WorldWideScience

Sample records for estrogen-induced breast carcinogenesis

  1. Dietary quercetin exacerbates the development of estrogen-induced breast tumors in female ACI rats

    International Nuclear Information System (INIS)

    Singh, Bhupendra; Mense, Sarah M.; Bhat, Nimee K.; Putty, Sandeep; Guthiel, William A.; Remotti, Fabrizio; Bhat, Hari K.

    2010-01-01

    Phytoestrogens are plant compounds that structurally mimic the endogenous estrogen 17β-estradiol (E 2 ). Despite intense investigation, the net effect of phytoestrogen exposure on the breast remains unclear. The objective of the current study was to examine the effects of quercetin on E 2 -induced breast cancer in vivo. Female ACI rats were given quercetin (2.5 g/kg food) for 8 months. Animals were monitored weekly for palpable tumors, and at the end of the experiment, rats were euthanized, breast tumor and different tissues excised so that they could be examined for histopathologic changes, estrogen metabolic activity and oxidant stress. Quercetin alone did not induce mammary tumors in female ACI rats. However, in rats implanted with E 2 pellets, co-exposure to quercetin did not protect rats from E 2 -induced breast tumor development with 100% of the animals developing breast tumors within 8 months of treatment. No changes in serum quercetin levels were observed in quercetin and quercetin + E 2 -treated groups at the end of the experiment. Tumor latency was significantly decreased among rats from the quercetin + E 2 group relative to those in the E 2 group. Catechol-O-methyltransferase (COMT) activity was significantly downregulated in quercetin-exposed mammary tissue. Analysis of 8-isoprostane F 2α (8-iso-PGF 2α ) levels as a marker of oxidant stress showed that quercetin did not decrease E 2 -induced oxidant stress. These results indicate that quercetin (2.5 g/kg food) does not confer protection against breast cancer, does not inhibit E 2 -induced oxidant stress and may exacerbate breast carcinogenesis in E 2 -treated ACI rats. Inhibition of COMT activity by quercetin may expose breast cells chronically to E 2 and catechol estrogens. This would permit longer exposure times to the carcinogenic metabolites of E 2 and chronic exposure to oxidant stress as a result of metabolic redox cycling to estrogen metabolites, and thus quercetin may exacerbate E 2 -induced

  2. Prevention of mammary carcinogenesis by short-term estrogen and progestin treatments

    International Nuclear Information System (INIS)

    Rajkumar, Lakshmanaswamy; Guzman, Raphael C; Yang, Jason; Thordarson, Gudmundur; Talamantes, Frank; Nandi, Satyabrata

    2004-01-01

    Women who have undergone a full-term pregnancy before the age of 20 have one-half the risk of developing breast cancer compared with women who have never gone through a full-term pregnancy. This protective effect is observed universally among women of all ethnic groups. Parity in rats and mice also protects them against chemically induced mammary carcinogenesis. Seven-week-old virgin Lewis rats were given N-methyl-N-nitrosourea. Two weeks later the rats were treated with natural or synthetic estrogens and progestins for 7–21 days by subcutaneous implantation of silastic capsules. In our current experiment, we demonstrate that short-term sustained exposure to natural or synthetic estrogens along with progestins is effective in preventing mammary carcinogenesis in rats. Treatment with 30 mg estriol plus 30 mg progesterone for 3 weeks significantly reduced the incidence of mammary cancer. Short-term exposure to ethynyl estradiol plus megesterol acetate or norethindrone was effective in decreasing the incidence of mammary cancers. Tamoxifen plus progesterone treatment for 3 weeks was able to confer only a transient protection from mammary carcinogenesis, while 2-methoxy estradiol plus progesterone was effective in conferring protection against mammary cancers. The data obtained in the present study demonstrate that, in nulliparous rats, long-term protection against mammary carcinogenesis can be achieved by short-term treatments with natural or synthetic estrogen and progesterone combinations

  3. Estrogens in breast cancer

    International Nuclear Information System (INIS)

    Terzieff, V.; Vázquez, A.

    2004-01-01

    The prolonged exposure to estrogen increases the risk of cancer breast, the precise role of estrogen in the carcinogenesis process is unclear. They are capable of inducing cell proliferation through different channels receptor Estrogen (ER) known, for example through MAPkinasa sensitivity the promoter of proliferation effect depends on the level of RE, or type to â, integrity (mutations may alter its function) and ligand. The different types of estrogens and related compounds have different profile of affinity for RE and effect end. The modulatory role of progestogens proliferation is very complex, and the interaction between the effector pathways of progestin’s, estrogens, EGF and IGF family - maybe others - determines the final effect .. Estrogens are mutagenic per se weak, but is now known for its hepatic metabolism occur highly reactive species such as quinones, and catechol, powerful mutagens in vitro. Direct or indirect genotoxicity probably explains Part of the effects of estrogen on tumor cells. The use of hormone replacement (HTR) increases the risk of CM, as proportional to the time of use. The combination with progestin seems to be increased risk (R R 2). It is unclear the role of phyto estrogens in the prevention the CM. In the male breast is known that the proliferative response to parenchymal different hormonal maneuvers is different. The effect is minimal castration are and maximum with the combination of estrogen and progesterone. It is unclear, however, the risk of the population exposed to hormone therapy for cancer prostate or otherwise

  4. Modulation of Estrogen Chemical Carcinogenesis by Botanical Supplements used for Postmenopausal Women’s Health

    Science.gov (United States)

    Snelten, Courtney S.; Dietz, Birgit; Bolton, Judy L.

    2012-01-01

    Breast cancer risk has been associated with long-term estrogen exposure including traditional hormone therapy (HT, formally hormone replacement therapy). To avoid traditional HT and associated risks, women have been turning to botanical supplements such as black cohosh, red clover, licorice, hops, dong gui, and ginger to relieve menopausal symptoms despite a lack of efficacy evidence. The mechanisms of estrogen carcinogenesis involve both hormonal and chemical pathways. Botanical supplements could protect women from estrogen carcinogenesis by modulating key enzymatic steps [aromatase, P4501B1, P4501A1, catechol-O-methyltransferase (COMT), NAD(P)H quinone oxidoreductase 1 (NQO1), and reactive oxygen species (ROS) scavenging] in estradiol metabolism leading to estrogen carcinogenesis as outlined in Figure 1. This review summarizes the influence of popular botanical supplements used for women’s health on these key steps in the estrogen chemical carcinogenesis pathway, and suggests that botanical supplements may have added chemopreventive benefits by modulating estrogen metabolism. PMID:24223609

  5. Disturbance of Mammary UDP-Glucuronosyltransferase Represses Estrogen Metabolism and Exacerbates Experimental Breast Cancer.

    Science.gov (United States)

    Zhou, Xueyan; Zheng, Ziqiang; Xu, Chang; Wang, Juan; Min, Mengjun; Zhao, Yun; Wang, Xi; Gong, Yinhan; Yin, Jiale; Guo, Meng; Guo, Dong; Zheng, Junnian; Zhang, Bei; Yin, Xiaoxing

    2017-08-01

    The progression of breast cancer is closely related to the levels of estrogens within the body. UDP-glucuronosyltransferase (UGT) is an important class of phase II metabolizing enzymes, playing a pivotal role in detoxifying steroid hormone. In the present study, we aim at uncovering the potential dysregulation pattern of UGT and its role in estrogen metabolism and in the pathogenesis of breast cancer. Female Sprague-Dawley rats were treated with 100 mg/kg dimethylbenz(a)anthracene (DMBA) to induce breast cancer. Our results showed that the expression and activity of UGT in mammary tissues were downregulated significantly in DMBA rats. Consistent with this, levels of estradiol, 4-hydroxylated estradiol, and 2-hydroxylated estradiol were increased in both mammary tissues and serum, supporting a notable accumulation of toxic estrogen species in the target tissue of breast cancer. In addition, we also observed the decreased cell migration, cell proliferation, and DNA damage in UGT-transfected MCF-7 cells, suggesting a protective role of UGT against estrogen-induced mammary carcinogenesis. Taken together, these results indicated that accumulation of estrogens induced by UGT deficiency is a critical factor to induce the development of breast cancer. UGT contributes to estrogen elimination, and its glucuronidation capacity influences the estrogen signaling pathway and the pathogenesis of breast cancer. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  6. Urinary estrogen metabolites and breast cancer

    DEFF Research Database (Denmark)

    Dallal, Cher M; Stone, Roslyn A; Cauley, Jane A

    2013-01-01

    Background: Circulating estrogens are associated with increased breast cancer risk, yet the role of estrogen metabolites in breast carcinogenesis remains unclear. This combined analysis of 5 published studies evaluates urinary 2-hydroxyestrone (2-OHE1), 16a-hydroxyestrone (16a-OHE1......), and their ratio (2:16a-OHE1) in relation to breast cancer risk. ¿Methods: Primary data on 726 premenopausal women (183 invasive breast cancer cases and 543 controls) and 1,108 postmenopausal women (385 invasive breast cancer cases and 723 controls) were analyzed. Urinary estrogen metabolites were measured using...... premenopausal 2:16a-OHE1 was suggestive of reduced breast cancer risk overall (study-adjusted ORIIIvsI=0.80; 95% CI: 0.49-1.32) and for estrogen receptor negative (ER-) subtype (ORIIIvsI=0.33; 95% CI: 0.13-0.84). Among postmenopausal women, 2:16a-OHE1 was unrelated to breast cancer risk (study-adjusted ORIIIvs...

  7. Estrogen-Induced Depurination of DNA: A Novel Target for Breast Cancer Prevention

    Science.gov (United States)

    2006-05-01

    Schepens, M., Jeuken, J., Sprenger, S., van de Zande, G., Bjerkehagen, B., Forus, A., Weibolt, V., Molenaar , I., van den Berg, E., Myklebost, O...carcinogenesis, how to interrupt the estrogen metabolic pathway leading to cancer. Both have authored books and/or articles in breast cancer

  8. p53 Loss Synergizes with Estrogen and Papillomaviral Oncogenes to Induce Cervical and Breast Cancers

    Science.gov (United States)

    Shai, Anny; Pitot, Henry C.; Lambert, Paul F.

    2010-01-01

    Whereas the tumor suppressor p53 gene is frequently mutated in most human cancers, this is not the case in human papillomavirus (HPV)-associated cancers, presumably because the viral E6 oncoprotein inactivates the p53 protein. The ability of E6 to transform cells in tissue culture and induce cancers in mice correlates in part with its ability to inactivate p53. In this study, we compared the expression of the HPV16 E6 oncogene to the conditional genetic disruption of p53 in the context of a mouse model for cervical cancer in which estrogen is a critical cofactor. Nearly all of the K14Crep53f/f mice treated with estrogen developed cervical cancer, a stark contrast to its complete absence in like-treated K14E6WTp53f/f mice, indicating that HPV16 E6 must only partially inactivate p53. p53-independent activities of E6 also contributed to carcinogenesis, but in the female reproductive tract, these activities were manifested only in the presence of the HPV16 E7 oncogene. Interestingly, treatment of K14Crep53f/f mice with estrogen also resulted in mammary tumors after only a short latency, many of which were positive for estrogen receptor α. The majority of these mammary tumors were of mixed cell types, suggestive of their originating from a multipotent progenitor. Furthermore, a subset of mammary tumors arising in the estrogen-treated, p53-deficient mammary glands exhibited evidence of an epithelial to mesenchymal transition. These data show the importance of the synergy between estrogen and p53 insufficiency in determining basic properties of carcinogenesis in hormone-responsive tissues, such as the breast and the reproductive tract. PMID:18413729

  9. Natural antioxidants exhibit chemopreventive characteristics through the regulation of CNC b-Zip transcription factors in estrogen-induced breast carcinogenesis.

    Science.gov (United States)

    Chatterjee, Anwesha; Ronghe, Amruta; Singh, Bhupendra; Bhat, Nimee K; Chen, Jie; Bhat, Hari K

    2014-12-01

    The objective of the present study was to characterize the role of resveratrol (Res) and vitamin C (VC) in prevention of estrogen-induced breast cancer through regulation of cap "n"collar (CNC) b-zip transcription factors. Human breast epithelial cell line MCF-10A was treated with 17β-estradiol (E2) and VC or Res with or without E2. mRNA and protein expression levels of CNC b-zip transcription factors nuclear factor erythroid 2-related factor 1 (Nrf1), nuclear factor erythroid 2 related factor 2 (Nrf2), nuclear factor erythroid 2 related factor 3 (Nrf3), and Nrf2-regulated antioxidant enzymes superoxide dismutase 3 (SOD3) and quinone oxidoreductase 1 (NQO1) were quantified. The treatment with E2 suppressed, whereas VC and Res prevented E2-mediated decrease in the expression levels of SOD3, NQO1, Nrf2 mRNA, and protein in MCF-10A cells. The treatment with E2, Res, or VC significantly increased mRNA and protein expression levels of Nrf1. 17β-Estradiol treatment significantly increased but VC or Res decreased Nrf3 mRNA and protein expression levels. Our studies demonstrate that estrogen-induced breast cancer might be prevented through upregulation of antioxidant enzymes via Nrf-dependent pathways. © 2014 Wiley Periodicals, Inc.

  10. Breast cancer as heterogeneous disease: contributing factors and carcinogenesis mechanisms.

    Science.gov (United States)

    Kravchenko, Julia; Akushevich, Igor; Seewaldt, Victoria L; Abernethy, Amy P; Lyerly, H Kim

    2011-07-01

    The observed bimodal patterns of breast cancer incidence in the U.S. suggested that breast cancer may be viewed as more than one biological entity. We studied the factors potentially contributing to this phenomenon, specifically focusing on how disease heterogeneity could be linked to breast carcinogenesis mechanisms. Using empirical analyses and population-based biologically motivated modeling, age-specific patterns of incidence of ductal and lobular breast carcinomas from the SEER registry (1990-2003) were analyzed for heterogeneity and characteristics of carcinogenesis, stratified by race, stage, grade, and estrogen (ER)/progesterone (PR) receptor status. The heterogeneity of breast carcinoma age patterns decreased after stratification by grade, especially for grade I and III tumors. Stratification by ER/PR status further reduced the heterogeneity, especially for ER(+)/PR(-) and ER(-)/(-) tumors; however, the residual heterogeneity was still observed. The number of rate-limiting events of carcinogenesis and the latency of ductal and lobular carcinomas differed, decreasing from grade I to III, with poorly differentiated tumors associated with the least number of carcinogenesis stages and the shortest latency. Tumor grades play important role in bimodal incidence of breast carcinoma and have distinct mechanisms of carcinogenesis. Race and cancer subtype could play modifying role. ER/PR status contributes to the observed heterogeneity, but is subdominant to tumor grade. Further studies on sources of "remaining" heterogeneity of population with breast cancer (such as genetic/epigenetic characteristics) are necessary. The results of this study could suggest stratification rather than unification of breast cancer prevention strategies, risk assessment, and treatment.

  11. Antioxidant-mediated up-regulation of OGG1 via NRF2 induction is associated with inhibition of oxidative DNA damage in estrogen-induced breast cancer

    International Nuclear Information System (INIS)

    Singh, Bhupendra; Chatterjee, Anwesha; Ronghe, Amruta M; Bhat, Nimee K; Bhat, Hari K

    2013-01-01

    Estrogen metabolism-mediated oxidative stress is suggested to play an important role in estrogen-induced breast carcinogenesis. We have earlier demonstrated that antioxidants, vitamin C (Vit C) and butylated hydroxyanisole (BHA) inhibit 17β-estradiol (E2)-mediated oxidative stress and oxidative DNA damage, and breast carcinogenesis in female August Copenhagen Irish (ACI) rats. The objective of the present study was to characterize the mechanism by which above antioxidants prevent DNA damage during breast carcinogenesis. Female ACI rats were treated with E2; Vit C; Vit C + E2; BHA; and BHA + E2 for up to 240 days. mRNA and protein levels of a DNA repair enzyme 8-Oxoguanine DNA glycosylase (OGG1) and a transcription factor NRF2 were quantified in the mammary and mammary tumor tissues of rats after treatment with E2 and compared with that of rats treated with antioxidants either alone or in combination with E2. The expression of OGG1 was suppressed in mammary tissues and in mammary tumors of rats treated with E2. Expression of NRF2 was also significantly suppressed in E2-treated mammary tissues and in mammary tumors. Vitamin C or BHA treatment prevented E2-mediated decrease in OGG1 and NRF2 levels in the mammary tissues. Chromatin immunoprecipitation analysis confirmed that antioxidant-mediated induction of OGG1 was through increased direct binding of NRF2 to the promoter region of OGG1. Studies using silencer RNA confirmed the role of OGG1 in inhibition of oxidative DNA damage. Our studies suggest that antioxidants Vit C and BHA provide protection against oxidative DNA damage and E2-induced mammary carcinogenesis, at least in part, through NRF2-mediated induction of OGG1

  12. Endoxifen, 4-Hydroxytamoxifen and an Estrogenic Derivative Modulate Estrogen Receptor Complex Mediated Apoptosis in Breast Cancer.

    Science.gov (United States)

    Maximov, Philipp Y; Abderrahman, Balkees; Fanning, Sean W; Sengupta, Surojeet; Fan, Ping; Curpan, Ramona F; Quintana Rincon, Daniela Maria; Greenland, Jeffery A; Rajan, Shyamala S; Greene, Geoffrey L; Jordan, V Craig

    2018-05-08

    Estrogen therapy was used to treat advanced breast cancer in postmenopausal women for decades until the introduction of tamoxifen. Resistance to long-term estrogen deprivation (LTED) with tamoxifen and aromatase inhibitors used as a treatment for breast cancer inevitably occurs, but unexpectedly low dose estrogen can cause regression of breast cancer and increase disease free survival in some patients. This therapeutic effect is attributed to estrogen-induced apoptosis in LTED breast cancer. Here we describe modulation of the estrogen receptor liganded with antiestrogens (endoxifen, 4-hydroxytamoxifen) and an estrogenic triphenylethylene (TPE) EthoxyTPE (EtOXTPE) on estrogen-induced apoptosis in LTED breast cancer cells. Our results show that the angular TPE estrogen (EtOXTPE) is able to induce the ER-mediated apoptosis only at a later time compared to planar estradiol in these cells. Using RT-PCR, ChIP, Western blotting, molecular modelling and X-ray crystallography techniques we report novel conformations of the ER complex with an angular estrogen EtOXTPE and endoxifen. We propose that alteration of the conformation of the ER complexes, with changes in coactivator binding, governs estrogen-induced apoptosis through the PERK sensor system to trigger an Unfolded Protein Response (UPR). The American Society for Pharmacology and Experimental Therapeutics.

  13. Glyphosate induces human breast cancer cells growth via estrogen receptors.

    Science.gov (United States)

    Thongprakaisang, Siriporn; Thiantanawat, Apinya; Rangkadilok, Nuchanart; Suriyo, Tawit; Satayavivad, Jutamaad

    2013-09-01

    Glyphosate is an active ingredient of the most widely used herbicide and it is believed to be less toxic than other pesticides. However, several recent studies showed its potential adverse health effects to humans as it may be an endocrine disruptor. This study focuses on the effects of pure glyphosate on estrogen receptors (ERs) mediated transcriptional activity and their expressions. Glyphosate exerted proliferative effects only in human hormone-dependent breast cancer, T47D cells, but not in hormone-independent breast cancer, MDA-MB231 cells, at 10⁻¹² to 10⁻⁶M in estrogen withdrawal condition. The proliferative concentrations of glyphosate that induced the activation of estrogen response element (ERE) transcription activity were 5-13 fold of control in T47D-KBluc cells and this activation was inhibited by an estrogen antagonist, ICI 182780, indicating that the estrogenic activity of glyphosate was mediated via ERs. Furthermore, glyphosate also altered both ERα and β expression. These results indicated that low and environmentally relevant concentrations of glyphosate possessed estrogenic activity. Glyphosate-based herbicides are widely used for soybean cultivation, and our results also found that there was an additive estrogenic effect between glyphosate and genistein, a phytoestrogen in soybeans. However, these additive effects of glyphosate contamination in soybeans need further animal study. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Induction of human breast cell carcinogenesis by triclocarban and intervention by curcumin

    Energy Technology Data Exchange (ETDEWEB)

    Sood, Shilpa; Choudhary, Shambhunath; Wang, Hwa-Chain Robert, E-mail: hcrwang@utk.edu

    2013-09-06

    Highlights: •Triclocarban exposure induces breast epithelial cell carcinogenesis. •Triclocarban induces the Erk–Nox pathway, ROS elevation, and DNA damage. •Physiological doses of triclocarban induce cellular carcinogenesis. •Non-cytotoxic curcumin blocks triclocarban-induced carcinogenesis and pathways. -- Abstract: More than 85% of breast cancers are sporadic and attributable to long-term exposure to environmental carcinogens and co-carcinogens. To identify co-carcinogens with abilities to induce cellular pre-malignancy, we studied the activity of triclocarban (TCC), an antimicrobial agent commonly used in household and personal care products. Here, we demonstrated, for the first time, that chronic exposure to TCC at physiologically-achievable nanomolar concentrations resulted in progressive carcinogenesis of human breast cells from non-cancerous to pre-malignant. Pre-malignant carcinogenesis was measured by increasingly-acquired cancer-associated properties of reduced dependence on growth factors, anchorage-independent growth and increased cell proliferation, without acquisition of cellular tumorigenicity. Long-term TCC exposure also induced constitutive activation of the Erk–Nox pathway and increases of reactive oxygen species (ROS) in cells. A single TCC exposure induced transient induction of the Erk–Nox pathway, ROS elevation, increased cell proliferation, and DNA damage in not only non-cancerous breast cells but also breast cancer cells. Using these constitutively- and transiently-induced changes as endpoints, we revealed that non-cytotoxic curcumin was effective in intervention of TCC-induced cellular pre-malignancy. Our results lead us to suggest that the co-carcinogenic potential of TCC should be seriously considered in epidemiological studies to reveal the significance of TCC in the development of sporadic breast cancer. Using TCC-induced transient and constitutive endpoints as targets will likely help identify non-cytotoxic preventive

  15. Conjugated linoleic acid induces apoptosis through estrogen receptor alpha in human breast tissue

    International Nuclear Information System (INIS)

    Wang, Li-Shu; Huang, Yi-Wen; Liu, Suling; Yan, Pearlly; Lin, Young C

    2008-01-01

    Conjugated linoleic acid (CLA), a naturally occurring fatty acid found in ruminant products such as milk and beef, has been shown to possess anti-cancer activities in in vivo animal models and in vitro cell culture systems. In human breast cancer, the overall duration of estrogen exposure is the most important risk factor for developing estrogen-responsive breast cancer. Accordingly, it has been suggested that estrogen exposure reduces apoptosis through the up-regulation of the anti-apoptosis protein, Bcl-2. Bcl-2, an anti-apoptotic protein, regulates apoptosis and plays a crucial role in the development and growth regulation of normal and cancerous cells. Our research interest is to examine the effects of CLA on the induction of apoptosis in human breast tissues. The localization of Bcl-2 in both normal and cancerous human breast tissues was determined by immunohistochemical staining and the Bcl-2 protein expression was tested by western blot analysis. Co-culture of epithelial cells and stromal cells was carried out in the presence or absence of CLA to evaluate apoptosis in the context of a cell-cell interaction. The results showed that both normal and cancerous breast tissues were positive for Bcl-2 staining, which was higher overall in mammary ducts but very low in the surrounding stromal compartment. Interestingly, by quantifying the western blot data, basal Bcl-2 protein levels were higher in normal breast epithelial cells than in cancerous epithelial cells. Furthermore, treatment with 17β-estradiol (E 2 ) stimulated growth and up-regulated Bcl-2 expression in estrogen responsive breast epithelial cells; however, these carcinogenic effects were diminished by either CLA or 4-Hydroxytamoxifen (Tam) and were suppressed further by the combination of CLA and Tam. In both one cell type cultured and co-culture systems, CLA induced cell apoptosis in ERα transfected MDA-MB-231 cells but not in the wild type MDA-MB-231 cells. These data, therefore, demonstrate that

  16. Conjugated linoleic acid induces apoptosis through estrogen receptor alpha in human breast tissue

    Directory of Open Access Journals (Sweden)

    Liu Suling

    2008-07-01

    Full Text Available Abstract Background Conjugated linoleic acid (CLA, a naturally occurring fatty acid found in ruminant products such as milk and beef, has been shown to possess anti-cancer activities in in vivo animal models and in vitro cell culture systems. In human breast cancer, the overall duration of estrogen exposure is the most important risk factor for developing estrogen-responsive breast cancer. Accordingly, it has been suggested that estrogen exposure reduces apoptosis through the up-regulation of the anti-apoptosis protein, Bcl-2. Bcl-2, an anti-apoptotic protein, regulates apoptosis and plays a crucial role in the development and growth regulation of normal and cancerous cells. Our research interest is to examine the effects of CLA on the induction of apoptosis in human breast tissues. Methods The localization of Bcl-2 in both normal and cancerous human breast tissues was determined by immunohistochemical staining and the Bcl-2 protein expression was tested by western blot analysis. Co-culture of epithelial cells and stromal cells was carried out in the presence or absence of CLA to evaluate apoptosis in the context of a cell-cell interaction. Results The results showed that both normal and cancerous breast tissues were positive for Bcl-2 staining, which was higher overall in mammary ducts but very low in the surrounding stromal compartment. Interestingly, by quantifying the western blot data, basal Bcl-2 protein levels were higher in normal breast epithelial cells than in cancerous epithelial cells. Furthermore, treatment with 17β-estradiol (E2 stimulated growth and up-regulated Bcl-2 expression in estrogen responsive breast epithelial cells; however, these carcinogenic effects were diminished by either CLA or 4-Hydroxytamoxifen (Tam and were suppressed further by the combination of CLA and Tam. In both one cell type cultured and co-culture systems, CLA induced cell apoptosis in ERα transfected MDA-MB-231 cells but not in the wild type MDA

  17. Radiation-induced mammary carcinogenesis in rodent models. What's different from chemical carcinogenesis?

    International Nuclear Information System (INIS)

    Imaoka, Tatsuhiko; Nishimura, Mayumi; Iizuka, Daisuke; Daino, Kazuhiro; Takabatake, Takashi; Okamoto, Mieko; Kakinuma, Shizuko; Shimada, Yoshiya

    2009-01-01

    Ionizing radiation is one of a few well-characterized etiologic factors of human breast cancer. Laboratory rodents serve as useful experimental models for investigating dose responses and mechanisms of cancer development. Using these models, a lot of information has been accumulated about mammary gland cancer, which can be induced by both chemical carcinogens and radiation. In this review, we first list some experimental rodent models of breast cancer induction. We then focus on several topics that are important in understanding the mechanisms and risk modification of breast cancer development, and compare radiation and chemical carcinogenesis models. We will focus on the pathology and natural history of cancer development in these models, genetic changes observed in induced cancers, indirect effects of carcinogens, and finally risk modification by reproductive factors and age at exposure to the carcinogens. In addition, we summarize the knowledge available on mammary stem/progenitor cells as a potential target of carcinogens. Comparison of chemical and radiation carcinogenesis models on these topics indicates certain similarities, but it also indicates clear differences in several important aspects, such as genetic alterations of induced cancers and modification of susceptibility by age and reproductive factors. Identification of the target cell type and relevant translational research for human risk management may be among the important issues that are addressed by radiation carcinogenesis models. (author)

  18. Estrogen signalling and the DNA damage response in hormone dependent breast cancers

    Directory of Open Access Journals (Sweden)

    C Elizabeth Caldon

    2014-05-01

    Full Text Available Estrogen is necessary for the normal growth and development of breast tissue, but high levels of estrogen are a major risk factor for breast cancer. One mechanism by which estrogen could contribute to breast cancer is via the induction of DNA damage. This perspective discusses the mechanisms by which estrogen alters the DNA damage response (DDR and DNA repair through the regulation of key effector proteins including ATM, ATR, CHK1, BRCA1 and p53 and the feedback on estrogen receptor signalling from these proteins. We put forward the hypothesis that estrogen receptor signalling converges to suppress effective DNA repair and apoptosis in favour of proliferation. This is important in hormone-dependent breast cancer as it will affect processing of estrogen-induced DNA damage, as well as other genotoxic insults. DDR and DNA repair proteins are frequently mutated or altered in estrogen responsive breast cancer which will further change the processing of DNA damage. Finally the action of estrogen signalling on DNA damage is also relevant to the therapeutic setting as the suppression of a DNA damage response by estrogen has the potential to alter the response of cancers to anti-hormone treatment or chemotherapy that induces DNA damage.

  19. Estrogen receptor signaling in prostate cancer: Implications for carcinogenesis and tumor progression.

    Science.gov (United States)

    Bonkhoff, Helmut

    2018-01-01

    The androgen receptor (AR) is the classical target for prostate cancer prevention and treatment, but more recently estrogens and their receptors have also been implicated in prostate cancer development and tumor progression. Recent experimental and clinical data were reviewed to elucidate pathogenetic mechanisms how estrogens and their receptors may affect prostate carcinogenesis and tumor progression. The estrogen receptor beta (ERβ) is the most prevalent ER in the human prostate, while the estrogen receptor alpha (ERα) is restricted to basal cells of the prostatic epithelium and stromal cells. In high grade prostatic intraepithelial neoplasia (HGPIN), the ERα is up-regulated and most likely mediates carcinogenic effects of estradiol as demonstrated in animal models. The partial loss of the ERβ in HGPIN indicates that the ERβ acts as a tumor suppressor. The tumor promoting function of the TMPRSS2-ERG fusion, a major driver of prostate carcinogenesis, is triggered by the ERα and repressed by the ERβ. The ERβ is generally retained in hormone naïve and metastatic prostate cancer, but is partially lost in castration resistant disease. The progressive emergence of the ERα and ERα-regulated genes (eg, progesterone receptor (PR), PS2, TMPRSS2-ERG fusion, and NEAT1) during prostate cancer progression and hormone refractory disease suggests that these tumors can bypass the AR by using estrogens and progestins for their growth. In addition, nongenomic estrogen signaling pathways mediated by orphan receptors (eg, GPR30 and ERRα) has also been implicated in prostate cancer progression. Increasing evidences demonstrate that local estrogen signaling mechanisms are required for prostate carcinogenesis and tumor progression. Despite the recent progress in this research topic, the translation of the current information into potential therapeutic applications remains highly challenging and clearly warrants further investigation. © 2017 Wiley Periodicals, Inc.

  20. [THE ROLE OF ESTROGENS IN THE CARCINOGENESIS OF LUNG CANCER].

    Science.gov (United States)

    Uchikova, E; Uchikov, A; Dimitrakova, E; Uchikov, P

    2016-01-01

    Morbidity and mortality from lung cancer has dramatically increased in women as compared to men over the past few years. Historically, smoking has been considered the major risk factor for lung cancer regardless of gender. Several recent lines of evidence implicate gender differences in the observed differences in prevalence and histologic type which cannot be explained based on the carcinogenic action of nicotine. Several recent studies underscore the importance of reproductive and hormonal factors in the carcinogenesis of lung cancer Lung cancer morbidity and mortality in Bulgaria was 16.2/100000 women and 14.6/ 100000 women, resp. Lung cancer morbidity in Europe was 39/100000 women. Lung cancer is extremely sensitive to estrogens. The latter act directly or as effect modifiers for the relationship between smoking and lung cancer. Further research examining the relationship between serum estrogen levels and the estrogen receptor expression in normal and tumor lung tissue samples can help elucidate the importance of reproductive and hormonal (exogenous and endogenous) factors in the carcinogenesis of lung cancer.

  1. 17β-estradiol induces stearoyl-CoA desaturase-1 expression in estrogen receptor-positive breast cancer cells

    International Nuclear Information System (INIS)

    Belkaid, Anissa; Duguay, Sabrina R.; Ouellette, Rodney J.; Surette, Marc E.

    2015-01-01

    To sustain cell growth, cancer cells exhibit an altered metabolism characterized by increased lipogenesis. Stearoyl-CoA desaturase-1 (SCD-1) catalyzes the production of monounsaturated fatty acids that are essential for membrane biogenesis, and is required for cell proliferation in many cancer cell types. Although estrogen is required for the proliferation of many estrogen-sensitive breast carcinoma cells, it is also a repressor of SCD-1 expression in liver and adipose. The current study addresses this apparent paradox by investigating the impact of estrogen on SCD-1 expression in estrogen receptor-α-positive breast carcinoma cell lines. MCF-7 and T47D mammary carcinomas cells and immortalized MCF-10A mammary epithelial cells were hormone-starved then treated or not with 17β-estradiol. SCD-1 activity was assessed by measuring cellular monounsaturated/saturated fatty acid (MUFA/SFA) ratios, and SCD-1 expression was measured by qPCR, immunoblot, and immunofluorescence analyses. The role of SCD-1 in cell proliferation was measured following treatment with the SCD-1 inhibitor A959372 and following SCD-1 silencing using siRNA. The involvement of IGF-1R on SCD-1 expression was measured using the IGF-1R antagonist AG1024. The expression of SREBP-1c, a transcription factor that regulates SCD-1, was measured by qPCR, and by immunoblot analyses. 17β-estradiol significantly induced cell proliferation and SCD-1 activity in MCF-7 and T47D cells but not MCF-10A cells. Accordingly, 17β-estradiol significantly increased SCD-1 mRNA and protein expression in MCF-7 and T47D cells compared to untreated cells. Treatment of MCF-7 cells with 4-OH tamoxifen or siRNA silencing of estrogen receptor-α largely prevented 17β-estradiol-induced SCD-1 expression. 17β-estradiol increased SREBP-1c expression and induced the mature active 60 kDa form of SREBP-1. The selective SCD-1 inhibitor or siRNA silencing of SCD-1 blocked the 17β-estradiol-induced cell proliferation and increase in

  2. Expression of hypoxia-inducible factor-1α and cell cycle proteins in invasive breast cancer are estrogen receptor related

    International Nuclear Information System (INIS)

    Bos, Reinhard; Diest, Paul J van; Groep, Petra van der; Shvarts, Avi; Greijer, Astrid E; Wall, Elsken van der

    2004-01-01

    The transcription factor hypoxia-inducible factor-1 (HIF-1) is a key regulator of the cellular response to hypoxia. Previous studies showed that concentrations of its subunit HIF-1α, as a surrogate for HIF-1 activity, are increased during breast carcinogenesis and can independently predict prognosis in breast cancer. During carcinogenesis, the cell cycle is progressively deregulated, and proliferation rate is a strong prognostic factor in breast cancer. In this study we undertook a detailed evaluation of the relationships between HIF-1α and cell cycle-associated proteins. In a representative estrogen receptor (ER) group of 150 breast cancers, the expression of HIF-1α, vascular endothelial growth factor, the ER, HER-2/neu, Ki-67, cyclin A, cyclin D 1 , p21, p53, and Bcl-2 was investigated by immunohistochemistry. High concentrations (5% or more) of HIF-1α were associated with increased proliferation as shown by positive correlations with Ki-67 (P < 0.001) and the late S–G2-phase protein cyclin A (P < 0.001), but not with the G1-phase protein cyclin D 1 . High HIF-1α concentrations were also strongly associated with p53 positivity (P < 0.001) and loss of Bcl-2 expression (P = 0.013). No association was found between p21 and HIF-1α (P = 0.105) in the whole group of patients. However, the subgroup of ER-positive cancers was characterized by a strong positive association between HIF-1α and p21 (P = 0.023), and HIF-1α lacked any relation with proliferation. HIF-1α overexpression is associated with increased proliferation, which might explain the adverse prognostic impact of increased concentrations of HIF-1α in invasive breast cancer. In ER-positive tumors, HIF-1α is associated with p21 but not against proliferation. This shows the importance of further functional analysis to unravel the role of HIF-1 in late cell cycle progression, and the link between HIF-1, p21, and ER

  3. In vivo and in vitro studies suggest a possible involvement of HPV infection in the early stage of breast carcinogenesis via APOBEC3B induction.

    Directory of Open Access Journals (Sweden)

    Kenji Ohba

    Full Text Available High prevalence of infection with high-risk human papilloma virus (HPV ranging from 25 to 100% (average 31% was observed in breast cancer (BC patients in Singapore using novel DNA chip technology. Early stage of BC demonstrated higher HPV positivity, and BC positive for estrogen receptor (ER showed significantly higher HPV infection rate. This unique association of HPV with BC in vivo prompted us to investigate a possible involvement of HPV in early stages of breast carcinogenesis. Using normal breast epithelial cells stably transfected with HPV-18, we showed apparent upregulation of mRNA for the cytidine deaminase, APOBEC3B (A3B which is reported to be a source of mutations in BC. HPV-induced A3B overexpression caused significant γH2AX focus formation, and DNA breaks which were cancelled by shRNA to HPV18 E6, E7 and A3B. These results strongly suggest an active involvement of HPV in the early stage of BC carcinogenesis via A3B induction.

  4. CDB-4124, a progesterone receptor modulator, inhibits mammary carcinogenesis by suppressing cell proliferation and inducing apoptosis.

    Science.gov (United States)

    Wiehle, Ronald; Lantvit, Daniel; Yamada, Tohru; Christov, Konstantin

    2011-03-01

    CDB-4124 (Proellex or telapristone acetate) is a modulator of progesterone receptor (PR) signaling, which is currently employed in preclinical studies for prevention and treatment of breast cancer and has been used in clinical studies for treatment of uterine fibroids and endometriosis. Here we provide evidence for its action on steroid hormone-signaling, cell cycle-regulated genes and in vivo on mammary carcinogenesis. When CDB-4124 is given to rats at 200 mg/kg for 24 months, it prevents the development of spontaneous mammary hyperplastic and premalignant lesions. Also, CDB-4124 given as subcutaneous pellets at two different doses suppressed, dose dependently, N-methyl-N-nitrosourea (MNU)-induced mammary carcinogenesis. The high dose (30 mg, over 84 days) increased tumor latency from 66 ± 24 days to 87 ± 20 days (P CDB-4124 inhibited cell proliferation and induced apoptosis in MNU-induced mammary tumors, which correlated with a decreased proportion of PR(+) tumor cells and with decreased serum progesterone. CDB-4124 did not affect serum estradiol. In a mechanistic study employing T47D cells we found that CDB-4124 suppressed G(1)/G(0)-S transition by inhibiting CDK2 and CDK4 expressions, which correlated with inhibition of estrogen receptor (ER) expression. Taken together, these data indicate that CDB-4124 can suppress the development of precancerous lesions and carcinogen-induced ER(+) mammary tumors in rats, and may have implications for prevention and treatment of human breast cancer.

  5. Estrogen induced {beta}-1,4-galactosyltransferase 1 expression regulates proliferation of human breast cancer MCF-7 cells

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hee-Jung [Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan (Korea, Republic of); Division of Applied Medicine, School of Korean Medicine, Pusan National University, Yangsan-city, Gyeongsangnam-do (Korea, Republic of); Chung, Tae-Wook; Kim, Cheorl-Ho [Department of Molecular and Cellular Glycobiology, College of Natural Science, Sungkyunkwan University, Suwon, Kyungki-do (Korea, Republic of); Jeong, Han-Sol; Joo, Myungsoo [Division of Applied Medicine, School of Korean Medicine, Pusan National University, Yangsan-city, Gyeongsangnam-do (Korea, Republic of); Youn, BuHyun, E-mail: bhyoun72@pusan.ac.kr [Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan (Korea, Republic of); Ha, Ki-Tae, E-mail: hagis@pusan.ac.kr [Division of Applied Medicine, School of Korean Medicine, Pusan National University, Yangsan-city, Gyeongsangnam-do (Korea, Republic of)

    2012-10-05

    Highlights: Black-Right-Pointing-Pointer We examined the regulation and biological functions of B4GALT1 expression induced by estrogen. Black-Right-Pointing-Pointer Estrogen-induced B4GALT1 expression through the direct binding of ER-{alpha} to ERE in MCF-7 cells. Black-Right-Pointing-Pointer B4GALT1 expression activates the proliferation of MCF-7 cells via its receptor function. Black-Right-Pointing-Pointer Thus, we suggest B4GALT1 as a molecular target for inhibiting breast cancer proliferation. -- Abstract: Beta 1,4-galactosyltransferase 1 (B4GALT1) synthesizes galactose {beta}-1,4-N-acetylglucosamine (Gal{beta}1-4GlcNAc) groups on N-linked sugar chains of glycoproteins, which play important roles in many biological events, including the proliferation and migration of cancer cells. A previous microarray study reported that this gene is expressed by estrogen treatment in breast cancer. In this study, we examined the regulatory mechanisms and biological functions of estrogen-induced B4GALT1 expression. Our data showed that estrogen-induced expression of B4GALT1 is localized in intracellular compartments and in the plasma membrane. In addition, B4GALT1 has an enzyme activity involved in the production of the Gal{beta}1-4GlcNAc structure. The result from a promoter assay and chromatin immunoprecipitation revealed that 3 different estrogen response elements (EREs) in the B4GALT1 promoter are critical for responsiveness to estrogen. In addition, the estrogen antagonists ICI 182,780 and ER-{alpha}-ERE binding blocker TPBM inhibit the expression of estrogen-induced B4GALT1. However, the inhibition of signal molecules relating to the extra-nuclear pathway, including the G-protein coupled receptors, Ras, and mitogen-activated protein kinases, had no inhibitory effects on B4GALT1 expression. The knock-down of the B4GALT1 gene and the inhibition of membrane B4GALT1 function resulted in the significant inhibition of estrogen-induced proliferation of MCF-7 cells. Considering

  6. Estrogen induced β-1,4-galactosyltransferase 1 expression regulates proliferation of human breast cancer MCF-7 cells

    International Nuclear Information System (INIS)

    Choi, Hee-Jung; Chung, Tae-Wook; Kim, Cheorl-Ho; Jeong, Han-Sol; Joo, Myungsoo; Youn, BuHyun; Ha, Ki-Tae

    2012-01-01

    Highlights: ► We examined the regulation and biological functions of B4GALT1 expression induced by estrogen. ► Estrogen-induced B4GALT1 expression through the direct binding of ER-α to ERE in MCF-7 cells. ► B4GALT1 expression activates the proliferation of MCF-7 cells via its receptor function. ► Thus, we suggest B4GALT1 as a molecular target for inhibiting breast cancer proliferation. -- Abstract: Beta 1,4-galactosyltransferase 1 (B4GALT1) synthesizes galactose β-1,4-N-acetylglucosamine (Galβ1-4GlcNAc) groups on N-linked sugar chains of glycoproteins, which play important roles in many biological events, including the proliferation and migration of cancer cells. A previous microarray study reported that this gene is expressed by estrogen treatment in breast cancer. In this study, we examined the regulatory mechanisms and biological functions of estrogen-induced B4GALT1 expression. Our data showed that estrogen-induced expression of B4GALT1 is localized in intracellular compartments and in the plasma membrane. In addition, B4GALT1 has an enzyme activity involved in the production of the Galβ1-4GlcNAc structure. The result from a promoter assay and chromatin immunoprecipitation revealed that 3 different estrogen response elements (EREs) in the B4GALT1 promoter are critical for responsiveness to estrogen. In addition, the estrogen antagonists ICI 182,780 and ER-α-ERE binding blocker TPBM inhibit the expression of estrogen-induced B4GALT1. However, the inhibition of signal molecules relating to the extra-nuclear pathway, including the G-protein coupled receptors, Ras, and mitogen-activated protein kinases, had no inhibitory effects on B4GALT1 expression. The knock-down of the B4GALT1 gene and the inhibition of membrane B4GALT1 function resulted in the significant inhibition of estrogen-induced proliferation of MCF-7 cells. Considering these results, we propose that estrogen regulates the expression of B4GALT1 through the direct binding of ER-α to ERE and

  7. Punica granatum and its therapeutic implications on breast carcinogenesis: A review.

    Science.gov (United States)

    Vini, Ravindran; Sreeja, Sreeharshan

    2015-01-01

    Punica granatum has a recorded history of pharmacological properties which can be attributed to its rich reservoir of phytochemicals. Investigations in recent years have established its tremendous potential as an antitumorogenic agent against various cancers including breast cancer, which is the second leading cause of cancer-related deaths in women. The plausible role of Punica as a therapeutic agent, as an adjuvant in chemotherapy, and its dietary implications as chemopreventive agent in breast cancer have been explored. Mechanistic studies have revealed that Punica extracts and its components, individually or in combination, can modulate and target key proteins and genes involved in breast cancer. Our earlier finding also demonstrated the role of methanolic extract of pomegranate pericarp in reducing proliferation in breast cancer by binding to estrogen receptor at the same time not affecting uterine weight unlike estradiol or tamoxifen. This review analyses other plausible mechanisms of Punica in preventing the progression of breast cancer and how it can possibly be a therapeutic agent by acting at various steps of carcinogenesis including proliferation, invasion, migration, metastasis, angiogenesis, and inflammation via various molecular mechanisms. © 2015 International Union of Biochemistry and Molecular Biology.

  8. Bisphenol-A induces expression of HOXC6, an estrogen-regulated homeobox-containing gene associated with breast cancer.

    Science.gov (United States)

    Hussain, Imran; Bhan, Arunoday; Ansari, Khairul I; Deb, Paromita; Bobzean, Samara A M; Perrotti, Linda I; Mandal, Subhrangsu S

    2015-06-01

    HOXC6 is a homeobox-containing gene associated with mammary gland development and is overexpressed in variety of cancers including breast and prostate cancers. Here, we have examined the expression of HOXC6 in breast cancer tissue, investigated its transcriptional regulation via estradiol (E2) and bisphenol-A (BPA, an estrogenic endocrine disruptor) in vitro and in vivo. We observed that HOXC6 is differentially over-expressed in breast cancer tissue. E2 induces HOXC6 expression in cultured breast cancer cells and in mammary glands of Sprague Dawley rats. HOXC6 expression is also induced upon exposure to BPA both in vitro and in vivo. Estrogen-receptor-alpha (ERα) and ER-coregulators such as MLL-histone methylases are bound to the HOXC6 promoter upon exposure to E2 or BPA and that resulted in increased histone H3K4-trimethylation, histone acetylation, and recruitment of RNA polymerase II at the HOXC6 promoter. HOXC6 overexpression induces expression of tumor growth factors and facilitates growth 3D-colony formation, indicating its potential roles in tumor growth. Our studies demonstrate that HOXC6, which is a critical player in mammary gland development, is upregulated in multiple cases of breast cancer, and is transcriptionally regulated by E2 and BPA, in vitro and in vivo. Published by Elsevier B.V.

  9. Cordycepin-induced apoptosis and autophagy in breast cancer cells are independent of the estrogen receptor

    International Nuclear Information System (INIS)

    Choi, Sunga; Lim, Mi-Hee; Kim, Ki Mo; Jeon, Byeong Hwa; Song, Won O.; Kim, Tae Woong

    2011-01-01

    Cordycepin (3-deoxyadenosine), found in Cordyceps spp., has been known to have many therapeutic effects including immunomodulatory, anti-inflammatory, antimicrobial, and anti-aging effects. Moreover, anti-tumor and anti-metastatic effects of cordycepin have been reported, but the mechanism causing cancer cell death is poorly characterized. The present study was designed to investigate whether the mechanisms of cordycepin-induced cell death were associated with estrogen receptor in breast cancer cells. Exposure of both MDA-MB-231 and MCF-7 human breast cancer cells to cordycepin resulted in dose-responsive inhibition of cell growth and reduction in cell viability. The cordycepin-induced cell death in MDA-MB-231 cells was associated with several specific features of the mitochondria-mediated apoptotic pathway, which was confirmed by DNA fragmentation, TUNEL, and biochemical assays. Cordycepin also caused a dose-dependent increase in mitochondrial translocation of Bax, triggering cytosolic release of cytochrome c and activation of caspases-9 and -3. Interestingly, MCF-7 cells showed autophagy-associated cell death, as observed by the detection of an autophagosome-specific protein and large membranous vacuole ultrastructure morphology in the cytoplasm. Cordycepin-induced autophagic cell death has applications in treating MCF-7 cells with apoptotic defects, irrespective of the ER response. Although autophagy has a survival function in tumorigenesis of some cancer cells, autophagy may be important for cordycepin-induced MCF-7 cell death. In conclusion, the results of our study demonstrate that cordycepin effectively kills MDA-MB-231 and MCF-7 human breast cancer cell lines in culture. Hence, further studies should be conducted to determine whether cordycepin will be a clinically useful, ER-independent, chemotherapeutic agent for human breast cancer. -- Highlights: ► We studied the mechanism which cordycepin-induced cell death association with estrogen receptor (ER) in

  10. Long-term exposure to estrogen enhances chemotherapeutic efficacy potentially through epigenetic mechanism in human breast cancer cells.

    Directory of Open Access Journals (Sweden)

    Yu-Wei Chang

    Full Text Available Chemotherapy is the most common clinical option for treatment of breast cancer. However, the efficacy of chemotherapy depends on the age of breast cancer patients. Breast tissues are estrogen responsive and the levels of ovarian estrogen vary among the breast cancer patients primarily between pre- and post-menopausal age. Whether this age-dependent variation in estrogen levels influences the chemotherapeutic efficacy in breast cancer patients is not known. Therefore, the objective of this study was to evaluate the effects of natural estrogen 17 beta-estradiol (E2 on the efficacy of chemotherapeutic drugs in breast cancer cells. Estrogen responsive MCF-7 and T47D breast cancer cells were long-term exposed to 100 pg/ml estrogen, and using these cells the efficacy of chemotherapeutic drugs doxorubicin and cisplatin were determined. The result of cell viability and cell cycle analysis revealed increased sensitivities of doxorubicin and cisplatin in estrogen-exposed MCF-7 and T47D cells as compared to their respective control cells. Gene expression analysis of cell cycle, anti-apoptosis, DNA repair, and drug transporter genes further confirmed the increased efficacy of chemotherapeutic drugs in estrogen-exposed cells at molecular level. To further understand the role of epigenetic mechanism in enhanced chemotherapeutic efficacy by estrogen, cells were pre-treated with epigenetic drugs, 5-aza-2-deoxycytidine and Trichostatin A prior to doxorubicin and cisplatin treatments. The 5-aza-2 deoxycytidine pre-treatment significantly decreased the estrogen-induced efficacy of doxorubicin and cisplatin, suggesting the role of estrogen-induced hypermethylation in enhanced sensitivity of these drugs in estrogen-exposed cells. In summary, the results of this study revealed that sensitivity to chemotherapy depends on the levels of estrogen in breast cancer cells. Findings of this study will have clinical implications in selecting the chemotherapy strategies for

  11. Estrogen receptor beta, a possible tumor suppressor involved in ovarian carcinogenesis

    Science.gov (United States)

    Lazennec, Gwendal

    2006-01-01

    Ovarian cancer is one of the leading cause of death from gynecological tumors in women. Several lines of evidence suggest that estrogens may play an important role in ovarian carcinogenesis, through their receptors, ERα and ERβ. Interestingly, malignant ovarian tumors originating from epithelial surface constitute about 90% of ovarian cancers and expressed low levels of ERβ, compared to normal tissues. In addition, restoration of ERβ in ovarian cancer cells, leads to strong inhibition of their proliferation and invasion, while apoptosis is enhanced. In this manuscript, recent data suggesting a possible tumor-suppressor role for ERβ in ovarian carcinogenesis are discussed. PMID:16399219

  12. Long-term estrogen exposure promotes carcinogen bioactivation, induces persistent changes in gene expression, and enhances the tumorigenicity of MCF-7 human breast cancer cells

    International Nuclear Information System (INIS)

    Spink, Barbara C.; Bennett, James A.; Pentecost, Brian T.; Lostritto, Nicole; Englert, Neal A.; Benn, Geoffrey K.; Goodenough, Angela K.; Turesky, Robert J.; Spink, David C.

    2009-01-01

    The cumulative exposure to estrogens is an important determinant in the risk of breast cancer, yet the full range of mechanisms involving estrogens in the genesis and progression of breast cancer remains a subject of debate. Interactions of estrogens and environmental toxicants have received attention as putative factors contributing to carcinogenesis. Mechanistic studies have demonstrated interactions between estrogen receptor α (ERα) and the aryl hydrocarbon receptor (AhR), with consequences on the genes that they regulate. Many studies of ERα and AhR-mediated effects and crosstalk between them have focused on the initial molecular events. In this study, we investigated ERα- and AhR-mediated effects in long-term estrogen exposed (LTEE) MCF-7 human breast cancer cells, which were obtained by continuous culturing for at least 12 weeks in medium supplemented with 1 nM of 17β-estradiol (E 2 ). With these LTEE cells and with parallel control cells cultured without E 2 supplementation, we performed an extensive study of cytochrome P450 (CYP) induction, carcinogen bioactivation, global gene expression, and tumorigenicity in immunocompromised mice. We found that LTEE cells, in comparison with control cells, had higher levels of AhR mRNA and protein, greater responsiveness for AhR-regulated CYP1A1 and CYP1B1 induction, a 6-fold higher initial level of benzo(a)pyrene-DNA adducts as determined by liquid chromatography tandem mass spectrometry, marked differences in the expression of numerous genes, and a higher rate of E 2 -dependent tumor growth as xenografts. These studies indicate that LTEE causes adaptive responses in MCF-7 cells, which may reflect processes that contribute to the overall carcinogenic effect of E 2 .

  13. Inherent aerobic capacity-dependent differences in breast carcinogenesis.

    Science.gov (United States)

    Thompson, Henry J; Jones, Lee W; Koch, Lauren G; Britton, Steven L; Neil, Elizabeth S; McGinley, John N

    2017-09-01

    Although regular physical activity is associated with improvement in aerobic capacity and lower breast cancer risk, there are heritable sets of traits that affect improvement in aerobic capacity in response to physical activity. Although aerobic capacity segregates risk for a number of chronic diseases, the effect of the heritable component on cancer risk has not been evaluated. Therefore, we investigated breast carcinogenesis in rodent models of heritable fitness in the absence of induced physical activity. Female offspring of N:NIH rats selectively bred for low (LIAC) or high (HIAC) inherent aerobic capacity were injected intraperitoneally with 1-methyl-1-nitrosurea (70 mg/kg body wt). At study termination 33 weeks post-carcinogen, cancer incidence (14.0 versus 47.3%; P < 0.001) and multiplicity (0.18 versus 0.85 cancers per rat; P < 0.0001) were significantly decreased in HIAC versus LIAC rats, respectively. HIAC had smaller visceral and subcutaneous body fat depots than LIAC and activity of two proteins that regulated the mammalian target of rapamycin, protein kinase B (Akt), and adenosine monophosphate-activated protein kinase were suppressed and activated, respectively, in HIAC. Although many factors distinguish between HIAC and LIAC, it appears that the protective effect of HIAC against breast carcinogenesis is mediated, at least in part, via alterations in core metabolic signaling pathways deregulated in the majority of human breast cancers. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. Intrinsic mechanism of estradiol-induced apoptosis in breast cancer cells resistant to estrogen deprivation.

    Science.gov (United States)

    Lewis, Joan S; Meeke, Kathleen; Osipo, Clodia; Ross, Eric A; Kidawi, Noman; Li, Tianyu; Bell, Eric; Chandel, Navdeep S; Jordan, V Craig

    2005-12-07

    We previously developed an estrogen receptor (ER)-positive breast cancer cell line (MCF-7:5C) that is resistant to long-term estrogen deprivation and undergoes rapid and complete apoptosis in the presence of physiologic concentrations of 17beta-estradiol. Here, we investigated the role of the mitochondrial apoptotic pathway in this process. Apoptosis in MCF-7:5C cells treated with estradiol, fulvestrant, or vehicle (control) was investigated by annexin V-propidium iodide double staining and 4',6-diamidino-2-phenylindole (DAPI) staining. Apoptosis was also analyzed in MCF-7:5C cells transiently transfected with small interfering RNAs (siRNAs) to apoptotic pathway components. Expression of apoptotic pathway intermediates was measured by western blot analysis. Mitochondrial transmembrane potential (psim) was determined by rhodamine-123 retention assay. Mitochondrial pathway activity was determined by cytochrome c release and cleavage of poly(ADP-ribose) polymerase (PARP) protein. Tumorigenesis was studied in ovariectomized athymic mice that were injected with MCF-7:5C cells. Differences between the treatment groups and control group were determined by two-sample t test or one-factor analysis of variance. All statistical tests were two-sided. MCF-7:5C cells treated with estradiol underwent apoptosis and showed increased expression of proapoptotic proteins, decreased psim, enhanced cytochrome c release, and PARP cleavage compared with cells treated with fulvestrant or vehicle. Blockade of Bax, Bim, and p53 mRNA expression by siRNA reduced estradiol-induced apoptosis relative to control by 76% [95% confidence interval (CI) = 73% to 79%, P estradiol-induced apoptosis in long-term estrogen-deprived breast cancer cells. Physiologic concentrations of estradiol could potentially be used to induce apoptosis and tumor regression in tumors that have developed resistance to aromatase inhibitors.

  15. Estrogen enhanced cell-cell signalling in breast cancer cells exposed to targeted irradiation

    International Nuclear Information System (INIS)

    Shao, Chunlin; Folkard, Melvyn; Held, Kathryn D; Prise, Kevin M

    2008-01-01

    Radiation-induced bystander responses, where cells respond to their neighbours being irradiated are being extensively studied. Although evidence shows that bystander responses can be induced in many types of cells, it is not known whether there is a radiation-induced bystander effect in breast cancer cells, where the radiosensitivity may be dependent on the role of the cellular estrogen receptor (ER). This study investigated radiation-induced bystander responses in estrogen receptor-positive MCF-7 and estrogen receptor-negative MDA-MB-231 breast cancer cells. The influence of estrogen and anti-estrogen treatments on the bystander response was determined by individually irradiating a fraction of cells within the population with a precise number of helium-3 using a charged particle microbeam. Damage was scored as chromosomal damage measured as micronucleus formation. A bystander response measured as increased yield of micronucleated cells was triggered in both MCF-7 and MDA-MB-231 cells. The contribution of the bystander response to total cell damage in MCF-7 cells was higher than that in MDA-MB-231 cells although the radiosensitivity of MDA-MB-231 was higher than MCF-7. Treatment of cells with 17β-estradiol (E2) increased the radiosensitivity and the bystander response in MCF-7 cells, and the effect was diminished by anti-estrogen tamoxifen (TAM). E2 also increased the level of intracellular reactive oxygen species (ROS) in MCF-7 cells in the absence of radiation. In contrast, E2 and TAM had no influence on the bystander response and ROS levels in MDA-MB-231 cells. Moreover, the treatment of MCF-7 cells with antioxidants eliminated both the E2-induced ROS increase and E2-enhanced bystander response triggered by the microbeam irradiation, which indicates that ROS are involved in the E2-enhanced bystander micronuclei formation after microbeam irradiation. The observation of bystander responses in breast tumour cells may offer new potential targets for radiation

  16. Cordycepin-induced apoptosis and autophagy in breast cancer cells are independent of the estrogen receptor

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Sunga [Department of Physiology, School of Medicine, Chungnam National University, Daejeon, 301747 (Korea, Republic of); Lim, Mi-Hee [Department of Biochemistry, Kangwon National University, Gangwon-do, 200701 (Korea, Republic of); Kim, Ki Mo [Diabetic Complications Research Center, Division of Traditional Korean Medicine (TKM) Integrated Research, Korea Institute of Oriental Medicine (KIOM), 305811, Daejeon (Korea, Republic of); Jeon, Byeong Hwa [Department of Physiology, School of Medicine, Chungnam National University, Daejeon, 301747 (Korea, Republic of); Song, Won O. [Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824 (United States); Kim, Tae Woong, E-mail: tawkim@kangwon.ac.kr [Department of Biochemistry, Kangwon National University, Gangwon-do, 200701 (Korea, Republic of)

    2011-12-15

    Cordycepin (3-deoxyadenosine), found in Cordyceps spp., has been known to have many therapeutic effects including immunomodulatory, anti-inflammatory, antimicrobial, and anti-aging effects. Moreover, anti-tumor and anti-metastatic effects of cordycepin have been reported, but the mechanism causing cancer cell death is poorly characterized. The present study was designed to investigate whether the mechanisms of cordycepin-induced cell death were associated with estrogen receptor in breast cancer cells. Exposure of both MDA-MB-231 and MCF-7 human breast cancer cells to cordycepin resulted in dose-responsive inhibition of cell growth and reduction in cell viability. The cordycepin-induced cell death in MDA-MB-231 cells was associated with several specific features of the mitochondria-mediated apoptotic pathway, which was confirmed by DNA fragmentation, TUNEL, and biochemical assays. Cordycepin also caused a dose-dependent increase in mitochondrial translocation of Bax, triggering cytosolic release of cytochrome c and activation of caspases-9 and -3. Interestingly, MCF-7 cells showed autophagy-associated cell death, as observed by the detection of an autophagosome-specific protein and large membranous vacuole ultrastructure morphology in the cytoplasm. Cordycepin-induced autophagic cell death has applications in treating MCF-7 cells with apoptotic defects, irrespective of the ER response. Although autophagy has a survival function in tumorigenesis of some cancer cells, autophagy may be important for cordycepin-induced MCF-7 cell death. In conclusion, the results of our study demonstrate that cordycepin effectively kills MDA-MB-231 and MCF-7 human breast cancer cell lines in culture. Hence, further studies should be conducted to determine whether cordycepin will be a clinically useful, ER-independent, chemotherapeutic agent for human breast cancer. -- Highlights: Black-Right-Pointing-Pointer We studied the mechanism which cordycepin-induced cell death association with

  17. Phorbol ester induced phosphorylation of the estrogen receptor in intact MCF-7 human breast cancer cells

    International Nuclear Information System (INIS)

    Knabbe, C.; Lippman, M.E.; Greene, G.L.; Dickson, R.B.

    1986-01-01

    Recent studies with a variety of cellular receptors have shown that phorbol ester induced phosphorylation modulates ligand binding and function. In this study the authors present direct evidence that the estrogen receptor in MCF-7 human breast cancer cells is a phosphoprotein whose phosphorylation state can be enhanced specifically by phorbol-12-myristate-13-acetate (PMA). Cells were cultured to 6h in the presence of [ 32 P]-orthophosphate. Whole cell extracts were immunoprecipitated with a monoclonal antibody (D58) against the estrogen receptor and subjected to SDS-polyacrylamide electrophoresis. Autoradiography showed a specific band in the region of 60-62 kDa which was significantly increased in preparations from PMA treated cells. Phospho-amino acid analysis demonstrated specific phosphorylation of serine and threonine residues. Cholera toxin or forskolin did not change the phosphorylation state of this protein. In a parallel binding analysis PMA led to a rapid decrease of estrogen binding sites. The estrogen induction of both progesterone receptors and growth in semisolid medium was blocked by PMA, whereas the estrogen induction of the 8kDa protein corresponding to the ps2 gene product and of the 52 kDa protein was not affected. In conclusion, phorbol esters can induce phosphorylation of the estrogen receptor. This process may be associated with the inactivation of certain receptor functions

  18. CITED2 modulates estrogen receptor transcriptional activity in breast cancer cells

    International Nuclear Information System (INIS)

    Lau, Wen Min; Doucet, Michele; Huang, David; Weber, Kristy L.; Kominsky, Scott L.

    2013-01-01

    Highlights: •The effects of elevated CITED2 on ER function in breast cancer cells are examined. •CITED2 enhances cell growth in the absence of estrogen and presence of tamoxifen. •CITED2 functions as a transcriptional co-activator of ER in breast cancer cells. -- Abstract: Cbp/p300-interacting transactivator with Glu/Asp-rich carboxy-terminal domain 2 (CITED2) is a member of the CITED family of non-DNA binding transcriptional co-activators of the p300/CBP-mediated transcription complex. Previously, we identified CITED2 as being overexpressed in human breast tumors relative to normal mammary epithelium. Upon further investigation within the estrogen receptor (ER)-positive subset of these breast tumor samples, we found that CITED2 mRNA expression was elevated in those associated with poor survival. In light of this observation, we investigated the effect of elevated CITED2 levels on ER function. While ectopic overexpression of CITED2 in three ER-positive breast cancer cell lines (MCF-7, T47D, and CAMA-1) did not alter cell proliferation in complete media, growth was markedly enhanced in the absence of exogenous estrogen. Correspondingly, cells overexpressing CITED2 demonstrated reduced sensitivity to the growth inhibitory effects of the selective estrogen receptor modulator, 4-hydroxytamoxifen. Subsequent studies revealed that basal ER transcriptional activity was elevated in CITED2-overexpressing cells and was further increased upon the addition of estrogen. Similarly, basal and estrogen-induced expression of the ER-regulated genes trefoil factor 1 (TFF1) and progesterone receptor (PGR) was higher in cells overexpressing CITED2. Concordant with this observation, ChIP analysis revealed higher basal levels of CITED2 localized to the TFF-1 and PGR promoters in cells with ectopic overexpression of CITED2, and these levels were elevated further in response to estrogen stimulation. Taken together, these data indicate that CITED2 functions as a transcriptional co

  19. Molecular conservation of estrogen-response associated with cell cycle regulation, hormonal carcinogenesis and cancer in zebrafish and human cancer cell lines

    Directory of Open Access Journals (Sweden)

    Govindarajan Kunde R

    2011-05-01

    Full Text Available Abstract Background The zebrafish is recognized as a versatile cancer and drug screening model. However, it is not known whether the estrogen-responsive genes and signaling pathways that are involved in estrogen-dependent carcinogenesis and human cancer are operating in zebrafish. In order to determine the potential of zebrafish model for estrogen-related cancer research, we investigated the molecular conservation of estrogen responses operating in both zebrafish and human cancer cell lines. Methods Microarray experiment was performed on zebrafish exposed to estrogen (17β-estradiol; a classified carcinogen and an anti-estrogen (ICI 182,780. Zebrafish estrogen-responsive genes sensitive to both estrogen and anti-estrogen were identified and validated using real-time PCR. Human homolog mapping and knowledge-based data mining were performed on zebrafish estrogen responsive genes followed by estrogen receptor binding site analysis and comparative transcriptome analysis with estrogen-responsive human cancer cell lines (MCF7, T47D and Ishikawa. Results Our transcriptome analysis captured multiple estrogen-responsive genes and signaling pathways that increased cell proliferation, promoted DNA damage and genome instability, and decreased tumor suppressing effects, suggesting a common mechanism for estrogen-induced carcinogenesis. Comparative analysis revealed a core set of conserved estrogen-responsive genes that demonstrate enrichment of estrogen receptor binding sites and cell cycle signaling pathways. Knowledge-based and network analysis led us to propose that the mechanism involving estrogen-activated estrogen receptor mediated down-regulation of human homolog HES1 followed by up-regulation cell cycle-related genes (human homologs E2F4, CDK2, CCNA, CCNB, CCNE, is highly conserved, and this mechanism may involve novel crosstalk with basal AHR. We also identified mitotic roles of polo-like kinase as a conserved signaling pathway with multiple entry

  20. Curcumin: the spicy modulator of breast carcinogenesis.

    Science.gov (United States)

    Banik, Urmila; Parasuraman, Subramani; Adhikary, Arun Kumar; Othman, Nor Hayati

    2017-07-19

    Worldwide breast cancer is the most common cancer in women. For many years clinicians and the researchers are examining and exploring various therapeutic modalities for breast cancer. Yet the disease has remained unconquered and the quest for cure is still going on. Present-day strategy of breast cancer therapy and prevention is either combination of a number of drugs or a drug that modulates multiple targets. In this regard natural products are now becoming significant options. Curcumin exemplifies a promising natural anticancer agent for this purpose. This review primarily underscores the modulatory effect of curcumin on the cancer hallmarks. The focus is its anticancer effect in the complex pathways of breast carcinogenesis. Curcumin modulates breast carcinogenesis through its effect on cell cycle and proliferation, apoptosis, senescence, cancer spread and angiogenesis. Largely the NFkB, PI3K/Akt/mTOR, MAPK and JAK/STAT are the key signaling pathways involved. The review also highlights the curcumin mediated modulation of tumor microenvironment, cancer immunity, breast cancer stem cells and cancer related miRNAs. Using curcumin as a therapeutic and preventive agent in breast cancer is perplexed by its diverse biological activity, much of which remains inexplicable. The information reviewed here should point toward potential scope of future curcumin research in breast cancer.

  1. Estrogen-Induced Depurination of DNA: A Novel Target for Breast Cancer Prevention

    Science.gov (United States)

    2007-05-01

    endocrine disorders, menstrual status, history of cancer or prior breast disease, estrogen and progesterone receptor status of tissue, Her 2 neu...anesthetic cream , will be applied to the breast/areolar region that is to be sampled. The breast will then be warmed for 5-10 min with a heating pad...procedure include possible pain associated with the procedure. Participants will be advised that the results from this study will be combined with the

  2. Mouse models of estrogen receptor-positive breast cancer

    Directory of Open Access Journals (Sweden)

    Shakur Mohibi

    2011-01-01

    Full Text Available Breast cancer is the most frequent malignancy and second leading cause of cancer-related deaths among women. Despite advances in genetic and biochemical analyses, the incidence of breast cancer and its associated mortality remain very high. About 60 - 70% of breast cancers are Estrogen Receptor alpha (ER-α positive and are dependent on estrogen for growth. Selective estrogen receptor modulators (SERMs have therefore provided an effective targeted therapy to treat ER-α positive breast cancer patients. Unfortunately, development of resistance to endocrine therapy is frequent and leads to cancer recurrence. Our understanding of molecular mechanisms involved in the development of ER-α positive tumors and their resistance to ER antagonists is currently limited due to lack of experimental models of ER-α positive breast cancer. In most mouse models of breast cancer, the tumors that form are typically ER-negative and independent of estrogen for their growth. However, in recent years more attention has been given to develop mouse models that develop different subtypes of breast cancers, including ER-positive tumors. In this review, we discuss the currently available mouse models that develop ER-α positive mammary tumors and their potential use to elucidate the molecular mechanisms of ER-α positive breast cancer development and endocrine resistance.

  3. Estrogen Receptor and Progesterone Receptor Expression in Normal Terminal Duct Lobular Units Surrounding Invasive Breast Cancer

    Science.gov (United States)

    Yang, Xiaohong R.; Figueroa, Jonine D.; Hewitt, Stephen M.; Falk, Roni T.; Pfeiffer, Ruth M.; Lissowska, Jolanta; Peplonska, Beata; Brinton, Louise A.; Garcia-Closas, Montserrat; Sherman, Mark E.

    2014-01-01

    Introduction Molecular and morphological alterations related to carcinogenesis have been found in terminal duct lobular units (TDLUs), the microscopic structures from which most breast cancer precursors and cancers develop, and therefore, analysis of these structures may reveal early changes in breast carcinogenesis and etiologic heterogeneity. Accordingly, we evaluated relationships of breast cancer risk factors and tumor pathology to estrogen receptor (ER) and progesterone receptor (PR) expression in TDLUs surrounding breast cancers. Methods We analyzed 270 breast cancer cases included in a population-based breast cancer case-control study conducted in Poland. TDLUs were mapped in relation to breast cancer: within the same block as the tumor (TDLU-T), proximal to tumor (TDLU-PT), or distant from (TDLU-DT). ER/PR was quantitated using image analysis of immunohistochemically stained TDLUs prepared as tissue microarrays. Results In surgical specimens containing ER-positive breast cancers, ER and PR levels were significantly higher in breast cancer cells than in normal TDLUs, and higher in TDLU-T than in TDLU-DT or TDLU-PT, which showed similar results. Analyses combining DT-/PT TDLUs within subjects demonstrated that ER levels were significantly lower in premenopausal women vs. postmenopausal women (odds ratio [OR]=0.38, 95% confidence interval [CI]=0.19, 0.76, P=0.0064) and among recent or current menopausal hormone therapy users compared with never users (OR=0.14, 95% CI=0.046–0.43, Ptrend=0.0006). Compared with premenopausal women, TDLUs of postmenopausal women showed lower levels of PR (OR=0.90, 95% CI=0.83–0.97, Ptrend=0.007). ER and PR expression in TDLUs was associated with epidermal growth factor receptor (EGFR) expression in invasive tumors (P=0.019 for ER and P=0.03 for PR), but not with other tumor features. Conclusions Our data suggest that TDLUs near breast cancers reflect field effects, whereas those at a distance demonstrate influences of breast

  4. Role of Estrogen Receptor Signaling in Breast Cancer Metastasis

    International Nuclear Information System (INIS)

    Roy, S.S.; Vadlamudi, R.K.

    2012-01-01

    Metastatic breast cancer is a life-threatening stage of cancer and is the leading cause of death in advanced breast cancer patients. Estrogen signaling and the estrogen receptor (ER) are implicated in breast cancer progression, and the majority of the human breast cancers start out as estrogen dependent. Accumulating evidence suggests that ER signaling is complex, involving coregulatory proteins and extranuclear actions. ER-coregualtory proteins are tightly regulated under normal conditions with miss expression primarily reported in cancer. Deregulation of ER coregualtors or ER extranuclear signaling has potential to promote metastasis in ER-positive breast cancer cells. This review summarizes the emerging role of ER signaling in promoting metastasis of breast cancer cells, discusses the molecular mechanisms by which ER signaling contributes to metastasis, and explores possible therapeutic targets to block ER-driven metastasis

  5. The Cell Surface Estrogen Receptor, G Protein- Coupled Receptor 30 (GPR30, is Markedly Down Regulated During Breast Tumorigenesis

    Directory of Open Access Journals (Sweden)

    Indira Poola

    2008-01-01

    Full Text Available Background: GPR30 is a cell surface estrogen receptor that has been shown to mediate a number of non-genomic rapid effects of estrogen and appear to balance the signaling of estrogen and growth factors. In addition, progestins appear to use GPR30 for their actions. Therefore, GPR30 could play a critical role in hormonal regulation of breast epithelial cell integrity. Deregulation of the events mediated by GPR30 could contribute to tumorigenesis.Methods: To understand the role of GPR30 in the deregulation of estrogen signaling processes during breast carcinogenesis, we have undertaken this study to investigate its expression at mRNA levels in tumor tissues and their matched normal tissues. We compared its expression at mRNA levels by RT quantitative real-time PCR relative to GAPDH in ERα”—positive (n = 54 and ERα”—negative (n = 45 breast cancer tissues to their matched normal tissues.Results: We report here, for the first time, that GPR30 mRNA levels were significantly down-regulated in cancer tissues in comparison with their matched normal tissues (p 0.0001 by two sided paired t-test. The GPR30 expression levels were significantly lower in tumor tissues from patients (n = 29 who had lymph node metastasis in comparison with tumors from patients (n = 53 who were negative for lymph node metastasis (two sample t-test, p 0.02, but no association was found with ERα, PR and other tumor characteristics.Conclusions: Down-regulation of GPR30 could contribute to breast tumorigenesis and lymph node metastasis.

  6. Estrogen-Induced Depurination of DNA: A Novel Target for Breast Cancer Prevention

    National Research Council Canada - National Science Library

    Cavalieri, Ercole L

    2008-01-01

    ... and their reaction with DNA. Compelling evidence obtained in the various specific aims of this COE will be decisive for determining the risk of breast cancer by using the depurinating estrogen-DNA adducts as biomarkers...

  7. Estrogen-Induced Depurination of DNA: A Novel Target for Breast Cancer Prevention

    National Research Council Canada - National Science Library

    Cavalieri, Ercole L

    2007-01-01

    ... and their reaction with DNA. Compelling evidence obtained in the various specific aims of this COE will be decisive for determining the risk of breast cancer by using the depurinating estrogen-DNA adducts as biomarkers...

  8. ERβ inhibits proliferation and invasion of breast cancer cells

    Science.gov (United States)

    Lazennec, Gwendal; Bresson, Damien; Lucas, Annick; Chauveau, Corine; Vignon, Françoise

    2001-01-01

    Recent studies indicate that the expression of ERβ in breast cancer is lower than in normal breast, suggesting that ERβ could play an important role in carcinogenesis. To investigate this hypothesis, we engineered estrogen-receptor negative MDA-MB-231 breast cancer cells to reintroduce either ERα or ERβ protein with an adenoviral vector. In these cells, ERβ (as ERα) expression was monitored using RT-PCR and Western blot. ERβ protein was localized in the nucleus (immunocytochemistry) and able to transactivate estrogen-responsive reporter constructs in the presence of estradiol. ERβ and ERα induced the expression of several endogenous genes such as pS2, TGFα or the cyclin kinase inhibitor p21, but in contrast to ERα, ERβ was unable to regulate c-myc proto-oncogene expression. The pure antiestrogen ICI 164, 384 completely blocked ERα and ERβ estrogen-induced activities. ERβ inhibited MDA-MB-231 cell proliferation in a ligand-independent manner, whereas ERα inhibition of proliferation is hormone-dependent. Moreover, ERβ and ERα, decreased cell motility and invasion. Our data bring the first evidence that ERβ is an important modulator of proliferation and invasion of breast cancer cells and support the hypothesis that the loss of ERβ expression could be one of the events leading to the development of breast cancer. PMID:11517191

  9. Trichostatin A enhances estrogen receptor-alpha repression in MCF-7 breast cancer cells under hypoxia

    International Nuclear Information System (INIS)

    Noh, Hyunggyun; Park, Joonwoo; Shim, Myeongguk; Lee, YoungJoo

    2016-01-01

    Estrogen receptor (ER) is a crucial determinant of resistance to endocrine therapy, which may change during the progression of breast cancer. We previously showed that hypoxia induces ESR1 gene repression and ERα protein degradation via proteasome-mediated pathway in breast cancer cells. HDAC plays important roles in the regulation of histone and non-histone protein post-translational modification. HDAC inhibitors can induce epigenetic changes and have therapeutic potential for targeting various cancers. Trichostatin A exerts potent antitumor activities against breast cancer cells in vitro and in vivo. In this report, we show that TSA augments ESR1 gene repression at the transcriptional level and downregulates ERα protein expression under hypoxic conditions through a proteasome-mediated pathway. TSA-induced estrogen response element-driven reporter activity in the absence of estrogen was synergistically enhanced under hypoxia; however, TSA inhibited cell proliferation under both normoxia and hypoxia. Our data show that the hypoxia-induced repression of ESR1 and degradation of ERα are enhanced by concomitant treatment with TSA. These findings expand our understanding of hormone responsiveness in the tumor microenvironment; however, additional in-depth studies are required to elucidate the detailed mechanisms of TSA-induced ERα regulation under hypoxia. - Highlights: • TSA augments ESR1 gene repression at the transcriptional level under hypoxia. • TSA downregulates ERα protein expression under hypoxia. • TSA-induced ERα regulation under hypoxia is essential for understanding the behavior and progression of breast cancer.

  10. Trichostatin A enhances estrogen receptor-alpha repression in MCF-7 breast cancer cells under hypoxia

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Hyunggyun; Park, Joonwoo; Shim, Myeongguk; Lee, YoungJoo, E-mail: yjlee@sejong.ac.kr

    2016-02-12

    Estrogen receptor (ER) is a crucial determinant of resistance to endocrine therapy, which may change during the progression of breast cancer. We previously showed that hypoxia induces ESR1 gene repression and ERα protein degradation via proteasome-mediated pathway in breast cancer cells. HDAC plays important roles in the regulation of histone and non-histone protein post-translational modification. HDAC inhibitors can induce epigenetic changes and have therapeutic potential for targeting various cancers. Trichostatin A exerts potent antitumor activities against breast cancer cells in vitro and in vivo. In this report, we show that TSA augments ESR1 gene repression at the transcriptional level and downregulates ERα protein expression under hypoxic conditions through a proteasome-mediated pathway. TSA-induced estrogen response element-driven reporter activity in the absence of estrogen was synergistically enhanced under hypoxia; however, TSA inhibited cell proliferation under both normoxia and hypoxia. Our data show that the hypoxia-induced repression of ESR1 and degradation of ERα are enhanced by concomitant treatment with TSA. These findings expand our understanding of hormone responsiveness in the tumor microenvironment; however, additional in-depth studies are required to elucidate the detailed mechanisms of TSA-induced ERα regulation under hypoxia. - Highlights: • TSA augments ESR1 gene repression at the transcriptional level under hypoxia. • TSA downregulates ERα protein expression under hypoxia. • TSA-induced ERα regulation under hypoxia is essential for understanding the behavior and progression of breast cancer.

  11. Estrogen induced concentration dependent differential gene expression in human breast cancer (MCF7) cells: Role of transcription factors

    International Nuclear Information System (INIS)

    Chandrasekharan, Sabarinath; Kandasamy, Krishna Kumar; Dayalan, Pavithra; Ramamurthy, Viraragavan

    2013-01-01

    Highlights: •Estradiol (E2) at low dose induced cell proliferation in breast cancer cells. •E2 at high concentration induced cell stress in breast cancer cells. •Estrogen receptor physically interacts only with a few transcription factors. •Differential expression of genes with Oct-1 binding sites increased under stress. •Transcription factor binding sites showed distinct spatial distribution on genes. -- Abstract: Background: Breast cancer cells respond to estrogen in a concentration dependent fashion, resulting in proliferation or apoptosis. The mechanism of this concentration dependent differential outcome is not well understood yet. Methodology: Meta-analysis of the expression data of MCF7 cells treated with low (1 nM) or high (100 nM) dose of estradiol (E2) was performed. We identified genes differentially expressed at the low or the high dose, and examined the nature of regulatory elements in the vicinity of these genes. Specifically, we looked for the difference in the presence, abundance and spatial distribution of binding sites for estrogen receptor (ER) and selected transcription factors (TFs) in the genomic region up to 25 kb upstream and downstream from the transcription start site (TSS) of these genes. Results: It was observed that at high dose E2 induced the expression of stress responsive genes, while at low dose, genes involved in cell cycle were induced. We found that the occurrence of transcription factor binding regions (TFBRs) for certain factors such as Sp1 and SREBP1 were higher on regulatory regions of genes expressed at low dose. At high concentration of E2, genes with a higher frequency of Oct-1 binding regions were predominantly involved. In addition, there were differences in the spatial distribution pattern of the TFBRs in the genomic regions among the two sets of genes. Discussion: E2 induced predominantly proliferative/metabolic response at low concentrations; but at high concentration, stress–rescue responses were induced

  12. Estrogen induced concentration dependent differential gene expression in human breast cancer (MCF7) cells: Role of transcription factors

    Energy Technology Data Exchange (ETDEWEB)

    Chandrasekharan, Sabarinath, E-mail: csab@bio.psgtech.ac.in [Department of Biotechnology, PSG College of Technology, Coimbatore 641004 (India); Kandasamy, Krishna Kumar [Max Planck Institute for Biology of Ageing, Cologne (Germany); Dayalan, Pavithra; Ramamurthy, Viraragavan [Department of Biotechnology, PSG College of Technology, Coimbatore 641004 (India)

    2013-08-02

    Highlights: •Estradiol (E2) at low dose induced cell proliferation in breast cancer cells. •E2 at high concentration induced cell stress in breast cancer cells. •Estrogen receptor physically interacts only with a few transcription factors. •Differential expression of genes with Oct-1 binding sites increased under stress. •Transcription factor binding sites showed distinct spatial distribution on genes. -- Abstract: Background: Breast cancer cells respond to estrogen in a concentration dependent fashion, resulting in proliferation or apoptosis. The mechanism of this concentration dependent differential outcome is not well understood yet. Methodology: Meta-analysis of the expression data of MCF7 cells treated with low (1 nM) or high (100 nM) dose of estradiol (E2) was performed. We identified genes differentially expressed at the low or the high dose, and examined the nature of regulatory elements in the vicinity of these genes. Specifically, we looked for the difference in the presence, abundance and spatial distribution of binding sites for estrogen receptor (ER) and selected transcription factors (TFs) in the genomic region up to 25 kb upstream and downstream from the transcription start site (TSS) of these genes. Results: It was observed that at high dose E2 induced the expression of stress responsive genes, while at low dose, genes involved in cell cycle were induced. We found that the occurrence of transcription factor binding regions (TFBRs) for certain factors such as Sp1 and SREBP1 were higher on regulatory regions of genes expressed at low dose. At high concentration of E2, genes with a higher frequency of Oct-1 binding regions were predominantly involved. In addition, there were differences in the spatial distribution pattern of the TFBRs in the genomic regions among the two sets of genes. Discussion: E2 induced predominantly proliferative/metabolic response at low concentrations; but at high concentration, stress–rescue responses were induced

  13. Breast Cancer and Estrogen-Alone Update

    Science.gov (United States)

    ... Current Issue Past Issues Research News From NIH Breast Cancer and Estrogen-Alone Update Past Issues / Summer 2006 ... hormone therapy does not increase the risk of breast cancer in postmenopausal women, according to an updated analysis ...

  14. Breast tissue, oral and urinary microbiomes in breast cancer

    OpenAIRE

    Wang, Hannah; Altemus, Jessica; Niazi, Farshad; Green, Holly; Calhoun, Benjamin C.; Sturgis, Charles; Grobmyer, Stephen R.; Eng, Charis

    2017-01-01

    It has long been proposed that the gut microbiome contributes to breast carcinogenesis by modifying systemic estrogen levels. This is often cited as a possible mechanism linking breast cancer and high-fat, low-fiber diets as well as antibiotic exposure, associations previously identified in population-based studies. More recently, a distinct microbiome has been identified within breast milk and tissue, but few studies have characterized differences in the breast tissue microbiota of patients ...

  15. Estrogen sulfotransferases in breast and endometrial cancers.

    Science.gov (United States)

    Pasqualini, Jorge Raul

    2009-02-01

    Estrogen sulfotransferase is significantly more active in the normal breast cell (e.g., Human 7) than in the cancer cell (e.g., MCF-7). The data suggest that in breast cancer sulfoconjugated activity is carried out by another enzyme, the SULT1A, which acts at high concentration of the substrates. In breast cancer cells sulfotransferase (SULT) activity can be stimulated by various progestins: medrogestone, promegestone, and nomegestrol acetate, as well as by tibolone and its metabolites. SULT activities can also be controlled by other substances including phytoestrogens, celecoxib, flavonoids (e.g., quercetin, resveratrol), and isoflavones. SULT expression was localized in breast cancer cells, which can be stimulated by promegestone and correlated with the increase of the enzyme activity. The estrogen sulfotransferase (SULT1E1), which acts at nanomolar concentration of estradiol, can inactivate most of this hormone present in the normal breast; however, in the breast cancer cells, the sulfotransferase denoted as SULT1A1 is mainly present, and this acts at micromolar concentrations of E(2). A correlation was postulated among breast cancer cell proliferation, the effect of various progestins, and sulfotransferase stimulation. In conclusion, it is suggested that factors involved in the stimulation of the estrogen sulfotransferases could provide new possibilities for the treatment of patients with hormone-dependent breast and endometrial cancers.

  16. Environment and breast cancer - the role of xenooestrogens in breast cancer carcinogenesis

    International Nuclear Information System (INIS)

    Plesnicar, A.; Kralj, B.; Druzina, B.; Kovac, V.

    2002-01-01

    Background. The survival rate of breast cancer patients has not changed much in the last few decades in developed countries. In order to improve the efficacy of breast cancer prevention and treatment, the role of xenooestrogens in the mechanisms of its development has been evaluated. These industrial chemicals bear little structural resemblance to each other and bind to the oestrogen receptors of exposed cells and/or trigger oestrogenic responses in laboratory test systems. Exposure to xenooestrogens has been regarded as a risk factor for carcinogenesis and a preventable cause of breast carcinoma. Several epidemiological and experimental studies in in vivo and in in vitro conditions of the influence of xenooestrogens on the occurrence of breast cancer have been conducted in the last decades and have shown ambiguous results. Conclusions. No increase in breast carcinoma incidence could be found in women who were exposed to relatively high concentrations of xenooestrogens for extended periods and small quantities of these compounds that are present in the environment probably cannot act as etiological agents for the occurrence of this disease. A multi step approach is suggested regarding the sequence of studies and measures that should be taken to further assess the importance of xenooestrogens on breast cancer carcinogenesis. (author)

  17. A New Therapeutic Paradigm for Breast Cancer Exploiting Low Dose Estrogen-Induced Apoptosis

    Science.gov (United States)

    2013-06-01

    Tommerup N, et al. Haploinsufficiency of novel FOXG1B variants in a patient with severe mental retardation, brain malformations and microcephaly...the incidences of coronary heart disease (CHD) and osteoporosis, with breast cancer as a potential adverse outcome.8 To date, this is the largest...Estrogen plus progestin and the risk of coronary heart disease. N Engl J Med 2003;349:523-534. 12. Cushman M, Kuller, LH, Prentice, R, et al. Estrogen plus

  18. Estrogen and Resveratrol Regulate Rac and Cdc42 Signaling to the Actin Cytoskeleton of Metastatic Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Nicolas G. Azios

    2007-02-01

    Full Text Available Estrogen and structurally related molecules play critical roles in breast cancer. We reported that resveratrol (50 µM, an estrogen-like phytosterol from grapes, acts in an antiestrogenic manner in breast cancer cells to reduce cell migration and to induce a global and sustained extension of actin structures called filopodia. Herein, we report that resveratrol-induced filopodia formation is time-dependent and concentration-dependent. In contrast to resveratrol at 50 µM, resveratrol at 5 µM acts in a manner similar to estrogen by increasing lamellipodia, as well as cell migration and invasion. Because Rho GTPases regulate the extension of actin structures, we investigated a role for Rac and Cdc42 in estrogen and resveratrol signaling. Our results demonstrate that 50 µM resveratrol decreases Rac and Cdc42 activity, whereas estrogen and 5 µM resveratrol increase Rac activity in breast cancer cells. MDA-MB-231 cells expressing dominant-negative Cdc42 or dominantnegative Rac retain filopodia response to 50 µM resveratrol. Lamellipodia response to 5 µM resveratrol, estrogen, or epidermal growth factor is inhibited in cells expressing dominant-negative Rac, indicating that Rac regulates estrogen and resveratrol (5 µM signaling to the actin cytoskeleton. These results indicate that signaling to the actin cytoskeleton by low and high concentrations of resveratrol may be differentially regulated by Rac and Cdc42.

  19. Tannic Acid Preferentially Targets Estrogen Receptor-Positive Breast Cancer

    Directory of Open Access Journals (Sweden)

    Brian W. Booth

    2013-01-01

    Full Text Available Research efforts investigating the potential of natural compounds in the fight against cancer are growing. Tannic acid (TA belongs to the class of hydrolysable tannins and is found in numerous plants and foods. TA is a potent collagen cross-linking agent; the purpose of this study was to generate TA-cross-linked beads and assess the effects on breast cancer cell growth. Collagen beads were stable at body temperature following crosslinking. Exposure to collagen beads with higher levels of TA inhibited proliferation and induced apoptosis in normal and cancer cells. TA-induced apoptosis involved activation of caspase 3/7 and caspase 9 but not caspase 8. Breast cancer cells expressing the estrogen receptor were more susceptible to the effects of TA. Taken together the results suggest that TA has the potential to become an anti-ER+ breast cancer treatment or preventative agent.

  20. Estrogen regulation of TRPM8 expression in breast cancer cells

    International Nuclear Information System (INIS)

    Chodon, Dechen; Guilbert, Arnaud; Dhennin-Duthille, Isabelle; Gautier, Mathieu; Telliez, Marie-Sophie; Sevestre, Henri; Ouadid-Ahidouch, Halima

    2010-01-01

    The calcium-permeable cation channel TRPM8 (melastatin-related transient receptor potential member 8) is over-expressed in several cancers. The present study aimed at investigating the expression, function and potential regulation of TRPM8 channels by ER alpha (estrogen receptor alpha) in breast cancer. RT-PCR, Western blot, immuno-histochemical, and siRNA techniques were used to investigate TRPM8 expression, its regulation by estrogen receptors, and its expression in breast tissue. To investigate the channel activity in MCF-7 cells, we used the whole cell patch clamp and the calcium imaging techniques. TRPM8 channels are expressed at both mRNA and protein levels in the breast cancer cell line MCF-7. Bath application of the potent TRPM8 agonist Icilin (20 μM) induced a strong outwardly rectifying current at depolarizing potentials, which is associated with an elevation of cytosolic calcium concentration, consistent with established TRPM8 channel properties. RT-PCR experiments revealed a decrease in TRPM8 mRNA expression following steroid deprivation for 48 and 72 hours. In steroid deprived medium, addition of 17-beta-estradiol (E 2 , 10 nM) increased both TRPM8 mRNA expression and the number of cells which respond to Icilin, but failed to affect the Ca 2+ entry amplitude. Moreover, silencing ERα mRNA expression with small interfering RNA reduced the expression of TRPM8. Immuno-histochemical examination of the expression of TRPM8 channels in human breast tissues revealed an over-expression of TRPM8 in breast adenocarcinomas, which is correlated with estrogen receptor positive (ER + ) status of the tumours. Taken together, these results show that TRPM8 channels are expressed and functional in breast cancer and that their expression is regulated by ER alpha

  1. Everolimus downregulates estrogen receptor and induces autophagy in aromatase inhibitor-resistant breast cancer cells

    International Nuclear Information System (INIS)

    Lui, Asona; New, Jacob; Ogony, Joshua; Thomas, Sufi; Lewis-Wambi, Joan

    2016-01-01

    mTOR inhibition of aromatase inhibitor (AI)-resistant breast cancer is currently under evaluation in the clinic. Everolimus/RAD001 (Afinitor®) has had limited efficacy as a solo agent but is projected to become part of combination therapy for AI-resistant breast cancer. This study was conducted to investigate the anti-proliferative and resistance mechanisms of everolimus in AI-resistant breast cancer cells. In this study we utilized two AI-resistant breast cancer cell lines, MCF-7:5C and MCF-7:2A, which were clonally derived from estrogen receptor positive (ER+) MCF-7 breast cancer cells following long-term estrogen deprivation. Cell viability assay, colony formation assay, cell cycle analysis and soft agar anchorage-independent growth assay were used to determine the efficacy of everolimus in inhibiting the proliferation and tumor forming potential of MCF-7, MCF-7:5C, MCF-7:2A and MCF10A cells. Confocal microscopy and transmission electron microscopy were used to evaluate LC3-II production and autophagosome formation, while ERE-luciferase reporter, Western blot, and RT-PCR analyses were used to assess ER expression and transcriptional activity. Everolimus inhibited the proliferation of MCF-7:5C and MCF-7:2A cells with relatively equal efficiency to parental MCF-7 breast cancer cells. The inhibitory effect of everolimus was due to G1 arrest as a result of downregulation of cyclin D1 and p21. Everolimus also dramatically reduced estrogen receptor (ER) expression (mRNA and protein) and transcriptional activity in addition to the ER chaperone, heat shock protein 90 protein (HSP90). Everolimus restored 4-hydroxy-tamoxifen (4OHT) sensitivity in MCF-7:5C cells and enhanced 4OHT sensitivity in MCF-7 and MCF-7:2A cells. Notably, we found that autophagy is one method of everolimus insensitivity in MCF-7 breast cancer cell lines. This study provides additional insight into the mechanism(s) of action of everolimus that can be used to enhance the utility of mTOR inhibitors as

  2. Estrogen and progesterone receptor levels in nonneoplastic breast epithelium of breast cancer cases versus benign breast biopsy controls

    International Nuclear Information System (INIS)

    Woolcott, Christy G; SenGupta, Sandip K; Hanna, Wedad M; Aronson, Kristan J

    2008-01-01

    Previous studies and biological mechanisms of carcinogenesis suggest that the steroid receptor content of benign breast epithelium may be related to breast cancer risk. The objective in this study was to compare the levels of estrogen receptor-α (ER) and progesterone receptor (PR) in nonneoplastic breast epithelium between breast cancer cases and biopsy controls. Between 1995 and 1997 at two sites (Women's College Hospital in Toronto and Kingston General Hospital), 667 women who were scheduled for diagnostic excisional breast biopsies completed a questionnaire providing personal information and agreed to allow analysis of routinely resected tissue. Histological slides with nonneoplastic epithelium were available for 101 cancer cases and 200 biopsy controls in Toronto and for 105 cancer cases and 119 controls in Kingston. Nonneoplastic epithelium was examined with immunohistochemical assays to determine the percent of epithelial cells staining for ER and PR. Unconditional logistic regression was used to calculate odds ratios (OR) stratified by study site. The ER content of nonneoplastic tissue was higher in cases than biopsy controls in unadjusted analyses; after adjustment for age, however, a weak association remained in only one of the study sites. After adjustment for age, the PR content of nonneoplastic tissue was slightly lower in breast cancer cases than controls in one study site. Furthermore, this inverse association was confined to women with PR negative breast cancer in comparison to the controls. No interaction between ER and PR content of nonneoplastic tissue was observed in relation to the odds of having breast cancer. The results of this study are consistent with only a slight indication of increased ER levels in nonneoplastic tissue in breast cancer cases relative to controls. This study contributes to the understanding of breast cancer by examining both ER and PR in nonneoplastic tissue. Limitations remain, however, such as the necessity of

  3. Soy isoflavones, estrogen therapy, and breast cancer risk: analysis and commentary

    Directory of Open Access Journals (Sweden)

    Wood Charles E

    2008-06-01

    Full Text Available Abstract There has been considerable investigation of the potential for soyfoods to reduce risk of cancer, and in particular cancer of the breast. Most interest in this relationship is because soyfoods are essentially a unique dietary source of isoflavones, compounds which bind to estrogen receptors and exhibit weak estrogen-like effects under certain experimental conditions. In recent years the relationship between soyfoods and breast cancer has become controversial because of concerns – based mostly on in vitro and rodent data – that isoflavones may stimulate the growth of existing estrogen-sensitive breast tumors. This controversy carries considerable public health significance because of the increasing popularity of soyfoods and the commercial availability of isoflavone supplements. In this analysis and commentary we attempt to outline current concerns regarding the estrogen-like effects of isoflavones in the breast focusing primarily on the clinical trial data and place these concerns in the context of recent evidence regarding estrogen therapy use in postmenopausal women. Overall, there is little clinical evidence to suggest that isoflavones will increase breast cancer risk in healthy women or worsen the prognosis of breast cancer patients. Although relatively limited research has been conducted, and the clinical trials often involved small numbers of subjects, there is no evidence that isoflavone intake increases breast tissue density in pre- or postmenopausal women or increases breast cell proliferation in postmenopausal women with or without a history of breast cancer. The epidemiologic data are generally consistent with the clinical data, showing no indication of increased risk. Furthermore, these clinical and epidemiologic data are consistent with what appears to be a low overall breast cancer risk associated with pharmacologic unopposed estrogen exposure in postmenopausal women. While more research is required to definitively

  4. Histone demethylase JMJD2B functions as a co-factor of estrogen receptor in breast cancer proliferation and mammary gland development.

    Directory of Open Access Journals (Sweden)

    Masahito Kawazu

    2011-03-01

    Full Text Available Estrogen is a key regulator of normal function of female reproductive system and plays a pivotal role in the development and progression of breast cancer. Here, we demonstrate that JMJD2B (also known as KDM4B constitutes a key component of the estrogen signaling pathway. JMJD2B is expressed in a high proportion of human breast tumors, and that expression levels significantly correlate with estrogen receptor (ER positivity. In addition, 17-beta-estradiol (E2 induces JMJD2B expression in an ERα dependent manner. JMJD2B interacts with ERα and components of the SWI/SNF-B chromatin remodeling complex. JMJD2B is recruited to ERα target sites, demethylates H3K9me3 and facilitates transcription of ER responsive genes including MYB, MYC and CCND1. As a consequence, knockdown of JMJD2B severely impairs estrogen-induced cell proliferation and the tumor formation capacity of breast cancer cells. Furthermore, Jmjd2b-deletion in mammary epithelial cells exhibits delayed mammary gland development in female mice. Taken together, these findings suggest an essential role for JMJD2B in the estrogen signaling, and identify JMJD2B as a potential therapeutic target in breast cancer.

  5. Estrogen Repression of MicroRNAs Is Associated with High Guanine Content in the Terminal Loop Sequences of Their Precursors

    Directory of Open Access Journals (Sweden)

    Amit Cohen

    2017-08-01

    Full Text Available Widespread microRNA (miRNA repression is a phenomenon observed in mammals after exposure to cigarette smoke and in many types of cancer. A comprehensive reduction in miRNA expression after treatment with the hormone estrogen has also previously been described. Here, we reveal a conserved association of miRNA downregulation after estrogen exposure in zebrafish, mouse, and human breast cancer cell line, with a high guanine content in the terminal loop sequences of their precursors, and offer a possible link between estrogen-related miRNA-adducts formation and carcinogenesis. We also show common gene expression patterns shared by breast cancer tumors and estrogen-treated zebrafish, suggesting that this organism can be used as a powerful model system for the study of human breast cancer.

  6. Epigenome remodelling in breast cancer: insights from an early in vitro model of carcinogenesis.

    Science.gov (United States)

    Locke, Warwick J; Clark, Susan J

    2012-11-15

    Epigenetic gene regulation has influence over a diverse range of cellular functions, including the maintenance of pluripotency, differentiation, and cellular identity, and is deregulated in many diseases, including cancer. Whereas the involvement of epigenetic dysregulation in cancer is well documented, much of the mechanistic detail involved in triggering these changes remains unclear. In the current age of genomics, the development of new sequencing technologies has seen an influx of genomic and epigenomic data and drastic improvements in both resolution and coverage. Studies in cancer cell lines and clinical samples using next-generation sequencing are rapidly delivering spectacular insights into the nature of the cancer genome and epigenome. Despite these improvements in technology, the timing and relationship between genetic and epigenetic changes that occur during the process of carcinogenesis are still unclear. In particular, what changes to the epigenome are playing a driving role during carcinogenesis and what influence the temporal nature of these changes has on cancer progression are not known. Understanding the early epigenetic changes driving breast cancer has the exciting potential to provide a novel set of therapeutic targets or early-disease biomarkers or both. Therefore, it is important to find novel systems that permit the study of initial epigenetic events that potentially occur during the first stages of breast cancer. Non-malignant human mammary epithelial cells (HMECs) provide an exciting in vitro model of very early breast carcinogenesis. When grown in culture, HMECs are able to temporarily escape senescence and acquire a pre-malignant breast cancer-like phenotype (variant HMECs, or vHMECs). Cultured HMECs are composed mainly of cells from the basal breast epithelial layer. Therefore, vHMECs are considered to represent the basal-like subtype of breast cancer. The transition from HMECs to vHMECs in culture recapitulates the epigenomic

  7. H19 lncRNA mediates 17β-estradiol-induced cell proliferation in MCF-7 breast cancer cells.

    Science.gov (United States)

    Sun, Hong; Wang, Guo; Peng, Yan; Zeng, Ying; Zhu, Qiong-Ni; Li, Tai-Lin; Cai, Jia-Qin; Zhou, Hong-Hao; Zhu, Yuan-Shan

    2015-06-01

    Estrogen plays a critical role in breast cancer development and progression. However, the mechanism involved in the promotion of breast cancer development and progression by estrogen remains unclear although it has been intensively studied. In the present study, we investigated the estrogen inducibility and functional significance of H19 lncRNA in breast cancer cells and tumor tissues. The screening of 83 disease-related long non-coding RNAs (lncRNAs) revealed that H19 lncRNA was much higher in estrogen receptor (ER)-positive MCF-7 breast cancer cells than in ER-negative MDA-MB-231 cells. 17β-estradiol produced a dose- and time-dependent induction of H19 expression in MCF-7 cells, which was mediated via ERα as evident by the blockade of this 17β-estradiol effect with ICI 182780, a specific ER antagonist and knockdown of ERα using specific RNAi. Moreover, knockdown of H19 lncRNA decreased cell survival and blocked estrogen-induced cell growth while overexpression of H19 lncRNA stimulated cell proliferation. Quantitation of H19 lncRNA in human breast cancer tissues showed that the level of H19 lncRNA was >10-fold higher in ER-positive than in ER-negative tumor tissues. These results suggest that H19 is an estrogen-inducible gene and plays a key role in cell survival and in estrogen-induced cell proliferation in MCF-7 cells, indicating that H19 lncRNA may serve as a biomarker for breast cancer diagnosis and progression, and as a valuable target for breast cancer therapy.

  8. The selective estrogen receptor modulators in breast cancer prevention.

    Science.gov (United States)

    Li, Fangxuan; Dou, Jinli; Wei, Lijuan; Li, Shixia; Liu, Juntian

    2016-05-01

    Persistently increased blood levels of estrogens are associated with an increased risk of breast cancer. Selective estrogen receptor modulators (SERMs) are a class of compounds that act on the estrogen receptor (ER). Several clinical trials have demonstrated the effectiveness of its prophylactic administration. Incidence of invasive ER-positive breast cancer was reduced by SERMs treatment, especially for those women with high risk of developing breast cancer. In this study, we reviewed the clinical application of SERMs in breast cancer prevention. To date, four prospective randomized clinical trials had been performed to test the efficacy of tamoxifen for this purpose. Concerning on the benefit and cost of tamoxifen, various studies from different countries demonstrated that chemoprevention with tamoxifen seemed to be cost-effective for women with a high risk of invasive breast cancer. Based above, tamoxifen was approved for breast cancer prevention by the US Food and Drug Administration in 1998. Raloxifene was also approved for postmenopausal women in 2007 for breast cancer prevention which reduces the risk of invasive breast cancer with a lower risk of unwanted stimulation of endometrium. Thus, raloxifene is considered to have a better clinical possesses as prophylactic agent. Several other agents, such as arzoxifene and lasofoxifene, are currently being investigated in clinic. The American Society of Clinical Oncology and National Comprehensive Cancer Network had published guidelines on breast cancer chemoprevention by SERMs. However, use of tamoxifen and raloxifene for primary breast cancer prevention was still low. A broader educational effort is needed to alert women and primary care physicians that SERMs are available to reduce breast cancer risk.

  9. Estrogen-Responsive Genes Overlap with Triiodothyronine-Responsive Genes in a Breast Carcinoma Cell Line

    Directory of Open Access Journals (Sweden)

    Nancy Bueno Figueiredo

    2014-01-01

    Full Text Available It has been well established that estrogen plays an important role in the progression and treatment of breast cancer. However, the role of triiodothyronine (T3 remains controversial. We have previously shown its capacity to stimulate the development of positive estrogen receptor breast carcinoma, induce the expression of genes (PR, TGF-alpha normally stimulated by estradiol (E2, and suppress genes (TGF-beta normally inhibited by E2. Since T3 regulates growth hormones, metabolism, and differentiation, it is important to verify its action on other genes normally induced by E2. Therefore, we used DNA microarrays to compare gene expression patterns in MCF-7 breast adenocarcinoma cells treated with E2 and T3. Several genes were modulated by both E2 and T3 in MCF-7 cells (Student’s t-test, P 2.0, pFDR < 0.05. We confirmed our microarray results by real-time PCR. Our findings reveal that certain genes in MCF-7 cells can be regulated by both E2 and T3.

  10. The unique transcriptional response produced by concurrent estrogen and progesterone treatment in breast cancer cells results in upregulation of growth factor pathways and switching from a Luminal A to a Basal-like subtype

    International Nuclear Information System (INIS)

    Need, Eleanor F.; Selth, Luke A.; Trotta, Andrew P.; Leach, Damien A.; Giorgio, Lauren; O’Loughlin, Melissa A.; Smith, Eric; Gill, Peter G.; Ingman, Wendy V.; Graham, J. Dinny; Buchanan, Grant

    2015-01-01

    In breast cancer, progesterone receptor (PR) positivity or abundance is positively associated with survival and treatment response. It was initially believed that PR was a useful diagnostic marker of estrogen receptor activity, but increasingly PR has been recognised to play an important biological role in breast homeostasis, carcinogenesis and metastasis. Although PR expression is almost exclusively observed in estrogen receptor positive tumors, few studies have investigated the cellular mechanisms of PR action in the context of ongoing estrogen signalling. In this study, we contrast PR function in estrogen pretreated ZR-75-1 breast cancer cells with vehicle treated ZR-75-1 and T-47D breast cancer cells using expression microarrays and chromatin immunoprecipitation-sequencing. Estrogen cotreatment caused a dramatic increase in the number of genes regulated by progesterone in ZR-75-1 cells. In T-47D cells that have naturally high levels of PR, estrogen and progesterone cotreatment resulted in a reduction in the number of regulated genes in comparison to treatment with either hormone alone. At a genome level, estrogen pretreatment of ZR-75-1 cells led to a 10-fold increase in the number of PR DNA binding sites detected using ChIP-sequencing. Time course assessment of progesterone regulated genes in the context of estrogen pretreatment highlighted a series of important regulatory pathways, including those driven by epithelial growth factor receptor (EGFR). Importantly, progesterone applied to cells pretreated with estradiol resulted in switching of the PAM50-determined intrinsic breast cancer subtype from Luminal A to Basal-like, and increased the Oncotype DX® Unscaled Recurrence Score. Estrogen pretreatment of breast cancer cells increases PR steady state levels, resulting in an unequivocal progesterone response that upregulates key members of growth factor pathways. The transformative changes progesterone exerts on the breast cancer subtype suggest that these

  11. Progesterone in Breast Cancer Angiogenesis

    OpenAIRE

    Botelho, Monica C.; Soares, Raquel; Alves, Helena

    2015-01-01

    The involvement of steroid hormones in breast carcinogenesis is well established. Recent evidence suggests that angiogenesis can be regulated by hormones. Both oestrogen and progesterone have been implicated in the angiogenic process of hormone-dependent cancers, such as breast cancer. Vascular Endothelial Growth Factor (VEGF) is a growth factor involved in angiogenesis in breast cancer that is up-regulated by estrogens. In our study we evaluated the role of progesterone in the expression of ...

  12. The cis decoy against the estrogen response element suppresses breast cancer cells via target disrupting c-fos not mitogen-activated protein kinase activity.

    Science.gov (United States)

    Wang, Li Hua; Yang, Xiao Yi; Zhang, Xiaohu; Mihalic, Kelly; Xiao, Weihua; Farrar, William L

    2003-05-01

    Breast cancer, the most common malignancy in women, has been demonstrated to be associated with the steroid hormone estrogen and its receptor (ER), a ligand-activated transcription factor. Therefore, we developed a phosphorothiolate cis-element decoy against the estrogen response element (ERE decoy) to target disruption of ER DNA binding and transcriptional activity. Here, we showed that the ERE decoy potently ablated the 17beta-estrogen-inducible cell proliferation and induced apoptosis of human breast carcinoma cells by functionally affecting expression of c-fos gene and AP-1 luciferase gene reporter activity. Specificity of the decoy was demonstrated by its ability to directly block ER binding to a cis-element probe and transactivation. Moreover, the decoy failed to inhibit ER-mediated mitogen-activated protein kinase signaling pathways and cell growth of ER-negative breast cancer cells. Taken together, these data suggest that estrogen-mediated cell growth of breast cancer cells can be preferentially restricted via targeted disruption of ER at the level of DNA binding by a novel and specific decoy strategy applied to steroid nuclear receptors.

  13. Adenosine monophosphate activated protein kinase (AMPK), a mediator of estradiol-induced apoptosis in long-term estrogen deprived breast cancer cells.

    Science.gov (United States)

    Chen, Haiyan; Wang, Ji-Ping; Santen, Richard J; Yue, Wei

    2015-06-01

    Estrogens stimulate growth of hormone-dependent breast cancer but paradoxically induce tumor regress under certain circumstances. We have shown that long-term estrogen deprivation (LTED) enhances the sensitivity of hormone dependent breast cancer cells to estradiol (E2) so that physiological concentrations of estradiol induce apoptosis in these cells. E2-induced apoptosis involve both intrinsic and extrinsic pathways but precise mechanisms remain unclear. We found that exposure of LTED MCF-7 cells to E2 activated AMP activated protein kinase (AMPK). In contrast, E2 inhibited AMPK activation in wild type MCF-7 cells where E2 prevents apoptosis. As a result of AMPK activation, the transcriptional activity of FoxO3, a downstream factor of AMPK, was up-regulated in E2 treatment of LTED. Increased activity of FoxO3 was demonstrated by up-regulation of three FoxO3 target genes, Bim, Fas ligand (FasL), and Gadd45α. Among them, Bim and FasL mediate intrinsic and extrinsic apoptosis respectively and Gadd45α causes cell cycle arrest at the G2/M phase. To further confirm the role of AMPK in apoptosis, we used AMPK activator AICAR in wild type MCF-7 cells and examined apoptosis, proliferation and expression of Bim, FasL, and Gadd45α. The effects of AICAR on these parameters recapitulated those observed in E2-treated LTED cells. Activation of AMPK by AICAR also increased expression of Bax in MCF-7 cells and its localization to mitochondria, which is a required process for apoptosis. These results reveal that AMPK is an important factor mediating E2-induced apoptosis in LTED cells, which is implicative of therapeutic potential for relapsing breast cancer after hormone therapy.

  14. Loss of ERβ expression as a common step in estrogen-dependent tumor progression

    Science.gov (United States)

    Bardin, Allison; Boulle, Nathalie; Lazennec, Gwendal; Vignon, Françoise; Pujol, Pascal

    2004-01-01

    The characterization of estrogen receptor beta (ERβ) brought new insight into the mechanisms underlying estrogen signaling. Estrogen induction of cell proliferation is a crucial step in carcinogenesis of gynecologic target tissues and the mitogenic effects of estrogen in these tissues (e.g. breast, endometrium and ovary) are well documented both in vitro and in vivo. There is also an emerging body of evidence that colon and prostate cancer growth is influenced by estrogens. In all of these tissues, most studies have shown decreased ERβ expression in cancer as compared to benign tumors or normal tissues, whereas ERα expression persists. The loss of ERβ expression in cancer cells could reflect tumor cell dedifferentiation but may also represent a critical stage in estrogen-dependent tumor progression. Modulation of the expression of ERα target genes by ERβ, or ERβ specific gene induction could indicate that ERβ has a differential effect on proliferation as compared to ERα. ERβ may exert a protective effect and thus constitute a new target for hormone therapy, e.g. via ligand specific activation. The potential distinct roles of ERα and ERβ expression in carcinogenesis, as suggested by experimental and clinical data, are discussed in this review. PMID:15369453

  15. Putative Biomarkers and Targets of Estrogen Receptor Negative Human Breast Cancer

    Directory of Open Access Journals (Sweden)

    Stephen W. Byers

    2011-07-01

    Full Text Available Breast cancer is a progressive and potentially fatal disease that affects women of all ages. Like all progressive diseases, early and reliable diagnosis is the key for successful treatment and annihilation. Biomarkers serve as indicators of pathological, physiological, or pharmacological processes. Her2/neu, CA15.3, estrogen receptor (ER, progesterone receptor (PR, and cytokeratins are biomarkers that have been approved by the Food and Drug Administration for disease diagnosis, prognosis, and therapy selection. The structural and functional complexity of protein biomarkers and the heterogeneity of the breast cancer pathology present challenges to the scientific community. Here we review estrogen receptor-related putative breast cancer biomarkers, including those of putative breast cancer stem cells, a minor population of estrogen receptor negative tumor cells that retain the stem cell property of self renewal. We also review a few promising cytoskeleton targets for ER alpha negative breast cancer.

  16. Endogenous estrogens and the risk of breast, endometrial, and ovarian cancers.

    Science.gov (United States)

    Brown, Susan B; Hankinson, Susan E

    2015-07-01

    Data from laboratory and epidemiologic studies support a relationship between endogenous hormones and the increased risk of several female cancers. In epidemiologic studies, consistent associations have been observed between risk of breast, ovarian and endometrial cancers and reproductive and hormonal risk factors such as high postmenopausal body mass index (BMI) and postmenopausal hormone use, which suggest the importance of endogenous hormones in the etiology of these diseases. The relationship between circulating estrogen levels in postmenopausal women and the risk of breast cancer is well established, with an approximately 2-fold higher risk among women in the top 20-25% (versus bottom 20-25%) of levels. However, data evaluating the relationship between endogenous estrogens and premenopausal breast cancer risk are more limited and less consistent. Two studies to date have evaluated the relationship between circulating estrogens and breast cancer risk by menstrual cycle phase at blood collection and only one study has examined this relationship by menopausal status at diagnosis. Three prospective studies have evaluated circulating estrogen levels and endometrial cancer risk in postmenopausal women, with consistent strong positive associations reported (with relative risks of 2-4 comparing high versus low hormone levels), while this relationship has not been studied in premenopausal women. Compared to breast and endometrial cancers, reproductive and hormonal characteristics such as postmenopausal hormone use are generally weaker and less consistent risk factors for ovarian cancer, and the only small prospective study conducted to date indicated a non-significant positive relationship between circulating estrogen levels and ovarian cancer risk. In this review, we summarize current evidence and identify key areas to be addressed in future epidemiologic studies of endogenous estrogens and the risk of breast, endometrial, and ovarian cancers. Copyright © 2015

  17. Estrogens and women's health: interrelation of coronary heart disease, breast cancer and osteoporosis.

    Science.gov (United States)

    Kuller, L H; Matthews, K A; Meilahn, E N

    2000-11-30

    The determinants of blood levels of estrogen, estrogen metabolites, and relation to receptors and post-transitional effects are the likely primary cause of breast cancer. Very high risk women for breast cancer can now be identified by measuring bone mineral density and hormone levels. These high risk women have rates of breast cancer similar to risk of myocardial infarction. They are candidates for SERM therapies to reduce risk of breast cancer. The completion of the Women's Health Initiative and other such trials will likely provide a definite association of risk and benefit of both estrogen alone and estrogen-progesterone therapy, coronary heart disease, osteoporotic fracture, and breast cancer. The potential intervention of hormone replacement therapy, obesity, or weight gain and increased atherogenic lipoproteinemia may be of concern and confound the results of clinical trials. Estrogens, clearly, are important in the risk of bone loss and osteoporotic fracture. Obesity is the primary determinant of postmenopausal estrogen levels and reduced risk of fracture. Weight reduction may increase rates of bone loss and fracture. Clinical trials that evaluate weight loss should monitor effects on bone. The beneficial addition of increased physical activity, higher dose of calcium or vitamin D, or use of bone reabsorption drugs in coordination with weight loss should be evaluated. Any therapy that raises blood estrogen or metabolite activity and decreases bone loss may increase risk of breast cancer. Future clinical trials must evaluate multiple endpoints such as CHD, osteoporosis, and breast cancer within the study. The use of surrogate markers such as bone mineral density, coronary calcium, carotid intimal medial thickness and plaque, endothelial function, breast density, hormone levels and metabolites could enhance the evaluation of risk factors, genetic-environmental intervention, and new therapies.

  18. The Determinations of Estrogen and Progesterone Receptor in Breast Cancer Cell by Radioimmunoassay Method

    International Nuclear Information System (INIS)

    Kim, Chi Yeul

    1981-01-01

    The estrogen and progesterone receptors which are bound to the cytoplasmic protein of cancer cells were measured in 20 patients with the early breast cancer by means of radioimmunoassay using charcoal. 1) The patients with estrogen receptor positive were 13 (65%) of 20 cases and with progestrone receptor positive were 7 cases (35%) in the early breast cancer. 2) Coexistence of estrogen and progesterone receptor positive was noted in 7 cases (35%). The cases of estrogen receptor positive and progesterone receptor negative were 6 cases (33.3%), while there were no cases of estrogen receptor negative with progesterone receptor positive. 3) Coincidence of estrogen and progesterone negative was noticed in 7 cases (35%). Conclusively it is considered that the measurement of estrogen and progesterone receptors has relevance as predictive value, in the response to hormonal manipulations and chemotherapy for breast cancer patients.

  19. Hpm of Estrogen Model on the Dynamics of Breast Cancer

    Science.gov (United States)

    Govindarajan, A.; Balamuralitharan, S.; Sundaresan, T.

    2018-04-01

    We enhance a deterministic mathematical model involving universal dynamics on breast cancer with immune response. This is population model so includes Normal cells class, Tumor cells, Immune cells and Estrogen. The eects regarding Estrogen are below incorporated in the model. The effects show to that amount the arrival of greater Estrogen increases the danger over growing breast cancer. Furthermore, approximate solution regarding nonlinear differential equations is arrived by Homotopy Perturbation Method (HPM). Hes HPM is good and correct technique after solve nonlinear differential equation directly. Approximate solution learnt with the support of that method is suitable same as like the actual results in accordance with this models.

  20. Quantification of Estrogen Receptor Expression in Normal Breast Tissue in Postmenopausal Women With Breast Cancer and Association With Tumor Subtypes.

    Science.gov (United States)

    Gulbahce, H Evin; Blair, Cindy K; Sweeney, Carol; Salama, Mohamed E

    2017-09-01

    Estrogen exposure is important in the pathogenesis of breast cancer and is a contributing risk factor. In this study we quantified estrogen receptor (ER) alpha expression in normal breast epithelium (NBR) in women with breast cancer and correlated it with breast cancer subtypes. Tissue microarrays were constructed from 204 breast cancer patients for whom normal breast tissue away from tumor was available. Slides stained with ER were scanned and expression in normal terminal duct lobular epithelium was quantitated using computer-assisted image analysis. ER expression in normal terminal duct lobular epithelium of postmenopausal women with breast cancer was significantly associated with estrogen and triple (estrogen, progesterone receptors, and HER2) negative phenotypes. Also increased age at diagnosis was significantly associated with ER expression in NBR. ER positivity in normal epithelium did not vary by tumor size, lymph node status, tumor grade, or stage. On the basis of quantitative image analysis, we confirm that ER expression in NBR increases with age in women with breast cancer, and report for the first time, a significant association between ER expression in NBR with ER-negative and triple-negative cancers in postmenopausal women.

  1. An estrogen-associated dietary pattern and breast cancer risk in the Swedish Mammography Cohort.

    Science.gov (United States)

    Harris, Holly R; Bergkvist, Leif; Wolk, Alicja

    2015-11-01

    High endogenous hormone levels have been associated with breast cancer and dietary factors have the potential to influence breast cancer risk through effects on hormone levels. Dietary patterns derived from reduced rank regression provide a way to identify food groups correlated with hormones and subsequently examine food patterns that may be associated with breast cancer risk. We investigated whether a dietary pattern previously correlated with estradiol and estrone sulfate was associated with breast cancer in the prospective Swedish Mammography Cohort. Among 37,004 primarily postmenopausal women diet was assessed with a food frequency questionnaire. Cox proportional hazard models were used to calculate hazard ratios (HRs) and 95% confidence intervals (95% CIs). During 15 years of follow-up 1,603 cases of breast cancer were identified. A higher estrogen dietary pattern score was associated with an increased risk of breast cancer. Women in the highest quartile of estrogen pattern score had a 29% (95% CI = 1.08-1.55) increased risk of breast cancer compared to women in the lowest quartile (p(trend) = 0.006). When the association was examined by estrogen-receptor status, it was only significant for those with estrogen-receptor-positive tumors; however, in the competing risk analysis there were no significant differences in the effect estimates by receptor subtype (p(heterogeneity) = 0.65). Our findings suggest that a dietary pattern associated with higher estrogen levels may increase breast cancer risk. However, whether the influence of this dietary pattern is through a direct effect on estrogen levels deserves further study. © 2015 UICC.

  2. Estrogen receptor-α36 is involved in pterostilbene-induced apoptosis and anti-proliferation in in vitro and in vivo breast cancer.

    Directory of Open Access Journals (Sweden)

    Chi Pan

    Full Text Available Pterostilbene (trans-3,5-dimethoxy-4'-hudroxystilbene is an antioxidant primarily found in blueberries. It also inhibits breast cancer regardless of conventional estrogen receptor (ER-α66 status by inducing both caspase-dependent and caspase-independent apoptosis. However, the pterostilbene-induced apoptosis rate in ER-α66-negative breast cancer cells is much higher than that in ER-α66-positive breast cancer cells. ER-α36, a variant of ER-α66, is widely expressed in ER-α66-negative breast cancer, and its high expression mediates the resistance of ER-α66-positive breast cancer patients to tamoxifen therapy. The aim of the present study is to determine the relationship between the antiproliferation activity of pterostilbene and ER-α36 expression in breast cancer cells. Methyl-thiazolyl-tetrazolium (MTT assay, apoptosis analysis, and an orthotropic xenograft mouse model were used to examine the effects of pterostilbene on breast cancer cells. The expressions of ER-α36 and caspase 3, the activation of ERK and Akt were also studied through RT-PCR, western blot analysis, and immunohistochemical (IHC staining. ER-α36 knockdown was found to desensitize ER-α66-negative breast cancer cells to pterostilbene treatment both in vitro and in vivo, and high ER-α36 expression promotes pterostilbene-induced apoptosis in breast cancer cells. Western blot analysis data indicate that MAPK/ERK and PI3K/Akt signaling in breast cancer cells with high ER-α36 expression are mediated by ER-α36, and are inhibited by pterostilbene. These results suggest that ER-α36 is a therapeutic target in ER-α36-positive breast cancer, and pterostilbene is an inhibitor that targets ER-α36 in the personalized therapy against ER-α36-positive breast cancer.

  3. Global identification of genes regulated by estrogen signaling and demethylation in MCF-7 breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Putnik, Milica, E-mail: milica.putnik@ki.se [Department of Biosciences and Nutrition, Novum, Karolinska Institutet, Huddinge S-14183 (Sweden); Zhao, Chunyan, E-mail: chunyan.zhao@ki.se [Department of Biosciences and Nutrition, Novum, Karolinska Institutet, Huddinge S-14183 (Sweden); Gustafsson, Jan-Ake, E-mail: jan-ake.gustafsson@ki.se [Department of Biosciences and Nutrition, Novum, Karolinska Institutet, Huddinge S-14183 (Sweden); Department of Biology and Biochemistry, Science and Engineering Research Center Bldg, University of Houston, Houston, TX 77204-5056 (United States); Dahlman-Wright, Karin, E-mail: karin.dahlman-wright@ki.se [Department of Biosciences and Nutrition, Novum, Karolinska Institutet, Huddinge S-14183 (Sweden)

    2012-09-14

    Highlights: Black-Right-Pointing-Pointer Estrogen signaling and demethylation can both control gene expression in breast cancers. Black-Right-Pointing-Pointer Cross-talk between these mechanisms is investigated in human MCF-7 breast cancer cells. Black-Right-Pointing-Pointer 137 genes are influenced by both 17{beta}-estradiol and demethylating agent 5-aza-2 Prime -deoxycytidine. Black-Right-Pointing-Pointer A set of genes is identified as targets of both estrogen signaling and demethylation. Black-Right-Pointing-Pointer There is no direct molecular interplay of mediators of estrogen and epigenetic signaling. -- Abstract: Estrogen signaling and epigenetic modifications, in particular DNA methylation, are involved in regulation of gene expression in breast cancers. Here we investigated a potential regulatory cross-talk between these two pathways by identifying their common target genes and exploring underlying molecular mechanisms in human MCF-7 breast cancer cells. Gene expression profiling revealed that the expression of approximately 140 genes was influenced by both 17{beta}-estradiol (E2) and a demethylating agent 5-aza-2 Prime -deoxycytidine (DAC). Gene ontology (GO) analysis suggests that these genes are involved in intracellular signaling cascades, regulation of cell proliferation and apoptosis. Based on previously reported association with breast cancer, estrogen signaling and/or DNA methylation, CpG island prediction and GO analysis, we selected six genes (BTG3, FHL2, PMAIP1, BTG2, CDKN1A and TGFB2) for further analysis. Tamoxifen reverses the effect of E2 on the expression of all selected genes, suggesting that they are direct targets of estrogen receptor. Furthermore, DAC treatment reactivates the expression of all selected genes in a dose-dependent manner. Promoter CpG island methylation status analysis revealed that only the promoters of BTG3 and FHL2 genes are methylated, with DAC inducing demethylation, suggesting DNA methylation directs repression of

  4. Global identification of genes regulated by estrogen signaling and demethylation in MCF-7 breast cancer cells

    International Nuclear Information System (INIS)

    Putnik, Milica; Zhao, Chunyan; Gustafsson, Jan-Åke; Dahlman-Wright, Karin

    2012-01-01

    Highlights: ► Estrogen signaling and demethylation can both control gene expression in breast cancers. ► Cross-talk between these mechanisms is investigated in human MCF-7 breast cancer cells. ► 137 genes are influenced by both 17β-estradiol and demethylating agent 5-aza-2′-deoxycytidine. ► A set of genes is identified as targets of both estrogen signaling and demethylation. ► There is no direct molecular interplay of mediators of estrogen and epigenetic signaling. -- Abstract: Estrogen signaling and epigenetic modifications, in particular DNA methylation, are involved in regulation of gene expression in breast cancers. Here we investigated a potential regulatory cross-talk between these two pathways by identifying their common target genes and exploring underlying molecular mechanisms in human MCF-7 breast cancer cells. Gene expression profiling revealed that the expression of approximately 140 genes was influenced by both 17β-estradiol (E2) and a demethylating agent 5-aza-2′-deoxycytidine (DAC). Gene ontology (GO) analysis suggests that these genes are involved in intracellular signaling cascades, regulation of cell proliferation and apoptosis. Based on previously reported association with breast cancer, estrogen signaling and/or DNA methylation, CpG island prediction and GO analysis, we selected six genes (BTG3, FHL2, PMAIP1, BTG2, CDKN1A and TGFB2) for further analysis. Tamoxifen reverses the effect of E2 on the expression of all selected genes, suggesting that they are direct targets of estrogen receptor. Furthermore, DAC treatment reactivates the expression of all selected genes in a dose-dependent manner. Promoter CpG island methylation status analysis revealed that only the promoters of BTG3 and FHL2 genes are methylated, with DAC inducing demethylation, suggesting DNA methylation directs repression of these genes in MCF-7 cells. In a further analysis of the potential interplay between estrogen signaling and DNA methylation, E2 treatment

  5. Clinical validation of nuclear factor kappa B expression in invasive breast cancer.

    Science.gov (United States)

    Agrawal, Anil Kumar; Pielka, Ewa; Lipinski, Artur; Jelen, Michal; Kielan, Wojciech; Agrawal, Siddarth

    2018-01-01

    Breast cancer is the most commonly diagnosed cancer in Polish women. The expression of transcription nuclear factor kappa B, a key inducer of inflammatory response promoting carcinogenesis and cancer progression in breast cancer, is not well-established. We assessed the nuclear factor kappa B expression in a total of 119 invasive breast carcinomas and 25 healthy control samples and correlated this expression pattern with several clinical and pathologic parameters including histologic type and grade, tumor size, lymph node status, estrogen receptor status, and progesterone receptor status. The data used for the analysis were derived from medical records. An immunohistochemical analysis of nuclear factor kappa B, estrogen receptor, and progesterone receptor was carried out and evaluation of stainings was performed. The expression of nuclear factor kappa B was significantly higher than that in the corresponding healthy control samples. No statistical difference was demonstrated in nuclear factor kappa B expression in relation to age, menopausal status, lymph node status, tumor size and location, grade and histologic type of tumor, and hormonal status (estrogen receptor and progesterone receptor). Nuclear factor kappa B is significantly overexpressed in invasive breast cancer tissues. Although nuclear factor kappa B status does not correlate with clinicopathological findings, it might provide important additional information on prognosis and become a promising object for targeted therapy.

  6. Progesterone receptor modulators in breast cancer

    OpenAIRE

    WIEHLE, Ronald D.

    2015-01-01

    Breast cancer has been treated successfully with selective estrogen receptor antagonists (SERMs) such as tamoxifen, receptor-depleting agents such as fulvestrant, and aromatase inhibitors such as anastrozole. Selective progesterone receptor modulators (SPRMs or PRMs) have not been studied as much and are currently under investigation for inhibition of mammary carcinogenesis in animal models and breast cancer prevention trials in women. They might follow tamoxifen and aromatase inhibitors in t...

  7. Levels of estrogen, carcinoembryonic antigen and cancer antigen of breast in breast cancer patients

    International Nuclear Information System (INIS)

    Abdelhadi, H. A.

    2005-09-01

    This study was conducted during the period from february 2004 to July 2004; with the objective of measuring the levels of estrogen (E2), carcinoembryonic antigen (CEA) and cancer antigen of breast (CA-15.3) so as to facilitate the early diagnosis of breast cancer and determine the involvement of these parameters as risk factors for breast cancer. Ninety blood samples were collected from Sudanese females, divided into two groups; control group and patient groups. The patients group was sixty Sudanese females visiting the Radio Isotope Center, Khartoum (RICK) and they were confirmed as breast cancer patient by histopathology. The levels of the above mentioned parameters were determined by using radioimmunoassay technique. The results showed that, no significant (p=0.05) difference between the levels of the estrogen in patients compared to the control, on the other hand there was non significant (p>0.05) elevation in CEA levels in the patients with breast cancer compared to the control. The level of CA15.3 was significantly (p<0.0001) higher in the breast cancer patients compared to the control.(Author)

  8. Regulation of DNA Damage Response by Estrogen Receptor β-Mediated Inhibition of Breast Cancer Associated Gene 2

    Directory of Open Access Journals (Sweden)

    Yuan-Hao Lee

    2015-04-01

    Full Text Available Accumulating evidence suggests that ubiquitin E3 ligases are involved in cancer development as their mutations correlate with genomic instability and genetic susceptibility to cancer. Despite significant findings of cancer-driving mutations in the BRCA1 gene, estrogen receptor (ER-positive breast cancers progress upon treatment with DNA damaging-cytotoxic therapies. In order to understand the underlying mechanism by which ER-positive breast cancer cells develop resistance to DNA damaging agents, we employed an estrogen receptor agonist, Erb-041, to increase the activity of ERβ and negatively regulate the expression and function of the estrogen receptor α (ERα in MCF-7 breast cancer cells. Upon Erb-041-mediated ERα down-regulation, the transcription of an ERα downstream effector, BCA2 (Breast Cancer Associated gene 2, correspondingly decreased. The ubiquitination of chromatin-bound BCA2 was induced by ultraviolet C (UVC irradiation but suppressed by Erb-041 pretreatment, resulting in a blunted DNA damage response. Upon BCA2 silencing, DNA double-stranded breaks increased with Rad51 up-regulation and ataxia telangiectasia mutated (ATM activation. Mechanistically, UV-induced BCA2 ubiquitination and chromatin binding were found to promote DNA damage response and repair via the interaction of BCA2 with ATM, γH2AX and Rad51. Taken together, this study suggests that Erb-041 potentiates BCA2 dissociation from chromatin and co-localization with Rad51, resulting in inhibition of homologous recombination repair.

  9. Novel drugs that target the estrogen-related receptor alpha: their therapeutic potential in breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    May, Felicity EB, E-mail: F.E.B.May@ncl.ac.uk [Northern Institute for Cancer Research and Department of Pathology, Faculty of Medical Sciences, University of Newcastle upon Tyne, Newcastle upon Tyne (United Kingdom)

    2014-05-23

    The incidence of breast cancer continues to rise: 1.7 million women were diagnosed with and 521,000 women died from breast cancer in 2012. This review considers first current treatment options: surgery; radiotherapy; and systemic endocrine, anti-biological, and cytotoxic therapies. Clinical management includes prevention, early detection by screening, treatment with curative intent, management of chronic disease, and palliative control of advanced breast cancer. Next, the potential of novel drugs that target DNA repair, growth factor dependence, intracellular and intercellular signal transduction, and cell cycle are considered. Estrogen-related receptor alpha has attracted attention as a therapeutic target in triple-negative breast cancers with de novo resistance to, and in breast cancers with acquired resistance to, endocrine therapies such as antiestrogens and aromatase inhibitors. Estrogen-related receptor alpha is an orphan receptor and transcription factor. Its activity is regulated by coregulator proteins and posttranslational modification. It is an energy sensor that controls adaptation to energy demand and may facilitate glycolytic metabolism and mitochondrial oxidative respiration in breast cancer cells. Estrogen-related receptor alpha increases breast cancer cell migration, proliferation, and tumor development. It is expressed at high levels in estrogen receptor-negative tumors, and is proposed to activate estrogen-responsive genes in endocrine-resistant tumors. The structures and functions of the ligand-binding domains of estrogen receptor alpha and estrogen-related receptor alpha, their ability to bind estrogens, phytoestrogens, and synthetic ligands, and the effects of ligand agonists, antagonists, and inverse agonists on biological activity, are evaluated. Synthetic ligands of estrogen-related receptor alpha have activity in preclinical models of metabolic disorders, diabetes, osteoporosis, and oncology. The clinical settings in which these novel

  10. Novel drugs that target the estrogen-related receptor alpha: their therapeutic potential in breast cancer

    International Nuclear Information System (INIS)

    May, Felicity EB

    2014-01-01

    The incidence of breast cancer continues to rise: 1.7 million women were diagnosed with and 521,000 women died from breast cancer in 2012. This review considers first current treatment options: surgery; radiotherapy; and systemic endocrine, anti-biological, and cytotoxic therapies. Clinical management includes prevention, early detection by screening, treatment with curative intent, management of chronic disease, and palliative control of advanced breast cancer. Next, the potential of novel drugs that target DNA repair, growth factor dependence, intracellular and intercellular signal transduction, and cell cycle are considered. Estrogen-related receptor alpha has attracted attention as a therapeutic target in triple-negative breast cancers with de novo resistance to, and in breast cancers with acquired resistance to, endocrine therapies such as antiestrogens and aromatase inhibitors. Estrogen-related receptor alpha is an orphan receptor and transcription factor. Its activity is regulated by coregulator proteins and posttranslational modification. It is an energy sensor that controls adaptation to energy demand and may facilitate glycolytic metabolism and mitochondrial oxidative respiration in breast cancer cells. Estrogen-related receptor alpha increases breast cancer cell migration, proliferation, and tumor development. It is expressed at high levels in estrogen receptor-negative tumors, and is proposed to activate estrogen-responsive genes in endocrine-resistant tumors. The structures and functions of the ligand-binding domains of estrogen receptor alpha and estrogen-related receptor alpha, their ability to bind estrogens, phytoestrogens, and synthetic ligands, and the effects of ligand agonists, antagonists, and inverse agonists on biological activity, are evaluated. Synthetic ligands of estrogen-related receptor alpha have activity in preclinical models of metabolic disorders, diabetes, osteoporosis, and oncology. The clinical settings in which these novel

  11. The T61 human breast cancer xenograft: an experimental model of estrogen therapy of breast cancer

    DEFF Research Database (Denmark)

    Brunner, N; Spang-Thomsen, M; Cullen, K

    1996-01-01

    Endocrine therapy is one of the principal treatment modalities of breast cancer, both in an adjuvant setting and in advanced disease. The T61 breast cancer xenograft described here provides an experimental model of the effects of estrogen treatment at a molecular level. T61 is an estrogen receptor......-II), but not transforming growth factor beta-I (TGF-beta1). Of these, IGF-II is the only peptide whose expression is altered by endocrine therapy. Treatment of T61-bearing nude mice with physiologic doses of estrogen is accompanied by loss of IGF-II mRNA expression within 24 hours, and rapid regression of tumor. T61 tumor...

  12. Candidate mechanisms accounting for effects of physical activity on breast carcinogenesis.

    Science.gov (United States)

    Thompson, Henry J; Jiang, Weiqin; Zhu, Zongjian

    2009-09-01

    Evidence is strong that a reduction in risk for breast cancer is associated with moderate to vigorous physical activity (PA); however, there is limited understanding of the role of type, intensity, duration, and frequency of PA and their mechanisms in accounting for this health benefit. The objective of this review is to stimulate investigations of candidate mechanisms that may account for the effects of the intensity and duration of aerobic PA on breast cancer risk and tumor burden. Three hypotheses are considered: 1) the mTOR network hypothesis: PA inhibits carcinogenesis by suppressing the activation of the mTOR signaling network in mammary carcinomas; 2) the hormesis hypothesis: the carcinogenic response to PA is nonlinear and accounted for by a physiological cellular stress response; and 3) the metabolic reprogramming hypothesis: PA limits the amount of glucose and glutamine available to mammary carcinomas thereby inducing apoptosis because tumor-associated metabolic programming is reversed. To link these hypotheses to systemic effects of PA, it is recommended that consideration be given to determining: 1) what contracting muscle releases into circulation or removes from circulation that would directly modulate the carcinogenic process in epithelial cells; 2) whether the effects of muscle contraction on epithelial cell carcinogenesis are exerted in an endocrine, paracrine, autocrine, or intracrine manner; and 3) if the effects of muscle contraction on malignant cells differ from effects on normal or premalignant cells that do not manifest the hallmarks of malignancy. (c) 2009 IUBMB

  13. Bromine-77-labeled estrogen receptor-binding radiopharmaceuticals for breast tumor imaging

    International Nuclear Information System (INIS)

    McElvany, K.D.

    1985-01-01

    Two derivatives of 16α-bromoestradiol, both with and without an 11β-methoxy substituent, have been labeled with bromine-77 and evaluated as potential breast tumor imaging agents. Extensive characterization of these radiotracers in animal models has demonstrated their effective concentration in estrogen target tissues. Preliminary clinical studies have demonstrated the potential of radiolabeled estrogens for breast tumor imaging; however, the suboptimal decay properties of bromine-77 limit the utility of these agents in imaging studies. These results with 77 -Br-labeled estrogens suggest that estrogen derivatives labeled with other radionuclides should provide enhanced image resolution with various imaging devices. Although the decay characteristics of bromine-77 are such that it is not ideally suited to imaging with conventional gamma cameras, it may be a useful radionuclide for therapeutic applications

  14. Interaction between APC and Fen1 during breast carcinogenesis.

    Science.gov (United States)

    Narayan, Satya; Jaiswal, Aruna S; Law, Brian K; Kamal, Mohammad A; Sharma, Arun K; Hromas, Robert A

    2016-05-01

    Aberrant DNA base excision repair (BER) contributes to malignant transformation. However, inter-individual variations in DNA repair capacity plays a key role in modifying breast cancer risk. We review here emerging evidence that two proteins involved in BER - adenomatous polyposis coli (APC) and flap endonuclease 1 (Fen1) - promote the development of breast cancer through novel mechanisms. APC and Fen1 expression and interaction is increased in breast tumors versus normal cells, APC interacts with and blocks Fen1 activity in Pol-β-directed LP-BER, and abrogation of LP-BER is linked with cigarette smoke condensate-induced transformation of normal breast epithelial cells. Carcinogens increase expression of APC and Fen1 in spontaneously immortalized human breast epithelial cells, human colon cancer cells, and mouse embryonic fibroblasts. Since APC and Fen1 are tumor suppressors, an increase in their levels could protect against carcinogenesis; however, this does not seem to be the case. Elevated Fen1 levels in breast and lung cancer cells may reflect the enhanced proliferation of cancer cells or increased DNA damage in cancer cells compared to normal cells. Inactivation of the tumor suppressor functions of APC and Fen1 is due to their interaction, which may act as a susceptibility factor for breast cancer. The increased interaction of APC and Fen1 may occur due to polypmorphic and/or mutational variation in these genes. Screening of APC and Fen1 polymorphic and/or mutational variations and APC/Fen1 interaction may permit assessment of individual DNA repair capability and the risk for breast cancer development. Such individuals might lower their breast cancer risk by reducing exposure to carcinogens. Stratifying individuals according to susceptibility would greatly assist epidemiologic studies of the impact of suspected environmental carcinogens. Additionally, a mechanistic understanding of the interaction of APC and Fen1 may provide the basis for developing new and

  15. Long-term Safety of Pregnancy Following Breast Cancer According to Estrogen Receptor Status

    DEFF Research Database (Denmark)

    Lambertini, Matteo; Kroman, Niels; Ameye, Lieveke

    2018-01-01

    Safety of pregnancy in women with history of estrogen receptor (ER)-positive breast cancer remains controversial. In this multicenter case-control study, 333 patients with pregnancy after breast cancer were matched (1:3) to 874 nonpregnant patients of similar characteristics, adjusting for guaran......Safety of pregnancy in women with history of estrogen receptor (ER)-positive breast cancer remains controversial. In this multicenter case-control study, 333 patients with pregnancy after breast cancer were matched (1:3) to 874 nonpregnant patients of similar characteristics, adjusting...

  16. Estrogens and growth factors induce the mRNA of the 52K-pro-cathepsin-D secreted by breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Cavailles, V; Augereau, P; Garcia, M; Rochefort, H

    1988-03-25

    The estrogen-induced 52K protein secreted by human breast cancer cells is a lysosomal protease recently identified as a pro-cathepsin D by sequencing several cDNA clones isolated from MCF/sub 7/ cells. Using one of these clones, the authors detected, in MCF/sub 7/ cells a 2.2 kb mRNA whose level was rapidly increased 4- to 10-fold by estradiol, but not by other classes of steroids. Other mitogens, such as epidermal growth factor and insulin, also induced the 2.2 kb mRNA in a dose-dependent manner. Induction with epidermal growth factor was as rapid but was 2- to 3-fold lower than with estradiol. Antiestrogens had no effect on the 52K-cathepsin-D mRNA in MCF/sub 7/ cells, but became estrogen agonists in two antiestrogen-resistant sublines R/sub 27/ and LY2. The use of transcription and translation inhibitors and nuclear run-on experiments indicate that estradiol enhances transcription of the 52K-cathepsin-D gene in MCF/sub 7/ cells.

  17. Genetic alterations during radiation-induced carcinogenesis

    International Nuclear Information System (INIS)

    Kodama, Seiji

    1995-01-01

    This paper reviews radiation-induced genetic alterations and its carcinogenesis, focusing on the previous in vitro assay outcome. A colony formation assay using Syrian hamster fetal cells and focus formation assay using mouse C3H10T1/2 cells are currently available to find malignant transformation of cells. Such in vitro assays has proposed the hypothesis that radiation-induced carcinogenesis arises from at least two-stage processes; i.e., that an early step induced by irradiation plays an important role in promoting the potential to cause the subsequent mutation. A type of genetic instability induced by radiation results in a persistently elevated frequency of spontaneous mutations, so-called the phenomenon of delayed reproductive death. One possible mechanism by which genetic instability arises has been shown to be due to the development of abnormality in the gene group involved in the maintenance mechanism of genome stability. Another possibility has also been shown to stem from the loss of telomere (the extremities of a chromosome). The importance of search for radiation-induced genetic instability is emphasized in view of the elucidation of carcinogenesis. (N.K.)

  18. The effects of 17β-estradiol and a selective estrogen receptor modulator, bazedoxifene, on ovarian carcinogenesis.

    Science.gov (United States)

    Romero, Iris L; Lee, WooSeok; Mitra, Anirban K; Gordon, Ilyssa O; Zhao, Yan; Leonhardt, Payton; Penicka, Carla V; Mui, Keeley L; Krausz, Thomas N; Greene, Geoffrey L; Lengyel, Ernst

    2012-01-01

    To test if estrogen promotes carcinogenesis in vitro and in a genetic mouse model of ovarian cancer and whether its effects can be inhibited by a novel selective estrogen receptor modulator (SERM), bazedoxifene. Bazedoxifene was synthesized and it was confirmed that the drug abrogated the uterine stimulatory effect of 17β-estradiol in mice. To determine if hormones alter tumorigenesis in vivo LSL-K-ras(G12D/+)Pten(loxP/loxP) mice were treated with vehicle control, 17β-estradiol or bazedoxifene. Hormone receptor status of a cell line established from LSL-K-ras(G12D/+)Pten(loxP/loxP) mouse ovarian tumors was characterized using Western blotting and immunohistochemistry. The cell line was treated with hormones and invasion assays were performed using Boyden chambers and proliferation was assessed using MTT assays. In vitro 17β-estradiol increased both the invasion and proliferation of ovarian cancer cells and bazedoxifene reversed these effects. However, in the genetic mouse model neither treatment with 17β-estradiol nor bazedoxifene changed mean tumor burden when compared to treatment with placebo. The mice in all treatment groups had similar tumor incidence, metastatic nodules and ascites. While 17β-estradiol increases the invasion and proliferation of ovarian cancer cells, these effects do not translate into increased tumor burden in a genetic mouse model of endometrioid ovarian cancer. Likewise, while the SERM reversed the detrimental effects of estrogen in vitro, there was no change in tumor burden in mice treated with bazedoxifene. These findings demonstrate the complex interplay between hormones and ovarian carcinogenesis. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. Prepubertal exposure to cow's milk reduces susceptibility to carcinogen-induced mammary tumorigenesis in rats

    DEFF Research Database (Denmark)

    Nielsen, Tina Skau; Khan, Galam; Davis, Jennifer

    2011-01-01

    Cow's milk contains high levels of estrogens, progesterone and insulin-like growth factor 1 (IGF-1), all of which are associated with breast cancer. We investigated whether prepubertal milk exposure affects mammary gland development and carcinogenesis in rats. Sprague-Dawley rats were given either...... whole milk or tap water to drink from postnatal day (PND) 14 to PND 35, and thereafter normal tap water. Mammary tumorigenesis was induced by administering 7,12-dimethylbenz[a]anthracene on PND 50. Milk exposure increased circulating E2 levels on PND 25 by 10-fold (p ... opening, which marks puberty onset, by 2.5 days (p milk before puberty exhibited reduced carcinogen-induced mammary carcinogenesis; that is, their tumor latency was longer (p

  20. Tamoxifen or letrozole versus standard methods for women with estrogen-receptor positive breast cancer undergoing oocyte or embryo cryopreservation in assisted reproduction

    NARCIS (Netherlands)

    Dahhan, Taghride; Balkenende, Eva; van Wely, Madelon; Linn, Sabine; Goddijn, Mariette

    2013-01-01

    Cryopreservation of oocytes or embryos preceded by controlled ovarian stimulation (COS) can increase the chance of future pregnancy in women with breast cancer who risk therapy-induced ovarian failure. In women with estrogen-receptor (ER) positive breast cancer, alternative COS protocols with

  1. Estrogen Drives Cellular Transformation and Mutagenesis in Cells Expressing the Breast Cancer-Associated R438W DNA Polymerase Lambda Protein.

    Science.gov (United States)

    Nemec, Antonia A; Bush, Korie B; Towle-Weicksel, Jamie B; Taylor, B Frazier; Schulz, Vincent; Weidhaas, Joanne B; Tuck, David P; Sweasy, Joann B

    2016-11-01

    Repair of DNA damage is critical for maintaining the genomic integrity of cells. DNA polymerase lambda (POLL/Pol λ) is suggested to function in base excision repair (BER) and nonhomologous end-joining (NHEJ), and is likely to play a role in damage tolerance at the replication fork. Here, using next-generation sequencing, it was discovered that the POLL rs3730477 single-nucleotide polymorphism (SNP) encoding R438W Pol λ was significantly enriched in the germlines of breast cancer patients. Expression of R438W Pol λ in human breast epithelial cells induces cellular transformation and chromosomal aberrations. The role of estrogen was assessed as it is commonly used in hormone replacement therapies and is a known breast cancer risk factor. Interestingly, the combination of estrogen treatment and the expression of the R438W Pol λ SNP drastically accelerated the rate of transformation. Estrogen exposure produces 8-oxoguanine lesions that persist in cells expressing R438W Pol λ compared with wild-type (WT) Pol λ-expressing cells. Unlike WT Pol λ, which performs error-free bypass of 8-oxoguanine lesions, expression of R438W Pol λ leads to an increase in mutagenesis and replicative stress in cells treated with estrogen. Together, these data suggest that individuals who carry the rs3730477 POLL germline variant have an increased risk of estrogen-associated breast cancer. The Pol λ R438W mutation can serve as a biomarker to predict cancer risk and implicates that treatment with estrogen in individuals with this mutation may further increase their risk of breast cancer. Mol Cancer Res; 14(11); 1068-77. ©2016 AACR. ©2016 American Association for Cancer Research.

  2. Breast cancer induced by protracted radiation exposures

    International Nuclear Information System (INIS)

    Elkind, M.M.

    1997-01-01

    The experience at Hiroshima/Nagasaki demonstrated that breast cancer can be induced by single doses of ionizing radiation following latencies of 10-40 years. Several epidemiological studies, usually involving ancillary low-LET radiation to the breast, have demonstrated that breast cancer can be induced by protracted exposures, with similar latencies, and with similar dependencies on dose. Radiobiologically these results suggest that the target cells involved were deficient in repair of low-LET damage even when the protraction was over months to years. Since three-quarters of breast tumors originate in the ducts where their proliferation is controlled by menstrual-cycle timed estrogen/progesterone secretions, these cells periodically were in cycle. Thus, the two main elements of a conceptual model for radon-induced lung cancer -- kinetics and deficient repair -- are satisfied. The model indicates that breast cancer could be the cumulative effect of protracted small exposures, the risk from any one of which ordinarily would be quite small. (author)

  3. MIBE acts as antagonist ligand of both estrogen receptor α and GPER in breast cancer cells.

    Science.gov (United States)

    Lappano, Rosamaria; Santolla, Maria Francesca; Pupo, Marco; Sinicropi, Maria Stefania; Caruso, Anna; Rosano, Camillo; Maggiolini, Marcello

    2012-01-17

    The multiple biological responses to estrogens are mainly mediated by the classical estrogen receptors ERα and ERβ, which act as ligand-activated transcription factors. ERα exerts a main role in the development of breast cancer; therefore, the ER antagonist tamoxifen has been widely used although its effectiveness is limited by de novo and acquired resistance. Recently, GPR30/GPER, a member of the seven-transmembrane G protein-coupled receptor family, has been implicated in mediating the effects of estrogens in various normal and cancer cells. In particular, GPER triggered gene expression and proliferative responses induced by estrogens and even ER antagonists in hormone-sensitive tumor cells. Likewise, additional ER ligands showed the ability to bind to GPER eliciting promiscuous and, in some cases, opposite actions through the two receptors. We synthesized a novel compound (ethyl 3-[5-(2-ethoxycarbonyl-1-methylvinyloxy)-1-methyl-1H-indol-3-yl]but-2-enoate), referred to as MIBE, and investigated its properties elicited through ERα and GPER in breast cancer cells. Molecular modeling, binding experiments and functional assays were performed in order to evaluate the biological action exerted by MIBE through ERα and GPER in MCF7 and SkBr3 breast cancer cells. MIBE displayed the ability to act as an antagonist ligand for ERα and GPER as it elicited inhibitory effects on gene transcription and growth effects by binding to both receptors in breast cancer cells. Moreover, GPER was required for epidermal growth factor receptor (EGFR) and ERK activation by EGF as ascertained by using MIBE and performing gene silencing experiments. Our findings provide novel insights on the functional cross-talk between GPER and EGFR signaling. Furthermore, the exclusive antagonistic activity exerted by MIBE on ERα and GPER could represent an innovative pharmacological approach targeting breast carcinomas which express one or both receptors at the beginning and/or during tumor

  4. Homeobox A7 stimulates breast cancer cell proliferation by up-regulating estrogen receptor-alpha

    International Nuclear Information System (INIS)

    Zhang, Yu; Cheng, Jung-Chien; Huang, He-Feng; Leung, Peter C.K.

    2013-01-01

    Highlights: •HOXA7 regulates MCF7 cell proliferation. •HOXA7 up-regulates ERα expression. •HOXA7 mediates estrogen-induced MCF7 cell proliferation. -- Abstract: Breast cancer is the most common hormone-dependent malignancy in women. Homeobox (HOX) transcription factors regulate many cellular functions, including cell migration, proliferation and differentiation. The aberrant expression of HOX genes has been reported to be associated with human reproductive cancers. Estradiol (E2) and its nuclear receptors, estrogen receptor (ER)-alpha and ER-beta, are known to play critical roles in the regulation of breast cancer cell growth. However, an understanding of the potential relationship between HOXA7 and ER in breast cancer cells is limited. In this study, our results demonstrate that knockdown of HOXA7 in MCF7 cells significantly decreased cell proliferation and ERα expression. In addition, HOXA7 knockdown attenuated E2-induced cell proliferation as well as progesterone receptor (PR) expression. The stimulatory effects of E2 on cell proliferation and PR expression were abolished by co-treatment with ICI 182780, a selective ERα antagonist. In contrast, overexpression of HOXA7 significantly stimulated cell proliferation and ERα expression. Moreover, E2-induced cell proliferation, as well as PR expression, was enhanced by the overexpression of HOXA7. Neither knockdown nor overexpression of HOXA7 affected the ER-beta levels. Our results demonstrate a novel mechanistic role for HOXA7 in modulating breast cancer cell proliferation via regulation of ERα expression. This finding contributes to our understanding of the role HOXA7 plays in regulating the proliferation of ER-positive cancer cells

  5. Homeobox A7 stimulates breast cancer cell proliferation by up-regulating estrogen receptor-alpha

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yu [Department of Reproductive Endocrinology, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou 310006 (China); Department of Obstetrics and Gynaecology, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4 (Canada); Cheng, Jung-Chien [Department of Obstetrics and Gynaecology, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4 (Canada); Huang, He-Feng, E-mail: huanghefg@hotmail.com [Department of Reproductive Endocrinology, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou 310006 (China); Leung, Peter C.K., E-mail: peter.leung@ubc.ca [Department of Reproductive Endocrinology, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou 310006 (China); Department of Obstetrics and Gynaecology, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4 (Canada)

    2013-11-01

    Highlights: •HOXA7 regulates MCF7 cell proliferation. •HOXA7 up-regulates ERα expression. •HOXA7 mediates estrogen-induced MCF7 cell proliferation. -- Abstract: Breast cancer is the most common hormone-dependent malignancy in women. Homeobox (HOX) transcription factors regulate many cellular functions, including cell migration, proliferation and differentiation. The aberrant expression of HOX genes has been reported to be associated with human reproductive cancers. Estradiol (E2) and its nuclear receptors, estrogen receptor (ER)-alpha and ER-beta, are known to play critical roles in the regulation of breast cancer cell growth. However, an understanding of the potential relationship between HOXA7 and ER in breast cancer cells is limited. In this study, our results demonstrate that knockdown of HOXA7 in MCF7 cells significantly decreased cell proliferation and ERα expression. In addition, HOXA7 knockdown attenuated E2-induced cell proliferation as well as progesterone receptor (PR) expression. The stimulatory effects of E2 on cell proliferation and PR expression were abolished by co-treatment with ICI 182780, a selective ERα antagonist. In contrast, overexpression of HOXA7 significantly stimulated cell proliferation and ERα expression. Moreover, E2-induced cell proliferation, as well as PR expression, was enhanced by the overexpression of HOXA7. Neither knockdown nor overexpression of HOXA7 affected the ER-beta levels. Our results demonstrate a novel mechanistic role for HOXA7 in modulating breast cancer cell proliferation via regulation of ERα expression. This finding contributes to our understanding of the role HOXA7 plays in regulating the proliferation of ER-positive cancer cells.

  6. Hispolon inhibits the growth of estrogen receptor positive human breast cancer cells through modulation of estrogen receptor alpha

    International Nuclear Information System (INIS)

    Jang, Eun Hyang; Jang, Soon Young; Cho, In-Hye; Hong, Darong; Jung, Bom; Park, Min-Ju; Kim, Jong-Ho

    2015-01-01

    Human estrogen receptor α (ERα) is a nuclear transcription factor that is a major therapeutic target in breast cancer. The transcriptional activity of ERα is regulated by certain estrogen-receptor modulators. Hispolon, isolated from Phellinus linteus, a traditional medicinal mushroom called Sanghwang in Korea, has been used to treat various pathologies, such as inflammation, gastroenteric disorders, lymphatic diseases, and cancers. In this latter context, Hispolon has been reported to exhibit therapeutic efficacy against various cancer cells, including melanoma, leukemia, hepatocarcinoma, bladder cancer, and gastric cancer cells. However, ERα regulation by Hispolon has not been reported. In this study, we investigated the effects of Hispolon on the growth of breast cancer cells. We found that Hispolon decreased expression of ERα at both mRNA and the protein levels in MCF7 and T47D human breast cancer cells. Luciferase reporter assays showed that Hispolon decreased the transcriptional activity of ERα. Hispolon treatment also inhibited expression of the ERα target gene pS2. We propose that Hispolon, an anticancer drug extracted from natural sources, inhibits cell growth through modulation of ERα in estrogen-positive breast cancer cells and is a candidate for use in human breast cancer chemotherapy. - Highlights: • Hispolon decreased ERα expression at both mRNA and protein levels. • Hispolon decreased ERα transcriptional activity. • Hispolon treatment inhibited expression of ERα target gene pS2. • Shikonin is a candidate chemotherapeutic target in the treatment of human breast cancer

  7. Hispolon inhibits the growth of estrogen receptor positive human breast cancer cells through modulation of estrogen receptor alpha

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Eun Hyang; Jang, Soon Young; Cho, In-Hye [Department of Pharmacy, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 130-701 (Korea, Republic of); Hong, Darong [Department of Life and Nanopharmaceutical Science, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 130-701 (Korea, Republic of); Jung, Bom; Park, Min-Ju [Department of Pharmacy, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 130-701 (Korea, Republic of); Kim, Jong-Ho, E-mail: jonghokim@khu.ac.kr [Department of Pharmacy, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 130-701 (Korea, Republic of)

    2015-08-07

    Human estrogen receptor α (ERα) is a nuclear transcription factor that is a major therapeutic target in breast cancer. The transcriptional activity of ERα is regulated by certain estrogen-receptor modulators. Hispolon, isolated from Phellinus linteus, a traditional medicinal mushroom called Sanghwang in Korea, has been used to treat various pathologies, such as inflammation, gastroenteric disorders, lymphatic diseases, and cancers. In this latter context, Hispolon has been reported to exhibit therapeutic efficacy against various cancer cells, including melanoma, leukemia, hepatocarcinoma, bladder cancer, and gastric cancer cells. However, ERα regulation by Hispolon has not been reported. In this study, we investigated the effects of Hispolon on the growth of breast cancer cells. We found that Hispolon decreased expression of ERα at both mRNA and the protein levels in MCF7 and T47D human breast cancer cells. Luciferase reporter assays showed that Hispolon decreased the transcriptional activity of ERα. Hispolon treatment also inhibited expression of the ERα target gene pS2. We propose that Hispolon, an anticancer drug extracted from natural sources, inhibits cell growth through modulation of ERα in estrogen-positive breast cancer cells and is a candidate for use in human breast cancer chemotherapy. - Highlights: • Hispolon decreased ERα expression at both mRNA and protein levels. • Hispolon decreased ERα transcriptional activity. • Hispolon treatment inhibited expression of ERα target gene pS2. • Shikonin is a candidate chemotherapeutic target in the treatment of human breast cancer.

  8. Tamoxifen induces the expression of maspin through estrogen receptor-alpha.

    Science.gov (United States)

    Liu, Zesheng; Shi, Heidi Y; Nawaz, Zafar; Zhang, Ming

    2004-06-08

    Maspin (mammary serine protease inhibitor) is a tumor suppressor gene that plays an important role in inhibiting tumor growth, invasion and metastasis. Maspin expression is down regulated at transcription level in primary and metastatic breast tumor cells. Previous studies on hormonal regulation of maspin prompt us to test whether an estrogen antagonist tamoxifen (TAM) can exert its anti-tumor function by up regulating maspin gene expression. For this purpose, we first tested whether maspin promoter could be activated in normal and several breast tumor cells. We then carried out a series of promoter analysis in which estrogen receptors and TAM were reconstituted in an in vitro cell culture system. Here we report our new finding that tumor suppresser gene maspin is one of the TAM target genes. TAM induces a maspin/luciferase reporter in cell culture and this induction requires the presence of (estrogen receptor alpha) ERalpha but not estrogen receptor-beta (ERbeta). Maspin promoter deletion and mutation analysis showed that the cis element(s) within a region between -90and+87 bp but not the HRE site (-272 bp) was involved in TAM induction of maspin expression. TAM bound ERalpha may directly control maspin gene expression through the interaction with cofactor (s). Analysis using several ERalpha mutants showed that the N-terminal A/B motif (AF-1) was critical for maspin basal level transcription activation. An ERalpha mutant with point mutations at DNA binding domain abolished estrogen induction of an ERE-luciferase reporter but was still active in activating maspin promoter by TAM. LBD-AF2 domain was required for ERalpha-dependent TAM induction. Deletion of LBD-AF2 or a point mutation in the ERalpha LBD-AF2 region (LBDmtL539A) completely abolished the activation of maspin promoter, suggesting that TAM induction of maspin involves the recruitment of cofactor(s) by ERalpha to the maspin promoter region. This finding indicates that one of the pathways for cancer

  9. Is basic research providing answers if adjuvant anti-estrogen treatment of breast cancer can induce cognitive impairment?

    NARCIS (Netherlands)

    Buwalda, Bauke; Schagen, Sanne B.

    2013-01-01

    Adjuvant treatment of cancer by chemotherapy is associated with cognitive impairment in some cancer survivors. Breast cancer patients are frequently also receiving endocrine therapy with selective estrogen receptor modulators (SERMs) and/or aromatase inhibitors (AIs) to suppress the growth of

  10. Effect of estrogen withdrawal on energy-rich phosphates and prediction of estrogen dependence monitored by in vivo 31P magnetic resonance spectroscopy of four human breast cancer xenografts

    DEFF Research Database (Denmark)

    Kristensen, C A; Kristjansen, P E; Brünner, N

    1995-01-01

    The effect of estrogen withdrawal on energy metabolism was studied in four human breast cancer xenografts: the estrogen-dependent MCF-7 and ZR75-1 and the estrogen-independent ZR75/LCC-3 and MDA-MB-231. The tumors were grown in ovariectomized nude mice with a s.c. implanted estrogen pellet. After......-clamped tumors prepared 14 days after estrogen removal were analyzed for ATP and phosphocreatine content. Our findings suggest a correlation between estrogen withdrawal and the steady-state concentrations of ATP, phosphocreatine, and Pi in human breast cancer xenografts. Discrimination analysis...

  11. Baicalein has protective effects on the 17β-estradiol-induced transformation of breast epithelial cells.

    Science.gov (United States)

    Chen, Yan; Wang, Jing; Hong, Duan-Yang; Chen, Lin; Zhang, Yan-Yan; Xu, Yi-Ni; Pan, Di; Fu, Ling-Yun; Tao, Ling; Luo, Hong; Shen, Xiang-Chun

    2017-02-07

    Epidemiologic and systematic studies have indicated that flavonoid consumption is associated with a lower incidence of breast cancer. Baicalein is the primary flavonoid derived from the roots of Scutellaria baicalensis Georgi. In the current study, the long-term exposure of breast epithelial cells to 17β-estradiol (E2) was used to investigate the chemopreventive potential of baicalein on neoplastic transformation. The results demonstrated that baicalein significantly inhibited E2-induced cell growth, motility, and invasiveness, and suppressed E2-induced misshapen acini formation in 3D cultures. Furthermore, it inhibited the ability of E2-induced cells to form clones in agarose and tumors in NOD/SCID immunodeficient mice. Docking studies using Sybyl-X 1.2 software showed that baicalein could bind to both estrogen receptor-α (ERa) and G-protein coupled estrogen receptor 30 (GPR30), which are two critical E2-mediated pathways. Baicalein prevented the E2-induced ERa-mediated activation of nuclear transcriptional signaling by interfering with the trafficking of ERa into the nucleus and subsequent binding to estrogen response elements, thereby decreasing the mRNA levels of ERa target genes. It also inhibited E2-induced GPR30-mediated signal transduction, as well as the transcription of GPR30-regulated genes. Therefore, these results suggest that baicalein is a potential drug for reducing the risk of estrogen-dependent breast cancer.

  12. Levels of estrogen, carcinoembryonic antigen and cancer antigen of breast in Sudanese female with breast cancer

    International Nuclear Information System (INIS)

    Abdelhadi, H. A.; Sirelkhatim, D. A.; Eltayeb, E. A.; Ahmed, W. A.; Elhussein, B.

    2006-12-01

    This study was conducted during the period from february 2004 to july 2004; with the objective of measuring the levels of estrogen (E2), carcinoembryonic antigen (CEA) and cancer antigen of breast (CA-15.3) so as to facilitate the early diagnosis of breast cancer and to determine the involvement of these parameters as risk factors for breast cancer. Ninety blood samples were collected from Sudanese females, divided into two groups; control group and patients groups. The patients group was sixty Sudanese females visiting the Radio Isotope Center, Khartoum (RICK) and they were confirmed as breast cancer patients by histopathology. The levels of the above mentioned parameters were determined by using radioimmunoassay technique. The results showed that , no significant (P=0.05) difference between the levels of the estrogen in patients compared to the control, on the other hand, there was non-significant (p<0.05) elevation in CEA levels in the patients with breast cancer compared to the control. The levels of CA 15.3 was significantly (p<0.0001) higher in the breast cancer patients compared to the control.(Author)

  13. Glutamic acid ameliorates estrogen deficiency-induced menopausal-like symptoms in ovariectomized mice.

    Science.gov (United States)

    Han, Na-Ra; Kim, Hee-Yun; Yang, Woong Mo; Jeong, Hyun-Ja; Kim, Hyung-Min

    2015-09-01

    Some amino acids are considered alternative therapies for improving menopausal symptoms. Glutamic acid (GA), which is abundant in meats, fish, and protein-rich plant foods, is known to be a neurotransmitter or precursor of γ-aminobutyric acid. Although it is unclear if GA functions in menopausal symptoms, we hypothesized that GA would attenuate estrogen deficiency-induced menopausal symptoms. The objective to test our hypothesis was to examine an estrogenic effect of GA in ovariectomized (OVX) mice, estrogen receptor (ER)-positive human osteoblast-like MG-63 cells, and ER-positive human breast cancer MCF-7 cells. The results demonstrated that administration with GA to mice suppressed body weight gain and vaginal atrophy when compared with the OVX mice. A microcomputed tomographic analysis of the trabecular bone showed increases in bone mineral density, trabecular number, and connectivity density as well as a significant decrease in total porosity of the OVX mice treated with GA. In addition, GA increased serum levels of alkaline phosphatase and estrogen compared with the OVX mice. Furthermore, GA induced proliferation and increased ER-β messenger RNA (mRNA) expression, estrogen response element (ERE) activity, extracellular signal-regulated kinase phosphorylation, and alkaline phosphatase activity in MG-63 cells. In MCF-7 cells, GA also increased proliferation, Ki-67 mRNA expression, ER-β mRNA expression, and ERE activity. Estrogen response element activity increased by GA was inhibited by an estrogen antagonist. Taken together, our data demonstrated that GA has estrogenic and osteogenic activities in OVX mice, MG-63 cells, and MCF-7 cells. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Inhibition of Estrogen-induced Growth of Breast Cancer by Targeting Mitochondrial Oxidants

    National Research Council Canada - National Science Library

    Roy, Deodutta; Felty, Quentin; Kunkle, Brian

    2008-01-01

    ...) Anchorage-independent cell growth, and (c) tumor spheroid formation using new 3D HuBiogel bioassay whether estrogen induced conversion of normal cells to transformed cells is inhibited by treatment with antioxidants, over expression of MnSOD...

  15. Age-dependent change in biological characteristics of stem cells in radiation-induced mammary carcinogenesis

    International Nuclear Information System (INIS)

    Shimada, Yoshiya; Nishimura, Mayumi; Kakinuma, Shizuko; Imaoka, Tatsuhiko; Yasukawa-Barnes, Jane; Gould, Michael N.; Clifton, Kelly H.

    2003-01-01

    If you ask what types of cells are the targets for carcinogenesis, a popular answer would be that cancer arises from stem cells. Stem cells are cells that are capable of both self-renewal and generation of differentiated progenies. If the hypothesis of 'cancer as stem cell disease' is correct, the risk of carcinogenesis should be a function of the number of stem cells and their responsiveness of carcinogen-induced damage. In the present study, we addressed the feasibility of this hypothesis using the rat mammary carcinogenesis model. One of the important conclusions emerging from studies on atomic bomb survivors concerns age-related changes in the susceptibility to breast cancer. The relative risk of breast cancer is very high among women exposed to ionizing radiation before or during puberty, and it decreases thereafter. Little information is available, however, on age-related changes in the radiobiological nature of mammary stem cells. We examined age-associated changes in the number of mammary stem-like cells (clonogens) and their susceptibility to radiation in terms of cell death and carcinogenic initiation frequency. The results were as follows. (1) During the prepubertal period, the total number of mammary clonogens per rat increased exponentially with a population doubling time of ∼4 days. After puberty, the doubling time lengthened to ∼30 days. The total number of clonogens in abdominal and inguinal mammary glands was ∼200 in 2-week-old rats, while it was ∼5600 in 8-week-old rats. (2) The survival curves of clonogenic cells after irradiation indicated that radiation sensitivity of the cells before and during puberty was much higher than after puberty. (3) The initiation frequency of the clonogens from prepubertal rats after 5 Gy irradiation was four times higher than that of the clonogens from post-pubertal rats. These results suggest that changes in the number of stem cells and their radiobiological characteristics underlie the age

  16. Age-dependent change in biological characteristics of stem cells in radiation-induced mammary carcinogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Shimada, Yoshiya; Nishimura, Mayumi; Kakinuma, Shizuko; Imaoka, Tatsuhiko [National Institute of Radiological Sciences, Anagawa, Chiba (Japan); Yasukawa-Barnes, Jane; Gould, Michael N.; Clifton, Kelly H. [Univ. of Wisconsin, Department of Human Oncology, Madison, WI (United States)

    2003-07-01

    If you ask what types of cells are the targets for carcinogenesis, a popular answer would be that cancer arises from stem cells. Stem cells are cells that are capable of both self-renewal and generation of differentiated progenies. If the hypothesis of 'cancer as stem cell disease' is correct, the risk of carcinogenesis should be a function of the number of stem cells and their responsiveness of carcinogen-induced damage. In the present study, we addressed the feasibility of this hypothesis using the rat mammary carcinogenesis model. One of the important conclusions emerging from studies on atomic bomb survivors concerns age-related changes in the susceptibility to breast cancer. The relative risk of breast cancer is very high among women exposed to ionizing radiation before or during puberty, and it decreases thereafter. Little information is available, however, on age-related changes in the radiobiological nature of mammary stem cells. We examined age-associated changes in the number of mammary stem-like cells (clonogens) and their susceptibility to radiation in terms of cell death and carcinogenic initiation frequency. The results were as follows. (1) During the prepubertal period, the total number of mammary clonogens per rat increased exponentially with a population doubling time of {approx}4 days. After puberty, the doubling time lengthened to {approx}30 days. The total number of clonogens in abdominal and inguinal mammary glands was {approx}200 in 2-week-old rats, while it was {approx}5600 in 8-week-old rats. (2) The survival curves of clonogenic cells after irradiation indicated that radiation sensitivity of the cells before and during puberty was much higher than after puberty. (3) The initiation frequency of the clonogens from prepubertal rats after 5 Gy irradiation was four times higher than that of the clonogens from post-pubertal rats. These results suggest that changes in the number of stem cells and their radiobiological characteristics

  17. Estrogen and progesterone signalling in the normal breast and its implications for cancer development.

    Science.gov (United States)

    Hilton, Heidi N; Clarke, Christine L; Graham, J Dinny

    2018-05-05

    The ovarian hormones estrogen and progesterone are master regulators of the development and function of a broad spectrum of human tissues, including the breast, reproductive and cardiovascular systems, brain and bone. Acting through the nuclear estrogen (ER) and progesterone receptors (PR), both play complex and essential coordinated roles in the extensive development of the lobular alveolar epithelial structures of the normal breast during puberty, the normal menstrual cycle and pregnancy. The past decade has seen major advances in understanding the mechanisms of action of estrogen and progesterone in the normal breast and in the delineation of the complex hierarchy of cell types regulated by ovarian hormones in this tissue. There is evidence for a role for both ER and PR in driving breast cancer, and both are favourable prognostic markers with respect to outcome. In this review, we summarize current knowledge of the mechanisms of action of ER and PR in the normal breast, and implications for the development and management of breast cancer. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Up-regulation of PI3K/Akt signaling by 17β-estradiol through activation of estrogen receptor-α, but not estrogen receptor-β, and stimulates cell growth in breast cancer cells

    International Nuclear Information System (INIS)

    Lee, Young-Rae; Park, Jinny; Yu, Hong-Nu; Kim, Jong-Suk; Youn, Hyun Jo; Jung, Sung Hoo

    2005-01-01

    Estrogen stimulates cell proliferation in breast cancer. The biological effects of estrogen are mediated through two intracellular receptors, estrogen receptor-α (ERα) and estrogen receptor-β (ERβ). However, the role of ERs in the proliferative action of estrogen is not well established. Recently, it has been known that ER activates phosphatidylinositol-3-OH kinase (PI3K) through binding with the p85 regulatory subunit of PI3K. Therefore, possible mechanisms may include ER-mediated phosphoinositide metabolism with subsequent formation of phosphatidylinositol-3,4,5-trisphosphate (PIP 3 ), which is generated from phosphatidylinositol 4,5-bisphosphate via PI3K activation. The present study demonstrates that 17β-estradiol (E2) up-regulates PI3K in an ERα-dependent manner, but not ERβ, and stimulates cell growth in breast cancer cells. In order to study this phenomenon, we have treated ERα-positive MCF-7 cells and ERα-negative MDA-MB-231 cells with 10 nM E2. Treatment of MCF-7 cells with E2 resulted in a marked increase in PI3K (p85) expression, which paralleled an increase in phospho-Akt (Ser-473) and PIP 3 level. These observations also correlated with an increased activity to E2-induced cell proliferation. However, these effects of E2 on breast cancer cells were not observed in the MDA-MB-231 cell line, indicating that the E2-mediated up-regulation of PI3K/Akt pathway is ERα-dependent. These results suggest that estrogen activates PI3K/Akt signaling through ERα-dependent mechanism in MCF-7 cells

  19. Dietary influence on estrogens and cytokines in breast cancer

    Directory of Open Access Journals (Sweden)

    Xin Nian

    2017-07-01

    Full Text Available Breast cancer affects one out of eight women in their lifetime. Many factors contribute to the development of breast cancer, such as hereditary mutations and lifetime exposure to environmental factors, including estrogen. In addition, overweight and obesity, especially with increased waist circumference, are known to be associated with breast cancer risk. This review will summarize our understanding of the effect of diet on breast cancer incidence and progression. Since some inflammatory cytokines that are changed by a high-fat diet are known to promote the growth of breast cancer cells, these cytokines may serve as biomarkers to monitor the dietary influence for women at high risk of breast cancer and as future therapeutic targets for breast cancer treatment.

  20. In vivo cell kinetics in breast carcinogenesis

    International Nuclear Information System (INIS)

    Bai, Maria; Agnantis, Niki J; Kamina, Sevasti; Demou, Asimina; Zagorianakou, Panayiota; Katsaraki, Aphroditi; Kanavaros, Panayiotis

    2001-01-01

    Disruption of the balance between apoptosis and proliferation is considered to be an important factor in the development and progression of tumours. In the present study we determined the in vivo cell kinetics along the spectrum of apparently normal epithelium, hyperplasia, preinvasive lesions and invasive carcinoma, in breast tissues affected by fibrocystic changes in which preinvasive and/or invasive lesions developed, as a model of breast carcinogenesis. A total of 32 areas of apparently normal epithelium and 135 ductal proliferative and neoplastic lesions were studied. More than one epithelial lesion per case were analyzed. The apoptotic index (AI) and the proliferative index (PI) were expressed as the percentage of TdT-mediated dUTP-nick end-labelling (TUNEL) and Ki-67-positive cells, respectively. The PI/AI (P/A index) was calculated for each case. The AIs and PIs were significantly higher in hyperplasia than in apparently normal epithelium (P = 0.04 and P = 0.0005, respectively), in atypical hyperplasia than in hyperplasia (P = 0.01 and P = 0.04, respectively) and in invasive carcinoma than in in situ carcinoma (P < 0.001 and P < 0.001, respectively). The two indices were similar in atypical hyperplasia and in in situ carcinoma. The P/A index increased significantly from normal epithelium to hyperplasia (P = 0.01) and from preinvasive lesions to invasive carcinoma (P = 0.04) whereas it was decreased (non-significantly) from hyperplasia to preinvasive lesions. A strong positive correlation between the AIs and the PIs was found (r = 0.83, P < 0.001). These findings suggest accelerating cell turnover along the continuum of breast carcinogenesis. Atypical hyperplasias and in situ carcinomas might be kinetically similar lesions. In the transition from normal epithelium to hyperplasia and from preinvasive lesions to invasive carcinoma the net growth of epithelial cells results from a growth imbalance in favour of proliferation. In the transition from hyperplasia

  1. 15-deoxy-δ12,14-prostaglandin j2 inhibits osteolytic breast cancer bone metastasis and estrogen deficiency-induced bone loss.

    Directory of Open Access Journals (Sweden)

    Ki Rim Kim

    Full Text Available Breast cancer is the major cause of cancer death in women worldwide. The most common site of metastasis is bone. Bone metastases obstruct the normal bone remodeling process and aberrantly enhance osteoclast-mediated bone resorption, which results in osteolytic lesions. 15-deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2 is an endogenous ligand of peroxisome proliferator-activated receptor gamma (PPARγ that has anti-inflammatory and antitumor activity at micromolar concentrations through PPARγ-dependent and/or PPARγ-independent pathways. We investigated the inhibitory activity of 15d-PGJ2 on the bone loss that is associated with breast cancer bone metastasis and estrogen deficiency caused by cancer treatment. 15d-PGJ2 dose-dependently inhibited viability, migration, invasion, and parathyroid hormone-related protein (PTHrP production in MDA-MB-231 breast cancer cells. 15d-PGJ2 suppressed receptor activator of nuclear factor kappa-B ligand (RANKL mRNA levels and normalized osteoprotegerin (OPG mRNA levels in hFOB1.19 osteoblastic cells treated with culture medium from MDA-MB-231 cells or PTHrP, which decreased the RANKL/OPG ratio. 15d-PGJ2 blocked RANKL-induced osteoclastogenesis and inhibited the formation of resorption pits by decreasing the activities of cathepsin K and matrix metalloproteinases, which are secreted by mature osteoclasts. 15d-PGJ2 exerted its effects on breast cancer and bone cells via PPARγ-independent pathways. In Balb/c nu/nu mice that received an intracardiac injection of MDA-MB-231 cells, subcutaneously injected 15d-PGJ2 substantially decreased metastatic progression, cancer cell-mediated bone destruction in femora, tibiae, and mandibles, and serum PTHrP levels. 15d-PGJ2 prevented the destruction of femoral trabecular structures in estrogen-deprived ICR mice as measured by bone morphometric parameters and serum biochemical data. Therefore, 15d-PGJ2 may be beneficial for the prevention and treatment of breast cancer

  2. The Estrogen Receptor and Its Variants as Risk Factors in Breast Cancer

    National Research Council Canada - National Science Library

    Murph, Leigh

    2001-01-01

    The overall goal of this research is to understand how the estrogen receptor (ER) signal transduction pathway is altered during breast tumorigenesis and if altered ER signal transduction increases the risk of developing breast cancer...

  3. Dietary acrylamide intake and estrogen and progesterone receptor-defined postmenopausal breast cancer risk

    DEFF Research Database (Denmark)

    Pedersen, Grete S; Hogervorst, Janneke G F; Schouten, Leo J

    2010-01-01

    and risk of postmenopausal breast cancer stratified by estrogen and progesterone receptor status. This study was embedded within the Netherlands Cohort Study on diet and cancer, which was initiated in 1986 enrolling 62,573 women aged 55-69 years at baseline. After 13.3 years of follow-up, 2225 incident...... breast cancer cases were ascertained, with hormone receptor status information for 43%. Cox proportional hazards analysis was applied to determine hazard ratios in quintiles of dietary acrylamide intake stratifying on estrogen receptor (ER) and progesterone receptor (PR) and smoking status....... No association was observed for overall breast cancer or receptor-negative breast cancer risk, irrespective of smoking status. A statistically non-significantly increased risk of ER positive, PR positive and joint receptor-positive breast cancer was found in never-smoking women. The multivariable-adjusted hazard...

  4. Genomic agonism and phenotypic antagonism between estrogen and progesterone receptors in breast cancer

    OpenAIRE

    Singhal, Hari; Greene, Marianne E.; Tarulli, Gerard; Zarnke, Allison L.; Bourgo, Ryan J.; Laine, Muriel; Chang, Ya-Fang; Ma, Shihong; Dembo, Anna G.; Raj, Ganesh V.; Hickey, Theresa E.; Tilley, Wayne D.; Greene, Geoffrey L.

    2016-01-01

    The functional role of progesterone receptor (PR) and its impact on estrogen signaling in breast cancer remain controversial. In primary ER+ (estrogen receptor?positive)/PR+ human tumors, we report that PR reprograms estrogen signaling as a genomic agonist and a phenotypic antagonist. In isolation, estrogen and progestin act as genomic agonists by regulating the expression of common target genes in similar directions, but at different levels. Similarly, in isolation, progestin is also a weak ...

  5. Anti-estrogen Resistance in Human Breast Tumors Is Driven by JAG1-NOTCH4-Dependent Cancer Stem Cell Activity

    Directory of Open Access Journals (Sweden)

    Bruno M. Simões

    2015-09-01

    Full Text Available Breast cancers (BCs typically express estrogen receptors (ERs but frequently exhibit de novo or acquired resistance to hormonal therapies. Here, we show that short-term treatment with the anti-estrogens tamoxifen or fulvestrant decrease cell proliferation but increase BC stem cell (BCSC activity through JAG1-NOTCH4 receptor activation both in patient-derived samples and xenograft (PDX tumors. In support of this mechanism, we demonstrate that high ALDH1 predicts resistance in women treated with tamoxifen and that a NOTCH4/HES/HEY gene signature predicts for a poor response/prognosis in 2 ER+ patient cohorts. Targeting of NOTCH4 reverses the increase in Notch and BCSC activity induced by anti-estrogens. Importantly, in PDX tumors with acquired tamoxifen resistance, NOTCH4 inhibition reduced BCSC activity. Thus, we establish that BCSC and NOTCH4 activities predict both de novo and acquired tamoxifen resistance and that combining endocrine therapy with targeting JAG1-NOTCH4 overcomes resistance in human breast cancers.

  6. Estrogen, Estrogen Receptor and Lung Cancer

    Directory of Open Access Journals (Sweden)

    Li-Han Hsu

    2017-08-01

    Full Text Available Estrogen has been postulated as a contributor for lung cancer development and progression. We reviewed the current knowledge about the expression and prognostic implications of the estrogen receptors (ER in lung cancer, the effect and signaling pathway of estrogen on lung cancer, the hormone replacement therapy and lung cancer risk and survival, the mechanistic relationship between the ER and the epidermal growth factor receptor (EGFR, and the relevant clinical trials combining the ER antagonist and the EGFR antagonist, to investigate the role of estrogen in lung cancer. Estrogen and its receptor have the potential to become a prognosticator and a therapeutic target in lung cancer. On the other hand, tobacco smoking aggravates the effect of estrogen and endocrine disruptive chemicals from the environment targeting ER may well contribute to the lung carcinogenesis. They have gradually become important issues in the course of preventive medicine.

  7. The histone demethylase LSD1 is required for estrogen-dependent S100A7 gene expression in human breast cancer cells

    International Nuclear Information System (INIS)

    Yu, Seung Eun; Jang, Yeun Kyu

    2012-01-01

    Highlights: ► S100A7 gene is up-regulated in response to estrogen in breast cancer cells. ► Histone demethylase LSD1 can associate physically with S100A7 gene promoters. ► E2-induced S100A7 expression requires the enzymatic activity of LSD1. ► S100A7 inhibits cell proliferation, implying its tumor suppressor-like function. -- Abstract: S100A7, a member of S100 calcium binding protein family, is highly associated with breast cancer. However, the molecular mechanism of S100A7 regulation remains unclear. Here we show that long-term treatment with estradiol stimulated S100A7 expression in MCF7 breast cancer cells at both the transcriptional and translational levels. Both treatment with a histone demethylase LSD1 inhibitor and shRNA-based knockdown of LSD1 expression significantly decreased 17β-estradiol (E2)-induced S100A7 expression. These reduced E2-mediated S100A7 expression are rescued by the overexpressed wild-type LSD1 but not by its catalytically inactive mutant. Our data showed in vivo association of LSD1 with S100A7 promoters, confirming the potential role of LSD1 in regulating S100A7 expression. S100A7 knockdown increased both normal cell growth and estrogen-induced cell proliferation, suggesting a negative influence by S100A7 on the growth of cancer cells. Together, our data suggest that estrogen-induced S100A7 expression mediated by the histone demethylase LSD1 may downregulate breast cancer cell proliferation, implying a potential tumor suppressor-like function for S100A7.

  8. Estrogen and pure antiestrogen fulvestrant (ICI 182 780) augment cell–matrigel adhesion of MCF-7 breast cancer cells through a novel G protein coupled estrogen receptor (GPR30)-to-calpain signaling axis

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yan; Li, Zheng; He, Yan; Shang, Dandan; Pan, Jigang; Wang, Hongmei; Chen, Huamei; Zhu, Zhuxia [Department of Physiology/Cancer Research Group, Guiyang Medical University School of Basic Medicine, 9 Beijing Road, Guiyang 550004, Guizhou (China); Wan, Lei [Department of Pharmacology, Guiyang Medical University School of Basic Medicine, 9 Beijing Road, Guiyang 550004, Guizhou (China); Wang, Xudong, E-mail: xdwang@gmc.edu.cn [Department of Physiology/Cancer Research Group, Guiyang Medical University School of Basic Medicine, 9 Beijing Road, Guiyang 550004, Guizhou (China)

    2014-03-01

    Fulvestrant (ICI 182 780, ICI) has been used in treating patients with hormone-sensitive breast cancer, yet initial or acquired resistance to endocrine therapies frequently arises and, in particular, cancer recurs as metastasis. We demonstrate here that both 17-beta-estradiol (E2) and ICI enhance cell adhesion to matrigel in MCF-7 breast cancer cells, with increased autolysis of calpain 1 (large subunit) and proteolysis of focal adhesion kinase (FAK), indicating calpain activation. Additionally, either E2 or ICI induced down-regulation of estrogen receptor α without affecting G protein coupled estrogen receptor 30 (GPR30) expression. Interestingly, GPR30 agonist G1 triggered calpain 1 autolysis but not calpain 2, whereas ER agonist diethylstilbestrol caused no apparent calpain autolysis. Furthermore, the actions of E2 and ICI on calpain and cell adhesion were tremendously suppressed by G15, or knockdown of GPR30. E2 and ICI also induced phosphorylation of extracellular regulated protein kinases 1 and 2 (ERK1/2), and suppression of ERK1/2 phosphorylation by U0126 profoundly impeded calpain activation triggered by estrogenic and antiestrogenic stimulations indicating implication of ERK1/2 in the GPR30-mediated action. Lastly, the E2- or ICI-induced cell adhesion was dramatically impaired by calpain-specific inhibitors, ALLN or calpeptin, suggesting requirement of calpain in the GPR30-associated action. These data show that enhanced cell adhesion by E2 and ICI occurs via a novel GPR30-ERK1/2-calpain pathway. Our results indicate that targeting the GPR30 signaling may be a potential strategy to reduce metastasis and improve the efficacy of antiestrogens in treatment of advanced breast cancer. - Highlights: • Estrogen and ICI augment adhesion to matrigel with calpain activation in MCF-7 cells. • GPR30 mediates cell–matrigel adhesion and calpain activation via ERK1/2. • Calpain is required in the cell–matrigel adhesion induced by E2 and ICI.

  9. Estrogen and pure antiestrogen fulvestrant (ICI 182 780) augment cell–matrigel adhesion of MCF-7 breast cancer cells through a novel G protein coupled estrogen receptor (GPR30)-to-calpain signaling axis

    International Nuclear Information System (INIS)

    Chen, Yan; Li, Zheng; He, Yan; Shang, Dandan; Pan, Jigang; Wang, Hongmei; Chen, Huamei; Zhu, Zhuxia; Wan, Lei; Wang, Xudong

    2014-01-01

    Fulvestrant (ICI 182 780, ICI) has been used in treating patients with hormone-sensitive breast cancer, yet initial or acquired resistance to endocrine therapies frequently arises and, in particular, cancer recurs as metastasis. We demonstrate here that both 17-beta-estradiol (E2) and ICI enhance cell adhesion to matrigel in MCF-7 breast cancer cells, with increased autolysis of calpain 1 (large subunit) and proteolysis of focal adhesion kinase (FAK), indicating calpain activation. Additionally, either E2 or ICI induced down-regulation of estrogen receptor α without affecting G protein coupled estrogen receptor 30 (GPR30) expression. Interestingly, GPR30 agonist G1 triggered calpain 1 autolysis but not calpain 2, whereas ER agonist diethylstilbestrol caused no apparent calpain autolysis. Furthermore, the actions of E2 and ICI on calpain and cell adhesion were tremendously suppressed by G15, or knockdown of GPR30. E2 and ICI also induced phosphorylation of extracellular regulated protein kinases 1 and 2 (ERK1/2), and suppression of ERK1/2 phosphorylation by U0126 profoundly impeded calpain activation triggered by estrogenic and antiestrogenic stimulations indicating implication of ERK1/2 in the GPR30-mediated action. Lastly, the E2- or ICI-induced cell adhesion was dramatically impaired by calpain-specific inhibitors, ALLN or calpeptin, suggesting requirement of calpain in the GPR30-associated action. These data show that enhanced cell adhesion by E2 and ICI occurs via a novel GPR30-ERK1/2-calpain pathway. Our results indicate that targeting the GPR30 signaling may be a potential strategy to reduce metastasis and improve the efficacy of antiestrogens in treatment of advanced breast cancer. - Highlights: • Estrogen and ICI augment adhesion to matrigel with calpain activation in MCF-7 cells. • GPR30 mediates cell–matrigel adhesion and calpain activation via ERK1/2. • Calpain is required in the cell–matrigel adhesion induced by E2 and ICI

  10. Serum estrogen and SHBG levels and breast cancer incidence among users and never users of hormone replacement therapy

    DEFF Research Database (Denmark)

    Würtz, Anne Mette Lund; Tjønneland, Anne; Christensen, Jane

    2012-01-01

    OBJECTIVE: Levels of endogenous estrogen and SHBG are associated with risk of breast cancer among women who have never used hormone replacement therapy (HRT). We investigated these associations in both never and baseline users of HRT. METHODS: A nested case-control study was conducted within the ...... and baseline HRT users. More studies are needed to support the findings for HRT users and to further investigate estrogen levels in relation to estrogen receptor-specific breast cancer and other histological and molecular subtypes.......OBJECTIVE: Levels of endogenous estrogen and SHBG are associated with risk of breast cancer among women who have never used hormone replacement therapy (HRT). We investigated these associations in both never and baseline users of HRT. METHODS: A nested case-control study was conducted within...... logistic regression yielded incidence rate ratios and 95 % confidence intervals for exposures analyzed continuously and categorically in models adjusted for potential confounders. RESULTS: Modest direct associations were identified between estrogen levels and breast cancer incidence among both never...

  11. Hypoxia-Inducible Factor-1α in carcinogenesis and progression of breast cancer

    NARCIS (Netherlands)

    Bos, R.

    2004-01-01

    This thesis is primarily focused on the previously hardly explored role of HIF-1 in breast cancer. HIF-1 is a transcription factor induced by hypoxia, but also by some oncogenes, tumor suppressor genes and growth factors. Activated HIF-1 can induce angiogenesis, glycolysis, erythropoiesis, and other

  12. Downregulation of TXNIP leads to high proliferative activity and estrogen-dependent cell growth in breast cancer.

    Science.gov (United States)

    Park, Jun Won; Lee, Su Hyung; Woo, Gye-Hyung; Kwon, Hyo-Jung; Kim, Dae-Yong

    2018-04-06

    TXNIP is a potent tumor suppressor with reduced expression in various types of human cancer. The prognostic and predictive power of TXNIP has been recognized in human breast cancer. The aim of this study is to investigate the clinical relevance and functional roles of TXNIP downregulation in breast cancer. We examined TXNIP expression at the protein level in tissue microarray (TMA)-based human breast cancers and its correlation with clinical parameters and molecular markers on immunohistochemistry (IHC). Compared with normal tissues, TXNIP expression was significantly decreased in human breast cancer tissues and animal mammary tumors, along with tumor progression. TXNIP was restored immediately after histone deacetylase inhibitor treatment in breast cancer cells, implying transcriptional regulation of TXNIP by histone modification. Decreased TXNIP protein levels were more common in tumors showing high proliferative activity, such as high Ki-67 labeling indexes and low p27 expression. TXNIP knockdown led to increased in vitro and in vivo breast cancer cell growth accompanied by p27 reduction and GLUT1 induction. Interestingly, estrogen receptor (ER)-positive breast cancer samples showed higher TXNIP expression compared to ER-negative samples. TXNIP expression decreased when ER signaling was activated by estradiol, while its expression increased under ER blockage by anti-estrogen fulvestrant. In addition, TXNIP knockdown in breast cancer cells caused significant reduction in the cell-growth inhibitory effect of anti-estrogen fulvestrant. In conclusion, our data demonstrated that TXNIP functions to suppress high proliferative activity and estrogen-dependent cell growth in breast cancer. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Breast cancer incidence by estrogen receptor status in Denmark from 1996 to 2007

    DEFF Research Database (Denmark)

    Bigaard, J; Stahlberg, C; Jensen, M-B

    2012-01-01

    During the past 50 years, breast cancer incidence has increased by 2-3 % annually. Despite many years of testing for estrogen receptors (ER), evidence is scarce on breast cancer incidence by ER status. The aim of this paper was to investigate the increase in breast cancer incidence by ER status...

  14. An integrated analysis of genes and pathways exhibiting metabolic differences between estrogen receptor positive breast cancer cells

    International Nuclear Information System (INIS)

    Mandal, Soma; Davie, James R

    2007-01-01

    The sex hormone estrogen (E2) is pivotal to normal mammary gland growth and differentiation and in breast carcinogenesis. In this in silico study, we examined metabolic differences between ER(+)ve breast cancer cells during E2 deprivation. Public repositories of SAGE and MA gene expression data generated from E2 deprived ER(+)ve breast cancer cell lines, MCF-7 and ZR75-1 were compared with normal breast tissue. We analyzed gene ontology (GO), enrichment, clustering, chromosome localization, and pathway profiles and performed multiple comparisons with cell lines and tumors with different ER status. In all GO terms, biological process (BP), molecular function (MF), and cellular component (CC), MCF-7 had higher gene utilization than ZR75-1. Various analyses showed a down-regulated immune function, an up-regulated protein (ZR75-1) and glucose metabolism (MCF-7). A greater percentage of 77 common genes localized to the q arm of all chromosomes, but in ZR75-1 chromosomes 11, 16, and 19 harbored more overexpressed genes. Despite differences in gene utilization (electron transport, proteasome, glycolysis/gluconeogenesis) and expression (ribosome) in both cells, there was an overall similarity of ZR75-1 with ER(-)ve cell lines and ER(+)ve/ER(-)ve breast tumors. This study demonstrates integral metabolic differences may exist within the same cell subtype (luminal A) in representative ER(+)ve cell line models. Selectivity of gene and pathway usage for strategies such as energy requirement minimization, sugar utilization by ZR75-1 contrasted with MCF-7 cells, expressing genes whose protein products require ATP utilization. Such characteristics may impart aggressiveness to ZR75-1 and may be prognostic determinants of ER(+)ve breast tumors

  15. Silencing MED1 sensitizes breast cancer cells to pure anti-estrogen fulvestrant in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Lijiang Zhang

    Full Text Available Pure anti-estrogen fulvestrant has been shown to be a promising ER antagonist for locally advanced and metastatic breast cancer. Unfortunately, a significant proportion of patients developed resistance to this type of endocrine therapy but the molecular mechanisms governing cellular responsiveness to this agent remain poorly understood. Here, we've reported that knockdown of estrogen receptor coactivator MED1 sensitized fulvestrant resistance breast cancer cells to fulvestrant treatment. We found that MED1 knockdown further promoted cell cycle arrest induced by fulvestrant. Using an orthotopic xenograft mouse model, we found that knockdown of MED1 significantly reduced tumor growth in mice. Importantly, knockdown of MED1 further potentiated tumor growth inhibition by fulvestrant. Mechanistic studies indicated that combination of fulvestrant treatment and MED1 knockdown is able to cooperatively inhibit the expression of ER target genes. Chromatin immunoprecipitation experiments further supported a role for MED1 in regulating the recruitment of RNA polymerase II and transcriptional corepressor HDAC1 on endogenous ER target gene promoter in the presence of fulvestrant. These results demonstrate a role for MED1 in mediating resistance to the pure anti-estrogen fulvestrant both in vitro and in vivo.

  16. Carcinogenesis model analysis for breast cancer incidence among atomic bomb survivors and the implications for cancer risk estimate for radiological protection

    International Nuclear Information System (INIS)

    Kai, Michiaki; Kusama, Tomoko

    2000-01-01

    Breast cancer incidence is the highest risk due to radiation among atomic bomb survivors. The excess relative risk of the early-onset breast cancer seems to be remarkably high for the youngest age-at-exposure groups. The cancer risk estimate of breast cancer is a current issue in radiological protection. We used a two-stage stochastic model for carcinogenesis to analyze the breast cancer incidence among atomic bomb survivors (Kai, et al. Radiat. Res. 1997). Our purpose is to examine the dependence of radiation risk on age at exposure using the two-stage model and how to transfer it to other populations for radiological protection. We fitted the model assuming that radiation acts as an initiator and that the rate of radiation-induced mutation and background initiation mutation leading to baseline cancer are additive. We took two age-dependence, not attained age but age at exposure, of the spontaneous process into account. First, age-dependence of spontaneous initiation was expressed by a linear model. We also modeled the age-dependence of spontaneous net growth rate of initiated cells by a linear function. As far as radiation-induced initiation is concerned, we took a stepwise function other than a liner function into account. The analysis did not show that the radiation mutation for the youngest age-at-exposure groups below age 10 was higher than for the older groups. Furthermore, the incidence of female breast cancer in Japan is increasing and the birth cohort effect can be observed in atomic bomb survivors. Our model assumed that an acute exposure to atomic radiation can only initiate cancers and do not influence other stages of carcinogenesis, whereas spontaneous initiation and promotion are age-dependent to consider birth cohort effects. When these cohort effects are properly accounted for, the shape of the age-specific incidence curve in Japan is remarkably similar to the age-specific incidence in western populations (shown in figure). Recently Little and

  17. A positive feedback pathway of estrogen biosynthesis in breast cancer cells is contained by resveratrol

    International Nuclear Information System (INIS)

    Wang Yun; Ye Lan; Leung, Lai K.

    2008-01-01

    Cytochrome P450 (CYP) 19 enzyme or aromatase catalyses the rate-determining step of estrogen synthesis. The transcriptional control of CYP19 gene is highly specific in different cell types, for instance, Promoter I.3/II is commonly used for regulation in breast cancer cells. Recently, a positive feedback pathway for estrogen synthesis has been identified in ERα expressing SK-BR-3 cells. CYP19 mRNA abundance and activity are increased in this pathway and the promoter usage is switched from Promoter I.3/II to I.1 through a non-genomic process. In the present study, effect of the phytocompound resveratrol on this Promoter I.1-controlled expression of aromatase was investigated. Results indicated that resveratrol reduced the estradiol-induced mRNA abundance in SK-BR-3 cells expressing ERα. Luciferase reporter gene assays revealed that resveratrol could also repress the transcriptional control dictated by Promoter I.1. Since the ERE-driven luciferase activity was not repressed by resveratrol, the nuclear events of estrogen were unlikely to be suppressed by resveratrol. Instead the phytochemical reduced the amount of ERK activated by estradiol, which could be the pathway responsible for Promoter I.1 transactivation and the induced CYP19 expression. The present study illustrated that resveratrol impeded the non-genomic induction of estrogen on CYP19

  18. Somatic mutations in stilbene estrogen-induced Syrian hamster kidney tumors identified by DNA fingerprinting

    Directory of Open Access Journals (Sweden)

    Roy Deodutta

    2004-01-01

    Full Text Available Abstract Kidney tumors from stilbene estrogen (diethylstilbestrol-treated Syrian hamsters were screened for somatic genetic alterations by Random Amplified Polymorphic DNA-polymerase chain-reaction (RAPD-PCR fingerprinting. Fingerprints from tumor tissue were generated by single arbitrary primers and compared with fingerprints for normal tissue from the same animal, as well as normal and tumor tissues from different animals. Sixty one of the arbitrary primers amplified 365 loci that contain approximately 476 kbp of the hamster genome. Among these amplified DNA fragments, 44 loci exhibited either qualitative or quantitative differences between the tumor tissues and normal kidney tissues. RAPD-PCR loci showing decreased and increased intensities in tumor tissue DNA relative to control DNA indicate that loci have undergone allelic losses and gains, respectively, in the stilbene estrogen-induced tumor cell genome. The presence or absence of the amplified DNA fragments indicate homozygous insertions or deletions in the kidney tumor DNA compared to the age-matched normal kidney tissue DNA. Seven of 44 mutated loci also were present in the kidney tissues adjacent to tumors (free of macroscopic tumors. The presence of mutated loci in uninvolved (non-tumor surrounding tissue adjacent to tumors from stilbene estrogen-treated hamsters suggests that these mutations occurred in the early stages of carcinogenesis. The cloning and sequencing of RAPD amplified loci revealed that one mutated locus had significant sequence similarity with the hamster Cyp1A1 gene. The results show the ability of RAPD-PCR to detect and isolate, in a single step, DNA sequences representing genetic alterations in stilbene estrogen-induced cancer cells, including losses of heterozygosity, and homozygous deletion and insertion mutations. RAPD-PCR provides an alternative molecular approach for studying cancer cytogenetics in stilbene estrogen-induced tumors in humans and experimental

  19. Integration of Nuclear- and Extranuclear-Initiated Estrogen Receptor Signaling in Breast Cancer Cells

    Science.gov (United States)

    Madak Erdogan, Zeynep

    2009-01-01

    Estrogenic hormones exert their effects through binding to Estrogen Receptors (ERs), which work in concert with coregulators and extranuclear signaling pathways to control gene expression in normal as well as cancerous states, including breast tumors. In this thesis, we have used multiple genome-wide analysis tools to elucidate various ways that…

  20. Metformin inhibits 7,12-dimethylbenz[a]anthracene-induced breast carcinogenesis and adduct formation in human breast cells by inhibiting the cytochrome P4501A1/aryl hydrocarbon receptor signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Maayah, Zaid H. [Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451 (Saudi Arabia); Ghebeh, Hazem [Stem Cell & Tissue Re-Engineering, King Faisal Specialist Hospital and Research Center, Riyadh 11211 (Saudi Arabia); Alhaider, Abdulqader A. [Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451 (Saudi Arabia); Camel Biomedical Research Unit, College of Pharmacy and Medicine, King Saud University, Riyadh 11451 (Saudi Arabia); El-Kadi, Ayman O.S. [Faculty of Pharmacy & Pharmaceutical Sciences, University of Alberta, Edmonton (Canada); Soshilov, Anatoly A.; Denison, Michael S. [Department of Environmental Toxicology, University of California at Davis, Davis, CA 95616 (United States); Ansari, Mushtaq Ahmad [Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451 (Saudi Arabia); Korashy, Hesham M., E-mail: hkorashy@ksu.edu.sa [Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451 (Saudi Arabia)

    2015-04-15

    Recent studies have established that metformin (MET), an oral anti-diabetic drug, possesses antioxidant activity and is effective against different types of cancer in several carcinogen-induced animal models and cell lines. However, whether MET can protect against breast cancer has not been reported before. Therefore, the overall objectives of the present study are to elucidate the potential chemopreventive effect of MET in non-cancerous human breast MCF10A cells and explore the underlying mechanism involved, specifically the role of cytochrome P4501A1 (CYP1A1)/aryl hydrocarbon receptor (AhR) pathway. Transformation of the MCF10A cells into initiated breast cancer cells with DNA adduct formation was conducted using 7,12-dimethylbenz[a]anthracene (DMBA), an AhR ligand. The chemopreventive effect of MET against DMBA-induced breast carcinogenesis was evidenced by the capability of MET to restore the induction of the mRNA levels of basic excision repair genes, 8-oxoguanine DNA glycosylase (OGG1) and apurinic/apyrimidinic endonuclease1 (APE1), and the level of 8-hydroxy-2-deoxyguanosine (8-OHdG). Interestingly, the inhibition of DMBA-induced DNA adduct formation was associated with proportional decrease in CYP1A1 and in NAD(P)H:quinone oxidoreductase 1 (NQO1) gene expression. Mechanistically, the involvements of AhR and nuclear factor erythroid 2-related factor-2 (Nrf2) in the MET-mediated inhibition of DMBA-induced CYP1A1 and NQO1 gene expression were evidenced by the ability of MET to inhibit DMBA-induced xenobiotic responsive element and antioxidant responsive element luciferase reporter gene expression which suggests an AhR- and Nrf2-dependent transcriptional control. However, the inability of MET to bind to AhR suggests that MET is not an AhR ligand. In conclusion, the present work shows a strong evidence that MET inhibits the DMBA-mediated carcinogenicity and adduct formation by inhibiting the expression of CYP1A1 through an AhR ligand-independent mechanism

  1. Metformin inhibits 7,12-dimethylbenz[a]anthracene-induced breast carcinogenesis and adduct formation in human breast cells by inhibiting the cytochrome P4501A1/aryl hydrocarbon receptor signaling pathway

    International Nuclear Information System (INIS)

    Maayah, Zaid H.; Ghebeh, Hazem; Alhaider, Abdulqader A.; El-Kadi, Ayman O.S.; Soshilov, Anatoly A.; Denison, Michael S.; Ansari, Mushtaq Ahmad; Korashy, Hesham M.

    2015-01-01

    Recent studies have established that metformin (MET), an oral anti-diabetic drug, possesses antioxidant activity and is effective against different types of cancer in several carcinogen-induced animal models and cell lines. However, whether MET can protect against breast cancer has not been reported before. Therefore, the overall objectives of the present study are to elucidate the potential chemopreventive effect of MET in non-cancerous human breast MCF10A cells and explore the underlying mechanism involved, specifically the role of cytochrome P4501A1 (CYP1A1)/aryl hydrocarbon receptor (AhR) pathway. Transformation of the MCF10A cells into initiated breast cancer cells with DNA adduct formation was conducted using 7,12-dimethylbenz[a]anthracene (DMBA), an AhR ligand. The chemopreventive effect of MET against DMBA-induced breast carcinogenesis was evidenced by the capability of MET to restore the induction of the mRNA levels of basic excision repair genes, 8-oxoguanine DNA glycosylase (OGG1) and apurinic/apyrimidinic endonuclease1 (APE1), and the level of 8-hydroxy-2-deoxyguanosine (8-OHdG). Interestingly, the inhibition of DMBA-induced DNA adduct formation was associated with proportional decrease in CYP1A1 and in NAD(P)H:quinone oxidoreductase 1 (NQO1) gene expression. Mechanistically, the involvements of AhR and nuclear factor erythroid 2-related factor-2 (Nrf2) in the MET-mediated inhibition of DMBA-induced CYP1A1 and NQO1 gene expression were evidenced by the ability of MET to inhibit DMBA-induced xenobiotic responsive element and antioxidant responsive element luciferase reporter gene expression which suggests an AhR- and Nrf2-dependent transcriptional control. However, the inability of MET to bind to AhR suggests that MET is not an AhR ligand. In conclusion, the present work shows a strong evidence that MET inhibits the DMBA-mediated carcinogenicity and adduct formation by inhibiting the expression of CYP1A1 through an AhR ligand-independent mechanism

  2. Multi-variant pathway association analysis reveals the importance of genetic determinants of estrogen metabolism in breast and endometrial cancer susceptibility.

    Directory of Open Access Journals (Sweden)

    Yen Ling Low

    2010-07-01

    Full Text Available Despite the central role of estrogen exposure in breast and endometrial cancer development and numerous studies of genes in the estrogen metabolic pathway, polymorphisms within the pathway have not been consistently associated with these cancers. We posit that this is due to the complexity of multiple weak genetic effects within the metabolic pathway that can only be effectively detected through multi-variant analysis. We conducted a comprehensive association analysis of the estrogen metabolic pathway by interrogating 239 tagSNPs within 35 genes of the pathway in three tumor samples. The discovery sample consisted of 1,596 breast cancer cases, 719 endometrial cancer cases, and 1,730 controls from Sweden; and the validation sample included 2,245 breast cancer cases and 1,287 controls from Finland. We performed admixture maximum likelihood (AML-based global tests to evaluate the cumulative effect from multiple SNPs within the whole metabolic pathway and three sub-pathways for androgen synthesis, androgen-to-estrogen conversion, and estrogen removal. In the discovery sample, although no single polymorphism was significant after correction for multiple testing, the pathway-based AML global test suggested association with both breast (p(global = 0.034 and endometrial (p(global = 0.052 cancers. Further testing revealed the association to be focused on polymorphisms within the androgen-to-estrogen conversion sub-pathway, for both breast (p(global = 0.008 and endometrial cancer (p(global = 0.014. The sub-pathway association was validated in the Finnish sample of breast cancer (p(global = 0.015. Further tumor subtype analysis demonstrated that the association of the androgen-to-estrogen conversion sub-pathway was confined to postmenopausal women with sporadic estrogen receptor positive tumors (p(global = 0.0003. Gene-based AML analysis suggested CYP19A1 and UGT2B4 to be the major players within the sub-pathway. Our study indicates that the composite

  3. [Chemotherapy-Induced Amenorrhea and Menopause Symptoms in Women With Breast Cancer].

    Science.gov (United States)

    Li, Chia-Ying; Chen, Mei-Ling

    2016-10-01

    Chemotherapy is a common adjuvant therapy for breast cancer that improves survival rates by killing residual cancer cells. However, this intervention may damage the germ cells within the ovary and interrupt the menstrual cycle, ultimately leading to chemotherapy-induced amenorrhea (CIA). The incidence of CIA depends on how broadly this term is defined. Around 75% of premenopausal breast cancer women treated with chemotherapy will develop CIA. Age, having a relatively long chemotherapy cycle duration, being estrogen-receptor positive, and using Tamoxifen all increase the risk of CIA. Although CIA may be associated with better prognosis outcomes, breast cancer women must subsequently deal with the various menopausal symptoms that are associated with a CIA-induced drop in estrogen level (such as cognitive function decline, physical and psychological symptoms, vasomotor symptoms, reproductive and sexual function problems, and body weight change). The present article describes the female menstrual cycle, the mechanism and risk factors of CIA, and the range of menopausal symptoms. Furthermore, we summarized methods of assessing menopausal symptoms and compared five common rating scales of menopausal symptoms. By better understanding the potential menopausal symptoms, researchers and clinicians may then select the most appropriate scale based on the situational needs in order to evaluate the severity of menopausal symptoms that are experienced by breast cancer women.

  4. Treatment with bisphenol A and methoxychlor results in the growth of human breast cancer cells and alteration of the expression of cell cycle-related genes, cyclin D1 and p21, via an estrogen receptor-dependent signaling pathway.

    Science.gov (United States)

    Lee, Hye-Rim; Hwang, Kyung-A; Park, Min-Ah; Yi, Bo-Rim; Jeung, Eui-Bae; Choi, Kyung-Chul

    2012-05-01

    Various endocrine disrupting chemicals (EDCs) are exogenous compounds found in the environment and have the potential to interfere with the endocrine system and hormonal regulation. Among EDCs, bisphenol A (BPA) and 1,1,1-trichloro-2,2-bis(4-methoxyphenol)-ethane [methoxychlor (MXC)] have estrogenic activity resulting in a variety of dysfunctions in the E2-mediated response by binding to estrogen receptors (ERs), causing human health problems such as abnormal reproduction and carcinogenesis. In this study, we investigated the effects of BPA and MXC on cell proliferation facilitated by ER signaling in human breast cancer cells. MCF-7 cells are known to be ERα-positive and to be a highly E2-responsive cancer cell line; these cells are, therefore, a useful in vitro model for detecting estrogenic activity in response to EDCs. We evaluated cancer cell proliferation following BPA and MXC treatment using an MTT assay. We analyzed alterations in the expression of genes associated with the cell cycle in MCF-7 cells by semi-quantitative reverse-transcription PCR following treatment with BPA or MXC compared to EtOH. To determine whether BPA and MXC stimulate cancer cell growth though ER signaling, we co-treated the cells with agonists (propyl pyrazoletriol, PPT; and diarylpropionitrile, DPN) or an antagonist (ICI 182,780) of ER signaling and reduced ERα gene expression via siRNA in MCF-7 cells before treatment with EDCs. These studies confirmed the carcinogenicity of EDCs in vitro. As a result, BPA and MXC induced the cancer cell proliferation by the upregulation of genes that promote the cell cycle and the downregulation of anti-proliferative genes, especially ones affecting the G1/S transition via ERα signaling. These collective results confirm the carcinogenicity of these EDCs in vitro. Further studies are required to determine whether EDCs promote carcinogenesis in vivo.

  5. Breast cancer and steroid metabolizing enzymes: the role of progestogens.

    Science.gov (United States)

    Pasqualini, Jorge R

    2009-12-01

    It is well documented that breast tissue, both normal and cancerous, contains all the enzymatic systems necessary for the bioformation and metabolic transformation of estrogens, androgens and progesterone. These include sulfatases, aromatase, hydroxysteroid-dehydrogenases, sulfotransferases, hydroxylases and glucuronidases. The control of these enzymes plays an important role in the development and pathogenesis of hormone-dependent breast cancer. As discussed in this review, various progestogens including dydrogesterone and its 20alpha-dihydro-derivative, medrogestone, promegestone, nomegestrol acetate and norelgestromin can reduce intratissular levels of estradiol in breast cancer by blocking sulfatase and 17beta-hydroxysteroid-dehydrogenase type 1 activities. A possible correlation has been postulated between breast cell proliferation and estrogen sulfotransferase activity. Progesterone is largely transformed in the breast; normal breast produces mainly 4-ene derivatives, whereas 5alpha-derivatives are most common in breast cancer tissue. It has been suggested that this specific conversion of progesterone may be involved in breast carcinogenesis. In conclusion, treatment with anti-aromatases combined with anti-sulfatase or 17beta-hydroxysteroid-dehydrogenase type 1 could provide new therapeutic possibilities in the treatment of patients with hormone-dependent breast cancer. Copyright 2009 Elsevier Ireland Ltd. All rights reserved.

  6. Urinary Estrogen Metabolites, Active and Sedentary Behaviors, and Breast Cancer Risk

    Science.gov (United States)

    A cross-sectional study of approximately 600 postmenopausal controls in the Breast Cancer Case-Control Study in Poland to assess urinary estrogen metabolites in relation to accelerometer-based measures of active and sedentary behaviors

  7. Polymorphisms in estrogen-metabolizing and estrogen receptor genes and the risk of developing breast cancer among a cohort of women with benign breast disease

    International Nuclear Information System (INIS)

    Gallicchio, Lisa; Berndt, Sonja I; McSorley, Meghan A; Newschaffer, Craig J; Thuita, Lucy W; Argani, Pedram; Hoffman, Sandra C; Helzlsouer, Kathy J

    2006-01-01

    A cohort study was conducted to examine the role of genetic polymorphisms in three estrogen metabolizing enzymes (COMT, CYP1A1, CYP1B1) and the two estrogen receptors (ESR1, ESR2) in the progression of benign breast disease (BBD) to breast cancer. Among participants in an ongoing cohort study, 1438 Caucasian women had a breast biopsy for BBD and were successfully genotyped for at least one of the polymorphisms examined in this study. Genotypes were determined using DNA extracted from blood specimens collected in 1989. Incident cases of breast cancer occurring subsequent to BBD diagnosis up to 2003 were identified through cancer registries. Among all participants, the ESR2 *5772G allele was associated with a significant decrease in the risk of breast cancer among women with BBD (Odds Ratio (OR) 0.38; 95% Confidence Interval (CI) 0.15, 0.96). Compared to the reference wild-type genotypes, marginally significant associations with the development of breast cancer were observed between carriers of the variant ESR1 – 104062T allele (OR 0.70, 95% CI 0.45, 1.09), the variant ESR2 *38A allele (OR 1.40; 95% CI 0.88, 2.25), and the variant CYP1B1 453Ser allele (OR 1.48, 95% CI 0.95, 2.32). The results indicate that specific polymorphisms in the CYP1B1, ESR1, and ESR2 genes may play a role in progression of BBD to breast cancer among Caucasian women. Although additional studies are needed to confirm or refute our findings, these results suggest that genetic markers may aid in the identification of women who are at risk for progression of BBD to cancer

  8. Musculoskeletal Complications and Bone Metastases in Breast Cancer Patients Undergoing Estrogen Deprivation Therapy

    Science.gov (United States)

    2016-10-01

    tissue (MAT) in estrogen deficient mice. Epidemiological studies have demonstrated a strong link between obesity and increased breast cancer...the accrual of MAT is dramatically accelerated with obesity , estrogen deprivation, glucocorticoid use, chemotherapy, and radiation therapy...Tucson, AZ 2005 – 2006 Graduate Research Assistant, McKnight Brain Institute, Neural Systems, Memory and Aging (NSMA), Department of Psychology

  9. Mammary carcinogenesis induced by three consecutive 14 MeV neutron irradiations in Sprague-Dawley rats

    International Nuclear Information System (INIS)

    Jacrot, M.; Mouriquand, J.; Mouriquand, C.

    1978-01-01

    At high doses (400 to 800 rads) the relative biological effectiveness (R.B.E.) of neutrons is two or three times greater than that of X-rays or gamma radiation. The neutron irradiation-induced mammary carcinogenesis threshold, if any, is certainly very low in Sprague-Dawley females. The purpose of this work is to test the possibilities offered by three consecutive 14 MeV neutron irradiations in the mammary carcinogenesis region of Sprague-Dawley rats. The results of these experiments show a hormone-dependence of tumour promotion similar to that observed with chemical carcinogenetic agents. However these tumours, by their recurrences and possible metastases, bear some resemblance to breast cancers in women. Although the tumour induction frequencies seem modest in relation to those obtained with the DMBA model they should nevertheless prove very useful in the study of hormone effects liable to control the appearance of such radioinduced cancers [fr

  10. Advances in breast cancer treatment and prevention: preclinical studies on aromatase inhibitors and new selective estrogen receptor modulators (SERMs)

    International Nuclear Information System (INIS)

    Schiff, Rachel; Chamness, Gary C; Brown, Powel H

    2003-01-01

    Intensive basic and clinical research over the past 20 years has yielded crucial molecular understanding into how estrogen and the estrogen receptor act to regulate breast cancer and has led to the development of more effective, less toxic, and safer hormonal therapy agents for breast cancer management and prevention. Selective potent aromatase inhibitors are now challenging the hitherto gold standard of hormonal therapy, the selective estrogen-receptor modulator tamoxifen. Furthermore, new selective estrogen-receptor modulators such as arzoxifene, currently under clinical development, offer the possibility of selecting one with a more ideal pharmacological profile for treatment and prevention of breast cancer. Two recent studies in preclinical model systems that evaluate mechanisms of action of these new drugs and suggestions about their optimal clinical use are discussed

  11. Kaempferol, a phytoestrogen, suppressed triclosan-induced epithelial-mesenchymal transition and metastatic-related behaviors of MCF-7 breast cancer cells.

    Science.gov (United States)

    Lee, Geum-A; Choi, Kyung-Chul; Hwang, Kyung-A

    2017-01-01

    As a phytoestrogen, kaempferol is known to play a chemopreventive role inhibiting carcinogenesis and cancer progression. In this study, the influences of triclosan, an anti-bacterial agent recently known for an endocrine disrupting chemical (EDC), and kaempferol on breast cancer progression were examined by measuring their effects on epithelial-mesenchymal transition (EMT) and metastatic-related behaviors of MCF-7 breast cancer cells. Morphological changes of MCF-7 cells were observed, and a wound-healing assay was performed after the treatment of triclosan and kaempferol. The effects of triclosan and kaempferol on protein expression of EMT-related markers such as E-cadherin, N-cadherin, Snail, and Slug and metastasis-related markers such as cathepsin B, D, MMP-2 and -9 were investigated by Western blot assay. In microscopic observations, triclosan (10 -6 M) or E2 (10 -9 M) induced transition to mesenchymal phenotype of MCF-7 cells compared with the control. Co-treatment of ICI 182,780 (10 -8 M), an ER antagonist, or kaempferol (25μM) with E2 or triclosan restored the cellular morphology to an epithelial phenotype. In a wound-healing scratch and a transwell migration assay, triclosan enhanced migration and invasion of MCF-7 cells, but co-treatment of kaempferol or ICI 182,780 reduced the migration and invasion ability of MCF-7 cells to the control level. In addition, kaempferol effectively suppressed E2 or triclosan-induced protein expressions of EMT and metastasis promoting markers. Taken together, triclosan may be a distinct xenoestrogenic EDC to promote EMT, migration, and invasion of MCF-7 breast cancer cells through ER. On the other hand, kaempferol can be an alternative chemopreventive agent to effectively suppress the metastatic behavior of breast cancer induced by an endogenous estrogen as well as exogenous xenoestrogenic compounds including triclosan. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Interplay between estrogen receptor and AKT in estradiol-induced alternative splicing.

    Science.gov (United States)

    Bhat-Nakshatri, Poornima; Song, Eun-Kyung; Collins, Nikail R; Uversky, Vladimir N; Dunker, A Keith; O'Malley, Bert W; Geistlinger, Tim R; Carroll, Jason S; Brown, Myles; Nakshatri, Harikrishna

    2013-06-11

    Alternative splicing is critical for generating complex proteomes in response to extracellular signals. Nuclear receptors including estrogen receptor alpha (ERα) and their ligands promote alternative splicing. The endogenous targets of ERα:estradiol (E2)-mediated alternative splicing and the influence of extracellular kinases that phosphorylate ERα on E2-induced splicing are unknown. MCF-7 and its anti-estrogen derivatives were used for the majority of the assays. CD44 mini gene was used to measure the effect of E2 and AKT on alternative splicing. ExonHit array analysis was performed to identify E2 and AKT-regulated endogenous alternatively spliced apoptosis-related genes. Quantitative reverse transcription polymerase chain reaction was performed to verify alternative splicing. ERα binding to alternatively spliced genes was verified by chromatin immunoprecipitation assay. Bromodeoxyuridine incorporation-ELISA and Annexin V labeling assays were done to measure cell proliferation and apoptosis, respectively. We identified the targets of E2-induced alternative splicing and deconstructed some of the mechanisms surrounding E2-induced splicing by combining splice array with ERα cistrome and gene expression array. E2-induced alternatively spliced genes fall into at least two subgroups: coupled to E2-regulated transcription and ERα binding to the gene without an effect on rate of transcription. Further, AKT, which phosphorylates both ERα and splicing factors, influenced ERα:E2 dependent splicing in a gene-specific manner. Genes that are alternatively spliced include FAS/CD95, FGFR2, and AXIN-1. E2 increased the expression of FGFR2 C1 isoform but reduced C3 isoform at mRNA level. E2-induced alternative splicing of FAS and FGFR2 in MCF-7 cells correlated with resistance to FAS activation-induced apoptosis and response to keratinocyte growth factor (KGF), respectively. Resistance of MCF-7 breast cancer cells to the anti-estrogen tamoxifen was associated with ER

  13. Novel Growth Factor as Prognostic Marker for Estrogen-Independence in Breast Cancer

    National Research Council Canada - National Science Library

    Serrero, Ginette

    2003-01-01

    The Concept Award focused on investigating the expression on the biomarker PCDGF/GP88 in breast cancer and its effect on the acquisition of estrogen independence and tamoxifen resistance, a hallmark...

  14. Targeting Aberrant p70S6K Activation for Estrogen Receptor-Negative Breast Cancer Prevention.

    Science.gov (United States)

    Wang, Xiao; Yao, Jun; Wang, Jinyang; Zhang, Qingling; Brady, Samuel W; Arun, Banu; Seewaldt, Victoria L; Yu, Dihua

    2017-11-01

    The prevention of estrogen receptor-negative (ER-) breast cancer remains a major challenge in the cancer prevention field, although antiestrogen and aromatase inhibitors have shown adequate efficacy in preventing estrogen receptor-positive (ER + ) breast cancer. Lack of commonly expressed, druggable targets is a major obstacle for meeting this challenge. Previously, we detected the activation of Akt signaling pathway in atypical hyperplasic early-stage lesions of patients. In the current study, we found that Akt and the downstream 70 kDa ribosomal protein S6 kinase (p70S6K) signaling pathway was highly activated in ER - premalignant breast lesions and ER - breast cancer. In addition, p70S6K activation induced transformation of ER - human mammary epithelial cells (hMEC). Therefore, we explored the potential of targeting Akt/p70S6K in the p70S6K activated, ER - hMEC models and mouse mammary tumor models for the prevention of ER - breast cancer. We found that a clinically applicable Akt/p70S6K dual inhibitor, LY2780301, drastically decreased proliferation of hMECs with ErbB2-induced p70S6K activation via Cyclin B1 inhibition and cell-cycle blockade at G 0 -G 1 phase, while it did not significantly reverse the abnormal acinar morphology of these hMECs. In addition, a brief treatment of LY2780301 in MMTV- neu mice that developed atypical hyperplasia (ADH) and mammary intraepithelial neoplasia (MIN) lesions with activated p70S6K was sufficient to suppress S6 phosphorylation and decrease cell proliferation in hyperplasic MECs. In summary, targeting the aberrant Akt/p70S6K activation in ER - hMEC models in vitro and in the MMTV- neu transgenic mouse model in vivo effectively inhibited Akt/S6K signaling and reduced proliferation of hMECs in vitro and ADH/MIN lesions in vivo , indicating its potential in prevention of p70S6K activated ER - breast cancer. Cancer Prev Res; 10(11); 641-50. ©2017 AACR . ©2017 American Association for Cancer Research.

  15. Chemical Probes of Rapid Estrogen Signaling in Breast Cancer Treatment and Chemoprevention

    National Research Council Canada - National Science Library

    Weatherman, Rose V

    2007-01-01

    The goal of this project was to design new chemical tools to selectively probe the molecular mechanisms of action of rapid estrogen receptor action and their relevance to breast cancer drugs like tamoxifen...

  16. The assay of estrogen receptors in three components of human breast cancer tissue

    International Nuclear Information System (INIS)

    Lu Hanping; Gui Zhining

    1992-01-01

    The binding capacities of estrogen receptors in nuclear matrix, nuclei and cytosol of human breast cancer tissue (EmR, EnR, EcR) were estimated with radioligand binding assay of receptors. The average B max values of these components in 21 breast cancer specimens are 417.54 ± 170.95, 147.75 ± 98.32, 7.34 ± 5.33 fmol/mg protein, and those in 10 normal breast tissue specimens are 42.33 ± 8.49, 25.05 ± 7.81, 5.91 ± 2.28 fmol/mg protein. Comparing the cancer and normal breast tissues, there is significant difference in B max values of EmR and EnR (P max values of EcR (P > 0.10). The EmR/EnR value of 21 breast cancer tissue is 0.65 ± 0.10, and that of 10 normal breast tissue is 0.42 ± 0.04. There is statistical difference between the cancer and normal. 10 of 13 (77%) patients, who are EcR-positive, have higher EmR/EnR values (≥0.50). The results suggest that estrogen receptors are mainly located at the nuclear matrix, ER levels in nucleus, especially in nuclear matrix of breast cancer tissue are valuable parameters and may be useful for predicting whether the patient will be responsible to endocrine therapy

  17. A dietary pattern based on estrogen metabolism is associated with breast cancer risk in a prospective cohort of postmenopausal women.

    Science.gov (United States)

    Guinter, Mark A; McLain, Alexander C; Merchant, Anwar T; Sandler, Dale P; Steck, Susan E

    2018-03-25

    Increased exposure to estrogen is a risk factor for postmenopausal breast cancer, and dietary factors can influence estrogen metabolism. However, studies of diet and breast cancer have been inconclusive. We developed a dietary pattern associated with levels of unconjugated estradiol and the ratio of 2- and 16-hydroxylated estrogen metabolites in a subsample of Prostate, Lung, Colorectal and Ovarian Screening Trial (PLCO) participants (n = 653) using reduced rank regression, and examined its association with postmenopausal breast cancer prospectively in the larger PLCO cohort (n = 27,488). The estrogen-related dietary pattern (ERDP) was comprised of foods with positively-weighted intakes (non-whole/refined grains, tomatoes, cruciferous vegetables, cheese, fish/shellfish high in ω-3 fatty acids, franks/luncheon meats) and negatively-weighted intakes (nuts/seeds, other vegetables, fish/shellfish low in ω-3 fatty acids, yogurt, coffee). A 1-unit increase in the ERDP score was associated with an increase in total (HR: 1.09, 95% CI: 1.01-1.18), invasive (HR: 1.13; 95% CI: 1.04-1.24) and estrogen receptor (ER)-positive (HR: 1.13, 95% CI: 1.02-1.24) breast cancer risk after adjustment for confounders. Associations were observed for the fourth quartile of ERDP compared with the first quartile for overall breast cancer (HR: 1.14; 95% CI: 0.98-1.32), invasive cases (HR: 1.20, 95% CI: 1.02-1.42) and ER-positive cases (HR: 1.19; 95% CI: 0.99-1.41). The increased risk associated with increasing ERDP score was more apparent in strata of some effect modifiers (postmenopausal hormone therapy non-users and non-obese participants) where the relative estrogen exposure due to that factor was lowest, although the p values for interaction were not statistically significant. Results suggest a dietary pattern based on estrogen metabolism is positively associated with postmenopausal breast cancer risk, possibly through an estrogenic influence. © 2018 UICC.

  18. Exogenous estrogen protects mice from the consequences of obesity and alcohol.

    Science.gov (United States)

    Holcomb, Valerie B; Hong, Jina; Núñez, Nomelí P

    2012-06-01

    Breast cancer is the second leading cause of cancer death among American women. Risk factors for breast cancer include obesity, alcohol consumption, and estrogen therapy. In the present studies, we determine the simultaneous effects of these three risk factors on wingless int (Wnt)-1 mammary tumor growth. Ovariectomized female mice were fed diets to induce different body weights (calorie restricted, low fat, high fat), provided water or 20% alcohol, implanted with placebo or estrogen pellets and injected with Wnt-1 mouse mammary cancer cells. Our results show that obesity promoted the growth of Wnt-1 tumors and induced fatty liver. Tumors tended to be larger in alcohol-consuming mice and alcohol exacerbated fatty liver in obese mice. Estrogen treatment promoted weight loss in obese mice, which was associated with the suppression of tumor growth and fatty liver. In summary, we show that estrogen protects against obesity, which is associated with the inhibition of fatty liver and tumor growth.

  19. MOLECULAR DOCKING OF COMPOUNDS FROM Chaetomium Sp. AGAINST HUMAN ESTROGEN RECEPTOR ALPHA IN SEARCHING ANTI BREAST CANCER

    Directory of Open Access Journals (Sweden)

    Maywan Hariono

    2016-05-01

    Full Text Available A study on molecular docking-based virtual screening has been conducted to select virtual hit of compounds, reported its existence in fungal endophytes of Chaetomium sp. as cytotoxic agent of breast cancer. The ligands were docked into Human Estrogen Receptor alpha (HERa as the protein which regulates the breast cancer growth via estradiol-estrogen receptor binding intervention. The results showed that two compounds bearing xanthone and two compounds bearing benzonaphtyridinedione scaffolds were selected as virtual hit ligands for HERa leading to the conclusion that these compounds were good to be developed as anti breast cancer.

  20. 1,1-Bis(3'-indolyl-1-(p-substituted phenylmethanes induce autophagic cell death in estrogen receptor negative breast cancer

    Directory of Open Access Journals (Sweden)

    Chadalapaka Gayathri

    2010-12-01

    Full Text Available Abstract Background A novel series of methylene-substituted DIMs (C-DIMs, namely 1,1-bis(3'-indolyl-1-(p-substituted phenylmethanes containing t-butyl (DIM-C-pPhtBu and phenyl (DIM-C-pPhC6H5 groups inhibit proliferation of invasive estrogen receptor-negative MDA-MB-231 and MDA-MB-453 human breast cancer cell lines with IC50 values between 1-5 uM. The main purpose of this study was to investigate the pathways of C-DIM-induced cell death. Methods The effects of the C-DIMs on apoptotic, necrotic and autophagic cell death were determined using caspase inhibitors, measurement of lactate dehydrogenase release, and several markers of autophagy including Beclin and light chain associated protein 3 expression (LC3. Results The C-DIM compounds did not induce apoptosis and only DIM-C-pPhCF3 exhibited necrotic effects. However, treatment of MDA-MB-231 and MDA-MB-453 cells with C-DIMs resulted in accumulation of LC3-II compared to LC3-I protein, a characteristic marker of autophagy, and transient transfection of green fluorescent protein-LC3 also revealed that treatment with C-DIMs induced a redistribution of LC3 to autophagosomes after C-DIM treatment. In addition, the autofluorescent drug monodansylcadaverine (MDC, a specific autophagolysosome marker, accumulated in vacuoles after C-DIM treatment, and western blot analysis of lysates from cells treated with C-DIMs showed that the Beclin 1/Bcl-2 protein ratio increased. Conclusion The results suggest that C-DIM compounds may represent a new mechanism-based agent for treating drug-resistant ER-negative breast tumors through induction of autophagy.

  1. Expression of estrogen-related gene markers in breast cancer tissue predicts aromatase inhibitor responsiveness.

    Directory of Open Access Journals (Sweden)

    Irene Moy

    Full Text Available Aromatase inhibitors (AIs are the most effective class of drugs in the endocrine treatment of breast cancer, with an approximate 50% treatment response rate. Our objective was to determine whether intratumoral expression levels of estrogen-related genes are predictive of AI responsiveness in postmenopausal women with breast cancer. Primary breast carcinomas were obtained from 112 women who received AI therapy after failing adjuvant tamoxifen therapy and developing recurrent breast cancer. Tumor ERα and PR protein expression were analyzed by immunohistochemistry (IHC. Messenger RNA (mRNA levels of 5 estrogen-related genes-AKR1C3, aromatase, ERα, and 2 estradiol/ERα target genes, BRCA1 and PR-were measured by real-time PCR. Tumor protein and mRNA levels were compared with breast cancer progression rates to determine predictive accuracy. Responsiveness to AI therapy-defined as the combined complete response, partial response, and stable disease rates for at least 6 months-was 51%; rates were 56% in ERα-IHC-positive and 14% in ERα-IHC-negative tumors. Levels of ERα, PR, or BRCA1 mRNA were independently predictive for responsiveness to AI. In cross-validated analyses, a combined measurement of tumor ERα and PR mRNA levels yielded a more superior specificity (36% and identical sensitivity (96% to the current clinical practice (ERα/PR-IHC. In patients with ERα/PR-IHC-negative tumors, analysis of mRNA expression revealed either non-significant trends or statistically significant positive predictive values for AI responsiveness. In conclusion, expression levels of estrogen-related mRNAs are predictive for AI responsiveness in postmenopausal women with breast cancer, and mRNA expression analysis may improve patient selection.

  2. Designer interface peptide grafts target estrogen receptor alpha dimerization

    International Nuclear Information System (INIS)

    Chakraborty, S.; Asare, B.K.; Biswas, P.K.; Rajnarayanan, R.V.

    2016-01-01

    complexes with estrogen receptor in silico. • Inhibitor peptides significantly decrease estrogen induced cell proliferation of ER positive breast cancer cells in vitro.

  3. Designer interface peptide grafts target estrogen receptor alpha dimerization

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborty, S. [Laboratory of Computational Biophysics & Bioengineering, Department of Physics, Tougaloo College, Tougaloo, MS 39174 (United States); Asare, B.K. [Department of Pharmacology and Toxicology, University of Buffalo, Buffalo, NY 14214 (United States); Biswas, P.K., E-mail: pbiswas@tougaloo.edu [Laboratory of Computational Biophysics & Bioengineering, Department of Physics, Tougaloo College, Tougaloo, MS 39174 (United States); Rajnarayanan, R.V., E-mail: rajendra@buffalo.edu [Department of Pharmacology and Toxicology, University of Buffalo, Buffalo, NY 14214 (United States)

    2016-09-09

    complexes with estrogen receptor in silico. • Inhibitor peptides significantly decrease estrogen induced cell proliferation of ER positive breast cancer cells in vitro.

  4. Serum Adipocytokines (Visfatin and Resistin: New Biomarkers of Breast Carcinogenesis

    Directory of Open Access Journals (Sweden)

    Sanaa A. El-Benhawy

    2015-10-01

    Full Text Available Background: Recent epidemiological studies demonstrate that obesity is associated with an increased risk for breast cancer in women. Increased estrogen levels are suggested as one possible explanation, but this does not fully explain the relationship between obesity and breast cancer. One alternative explanation is secretion by adipocytes of metabolites, hormones and cytokines, collectively known as adipocytokines, which regulate physiological and pathological processes. Among these adipokines are visfatin and resistin. This study investigates whether visfatin or resistin in serum of breast cancer patients can be used as potential diagnostic and prognostic tools for breast cancer, taking into account clinicopathological features and anthropometric parameters. Methods: Blood samples were collected from 70 breast cancer patients (35 obese and 35 non-obese and 20 healthy females matched for age and body mass index as the control group. Serum visfatin levels were measured by enzyme linked immunosorbent assay and serum resistin levels were measured by radioimmunoassay. Inflammatory status was assessed by measuring C-reactive protein levels by an automated turbidimetric analyzer. Results: We observed highly elevated serum resistin and visfatin levels in breast cancer patients compared to controls, independent of body mass index. Serum resistin and visfatin levels were likely to be associated with increased breast cancer risk and correlated with the inflammatory marker C-reactive protein. Conclusion: Targeting resistin and visfatin inhibition can be an effective therapeutic strategy in breast cancer by downregulating the inflammatory microenvironment in breast tissue. Serum visfatin promises to be a novel biomarker of diagnostic and prognostic value. Larger prospective studies are required to confirm our findings.

  5. β-Catenin Is a Positive Regulator of Estrogen Receptor-α Function in Breast Cancer Cells

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Nibedita; Schmitt, Fee; Grebhardt, Sina; Mayer, Doris, E-mail: d.mayer@dkfz.de [Hormones and Signal Transduction Group, German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Im Neuenheimer Feld 581, 69120 Heidelberg (Germany)

    2011-07-22

    Estrogen receptor-alpha (ERα) is a key factor in the development of breast cancer in humans. The expression and activity of ERα is regulated by a multitude of intracellular and extracellular signals. Here we show a cross-talk between β-catenin and ERα in human breast cancer cells. Knockdown of β-catenin by RNAi resulted in significant reduction of ERα mRNA and/or protein levels in MCF-7, T-47D, and BT-474 breast cancer cells and in significant reduction of estradiol-induced expression of the ERα target genes pS2 and GREB1. In addition β-catenin silencing resulted in significant decrease of growth of MCF-7 cells both in the absence and presence of estradiol. β-catenin and ERα could not be co-immunoprecipitated by ERα antibodies from lysates of E2-treated or untreated cells suggesting lack of direct physical interaction. It is concluded that β-catenin is a positive regulator of ERα mRNA and protein expression.

  6. Altered expression of estrogen receptor-α variant messenger RNAs between adjacent normal breast and breast tumor tissues

    International Nuclear Information System (INIS)

    Leygue, Etienne; Dotzlaw, Helmut; Watson, Peter H; Murphy, Leigh C

    2000-01-01

    reduction mammoplasty and breast tumor. Transfection experiments showed that the activation of the transcription of the pS2 gene by estrogen was drastically reduced in the presence of increased ERD3 expression. The authors hypothesized that the reduction in ERD3 expression could be a prerequisite for breast carcinogenesis to proceed. We observed a significantly higher relative expression of ERD5 messenger RNA in breast tumor components compared with matched adjacent normal breast tissue. These data confirm our previous observations performed on unmatched normal and neoplastic human breast tissues. Upregulated expression of this variant has already been reported in ER-negative/PR-positive tumors, as compared with ER-positive/PR-positive tumors, suggesting a possible correlation between ERD5 messenger RNA expression and breast tumor progression. Even though it has been suggested that ERD5 could be related to the acquisition of insensitivity to antiestrogen treatment (ie tamoxifen), accumulating data refute a general role for ERD5 in hormone-resistant tumors. Only ER-positive pS2-positive tamoxifen-resistant tumors have been shown to express significantly higher levels of ERD5 messenger RNA, as compared with control tumors. Taken together, these data suggest that the exact biologic significance of ERD5 variant expression during breast tumorigenesis and breast cancer progression, if any, remains unclear. In conclusion, we have shown that the relative expressions of ERC4 and ERD5 variant messenger RNAs were increased in human breast tumor tissue, as compared with normal adjacent tissue, whereas the expression of ERD3 variant messenger RNA was decreased in breast tumor tissues. These results suggest that the expressions of several ER-α variant messenger RNAs are deregulated during human breast tumorigenesis. Further studies are needed to determine whether these changes are transposed at the protein level. Furthermore, the putative role of ER-α variants in the mechanisms that

  7. Estrogen-mediated inactivation of FOXO3a by the G protein-coupled estrogen receptor GPER

    International Nuclear Information System (INIS)

    Zekas, Erin; Prossnitz, Eric R.

    2015-01-01

    Estrogen (17β-estradiol) promotes the survival and proliferation of breast cancer cells and its receptors represent important therapeutic targets. The cellular actions of estrogen are mediated by the nuclear estrogen receptors ERα and ERβ as well as the 7-transmembrane spanning G protein-coupled estrogen receptor (GPER). We previously reported that estrogen activates the phosphoinositide 3-kinase (PI3Kinase) pathway via GPER, resulting in phosphatidylinositol (3,4,5)-trisphosphate (PIP3) production within the nucleus of breast cancer cells; however, the mechanisms and consequences of this activity remained unclear. MCF7 breast cancer cells were transfected with GFP-fused Forkhead box O3 (FOXO3) as a reporter to assess localization in response to estrogen stimulation. Inhibitors of PI3Kinases and EGFR were employed to determine the mechanisms of estrogen-mediated FOXO3a inactivation. Receptor knockdown with siRNA and the selective GPER agonist G-1 elucidated the estrogen receptor(s) responsible for estrogen-mediated FOXO3a inactivation. The effects of selective estrogen receptor modulators and downregulators (SERMs and SERDs) on FOXO3a in MCF7 cells were also determined. Cell survival (inhibition of apoptosis) was assessed by caspase activation. In the estrogen-responsive breast cancer cell line MCF7, FOXO3a inactivation occurs on a rapid time scale as a result of GPER, but not ERα, stimulation by estrogen, established by the GPER-selective agonist G-1 and knockdown of GPER and ERα. GPER-mediated inactivation of FOXO3a is effected by the p110α catalytic subunit of PI3Kinase as a result of transactivation of the EGFR. The SERMs tamoxifen and raloxifene, as well as the SERD ICI182,780, were active in mediating FOXO3a inactivation in a GPER-dependent manner. Additionally, estrogen-and G-1-mediated stimulation of MCF7 cells results in a decrease in caspase activation under proapoptotic conditions. Our results suggest that non-genomic signaling by GPER contributes

  8. p53 inactivation decreases dependence on estrogen/ERK signalling for proliferation but promotes EMT and susceptility to 3-bromopyruvate in ERα+ breast cancer MCF-7 cells.

    Science.gov (United States)

    Rieber, Manuel; Strasberg-Rieber, Mary

    2014-03-15

    Most breast cancers express the estrogen receptor alpha (ERα(+)), harbor wt TP53, depend on estrogen/ERK signalling for proliferation, and respond to anti-estrogens. However, concomittant activation of the epidermal growth factor receptor (EGFR)/MEK pathway promotes resistance by decreasing estrogen dependence. Previously, we showed that retroviral transduction of mutant p53 R175H into wt TP53 ERα(+) MCF-7 cells induces epidermal growth factor (EGF)-independent proliferation, activation of the EGF receptor (p-EGFR) and some characteristics of epithelial-mesenchymal transition (EMT). To investigate whether p53 inactivation augments ERα(+) cell proliferation in response to restrictive estradiol, chemical MEK inhibition or metabolic inhibitors. Introduction of mutant p53 R175H lowered expression of p53-dependent PUMA and p21WAF1, decreased E-cadherin and cytokeratin 18 associated with EMT, but increased the % of proliferating ERα(+)/Ki67 cells, diminishing estrogen dependence. These cells also exhibited higher proliferation in the presence of MEK-inhibitor UO126, reciprocally correlating with preferential susceptibility to the pyruvate analog 3-bromopyruvate (3-BrPA) without a comparable response to 2-deoxyglucose. p53 siRNA silencing by electroporation in wt TP53 MCF-7 cells also decreased estrogen dependence and response to MEK inhibition, while also conferring susceptibility to 3-BrPA. (a) ERα(+) breast cancer cells dysfunctional for TP53 which proliferate irrespective of low estrogen and chemical MEK inhibition are likely to increase metabolic consumption becoming increasingly susceptible to 3-BrPA; (b) targeting the pyruvate pathway may improve response to endocrine therapy in ERα(+) breast cancer with p53 dysfunction. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Polychlorinated biphenyls (PCBs enhance metastatic properties of breast cancer cells by activating Rho-associated kinase (ROCK.

    Directory of Open Access Journals (Sweden)

    Sijin Liu

    Full Text Available BACKGROUND: Polychlorinated biphenyls (PCBs are a family of structurally related chlorinated aromatic hydrocarbons. Numerous studies have documented a wide spectrum of biological effects of PCBs on human health, such as immunotoxicity, neurotoxicity, estrogenic or antiestrogenic activity, and carcinogenesis. The role of PCBs as etiologic agents for breast cancer has been intensively explored in a variety of in vivo, animal and epidemiologic studies. A number of investigations indicated that higher levels of PCBs in mammary tissues or sera correlated to breast cancer risk, and PCBs might be implicated in advancing breast cancer progression. METHODOLOGY/PRINCIPAL FINDINGS: In the current study, we for the first time report that PCBs greatly promote the ROCK activity and therefore increase cell motility for both non-metastatic and metastatic human breast cancer cells in vitro. In the in vivo study, PCBs significantly advance disease progression, leading to enhanced capability of metastatic breast cancer cells to metastasize to bone, lung and liver. Additionally, PCBs robustly induce the production of intracellular reactive oxygen species (ROS in breast cancer cells; ROS mechanistically elevate ROCK activity. CONCLUSIONS/SIGNIFICANCE: PCBs enhance the metastatic propensity of breast cancer cells by activating the ROCK signaling, which is dependent on ROS induced by PCBs. Inhibition of ROCK may stand for a unique way to restrain metastases in breast cancer upon PCB exposure.

  10. Clinical instability of breast cancer markers is reflected in long-term in vitro estrogen deprivation studies

    International Nuclear Information System (INIS)

    Milosevic, Jelena; Klinge, Johanna; Borg, Anna-Lena; Foukakis, Theodoros; Bergh, Jonas; Tobin, Nicholas P

    2013-01-01

    Long-term estrogen deprivation models are widely employed in an in vitro setting to recapitulate the hormonal milieu of breast cancer patients treated with endocrine therapy. Despite the wealth information we have garnered from these models thus far, a comprehensive time-course analysis of the estrogen (ER), progesterone (PR), and human epidermal growth factor 2 (HER-2/neu) receptors on the gene and protein level, coupled with expression array data is currently lacking. We aimed to address this knowledge gap in order to enhance our understanding of endocrine therapy resistance in breast cancer patients. ER positive MCF7 and BT474 breast cancer cells were grown in estrogen depleted medium for 10 months with the ER negative MDA-MB-231 cell line employed as control. ER, PR and HER-2/neu expression were analysed at defined short and long-term time points by immunocytochemistry (ICC), and quantitative real-time RT-PCR (qRT-PCR). Microarray analysis was performed on representative samples. MCF7 cells cultured in estrogen depleted medium displayed decreasing expression of ER up to 8 weeks, which was then re-expressed at 10 months. PR was also down-regulated at early time points and remained so for the duration of the study. BT474 cells generally displayed no changes in ER during the first 8 weeks of deprivation, however its expression was significantly decreased at 10 months. PR expression was also down-regulated early in BT474 samples and was absent at later time points. Finally, microarray data revealed that genes and cell processes down-regulated in both cell lines at 6 weeks overlapped with those down-regulated in aromatase inhibitor treated breast cancer patients. Our data demonstrate that expression of ER, PR, and cell metabolic/proliferative processes are unstable in response to long-term estrogen deprivation in breast cancer cell lines. These results mirror recent clinical findings and again emphasize the utility of LTED models in translational research

  11. Editor's Highlight: Transcriptome Profiling Reveals Bisphenol A Alternatives Activate Estrogen Receptor Alpha in Human Breast Cancer Cells.

    Science.gov (United States)

    Mesnage, Robin; Phedonos, Alexia; Arno, Matthew; Balu, Sucharitha; Corton, J Christopher; Antoniou, Michael N

    2017-08-01

    Plasticizers with estrogenic activity, such as bisphenol A (BPA), have potential adverse health effects in humans. Due to mounting evidence of these health effects, BPA is being phased out and replaced by other bisphenol variants in "BPA-free" products. We have compared estrogenic activity of BPA with 6 bisphenol analogues [bisphenol S (BPS); bisphenol F (BPF); bisphenol AP (BPAP); bisphenol AF (BPAF); bisphenol Z (BPZ); bisphenol B (BPB)] in 3 human breast cancer cell lines. Estrogenicity was assessed (10-11-10-4 M) by cell growth in an estrogen receptor (ER)-mediated cell proliferation assay, and by the induction of estrogen response element-mediated transcription in a luciferase assay. BPAF was the most potent bisphenol, followed by BPB > BPZ ∼ BPA > BPF ∼ BPAP > BPS. The addition of ICI 182,780 antagonized the activation of ERs. Data mining of ToxCast high-throughput screening assays confirm our results but also show divergence in the sensitivities of the assays. Gene expression profiles were determined in MCF-7 cells by microarray analysis. The comparison of transcriptome profile alterations resulting from BPA alternatives with an ERα gene expression biomarker further indicates that all BPA alternatives act as ERα agonists in MCF-7 cells. These results were confirmed by Illumina-based RNA sequencing. In conclusion, BPA alternatives are not necessarily less estrogenic than BPA in human breast cancer cells. BPAF, BPB, and BPZ were more estrogenic than BPA. These findings point to the importance of better understanding the risk of adverse effects from exposure to BPA alternatives, including hormone-dependent breast cancer. © The Author 2017. Published by Oxford University Press on behalf of the Society of Toxicology.

  12. Peroxidase activity as a marker for estrogenicity

    International Nuclear Information System (INIS)

    Levy, J.; Liel, Y.; Glick, S.M.

    1981-01-01

    We examined the possibility that peroxidase activity might be a marker for estrogen activity in established estrogen-dependent tissues: dimethylbenz[a]anthracene (DMBA)-induced rat mammary tumours and human breast cancer. In DMBA-induced tumours undergoing regression after ovariectomy or tamoxifen treatment, tumour size decreased by 50%, estradiol receptors (ER) and progesterone receptors (PgR) decreased by 25 and 20%, respectively, but peroxidase activity paradoxically increased six- to sevenfold. In DMBA tumours stimulated by estradiol treatment or by the cessation of tamoxifen administration in intact rats, tumour size increased threefold. ER and PgR increased two- and threefold, respectively, while peroxidase activity decreased 50%. These data indicate an inverse relation between tumour growth, ER and PgR on the one hand, and peroxidase activity on the other. In the human breast cancers there was a singificant negative relation between the presence of ER and peroxidase activity. By using a calibrated Sephadex G-100 column it was shown that uterine peroxidase differs in molecular weight from the peroxidase of rat mammary tumours and that of human breast cancer. (author)

  13. Alternative Dosing of Exemestane Before Surgery in Treating Postmenopausal Patients With Stage 0-II Estrogen Positive Breast Cancer

    Science.gov (United States)

    2018-04-09

    Estrogen Receptor Positive; Postmenopausal; Stage 0 Breast Cancer AJCC v6 and v7; Stage I Breast Cancer AJCC v7; Stage IA Breast Cancer AJCC v7; Stage IB Breast Cancer AJCC v7; Stage II Breast Cancer AJCC v6 and v7; Stage IIA Breast Cancer AJCC v6 and v7; Stage IIB Breast Cancer AJCC v6 and v7

  14. Selective estrogen receptor modulators (SERMs): Mechanisms of anticarcinogenesis and drug resistance

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Joan S. [Fox Chase Cancer Center, Alfred G. Knudson Chair of Cancer Research, 333 Cottman Avenue, Philadelphia, PA 19111 (United States); Jordan, V. Craig [Fox Chase Cancer Center, Alfred G. Knudson Chair of Cancer Research, 333 Cottman Avenue, Philadelphia, PA 19111 (United States)]. E-mail: v.craig.jordan@fccc.edu

    2005-12-11

    Despite the beneficial effects of estrogens in women's health, there is a plethora of evidence that suggest an important role for these hormones, particularly 17{beta}-estradiol (E{sub 2}), in the development and progression of breast cancer. Most estrogenic responses are mediated by estrogen receptors (ERs), either ER{alpha} or ER{beta}, which are members of the nuclear receptor superfamily of ligand-dependent transcription factors. Selective estrogen receptor modulators (SERMs) are ER ligands that in some tissues (i.e. bone and cardiovascular system) act like estrogens but block estrogen action in others. Tamoxifen is the first SERM that has been successfully tested for the prevention of breast cancer in high-risk women and is currently approved for the endocrine treatment of all stages of ER-positive breast cancer. Raloxifene, a newer SERM originally developed for osteoporosis, also appears to have preventive effect on breast cancer incidence. Numerous studies have examined the molecular mechanisms for the tissue selective action of SERMs, and collectively they indicate that different ER ligands induce distinct conformational changes in the receptor that influence its ability to interact with coregulatory proteins (i.e. coactivators and corepressors) critical for the regulation of target gene transcription. The relative expression of coactivators and corepressors, and the nature of the ER and its target gene promoter also affect SERM biocharacter. This review summarizes the therapeutic application of SERMs in medicine; particularly breast cancer, and highlights the emerging understanding of the mechanism of action of SERMs in select target tissues, and the inevitable development of resistance.

  15. DNA demethylation by 5-aza-2-deoxycytidine treatment abrogates 17 beta-estradiol-induced cell growth and restores expression of DNA repair genes in human breast cancer cells.

    Science.gov (United States)

    Singh, Kamaleshwar P; Treas, Justin; Tyagi, Tulika; Gao, Weimin

    2012-03-01

    Prolonged exposure to elevated levels of estrogen is a risk factor for breast cancer. Though increased cell growth and loss of DNA repair capacity is one of the proposed mechanisms for estrogen-induced cancers, the mechanism through which estrogen induces cell growth and decreases DNA repair capacity is not clear. DNA hypermethylation is known to inactivate DNA repair genes and apoptotic response in cancer cells. Therefore, the objective of this study was to determine the role of DNA hypermethylation in estrogen-induced cell growth and regulation of DNA repair genes expression in breast cancer cells. To achieve this objective, the estrogen-responsive MCF-7 cells either pretreated with 5-aza-2-deoxycytidine (5-aza-dC) or untreated (as control) were exposed to 17 beta-estradiol (E2), and its effect on cell growth and expression of DNA repair genes were measured. The result revealed that 5-aza-dC abrogates the E2-induced growth in MCF-7 cells. An increased expression of OGG1, MSH4, and MLH1 by 5-aza-dC treatment alone, suggest the DNA hypermethylation as a potential cause for decreased expression of these genes in MCF-7 cells. The decreased expression of ERCC1, XPC, OGG1, and MLH1 by E2 alone and its restoration by co-treatment with 5-aza-dC further suggest that E2 reduces the expression of these DNA repair genes potentially through promoter hypermethylation. Reactivation of mismatch repair (MMR) gene MLH1 and abrogation of E2-induced cell growth by 5-aza-dC treatment suggest that estrogen causes increased growth in breast cancer cells potentially through the inhibition of MMR-mediated apoptotic response. In summary, this study suggests that estrogen increases cell growth and decreases the DNA repair capacity in breast cancer cells, at least in part, through epigenetic mechanism. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  16. Ultraviolet radiation-induced carcinogenesis: mechanisms and experimental models

    International Nuclear Information System (INIS)

    Ramasamy, Karthikeyan; Shanmugam, Mohana; Balupillai, Agilan; Govindhasamy, Kanimozhi; Gunaseelan, Srithar; Muthusamy, Ganesan; Robert, Beualah Mary; Nagarajan, Rajendra Prasad

    2017-01-01

    Ultraviolet radiation (UVR) is a very prominent environmental toxic agent. UVR has been implicated in the initiation and progression of photocarcinogenesis. UVR exposure elicits numerous cellular and molecular events which include the generation of inflammatory mediators, DNA damage, epigenetic modifications, and oxidative damages mediated activation of signaling pathways. UVR-initiated signal transduction pathways are believed to be responsible for tumor promotion effects. UVR-induced carcinogenic mechanism has been well studied using various animal and cellular models. Human skin-derived dermal fibroblasts, epidermal keratinocytes, and melanocytes served as excellent cellular model systems for the understanding of UVR-mediated carcinogenic events. Apart from this, scientists developed reconstituted three-dimensional normal human skin equivalent models for the study of UVR signaling pathways. Moreover, hairless mice such as SKH-1, devoid of Hr gene, served as a valuable model for experimental carcinogenesis. Scientists have also used transgenic mice and dorsal portion shaved Swiss albino mice for UVR carcinogenesis studies. In this review, we have discussed the current progress in the study on ultraviolet B (UVB)-mediated carcinogenesis and outlined appropriate experimental models for both ultraviolet A- and UVB-mediated carcinogenesis. (author)

  17. Estrogen and progesterone receptor testing in breast carcinoma: concordance of results between local and reference laboratories in Brazil

    Directory of Open Access Journals (Sweden)

    Sheila Cristina Lordelo Wludarski

    Full Text Available CONTEXT AND OBJECTIVE: Breast cancer accounts for approximately one quarter of all cancers in females. Estrogen and progesterone receptor testing has become an essential part of the clinical evaluation of breast carcinoma patients, and accurate results are critical in identifying patients who may benefit from hormone therapy. The present study had the aim of investigating the concordance of the results from hormone receptor tests between a reference laboratory and local (or community laboratories in Brazil. DESIGN AND SETTING: Retrospective study at a reference pathology laboratory. METHODS: The concordance in the results from hormone receptor tests between a reference laboratory and 146 local laboratories in Brazil was compared in relation to 500 invasive breast carcinoma cases, using immunohistochemistry. RESULTS: There was concordance in 89.4% (447/500 cases and 85.0% (425/500 cases of the results from estrogen (κ = 0.744, P < 0.001 and progesterone (κ = 0.688, P < 0.001 receptor tests, respectively, between local and reference laboratories. This was similar to findings in other countries. The false negative rates from estrogen and progesterone receptor tests in local laboratories were 8.7% and 14.4%, respectively. The false positive rates from estrogen and progesterone receptor tests in local laboratories were 15.5% and 16.0%, respectively. CONCLUSION: Technical and result interpretation issues may explain most of the discordances in hormone receptor testing in local laboratories. Validation of estrogen and progesterone receptor tests at local laboratories, with rigorous quality control measures, is strongly recommended in order to avoid erroneous treatment of breast cancer patients.

  18. DNA and chromosome breaks induced by 123I-estrogen in CHO cells

    International Nuclear Information System (INIS)

    Schwartz, J.L.

    1997-01-01

    The effects of the Auger electron-emitting isotope I-123, covalently bound to estrogen, on DNA single- and double-strand breakage and on chromosome breakage was determined in estrogen positive Chinese hamster ovary (CHO-ER) cells. Exposure to the 123 I-estrogen induced both single- and double-strand breaks with a ratio of single- to double-strand breaks of 2.2. The corresponding ratio with 60 Co gamma rays was 15.6. The dose-response was biphasic suggesting that either receptor sites are saturated at high does, or that there is a nonrandom distribution of breaks induced by the 123 I-estrogen. The 123 I-estrogen treatment induced chromosome aberrations with an efficiency of about 1 aberration for each 1,000 disintegrations per cell. This corresponds to the mean lethal dose of 123 I-estrogen for these cells suggesting that the lethal event induced by the Auger electron emitter bound to estrogen is a chromosome aberration. Most of the chromosome-type aberrations were dicentrics and rings, suggesting that 123 I-estrogen-induced chromosome breaks are rejoined. The F-ratio, the ratio of dicentrics to centric rings, was 5.8 ± 1.7, which is similar to that seen with high LET radiations. Their results suggest that I-123 bound to estrogen is an efficient clastogenic agent, that the cytotoxic damage produced by I-123 bound to estrogen is very like high LET-induced damage, and the I-123 in the estrogen-receptor-DNA complex is probably in close proximity to the sugar-phosphate backbone of the DNA

  19. Epidermal growth factor receptor signalling in human breast cancer cells operates parallel to estrogen receptor α signalling and results in tamoxifen insensitive proliferation

    International Nuclear Information System (INIS)

    Moerkens, Marja; Zhang, Yinghui; Wester, Lynn; Water, Bob van de; Meerman, John HN

    2014-01-01

    Tamoxifen resistance is a major problem in the treatment of estrogen receptor (ER) α -positive breast cancer patients. Although the mechanisms behind tamoxifen resistance are still not completely understood, clinical data suggests that increased expression of receptor tyrosine kinases is involved. Here, we studied the estrogen and anti-estrogen sensitivity of human breast cancer MCF7 cells that have a moderate, retroviral-mediated, ectopic expression of epidermal growth factor receptor (MCF7-EGFR). Proliferation of MCF7-EGFR and parental cells was induced by 17β-estradiol (E2), epidermal growth factor (EGF) or a combination of these. Inhibition of proliferation under these conditions was investigated with 4-hydroxy-tamoxifen (TAM) or fulvestrant at 10 -12 to 10 -6 M. Cells were lysed at different time points to determine the phosphorylation status of EGFR, MAPK 1/3 , AKT and the expression of ERα. Knockdown of target genes was established using smartpool siRNAs. Transcriptomics analysis was done 6 hr after stimulation with growth factors using Affymetrix HG-U133 PM array plates. While proliferation of parental MCF7 cells could only be induced by E2, proliferation of MCF7-EGFR cells could be induced by either E2 or EGF. Treatment with TAM or fulvestrant did significantly inhibit proliferation of MCF7-EGFR cells stimulated with E2 alone. EGF treatment of E2/TAM treated cells led to a marked cell proliferation thereby overruling the anti-estrogen-mediated inhibition of cell proliferation. Under these conditions, TAM however did still inhibit ERα- mediated transcription. While siRNA-mediated knock-down of EGFR inhibited the EGF- driven proliferation under TAM/E2/EGF condition, knock down of ERα did not. The TAM resistant cell proliferation mediated by the conditional EGFR-signaling may be dependent on the PI3K/Akt pathway but not the MEK/MAPK pathway, since a MEK inhibitor (U0126), did not block the proliferation. Transcriptomic analysis under the various E2/TAM

  20. N-3 poly-unsaturated fatty acids shift estrogen signaling to inhibit human breast cancer cell growth.

    Directory of Open Access Journals (Sweden)

    Wenqing Cao

    Full Text Available Although evidence has shown the regulating effect of n-3 poly-unsaturated fatty acid (n-3 PUFA on cell signaling transduction, it remains unknown whether n-3 PUFA treatment modulates estrogen signaling. The current study showed that docosahexaenoic acid (DHA, C22:6, eicosapentaenoic acid (EPA, C20:5 shifted the pro-survival and proliferative effect of estrogen to a pro-apoptotic effect in human breast cancer (BCa MCF-7 and T47D cells. 17 β-estradiol (E2 enhanced the inhibitory effect of n-3 PUFAs on BCa cell growth. The IC50 of DHA or EPA in MCF-7 cells decreased when combined with E2 (10 nM treatment (from 173 µM for DHA only to 113 µM for DHA+E2, and from 187 µm for EPA only to 130 µm for EPA+E2. E2 also augmented apoptosis in n-3 PUFA-treated BCa cells. In contrast, in cells treated with stearic acid (SA, C18:0 as well as cells not treated with fatty acid, E2 promoted breast cancer cell growth. Classical (nuclear estrogen receptors may not be involved in the pro-apoptotic effects of E2 on the n-3 PUFA-treated BCa cells because ERα agonist failed to elicit, and ERα knockdown failed to block E2 pro-apoptotic effects. Subsequent studies reveal that G protein coupled estrogen receptor 1 (GPER1 may mediate the pro-apoptotic effect of estrogen. N-3 PUFA treatment initiated the pro-apoptotic signaling of estrogen by increasing GPER1-cAMP-PKA signaling response, and blunting EGFR, Erk 1/2, and AKT activity. These findings may not only provide the evidence to link n-3 PUFAs biologic effects and the pro-apoptotic signaling of estrogen in breast cancer cells, but also shed new insight into the potential application of n-3 PUFAs in BCa treatment.

  1. Insulin priming effect on estradiol-induced breast cancer metabolism and growth.

    Science.gov (United States)

    Wairagu, Peninah M; Phan, Ai N H; Kim, Min-Kyu; Han, Jeongwoo; Kim, Hyun-Won; Choi, Jong-Whan; Kim, Ki Woo; Cha, Seung-Kuy; Park, Kwang Hwa; Jeong, Yangsik

    2015-01-01

    Diabetes is a risk factor for breast cancer development and is associated with poor prognosis for breast cancer patients. However, the molecular and biochemical mechanisms underlying the association between diabetes and breast cancer have not been fully elucidated. Here, we investigated estradiol response in MCF-7 breast cancer cells with or without chronic exposure to insulin. We found that insulin priming is necessary and specific for estradiol-induced cancer cell growth, and induces anaplerotic shunting of glucose into macromolecule biosynthesis in the estradiol treated cells. Treatment with ERK or Akt specific inhibitors, U0126 or LY294002, respectively, suppressed estradiol-induced growth. Interestingly, molecular analysis revealed that estradiol treatment markedly increases expression of cyclin A and B, and decreases p21 and p27 in the insulin-primed cells. In addition, estradiol treatment activated metabolic genes in pentose phosphate (PPP) and serine biosynthesis pathways in the insulin-primed cells while insulin priming decreased metabolic gene expression associated with glucose catabolism in the breast cancer cells. Finally, we found that anti-diabetic drug metformin and AMPK ligand AICAR, but not thiazolidinediones (TZDs), specifically suppress the estradiol-induced cellular growth in the insulin-primed cells. These findings suggest that estrogen receptor (ER) activation under chronic hyperinsulinemic condition increases breast cancer growth through the modulation of cell cycle and apoptotic factors and nutrient metabolism, and further provide a mechanistic evidence for the clinical benefit of metformin use for ER-positive breast cancer patients with diabetes.

  2. Small leucine zipper protein functions as a negative regulator of estrogen receptor α in breast cancer.

    Directory of Open Access Journals (Sweden)

    Juyeon Jeong

    Full Text Available The nuclear transcription factor estrogen receptor α (ERα plays a critical role in breast cancer progression. ERα acts as an important growth stimulatory protein in breast cancer and the expression level of ERα is tightly related to the prognosis and treatment of patients. Small leucine zipper protein (sLZIP functions as a transcriptional cofactor by binding to various nuclear receptors, including glucocorticoid receptor, androgen receptor, and peroxisome proliferator-activated receptor γ. However, the role of sLZIP in the regulation of ERα and its involvement in breast cancer progression is unknown. We found that sLZIP binds to ERα and represses the transcriptional activity of ERα in ERα-positive breast cancer cells. sLZIP also suppressed the expression of ERα target genes. sLZIP disrupted the binding of ERα to the estrogen response element of the target gene promoter, resulting in suppression of cell proliferation. sLZIP is a novel co-repressor of ERα, and plays a negative role in ERα-mediated cell proliferation in breast cancer.

  3. 4-(E)-{(p-tolylimino)-methylbenzene-1,2-diol}, 1 a novel resveratrol analog, differentially regulates estrogen receptors α and β in breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Ronghe, Amruta; Chatterjee, Anwesha [Division of Pharmacology and Toxicology, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO 64108 (United States); Singh, Bhupendra [Department of Genetics, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294 (United States); Dandawate, Prasad [ISTRA, Department of Chemistry, Abeda Inamdar Senior College, University of Pune (India); Abdalla, Fatma; Bhat, Nimee K. [Division of Pharmacology and Toxicology, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO 64108 (United States); Padhye, Subhash [ISTRA, Department of Chemistry, Abeda Inamdar Senior College, University of Pune (India); Bhat, Hari K., E-mail: bhath@umkc.edu [Division of Pharmacology and Toxicology, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO 64108 (United States)

    2016-06-15

    Breast cancer is a public health concern worldwide. Prolonged exposure to estrogens has been implicated in the development of breast neoplasms. Epidemiologic and experimental evidence suggest a chemopreventive role of phytoestrogens in breast cancers. Resveratrol, a naturally occurring phytoestrogen, has been shown to have potent anti-cancer properties. However, poor efficacy and bioavailability have prevented the use of resveratrol in clinics. In order to address these problems, we have synthesized a combinatorial library of azaresveratrol analogs and tested them for their ability to inhibit the proliferation of breast cancer cells. We have recently shown that 4-(E)-{(p-tolylimino)-methylbenzene-1,2-diol} (TIMBD), has better anti-cancer properties than resveratrol and any other resveratrol analog we have synthesized so far. The objective of this study was to investigate the regulation of estrogen receptors (ERs) α and β by TIMBD in breast cancer cell lines. We demonstrate that TIMBD significantly induces the mRNA and protein expression levels of ERβ and inhibits that of ERα. TIMBD inhibits mRNA and protein expression levels of oncogene c-Myc, and cell cycle protein cyclin D1, which are important regulators of cellular proliferation. TIMBD significantly induces protein expression levels of tumor suppressor genes p53 and p21 in MCF-7 cells. TIMBD inhibits c-Myc in an ERβ-dependent fashion in MCF-10 A and ERβ1-transfected MDA-MB-231 cells, suggesting regulation of ERs as an important upstream mechanism of this analog. ERβ plays a partial role in inhibition of proliferation by TIMBD while ERα overexpression does not significantly affect TIMBD's inhibition. - Highlights: • Resveratrol analog TIMBD inhibits growth of breast cancer cells. • TIMBD induces protein expression levels of ERβ and inhibits that of ERα. • TIMBD inhibits c-Myc and cyclin D1, and induces p53 and p21. • TIMBD suppresses c-Myc in an ER-dependent fashion.

  4. 4-(E)-{(p-tolylimino)-methylbenzene-1,2-diol}, 1 a novel resveratrol analog, differentially regulates estrogen receptors α and β in breast cancer cells

    International Nuclear Information System (INIS)

    Ronghe, Amruta; Chatterjee, Anwesha; Singh, Bhupendra; Dandawate, Prasad; Abdalla, Fatma; Bhat, Nimee K.; Padhye, Subhash; Bhat, Hari K.

    2016-01-01

    Breast cancer is a public health concern worldwide. Prolonged exposure to estrogens has been implicated in the development of breast neoplasms. Epidemiologic and experimental evidence suggest a chemopreventive role of phytoestrogens in breast cancers. Resveratrol, a naturally occurring phytoestrogen, has been shown to have potent anti-cancer properties. However, poor efficacy and bioavailability have prevented the use of resveratrol in clinics. In order to address these problems, we have synthesized a combinatorial library of azaresveratrol analogs and tested them for their ability to inhibit the proliferation of breast cancer cells. We have recently shown that 4-(E)-{(p-tolylimino)-methylbenzene-1,2-diol} (TIMBD), has better anti-cancer properties than resveratrol and any other resveratrol analog we have synthesized so far. The objective of this study was to investigate the regulation of estrogen receptors (ERs) α and β by TIMBD in breast cancer cell lines. We demonstrate that TIMBD significantly induces the mRNA and protein expression levels of ERβ and inhibits that of ERα. TIMBD inhibits mRNA and protein expression levels of oncogene c-Myc, and cell cycle protein cyclin D1, which are important regulators of cellular proliferation. TIMBD significantly induces protein expression levels of tumor suppressor genes p53 and p21 in MCF-7 cells. TIMBD inhibits c-Myc in an ERβ-dependent fashion in MCF-10 A and ERβ1-transfected MDA-MB-231 cells, suggesting regulation of ERs as an important upstream mechanism of this analog. ERβ plays a partial role in inhibition of proliferation by TIMBD while ERα overexpression does not significantly affect TIMBD's inhibition. - Highlights: • Resveratrol analog TIMBD inhibits growth of breast cancer cells. • TIMBD induces protein expression levels of ERβ and inhibits that of ERα. • TIMBD inhibits c-Myc and cyclin D1, and induces p53 and p21. • TIMBD suppresses c-Myc in an ER-dependent fashion.

  5. Artonin E and Structural Analogs from Artocarpus Species Abrogates Estrogen Receptor Signaling in Breast Cancer

    Directory of Open Access Journals (Sweden)

    Imaobong Etti

    2016-06-01

    Full Text Available The increasing rate of mortality ensued from breast cancer has encouraged research into safer and efficient therapy. The human Estrogen receptor α has been implicated in the majority of reported breast cancer cases. Molecular docking employing Glide, Schrodinger suite 2015, was used to study the binding affinities of small molecules from the Artocarpus species after their drug-like properties were ascertained. The structure of the ligand-binding domain of human Estrogen receptor α was retrieved from Protein Data Bank while the structures of compounds were collected from PubChem database. The binding interactions of the studied compounds were reported as well as their glide scores. The best glide scored ligand, was Artonin E with a score of −12.72 Kcal when compared to other studied phytomolecules and it evoked growth inhibition of an estrogen receptor positive breast cancer cells in submicromolar concentration (3.8–6.9 µM in comparison to a reference standard Tamoxifen (18.9–24.1 µM within the tested time point (24–72 h. The studied ligands, which had good interactions with the target receptor, were also drug-like when compared with 95% of orally available drugs with the exception of Artoelastin, whose predicted physicochemical properties rendered it less drug-like. The in silico physicochemical properties, docking interactions and growth inhibition of the best glide scorer are indications of the anti-breast cancer relevance of the studied molecules.

  6. Taurine Attenuates Dimethylbenz[a]anthracene-induced Breast Tumorigenesis in Rats: A Plasma Metabolomic Study.

    Science.gov (United States)

    He, Y U; Li, Qingdi Quentin; Guo, Song Chao

    2016-02-01

    Breast cancer is the most common malignancy and the leading cause of cancer-related mortality in women worldwide. Taurine, the most abundant free amino acid, plays a role in several biological processes in humans and has been shown to have activity against breast cancer and other tumors. To investigate the role and mechanism of taurine action in breast cancer, we used dimethylbenz[a]anthracene (DMBA)-induced breast carcinogenesis in rats as a model of breast cancer. The administration of taurine significantly reduced the DMBA-induced breast cancer rate from 80% to 40% in rats (ptaurine-administered rats. Bioinformatic analysis further revealed that these metabolites are involved in multiple metabolic pathways, including energy, glucose, amino acid, and nucleic acid metabolism, suggesting that the antitumor activity of taurine in rats is mediated through altered metabolism of breast cancer cells. We propose that these differential metabolites may be potential biomarkers for monitoring cancer therapy and prognosis in the clinic. This study provides a scientific basis for further investigations of the antitumor mechanism of taurine and the development of novel therapeutic strategies to treat breast cancer. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  7. Estrogenic activity of lambda-cyhalothrin in the MCF-7 human breast carcinoma cell line.

    Science.gov (United States)

    Zhao, Meirong; Zhang, Ying; Liu, Weiping; Xu, Chao; Wang, Lumei; Gan, Jianying

    2008-05-01

    Synthetic pyrethroids are widely used in both agricultural and urban environments for insect control. Lambda-cyhalothrin (LCT) is one of the most common pyrethroids and is used mainly for controlling mosquitoes, fleas, cockroaches, flies, and ants around households. Previous studies have addressed the environmental behaviors and acute toxicities of LCT, but little is known about its chronic toxicity, such as estrogen-like activity. In the present study, the estrogenic potential of LCT was evaluated using the MCF-7 human breast carcinoma cell line. The in vitro E-screen assay showed that 10(-7) M LCT could significantly promote MCF-7 cell proliferation, with a relative proliferative effect ratio of 45%. The cell proliferation induced by LCT could be blocked completely, however, by the addition of 10(-9) M of the estrogen receptor (ER)-antagonist ICI 182,780. The semiquantitative reverse transcription-polymerase chain reaction (RT-PCR) results showed that the Trefoil factor 1 (pS2) and progesterone receptor gene expression were up-regulated by 10(-7) M LCT for 2- and 1.5-fold, respectively. On the other hand, RT-PCR, Western blot analysis, and immunofluorescent assay demonstrated that LCT significantly repressed the mRNA and protein expression levels of ERalpha and ERbeta. These observations indicate that LCT possesses estrogenic properties and may function as a xenoestrogen, likely via a mechanism similar to that of 17beta-estradiol. The endocrine-disruption potential of LCT should be considered when assessing the safety of this compound in sensitive environmental compartments.

  8. Identification of ten variants associated with risk of estrogen-receptor-negative breast cancer

    DEFF Research Database (Denmark)

    Milne, Roger L; Kuchenbaecker, Karoline B; Michailidou, Kyriaki

    2017-01-01

    associations with ER-negative disease for 105 susceptibility variants identified by other studies. These 125 variants explain approximately 16% of the familial risk of this breast cancer subtype. There was high genetic correlation (0.72) between risk of ER-negative breast cancer and breast cancer risk for BRCA......Most common breast cancer susceptibility variants have been identified through genome-wide association studies (GWAS) of predominantly estrogen receptor (ER)-positive disease. We conducted a GWAS using 21,468 ER-negative cases and 100,594 controls combined with 18,908 BRCA1 mutation carriers (9......1 mutation carriers. These findings may lead to improved risk prediction and inform further fine-mapping and functional work to better understand the biological basis of ER-negative breast cancer....

  9. Phytoestrogen bakuchiol exhibits in vitro and in vivo anti-breast cancer effects by inducing S phase arrest and apoptosis

    Directory of Open Access Journals (Sweden)

    Li eLi

    2016-05-01

    Full Text Available Phytoestrogen has been proposed as an alternative to hormone replacement therapy, which has been demonstrated to promote a high risk of breast cancer. However, the effect of phytoestrogen on breast cancer development has not been fully understood. Bakuchiol is an active ingredient of a traditional Chinese herbal medicine Fructus Psoraleae, the dried ripe fruit of Psoralea corylifolia L. (Fabaceae. The in vitro and in vivo estrogenic activities and anti-breast cancer effects of bakuchiol have not been well studied. We found that bakuchiol induced the GFP expression in transgenic medaka (Oryzias melastigma, Tg, Chg:GFP dose-dependently (0-1 µg/ml, demonstrating its in vivo estrogenic activity. Low dose of bakuchiol (1 µg/ml induced the cell proliferation and ERα expression in MCF-7 cells, which could be blocked by the antiestrogen ICI 182780, suggesting the in vitro estrogenic activity of bakuchiol. Our data indicated that high doses of bakuchiol (>2 µg/ml inhibited breast cancer cell growth, with a stronger antiproliferative effect than resveratrol, a widely studied analogue of bakuchiol. High doses of bakuchiol (4 µg/ml, 7 µg/ml and 10 µg/ml were used for the further in vitro anti-breast cancer studies. Bakuchiol induced ERβ expression and suppressed ERα expression in MCF-7 cells. It also induced S phase arrest in both MCF-7 and MDA-MB-231 cells, which could be rescued by caffeine. Knock-down of p21 also marginally rescued S phase arrest in MCF-7 cells. The S phase arrest was accompanied by the upregulation of ATM, P-Cdc2 (Tyr15, Myt1, P-Wee1 (Ser642, p21 and Cyclin B1, suggesting that blocking of Cdc2 activation may play an important role in bakuchiol-induced S phase arrest. Furthermore, bakuchiol induced cell apoptosis and disturbed mitochondrial membrane potential in MCF-7 cells. The bakuchiol-induced apoptosis was associated with increased expression of Caspase family and Bcl-2 family proteins, suggesting that bakuchiol may induce

  10. Expression of NgBR Is Highly Associated with Estrogen Receptor Alpha and Survivin in Breast Cancer

    Science.gov (United States)

    North, Paula; Kong, Amanda; Huang, Jian; Miao, Qing Robert

    2013-01-01

    NgBR is a type I receptor with a single transmembrane domain and was identified as a specific receptor for Nogo-B. Our recent findings demonstrated that NgBR binds farnesylated Ras and recruits Ras to the plasma membrane, which is a critical step required for the activation of Ras signaling in human breast cancer cells and tumorigenesis. Here, we first use immunohistochemistry and real-time PCR approaches to examine the expression patterns of Nogo-B and NgBR in both normal and breast tumor tissues. Then, we examine the relationship between NgBR expression and molecular subtypes of breast cancer, and the roles of NgBR in estrogen-dependent survivin signaling pathway. Results showed that NgBR and Nogo-B protein were detected in both normal and breast tumor tissues. However, the expression of Nogo-B and NgBR in breast tumor tissue was much stronger than in normal breast tissue. The statistical analysis demonstrated that NgBR is highly associated with ER-positive/HER2-negative breast cancer. We also found that the expression of NgBR has a strong correlation with the expression of survivin, which is a well-known apoptosis inhibitor. The correlation between NgBR and survivin gene expression was further confirmed by real-time PCR. In vitro results also demonstrated that estradiol induces the expression of survivin in ER-positive T47D breast tumor cells but not in ER-negative MDA-MB-468 breast tumor cells. NgBR knockdown with siRNA abolishes estradiol-induced survivin expression in ER-positive T47D cells but not in ER-negative MDA-MB-468 cells. In addition, estradiol increases the expression of survivin and cell growth in ER-positive MCF-7 and T47D cells whereas knockdown of NgBR with siRNA reduces estradiol-induced survivin expression and cell growth. In summary, these results indicate that NgBR is a new molecular marker for breast cancer. The data suggest that the expression of NgBR may be essential in promoting ER-positive tumor cell proliferation via survivin induction

  11. Antibody Probes to Estrogen Receptor-Alpha Transcript-Specific Upstream Peptides: Alternate ER-Alpha Promoter Use and Breast Cancer Etiology/Outcome

    National Research Council Canada - National Science Library

    Pentecost, Brian

    2002-01-01

    Positive Estrogen Receptor alpha (ER) status correlates with a reduced incidence of breast cancer recurrence in the first years after resection of tumors, and predicts a favorable response to adjuvant anti-estrogens...

  12. Oleocanthal Modulates Estradiol-Induced Gene Expression Involving Estrogen Receptor α.

    Science.gov (United States)

    Keiler, Annekathrin Martina; Djiogue, Sefirin; Ehrhardt, Tino; Zierau, Oliver; Skaltsounis, Leandros; Halabalaki, Maria; Vollmer, Günter

    2015-09-01

    Oleocanthal is a bioactive compound from olive oil. It has attracted considerable attention as it is anti-inflammatory, antiproliferative, and has been shown to possess neuroprotective properties in vitro and in vivo. Delineated from its polyphenolic structure, the aim of this study was to characterize oleocanthal towards estrogenic properties. This might contribute to partly explain the beneficial effects described for the Mediterranean diet. Estrogenic properties of oleocanthal were assessed by different methods: a) stimulation of reporter gene activity in MVLN or RNDA cells either expressing estrogen receptor α or β, b) stimulation of luciferase reporter gene activity in U2OS osteosarcoma cells expressing estrogen receptor α or β, and c) elucidation of the impact on estradiol-induced gene expression in U2OS cells transduced with both estrogen receptors. Depending on the cell line origin, oleocanthal inhibited luciferase activity (MVLN, U2OS-estrogen receptor β) or weakly induced reporter gene activity at 10 µM in U2OS-estrogen receptor α cells. However, oleocanthal inhibited stimulation of luciferase activity by estradiol from both estrogen receptors. Oleocanthal, if given alone, did not stimulate gene expression in U2OS cells, but it significantly modulated the response of estradiol. Oleocanthal enhanced the effect of estradiol on the regulation of those genes, which are believed to be regulated through heterodimeric estrogen receptors. As the estrogenic response pattern of oleocanthal is rather unique, we compared the results obtained with oleacein. Oleocanthal binds to both estrogen receptors inducing estradiol-agonistic or antiagonistic effects depending on the cell line. Regarding regulation of gene expression in U2OS-estrogen receptor α/β cells, oleocanthal and oleacein enhanced estradiol-mediated regulation of heterodimer-regulated genes. Georg Thieme Verlag KG Stuttgart · New York.

  13. 1,1-Bis(3'-indolyl)-1-(p-substituted phenyl)methanes induce autophagic cell death in estrogen receptor negative breast cancer

    International Nuclear Information System (INIS)

    Vanderlaag, Kathy; Su, Yunpeng; Frankel, Arthur E; Burghardt, Robert C; Barhoumi, Rola; Chadalapaka, Gayathri; Jutooru, Indira; Safe, Stephen

    2010-01-01

    A novel series of methylene-substituted DIMs (C-DIMs), namely 1,1-bis(3'-indolyl)-1-(p-substituted phenyl)methanes containing t-butyl (DIM-C-pPhtBu) and phenyl (DIM-C-pPhC6H5) groups inhibit proliferation of invasive estrogen receptor-negative MDA-MB-231 and MDA-MB-453 human breast cancer cell lines with IC50 values between 1-5 uM. The main purpose of this study was to investigate the pathways of C-DIM-induced cell death. The effects of the C-DIMs on apoptotic, necrotic and autophagic cell death were determined using caspase inhibitors, measurement of lactate dehydrogenase release, and several markers of autophagy including Beclin and light chain associated protein 3 expression (LC3). The C-DIM compounds did not induce apoptosis and only DIM-C-pPhCF 3 exhibited necrotic effects. However, treatment of MDA-MB-231 and MDA-MB-453 cells with C-DIMs resulted in accumulation of LC3-II compared to LC3-I protein, a characteristic marker of autophagy, and transient transfection of green fluorescent protein-LC3 also revealed that treatment with C-DIMs induced a redistribution of LC3 to autophagosomes after C-DIM treatment. In addition, the autofluorescent drug monodansylcadaverine (MDC), a specific autophagolysosome marker, accumulated in vacuoles after C-DIM treatment, and western blot analysis of lysates from cells treated with C-DIMs showed that the Beclin 1/Bcl-2 protein ratio increased. The results suggest that C-DIM compounds may represent a new mechanism-based agent for treating drug-resistant ER-negative breast tumors through induction of autophagy

  14. Lipid-rich carcinoma of the breast that is strongly positive for estrogen receptor: a case report and literature review

    Directory of Open Access Journals (Sweden)

    Oba T

    2016-03-01

    Full Text Available Takaaki Oba,1 Mayu Ono,1 Asumi Iesato,1 Toru Hanamura,1 Takayuki Watanabe,1 Tokiko Ito,1 Toshiharu Kanai,1 Kazuma Maeno,1 Ken-ichi Ito,1 Ayako Tateishi,2 Akihiko Yoshizawa,2 Fumiyoshi Takayama31Division of Breast, Endocrine and Respiratory Surgery, Department of Surgery, Shinshu University School of Medicine, Matsumoto, Nagano, 2Department of Laboratory Medicine, Shinshu University Hospital, 3Imaging Center, Ichinose Neurosurgical Hospital, Matsumoto, JapanAbstract: Lipid-rich carcinoma (LRC of the breast is a rare breast cancer variant that accounts for <1% of all breast malignancies. It has been reported that LRCs are negative for estrogen receptor. Here, we report a case of LRC of the breast that was strongly positive for estrogen receptor and treated with endocrine adjuvant therapy. A 52-year-old postmenopausal female noticed a lump in her right breast by self-examination and presented to our hospital. Physical examination revealed an elastic 30 mm ×20 mm hard mass in the upper medial part of her right breast. The findings obtained using ultrasonography, mammography, and contrast-enhanced magnetic resonance imaging suggested breast cancer. Core needle biopsy resulted in the diagnosis of invasive carcinoma. The patient underwent mastectomy and sentinel lymph node biopsy. Histopathologically, the tumor cells were abundant in foamy cytoplasm. Because the presence of marked cytoplasmic lipid droplets was confirmed by Sudan IV staining and electron microscopic examination of the tumor and the lipid droplets were negative for periodic acid–Schiff staining, the tumor was diagnosed as an LRC. Immunohistochemically, estrogen and progesterone receptors of the tumor were strongly positive, human epidermal growth factor receptor type 2 was negative, and the ratio of Ki-67-positive cells was ~30%. After surgery, the patient underwent combination chemotherapy with anthracycline, cyclophosphamide, and 5-fluorouracil, followed by docetaxel. Thereafter

  15. Detouring the Undesired Route of Helicobacter pylori-Induced Gastric Carcinogenesis

    Directory of Open Access Journals (Sweden)

    Ki Baik Hahm

    2011-07-01

    Full Text Available Epidemiological and experimental evidence has emerged that a dysregulated inflammation is associated with most of the tumors, and many studies have begun to unravel the molecular pathways linking inflammation and cancer. As a typical example linking these associations, Helicobacter pylori (H. pylori infection-associated atrophic gastritis has been recognized as precursor lesion of gastric cancer. The identification of transcription factors such as NF-κB and STAT3, and their gene products such as IL-8, COX-2, iNOS, cytokines, chemokines and their receptors, etc have laid the molecular foundation for our understanding of the decisive role of inflammation in carcinogenesis. In addition to the role as the initiator of cancer, inflammation contributes to survival and proliferation of malignant cells, tumor angiogenesis, and even metastasis. In this review, the fundamental mechanisms of H. pylori-induced carcinogenesis as well as the possibility of cancer prevention through suppressing H. pylori-induced inflammation are introduced. We infer that targeting inflammatory pathways have a potential role to detour the unpleasant journey to H. pylori-associated gastric carcinogenesis.

  16. Detouring the Undesired Route of Helicobacter pylori-Induced Gastric Carcinogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eun-Hee; Hong, Kyung-Sook; Hong, Hua [Lab of Translational Medicine, Lee Gil Ya Cancer and Diabetes Institute, Gachon University of Medicine and Science, 7-45 Songdo-dong, Yeonsu-gu, Incheon 406-840 (Korea, Republic of); Hahm, Ki Baik, E-mail: hahmkb@gachon.ac.kr [Lab of Translational Medicine, Lee Gil Ya Cancer and Diabetes Institute, Gachon University of Medicine and Science, 7-45 Songdo-dong, Yeonsu-gu, Incheon 406-840 (Korea, Republic of); Department of Gastroenterology, Gachon Graduate School of Medicine, Gil Hospital, Incheon 406-840 (Korea, Republic of)

    2011-07-25

    Epidemiological and experimental evidence has emerged that a dysregulated inflammation is associated with most of the tumors, and many studies have begun to unravel the molecular pathways linking inflammation and cancer. As a typical example linking these associations, Helicobacter pylori (H. pylori) infection-associated atrophic gastritis has been recognized as precursor lesion of gastric cancer. The identification of transcription factors such as NF-κB and STAT3, and their gene products such as IL-8, COX-2, iNOS, cytokines, chemokines and their receptors, etc have laid the molecular foundation for our understanding of the decisive role of inflammation in carcinogenesis. In addition to the role as the initiator of cancer, inflammation contributes to survival and proliferation of malignant cells, tumor angiogenesis, and even metastasis. In this review, the fundamental mechanisms of H. pylori-induced carcinogenesis as well as the possibility of cancer prevention through suppressing H. pylori-induced inflammation are introduced. We infer that targeting inflammatory pathways have a potential role to detour the unpleasant journey to H. pylori-associated gastric carcinogenesis.

  17. Detouring the Undesired Route of Helicobacter pylori-Induced Gastric Carcinogenesis

    International Nuclear Information System (INIS)

    Kim, Eun-Hee; Hong, Kyung-Sook; Hong, Hua; Hahm, Ki Baik

    2011-01-01

    Epidemiological and experimental evidence has emerged that a dysregulated inflammation is associated with most of the tumors, and many studies have begun to unravel the molecular pathways linking inflammation and cancer. As a typical example linking these associations, Helicobacter pylori (H. pylori) infection-associated atrophic gastritis has been recognized as precursor lesion of gastric cancer. The identification of transcription factors such as NF-κB and STAT3, and their gene products such as IL-8, COX-2, iNOS, cytokines, chemokines and their receptors, etc have laid the molecular foundation for our understanding of the decisive role of inflammation in carcinogenesis. In addition to the role as the initiator of cancer, inflammation contributes to survival and proliferation of malignant cells, tumor angiogenesis, and even metastasis. In this review, the fundamental mechanisms of H. pylori-induced carcinogenesis as well as the possibility of cancer prevention through suppressing H. pylori-induced inflammation are introduced. We infer that targeting inflammatory pathways have a potential role to detour the unpleasant journey to H. pylori-associated gastric carcinogenesis

  18. Phytoestrogens in menopausal supplements induce ER-dependent cell proliferation and overcome breast cancer treatment in an in vitro breast cancer model

    International Nuclear Information System (INIS)

    Duursen, Majorie B.M. van; Smeets, Evelien E.J.W.; Rijk, Jeroen C.W.; Nijmeijer, Sandra M.; Berg, Martin van den

    2013-01-01

    Breast cancer treatment by the aromatase inhibitor Letrozole (LET) or Selective Estrogen Receptor Modulator Tamoxifen (TAM) can result in the onset of menopausal symptoms. Women often try to relieve these symptoms by taking menopausal supplements containing high levels of phytoestrogens. However, little is known about the potential interaction between these supplements and breast cancer treatment, especially aromatase inhibitors. In this study, interaction of phytoestrogens with the estrogen receptor alpha and TAM action was determined in an ER-reporter gene assay (BG1Luc4E2 cells) and human breast epithelial tumor cells (MCF-7). Potential interactions with aromatase activity and LET were determined in human adrenocorticocarcinoma H295R cells. We also used the previously described H295R/MCF-7 co-culture model to study interactions with steroidogenesis and tumor cell proliferation. In this model, genistein (GEN), 8-prenylnaringenin (8PN) and four commercially available menopausal supplements all induced ER-dependent tumor cell proliferation, which could not be prevented by physiologically relevant LET and 4OH-TAM concentrations. Differences in relative effect potencies between the H295R/MCF-7 co-culture model and ER-activation in BG1Luc4E2 cells, were due to the effects of the phytoestrogens on steroidogenesis. All tested supplements and GEN induced aromatase activity, while 8PN was a strong aromatase inhibitor. Steroidogenic profiles upon GEN and 8PN exposure indicated a strong inhibitory effect on steroidogenesis in H295R cells and H295R/MCF-7 co-cultures. Based on our in vitro data we suggest that menopausal supplement intake during breast cancer treatment should better be avoided, at least until more certainty regarding the safety of supplemental use in breast cancer patients can be provided. - Highlights: • Supplements containing phytoestrogens are commonly used by women with breast cancer. • Phytoestrogens alter steroidogenesis in a co-culture breast

  19. Phytoestrogens in menopausal supplements induce ER-dependent cell proliferation and overcome breast cancer treatment in an in vitro breast cancer model

    Energy Technology Data Exchange (ETDEWEB)

    Duursen, Majorie B.M. van, E-mail: M.vanDuursen@uu.nl [Endocrine Toxicology, Institute for Risk Assessment Sciences, Utrecht University, Yalelaan 104, PO Box 80177, 3508 TD, Utrecht (Netherlands); Smeets, Evelien E.J.W. [Endocrine Toxicology, Institute for Risk Assessment Sciences, Utrecht University, Yalelaan 104, PO Box 80177, 3508 TD, Utrecht (Netherlands); Rijk, Jeroen C.W. [RIKILT - Institute for Food Safety, Wageningen UR, P.O. Box 230, 6700 AE, Wageningen (Netherlands); Nijmeijer, Sandra M.; Berg, Martin van den [Endocrine Toxicology, Institute for Risk Assessment Sciences, Utrecht University, Yalelaan 104, PO Box 80177, 3508 TD, Utrecht (Netherlands)

    2013-06-01

    Breast cancer treatment by the aromatase inhibitor Letrozole (LET) or Selective Estrogen Receptor Modulator Tamoxifen (TAM) can result in the onset of menopausal symptoms. Women often try to relieve these symptoms by taking menopausal supplements containing high levels of phytoestrogens. However, little is known about the potential interaction between these supplements and breast cancer treatment, especially aromatase inhibitors. In this study, interaction of phytoestrogens with the estrogen receptor alpha and TAM action was determined in an ER-reporter gene assay (BG1Luc4E2 cells) and human breast epithelial tumor cells (MCF-7). Potential interactions with aromatase activity and LET were determined in human adrenocorticocarcinoma H295R cells. We also used the previously described H295R/MCF-7 co-culture model to study interactions with steroidogenesis and tumor cell proliferation. In this model, genistein (GEN), 8-prenylnaringenin (8PN) and four commercially available menopausal supplements all induced ER-dependent tumor cell proliferation, which could not be prevented by physiologically relevant LET and 4OH-TAM concentrations. Differences in relative effect potencies between the H295R/MCF-7 co-culture model and ER-activation in BG1Luc4E2 cells, were due to the effects of the phytoestrogens on steroidogenesis. All tested supplements and GEN induced aromatase activity, while 8PN was a strong aromatase inhibitor. Steroidogenic profiles upon GEN and 8PN exposure indicated a strong inhibitory effect on steroidogenesis in H295R cells and H295R/MCF-7 co-cultures. Based on our in vitro data we suggest that menopausal supplement intake during breast cancer treatment should better be avoided, at least until more certainty regarding the safety of supplemental use in breast cancer patients can be provided. - Highlights: • Supplements containing phytoestrogens are commonly used by women with breast cancer. • Phytoestrogens alter steroidogenesis in a co-culture breast

  20. Is Homepathy Effective for Hot Flashes and other Estrogen-Withdrawal Symptoms in Breast Cancer Survivors? A Preliminary Randomized Controlled Trial

    Science.gov (United States)

    2000-04-01

    AD__________ Award Number: DAMD17-99-1-9438 TITLE: Is Homeopathy Effective for Hot Flashes and Other Estrogen-Withdrawal Symptoms in Breast Cancer...Mar 00) 4. TITLE AND SUBTITLE 5. FUNDING NUMBERS Is Homeopathy Effective for Hot Flashes and Other Estrogen- DAMD17-99-1-9438 Withdrawal Symptoms in...there is evidence that homeopathy is an effective treatment to improve the quality of life in breast cancer survivors who are experiencing hot flashes

  1. Life history theory and breast cancer risk: methodological and theoretical challenges: Response to "Is estrogen receptor negative breast cancer risk associated with a fast life history strategy?".

    Science.gov (United States)

    Aktipis, Athena

    2016-01-01

    In a meta-analysis published by myself and co-authors, we report differences in the life history risk factors for estrogen receptor negative (ER-) and estrogen receptor positive (ER+) breast cancers. Our meta-analysis did not find the association of ER- breast cancer risk with fast life history characteristics that Hidaka and Boddy suggest in their response to our article. There are a number of possible explanations for the differences between their conclusions and the conclusions we drew from our meta-analysis, including limitations of our meta-analysis and methodological challenges in measuring and categorizing estrogen receptor status. These challenges, along with the association of ER+ breast cancer with slow life history characteristics, may make it challenging to find a clear signal of ER- breast cancer with fast life history characteristics, even if that relationship does exist. The contradictory results regarding breast cancer risk and life history characteristics illustrate a more general challenge in evolutionary medicine: often different sub-theories in evolutionary biology make contradictory predictions about disease risk. In this case, life history models predict that breast cancer risk should increase with faster life history characteristics, while the evolutionary mismatch hypothesis predicts that breast cancer risk should increase with delayed reproduction. Whether life history tradeoffs contribute to ER- breast cancer is still an open question, but current models and several lines of evidence suggest that it is a possibility. © The Author(s) 2016. Published by Oxford University Press on behalf of the Foundation for Evolution, Medicine, and Public Health.

  2. Fulvestrant radiosensitizes human estrogen receptor-positive breast cancer cells

    International Nuclear Information System (INIS)

    Wang, Jing; Yang, Qifeng; Haffty, Bruce G.; Li, Xiaoyan; Moran, Meena S.

    2013-01-01

    Highlights: ► Fulvestrant radiosensitizes MCF-7 cells. ► Fulvestrant increases G1 arrest and decreases S phase in MCF-7 cells. ► Fulvestrant down-regulates DNA-PKcs and RAD51 in MCF-7 cells. -- Abstract: The optimal sequencing for hormonal therapy and radiation are yet to be determined. We utilized fulvestrant, which is showing promise as an alternative to other agents in the clinical setting of hormonal therapy, to assess the cellular effects of concomitant anti-estrogen therapy (fulvestrant) with radiation (F + RT). This study was conducted to assess the effects of fulvestrant alone vs. F + RT on hormone-receptor positive breast cancer to determine if any positive or negative combined effects exist. The effects of F + RT on human breast cancer cells were assessed using MCF-7 clonogenic and tetrazolium salt colorimetric (MTT) assays. The assays were irradiated with a dose of 0, 2, 4, 6 Gy ± fulvestrant. The effects of F + RT vs. single adjuvant treatment alone on cell-cycle distribution were assessed using flow cytometry; relative expression of repair proteins (Ku70, Ku80, DNA-PKcs, Rad51) was assessed using Western Blot analysis. Cell growth for radiation alone vs. F + RT was 0.885 ± 0.013 vs. 0.622 ± 0.029 @2 Gy, 0.599 ± 0.045 vs. 0.475 ± 0.054 @4 Gy, and 0.472 ± 0.021 vs. 0.380 ± 0.018 @6 Gy RT (p = 0.003). While irradiation alone induced G2/M cell cycle arrest, the combination of F + RT induced cell redistribution in the G1 phase and produced a significant decrease in the proportion of cells in G2 phase arrest and in the S phase in breast cancer cells (p < 0.01). Furthermore, levels of repair proteins DNA-PKcs and Rad51 were significantly decreased in the cells treated with F + RT compared with irradiation alone. F + RT leads to a decrease in the surviving fraction, increased cell cycle arrest, down regulating of nonhomologous repair protein DNA-PKcs and homologous recombination repair protein RAD51. Thus, our findings suggest that F + RT

  3. Abiraterone acetate, exemestane or the combination in postmenopausal patients with estrogen receptor-positive metastatic breast cancer ?

    OpenAIRE

    O'Shaughnessy, J.; Campone, M.; Brain, E.; Neven, P.; Hayes, D.; Bondarenko, I.; Griffin, T. W.; Martin, J.; De Porre, P.; Kheoh, T.; Yu, M. K.; Peng, W.; Johnston, S.

    2015-01-01

    Background Androgen receptor (AR) signaling and incomplete inhibition of estrogen signaling may contribute to metastatic breast cancer (MBC) resistance to a nonsteroidal aromatase inhibitor (NSAI; letrozole or anastrozole). We assessed whether combined inhibition of androgen biosynthesis with abiraterone acetate plus prednisone and estradiol synthesis with exemestane (E) may be of clinical benefit to postmenopausal patients with NSAI-pretreated estrogen receptor-positive (ER+) MBC. Patients a...

  4. IL-8 expression and its possible relationship with estrogen-receptor-negative status of breast cancer cells

    Science.gov (United States)

    Freund, Ariane; Chauveau, Corine; Brouillet, Jean-Paul; Lucas, Annick; Lacroix, Matthieu; Licznar, Anne; Vignon, Françoise; Lazennec, Gwendal

    2003-01-01

    Estrogen receptor (ER) status is an important parameter in breast cancer management as ER-positive breast cancers have a better prognosis than ER-negative tumors. This difference comes essentially from the lower aggressiveness and invasiveness of ER-positive tumors. Here, we demonstrate, that IL-8 was clearly overexpressed in most ER-negative breast, ovary cell lines and breast tumor samples tested, whereas no significant IL-8 level could be detected in ER-positive breast or ovarian cell lines. We have also cloned human IL-8 from ER-negative MDA-MB-231 cells and we show that IL-8 produced by breast cancer cells is identical to monocyte-derived IL-8. Interestingly, the invasion potential of ER-negative breast cancer cells is associated at least in part with expression of interleukin-8 (IL-8), but not with IL-8 receptors levels. Moreover, IL-8 increases the invasiveness of ER-positive breast cancer cells by 2 fold, thus confirming the invasion-promoting role of IL-8. On the other hand, exogenous expression of estrogen receptors in ER-negative cells led to a decrease of IL-8 levels. In summary, our data show that IL-8 expression is negatively linked to ER-status of breast and ovarian cancer cells. We also support the idea that IL-8 expression is associated with a higher invasiveness potential of cancer cells in vitro, which suggests that IL-8 could be a novel marker of tumor aggressiveness. PMID:12527894

  5. Discovery of estrogen receptor α modulators from natural compounds in Si-Wu-Tang series decoctions using estrogen-responsive MCF-7 breast cancer cells.

    Science.gov (United States)

    Liu, Li; Ma, Hongyue; Tang, Yuping; Chen, Wenxing; Lu, Yin; Guo, Jianming; Duan, Jin-Ao

    2012-01-01

    The binding between the estrogen receptor α (ER-α) and a variety of compounds in traditional Chinese formulae, Si-Wu-Tang (SWT) series decoctions, was studied using a stably-transfected human breast cancer cell line (MVLN). In 38 compounds tested from SWT series decoctions, the estrogen-like activity of 22 compounds was above 60% in 20 μg mL(-1). Furthermore, theoretical affinity of these compounds was certificated using the functional virtual screen of ER-α modulators by FlexX-Pharm. The accuracy of functional virtual screening of ER-α modulators could reach to 77.27%. The results showed that some compounds, such as organic acids and flavones in SWT series decoctions could be used as selective estrogen receptor modulators (SERMs) and could be selected for further development as potential agents for estrogen related diseases. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Collective studies on carcinogenesis due to exposure to radiation

    International Nuclear Information System (INIS)

    Yamashita, Hisao

    1980-01-01

    Carcinogenesis was found in 150 of 25,692 patients who had received radiotherapy for benign diseases. Of primary diseases subjected to radiotherapy, skin diseases were the most. Carcinogenesis was found in 26 of 7,230 patients with skin diseases (0.36%) and 18 in 2286 patients with tuberculous cervical lymphadenitis (0.79%). The sites of carcinogenesis was the skin in 51 patients, the hypopharynx in 43, and the larynx in 18. Carcinogenesis was also found in 140 of 220,361 patients who had received radiotherapy for malignant tumors. As primary cancer, cancer of the cervix uteri was found in 59 of 48,662 patients, and breast cancer was found in 20 of 27,967 patients. As radiation-induced cancer, leukemia was found in 18 patients, soft tissue sarcoma in 18, skin cancer in 10, osteosarcoma in 6, cancer of the hypopharynx in 6, and cancer of the cervical esophagus in 6. It is necessary to differentiate cancer due to exposure to radiation from delayed recurrent cancer and double cancer. Irradiation fields should be restricted as small as possible in order to reduce carcinogenesis. As leukemia and carcinoma were found in a-bomb survivors exposed to very small dose of a-bomb radiation, carcinogenic mechanisms by chromosome aberrations, carcinogenic rates from a viewpoint of epidemiology, and other factors which influenced carcinogenesis are being investigated. (Tsunoda, M.)

  7. Histopathological and in vivo evidence of regucalcin as a protective molecule in mammary gland carcinogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Marques, Ricardo; Vaz, Cátia V.; Maia, Cláudio J. [CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã (Portugal); Gomes, Madalena [IPATIMUP, Institute of Molecular Pathology and Immunology, University of Porto, Porto (Portugal); Gama, Adelina [Department of Veterinary Sciences, Animal and Veterinary Science Research Center (CECAV), University of Trás-os-Montes and Alto Douro (UTAD) (Portugal); Alves, Gilberto; Santos, Cecília R. [CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã (Portugal); Schmitt, Fernando [IPATIMUP, Institute of Molecular Pathology and Immunology, University of Porto, Porto (Portugal); Medical Faculty, University of Porto, Porto (Portugal); Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto (Canada); Department of Pathology, University Health Network, Toronto (Canada); Socorro, Sílvia, E-mail: ssocorro@fcsaude.ubi.pt [CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã (Portugal)

    2015-01-15

    Regucalcin (RGN) is a calcium-binding protein, which has been shown to be underexpressed in cancer cases. This study aimed to determine the association of RGN expression with clinicopathological parameters of human breast cancer. In addition, the role of RGN in malignancy of mammary gland using transgenic rats overexpressing the protein (Tg-RGN) was investigated. Wild-type (Wt) and Tg-RGN rats were treated with 7,12-dimethylbenz[α]anthracene (DMBA). Carcinogen-induced tumors were histologically classified and the Ki67 proliferation index was estimated. Immunohistochemistry analysis showed that RGN immunoreactivity was negatively correlated with the histological grade of breast infiltrating ductal carcinoma suggesting that progression of breast cancer is associated with loss of RGN. Tg-RGN rats displayed lower incidence of carcinogen-induced mammary gland tumors, as well as lower incidence of invasive forms. Moreover, higher proliferation was observed in non-invasive tumors of Wt animals comparatively with Tg-RGN. Overexpression of RGN was associated with diminished expression of cell-cycle inhibitors and increased expression of apoptosis inducers. Augmented activity of apoptosis effector caspase-3 was found in the mammary gland of Tg-RGN. RGN overexpression protected from carcinogen-induced mammary gland tumor development and was linked with reduced proliferation and increased apoptosis. These findings indicated the protective role of RGN in the carcinogenesis of mammary gland. - Highlights: • RGN immunoreactivity was negatively correlated with breast cancer differentiation. • Transgenic overexpression of RGN diminished incidence of carcinogen-induced tumors. • Transgenic overexpression of RGN restricted proliferation and fostered apoptosis. • RGN has a protective role in the carcinogenesis of mammary gland.

  8. Estrogen increases Nrf2 activity through activation of the PI3K pathway in MCF-7 breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Juanjuan, E-mail: jwu32@emory.edu [Department of Gynecology and Obstetrics, Emory University School of Medicine, 101 Woodruff Circle, Suite 4211 WMB, Atlanta, GA 30322 (United States); Williams, Devin [Department of Obstetrics and Gynecology, Morehouse School of Medicine, Atlanta, GA 30310 (United States); Walter, Grant A. [Department of Gynecology and Obstetrics, Emory University School of Medicine, 101 Woodruff Circle, Suite 4211 WMB, Atlanta, GA 30322 (United States); Thompson, Winston E. [Department of Obstetrics and Gynecology, Morehouse School of Medicine, Atlanta, GA 30310 (United States); Sidell, Neil [Department of Gynecology and Obstetrics, Emory University School of Medicine, 101 Woodruff Circle, Suite 4211 WMB, Atlanta, GA 30322 (United States)

    2014-11-01

    The actions of the transcription factor Nuclear factor erythroid 2-related factor (Nrf2) in breast cancer have been shown to include both pro-oncogenic and anti-oncogenic activities which is influenced, at least in part, by the hormonal environment. However, direct regulation of Nrf2 by steroid hormones (estrogen and progesterone) has received only scant attention. Nrf2 is known to be regulated by its cytosolic binding protein, Kelch-like ECH-associated protein 1 (Keap1), and by a Keap1-independent mechanism involving a series of phosphorylation steps mediated by phosphatidylinositol 3-kinase (PI3K) and glycogen synthase kinase 3 beta (GSK3β). Here, we report that estrogen (E2) increases Nrf2 activity in MCF7 breast cancer cells through activation of the PI3K/GSK3β pathway. Utilizing antioxidant response element (ARE)-containing luciferase reporter constructs as read-outs for Nrf2 activity, our data indicated that E2 increased ARE activity >14-fold and enhanced the action of the Nrf2 activators, tertiary butylhydroquinone (tBHQ) and sulforaphane (Sul) 4 to 9 fold compared with cells treated with tBHQ or Sul as single agents. This activity was shown to be an estrogen receptor-mediated phenomenon and was antagonized by progesterone. In addition to its action on the reporter constructs, mRNA and protein levels of heme oxygenase 1, an endogenous target gene of Nrf2, was markedly upregulated by E2 both alone and in combination with tBHQ. Importantly, E2-induced Nrf2 activation was completely suppressed by the PI3K inhibitors LY294002 and Wortmannin while the GSK3β inhibitor CT99021 upregulated Nrf2 activity. Confirmation that E2 was, at least partly, acting through the PI3K/GSK3β pathway was indicated by our finding that E2 increased the phosphorylation status of both GSK3β and Akt, a well-characterized downstream target of PI3K. Together, these results demonstrate a novel mechanism by which E2 can regulate Nrf2 activity in estrogen receptor-positive breast cancer

  9. Identification of ten variants associated with risk of estrogen-receptor-negative breast cancer

    NARCIS (Netherlands)

    Milne, Roger L.; Kuchenbaecker, Karoline B.; Michailidou, Kyriaki; Beesley, Jonathan; Kar, Siddhartha; Lindström, Sara; Hui, Shirley; Lemaçon, Audrey; Soucy, Penny; Dennis, Joe; Jiang, Xia; Rostamianfar, Asha; Finucane, Hilary K; Bolla, Manjeet K.; McGuffog, Lesley; Wang, Qin; Aalfs, Cora M.; Adams, Marcia; Adlard, Julian; Agata, Simona; Ahmed, Shahana; Ahsan, Habibul; Aittomäki, Kristiina; Al-Ejeh, Fares; Allen, Jamie; Ambrosone, Christine B.; Amos, Christopher I; Andrulis, Irene L.; Anton-Culver, Hoda; Antonenkova, Natalia N.; Arndt, Volker; Arnold, Norbert; Aronson, Kristan J; Auber, Bernd; Auer, Paul L.; Ausems, Margreet G E M; Azzollini, Jacopo; Bacot, François; Balmaña, Judith; Barile, Monica; Barjhoux, Laure; Barkardottir, Rosa B.; Barrdahl, Myrto; Barnes, Daniel R; Barrowdale, Daniel; Baynes, Caroline; Beckmann, Matthias W.; Benitez, Javier; Bermisheva, Marina; Bernstein, Leslie; Bignon, Yves Jean; Blazer, Kathleen R.; Blok, Marinus J.; Blomqvist, Carl; Blot, William; Bobolis, Kristie; Boeckx, Bram; Bogdanova, Natalia V.; Bojesen, Anders; Bojesen, Stig E.; Bonanni, Bernardo; Børresen-Dale, Anne-Lise; Bozsik, Aniko; Bradbury, Angela R; Brand, Judith S.; Brauch, Hiltrud; Brenner, Hermann; Bressac-de Paillerets, Brigitte; Brewer, Carole; Brinton, Louise; Broberg, Per; Brooks-Wilson, Angela R; Brunet, Joan; Brüning, Thomas; Burwinkel, Barbara; Buys, Saundra S.; Byun, Jinyoung; Cai, Qiuyin; Caldés, Trinidad; Caligo, Maria A.; Campbell, Ian; Canzian, Federico; Caron, Olivier; Carracedo, Angel; Carter, Brian D; Castelao, J Esteban; Castera, Laurent; Caux-Moncoutier, Virginie; Chan, Salina B; Chang-Claude, Jenny; Chanock, Stephen J.; Chen, Xiaoqing; Cheng, Ting-Yuan David; Chiquette, Jocelyne; Christiansen, Hans; Claes, Kathleen B M; Clarke, Christine L; Conner, Thomas; Conroy, Don M; Cook, Jackie; Cordina-Duverger, Emilie; Cornelissen, Sten; Coupier, Isabelle; Cox, Angela; Cox, David G.; Cross, Simon S.; Cuk, Katarina; Cunningham, Julie M; Czene, Kamila; Daly, Mary B.; Damiola, Francesca; Darabi, Hatef; Davidson, Rosemarie; De Leeneer, Kim; Devilee, Peter; Dicks, Ed; Diez, Orland; Ding, Yuan Chun; Ditsch, Nina; Doheny, Kimberly F; Domchek, Susan M.; Dorfling, Cecilia M.; Dörk, Thilo; Dos-Santos-Silva, Isabel; Dubois, Stéphane; Dugué, Pierre-Antoine; Dumont, Martine; Dunning, Alison M.; Durcan, Lorraine; Dwek, Miriam; Dworniczak, Bernd; Eccles, Diana; Eeles, Ros; Ehrencrona, Hans; Eilber, Ursula; Ejlertsen, Bent; Ekici, Arif B.; Eliassen, A. Heather; Engel, Christoph; Eriksson, Mikael; Fachal, Laura; Faivre, Laurence; Fasching, Peter A.; Faust, Ulrike; Figueroa, Jonine; Flesch-Janys, Dieter; Fletcher, Olivia; Flyger, Henrik; Foulkes, William D; Friedman, Eitan; Fritschi, Lin; Frost, Debra; Gabrielson, Marike; Gaddam, Pragna; Gammon, Marilie D.; Ganz, Patricia A; Gapstur, Susan M.; Garber, Judy; Garcia-Barberan, Vanesa; García-Sáenz, José A; Gaudet, Mia M.; Gauthier-Villars, Marion; Gehrig, Andrea; Georgoulias, Vassilios; Gerdes, Anne Marie; Giles, Graham G.; Glendon, Gord; Godwin, Andrew K.; Goldberg, Mark S.; Goldgar, David E.; González-Neira, Anna; Goodfellow, Paul; Greene, Mark H.; Alnæs, Grethe I Grenaker; Grip, Mervi; Gronwald, Jacek; Grundy, Anne; Gschwantler-Kaulich, Daphne; Guénel, Pascal; Guo, Qi; Haeberle, Lothar; Hahnen, Eric; Haiman, Christopher A.; Håkansson, Niclas; Hallberg, Emily; Hamann, Ute; Hamel, Nathalie; Hankinson, Susan; Hansen, Thomas V. O.; Harrington, Patricia; Hart, Steven N; Hartikainen, Jaana M.; Healey, Catherine S.; Hein, Alexander; Helbig, Sonja; Henderson, Alex; Heyworth, Jane S.; Hicks, Belynda; Hillemanns, Peter; Hodgson, Shirley V.; Hogervorst, Frans Bl; Hollestelle, Antoinette; Hooning, Maartje J.; Hoover, Bob; Hopper, John L.; Hu, Chunling; Huang, Guanmengqian; Hulick, Peter J; Humphreys, Keith; Hunter, David J.; Imyanitov, Evgeny N.; Isaacs, Claudine; Iwasaki, Motoki; Izatt, Louise; Jakubowska, Anna; James, Paul; Janavicius, Ramunas; Janni, Wolfgang; Jensen, Uffe Birk; John, Esther M.; Johnson, Nichola; Jones, Kristine; Jones, Michael; Jukkola-Vuorinen, Arja; Kaaks, Rudolf; Kabisch, Maria; Kaczmarek, Katarzyna; Kang, Daehee; Kast, Karin; Keeman, Renske; Kerin, Michael J.; Kets, Carolien M.; Keupers, Machteld; Khan, Sofia; Khusnutdinova, Elza; Kiiski, Johanna I; Kim, Sung-Won; Knight, Julia A.; Konstantopoulou, Irene; Kosma, Veli Matti; Kristensen, Vessela N.; Kruse, Torben A.; Kwong, Ava; Lænkholm, Anne-Vibeke; Laitman, Yael; Lalloo, Fiona; Lambrechts, Diether; Landsman, Keren; Lasset, Christine; Lazaro, Conxi; Le Marchand, Loic; Lecarpentier, Julie; Lee, Andrew; Lee, Eunjung; Lee, Jong Won; Lee, Min Hyuk; Lejbkowicz, Flavio; Lesueur, Fabienne; Li, Jingmei; Lilyquist, Jenna; Lincoln, Anne; Lindblom, Annika; Lissowska, Jolanta; So, Wing Yee; Loibl, Sibylle; Long, Jirong; Loud, Jennifer T; Lubinski, Jan; Luccarini, Craig; Lush, Michael J.; MacInnis, Robert J; Maishman, Tom; Makalic, Enes; Kostovska, Ivana Maleva; Malone, Kathleen E.; Manoukian, Siranoush; Manson, Joann E.; Margolin, Sara; Martens, John W. M.; Martinez, Maria Elena; Matsuo, Keitaro; Mavroudis, Dimitrios; Mazoyer, Sylvie; Mclean, Catriona; Meijers-Heijboer, Hanne; Menéndez, Primitiva; Meyer, Jeffery; Miao, Hui; Miller, Austin; Miller, Nicola; Mitchell, Gillian; Montagna, Marco; Muir, Kenneth; Mulligan, Anna Marie; Mulot, Claire; Nadesan, Sue; Nathanson, Katherine L.; Neuhausen, Susan L.; Nevanlinna, Heli; Nevelsteen, Ines; Niederacher, Dieter; Nielsen, Sune F.; Nordestgaard, Børge G.; Norman, Aaron; Nussbaum, Robert L.; Olah, Edith; Olopade, Olufunmilayo I.; Olson, Janet E.; Olswold, Curtis; Ong, Kai Ren; Oosterwijk, Jan C.; Orr, Nick; Osorio, Ana; Pankratz, V Shane; Papi, Laura; Park-Simon, Tjoung-Won; Paulsson-Karlsson, Ylva; Lloyd, Rachel; Pedersen, Inge Søkilde; Peissel, Bernard; Peixoto, Ana; Perez, Jose Ignacio Arias; Peterlongo, Paolo; Peto, Julian; Pfeiler, Georg; Phelan, Catherine M.; Pinchev, Mila; Plaseska-Karanfilska, Dijana; Poppe, Bruce; Porteous, Mary E.; Prentice, Ross L.; Presneau, Nadege; Prokofieva, Darya; Pugh, Elizabeth; Pujana, Miquel Angel; Pylkäs, Katri; Rack, Brigitte; Radice, Paolo; Rahman, Nazneen; Rantala, Johanna; Rappaport-Fuerhauser, Christine; Rennert, Gad; Rennert, Hedy S; Rhenius, Valerie; Rhiem, Kerstin; Richardson, Andrea; Rodriguez, Gustavo C.; Romero, Atocha; Romm, Jane; Rookus, Matti A.; Rudolph, Anja; Ruediger, Thomas; Saloustros, Emmanouil; Sanders, Joyce; Sandler, Dale P; Sangrajrang, Suleeporn; Sawyer, Elinor J.; Schmidt, Daniel F.; Schoemaker, Minouk J.; Schumacher, Fredrick; Schürmann, Peter; Schwentner, Lukas; Scott, Christopher; Scott, Rodney J; Seal, Sheila; Senter, Leigha; Seynaeve, Caroline; Shah, Mitul; Sharma, Priyanka; Shen, Chen Yang; Sheng, Xin; Shimelis, Hermela; Shrubsole, Martha J.; Shu, Xiao Ou; Side, Lucy E.; Singer, Christian F.; Sohn, Christof; Southey, Melissa C.; Spinelli, John J; Spurdle, Amanda B.; Stegmaier, Christa; Stoppa-Lyonnet, Dominique; Sukiennicki, Grzegorz; Surowy, Harald M.; Sutter, Christian; Swerdlow, Anthony J.; Szabo, Csilla I.; Tamimi, Rulla M; Tan, Yen; Taylor, Jack A; Tejada, Maria-Isabel; Tengström, Maria; Teo, Soo Hwang; Terry, Mary Beth; Tessier, Daniel C.; Teulé, Alex; Thöne, Kathrin; Thull, Darcy L; Tibiletti, Maria Grazia; Tihomirova, Laima; Tischkowitz, Marc; Toland, Amanda E.; Tollenaar, Rob A E M; Tomlinson, Ian; Tong, Ling; Torres, Diana; Tranchant, Martine; Truong, Thérèse; Tucker, Kathy; Tung, Nadine; Tyrer, Jonathan P.; Ulmer, Hans-Ulrich; Vachon, Celine; van Asperen, Christi J.; Van Den Berg, David; Van Den Ouweland, Ans M W; van Rensburg, Elizabeth J.; Varesco, Liliana; Varon-Mateeva, Raymonda; Vega, Ana; Viel, Alessandra; Vijai, Joseph; Vincent, Daniel; Vollenweider, Jason; Walker, Lisa; Wang, Zhaoming; Wang-Gohrke, Shan; Wappenschmidt, Barbara; Weinberg, Clarice R; Weitzel, Jeffrey N.; Wendt, Camilla; Wesseling, Jelle; Whittemore, Alice S.; Wijnen, Juul T.; Willett, Walter; Winqvist, Robert; Wolk, Alicja; Wu, Anna H.; Xia, Lucy; Yang, Xiaohong R.; Yannoukakos, Drakoulis; Zaffaroni, Daniela; Zheng, Wei; Zhu, B.; Ziogas, Argyrios; Ziv, Elad; Zorn, Kristin K; Gago-Dominguez, Manuela; Mannermaa, Arto; Olsson, Håkan; Teixeira, Manuel R.; Stone, Jennifer; Offit, Kenneth; Ottini, Laura; Park, Sue K.; Thomassen, Mads; Hall, Per; Meindl, Alfons; Schmutzler, Rita K.; Droit, Arnaud; Bader, Gary D.; Pharoah, Paul D. P.; Couch, Fergus J.; Easton, Douglas F.; Kraft, Peter; Chenevix-Trench, Georgia; García-Closas, Montserrat; Schmidt, Marjanka K.; Antoniou, Antonis C.; Simard, Jacques

    2017-01-01

    Most common breast cancer susceptibility variants have been identified through genome-wide association studies (GWAS) of predominantly estrogen receptor (ER)-positive disease. We conducted a GWAS using 21,468 ER-negative cases and 100,594 controls combined with 18,908 BRCA1 mutation carriers (9,414

  10. Identification of ten variants associated with risk of estrogen-receptor-negative breast cancer

    DEFF Research Database (Denmark)

    Milne, Roger L; Kuchenbaecker, Karoline B; Michailidou, Kyriaki

    2017-01-01

    Most common breast cancer susceptibility variants have been identified through genome-wide association studies (GWAS) of predominantly estrogen receptor (ER)-positive disease. We conducted a GWAS using 21,468 ER-negative cases and 100,594 controls combined with 18,908 BRCA1 mutation carriers (9,4...

  11. Quercetin and epigallocatechin gallate inhibit glucose uptake and metabolism by breast cancer cells by an estrogen receptor-independent mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Moreira, Liliana, E-mail: lilianam87@gmail.com [Department of Biochemistry (U38-FCT), Faculty of Medicine of University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto (Portugal); Araújo, Isabel, E-mail: isa.araujo013@gmail.com [Department of Biochemistry (U38-FCT), Faculty of Medicine of University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto (Portugal); Costa, Tito, E-mail: tito.fmup16@gmail.com [Department of Biochemistry (U38-FCT), Faculty of Medicine of University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto (Portugal); Correia-Branco, Ana, E-mail: ana.clmc.branco@gmail.com [Department of Biochemistry (U38-FCT), Faculty of Medicine of University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto (Portugal); Faria, Ana, E-mail: anafaria@med.up.pt [Department of Biochemistry (U38-FCT), Faculty of Medicine of University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto (Portugal); Chemistry Investigation Centre (CIQ), Faculty of Sciences of University of Porto, Rua Campo Alegre, 4169-007 Porto (Portugal); Faculty of Nutrition and Food Sciences of University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto (Portugal); Martel, Fátima, E-mail: fmartel@med.up.pt [Department of Biochemistry (U38-FCT), Faculty of Medicine of University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto (Portugal); Keating, Elisa, E-mail: keating@med.up.pt [Department of Biochemistry (U38-FCT), Faculty of Medicine of University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto (Portugal)

    2013-07-15

    In this study we characterized {sup 3}H-2-deoxy-D-glucose ({sup 3}H -DG) uptake by the estrogen receptor (ER)-positive MCF7 and the ER-negative MDA-MB-231 human breast cancer cell lines and investigated the effect of quercetin (QUE) and epigallocatechin gallate (EGCG) upon {sup 3}H-DG uptake, glucose metabolism and cell viability and proliferation. In both MCF7 and MDA-MB-231 cells {sup 3}H-DG uptake was (a) time-dependent, (b) saturable with similar capacity (V{sub max}) and affinity (K{sub m}), (c) potently inhibited by cytochalasin B, an inhibitor of the facilitative glucose transporters (GLUT), (d) sodium-independent and (e) slightly insulin-stimulated. This suggests that {sup 3}H-DG uptake by both cell types is mediated by members of the GLUT family, including the insulin-responsive GLUT4 or GLUT12, while being independent of the sodium-dependent glucose transporter (SGLT1). QUE and EGCG markedly and concentration-dependently inhibited {sup 3}H-DG uptake by MCF7 and by MDA-MB-231 cells, and both compounds blocked lactate production by MCF7 cells. Additionally, a 4 h-treatment with QUE or EGCG decreased MCF7 cell viability and proliferation, an effect that was more potent when glucose was available in the extracellular medium. Our results implicate QUE and EGCG as metabolic antagonists in breast cancer cells, independently of estrogen signalling, and suggest that these flavonoids could serve as therapeutic agents/adjuvants even for ER-negative breast tumors. -- Highlights: • Glucose uptake by MCF7 and MDA-MB-231 cells is mainly mediated by GLUT1. • QUE and EGCG inhibit cellular glucose uptake thus abolishing the Warburg effect. • This process induces cytotoxicity and proliferation arrest in MCF7 cells. • The flavonoids’ effects are independent of estrogen receptor signalling.

  12. Quercetin and epigallocatechin gallate inhibit glucose uptake and metabolism by breast cancer cells by an estrogen receptor-independent mechanism

    International Nuclear Information System (INIS)

    Moreira, Liliana; Araújo, Isabel; Costa, Tito; Correia-Branco, Ana; Faria, Ana; Martel, Fátima; Keating, Elisa

    2013-01-01

    In this study we characterized 3 H-2-deoxy-D-glucose ( 3 H -DG) uptake by the estrogen receptor (ER)-positive MCF7 and the ER-negative MDA-MB-231 human breast cancer cell lines and investigated the effect of quercetin (QUE) and epigallocatechin gallate (EGCG) upon 3 H-DG uptake, glucose metabolism and cell viability and proliferation. In both MCF7 and MDA-MB-231 cells 3 H-DG uptake was (a) time-dependent, (b) saturable with similar capacity (V max ) and affinity (K m ), (c) potently inhibited by cytochalasin B, an inhibitor of the facilitative glucose transporters (GLUT), (d) sodium-independent and (e) slightly insulin-stimulated. This suggests that 3 H-DG uptake by both cell types is mediated by members of the GLUT family, including the insulin-responsive GLUT4 or GLUT12, while being independent of the sodium-dependent glucose transporter (SGLT1). QUE and EGCG markedly and concentration-dependently inhibited 3 H-DG uptake by MCF7 and by MDA-MB-231 cells, and both compounds blocked lactate production by MCF7 cells. Additionally, a 4 h-treatment with QUE or EGCG decreased MCF7 cell viability and proliferation, an effect that was more potent when glucose was available in the extracellular medium. Our results implicate QUE and EGCG as metabolic antagonists in breast cancer cells, independently of estrogen signalling, and suggest that these flavonoids could serve as therapeutic agents/adjuvants even for ER-negative breast tumors. -- Highlights: • Glucose uptake by MCF7 and MDA-MB-231 cells is mainly mediated by GLUT1. • QUE and EGCG inhibit cellular glucose uptake thus abolishing the Warburg effect. • This process induces cytotoxicity and proliferation arrest in MCF7 cells. • The flavonoids’ effects are independent of estrogen receptor signalling

  13. A novel polymorphic repeat in the upstream regulatory region of the estrogen-induced gene EIG121 is not associated with the risk of developing breast or endometrial cancer.

    Science.gov (United States)

    Bolton, Katherine A; Holliday, Elizabeth G; Attia, John; Bowden, Nikola A; Avery-Kiejda, Kelly A; Scott, Rodney J

    2016-05-26

    The estrogen-induced gene 121 (EIG121) has been associated with breast and endometrial cancers, but its mechanism of action remains unknown. In a genome-wide search for tandem repeats, we found that EIG121 contains a short tandem repeat (STR) in its upstream regulatory region which has the potential to alter gene expression. The presence of this STR has not previously been analysed in relation to breast or endometrial cancer risk. In this study, the lengths of this STR were determined by PCR, fragment analysis and sequencing using DNA from 223 breast cancer patients, 204 endometrial cancer patients and 220 healthy controls to determine if they were associated with the risk of developing breast or endometrial cancer. We found this repeat to be highly variable with the number of copies of the AG motif ranging from 27 to 72 and having a bimodal distribution. No statistically significant association was identified between the length of this STR and the risk of developing breast or endometrial cancer or age at diagnosis. The STR in the upstream regulatory region of EIG121 is highly polymorphic, but is not associated with the risk of developing breast or endometrial cancer in the cohorts analysed here. While this polymorphic STR in the regulatory region of EIG121 appears to have no impact on the risk of developing breast or endometrial cancer, its association with disease recurrence or overall survival remains to be determined.

  14. Mechanisms of caffeine-induced inhibition of UVB carcinogenesis

    Directory of Open Access Journals (Sweden)

    Allan H Conney

    2013-06-01

    Full Text Available Sunlight-induced nonmelanoma skin cancer is the most prevalent cancer in the United States with more than 2 million cases per year. Several studies have shown an inhibitory effect of caffeine administration on UVB-induced skin cancer in mice, and these studies are paralleled by epidemiology studies that indicate an inhibitory effect of coffee drinking on nonmelanoma skin cancer in humans. Strikingly, decaffeinated coffee consumption had no such inhibitory effect.Mechanism studies indicate that caffeine has a sunscreen effect that inhibits UVB-induced formation of thymine dimers and sunburn lesions in the epidermis of mice. In addition, caffeine administration has a biological effect that enhances UVB-induced apoptosis thereby enhancing the elimination of damaged precancerous cells, and caffeine administration also enhances apoptosis in tumors. Caffeine administration enhances UVB-induced apoptosis by p53-dependent and p53-independent mechanisms. Exploration of the p53-independent effect indicated that caffeine administration enhanced UVB-induced apoptosis by inhibiting the UVB-induced increase in ATR-mediated formation of phospho-Chk1 (Ser345 and abolishing the UVB-induced decrease in cyclin B1 which resulted in caffeine-induced premature and lethal mitosis in mouse skin. In studies with cultured primary human keratinocytes, inhibition of ATR with siRNA against ATR inhibited Chk1 phosphorylation and enhanced UVB-induced apoptosis. Transgenic mice with decreased epidermal ATR function that were irradiated chronically with UVB had 69% fewer tumors at the end of the study compared with irradiated littermate controls with normal ATR function. These results, which indicate that genetic inhibition of ATR (like pharmacologic inhibition of ATR via caffeine inhibits UVB-induced carcinogenesis and supports the concept that ATR-mediated phosphorylation of Chk1 is an important target for caffeine’s inhibitory effect on UVB-induced carcinogenesis.

  15. Establishment of a normal-derived estrogen receptor-positive cell line comparable to the prevailing human breast cancer subtype

    DEFF Research Database (Denmark)

    Hopkinson, Branden Michael; Klitgaard, Marie Christine; Petersen, Ole William

    2017-01-01

    Understanding human cancer increasingly relies on insight gained from subtype specific comparisons between malignant and non-malignant cells. The most frequent subtype in breast cancer is the luminal. By far the most frequently used model for luminal breast cancer is the iconic estrogen receptor-...

  16. Risk of estrogen receptor-positive and -negative breast cancer and single-nucleotide polymorphism 2q35-rs13387042

    DEFF Research Database (Denmark)

    Milne, Roger L; Benítez, Javier; Nevanlinna, Heli

    2009-01-01

    BACKGROUND: A recent genome-wide association study identified single-nucleotide polymorphism (SNP) 2q35-rs13387042 as a marker of susceptibility to estrogen receptor (ER)-positive breast cancer. We attempted to confirm this association using the Breast Cancer Association Consortium. METHODS: 2q35...

  17. Redox Regulation in Cancer: A Double-edged Sword with Therapeutic Potential

    Directory of Open Access Journals (Sweden)

    Asha Acharya

    2010-01-01

    Full Text Available Oxidative stress, implicated in the etiology of cancer, results from an imbalance in the production of reactive oxygen species (ROS and cell’s own antioxidant defenses. ROS deregulate the redox homeostasis and promote tumor formation by initiating an aberrant induction of signaling networks that cause tumorigenesis. Ultraviolet (UV exposures, γ-radiation and other environmental carcinogens generate ROS in the cells, which can exert apoptosis in the tumors, thereby killing the malignant cells or induce the progression of the cancer growth by blocking cellular defense system. Cancer stem cells take the advantage of the aberrant redox system and spontaneously proliferate. Oxidative stress and gene-environment interactions play a significant role in the development of breast, prostate, pancreatic and colon cancer. Prolonged lifetime exposure to estrogen is associated with several kinds of DNA damage. Oxidative stress and estrogen receptor-associated proliferative changes are suggested to play important roles in estrogen-induced breast carcinogenesis. BRCA1, a tumor suppressor against hormone responsive cancers such as breast and prostate cancer, plays a significant role in inhibiting ROS and estrogen mediated DNA damage; thereby regulate the redox homeostasis of the cells. Several transcription factors and tumor suppressors are involved during stress response such as Nrf2, NFκB and BRCA1. A promising strategy for targeting redox status of the cells is to use readily available natural substances from vegetables, fruits, herbs and spices. Many of the phytochemicals have already been identified to have chemopreventive potential, capable of intervening in carcinogenesis.

  18. Estrogen-induced DNA synthesis in vascular endothelial cells is mediated by ROS signaling

    Directory of Open Access Journals (Sweden)

    Felty Quentin

    2006-04-01

    Full Text Available Abstract Background Since estrogen is known to increase vascular endothelial cell growth, elevated estrogen exposure from hormone replacement therapy or oral contraceptives has the potential to contribute in the development of abnormal proliferative vascular lesions and subsequent thickening of the vasculature. How estrogen may support or promote vascular lesions is not clear. We have examined in this study whether estrogen exposure to vascular endothelial cells increase the formation of reactive oxygen species (ROS, and estrogen-induced ROS is involved in the growth of endothelial cells. Methods The effect of estrogen on the production of intracellular oxidants and the role of estrogen-induced ROS on cell growth was studied in human umbilical vein endothelial cells. ROS were measured by monitoring the oxidation of 2'7'-dichlorofluorescin by spectrofluorometry. Endothelial cell growth was measured by a colorimetric immunoassay based on BrdU incorporation into DNA. Results Physiological concentrations of estrogen (367 fmol and 3.67 pmol triggered a rapid 2-fold increase in intracellular oxidants in endothelial cells. E2-induced ROS formation was inhibited to basal levels by cotreatment with the mitochondrial inhibitor rotenone (2 μM and xanthine oxidase inhibitor allopurinol (50 μM. Inhibitors of NAD(PH oxidase, apocynin and DPI, did not block E2-induced ROS formation. Furthermore, the NOS inhibitor, L-NAME, did not prevent the increase in E2-induced ROS. These findings indicate both mitochondria and xanthine oxidase are the source of ROS in estrogen treated vascular endothelial cells. E2 treated cells showed a 2-fold induction of BrdU incorporation at 18 h which was not observed in cells exposed to vehicle alone. Cotreatment with ebselen (20 μM and NAC (1 mM inhibited E2-induced BrdU incorporation without affecting the basal levels of DNA synthesis. The observed inhibitory effect of NAC and ebselen on E2-induced DNA synthesis was also shown

  19. DCE-MRI texture analysis with tumor subregion partitioning for predicting Ki-67 status of estrogen receptor-positive breast cancers

    KAUST Repository

    Fan, Ming; Cheng, Hu; Zhang, Peng; Gao, Xin; Zhang, Juan; Shao, Guoliang; Li, Lihua

    2017-01-01

    Breast tumor heterogeneity is related to risk factors that lead to worse prognosis, yet such heterogeneity has not been well studied.To predict the Ki-67 status of estrogen receptor (ER)-positive breast cancer patients via analysis of tumor

  20. Estrogen Signaling in Lung Cancer: An Opportunity for Novel Therapy

    International Nuclear Information System (INIS)

    Baik, Christina S.; Eaton, Keith D.

    2012-01-01

    Lung cancer is the leading cause of cancer death in U.S. and represents a major public health burden. Epidemiologic data have suggested that lung cancer in women may possess different biological characteristics compared to men, as evidenced by a higher proportion of never-smokers among women with lung cancer. Emerging data indicate that female hormones such as estrogen and progesterone play a significant role in lung carcinogenesis. It has been reported that estrogen and progesterone receptors are expressed in lung cancer cell lines as well as in patient-derived tumors. Hormone related risk factors such as hormone replacement therapy have been implicated in lung carcinogenesis and several preclinical studies show activity of anti-estrogen therapy in lung cancer. In this review, we summarize the emerging evidence for the role of reproductive hormones in lung cancer and implications for lung cancer therapy

  1. Baicalein, unlike 4-hydroxytamoxifen but similar to G15, suppresses 17β-estradiol-induced cell invasion, and matrix metalloproteinase-9 expression and activation in MCF-7 human breast cancer cells.

    Science.gov (United States)

    Chen, Yan; Hong, Duan-Yang; Wang, Jing; Ling-Hu, Jun; Zhang, Yan-Yan; Pan, Di; Xu, Yi-Ni; Tao, Ling; Luo, Hong; Shen, Xiang-Chun

    2017-08-01

    Estrogen performs an important role in the growth and development of breast cancer. There are at least three major receptors, including estrogen receptor (ER)α and β, and G protein-coupled receptor 30 (GPR30), which mediate the actions of estrogen through using transcriptional and rapid non-genomic signaling pathways. Flavonoids have been considered candidates for chemopreventive agents in breast cancer. Baicalein, the primary flavonoid derived from the root of Scutellaria baicalensis Georgi, has been reported to exert an anti-estrogenic effect. In the present study, the effects of baicalein on 17β-estradiol (E2)-induced cell invasion, and matrix metalloproteinase-9 (MMP-9) expression and activation were investigated. Furthermore, its effects were compared with that of the active form of the ER modulator tamoxifen 4-hydroxytamoxifen (OHT) and the GPR30 antagonist G15 in ERα- and GPR30-positive MCF-7 breast cancer cells. The results demonstrated that OHT failed to prevent E2-induced cell invasion, upregulation and proteolytic activity of MMP-9. However, baicalein was able to significantly suppress these E2-induced effects. Furthermore, E2-stimulated invasion, and MMP-9 expression and activation were significantly attenuated following G15 treatment. In addition, baicalein significantly inhibited G-1, a specific GPR30 agonist, induced invasion, and reduced G-1 promoted expression and activity of MMP-9, consistent with effects of G15. The results of the present study suggest that baicalein is a therapeutic candidate for GPR30-positive breast cancer treatment, and besides ERα targeting the GPR30 receptor it may achieve additional therapeutic benefits in breast cancer.

  2. Estrogen Metabolites Are Not Associated With Colorectal Cancer Risk In Postmenopausal Women

    Science.gov (United States)

    Falk, Roni T.; Dallal, Cher M.; Lacey, James V.; Bauer, Douglas C.; Buist, Diana SM; Cauley, Jane A.; Hue, Trisha F.; LaCroix, Andrea; Tice, Jeffrey A.; Pfeiffer, Ruth M.; Xu, Xia; Veenstra, Timothy D.; Brinton, Louise A.

    2015-01-01

    Background A potential protective role for estrogen in colon carcinogenesis has been suggested based on exogenous hormone use, but it is unclear from previous studies whether endogenous estrogens are related to colorectal cancer (CRC) risk. These few prior studies focused on parent estrogens; none evaluated effects of estrogen metabolism in postmenopausal women. Methods We followed 15,595 women (ages 55–80) enrolled in B~FIT (Breast and Bone Follow-up to the Fracture Intervention Trial (FIT)) who donated blood between 1992 and 1993 for cancer through December 2004. A panel of 15 estrogen metabolites (EM), including estradiol and estrone, were measured in serum from 187 CRC cases and a subcohort of 501 women not using exogenous hormones at blood draw. We examined EM individually, grouped by pathway (hydroxylation at the C-2, C-4, or C-16 position), and by ratios of the groupings using Cox proportional hazards regression models. Results No significant associations were seen for estrone (HRQ4 v Q1=1.15, 95% CI=0.69–1.93, ptrend=0.54), estradiol (HRQ4 v Q1= 0.98, 95% CI=0.58–1.64, ptrend>0.99) or total EM (the sum of all EM; HRQ4 v Q1=1.35. 95% CI=0.81–2.24, ptrend=0.33). Most metabolites in the 2-, 4- or 16-pathway were unrelated to risk, although a borderline trend in risk was associated with high levels of 17-epiestriol. Conclusion Circulating estrogens and their metabolites were generally unrelated to CRC risk in postmenopausal women. Impact Additional studies are needed to understand how exogenous estrogen may prevent CRC PMID:26104910

  3. Management of osteoporosis and menopausal symptoms: focus on bazedoxifene/conjugated estrogen combination

    Directory of Open Access Journals (Sweden)

    Mirkin S

    2013-08-01

    Full Text Available Sebastian Mirkin,1 James H Pickar21Pfizer Inc, Collegeville, PA, 2Department of Obstetrics and Gynecology, Columbia University Medical Center, New York, NY, USAAbstract: Loss of estrogen production in women during menopause results in a state of estrogen deficiency which has been associated with multiple problems, including vasomotor symptoms, symptoms of vulvovaginal atrophy, bone loss, and difficulties with sleep, mood, memory, and sexual activity. The only treatment option currently available to address multiple postmenopausal symptoms in women with an intact uterus is estrogen/progestin-containing hormone therapy (HT. Concerns surrounding side effects and published data regarding the association of HT with the increased risk for breast cancer have induced a decrease in the number of women seeking, initiating, and continuing this type of therapy. A combination containing bazedoxifene and conjugated estrogens (BZA/CE maintains the established benefits of estrogen therapy for treatment of postmenopausal vasomotor symptoms, vulvovaginal atrophy, and osteoporosis, while certain estrogenic effects, such as stimulation of the uterus and breast, are antagonized without the side effects associated with HT. BZA/CE has been evaluated in a series of multicenter, randomized, double-blind, placebo-controlled, and active-controlled Phase III trials known as the Selective estrogens, Menopause, And Response to Therapy (SMART trials. BZA/CE demonstrated clinically meaningful improvements in vasomotor symptoms, vulvovaginal atrophy, and a protective effect on the skeleton. These clinical benefits were associated with an acceptable safety profile and an improved tolerability compared with HT. BZA/CE showed a favorable safety profile on the breast, endometrium, and ovaries. The incidence of venous thromboembolism was low and the risk does not appear to be any greater than for CE alone or BZA alone or greater than HT. The incidence of coronary heart disease and

  4. The Impacts of Genistein and Daidzein on Estrogen Conjugations in Human Breast Cancer Cells: A Targeted Metabolomics Approach

    Directory of Open Access Journals (Sweden)

    Stefan Poschner

    2017-10-01

    Full Text Available The beneficial effect of dietary soy food intake, especially for women diagnosed with breast cancer, is controversial, as in vitro data has shown that the soy isoflavones genistein and daidzein may even stimulate the proliferation of estrogen-receptor alpha positive (ERα+ breast cancer cells at low concentrations. As genistein and daidzein are known to inhibit key enzymes in the steroid metabolism pathway, and thus may influence levels of active estrogens, we investigated the impacts of genistein and daidzein on the formation of estrogen metabolites, namely 17β-estradiol (E2, 17β-estradiol-3-(β-D-glucuronide (E2-G, 17β-estradiol-3-sulfate (E2-S and estrone-3-sulfate (E1-S in estrogen-dependent ERα+ MCF-7 cells. We found that both isoflavones were potent inhibitors of E1 and E2 sulfation (85–95% inhibition at 10 μM, but impeded E2 glucuronidation to a lesser extent (55–60% inhibition at 10 μM. The stronger inhibition of E1 and E2 sulfation compared with E2 glucuronidation was more evident for genistein, as indicated by significantly lower inhibition constants for genistein [Kis: E2-S (0.32 μM < E1-S (0.76 μM < E2-G (6.01 μM] when compared with those for daidzein [Kis: E2-S (0.48 μM < E1-S (1.64 μM < E2-G (7.31 μM]. Concomitant with the suppression of E1 and E2 conjugation, we observed a minor but statistically significant increase in E2 concentration of approximately 20%. As the content of genistein and daidzein in soy food is relatively low, an increased risk of breast cancer development and progression in women may only be observed following consumption of high-dose isoflavone supplements. Further long-term human studies monitoring free estrogens and their conjugates are therefore highly warranted to evaluate the potential side effects of high-dose genistein and daidzein, especially in patients diagnosed with ERα+ breast cancer.

  5. Cytologic atypia in the contralateral unaffected breast is related to parity and estrogen-related genes.

    Science.gov (United States)

    Monahan, Denise A; Wang, Jun; Lee, Oukseub; Revesz, Elizabeth; Taft, Nancy; Ivancic, David; Hansen, Nora M; Bethke, Kevin P; Zalles, C; Khan, Seema A

    2016-12-01

    The contralateral unaffected breast (CUB) of women with unilateral breast cancer provides a model for the study of breast tissue-based risk factors. Using random fine needle aspiration (rFNA), we have investigated hormonal and gene expression patterns related to atypia in the CUBs of newly diagnosed breast cancer patients. 83 women underwent rFNA of the CUB. Cytologic analysis was performed using the Masood Score (MS), atypia was defined as MS > 14. RNA was extracted using 80% of the sample. The expression of 20 hormone related genes was quantified using Taqman Low Density Arrays. Statistical analysis was performed using 2-tailed t tests and linear regression. Cytological atypia was more frequent in multiparous women (P = 0.0392), and was not associated with any tumor-related features in the affected breast. Masood Score was higher with shorter interval since last pregnancy (R = 0.204, P = 0.0417), higher number of births (R = 0.369, P = 0.0006), and estrogen receptor (ER) negativity of the index cancer (R = -0.203, P = 0.065). Individual cytologic features were associated with aspects of parity. Specifically, anisonucleosis was correlated with shorter interval since last pregnancy (R = 0.318, P = 0.0201), higher number of births (R = 0.382, P = 0.0004), and ER status (R = -0.314, P = 0.0038). Eight estrogen-regulated genes were increased in atypical samples (P breast cancer development. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Epigenetic mechanism of radiation carcinogenesis

    International Nuclear Information System (INIS)

    Niwa, Ohtsura

    1995-01-01

    Carcinogenic action of radiations has long been thought to be due to its mutagenic activity. Since DNA damage is induced and distributes in a stochastic fashion, radiation induction of cancers was also assumed to follow a stochastic kinetics. However, recent progress in radiation research has revealed that some features of radiation carcinogenesis are not explainable by the simple action of radiation as a DNA damaging and mutagenic agent. Firstly, frequencies of radiation-induced transformation in vitro and radiation-induced mammary cancers in rats are too high to be accounted for by the frequency of radiation-induced mutation. Secondly, trans-generation carcinogenesis among F1 mice born to irradiated parents occurs also much more frequently than to be predicted by the frequency of radiation induced germline mutation. Thirdly, multistage carcinogenesis theory predicts that carcinogens give hits to the target cells so as to shorten the latency of cancers. However, latencies of radiation induced solid cancers among atomic bomb survivors are similar to those of the control population. Fourthly, although radiation elevates the frequency of cancers, the induced cancers seem to share the same spectrum of cancer types as in the unirradiated control populations. This suggests that radiation induces cancer by enhancement of the spontaneous carcinogenesis process. These data suggest that the first step of radiation carcinogenesis may not be the direct induction of mutation. Radiation may induce genetic instability which increases the spontaneous mutation rate in the cells to produce carcinogenic mutations. Growth stimulatory effect of radiation may also contribute to the process. Thus, epigenetic, but not genetic effect of radiation might better contribute in the process of carcinogenesis. (author)

  7. The Influence of Estrogens on the Biological and Therapeutic Actions of Growth Hormone in the Liver

    Directory of Open Access Journals (Sweden)

    Leandro Fernández-Pérez

    2012-07-01

    Full Text Available GH is main regulator of body growth and composition, somatic development, intermediate metabolism and gender-dependent dimorphism in mammals. The liver is a direct target of estrogens because it expresses estrogen receptors which are connected with development, lipid metabolism and insulin sensitivity, hepatic carcinogenesis, protection from drug-induced toxicity and fertility. In addition, estrogens can modulate GH actions in liver by acting centrally, regulating pituitary GH secretion, and, peripherally, by modulating GHR-JAK2-STAT5 signalling pathway. Therefore, the interactions of estrogens with GH actions in liver are biologically and clinically relevant because disruption of GH signaling may cause alterations of its endocrine, metabolic, and gender differentiated functions and it could be linked to dramatic impact in liver physiology during development as well as in adulthood. Finally, the interplay of estrogens with GH is relevant because physiological roles these hormones have in human, and the widespread exposition of estrogen or estrogen-related compounds in human. This review highlights the importance of these hormones in liver physiology as well as how estrogens modulate GH actions in liver which will help to improve the clinical use of these hormones.

  8. The orphan nuclear receptor LRH-1 and ERα activate GREB1 expression to induce breast cancer cell proliferation.

    Directory of Open Access Journals (Sweden)

    Ashwini L Chand

    Full Text Available BACKGROUND: Liver Receptor Homolog 1 (LRH-1, NR5A2 is an orphan nuclear receptor that is over-expressed in cancers in tissues such as the breast, colon and pancreas. LRH-1 plays important roles in embryonic development, steroidogenesis and cholesterol homeostasis. In tumor cells, LRH-1 induces proliferation and cell cycle progression. High LRH-1 expression is demonstrated in breast cancers, positively correlating with ERα status and aromatase activity. LRH-1 dependent cellular mechanisms in breast cancer epithelial cells are poorly defined. Hence in the present study we investigated the actions of LRH-1 in estrogen receptor α (ERα positive breast cancer cells. RESULTS: The study aimed to investigate LRH-1 dependent mechanisms that promote breast cancer proliferation. We identified that LRH-1 regulated the expression of Growth Regulation by Estrogen in Breast Cancer 1 (GREB1 in MCF-7 and MDA-MB-231 cells. Over-expression of LRH-1 increased GREB1 mRNA levels while knockdown of LRH-1 reduced its expression. GREB1 is a well characterised ERα target gene, with three estrogen response elements (ERE located on its promoter. Chromatin immunoprecipitation studies provided evidence of the co-localisation of LRH-1 and ERα at all three EREs. With electrophoretic mobility shift assays, we demonstrated direct binding of LRH-1 to EREs located on GREB1 and Trefoil Factor 1 (TFF1, pS2 promoters. LRH-1 and ERα co-operatively activated transcription of ERE luciferase reporter constructs suggesting an overlap in regulation of target genes in breast cancer cells. Over-expression of LRH-1 resulted in an increase in cell proliferation. This effect was more pronounced with estradiol treatment. In the presence of ICI 182,780, an ERα antagonist, LRH-1 still induced proliferation. CONCLUSIONS: We conclude that in ER-positive breast cancer cells, LRH-1 promotes cell proliferation by enhancing ERα mediated transcription of target genes such as GREB-1. Collectively

  9. The effect of synthetic immunomodulator thymogen on radiation carcinogenesis in rats

    International Nuclear Information System (INIS)

    Anisimov, V.N.; Miretskij, G.I.; Morozov, V.G.; Pavel'eva, I.A.; Khavinson, V.Kh.

    1992-01-01

    Five month-old female rats were given a mixture of Sr-90 and Cs-137 in drinking water in the dose of 0.1 and 0.2 μCi/day per animal over 12 months. Some animals received 12 monthly course of a synthetic immunomodulating dipeptide-thymogen in the dose of 5 μg/animal for 5 consecutive days. Radionuclide-treated rats showed higher occurence of tumors on the whole and of breast adenocarcinoma, in particular. Thymogen was shown to inhibit Sr-90- and Cs-137-induced radiation carcinogenesis, namely, a decrease in the total tumor and cancer occurence was observed. The animals receiving thymogen alone showed longer life span, slower rate of aging and lower overall tumor and cancer occurence. In this study, the ability of asynthetic peptide immunomodulator-thymogen to inhibit spontaneous and radionuclide-induced carcinogenesis in female rats was first established

  10. Novel Stromal Biomarkers in Human Breast Cancer Tissues Provide Evidence for the More Malignant Phenotype of Estrogen Receptor-Negative Tumors

    Directory of Open Access Journals (Sweden)

    Zahraa I. Khamis

    2011-01-01

    Full Text Available Research efforts were focused on genetic alterations in epithelial cancer cells. Epithelial-stromal interactions play a crucial role in cancer initiation, progression, invasion, angiogenesis, and metastasis; however, the active role of stroma in human breast tumorigenesis in relation to estrogen receptor (ER status of epithelial cells has not been explored. Using proteomics and biochemical approaches, we identified two stromal proteins in ER-positive and ER-negative human breast cancer tissues that may affect malignant transformation in breast cancer. Two putative biomarkers, T-cell receptor alpha (TCR-α and zinc finger and BRCA1-interacting protein with a KRAB domain (ZBRK1, were detected in leukocytes of ER-positive and endothelial cells of ER-negative tissues, respectively. Our data suggest an immunosuppressive role of leukocytes in invasive breast tumors, propose a multifunctional nature of ZBRK1 in estrogen receptor regulation and angiogenesis, and demonstrate the aggressiveness of ER-negative human breast carcinomas. This research project may identify new stromal drug targets for the treatment of breast cancer patients.

  11. Organochlorine exposures influence on breast cancer risk and survival according to estrogen receptor status: a Danish cohort-nested case-control study

    International Nuclear Information System (INIS)

    Høyer, Annette P; Jørgensen, Torben; Rank, Fritz; Grandjean, Philippe

    2001-01-01

    The relationship between breast cancer and organochlorine exposure is controversial and complex. As estrogen receptor positive and negative breast cancer may represent different entities of the disease, this study was undertaken to evaluate organochlorines influence on breast cancer risk and survival according to receptor status. The background material stems from the Copenhagen City Heart Study (Denmark 1976-78). The breast cancer risk was investigated in a cohort nested case-control design including 161 cases and twice as many breast cancer free controls. The cases served as a cohort in the survival analysis. Serum organochlorine concentrations were determined by gaschromotography. The observed increased breast cancer risk associated with exposure to dieldrin derived from women who developed an estrogen receptor negative (ERN) tumor (Odds ratio [OR] I vs. IV quartile, 7.6, 95% confidence interval [95% CI] 1.4-46.1, p-value for linear trend 0.01). Tumors in women with the highest dieldrin serum level were larger and more often spread at the time of diagnosis than ERP tumors. The risk of dying was for the remaining evaluated compounds higher among patients with ERP breast cancer when compared to those with ERN. In the highest quartile of polychlorinated biphenyls (ΣPCB) it was more than 2-fold increased (Relative risk [RR] I vs. IV quartile, 2.5, 95% CI 1.1-5.7), but no dose-response relation was apparent. The results do not suggest that exposure to potential estrogenic organochlorines leads to development of an ERP breast cancer. A possible adverse effect on prognosis of hormone-responsive breast cancers needs to be clarified

  12. Rat models of 17β-estradiol-induced mammary cancer reveal novel insights into breast cancer etiology and prevention.

    Science.gov (United States)

    Shull, James D; Dennison, Kirsten L; Chack, Aaron C; Trentham-Dietz, Amy

    2018-03-01

    Numerous laboratory and epidemiologic studies strongly implicate endogenous and exogenous estrogens in the etiology of breast cancer. Data summarized herein suggest that the ACI rat model of 17β-estradiol (E2)-induced mammary cancer is unique among rodent models in the extent to which it faithfully reflects the etiology and biology of luminal types of breast cancer, which together constitute ~70% of all breast cancers. E2 drives cancer development in this model through mechanisms that are largely dependent upon estrogen receptors and require progesterone and its receptors. Moreover, mammary cancer development appears to be associated with generation of oxidative stress and can be modified by multiple dietary factors, several of which may attenuate the actions of reactive oxygen species. Studies of susceptible ACI rats and resistant COP or BN rats provide novel insights into the genetic bases of susceptibility and the biological processes regulated by genetic determinants of susceptibility. This review summarizes research progress resulting from use of these physiologically relevant rat models to advance understanding of breast cancer etiology and prevention.

  13. Paradoxical action of fulvestrant in estradiol-induced regression of tamoxifen-stimulated breast cancer.

    Science.gov (United States)

    Osipo, Clodia; Gajdos, Csaba; Liu, Hong; Chen, Bin; Jordan, V Craig

    2003-11-05

    Long-term tamoxifen treatment of breast cancer can result in tamoxifen-stimulated breast cancer, in which estrogen inhibits tumor growth after tamoxifen withdrawal. We investigated the molecular mechanism(s) of estradiol-induced tumor regression by using an in vivo model of tamoxifen-stimulated human breast cancer. Growth of parental estradiol-stimulated MCF-7E2 and long-term tamoxifen-stimulated MCF-7TAMLT xenografts in athymic mice was measured during treatment with vehicle, estradiol, estradiol plus tamoxifen, tamoxifen alone, estradiol plus fulvestrant, or fulvestrant alone. Apoptosis was detected by the terminal deoxynucleotidyltransferase-mediated deoxyuridine triphosphate nick-end labeling (TUNEL) assay. Protein expression was assessed by western blot analysis. mRNA expression was assessed by real-time reverse transcription-polymerase chain reaction. All statistical tests were two-sided. MCF-7E2 tumor growth was stimulated by estradiol (cross-sectional area at week 13 = 1.06 cm2, 95% confidence interval [CI] = 0.82 to 1.30 cm2; Pestradiol-induced regression to 0.18 cm2 (95% CI = 0.15 to 0.21 cm2; P<.001), and tamoxifen or estradiol plus fulvestrant enhanced tumor growth to 1.00 cm2 (95% CI = 0.88 to 1.22 cm2). Estradiol increased the number of apoptotic cells in tumors by 23% (95% CI = 20% to 26%; P<.001) compared with all other treatments, decreased estrogen receptor alpha(ERalpha) protein expression, increased the expression of Fas mRNA and protein, decreased the expression of HER2/neu mRNA and protein and nuclear factor kappaB (NF-kappaB) protein but did not affect Fas ligand protein expression compared with control. Paradoxically, fulvestrant reversed this effect and stimulated MCF-7TAMLT tumor growth apparently through ERalpha-mediated regulation of Fas, HER2/neu, and NF-kappaB. Physiologic levels of estradiol induced regression of tamoxifen-stimulated breast cancer tumors, apparently by inducing the death receptor Fas and suppressing the antiapoptotic

  14. A common variant at the TERT-CLPTM1L locus is associated with estrogen receptor–negative breast cancer

    Science.gov (United States)

    Haiman, Christopher A; Chen, Gary K; Vachon, Celine M; Canzian, Federico; Dunning, Alison; Millikan, Robert C; Wang, Xianshu; Ademuyiwa, Foluso; Ahmed, Shahana; Ambrosone, Christine B; Baglietto, Laura; Balleine, Rosemary; Bandera, Elisa V; Beckmann, Matthias W; Berg, Christine D; Bernstein, Leslie; Blomqvist, Carl; Blot, William J; Brauch, Hiltrud; Buring, Julie E; Carey, Lisa A; Carpenter, Jane E; Chang-Claude, Jenny; Chanock, Stephen J; Chasman, Daniel I; Clarke, Christine L; Cox, Angela; Cross, Simon S; Deming, Sandra L; Diasio, Robert B; Dimopoulos, Athanasios M; Driver, W Ryan; Dünnebier, Thomas; Durcan, Lorraine; Eccles, Diana; Edlund, Christopher K; Ekici, Arif B; Fasching, Peter A; Feigelson, Heather S; Flesch-Janys, Dieter; Fostira, Florentia; Försti, Asta; Fountzilas, George; Gerty, Susan M; Giles, Graham G; Godwin, Andrew K; Goodfellow, Paul; Graham, Nikki; Greco, Dario; Hamann, Ute; Hankinson, Susan E; Hartmann, Arndt; Hein, Rebecca; Heinz, Judith; Holbrook, Andrea; Hoover, Robert N; Hu, Jennifer J; Hunter, David J; Ingles, Sue A; Irwanto, Astrid; Ivanovich, Jennifer; John, Esther M; Johnson, Nicola; Jukkola-Vuorinen, Arja; Kaaks, Rudolf; Ko, Yon-Dschun; Kolonel, Laurence N; Konstantopoulou, Irene; Kosma, Veli-Matti; Kulkarni, Swati; Lambrechts, Diether; Lee, Adam M; Le Marchand, Loïc; Lesnick, Timothy; Liu, Jianjun; Lindstrom, Sara; Mannermaa, Arto; Margolin, Sara; Martin, Nicholas G; Miron, Penelope; Montgomery, Grant W; Nevanlinna, Heli; Nickels, Stephan; Nyante, Sarah; Olswold, Curtis; Palmer, Julie; Pathak, Harsh; Pectasides, Dimitrios; Perou, Charles M; Peto, Julian; Pharoah, Paul D P; Pooler, Loreall C; Press, Michael F; Pylkäs, Katri; Rebbeck, Timothy R; Rodriguez-Gil, Jorge L; Rosenberg, Lynn; Ross, Eric; Rüdiger, Thomas; Silva, Isabel dos Santos; Sawyer, Elinor; Schmidt, Marjanka K; Schulz-Wendtland, Rüdiger; Schumacher, Fredrick; Severi, Gianluca; Sheng, Xin; Signorello, Lisa B; Sinn, Hans-Peter; Stevens, Kristen N; Southey, Melissa C; Tapper, William J; Tomlinson, Ian; Hogervorst, Frans B L; Wauters, Els; Weaver, JoEllen; Wildiers, Hans; Winqvist, Robert; Van Den Berg, David; Wan, Peggy; Xia, Lucy Y; Yannoukakos, Drakoulis; Zheng, Wei; Ziegler, Regina G; Siddiq, Afshan; Slager, Susan L; Stram, Daniel O; Easton, Douglas; Kraft, Peter; Henderson, Brian E; Couch, Fergus J

    2012-01-01

    Estrogen receptor (ER)-negative breast cancer shows a higher incidence in women of African ancestry compared to women of European ancestry. In search of common risk alleles for ER-negative breast cancer, we combined genome-wide association study (GWAS) data from women of African ancestry (1,004 ER-negative cases and 2,745 controls) and European ancestry (1,718 ER-negative cases and 3,670 controls), with replication testing conducted in an additional 2,292 ER-negative cases and 16,901 controls of European ancestry. We identified a common risk variant for ER-negative breast cancer at the TERT-CLPTM1L locus on chromosome 5p15 (rs10069690: per-allele odds ratio (OR) = 1.18 per allele, P = 1.0 × 10−10). The variant was also significantly associated with triple-negative (ER-negative, progesterone receptor (PR)-negative and human epidermal growth factor-2 (HER2)-negative) breast cancer (OR = 1.25, P = 1.1 × 10−9), particularly in younger women (<50 years of age) (OR = 1.48, P = 1.9 × 10−9). Our results identify a genetic locus associated with estrogen receptor negative breast cancer subtypes in multiple populations. PMID:22037553

  15. A common variant at the TERT-CLPTM1L locus is associated with estrogen receptor-negative breast cancer.

    Science.gov (United States)

    Haiman, Christopher A; Chen, Gary K; Vachon, Celine M; Canzian, Federico; Dunning, Alison; Millikan, Robert C; Wang, Xianshu; Ademuyiwa, Foluso; Ahmed, Shahana; Ambrosone, Christine B; Baglietto, Laura; Balleine, Rosemary; Bandera, Elisa V; Beckmann, Matthias W; Berg, Christine D; Bernstein, Leslie; Blomqvist, Carl; Blot, William J; Brauch, Hiltrud; Buring, Julie E; Carey, Lisa A; Carpenter, Jane E; Chang-Claude, Jenny; Chanock, Stephen J; Chasman, Daniel I; Clarke, Christine L; Cox, Angela; Cross, Simon S; Deming, Sandra L; Diasio, Robert B; Dimopoulos, Athanasios M; Driver, W Ryan; Dünnebier, Thomas; Durcan, Lorraine; Eccles, Diana; Edlund, Christopher K; Ekici, Arif B; Fasching, Peter A; Feigelson, Heather S; Flesch-Janys, Dieter; Fostira, Florentia; Försti, Asta; Fountzilas, George; Gerty, Susan M; Giles, Graham G; Godwin, Andrew K; Goodfellow, Paul; Graham, Nikki; Greco, Dario; Hamann, Ute; Hankinson, Susan E; Hartmann, Arndt; Hein, Rebecca; Heinz, Judith; Holbrook, Andrea; Hoover, Robert N; Hu, Jennifer J; Hunter, David J; Ingles, Sue A; Irwanto, Astrid; Ivanovich, Jennifer; John, Esther M; Johnson, Nicola; Jukkola-Vuorinen, Arja; Kaaks, Rudolf; Ko, Yon-Dschun; Kolonel, Laurence N; Konstantopoulou, Irene; Kosma, Veli-Matti; Kulkarni, Swati; Lambrechts, Diether; Lee, Adam M; Marchand, Loïc Le; Lesnick, Timothy; Liu, Jianjun; Lindstrom, Sara; Mannermaa, Arto; Margolin, Sara; Martin, Nicholas G; Miron, Penelope; Montgomery, Grant W; Nevanlinna, Heli; Nickels, Stephan; Nyante, Sarah; Olswold, Curtis; Palmer, Julie; Pathak, Harsh; Pectasides, Dimitrios; Perou, Charles M; Peto, Julian; Pharoah, Paul D P; Pooler, Loreall C; Press, Michael F; Pylkäs, Katri; Rebbeck, Timothy R; Rodriguez-Gil, Jorge L; Rosenberg, Lynn; Ross, Eric; Rüdiger, Thomas; Silva, Isabel dos Santos; Sawyer, Elinor; Schmidt, Marjanka K; Schulz-Wendtland, Rüdiger; Schumacher, Fredrick; Severi, Gianluca; Sheng, Xin; Signorello, Lisa B; Sinn, Hans-Peter; Stevens, Kristen N; Southey, Melissa C; Tapper, William J; Tomlinson, Ian; Hogervorst, Frans B L; Wauters, Els; Weaver, JoEllen; Wildiers, Hans; Winqvist, Robert; Van Den Berg, David; Wan, Peggy; Xia, Lucy Y; Yannoukakos, Drakoulis; Zheng, Wei; Ziegler, Regina G; Siddiq, Afshan; Slager, Susan L; Stram, Daniel O; Easton, Douglas; Kraft, Peter; Henderson, Brian E; Couch, Fergus J

    2011-10-30

    Estrogen receptor (ER)-negative breast cancer shows a higher incidence in women of African ancestry compared to women of European ancestry. In search of common risk alleles for ER-negative breast cancer, we combined genome-wide association study (GWAS) data from women of African ancestry (1,004 ER-negative cases and 2,745 controls) and European ancestry (1,718 ER-negative cases and 3,670 controls), with replication testing conducted in an additional 2,292 ER-negative cases and 16,901 controls of European ancestry. We identified a common risk variant for ER-negative breast cancer at the TERT-CLPTM1L locus on chromosome 5p15 (rs10069690: per-allele odds ratio (OR) = 1.18 per allele, P = 1.0 × 10(-10)). The variant was also significantly associated with triple-negative (ER-negative, progesterone receptor (PR)-negative and human epidermal growth factor-2 (HER2)-negative) breast cancer (OR = 1.25, P = 1.1 × 10(-9)), particularly in younger women (<50 years of age) (OR = 1.48, P = 1.9 × 10(-9)). Our results identify a genetic locus associated with estrogen receptor negative breast cancer subtypes in multiple populations.

  16. Protective Effect of Piper aduncum Capsule on DMBA-induced Breast Cancer in Rats.

    Science.gov (United States)

    Arroyo-Acevedo, J; Chávez-Asmat, R J; Anampa-Guzmán, A; Donaires, R; Ráez-Gonzáles, José

    2015-01-01

    The possible protective effect of Piper aduncum capsule on DMBA (dimethylbenz[α]anthracene)-induced breast cancer in rats was assessed by monitoring the tumor and lung metastases incidence and recording hematological and biochemical parameters and frequency of micronuclei. Mammary carcinogenesis was induced in 36 female Holtzman rats by providing a single subcutaneous injection of DMBA. Oral administration of P. aduncum capsule lowered adenocarcinoma and lymph node metastases incidence. Pulmonary metastasis was significantly lowered (P < 0.05). Hematological indicators showed that the triglyceride level was significantly lowered (P < 0.01) and high-density lipoprotein (HDL) level was significantly increased (P < 0.01). Also, P. aduncum capsule significantly lowered the C reactive protein (CRP) level (P < 0.01) and malondialdehyde level (P < 0.05). There was a significant decrease in the frequency of DMBA-induced micronucleated polychromatic erythrocyte (P < 0.01). Considering the antitumorigenic, hypolipidemic, anti-inflammatory, antioxidant, and antigenotoxic properties of P. aduncum capsule, we conclude that it has a protective effect on DMBA-induced breast cancer in rats.

  17. Estrogenic compounds inhibit gap junctional intercellular communication in mouse Leydig TM3 cells

    International Nuclear Information System (INIS)

    Iwase, Yumiko; Fukata, Hideki; Mori, Chisato

    2006-01-01

    Some estrogenic compounds are reported to cause testicular disorders in humans and/or experimental animals by direct action on Leydig cells. In carcinogenesis and normal development, gap junctional intercellular communication (GJIC) plays an essential role in maintaining homeostasis. In this study, we examine the effects of diethylstilbestrol (DES, a synthetic estrogen), 17β-estradiol (E 2 , a natural estrogen), and genistein (GEN, a phytoestrogen) on GJIC between mouse Leydig TM3 cells using Lucifer yellow microinjection. The three compounds tested produced GJIC inhibition in the TM3 cells after 24 h. Gradually, 10 μM DES began to inhibit GJIC for 24 h and this effect was observed until 72 h. On the other hand, both 20 μM E 2 and 25 μM GEN rapidly inhibited GJIC in 6 h and 2 h, respectively. The effects continued until 24 h, but weakened by 72 h. Furthermore, a combined effect at μM level between DES and E 2 on GJIC inhibition was observed, but not between GEN and E 2 . DES and E 2 showed GJIC inhibition at low dose levels (nearly physiological estrogen levels) after 72 h, but GEN did not. DES-induced GJIC inhibition at 10 pM and 10 μM was completely counteracted by ICI 182,780 (ICl), an estrogen receptor antagonist. On the other hand, the inhibitory effects on GJIC with E 2 (10 pM and 20 μM) and GEN (25 μM) were partially blocked by ICI or calphostin C, a protein kinase C (PKC) inhibitor, and were completely blocked by the combination of ICI and calphostin C. These results demonstrate that DES inhibits GJIC between Leydig cells via the estrogen receptor (ER), and that E 2 and GEN inhibit GJIC via ER and PKC. These estrogenic compounds may have different individual nongenotoxic mechanism including PKC pathway on testicular carcinogenesis or development

  18. Identification of ten variants associated with risk of estrogen-receptor-negative breast cancer

    Science.gov (United States)

    Milne, Roger L; Kuchenbaecker, Karoline B; Michailidou, Kyriaki; Beesley, Jonathan; Kar, Siddhartha; Lindström, Sara; Hui, Shirley; Lemaçon, Audrey; Soucy, Penny; Dennis, Joe; Jiang, Xia; Rostamianfar, Asha; Finucane, Hilary; Bolla, Manjeet K; McGuffog, Lesley; Wang, Qin; Aalfs, Cora M; Adams, Marcia; Adlard, Julian; Agata, Simona; Ahmed, Shahana; Ahsan, Habibul; Aittomäki, Kristiina; Al-Ejeh, Fares; Allen, Jamie; Ambrosone, Christine B; Amos, Christopher I; Andrulis, Irene L; Anton-Culver, Hoda; Antonenkova, Natalia N; Arndt, Volker; Arnold, Norbert; Aronson, Kristan J; Auber, Bernd; Auer, Paul L; Ausems, Margreet G E M; Azzollini, Jacopo; Bacot, François; Balmaña, Judith; Barile, Monica; Barjhoux, Laure; Barkardottir, Rosa B; Barrdahl, Myrto; Barnes, Daniel; Barrowdale, Daniel; Baynes, Caroline; Beckmann, Matthias W; Benitez, Javier; Bermisheva, Marina; Bernstein, Leslie; Bignon, Yves-Jean; Blazer, Kathleen R; Blok, Marinus J; Blomqvist, Carl; Blot, William; Bobolis, Kristie; Boeckx, Bram; Bogdanova, Natalia V; Bojesen, Anders; Bojesen, Stig E; Bonanni, Bernardo; Børresen-Dale, Anne-Lise; Bozsik, Aniko; Bradbury, Angela R; Brand, Judith S; Brauch, Hiltrud; Brenner, Hermann; Bressac-de Paillerets, Brigitte; Brewer, Carole; Brinton, Louise; Broberg, Per; Brooks-Wilson, Angela; Brunet, Joan; Brüning, Thomas; Burwinkel, Barbara; Buys, Saundra S; Byun, Jinyoung; Cai, Qiuyin; Caldés, Trinidad; Caligo, Maria A; Campbell, Ian; Canzian, Federico; Caron, Olivier; Carracedo, Angel; Carter, Brian D; Castelao, J Esteban; Castera, Laurent; Caux-Moncoutier, Virginie; Chan, Salina B; Chang-Claude, Jenny; Chanock, Stephen J; Chen, Xiaoqing; Cheng, Ting-Yuan David; Chiquette, Jocelyne; Christiansen, Hans; Claes, Kathleen B M; Clarke, Christine L; Conner, Thomas; Conroy, Don M; Cook, Jackie; Cordina-Duverger, Emilie; Cornelissen, Sten; Coupier, Isabelle; Cox, Angela; Cox, David G; Cross, Simon S; Cuk, Katarina; Cunningham, Julie M; Czene, Kamila; Daly, Mary B; Damiola, Francesca; Darabi, Hatef; Davidson, Rosemarie; De Leeneer, Kim; Devilee, Peter; Dicks, Ed; Diez, Orland; Ding, Yuan Chun; Ditsch, Nina; Doheny, Kimberly F; Domchek, Susan M; Dorfling, Cecilia M; Dörk, Thilo; dos-Santos-Silva, Isabel; Dubois, Stéphane; Dugué, Pierre-Antoine; Dumont, Martine; Dunning, Alison M; Durcan, Lorraine; Dwek, Miriam; Dworniczak, Bernd; Eccles, Diana; Eeles, Ros; Ehrencrona, Hans; Eilber, Ursula; Ejlertsen, Bent; Ekici, Arif B; Engel, Christoph; Eriksson, Mikael; Fachal, Laura; Faivre, Laurence; Fasching, Peter A; Faust, Ulrike; Figueroa, Jonine; Flesch-Janys, Dieter; Fletcher, Olivia; Flyger, Henrik; Foulkes, William D; Friedman, Eitan; Fritschi, Lin; Frost, Debra; Gabrielson, Marike; Gaddam, Pragna; Gammon, Marilie D; Ganz, Patricia A; Gapstur, Susan M; Garber, Judy; Garcia-Barberan, Vanesa; García-Sáenz, José A; Gaudet, Mia M; Gauthier-Villars, Marion; Gehrig, Andrea; Georgoulias, Vassilios; Gerdes, Anne-Marie; Giles, Graham G; Glendon, Gord; Godwin, Andrew K; Goldberg, Mark S; Goldgar, David E; González-Neira, Anna; Goodfellow, Paul; Greene, Mark H; Grip, Mervi; Gronwald, Jacek; Grundy, Anne; Gschwantler-Kaulich, Daphne; Guénel, Pascal; Guo, Qi; Haeberle, Lothar; Hahnen, Eric; Haiman, Christopher A; Håkansson, Niclas; Hallberg, Emily; Hamann, Ute; Hamel, Nathalie; Hankinson, Susan; Hansen, Thomas V O; Harrington, Patricia; Hart, Steven N; Hartikainen, Jaana M; Healey, Catherine S; Hein, Alexander; Helbig, Sonja; Henderson, Alex; Heyworth, Jane; Hicks, Belynda; Hillemanns, Peter; Hodgson, Shirley; Hogervorst, Frans B; Hollestelle, Antoinette; Hooning, Maartje J; Hoover, Bob; Hopper, John L; Hu, Chunling; Huang, Guanmengqian; Hulick, Peter J; Humphreys, Keith; Hunter, David J; Imyanitov, Evgeny N; Isaacs, Claudine; Iwasaki, Motoki; Izatt, Louise; Jakubowska, Anna; James, Paul; Janavicius, Ramunas; Janni, Wolfgang; Jensen, Uffe Birk; John, Esther M; Johnson, Nichola; Jones, Kristine; Jones, Michael; Jukkola-Vuorinen, Arja; Kaaks, Rudolf; Kabisch, Maria; Kaczmarek, Katarzyna; Kang, Daehee; Kast, Karin; Keeman, Renske; Kerin, Michael J; Kets, Carolien M; Keupers, Machteld; Khan, Sofia; Khusnutdinova, Elza; Kiiski, Johanna I; Kim, Sung-Won; Knight, Julia A; Konstantopoulou, Irene; Kosma, Veli-Matti; Kristensen, Vessela N; Kruse, Torben A; Kwong, Ava; Lænkholm, Anne-Vibeke; Laitman, Yael; Lalloo, Fiona; Lambrechts, Diether; Landsman, Keren; Lasset, Christine; Lazaro, Conxi; Le Marchand, Loic; Lecarpentier, Julie; Lee, Andrew; Lee, Eunjung; Lee, Jong Won; Lee, Min Hyuk; Lejbkowicz, Flavio; Lesueur, Fabienne; Li, Jingmei; Lilyquist, Jenna; Lincoln, Anne; Lindblom, Annika; Lissowska, Jolanta; Lo, Wing-Yee; Loibl, Sibylle; Long, Jirong; Loud, Jennifer T; Lubinski, Jan; Luccarini, Craig; Lush, Michael; MacInnis, Robert J; Maishman, Tom; Makalic, Enes; Kostovska, Ivana Maleva; Malone, Kathleen E; Manoukian, Siranoush; Manson, JoAnn E; Margolin, Sara; Martens, John W M; Martinez, Maria Elena; Matsuo, Keitaro; Mavroudis, Dimitrios; Mazoyer, Sylvie; McLean, Catriona; Meijers-Heijboer, Hanne; Menéndez, Primitiva; Meyer, Jeffery; Miao, Hui; Miller, Austin; Miller, Nicola; Mitchell, Gillian; Montagna, Marco; Muir, Kenneth; Mulligan, Anna Marie; Mulot, Claire; Nadesan, Sue; Nathanson, Katherine L; Neuhausen, Susan L; Nevanlinna, Heli; Nevelsteen, Ines; Niederacher, Dieter; Nielsen, Sune F; Nordestgaard, Børge G; Norman, Aaron; Nussbaum, Robert L; Olah, Edith; Olopade, Olufunmilayo I; Olson, Janet E; Olswold, Curtis; Ong, Kai-ren; Oosterwijk, Jan C; Orr, Nick; Osorio, Ana; Pankratz, V Shane; Papi, Laura; Park-Simon, Tjoung-Won; Paulsson-Karlsson, Ylva; Lloyd, Rachel; Pedersen, Inge Søkilde; Peissel, Bernard; Peixoto, Ana; Perez, Jose I A; Peterlongo, Paolo; Peto, Julian; Pfeiler, Georg; Phelan, Catherine M; Pinchev, Mila; Plaseska-Karanfilska, Dijana; Poppe, Bruce; Porteous, Mary E; Prentice, Ross; Presneau, Nadege; Prokofieva, Darya; Pugh, Elizabeth; Pujana, Miquel Angel; Pylkäs, Katri; Rack, Brigitte; Radice, Paolo; Rahman, Nazneen; Rantala, Johanna; Rappaport-Fuerhauser, Christine; Rennert, Gad; Rennert, Hedy S; Rhenius, Valerie; Rhiem, Kerstin; Richardson, Andrea; Rodriguez, Gustavo C; Romero, Atocha; Romm, Jane; Rookus, Matti A; Rudolph, Anja; Ruediger, Thomas; Saloustros, Emmanouil; Sanders, Joyce; Sandler, Dale P; Sangrajrang, Suleeporn; Sawyer, Elinor J; Schmidt, Daniel F; Schoemaker, Minouk J; Schumacher, Fredrick; Schürmann, Peter; Schwentner, Lukas; Scott, Christopher; Scott, Rodney J; Seal, Sheila; Senter, Leigha; Seynaeve, Caroline; Shah, Mitul; Sharma, Priyanka; Shen, Chen-Yang; Sheng, Xin; Shimelis, Hermela; Shrubsole, Martha J; Shu, Xiao-Ou; Side, Lucy E; Singer, Christian F; Sohn, Christof; Southey, Melissa C; Spinelli, John J; Spurdle, Amanda B; Stegmaier, Christa; Stoppa-Lyonnet, Dominique; Sukiennicki, Grzegorz; Surowy, Harald; Sutter, Christian; Swerdlow, Anthony; Szabo, Csilla I; Tamimi, Rulla M; Tan, Yen Y; Taylor, Jack A; Tejada, Maria-Isabel; Tengström, Maria; Teo, Soo H; Terry, Mary B; Tessier, Daniel C; Teulé, Alex; Thöne, Kathrin; Thull, Darcy L; Tibiletti, Maria Grazia; Tihomirova, Laima; Tischkowitz, Marc; Toland, Amanda E; Tollenaar, Rob A E M; Tomlinson, Ian; Tong, Ling; Torres, Diana; Tranchant, Martine; Truong, Thérèse; Tucker, Kathy; Tung, Nadine; Tyrer, Jonathan; Ulmer, Hans-Ulrich; Vachon, Celine; van Asperen, Christi J; Van Den Berg, David; van den Ouweland, Ans M W; van Rensburg, Elizabeth J; Varesco, Liliana; Varon-Mateeva, Raymonda; Vega, Ana; Viel, Alessandra; Vijai, Joseph; Vincent, Daniel; Vollenweider, Jason; Walker, Lisa; Wang, Zhaoming; Wang-Gohrke, Shan; Wappenschmidt, Barbara; Weinberg, Clarice R; Weitzel, Jeffrey N; Wendt, Camilla; Wesseling, Jelle; Whittemore, Alice S; Wijnen, Juul T; Willett, Walter; Winqvist, Robert; Wolk, Alicja; Wu, Anna H; Xia, Lucy; Yang, Xiaohong R; Yannoukakos, Drakoulis; Zaffaroni, Daniela; Zheng, Wei; Zhu, Bin; Ziogas, Argyrios; Ziv, Elad; Zorn, Kristin K; Gago-Dominguez, Manuela; Mannermaa, Arto; Olsson, Håkan; Teixeira, Manuel R; Stone, Jennifer; Offit, Kenneth; Ottini, Laura; Park, Sue K; Thomassen, Mads; Hall, Per; Meindl, Alfons; Schmutzler, Rita K; Droit, Arnaud; Bader, Gary D; Pharoah, Paul D P; Couch, Fergus J; Easton, Douglas F; Kraft, Peter; Chenevix-Trench, Georgia; García-Closas, Montserrat; Schmidt, Marjanka K; Antoniou, Antonis C; Simard, Jacques

    2018-01-01

    Most common breast cancer susceptibility variants have been identified through genome-wide association studies (GWAS) of predominantly estrogen receptor (ER)-positive disease1. We conducted a GWAS using 21,468 ER-negative cases and 100,594 controls combined with 18,908 BRCA1 mutation carriers (9,414 with breast cancer), all of European origin. We identified independent associations at P < 5 × 10−8 with ten variants at nine new loci. At P < 0.05, we replicated associations with 10 of 11 variants previously reported in ER-negative disease or BRCA1 mutation carrier GWAS and observed consistent associations with ER-negative disease for 105 susceptibility variants identified by other studies. These 125 variants explain approximately 14% of the familial risk of this breast cancer subtype. There was high genetic correlation (0.72) between risk of ER-negative breast cancer and breast cancer risk for BRCA1 mutation carriers. These findings may lead to improved risk prediction and inform further fine-mapping and functional work to better understand the biological basis of ER-negative breast cancer. PMID:29058716

  19. Experimental radiation carcinogenesis is studies at NIRS

    International Nuclear Information System (INIS)

    Sado, Toshihiko

    1992-01-01

    Experimental radiation carcinogenesis studies conducted during the past decade at NIRS are briefly reviewed. They include the following: 1) Age dependency of susceptibility to radiation carcinogenesis. 2) Radiation-induced myeloid leukemia. 3) Mechanism of fractionated X-irradiation (FX) induced thymic lymphomas. 4) Significance of radiation-induced immunosuppression in radiation carcinogenesis in vivo. 5) Other ongoing studies. (author)

  20. Variable aromatase inhibitor plasma concentrations do not correlate with circulating estrogen concentrations in post-menopausal breast cancer patients.

    Science.gov (United States)

    Hertz, Daniel L; Speth, Kelly A; Kidwell, Kelley M; Gersch, Christina L; Desta, Zeruesenay; Storniolo, Anna Maria; Stearns, Vered; Skaar, Todd C; Hayes, Daniel F; Henry, N Lynn; Rae, James M

    2017-10-01

    The aromatase inhibitors (AI) exemestane (EXE), letrozole (LET), and anastrozole suppress estrogen biosynthesis, and are effective treatments for estrogen receptor (ER)-positive breast cancer. Prior work suggests that anastrozole blood concentrations are associated with the magnitude of estrogen suppression. The objective of this study was to determine whether the magnitude of estrogen suppression, as determined by plasma estradiol (E2) concentrations, in EXE or LET treated patients is associated with plasma AI concentrations. Five hundred post-menopausal women with ER-positive breast cancer were enrolled in the prospective Exemestane and Letrozole Pharmacogenetic (ELPh) Study conducted by the COnsortium on BReast cancer phArmacogomics (COBRA) and randomly assigned to either drug. Estrogen concentrations were measured at baseline and after 3 months of AI treatment and drug concentrations were measured after 1 or 3 months. EXE or LET concentrations were compared with 3-month E2 concentration or the change from baseline to 3 months using several complementary statistical procedures. Four-hundred patients with on-treatment E2 and AI concentrations were evaluable (EXE n = 200, LET n = 200). Thirty (7.6%) patients (EXE n = 13, LET n = 17) had 3-month E2 concentrations above the lower limit of quantification (LLOQ) (median: 4.75; range: 1.42-63.8 pg/mL). EXE and LET concentrations were not associated with on-treatment E2 concentrations or changes in E2 concentrations from baseline (all p > 0.05). Steady-state plasma AI concentrations do not explain variability in E2 suppression in post-menopausal women receiving EXE or LET therapy, in contrast with prior evidence in anastrozole treated patients.

  1. In situ detection of estrogen receptor dimers in breast carcinoma cells in archival materials using proximity ligation assay (PLA).

    Science.gov (United States)

    Iwabuchi, Erina; Miki, Yasuhiro; Ono, Katsuhiko; Onodera, Yoshiaki; Suzuki, Takashi; Hirakawa, Hisashi; Ishida, Takanori; Ohuchi, Noriaki; Sasano, Hironobu

    2017-01-01

    Estrogen receptor (ER) is required for carcinoma cell proliferation in the great majority of breast cancer and also functions as a dimer. ER dimeric proteins have been largely identified by BRET/FRET analyses but their in situ visualization have not yet been reported. Recently, in situ Proximity Ligation Assay (PLA) has been developed as the methods detecting protein interactions in situ. Therefore, in this study we firstly demonstrated the dimerization of ERα in breast carcinoma cell lines and tissues using PLA. The human breast carcinoma cell lines MCF-7, T-47D and MDA-MB-231 were used in this study. Cells were treated with ER agonist or antagonist and fixed in 4% PFA, and ER dimers were subsequently detected using PLA. The evaluation of ER dimers in breast carcinoma cell lines were quantified by measuring the area of dots localized in the nuclei using image analysis. We also firstly demonstrated the visualization of ER dimer patterns in 10% formalin-fixed paraffin-embedded tissues of breast cancer using PLA technique. Estradiol (E2) administration induced ERα homodimers in the nuclei of MCF-7 and T-47D but not in ER-negative MDA-MB-231. 4-OH tamoxifen also induced ERα homodimers but the subcellular localization of these ERα homodimers was predominant in cytoplasm instead of the nuclei induced by E2 treatment. ICI182,780 treatment did decrease the number of formation of ERα homodimers in MCF-7. In breast cancer patients, ERα PLA score was significantly correlated positively with ERα- or PgR (progesterone receptor) immunohistochemical scores and inversely with Ki-67-labeling index, respectively. We also demonstrated the ERα/β heterodimer as well as ERα homodimers in both breast carcinoma cell lines and surgical pathology specimens. In summary, we did firstly succeed in the visualization of ER dimeric proteins using PLA method. The evaluation of ER dimer patterns could provide pivotal information as to the prediction of response to endocrine therapy of

  2. Experimental studies on lung carcinogenesis and their relationship to future research on radiation-induced lung cancer in humans

    International Nuclear Information System (INIS)

    Cross, F.T.

    1991-03-01

    The usefulness of experimental systems for studying human lung carcinogenesis lies in the ease of studying components of a total problem. As an example, the main thrust of attack on possible synergistic interactions between radiation, cigarette smoke, and other irritants must be by means of research on animals. Because animals can be serially sacrificed, a systematic search can be made for progressive lung changes, thereby improving our understanding of carcinogenesis. The mechanisms of radiation-induced carcinogenesis have not yet been delineated, but modern concepts of molecular and cellular biology and of radiation dosimetry are being increasingly applied to both in vivo and in vitro exposure to determine the mechanisms of radiation-induced carcinogenesis, to elucidate human data, and to aid in extrapolating experimental animal data to human exposures. In addition, biologically based mathematical models of carcinogenesis are being developed to describe the nature of the events leading to malignancy; they are also an essential part of a rational approach to quantitative cancer risk assessment. This paper summarizes recent experimental and modeling data on radon-induced lung cancer and includes the confounding effects of cigarette-smoke exposures. The applicability of these data to understanding human exposures is emphasized, and areas of future research on human radiation-induced carcinogenesis are discussed. 7 refs., 2 figs., 3 tabs

  3. Estrogen receptor alpha regulates expression of the breast cancer 1 associated ring domain 1 (BARD1) gene through intronic DNA sequence.

    Science.gov (United States)

    Creekmore, Amy L; Ziegler, Yvonne S; Bonéy, Jamie L; Nardulli, Ann M

    2007-03-15

    We have used a chromatin immunoprecipitation (ChIP)-based cloning strategy to isolate and identify genes associated with estrogen receptor alpha (ERalpha) in MCF-7 human breast cancer cells. One of the gene regions isolated was a 288bp fragment from the ninth intron of the breast cancer 1 associated ring domain (BARD1) gene. We demonstrated that ERalpha associated with this region of the endogenous BARD 1 gene in MCF-7 cells, that ERalpha bound to three of five ERE half sites located in the 288bp BARD1 region, and that this 288bp BARD1 region conferred estrogen responsiveness to a heterologous promoter. Importantly, treatment of MCF-7 cells with estrogen increased BARD1 mRNA and protein levels. These findings demonstrate that ChIP cloning strategies can be utilized to successfully isolate regulatory regions that are far removed from the transcription start site and assist in identifying cis elements involved in conferring estrogen responsiveness.

  4. Delta(9)-tetrahydrocannabinol inhibits 17beta-estradiol-induced proliferation and fails to activate androgen and estrogen receptors in MCF7 human breast cancer cells.

    Science.gov (United States)

    von Bueren, A O; Schlumpf, M; Lichtensteiger, W

    2008-01-01

    Delta(9)-tetrahydrocannabinol (THC) exerts palliative effects in cancer patients, but produces adverse effects on the endocrine and reproductive systems. Experimental evidence concerning such effects is controversial. Whether THC exhibits estrogenic or androgenic activity in vitro was investigated. Estrogenic effects of THC were analyzed in vitro by measuring the proliferation of estrogen-sensitive MCF7 cells. Androgenic activity was investigated by the A-Screen assay that measures androgen-dependent inhibition of proliferation of the androgen receptor (AR)-positive human mammary carcinoma cell line, MCF7-AR1. In contrast to 17beta-estradiol, included as positive control with an EC50 value (concentration required for 50% of maximal 17beta-estradiol-induced proliferation) of 1.00 x 10(-12) M, THC failed to induce cell proliferation in the MCF7 cell line at concentrations between 10(-13) and 10(-4) M. THC inhibited 17beta-estradiol-induced proliferation in wild-type MCF7 and MCF7-AR1 cells, with an IC50 value of 2.6 x 10(-5) M and 9 x 10(-6) M, respectively. THC failed to act as an estrogen, but antagonized 17beta-estradiol-induced proliferation. This effect was independent of the AR expression level.

  5. Environmental estrogen(s) induced swimming behavioural alterations in adult zebrafish (Danio rerio).

    Science.gov (United States)

    Goundadkar, Basavaraj B; Katti, Pancharatna

    2017-09-01

    The present study is an attempt to investigate the effects of long-term (75days) exposure to environmental estrogens (EE) on the swimming behaviour of zebrafish (Danio rerio). Adult zebrafish were exposed semi-statically to media containing commonly detected estrogenic water contaminants (EE2, DES and BPA) at a concentration (5ng/L) much lower than environmentally recorded levels. Time spent in swimming, surface preference, patterns and path of swimming were recorded (6mins) for each fish using two video cameras on day 15, 30 60 and 75. Video clips were analysed using a software program. Results indicate that chronic exposure to EE leads to increased body weight and size of females, reduced (Pswimming time, delay in latency, increased (P<0.05) immobility, erratic movements and freezing episodes. We conclude that estrogenic contamination of natural aquatic systems induces alterations in locomotor behaviour and associated physiological disturbances in inhabitant fish fauna. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Prognostic Value of Estrogen Receptor alpha and Progesterone Receptor Conversion in Distant Breast Cancer Metastases

    NARCIS (Netherlands)

    Hoefnagel, Laurien D. C.; Moelans, Cathy B.; Meijer, S. L.; van Slooten, Henk-Jan; Wesseling, Pieter; Wesseling, Jelle; Westenend, Pieter J.; Bart, Joost; Seldenrijk, Cornelis A.; Nagtegaal, Iris D.; Oudejans, Joost; van der Valk, Paul; van Gils, Carla H.; van der Wall, Elsken; van Diest, Paul J.

    2012-01-01

    BACKGROUND: Changes in the receptor profile of primary breast cancers to their metastases (receptor conversion) have been described for the estrogen receptor alpha (ER alpha) and progesterone receptor (PR). The purpose of this study was to evaluate the impact of receptor conversion for ER alpha and

  7. Microarray-Based Determination of Estrogen Receptor, Progesterone Receptor, and HER2 Receptor Status in Breast Cancer

    NARCIS (Netherlands)

    Roepman, Paul; Horlings, Hugo M.; Krijgsman, Oscar; Kok, Marleen; Bueno-de-Mesquita, Jolien M.; Bender, Richard; Linn, Sabine C.; Glas, Annuska M.; van de Vijver, Marc J.

    2009-01-01

    Purpose: The level of estrogen receptor (ER), progesterone receptor (PR), and HER2 aids in the determination of prognosis and treatment of breast cancer. Immunohistochemistry is currently the predominant method for assessment, but differences in methods and interpretation can substantially affect

  8. Ulva lactuca polysaccharides prevent Wistar rat breast carcinogenesis through the augmentation of apoptosis, enhancement of antioxidant defense system, and suppression of inflammation

    Directory of Open Access Journals (Sweden)

    Abd-Ellatef GF

    2017-02-01

    Full Text Available Gamal-Eldein F Abd-Ellatef,1 Osama M Ahmed,2 Eman S Abdel-Reheim,2 Abdel-Hamid Z Abdel-Hamid,1 1Pharmaceutical and Drug Industries Research Division, Therapeutic Chemistry Department, National Research Centre, Cairo, Egypt; 2Division of Physiology, Department of Zoology, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt Background: Recently, several research studies have been focused on the isolation and function of the polysaccharides derived from different algal species, which revealed multiple biological activities such as antioxidant and antitumor activities. This study assesses the possible breast cancer chemopreventive properties of common seaweeds, sea lettuce, Ulva lactuca (ulvan polysaccharides using in vitro bioassays on human breast cancer cell line (MCF-7 and an in vivo animal model of breast carcinogenesis. Methods: Cytotoxic effect of ulvan polysaccharides on MCF-7 was tested in vitro. For an in vivo investigation, a single dose of 25 mg/kg body weight 7,12-dimethylbenz[a]anthracene (DMBA and ulvan polysaccharides (50 mg/kg body weight every other day for 10 weeks were administered orally to the Wistar rats. Results: Deleterious histopathological alterations in breast tissues including papillary cyst adenoma and hyperplasia of ductal epithelial lining with intraluminal necrotic materials and calcifications were observed in the DMBA-administered group. These lesions were prevented in the DMBA-administered group treated with ulvan polysaccharides. The immunohistochemical sections depicted that the treatment of DMBA-administered rats with ulvan polysaccharides markedly increased the lowered pro-apoptotic protein, p53, and decreased the elevated anti-apoptotic marker, bcl2, expression in the breast tissue. The elevated lipid peroxidation and the suppressed antioxidant enzyme activities in DMBA-administered control were significantly prevented by the treatment with ulvan polysaccharides. The elevated levels of inflammatory

  9. Selective Estrogen Receptor Modulator (SERM)-like Activities of Diarylheptanoid, a Phytoestrogen from Curcuma comosa, in Breast Cancer Cells, Pre-osteoblast Cells, and Rat Uterine Tissues.

    Science.gov (United States)

    Thongon, Natthakan; Boonmuen, Nittaya; Suksen, Kanoknetr; Wichit, Patsorn; Chairoungdua, Arthit; Tuchinda, Patoomratana; Suksamrarn, Apichart; Winuthayanon, Wipawee; Piyachaturawat, Pawinee

    2017-05-03

    Diarylheptanoids from Curcuma comosa, of the Zingiberaceae family, exhibit diverse estrogenic activities. In this study we investigated the estrogenic activity of a major hydroxyl diarylheptanoid, 7-(3,4 -dihydroxyphenyl)-5-hydroxy-1-phenyl-(1E)-1-heptene (compound 092) isolated from C. comosa. The compound elicited different transcriptional activities of estrogen agonist at low concentrations (0.1-1 μM) and antagonist at high concentrations (10-50 μM) using luciferase reporter gene assay in HEK-293T cells. In human breast cancer (MCF-7) cells, compound 092 showed an anti-estrogenic activity by down-regulating ERα-signaling and suppressing estrogen-responsive genes, whereas it attenuated the uterotrophic effect of estrogen in immature ovariectomized rats. Of note, compound 092 promoted mouse pre-osteoblastic (MC3T3-E1) cell differentiation and the related bone markers, indicating its positive osteogenic effect. Our findings highlight a new, nonsteroidal, estrogen agonist/antagonist of catechol diarylheptanoid from C. comosa, which is scientific evidence supporting its potential as a dietary supplement to prevent bone loss with low risk of breast and uterine cancers in postmenopausal women.

  10. Expression of an estrogen-regulated variant transcript of the peroxisomal branched chain fatty acid oxidase ACOX2 in breast carcinomas.

    Science.gov (United States)

    Bjørklund, Sunniva Stordal; Kristensen, Vessela N; Seiler, Michael; Kumar, Surendra; Alnæs, Grethe I Grenaker; Ming, Yao; Kerrigan, John; Naume, Bjørn; Sachidanandam, Ravi; Bhanot, Gyan; Børresen-Dale, Anne-Lise; Ganesan, Shridar

    2015-07-17

    Alternate transcripts from a single gene locus greatly enhance the combinatorial flexibility of the human transcriptome. Different patterns of exon usage have been observed when comparing normal tissue to cancers, suggesting that variant transcripts may play a role in the tumor phenotype. Ribonucleic acid-sequencing (RNA-seq) data from breast cancer samples was used to identify an intronic start variant transcript of Acyl-CoA oxidase 2, ACOX2 (ACOX2-i9). Difference in expression between Estrogen Receptor (ER) positive and ER negative patients was assessed by the Wilcoxon rank sum test, and the findings validated in The Cancer Genome Atlas (TCGA) breast cancer dataset (BRCA). ACOX2-i9 expression was also assessed in cell lines using both quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) and Western blot analysis. Knock down by short hairpin RNA (shRNA) and colony formation assays were used to determine whether ACOX2-i9 expression would influence cellular fitness. The effect of ACOX2-i9 expression on patient survival was assessed by the Kaplan-Meier survival function, and association to clinical parameters was analyzed using a Fisher exact test. The expression and translation of ACOX2-i9 into a 25 kDa protein was demonstrated in HepG2 cells as well as in several breast cancer cell lines. shRNA knock down of the ACOX2-i9 variant resulted in decreased cell viability of T47D and MDA-MB 436 cells. Moreover, expression of ACOX2-i9 was shown to be estrogen regulated, being induced by propyl pyrazoletriol and inhibited by tamoxifen and fulvestrant in ER+ T47D and Mcf-7 cells, but not in the ER- MDA-MB 436 cell line. This variant transcript showed expression predominantly in ER-positive breast tumors as assessed in our initial set of 53 breast cancers and further validated in 87 tumor/normal pairs from the TCGA breast cancer dataset, and expression was associated with better outcome in ER positive patients. ACOX2-i9 is specifically enriched in ER+ breast

  11. Efficacy of reovirus against breast cancer

    International Nuclear Information System (INIS)

    Zhu Jingzhi; Chen Jue; Dong Shengxiang; Yan Weili; Wu Zhiyong

    2011-01-01

    To investigate the role of oncolytic reovirus in breast cancer, a tumor xenograft model of NOD/SCID mice was established using a biopsy sample of a primary infiltrating ductal carcinoma obtained from a breast cancer patient. The result of HE and TUNEL was analyzed after injecting the reovirus peritoneally for 3 days. The results showed that estrogen supplementation was required to establish appropriate human breast cancer xenograft model of NOD/SCID mice. 29.6% of these transplanted tumors grew with supplementation of Estrogen. Otherwise none grew (P<0.01). ER of the xenograft model was positive.After treatment with reovirus for 3 days, breast cancer cells were disrupted and disappeared which induced tissue looseness. The rate of apoptosis increased double than before. The biological characteristics of tumor xenograft model confirm with the primary breast cancer. The oncolytic reovirus can kill breast cancer in short time. (authors)

  12. Cytotoxicity and apoptosis induced by a plumbagin derivative in estrogen positive MCF-7 breast cancer cells

    KAUST Repository

    Sagar, Sunil; Esau, Luke; Moosa, Basem; Khashab, Niveen M.; Bajic, Vladimir B.; Kaur, Mandeep

    2014-01-01

    Plumbagin [5-hydroxy- 2-methyl-1, 4-naphthaquinone] is a well-known plant derived anticancer lead compound. Several efforts have been made to synthesize its analogs and derivatives in order to increase its anticancer potential. In the present study, plumbagin and its five derivatives have been evaluated for their antiproliferative potential in one normal and four human cancer cell lines. Treatment with derivatives resulted in dose- and time-dependent inhibition of growth of various cancer cell lines. Prescreening of compounds led us to focus our further investigations on acetyl plumbagin, which showed remarkably low toxicity towards normal BJ cells and HepG2 cells. The mechanisms of apoptosis induction were determined by APOPercentage staining, caspase-3/7 activation, reactive oxygen species production and cell cycle analysis. The modulation of apoptotic genes (p53, Mdm2, NF-kB, Bad, Bax, Bcl-2 and Casp-7) was also measured using real time PCR. The positive staining using APOPercentage dye, increased caspase-3/7 activity, increased ROS production and enhanced mRNA expression of proapoptotic genes suggested that acetyl plumbagin exhibits anticancer effects on MCF-7 cells through its apoptosis-inducing property. A key highlighting point of the study is low toxicity of acetyl plumbagin towards normal BJ cells and negligible hepatotoxicity (data based on HepG2 cell line). Overall results showed that acetyl plumbagin with reduced toxicity might have the potential to be a new lead molecule for testing against estrogen positive breast cancer. 2014 Bentham Science Publishers.

  13. Cytotoxicity and apoptosis induced by a plumbagin derivative in estrogen positive MCF-7 breast cancer cells

    KAUST Repository

    Sagar, Sunil

    2014-01-31

    Plumbagin [5-hydroxy- 2-methyl-1, 4-naphthaquinone] is a well-known plant derived anticancer lead compound. Several efforts have been made to synthesize its analogs and derivatives in order to increase its anticancer potential. In the present study, plumbagin and its five derivatives have been evaluated for their antiproliferative potential in one normal and four human cancer cell lines. Treatment with derivatives resulted in dose- and time-dependent inhibition of growth of various cancer cell lines. Prescreening of compounds led us to focus our further investigations on acetyl plumbagin, which showed remarkably low toxicity towards normal BJ cells and HepG2 cells. The mechanisms of apoptosis induction were determined by APOPercentage staining, caspase-3/7 activation, reactive oxygen species production and cell cycle analysis. The modulation of apoptotic genes (p53, Mdm2, NF-kB, Bad, Bax, Bcl-2 and Casp-7) was also measured using real time PCR. The positive staining using APOPercentage dye, increased caspase-3/7 activity, increased ROS production and enhanced mRNA expression of proapoptotic genes suggested that acetyl plumbagin exhibits anticancer effects on MCF-7 cells through its apoptosis-inducing property. A key highlighting point of the study is low toxicity of acetyl plumbagin towards normal BJ cells and negligible hepatotoxicity (data based on HepG2 cell line). Overall results showed that acetyl plumbagin with reduced toxicity might have the potential to be a new lead molecule for testing against estrogen positive breast cancer. 2014 Bentham Science Publishers.

  14. Estimating radiation-induced cancer risk using MVK two-stage model for carcinogenesis

    International Nuclear Information System (INIS)

    Kai, M.; Kusama, T.; Aoki, Y.

    1993-01-01

    Based on the carcinogenesis model as proposed by Moolgavkar et al., time-dependent relative risk models were derived for projecting the time variation in excess relative risk. If it is assumed that each process is described by time-independent linear dose-response relationship, the time variation in excess relative risk is influenced by the parameter related with the promotion process. The risk model based carcinogenesis theory would play a marked role in estimating radiation-induced cancer risk in constructing a projection model or transfer model

  15. Effects of gamma irradiation on the DNA-protein complex between the estrogen response element and the estrogen receptor

    Energy Technology Data Exchange (ETDEWEB)

    Stisova, Viktorie [Department of Radiation Dosimetry, Nuclear Physics Institute AS CR, Na Truhlarce 39/64, 18086 Praha 8 (Czech Republic); Goffinont, Stephane; Spotheim-Maurizot, Melanie [Centre de Biophysique Moleculaire CNRS, rue Charles Sadron, 45071 Orleans Cedex 2 (France); Davidkova, Marie, E-mail: davidkova@ujf.cas.c [Department of Radiation Dosimetry, Nuclear Physics Institute AS CR, Na Truhlarce 39/64, 18086 Praha 8 (Czech Republic)

    2010-08-15

    Signaling by estrogens, risk factors in breast cancer, is mediated through their binding to the estrogen receptor protein (ER), followed by the formation of a complex between ER and a DNA sequence, called estrogen response element (ERE). Anti-estrogens act as competitive inhibitors by blocking the signal transduction. We have studied in vitro the radiosensitivity of the complex between ERalpha, a subtype of this receptor, and a DNA fragment bearing ERE, as well as the influence of an estrogen (estradiol) or an anti-estrogen (tamoxifen) on this radiosensitivity. We observe that the complex is destabilized upon irradiation with gamma rays in aerated aqueous solution. The analysis of the decrease of binding abilities of the two partners shows that destabilization is mainly due to the damage to the protein. The destabilization is reduced when irradiating in presence of tamoxifen and is increased in presence of estradiol. These effects are due to opposite influences of the ligands on the loss of binding ability of ER. The mechanism that can account for our results is: binding of estradiol or tamoxifen induces distinct structural changes of the ER ligand-binding domain that can trigger (by allostery) distinct structural changes of the ER DNA-binding domains and thus, can differently affect ER-ERE interaction.

  16. Assessment of the potential activity of major dietary compounds as selective estrogen receptor modulators in two distinct cell models for proliferation and differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Lecomte, Sylvain; Lelong, Marie; Bourgine, Gaëlle [Institut de Recherche en Santé-Environnement-Travail (IRSET), Inserm UMR 1085, Team Transcription, Environment and Cancer, University of Rennes 1, 9 Avenue du Pr Léon Bernard, 35000 Rennes (France); Efstathiou, Theo [Laboratoire Nutrinov, Technopole Atalante Champeaux, 8 rue Jules Maillard de la Gournerie, 35012 Rennes Cedex (France); Saligaut, Christian [Institut de Recherche en Santé-Environnement-Travail (IRSET), Inserm UMR 1085, Team Transcription, Environment and Cancer, University of Rennes 1, 9 Avenue du Pr Léon Bernard, 35000 Rennes (France); Pakdel, Farzad, E-mail: farzad.pakdel@univ-rennes1.fr [Institut de Recherche en Santé-Environnement-Travail (IRSET), Inserm UMR 1085, Team Transcription, Environment and Cancer, University of Rennes 1, 9 Avenue du Pr Léon Bernard, 35000 Rennes (France)

    2017-06-15

    Estrogen receptors (ERs) α and β are distributed in most tissues of women and men. ERs are bound by estradiol (E2), a natural hormone, and mediate the pleiotropic and tissue-specific effects of E2, such as proliferation of breast epithelial cells or protection and differentiation of neuronal cells. Numerous environmental molecules, called endocrine disrupting compounds, also interact with ERs. Phytoestrogens belong to this large family and are considered potent therapeutic molecules that act through their selective estrogen receptor modulator (SERM) activity. Using breast cancer cell lines as a model of estrogen-dependent proliferation and a stably ER-expressing PC12 cell line as a model of neuronal differentiating cells, we studied the SERM activity of major dietary compounds, such as apigenin, liquiritigenin, daidzein, genistein, coumestrol, resveratrol and zearalenone. The ability of these compounds to induce ER-transactivation and breast cancer cell proliferation and enhance Nerve Growth Factor (NGF) -induced neuritogenesis was assessed. Surprisingly, although all compounds were able to activate the ER through an estrogen responsive element reporter gene, they showed differential activity toward proliferation or differentiation. Apigenin and resveratrol showed a partial or no proliferative effect on breast cancer cells but fully contributed to the neuritogenesis effect of NGF. However, daidzein and zearalenone showed full effects on cellular proliferation but did not induce cellular differentiation. In summary, our results suggest that the therapeutic potential of phytoestrogens can diverge depending on the molecule and the phenotype considered. Hence, apigenin and resveratrol might be used in the development of therapeutics for breast cancer and brain diseases. - Highlights: • SERM activity of dietary compounds on proliferation and differentiation is studied. • All the dietary compounds tested transactivate estrogen receptors. • Apigenin and

  17. Atrophic Vaginitis in Breast Cancer Survivors: A Difficult Survivorship Issue

    Directory of Open Access Journals (Sweden)

    Joanne Lester

    2015-03-01

    Full Text Available Management of breast cancer includes systematic therapies including chemotherapy and endocrine therapy can lead to a variety of symptoms that can impair the quality of life of many breast cancer survivors. Atrophic vaginitis, caused by decreased levels of circulating estrogen to urinary and vaginal receptors, is commonly experienced by this group. Chemotherapy induced ovarian failure and endocrine therapies including aromatase inhibitors and selective estrogen receptor modulators can trigger the onset of atrophic vaginitis or exacerbate existing symptoms. Symptoms of atrophic vaginitis include vaginal dryness, dyspareunia, and irritation of genital skin, pruritus, burning, vaginal discharge, and soreness. The diagnosis of atrophic vaginitis is confirmed through patient-reported symptoms and gynecological examination of external structures, introitus, and vaginal mucosa. Lifestyle modifications can be helpful but are usually insufficient to significantly improve symptoms. Non-hormonal vaginal therapies may provide additional relief by increasing vaginal moisture and fluid. Systemic estrogen therapy is contraindicated in breast cancer survivors. Continued investigations of various treatments for atrophic vaginitis are necessary. Local estrogen-based therapies, DHEA, testosterone, and pH-balanced gels continue to be evaluated in ongoing studies. Definitive results are needed pertaining to the safety of topical estrogens in breast cancer survivors.

  18. Radiation carcinogenesis

    International Nuclear Information System (INIS)

    Adams, G.E.

    1987-01-01

    In this contribution about carcinogenesis induced by ionizing radiation some radiation dose-response relationships are discussed. Curves are shown of the relation between cell survival and resp. low and high LET radiation. The difference between both curves can be ascribed to endogenous repair mechanisms in the cell. The relation between single-gen mutation frequency and the surviving fractions of irradiated cells indicates that these repairing mechanisms are not error free. Some examples of reverse dose-response relationships are presented in which decreasing values of dose-rate (LET) correspond with increasing radiation induced cell transformation. Finally some molecular aspects of radiation carcinogenesis are discussed. (H.W.). 22 refs.; 4 figs

  19. Estrogen, Progesterone and Epithelial Ovarian Cancer

    Directory of Open Access Journals (Sweden)

    Ho Shuk-Mei

    2003-10-01

    Full Text Available Abstract Ovarian carcinoma (OCa continues to be the leading cause of death due to gynecologic malignancies and the vast majority of OCa is derived from the ovarian surface epithelium (OSE and its cystic derivatives. Epidemiological evidence strongly suggests that steroid hormones, primarily estrogens and progesterone, are implicated in ovarian carcinogenesis. However, it has proved difficult to fully understand their mechanisms of action on the tumorigenic process. New convincing data have indicated that estrogens favor neoplastic transformation of the OSE while progesterone offers protection against OCa development. Specifically, estrogens, particularly those present in ovulatory follicles, are both genotoxic and mitogenic to OSE cells. In contrast, pregnancy-equivalent levels progesterone are highly effective as apoptosis inducers for OSE and OCa cells. In this regard, high-dose progestin may exert an exfoliation effect and rid an aged OSE of pre-malignant cells. A limited number of clinical studies has demonstrated efficacies of antiestrogens, aromatase inhibitors, and progestins alone or in combination with chemotherapeutic drugs in the treatment of OCa. As a result of increased life expectancy in most countries, the number of women taking hormone replacement therapies (HRT continues to grow. Thus, knowledge of the mechanism of action of steroid hormones on the OSE and OCa is of paramount significance to HRT risk assessment and to the development of novel therapies for the prevention and treatment of OCa.

  20. The scaffold protein MEK Partner 1 is required for the survival of estrogen receptor positive breast cancer cells

    Directory of Open Access Journals (Sweden)

    Marina Mihaela

    2012-07-01

    Full Text Available Abstract MEK Partner 1 (MP1 or MAPKSP1 is a scaffold protein that has been reported to function in multiple signaling pathways, including the ERK, PAK and mTORC pathways. Several of these pathways influence the biology of breast cancer, but MP1’s functional significance in breast cancer cells has not been investigated. In this report, we demonstrate a requirement for MP1 expression in estrogen receptor (ER positive breast cancer cells. MP1 is widely expressed in both ER-positive and negative breast cancer cell lines, and in non-tumorigenic mammary epithelial cell lines. However, inhibition of its expression using siRNA duplexes resulted in detachment and apoptosis of several ER-positive breast cancer cell lines, but not ER-negative breast cancer cells or non-tumorigenic mammary epithelial cells. Inhibition of MP1 expression in ER-positive MCF-7 cells did not affect ERK activity, but resulted in reduced Akt1 activity and reduced ER expression and activity. Inhibition of ER expression did not result in cell death, suggesting that decreased ER expression is not the cause of cell death. In contrast, pharmacological inhibition of PI3K signaling did induce cell death in MCF-7 cells, and expression of a constitutively active form of Akt1 partially rescued the cell death observed when the MP1 gene was silenced in these cells. Together, these results suggest that MP1 is required for pro-survival signaling from the PI3K/Akt pathway in ER-positive breast cancer cells.

  1. The impact of tamoxifen on breast recurrence, cosmesis, complications, and survival in estrogen receptor-positive early-stage breast cancer

    International Nuclear Information System (INIS)

    Fowble, Barbara; Fein, Douglas A.; Hanlon, Alexandra L.; Eisenberg, Burton L.; Hoffman, John P.; Sigurdson, Elin R.; Daly, Mary B.; Goldstein, Lori J.

    1996-01-01

    Purpose: To evaluate the impact of tamoxifen on breast recurrence, cosmesis, complications, overall and cause-specific survival in women with Stage I-II breast cancer and estrogen receptor positive tumors undergoing conservative surgery and radiation. Methods and Materials: From 1982 to 1991, 491 women with estrogen receptor positive Stage I-II breast cancer underwent excisional biopsy, axillary dissection, and radiation. The median age of the patient population was 60 years with 21% < 50 years of age. The median follow-up was 5.3 years (range 0.1 to 12.8). Sixty-nine percent had T1 tumors and 83% had histologically negative axillary nodes. Reexcision was performed in 49% and the final margin of resection was negative in 64%. One hundred fifty-four patients received tamoxifen and 337 patients received no adjuvant therapy. None of the patients received adjuvant chemotherapy. Results: There were no significant differences between the two groups for age, race, clinical tumor size, histology, the use of reexcision, or median total dose to the primary. Patients who received tamoxifen were more often axillary node positive (44% tamoxifen vs. 5% no tamoxifen), and, therefore, a greater percentage received treatment to the breast and regional nodes. The tamoxifen patients less often had unknown margins of resection (9% tamoxifen vs. 22% no tamoxifen). The 5-year actuarial breast recurrence rate was 4% for the tamoxifen patients compared to 7% for patients not receiving tamoxifen (p 0.21). Tamoxifen resulted in a modest decrease in the 5-year actuarial risk of a breast recurrence in axillary node-negative patients, in those with unknown or close margins of resection, and in those who underwent a single excision. Axillary node-positive patients had a clinically significant decrease in the 5-year actuarial breast recurrence rate (21 vs. 4%; p 0.08). The 5-year actuarial rate of distant metastasis was not significantly decreased by the addition of adjuvant tamoxifen in all

  2. Alimentary triggers of hormone dependent breast cancers

    Directory of Open Access Journals (Sweden)

    T. Y. Lykholat

    2014-04-01

    protection system exceeded the strength of response in the body of mature animals. The organ discreteness of changes in the activity of antioxidant protection enzymes depending on the age of the animals was recorded. Given the involvement of glutathione system in the deactivation of estrogens through their conjugation in reactions catalyzed by glutathione transferase, decreased enzyme activity may lead to accumulation of highly active intermediate metabolites with subsequent damage to intracellular structures. Later on, these phenomena may become a trigger of reduction of the compensatory mechanisms’ potential, which together with the genotoxic effect of exogenous estrogens is an important pathogenetic element in carcinogenesis: they initiate the development of proliferative processes and occurrence of cancer conditions, in particular, hormone dependent breast tumors, in future.

  3. Impaired CK1 delta activity attenuates SV40-induced cellular transformation in vitro and mouse mammary carcinogenesis in vivo.

    Directory of Open Access Journals (Sweden)

    Heidrun Hirner

    Full Text Available Simian virus 40 (SV40 is a powerful tool to study cellular transformation in vitro, as well as tumor development and progression in vivo. Various cellular kinases, among them members of the CK1 family, play an important role in modulating the transforming activity of SV40, including the transforming activity of T-Ag, the major transforming protein of SV40, itself. Here we characterized the effects of mutant CK1δ variants with impaired kinase activity on SV40-induced cell transformation in vitro, and on SV40-induced mammary carcinogenesis in vivo in a transgenic/bi-transgenic mouse model. CK1δ mutants exhibited a reduced kinase activity compared to wtCK1δ in in vitro kinase assays. Molecular modeling studies suggested that mutation N172D, located within the substrate binding region, is mainly responsible for impaired mutCK1δ activity. When stably over-expressed in maximal transformed SV-52 cells, CK1δ mutants induced reversion to a minimal transformed phenotype by dominant-negative interference with endogenous wtCK1δ. To characterize the effects of CK1δ on SV40-induced mammary carcinogenesis, we generated transgenic mice expressing mutant CK1δ under the control of the whey acidic protein (WAP gene promoter, and crossed them with SV40 transgenic WAP-T-antigen (WAP-T mice. Both WAP-T mice as well as WAP-mutCK1δ/WAP-T bi-transgenic mice developed breast cancer. However, tumor incidence was lower and life span was significantly longer in WAP-mutCK1δ/WAP-T bi-transgenic animals. The reduced CK1δ activity did not affect early lesion formation during tumorigenesis, suggesting that impaired CK1δ activity reduces the probability for outgrowth of in situ carcinomas to invasive carcinomas. The different tumorigenic potential of SV40 in WAP-T and WAP-mutCK1δ/WAP-T tumors was also reflected by a significantly different expression of various genes known to be involved in tumor progression, specifically of those involved in wnt-signaling and DNA

  4. Williams syndrome transcription factor (WSTF) acts as an activator of estrogen receptor signaling in breast cancer cells and the effect can be abrogated by 1α,25-dihydroxyvitamin D3

    DEFF Research Database (Denmark)

    Lundqvist, Johan; Kirkegaard, Tove; Laenkholm, Anne Vibeke

    2018-01-01

    A majority of estrogen receptor positive (ER+) breast cancers are growth stimulated by estrogens. The ability to inhibit the ER signaling pathway is therefore of critical importance in the current treatment of ER+ breast cancers. It has been reported that 1α,25-dihydroxyvitamin D3 down......-regulates the expression of the CYP19A1 gene, encoding the aromatase enzyme that catalyzes the synthesis of estradiol. Furthermore, 1α,25-dihydroxyvitamin D3 has also been reported to down-regulate the expression of estrogen receptor α (ERα), the main mediator of ER signaling.This study reports a novel transcription...... factor critical to 1α,25-dihydroxyvitamin D3-mediated regulation of estrogenic signaling in MCF-7 breast cancer cells. We have investigated the molecular mechanisms for the 1α,25-dihydroxyvitamin D3-mediated down-regulation of CYP19A1 and ERα gene expression in human MCF-7 breast cancer cells and found...

  5. Tea polyphenols EGCG and TF restrict tongue and liver carcinogenesis simultaneously induced by N-nitrosodiethylamine in mice

    Energy Technology Data Exchange (ETDEWEB)

    Sur, Subhayan, E-mail: subhayansur18@gmail.com [Dept. of Oncogene Regulation, Chittaranjan National Cancer Institute, 37, S.P. Mukherjee Road, Kolkata 700 026, West Bengal (India); Pal, Debolina; Roy, Rituparna; Barua, Atish [Dept. of Oncogene Regulation, Chittaranjan National Cancer Institute, 37, S.P. Mukherjee Road, Kolkata 700 026, West Bengal (India); Roy, Anup [North Bengal Medical College and Hospital, West Bengal (India); Saha, Prosenjit [Dept. of Oncogene Regulation, Chittaranjan National Cancer Institute, 37, S.P. Mukherjee Road, Kolkata 700 026, West Bengal (India); Panda, Chinmay Kumar, E-mail: ckpanda.cnci@gmail.com [Dept. of Oncogene Regulation, Chittaranjan National Cancer Institute, 37, S.P. Mukherjee Road, Kolkata 700 026, West Bengal (India)

    2016-06-01

    The aim of this study is to understand the molecular mechanisms of N-nitrosodiethylamine (NDEA) induced multi-organ carcinogenesis in tongue and liver of the same mouse and restriction of carcinogenesis by Epigallocatechin gallate (EGCG) and Theaflavin (TF), if any. For that purpose, cellular proliferation/apoptosis, prevalence of CD44 positive stem cell population and expressions of some key regulatory genes of self renewal Wnt and Hedgehog (Hh) pathways and some of their associated genes were analyzed in the NDEA induced tongue and liver lesions in absence or presence of EGCG/TF. Chronic NDEA exposure in oral cavity could decrease mice body weights and induce tongue and liver carcinogenesis with similar histological stages (severe dysplasia up to 30th weeks of NDEA administration). Increasing mice body weights were seen in continuous and post EGCG/TF treated groups. EGCG/TF treatment could restrict both the carcinogenesis at similar histological stages showing potential chemopreventive effect in continuous treated groups (mild dysplasia) followed by pre treatment (moderate dysplasia) and therapeutic efficacy in post treated groups (mild dysplasia) up to 30th week. The mechanism of carcinogenesis by NDEA and restriction by the EGCG/TF in both tongue and liver were similar and found to be associated with modulation in cellular proliferation/apoptosis and prevalence of CD44 positive population. The up-regulation of self renewal Wnt/β-catenin, Hh/Gli1 pathways and their associated genes Cyclin D1, cMyc and EGFR along with down regulation of E-cadherin seen during the carcinogenesis processes were found to be modulated during the restriction processes by EGCG/TF. - Highlights: • Simultaneous tongue and liver carcinogenesis in mice by oral NDEA administration • Restriction of both carcinogenesis by EGCG and TF at early pre-malignant stages • The mechanisms of carcinogenesis and restriction were similar in both the organs. • Changes in proliferation

  6. Tea polyphenols EGCG and TF restrict tongue and liver carcinogenesis simultaneously induced by N-nitrosodiethylamine in mice

    International Nuclear Information System (INIS)

    Sur, Subhayan; Pal, Debolina; Roy, Rituparna; Barua, Atish; Roy, Anup; Saha, Prosenjit; Panda, Chinmay Kumar

    2016-01-01

    The aim of this study is to understand the molecular mechanisms of N-nitrosodiethylamine (NDEA) induced multi-organ carcinogenesis in tongue and liver of the same mouse and restriction of carcinogenesis by Epigallocatechin gallate (EGCG) and Theaflavin (TF), if any. For that purpose, cellular proliferation/apoptosis, prevalence of CD44 positive stem cell population and expressions of some key regulatory genes of self renewal Wnt and Hedgehog (Hh) pathways and some of their associated genes were analyzed in the NDEA induced tongue and liver lesions in absence or presence of EGCG/TF. Chronic NDEA exposure in oral cavity could decrease mice body weights and induce tongue and liver carcinogenesis with similar histological stages (severe dysplasia up to 30th weeks of NDEA administration). Increasing mice body weights were seen in continuous and post EGCG/TF treated groups. EGCG/TF treatment could restrict both the carcinogenesis at similar histological stages showing potential chemopreventive effect in continuous treated groups (mild dysplasia) followed by pre treatment (moderate dysplasia) and therapeutic efficacy in post treated groups (mild dysplasia) up to 30th week. The mechanism of carcinogenesis by NDEA and restriction by the EGCG/TF in both tongue and liver were similar and found to be associated with modulation in cellular proliferation/apoptosis and prevalence of CD44 positive population. The up-regulation of self renewal Wnt/β-catenin, Hh/Gli1 pathways and their associated genes Cyclin D1, cMyc and EGFR along with down regulation of E-cadherin seen during the carcinogenesis processes were found to be modulated during the restriction processes by EGCG/TF. - Highlights: • Simultaneous tongue and liver carcinogenesis in mice by oral NDEA administration • Restriction of both carcinogenesis by EGCG and TF at early pre-malignant stages • The mechanisms of carcinogenesis and restriction were similar in both the organs. • Changes in proliferation

  7. International Activities in Radiation-Induced Carcinogenesis. Survey Paper

    Energy Technology Data Exchange (ETDEWEB)

    Komarov, E. [World Health Organization, Geneva (Switzerland)

    1969-11-15

    During the past 10 years special attention has been paid to the problem of late effects of radiation and in particular to radiation-induced carcinogenesis and leukaemogenesis. In the UNSCEAR report of 1958-1962 this.problem was mentioned as being of considerable importance from the point of view of estimation of risk to the population from environmental radiation. In 1964 a special report was prepared by UNSCEAR on radiation- induced carcinogenesis. In the ICRP publication No. 8, a chapter dealing with assessment of somatic risks discussed the problem of leukaemia and other neoplasms and particularly stressed the problem of thyroid carcinoma-and bone sarcoma. WHO panels of experts discussed the problem in 1960-1966 and made some recommendations for international activity in this field. In spite of the amount of scientific attention that has been given in recent years to experimental radiobiology in animals and lower forms, it has become abundantly clear that information directly applicable to humans is woefully inadequate and that there is a desperate need for carefully collected data from man on which to base public health planning and day to day work in radiation protection. This has long been recognized in the technical program of WHO in the emphasis given to the practical importance of epidemiology in human radiobiology and the degree to which it depends upon international collaboration.

  8. Neoadjuvant letrozole for postmenopausal estrogen receptor-positive, HER2-negative breast cancer patients, a study from the Danish Breast Cancer Cooperative Group (DBCG)

    DEFF Research Database (Denmark)

    Skriver, Signe Korsgaard; Laenkholm, Anne-Vibeke; Rasmussen, Birgitte Bruun

    2018-01-01

    response and 55% of patients had partial pathological response. ER at 100%, ductal subtype, tumor size below 2 cm and lymph node-negative status was significantly associated with a better response to NET and malignancy grade 3 with a poorer response to NET. One patient progressed during treatment......INTRODUCTION: Neoadjuvant endocrine treatment (NET) is a low-toxicity approach to achieve operability in locally advanced breast cancer, and to facilitate breast conservation in early breast cancer, particular in patients with highly estrogen receptor (ER) positive and HER2-negative disease. Here......, we report the results obtained by neoadjuvant letrozole in patients with early breast cancer in a phase-II design. MATERIAL AND METHODS: A total of 119 postmenopausal women with ER-positive, HER2-negative operable breast cancer were assigned to four months of neoadjuvant letrozole before definitive...

  9. Molecular epidemiology of radiation-induced carcinogenesis

    International Nuclear Information System (INIS)

    Trosko, J.E.

    1996-01-01

    The role of ionizing radiation in carcinogenesis is discussed. Every cell contains proto-oncogenes, which if damaged may lead to cell transformation. Every cell also contains tumor suppressor genes, which guard against transformation. Thus, transformation would seem to require a double injury to the DNA in a cell. Ionizing radiation is known to be a relatively weak mutagen, but a good clastogen (inducer of chromosome breaks, deletions and rearrangements). Ionizing radiation may therefore be a 'promoter' of cancer, i.e. a stimulant of the clonal expansion of transformed cells, if it kills enough cells to induce compensatory hyperplasia - i.e. rapid growth of cells. Ionizing radiation may be a 'progressor', if it deactivates tumor suppressor genes tending to suppress the growth of existing clones of transformed cells resulting from any of numerous causes. It may therefore be an oversimplification to say that radiation causes cancer; rather, it seems to be a weak initiator, an indirect promoter, and a late-stage progressor. 2 figs

  10. Inhibition of aryl hydrocarbon receptor-dependent transcription by resveratrol or kaempferol is independent of estrogen receptor α expression in human breast cancer cells

    Science.gov (United States)

    MacPherson, Laura; Matthews, Jason

    2016-01-01

    Resveratrol and kaempferol are natural chemopreventative agents that are also aryl hydrocarbon receptor (AHR) antagonists and estrogen receptor (ER) agonists. In this study we evaluated the role of ERα in resveratrol- and kaempferol-mediated inhibition of AHR-dependent transcription. Kaempferol or resveratrol inhibited dioxin-induced cytochrome P450 1A1 (CYP1A1) and CYP1B1 expression levels and recruitment of AHR, ERα and co-activators to CYP1A1 and CYP1B1. Both phytochemicals induced the expression and recruitment of ERα to gene amplified in breast cancer 1 (GREB1). RNAi-mediated knockdown of ERα in T-47D cells did not affect the inhibitory action of either phytochemical on AHR activity. Both compounds also inhibited AHR-dependent transcription in ERα-negative MDA-MB-231 and BT-549 breast cancer cells. These data show that ERα does not contribute to the AHR-inhibitory activities of resveratrol and kaempferol. PMID:20846786

  11. Theoretical epidemiology applied to health physics: estimation of the risk of radiation-induced breast cancer

    International Nuclear Information System (INIS)

    Sutherland, J.V.

    1983-01-01

    Indirect estimation of low-dose radiation hazards is possible using the multihit model of carcinogenesis. This model is based on cancer incidence data collected over many decades on tens of millions of people. Available data on human radiation effects can be introduced into the modeling process without the requirement that these data precisely define the model to be used. This reduction in the information demanded from the limited data on human radiation effects allows a more rational approach to estimation of low-dose radiation hazards and helps to focus attention on research directed towards understanding the process of carcinogenesis, rather than on repeating human or animal experiments that cannot provide sufficient data to resolve the low-dose estimation problem. Assessment of the risk of radiation-induced breast cancer provides an excellent example of the utility of multihit modeling procedures

  12. Prognostic and predictive importance of the estrogen receptor coactivator AIB1 in a randomized trial comparing adjuvant letrozole and tamoxifen therapy in postmenopausal breast cancer

    DEFF Research Database (Denmark)

    Alkner, S; Jensen, Maj-Britt Raaby; Rasmussen, B B

    2017-01-01

    PURPOSE: To evaluate the estrogen receptor coactivator amplified in breast cancer 1 (AIB1) as a prognostic marker, as well as a predictive marker for response to adjuvant tamoxifen and/or aromatase inhibitors, in early estrogen receptor-positive breast cancer. METHOD: AIB1 was analyzed...... with immunohistochemistry in tissue microarrays of the Danish subcohort (N = 1396) of the International Breast Cancer Study Group's trial BIG 1-98 (randomization between adjuvant tamoxifen versus letrozole versus the sequence of the two drugs). RESULTS: Forty-six percent of the tumors had a high AIB1 expression. In line...... with previous studies, AIB1 correlated to a more aggressive tumor-phenotype (HER2 amplification and a high malignancy grade). High AIB1 also correlated to higher estrogen receptor expression (80-100 vs. 1-79%), and ductal histological type. High AIB1 expression was associated with a poor disease-free survival...

  13. Estrogen and progesterone receptor status in breast cancer in Kuwait female population

    International Nuclear Information System (INIS)

    Paszko, Z.; Padzik, H.; Nasralla, M.Y.; Bouzubar, N.; Omar, Y.T.; Jazzaf, H.; Temmin, L.

    1993-01-01

    The levels cytosol estrogen (ERc) and progesterone (PRc) receptors were determined in 315 primary breast cancers of female Arab patients aged 23-80 years. Most of breast cancers (78%) occurred in women aged 21-50 years, and only 22% were in women aged 51-80 years. Breast cancers containing ERc and PRc concentrations in the range 5-50 fmol/mg of cytosol protein (mg c.p.) were found with with similar frequency in women aged under or over 50 years (53% of ERc and 43% for PRc, respectively). On the other hand, breast cancer with ERc values of >50 and >100 fmol/mg c.p. were twice as frequent in in women aged over 50 years as in women aged under 50 years. The frequency of breast cancers with PRc level of over 50 fmol/mg c.p. in women aged over 50 years was only half that in those aged under 50 years. In breast cancers of Kuwait Arab women the higher values of ERc (>100 fmol/mg c.p.) and PRc (>50 fmol/mg c.p.) were less frequent than in other populations reported in literature. The low frequency of breast cancer on postmenopausal Kuwait women is associated with low proportions of tumors with higher ERc and PRc contents. In contrast to this, data from literature indicate that in the the North Western European and American populations the postmenopausal incidence rise of breast cancers is associated with increased proportions of tumors with higher ERc and PRc levels. (author)

  14. In situ aromatase expression in primary tumor is associated with estrogen receptor expression but is not predictive of response to endocrine therapy in advanced breast cancer

    DEFF Research Database (Denmark)

    Lykkesfeldt, Anne E; Henriksen, Katrine L; Rasmussen, Birgitte B

    2009-01-01

    BACKGROUND: New, third-generation aromatase inhibitors (AIs) have proven comparable or superior to the anti-estrogen tamoxifen for treatment of estrogen receptor (ER) and/or progesterone receptor (PR) positive breast cancer. AIs suppress total body and intratumoral estrogen levels. It is unclear...... whether in situ carcinoma cell aromatization is the primary source of estrogen production for tumor growth and whether the aromatase expression is predictive of response to endocrine therapy. Due to methodological difficulties in the determination of the aromatase protein, COX-2, an enzyme involved...... of advanced breast cancer. Semi-quantitative immunohistochemical (IHC) analysis was performed for ER, PR, COX-2 and aromatase using Tissue Microarrays (TMAs). Aromatase was also analyzed using whole sections (WS). Kappa analysis was applied to compare association of protein expression levels. Univariate...

  15. Relationships between hypoxia markers and the leptin system, estrogen receptors in human primary and metastatic breast cancer: effects of preoperative chemotherapy

    International Nuclear Information System (INIS)

    Koda, Mariusz; Kanczuga-Koda, Luiza; Sulkowska, Mariola; Surmacz, Eva; Sulkowski, Stanislaw

    2010-01-01

    Tumor hypoxia is marked by enhanced expression of hypoxia-inducible factor-α (HIF-1α) and glucose transporter-1 (Glut-1). Hypoxic conditions have also been associated with overexpression of angiogenic factors, such as leptin. The aim of our study was to analyze the relationships between hypoxia markers HIF-1α, Glut-1, leptin, leptin receptor (ObR) and other breast cancer biomarkers in primary and metastatic breast cancer in patients treated or untreated with preoperative chemotherapy. The expression of different biomarkers was examined by immunohistochemistry in 116 primary breast cancers and 65 lymph node metastases. Forty five of these samples were obtained form patients who received preoperative chemotherapy and 71 from untreated patients. In primary tumors without preoperative chemotherapy, HIF-1α and Glut-1 were positively correlated (p = 0.02, r = 0.437). HIF-1α in primary and metastatic tumors without preoperative therapy positively correlated with leptin (p < 0.0001, r = 0.532; p = 0.013, r = 0.533, respectively) and ObR (p = 0.002, r = 0.319; p = 0.083, r = 0.387, respectively). Hypoxia markers HIF-1α and Glut-1 were negatively associated with estrogen receptor alpha (ERα) and positively correlated with estrogen receptor beta (ERβ). In this group of tumors, a positive correlation between Glut-1 and proliferation marker Ki-67 (p = 0.017, r = 0.433) was noted. The associations between HIF-1α and Glut-1, HIF-1α and leptin, HIF-1α and ERα as well as Glut-1 and ERβ were lost following preoperative chemotherapy. Intratumoral hypoxia in breast cancer is marked by coordinated expression of such markers as HIF-1α, Glut-1, leptin and ObR. The relationships among these proteins can be altered by preoperative chemotherapy

  16. Antibiotic suppression of intestinal microbiota reduces heme-induced lipoperoxidation associated with colon carcinogenesis in rats.

    Science.gov (United States)

    Martin, O C B; Lin, C; Naud, N; Tache, S; Raymond-Letron, I; Corpet, D E; Pierre, F H

    2015-01-01

    Epidemiological studies show that heme iron from red meat is associated with increased colorectal cancer risk. In carcinogen-induced-rats, a heme iron-rich diet increases the number of precancerous lesions and raises associated fecal biomarkers. Heme-induced lipoperoxidation measured by fecal thiobarbituric acid reagents (TBARs) could explain the promotion of colon carcinogenesis by heme. Using a factorial design we studied if microbiota could be involved in heme-induced carcinogenesis, by modulating peroxidation. Rats treated or not with an antibiotic cocktail were given a control or a hemoglobin-diet. Fecal bacteria were counted on agar and TBARs concentration assayed in fecal water. The suppression of microbiota by antibiotics was associated with a reduction of crypt height and proliferation and with a cecum enlargement, which are characteristics of germ-free rats. Rats given hemoglobin diets had increased fecal TBARs, which were suppressed by the antibiotic treatment. A duplicate experiment in rats given dietary hemin yielded similar results. These data show that the intestinal microbiota is involved in enhancement of lipoperoxidation by heme iron. We thus suggest that microbiota could play a role in the heme-induced promotion of colorectal carcinogenesis.

  17. Autoantibodies in breast cancer sera are not epiphenomena and may participate in carcinogenesis

    International Nuclear Information System (INIS)

    Fernández Madrid, Félix; Maroun, Marie-Claire; Olivero, Ofelia A; Long, Michael; Stark, Azadeh; Grossman, Lawrence I; Binder, Walter; Dong, Jingsheng; Burke, Matthew; Nathanson, S David; Zarbo, Richard; Chitale, Dhananjay; Zeballos-Chávez, Rocío; Peebles, Carol

    2015-01-01

    epiphenomena, but likely reflect an antigen-driven autoimmune response triggered by epitopes developing in the mammary gland during breast carcinogenesis. Our results support the validity of the multiple studies reporting association of autoantibodies with breast cancer. Results further suggest significant promise for the development of panels of breast cancer-specific, premalignant-phase autoantibodies, as well as studies on the autoantibody response to tumor associated antigens in the pathogenesis of cancer. The online version of this article (doi:10.1186/s12885-015-1385-8) contains supplementary material, which is available to authorized users

  18. Endocrine Therapy of Estrogen Receptor-Positive Breast Cancer Cells: Early Differential Effects on Stem Cell Markers

    Directory of Open Access Journals (Sweden)

    Euphemia Y. Leung

    2017-09-01

    Full Text Available IntroductionEndocrine therapy of breast cancer, which either deprives cancer tissue of estrogen or prevents estrogen pathway signaling, is the most common treatment after surgery and radiotherapy. We have previously shown for the estrogen-responsive MCF-7 cell line that exposure to tamoxifen, or deprivation of estrogen, leads initially to inhibition of cell proliferation, followed after several months by the emergence of resistant sub-lines that are phenotypically different from the parental line. We examined the early responses of MCF-7 cells following either exposure to 4-hydroxytamoxifen or deprivation of estrogen for periods of 2 days–4 weeks.MethodsEndocrine-sensitive or -resistant breast cancer cell lines were used to examine the expression of the stem cell gene SOX2, and the Wnt effector genes AXIN2 and DKK1 using quantitative PCR analysis. Breast cancer cell lines were used to assess the anti-proliferative effects (as determined by IC50 values of Wnt pathway inhibitors LGK974 and IWP-2.ResultsHormone therapy led to time-dependent increases of up to 10-fold in SOX2 expression, up to threefold in expression of the Wnt target genes AXIN2 and DKK1, and variable changes in NANOG and OCT4 expression. The cells also showed increased mammosphere formation and increased CD24 surface protein expression. Some but not all hormone-resistant MCF-7 sub-lines, emerging after long-term hormonal stress, showed up to 50-fold increases in SOX2 expression and smaller increases in AXIN2 and DKK1 expression. However, the increase in Wnt target gene expression was not accompanied by an increase in sensitivity to Wnt pathway inhibitors LGK974 and IWP-2. A general trend of lower IC50 values was observed in 3-dimensional spheroid culture conditions (which allowed enrichment of cells with cancer stem cell phenotype relative to monolayer cultures. The endocrine-resistant cell lines showed no significant increase in sensitivity to Wnt inhibitors

  19. Modulation of estrogen and epidermal growth factor receptors by rosemary extract in breast cancer cells.

    Science.gov (United States)

    González-Vallinas, Margarita; Molina, Susana; Vicente, Gonzalo; Sánchez-Martínez, Ruth; Vargas, Teodoro; García-Risco, Mónica R; Fornari, Tiziana; Reglero, Guillermo; Ramírez de Molina, Ana

    2014-06-01

    Breast cancer is the leading cause of cancer-related mortality among females worldwide, and therefore the development of new therapeutic approaches is still needed. Rosemary (Rosmarinus officinalis L.) extract possesses antitumor properties against tumor cells from several organs, including breast. However, in order to apply it as a complementary therapeutic agent in breast cancer, more information is needed regarding the sensitivity of the different breast tumor subtypes and its effect in combination with the currently used chemotherapy. Here, we analyzed the antitumor activities of a supercritical fluid rosemary extract (SFRE) in different breast cancer cells, and used a genomic approach to explore its effect on the modulation of ER-α and HER2 signaling pathways, the most important mitogen pathways related to breast cancer progression. We found that SFRE exerts antitumor activity against breast cancer cells from different tumor subtypes and the downregulation of ER-α and HER2 receptors by SFRE might be involved in its antitumor effect against estrogen-dependent (ER+) and HER2 overexpressing (HER2+) breast cancer subtypes. Moreover, SFRE significantly enhanced the effect of breast cancer chemotherapy (tamoxifen, trastuzumab, and paclitaxel). Overall, our results support the potential utility of SFRE as a complementary approach in breast cancer therapy. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Expression of an estrogen-regulated variant transcript of the peroxisomal branched chain fatty acid oxidase ACOX2 in breast carcinomas

    International Nuclear Information System (INIS)

    Bjørklund, Sunniva Stordal; Kristensen, Vessela N.; Seiler, Michael; Kumar, Surendra; Alnæs, Grethe I. Grenaker; Ming, Yao; Kerrigan, John; Naume, Bjørn; Sachidanandam, Ravi; Bhanot, Gyan; Børresen-Dale, Anne-Lise; Ganesan, Shridar

    2015-01-01

    Alternate transcripts from a single gene locus greatly enhance the combinatorial flexibility of the human transcriptome. Different patterns of exon usage have been observed when comparing normal tissue to cancers, suggesting that variant transcripts may play a role in the tumor phenotype. Ribonucleic acid-sequencing (RNA-seq) data from breast cancer samples was used to identify an intronic start variant transcript of Acyl-CoA oxidase 2, ACOX2 (ACOX2-i9). Difference in expression between Estrogen Receptor (ER) positive and ER negative patients was assessed by the Wilcoxon rank sum test, and the findings validated in The Cancer Genome Atlas (TCGA) breast cancer dataset (BRCA). ACOX2-i9 expression was also assessed in cell lines using both quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) and Western blot analysis. Knock down by short hairpin RNA (shRNA) and colony formation assays were used to determine whether ACOX2-i9 expression would influence cellular fitness. The effect of ACOX2-i9 expression on patient survival was assessed by the Kaplan-Meier survival function, and association to clinical parameters was analyzed using a Fisher exact test. The expression and translation of ACOX2-i9 into a 25 kDa protein was demonstrated in HepG2 cells as well as in several breast cancer cell lines. shRNA knock down of the ACOX2-i9 variant resulted in decreased cell viability of T47D and MDA-MB 436 cells. Moreover, expression of ACOX2-i9 was shown to be estrogen regulated, being induced by propyl pyrazoletriol and inhibited by tamoxifen and fulvestrant in ER+ T47D and Mcf-7 cells, but not in the ER- MDA-MB 436 cell line. This variant transcript showed expression predominantly in ER-positive breast tumors as assessed in our initial set of 53 breast cancers and further validated in 87 tumor/normal pairs from the TCGA breast cancer dataset, and expression was associated with better outcome in ER positive patients. ACOX2-i9 is specifically enriched in ER+ breast

  1. Biotransformation of Bisphenol AF to Its Major Glucuronide Metabolite Reduces Estrogenic Activity

    Science.gov (United States)

    Yin, Jie; Zhang, Jing; Feng, Yixing; Shao, Bing

    2013-01-01

    Bisphenol AF (BPAF), an endocrine disrupting chemical, can induce estrogenic activity through binding to estrogen receptor (ER). However, the metabolism of BPAF in vivo and the estrogenic activity of its metabolites remain unknown. In the present study, we identified four metabolites including BPAF diglucuronide, BPAF glucuronide (BPAF-G), BPAF glucuronide dehydrated and BPAF sulfate in the urine of Sprague-Dawley (SD) rats. BPAF-G was further characterized by nuclear magnetic resonance (NMR). After treatment with a single dose of BPAF, BPAF was metabolized rapidly to BPAF-G, as detected in the plasma of SD rats. Biotransformation of BPAF to BPAF-G was confirmed with human liver microsomes (HLM), and Vmax of glucuronidation for HLM was 11.6 nmol/min/mg. We also found that BPAF glucuronidation could be mediated through several human recombinant UDP-glucuronosyltransferases (UGTs) including UGT1A1, UGT1A3, UGT1A8, UGT1A9, UGT2B4, UGT2B7, UGT2B15 and UGT2B17, among which UGT2B7 showed the highest efficiency of glucuronidation. To explain the biological function of BPAF biotransformation, the estrogenic activities of BPAF and BPAF-G were evaluated in ER-positive breast cancer T47D and MCF7 cells. BPAF significantly stimulates ER-regulated gene expression and cell proliferation at the dose of 100 nM and 1 μM in breast cancer cells. However, BPAF-G did not show any induction of estrogenic activity at the same dosages, implying that formation of BPAF-G is a potential host defense mechanism against BPAF. Based on our study, biotransformation of BPAF to BPAF-G can eliminate BPAF-induced estrogenic activity, which is therefore considered as reducing the potential threat to human beings. PMID:24349450

  2. Quantifying mediating effects of endogenous estrogen and insulin in the relation between obesity, alcohol consumption, and breast cancer

    DEFF Research Database (Denmark)

    Hvidtfeldt, Ulla A; Gunter, Marc J; Lange, Theis

    2012-01-01

    Increased exposure to endogenous estrogen and/or insulin may partly explain the relationship of obesity, physical inactivity, and alcohol consumption and postmenopausal breast cancer. However, these potential mediating effects have not been formally quantified in a survival analysis setting....

  3. 17β-Estradiol-induced cell proliferation requires estrogen receptor (ER) α monoubiquitination.

    Science.gov (United States)

    La Rosa, Piergiorgio; Pesiri, Valeria; Marino, Maria; Acconcia, Filippo

    2011-07-01

    Protein monoubiquitination (monoUbq) (i.e., the attachment of one single ubiquitin to the substrate) is a non-proteolytic reversible modification that controls protein functions. Among other proteins, the estrogen receptor α (ERα), which mediates the pleiotropic effects of the cognate hormone 17β-estradiol (E2), is a monoubiquitinated protein. Although it has been demonstrated that E2 rapidly reduces ERα monoUbq in breast cancer cells, the impact of monoUbq in the regulation of the ERα activities is poorly appreciated. Here, we show that mutation of the ERα monoUbq sites prevents the E2-induced ERα phosphorylation in the serine residue 118 (S118), reduces ERα transcriptional activity, and precludes the ERα-mediated extranuclear activation of signaling pathways (i.e., AKT activation) thus impeding the E2-induced cyclin D1 promoter activation and consequently cell proliferation. In addition, the interference with ERα monoUbq deregulates E2-induced association of ERα to the insulin like growth factor receptor (IGF-1-R). Altogether these data demonstrate an inherent role for monoUbq in ERα signaling and point to the physiological function of ERα monoUbq in the regulation of E2-induced cell proliferation. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. The RNA binding protein HuR differentially regulates unique subsets of mRNAs in estrogen receptor negative and estrogen receptor positive breast cancer

    Directory of Open Access Journals (Sweden)

    Chen Jing

    2010-04-01

    Full Text Available Abstract Background The discordance between steady-state levels of mRNAs and protein has been attributed to posttranscriptional control mechanisms affecting mRNA stability and translation. Traditional methods of genome wide microarray analysis, profiling steady-state levels of mRNA, may miss important mRNA targets owing to significant posttranscriptional gene regulation by RNA binding proteins (RBPs. Methods The ribonomic approach, utilizing RNA immunoprecipitation hybridized to microarray (RIP-Chip, provides global identification of putative endogenous mRNA targets of different RBPs. HuR is an RBP that binds to the AU-rich elements (ARE of labile mRNAs, such as proto-oncogenes, facilitating their translation into protein. HuR has been shown to play a role in cancer progression and elevated levels of cytoplasmic HuR directly correlate with increased invasiveness and poor prognosis for many cancers, including those of the breast. HuR has been described to control genes in several of the acquired capabilities of cancer and has been hypothesized to be a tumor-maintenance gene, allowing for cancers to proliferate once they are established. Results We used HuR RIP-Chip as a comprehensive and systematic method to survey breast cancer target genes in both MCF-7 (estrogen receptor positive, ER+ and MDA-MB-231 (estrogen receptor negative, ER- breast cancer cell lines. We identified unique subsets of HuR-associated mRNAs found individually or in both cell types. Two novel HuR targets, CD9 and CALM2 mRNAs, were identified and validated by quantitative RT-PCR and biotin pull-down analysis. Conclusion This is the first report of a side-by-side genome-wide comparison of HuR-associated targets in wild type ER+ and ER- breast cancer. We found distinct, differentially expressed subsets of cancer related genes in ER+ and ER- breast cancer cell lines, and noted that the differential regulation of two cancer-related genes by HuR was contingent upon the cellular

  5. Betulinic acid, a bioactive pentacyclic triterpenoid, inhibits skeletal-related events induced by breast cancer bone metastases and treatment

    International Nuclear Information System (INIS)

    Park, Se Young; Kim, Hyun-Jeong; Kim, Ki Rim; Lee, Sun Kyoung; Lee, Chang Ki; Park, Kwang-Kyun; Chung, Won-Yoon

    2014-01-01

    Many breast cancer patients experience bone metastases and suffer skeletal complications. The present study provides evidence on the protective and therapeutic potential of betulinic acid on cancer-associated bone diseases. Betulinic acid is a naturally occurring triterpenoid with the beneficial activity to limit the progression and severity of cancer, diabetes, cardiovascular diseases, atherosclerosis, and obesity. We first investigated its effect on breast cancer cells, osteoblastic cells, and osteoclasts in the vicious cycle of osteolytic bone metastasis. Betulinic acid reduced cell viability and the production of parathyroid hormone-related protein (PTHrP), a major osteolytic factor, in MDA-MB-231 human metastatic breast cancer cells stimulated with or without tumor growth factor-β. Betulinic acid blocked an increase in the receptor activator of nuclear factor-kappa B ligand (RANKL)/osteoprotegerin ratio by downregulating RANKL protein expression in PTHrP-treated human osteoblastic cells. In addition, betulinic acid inhibited RANKL-induced osteoclastogenesis in murine bone marrow macrophages and decreased the production of resorbed area in plates with a bone biomimetic synthetic surface by suppressing the secretion of matrix metalloproteinase (MMP)-2, MMP-9, and cathepsin K in RANKL-induced osteoclasts. Furthermore, oral administration of betulinic acid inhibited bone loss in mice intra-tibially inoculated with breast cancer cells and in ovariectomized mice causing estrogen deprivation, as supported by the restored bone morphometric parameters and serum bone turnover markers. Taken together, these findings suggest that betulinic acid may have the potential to prevent bone loss in patients with bone metastases and cancer treatment-induced estrogen deficiency. - Highlights: • Betulinic acid reduced PTHrP production in human metastatic breast cancer cells. • Betulinic acid blocked RANKL/OPG ratio in PTHrP-stimulated human osteoblastic cells. • Betulinic

  6. Betulinic acid, a bioactive pentacyclic triterpenoid, inhibits skeletal-related events induced by breast cancer bone metastases and treatment

    Energy Technology Data Exchange (ETDEWEB)

    Park, Se Young; Kim, Hyun-Jeong; Kim, Ki Rim; Lee, Sun Kyoung; Lee, Chang Ki; Park, Kwang-Kyun, E-mail: biochelab@yuhs.ac; Chung, Won-Yoon, E-mail: wychung@yuhs.ac

    2014-03-01

    Many breast cancer patients experience bone metastases and suffer skeletal complications. The present study provides evidence on the protective and therapeutic potential of betulinic acid on cancer-associated bone diseases. Betulinic acid is a naturally occurring triterpenoid with the beneficial activity to limit the progression and severity of cancer, diabetes, cardiovascular diseases, atherosclerosis, and obesity. We first investigated its effect on breast cancer cells, osteoblastic cells, and osteoclasts in the vicious cycle of osteolytic bone metastasis. Betulinic acid reduced cell viability and the production of parathyroid hormone-related protein (PTHrP), a major osteolytic factor, in MDA-MB-231 human metastatic breast cancer cells stimulated with or without tumor growth factor-β. Betulinic acid blocked an increase in the receptor activator of nuclear factor-kappa B ligand (RANKL)/osteoprotegerin ratio by downregulating RANKL protein expression in PTHrP-treated human osteoblastic cells. In addition, betulinic acid inhibited RANKL-induced osteoclastogenesis in murine bone marrow macrophages and decreased the production of resorbed area in plates with a bone biomimetic synthetic surface by suppressing the secretion of matrix metalloproteinase (MMP)-2, MMP-9, and cathepsin K in RANKL-induced osteoclasts. Furthermore, oral administration of betulinic acid inhibited bone loss in mice intra-tibially inoculated with breast cancer cells and in ovariectomized mice causing estrogen deprivation, as supported by the restored bone morphometric parameters and serum bone turnover markers. Taken together, these findings suggest that betulinic acid may have the potential to prevent bone loss in patients with bone metastases and cancer treatment-induced estrogen deficiency. - Highlights: • Betulinic acid reduced PTHrP production in human metastatic breast cancer cells. • Betulinic acid blocked RANKL/OPG ratio in PTHrP-stimulated human osteoblastic cells. • Betulinic

  7. Evaluation of the Biological Activity of Opuntia ficus indica as a Tissue- and Estrogen Receptor Subtype-Selective Modulator.

    Science.gov (United States)

    An, Byoung Ha; Jeong, Hyesoo; Zhou, Wenmei; Liu, Xiyuan; Kim, Soolin; Jang, Chang Young; Kim, Hyun-Sook; Sohn, Johann; Park, Hye-Jin; Sung, Na-Hye; Hong, Cheol Yi; Chang, Minsun

    2016-06-01

    Phytoestrogens are selective estrogen receptor modulators (SERMs) with potential for use in hormone replacement therapy (HRT) to relieve peri/postmenopausal symptoms. This study was aimed at elucidating the molecular mechanisms underlying the SERM properties of the extract of Korean-grown Opuntia ficus-indica (KOFI). The KOFI extract induced estrogen response element (ERE)-driven transcription in breast and endometrial cancer cell lines and the expression of endogenous estrogen-responsive genes in breast cancer cells. The flavonoid content of different KOFI preparations affected ERE-luciferase activities, implying that the flavonoid composition likely mediated the estrogenic activities in cells. Oral administration of KOFI decreased the weight gain and levels of both serum glucose and triglyceride in ovariectomized (OVX) rats. Finally, KOFI had an inhibitory effect on the 17β-estradiol-induced proliferation of the endometrial epithelium in OVX rats. Our data demonstrate that KOFI exhibited SERM activity with no uterotrophic side effects. Therefore, KOFI alone or in combination with other botanical supplements, vitamins, or minerals may be an effective and safe alternative active ingredient to HRTs, for the management of postmenopausal symptoms. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  8. The impact of tamoxifen on breast recurrence, cosmesis, complications, and survival in estrogen receptor positive early stage breast cancer

    International Nuclear Information System (INIS)

    Fowble, B.; Fein, D.A.; Hanlon, A.L.; Eisenberg, B.L.; Hoffman, J.P.; Sigurdson, E.R.; Daly, M.B.; Goldstein, L.J.

    1995-01-01

    Purpose: In the NSABP B14 trial evaluating tamoxifen (tam) in axillary node negative, estrogen receptor positive tumors fewer breast recurrences were observed in patients treated with conservative surgery and radiation who received tam compared to the observation arm. An additional series, however, has suggested that tam adversely impacts on the cosmetic result. To further address these issues we compared the outcome of estrogen receptor positive tumors treated with conservative surgery and radiation with or without tam. Materials and Methods: From 1982 to 1991, 491 women with estrogen receptor positive stage I-II breast cancer underwent excisional biopsy, axillary dissection and radiation. The median age of the patient population was 60 years (range 39-85). The median followup was 5.3 years (range .1-12.8). 69% had T1 tumors and 83% had histologically negative axillary nodes. Reexcision was performed in 49%. The final margin of resection was negative in 64%, unknown in 18%, and close or positive in 19%. None of the patients received adjuvant chemotherapy. 154 patients received tam and 337 received no adjuvant therapy. Patients who received tam were more often axillary node positive (44% tam vs 5% no tam) and less often had unknown margins (9% tam vs 22% no tam). There were no significant differences for the 2 groups for median age, primary tumor size, histology, race, or use of reexcision. Results: The 5 yr act rate of breast recurrence was 4% for the tam patients compared to 7% for patients not receiving tam (p=.21). At 8 yrs, the breast recurrence rates were 4% for the tam patients compared to 11% for the no tam patients (p=.05). However, at 9 years the rates were 17% tam vs 14% no tam (p=.21). The benefit from tam in terms of a decreased 5 year actuarial breast recurrence rate was most evident for patients who did not have a reexcision (3% tam vs 10% no tam, p=.15), had unknown margins (7% tam vs 13% no tam, p=.37) or close margins (0% tam vs 11% no tam, p=.34

  9. The impact of tamoxifen on breast recurrence, cosmesis, complications, and survival in estrogen receptor positive early stage breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Fowble, B; Fein, D A; Hanlon, A L; Eisenberg, B L; Hoffman, J P; Sigurdson, E R; Daly, M B; Goldstein, L J

    1995-07-01

    Purpose: In the NSABP B14 trial evaluating tamoxifen (tam) in axillary node negative, estrogen receptor positive tumors fewer breast recurrences were observed in patients treated with conservative surgery and radiation who received tam compared to the observation arm. An additional series, however, has suggested that tam adversely impacts on the cosmetic result. To further address these issues we compared the outcome of estrogen receptor positive tumors treated with conservative surgery and radiation with or without tam. Materials and Methods: From 1982 to 1991, 491 women with estrogen receptor positive stage I-II breast cancer underwent excisional biopsy, axillary dissection and radiation. The median age of the patient population was 60 years (range 39-85). The median followup was 5.3 years (range .1-12.8). 69% had T1 tumors and 83% had histologically negative axillary nodes. Reexcision was performed in 49%. The final margin of resection was negative in 64%, unknown in 18%, and close or positive in 19%. None of the patients received adjuvant chemotherapy. 154 patients received tam and 337 received no adjuvant therapy. Patients who received tam were more often axillary node positive (44% tam vs 5% no tam) and less often had unknown margins (9% tam vs 22% no tam). There were no significant differences for the 2 groups for median age, primary tumor size, histology, race, or use of reexcision. Results: The 5 yr act rate of breast recurrence was 4% for the tam patients compared to 7% for patients not receiving tam (p=.21). At 8 yrs, the breast recurrence rates were 4% for the tam patients compared to 11% for the no tam patients (p=.05). However, at 9 years the rates were 17% tam vs 14% no tam (p=.21). The benefit from tam in terms of a decreased 5 year actuarial breast recurrence rate was most evident for patients who did not have a reexcision (3% tam vs 10% no tam, p=.15), had unknown margins (7% tam vs 13% no tam, p=.37) or close margins (0% tam vs 11% no tam, p=.34

  10. The prolyl isomerase Pin1 acts synergistically with CDK2 to regulate the basal activity of estrogen receptor α in breast cancer.

    Directory of Open Access Journals (Sweden)

    Chiara Lucchetti

    Full Text Available In hormone receptor-positive breast cancers, most tumors in the early stages of development depend on the activity of the estrogen receptor and its ligand, estradiol. Anti-estrogens, such as tamoxifen, have been used as the first line of therapy for over three decades due to the fact that they elicit cell cycle arrest. Unfortunately, after an initial period, most cells become resistant to hormonal therapy. Peptidylprolyl isomerase 1 (Pin1, a protein overexpressed in many tumor types including breast, has been demonstrated to modulate ERalpha activity and is involved in resistance to hormonal therapy. Here we show a new mechanism through which CDK2 drives an ERalpha-Pin1 interaction under hormone- and growth factor-free conditions. The PI3K/AKT pathway is necessary to activate CDK2, which phosphorylates ERalphaSer294, and mediates the binding between Pin1 and ERalpha. Site-directed mutagenesis demonstrated that ERalphaSer294 is essential for Pin1-ERalpha interaction and modulates ERalpha phosphorylation on Ser118 and Ser167, dimerization and activity. These results open up new drug treatment opportunities for breast cancer patients who are resistant to anti-estrogen therapy.

  11. High frequency of HIF-1 alpha overexpression in BRCA1 related breast cancer

    NARCIS (Netherlands)

    van der Groep, Petra; Bouter, Alwin; Menko, Fred H.; van der Wall, Elsken; van Diest, Paul J.

    2008-01-01

    Hypoxia is a hallmark of cancer. Hypoxia inducible factor-1 alpha (HIF-1 alpha) is the key regulator of the hypoxia response. HIF-1 alpha is overexpressed during sporadic breast carcinogenesis and correlated with poor prognosis. Little is known on the role of HIF-1 alpha in hereditary breast

  12. Carcinogenesis

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    Progress is reported on studies at the molecular, biochemical, and immunological level of carcinogenesis induced in mice by viruses, radiation, or environmental chemicals alone or in combinations. Emphasis was placed on the identification and assessments of cocarcinogens and studies on their mechanisms of action. Data are included on mechanisms of carcinogenesis in the liver, thyroid, Harderian glands, skin, and lungs. The effects of the food additive butylated hydroxytoluene (BHT), phenobarbitol, DDT, uv irradiation, the herbicide 3-amino-1,2,4-triazole(AT), the pituitary hormone prolactin, topically applied 8-methoxypsoralen (8-MOP), and benzo(a) pyrene(BaP) on tumor induction or enhancement were studied

  13. Vitamin D enhances omega-3 polyunsaturated fatty acids-induced apoptosis in breast cancer cells.

    Science.gov (United States)

    Yang, Jing; Zhu, Shenglong; Lin, Guangxiao; Song, Ci; He, Zhao

    2017-08-01

    Breast cancer is a leading type of cancer in women and generally classified into three subtypes of ER + /PR + , HER2 + and triple negative. Both omega-3 polyunsaturated fatty acids and vitamin D 3 play positive role in the reduction of breast cancer incidence. However, whether combination of omega-3 polyunsaturated fatty acids and vitamin D 3 has stronger protective effect on breast carcinogenesis still remains unknown. In this study, we show that the combination of ω-3 free fatty acids (ω-3 FFAs) and 1α, 25-dihydroxy-vitamin D 3 (VD 3 ) dramatically enhances cell apoptosis among three subtypes of breast cancer cell lines. Bcl-2 and total PARP protein levels are decreased in combined treatment MCF-7 and SK-BR-3 cells. Caspase signals play a vital role in cell apoptosis induced by combination. Moreover, Raf-MAPK signaling pathway is involved in the apoptosis induction by combination of ω-3 FFAs+VD 3 . These results demonstrate that the induction of cell apoptosis by combined treatment is dependent on different signaling pathways in three subtypes of breast cancer cell lines. © 2017 International Federation for Cell Biology.

  14. Deep Learning Accurately Predicts Estrogen Receptor Status in Breast Cancer Metabolomics Data.

    Science.gov (United States)

    Alakwaa, Fadhl M; Chaudhary, Kumardeep; Garmire, Lana X

    2018-01-05

    Metabolomics holds the promise as a new technology to diagnose highly heterogeneous diseases. Conventionally, metabolomics data analysis for diagnosis is done using various statistical and machine learning based classification methods. However, it remains unknown if deep neural network, a class of increasingly popular machine learning methods, is suitable to classify metabolomics data. Here we use a cohort of 271 breast cancer tissues, 204 positive estrogen receptor (ER+), and 67 negative estrogen receptor (ER-) to test the accuracies of feed-forward networks, a deep learning (DL) framework, as well as six widely used machine learning models, namely random forest (RF), support vector machines (SVM), recursive partitioning and regression trees (RPART), linear discriminant analysis (LDA), prediction analysis for microarrays (PAM), and generalized boosted models (GBM). DL framework has the highest area under the curve (AUC) of 0.93 in classifying ER+/ER- patients, compared to the other six machine learning algorithms. Furthermore, the biological interpretation of the first hidden layer reveals eight commonly enriched significant metabolomics pathways (adjusted P-value learning methods. Among them, protein digestion and absorption and ATP-binding cassette (ABC) transporters pathways are also confirmed in integrated analysis between metabolomics and gene expression data in these samples. In summary, deep learning method shows advantages for metabolomics based breast cancer ER status classification, with both the highest prediction accuracy (AUC = 0.93) and better revelation of disease biology. We encourage the adoption of feed-forward networks based deep learning method in the metabolomics research community for classification.

  15. Prognostic effect of estrogen receptor status across age in primary breast cancer

    DEFF Research Database (Denmark)

    Bentzon, N.; During, M.; Rasmussen, B.B.

    2008-01-01

    prognostic factor over all age groups. This effect was limited to the first 5 years after diagnosis, RR: 2.08 (95% CI: 1.95-2.22, p ER negative tumors, RR of death: 0.89 (95% CI: 0.79-1.00, p = 0.049). Results were......Estrogen receptor (ER) status is considered as an important prognostic factor as well as a predictive factor for endocrine responsiveness in breast cancer. We analyzed the distribution of ER status across age and estimated variations in the prognostic impact of ER status related to patients' age...... and time since diagnosis. Overall, 26,944 patients with primary breast cancer diagnosed from 1989 to 2004 were included. The proportion of ER positive tumors increased over age from 51 to 82%. In multivariate analysis of overall survival, ER positive status was found to be a significantly positive...

  16. Dual action of high estradiol doses on MNU-induced prostate neoplasms in a rodent model with high serum testosterone: Protective effect and emergence of unstable epithelial microenvironment.

    Science.gov (United States)

    Gonçalves, Bianca F; de Campos, Silvana G P; Góes, Rejane M; Scarano, Wellerson R; Taboga, Sebastião R; Vilamaior, Patricia S L

    2017-06-01

    Estrogens are critical players in prostate growth and disease. Estrogen therapy has been the standard treatment for advanced prostate cancer for several decades; however, it has currently been replaced by alternative anti-androgenic therapies. Additionally, studies of its action on prostate biology, resulting from an association between carcinogens and estrogen, at different stages of life are scarce or inconclusive about its protective and beneficial role on induced-carcinogenesis. Thus, the aim of this study was to determine whether estradiol exerts a protective and/or stimulatory role on N-methyl-N-nitrosurea-induced prostate neoplasms. We adopted a rodent model that has been used to study induced-prostate carcinogenesis: the Mongolian gerbil. We investigated the occurrence of neoplasms, karyometric patterns, androgen and estrogen receptors, basal cells, and global methylation status in ventral and dorsolateral prostate tissues. Histopathological analysis showed that estrogen was able to slow tumor growth in both lobes after prolonged treatment. However, a true neoplastic regression was observed only in the dorsolateral prostate. In addition to the protective effects against neoplastic progression, estrogen treatment resulted in an epithelium that exhibited features distinctive from a normal prostate, including increased androgen-insensitive basal cells, high androgens and estrogen receptor positivity, and changes in DNA methylation patterns. Estrogen was able to slow tumor growth, but the epithelium exhibited features distinct from a normal prostatic epithelium, and this unstable microenvironment could trigger lesion recurrence over time. © 2017 Wiley Periodicals, Inc.

  17. Na+,HCO3--cotransport is functionally upregulated during human breast carcinogenesis and required for the inverted pH gradient across the plasma membrane

    DEFF Research Database (Denmark)

    Lee, Soojung; Mele, Marco; Vahl, Pernille

    2015-01-01

    Metabolic and biochemical changes during breast carcinogenesis enhance cellular acid production. Extrusion of the acid load from the cancer cells raises intracellular pH, while it decreases extracellular pH creating an inverted pH gradient across the plasma membrane compared to normal cells and p...

  18. Expression of estrogen receptor beta in the breast carcinoma of BRCA1 mutation carriers

    International Nuclear Information System (INIS)

    Litwiniuk, Maria M; Rożnowski, Krzysztof; Filas, Violetta; Godlewski, Dariusz D; Stawicka, Małgorzata; Kaleta, Remigiusz; Bręborowicz, Jan

    2008-01-01

    Breast cancers (BC) in women carrying mutations in BRCA1 gene are more frequently estrogen receptor negative than the nonhereditary BC. Nevertheless, tamoxifen has been found to have a protective effect in preventing contralateral tumors in BRCA1 mutation carriers. The identification of the second human estrogen receptor, ERβ, raised a question of its role in hereditary breast cancer. The aim of this study was to assess the frequency of ERα, ERβ, PgR (progesterone receptor) and HER-2 expression in breast cancer patients with mutated BRCA1 gene and in the control group. The study group consisted of 48 women with BRCA1 gene mutations confirmed by multiplex PCR assay. The patients were tested for three most common mutations of BRCA1 affecting the Polish population (5382insC, C61G, 4153delA). Immunostaining for ERα, ERβ and PgR (progesterone receptor) was performed using monoclonal antibodies against ERα, PgR (DakoCytomation), and polyclonal antibody against ERβ (Chemicon). The EnVision detection system was applied. The study population comprised a control group of 120 BC operated successively during the years 1998–99. The results of our investigation showed that BRCA1 mutation carriers were more likely to have ERα-negative breast cancer than those in the control group. Only 14.5% of BRCA1-related cancers were ERα-positive compared with 57.5% in the control group (P < 0.0001). On the contrary, the expression of ERβ protein was observed in 42% of BRCA1-related tumors and in 55% of the control group. An interesting finding was that most hereditary cancers (75% of the whole group) were triple-negative: ERα(-)/PgR(-)/HER-2(-) but almost half of this group (44.4%) showed the expression of ERβ. In the case of BRCA1-associated tumors the expression of ERβ was significantly higher than the expression of ERα. This may explain the effectiveness of tamoxifen in preventing contralateral breast cancer development in BRCA1 mutation carriers

  19. ESR1 gene promoter region methylation in free circulating DNA and its correlation with estrogen receptor protein expression in tumor tissue in breast cancer patients

    International Nuclear Information System (INIS)

    Martínez-Galán, Joaquina; Ríos, Sandra; Delgado, Juan Ramón; Torres-Torres, Blanca; Núñez, María Isabel; López-Peñalver, Jesús; Del Moral, Rosario; Ruiz De Almodóvar, José Mariano; Menjón, Salomón; Concha, Ángel; Chamorro, Clara

    2014-01-01

    Tumor expression of estrogen receptor (ER) is an important marker of prognosis, and is predictive of response to endocrine therapy in breast cancer. Several studies have observed that epigenetic events, such methylation of cytosines and deacetylation of histones, are involved in the complex mechanisms that regulate promoter transcription. However, the exact interplay of these factors in transcription activity is not well understood. In this study, we explored the relationship between ER expression status in tumor tissue samples and the methylation of the 5′ CpG promoter region of the estrogen receptor gene (ESR1) isolated from free circulating DNA (fcDNA) in plasma samples from breast cancer patients. Patients (n = 110) with non-metastatic breast cancer had analyses performed of ER expression (luminal phenotype in tumor tissue, by immunohistochemistry method), and the ESR1-DNA methylation status (fcDNA in plasma, by quantitative methylation specific PCR technique). Our results showed a significant association between presence of methylated ESR1 in patients with breast cancer and ER negative status in the tumor tissue (p = 0.0179). There was a trend towards a higher probability of ESR1-methylation in those phenotypes with poor prognosis i.e. 80% of triple negative patients, 60% of HER2 patients, compared to 28% and 5.9% of patients with better prognosis such as luminal A and luminal B, respectively. Silencing, by methylation, of the promoter region of the ESR1 affects the expression of the estrogen receptor protein in tumors of breast cancer patients; high methylation of ESR1-DNA is associated with estrogen receptor negative status which, in turn, may be implicated in the patient’s resistance to hormonal treatment in breast cancer. As such, epigenetic markers in plasma may be of interest as new targets for anticancer therapy, especially with respect to endocrine treatment

  20. Gene expression profiling reveals underlying molecular mechanisms of the early stages of tamoxifen-induced rat hepatocarcinogenesis

    International Nuclear Information System (INIS)

    Pogribny, Igor P.; Bagnyukova, Tetyana V.; Tryndyak, Volodymyr P.; Muskhelishvili, Levan; Rodriguez-Juarez, Rocio; Kovalchuk, Olga; Han Tao; Fuscoe, James C.; Ross, Sharon A.; Beland, Frederick A.

    2007-01-01

    Tamoxifen is a widely used anti-estrogenic drug for chemotherapy and, more recently, for the chemoprevention of breast cancer. Despite the indisputable benefits of tamoxifen in preventing the occurrence and re-occurrence of breast cancer, the use of tamoxifen has been shown to induce non-alcoholic steatohepatitis, which is a life-threatening fatty liver disease with a risk of progression to cirrhosis and hepatocellular carcinoma. In recent years, the high-throughput microarray technology for large-scale analysis of gene expression has become a powerful tool for increasing the understanding of the molecular mechanisms of carcinogenesis and for identifying new biomarkers with diagnostic and predictive values. In the present study, we used the high-throughput microarray technology to determine the gene expression profiles in the liver during early stages of tamoxifen-induced rat hepatocarcinogenesis. Female Fisher 344 rats were fed a 420 ppm tamoxifen containing diet for 12 or 24 weeks, and gene expression profiles were determined in liver of control and tamoxifen-exposed rats. The results indicate that early stages of tamoxifen-induced liver carcinogenesis are characterized by alterations in several major cellular pathways, specifically those involved in the tamoxifen metabolism, lipid metabolism, cell cycle signaling, and apoptosis/cell proliferation control. One of the most prominent changes during early stages of tamoxifen-induced hepatocarcinogenesis is dysregulation of signaling pathways in cell cycle progression from the G 1 to S phase, evidenced by the progressive and sustained increase in expression of the Pdgfc, Calb3, Ets1, and Ccnd1 genes accompanied by the elevated level of the PI3K, p-PI3K, Akt1/2, Akt3, and cyclin B, D1, and D3 proteins. The early appearance of these alterations suggests their importance in the mechanism of neoplastic cell transformation induced by tamoxifen

  1. HSPC159 promotes proliferation and metastasis via inducing EMT and activating PI3K/Akt pathway in breast cancer.

    Science.gov (United States)

    Zheng, Jie; Zhang, Mengxue; Zhang, Liying; Ding, Xiaodi; Li, Wentong; Lu, Shijun

    2018-05-08

    HSPC159 is a novel human galectin-related protein and has been shown to involved in the carcinogenesis. Little is known about HSPC159 expression and function in breast cancer. Here we showed that HSPC159 was aberrantly expressed in both breast cancer cell lines and tumor tissues and that its expression was associated with poor prognosis of breast cancer patients. Using gain- and loss-of-function methods we found that HSPC159 enhanced breast cancer cells proliferation and metastasis in vitro and in vivo. Mechanistically, HSPC159 was found to induce epithelial-mesenchymal transition (EMT) and F-actin polymerization process of breast cancer cells. Moreover, HSPC159 promoted proliferation, migration and invasion through activating PI3K/Akt signaling pathway in breast cancer. In conclusion, our findings demonstrated that HSPC159 contributed to breast cancer progression via PI3K/Akt pathway and might serve as a potential therapeutic target for the treatment of breast cancer. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  2. RRHGE: A Novel Approach to Classify the Estrogen Receptor Based Breast Cancer Subtypes

    Directory of Open Access Journals (Sweden)

    Ashish Saini

    2014-01-01

    Full Text Available Background. Breast cancer is the most common type of cancer among females with a high mortality rate. It is essential to classify the estrogen receptor based breast cancer subtypes into correct subclasses, so that the right treatments can be applied to lower the mortality rate. Using gene signatures derived from gene interaction networks to classify breast cancers has proven to be more reproducible and can achieve higher classification performance. However, the interactions in the gene interaction network usually contain many false-positive interactions that do not have any biological meanings. Therefore, it is a challenge to incorporate the reliability assessment of interactions when deriving gene signatures from gene interaction networks. How to effectively extract gene signatures from available resources is critical to the success of cancer classification. Methods. We propose a novel method to measure and extract the reliable (biologically true or valid interactions from gene interaction networks and incorporate the extracted reliable gene interactions into our proposed RRHGE algorithm to identify significant gene signatures from microarray gene expression data for classifying ER+ and ER− breast cancer samples. Results. The evaluation on real breast cancer samples showed that our RRHGE algorithm achieved higher classification accuracy than the existing approaches.

  3. Gene expression and benefit of chemotherapy in women with node-negative, estrogen receptor-positive breast cancer.

    Science.gov (United States)

    Paik, Soonmyung; Tang, Gong; Shak, Steven; Kim, Chungyeul; Baker, Joffre; Kim, Wanseop; Cronin, Maureen; Baehner, Frederick L; Watson, Drew; Bryant, John; Costantino, Joseph P; Geyer, Charles E; Wickerham, D Lawrence; Wolmark, Norman

    2006-08-10

    The 21-gene recurrence score (RS) assay quantifies the likelihood of distant recurrence in women with estrogen receptor-positive, lymph node-negative breast cancer treated with adjuvant tamoxifen. The relationship between the RS and chemotherapy benefit is not known. The RS was measured in tumors from the tamoxifen-treated and tamoxifen plus chemotherapy-treated patients in the National Surgical Adjuvant Breast and Bowel Project (NSABP) B20 trial. Cox proportional hazards models were utilized to test for interaction between chemotherapy treatment and the RS. A total of 651 patients were assessable (227 randomly assigned to tamoxifen and 424 randomly assigned to tamoxifen plus chemotherapy). The test for interaction between chemotherapy treatment and RS was statistically significant (P = .038). Patients with high-RS (> or = 31) tumors (ie, high risk of recurrence) had a large benefit from chemotherapy (relative risk, 0.26; 95% CI, 0.13 to 0.53; absolute decrease in 10-year distant recurrence rate: mean, 27.6%; SE, 8.0%). Patients with low-RS (< 18) tumors derived minimal, if any, benefit from chemotherapy treatment (relative risk, 1.31; 95% CI, 0.46 to 3.78; absolute decrease in distant recurrence rate at 10 years: mean, -1.1%; SE, 2.2%). Patients with intermediate-RS tumors did not appear to have a large benefit, but the uncertainty in the estimate can not exclude a clinically important benefit. The RS assay not only quantifies the likelihood of breast cancer recurrence in women with node-negative, estrogen receptor-positive breast cancer, but also predicts the magnitude of chemotherapy benefit.

  4. Sewage sludge does not induce genotoxicity and carcinogenesis

    Science.gov (United States)

    Silva, Paula Regina Pereira; Barbisan, Luis Fernando; Dagli, Maria Lúcia Zaidan; Saldiva, Paulo Hilário Nascimento

    2012-01-01

    Through a series of experiments, the genotoxic/mutagenic and carcinogenic potential of sewage sludge was assessed. Male Wistar rats were randomly assigned to four groups: Group 1 - negative control; Group 2 - liver carcinogenesis initiated by diethylnitrosamine (DEN; 200 mg/kg i.p.); Group 3 and G4-liver carcinogenesis initiated by DEN and fed 10,000 ppm or 50,000 ppm of sewage sludge. The animals were submitted to a 70% partial hepatectomy at the 3rd week. Livers were processed for routine histological analysis and immunohistochemistry, in order to detect glutathione S-transferase positive altered hepatocyte foci (GST-P+ AHF). Peripheral blood samples for the comet assay were obtained from the periorbital plexus immediately prior to sacrificing. Polychromatic erythrocytes (PCEs) were analyzed in femoral bone-marrow smears, and the frequencies of those micronucleated (MNPCEs) registered. There was no sewage-sludge-induced increase in frequency of either DNA damage in peripheral blood leucocytes, or MNPCEs in the femoral bone marrow. Also, there was no increase in the levels of DNA damage, in the frequency of MNPCEs, and in the development of GST-P AHF when compared with the respective control group. PMID:23055806

  5. Estrogen receptor-α36 is involved in epigallocatechin-3-gallate induced growth inhibition of ER-negative breast cancer stem/progenitor cells

    Directory of Open Access Journals (Sweden)

    Xiaohua Pan

    2016-02-01

    Full Text Available Epigallocatechin-3-gallate (EGCG is a type of catechin extracted from green tea, which is reported to have anticancer effects. EGCG is also reported to inhibit the cancer stem/progenitor cells in several estrogen receptor (ER-negative breast cancer cell lines, such as SUM-149, SUM-190 and MDA-MB-231. And all these cancer cells are highly expressed a new variant of ER-α, ER-α36. The aim of our present study is to determine the role of ER-α36 in the growth inhibitory activity of EGCG towards ER-negative breast cancer MDA-MB-231 and MDA-MB-436 cells. We found that EGCG potently inhibited the growth of cancer stem/progenitor cells in MDA-MB-231 and MDA-MB-436 cells, and also reduced the expression of ER-α36 in these cells. However, in ER-α36 knocked-down MDA-MB-231 and MDA-MB-436 cells, no significant inhibitory effects of EGCG on cancer stem/progenitor cells were observed. We also found that down-regulation of ER-α36 expression was in accordance with down-regulation of EGFR, which further verified a loop between ER-α36 and EGFR. Thus, our study indicated ER-α36 is involved in EGCG's inhibitory effects on ER-negative breast cancer stem/progenitor cells, which supports future preclinical and clinical evaluation of EGCG as a therapeutic option for ER-α36 positive breast cancer.

  6. Breast-Conserving Surgery Followed by Radiation Therapy With MRI-Detected Stage I or Stage II Breast Cancer

    Science.gov (United States)

    2011-12-07

    Ductal Breast Carcinoma in Situ; Estrogen Receptor-negative Breast Cancer; Estrogen Receptor-positive Breast Cancer; HER2-negative Breast Cancer; HER2-positive Breast Cancer; Invasive Ductal Breast Carcinoma; Invasive Lobular Breast Carcinoma; Male Breast Cancer; Medullary Ductal Breast Carcinoma With Lymphocytic Infiltrate; Mucinous Ductal Breast Carcinoma; Papillary Ductal Breast Carcinoma; Progesterone Receptor-negative Breast Cancer; Progesterone Receptor-positive Breast Cancer; Stage I Breast Cancer; Stage II Breast Cancer; Tubular Ductal Breast Carcinoma

  7. Synthesis of Triphenylethylene Bisphenols as Aromatase Inhibitors That Also Modulate Estrogen Receptors.

    Science.gov (United States)

    Lv, Wei; Liu, Jinzhong; Skaar, Todd C; O'Neill, Elizaveta; Yu, Ge; Flockhart, David A; Cushman, Mark

    2016-01-14

    A series of triphenylethylene bisphenol analogues of the selective estrogen receptor modulator (SERM) tamoxifen were synthesized and evaluated for their abilities to inhibit aromatase, bind to estrogen receptor α (ER-α) and estrogen receptor β (ER-β), and antagonize the activity of β-estradiol in MCF-7 human breast cancer cells. The long-range goal has been to create dual aromatase inhibitor (AI)/selective estrogen receptor modulators (SERMs). The hypothesis is that in normal tissue the estrogenic SERM activity of a dual AI/SERM could attenuate the undesired effects stemming from global estrogen depletion caused by the AI activity of a dual AI/SERM, while in breast cancer tissue the antiestrogenic SERM activity of a dual AI/SERM could act synergistically with AI activity to enhance the antiproliferative effect. The potent aromatase inhibitory activities and high ER-α and ER-β binding affinities of several of the resulting analogues, together with the facts that they antagonize β-estradiol in a functional assay in MCF-7 human breast cancer cells and they have no E/Z isomers, support their further development in order to obtain dual AI/SERM agents for breast cancer treatment.

  8. MEL-18 loss mediates estrogen receptor-α downregulation and hormone independence.

    Science.gov (United States)

    Lee, Jeong-Yeon; Won, Hee-Young; Park, Ji-Hye; Kim, Hye-Yeon; Choi, Hee-Joo; Shin, Dong-Hui; Kang, Ju-Hee; Woo, Jong-Kyu; Oh, Seung-Hyun; Son, Taekwon; Choi, Jin-Woo; Kim, Sehwan; Kim, Hyung-Yong; Yi, Kijong; Jang, Ki-Seok; Oh, Young-Ha; Kong, Gu

    2015-05-01

    The polycomb protein MEL-18 has been proposed as a tumor suppressor in breast cancer; however, its functional relevance to the hormonal regulation of breast cancer remains unknown. Here, we demonstrated that MEL-18 loss contributes to the hormone-independent phenotype of breast cancer by modulating hormone receptor expression. In multiple breast cancer cohorts, MEL-18 was markedly downregulated in triple-negative breast cancer (TNBC). MEL-18 expression positively correlated with the expression of luminal markers, including estrogen receptor-α (ER-α, encoded by ESR1). MEL-18 loss was also associated with poor response to antihormonal therapy in ER-α-positive breast cancer. Furthermore, whereas MEL-18 loss in luminal breast cancer cells resulted in the downregulation of expression and activity of ER-α and the progesterone receptor (PR), MEL-18 overexpression restored ER-α expression in TNBC. Consistently, in vivo xenograft experiments demonstrated that MEL-18 loss induces estrogen-independent growth and tamoxifen resistance in luminal breast cancer, and that MEL-18 overexpression confers tamoxifen sensitivity in TNBC. MEL-18 suppressed SUMOylation of the ESR1 transactivators p53 and SP1, thereby driving ESR1 transcription. MEL-18 facilitated the deSUMOylation process by inhibiting BMI-1/RING1B-mediated ubiquitin-proteasomal degradation of SUMO1/sentrin-specific protease 1 (SENP1). These findings demonstrate that MEL-18 is a SUMO-dependent regulator of hormone receptors and suggest MEL-18 expression as a marker for determining the antihormonal therapy response in patients with breast cancer.

  9. MEL-18 loss mediates estrogen receptor–α downregulation and hormone independence

    Science.gov (United States)

    Lee, Jeong-Yeon; Won, Hee-Young; Park, Ji-Hye; Kim, Hye-Yeon; Choi, Hee-Joo; Shin, Dong-Hui; Kang, Ju-Hee; Woo, Jong-Kyu; Oh, Seung-Hyun; Son, Taekwon; Choi, Jin-Woo; Kim, Sehwan; Kim, Hyung-Yong; Yi, Kijong; Jang, Ki-Seok; Oh, Young-Ha; Kong, Gu

    2015-01-01

    The polycomb protein MEL-18 has been proposed as a tumor suppressor in breast cancer; however, its functional relevance to the hormonal regulation of breast cancer remains unknown. Here, we demonstrated that MEL-18 loss contributes to the hormone-independent phenotype of breast cancer by modulating hormone receptor expression. In multiple breast cancer cohorts, MEL-18 was markedly downregulated in triple-negative breast cancer (TNBC). MEL-18 expression positively correlated with the expression of luminal markers, including estrogen receptor–α (ER-α, encoded by ESR1). MEL-18 loss was also associated with poor response to antihormonal therapy in ER-α–positive breast cancer. Furthermore, whereas MEL-18 loss in luminal breast cancer cells resulted in the downregulation of expression and activity of ER-α and the progesterone receptor (PR), MEL-18 overexpression restored ER-α expression in TNBC. Consistently, in vivo xenograft experiments demonstrated that MEL-18 loss induces estrogen-independent growth and tamoxifen resistance in luminal breast cancer, and that MEL-18 overexpression confers tamoxifen sensitivity in TNBC. MEL-18 suppressed SUMOylation of the ESR1 transactivators p53 and SP1, thereby driving ESR1 transcription. MEL-18 facilitated the deSUMOylation process by inhibiting BMI-1/RING1B-mediated ubiquitin-proteasomal degradation of SUMO1/sentrin-specific protease 1 (SENP1). These findings demonstrate that MEL-18 is a SUMO-dependent regulator of hormone receptors and suggest MEL-18 expression as a marker for determining the antihormonal therapy response in patients with breast cancer. PMID:25822021

  10. Effects of fulvestrant alone or combined with different steroids in human breast cancer cells

    NARCIS (Netherlands)

    Jansen, G.H.; Franke, H.R.; Wolbers, F.; Brinkhuis, M.; Brinkhuis, M.; Vermes, I.

    2008-01-01

    Objectives Fulvestrant is an estrogen receptor (ER) antagonist that binds, blocks and degrades the estrogen receptor and is currently used in adjuvant treatment in postmenopausal women with ER-positive breast cancer as an alternative for tamoxifen. As an antagonist, it may induce or aggravate

  11. Overexpression of the E2F target gene CENPI promotes chromosome instability and predicts poor prognosis in estrogen receptor-positive breast cancer.

    Science.gov (United States)

    Thangavelu, Pulari U; Lin, Cheng-Yu; Vaidyanathan, Srividya; Nguyen, Thu H M; Dray, Eloise; Duijf, Pascal H G

    2017-09-22

    During cell division, chromosome segregation is facilitated by the mitotic checkpoint, or spindle assembly checkpoint (SAC), which ensures correct kinetochore-microtubule attachments and prevents premature sister-chromatid separation. It is well established that misexpression of SAC components on the outer kinetochores promotes chromosome instability (CIN) and tumorigenesis. Here, we study the expression of CENP-I, a key component of the HIKM complex at the inner kinetochores, in breast cancer, including ductal, lobular, medullary and male breast carcinomas. CENPI mRNA and protein levels are significantly elevated in estrogen receptor-positive (ER+) but not in estrogen receptor-negative (ER-) breast carcinoma. Well-established prognostic tests indicate that CENPI overexpression constitutes a powerful independent marker for poor patient prognosis and survival in ER+ breast cancer. We further demonstrate that CENPI is an E2F target gene. Consistently, it is overexpressed in RB1 -deficient breast cancers. However, CENP-I overexpression is not purely due to cell cycle-associated expression. In ER+ breast cancer cells, CENP-I overexpression promotes CIN, especially chromosome gains. In addition, in ER+ breast carcinomas the degree of CENPI overexpression is proportional to the level of aneuploidy and CENPI overexpression is one of the strongest markers for CIN identified to date. Our results indicate that overexpression of the inner kinetochore protein CENP-I promotes CIN and forecasts poor prognosis for ER+ breast cancer patients. These observations provide novel mechanistic insights and have important implications for breast cancer diagnostics and potentially therapeutic targeting.

  12. Quantitative proteomics and transcriptomics addressing the estrogen receptor subtype-mediated effects in T47D breast cancer cells exposed to the phytoestrogen genistein

    NARCIS (Netherlands)

    Sotoca Covaleda, A.M.; Sollewijn Gelpke, M.D.; Boeren, S.; Ström, A.; Gustafsson, J.A.; Murk, A.J.; Rietjens, I.M.C.M.; Vervoort, J.J.M.

    2011-01-01

    The present study addresses, by transcriptomics and quantitative SILAC-based proteomics, the estrogen receptor alpha (ER) and beta (ERß)-mediated effects on gene and protein expression in T47D breast cancer cells exposed to the phytoestrogen genistein. Using the T47D human breast cancer cell line

  13. Estrogen induction of telomerase activity through regulation of the mitogen-activated protein kinase (MAPK dependent pathway in human endometrial cancer cells.

    Directory of Open Access Journals (Sweden)

    Chunxiao Zhou

    Full Text Available Given that prolonged exposure to estrogen and increased telomerase activity are associated with endometrial carcinogenesis, our objective was to evaluate the interaction between the MAPK pathway and estrogen induction of telomerase activity in endometrial cancer cells. Estradiol (E2 induced telomerase activity and hTERT mRNA expression in the estrogen receptor (ER-α positive, Ishikawa endometrial cancer cell line. UO126, a highly selective inhibitor of MEK1/MEK2, inhibited telomerase activity and hTERT mRNA expression induced by E2. Similar results were also found after transfection with ERK 1/2-specific siRNA. Treatment with E2 resulted in rapid phosphorylation of p44/42 MAPK and increased MAPK activity which was abolished by UO126. The hTERT promoter contains two estrogen response elements (EREs, and luciferase assays demonstrate that these EREs are activated by E2. Exposure to UO126 or ERK 1/2-specific siRNA in combination with E2 counteracted the stimulatory effect of E2 on luciferase activity from these EREs. These findings suggest that E2-induction of telomerase activity is mediated via the MAPK pathway in human endometrial cancer cells.

  14. Differential expression of estrogen receptor α, β1, and β2 in lobular and ductal breast cancer.

    Science.gov (United States)

    Huang, Bo; Omoto, Yoko; Iwase, Hirotaka; Yamashita, Hiroko; Toyama, Tatsuya; Coombes, Raoul Charles; Filipovic, Aleksandra; Warner, Margaret; Gustafsson, Jan-Åke

    2014-02-04

    The role of estrogen receptor (ER) α as a target in treatment of breast cancer is clear, but those of ERβ1 and ERβ2 in the breast remain unclear. We have examined expression of all three receptors in surgically excised breast samples from two archives: (i): 187 invasive ductal breast cancer from a Japanese study; and (ii) 20 lobular and 24 ductal cancers from the Imperial College. Samples contained normal areas, areas of hyperplasia, and in situ and invasive cancer. In the normal areas, ERα was expressed in not more than 10% of epithelium, whereas approximately 80% of epithelial cells expressed ERβ. We found that whereas ductal cancer is a highly proliferative, ERα-positive, ERβ-negative disease, lobular cancer expresses both ERα and ERβ but with very few Ki67-positive cells. ERβ2 was expressed in 32% of the ductal cancers, of which 83% were postmenopausal. In all ERβ2-positive cancers the interductal space was filled with dense collagen, and cell nuclei expressed hypoxia-inducible factor 1α. ERβ2 expression was not confined to malignant cells but was strong in stromal, immune, and endothelial cells. In most of the high-grade invasive ductal cancers neither ERα nor ERβ was expressed, but in the high-grade lobular cancer ERβ was lost and ERα and Ki67 expression were abundant. The data show a clear difference in ER expression between lobular and ductal breast cancer and suggest (i) that tamoxifen may be more effective in late than in early lobular cancer and (ii) a potential role for ERβ agonists in preventing in situ ductal cancers from becoming invasive.

  15. Endogenous estrogen status, but not genistein supplementation, modulates 7,12-dimethylbenz[a]anthracene-induced mutation in the liver cII gene of transgenic big blue rats.

    Science.gov (United States)

    Chen, Tao; Hutts, Robert C; Mei, Nan; Liu, Xiaoli; Bishop, Michelle E; Shelton, Sharon; Manjanatha, Mugimane G; Aidoo, Anane

    2005-06-01

    A growing number of studies suggest that isoflavones found in soybeans have estrogenic activity and may safely alleviate the symptoms of menopause. One of these isoflavones, genistein, is commonly used by postmenopausal women as an alternative to hormone replacement therapy. Although sex hormones have been implicated as an important risk factor for the development of hepatocellular carcinoma, there are limited data on the potential effects of the estrogens, including phytoestrogens, on chemical mutagenesis in liver. Because of the association between mutation induction and the carcinogenesis process, we investigated whether endogenous estrogen and supplemental genistein affect 7,12-dimethylbenz[a]anthracene (DMBA)-induced mutagenesis in rat liver. Intact and ovariectomized female Big Blue rats were treated with 80 mg DMBA/kg body weight. Some of the rats also received a supplement of 1,000 ppm genistein. Sixteen weeks after the carcinogen treatment, the rats were sacrificed, their livers were removed, and mutant frequencies (MFs) and types of mutations were determined in the liver cII gene. DMBA significantly increased the MFs in liver for both the intact and ovariectomized rats. While there was no significant difference in MF between the ovariectomized and intact control animals, the mutation induction by DMBA in the ovariectomized groups was significantly higher than that in the intact groups. Dietary genistein did not alter these responses. Molecular analysis of the mutants showed that DMBA induced chemical-specific types of mutations in the liver cII gene. These results suggest that endogenous ovarian hormones have an inhibitory effect on liver mutagenesis by DMBA, whereas dietary genistein does not modulate spontaneous or DMBA-induced mutagenesis in either intact or ovariectomized rats.

  16. The ventromedial hypothalamus oxytocin induces locomotor behavior regulated by estrogen.

    Science.gov (United States)

    Narita, Kazumi; Murata, Takuya; Matsuoka, Satoshi

    2016-10-01

    Our previous studies demonstrated that excitation of neurons in the rat ventromedial hypothalamus (VMH) induced locomotor activity. An oxytocin receptor (Oxtr) exists in the VMH and plays a role in regulating sexual behavior. However, the role of Oxtr in the VMH in locomotor activity is not clear. In this study we examined the roles of oxytocin in the VMH in running behavior, and also investigated the involvement of estrogen in this behavioral change. Microinjection of oxytocin into the VMH induced a dose-dependent increase in the running behavior in male rats. The oxytocin-induced running activity was inhibited by simultaneous injection of Oxtr-antagonist, (d(CH2)5(1), Try(Me)(2), Orn(8))-oxytocin. Oxytocin injection also induced running behavior in ovariectomized (OVX) female rats. Pretreatment of the OVX rats with estrogen augmented the oxytocin-induced running activity twofold, and increased the Oxtr mRNA in the VMH threefold. During the estrus cycle locomotor activity spontaneously increased in the dark period of proestrus. The Oxtr mRNA was up-regulated in the proestrus afternoon. Blockade of oxytocin neurotransmission by its antagonist before the onset of the dark period of proestrus decreased the following nocturnal locomotor activity. These findings demonstrate that Oxtr in the VMH is involved in the induction of running behavior and that estrogen facilitates this effect by means of Oxtr up-regulation, suggesting the involvement of oxytocin in the locomotor activity of proestrus female rats. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Familial risks and estrogen receptor-positive breast cancer in Hong Kong Chinese women.

    Science.gov (United States)

    Tse, Lap Ah; Li, Mengjie; Chan, Wing-cheong; Kwok, Chi-hei; Leung, Siu-lan; Wu, Cherry; Yu, Ignatius Tak-sun; Yu, Wai-cho; Lao, Xiangqian; Wang, Xiaorong; Wong, Carmen Ka-man; Lee, Priscilla Ming-yi; Wang, Feng; Yang, Xiaohong Rose

    2015-01-01

    The role of family history to the risk of breast cancer was analyzed by incorporating menopausal status in Hong Kong Chinese women, with a particular respect to the estrogen receptor-positive (ER+) type. Seven hundred and forty seven breast cancer incident cases and 781 hospital controls who had completed information on family cancer history in first-degree relatives (nature father, mother, and siblings) were recruited. Odds ratio for breast cancer were calculated by unconditional multiple logistic regression, stratified by menopausal status (a surrogate of endogenous female sex hormone level and age) and type of relative affected with the disease. Further subgroup analysis by tumor type according to ER status was investigated. Altogether 52 (6.96%) breast cancer cases and 23 (2.95%) controls was found that the patients' one or more first-degree relatives had a history of breast cancer, showing an adjusted odds ratio (OR) of 2.41 (95%CI: 1.45-4.02). An excess risk of breast cancer was restricted to the ER+ tumor (OR = 2.43, 95% CI: 1.38-4.28), with a relatively higher risk associated with an affected mother (OR = 3.97, 95%CI: 1.46-10.79) than an affected sister (OR = 2.06, 95%CI: 1.07-3.97), while the relative risk was more prominent in the subgroup of pre-menopausal women. Compared with the breast cancer overall, the familial risks to the ER+ tumor increased progressively with the number of affected first-degree relatives. This study provides new insights on a relationship between family breast cancer history, menopausal status, and the ER+ breast cancer. A separate risk prediction model for ER+ tumor in Asian population is desired.

  18. Variants in estrogen-biosynthesis genes CYP17 and CYP19 and breast cancer risk: a family-based genetic association study

    International Nuclear Information System (INIS)

    Ahsan, Habibul; Whittemore, Alice S; Chen, Yu; Senie, Ruby T; Hamilton, Steven P; Wang, Qiao; Gurvich, Irina; Santella, Regina M

    2005-01-01

    Case-control studies have reported inconsistent results concerning breast cancer risk and polymorphisms in genes that control endogenous estrogen biosynthesis. We report findings from the first family-based association study examining associations between female breast cancer risk and polymorphisms in two key estrogen-biosynthesis genes CYP17 (T→C promoter polymorphism) and CYP19 (TTTA repeat polymorphism). We conducted the study among 278 nuclear families containing one or more daughters with breast cancer, with a total of 1123 family members (702 with available constitutional DNA and questionnaire data and 421 without them). These nuclear families were selected from breast cancer families participating in the Metropolitan New York Registry, one of the six centers of the National Cancer Institute's Breast Cancer Family Registry. We used likelihood-based statistical methods to examine allelic associations. We found the CYP19 allele with 11 TTTA repeats to be associated with breast cancer risk in these families. We also found that maternal (but not paternal) carrier status of CYP19 alleles with 11 repeats tended to be associated with breast cancer risk in daughters (independently of the daughters' own genotype), suggesting a possible in utero effect of CYP19. We found no association of a woman's breast cancer risk either with her own or with her mother's CYP17 genotype. This family-based study indicates that a woman's personal and maternal carrier status of CYP19 11 TTTA repeat allele might be related to increased breast cancer risk. However, because this is the first study to report an association between CYP19 11 TTTA repeat allele and breast cancer, and because multiple comparisons have been made, the associations should be interpreted with caution and need confirmation in future family-based studies

  19. Profile of bazedoxifene/conjugated estrogens for the treatment of estrogen deficiency symptoms and osteoporosis in women at risk of fracture

    Directory of Open Access Journals (Sweden)

    Rossini M

    2013-07-01

    Full Text Available Maurizio Rossini,1 Stefano Lello,2 Ignazio Sblendorio,3 Ombretta Viapiana,1 Elena Fracassi,1 Silvano Adami,1 Davide Gatti11Department of Medicine, Rheumatology Unit, University of Verona, Italy; 2Endocrinological Gynecology, Pathophysiology of Menopause and Osteoporosis, Dermopathic Institute of Immacolata, Roma, Italy; 3Medical Coach Italia Center, Bari, ItalyAbstract: Decreasing levels of estrogens during menopause are associated with reduced bone density and an increased risk of osteoporosis. Many women also experience bothersome vasomotor and vaginal symptoms during the menopausal transition. Results of systematic reviews and meta-analyses of randomized controlled trials have shown that both systemic estrogen therapy or hormone therapy (estrogen combined with a progestin are useful to prevent bone loss, and they are the most effective treatment for such climacteric symptoms as hot flushes, sweating, vaginal dryness, and dyspareunia. Unfortunately, estrogen therapy and hormone therapy increase the risk of endometrial and breast cancer, respectively. The selective estrogen receptor modulators (SERMs result in positive estrogenic effects on bone, with no negative effects on the endometrium and breast but do not provide relief from postmenopausal symptoms. The combination of a SERM with estrogen as a tissue selective estrogen complex (TSEC is a new strategy for the prevention of bone loss and the treatment of climacteric symptoms. This combination is particularly interesting from a clinical point of view, taking into account that estrogen alone did not increase breast cancer risk by the Women's Health Initiative. TSEC is hypothesized to provide the benefits of estrogen-alone therapy, with an improved tolerability profile because the SERM component can make possible the elimination of progestin. The objective of this review was to critically evaluate the evidence from the reports published to date on the use of bazedoxifene (a third

  20. Broccoli Sprout Extract in Treating Patients With Breast Cancer

    Science.gov (United States)

    2018-06-04

    Ductal Breast Carcinoma; Ductal Breast Carcinoma In Situ; Estrogen Receptor Negative; Estrogen Receptor Positive; Invasive Breast Carcinoma; Lobular Breast Carcinoma; Postmenopausal; Stage IA Breast Cancer; Stage IB Breast Cancer; Stage IIA Breast Cancer; Stage IIB Breast Cancer

  1. Perspectives in the paradigm of radiation-induced carcinogenesis

    International Nuclear Information System (INIS)

    Sugakhara, T.; Vatanabe, M.; Niva, O.; Nikajdo, O.

    1995-01-01

    Carcinogenesis is analysed as a multistage process consisting of initiation, promotion and progression. This model includes the mutation of oncogenes and the loss of hetrezygosity by tumor-suppressor genes. The threshold concept of radiation cancerogenesis is proposed, under which ionizing radiation can induce in somatic cell genetic effects a s result of DNA damage and epigenetic changes as well. The epigenetic changes (through DNA or cytoplasma) can be stabilized as mutations observed in many cancer cells and play a dominant role in radiation cancerogenesis induction. The ration of epigenetic and genetic effects largely depends on radiation doses

  2. Effects of retinoids on ultraviolet-induced carcinogenesis

    International Nuclear Information System (INIS)

    Epstein, J.H.

    1981-01-01

    The evidence for effects of the retinoids on UV-induced carcinogenesis is sparse. Clinical observations indicate that topical RA can cause significant regression of premalignant actinic keratoses. Also there is some evidence that this agent can cause dissolution of some basal cell epitheliomas. However this latter effect does not appear to be of therapeutic value. Systemic retinoids are of little value in the treatment of premalignant and malignant cutaneous lesions though 13-cis-retinoic acid might be of use in the basal cell nevus syndrome. Examination of the influence of the retinoids on photocarcinogenesis essentially has been confined to RA and animal experimentation. RA in nontoxic concentrations can both stimulate and inhibit photocarcinogenesis depending upon the circumstances of the study. The mechanisms of these responses are not clear. Influences on DNA synthesis directly and/or indirectly or on immune responses may be involved in both effects. Preliminary studies with oral 13-cis-retinoic acid have not demonstrated any effects to date on UV-induced skin cancer formation

  3. Estrogen Metabolism and Risk of Postmenopausal Endometrial and Ovarian Cancer: the B ∼ FIT Cohort.

    Science.gov (United States)

    Dallal, Cher M; Lacey, James V; Pfeiffer, Ruth M; Bauer, Douglas C; Falk, Roni T; Buist, Diana S M; Cauley, Jane A; Hue, Trisha F; LaCroix, Andrea Z; Tice, Jeffrey A; Veenstra, Timothy D; Xu, Xia; Brinton, Louise A

    2016-02-01

    Estrogen metabolites may have different genotoxic and mitogenic properties yet their relationship with endometrial and ovarian cancer risk remains unclear. Within the Breast and Bone Follow-up to the Fracture Intervention Trial (B ∼ FIT, n = 15,595), we conducted a case-cohort study to evaluate 15 pre-diagnostic serum estrogens and estrogen metabolites with risk of incident endometrial and ovarian cancer among postmenopausal women not on hormone therapy. Participants included 66 endometrial and 67 ovarian cancer cases diagnosed during follow-up (∼ 10 years) and subcohorts of 346 and 416 women, respectively, after relevant exclusions. Serum concentrations were measured by liquid chromatography-tandem mass spectrometry. Hazard ratios (HRs) and 95% confidence intervals (CIs) were estimated using Cox proportional hazard regression. Exposures were categorized in tertiles (T) and analyzed individually, as metabolic pathways (C-2, -4, or -16) and as ratios to parent estrogens (estradiol, estrone). Estradiol was significantly associated with increased endometrial cancer risk (BMI-adjusted HRT3vsT1 = 4.09, 95% CI 1.70, 9.85; p trend = 0.003). 2-Hydroxyestrone and 16α-hydroxyestrone were not associated with endometrial risk after estradiol adjustment (2-OHE1:HRT3vsT1 = 1.97, 95% CI 0.78, 4.94; 16-OHE1:HRT3vsT1 = 1.50, 95% CI 0.65, 3.46; p trend = 0.16 and 0.36, respectively). Ratios of 2- and 4-pathway catechol-to-methylated estrogens remained positively associated with endometrial cancer after BMI or estradiol adjustment (2-pathway catechols-to-methylated: HRT3vsT1 = 4.02, 95% CI 1.60, 10.1; 4-pathway catechols-to-methylated: HRT3vsT1 = 4.59, 95% CI 1.64, 12.9; p trend = 0.002 for both). Estrogens and estrogen metabolites were not associated with ovarian cancer risk; however, larger studies are needed to better evaluate these relationships. Estrogen metabolism may be important in endometrial carcinogenesis, particularly with less extensive methylation of 2- or 4

  4. Activation of ERα signaling differentially modulates IFN-γ induced HLA-class II expression in breast cancer cells.

    Directory of Open Access Journals (Sweden)

    Ahmed A Mostafa

    Full Text Available The coordinate regulation of HLA class II (HLA-II is controlled by the class II transactivator, CIITA, and is crucial for the development of anti-tumor immunity. HLA-II in breast carcinoma is associated with increased IFN-γ levels, reduced expression of the estrogen receptor (ER and reduced age at diagnosis. Here, we tested the hypothesis that estradiol (E₂ and ERα signaling contribute to the regulation of IFN-γ inducible HLA-II in breast cancer cells. Using a panel of established ER⁻ and ER⁺ breast cancer cell lines, we showed that E₂ attenuated HLA-DR in two ER⁺ lines (MCF-7 and BT-474, but not in T47D, while it augmented expression in ER⁻ lines, SK-BR-3 and MDA-MB-231. To further study the mechanism(s, we used paired transfectants: ERα⁺ MC2 (MDA-MB-231 c10A transfected with the wild type ERα gene and ERα⁻ VC5 (MDA-MB-231 c10A transfected with the empty vector, treated or not with E₂ and IFN-γ. HLA-II and CIITA were severely reduced in MC2 compared to VC5 and were further exacerbated by E₂ treatment. Reduced expression occurred at the level of the IFN-γ inducible CIITA promoter IV. The anti-estrogen ICI 182,780 and gene silencing with ESR1 siRNA reversed the E2 inhibitory effects, signifying an antagonistic role for activated ERα on CIITA pIV activity. Moreover, STAT1 signaling, necessary for CIITA pIV activation, and selected STAT1 regulated genes were variably downregulated by E₂ in transfected and endogenous ERα positive breast cancer cells, whereas STAT1 signaling was noticeably augmented in ERα⁻ breast cancer cells. Collectively, these results imply immune escape mechanisms in ERα⁺ breast cancer may be facilitated through an ERα suppressive mechanism on IFN-γ signaling.

  5. A phase II study of combined ridaforolimus and dalotuzumab compared with exemestane in patients with estrogen receptor-positive breast cancer

    DEFF Research Database (Denmark)

    Baselga, José; Morales, Serafin M.; Awada, Ahmad

    2017-01-01

    Purpose: Combining the mTOR inhibitor ridaforolimus and the anti-IGFR antibody dalotuzumab demonstrated antitumor activity, including partial responses, in estrogen receptor (ER)-positive advanced breast cancer, especially in high proliferation tumors (Ki67 > 15%). Methods: This randomized...

  6. TRAIL Death Receptor-4 Expression Positively Correlates With the Tumor Grade in Breast Cancer Patients With Invasive Ductal Carcinoma

    International Nuclear Information System (INIS)

    Sanlioglu, Ahter D.; Korcum, Aylin F.; Pestereli, Elif; Erdogan, Gulgun; Karaveli, Seyda; Savas, Burhan; Griffith, Thomas S.; Sanlioglu, Salih V.

    2007-01-01

    Purpose: Tumor necrosis factor-related apoptosis inducing ligand (TRAIL) selectively induces apoptosis in cancer cells but not in normal cells, and a number of clinical trials have recently been initiated to test the safety and antitumoral potential of TRAIL in cancer patients. Four different receptors have been identified to interact with TRAIL: two are death-inducing receptors (TRAIL-R1 [DR4] and TRAIL-R2 [DR5]), whereas the other two (TRAIL-R3 [DcR1] and TRAIL-R4 [DcR2]) do not induce death upon ligation and are believed to counteract TRAIL-induced cytotoxicity. Because high levels of DcR2 expression have recently been correlated with carcinogenesis in the prostate and lung, this study investigated the importance of TRAIL and TRAIL receptor expression in breast cancer patients with invasive ductal carcinoma, taking various prognostic markers into consideration. Methods and Materials: Immunohistochemical analyses were performed on 90 breast cancer patients with invasive ductal carcinoma using TRAIL and TRAIL receptor-specific antibodies. Age, menopausal status, tumor size, lymph node status, tumor grade, lymphovascular invasion, perineural invasion, extracapsular tumor extension, presence of an extensive intraductal component, multicentricity, estrogen and progesterone receptor status, and CerbB2 expression levels were analyzed with respect to TRAIL/TRAIL receptor expression patterns. Results: The highest TRAIL receptor expressed in patients with invasive ductal carcinoma was DR4. Although progesterone receptor-positive patients exhibited lower DR5 expression, CerbB2-positive tissues displayed higher levels of both DR5 and TRAIL expressions. Conclusions: DR4 expression positively correlates with the tumor grade in breast cancer patients with invasive ductal carcinoma

  7. Association Between a Germline OCA2 Polymorphism at Chromosome 15q13.1 and Estrogen Receptor-Negative Breast Cancer Survival

    DEFF Research Database (Denmark)

    Azzato, E.M.; Tyrer, J.; Fasching, P.A.

    2010-01-01

    -sided. In the hypothesis-generating dataset, SNP rs4778137 (C > G) of the OCA2 gene at 15q13.1 was statistically significantly associated with overall survival among patients with estrogen receptor-negative tumors, with the rare G allele being associated with increased overall survival (HR of death per rare allele carried.......92, P = 5 x 10(-4)). The rare G allele of the OCA2 polymorphism, rs4778137, may be associated with improved overall survival among patients with estrogen receptor-negative breast cancer...

  8. Familial risks and estrogen receptor-positive breast cancer in Hong Kong Chinese women.

    Directory of Open Access Journals (Sweden)

    Lap Ah Tse

    Full Text Available The role of family history to the risk of breast cancer was analyzed by incorporating menopausal status in Hong Kong Chinese women, with a particular respect to the estrogen receptor-positive (ER+ type.Seven hundred and forty seven breast cancer incident cases and 781 hospital controls who had completed information on family cancer history in first-degree relatives (nature father, mother, and siblings were recruited. Odds ratio for breast cancer were calculated by unconditional multiple logistic regression, stratified by menopausal status (a surrogate of endogenous female sex hormone level and age and type of relative affected with the disease. Further subgroup analysis by tumor type according to ER status was investigated.Altogether 52 (6.96% breast cancer cases and 23 (2.95% controls was found that the patients' one or more first-degree relatives had a history of breast cancer, showing an adjusted odds ratio (OR of 2.41 (95%CI: 1.45-4.02. An excess risk of breast cancer was restricted to the ER+ tumor (OR = 2.43, 95% CI: 1.38-4.28, with a relatively higher risk associated with an affected mother (OR = 3.97, 95%CI: 1.46-10.79 than an affected sister (OR = 2.06, 95%CI: 1.07-3.97, while the relative risk was more prominent in the subgroup of pre-menopausal women. Compared with the breast cancer overall, the familial risks to the ER+ tumor increased progressively with the number of affected first-degree relatives.This study provides new insights on a relationship between family breast cancer history, menopausal status, and the ER+ breast cancer. A separate risk prediction model for ER+ tumor in Asian population is desired.

  9. In silico study of curcumol, curcumenol, isocurcumenol, and β-sitosterol as potential inhibitors of estrogen receptor alpha of breast cancer

    OpenAIRE

    Resmi Mustarichiei; Jutti Levitas; Jopi Arpina

    2014-01-01

    Background: Based on data from the Hospital Information System (HIS) in 2007, breast cancer is the top ranked diagnosed cancer in Indonesia. Estrogen receptor alpha (ERα) is associated with breast cancer because it is found in high levels in cancer tissues. Curcumol, curcumenol, isocurcumenol of white tumeric rhizomes (Curcuma zedoaria (Christm.) Roscoe), and β-sitosterol from seeds of pumpkin (Cucurbita pepo L.) have been reported to have inhibitory activity against cancer cells. This study ...

  10. Potential mechanisms underlying estrogen-induced expression of the molluscan estrogen receptor (ER) gene

    Energy Technology Data Exchange (ETDEWEB)

    Tran, Thi Kim Anh [School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308 (Australia); Department of Agriculture, Forestry and Fisheries, Vinh University, 182 Le Duan St., Vinh City, Nghe An (Viet Nam); MacFarlane, Geoff R. [School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308 (Australia); Kong, Richard Yuen Chong [Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region (China); O’Connor, Wayne A. [New South Wales Department of Primary Industries, Port Stephens Fisheries Institute, Taylors Beach, NSW 2316 (Australia); Yu, Richard Man Kit, E-mail: Richard.Yu@newcastle.edu.au [School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308 (Australia)

    2016-10-15

    Highlights: • This is the first report on the putative promoter sequence of a molluscan ER gene. • The gene promoter contains putative binding sites for direct and indirect interaction with ER. • E2 upregulates ER gene expression in the ovary in vitro and in vivo. • E2-induced gene expression may require a novel ligand-dependent receptor. • The ER proximal promoter is hypomethylated regardless of gene expression levels. - Abstract: In vertebrates, estrogens and estrogen mimicking chemicals modulate gene expression mainly through a genomic pathway mediated by the estrogen receptors (ERs). Although the existence of an ER orthologue in the mollusc genome has been known for some time, its role in estrogen signalling has yet to be deciphered. This is largely due to its constitutive (ligand-independent) activation and a limited mechanistic understanding of its regulation. To fill this knowledge gap, we cloned and characterised an ER cDNA (sgER) and the 5′-flanking region of the gene from the Sydney rock oyster Saccostrea glomerata. The sgER cDNA is predicted to encode a 477-amino acid protein that contains a DNA-binding domain (DBD) and a ligand-binding domain (LBD) typically conserved among both vertebrate and invertebrate ERs. A comparison of the sgER LBD sequence with those of other ligand-dependent ERs revealed that the sgER LBD is variable at several conserved residues known to be critical for ligand binding and receptor activation. Ligand binding assays using fluorescent-labelled E2 and purified sgER protein confirmed that sgER is devoid of estrogen binding. In silico analysis of the sgER 5′-flanking sequence indicated the presence of three putative estrogen responsive element (ERE) half-sites and several putative sites for ER-interacting transcription factors, suggesting that the sgER promoter may be autoregulated by its own gene product. sgER mRNA is ubiquitously expressed in adult oyster tissues, with the highest expression found in the ovary

  11. Aromatase Inhibitor-Induced Erythrocytosis in a Patient Undergoing Hormonal Treatment for Breast Cancer

    Directory of Open Access Journals (Sweden)

    Sri Lakshmi Hyndavi Yeruva

    2015-01-01

    Full Text Available Aromatase inhibitors (AIs are most commonly used for breast cancer patients with hormone receptor positive disease. Although the side effect profile of aromatase inhibitors is well known, including common side effects like arthralgia, bone pain, arthritis, hot flashes, and more serious problems like osteoporosis, we present a case of an uncommon side effect of these medications. We report the case of a postmenopausal woman on adjuvant hormonal therapy with anastrozole after completing definitive therapy for stage IIIB estrogen receptor-positive breast cancer, who was referred to hematology service for evaluation of persistent erythrocytosis. Primary and known secondary causes of polycythemia were ruled out. On further evaluation, we found that her erythrocytosis began after initiation of anastrozole and resolved after it was discontinued. We discuss the pathophysiology of aromatase inhibitor-induced erythrocytosis and reference of similar cases reported in the literature.

  12. High-Fat, High-Calorie Diet Enhances Mammary Carcinogenesis and Local Inflammation in MMTV-PyMT Mouse Model of Breast Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Cowen, Sarah [Department of Surgery, West Virginia University Health Sciences Center, Morgantown, WV 26506 (United States); Mary Babb Randolph Cancer Center, West Virginia University Health Sciences Center, Morgantown, WV 26506 (United States); McLaughlin, Sarah L. [Mary Babb Randolph Cancer Center, West Virginia University Health Sciences Center, Morgantown, WV 26506 (United States); Hobbs, Gerald [Mary Babb Randolph Cancer Center, West Virginia University Health Sciences Center, Morgantown, WV 26506 (United States); Department of Statistics, West Virginia University, Morgantown, WV 26506 (United States); Coad, James [Department of Pathology, West Virginia University Health Sciences Center, Morgantown, WV 26506 (United States); Martin, Karen H. [Mary Babb Randolph Cancer Center, West Virginia University Health Sciences Center, Morgantown, WV 26506 (United States); Department of Neurobiology and Anatomy, West Virginia University Health Sciences Center, Morgantown, WV 26506 (United States); Olfert, I. Mark [Mary Babb Randolph Cancer Center, West Virginia University Health Sciences Center, Morgantown, WV 26506 (United States); Department of Human Performance and Exercise Physiology, West Virginia University Health Sciences Center, Morgantown, WV 26506 (United States); Vona-Davis, Linda, E-mail: lvdavis@hsc.wvu.edu [Department of Surgery, West Virginia University Health Sciences Center, Morgantown, WV 26506 (United States); Mary Babb Randolph Cancer Center, West Virginia University Health Sciences Center, Morgantown, WV 26506 (United States)

    2015-06-26

    Epidemiological studies provide strong evidence that obesity and the associated adipose tissue inflammation are risk factors for breast cancer; however, the molecular mechanisms are poorly understood. We evaluated the effect of a high-fat/high-calorie diet on mammary carcinogenesis in the immunocompetent MMTV-PyMT murine model. Four-week old female mice (20/group) were randomized to receive either a high-fat (HF; 60% kcal as fat) or a low-fat (LF; 16% kcal) diet for eight weeks. Body weights were determined, and tumor volumes measured by ultrasound, each week. At necropsy, the tumors and abdominal visceral fat were weighed and plasma collected. The primary mammary tumors, adjacent mammary fat, and lungs were preserved for histological and immunohistochemical examination and quantification of infiltrating macrophages, crown-like structure (CLS) formation, and microvessel density. The body weight gains, visceral fat weights, the primary mammary tumor growth rates and terminal weights, were all significantly greater in the HF-fed mice. Adipose tissue inflammation in the HF group was indicated by hepatic steatosis, pronounced macrophage infiltration and CLS formation, and elevations in plasma monocyte chemoattractant protein-1 (MCP-1), leptin and proinflammatory cytokine concentrations. HF intake was also associated with higher tumor-associated microvascular density and the proangiogenic factor MCP-1. This study provides preclinical evidence in a spontaneous model of breast cancer that mammary adipose tissue inflammation induced by diet, enhances the recruitment of macrophages and increases tumor vascular density suggesting a role for obesity in creating a microenvironment favorable for angiogenesis in the progression of breast cancer.

  13. High-Fat, High-Calorie Diet Enhances Mammary Carcinogenesis and Local Inflammation in MMTV-PyMT Mouse Model of Breast Cancer

    International Nuclear Information System (INIS)

    Cowen, Sarah; McLaughlin, Sarah L.; Hobbs, Gerald; Coad, James; Martin, Karen H.; Olfert, I. Mark; Vona-Davis, Linda

    2015-01-01

    Epidemiological studies provide strong evidence that obesity and the associated adipose tissue inflammation are risk factors for breast cancer; however, the molecular mechanisms are poorly understood. We evaluated the effect of a high-fat/high-calorie diet on mammary carcinogenesis in the immunocompetent MMTV-PyMT murine model. Four-week old female mice (20/group) were randomized to receive either a high-fat (HF; 60% kcal as fat) or a low-fat (LF; 16% kcal) diet for eight weeks. Body weights were determined, and tumor volumes measured by ultrasound, each week. At necropsy, the tumors and abdominal visceral fat were weighed and plasma collected. The primary mammary tumors, adjacent mammary fat, and lungs were preserved for histological and immunohistochemical examination and quantification of infiltrating macrophages, crown-like structure (CLS) formation, and microvessel density. The body weight gains, visceral fat weights, the primary mammary tumor growth rates and terminal weights, were all significantly greater in the HF-fed mice. Adipose tissue inflammation in the HF group was indicated by hepatic steatosis, pronounced macrophage infiltration and CLS formation, and elevations in plasma monocyte chemoattractant protein-1 (MCP-1), leptin and proinflammatory cytokine concentrations. HF intake was also associated with higher tumor-associated microvascular density and the proangiogenic factor MCP-1. This study provides preclinical evidence in a spontaneous model of breast cancer that mammary adipose tissue inflammation induced by diet, enhances the recruitment of macrophages and increases tumor vascular density suggesting a role for obesity in creating a microenvironment favorable for angiogenesis in the progression of breast cancer

  14. Tamoxifen induces regression of estradiol-induced mammary cancer in the ACI.COP-Ept2 rat model.

    Science.gov (United States)

    Ruhlen, Rachel L; Willbrand, Dana M; Besch-Williford, Cynthia L; Ma, Lixin; Shull, James D; Sauter, Edward R

    2009-10-01

    The ACI rat is a unique model of human breast cancer in that mammary cancers are induced by estrogen without carcinogens, irradiation, xenografts or transgenic manipulations. We sought to characterize mammary cancers in a congenic variant of the ACI rat, the ACI.COP-Ept2. All rats with estradiol implants developed mammary cancers in 5-7 months. Rats bearing estradiol-induced mammary cancers were treated with tamoxifen for three weeks. Tamoxifen reduced tumor mass, measured by magnetic resonance imaging, by 89%. Tumors expressed estrogen receptors (ER), progesterone receptor (PR), and Erbb2. ERalpha and PR were overexpressed in tumor compared to adjacent non-tumor mammary gland. Thus, this model is highly relevant to hormone responsive human breast cancers.

  15. Proteomic profiling of triple-negative breast carcinomas in combination with a three-tier orthogonal technology approach identifies Mage-A4 as potential therapeutic target in estrogen receptor negative breast cancer

    DEFF Research Database (Denmark)

    Cabezón, Teresa; Gromova, Irina; Gromov, Pavel

    2013-01-01

    Breast cancer is a very heterogeneous disease, encompassing several intrinsic subtypes with various morphological and molecular features, natural history and response to therapy. Currently, molecular targeted therapies are available for estrogen receptor (ER)(-) and human epidermal growth factor ...

  16. Expansion of Sphingosine Kinase and Sphingosine-1-Phosphate Receptor Function in Normal and Cancer Cells: From Membrane Restructuring to Mediation of Estrogen Signaling and Stem Cell Programming

    Science.gov (United States)

    2018-01-01

    Sphingolipids, sphingolipid metabolizing enzymes, and their receptors network are being recognized as part of the signaling mechanisms, which govern breast cancer cell growth, migration, and survival during chemotherapy treatment. Approximately 70% of breast cancers are estrogen receptor (ER) positive and, thus, rely on estrogen signaling. Estrogen activates an intracellular network composed of many cytoplasmic and nuclear mediators. Some estrogen effects can be mediated by sphingolipids. Estrogen activates sphingosine kinase 1 (SphK1) and amplifies the intracellular concentration of sphingosine-1-phosphate (S1P) in breast cancer cells during stimulation of proliferation and survival. Specifically, Estrogen activates S1P receptors (S1PR) and induces growth factor receptor transactivation. SphK, S1P, and S1PR expression are causally associated with endocrine resistance and progression to advanced tumor stages in ER-positive breast cancers in vivo. Recently, the network of SphK/S1PR was shown to promote the development of ER-negative cancers and breast cancer stem cells, as well as stimulating angiogenesis. Novel findings confirm and broaden our knowledge about the cross-talk between sphingolipids and estrogen network in normal and malignant cells. Current S1PRs therapeutic inhibition was indicated as a promising chemotherapy approach in non-responsive and advanced malignancies. Considering that sphingolipid signaling has a prominent role in terminally differentiated cells, the impact should be considered when designing specific SphK/S1PR inhibitors. This study analyzes the dynamic of the transformation of sphingolipid axis during a transition from normal to pathological condition on the level of the whole organism. The sphingolipid-based mediation and facilitation of global effects of estrogen were critically accented as a bridging mechanism that should be explored in cancer prevention. PMID:29385066

  17. Expansion of Sphingosine Kinase and Sphingosine-1-Phosphate Receptor Function in Normal and Cancer Cells: From Membrane Restructuring to Mediation of Estrogen Signaling and Stem Cell Programming

    Directory of Open Access Journals (Sweden)

    Olga A. Sukocheva

    2018-01-01

    Full Text Available Sphingolipids, sphingolipid metabolizing enzymes, and their receptors network are being recognized as part of the signaling mechanisms, which govern breast cancer cell growth, migration, and survival during chemotherapy treatment. Approximately 70% of breast cancers are estrogen receptor (ER positive and, thus, rely on estrogen signaling. Estrogen activates an intracellular network composed of many cytoplasmic and nuclear mediators. Some estrogen effects can be mediated by sphingolipids. Estrogen activates sphingosine kinase 1 (SphK1 and amplifies the intracellular concentration of sphingosine-1-phosphate (S1P in breast cancer cells during stimulation of proliferation and survival. Specifically, Estrogen activates S1P receptors (S1PR and induces growth factor receptor transactivation. SphK, S1P, and S1PR expression are causally associated with endocrine resistance and progression to advanced tumor stages in ER-positive breast cancers in vivo. Recently, the network of SphK/S1PR was shown to promote the development of ER-negative cancers and breast cancer stem cells, as well as stimulating angiogenesis. Novel findings confirm and broaden our knowledge about the cross-talk between sphingolipids and estrogen network in normal and malignant cells. Current S1PRs therapeutic inhibition was indicated as a promising chemotherapy approach in non-responsive and advanced malignancies. Considering that sphingolipid signaling has a prominent role in terminally differentiated cells, the impact should be considered when designing specific SphK/S1PR inhibitors. This study analyzes the dynamic of the transformation of sphingolipid axis during a transition from normal to pathological condition on the level of the whole organism. The sphingolipid-based mediation and facilitation of global effects of estrogen were critically accented as a bridging mechanism that should be explored in cancer prevention.

  18. Oxidative DNA damage and mammary cell proliferation by alcohol-derived salsolinol.

    Science.gov (United States)

    Murata, Mariko; Midorikawa, Kaoru; Kawanishi, Shosuke

    2013-10-21

    Drinking alcohol is a risk factor for breast cancer. Salsolinol (SAL) is endogenously formed by a condensation reaction of dopamine with acetaldehyde, a major ethanol metabolite, and SAL is detected in blood and urine after alcohol intake. We investigated the possibility that SAL can participate in tumor initiation and promotion by causing DNA damage and cell proliferation, leading to alcohol-associated mammary carcinogenesis. SAL caused oxidative DNA damage including 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG), in the presence of transition metal ions, such as Cu(II) and Fe(III)EDTA. Inhibitory effects of scavengers on SAL-induced DNA damage and the electron spin resonance study indicated the involvement of H₂O₂, which is generated via the SAL radical. Experiments on scavengers and site specificity of DNA damage suggested ·OH generation via a Fenton reaction and copper-peroxide complexes in the presence of Fe(III)EDTA and Cu(II), respectively. SAL significantly increased 8-oxodG formation in normal mammary epithelial MCF-10A cells. In addition, SAL induced cell proliferation in estrogen receptor (ER)-negative MCF-10A cells, and the proliferation was inhibited by an antioxidant N-acetylcysteine and an epidermal growth factor receptor (EGFR) inhibitor AG1478, suggesting that reactive oxygen species may participate in the proliferation of MCF-10A cells via EGFR activation. Furthermore, SAL induced proliferation in estrogen-sensitive breast cancer MCF-7 cells, and a surface plasmon resonance sensor revealed that SAL significantly increased the binding activity of ERα to the estrogen response element but not ERβ. In conclusion, SAL-induced DNA damage and cell proliferation may play a role in tumor initiation and promotion of multistage mammary carcinogenesis in relation to drinking alcohol.

  19. Chemopreventive effect of artesunate in 1,2-dimethylhydrazine-induced rat colon carcinogenesis

    Directory of Open Access Journals (Sweden)

    Sazal Patyar

    2017-01-01

    Full Text Available Artesunate (ART is a semisynthetic derivative of artemisinin. Artemisinin and its derivatives have shown profound cytotoxicity and antitumor activity in addition to antimalarial activity in various studies. As the in vivo chemopreventive efficacy of ART in colon carcinogenesis has not been investigated so far, the aim of the current study was to study the chemopreventive effect of ART in 1,2-dimethylhydrazine (DMH-induced rat colon carcinogenesis. Animals were divided into four groups (n = 6: Group I - vehicle (1 mM ethylenediaminetetraacetic acid, Group II - DMH (20 mg/kg, Group III - DMH + 5-fluorouracil (81 mg/kg, Group IV - DMH + ART (6.7 mg/kg. After completion of 15 weeks of treatment, rats were sacrificed under ether anesthesia by cervical dislocation for assessment of lipid peroxidation (LPO, antioxidant status, average number of aberrant crypt foci (ACF, and cytokine levels. ART administration significantly decreased the average number of ACF/microscopic field. Similarly, LPO level was decreased and antioxidant activities were enhanced after ART treatment. ART decreased the levels of proinflammatory cytokines and induced apoptosis in the colons of DMH-treated rats. The results of this study suggest that ART has a beneficial effect against chemically induced colonic preneoplastic progression in rats.

  20. Is Homeopathy Effective for Hot Flashes and Other Estrogen-Withdrawal Symptoms in Breast Cancer Survivors? A Preliminary Randomized Controlled Trial

    Science.gov (United States)

    2003-04-01

    homeopathy may be effective in improving hot flashes and quality of life in breast cancer survivors with symptoms of estrogen withdrawal. Methods- A...scores improved significantly in both homeopathy groups compared to placebo. Results of this study suggest that a larger study should be done.

  1. Role of GPR30 in estrogen-induced prostate epithelial apoptosis and benign prostatic hyperplasia.

    Science.gov (United States)

    Yang, Deng-Liang; Xu, Jia-Wen; Zhu, Jian-Guo; Zhang, Yi-Lin; Xu, Jian-Bang; Sun, Qing; Cao, Xiao-Nian; Zuo, Wu-Lin; Xu, Ruo-Shui; Huang, Jie-Hong; Jiang, Fu-Neng; Zhuo, Yang-Jia; Xiao, Bai-Quan; Liu, Yun-Zhong; Yuan, Dong-Bo; Sun, Zhao-Lin; He, Hui-Chan; Lun, Zhao-Rong; Zhong, Wei-De; Zhou, Wen-Liang

    2017-06-03

    Several studies have implicated estrogen and the estrogen receptor (ER) in the pathogenesis of benign prostatic hyperplasia (BPH); however, the mechanism underlying this effect remains elusive. In the present study, we demonstrated that estrogen (17β-estradiol, or E2)-induced activation of the G protein-coupled receptor 30 (GPR30) triggered Ca 2+ release from the endoplasmic reticulum, increased the mitochondrial Ca 2+ concentration, and thus induced prostate epithelial cell (PEC) apoptosis. Both E2 and the GPR30-specific agonist G1 induced a transient intracellular Ca 2+ release in PECs via the phospholipase C (PLC)-inositol 1, 4, 5-triphosphate (IP 3 ) pathway, and this was abolished by treatment with the GPR30 antagonist G15. The release of cytochrome c and activation of caspase-3 in response to GPR30 activation were observed. Data generated from the analysis of animal models and human clinical samples indicate that treatment with the GPR30 agonist relieves testosterone propionate (TP)-induced prostatic epithelial hyperplasia, and that the abundance of GPR30 is negatively associated with prostate volume. On the basis of these results, we propose a novel regulatory mechanism whereby estrogen induces the apoptosis of PECs via GPR30 activation. Inhibition of this activation is predicted to lead to abnormal PEC accumulation, and to thereby contribute to BPH pathogenesis. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Chronic ultraviolet exposure-induced p53 gene alterations in sencar mouse skin carcinogenesis model

    International Nuclear Information System (INIS)

    Tong, Ying; Smith, M.A.; Tucker, S.B.

    1997-01-01

    Alterations of the tumor suppressor gene p53 have been found in ultraviolet radiation (UVR) related human skin cancers and in UVR-induced murine skin tumors. However, links between p53 gene alterations and the stages of carcinogenesis induced by UVR have not been clearly defined. We established a chronic UVR exposure-induced Sencar mouse skin carcinogenesis model to determine the frequency of p53 gene alterations in different stages of carcinogenesis, including UV-exposed skin, papillomas, squamous-cell carcinomas (SCCs), and malignant spindle-cell tumors (SCTs). A high incidence of SCCs and SCTs were found in this model. Positive p53 nuclear staining was found in 10137 (27%) of SCCs and 12124 (50%) of SCTs, but was not detected in normal skin or papillomas. DNA was isolated from 40 paraffin-embedded normal skin, UV-exposed skin, and tumor sections. The p53 gene (exons 5 and 6) was amplified from the sections by using nested polymerase chain reaction (PCR). Subsequent single-strand conformation polymorphism (SSCP) assay and sequencing analysis revealed one point mutation in exon 6 (coden 193, C → A transition) from a UV-exposed skin sample, and seven point mutations in exon 5 (codens 146, 158, 150, 165, and 161, three C → T, two C → A, one C → G, and one A → T transition, respectively) from four SCTs, two SCCs and one UV-exposed skin sample. These experimental results demonstrate that alterations in the p53 gene are frequent events in chronic UV exposure-induced SCCs and later stage SCTs in Sencar mouse skin. 40 refs., 5 figs., 1 tab

  3. Abiraterone acetate, exemestane or the combination in postmenopausal patients with estrogen receptor-positive metastatic breast cancer.

    Science.gov (United States)

    O'Shaughnessy, J; Campone, M; Brain, E; Neven, P; Hayes, D; Bondarenko, I; Griffin, T W; Martin, J; De Porre, P; Kheoh, T; Yu, M K; Peng, W; Johnston, S

    2016-01-01

    Androgen receptor (AR) signaling and incomplete inhibition of estrogen signaling may contribute to metastatic breast cancer (MBC) resistance to a nonsteroidal aromatase inhibitor (NSAI; letrozole or anastrozole). We assessed whether combined inhibition of androgen biosynthesis with abiraterone acetate plus prednisone and estradiol synthesis with exemestane (E) may be of clinical benefit to postmenopausal patients with NSAI-pretreated estrogen receptor-positive (ER+) MBC. Patients (N = 297) were stratified by the number of prior therapies for metastatic disease (0-1 versus 2) and by prior NSAI use (adjuvant versus metastatic), and randomized (1 : 1 : 1) to receive oral once daily 1000 mg abiraterone acetate plus 5 mg prednisone (AA) versus AA with 25 mg E (AAE) versus 25 mg E alone (E). Each treatment arm was well balanced with regard to the proportion of patients with AR-positive breast cancer. The primary end point was progression-free survival (PFS). Secondary end points included overall survival, clinical benefit rate, duration of response, and overall response rate. There was no significant difference in PFS with AA versus E (3.7 versus 3.7 months; hazard ratio [HR] = 1.1; 95% confidence interval [CI] 0.82-1.60; P = 0.437) or AAE versus E (4.5 versus 3.7 months; HR = 0.96; 95% CI 0.70-1.32; P = 0.794). Increased serum progesterone concentrations were observed in both arms receiving AA, but not with E. Grade 3 or 4 treatment-emergent adverse events associated with AA, including hypokalemia and hypertension, were less common in patients in the E (2.0% and 2.9%, respectively) and AA arms (3.4% and 1.1%, respectively) than in the AAE arm (5.8% for both). Adding AA to E in NSAI-pretreated ER+ MBC patients did not improve PFS compared with treatment with E. An AA-induced progesterone increase may have contributed to this lack of clinical activity. NCT01381874. © The Author 2015. Published by Oxford University Press on behalf of the European Society for Medical

  4. Abiraterone acetate, exemestane or the combination in postmenopausal patients with estrogen receptor-positive metastatic breast cancer†

    Science.gov (United States)

    O'Shaughnessy, J.; Campone, M.; Brain, E.; Neven, P.; Hayes, D.; Bondarenko, I.; Griffin, T. W.; Martin, J.; De Porre, P.; Kheoh, T.; Yu, M. K.; Peng, W.; Johnston, S.

    2016-01-01

    Background Androgen receptor (AR) signaling and incomplete inhibition of estrogen signaling may contribute to metastatic breast cancer (MBC) resistance to a nonsteroidal aromatase inhibitor (NSAI; letrozole or anastrozole). We assessed whether combined inhibition of androgen biosynthesis with abiraterone acetate plus prednisone and estradiol synthesis with exemestane (E) may be of clinical benefit to postmenopausal patients with NSAI-pretreated estrogen receptor-positive (ER+) MBC. Patients and methods Patients (N = 297) were stratified by the number of prior therapies for metastatic disease (0–1 versus 2) and by prior NSAI use (adjuvant versus metastatic), and randomized (1 : 1 : 1) to receive oral once daily 1000 mg abiraterone acetate plus 5 mg prednisone (AA) versus AA with 25 mg E (AAE) versus 25 mg E alone (E). Each treatment arm was well balanced with regard to the proportion of patients with AR-positive breast cancer. The primary end point was progression-free survival (PFS). Secondary end points included overall survival, clinical benefit rate, duration of response, and overall response rate. Results There was no significant difference in PFS with AA versus E (3.7 versus 3.7 months; hazard ratio [HR] = 1.1; 95% confidence interval [CI] 0.82–1.60; P = 0.437) or AAE versus E (4.5 versus 3.7 months; HR = 0.96; 95% CI 0.70–1.32; P = 0.794). Increased serum progesterone concentrations were observed in both arms receiving AA, but not with E. Grade 3 or 4 treatment-emergent adverse events associated with AA, including hypokalemia and hypertension, were less common in patients in the E (2.0% and 2.9%, respectively) and AA arms (3.4% and 1.1%, respectively) than in the AAE arm (5.8% for both). Conclusions Adding AA to E in NSAI-pretreated ER+ MBC patients did not improve PFS compared with treatment with E. An AA-induced progesterone increase may have contributed to this lack of clinical activity. ClinicalTrials.gov NCT01381874. PMID:26504153

  5. In silico study of curcumol, curcumenol, isocurcumenol, and β-sitosterol as potential inhibitors of estrogen receptor alpha of breast cancer

    Directory of Open Access Journals (Sweden)

    Resmi Mustarichiei

    2014-03-01

    Full Text Available Background: Based on data from the Hospital Information System (HIS in 2007, breast cancer is the top ranked diagnosed cancer in Indonesia. Estrogen receptor alpha (ERα is associated with breast cancer because it is found in high levels in cancer tissues. Curcumol, curcumenol, isocurcumenol of white tumeric rhizomes (Curcuma zedoaria (Christm. Roscoe, and β-sitosterol from seeds of pumpkin (Cucurbita pepo L. have been reported to have inhibitory activity against cancer cells. This study presents the in silico study of these compounds as inhibitors of ERα.Methods: Docking simulations are carried out in this paper to visualize molecular-level interactions between the four compounds with ERα. Docking simulations between estradiol and tamoxifen on ERα are carried out as well.Results: Docking results indicated that curcumol, curcumenol, isocurcumenol, and β-sitosterol showed inhibitory activity againts estrogen receptor alpha (ERα.  The order of potency is shown consecutively by isocurcumenol, curcumol, curcumenol, and β-sitosterol with values 0.584 M, 1.36 M, 1.61 M, and 7.35 M respectively. Curcumenol and estradiol interacts with ERα through hydrogen bonds and hydrophobic interactions, whereas curcumol, isocurcumenol, β-sitosterol and tamoxifen through hydrophobic interactions in succession. Conclusion: Natural products containing all four compounds have the potential to be used as drugs or adjuvant drugs in breast cancer therapy.Keywords: β-sitosterol, breast cancer, curcumol, curcumenol, estradiol, ERα, isocurcumenol

  6. Selectivity of Pinus sylvestris extract and essential oil to estrogen-insensitive breast cancer cells Pinus sylvestris against cancer cells.

    Science.gov (United States)

    Hoai, Nguyen Thi; Duc, Ho Viet; Thao, Do Thi; Orav, Anne; Raal, Ain

    2015-10-01

    So far, the anticancer action of pine tree extracts has mainly been shown for the species distributed widely around the Asian countries. Therefore, this study was performed to examine the potential cytotoxicity of Scots pine (Pinus sylvestris L.) native also to the European region and growing widely in Estonia. The cytotoxic activity of methanol extract and essential oil of Scots pine needles was determined by sulforhodamine B assay in different human cancer cell lines. This needle extract was found to suppress the viability of several human cancer cell lines showing some selectivity to estrogen receptor negative breast cancer cells, MDA-MB-231(half maximal inhibitory concentration [IC50] 35 μg/ml) in comparison with estrogen receptor-positive breast cancer cells, MCF-7 (IC50 86 μg/ml). It is the strongest cytotoxic effect at all measured, thus far for the needles and leaves extracts derived from various pine species, and is also the first study comparing the anticancer effects of pine tree extracts on molecularly different human breast cancer cells. The essential oil showed the stronger cytotoxic effect to both negative and positive breast cancer cell lines (both IC50 29 μg/ml) than pine extract (IC50 42 and 80 μg/ml, respectively). The data from this report indicate that Scots pine needles extract and essential oil exhibits some potential as chemopreventive or chemotherapeutic agent for mammary tumors unresponsive to endocrine treatment.

  7. Global analysis of estrogen receptor beta binding to breast cancer cell genome reveals an extensive interplay with estrogen receptor alpha for target gene regulation

    Directory of Open Access Journals (Sweden)

    Papa Maria

    2011-01-01

    Full Text Available Abstract Background Estrogen receptors alpha (ERα and beta (ERβ are transcription factors (TFs that mediate estrogen signaling and define the hormone-responsive phenotype of breast cancer (BC. The two receptors can be found co-expressed and play specific, often opposite, roles, with ERβ being able to modulate the effects of ERα on gene transcription and cell proliferation. ERβ is frequently lost in BC, where its presence generally correlates with a better prognosis of the disease. The identification of the genomic targets of ERβ in hormone-responsive BC cells is thus a critical step to elucidate the roles of this receptor in estrogen signaling and tumor cell biology. Results Expression of full-length ERβ in hormone-responsive, ERα-positive MCF-7 cells resulted in a marked reduction in cell proliferation in response to estrogen and marked effects on the cell transcriptome. By ChIP-Seq we identified 9702 ERβ and 6024 ERα binding sites in estrogen-stimulated cells, comprising sites occupied by either ERβ, ERα or both ER subtypes. A search for TF binding matrices revealed that the majority of the binding sites identified comprise one or more Estrogen Response Element and the remaining show binding matrixes for other TFs known to mediate ER interaction with chromatin by tethering, including AP2, E2F and SP1. Of 921 genes differentially regulated by estrogen in ERβ+ vs ERβ- cells, 424 showed one or more ERβ site within 10 kb. These putative primary ERβ target genes control cell proliferation, death, differentiation, motility and adhesion, signal transduction and transcription, key cellular processes that might explain the biological and clinical phenotype of tumors expressing this ER subtype. ERβ binding in close proximity of several miRNA genes and in the mitochondrial genome, suggests the possible involvement of this receptor in small non-coding RNA biogenesis and mitochondrial genome functions. Conclusions Results indicate that the

  8. Catechol-O-methyltransferase Val 108/158 Met polymorphism and breast cancer risk: a case control study in Syria.

    Science.gov (United States)

    Lajin, Bassam; Hamzeh, Abdul Rezzak; Ghabreau, Lina; Mohamed, Ali; Al Moustafa, Ala-Eddin; Alachkar, Amal

    2013-01-01

    Catechol-O-methyltransferase (COMT) inactivates catechol estrogens by methylation and thus may play a protective role against mutations induced by estrogen metabolites. In this study we investigated the relationship between the Vall58Met polymorphism in the COMT gene and breast cancer risk in a population-based case control study in Syria. We examined 135 breast cancer patients and 107 healthy controls in North Syria to determine the association between the functional genetic Val158Met polymorphism in the COMT gene and female breast cancer risk. There was no significant overall association between the COMT genotype and individual susceptibility to breast cancer. Our data suggest that there may be no overall association between the COMT genotype and breast cancer.

  9. Differential and directional estrogenic signaling pathways induced by enterolignans and their precursors.

    Directory of Open Access Journals (Sweden)

    Yun Zhu

    Full Text Available Mammalian lignans or enterolignans are metabolites of plant lignans, an important category of phytochemicals. Although they are known to be associated with estrogenic activity, cell signaling pathways leading to specific cell functions, and especially the differences among lignans, have not been explored. We examined the estrogenic activity of enterolignans and their precursor plant lignans and cell signaling pathways for some cell functions, cell cycle and chemokine secretion. We used DNA microarray-based gene expression profiling in human breast cancer MCF-7 cells to examine the similarities, as well as the differences, among enterolignans, enterolactone and enterodiol, and their precursors, matairesinol, pinoresinol and sesamin. The profiles showed moderate to high levels of correlation (R values: 0.44 to 0.81 with that of estrogen (17β-estradiol or E2. Significant correlations were observed among lignans (R values: 0.77 to 0.97, and the correlations were higher for cell functions related to enzymes, signaling, proliferation and transport. All the enterolignans/precursors examined showed activation of the Erk1/2 and PI3K/Akt pathways, indicating the involvement of rapid signaling through the non-genomic estrogen signaling pathway. However, when their effects on specific cell functions, cell cycle progression and chemokine (MCP-1 secretion were examined, positive effects were observed only for enterolactone, suggesting that signals are given in certain directions at a position closer to cell functions. We hypothesized that, while estrogen signaling is initiated by the enterolignans/precursors examined, their signals are differentially and directionally modulated later in the pathways, resulting in the differences at the cell function level.

  10. The Circadian Rhythm Gene Arntl2 Is a Metastasis Susceptibility Gene for Estrogen Receptor-Negative Breast Cancer.

    Directory of Open Access Journals (Sweden)

    Ngoc-Han Ha

    2016-09-01

    Full Text Available Breast cancer mortality is primarily due to metastasis rather than primary tumors, yet relatively little is understood regarding the etiology of metastatic breast cancer. Previously, using a mouse genetics approach, we demonstrated that inherited germline polymorphisms contribute to metastatic disease, and that these single nucleotide polymorphisms (SNPs could be used to predict outcome in breast cancer patients. In this study, a backcross between a highly metastatic (FVB/NJ and low metastatic (MOLF/EiJ mouse strain identified Arntl2, a gene encoding a circadian rhythm transcription factor, as a metastasis susceptibility gene associated with progression, specifically in estrogen receptor-negative breast cancer patients. Integrated whole genome sequence analysis with DNase hypersensitivity sites reveals SNPs in the predicted promoter of Arntl2. Using CRISPR/Cas9-mediated substitution of the MOLF promoter, we demonstrate that the SNPs regulate Arntl2 transcription and affect metastatic burden. Finally, analysis of SNPs associated with ARNTL2 expression in human breast cancer patients revealed reproducible associations of ARNTL2 expression quantitative trait loci (eQTL SNPs with disease-free survival, consistent with the mouse studies.

  11. The Immunoexpression of Glucocorticoid Receptors in Breast Carcinomas, Lactational Change, and Normal Breast Epithelium and Its Possible Role in Mammary Carcinogenesis

    Directory of Open Access Journals (Sweden)

    Raja Alyusuf

    2017-01-01

    Full Text Available The role of estrogen and progesterone receptors in breast cancer biology is well established. In contrast, other steroid hormones are less well studied. Glucocorticoids (GCs are known to play a role in mammary development and differentiation; thus, it is of interest to attempt to delineate their immunoexpression across a spectrum of mammary epithelia. Aim. To delineate the distribution pattern of glucocorticoid receptors (GRs in malignant versus nonmalignant epithelium with particular emphasis on lactational epithelium. Materials and Methods. Immunohistochemistry (IHC for GRs was performed on archival formalin-fixed paraffin-embedded tissue blocks of 96 cases comprising 52 invasive carcinomas, 21 cases with lactational change, and 23 cases showing normal mammary tissue histology. Results. Results reveal an overexpression of GRs in mammary malignant epithelium as compared to both normal and lactational groups individually and combined. GR overexpression is significantly more pronounced in HER-2-negative cancers. Discussion. This is the first study to compare GR expression in human lactating epithelium versus malignant and normal epithelium. The article discusses the literature related to the pathobiology of GCs in the breast with special emphasis on breast cancer. Conclusion. The lactational epithelium did not show overexpression of GR, while GR was overexpressed in mammary NST (ductal carcinoma, particularly HER-2-negative cancers.

  12. Breast cancer in atomic bomb survivors

    International Nuclear Information System (INIS)

    Tokunaga, Masayoshi; Tokuoka, Shoji; Land, C.E.

    1986-01-01

    Thirty eight years after the atomic bombings, studies of the Radiation Effects Research Foundation (RERF) on the extended Life Span Study (LSS) sample have continued to provide important information on radiation carcinogenesis. The third breast cancer survey among this sample revealed 564 cases during the period 1950 - 80, of which 412 were reviewed microscopically. The following statements reflect the conclusions from the current investigation; 1) the relationship between radiation dose and breast cancer incidence was consistent with linearity and did not differ markedly between the Hiroshima and Nagasaki survivors, 2) a dose-related breast cancer risk was observed among women who were in their first decade of life at the time of exposure, 3) the relative risk of radiation-induced breast cancer decreased with increasing age at exposure, 4) the pattern over time of age-specific breast cancer incidence is similar for exposed and control women (that is, exposed women have more breast cancer than control women but the excess risk closely follows normal risk as expressed by age-specific population rates), and 5) radiation-induced breast cancer appears to be morphologically similar to other breast cancer. (author)

  13. Chemopreventive effect of Cynodon dactylon (L.) Pers. extract against DMH-induced colon carcinogenesis in experimental animals.

    Science.gov (United States)

    Albert-Baskar, Arul; Ignacimuthu, Savarimuthu

    2010-07-01

    The present study was aimed at evaluating the chemopreventive property of Cynodon dactylon. The antioxidant, antiproliferative and apoptotic potentials of the plant were investigated by 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay, nitric oxide radical scavenging activity (NO(-)) and MTT assay on four cancer cell lines (COLO 320 DM, MCH-7, AGS, A549) and a normal cell line (VERO). In vivo chemopreventive property of the plant extract was studied in DMH-induced colon carcinogenesis. The methanolic extract of C. dactylon was found to be antiproliferative and antioxidative at lower concentrations and induced apoptotic cell death in COLO 320 DM cells. Treatment with methanolic extract of C. dactylon increased the levels of antioxidant enzymes and reduced the number of dysplastic crypts in DMH-induced colon of albino rats. The present investigation revealed the anticancer potential of methanolic extract of C. dactylon in COLO 320 DM cells and experimentally induced colon carcinogenesis in rats.

  14. The Role of Oxidative Stress in Carcinogenesis Induced by Metals and Xenobiotics

    International Nuclear Information System (INIS)

    Henkler, Frank; Brinkmann, Joep; Luch, Andreas

    2010-01-01

    In addition to a wide range of adverse effects on human health, toxic metals such as cadmium, arsenic and nickel can also promote carcinogenesis. The toxicological properties of these metals are partly related to generation of reactive oxygen species (ROS) that can induce DNA damage and trigger redox-dependent transcription factors. The precise mechanisms that induce oxidative stress are not fully understood. Further, it is not yet known whether chronic exposures to low doses of arsenic, cadmium or other metals are sufficient to induce mutations in vivo, leading to DNA repair responses and/or tumorigenesis. Oxidative stress can also be induced by environmental xenobiotics, when certain metabolites are generated that lead to the continuous release of superoxide, as long as the capacity to reduce the resulting dions (quinones) into hydroquinones is maintained. However, the specific significance of superoxide-dependent pathways to carcinogenesis is often difficult to address, because formation of DNA adducts by mutagenic metabolites can occur in parallel. Here, we will review both mechanisms and toxicological consequences of oxidative stress triggered by metals and dietary or environmental pollutants in general. Besides causing DNA damage, ROS may further induce multiple intracellular signaling pathways, notably NF-κB, JNK/SAPK/p38, as well as Erk/MAPK. These signaling routes can lead to transcriptional induction of target genes that could promote proliferation or confer apoptosis resistance to exposed cells. The significance of these additional modes depends on tissue, cell-type and is often masked by alternate oncogenic mechanisms being activated in parallel

  15. The combination of Ki67, histological grade and estrogen receptor status identifies a low-risk group among 1,854 chemo-naïve women with N0/N1 primary breast cancer

    DEFF Research Database (Denmark)

    Strand, Carina; Bak, Martin; Borgquist, Signe

    2013-01-01

    The aim was to confirm a previously defined prognostic index, combining a proliferation marker, histological grade, and estrogen receptor (ER) in different subsets of primary N0/N1 chemo-naïve breast cancer patients.......The aim was to confirm a previously defined prognostic index, combining a proliferation marker, histological grade, and estrogen receptor (ER) in different subsets of primary N0/N1 chemo-naïve breast cancer patients....

  16. APOBEC3B-Mediated Cytidine Deamination Is Required for Estrogen Receptor Action in Breast Cancer

    Directory of Open Access Journals (Sweden)

    Manikandan Periyasamy

    2015-10-01

    Full Text Available Estrogen receptor α (ERα is the key transcriptional driver in a large proportion of breast cancers. We report that APOBEC3B (A3B is required for regulation of gene expression by ER and acts by causing C-to-U deamination at ER binding regions. We show that these C-to-U changes lead to the generation of DNA strand breaks through activation of base excision repair (BER and to repair by non-homologous end-joining (NHEJ pathways. We provide evidence that transient cytidine deamination by A3B aids chromatin modification and remodelling at the regulatory regions of ER target genes that promotes their expression. A3B expression is associated with poor patient survival in ER+ breast cancer, reinforcing the physiological significance of A3B for ER action.

  17. Expression of Estrogen and Progesterone Receptors among ...

    African Journals Online (AJOL)

    Study design: This is a descriptive study to detect the level of Estrogen (ER) and Progesterone (PR) receptors in a sample of biopsies from Sudanese women with breast cancer presented at Khartoum teaching Hospital Material and Methods: Forty biopsies from breast cancer patients were examined with immunostaining

  18. Relationship between variant forms of estrogen receptor RNA and an apoptosis-related RNA, TRPM-2, with survival in patients with breast cancer.

    Science.gov (United States)

    Rennie, P S; Mawji, N R; Coldman, A J; Godolphin, W; Jones, E C; Vielkind, J R; Bruchovsky, N

    1993-12-15

    Although smaller variant forms of estrogen receptor (ER) messenger RNA (mRNA) have been detected in breast tumors, neither their prevalence nor their prognostic significance have been evaluated. Similarly, TRPM-2 mRNA, the product of a gene induced principally during the onset of apoptosis, is present in mouse and human breast cancer cell lines, but whether it also occurs in primary breast tumors and is related to disease outcome is unknown. The relative expression and transcript size of ER mRNA and TRPM-2 mRNA in 126 primary breast tumors were measured by Northern analysis and compared with tumor grade, hormone receptor status, extent of tumor necrosis, and survival. In ER-positive tumors, 64% of the tumors had only the normal 6.5 kb ER mRNA, an additional 9% had the normal plus smaller ER mRNA, and 2% had variant forms. Only 8% of ER-negative tumors had ER mRNA transcripts. There were significant relationships between the occurrence of ER mRNA and low tumor grade, ER-positive receptor status, and better survival. In contrast, TRPM-2 mRNA was found in only 17% of breast tumors, none of which could be grouped with respect to grade, hormone receptor status, or survival. The presence of smaller variant forms of ER mRNA either alone or in association with the normal ER transcript is not indicative of an unfavorable prognosis, whereas TRPM-2 mRNA occurs in many primary breast tumors, but has no apparent relationship to survival.

  19. Puerariae radix isoflavones and their metabolites inhibit growth and induce apoptosis in breast cancer cells

    International Nuclear Information System (INIS)

    Lin, Y.-J.; Hou, Y.C.; Lin, C.-H.; Hsu, Y.-A.; Sheu, Jim J.C.; Lai, C.-H.; Chen, B.-H.; Lee Chao, Pei-Dawn; Wan Lei; Tsai, F.-J.

    2009-01-01

    Puerariae radix (PR) is a popular natural herb and a traditional food in Asia, which has antithrombotic and anti-allergic properties and stimulates estrogenic activity. In the present study, we investigated the effects of the PR isoflavones puerarin, daidzein, and genistein on the growth of breast cancer cells. Our data revealed that after treatment with PR isoflavones, a dose-dependent inhibition of cell growth occurred in HS578T, MDA-MB-231, and MCF-7 cell lines. Results from cell cycle distribution and apoptosis assays revealed that PR isoflavones induced cell apoptosis through a caspase-3-dependent pathway and mediated cell cycle arrest in the G2/M phase. Furthermore, we observed that the serum metabolites of PR (daidzein sulfates/glucuronides) inhibited proliferation of the breast cancer cells at a 50% cell growth inhibition (GI 50 ) concentration of 2.35 μM. These results indicate that the daidzein constituent of PR can be metabolized to daidzein sulfates or daidzein glucuronides that exhibit anticancer activities. The protein expression levels of the active forms of caspase-9 and Bax in breast cancer cells were significantly increased by treatment with PR metabolites. These metabolites also increased the protein expression levels of p53 and p21. We therefore suggest that PR may act as a chemopreventive and/or chemotherapeutic agent against breast cancer by reducing cell viability and inducing apoptosis.

  20. Chemoprevention by Probiotics During 1,2-Dimethylhydrazine-Induced Colon Carcinogenesis in Rats.

    Science.gov (United States)

    Walia, Sohini; Kamal, Rozy; Dhawan, D K; Kanwar, S S

    2018-04-01

    Probiotics are believed to have properties that lower the risk of colon cancer. However, the mechanisms by which they exert their beneficial effects are relatively unknown. To assess the impact of probiotics in preventing induction of colon carcinogenesis in rats. The rats were divided into six groups viz., normal control, Lactobacillus plantarum (AdF10)-treated, Lactobacillus rhamnosus GG (LGG)-treated, 1,2-dimethylhydrazine (DMH)-treated, L. plantarum (AdF10) + DMH-treated and L. rhamnosus GG (LGG) + DMH-treated. Both the probiotics were supplemented daily at a dose of 2 × 10 10 cells per day. DMH at a dose of 30 mg/kg body weight was administered subcutaneously twice a week for the first 4 weeks and then once every week for a duration of 16 weeks. Glutathione (GSH), superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR), glutathione peroxidase (GPx), glutathione-S-transferase (GST) and catalase as protein expression of genes involved in apoptosis were assessed during DMH-induced colon carcinogenesis in rats. DMH treatment decreased the activity of GSH, GPx, GST, SOD and catalase. However, AdF10 and LGG supplementation to DMH-treated rats significantly increased the activity of these enzymes. Further, DMH treatment revealed alterations in the protein expressions of various genes involved in the p53-mediated apoptotic pathway such as p53, p21, Bcl-2, Bax, caspase-9 and caspase-3, which, however, were shifted towards normal control levels upon simultaneous supplementation with probiotics. The present study suggests that probiotics can provide protection against oxidative stress and apoptotic-related protein disregulation during experimentally induced colon carcinogenesis.

  1. 9-cis-retinoic acid represses estrogen-induced expression of the very low density apolipoprotein II gene.

    Science.gov (United States)

    Schippers, I J; Kloppenburg, M; Snippe, L; Ab, G

    1994-11-01

    The chicken very low density apolipoprotein II (apoVLDLII) gene is estrogen-inducible and specifically expressed in liver. We examined the possible involvement of the retinoid X receptor (RXR) and its ligand 9-cis-retinoic acid (9-cis-RA) in the activation of the apoVLDLII promoter. We first concentrated on a potential RXR recognition site, which deviates at only one position from a perfect direct A/GGGTCA repeat spaced by one nucleotide (DR-1) and was earlier identified as a common HNF-4/COUP-TF recognition site. However, band shift analysis revealed that this imperfect DR-1 motif does not interact with RXR alpha-homodimers. In accordance with this observation we found that this regulatory element does not mediate transactivation through RXR alpha in the presence of 9-cis-RA. However, our experiments revealed another, unexpected, effect of 9-cis-RA. Instead of stimulating, 9-cis-RA attenuated estrogen-induced expression of transfected estrogen-responsive VLDL-CAT reporter plasmids. This repression appeared to take place through the main estrogen response element (ERE) of the gene. Importantly, 9-cis-RA also strongly repressed the estrogen-induced expression of the endogenous apoVLDLII gene in cultured chicken hepatoma cells.

  2. Isolation of linoleic acid as an estrogenic compound from the fruits of Vitex agnus-castus L. (chaste-berry).

    Science.gov (United States)

    Liu, J; Burdette, J E; Sun, Y; Deng, S; Schlecht, S M; Zheng, W; Nikolic, D; Mahady, G; van Breemen, R B; Fong, H H S; Pezzuto, J M; Bolton, J L; Farnsworth, N R

    2004-01-01

    A methanol extract of chaste-tree berry (Vitex agnus-castus L.) was tested for its ability to displace radiolabeled estradiol from the binding site of estrogen receptors alpha (ERalpha) and beta (ERbeta). The extract at 46 +/- 3 microg/ml displaced 50% of estradiol from ERalpha and 64 +/- 4 microg/ml from ERbeta. Treatment of the ER+ hormone-dependent T47D:A18 breast cancer cell line with the extract induced up-regulation of ERbeta mRNA. Progesterone receptor (PR) mRNA was upregulated in the Ishikawa endometrial cancer cell line. However, chaste-tree berry extract did not induce estrogen-dependent alkaline phosphatase (AP) activity in Ishikawa cells. Bioassay-guided isolation, utilizing ER binding as a monitor, resulted in the isolation of linoleic acid as one possible estrogenic component of the extract. The use of pulsed ultrafiltration liquid chromatography-mass spectrometry, which is an affinity-based screening technique, also identified linoleic acid as an ER ligand based on its selective affinity, molecular weight, and retention time. Linoleic acid also stimulated mRNA ERbeta expression in T47D:A18 cells, PR expression in Ishikawa cells, but not AP activity in Ishikawa cells. These data suggest that linoleic acid from the fruits of Vitex agnus-castus can bind to estrogen receptors and induce certain estrogen inducible genes.

  3. Estrogen switches pure mucinous breast cancer to invasive lobular carcinoma with mucinous features.

    Science.gov (United States)

    Jambal, Purevsuren; Badtke, Melanie M; Harrell, J Chuck; Borges, Virginia F; Post, Miriam D; Sollender, Grace E; Spillman, Monique A; Horwitz, Kathryn B; Jacobsen, Britta M

    2013-01-01

    Mucinous breast cancer (MBC) is mainly a disease of postmenopausal women. Pure MBC is rare and augurs a good prognosis. In contrast, MBC mixed with other histological subtypes of invasive disease loses the more favorable prognosis. Because of the relative rarity of pure MBC, little is known about its cell and tumor biology and relationship to invasive disease of other subtypes. We have now developed a human breast cancer cell line called BCK4, in which we can control the behavior of MBC. BCK4 cells were derived from a patient whose poorly differentiated primary tumor was treated with chemotherapy, radiation and tamoxifen. Malignant cells from a recurrent pleural effusion were xenografted in mammary glands of a nude mouse. Cells from the solid tumor xenograft were propagated in culture to generate the BCK4 cell line. Multiple marker and chromosome analyses demonstrate that BCK4 cells are human, near diploid and luminal, expressing functional estrogen, androgen, and progesterone receptors. When xenografted back into immunocompromised cycling mice, BCK4 cells grow into small pure MBC. However, if mice are supplemented with continuous estradiol, tumors switch to invasive lobular carcinoma (ILC) with mucinous features (mixed MBC), and growth is markedly accelerated. Tamoxifen prevents the expansion of this more invasive component. The unexpected ability of estrogens to convert pure MBC into mixed MBC with ILC may explain the rarity of the pure disease in premenopausal women. These studies show that MBC can be derived from lobular precursors and that BCK4 cells are new, unique models to study the phenotypic plasticity, hormonal regulation, optimal therapeutic interventions, and metastatic patterns of MBC.

  4. Biological Complexities in Radiation Carcinogenesis and Cancer Radiotherapy: Impact of New Biological Paradigms

    Directory of Open Access Journals (Sweden)

    Hossein Mozdarani

    2012-01-01

    Full Text Available Although radiation carcinogenesis has been shown both experimentally and epidemiologically, the use of ionizing radiation is also one of the major modalities in cancer treatment. Various known cellular and molecular events are involved in carcinogenesis. Apart from the known phenomena, there could be implications for carcinogenesis and cancer prevention due to other biological processes such as the bystander effect, the abscopal effect, intrinsic radiosensitivity and radioadaptation. Bystander effects have consequences for mutation initiated cancer paradigms of radiation carcinogenesis, which provide the mechanistic justification for low-dose risk estimates. The abscopal effect is potentially important for tumor control and is mediated through cytokines and/or the immune system (mainly cell-mediated immunity. It results from loss of growth and stimulatory and/or immunosuppressive factors from the tumor. Intrinsic radiosensitivity is a feature of some cancer prone chromosomal breakage syndromes such as ataxia telangectiasia. Radiosensitivity is manifested as higher chromosomal aberrations and DNA repair impairment is now known as a good biomarker for breast cancer screening and prediction of prognosis. However, it is not yet known whether this effect is good or bad for those receiving radiation or radiomimetic agents for treatment. Radiation hormesis is another major concern for carcinogenesis. This process which protects cells from higher doses of radiation or radio mimic chemicals, may lead to the escape of cells from mitotic death or apoptosis and put cells with a lower amount of damage into the process of cancer induction. Therefore, any of these biological phenomena could have impact on another process giving rise to genome instability of cells which are not in the field of radiation but still receiving a lower amount of radiation. For prevention of radiation induced carcinogenesis or risk assessment as well as for successful radiation

  5. Baicalein suppresses 17-β-estradiol-induced migration, adhesion and invasion of breast cancer cells via the G protein-coupled receptor 30 signaling pathway.

    Science.gov (United States)

    Shang, Dandan; Li, Zheng; Zhu, Zhuxia; Chen, Huamei; Zhao, Lujun; Wang, Xudong; Chen, Yan

    2015-04-01

    Flavonoids are structurally similar to steroid hormones, particularly estrogens, and therefore have been studied for their potential effects on hormone-dependent cancers. Baicalein is the primary flavonoid derived from the root of Scutellaria baicalensis Georgi. In the present study, we investigated the effects of baicalein on 17β-estradiol (E2)-induced migration, adhesion and invasion of MCF-7 and SK-BR-3 breast cancer cells. The results demonstrated that baicalein suppressed E2-stimulated wound-healing migration and cell‑Matrigel adhesion, and ameliorated E2-promoted invasion across a Matrigel-coated Transwell membrane. Furthermore, baicalein interfered with E2-induced novel G protein-coupled estrogen receptor (GPR30)-related signaling, including a decrease in tyrosine phosphorylation of epidermal growth factor receptor (EGFR) as well as phosphorylation of extracellular signal-regulated kinase (ERK) and serine/threonine kinase Akt, without affecting GPR30 expression. The results also showed that baicalein suppressed the expression of GPR30 target genes, cysteine-rich 61 (CYR61) and connective tissue growth factor (CTGF) induced by E2. Furthermore, baicalein prevented GPR30-related signaling activation and upregulation of CYR61 and CTGF mRNA levels induced by G1, a specific GPR 30 agonist. The results suggest that baicalein inhibits E2-induced migration, adhesion and invasion through interfering with GPR30 signaling pathway activation, which indicates that it may act as a therapeutic candidate for the treatment of GPR30-positive breast cancer metastasis.

  6. Experimental photoimmunology: immunologic ramifications of UV-induced carcinogenesis

    International Nuclear Information System (INIS)

    Daynes, R.A.; Bernhard, E.J.; Gurish, M.F.; Lynch, D.H.

    1981-01-01

    The use of animal model systems to investigate the sequence of events which lead to the induction and progression of skin tumors following chronic ultraviolet light (UVL) exposure has clearly shown that the direct mutagenic effects of UVL is only one of the components involved in this process. In spite of the fact that overt carcinogenesis is only one of the many effects produced by UV light, most hypotheses as to the mechanism by which UVL can cause the mutations necessary to achieve the transformed phenotype have focused on the direct effects of UVL on DNA and the generation of carcinogenic compounds. Investigations during the last 5 yr, however, have clearly demonstrated that immunologic factors are also critically important in the pathogenesis of UV-induced skin cancers. A complete understanding of UV-carcinogenesis must therefore consider the mechanisms which allow the transformed cell to evade immunologic rejection by the host in addition to those aspects which deal with conversion of a normal cell to a cancer cell. It is the object of this review to provide both a historical account of the work which established the immunologic consequences of chronic UVL exposure and the results of recent experiments designed to investigate the kinetics and mechanisms by which UVL affects the immunologic apparatus. In addition, a hypothetical model is presented to explain the sequence of events which ultimately lead to the emergence of the suppressor T-cells which regulate antitumor immune responses

  7. CHL1 is involved in human breast tumorigenesis and progression

    Energy Technology Data Exchange (ETDEWEB)

    He, Li-Hong [Medical Department of Breast Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin (China); Key Laboratory of Breast Cancer Prevention and Treatment of the Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, Tianjin (China); Ma, Qin [Department of Oncology, The General Hospital of Tianjin Medical University, Tianjin (China); Shi, Ye-Hui [Medical Department of Breast Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin (China); Key Laboratory of Breast Cancer Prevention and Treatment of the Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, Tianjin (China); Ge, Jie; Zhao, Hong-Meng [Key Laboratory of Breast Cancer Prevention and Treatment of the Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, Tianjin (China); Breast Surgery, Tianjin Medical University Cancer Institute and Hospital, Tianjin (China); Li, Shu-Fen [Medical Department of Breast Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin (China); Key Laboratory of Breast Cancer Prevention and Treatment of the Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, Tianjin (China); Tong, Zhong-Sheng, E-mail: 83352162@qq.com [Medical Department of Breast Oncology, Tianjin Medical University Cancer Institute and Hospital, Tianjin (China); Key Laboratory of Breast Cancer Prevention and Treatment of the Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, Tianjin (China)

    2013-08-23

    Highlights: •CHL1 is down-regulation in breast cancer tissues. •Down-regulation of CHL1 is related to high grade. •Overexpression of CHL1 inhibits breast cancer cell proliferation and invasion in vitro. •CHL1 deficiency induces breast cancer cell proliferation and invasion both in vitro and in vivo. -- Abstract: Neural cell adhesion molecules (CAM) play important roles in the development and regeneration of the nervous system. The L1 family of CAMs is comprised of L1, Close Homolog of L1 (CHL1, L1CAM2), NrCAM, and Neurofascin, which are structurally related trans-membrane proteins in vertebrates. Although the L1CAM has been demonstrated play important role in carcinogenesis and progression, the function of CHL1 in human breast cancer is limited. Here, we found that CHL1 is down-regulated in human breast cancer and related to lower grade. Furthermore, overexpression of CHL1 suppresses proliferation and invasion in MDA-MB-231 cells and knockdown of CHL1 expression results in increased proliferation and invasion in MCF7 cells in vitro. Finally, CHL1 deficiency promotes tumor formation in vivo. Our results may provide a strategy for blocking breast carcinogenesis and progression.

  8. CHL1 is involved in human breast tumorigenesis and progression

    International Nuclear Information System (INIS)

    He, Li-Hong; Ma, Qin; Shi, Ye-Hui; Ge, Jie; Zhao, Hong-Meng; Li, Shu-Fen; Tong, Zhong-Sheng

    2013-01-01

    Highlights: •CHL1 is down-regulation in breast cancer tissues. •Down-regulation of CHL1 is related to high grade. •Overexpression of CHL1 inhibits breast cancer cell proliferation and invasion in vitro. •CHL1 deficiency induces breast cancer cell proliferation and invasion both in vitro and in vivo. -- Abstract: Neural cell adhesion molecules (CAM) play important roles in the development and regeneration of the nervous system. The L1 family of CAMs is comprised of L1, Close Homolog of L1 (CHL1, L1CAM2), NrCAM, and Neurofascin, which are structurally related trans-membrane proteins in vertebrates. Although the L1CAM has been demonstrated play important role in carcinogenesis and progression, the function of CHL1 in human breast cancer is limited. Here, we found that CHL1 is down-regulated in human breast cancer and related to lower grade. Furthermore, overexpression of CHL1 suppresses proliferation and invasion in MDA-MB-231 cells and knockdown of CHL1 expression results in increased proliferation and invasion in MCF7 cells in vitro. Finally, CHL1 deficiency promotes tumor formation in vivo. Our results may provide a strategy for blocking breast carcinogenesis and progression

  9. Epidermal Rac1 regulates the DNA damage response and protects from UV-light-induced keratinocyte apoptosis and skin carcinogenesis

    Science.gov (United States)

    Deshmukh, Jayesh; Pofahl, Ruth; Haase, Ingo

    2017-01-01

    Non-melanoma skin cancer (NMSC) is the most common type of cancer. Increased expression and activity of Rac1, a small Rho GTPase, has been shown previously in NMSC and other human cancers; suggesting that Rac1 may function as an oncogene in skin. DMBA/TPA skin carcinogenesis studies in mice have shown that Rac1 is required for chemically induced skin papilloma formation. However, UVB radiation by the sun, which causes DNA damage, is the most relevant cause for NMSC. A potential role of Rac1 in UV-light-induced skin carcinogenesis has not been investigated so far. To investigate this, we irradiated mice with epidermal Rac1 deficiency (Rac1-EKO) and their controls using a well-established protocol for long-term UV-irradiation. Most of the Rac1-EKO mice developed severe skin erosions upon long-term UV-irradiation, unlike their controls. These skin erosions in Rac1-EKO mice healed subsequently. Surprisingly, we observed development of squamous cell carcinomas (SCCs) within the UV-irradiation fields. This shows that the presence of Rac1 in the epidermis protects from UV-light-induced skin carcinogenesis. Short-term UV-irradiation experiments revealed increased UV-light-induced apoptosis of Rac1-deficient epidermal keratinocytes in vitro as well as in vivo. Further investigations using cyclobutane pyrimidine dimer photolyase transgenic mice revealed that the observed increase in UV-light-induced keratinocyte apoptosis in Rac1-EKO mice is DNA damage dependent and correlates with caspase-8 activation. Furthermore, Rac1-deficient keratinocytes showed reduced levels of p53, γ-H2AX and p-Chk1 suggesting an attenuated DNA damage response upon UV-irradiation. Taken together, our data provide direct evidence for a protective role of Rac1 in UV-light-induced skin carcinogenesis and keratinocyte apoptosis probably through regulating mechanisms of the DNA damage response and repair pathways. PMID:28277539

  10. Epidermal Rac1 regulates the DNA damage response and protects from UV-light-induced keratinocyte apoptosis and skin carcinogenesis.

    Science.gov (United States)

    Deshmukh, Jayesh; Pofahl, Ruth; Haase, Ingo

    2017-03-09

    Non-melanoma skin cancer (NMSC) is the most common type of cancer. Increased expression and activity of Rac1, a small Rho GTPase, has been shown previously in NMSC and other human cancers; suggesting that Rac1 may function as an oncogene in skin. DMBA/TPA skin carcinogenesis studies in mice have shown that Rac1 is required for chemically induced skin papilloma formation. However, UVB radiation by the sun, which causes DNA damage, is the most relevant cause for NMSC. A potential role of Rac1 in UV-light-induced skin carcinogenesis has not been investigated so far. To investigate this, we irradiated mice with epidermal Rac1 deficiency (Rac1-EKO) and their controls using a well-established protocol for long-term UV-irradiation. Most of the Rac1-EKO mice developed severe skin erosions upon long-term UV-irradiation, unlike their controls. These skin erosions in Rac1-EKO mice healed subsequently. Surprisingly, we observed development of squamous cell carcinomas (SCCs) within the UV-irradiation fields. This shows that the presence of Rac1 in the epidermis protects from UV-light-induced skin carcinogenesis. Short-term UV-irradiation experiments revealed increased UV-light-induced apoptosis of Rac1-deficient epidermal keratinocytes in vitro as well as in vivo. Further investigations using cyclobutane pyrimidine dimer photolyase transgenic mice revealed that the observed increase in UV-light-induced keratinocyte apoptosis in Rac1-EKO mice is DNA damage dependent and correlates with caspase-8 activation. Furthermore, Rac1-deficient keratinocytes showed reduced levels of p53, γ-H2AX and p-Chk1 suggesting an attenuated DNA damage response upon UV-irradiation. Taken together, our data provide direct evidence for a protective role of Rac1 in UV-light-induced skin carcinogenesis and keratinocyte apoptosis probably through regulating mechanisms of the DNA damage response and repair pathways.

  11. Enantioselective Effects of o,p'-DDT on Cell Invasion and Adhesion of Breast Cancer Cells: Chirality in Cancer Development.

    Science.gov (United States)

    He, Xiangming; Dong, Xiaowu; Zou, Dehong; Yu, Yang; Fang, Qunying; Zhang, Quan; Zhao, Meirong

    2015-08-18

    The o,p'-dichlorodiphenyltrichloroethane (DDT) with a chiral center possesses enantioselective estrogenic activity, in which R-(-)-o,p'-DDT exerts a more potent estrogenic effect than S-(+)-o,p'-DDT. Although concern regarding DDT exposure and breast cancer has increased in recent decades, the mode of enantioselective action of o,p'-DDT in breast cancer development is still unknown. Herein, we conducted a systematic study of the effect of o,p'-DDT on stereoselective breast tumor cell progression in a widely used in vitro breast tumor cell model, MCF-7 cells. We demonstrated that R-(-)-o,p'-DDT promoted more cancer cell invasion mediated by the human estrogen receptor (ER) by inducing invasion-promoted genes (matrix metalloproteinase-2 and -9 and human telomerase reverse transcriptase) and inhibiting invasion-inhibited genes (tissue inhibitor of metalloproteinase-1 and -4). Molecular docking verified that the binding affinity between R-(-)-o,p'-DDT and human ER was stronger than that of S-(+)-o,p'-DDT. The enantioselective-induced decrease in cell-to-cell adhesion may involve the downregulation of adhesion-promoted genes (E-cadherin and β-catenin). For the first time, these results reveal that estrogenic-like chiral compounds are of significant concern in the progression of human cancers and that human health risk assessment of chiral chemicals should consider enantioselectivity.

  12. 65Zn kinetics as a biomarker of DMH induced colon carcinogenesis

    International Nuclear Information System (INIS)

    Chadha, Vijayta Dani

    2012-01-01

    Dietary factors are considered crucial for the prevention of initiating events in the multistep progression of colon carcinoma. There is substantial evidence that zinc may play a pivotal role in host defense against several malignancies, including colon cancer. The present study was conducted to evaluate the kinetics of zinc utilization following experimental colon carcinogenesis in rat model. The rats were segregated into two groups viz., untreated control and DMH treated. Colon carcinogenesis was established through weekly subcutaneous injections of DMH (30mg/Kg body weight) for 16 weeks. Whole body 65 Zn kinetics followed two compartment kinetics, with Tb1 representing the initial fast component of the biological half-life and Tb2, the slower component. The present study revealed a significant depression in the Tb1 and Tb2 components of 65 Zn in DMH treated rats. Further, DMH treatment caused a significant increase in the percent uptake values of 65 Zn in the colon, small intestine, kidney and blood, whereas a significant decrease was observed in the liver. Subcellular distribution revealed a significant increase in 65 Zn uptake in the mitochondrial and microsomal fractions following 16 weeks of DMH supplementation. The present study demonstrated a slow mobilization of zinc during promotion of experimentally induced colon carcinogenesis and provides a physiological basis for the role of zinc in colon tumorigenesis, a paradigm which may have clinical implications in the management of colon cancer. (author)

  13. Effects of x irradiation on estrogen-induced synthetic processes of the avian liver

    International Nuclear Information System (INIS)

    Holshouser, S.J.; Schjeide, O.A.; Briles, W.E.

    1975-01-01

    Effects of x irradiation on protein and lipid synthesis were studied, using estrogen-induced yolk protein syntheses by the avian liver as a test model. Female chickens, receiving a single sublethal whole-body exposure of 600 R of x irradiation at 5 wk of age, laid fewer and smaller eggs upon reaching maturity as compared to nonirradiated controls. However, chemical contents and ultracentrifuge patterns of yolk proteins were not found to be qualitatively different. Accordingly, the synthesis of no one major yolk protein appeared to be selectively inhibited by exposure of the bird to irradiation. Injection of Estrogenic Substances into hens over a period of 3 days resulted in a much greater enlargement of livers in control estrogenized birds than in irradiated estrogenized birds. Differences were also ascertained to exist between control and irradiated birds in terms of total liver RNA. This would seem to indicate a greater potential for synthesis of serum yolk protein precursors in nonirradiated estrogenized hens. (U.S.)

  14. Potential of Anti Breast Cancer Black Ethanol Rice Extract (Oryza sativa L. indica In Decreasing Levels of CA 15-3 Serum in the White Mice Sprague dawley in Induction 7.12-Dimethylbenz (α Antracene (DMBA and Estrogen

    Directory of Open Access Journals (Sweden)

    Zanuar Abidin

    2017-01-01

    Full Text Available Breast cancer is cancer that has the high incidence in Indonesia. Black rice (Oryza sativa L. indica is a plant that has an anticancer potency. This research aim is to prove black rice as a potential anticancer by using experimental animals, 20 Sprague Dawley female rats aged 7-8 weeks induced breast cancer by using the combination of 7,12-dimethylbenz (α anthracene (DMBA and estrogen. Rats were divided into two groups, namely the K-induced breast cancer and a group of P-induced cancer and treated with black rice. Black rice is given in the form of ethanol extract at a dose of 75 mg / kg / day for six weeks. Levels of CA 15-3 serum are used as a parameter. The result showed that the differences in levels of serum CA 15-3 are significant (p <0.05. Serum CA 15-3 level in P group is lower than in K group. This study proved that the ethanol extract of black rice (Oryza sativa L. indica has potential as an anticancer breast as indicated by decreased level of serum CA 15-3

  15. In situ aromatase expression in primary tumor is associated with estrogen receptor expression but is not predictive of response to endocrine therapy in advanced breast cancer

    International Nuclear Information System (INIS)

    Lykkesfeldt, Anne E; Henriksen, Katrine L; Rasmussen, Birgitte B; Sasano, Hironobu; Evans, Dean B; Møller, Susanne; Ejlertsen, Bent; Mouridsen, Henning T

    2009-01-01

    New, third-generation aromatase inhibitors (AIs) have proven comparable or superior to the anti-estrogen tamoxifen for treatment of estrogen receptor (ER) and/or progesterone receptor (PR) positive breast cancer. AIs suppress total body and intratumoral estrogen levels. It is unclear whether in situ carcinoma cell aromatization is the primary source of estrogen production for tumor growth and whether the aromatase expression is predictive of response to endocrine therapy. Due to methodological difficulties in the determination of the aromatase protein, COX-2, an enzyme involved in the synthesis of aromatase, has been suggested as a surrogate marker for aromatase expression. Primary tumor material was retrospectively collected from 88 patients who participated in a randomized clinical trial comparing the AI letrozole to the anti-estrogen tamoxifen for first-line treatment of advanced breast cancer. Semi-quantitative immunohistochemical (IHC) analysis was performed for ER, PR, COX-2 and aromatase using Tissue Microarrays (TMAs). Aromatase was also analyzed using whole sections (WS). Kappa analysis was applied to compare association of protein expression levels. Univariate Wilcoxon analysis and the Cox-analysis were performed to evaluate time to progression (TTP) in relation to marker expression. Aromatase expression was associated with ER, but not with PR or COX-2 expression in carcinoma cells. Measurements of aromatase in WS were not comparable to results from TMAs. Expression of COX-2 and aromatase did not predict response to endocrine therapy. Aromatase in combination with high PR expression may select letrozole treated patients with a longer TTP. TMAs are not suitable for IHC analysis of in situ aromatase expression and we did not find COX-2 expression in carcinoma cells to be a surrogate marker for aromatase. In situ aromatase expression in tumor cells is associated with ER expression and may thus point towards good prognosis. Aromatase expression in cancer

  16. The Z-isomer of 11β-methoxy-17α-[123I]iodovinylestradiol is a promising radioligand for estrogen receptor imaging in human breast cancer

    International Nuclear Information System (INIS)

    Rijks, Leonie J. M.; Boer, Gerard J.; Endert, Erik; Bruin, Kora de; Janssen, Anton G. M.; Royen, Eric A. van

    1997-01-01

    The potential of both stereoisomers of 11β-methoxy-17α-[ 123 I]iodovinylestradiol (E- and Z-[ 123 I]MIVE) as suitable radioligands for imaging of estrogen receptor(ER)-positive human breast tumours was studied. The 17α-[ 123 I]iodovinylestradiol derivatives were prepared stereospecifically by oxidative radioiododestannylation of the corresponding 17α-tri-n-butylstannylvinylestradiol precursors. Both isomers of MIVE showed high in vitro affinity for dimethylbenzanthracene-induced rat and fresh human mammary tumour ER, that of Z-MIVE however being manyfold higher than that of E-MIVE. In vivo distribution studies with E- and Z-[ 123 I]MIVE in normal and tumour-bearing female rats showed ER-mediated uptake and retention in uterus, ovaries, pituitary, hypothalamus and mammary tumours, again the highest for Z-[ 123 I]MIVE. The uterus- and tumour-to-nontarget tissue (fat, muscle) uptake ratios were also highest for Z-[ 123 I]MIVE. Additionally, planar whole body imaging of two breast cancer patients 1-2 h after injection of Z-[ 123 I]MIVE showed increased focal uptake at known tumour sites. Therefore, we conclude that Z-[ 123 I]MIVE is a promising radioligand for the diagnostic imaging of ER in human breast cancer

  17. GPER mediated estradiol reduces miR-148a to promote HLA-G expression in breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Tao, Sifeng, E-mail: taosifeng@aliyun.com; He, Haifei; Chen, Qiang; Yue, Wenjie

    2014-08-15

    Highlights: • E2 induces the level of miR-148a in MCF-7 and MDA-MB-231 cells. • GPER mediates the E2-induced increase of miR-148a in MCF-7 and MDA-MB-231 cells. • E2-GPER regulates the expression of HLA-G by miR-148a. - Abstract: Breast cancer is the most common malignant diseases in women. miR-148a plays an important role in regulation of cancer cell proliferation and cancer invasion and down-regulation of miR-148a has been reported in both estrogen receptor (ER) positive and triple-negative (TN) breast cancer. However, the regulation mechanism of miR-148a is unclear. The role of estrogen signaling, a signaling pathway is important in development and progression of breast cancer. Therefore, we speculated that E2 may regulate miR-148a through G-protein-coupled estrogen receptor-1 (GPER). To test our hypothesis, we checked the effects of E2 on miR-148a expression in ER positive breast cancer cell MCF-7 and TN cancer cell MDA-MB-231. Then we used GPER inhibitor G15 to investigate whether GPER is involved in regulation of E2 on miR-148a. Furthermore, we analyzed whether E2 affects the expression of HLA-G, which is a miR-148a target gene through GPER. The results showed that E2 induces the level of miR-148a in MCF-7 and MDA-MB-231 cells, GPER mediates the E2-induced increase in miR-148a expression in MCF-7 and MDA-MB-231 cells and E2-GPER regulates the expression of HLA-G by miR-148a. In conclusion, our findings offer important new insights into the ability of estrogenic GPER signaling to trigger HLA-G expression through inhibiting miR-148a that supports immune evasion in breast cancer.

  18. Apc-Mutant Kyoto Apc Delta (KAD) Rats Are Susceptible to 4-NQO-Induced Tongue Carcinogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Takuji, E-mail: tmntt08@gmail.com [Department of Diagnostic Pathology (DDP) & Research Center of Diagnostic Pathology (RC-DiP), Gifu Municipal Hospital, 7-1 Kashima-Cho, Gifu 500-8513 (Japan); Department of Tumor Pathology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu 501-1194 (Japan); Shimizu, Masahito; Kochi, Takahiro; Shirakami, Yohei [Department of Internal Medicine/Gastroenterology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu 501-1194 (Japan); Mori, Takayuki [Department of Pharmacy, Ogaki Municipal Hospital, 4-86 Minaminokawa-cho, Ogaki 503-8502 (Japan); Watanabe, Naoki [Department of Diagnostic Pathology (DDP) & Research Center of Diagnostic Pathology (RC-DiP), Gifu Municipal Hospital, 7-1 Kashima-Cho, Gifu 500-8513 (Japan); Naiki, Takafumi [Department of Clinical Laboratory, Gifu Municipal Hospital, 7-1 Kashima-cho, Gifu 500-8513 (Japan); Moriwaki, Hisataka [Department of Internal Medicine/Gastroenterology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu 501-1194 (Japan); Yoshimi, Kazuto; Serikawa, Tadao; Kuramoto, Takashi [The Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501 (Japan)

    2014-07-21

    Despite widening interest in the possible association between infection/inflammation and cancer development, knowledge of this issue in relation to oral cancer remains inadequate. This study aimed to determine the susceptibility of Apc-mutant Kyoto Apc Delta (KAD) rats, which are vulnerable to developing inflammation-associated colorectal carcinogenesis, to 4-nitroquinoline 1-oxide (4-NQO)-induced tongue carcinogenesis in order to clarify the role of inflammation in oral cancer. KAD (20 males and 22 females) and F344/NS1c (22 males and 23 females) rats received drinking water with or without 4-NQO (20 ppm) for eight weeks. Histopathological and immunohistochemical analyses of the tongue were performed at week 20. Additionally, the mRNA expression of inflammatory cytokines in the tongue mucosa was determined at week 8. Tongue squamous cell carcinoma (SCC) developed in the KAD and F344/NS1c rats that received 4-NQO. Regardless of gender, the incidence and multiplicity of tongue SCC were greater in the KAD rats than in the F344/NS1c rats. In addition, the multiplicity of tongue SCC in the female KAD rats was significantly greater than that observed in the male KAD (p < 0.01) and female F344/NS1c rats (p < 0.05). The levels of inflammation and the mRNA expression of inflammatory cytokines in the tongue in the 4-NQO-treated female KAD rats were the highest among the rats given 4-NQO. These results show that KAD rats, particularly females, are susceptible to 4-NQO-induced tongue carcinogenesis, suggesting the utility of models employing KAD rats for investigating the pathobiology of oral (tongue) carcinogenesis associated with inflammation.

  19. Apc-Mutant Kyoto Apc Delta (KAD) Rats Are Susceptible to 4-NQO-Induced Tongue Carcinogenesis

    International Nuclear Information System (INIS)

    Tanaka, Takuji; Shimizu, Masahito; Kochi, Takahiro; Shirakami, Yohei; Mori, Takayuki; Watanabe, Naoki; Naiki, Takafumi; Moriwaki, Hisataka; Yoshimi, Kazuto; Serikawa, Tadao; Kuramoto, Takashi

    2014-01-01

    Despite widening interest in the possible association between infection/inflammation and cancer development, knowledge of this issue in relation to oral cancer remains inadequate. This study aimed to determine the susceptibility of Apc-mutant Kyoto Apc Delta (KAD) rats, which are vulnerable to developing inflammation-associated colorectal carcinogenesis, to 4-nitroquinoline 1-oxide (4-NQO)-induced tongue carcinogenesis in order to clarify the role of inflammation in oral cancer. KAD (20 males and 22 females) and F344/NS1c (22 males and 23 females) rats received drinking water with or without 4-NQO (20 ppm) for eight weeks. Histopathological and immunohistochemical analyses of the tongue were performed at week 20. Additionally, the mRNA expression of inflammatory cytokines in the tongue mucosa was determined at week 8. Tongue squamous cell carcinoma (SCC) developed in the KAD and F344/NS1c rats that received 4-NQO. Regardless of gender, the incidence and multiplicity of tongue SCC were greater in the KAD rats than in the F344/NS1c rats. In addition, the multiplicity of tongue SCC in the female KAD rats was significantly greater than that observed in the male KAD (p < 0.01) and female F344/NS1c rats (p < 0.05). The levels of inflammation and the mRNA expression of inflammatory cytokines in the tongue in the 4-NQO-treated female KAD rats were the highest among the rats given 4-NQO. These results show that KAD rats, particularly females, are susceptible to 4-NQO-induced tongue carcinogenesis, suggesting the utility of models employing KAD rats for investigating the pathobiology of oral (tongue) carcinogenesis associated with inflammation

  20. Calmodulin-like protein 3 is an estrogen receptor alpha coregulator for gene expression and drug response in a SNP, estrogen, and SERM-dependent fashion.

    Science.gov (United States)

    Qin, Sisi; Ingle, James N; Liu, Mohan; Yu, Jia; Wickerham, D Lawrence; Kubo, Michiaki; Weinshilboum, Richard M; Wang, Liewei

    2017-08-18

    We previously performed a case-control genome-wide association study in women treated with selective estrogen receptor modulators (SERMs) for breast cancer prevention and identified single nucleotide polymorphisms (SNPs) in ZNF423 as potential biomarkers for response to SERM therapy. The ZNF423rs9940645 SNP, which is approximately 200 bp away from the estrogen response elements, resulted in the SNP, estrogen, and SERM-dependent regulation of ZNF423 expression and, "downstream", that of BRCA1. Electrophoretic mobility shift assay-mass spectrometry was performed to identify proteins binding to the ZNF423 SNP and coordinating with estrogen receptor alpha (ERα). Clustered, regularly interspaced short palindromic repeats (CRISPR)/Cas9 genome editing was applied to generate ZR75-1 breast cancer cells with different ZNF423 SNP genotypes. Both cultured cells and mouse xenograft models with different ZNF423 SNP genotypes were used to study the cellular responses to SERMs and poly(ADP-ribose) polymerase (PARP) inhibitors. We identified calmodulin-like protein 3 (CALML3) as a key sensor of this SNP and a coregulator of ERα, which contributes to differential gene transcription regulation in an estrogen and SERM-dependent fashion. Furthermore, using CRISPR/Cas9-engineered ZR75-1 breast cancer cells with different ZNF423 SNP genotypes, striking differences in cellular responses to SERMs and PARP inhibitors, alone or in combination, were observed not only in cells but also in a mouse xenograft model. Our results have demonstrated the mechanism by which the ZNF423 rs9940645 SNP might regulate gene expression and drug response as well as its potential role in achieving more highly individualized breast cancer therapy.

  1. Important Role of Menarche in Development of Estrogen Receptor-Negative Breast Cancer in African American Women.

    Science.gov (United States)

    Ambrosone, Christine B; Zirpoli, Gary; Hong, Chi-Chen; Yao, Song; Troester, Melissa A; Bandera, Elisa V; Schedin, Pepper; Bethea, Traci N; Borges, Virginia; Park, Song-Yi; Chandra, Dhyan; Rosenberg, Lynn; Kolonel, Laurence N; Olshan, Andrew F; Palmer, Julie R

    2015-09-01

    Menarche is a critical time point for diverging fates of mammary cells of origin. African American women have young age at menarche, which could be associated with their high rates of estrogen receptor-negative (ER-) breast cancer. In the AMBER Consortium, using harmonized data from 4426 African American women with breast cancer and 17 474 controls, we used polytomous logistic regression to estimate odds ratios (ORs) and 95% confidence intervals (CIs) for ages at menarche and first live birth (FLB), and the interval between, in relation to ER+ and ER- breast cancer. All statistical tests were two-sided. Risk of ER- breast cancer was reduced with later age at menarche among both parous and nulliparous women (≥15 vs fashion (OR for 20 year interval = 1.39, 95% CI = 1.08 to 1.79, P trend = .003), ER- risk was only increased for intervals up to 14 years and not beyond (P trend = .33). While ER- breast cancer risk was markedly reduced in women with a late age at menarche, there was not a clear pattern of increased risk with longer interval between menarche and FLB, as was observed for ER+ breast cancer. These findings indicate that etiologic pathways involving adolescence and pregnancy may differ for ER- and ER+ breast cancer. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  2. Tissue microarrays for testing basal biomarkers in familial breast cancer cases

    Directory of Open Access Journals (Sweden)

    Rozany Mucha Dufloth

    Full Text Available CONTEXT AND OBJECTIVE: The proteins p63, p-cadherin and CK5 are consistently expressed by the basal and myoepithelial cells of the breast, although their expression in sporadic and familial breast cancer cases has yet to be fully defined. The aim here was to study the basal immunopro-file of a breast cancer case series using tissue microarray technology. DESIGN AND SETTING: This was a cross-sectional study at Universidade Estadual de Campinas, Brazil, and the Institute of Pathology and Mo-lecular Immunology, Porto, Portugal. METHODS: Immunohistochemistry using the antibodies p63, CK5 and p-cadherin, and also estrogen receptor (ER and Human Epidermal Receptor Growth Factor 2 (HER2, was per-formed on 168 samples from a breast cancer case series. The criteria for identifying women at high risk were based on those of the Breast Cancer Linkage Consortium. RESULTS: Familial tumors were more frequently positive for the p-cadherin (p = 0.0004, p63 (p < 0.0001 and CK5 (p < 0.0001 than was sporadic cancer. Moreover, familial tumors had coexpression of the basal biomarkers CK5+/ p63+, grouped two by two (OR = 34.34, while absence of coexpression (OR = 0.13 was associ-ated with the sporadic cancer phenotype. CONCLUSION: Familial breast cancer was found to be associated with basal biomarkers, using tissue microarray technology. Therefore, characterization of the familial breast cancer phenotype will improve the understanding of breast carcinogenesis.

  3. American Society of Clinical Oncology/College Of American Pathologists guideline recommendations for immunohistochemical testing of estrogen and progesterone receptors in breast cancer.

    NARCIS (Netherlands)

    Hammond, M.E.; Hayes, D.F.; Dowsett, M.; Allred, D.C.; Hagerty, K.L.; Badve, S.; Fitzgibbons, P.L.; Francis, G.; Goldstein, N.S.; Hayes, M.; Hicks, D.G.; Lester, S.; Love, R.; Mangu, P.B.; McShane, L.; Miller, K.; Osborne, C.K.; Paik, S.; Perlmutter, J.; Rhodes, A.; Sasano, H.; Schwartz, J.N.; Sweep, F.C.; Taube, S.; Torlakovic, E.E.; Valenstein, P.; Viale, G.; Visscher, D.; Wheeler, T.; Williams, R.B.; Wittliff, J.L.; Wolff, A.C.

    2010-01-01

    PURPOSE: To develop a guideline to improve the accuracy of immunohistochemical (IHC) estrogen receptor (ER) and progesterone receptor (PgR) testing in breast cancer and the utility of these receptors as predictive markers. METHODS: The American Society of Clinical Oncology and the College of

  4. American Society of Clinical Oncology/College of American Pathologists guideline recommendations for immunohistochemical testing of estrogen and progesterone receptors in breast cancer.

    NARCIS (Netherlands)

    Hammond, M.E.; Hayes, D.F.; Dowsett, M.; Allred, D.C.; Hagerty, K.L.; Badve, S.; Fitzgibbons, P.L.; Francis, G.; Goldstein, N.S.; Hayes, M.; Hicks, D.G.; Lester, S.; Love, R.; Mangu, P.B.; McShane, L.; Miller, K.; Osborne, C.K.; Paik, S.; Perlmutter, J.; Rhodes, A.; Sasano, H.; Schwartz, J.N.; Sweep, F.C.; Taube, S.; Torlakovic, E.E.; Valenstein, P.; Viale, G.; Visscher, D.; Wheeler, T.; Williams, R.B.; Wittliff, J.L.; Wolff, A.C.

    2010-01-01

    PURPOSE: To develop a guideline to improve the accuracy of immunohistochemical (IHC) estrogen receptor (ER) and progesterone receptor (PgR) testing in breast cancer and the utility of these receptors as predictive markers. METHODS: The American Society of Clinical Oncology and the College of

  5. Estrogen receptor beta in prostate cancer: friend or foe?

    Science.gov (United States)

    Nelson, Adam W; Tilley, Wayne D; Neal, David E; Carroll, Jason S

    2014-08-01

    Prostate cancer is the commonest, non-cutaneous cancer in men. At present, there is no cure for the advanced, castration-resistant form of the disease. Estrogen has been shown to be important in prostate carcinogenesis, with evidence resulting from epidemiological, cancer cell line, human tissue and animal studies. The prostate expresses both estrogen receptor alpha (ERA) and estrogen receptor beta (ERB). Most evidence suggests that ERA mediates the harmful effects of estrogen in the prostate, whereas ERB is tumour suppressive, but trials of ERB-selective agents have not translated into improved clinical outcomes. The role of ERB in the prostate remains unclear and there is increasing evidence that isoforms of ERB may be oncogenic. Detailed study of ERB and ERB isoforms in the prostate is required to establish their cell-specific roles, in order to determine if therapies can be directed towards ERB-dependent pathways. In this review, we summarise evidence on the role of ERB in prostate cancer and highlight areas for future research. © 2014 Society for Endocrinology.

  6. Fertility drug use and mammographic breast density in a mammography screening cohort of premenopausal women

    OpenAIRE

    Sprague, Brian L.; Trentham-Dietz, Amy; Terry, Mary Beth; Nichols, Hazel B.; Bersch, Andy J.; Buist, Diana S. M.

    2008-01-01

    The widespread use of ovulation-inducing drugs to enhance fertility has raised concerns regarding potential effects on breast cancer risk, as ovarian stimulation is associated with increases in estrogen and progesterone levels. We investigated the short-term relation between fertility drug use and mammographic breast density, a strong marker of breast cancer risk, among participants in the Group Health Breast Cancer Screening Program. Data linkage with Group Health’s automated pharmacy record...

  7. Poly(ADP-ribose) polymerase as a novel regulator of 17β-estradiol-induced cell growth through a control of the estrogen receptor/IGF-1 receptor/PDZK1 axis.

    Science.gov (United States)

    Kim, Hogyoung; Tarhuni, Abdelmetalab; Abd Elmageed, Zakaria Y; Boulares, A Hamid

    2015-07-17

    We and others have extensively investigated the role of PARP-1 in cell growth and demise in response to pathophysiological cues. Most of the clinical trials on PARP inhibitors are targeting primarily estrogen receptor (ER) negative cancers with BRCA-deficiency. It is surprising that the role of the enzyme has yet to be investigated in ER-mediated cell growth. It is noteworthy that ER is expressed in the majority of breast cancers. We recently showed that the scaffolding protein PDZK1 is critical for 17β-estradiol (E2)-induced growth of breast cancer cells. We demonstrated that E2-induced PDZK1 expression is indirectly regulated by ER and requires IGF-1 receptor (IGF-1R). The breast cancer cell lines MCF-7 and BT474 were used as ER(+) cell culture models. Thieno[2,3-c]isoquinolin-5-one (TIQ-A) and olaparib (AZD2281) were used as potent inhibitors of PARP. PARP-1 knockdown by shRNA was used to show specificity of the effects to PARP-1. In this study, we aimed to determine the effect of PARP inhibition on estrogen-induced growth of breast cancer cells and examine whether the potential effect is linked to PDZK1 and IGF-1R expression. Our results show that PARP inhibition pharmacologically by TIQ-A or olaparib or by PARP-1 knockdown blocked E2-dependent growth of MCF-7 cells. Such inhibitory effect was also observed in olaparib-treated BT474 cells. The effect of PARP inhibition on cell growth coincided with an efficient reduction in E2-induced PDZK1 expression. This effect was accompanied by a similar decrease in the cell cycle protein cyclin D1. PARP appeared to regulate E2-induced PDZK1 at the mRNA level. Such regulation may be linked to a modulation of IGF-1R as PARP inhibition pharmacologically or by PARP-1 knockdown efficiently reduced E2-induced expression of the receptor at the protein and mRNA levels. Overall, our results show for the first time that PARP regulates E2-mediated cell growth by controlling the ER/IGF-1R/PDZK1 axis. These findings suggest that the

  8. Estrogen: The necessary evil for human health, and ways to tame it.

    Science.gov (United States)

    Patel, Seema; Homaei, Ahmad; Raju, Akondi Butchi; Meher, Biswa Ranjan

    2018-06-01

    Estrogen is a pivotal enzyme for survival and health in both genders, though their quantum, tropism, tissue-specific distribution, and receptor affinity varies with different phases of life. Converted from androgen via aromatase enzyme, this hormone is indispensable to glucose homeostasis, immune robustness, bone health, cardiovascular health, fertility, and neural functions. However, estrogen is at the center of almost all human pathologies as well-infectious, autoimmune, metabolic to degenerative. Both hypo and hyper level of estrogen has been linked to chronic and acute diseases. While normal aging is supposed to lower its level, leading to tissue degeneration (bone, muscle, neural etc.), and metabolite imbalance (glucose, lipid etc.), the increment in inflammatory agents in day-to-day life are enhancing the estrogen (or estrogen mimic) level, fueling 'estrogen dominance'. The resultant excess estrogen is inducing an overexpression of estrogen receptors (ERα and ERβ), harming tissues, leading to autoimmune diseases, and neoplasms. The unprecedented escalation in the polycystic ovary syndrome, infertility, breast cancer, ovary cancer, and gynecomastia cases are indicating that this sensitive hormone is getting exacerbated. This critical review is an effort to analyze the dual, and opposing facets of estrogen, via understanding its crosstalk with other hormones, enzymes, metabolites, and drugs. Why estrogen level correction is no trivial task, and how it can be restored to normalcy by a disciplined lifestyle with wise dietary and selective chemical usage choices has been discussed. Overall, our current state of knowledge does not disclose the full picture of estrogen's pleiotropic importance. Hence, this review should be a resource for general public as well as researchers to work in that direction. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  9. Investigation of CD28 gene polymorphisms in patients with sporadic breast cancer in a Chinese Han population in Northeast China.

    Directory of Open Access Journals (Sweden)

    Shuang Chen

    Full Text Available BACKGROUND: CD28 is one of a number of costimulatory molecules that play crucial roles in immune regulation and homeostasis. Accumulating evidence indicates that immune factors influence breast carcinogenesis. To clarify the relationships between polymorphisms in the CD28 gene and breast carcinogenesis, a case-control study was conducted in women from Heilongjiang Province in northeast of China. METHODOLOGY/PRINCIPAL FINDINGS: Our research subjects consisted of 565 female patients with sporadic breast cancer and 605 age- and sex-matched healthy controls. In total, 12 single nucleotide polymorphisms (SNPs in the CD28 gene were successfully determined using the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP method. The relationship between the CD28 variants and clinical features, including histological grade, tumor size, lymph node metastasis, human epidermal growth factor receptor 2 (C-erbB2, estrogen receptor (ER, progesterone receptor (PR, and tumor protein 53 (P53 status were analyzed. A statistically significant association was observed between rs3116496 and breast cancer risk under different genetic models (additive P = 0.0164, dominant P = 0.0042. Different distributions of the rs3116496 'T' allele were found in patients and controls, which remained significant after correcting the P value for multiple testing using Haploview with 10,000 permutations (corrected P = 0.0384. In addition, significant associations were observed between rs3116487/rs3116494 (D' = 1, r(2 = 0.99 and clinicopathological features such as C-erbB2 and ER status, in breast cancer patients. CONCLUSIONS/SIGNIFICANCE: Our findings indicate that CD28 gene polymorphisms contribute to sporadic breast cancer risk and have a significant association with clinicopathological features in a northeast Chinese Han population.

  10. Data on efficacy of umbelliferone on glycoconjugates and immunological marker in 7,12-dimethylbenz(aanthracene induced oral carcinogenesis

    Directory of Open Access Journals (Sweden)

    Annamalai Vijayalakshmi

    2017-12-01

    Full Text Available Umbelliferone, a phenolic coumarin and dietary agent is believed to play a key role in pharmacological activities including anti-cancer and anti-oxidants effect in various in vitro and in vivo models. In present data on the pre-treatment of umbelliferone (30 mg/kg b.w. for 16 weeks to 7,12-dimethylbenz(aanthracene induced hamsters provides protection on cellular integrity by observing the status of cell surface glycoconjugates in the circulation and buccal mucosa and cytokeratin immunoexpression in the buccal mucosa of experimental animals. Data presented in this article brief that umbelliferone exhibits potent to clear cell surface abnormalities in buccal tissues and circulation during carcinogenesis and restored the expression of cytokeratin effect against 7,12-dimethylbenz(aanthracene induced hamster buccal pouch carcinogenesis, which is attributes to its inhibitory role on glycoprotein synthesis or on the activity of the glycosyltransferase. In an article associates with this data set given the relevance to the research article entitled “Dose responsive efficacy of umbelliferone on lipid peroxidation, anti-oxidant, and xenobiotic metabolism in 7,12-dimethylbenz(aanthracene-induced oral carcinogenesis” namely Vijayalakshmi and Sindhu, 2017 assessed 100% tumour formation in 7,12-dimethylbenz(aanthracene treated hamsters and oral administration of umbelliferone at a dose of 30 mg/kg b.w to 7,12-dimethylbenz(aanthracene treated hamsters prevents tumour incidence, restores the status of the biochemical markers in circulation and buccal mucosa and also dysregulation in the expression of molecular markers. Given the relevance to this article entitled “Berberine protects cellular integrity during 7,12-dimethylbenz[a]anthracene-induced oral carcinogenesis in golden Syrian hamsters” namely Sindhu and Manoharan 2010, which were based on spectrophotometry and florescence microscope analysis. Keywords: Oral cancer, 7

  11. Vav3 oncogene activates estrogen receptor and its overexpression may be involved in human breast cancer

    International Nuclear Information System (INIS)

    Lee, Kiwon; Liu, Yin; Mo, Jun Qin; Zhang, Jinsong; Dong, Zhongyun; Lu, Shan

    2008-01-01

    Our previous study revealed that Vav3 oncogene is overexpressed in human prostate cancer, activates androgen receptor, and stimulates growth in prostate cancer cells. The current study is to determine a potential role of Vav3 oncogene in human breast cancer and impact on estrogen receptor a (ERα)-mediated signaling axis. Immunohistochemistry analysis was performed in 43 breast cancer specimens and western blot analysis was used for human breast cancer cell lines to determine the expression level of Vav3 protein. The impact of Vav3 on breast cancer cell growth was determined by siRNA knockdown of Vav3 expression. The role of Vav3 in ERα activation was examined in luciferase reporter assays. Deletion mutation analysis of Vav3 protein was performed to localize the functional domain involved in ERα activation. Finally, the interaction of Vav3 and ERα was assessed by GST pull-down analysis. We found that Vav3 was overexpressed in 81% of human breast cancer specimens, particularly in poorly differentiated lesions. Vav3 activated ERα partially via PI3K-Akt signaling and stimulated growth of breast cancer cells. Vav3 also potentiated EGF activity for cell growth and ERα activation in breast cancer cells. More interestingly, we found that Vav3 complexed with ERα. Consistent with its function for AR, the DH domain of Vav3 was essential for ERα activation. Vav3 oncogene is overexpressed in human breast cancer. Vav3 complexes with ERα and enhances ERα activity. These findings suggest that Vav3 overexpression may aberrantly enhance ERα-mediated signaling axis and play a role in breast cancer development and/or progression

  12. Estrogenic effects of fusarielins in human breast cancer cell lines

    DEFF Research Database (Denmark)

    Søndergaard, Teis; Klitgaard, Louise Graabæk; Purup, Stig

    2012-01-01

    without the estrogen receptor-α and MCF-10a cells without estrogen receptors were not stimulated by fusarielins. Furthermore, the stimulation was prevented in MCF-7 cells when fusarielins were incubated in the presence of the estrogen receptor antagonist fulvestrant. These observations suggest...

  13. Carcinogen inducibility in vivo and down-regulation of DMBT1 during breast carcinogenesis

    DEFF Research Database (Denmark)

    Mollenhauer, Jan; Helmke, Burkhard; Medina, Daniel

    2004-01-01

    unambiguous inactivating DMBT1 mutations in breast cancer. Expression analyses in the human and mouse mammary glands pointed to the necessity of DMBT1 induction. While age-dependent and hormonal effects could be ruled out, 9 of 10 mice showed induction of Dmbt1 expression after administration...... of the carcinogen 7,12-dimethybenz(alpha)anthracene prior to the onset of tumorigenesis or other histopathological changes. DMBT1 displayed significant up-regulation in human tumor-flanking tissues compared to in normal breast tissues (P displayed a switch from lumenal...

  14. Bioassay Guided Chromatographic Isolation Of Lactation Inducing ...

    African Journals Online (AJOL)

    MBI

    2014-01-07

    Jan 7, 2014 ... The production of breast milk is controlled by an interplay of various hormones, with ... including estrogen, progesterone, insulin, growth hormone, cortisol ..... and Serum Prolactin on Cows Hormonally. Induced into Lactation.

  15. Estrogen receptor-a in the medial amygdala prevents stress-induced elevations in blood pressure in females

    Science.gov (United States)

    Psychological stress contributes to the development of hypertension in humans. The ovarian hormone, estrogen, has been shown to prevent stress-induced pressor responses in females by unknown mechanisms. Here, we showed that the antihypertensive effects of estrogen during stress were blunted in femal...

  16. Radiation carcinogenesis: radioprotectors and photosensitizers

    International Nuclear Information System (INIS)

    Fry, R.J.M.

    1982-01-01

    This paper outlines 1) some of the salient features of radiation carcinogenesis that are pertinent to the questions of how the carcinogenic effects might be influenced, 2) the effects of radioprotectors on ionizing radiation-induced cancer, and 3) the effect of photosensitizers on UVR-induced skin cancer

  17. Radiation carcinogenesis: radioprotectors and photosensitizers

    Energy Technology Data Exchange (ETDEWEB)

    Fry, R.J.M.

    1982-01-01

    This paper outlines 1) some of the salient features of radiation carcinogenesis that are pertinent to the questions of how the carcinogenic effects might be influenced, 2) the effects of radioprotectors on ionizing radiation-induced cancer, and 3) the effect of photosensitizers on UVR-induced skin cancer.

  18. Kinome screening for regulators of the estrogen receptor identifies LMTK3 as a new therapeutic target in breast cancer.

    Science.gov (United States)

    Giamas, Georgios; Filipović, Aleksandra; Jacob, Jimmy; Messier, Walter; Zhang, Hua; Yang, Dongyun; Zhang, Wu; Shifa, Belul Assefa; Photiou, Andrew; Tralau-Stewart, Cathy; Castellano, Leandro; Green, Andrew R; Coombes, R Charles; Ellis, Ian O; Ali, Simak; Lenz, Heinz-Josef; Stebbing, Justin

    2011-06-01

    Therapies targeting estrogen receptor α (ERα, encoded by ESR1) have transformed the treatment of breast cancer. However, large numbers of women relapse, highlighting the need for the discovery of new regulatory targets modulating ERα pathways. An siRNA screen identified kinases whose silencing alters the estrogen response including those previously implicated in regulating ERα activity (such as mitogen-activated protein kinase and AKT). Among the most potent regulators was lemur tyrosine kinase-3 (LMTK3), for which a role has not previously been assigned. In contrast to other modulators of ERα activity, LMTK3 seems to have been subject to Darwinian positive selection, a noteworthy result given the unique susceptibility of humans to ERα+ breast cancer. LMTK3 acts by decreasing the activity of protein kinase C (PKC) and the phosphorylation of AKT (Ser473), thereby increasing binding of forkhead box O3 (FOXO3) to the ESR1 promoter. LMTK3 phosphorylated ERα, protecting it from proteasomal degradation in vitro. Silencing of LMTK3 reduced tumor volume in an orthotopic mouse model and abrogated proliferation of ERα+ but not ERα- cells, indicative of its role in ERα activity. In human cancers, LMTK3 abundance and intronic polymorphisms were significantly associated with disease-free and overall survival and predicted response to endocrine therapies. These findings yield insights into the natural history of breast cancer in humans and reveal LMTK3 as a new therapeutic target.

  19. Targeted biomarker profiling of matched primary and metastatic estrogen receptor positive breast cancers.

    Directory of Open Access Journals (Sweden)

    Erica B Schleifman

    Full Text Available Patients with newly diagnosed, early stage estrogen receptor positive (ER+ breast cancer often show disease free survival in excess of five years following surgery and systemic adjuvant therapy. An important question is whether diagnostic tumor tissue from the primary lesion offers an accurate molecular portrait of the cancer post recurrence and thus may be used for predictive diagnostic purposes for patients with relapsed, metastatic disease. As the class I phosphatidylinositol 3' kinase (PI3K pathway is frequently activated in ER+ breast cancer and has been linked to acquired resistance to hormonal therapy, we hypothesized pathway status could evolve over time and treatment. Biomarker analyses were conducted on matched, asynchronous primary and metastatic tumors from 77 patients with ER+ breast cancer. We examined whether PIK3CA and AKT1 alterations or PTEN and Ki67 levels showed differences between primary and metastatic samples. We also sought to look more broadly at gene expression markers reflective of proliferation, molecular subtype, and key receptors and signaling pathways using an mRNA analysis platform developed on the Fluidigm BioMark™ microfluidics system to measure the relative expression of 90 breast cancer related genes in formalin-fixed paraffin-embedded (FFPE tissue. Application of this panel of biomarker assays to matched tumor pairs showed a high concordance between primary and metastatic tissue, with generally few changes in mutation status, proliferative markers, or gene expression between matched samples. The collection of assays described here has been optimized for FFPE tissue and may have utility in exploratory analyses to identify patient subsets responsive to targeted therapies.

  20. Estrogen induces glomerulosclerosis in analbuminemic rats

    NARCIS (Netherlands)

    Joles, JA; van Goor, H; Koomans, HA

    Progression of chronic renal disease: is usually more rapid in males, both In humans and in experimental animals. Estrogen-replacement studies indicate that this may be related to the beneficial effects of estrogen on the lipoprotein profile. However, in hyperlipidemic analbuminemic rats (NAR),

  1. Effects of estrogen and gender on cataractogenesis induced by high-LET radiation

    International Nuclear Information System (INIS)

    Henderson, M.A.; Rusek, A.; Valluri, S.; Garrett, J.; Lopez, J.; Caperell-Grant, A.; Mendonca, M.; Bigsby, R.; Dynlacht, J.

    2010-01-01

    Planning for long-duration manned lunar and interplanetary missions requires an understanding of radiation-induced cataractogenesis. Previously, it was demonstrated that low-linear energy transfer (LET) irradiation with 10 Gy of 60 Co γ rays resulted in an increased incidence of cataracts in male rats compared to female rats. This gender difference was not due to differences in estrogen, since male rats treated with the major secreted estrogen 17-β-estradiol (E2) showed an identical increase compared to untreated males. We now compare the incidence and rate of progression of cataracts induced by high-LET radiation in male and female Sprague-Dawley rats. Rats received a single dose of 1 Gy of 600 MeV 56 Fe ions. Lens opacification was measured at 2-4 week intervals with a slit lamp. The incidence and rate of progression of radiation-induced cataracts was significantly increased in the animals in which estrogen was available from endogenous or exogenous sources. Male rats with E2 capsules implanted had significantly higher rates of progression compared to male rats with empty capsules implanted (P = 0.025) but not compared to the intact female rats. These results contrast with data obtained after low-LET irradiation and suggest the possibility that the different types of damage caused by high- and low-LET radiation may be influenced differentially by steroid sex hormones.

  2. Increased Sclerostin Levels after Further Ablation of Remnant Estrogen by Aromatase Inhibitors

    Directory of Open Access Journals (Sweden)

    Wonjin Kim

    2015-03-01

    Full Text Available BackgroundSclerostin is a secreted Wnt inhibitor produced almost exclusively by osteocytes, which inhibits bone formation. Aromatase inhibitors (AIs, which reduce the conversion of steroids to estrogen, are used to treat endocrine-responsive breast cancer. As AIs lower estrogen levels, they increase bone turnover and lower bone mass. We analyzed changes in serum sclerostin levels in Korean women with breast cancer who were treated with an AI.MethodsWe included postmenopausal women with endocrine-responsive breast cancer (n=90; mean age, 57.7 years treated with an AI, and compared them to healthy premenopausal women (n=36; mean age, 28.0 years. The subjects were randomly assigned to take either 5 mg alendronate with 0.5 µg calcitriol (n=46, or placebo (n=44 for 6 months.ResultsPostmenopausal women with breast cancer had significantly higher sclerostin levels compared to those in premenopausal women (27.8±13.6 pmol/L vs. 23.1±4.8 pmol/L, P0.05.ConclusionSerum sclerostin levels increased with absolute deficiency of residual estrogens in postmenopausal women with endocrine-responsive breast cancer who underwent AI therapy with concurrent bone loss.

  3. Epigenetic control of the basal-like gene expression profile via Interleukin-6 in breast cancer cells

    Directory of Open Access Journals (Sweden)

    Mitrugno Valentina

    2010-11-01

    Full Text Available Abstract Background Basal-like carcinoma are aggressive breast cancers that frequently carry p53 inactivating mutations, lack estrogen receptor-α (ERα and express the cancer stem cell markers CD133 and CD44. These tumors also over-express Interleukin 6 (IL-6, a pro-inflammatory cytokine that stimulates the growth of breast cancer stem/progenitor cells. Results Here we show that p53 deficiency in breast cancer cells induces a loss of methylation at IL-6 proximal promoter region, which is maintained by an IL-6 autocrine loop. IL-6 also elicits the loss of methylation at the CD133 promoter region 1 and of CD44 proximal promoter, enhancing CD133 and CD44 gene transcription. In parallel, IL-6 induces the methylation of estrogen receptor (ERα promoter and the loss of ERα mRNA expression. Finally, IL-6 induces the methylation of IL-6 distal promoter and of CD133 promoter region 2, which harbour putative repressor regions. Conclusion We conclude that IL-6, whose methylation-dependent autocrine loop is triggered by the inactivation of p53, induces an epigenetic reprogramming that drives breast carcinoma cells towards a basal-like/stem cell-like gene expression profile.

  4. Deletion of epidermal Rac1 inhibits HPV-8 induced skin papilloma formation and facilitates HPV-8- and UV-light induced skin carcinogenesis.

    Science.gov (United States)

    Deshmukh, Jayesh; Pofahl, Ruth; Pfister, Herbert; Haase, Ingo

    2016-09-06

    Overexpression and increased activity of the small Rho GTPase Rac1 has been linked to squamous cell carcinoma of the epidermis and mucosa in humans. Targeted deletion of Rac1 or inhibition of Rac1 activity in epidermal keratinocytes reduced papilloma formation in a chemical skin carcinogenesis mouse model. However, a potential role of Rac1 in HPV- and UV-light induced skin carcinogenesis has not been investigated so far, solar UV radiation being an important carcinogen to the skin.To investigate this, we deleted Rac1 or modulated its activity in mice with transgenic expression of Human papilloma virus type-8 (HPV-8) in epidermal keratinocytes. Our data show that inhibition or deletion of Rac1 results in reduced papilloma formation upon UV-irradiation with a single dose, whereas constitutive activation of Rac1 strongly increases papilloma frequency in these mice. Surprisingly, we observed that, upon chronic UV-irradiation, the majority of mice with transgenic expression of HPV-8 and epidermis specific Rac1 deletion developed squamous cell carcinomas. Taken together, our data show that Rac1 exerts a dual role in skin carcinogenesis: its activation is, on one hand, required for HPV-8- and UV-light induced papilloma formation but, on the other, suppresses the development of squamous cell carcinomas.

  5. EPO-independent functional EPO receptor in breast cancer enhances estrogen receptor activity and promotes cell proliferation

    International Nuclear Information System (INIS)

    Reinbothe, Susann; Larsson, Anna-Maria; Vaapil, Marica; Wigerup, Caroline; Sun, Jianmin; Jögi, Annika; Neumann, Drorit; Rönnstrand, Lars; Påhlman, Sven

    2014-01-01

    Highlights: • New anti-human EPOR antibody confirms full-length EPOR expression in breast cancer cells. • Proliferation of breast cancer cells is not affected by rhEPO treatment in vitro. • EPOR knockdown impairs proliferation of ERa positive breast cancer cells. • EPOR knockdown reduces AKT phosphorylation and ERa activity. - Abstract: The main function of Erythropoietin (EPO) and its receptor (EPOR) is the stimulation of erythropoiesis. Recombinant human EPO (rhEPO) is therefore used to treat anemia in cancer patients. However, clinical trials have indicated that rhEPO treatment might promote tumor progression and has a negative effect on patient survival. In addition, EPOR expression has been detected in several cancer forms. Using a newly produced anti-EPOR antibody that reliably detects the full-length isoform of the EPOR we show that breast cancer tissue and cells express the EPOR protein. rhEPO stimulation of cultured EPOR expressing breast cancer cells did not result in increased proliferation, overt activation of EPOR (receptor phosphorylation) or a consistent activation of canonical EPOR signaling pathway mediators such as JAK2, STAT3, STAT5, or AKT. However, EPOR knockdown experiments suggested functional EPO receptors in estrogen receptor positive (ERα + ) breast cancer cells, as reduced EPOR expression resulted in decreased proliferation. This effect on proliferation was not seen in ERα negative cells. EPOR knockdown decreased ERα activity further supports a mechanism by which EPOR affects proliferation via ERα-mediated mechanisms. We show that EPOR protein is expressed in breast cancer cells, where it appears to promote proliferation by an EPO-independent mechanism in ERα expressing breast cancer cells

  6. EPO-independent functional EPO receptor in breast cancer enhances estrogen receptor activity and promotes cell proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Reinbothe, Susann; Larsson, Anna-Maria; Vaapil, Marica; Wigerup, Caroline [Department of Laboratory Medicine, Translational Cancer Research, Medicon Village, Lund University, SE-223 81 Lund (Sweden); CREATE Health, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv (Israel); Sun, Jianmin [Department of Laboratory Medicine, Translational Cancer Research, Medicon Village, Lund University, SE-223 81 Lund (Sweden); Jögi, Annika [Department of Laboratory Medicine, Translational Cancer Research, Medicon Village, Lund University, SE-223 81 Lund (Sweden); CREATE Health, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv (Israel); Neumann, Drorit [Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv (Israel); Rönnstrand, Lars [Department of Laboratory Medicine, Translational Cancer Research, Medicon Village, Lund University, SE-223 81 Lund (Sweden); Påhlman, Sven, E-mail: sven.pahlman@med.lu.se [Department of Laboratory Medicine, Translational Cancer Research, Medicon Village, Lund University, SE-223 81 Lund (Sweden); CREATE Health, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv (Israel)

    2014-02-28

    Highlights: • New anti-human EPOR antibody confirms full-length EPOR expression in breast cancer cells. • Proliferation of breast cancer cells is not affected by rhEPO treatment in vitro. • EPOR knockdown impairs proliferation of ERa positive breast cancer cells. • EPOR knockdown reduces AKT phosphorylation and ERa activity. - Abstract: The main function of Erythropoietin (EPO) and its receptor (EPOR) is the stimulation of erythropoiesis. Recombinant human EPO (rhEPO) is therefore used to treat anemia in cancer patients. However, clinical trials have indicated that rhEPO treatment might promote tumor progression and has a negative effect on patient survival. In addition, EPOR expression has been detected in several cancer forms. Using a newly produced anti-EPOR antibody that reliably detects the full-length isoform of the EPOR we show that breast cancer tissue and cells express the EPOR protein. rhEPO stimulation of cultured EPOR expressing breast cancer cells did not result in increased proliferation, overt activation of EPOR (receptor phosphorylation) or a consistent activation of canonical EPOR signaling pathway mediators such as JAK2, STAT3, STAT5, or AKT. However, EPOR knockdown experiments suggested functional EPO receptors in estrogen receptor positive (ERα{sup +}) breast cancer cells, as reduced EPOR expression resulted in decreased proliferation. This effect on proliferation was not seen in ERα negative cells. EPOR knockdown decreased ERα activity further supports a mechanism by which EPOR affects proliferation via ERα-mediated mechanisms. We show that EPOR protein is expressed in breast cancer cells, where it appears to promote proliferation by an EPO-independent mechanism in ERα expressing breast cancer cells.

  7. Prognostic effect of estrogen receptor status across age in primary breast cancer

    DEFF Research Database (Denmark)

    Bentzon, Niels; Düring, Maria; Rasmussen, Birgitte Bruun

    2008-01-01

    Estrogen receptor (ER) status is considered as an important prognostic factor as well as a predictive factor for endocrine responsiveness in breast cancer. We analyzed the distribution of ER status across age and estimated variations in the prognostic impact of ER status related to patients' age...... unchanged in patients who did not receive adjuvant systemic therapy (n = 6,272). Thus, positive ER status does not confer a negative impact on survival in young women as has been previously reported. The inferior prognosis for ER negative patients during the first 5 years after diagnosis changes...... into a slightly superior residual prognosis compared to ER positive patients independent of use of adjuvant systemic therapy. This may have an impact on future designing of guidelines for adjuvant endocrine therapy beyond 5 years....

  8. Identifying a Mechanism for Crosstalk Between the Estrogen and Glucocorticoid Receptors | Center for Cancer Research

    Science.gov (United States)

    Estrogen has long been known to play important roles in the development and progression of breast cancer. Its receptor (ER), a member of the steroid receptor family, binds to estrogen response elements (EREs) in DNA and regulates gene transcription. More recently, another steroid receptor family member, the glucocorticoid receptor (GR), has been implicated in breast cancer

  9. Freund's vaccine adjuvant promotes Her2/Neu breast cancer

    International Nuclear Information System (INIS)

    Cotroneo, Michelle S; Haag, Jill D; Stapel, Nicholas R; Waller, Jordy L; Woditschka, Stephan; Gould, Michael N

    2009-01-01

    Inflammation has been linked to the etiology of many organ-specific cancers. Indirect evidence suggests a possible role for inflammation in breast cancer. We investigated whether the systemic inflammation induced by Freund's adjuvant (FA) promotes mammary carcinogenesis in a rat model in which cancer is induced by the neu oncogene. The effects of FA on hyperplastic mammary lesions and mammary carcinomas were determined in a neu-induced rat model. The inflammatory response to FA treatment was gauged by measuring acute phase serum haptoglobin. In addition, changes in cell proliferation and apoptosis following FA treatment were assessed. Rats receiving FA developed twice the number of mammary carcinomas as controls. Systemic inflammation following FA treatment is chronic, as shown by a doubling of the levels of the serum biomarker, haptoglobin, 15 days following initial treatment. We also show that this systemic inflammation is associated with the increased growth of hyperplastic mammary lesions. This increased growth results from a higher rate of cellular proliferation in the absence of changes in apoptosis. Our data suggests that systemic inflammation induced by Freund's adjuvant (FA) promotes mammary carcinogenesis. It will be important to determine whether adjuvants currently used in human vaccines also promote breast cancer

  10. Lactobacillus salivarius Ren prevent the early colorectal carcinogenesis in 1, 2-dimethylhydrazine-induced rat model.

    Science.gov (United States)

    Zhu, J; Zhu, C; Ge, S; Zhang, M; Jiang, L; Cui, J; Ren, F

    2014-07-01

    The objective of this study was to investigate the impact of Lactobacillus salivarius Ren (LS) on modulating colonic micro flora structure and influencing host colonic health in a rat model with colorectal precancerous lesions. Male F344 rats were injected with 1, 2-dimethylhydrazine (DMH) and treated with LS of two doses (5 × 10(8) and 1 × 10(10) CFU kg(-1) body weight) for 15 weeks. The colonic microflora profiles, luminal metabolites, epithelial proliferation and precancerous lesions [aberrant crypt foci (ACF)] were determined. A distinct segregation of colonic microflora structures was observed in LS-treated group. The abundance of one Prevotella-related strain was increased, and the abundance of one Bacillus-related strain was decreased by LS treatment. These changes were accompanied by increased short-chain fatty acid levels and decreased azoreductase activity. LS treatment also reduced the number of ACF by c. 40% and suppressed epithelial proliferation. Lactobacillus salivarius Ren improved the colonic microflora structures and the luminal metabolisms in addition preventing the early colorectal carcinogenesis in DMH-induced rat model. Colonic microflora is an important factor in colorectal carcinogenesis. Modulating the structural shifts of microflora may provide a novel option for preventing colorectal carcinogenesis. This study suggested a potential probiotic-based approach to modulate the intestinal microflora in the prevention of colorectal carcinogenesis. © 2014 The Society for Applied Microbiology.

  11. Urinary estrogen excretion and concentration of serum human placental lactogen in pregnancies following legally induced abortion

    DEFF Research Database (Denmark)

    Obel, E B; Madsen, Mette

    1980-01-01

    Feto-placental function was assessed by 24-hour excretion of estrogen in urine and by the concentration of human Placental Lactogen (hPL) in serum in pregnant women whose previous pregnancy was terminated by legally induced abortion. The mean 24-hour excretion of estrogens in urine and the mean...... an increased frequency of dysfunction of the feto-placental unit during the last part of pregnancy in women with previous legally induced abortion. These findings indicate that legal abortion does not seem to increase the frequency of retarded intrauterine growth in a subsequent pregnancy....... concentration of hPL in serum were no lower in this group than in women without previous induced abortion. Neither was the frequency of a low 24-hour excretion of estrogens in urine or low concentration of hPL in serum (values less than mean - 1.96 s) found to be increased. This study could not demonstrate...

  12. Eugenia jambolana Lam. Berry Extract Inhibits Growth and Induces Apoptosis of Human Breast Cancer but not Non-Tumorigenic Breast Cells

    Science.gov (United States)

    Li, Liya; Adams, Lynn S.; Chen, Shiuan; Killian, Caroline; Ahmed, Aftab; Seeram, Navindra P.

    2009-01-01

    The ripe purple berries of the native Indian plant, Eugenia jambolana Lam., known as Jamun, are popularly consumed and available in the United States in Florida and Hawaii. Despite the growing body of data on the chemopreventive potential of edible berry extracts, there is paucity of such data for Jamun fruit. Therefore our laboratory initiated the current study with the following objectives:1) to prepare a standardized Jamun fruit extract (JFE) for biological studies and, 2) to investigate the anti-proliferative and pro-apoptotic effects of JFE in estrogen dependent/aromatase positive (MCF-7aro), and estrogen independent (MDA-MB-231) breast cancer cells, and in a normal/non-tumorigenic (MCF-10A) breast cell line. JFE was standardized to anthocyanin content using the pH differential method, and individual anthocyanins were identified by high performance liquid chromatography with ultraviolet (HPLC-UV) and tandem mass spectrometry (LC-MS/MS) methods. JFE contained 3.5% anthocyanins (as cyanidin-3-glucoside equivalents) which occur as diglucosides of five anthocyanidins/aglycons: delphinidin, cyanidin, petunidin, peonidin and malvidin. In the proliferation assay, JFE was most effective against MCF-7aro (IC50=27 µg/mL), followed by MDA-MB-231 (IC50=40 µg/mL) breast cancer cells. Importantly, JFE exhibited only mild antiproliferative effects against the normal MCF-10A (IC50>100 µg/mL) breast cells. Similarly, JFE (at 200 µg/mL) exhibited pro-apoptotic effects against the MCF-7aro (p≤0.05) and the MDA-MB-231 (p≤0.01) breast cancer cells, but not towards the normal MCF-10A breast cells. These studies suggest that JFE may have potential beneficial effects against breast cancer. PMID:19166352

  13. Carcinogenesis induced by low-dose radiation

    Directory of Open Access Journals (Sweden)

    Piotrowski Igor

    2017-11-01

    Full Text Available Although the effects of high dose radiation on human cells and tissues are relatively well defined, there is no consensus regarding the effects of low and very low radiation doses on the organism. Ionizing radiation has been shown to induce gene mutations and chromosome aberrations which are known to be involved in the process of carcinogenesis. The induction of secondary cancers is a challenging long-term side effect in oncologic patients treated with radiation. Medical sources of radiation like intensity modulated radiotherapy used in cancer treatment and computed tomography used in diagnostics, deliver very low doses of radiation to large volumes of healthy tissue, which might contribute to increased cancer rates in long surviving patients and in the general population. Research shows that because of the phenomena characteristic for low dose radiation the risk of cancer induction from exposure of healthy tissues to low dose radiation can be greater than the risk calculated from linear no-threshold model. Epidemiological data collected from radiation workers and atomic bomb survivors confirms that exposure to low dose radiation can contribute to increased cancer risk and also that the risk might correlate with the age at exposure.

  14. A challenge to mutation theory of radiation carcinogenesis

    International Nuclear Information System (INIS)

    Watanabe, Masami

    2006-01-01

    This paper presents an objection against the commonly accepted mutation theory in radiation carcinogenesis. First, author's studies of X-ray irradiated syrian hamster embryo (SHE) cells on malignant morphological changes and mutational change of HGPRT gene showed that the changing patterns were quite different, and as well, other studies in mice gave the essentially similar results. Thus radiation-induced carcinogenesis in cells does not simply occur by an accumulation of radiation-induced mutation. Second, as cultured cells usually used for oncogenesis studies already have the infinitively proliferative ability, the author used the primary cell culture obtained from the rodent embryo. Even those cells became immortal to be cancerous after repeated culture passage with the higher frequency of 10 3 -10 4 relative to somatic cell mutation. Cells thus seem to be easily changeable to cancerous ones. Bystander effect can cause transformation in non-irradiated cells and genetic instability by radiation can form the potentially unstable chromatin region, which induces telomere instability. The author has found that, while short-lived radicals yielded by X-ray irradiation attack DNA to induce cell death and chromosome aberration, long-lived radicals in biomolecules do not, but can cause mutation and carcinogenesis, which are reduced by vitamine C supplementation. The author concludes that the primary target in the radiation carcinogenesis in cells and even in the whole individuals is conceivably protein and not DNA. (T.I.)

  15. Deficiency of CCAAT/enhancer binding protein family DNA binding prevents malignant conversion of adenoma to carcinoma in NNK-induced lung carcinogenesis in the mouse

    Directory of Open Access Journals (Sweden)

    Kimura Shioko

    2012-12-01

    Full Text Available Abstract Background The CCAAT/enhancer binding proteins (C/EBPs play important roles in carcinogenesis of many tumors including the lung. Since multiple C/EBPs are expressed in lung, the combinatorial expression of these C/EBPs on lung carcinogenesis is not known. Methods A transgenic mouse line expressing a dominant negative A-C/EBP under the promoter of lung epithelial Clara cell secretory protein (CCSP gene in doxycycline dependent fashion was subjected to 4-(methylnitrosamino-1-(3-pyridyl-1-butanone (NNK-induced lung carcinogenesis bioassay in the presence and absence of doxycycline, and the effect of abolition of DNA binding activities of C/EBPs on lung carcinogenesis was examined. Results A-C/EBP expression was found not to interfere with tumor development; however, it suppressed the malignant conversion of adenoma to carcinoma during NNK-induced lung carcinogenesis. The results suggested that Ki67 may be used as a marker for lung carcinomas in mouse. Conclusions The DNA binding of C/EBP family members can be used as a potential molecular target for lung cancer therapy.

  16. Expression of Hormonal Carcinogenesis Genes and Related Regulatory microRNAs in Uterus and Ovaries of DDT-Treated Female Rats.

    Science.gov (United States)

    Kalinina, T S; Kononchuk, V V; Gulyaeva, L F

    2017-10-01

    The insecticide dichlorodiphenyltrichloroethane (DDT) is a nonmutagenic xenobiotic compound able to exert estrogen-like effects resulting in activation of estrogen receptor-α (ERα) followed by changed expression of its downstream target genes. In addition, studies performed over recent years suggest that DDT may also influence expression of microRNAs. However, an impact of DDT on expression of ER, microRNAs, and related target genes has not been fully elucidated. Here, using real-time PCR, we assessed changes in expression of key genes involved in hormonal carcinogenesis as well as potentially related regulatory oncogenic/tumor suppressor microRNAs and their target genes in the uterus and ovaries of female Wistar rats during single and chronic multiple-dose DDT exposure. We found that applying DDT results in altered expression of microRNAs-221, -222, -205, -126a, and -429, their target genes (Pten, Dicer1), as well as genes involved in hormonal carcinogenesis (Esr1, Pgr, Ccnd1, Cyp19a1). Notably, Cyp19a1 expression seems to be also regulated by microRNAs-221, -222, and -205. The data suggest that epigenetic effects induced by DDT as a potential carcinogen may be based on at least two mechanisms: (i) activation of ERα followed by altered expression of the target genes encoding receptor Pgr and Ccnd1 as well as impaired expression of Cyp19a1, affecting, thereby, cell hormone balance; and (ii) changed expression of microRNAs resulting in impaired expression of related target genes including reduced level of Cyp19a1 mRNA.

  17. Methylation of the claudin 1 promoter is associated with loss of expression in estrogen receptor positive breast cancer.

    Directory of Open Access Journals (Sweden)

    Francescopaolo Di Cello

    Full Text Available Downregulation of the tight junction protein claudin 1 is a frequent event in breast cancer and is associated with recurrence, metastasis, and reduced survival, suggesting a tumor suppressor role for this protein. Tumor suppressor genes are often epigenetically silenced in cancer. Downregulation of claudin 1 via DNA promoter methylation may thus be an important determinant in breast cancer development and progression. To investigate if silencing of claudin 1 has an epigenetic etiology in breast cancer we compared gene expression and methylation data from 217 breast cancer samples and 40 matched normal samples available through the Cancer Genome Atlas (TCGA. Moreover, we analyzed claudin 1 expression and methylation in 26 breast cancer cell lines. We found that methylation of the claudin 1 promoter CpG island is relatively frequent in estrogen receptor positive (ER+ breast cancer and is associated with low claudin 1 expression. In contrast, the claudin 1 promoter was not methylated in most of the ER-breast cancers samples and some of these tumors overexpress claudin 1. In addition, we observed that the demethylating agents, azacitidine and decitabine can upregulate claudin 1 expression in breast cancer cell lines that have a methylated claudin 1 promoter. Taken together, our results indicate that DNA promoter methylation is causally associated with downregulation of claudin 1 in a subgroup of breast cancer that includes mostly ER+ tumors, and suggest that epigenetic therapy to restore claudin 1 expression might represent a viable therapeutic strategy in this subtype of breast cancer.

  18. Radiation Therapy in Treating Post-Menopausal Women With Early Stage Breast Cancer Undergoing Surgery

    Science.gov (United States)

    2017-06-07

    Ductal Breast Carcinoma In Situ; Estrogen Receptor Negative; Estrogen Receptor Positive; HER2/Neu Negative; Invasive Cribriform Breast Carcinoma; Invasive Ductal Carcinoma, Not Otherwise Specified; Lobular Breast Carcinoma In Situ; Mucinous Breast Carcinoma; Papillary Breast Carcinoma; Progesterone Receptor Positive; Stage I Breast Cancer; Stage II Breast Cancer; Stage IIIA Breast Cancer; Stage IIIC Breast Cancer; Tubular Breast Carcinoma

  19. Discovery of an Acrylic Acid Based Tetrahydroisoquinoline as an Orally Bioavailable Selective Estrogen Receptor Degrader for ERα+ Breast Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Burks, Heather E.; Abrams, Tinya; Kirby, Christina A.; Baird, Jason; Fekete, Alexander; Hamann, Lawrence G.; Kim, Sunkyu; Lombardo, Franco; Loo, Alice; Lubicka, Danuta; Macchi, Kaitlin; McDonnell, Donald P.; Mishina, Yuji; Norris, John D.; Nunez, Jill; Saran, Chitra; Sun, Yingchuan; Thomsen, Noel M.; Wang, Chunrong; Wang, Jianling; Peukert, Stefan (Novartis); (Duke-MED)

    2017-03-15

    Tetrahydroisoquinoline 40 has been identified as a potent ERα antagonist and selective estrogen receptor degrader (SERD), exhibiting good oral bioavailability, antitumor efficacy, and SERD activity in vivo. We outline the discovery and chemical optimization of the THIQ scaffold leading to THIQ 40 and showcase the racemization of the scaffold, pharmacokinetic studies in preclinical species, and the in vivo efficacy of THIQ 40 in a MCF-7 human breast cancer xenograft model.

  20. Partial least squares based gene expression analysis in estrogen receptor positive and negative breast tumors.

    Science.gov (United States)

    Ma, W; Zhang, T-F; Lu, P; Lu, S H

    2014-01-01

    Breast cancer is categorized into two broad groups: estrogen receptor positive (ER+) and ER negative (ER-) groups. Previous study proposed that under trastuzumab-based neoadjuvant chemotherapy, tumor initiating cell (TIC) featured ER- tumors response better than ER+ tumors. Exploration of the molecular difference of these two groups may help developing new therapeutic strategies, especially for ER- patients. With gene expression profile from the Gene Expression Omnibus (GEO) database, we performed partial least squares (PLS) based analysis, which is more sensitive than common variance/regression analysis. We acquired 512 differentially expressed genes. Four pathways were found to be enriched with differentially expressed genes, involving immune system, metabolism and genetic information processing process. Network analysis identified five hub genes with degrees higher than 10, including APP, ESR1, SMAD3, HDAC2, and PRKAA1. Our findings provide new understanding for the molecular difference between TIC featured ER- and ER+ breast tumors with the hope offer supports for therapeutic studies.

  1. BMI-1 Mediates Estrogen-Deficiency-Induced Bone Loss by Inhibiting Reactive Oxygen Species Accumulation and T Cell Activation.

    Science.gov (United States)

    Li, Jinbo; Wang, Qian; Yang, Renlei; Zhang, Jiaqi; Li, Xing; Zhou, Xichao; Miao, Dengshun

    2017-05-01

    Previous studies have shown that estrogen regulates bone homeostasis through regulatory effects on oxidative stress. However, it is unclear how estrogen deficiency triggers reactive oxygen species (ROS) accumulation. Recent studies provide evidence that the B lymphoma Mo-MLV insertion region 1 (BMI-1) plays a critical role in protection against oxidative stress and that this gene is directly regulated by estrogen via estrogen receptor (ER) at the transcriptional level. In this study, ovariectomized mice were given drinking water with/without antioxidant N-acetyl-cysteine (NAC, 1 mg/mL) supplementation, and compared with each other and with sham mice. Results showed that ovariectomy resulted in bone loss with increased osteoclast surface, increased ROS levels, T cell activation, and increased TNF and RANKL levels in serum and in CD4 T cells; NAC supplementation largely prevented these alterations. BMI-1 expression levels were dramatically downregulated in CD4 T cells from ovariectomized mice. We supplemented drinking water to BMI-1-deficient mice with/without NAC and compared them with each other and with wild-type (WT) mice. We found that BMI-1 deficiency mimicked alterations observed in ovariectomy whereas NAC supplementation reversed all alterations induced by BMI-1 deficiency. Because T cells are critical in mediating ovariectomy-induced bone loss, we further assessed whether BMI-1 overexpression in lymphocytes can protect against estrogen deficiency-induced osteoclastogenesis and bone loss by inhibiting oxidative stress, T cell activation, and RANKL production. When WT and Eμ-BMI-1 transgenic mice with BMI-1 specifically overexpressed in lymphocytes were ovariectomized and compared with each other and with WT sham mice, we found that BMI-1 overexpression in lymphocytes clearly reversed all alterations induced by ovariectomy. Results from this study indicate that estrogen deficiency downregulates BMI-1 and subsequently increases ROS, T cell activation, and

  2. Cadmium carcinogenesis

    International Nuclear Information System (INIS)

    Waalkes, Michael P.

    2003-01-01

    Cadmium is a heavy metal of considerable environmental and occupational concern. Cadmium compounds are classified as human carcinogens by several regulatory agencies. The most convincing data that cadmium is carcinogenic in humans comes from studies indicating occupational cadmium exposure is associated with lung cancer. Cadmium exposure has also been linked to human prostate and renal cancer, although this linkage is weaker than for lung cancer. Other target sites of cadmium carcinogenesis in humans, such as liver, pancreas and stomach, are considered equivocal. In animals, cadmium effectively induces cancers at multiple sites and by various routes. Cadmium inhalation in rats induces pulmonary adenocarcinomas, in accord with its role in human lung cancer. Cadmium can induce tumors and/or preneoplastic lesions within the rat prostate after ingestion or injection. At relatively high doses, cadmium induces benign testicular tumors in rats, but these appear to be due to early toxic lesions and loss of testicular function, rather than from a specific carcinogenic effect of cadmium. Like many other metals, cadmium salts will induce mesenchymal tumors at the site of subcutaneous (s.c.) or intramuscular (i.m.) injections, but the human relevance of these is dubious. Other targets of cadmium in rodents include the liver, adrenal, pancreas, pituitary, and hematopoietic system. With the exception of testicular tumors in rodents, the mechanisms of cadmium carcinogenesis are poorly defined. Cadmium can cause any number of molecular lesions that would be relevant to oncogenesis in various cellular model systems. Most studies indicate cadmium is poorly mutagenic and probably acts through indirect or epigenetic mechanisms, potentially including aberrant activation of oncogenes and suppression of apoptosis

  3. Cadmium carcinogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Waalkes, Michael P

    2003-12-10

    Cadmium is a heavy metal of considerable environmental and occupational concern. Cadmium compounds are classified as human carcinogens by several regulatory agencies. The most convincing data that cadmium is carcinogenic in humans comes from studies indicating occupational cadmium exposure is associated with lung cancer. Cadmium exposure has also been linked to human prostate and renal cancer, although this linkage is weaker than for lung cancer. Other target sites of cadmium carcinogenesis in humans, such as liver, pancreas and stomach, are considered equivocal. In animals, cadmium effectively induces cancers at multiple sites and by various routes. Cadmium inhalation in rats induces pulmonary adenocarcinomas, in accord with its role in human lung cancer. Cadmium can induce tumors and/or preneoplastic lesions within the rat prostate after ingestion or injection. At relatively high doses, cadmium induces benign testicular tumors in rats, but these appear to be due to early toxic lesions and loss of testicular function, rather than from a specific carcinogenic effect of cadmium. Like many other metals, cadmium salts will induce mesenchymal tumors at the site of subcutaneous (s.c.) or intramuscular (i.m.) injections, but the human relevance of these is dubious. Other targets of cadmium in rodents include the liver, adrenal, pancreas, pituitary, and hematopoietic system. With the exception of testicular tumors in rodents, the mechanisms of cadmium carcinogenesis are poorly defined. Cadmium can cause any number of molecular lesions that would be relevant to oncogenesis in various cellular model systems. Most studies indicate cadmium is poorly mutagenic and probably acts through indirect or epigenetic mechanisms, potentially including aberrant activation of oncogenes and suppression of apoptosis.

  4. Long-term results of breast-conserving treatment for early-stage breast cancer in Japanese women from multicenter investigation

    International Nuclear Information System (INIS)

    Ohsumi, Shozo; Takashima, Shigemitsu; Sakamoto Goi

    2003-01-01

    Although many clinical data regarding breast-conserving treatment have already been reported from European and North American countries, few clinical data with long-term follow-up have been reported from Japan. We collected information on therapeutic and possible or developed prognostic factors and follow-up data for Japanese women who had received breast-conserving treatment consisting of wide excision of the primary tumor, axillary dissection and radiotherapy for unilateral breast cancer considered suitable for breast-conserving treatment from 18 Japanese major breast cancer treating hospitals; 1561 patients were registered. The median follow-up period was 77 months. Five-year disease-free and overall survival rates were 89.4 and 95.9%, respectively. The 5-year local recurrence-free rate was 96.3%. The patients with histologically positive margins (P<0.0001) or estrogen receptor negative tumor (P=0.0340) or younger than 40 years old (P<0.0001) developed statistically significantly more local recurrences. Adjuvant endocrine therapy was essential for the estrogen receptor positive patients to have a lower local recurrence rate. Endocrine therapy did not change the local recurrence rate among estrogen receptor negative patients at all. Multivariate analysis showed histological margin status and the combination of estrogen receptor status and endocrine therapy were independent prognostic factors for local recurrence. The 5-year local recurrence rate of Japanese breast cancer patients who were treated with breast-conserving treatment using radiotherapy was 3.7%. Independent prognostic factors for local recurrence were histological margin status and the combination of estrogen receptor status and adjuvant endocrine therapy. (author)

  5. HDAC2 and HDAC5 Up-Regulations Modulate Survivin and miR-125a-5p Expressions and Promote Hormone Therapy Resistance in Estrogen Receptor Positive Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Wen-Tsung Huang

    2017-12-01

    Full Text Available Intrinsic or acquired resistance to hormone therapy is frequently reported in estrogen receptor positive (ER+ breast cancer patients. Even though dysregulations of histone deacetylases (HDACs are known to promote cancer cells survival, the role of different HDACs in the induction of hormone therapy resistance in ER+ breast cancer remains unclear. Survivin is a well-known pro-tumor survival molecule and miR-125a-5p is a recently discovered tumor suppressor. In this study, we found that ER+, hormone-independent, tamoxifen-resistant MCF7-TamC3 cells exhibit increased expression of HDAC2, HDAC5, and survivin, but show decreased expression of miR-125a-5p, as compared to the parental tamoxifen-sensitive MCF7 breast cancer cells. Molecular down-regulations of HDAC2, HDAC5, and survivin, and ectopic over-expression of miR-125a-5p, increased the sensitivity of MCF7-TamC3 cells to estrogen deprivation and restored the sensitivity to tamoxifen. The same treatments also further increased the sensitivity to estrogen-deprivation in the ER+ hormone-dependent ZR-75-1 breast cancer cells in vitro. Kaplan–Meier analysis and receiver operating characteristic curve analysis of expression cohorts of breast tumor showed that high HDAC2 and survivin, and low miR-125a-5p, expression levels correlate with poor relapse-free survival in endocrine therapy and tamoxifen-treated ER+ breast cancer patients. Further molecular analysis revealed that HDAC2 and HDAC5 positively modulates the expression of survivin, and negatively regulates the expression miR-125a-5p, in ER+ MCF7, MCF7-TamC3, and ZR-75-1 breast cancer cells. These findings indicate that dysregulations of HDAC2 and HDAC5 promote the development of hormone independency and tamoxifen resistance in ERC breast cancer cells in part through expression regulation of survivin and miR-125a-5p.

  6. Polymeric black tea polyphenols inhibit 1,2-dimethylhydrazine induced colorectal carcinogenesis by inhibiting cell proliferation via Wnt/β-catenin pathway

    International Nuclear Information System (INIS)

    Patel, Rachana; Ingle, Arvind; Maru, Girish B.

    2008-01-01

    Tea polyphenols like epigallocatechin gallate and theaflavins are established chemopreventive agents for colorectal carcinogenesis. However, studies on evaluating similar chemopreventive properties of thearubigins or polymeric black tea polyphenols (PBPs), the most abundant polyphenols in black tea, are limited. Hence, in the present study we aim to investigate chemopreventive effects along with probable mechanisms of action of PBP extract employing 1,2-dimethylhydrazine (DMH)-induced colorectal carcinogenesis in Sprague-Dawley rats as experimental model. The present study suggests that PBPs, like other tea polyphenols, also inhibit DMH-induced colorectal tumorigenesis by decreasing tumor volume and multiplicity. This study also shows that although the pretreatment with PBP extract could induce detoxifying enzymes in hepatic and colorectal tissue, it did not show any additional chemopreventive effects when compared to treatments with PBP extract after initiation with DMH. Mechanistically, PBP extract may inhibit colorectal carcinogenesis by decreasing DMH-induced cell proliferation via Wnt/β-catenin pathway. Treatments with PBP extract showed decreased levels of COX-2, c-MYC and cyclin D1 proteins which aid cell proliferation probably by regulating β-catenin by maintaining expression of APC and decreasing inactivation of GSK3β. DMH-induced activation of MAP kinases such as ERK and JNK was also found to be inhibited by treatments with PBP extract. In conclusion, the protective effects of PBP extract could be attributed to inhibition of DMH-induced cellular proliferation probably through β-catenin regulation

  7. A New Therapeutic Paradigm for Breast Cancer Exploiting Low Dose Estrogen-Induced Apoptosis

    Science.gov (United States)

    2014-08-01

    Miyazawa K, Shiokawa M, Nakamaru Y, Hiroi E, Hiura K, Kameda A, Yang NN, Hakeda Y, Kumegawa M (1997) Estrogen inhibits bone resorption by directly...cancer 528 Yoshiaki Ito and Khay Guan Yeoh 46. Small-bowel tumors: molecular mechanisms and targeted therapy 537 Allan Spigelman and Janindra...USA Jean-Pierre Issa University of Texas M. D. Anderson Cancer Center, Houston, TX, USA Yoshiaki Ito, MD PhD Cancer Science Institute, National

  8. Thymoquinone regulates gene expression levels in the estrogen metabolic and interferon pathways in MCF7 breast cancer cells

    OpenAIRE

    MOTAGHED, MARJANEH; AL-HASSAN, FAISAL MUTI; HAMID, SHAHRUL SAHUL

    2013-01-01

    New drugs are continuously being developed for the treatment of patients with estrogen receptor-positive breast cancer. Thymoquinone is one of the drugs that exhibits anticancer characteristics based on in vivo and in vitro models. This study further investigates the effects of thymoquinone on human gene expression using cDNA microarray technology. The quantification of RNA samples was carried out using an Agilent 2100 Bioanalyser to determine the RNA integrity number (RIN). The Agilent Low I...

  9. Steroid induction of therapy-resistant cytokeratin-5-positive cells in estrogen receptor-positive breast cancer through a BCL6-dependent mechanism

    Science.gov (United States)

    Goodman, C R; Sato, T; Peck, A R; Girondo, M A; Yang, N; Liu, C; Yanac, A F; Kovatich, A J; Hooke, J A; Shriver, C D; Mitchell, E P; Hyslop, T; Rui, H

    2016-01-01

    Therapy resistance remains a major problem in estrogen receptor-α (ERα)-positive breast cancer. A subgroup of ERα-positive breast cancer is characterized by mosaic presence of a minor population of ERα-negative cancer cells expressing the basal cytokeratin-5 (CK5). These CK5-positive cells are therapy resistant and have increased tumor-initiating potential. Although a series of reports document induction of the CK5-positive cells by progestins, it is unknown if other 3-ketosteroids share this ability. We now report that glucocorticoids and mineralocorticoids effectively expand the CK5-positive cell population. CK5-positive cells induced by 3-ketosteroids lacked ERα and progesterone receptors, expressed stem cell marker, CD44, and displayed increased clonogenicity in soft agar and broad drug-resistance in vitro and in vivo. Upregulation of CK5-positive cells by 3-ketosteroids required induction of the transcriptional repressor BCL6 based on suppression of BCL6 by two independent BCL6 small hairpin RNAs or by prolactin. Prolactin also suppressed 3-ketosteroid induction of CK5+ cells in T47D xenografts in vivo. Survival analysis with recursive partitioning in node-negative ERα-positive breast cancer using quantitative CK5 and BCL6 mRNA or protein expression data identified patients at high or low risk for tumor recurrence in two independent patient cohorts. The data provide a mechanism by which common pathophysiological or pharmacologic elevations in glucocorticoids or other 3-ketosteroids may adversely affect patients with mixed ERα+/CK5+ breast cancer. The observations further suggest a cooperative diagnostic utility of CK5 and BCL6 expression levels and justify exploring efficacy of inhibitors of BCL6 and 3-ketosteroid receptors for a subset of ERα-positive breast cancers. PMID:26096934

  10. Acquisition of Genetic Aberrations by Activation-Induced Cytidine Deaminase (AID) during Inflammation-Associated Carcinogenesis

    International Nuclear Information System (INIS)

    Takai, Atsushi; Marusawa, Hiroyuki; Chiba, Tsutomu

    2011-01-01

    Genetic abnormalities such as nucleotide alterations and chromosomal disorders that accumulate in various tumor-related genes have an important role in cancer development. The precise mechanism of the acquisition of genetic aberrations, however, remains unclear. Activation-induced cytidine deaminase (AID), a nucleotide editing enzyme, is essential for the diversification of antibody production. AID is expressed only in activated B lymphocytes under physiologic conditions and induces somatic hypermutation and class switch recombination in immunoglobulin genes. Inflammation leads to aberrant AID expression in various gastrointestinal organs and increased AID expression contributes to cancer development by inducing genetic alterations in epithelial cells. Studies of how AID induces genetic disorders are expected to elucidate the mechanism of inflammation-associated carcinogenesis

  11. American Society of Clinical Oncology/College of American Pathologists guideline recommendations for immunohistochemical testing of estrogen and progesterone receptors in breast cancer (unabridged version).

    NARCIS (Netherlands)

    Hammond, M.E.; Hayes, D.F.; Dowsett, M.; Allred, D.C.; Hagerty, K.L.; Badve, S.; Fitzgibbons, P.L.; Francis, G.; Goldstein, N.S.; Hayes, M.; Hicks, D.G.; Lester, S.; Love, R.; Mangu, P.B.; McShane, L.; Miller, K.; Osborne, C.K.; Paik, S.; Perlmutter, J.; Rhodes, A.; Sasano, H.; Schwartz, J.N.; Sweep, F.C.; Taube, S.; Torlakovic, E.E.; Valenstein, P.; Viale, G.; Visscher, D.; Wheeler, T.; Williams, R.B.; Wittliff, J.L.; Wolff, A.C.

    2010-01-01

    PURPOSE: To develop a guideline to improve the accuracy of immunohistochemical (IHC) estrogen receptor (ER) and progesterone receptor (PgR) testing in breast cancer and the utility of these receptors as predictive markers. METHODS: The American Society of Clinical Oncology and the College of

  12. The Z-isomer of 11 beta-methoxy-17 alpha-[123I]iodovinylestradiol is a promising radioligand for estrogen receptor imaging in human breast cancer

    NARCIS (Netherlands)

    Rijks, L. J.; Boer, G. J.; Endert, E.; de Bruin, K.; Janssen, A. G.; van Royen, E. A.

    1997-01-01

    The potential of both stereoisomers of 11 beta-methoxy-17 alpha-[123I] iodovinylestradiol (E- and Z-[123I]MIVE) as suitable radioligands for imaging of estrogen receptor (ER)-positive human breast tumours was studied. The 17 alpha-[123I]iodovinylestradiol derivatives were prepared stereospecifically

  13. Protective molecular mechanisms of resveratrol in UVR-induced Skin carcinogenesis.

    Science.gov (United States)

    Aziz, Saba W; Aziz, Moammir H

    2018-01-01

    Skin cancer is a major health problem worldwide. It is the most common cancer in the United States and poses a significant healthcare burden. Excessive UVR exposure is the most common cause of skin cancer. Despite various precautionary measures to avoid direct UVR exposure, the incidence of skin cancer and mortality related to it remains high. Furthermore, the current treatment options are expensive and have side effects including toxicity to normal cells. Thus, a safe and effective approach is needed to prevent and treat skin cancer. Chemopreventive strategy using naturally occurring compounds, such as resveratrol, is a promising approach to reduce the incidence of UVR-induced skin cancer and delay its progression. This review highlights the current body of evidence related to chemopreventive role of resveratrol and its molecular mechanisms in UVR-induced skin carcinogenesis. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. Inhibition of estrogen-responsive gene activation by the retinoid X receptor beta: evidence for multiple inhibitory pathways.

    Science.gov (United States)

    Segars, J H; Marks, M S; Hirschfeld, S; Driggers, P H; Martinez, E; Grippo, J F; Brown, M; Wahli, W; Ozato, K

    1993-04-01

    The retinoid X receptor beta (RXR beta; H-2RIIBP) forms heterodimers with various nuclear hormone receptors and binds multiple hormone response elements, including the estrogen response element (ERE). In this report, we show that endogenous RXR beta contributes to ERE binding activity in nuclear extracts of the human breast cancer cell line MCF-7. To define a possible regulatory role of RXR beta regarding estrogen-responsive transcription in breast cancer cells, RXR beta and a reporter gene driven by the vitellogenin A2 ERE were transfected into estrogen-treated MCF-7 cells. RXR beta inhibited ERE-driven reporter activity in a dose-dependent and element-specific fashion. This inhibition occurred in the absence of the RXR ligand 9-cis retinoic acid. The RXR beta-induced inhibition was specific for estrogen receptor (ER)-mediated ERE activation because inhibition was observed in ER-negative MDA-MB-231 cells only following transfection of the estrogen-activated ER. No inhibition of the basal reporter activity was observed. The inhibition was not caused by simple competition of RXR beta with the ER for ERE binding, since deletion mutants retaining DNA binding activity but lacking the N-terminal or C-terminal domain failed to inhibit reporter activity. In addition, cross-linking studies indicated the presence of an auxiliary nuclear factor present in MCF-7 cells that contributed to RXR beta binding of the ERE. Studies using known heterodimerization partners of RXR beta confirmed that RXR beta/triiodothyronine receptor alpha heterodimers avidly bind the ERE but revealed the existence of another triiodothyronine-independent pathway of ERE inhibition. These results indicate that estrogen-responsive genes may be negatively regulated by RXR beta through two distinct pathways.

  15. Transcriptional activation of rat creatine kinase B by 17beta-estradiol in MCF-7 cells involves an estrogen responsive element and GC-rich sites.

    Science.gov (United States)

    Wang, F; Samudio, I; Safe, S

    2001-01-01

    The rat creatine kinase B (CKB) gene is induced by estrogen in the uterus, and constructs containing rat CKB gene promoter inserts are highly estrogen-responsive in cell culture. Analysis of the upstream -568 to -523 region of the promoter in HeLa cells has identified an imperfect palindromic estrogen response element (ERE) that is required for hormone inducibility. Analysis of the CKB gene promoter in MCF-7 breast cancer cells confirmed that pCKB7 (containing the -568 to -523 promoter insert) was estrogen-responsive in transient transfection studies. However, mutation and deletion analysis of this region of the promoter showed that two GC-rich sites and the concensus ERE were functional cis-elements that bound estrogen receptor alpha (ERalpha)/Sp1 and ERalpha proteins, respectively. The role of these elements was confirmed in gel mobility shift and chromatin immunoprecipitation assays and transfection studies in MDA-MB-231 and Schneider Drosophila SL-2 cells. These results show that transcriptional activation of CKB by estrogen is dependent, in part, on ERalpha/Sp1 action which is cell context-dependent. Copyright 2001 Wiley-Liss, Inc.

  16. 4-tert-Octylphenol stimulates the expression of cathepsins in human breast cancer cells and xenografted breast tumors of a mouse model via an estrogen receptor-mediated signaling pathway

    International Nuclear Information System (INIS)

    Lee, Hye-Rim; Choi, Kyung-Chul

    2013-01-01

    Highlights: ► Cathepsins B and D were markedly enhanced by octylphenol (OP) in MCF-7 cells. ► OP may accelerate breast cancer cell growth and cathepsins via ER-mediated signaling. ► Breast cancer cells exposed with OP to mouse model were more aggressive. ► OP can promote metastasis through the amplification of cathepsins B and D via ER-mediated signaling pathway. -- Abstract: Endocrine disrupting chemicals (EDCs) are defined as environmental compounds that modulate steroid hormone receptor-dependent responses an abnormal manner, resulting in adverse health problems for humans such as cancer growth and metastasis. Cathepsins are proteases that have been implicated in cancer progression. However, there have been few studies about the association between cathepsins and estrogenic chemicals during the cancer progression. In this study, we examined the effect(s) of 4-tert-octylphenol (OP), a potent EDC, on the expression of cathepsins B and D in human MCF-7 breast cancer cells and a xenograft mouse model. Treatment with OP significantly induced the proliferation MCF-7 cells in an MTT assay. In addition, the expression of cathepsins B and D was markedly enhanced in MCF-7 cells at both the transcriptional and the translational levels following treatment with E2 or OP up to 48 h. These results demonstrated the ability of OP to disrupt normal transcriptional regulation of cathepsins B and D in human breast cancer cells. However, the effects of OP on cell growth or overexpression of cathepsins by inhibiting ER-mediated signaling were abolished by an ER antagonist and siRNA specific for ERα. In conclusion, our findings suggest that OP at 10 −6 M, like E2, may accelerate breast cancer cell proliferation and the expression of cathepsins through an ER-mediated signaling pathway. In addition, the breast cancer cells exposed with OP to a xenograft mouse model were more aggressive according to our histological analysis and showed markedly increased expression of

  17. Melatonin: an Inhibitor of Breast Cancer

    Science.gov (United States)

    Hill, Steven M.; Belancio, Victoria P.; Dauchy, Robert T.; Xiang, Shulin; Brimer, Samantha; Mao, Lulu; Hauch, Adam; Lundberg, Peter W.; Summers, Whitney; Yuan, Lin; Frasch, Tripp; Blask, David E.

    2015-01-01

    This review discusses recent work on melatonin-mediated circadian regulation and metabolic and molecular signaling mechanisms involved in human breast cancer growth and associated consequences of circadian disruption by exposure to light at night (LEN). The anti-cancer actions of the circadian melatonin signal in human breast cancer cell lines and xenografts heavily involve MT1 receptor-mediated mechanisms. In estrogen receptor alpha (ERα)-positive human breast cancer, melatonin, via the MT1 receptor, suppresses ERα mRNA expression and ERα transcriptional activity. As well, melatonin regulates the transactivation of other members of the nuclear receptor super-family, estrogen metabolizing enzymes, and the expression of core clock and clock-related genes. Furthermore, melatonin also suppresses tumor aerobic metabolism (Warburg effect), and, subsequently, cell-signaling pathways critical to cell proliferation, cell survival, metastasis, and drug resistance. Melatonin demonstrates both cytostatic and cytotoxic activity in breast cancer cells that appears to be cell type specific. Melatonin also possesses anti-invasive/anti-metastatic actions that involve multiple pathways including inhibition of p38 MAPK and repression of epithelial-to-mesenchymal transition. Studies demonstrate that melatonin promotes genomic stability by inhibiting the expression of LINE-1 retrotransposons. Finally, research in animal and human models indicate that LEN induced disruption of the circadian nocturnal melatonin signal promotes the growth, metabolism, and signaling of human breast cancer to drive breast tumors to endocrine and chemotherapeutic resistance. These data provide the strongest understanding and support of the mechanisms underpinning the epidemiologic demonstration of elevated breast cancer risk in night shift workers and other individuals increasingly exposed to LEN. PMID:25876649

  18. Cepharanthine Prevents Estrogen Deficiency-Induced Bone Loss by Inhibiting Bone Resorption

    Directory of Open Access Journals (Sweden)

    Chen-he Zhou

    2018-03-01

    Full Text Available Osteoporosis is a common health problem worldwide caused by an imbalance of bone formation vs. bone resorption. However, current therapeutic approaches aimed at enhancing bone formation or suppressing bone resorption still have some limitations. In this study, we demonstrated for the first time that cepharanthine (CEP, derived from Stephania cepharantha Hayata exerted a protective effect on estrogen deficiency-induced bone loss. This protective effect was confirmed to be achieved through inhibition of bone resorption in vivo, rather than through enhancement of bone formation in vivo. Furthermore, the in vitro study revealed that CEP attenuated receptor activator of nuclear factor κB ligand (RANKL-induced osteoclast formation, and suppressed bone resorption by impairing the c-Jun N-terminal kinase (JNK and phosphatidylinositol 3-kinase (PI3K-AKT signaling pathways. The inhibitory effect of CEP could be partly reversed by treatment with anisomycin (a JNK and p38 agonist and/or SC79 (an AKT agonist in vitro. Our results thus indicated that CEP could prevent estrogen deficiency-induced bone loss by inhibiting osteoclastogenesis. Hence, CEP might be a novel therapeutic agent for anti-osteoporosis therapy.

  19. Paclitaxel Albumin-Stabilized Nanoparticle Formulation in Treating Older Patients With Locally Advanced or Metastatic Breast Cancer

    Science.gov (United States)

    2018-03-05

    Male Breast Cancer; Recurrent Breast Cancer; Stage IV Breast Cancer; Estrogen Receptor-negative Breast Cancer; Estrogen Receptor-positive Breast Cancer; HER2-negative Breast Cancer; HER2-positive Breast Cancer; Progesterone Receptor-negative Breast Cancer; Progesterone Receptor-positive Breast Cancer; Stage IIIA Breast Cancer; Stage IIIB Breast Cancer; Stage IIIC Breast Cancer; Triple-negative Breast Cancer

  20. A New Therapeutic Paradigm for Breast Cancer Exploiting Low Dose Estrogen-Induce Apoptosis

    Science.gov (United States)

    2008-09-01

    idoxifene has not been developed further because of concerns about uterine prolapse (299]. This side effect is not seen with tamoxifen 5.6.4 Droloxifene...various species (rat, mouse, mon- key, and dog ). Themajor route of excretion of radioactivitywas in the feces. The rat and dog were used to show that...identified in the dog [40]. This phenolic metabolite without the dimethylaminoethyl side chain is a full estrogen [47,49]. The dimethylaminoethoxy side

  1. Associations of breast cancer risk factors with tumor subtypes: a pooled analysis from the Breast Cancer Association Consortium studies

    DEFF Research Database (Denmark)

    Yang, Xiaohong R; Chang-Claude, Jenny; Goode, Ellen L

    2011-01-01

    Previous studies have suggested that breast cancer risk factors are associated with estrogen receptor (ER) and progesterone receptor (PR) expression status of the tumors.......Previous studies have suggested that breast cancer risk factors are associated with estrogen receptor (ER) and progesterone receptor (PR) expression status of the tumors....

  2. Survival with breast cancer: the importance of estrogen receptor quantity.

    Science.gov (United States)

    Shek, L L; Godolphin, W

    1989-02-01

    The survival of 1184 British Columbian women whose primary breast cancers were diagnosed and assayed for estrogen receptor (ER) between 1975 and 1981 was studied. Median follow-up was 60 months. ER concentrations yielded greater prognostic information than simple positive and negative categories. When ER data were divided into four strata: less than or equal to 1, 2-9, 10-159 and greater than or equal to 160 fmol/mg cytosol protein, the association of higher ER with prolonged survival was highly significant (P less than 0.0001) and independent of TNM stage, nodal status and menopausal status. ER less than or equal to 1 and ER = 2-9 groups were distinct with respect to overall disease-specific survival. Patient age did not predict survival when controlled for ER. Prolonged recurrence-free survival was associated with higher ER (P = 0.0001) for at least 5 years after diagnosis. This significant trend persisted after adjustments for nodal status, TNM stage, menopausal status and the type of systemic adjuvant therapy.

  3. Integral Role of PTP1B in Adiponectin-Mediated Inhibition of Oncogenic Actions of Leptin in Breast Carcinogenesis

    Directory of Open Access Journals (Sweden)

    LaTonia Taliaferro-Smith

    2013-01-01

    Full Text Available The molecular effects of obesity are mediated by alterations in the levels of adipocytokines. High leptin level associated with obese state is a major cause of breast cancer progression and metastasis, whereas adiponectin is considered a “guardian angel adipocytokine” for its protective role against various obesity-related pathogenesis including breast cancer. In the present study, investigating the role of adiponectin as a potential inhibitor of leptin, we show that adiponectin treatment inhibits leptin-induced clonogenicity and anchorage-independent growth. Leptin-stimulated migration and invasion of breast cancer cells is also effectively inhibited by adiponectin. Analyses of the underlying molecular mechanisms reveal that adiponectin suppresses activation of two canonical signaling molecules of leptin signaling axis: extracellular signal-regulated kinase (ERK and Akt. Pretreatment of breast cancer cells with adiponectin protects against leptin-induced activation of ERK and Akt. Adiponectin increases expression and activity of the physiological inhibitor of leptin signaling, protein tyrosine phosphatase 1B (PTP1B, which is found to be integral to leptin-antagonist function of adiponectin. Inhibition of PTP1B blocks adiponectin-mediated inhibition of leptin-induced breast cancer growth. Our in vivo studies show that adenovirus-mediated adiponectin treatment substantially reduces leptin-induced mammary tumorigenesis in nude mice. Exploring therapeutic strategies, we demonstrate that treatment of breast cancer cells with rosiglitazone results in increased adiponectin expression and inhibition of migration and invasion. Rosiglitazone treatment also inhibits leptin-induced growth of breast cancer cells. Taken together, these data show that adiponectin treatment can inhibit the oncogenic actions of leptin through blocking its downstream signaling molecules and raising adiponectin levels could be a rational therapeutic strategy for breast

  4. Breast cancer cells with acquired antiestrogen resistance are sensitized to cisplatin-induced cell death

    DEFF Research Database (Denmark)

    Yde, Christina Westmose; Gyrd-Hansen, Mads; Lykkesfeldt, Anne E

    2007-01-01

    Antiestrogens are currently used for treating breast cancer patients who have estrogen receptor-positive tumors. However, patients with advanced disease will eventually develop resistance to the drugs. Therefore, compounds effective on antiestrogen-resistant tumors will be of great importance for...

  5. The Z-isomer of 11{beta}-methoxy-17{alpha}-[{sup 123}I]iodovinylestradiol is a promising radioligand for estrogen receptor imaging in human breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Rijks, Leonie J. M.; Boer, Gerard J.; Endert, Erik; Bruin, Kora de; Janssen, Anton G. M.; Royen, Eric A. van

    1997-01-01

    The potential of both stereoisomers of 11{beta}-methoxy-17{alpha}-[{sup 123}I]iodovinylestradiol (E- and Z-[{sup 123}I]MIVE) as suitable radioligands for imaging of estrogen receptor(ER)-positive human breast tumours was studied. The 17{alpha}-[{sup 123}I]iodovinylestradiol derivatives were prepared stereospecifically by oxidative radioiododestannylation of the corresponding 17{alpha}-tri-n-butylstannylvinylestradiol precursors. Both isomers of MIVE showed high in vitro affinity for dimethylbenzanthracene-induced rat and fresh human mammary tumour ER, that of Z-MIVE however being manyfold higher than that of E-MIVE. In vivo distribution studies with E- and Z-[{sup 123}I]MIVE in normal and tumour-bearing female rats showed ER-mediated uptake and retention in uterus, ovaries, pituitary, hypothalamus and mammary tumours, again the highest for Z-[{sup 123}I]MIVE. The uterus- and tumour-to-nontarget tissue (fat, muscle) uptake ratios were also highest for Z-[{sup 123}I]MIVE. Additionally, planar whole body imaging of two breast cancer patients 1-2 h after injection of Z-[{sup 123}I]MIVE showed increased focal uptake at known tumour sites. Therefore, we conclude that Z-[{sup 123}I]MIVE is a promising radioligand for the diagnostic imaging of ER in human breast cancer.

  6. The anticancer estrogen receptor antagonist tamoxifen impairs consolidation of inhibitory avoidance memory through estrogen receptor alpha.

    Science.gov (United States)

    Lichtenfels, Martina; Dornelles, Arethuza da Silva; Petry, Fernanda Dos Santos; Blank, Martina; de Farias, Caroline Brunetto; Roesler, Rafael; Schwartsmann, Gilberto

    2017-11-01

    Over two-thirds of women with breast cancer have positive tumors for hormone receptors, and these patients undergo treatment with endocrine therapy, tamoxifen being the most widely used agent. Despite being very effective in breast cancer treatment, tamoxifen is associated with side effects that include cognitive impairments. However, the specific aspects and mechanisms underlying these impairments remain to be characterized. Here, we have investigated the effects of tamoxifen and interaction with estrogen receptors on formation of memory for inhibitory avoidance conditioning in female rats. In the first experiment, Wistar female rats received a single oral dose of tamoxifen (1, 3, or 10 mg/kg) or saline by gavage immediately after training and were tested for memory consolidation 24 h after training. In the second experiment, rats received a single dose of 1 mg/kg tamoxifen or saline by gavage 3 h after training and were tested 24 h after training for memory consolidation. In the third experiment, rats received a subcutaneous injection with estrogen receptor α agonist or estrogen receptor beta agonist 30 min before the training. After training, rats received a single oral dose of tamoxifen 1 mg/kg or saline and were tested 24 h after training. In the fourth experiment, rats were trained and tested 24 h later. Immediately after test, rats received a single dose of tamoxifen (1 mg/kg) or saline by gavage and were given four additional daily test trials followed by a re-instatement. Tamoxifen at 1 mg/kg impaired memory consolidation when given immediately after training and the estrogen receptor alpha agonist improved the tamoxifen-related memory impairment. Moreover, tamoxifen impairs memory consolidation of the test. These findings indicate that estrogen receptors regulate the early phase of memory consolidation and the effects of tamoxifen on memory consolidation.

  7. Impact of Estrogens and Estrogen Receptor Alpha (ESR1) in Brain Lipid Metabolism.

    Science.gov (United States)

    Morselli, Eugenia; de Souza Santos, Roberta; Gao, Su; Ávalos, Yenniffer; Criollo, Alfredo; Palmer, Biff F; Clegg, Deborah J

    2018-03-06

    Estrogens and their receptors play key roles in regulating body weight, energy expenditure, and metabolic homeostasis. It is known that lack of estrogens promotes increased food intake and induces the expansion of adipose tissues, for which much is known. An area of estrogenic research that has received less attention is the role of estrogens and their receptors in influencing intermediary lipid metabolism in organs such as the brain. In this review, we highlight the actions of estrogens and their receptors in regulating their impact on modulating fatty acid content, utilization, and oxidation through their direct impact on intracellular signaling cascades within the central nervous system.

  8. Human glutathione S-transferase P1-1 functions as an estrogen receptor α signaling modulator

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiyuan [Department of Biological Science, Sookmyung Women’s University, Seoul (Korea, Republic of); An, Byoung Ha [Department of Food and Nutrition, College of Life Science, Sookmyung Women’s University, Seoul (Korea, Republic of); Kim, Min Jung; Park, Jong Hoon [Department of Biological Science, Sookmyung Women’s University, Seoul (Korea, Republic of); Kang, Young Sook [Department of Pharmacy, College of Pharmacy, Sookmyung Women’s University, Seoul (Korea, Republic of); Chang, Minsun, E-mail: minsunchang@sm.ac.kr [Department of Medical and Pharmaceutical Science, College of Science, Sookmyung Women’s University, Seoul (Korea, Republic of)

    2014-09-26

    Highlights: • GSTP induces the classical ERα signaling event. • The functional GSTP is a prerequisite for GSTP-induced ERα transcription activity. • The expression of RIP140, a transcription cofactor, was inhibited by GSTP protein. • We propose the novel non-enzymatic role of GSTP. - Abstract: Estrogen receptor α (ERα) plays a crucial role in estrogen-mediated signaling pathways and exerts its action as a nuclear transcription factor. Binding of the ligand-activated ERα to the estrogen response element (ERE) is a central part of ERα-associated signal transduction pathways and its aberrant modulation is associated with many disease conditions. Human glutathione S-transferase P1-1 (GSTP) functions as an enzyme in conjugation reactions in drug metabolism and as a regulator of kinase signaling pathways. It is overexpressed in tumors following chemotherapy and has been associated with a poor prognosis in breast cancer. In this study, a novel regulatory function of GSTP has been proposed in which GSTP modulates ERE-mediated ERα signaling events. Ectopic expression of GSTP was able to induce the ERα and ERE-mediated transcriptional activities in ERα-positive but GSTP-negative MCF7 human breast cancer cells. This inductive effect of GSTP on the ERE-transcription activity was diminished when the cells express a mutated form of the enzyme or are treated with a GSTP-specific chemical inhibitor. It was found that GSTP inhibited the expression of the receptor interacting protein 140 (RIP140), a negative regulator of ERα transcription, at both mRNA and protein levels. Our study suggests a novel non-enzymatic role of GSTP which plays a significant role in regulating the classical ERα signaling pathways via modification of transcription cofactors such as RIP140.

  9. Hypoxia-inducible factor 1 alpha expression increases during colorectal carcinogenesis and tumor progression

    International Nuclear Information System (INIS)

    Simiantonaki, Nektaria; Taxeidis, Marios; Jayasinghe, Caren; Kurzik-Dumke, Ursula; Kirkpatrick, Charles James

    2008-01-01

    Hypoxia-inducible factor 1 alpha (HIF-1α) is involved in processes promoting carcinogenesis of many tumors. However, its role in the development of colorectal cancer is unknown. To investigate the significance of HIF-1α during colorectal carcinogenesis and progression we examined its expression in precursor lesions constituting the conventional and serrated pathways, as well as in non-metastatic and metastatic adenocarcinomas. Immunohistochemistry and Western blot is used to analyse HIF-1α expression in normal colonic mucosa, hyperplastic polyps (HPP), sessile serrated adenomas (SSA), low-grade (TA-LGD) and high-grade (TA-HGD) traditional adenomas as well as in non-metastatic and metastatic colorectal adenocarcinomas. Eight colorectal carcinoma cell lines are tested for their HIF-1α inducibility after lipopolysaccharide (LPS) stimulation using western blot and immunocytochemistry. In normal mucosa, HPP and TA-LGD HIF-1α was not expressed. In contast, perinuclear protein accumulation and nuclear expression of HIF-1α were shown in half of the examined SSA and TA-HGD. In all investigated colorectal carcinomas a significant nuclear HIF-1α overexpression compared to the premalignant lesions was observed but a significant correlation with the metastatic status was not found. Nuclear HIF-1α expression was strongly accumulated in perinecrotic regions. In these cases HIF-1α activation was seen in viable cohesive tumor epithelia surrounding necrosis and in dissociated tumor cells, which subsequently die. Enhanced distribution of HIF-1α was also seen in periiflammatory regions. In additional in vitro studies, treatment of diverse colorectal carcinoma cell lines with the potent pro-inflammatory factor lipopolysaccharide (LPS) led to HIF-1α expression and nuclear translocation. We conclude that HIF-1α expression occurs in early stages of colorectal carcinogenesis and achieves a maximum in the invasive stage independent of the metastatic status. Perinecrotic

  10. Vascular measurements correlate with estrogen receptor status

    International Nuclear Information System (INIS)

    Lloyd, Mark C; Alfarouk, Khalid O; Verduzco, Daniel; Bui, Marilyn M; Gillies, Robert J; Ibrahim, Muntaser E; Brown, Joel S; Gatenby, Robert A

    2014-01-01

    Breast carcinoma can be classified as either Estrogen Receptor (ER) positive or negative by immunohistochemical phenotyping, although ER expression may vary from 1 to 100% of malignant cells within an ER + tumor. This is similar to genetic variability observed in other tumor types and is generally viewed as a consequence of intratumoral evolution driven by random genetic mutations. Here we view cellular evolution within tumors as a classical Darwinian system in which variations in molecular properties represent predictable adaptations to spatially heterogeneous environmental selection forces. We hypothesize that ER expression is a successful adaptive strategy only if estrogen is present in the microenvironment. Since the dominant source of estrogen is blood flow, we hypothesized that, in general, intratumoral regions with higher blood flow would contain larger numbers of ER + cells when compared to areas of low blood flow and in turn necrosis. This study used digital pathology whole slide image acquisition and advanced image analysis algorithms. We examined the spatial distribution of ER + and ER- cells, vascular density, vessel area, and tissue necrosis within histological sections of 24 breast cancer specimens. These data were correlated with the patients ER status and molecular pathology report findings. ANOVA analyses revealed a strong correlation between vascular area and ER expression and between high fractional necrosis and absent ER expression (R 2 = 39%; p < 0.003 and R 2 = 46%; p < 0.001), respectively). ER expression did not correlate with tumor grade or size. We conclude that ER expression can be understood as a Darwinian process and linked to variations in estrogen delivery by temporal and spatial heterogeneity in blood flow. This correlation suggests strategies to promote intratumoral blood flow or a cyclic introduction of estrogen in the treatment schedule could be explored as a counter-intuitive approach to increase the efficacy of anti-estrogen

  11. Validation of a proxy for estrogen receptor status in breast cancer patients using dispensing data.

    Science.gov (United States)

    Srasuebkul, Preeyaporn; Dobbins, Timothy A; Pearson, Sallie-Anne

    2014-06-01

    To assess the performance of a proxy for estrogen receptor (ER) status in breast cancer patients using dispensing data. We derived our proxy using 167 patients. ER+ patients had evidence of at least one dispensing record for hormone therapy during the lookback period, irrespective of diagnosis date and ER- had no dispensing records for hormone therapy during the period. We validated the proxy against our gold standard, ER status from pathology reports or medical records. We assessed the proxy's performance using three lookback periods: 4.5 years, 2 years, 1 year. More than half of our cohort (62%) were >50 years, 54% had stage III/IV breast cancer at recruitment, (46%) were diagnosed with breast cancer in 2009 and 23% were diagnosed before 2006. Sensitivity and specificity were high for the 4.5 year lookback period (93%, 95% CI: 86-96%; and 95%: 83-99%), respectively) and remained high for the 2-year lookback period (91%: 84-95%; and 95%: 83-99%). Sensitivity decreased (83%: 75.2-89%) but specificity remained high (95%: 83-99%) using the 1-year lookback period and the period is long enough to allow sufficient time for hormone therapy to be dispensed. Our proxy accurately infers ER status in studies of breast cancer treatment based on secondary health data. The proxy is most robust with a minimum lookback period of 2 years. © 2012 Wiley Publishing Asia Pty Ltd.

  12. Experimental carcinogenesis induced by incorporated plutonium

    International Nuclear Information System (INIS)

    Oghiso, Yoichi

    1999-01-01

    The carcinogenic effects of an alpha-emitter, 239 Pu, were investigated by animal experiments as focused on both pulmonary tumors after inhalation exposures to insoluble oxide aerosols and tumor spectra induced by injection of soluble citrate. The life-span study using Wistar strain rats exposed to Pu dioxide aerosols has shown differential dose-related responses of malignancies and histopathological phenotypes of lung tumors, suggesting a threshold dose around 1.0 Gy of the lung dose. As abnormality of tumor-related genes could be supposed for the background of pulmonary carcinogenesis, the mutations of p53 tumor suppressor gene were examined by PCR-SSCP analysis using DNA fragments extracted from lung tumors. While mutations were detected in 23 cases (about 28%) among 82 lung tumors, their relations to either malignancies, histological phenotypes, dose, or oncogenesis are not yet to be elucidated. The life-span study using C3H strain mice injected with Pu citrate has shown contrast dose responses between osteosarcomas and lymphoid tumors around 10 Gy of the skeletal dose, and further indicated specific tumor spectra differed from low LET radiation exposures as shown by much more frequency of B cell type leukemic lymphomas and none of myeloid leukemias. (author)

  13. Cadmium mimics the in vivo effects of estrogen in the uterus and mammary gland.

    Science.gov (United States)

    Johnson, Michael D; Kenney, Nicholas; Stoica, Adriana; Hilakivi-Clarke, Leena; Singh, Baljit; Chepko, Gloria; Clarke, Robert; Sholler, Peter F; Lirio, Apolonio A; Foss, Colby; Reiter, Ronald; Trock, Bruce; Paik, Soonmyoung; Martin, Mary Beth

    2003-08-01

    It has been suggested that environmental contaminants that mimic the effects of estrogen contribute to disruption of the reproductive systems of animals in the wild, and to the high incidence of hormone-related cancers and diseases in Western populations. Previous studies have shown that functionally, cadmium acts like steroidal estrogens in breast cancer cells as a result of its ability to form a high-affinity complex with the hormone binding domain of the estrogen receptor. The results of the present study show that cadmium also has potent estrogen-like activity in vivo. Exposure to cadmium increased uterine wet weight, promoted growth and development of the mammary glands and induced hormone-regulated genes in ovariectomized animals. In the uterus, the increase in wet weight was accompanied by proliferation of the endometrium and induction of progesterone receptor (PgR) and complement component C3. In the mammary gland, cadmium promoted an increase in the formation of side branches and alveolar buds and the induction of casein, whey acidic protein, PgR and C3. In utero exposure to the metal also mimicked the effects of estrogens. Female offspring experienced an earlier onset of puberty and an increase in the epithelial area and the number of terminal end buds in the mammary gland.

  14. Radiation carcinogenesis

    International Nuclear Information System (INIS)

    1978-01-01

    The Cancergram deals with all aspects of radiation carcinogenesis. The term radiation here includes U-V radiation and the entire electromagnetic spectrum, electron and other charged particle beams, neutrons, and alpha and beta radiation from radioactive substances. Abstracts included concern relationships between radiation and carcinogenesis in humans, experimental induction of tumors in animals by irradiation, studies on the mechanism of radiation carcinogenesis at the cellular level, studies of RBE, dose response or dose threshold in relation to radiation carcinogenesis, and methods and policies for control of radiation exposure in the general population. In general, this Cancergram excludes abstracts on radio-therapy, radiologic diagnosis, radiation pathology, and radiation biology, where these articles have no bearing on radiation carcinogenesis

  15. Breast cancer in atomic bomb survivors

    International Nuclear Information System (INIS)

    Tokunga, M.; Land, C.E.; Tokuoka, S.

    1986-01-01

    Thirty eight years after the atomic bombings, studies of the Radiation Effects Research Foundation (RERF) on the extended Life Span Study (LSS) sample have continued to provide important information on radiation carcinogenesis. The third breast cancer survey among this sample revealed 564 cases during the period 1950-80, of which 412 were reviewed microscopically. The following statements reflect the conclusions from the current investigation; 1) the relationship between radiation dose and breast cancer incidence was consistent with linearity and did not differ markedly between the Hiroshima and Nagasaki survivors, 2) a dose-related breast cancer risk was observed among women who were in their first decade of life at the time of exposure, 3) the relative risk of radiationinduced breast cancer decreased with increasing age at exposure, 4) the pattern over time of age-specific breast cancer incidence is similar for exposed and control women (that is, exposed women have more breast cancer than control women but the excess risk closely follows normal risk as expressed by age-specific population rates), and 5) radiation-induced breast cancer appears to be morphologically similar to other breast cancer

  16. Quantifying the Role of Circulating Unconjugated Estradiol in Mediating the Body Mass Index-Breast Cancer Association.

    Science.gov (United States)

    Schairer, Catherine; Fuhrman, Barbara J; Boyd-Morin, Jennifer; Genkinger, Jeanine M; Gail, Mitchell H; Hoover, Robert N; Ziegler, Regina G

    2016-01-01

    Higher body mass index (BMI) and circulating estrogen levels each increase postmenopausal breast cancer risk, particularly estrogen receptor-positive (ER(+)) tumors. Higher BMI also increases estrogen production. We estimated the proportion of the BMI-ER(+) breast cancer association mediated through estrogen in a case-control study nested within the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial. Participants included 143 women with invasive ER(+) breast cancer and 268 matched controls, all postmenopausal and never having used hormone therapy at baseline. We used liquid chromatography-tandem mass spectrometry to measure 15 estrogens and estrogen metabolites in baseline serum. We calculated BMI from self-reported height and weight at baseline. We estimated the mediating effect of unconjugated estradiol on the BMI-ER(+) breast cancer association using Aalen additive hazards and Cox regression models. All estrogens and estrogen metabolites were statistically significantly correlated with BMI, with unconjugated estradiol most strongly correlated [Pearson correlation (r) = 0.45]. Approximately 7% to 10% of the effect of overweight, 12% to 15% of the effect of obesity, and 19% to 20% of the effect of a 5 kg/m(2) BMI increase on ER(+) breast cancer risk was mediated through unconjugated estradiol. The BMI-breast cancer association, once adjusted for unconjugated estradiol, was not modified by further adjustment for two metabolic ratios statistically significantly associated with both breast cancer and BMI. Circulating unconjugated estradiol levels partially mediate the BMI-breast cancer association, but other potentially important estrogen mediators (e.g., bioavailable estradiol) were not evaluated. Further research is required to identify mechanisms underlying the BMI-breast cancer association. ©2015 American Association for Cancer Research.

  17. Evaluation of estrogen receptor alpha activation by glyphosate-based herbicide constituents.

    Science.gov (United States)

    Mesnage, Robin; Phedonos, Alexia; Biserni, Martina; Arno, Matthew; Balu, Sucharitha; Corton, J Christopher; Ugarte, Ricardo; Antoniou, Michael N

    2017-10-01

    The safety, including the endocrine disruptive capability, of glyphosate-based herbicides (GBHs) is a matter of intense debate. We evaluated the estrogenic potential of glyphosate, commercial GBHs and polyethoxylated tallowamine adjuvants present as co-formulants in GBHs. Glyphosate (≥10,000 μg/L or 59 μM) promoted proliferation of estrogen-dependent MCF-7 human breast cancer cells. Glyphosate also increased the expression of an estrogen response element-luciferase reporter gene (ERE-luc) in T47D-KBluc cells, which was blocked by the estrogen antagonist ICI 182,780. Commercial GBH formulations or their adjuvants alone did not exhibit estrogenic effects in either assay. Transcriptomics analysis of MCF-7 cells treated with glyphosate revealed changes in gene expression reflective of hormone-induced cell proliferation but did not overlap with an ERα gene expression biomarker. Calculation of glyphosate binding energy to ERα predicts a weak and unstable interaction (-4.10 kcal mol -1 ) compared to estradiol (-25.79 kcal mol -1 ), which suggests that activation of this receptor by glyphosate is via a ligand-independent mechanism. Induction of ERE-luc expression by the PKA signalling activator IBMX shows that ERE-luc is responsive to ligand-independent activation, suggesting a possible mechanism of glyphosate-mediated activation. Our study reveals that glyphosate, but not other components present in GBHs, can activate ERα in vitro, albeit at relatively high concentrations. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. Evaluation of estrogen receptor alpha activation by glyphosate-based herbicide constituents

    OpenAIRE

    Mesnage, Robin; Phedonos, Alexia; Biserni, Martina; Arno, Matthew; Balu, Sucharitha; Corton, J. Christopher; Ugarte, Ricardo; Antoniou, Michael N.

    2017-01-01

    The safety, including endocrine disruptive capability, of glyphosate-based herbicides (GBHs) is a matter of intense debate. We evaluated the estrogenic potential of glyphosate, commercial GBHs and polyethoxylated tallowamine adjuvants present as co-formulants in GBHs. Glyphosate (≥10,000 μg/L or 59 μM) promoted proliferation of estrogen-dependent MCF-7 human breast cancer cells. Glyphosate also increased expression of an estrogen response element-luciferase reporter gene (ERE-luc) in T47D-KBl...

  19. Suppression of radiation-induced in vitro carcinogenesis by ascorbic acid

    International Nuclear Information System (INIS)

    Tauchi, Hiroshi; Sawada, Shozo

    1993-01-01

    The effects of ascorbic acid on radiation-induced in vitro carcinogenesis have been reported using neoplastic transformation system of C3H 10T1/2 cells. In these reports, no suppressive effect on X-ray-induced transformation was observed with 6 weeks' administration of ascorbic acid (daily addition for 5 days per week) by Kennedy (1984), whereas apparent suppression was observed with daily addition for 7 days by Yasukawa et al (1989). We have tested the effects of ascorbic acid on 60 Co gamma-ray or 252 Cf fission neutron-induced transformation in Balb/c 3T3 cells. The transformation induced by both types of radiations was markedly suppressed when ascorbic acid was daily added to the medium during first 8 days of the post-irradiation period. If ascorbic acid was added for a total of 8 days but with a day's interruption in the middle, the suppression of transformation was decreased. These results suggest that continuous presence of ascorbic acid for a certain number of days is needed to suppress radiation-induced transformation. Since ascorbic acid also suppressed the promotion of radiation-induced transformation by TPA when both chemicals were added together into the medium, ascorbic acid might act on the promotion stage of transformation. Therefore, the effect of ascorbic acid on the distribution of protein kinase C activity was also investigated, and possible mechanisms of suppression of radiation-induced transformation by ascorbic acid will be discussed. (author)

  20. Involvement of Human Estrogen Related Receptor Alpha 1 (hERR Alpha 1) in Breast Cancer and Hormonally Insensitive Disease

    Science.gov (United States)

    2001-08-01

    Identification of a new class of steroid hormone receptors. Nature, 331: 91-94, 1988. 4. Vanacker , J. M ., Pettersson, K., Gustafsson, J. A., and...Lippman, M . E., Thompson, E. B., Simon, R., Barlock, A., Green, L., Huff, K. K., Do, H. M ., Aitken, S. C., and Warren, R. Estrogen receptor status: an...important variable in predicting response to endocrine therapy in metastatic breast cancer. Eur J Cancer, 16: 323-331, 1980. 2. Clark, G. M . and

  1. Alterations in Circulating miRNA Levels following Early-Stage Estrogen Receptor-Positive Breast Cancer Resection in Post-Menopausal Women

    DEFF Research Database (Denmark)

    Kodahl, Annette R; Zeuthen, Pernille; Binder, Harald

    2014-01-01

    INTRODUCTION: Circulating microRNAs (miRNAs) exhibit remarkable stability and may serve as biomarkers in several clinical cancer settings. The aim of this study was to investigate changes in the levels of specific circulating miRNA following breast cancer surgery and evaluate whether these altera...... and could potentially be used to monitor whether all cancer cells have been removed at surgery and/or, subsequently, whether the patients develop recurrence.......INTRODUCTION: Circulating microRNAs (miRNAs) exhibit remarkable stability and may serve as biomarkers in several clinical cancer settings. The aim of this study was to investigate changes in the levels of specific circulating miRNA following breast cancer surgery and evaluate whether...... these alterations were also observed in an independent data set. METHODS: Global miRNA analysis was performed on prospectively collected serum samples from 24 post-menopausal women with estrogen receptor-positive early-stage breast cancer before surgery and 3 weeks after tumor resection using global LNA...

  2. Correlation of expression of BP1, a homeobox gene, with estrogen receptor status in breast cancer

    International Nuclear Information System (INIS)

    Fu, Sidney W; Poola, Indira; Stephan, Dietrich A; Berg, Patricia E; Schwartz, Arnold; Stevenson, Holly; Pinzone, Joseph J; Davenport, Gregory J; Orenstein, Jan M; Gutierrez, Peter; Simmens, Samuel J; Abraham, Jessy

    2003-01-01

    BP1 is a novel homeobox gene cloned in our laboratory. Our previous studies in leukemia demonstrated that BP1 has oncogenic properties, including as a modulator of cell survival. Here BP1 expression was examined in breast cancer, and the relationship between BP1 expression and clinicopathological data was determined. Total RNA was isolated from cell lines, tumors, and matched normal adjacent tissue or tissue from autopsy. Reverse transcription polymerase chain reaction was performed to evaluate BP1 expression. Statistical analysis was accomplished with SAS. Analysis of 46 invasive ductal breast tumors demonstrated BP1 expression in 80% of them, compared with a lack of expression in six normal breast tissues and low-level expression in one normal breast tissue. Remarkably, 100% of tumors that were negative for the estrogen receptor (ER) were BP1-positive, whereas 73% of ER-positive tumors expressed BP1 (P = 0.03). BP1 expression was also associated with race: 89% of the tumors of African American women were BP1-positive, whereas 57% of those from Caucasian women expressed BP1 (P = 0.04). However, there was no significant difference in BP1 expression between grades I, II, and III tumors. Interestingly, BP1 mRNA expression was correlated with the ability of malignant cell lines to cause breast cancer in mice. Because BP1 is expressed abnormally in breast tumors, it could provide a useful target for therapy, particularly in patients with ER-negative tumors. The frequent expression of BP1 in all tumor grades suggests that activation of BP1 is an early event

  3. Estrogen promotes megakaryocyte polyploidization via estrogen receptor beta-mediated transcription of GATA1.

    Science.gov (United States)

    Du, C; Xu, Y; Yang, K; Chen, S; Wang, X; Wang, S; Wang, C; Shen, M; Chen, F; Chen, M; Zeng, D; Li, F; Wang, T; Wang, F; Zhao, J; Ai, G; Cheng, T; Su, Y; Wang, J

    2017-04-01

    Estrogen is reported to be involved in thrombopoiesis and the disruption of its signaling may cause myeloproliferative disease, yet the underlying mechanisms remain largely unknown. GATA-binding factor 1 (GATA1) is a key regulator of megakaryocyte (MK) differentiation and its deficiency will lead to megakaryoblastic leukemia. Here we show that estrogen can dose-dependently promote MK polyploidization and maturation via activation of estrogen receptor beta (ERβ), accompanied by a significant upregulation of GATA1. Chromatin immunoprecipitation and a dual luciferase assay demonstrate that ERβ can directly bind the promoter region of GATA1 and activate its transcription. Steroid receptor coactivator 3 (SRC3) is involved in ERβ-mediated GATA1 transcription. The deficiency of ERβ or SRC3, similar to the inhibition of GATA1, leads to the impediment of estrogen-induced MK polyploidization and platelet production. Further investigations reveal that signal transducer and activator of transcription 1 signaling pathway downstream of GATA1 has a crucial role in estrogen-induced MK polyploidization, and ERβ-mediated GATA1 upregulation subsequently enhances nuclear factor erythroid-derived 2 expression, thereby promoting proplatelet formation and platelet release. Our study provides a deep insight into the molecular mechanisms of estrogen signaling in regulating thrombopoiesis and the pathogenesis of ER deficiency-related leukemia.

  4. Selective estrogen receptor modulators and betulinic acid act synergistically to target ERα and SP1 transcription factor dependent Pygopus expression in breast cancer.

    Science.gov (United States)

    Tzenov, Youlian R; Andrews, Phillip; Voisey, Kim; Gai, Luis; Carter, Beverley; Whelan, Kathryn; Popadiuk, Catherine; Kao, Kenneth R

    2016-06-01

    Estrogen and progesterone hormone receptor (ER and PR) expression in invasive breast cancer predicts response to hormone disruptive therapy. Pygopus2 (hPYGO2) encodes a chromatin remodelling protein important for breast cancer growth and cell cycle progression. The aims of this study were to determine the mechanism of expression of hPYGO2 in breast cancer and to examine how this expression is affected therapeutically. hPYGO2 and ER protein expression was examined in a breast tumour microarray by immunohistochemistry. hPYGO2 RNA and protein expression was examined in ER+ and ER- breast cancer cell lines in the presence of selective estrogen hormone receptor modulator drugs and the specificity protein-1 (SP1) inhibitor, betulinic acid (BA). The effects of these drugs on the ability for ER and SP1 to bind the hPYGO2 promoter and affect cell cycle progression were studied using chromatin immunoprecipitation assays. hPYGO2 was expressed in seven of eight lines and in nuclei of 98% of 65 breast tumours, including 3 Ductal carcinoma in situ and 62 invasive specimens representing ER-negative (22%) and ER-positive (78%) cases. Treatment with either 4-Hydroxytamoxifen (OHT) or fulvestrant reduced hPYGO2 mRNA 10-fold and protein 5-10-fold within 4 h. Promoter analysis indicated an ER/SP1 binding site at nt -225 to -531 of hPYGO2. SP1 RNA interference and BA reduced hPYGO2 protein and RNA expression by fivefold in both ER- and ER+ cells. Further attenuation was achieved by combining BA and 4-OHT resulting in eightfold reduction in cell growth. Our findings reveal a mechanistic link between hormone signalling and the growth transcriptional programme. The activation of its expression by ERα and/or SP1 suggests hPYGO2 as a theranostic target for hormone therapy responsive and refractory breast cancer. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  5. Urtica dioica inhibits cell growth and induces apoptosis by targeting Ornithine decarboxylase and Adenosine deaminase as key regulatory enzymes in adenosine and polyamines homeostasis in human breast cancer cell lines.

    Science.gov (United States)

    Fattahi, Sadegh; Ghadami, Elham; Asouri, Mohsen; Motevalizadeh Ardekanid, Ali; Akhavan-Niaki, Haleh

    2018-02-28

    Breast cancer is a heterogeneous and multifactorial disease with variable disease progression risk, and treatment response. Urtica dioica is a traditional herb used as an adjuvant therapeutic agent in cancer. In the present study, we have evaluated the effects of the aqueous extract of Urtica dioica on Adenosine deaminase (ADA) and Ornithine decarboxylase (ODC1) gene expression in MCF-7, MDA-MB-231, two breast cancer cell lines being estrogen receptor positive and estrogen receptor negative, respectively.  Cell lines were cultured in suitable media. After 24 h, different concentrations of the extract were added and after 72 h, ADA and ODC1 gene expression as well as BCL2 and BAX apoptotic genes were assessed by Taqman real time PCR assay. Cells viability was assessed by MTT assay, and apoptosis was also evaluated at cellular level. The intra and extracellular levels of ODC1 and ADA enzymes were evaluated by ELISA. Results showed differential expression of ADA and ODC1 genes in cancer cell lines. In MCF-7 cell line, the expression level of ADA was upregulated in a dose-dependent manner but its expression did not change in MDA-MB cell line. ODC1 expression was increased in both examined cell lines. Also, increased level of the apoptotic BAX/BCL-2 ratio was detected in MCF-7 cells. These results demonstrated that Urtica dioica induces apoptosis in breast cancer cells by influencing ODC1 and ADA genes expression, and estrogen receptors. The different responses observed with these cell lines could be due to the interaction of Urtica dioica as a phytoestrogen with the estrogen receptor.

  6. GPER1 mediates estrogen-induced neuroprotection against oxygen-glucose deprivation in the primary hippocampal neurons.

    Science.gov (United States)

    Zhao, Tian-Zhi; Shi, Fei; Hu, Jun; He, Shi-Ming; Ding, Qian; Ma, Lian-Ting

    2016-07-22

    It is well-known that the neuroprotective effects of estrogen have potential in the prevention and amelioration of ischemic and degenerative neurological disorders, while the underlying mechanisms for estrogen actions are undefined. As an important mediator for the non-genomic functions of estrogen, GPER1 (G Protein-coupled Estrogen Receptor 1) has been suggested to involve in the beneficial roles of estrogen in neural cells. Here our studies on primary hippocampal neurons have focused on GPER1 in an in vitro model of ischemia using oxygen-glucose deprivation (OGD). GPER1 expression in the primary hippocampal neurons was stimulated by the OGD treatments. Both E2 (estradiol) and E2-BSA (membrane impermeable estradiol by covalent conjugation of bovine serum albumin) attenuated OGD-induced cell death in primary cultures of hippocampal neurons. Importantly, this membrane-mediated estrogen function requires GPER1 protein. Knocking down of GPER1 diminished, while overexpression of GPER1 potentiated, the protective roles of E2/E2-BSA following OGD. Additionally, the downstream mechanisms employed by membrane-associated estrogen signaling were found to include PI3K/Akt-dependent Ask1 inhibition in the primary hippocampal neurons. Overall, these research results could enhance our understanding of the neuroprotective actions for estrogen, and provide a new therapeutic target for improving stroke outcome and ameliorating degenerative neurological diseases. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  7. Chemokines: novel targets for breast cancer metastasis

    Science.gov (United States)

    Ali, Simi; Lazennec, Gwendal

    2007-01-01

    Recent studies have highlighted the possible involvement of chemokines and their receptors in breast cancer progression and metastasis. Chemokines and their receptors constitute a superfamily of signalling factors whose prognosis value in breast cancer progression remains unclear. We will examine here the expression pattern of chemokines and their receptors in mammary gland physiology and carcinogenesis. The nature of the cells producing chemokines or harboring chemokine receptors appears to be crucial in certain conditions for example, the infiltration of the primary tumor by leukocytes and angiogenesis. In addition, chemokines, their receptors and the interaction with glycosaminoglycan (GAGs) are key players in the homing of cancer cells to distant metastasis sites. Several lines of evidence, including in vitro and in vivo models, suggest that the mechanism of action of chemokines in cancer development involves the modulation of proliferation, apoptosis, invasion, leukocyte recruitment or angiogenesis. Furthermore, we will discuss the regulation of chemokine network in tumor neovascularity by decoy receptors. The reasons accounting for the deregulation of chemokines and chemokine receptors expression in breast cancer are certainly crucial for the comprehension of chemokine role in breast cancer and are in several cases linked to estrogen receptor status. The targeting of chemokines and chemokine receptors by antibodies, small molecule antagonists, viral chemokine binding proteins and heparins appears as promising tracks to develop therapeutic strategies. Thus there is significant interest in developing strategies to antagonize the chemokine function, and an opportunity to interfere with metastasis, the leading cause of death in most patients. PMID:17717637

  8. Inhibitory effects of Zengshengping fractions on DMBA-induced buccal pouch carcinogenesis in hamsters.

    Science.gov (United States)

    Guan, Xiao-Bing; Sun, Zheng; Chen, Xiao-Xin; Wu, Hong-Ru; Zhang, Xin-Yan

    2012-01-01

    Zengshengping (ZSP) tablets had inhibitory effects on oral precancerous lesions by reducing the incidence of oral cancer. However, the severe liver toxicity caused by systemic administration of ZSP limits the long-term use of this anti-cancer drug. The purpose of this study was to evaluate the tumor inhibitory effects due to the topical application of extracts from ZSP, a Chinese herbal drug, on 7, 12-dimethlbenz(a)anthracene (DMBA) induced oral tumors in hamsters. The study also investigated the anti-cancer mechanisms of the ZSP extracts on oral carcinogenesis. DMBA (0.5%) was applied topically to the buccal pouches of Syrian golden hamsters (6 - 8 weeks old) three times per week for six weeks in order to induce the development of oral tumors. Different fractions of ZSP were either applied topically to the oral tumor lesions or fed orally at varying dosages to animals with oral tumors for 18 weeks. Tumor volume was measured by histopathological examination. Tumor cell proliferation was evaluated by counting BrdU labeled cells and by Western blotting for mitogen-activated protein kinase (MAPK) protein levels. The protein levels of apoptosis marker Caspase-3 and regulator Bcl-2 protein were also measured by Western blotting. Topical application of DMBA to the left pouch of hamsters induced oral tumor formation. Animals treated with DMBA showed a loss in body weight while animals treated with ZSP maintained normal body weights. Both the ZSP n-butanol fraction and water fraction significantly reduced tumor volume by 32.6% (P oral tumor lesions and reduced the expression level of MAPK. In addition, ZSP promoted tumor cell apoptosis by increasing Caspase-3 expression but decreasing Bcl-2 protein production. The n-butanol and water fractions of ZSP are effective at inhibiting tumor cell proliferation and stimulating apoptosis in oral cancer suggesting that these fractions have chemopreventive effects on DMBA induced oral carcinogenesis.

  9. Inference of hierarchical regulatory network of estrogen-dependent breast cancer through ChIP-based data

    Directory of Open Access Journals (Sweden)

    Parvin Jeffrey

    2010-12-01

    Full Text Available Abstract Background Global profiling of in vivo protein-DNA interactions using ChIP-based technologies has evolved rapidly in recent years. Although many genome-wide studies have identified thousands of ERα binding sites and have revealed the associated transcription factor (TF partners, such as AP1, FOXA1 and CEBP, little is known about ERα associated hierarchical transcriptional regulatory networks. Results In this study, we applied computational approaches to analyze three public available ChIP-based datasets: ChIP-seq, ChIP-PET and ChIP-chip, and to investigate the hierarchical regulatory network for ERα and ERα partner TFs regulation in estrogen-dependent breast cancer MCF7 cells. 16 common TFs and two common new TF partners (RORA and PITX2 were found among ChIP-seq, ChIP-chip and ChIP-PET datasets. The regulatory networks were constructed by scanning the ChIP-peak region with TF specific position weight matrix (PWM. A permutation test was performed to test the reliability of each connection of the network. We then used DREM software to perform gene ontology function analysis on the common genes. We found that FOS, PITX2, RORA and FOXA1 were involved in the up-regulated genes. We also conducted the ERα and Pol-II ChIP-seq experiments in tamoxifen resistance MCF7 cells (denoted as MCF7-T in this study and compared the difference between MCF7 and MCF7-T cells. The result showed very little overlap between these two cells in terms of targeted genes (21.2% of common genes and targeted TFs (25% of common TFs. The significant dissimilarity may indicate totally different transcriptional regulatory mechanisms between these two cancer cells. Conclusions Our study uncovers new estrogen-mediated regulatory networks by mining three ChIP-based data in MCF7 cells and ChIP-seq data in MCF7-T cells. We compared the different ChIP-based technologies as well as different breast cancer cells. Our computational analytical approach may guide biologists to

  10. Estrogen therapy: the dangerous road to Shangri-La.

    Science.gov (United States)

    1976-11-01

    The use of estrogens almost tripled during the 1965-75 period, with usage concentrated as a cure-all for aging, for the degenerative diseases associated with aging, and for the emotional difficulties of middle age. 3 separate studies published in the last year have shown a high level of association between estrogen use and the development of endometrial cancer. Results of these studies coupled with the significant recent increase in the incidence of cancer in women over 50 who are in the high socioeconomic groups--the groups most likely to use estrogen therapy--emphasize the association. The U.S. FDA has proposed a modification in the labeling for estrogens, and a package insert for patients which would warn of possible hazards of estrogen therapy. It is recommended that estrogen be used only for vasomotor symptoms and vaginal atrophy. The lowest possible effective dosage should be used and for the shortest possible amount of time. Earlier studies had suggested that estrogen replacement therapy might protect against breast cancer; most recent studies suggest the opposite. In addition, estrogen may trigger high blood pressure and increase some blood clotting. Women with high blood pressure or a family history of early heart attacks are contraindicated from using estrogen therapy. Even for the treatment of osteoporosis, there may be safer alternative therapies. Women are cautioned as to their own responsibilities when taking estrogens.

  11. Distinct roles for aryl hydrocarbon receptor nuclear translocator and ah receptor in estrogen-mediated signaling in human cancer cell lines.

    Directory of Open Access Journals (Sweden)

    Mark P Labrecque

    Full Text Available The activated AHR/ARNT complex (AHRC regulates the expression of target genes upon exposure to environmental contaminants such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD. Importantly, evidence has shown that TCDD represses estrogen receptor (ER target gene activation through the AHRC. Our data indicates that AHR and ARNT act independently from each other at non-dioxin response element sites. Therefore, we sought to determine the specific functions of AHR and ARNT in estrogen-dependent signaling in human MCF7 breast cancer and human ECC-1 endometrial carcinoma cells. Knockdown of AHR with siRNA abrogates dioxin-inducible repression of estrogen-dependent gene transcription. Intriguingly, knockdown of ARNT does not effect TCDD-mediated repression of estrogen-regulated transcription, suggesting that AHR represses ER function independently of ARNT. This theory is supported by the ability of the selective AHR modulator 3',4'-dimethoxy-α-naphthoflavone (DiMNF to repress estrogen-inducible transcription. Furthermore, basal and estrogen-activated transcription of the genes encoding cathepsin-D and pS2 are down-regulated in MCF7 cells but up-regulated in ECC-1 cells in response to loss of ARNT. These responses are mirrored at the protein level with cathepsin-D. Furthermore, knock-down of ARNT led to opposite but corresponding changes in estrogen-stimulated proliferation in both MCF7 and ECC-1 cells. We have obtained experimental evidence demonstrating a dioxin-dependent repressor function for AHR and a dioxin-independent co-activator/co-repressor function for ARNT in estrogen signalling. These results provide us with further insight into the mechanisms of transcription factor crosstalk and putative therapeutic targets in estrogen-positive cancers.

  12. Nanosized zinc oxide particles do not promote DHPN-induced lung carcinogenesis but cause reversible epithelial hyperplasia of terminal bronchioles.

    Science.gov (United States)

    Xu, Jiegou; Futakuchi, Mitsuru; Alexander, David B; Fukamachi, Katsumi; Numano, Takamasa; Suzui, Masumi; Shimizu, Hideo; Omori, Toyonori; Kanno, Jun; Hirose, Akihiko; Tsuda, Hiroyuki

    2014-01-01

    Zinc oxide (ZnO) is known to induce lung toxicity, including terminal bronchiolar epithelial hyperplasia, which gives rise to concerns that nanosized ZnO (nZnO) might lead to lung carcinogenesis. We studied the tumor promoting activity of nZnO by an initiation-promotion protocol using human c-Ha-ras proto-oncogene transgenic rats (Hras128 rats). The rats were given 0.2 % N-nitrosobis(2-hydroxypropyl)amine (DHPN) in the drinking water for 2 weeks and then treated with 0.5 ml of 250 or 500 μg/ml nZnO suspension by intra-pulmonary spraying once every 2 weeks for a total of 7 times. Treatment with nZnO particles did not promote DHPN-induced lung carcinogenesis. However, nZnO dose-dependently caused epithelial hyperplasia of terminal bronchioles (EHTB) and fibrosis-associated interstitial pneumonitis (FAIP) that were independent of DHPN treatment. Tracing the fate of EHTB lesions in wild-type rats indicated that the hyperplastic lesions almost completely disappeared within 12 weeks after the last nZnO treatment. Since nZnO particles were not found in the lung and ZnCl2 solution induced similar lung lesions and gene expression profiles, the observed lesions were most likely caused by dissolved Zn(2+). In summary, nZnO did not promote carcinogenesis in the lung and induced EHTB and FAIP lesions that regressed rapidly, probably due to clearance of surplus Zn(2+) from the lung.

  13. Antiandrogenic actions of medroxyprogesterone acetate on epithelial cells within normal human breast tissues cultured ex vivo.

    Science.gov (United States)

    Ochnik, Aleksandra M; Moore, Nicole L; Jankovic-Karasoulos, Tanja; Bianco-Miotto, Tina; Ryan, Natalie K; Thomas, Mervyn R; Birrell, Stephen N; Butler, Lisa M; Tilley, Wayne D; Hickey, Theresa E

    2014-01-01

    Medroxyprogesterone acetate (MPA), a component of combined estrogen-progestin therapy (EPT), has been associated with increased breast cancer risk in EPT users. MPA can bind to the androgen receptor (AR), and AR signaling inhibits cell growth in breast tissues. Therefore, the aim of this study was to investigate the potential of MPA to disrupt AR signaling in an ex vivo culture model of normal human breast tissue. Histologically normal breast tissues from women undergoing breast surgical operation were cultured in the presence or in the absence of the native AR ligand 5α-dihydrotestosterone (DHT), MPA, or the AR antagonist bicalutamide. Ki67, bromodeoxyuridine, B-cell CLL/lymphoma 2 (BCL2), AR, estrogen receptor α, and progesterone receptor were detected by immunohistochemistry. DHT inhibited the proliferation of breast epithelial cells in an AR-dependent manner within tissues from postmenopausal women, and MPA significantly antagonized this androgenic effect. These hormonal responses were not commonly observed in cultured tissues from premenopausal women. In tissues from postmenopausal women, DHT either induced or repressed BCL2 expression, and the antiandrogenic effect of MPA on BCL2 was variable. MPA significantly opposed the positive effect of DHT on AR stabilization, but these hormones had no significant effect on estrogen receptor α or progesterone receptor levels. In a subset of postmenopausal women, MPA exerts an antiandrogenic effect on breast epithelial cells that is associated with increased proliferation and destabilization of AR protein. This activity may contribute mechanistically to the increased risk of breast cancer in women taking MPA-containing EPT.

  14. Dietary Chemoprevention of PhIP Induced Carcinogenesis in Male Fischer 344 Rats with Tomato and Broccoli

    Science.gov (United States)

    Canene-Adams, Kirstie; Sfanos, Karen S.; Liang, Chung-Tiang; Yegnasubramanian, Srinivasan; Nelson, William G.; Brayton, Cory; De Marzo, Angelo M.

    2013-01-01

    The heterocyclic amine, 2-amino-1-methyl-6-phenylimidazo[4,5-B]pyridine (PhIP), found in meats cooked at high temperatures, has been implicated in epidemiological and rodent studies for causing breast, prostate, and colorectal cancers. A previous animal study using a xenograft model has shown that whole tomato and broccoli, when eaten in combination, exhibit a marked effect on tumor reduction compared to when eaten alone. Our aim was to determine if PhIP-induced carcinogenesis can be prevented by dietary consumption of whole tomato + broccoli powders. Male Fischer 344 rats (n = 45) were randomized into the following treatment groups: control (AIN93G diet), PhIP (200 ppm in AIN93G diet for the first 20 weeks of the study), or tomato + broccoli + PhIP (mixed in AIN93G diet at 10% each and fed with PhIP for 20 weeks, and then without PhIP for 32 weeks). Study animals were monitored for 52 weeks and were euthanized as necessary based on a set of criteria for health status and tumor burden. Although there appeared to be some hepatic and intestinal toxicity due to the combination of PhIP and tomato + broccoli, these rodents had improved survival and reduced incidence and/or severity of PhIP-induced neoplastic lesions compared to the PhIP-alone treated group. Rats eating tomato + broccoli exhibited a marked decrease in the number and size of cribiform prostatic intraepitheilial neoplasia/carcinoma in situ (cribiform PIN/CIS) lesions and in the incidence of invasive intestinal adenocarcinomas and skin carcinomas. Although the apparent toxic effects of combined PhIP and tomato + broccoli need additional study, the results of this study support the hypothesis that a diet rich in tomato and broccoli can reduce or prevent dietary carcinogen-induced cancers. PMID:24312188

  15. Aptamer-Assisted Detection of the Altered Expression of Estrogen Receptor Alpha in Human Breast Cancer.

    Directory of Open Access Journals (Sweden)

    Rajesh Ahirwar

    Full Text Available An increase in the expression of estrogen receptors (ER and the expanded population of ER-positive cells are two common phenotypes of breast cancer. Detection of the aberrantly expressed ERα in breast cancer is carried out using ERα-antibodies and radiolabelled ligands to make decisions about cancer treatment and targeted therapy. Capitalizing on the beneficial advantages of aptamer over the conventional antibody or radiolabelled ligand, we have identified a DNA aptamer that selectively binds and facilitates the detection of ERα in human breast cancer tissue sections. The aptamer is identified using the high throughput sequencing assisted SELEX screening. Biophysical characterization confirms the binding and formation of a thermodynamically stable complex between the identified DNA aptamer (ERaptD4 and ERα (Ka = 1.55±0.298×108 M(-1; ΔH = 4.32×104±801.1 cal/mol; ΔS = -108 cal/mol/deg. Interestingly, the specificity measurements suggest that the ERaptD4 internalizes into ERα-positive breast cancer cells in a target-selective manner and localizes specifically in the nuclear region. To harness these characteristics of ERaptD4 for detection of ERα expression in breast cancer samples, we performed the aptamer-assisted histochemical analysis of ERα in tissue samples from breast cancer patients. The results were validated by performing the immunohistochemistry on same samples with an ERα-antibody. We found that the two methods agree strongly in assay output (kappa value = 0.930, p-value <0.05 for strong ERα positive and the ERα negative samples; kappa value = 0.823, p-value <0.05 for the weak/moderate ER+ve samples, n = 20. Further, the aptamer stain the ERα-positive cells in breast tissues without cross-reacting to ERα-deficient fibroblasts, adipocytes, or the inflammatory cells. Our results demonstrate a significant consistency in the aptamer-assisted detection of ERα in strong ERα positive, moderate ERα positive and ERα negative

  16. The prognostic value of age for invasive lobular breast cancer depending on estrogen receptor and progesterone receptor-defined subtypes: A NCDB analysis.

    Science.gov (United States)

    Liu, Jieqiong; Chen, Kai; Mao, Kai; Su, Fengxi; Liu, Qiang; Jacobs, Lisa K

    2016-02-02

    We aimed to assess the effect of age on survival according to estrogen receptor (ER) and progesterone receptor (PR)-defined lobular breast cancer subtype in a wide age range. 43,230 invasive lobular breast cancer women without comorbidities diagnosed between 2004 and 2011 in the National Cancer Database (NCDB) were analyzed. The effects of age on overall survival (OS) among different age groups were evaluated by log-rank test and Cox proportional model. Multivariate analysis showed that patients diagnosed at both young ( 0.1); and in ER-PR+ subgroup, the HRs were similar in patients younger than 70 (P > 0.1); thus, the plots of HRs in these three subtypes remained steady until the age of 60 or 70. Our findings identified that the effect of age on OS in lobular breast cancer varied with ER/PR-defined subtypes. Personalized treatment strategies should be developed to improve outcomes of breast cancer patients with different ages and ER/PR statuses.

  17. Hypermethylation pattern of ESR and PgR genes and lacking estrogen and progesterone receptors in human breast cancer tumors: ER/PR subtypes.

    Science.gov (United States)

    Pirouzpanah, Saeed; Taleban, Forough-Azam; Mehdipour, Parvin; Sabour, Siamak; Atri, Morteza

    2018-02-14

    The option of endocrine therapy in breast cancer remains conventionally promising. We aimed to investigate how accurately the pattern of hypermethylation at estrogen receptor (ESR) and progesterone receptor (PgR) genes may associate with relative expression and protein status of ER, PR and the combinative phenotype of ER/PR. In this consecutive case-series, we enrolled 139 primary diagnosed breast cancer. Methylation specific PCR was used to assess the methylation status (individual test). Tumor mRNA expression levels were evaluated using real-time RT-PCR. Immunohistochemistry data was used to present hormonal receptor status of a tumor (as test reference). Methylation at ESR1 was comparably frequent in ER-breast tumors (83.0%, PPR- conditions (Cramer's V= 0.44, PPR (77.1%, PPR expressions (55.6%, PPR- (64.4%, PPR-, the hypermethylation of PgRb seem another epigenetic signalling variable actively associate with methylated ESR1 to show lack of ER+/PR+ tumors in breast cancer.

  18. Repression of estrogen receptor β function by putative tumor suppressor DBC1

    International Nuclear Information System (INIS)

    Koyama, Satoshi; Wada-Hiraike, Osamu; Nakagawa, Shunsuke; Tanikawa, Michihiro; Hiraike, Haruko; Miyamoto, Yuichiro; Sone, Kenbun; Oda, Katsutoshi; Fukuhara, Hiroshi; Nakagawa, Keiichi; Kato, Shigeaki; Yano, Tetsu; Taketani, Yuji

    2010-01-01

    It has been well established that estrogen is involved in the pathophysiology of breast cancer. Estrogen receptor (ER) α appears to promote the proliferation of cancer tissues, while ERβ can protect against the mitogenic effect of estrogen in breast tissue. The expression status of ERα and ERβ may greatly influence on the development, treatment, and prognosis of breast cancer. Previous studies have indicated that the deleted in breast cancer 1 (DBC1/KIAA1967) gene product has roles in regulating functions of nuclear receptors. The gene encoding DBC1 is a candidate for tumor suppressor identified by genetic search for breast cancer. Caspase-dependent processing of DBC1 promotes apoptosis, and depletion of the endogenous DBC1 negatively regulates p53-dependent apoptosis through its specific inhibition of SIRT1. In addition, DBC1 modulates ERα expression and promotes breast cancer cell survival by binding to ERα. Here we report an ERβ-specific repressive function of DBC1. Immunoprecipitation and immunofluorescence studies show that ERβ and DBC1 interact in a ligand-independent manner similar to ERα. In vitro pull-down assays revealed a direct interaction between DBC1 amino-terminus and activation function-1/2 domain of ERβ. Although DBC1 shows no influence on the ligand-dependent transcriptional activation function of ERα, the expression of DBC1 negatively regulates the ligand-dependent transcriptional activation function of ERβin vivo, and RNA interference-mediated depletion of DBC1 stimulates the transactivation function of ERβ. These results implicate the principal role of DBC1 in regulating ERβ-dependent gene expressions.

  19. Prognostic impact of pregnancy after breast cancer according to estrogen receptor status

    DEFF Research Database (Denmark)

    Azim, Hatem A; Kroman, Niels; Paesmans, Marianne

    2013-01-01

    .91; 95% CI, 0.67 to 1.24, P = .55) or the ER-negative (HR = 0.75; 95% CI, 0.51 to 1.08, P = .12) cohorts. However, the pregnant group had better OS (HR = 0.72; 95% CI, 0.54 to 0.97, P = .03), with no interaction according to ER status (P = .11). Pregnancy outcome and BC-pregnancy interval did not seem......PURPOSE We questioned the impact of pregnancy on disease-free survival (DFS) in women with history of breast cancer (BC) according to estrogen receptor (ER) status. PATIENTS AND METHODS A multicenter, retrospective cohort study in which patients who became pregnant any time after BC were matched (1......:3) to patients with BC with similar ER, nodal status, adjuvant therapy, age, and year of diagnosis. To adjust for guaranteed time bias, each nonpregnant patient had to have a disease-free interval at least equal to the time elapsing between BC diagnosis and date of conception of the matched pregnant one...

  20. Initial estimation of correlation between estrogen receptor status and histopathology, and also some selected prognostic factors in breast cancer patients

    International Nuclear Information System (INIS)

    Cwikla, J.; Badowski, J.; Shafie, D.; Gugala, K.; Koziorowski, M.

    1996-01-01

    The goal of this study was to assess the correlation between estrogen receptor (ER) status and histopathology findings, likewise to assess some selected prognostic factors in patients with breast cancer. The study was carried out on 126 patients with breast cancer. ER concentration was estimated by the standard biochemical assay (DCC-dextran-coated charcoal assay). The correlation between established risk factors like: lymph node status; age menopausal status and ER status were analysed.The ER yielded in 61% positive results. The mean value of ER in invasive ductal carcinoma was 43.9 fmol/mg protein and the mean value of ER in invasive lobular carcinoma 51.4 fmol/mg protein. The significant statistics negative correlation between ER status of pre-menopausal patients with ductal breast carcinoma and regional lymph nodes involvement was found. There was no difference between ER status and histological type of the cancer. No correlation was found between ER status and age of patients. (author)

  1. Admixture mapping of African-American women in the AMBER Consortium identifies new loci for breast cancer and estrogen-receptor subtypes

    Directory of Open Access Journals (Sweden)

    Edward Antonio Ruiz-Narvaez

    2016-09-01

    Full Text Available Recent genetic admixture coupled with striking differences in incidence of estrogen receptor (ER breast cancer subtypes, as well as severity, between women of African and European ancestry, provides an excellent rationale for performing admixture mapping in African American women with breast cancer risk. We performed the largest breast cancer admixture mapping study with in African American women to identify novel genomic regions associated with the disease. We conducted a genome-wide admixture scan using 2,624 autosomal ancestry informative markers (AIMs in 3,629 breast cancer cases (including 1,968 ER-positive, 1093 ER-negative and 601 triple-negative and 4,658 controls from the African American Breast Cancer Epidemiology and Risk (AMBER Consortium, a collaborative study of four large geographically different epidemiological studies of breast cancer in African American women. We used an independent case-control study to test for SNP association in regions with genome-wide significant admixture signals. We found two novel genome-wide significant regions of excess African ancestry, 4p16.1 and 17q25.1, associated with ER-positive breast cancer. Two regions known to harbor breast cancer variants, 10q26 and 11q13, were also identified with excess of African ancestry. Fine-mapping of the identified genome-wide significant regions suggests the presence of significant genetic associations with ER-positive breast cancer in 4p16.1 and 11q13. In summary, we identified three novel genomic regions associated with breast cancer risk by ER status, suggesting that additional previously unidentified variants may contribute to the racial differences in breast cancer risk in the African American population.

  2. Understanding and potentially reducing second breast cancer

    International Nuclear Information System (INIS)

    Brenner, D.

    2011-01-01

    Full text: Long term survival after breast cancer diagnosis has increased markedly in the last decade: 15-year relative survival after breast cancer diagnosis is now 75% in the US. Associated with these excellent survival prospects, however, long term studies suggest that contralateral second breast cancer rates are in the range from 10 to 15% at 15 years post treatment, and are still higher for BRCA1/2 carriers, as well as for still longer term survivors. These second cancer risks are much higher than those for a comparable healthy woman to develop a first breast cancer. It follows that women with breast cancer are highly prone to develop a second breast cancer. We propose here a new option for reducing the disturbingly high risk of a contralateral second breast cancer. in patients with both estrogen positive and negative primary breast cancer: prophylactic mammary irradiation (PMI) of the contralateral breast. The rationale behind PMI is evidence that standard post-Iumpectomy radiotherapy of the affected (ipsilateral) breast substantially reduces the long-term genetically-based second cancer risk in the ipsilateral breast, by killing the existing premalignant cells in that breast. This suggests that there are relatively few premalignant cells in the breast (hundreds or thousands, not millions), so even a fairly modest radiation cell-kill level across the whole breast would be expected to kill essentially all of them. If this is so, then a modest radiation dose-much lower than that to the affected breast--delivered uniformly to the whole contralateral breast, and typically delivered at the same time as the radiotherapy of the ipsilateral breast, would have the potential to markedly reduce second-cancer risks in the contralateral breast by killing essentially all the pre-malignant cells in that breast while causing only a very low level of radiation-induced sequelae. Therefore we hypothesize that low-dose prophylactic mammary irradiation of the contralateral breast

  3. Recurrence and mortality according to Estrogen Receptor status for breast cancer patients undergoing conservative surgery. Ipsilateral breast tumour recurrence dynamics provides clues for tumour biology within the residual breast

    International Nuclear Information System (INIS)

    Demicheli, Romano; Ardoino, Ilaria; Boracchi, Patrizia; Coradini, Danila; Agresti, Roberto; Ferraris, Cristina; Gennaro, Massimiliano; Hrushesky, William JM; Biganzoli, Elia

    2010-01-01

    the study was designed to determine how tumour hormone receptor status affects the subsequent pattern over time (dynamics) of breast cancer recurrence and death following conservative primary breast cancer resection. Time span from primary resection until both first recurrence and death were considered among 2825 patients undergoing conservative surgery with or without breast radiotherapy. The hazard rates for ipsilateral breast tumour recurrence (IBTR), distant metastasis (DM) and mortality throughout 10 years of follow-up were assessed. DM dynamics displays the same bimodal pattern (first early peak at about 24 months, second late peak at the sixth-seventh year) for both estrogen receptor (ER) positive (P) and negative (N) tumours and for all local treatments and metastatic sites. The hazard rates for IBTR maintain the bimodal pattern for ERP and ERN tumours; however, each IBTR recurrence peak for ERP tumours is delayed in comparison to the corresponding timing of recurrence peaks for ERN tumours. Mortality dynamics is markedly different for ERP and ERN tumours with more early deaths among patients with ERN than among patients with ERP primary tumours. DM dynamics is not influenced by the extent of conservative primary tumour resection and is similar for both ER phenotypes across different metastatic sites, suggesting similar mechanisms for tumour development at distant sites despite apparently different microenvironments. The IBTR risk peak delay observed in ERP tumours is an exception to the common recurrence risk rhythm. This suggests that the microenvironment within the residual breast tissue may enforce more stringent constraints upon ERP breast tumour cell growth than other tissues, prolonging the latency of IBTR. This local environment is, however, apparently less constraining to ERN cells, as IBTR dynamics is similar to the corresponding recurrence dynamics among other distant tissues

  4. Classical and Nonclassical Estrogen Receptor Action on Chromatin Templates

    National Research Council Canada - National Science Library

    Nordeen, Steven

    2000-01-01

    Improvement of hormone-based therapy in breast cancer and circumvention of its shortcomings is limited by the lack of detailed understanding of how steroids like estrogen work at a cellular and molecular level...

  5. Classical and Nonclassical Estrogen Receptor Action on Chromatin Templaces

    National Research Council Canada - National Science Library

    Nordeen, Steve

    2001-01-01

    Improvement of hormone-based therapy in breast cancer and circumvention of its shortcomings is limited by the lack of detailed understanding of how steroids like estrogen work at a cellular and molecular level...

  6. Phase II randomized trial of neoadjuvant metformin plus letrozole versus placebo plus letrozole for estrogen receptor positive postmenopausal breast cancer (METEOR)

    International Nuclear Information System (INIS)

    Kim, Jisun; Kim, Lee Su; Han, Sehwan; Nam, Seok Jin; Kang, Han-Sung; Kim, Seung Il; Yoo, Young Bum; Jeong, Joon; Kim, Tae Hyun; Kang, Taewoo; Kim, Sung-Won; Lim, Woosung; Jung, Yongsik; Lee, Jeong Eon; Kim, Ku Sang; Yu, Jong-Han; Chae, Byung Joo; Jung, So-Youn; Kang, Eunyoung; Choi, Su Yun; Moon, Hyeong-Gon; Noh, Dong-Young; Kim, Eun-Kyu; Han, Wonshik; Kim, Min-Kyoon; Paik, Nam-Sun; Jeong, Sang-Seol; Yoon, Jung-han; Park, Chan Heun; Ahn, Sei Hyun

    2014-01-01

    Neoadjuvant endocrine therapy with an aromatase inhibitor has shown efficacy comparable to that of neoadjuvant chemotherapy in patients with postmenopausal breast cancer. Preclinical and clinical studies have shown that the antidiabetic drug metformin has anti-tumor activity. This prospective, multicenter, phase II randomized, placebo controlled trial was designed to evaluate the direct anti-tumor effect of metformin in non-diabetic postmenopausal women with estrogen-receptor (ER) positive breast cancer. Patients meeting the inclusion criteria and providing written informed consent will be randomized to 24 weeks of neoadjuvant treatment with letrozole (2.5 mg/day) and either metformin (2000 mg/day) or placebo. Target accrual number is 104 patients per arm. The primary endpoint will be clinical response rate, as measured by calipers. Secondary endpoints include pathologic complete response rate, breast conserving rate, change in Ki67 expression, breast density change, and toxicity profile. Molecular assays will be performed using samples obtained before treatment, at week 4, and postoperatively. This study will provide direct evidence of the anti-tumor effect of metformin in non-diabetic, postmenopausal patients with ER-positive breast cancer. ClinicalTrials.gov Identifier http://clinicaltrial.gov/ct2/show/NCT01589367?term

  7. Doenjang prepared with mixed starter cultures attenuates azoxymethane and dextran sulfate sodium-induced colitis-associated colon carcinogenesis in mice

    Directory of Open Access Journals (Sweden)

    Ji-Kang Jeong

    2014-01-01

    Full Text Available Backgrounds: Doenjang is traditional Korean fermented soybean paste and widely known for its various health benefits including anticancer effect. In this study, we manufactured doenjang with the grain-type meju using probiotic mixed starter cultures of Aspegillus oryzae, Bacillus subtilis-SKm, and Lactococcus lactis-GAm to improve the qualities and beneficial properties of doenjang. Materials and Methods: The inhibitory effects of the doenjang prepared with the grain-type meju using mixed starter cultures were investigated in azoxymethane (AOM and dextran sulfate sodium (DSS-induced colon carcinogenesis mice model. AOM and DSS colon carcinogenesis was induced in female C57BL/6 mice, and doenjang was orally administered for 4 weeks. Body weight, colon length, and colon weight of mice were determined, and colonic tissues were histologically evaluated. The serum levels of proinflammatory cytokines as well as the expression of inflammation- and apoptosis-related genes in colonic tissue were also analyzed. Results: Administration of the doenjang using probiotic mixed starter cultures ameliorated the symptoms of colon cancer, and reduced the incidence of neoplasia, and reduced the levels of serum proinflammatory cytokines such as interleukin-6, and tumor necrosis factor-α and inducible nitric oxide synthase and cycloooxygenase-2 expression levels in colonic tissue. In addition, it increased Bax and reduced Bcl-2 expression levels and increased p21 and p53 expression in the colonic tissues. Conclusion: These findings indicate that the doenjang attenuated colon carcinogenesis induced by AOM and DSS by ameliorating the symptoms of colon cancer, reducing the occurrence of neoplasia, regulating proinflammatory cytokine levels, and controlling the expressions of inflammation- and apoptosis-related genes in the colonic tissue.

  8. Characterization of estrogen receptor-negative/progesterone receptor-positive breast cancer.

    Science.gov (United States)

    Shen, Tiansheng; Brandwein-Gensler, Margaret; Hameed, Omar; Siegal, Gene P; Wei, Shi

    2015-11-01

    Despite the controversies, estrogen receptor-negative/progesterone receptor-positive (ER-/PR+) breast cancers have a reported incidence of 1% to 4%. These tumors are less well defined, and it is unclear whether ER-/PR+ represents a distinct subtype. Thus, we analyzed 5374 consecutive breast cancers to characterize the clinicopathological features of this underrecognized subset of tumors. The ER-/PR+ tumors, constituting 2.3% of the total, were mostly high grade and significantly seen in younger patients and African American women when compared with the ER+/PR+ and ER+/PR- groups, but similar to that of ER-/PR- phenotype (P < .0001). A significantly prolonged relapse-free survival (RFS) was associated with the ER+/PR+ subtype when compared with the ER+/PR- (P = .0002) or ER-/PR+ (P = .0004) tumors, whereas all 3 groups showed a superior outcome to that of the ER-/PR- phenotype. In the subset of patients receiving endocrine therapy, those with ER+/PR+ tumors had a significantly prolonged RFS (P = .001) and disease-specific survival (P = .005) when compared with the group with an ER+/PR- phenotype, but did not significantly differ from those with ER-/PR+ tumors. No significant survival advantage was found between the ER+/PR- and ER-/PR+ tumors in any group of patients analyzed. Furthermore, a higher PR expression was associated with a favorable RFS and disease-specific survival in the patients with ER-/PR+ tumors. Therefore, the ER-/PR+ tumors demonstrate a similar, if not higher than, response rate to endocrine therapy when compared with the ER+/PR- tumors and thus are important to identify. Routine PR testing remains necessary in assisting clinical decision making in the pursuit of precision medicine. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Fecal microbial determinants of fecal and systemic estrogens and estrogen metabolites: a cross-sectional study.

    Science.gov (United States)

    Flores, Roberto; Shi, Jianxin; Fuhrman, Barbara; Xu, Xia; Veenstra, Timothy D; Gail, Mitchell H; Gajer, Pawel; Ravel, Jacques; Goedert, James J

    2012-12-21

    High systemic estrogen levels contribute to breast cancer risk for postmenopausal women, whereas low levels contribute to osteoporosis risk. Except for obesity, determinants of non-ovarian systemic estrogen levels are undefined. We sought to identify members and functions of the intestinal microbial community associated with estrogen levels via enterohepatic recirculation. Fifty-one epidemiologists at the National Institutes of Health, including 25 men, 7 postmenopausal women, and 19 premenopausal women, provided urine and aliquots of feces, using methods proven to yield accurate and reproducible results. Estradiol, estrone, 13 estrogen metabolites (EM), and their sum (total estrogens) were quantified in urine and feces by liquid chromatography/tandem mass spectrometry. In feces, β-glucuronidase and β-glucosidase activities were determined by realtime kinetics, and microbiome diversity and taxonomy were estimated by pyrosequencing 16S rRNA amplicons. Pearson correlations were computed for each loge estrogen level, loge enzymatic activity level, and microbiome alpha diversity estimate. For the 55 taxa with mean relative abundance of at least 0.1%, ordinal levels were created [zero, low (below median of detected sequences), high] and compared to loge estrogens, β-glucuronidase and β-glucosidase enzymatic activity levels by linear regression. Significance was based on two-sided tests with α=0.05. In men and postmenopausal women, levels of total urinary estrogens (as well as most individual EM) were very strongly and directly associated with all measures of fecal microbiome richness and alpha diversity (R≥0.50, P≤0.003). These non-ovarian systemic estrogens also were strongly and significantly associated with fecal Clostridia taxa, including non-Clostridiales and three genera in the Ruminococcaceae family (R=0.57-0.70, P=0.03-0.002). Estrone, but not other EM, in urine correlated significantly with functional activity of fecal β-glucuronidase (R=0.36, P=0

  10. Estrogen receptor (ESR1) mRNA expression and benefit from tamoxifen in the treatment and prevention of estrogen receptor-positive breast cancer.

    Science.gov (United States)

    Kim, Chungyeul; Tang, Gong; Pogue-Geile, Katherine L; Costantino, Joseph P; Baehner, Frederick L; Baker, Joffre; Cronin, Maureen T; Watson, Drew; Shak, Steven; Bohn, Olga L; Fumagalli, Debora; Taniyama, Yusuke; Lee, Ahwon; Reilly, Megan L; Vogel, Victor G; McCaskill-Stevens, Worta; Ford, Leslie G; Geyer, Charles E; Wickerham, D Lawrence; Wolmark, Norman; Paik, Soonmyung

    2011-11-01

    Several mechanisms have been proposed to explain tamoxifen resistance of estrogen receptor (ER) -positive tumors, but a clinically useful explanation for such resistance has not been described. Because the ER is the treatment target for tamoxifen, a linear association between ER expression levels and the degree of benefit from tamoxifen might be expected. However, such an association has never been demonstrated with conventional clinical ER assays, and the ER is currently used clinically as a dichotomous marker. We used gene expression profiling and ER protein assays to help elucidate molecular mechanism(s) responsible for tamoxifen resistance in breast tumors. We performed gene expression profiling of paraffin-embedded tumors from National Surgical Adjuvant Breast and Bowel Project (NSABP) trials that tested the worth of tamoxifen as an adjuvant systemic therapy (B-14) and as a preventive agent (P-1). This was a retrospective subset analysis based on available materials. In B-14, ESR1 was the strongest linear predictor of tamoxifen benefit among 16 genes examined, including PGR and ERBB2. On the basis of these data, we hypothesized that, in the P-1 trial, a lower level of ESR1 mRNA in the tamoxifen arm was the main difference between the two study arms. Only ESR1 was downregulated by more than two-fold in ER-positive cancer events in the tamoxifen arm (P < .001). Tamoxifen did not prevent ER-positive tumors with low levels of ESR1 expression. These data suggest that low-level expression of ESR1 is a determinant of tamoxifen resistance in ER-positive breast cancer. Strategies should be developed to identify, treat, and prevent such tumors.

  11. Mushroom Ganoderma lucidum Prevents Colitis-Associated Carcinogenesis in Mice

    Science.gov (United States)

    Sliva, Daniel; Loganathan, Jagadish; Jiang, Jiahua; Jedinak, Andrej; Lamb, John G.; Terry, Colin; Baldridge, Lee Ann; Adamec, Jiri; Sandusky, George E.; Dudhgaonkar, Shailesh

    2012-01-01

    Background Epidemiological studies suggest that mushroom intake is inversely correlated with gastric, gastrointestinal and breast cancers. We have recently demonstrated anticancer and anti-inflammatory activity of triterpene extract isolated from mushroom Ganoderma lucidum (GLT). The aim of the present study was to evaluate whether GLT prevents colitis-associated carcinogenesis in mice. Methods/Principal Findings Colon carcinogenesis was induced by the food-borne carcinogen (2-Amino-1-methyl-6-phenylimidazol[4,5-b]pyridine [PhIP]) and inflammation (dextran sodium sulfate [DSS]) in mice. Mice were treated with 0, 100, 300 and 500 mg GLT/kg of body weight 3 times per week for 4 months. Cell proliferation, expression of cyclin D1 and COX-2 and macrophage infiltration was assessed by immunohistochemistry. The effect of GLT on XRE/AhR, PXR and rPXR was evaluated by the reporter gene assays. Expression of metabolizing enzymes CYP1A2, CYP3A1 and CYP3A4 in colon tissue was determined by immunohistochemistry. GLT treatment significantly suppressed focal hyperplasia, aberrant crypt foci (ACF) formation and tumor formation in mice exposed to PhIP/DSS. The anti-proliferative effects of GLT were further confirmed by the decreased staining with Ki-67 in colon tissues. PhIP/DSS-induced colon inflammation was demonstrated by the significant shortening of the large intestine and macrophage infiltrations, whereas GLT treatment prevented the shortening of colon lengths, and reduced infiltration of macrophages in colon tissue. GLT treatment also significantly down-regulated PhIP/DSS-dependent expression of cyclin D1, COX-2, CYP1A2 and CYP3A4 in colon tissue. Conclusions Our data suggest that GLT could be considered as an alternative dietary approach for the prevention of colitis-associated cancer. PMID:23118901

  12. Association Between a Germline OCA2 Polymorphism at Chromosome 15q13.1 and Estrogen Receptor-Negative Breast Cancer Survival

    DEFF Research Database (Denmark)

    Azzato, E.M.; Tyrer, J.; Fasching, P.A.

    2010-01-01

    -sided. In the hypothesis-generating dataset, SNP rs4778137 (C > G) of the OCA2 gene at 15q13.1 was statistically significantly associated with overall survival among patients with estrogen receptor-negative tumors, with the rare G allele being associated with increased overall survival (HR of death per rare allele carried...... = 0.56, 95% confidence interval [CI] = 0.41 to 0.75, P = 9.2 x 10(-5)). This association was also observed in the validation dataset (HR of death per rare allele carried = 0.88, 95% CI = 0.78 to 0.99, P = .03) and in the combined dataset (HR of death per rare allele carried = 0.82, 95% CI = 0.73 to 0.......92, P = 5 x 10(-4)). The rare G allele of the OCA2 polymorphism, rs4778137, may be associated with improved overall survival among patients with estrogen receptor-negative breast cancer...

  13. Everolimus Plus Endocrine Therapy for Postmenopausal Women With Estrogen Receptor-Positive, Human Epidermal Growth Factor Receptor 2-Negative Advanced Breast Cancer: A Clinical Trial.

    Science.gov (United States)

    Royce, Melanie; Bachelot, Thomas; Villanueva, Cristian; Özgüroglu, Mustafa; Azevedo, Sergio J; Cruz, Felipe Melo; Debled, Marc; Hegg, Roberto; Toyama, Tatsuya; Falkson, Carla; Jeong, Joon; Srimuninnimit, Vichien; Gradishar, William J; Arce, Christina; Ridolfi, Antonia; Lin, Chinjune; Cardoso, Fatima

    2018-03-22

    Cotargeting the mammalian target of rapamycin pathway and estrogen receptor may prevent or delay endocrine resistance in patients receiving first-line treatment for advanced breast cancer. To investigate the combination of everolimus plus endocrine therapy in first-line and second-line treatment settings for postmenopausal women with estrogen receptor-positive, human epidermal growth receptor 2-negative advanced breast cancer. In the multicenter, open-label, single-arm, phase 2 BOLERO-4 (Breast Cancer Trials of Oral Everolimus) clinical trial, 245 patients were screened for eligibility; 202 were enrolled between March 7, 2013, and December 17, 2014. A median follow-up of 29.5 months had been achieved by the data cutoff date (December 17, 2016). Patients received first-line treatment with everolimus, 10 mg/d, plus letrozole, 2.5 mg/d. Second-line treatment with everolimus, 10 mg/d, plus exemestane, 25 mg/d, was offered at the investigator's discretion upon initial disease progression. The primary end point was investigator-assessed progression-free survival in the first-line setting per Response Evaluation Criteria in Solid Tumors, version 1.0. Safety was assessed in patients who received at least 1 dose of study medication and at least 1 postbaseline safety assessment. A total of 202 women treated in the first-line setting had a median age of 64.0 years (interquartile range, 58.0-70.0 years) with metastatic (194 [96.0%]) or locally advanced (8 [4.0%]) breast cancer. Median progression-free survival was 22.0 months (95% CI, 18.1-25.1 months) with everolimus and letrozole. Median overall survival was not reached; 24-month estimated overall survival rate was 78.7% (95% CI, 72.1%-83.9%). Fifty patients started second-line treatment; median progression-free survival was 3.7 months (95% CI, 1.9-7.4 months). No new safety signals were observed. In the first-line setting, the most common all-grade adverse event was stomatitis (139 [68.8%]); the most common grade 3 to 4

  14. Transcriptomic analysis identifies gene networks regulated by estrogen receptor α (ERα) and ERβ that control distinct effects of different botanical estrogens

    Science.gov (United States)

    Gong, Ping; Madak-Erdogan, Zeynep; Li, Jilong; Cheng, Jianlin; Greenlief, C. Michael; Helferich, William G.; Katzenellenbogen, John A.

    2014-01-01

    The estrogen receptors (ERs) ERα and ERβ mediate the actions of endogenous estrogens as well as those of botanical estrogens (BEs) present in plants. BEs are ingested in the diet and also widely consumed by postmenopausal women as dietary supplements, often as a substitute for the loss of endogenous estrogens at menopause. However, their activities and efficacies, and similarities and differences in gene expression programs with respect to endogenous estrogens such as estradiol (E2) are not fully understood. Because gene expression patterns underlie and control the broad physiological effects of estrogens, we have investigated and compared the gene networks that are regulated by different BEs and by E2. Our aim was to determine if the soy and licorice BEs control similar or different gene expression programs and to compare their gene regulations with that of E2. Gene expression was examined by RNA-Seq in human breast cancer (MCF7) cells treated with control vehicle, BE or E2. These cells contained three different complements of ERs, ERα only, ERα+ERβ, or ERβ only, reflecting the different ratios of these two receptors in different human breast cancers and in different estrogen target cells. Using principal component, hierarchical clustering, and gene ontology and interactome analyses, we found that BEs regulated many of the same genes as did E2. The genes regulated by each BE, however, were somewhat different from one another, with some genes being regulated uniquely by each compound. The overlap with E2 in regulated genes was greatest for the soy isoflavones genistein and S-equol, while the greatest difference from E2 in gene expression pattern was observed for the licorice root BE liquiritigenin. The gene expression pattern of each ligand depended greatly on the cell background of ERs present. Despite similarities in gene expression pattern with E2, the BEs were generally less stimulatory of genes promoting proliferation and were more pro-apoptotic in their

  15. Estrogen receptor positive breast tumors resist chemotherapy by the overexpression of P53 in Cancer Stem Cells

    Directory of Open Access Journals (Sweden)

    Fatma Ashour

    2018-06-01

    Full Text Available Background and Objectives: Breast cancer (BC is classified according to estrogen receptor (ER status into ER+ and ER− tumors. ER+ tumors have a worse response to chemotherapy compared to ER− tumors. BCL-2, TP53, BAX and NF-ΚB are involved in drug resistance in the ER+ tumors. Recently it was shown that Cancer Stem Cells (CSCs play an important role in drug resistance. In this study we tested the hypothesis that CSCs of the ER+ tumors resist drug through the overexpression of BCL-2, TP53, BAX and NF-ΚB. Methods: CSCs were isolated by anoikis resistance assay from MCF7 (ER+ and MDA-MB-231 (ER− cell lines. Isolated CSCs were treated with doxorubicin (DOX and the mRNA expression levels of BCL-2, TP53, BAX and NFKB were investigated by quantitative real time PCR (qPCR with and without treatment. Results: BCL-2, BAX and NF-ΚB showed decreased expression in MCF7 bulk cancer cells after DOX treatment whereas only BCL-2 and BAX showed decreased expression in MDA-MB-231 bulk cancer cells. Interestingly TP53 was the only gene showed a considerable increase in its expression in CSCs of the ER+ MCF7 cell line compared to bulk cancer cells. Moreover, TP53 was the only gene showing exceptionally higher level of expression in MCF7-CSCs compared to MDA-MB-231-CSCs. Conclusion: Our results suggest that CSCs in the ER+ cells escape the effect of DOX treatment by the elevation of p53 expression. Keywords: Breast cancer, Cancer Stem Cells, Drug resistance, Estrogen receptors

  16. Value of post-operative reassessment of estrogen receptor α expression following neoadjuvant chemotherapy with or without gefitinib for estrogen receptor negative breast cancer

    DEFF Research Database (Denmark)

    Bernsdorf, Mogens; Balslev, Eva; Lykkesfeldt, Anne

    2011-01-01

    The NICE trial was designed to evaluate the possible benefits of adding epidermal growth factor receptor targeted therapy to neoadjuvant chemotherapy in patients with estrogen receptor α (ER) negative and operable breast cancer. Preclinical data have suggested that signalling through the Erb......B receptors or downstream effectors may repress ER expression. Here the authors investigated whether gefitinib, given neoadjuvant in combination with epirubicin and cyclophosphamide (EC), could restore ER expression. Eligible patients in the NICE trial were women with unilateral, primary operable, ER negative...... to positive. A change was seen in three patients in the gefitinib (5.1%) and in two patients in the placebo (3.6%) group with a difference of 1.51% (95% CI, -6.1-9.1). Results of the NICE trial have been reported previously. Post-operative reassessment of ER expression changed the assessment of ER status...

  17. [Health risk induced by estrogens during unplanned indirect potable reuse of reclaimed water from domestic wastewater].

    Science.gov (United States)

    Wu, Qian-Yuan; Shao, Yi-Ru; Wang, Chao; Sun, Yan; Hu, Hong-Ying

    2014-03-01

    The estrogenic endocrine disruptors in reclaimed water from domestic wastewater may induce health risks to human being, when reclaimed water is used for augmentation of drinking water unplannedly and indirectly. This study investigated changes in concentrations of estrone, estradiol, 17alpha-ethinyl estradiol, bisphenol A, nonylphenol and octylphenol in reclaimed water during the reuse of reclaimed water for augmentation to water source such as lakes and reservoir via river. Thereafter, health risk induced by estrogens during the resue of reclaimed water was evaluated. The concentration of estrogen in secondary effluent ranged 0.1-100 ng x L(-1). The highest concentrations of bisphenol A and nonylphenol reached up to 1-10 microg x L(-1). During the indirect reuse of reclaimed water as potable water, the dilution and degradation in river and lake, and the removal by drinking water treatment process could change the concentrations of estrogen. The non-carcinogenic risks of estrone, estradiol, bisphenol A, nonylphenol and octylphenol were lower than 1. When the hydraulic retention time of 17alpha-ethinyl estradiol (EE2) in lakes and reservoir was higher than 30 days, the non-carcinogenic risk of EE2 was lower than 1 in most cases. When the hydraulic retention time of EE2 in lakes and reservoir was less than 30 days and the percentages of reclaimed water in drinking water were higher than 50%, the non-carcinogenic risk induced by EE2 was higher than 1 in 20%-50% samples. This indicated that the risks of EE2 should be concerned.

  18. Prolactin suppresses a progestin-induced CK5-positive cell population in luminal breast cancer through inhibition of progestin-driven BCL6 expression

    Science.gov (United States)

    Sato, Takahiro; Tran, Thai H.; Peck, Amy R.; Girondo, Melanie A.; Liu, Chengbao; Goodman, Chelain R.; Neilson, Lynn M.; Freydin, Boris; Chervoneva, Inna; Hyslop, Terry; Kovatich, Albert J.; Hooke, Jeffrey A.; Shriver, Craig D.; Fuchs, Serge Y.; Rui, Hallgeir

    2014-01-01

    Prolactin controls the development and function of milk-producing breast epithelia but also supports growth and differentiation of breast cancer, especially luminal subtypes. A principal signaling mediator of prolactin, Stat5, promotes cellular differentiation of breast cancer cells in vitro, and loss of active Stat5 in tumors is associated with anti-estrogen therapy failure in patients. In luminal breast cancer progesterone induces a cytokeratin-5 (CK5)-positive basal cell-like population. This population possesses characteristics of tumor stem cells including quiescence, therapy-resistance, and tumor-initiating capacity. Here we report that prolactin counteracts induction of the CK5-positive population by the synthetic progestin R5020 in luminal breast cancer cells both in vitro and in vivo. CK5-positive cells were chemoresistant as determined by four-fold reduced rate of apoptosis following docetaxel exposure. Progestin-induction of CK5 was preceded by marked up-regulation of BCL6, an oncogene and transcriptional repressor critical for the maintenance of leukemia-initiating cells. Knockdown of BCL6 prevented induction of CK5-positive cell population by progestin. Prolactin suppressed progestin-induced BCL6 through Jak2-Stat5 but not Erk- or Akt-dependent pathways. In premenopausal but not postmenopausal patients with hormone receptor-positive breast cancer, tumor protein levels of CK5 correlated positively with BCL6, and high BCL6 or CK5 protein levels were associated with unfavorable clinical outcome. Suppression of progestin-induction of CK5-positive cells represents a novel pro-differentiation effect of prolactin in breast cancer. The present progress may have direct implications for breast cancer progression and therapy since loss of prolactin receptor-Stat5 signaling occurs frequently and BCL6 inhibitors currently being evaluated for lymphomas may have value for breast cancer. PMID:23708665

  19. Mast cells and eosinophils in invasive breast carcinoma

    International Nuclear Information System (INIS)

    Amini, Rose-Marie; Aaltonen, Kirsimari; Nevanlinna, Heli; Carvalho, Ricardo; Salonen, Laura; Heikkilä, Päivi; Blomqvist, Carl

    2007-01-01

    Inflammatory cells in the tumour stroma has gained increasing interest recently. Thus, we aimed to study the frequency and prognostic impact of stromal mast cells and tumour infiltrating eosinophils in invasive breast carcinomas. Tissue microarrays containing 234 cases of invasive breast cancer were prepared and analysed for the presence of stromal mast cells and eosinophils. Tumour infiltrating eosinophils were counted on hematoxylin-eosin slides. Immunostaining for tryptase was done and the total number of mast cells were counted and correlated to the proliferation marker Ki 67, positivity for estrogen and progesterone receptors, clinical parameters and clinical outcome. Stromal mast cells were found to correlate to low grade tumours and estrogen receptor positivity. There was a total lack of eosinophils in breast cancer tumours. A high number of mast cells in the tumours correlated to low-grade tumours and estrogen receptor positivity. Eosinophils are not tumour infiltrating in breast cancers

  20. Clinical Trial of Acolbifene in Premenopausal Women at High Risk for Breast Cancer.

    Science.gov (United States)

    Fabian, Carol J; Kimler, Bruce F; Zalles, Carola M; Phillips, Teresa A; Metheny, Trina; Petroff, Brian K; Havighurst, Thomas C; Kim, KyungMann; Bailey, Howard H; Heckman-Stoddard, Brandy M

    2015-12-01

    The purpose of this study was to assess the feasibility of using the selective estrogen receptor modulator (SERM) acolbifene as a breast cancer prevention agent in premenopausal women. To do so, we assessed change in proliferation in benign breast tissue sampled by random periareolar fine-needle aspiration (RPFNA) as a primary endpoint, along with changes in other risk biomarkers and objective and subjective side effects as secondary endpoints. Twenty-five women with cytologic hyperplasia ± atypia and ≥2% of breast epithelial cells staining positive for Ki-67, received 20 mg acolbifene daily for 6-8 months, and then had benign breast tissue and blood risk biomarkers reassessed. Ki-67 decreased from a median of 4.6% [interquartile range (IQR), 3.1%-8.5%] at baseline to 1.4% (IQR, 0.6%-3.5%) after acolbifene (P breast density. Subjective side effects were minimal with no significant increase in hot flashes, muscle cramps, arthralgias, or fatigue. Objective measures showed a clinically insignificant decrease in lumbar spine bone density (DEXA) and an increase in ovarian cysts but no change in endometrial thickness (sonography). In summary, acolbifene was associated with favorable changes in benign breast epithelial cell proliferation and estrogen-inducible gene expression but minimal side effects, suggesting a phase IIB placebo-controlled trial evaluating it further for breast cancer prevention. ©2015 American Association for Cancer Research.