki; Fujiwara, Takeshi; Fushie, Takashi

    2013-01-01

    Gas electron multipliers (GEMs) apply the concept of gas amplification inside many tiny holes, realizing robust and high-gain proportional counters. However, the polyimide substrate of GEMs prevents them from being used in sealed detector applications. We have fabricated and tested glass GEMs (G-GEMs) with substrates made of photosensitive glass material from the Hoya Corporation. We fabricated G-GEMs with several different hole diameters and thicknesses and successfully operated test G-GEMs with a 100×100 mm 2 effective area. The uniformity of our G-GEMs was good, and the energy resolution for 5.9 keV X-rays was 18.8% under uniform irradiation of the entire effective area. A gas gain by the G-GEMs of up to 6700 was confirmed with a gas mixture of Ar (70%)+CH 4 (30%). X-ray imaging using the charge division readout method was demonstrated

  20. Lid heater for glass melter

    International Nuclear Information System (INIS)

    Phillips, T.D.

    1993-01-01

    A glass melter having a lid electrode for heating the glass melt radiantly. The electrode comprises a series of INCONEL 690 tubes running above the melt across the melter interior and through the melter walls and having nickel cores inside the tubes beginning where the tubes leave the melter interior and nickel connectors to connect the tubes electrically in series. An applied voltage causes the tubes to generate heat of electrical resistance for melting frit injected onto the melt. The cores limit heat generated as the current passes through the walls of the melter. Nickel bus connection to the electrical power supply minimizes heat transfer away from the melter that would occur if standard copper or water-cooled copper connections were used between the supply and the INCONEL 690 heating tubes. 3 figures